
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Michael Fogus

Functional JavaScript

www.allitebooks.com

http://www.allitebooks.org

Functional JavaScript
by Michael Fogus

Copyright © 2013 Michael Fogus. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Melanie Yarbrough
Copyeditor: Jasmine Kwityn
Proofreader: Jilly Gagnon

Indexer: Judith McConville
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

May 2013: First Edition

Revision History for the First Edition:

2013-05-24: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449360726 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Functional JavaScript, the image of an eider duck, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36072-6

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449360726
http://www.allitebooks.org

For Yuki

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword by Jeremy Ashkenas. ix
Foreword by Steve Vinoski. xi
Preface. xiii

1. Introducing Functional JavaScript. 1
The Case for JavaScript 1

Some Limitations of JavaScript 3
Getting Started with Functional Programming 4

Why Functional Programming Matters 4
Functions as Units of Abstraction 8
Encapsulation and Hiding 10
Functions as Units of Behavior 11
Data as Abstraction 15
A Taste of Functional JavaScript 19
On Speed 21

The Case for Underscore 24
Summary 25

2. First-Class Functions and Applicative Programming. 27
Functions as First-Class Things 27

JavaScript’s Multiple Paradigms 29
Applicative Programming 34

Collection-Centric Programming 35
Other Examples of Applicative Programming 36
Defining a Few Applicative Functions 39

Data Thinking 41
“Table-Like” Data 43

v

www.allitebooks.com

http://www.allitebooks.org

Summary 47

3. Variable Scope and Closures. 49
Global Scope 49
Lexical Scope 51
Dynamic Scope 52

JavaScript’s Dynamic Scope 55
Function Scope 56
Closures 59

Simulating Closures 60
Using Closures 65
Closures as an Abstraction 67

Summary 67

4. Higher-Order Functions. 69
Functions That Take Other Functions 69

Thinking About Passing Functions: max, finder, and best 70
More Thinking About Passing Functions: repeat, repeatedly, and

iterateUntil 72
Functions That Return Other Functions 75

Capturing Arguments to Higher-Order Functions 77
Capturing Variables for Great Good 77
A Function to Guard Against Nonexistence: fnull 80

Putting It All Together: Object Validators 82
Summary 85

5. Function-Building Functions. 87
The Essence of Functional Composition 87

Mutation Is a Low-Level Operation 91
Currying 92

To Curry Right, or To Curry Left 94
Automatically Currying Parameters 95
Currying for Fluent APIs 99
The Disadvantages of Currying in JavaScript 100

Partial Application 100
Partially Applying One and Two Known Arguments 102
Partially Applying an Arbitrary Number of Arguments 103
Partial Application in Action: Preconditions 104

Stitching Functions End-to-End with Compose 108
Pre- and Postconditions Using Composition 109

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Summary 110

6. Recursion. 113
Self-Absorbed Functions (Functions That Call Themselves) 113

Graph Walking with Recursion 118
Depth-First Self-Recursive Search with Memory 119
Recursion and Composing Functions: Conjoin and Disjoin 122

Codependent Functions (Functions Calling Other Functions That Call Back) 124
Deep Cloning with Recursion 125
Walking Nested Arrays 126

Too Much Recursion! 129
Generators 131
The Trampoline Principle and Callbacks 134

Recursion Is a Low-Level Operation 136
Summary 137

7. Purity, Immutability, and Policies for Change. 139
Purity 139

The Relationship Between Purity and Testing 140
Separating the Pure from the Impure 142
Property-Testing Impure Functions 143
Purity and the Relationship to Referential Transparency 144
Purity and the Relationship to Idempotence 146

Immutability 147
If a Tree Falls in the Woods, Does It Make a Sound? 149
Immutability and the Relationship to Recursion 150
Defensive Freezing and Cloning 151
Observing Immutability at the Function Level 153
Observing Immutability in Objects 155
Objects Are Often a Low-Level Operation 159

Policies for Controlling Change 160
Summary 163

8. Flow-Based Programming. 165
Chaining 165

A Lazy Chain 168
Promises 173

Pipelining 176
Data Flow versus Control Flow 180

Finding a Common Shape 183
A Function to Simplify Action Creation 187

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Summary 189

9. Programming Without Class. 191
Data Orientation 191

Building Toward Functions 194
Mixins 198

Core Prototype Munging 200
Class Hierarchies 201
Changing Hierarchies 204
Flattening the Hierarchy with Mixins 205
New Semantics via Mixin Extension 211
New Types via Mixin Mixing 212
Methods Are Low-Level Operations 214

}).call(“Finis”); 216

A. Functional JavaScript in the Wild. 217

B. Annotated Bibliography. 227

Index. 231

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Foreword by Jeremy Ashkenas

This is a terribly exciting book.

Despite its ignominious origins as a “Java-lite” scripting language, intended to be em‐
bedded inline in HTML documents to allow a minimum modicum of interactivi‐
ty‚ JavaScript has always been one of the most essentially flexible languages for general
purpose programming.

You can sketch, smudge, and draft bits of code in JavaScript, while pushing and twisting
the language in the direction that best suits your particular style. The reason that this is
more natural in JavaScript than in other, more rigid languages is due to the small set of
strong core ideas that lie at the heart of JavaScript: Everything is an object (everything
is a value) to an even greater extent than in famously object-oriented languages like
Ruby and Java. Functions are objects, are values. An object may serve as prototype
(default values) for any other object. There is only one kind of function, and depending
on how you employ it, it can either serve as a pure function, a mutating procedure, or
as a method on an object.

JavaScript enables, but does not enforce, many different programming styles. In the
early days, we tended to bring our traditional expectations and “best” practices with us
when we started to learn to write JavaScript. Naturally this led to much JavaScript re‐
sembling Java without the omnipresent types or even with the types still there, just living
inside of annotation comments above each method. Gradually, experiments were made:
folks started generating functions at runtime, working with immutable data structures,
creating different patterns for object-orientation, discovering the magic of chaining
APIs, or extending built-in prototypes with custom functionality.

One of my favorite recent developments is the enthusiastic embrace of functional pro‐
gramming ideas as appropriate tools for building rich JavaScript applications. As we
move beyond form validation and DOM animation towards full-featured apps, where
the JavaScript in your codebase might be getting up to any manner of hijinks in any
particular problem space, functional ideas are similarly moving beyond the basic call‐
back, and towards more interesting arenas, such as:

ix

• Building out a large API by partially applying a core set of functions with arguments
in different configurations.

• Using recursive functions to smooth the gap between actions that need to occur for
a period of time, and events coming in rapid-fire off the event loop.

• Structuring a piece of complex business logic as a pipeline of mutation-free changes
that can later be plugged-into and pulled apart.

You’re reading the ideal book with which to explore this territory. In the following nine
chapters (and two appendixes), your friendly tour guide and resident mad scientist,
Michael Fogus, breaks down functional programming into its basic atoms, and builds
it back up again into edifices of terrifying cleverness that will leave you wondering. It’s
rare that a programming book can take you by surprise, but this one will.

Enjoy.

—Jeremy Ashkenas

x | Foreword by Jeremy Ashkenas

Foreword by Steve Vinoski

I remember when I first read Douglas Crockford’s wonderful book JavaScript: The Good
Parts. Not only did I learn from it, but the fact that Crockford required only 172 pages
to steer readers away from JavaScript’s problematic parts makes his work that much
more impressive. Brevity is often at odds with educative exposition, but when an author
achieves both as Crockford did, the reader is more likely to fully digest the author’s
recommendations and benefit from them.

In the pages that follow, you’ll find that Michael Fogus has given us a book as excellent
as Crockford’s, perhaps more so. He’s built on the sound advice of Crockford and other
predecessors to take us on a deep dive into the world of functional JavaScript program‐
ming. I’ve often heard and read (and even written myself) that JavaScript is a functional
programming language, but such assertions (including my own) have always seemed
light on the pragmatic details that practicing programmers need. Even Crockford de‐
voted only a single chapter to functions, focusing instead, like many authors, on Java‐
Script’s object support. Here, merely saying that Fogus fills in those missing details would
be a serious understatement.

Functional programming has been a part of the computing field from its inception, yet
traditionally it has not enjoyed significant interest or growth among practicing software
professionals. But thanks to continuing advances in computing hardware speed and
capacity, coupled with our industry’s increasing interest in creating software systems of
ever-escalating levels of concurrency, distribution and scale, functional programming
is rapidly growing in popularity. This growth is due to the observation that functonal
programming appears to help developers reason about, build and maintain such sys‐
tems. Curiosity about languages that support functional programming, like Scala, Clo‐
jure, Erlang and Haskell, is at an all-time high and still increasing, with no abatement
in sight.

As you read through Michael’s insightful investigations of JavaScript’s functional pro‐
gramming capabilities, you’ll be impressed with the significant depth and breadth of
the information he provides. He keeps things simple at first, explaining how functions

xi

and “data as abstraction” can avoid the desire to use JavaScript’s powerful object pro‐
totype system to create yet another way of modeling classes. But as he explains and
thoroughly reveals in subsequent chapters, the simple model of functional data trans‐
formation can yield sophisticated yet efficient building blocks and higher level abstrac‐
tions. I predict you’ll be amazed at just how far Fogus is able to take these innovative
approaches as each chapter goes by.

Most software development efforts require pragmatism, though, and fortunately for us
Fogus tackles this important requirement as well. Having beautiful, sophisticated and
simple code is ultimately meaningless if it’s not practical, and this is a large part of the
reason functional programming stayed hidden in the shadows for so many years. Fogus
addresses this issue by helping the reader explore and evaluate the computing costs
associated with the functional programming approaches he champions here.

And of course books, just like software, are ultimately about communication. Like
Crockford, Fogus writes in a manner that’s both brief and informative, saying just
enough to drive his ideas home without belaboring them. I can’t overstate the impor‐
tance of Michael’s brevity and clarity, since without them we’d miss the incredible po‐
tential of the ideas and insights he’s provided here. You’ll find elegance not only in the
approaches and code Fogus presents, but also in the way he presents them.

—Steve Vinoski

xii | Foreword by Steve Vinoski

1. Batman actually had more than just useful tools—he had tools for every conceivable circumstance, including
those that might require a Bat Alphabet Soup Container or Bat Shark Repellant. Underscore doesn’t quite
match that level of applicability.

Preface

What Is Underscore?
Underscore.js (hereafter called Underscore) is a JavaScript library supporting functional
programming. The Underscore website describes the library as such:

Underscore is a utility-belt library for JavaScript that provides a lot of the functional
programming support that you would expect in Prototype.js (or Ruby), but without ex‐
tending any of the built-in JavaScript objects.

In case you didn’t grow up watching the kitschy old Batman television show, the term
“utility belt” means that it provides a set of useful tools that will help you solve many
common problems.1

Getting Underscore
The Underscore website has the latest version of the library. You can download the
source from the website and import it into the applicable project directories.

Using Underscore
Underscore can be added to your own projects in the same way you would add any other
JavaScript library. However, there are a few points to make about how you interact with
Underscore. First, by default Underscore defines a global object named _ that contains
all of its functions. To call an Underscore function, you simply call it as a method on _,
as shown in the following code:

xiii

http://underscorejs.org

_.times(4, function() { console.log("Major") });

// (console) Major
// (console) Major
// (console) Major
// (console) Major

Simple, no?

One thing that might not be so simple is if you already defined a global _ variable. In
this case, Underscore provides a _.noConflict function that will rebind your old _ and
return a reference to Underscore itself. Therefore, using _.noConflict works as follows:

var underscore = _.noConflict();

underscore.times(4, function() { console.log("Major") });

// (console) Major
// (console) Major
// (console) Major
// (console) Major

_;
//=> Whatever you originally bound _ to

You’ll see many of the details of Underscore throughout this book, but bear in mind
that while I use Underscore extensively (and endorse it), this is not a book about
Underscore per se.

The Source Code for Functional JavaScript
Many years ago, I wanted to write a library for JavaScript based on functional program‐
ming techniques. Like many programmers, I had obtained a working understanding of
JavaScript through a mixture of experimentation, use, and the writing of Douglas
Crockford. Although I went on to complete my functional library (which I named
Doris), I rarely used it for even my own purposes.

After completing Doris, I went on to other ventures, including extensive work with (and
on) the functional programming languages Scala and Clojure. Additionally, I spent a
lot of time helping to write ClojureScript, especially its compiler that targets JavaScript.
Based on these experiences, I gained a very good understanding of functional pro‐
gramming techniques. As a result, I decided to resurrect Doris and try it again, this time
using techniques learned in the intervening years. The product of this effort was called
Lemonad, which was developed in conjunction with the content of this book.

While many of the functions in this book are created for the purpose of illustration, I’ve
expanded on the lessons in this book in my Lemonad library and the official underscore-
contrib library.

xiv | Preface

http://www.github.com/fogus/lemonad
http://bit.ly/12xnnSp
http://bit.ly/12xnnSp

2. Like all powerful tools, JavaScript’s eval and Function constructors can be used for harm as well as for good.
I have nothing against them per se, but I rarely need them.

Running the Code in This Book
The source code for Functional JavaScript is available on GitHub. Additionally, navi‐
gating to the book’s website will allow you to use your browser’s JavaScript console to
explore the functions defined herein.

Notational Conventions
Throughout the course of this book (and in general when writing JavaScript) I observe
various rules when writing functions, including the following:

• Avoid assigning variables more than once.
• Do not use eval.2

• Do not modify core objects like Array and Function.
• Favor functions over methods.
• If a function is defined at the start of a project, then it should work in subsequent

stages as well.

Additionally, I use various conventions in the text of this book, including the following:

• Functions of zero parameters are used to denote that the arguments don’t matter.
• In some examples, ... is used to denote that the surrounding code segments are

being ignored.
• Text like inst#method denotes a reference to an instance method.
• Text like Object.method denotes a reference to a type method.
• I tend to restrict if/else statements to a single line per branch, so I prefer to avoid

using curly brackets to wrap the blocks. This saves precious vertical space.
• I like to use semicolons.

For the most part, the JavaScript code in this book is like the majority of JavaScript code
that you’ll see in the wild, except for the functional composition, which is the whole
point of writing the book in the first place.

Whom Functional JavaScript Is Written For
This book started as an idea a few years ago, to write an introductory book on functional
programming in the Scheme programming language. Although Scheme and JavaScript
have some common features, they are very different in many important ways. However,

Preface | xv

https://github.com/funjs
http://www.functionaljavascript.com

regardless of the language used, much of functional programming is transcendent.
Therefore, I wrote this book to introduce functional programming in the context of
what is and what is not possible with JavaScript.

I assume a base-level understanding of JavaScript. There are many amazing books on
the topic and a bevy of online resources, so an introduction to the language is not
provided herein. I also assume a working understanding of object-oriented program‐
ming, as commonly practiced in languages such as Java, Ruby, Python, and even Java‐
Script. While knowing object-oriented programming can help you to avoid my use of
the occasional irrelevant phrase, an expert-level understanding of the subject is not
required.

The ideal readers for Functional JavaScript are long-time JavaScript programmers hop‐
ing to learn about functional programming, or long-time functional programmers
looking to learn JavaScript. For the latter case, it’s advised that this book be supplemented
with material focusing on JavaScript’s…oddities. Of particular note is JavaScript: The
Good Parts by Douglas Crockford (O’Reilly). Finally, this book is appropriate for anyone
looking to learn more about functional programming, even those who have no intention
of using JavaScript beyond the confines of these pages.

A Roadmap for Functional JavaScript
Here is an outline of the topics covered in Functional JavaScript:
Chapter 1, Introducing Functional JavaScript

The book starts off by introducing some important topics, including functional
programming and Underscore.js.

Chapter 2, First-Class Functions and Applicative Programming
Chapter 2 defines first-class functions, shows how to use them, and describes some
common applications. One particular technique using first-class functions—called
applicative programming—is also described. The chapter concludes with a discus‐
sion of “data thinking,” an important approach to software development central to
functional programming.

Chapter 3, Variable Scope and Closures
Chapter 3 is a transitional chapter that covers two topics of core importance to
understanding functional programming in JavaScript. I start by covering variable
scoping, including the flavors used within JavaScript: lexical scoping, dynamic
scoping, and function scoping. The chapter concludes with a discussion of closures
—how they operate, and how and why you might use them.

xvi | Preface

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596517748.do

Chapter 4, Higher-Order Functions
Building on the lessons of Chapters 2 and 3, this chapter describes an important
type of first-class function: higher-order functions. Although “higher-order func‐
tions” sound complicated, this chapter shows that they are instead straightfoward.

Chapter 5, Function-Building Functions
Moving on from the lessons of the previous chapters, Chapter 5 describes a way to
“compose” functions from other functions. Composing functions is an important
technique in functional programming, and this chapter will help guide you through
the process.

Chapter 6, Recursion
Chapter 6 is another transitional chapter in which I’ll discuss recursion, a term that
describes a function that calls itself either directly or indirectly. Because recursion
is limited in JavaScript, it’s not often used; however, there are ways around these
limitations, and this chapter will guide you through a few.

Chapter 7, Purity, Immutability, and Policies for Change
Chapter 7 deals with various ways to write functional code that doesn’t change
anything. Put simply, functional programming is facilitated when variables are not
changed at all, and this chapter will guide you through just what that means.

Chapter 8, Flow-Based Programming
Chapter 8 deals with viewing tasks, and even whole systems, as virtual “assembly
lines” of functions that transform and move data.

Chapter 9, Programming Without Class
The final chapter focuses on how functional programming allows you to structure
applications in interesting ways that have nothing to do with class-based object-
oriented programming.

Following these chapters, the book concludes with two appendixes of supplementary
information: Appendix A, Functional JavaScript in the Wild and Appendix B, Annotated
Bibliography.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Preface | xvii

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Functional JavaScript by Michael Fogus
(O’Reilly). Copyright 2013 Michael Fogus, 978-1-449-36072-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xviii | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.allitebooks.org

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/functional_js.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
It takes a village to write a book, and this book is no different. First, I would like to thank
my good friend Rob Friesel for taking the time to provide feedback throughout the
course of writing this book. Additionally, I would like to thank Jeremy Ashkenas for
putting me in touch with O’Reilly and really making this book possible from the start.
Plus he wrote the Underscore.js library—no small matter.

The following people have provided great conversation, direct feedback, or even inspi‐
ration from afar over the years, and I thank them all just for being awesome: Chris
Houser, David Nolen, Stuart Halloway, Tim Ewald, Russ Olsen, Alan Kay, Peter Seibel,
Sam Aaron, Brenton Ashworth, Craig Andera, Lynn Grogan, Matthew Flatt, Brian
McKenna, Bodil Stokke, Oleg Kiselyov, Dave Herman, Mashaaricda Barmajada ee
Mahmud, Patrick Logan, Alan Dipert, Alex Redington, Justin Gehtland, Carin Meier,
Phil Bagwell, Steve Vinoski, Reginald Braithwaite, Daniel Friedman, Jamie Kite, William
Byrd, Larry Albright, Michael Nygard, Sacha Chua, Daniel Spiewak, Christophe Grand,
Sam Aaron, Meikel Brandmeyer, Dean Wampler, Clinton Dreisbach, Matthew Podwy‐
socki, Steve Yegge, David Liebke, and Rich Hickey.

Preface | xix

http://oreil.ly/functional_js
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

My soundtrack while writing Functional JavaScript was provided by Pantha du Prince,
Black Ace, Brian Eno, Béla Bartók, Dieter Moebius, Sun Ra, Broadcast, Scientist, and
John Coltrane.

Finally, nothing that I do would be possible without the support of the three loves of
my life: Keita, Shota, and Yuki.

xx | Preface

CHAPTER 1

Introducing Functional JavaScript

This chapter sets up the book in a number of important ways. In it, I will introduce
Underscore and explain how you can start using it. Additionally, I will define the terms
and goals of the rest of the book.

The Case for JavaScript
The question of why you might choose JavaScript is easily answered in a word: reach.
In other words, aside from perhaps Java, there is no more popular programming lan‐
guage right now than JavaScript. Its ubiquity in the browser and its near-ubiquity in a
vast sea of current and emerging technologies make it a nice—and sometimes the
only—choice for portability.

With the reemergence of client-service and single-page application architectures, the
use of JavaScript in discrete applications (i.e., single-page apps) attached to numerous
network services is exploding. For example, Google Apps are all written in JavaScript,
and are prime examples of the single-page application paradigm.

If you’ve come to JavaScript with a ready interest in functional programming, then the
good news is that it supports functional techniques “right out of the box” (e.g., the
function is a core element in JavaScript). For example, if you have any experience with
JavaScript, then you might have seen code like the following:

[1, 2, 3].forEach(alert);
// alert box with "1" pops up
// alert box with "2" pops up
// alert box with "3" pops up

The Array#forEach method, added in the fifth edition of the ECMA-262 language
standard, takes some function (in this case, alert) and passes each array element to the
function one after the other. That is, JavaScript provides various methods and functions

1

1. And, as with all tools, you can get cut and/or smash your thumb if you’re not careful.

that take other functions as arguments for some inner purpose. I’ll talk more about this
style of programming as the book progresses.

JavaScript is also built on a solid foundation of language primitives, which is amazing,
but a double-edged sword (as I’ll discuss soon). From functions to closures to prototypes
to a fairly nice dynamic core, JavaScript provides a well-stocked set of tools.1 In addition,
JavaScript provides a very open and flexible execution model. As a small example, all
JavaScript functions have an apply method that allows you to call the function with an
array as if the array elements were the arguments to the function itself. Using apply, I
can create a neat little function named splat that just takes a function and returns
another function that takes an array and calls the original with apply, so that its elements
serve as its arguments:

function splat(fun) {
 return function(array) {
 return fun.apply(null, array);
 };
}

var addArrayElements = splat(function(x, y) { return x + y });

addArrayElements([1, 2]);
//=> 3

This is your first taste of functional programming—a function that returns another
function—but I’ll get to the meat of that later. The point is that apply is only one of
many ways that JavaScript is a hugely flexible programming language.

Another way that JavaScript proves its flexibility is that any function may be called with
any number of arguments of any type, at any time. We can create a function unsplat
that works opposite from splat, taking a function and returning another function that
takes any number of arguments and calls the original with an array of the values given:

function unsplat(fun) {
 return function() {
 return fun.call(null, _.toArray(arguments));
 };
}

var joinElements = unsplat(function(array) { return array.join(' ') });

joinElements(1, 2);
//=> "1 2"

joinElements('-', '$', '/', '!', ':');
//=> "- $ / ! :"

2 | Chapter 1: Introducing Functional JavaScript

2. A draft specification for ES.next is found at http://wiki.ecmascript.org/doku.php?id=harmony:specifica
tion_drafts.

3. The debate continues over just how deeply.

4. Some languages that target JavaScript include, but are not limited to, the following: ClojureScript, Coffee‐
Script, Roy, Elm, TypeScript, Dart, Flapjax, Java, and JavaScript itself!

Every JavaScript function can access a local value named arguments that is an array-
like structure holding the values that the function was called with. Having access to
arguments is surprisingly powerful, and is used to amazing effect in JavaScript in the
wild. Additionally, the call method is similar to apply except that the former takes the
arguments one by one rather than as an array, as expected by apply. The trifecta of
apply, call, and arguments is only a small sample of the extreme flexibility provided
by JavaScript.

With the emergent growth of JavaScript for creating applications of all sizes, you might
expect stagnation in the language itself or its runtime support. However, even a casual
investigation of the ECMAScript.next initiative shows that it’s clear that JavaScript is an
evolving (albeit slowly) language.2 Likewise, JavaScript engines like V8 are constantly
evolving and improving JavaScript speed and efficiency using both time-tested and
novel techniques.

Some Limitations of JavaScript
The case against JavaScript—in light of its evolution, ubiquity, and reach—is quite thin.
You can say much about the language quirks and robustness failings, but the fact is that
JavaScript is here to stay, now and indefinitely. Regardless, it’s worth acknowledging
that JavaScript is a flawed language.3 In fact, the most popular book on JavaScript,
Douglas Crockford’s JavaScript: The Good Parts (O’Reilly), spends more pages discus‐
sing the terrible parts than the good. The language has true oddities, and by and large
is not particularly succinct in expression. However, changing the problems with Java‐
Script would likely “break the Web,” a circumstance that’s unacceptable to most. It’s
because of these problems that the number of languages targeting JavaScript as a com‐
pilation platform is growing; indeed, this is a very fertile niche.4

As a language supporting—and at times preferring—imperative programming techni‐
ques and a reliance on global scoping, JavaScript is unsafe by default. That is, building
programs with a key focus on mutability is potentially confusing as programs grow.
Likewise, the very language itself provides the building blocks of many high-level fea‐
tures found by default in other languages. For example, JavaScript itself, prior to trunk
versions of ECMAScript 6, provides no module system, but facilitates their creation
using raw objects. That JavaScript provides a loose collection of basic parts ensures a
bevy of custom module implementations, each incompatible with the next.

The Case for JavaScript | 3

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://shop.oreilly.com/product/9780596517748.do

Language oddities, unsafe features, and a sea of competing libraries: three legitimate
reasons to think hard about the adoption of JavaScript. But there is a light at the end of
the tunnel that’s not just the light of an oncoming train. The light is that through dis‐
cipline and an observance to certain conventions, JavaScript code can be not only safe,
but also simple to understand and test, in addition to being proportionally scalable to
the size of the code base. This book will lead you on the path to one such approach:
functional programming.

Getting Started with Functional Programming
You may have heard of functional programming on your favorite news aggregation site,
or maybe you’ve worked in a language supporting functional techniques. If you’ve writ‐
ten JavaScript (and in this book I assume that you have) then you indeed have used a
language supporting functional programming. However, that being the case, you might
not have used JavaScript in a functional way. This book outlines a functional style of
programming that aims to simplify your own libraries and applications, and helps tame
the wild beast of JavaScript complexity.

As a bare-bones introduction, functional programming can be described in a single
sentence:

Functional programming is the use of functions that transform values into units of ab‐
straction, subsequently used to build software systems.

This is a simplification bordering on libel, but it’s functional (ha!) for this early stage in
the book. The library that I use as my medium of functional expression in JavaScript is
Underscore, and for the most part, it adheres to this basic definition. However, this
definition fails to explain the “why” of functional programming.

Why Functional Programming Matters
The major evolution that is still going on for me is towards a more functional program‐
ming style, which involves unlearning a lot of old habits, and backing away from some
OOP directions.

—John Carmack

If you’re familiar with object-oriented programming, then you may agree that its pri‐
mary goal is to break a problem into parts, as shown in Figure 1-1 (Gamma 1995).

4 | Chapter 1: Introducing Functional JavaScript

Figure 1-1. A problem broken into object-oriented parts

Likewise, these parts/objects can be aggregated and composed to form larger parts, as
shown in Figure 1-2.

Figure 1-2. Objects are “composed” together to form bigger objects

Based on these parts and their aggregates, a system is then described in terms of the
interactions and values of the parts, as shown in Figure 1-3.

Getting Started with Functional Programming | 5

5. This is a simplistic way to view the composition of object-oriented versus functional systems, but bear with
me as I develop a way to mix the two throughout the course of this book.

Figure 1-3. An object-oriented system and its interactions as a sequence diagram

This is a gross simplification of how object-oriented systems are formed, but I think
that as a high-level description it works just fine.

By comparison, a strict functional programming approach to solving problems also
breaks a problem into parts (namely, functions), as shown in Figure 1-4.

Figure 1-4. A problem broken into functional parts

Whereas the object-oriented approach tends to break problems into groupings of
“nouns,” or objects, a functional approach breaks the same problem into groupings of
“verbs,” or functions.5 As with object-oriented programming, larger functions are
formed by “gluing” or “composing” other functions together to build high-level behav‐
iors, as shown in Figure 1-5.

Figure 1-5. Functions are also composed together to form more behaviors

6 | Chapter 1: Introducing Functional JavaScript

Finally, one way that the functional parts are formed into a system (as shown in
Figure 1-6) is by taking a value and gradually “transforming” it—via one primitive or
composed function—into another.

Figure 1-6. A functional system interacts via data transformation

In a system observing a strict object-oriented style, the interactions between objects
cause internal change to each object, leading to an overall system state that is the amal‐
gamation of many smaller, potentially subtle state changes. These interrelated state
changes form a conceptual “web of change” that, at times, can be confusing to keep in
your head. This confusion becomes a problem when the act of adding new objects and
system features requires a working knowledge of the subtleties of potentially far-
reaching state changes.

A functional system, on the other hand, strives to minimize observable state modifica‐
tion. Therefore, adding new features to a system built using functional principles is a
matter of understanding how new functions can operate within the context of localized,
nondestructive (i.e., original data is never changed) data transformations. However, I
hesitate to create a false dichotomy and say that functional and object-oriented styles
should stand in opposition. That JavaScript supports both models means that systems
can and should be composed of both models. Finding the balance between functional
and object-oriented styles is a tricky task that will be tackled much later in the book,
when discussing mixins in Chapter 9. However, since this is a book about functional
programming in JavaScript, the bulk of the discussion is focused on functional styles
rather than object-oriented ones.

Having said that, a nice image of a system built along functional principles is an
assembly-line device that takes raw materials in one end, and gradually builds a product
that comes out the other end (Figure 1-7).

Getting Started with Functional Programming | 7

Figure 1-7. A functional program is a machine for transforming data

The assembly line analogy is, of course, not entirely perfect, because every machine I
know consumes its raw materials to produce a product. By contrast, functional pro‐
gramming is what happens when you take a system built in an imperative way and shrink
explicit state changes to the smallest possible footprint to make it more modular
(Hughes 1984). Practical functional programming is not about eliminating state change,
but instead about reducing the occurrences of mutation to the smallest area possible for
any given system.

Functions as Units of Abstraction
One method of abstraction is that functions hide implementation details from view. In
fact, functions are a beautiful unit of work allowing you to adhere to the long-practiced
maxim in the UNIX community, set forth by Butler Lampson:

Make it run, make it right, make it fast.

Likewise, functions-as-abstraction allow you to fulfill Kent Beck’s similarly phrased
mantra of test-driven development (TDD):

Make it run, then make it right, then make it fast.

For example, in the case of reporting errors and warnings, you could write something
like the following:

function parseAge(age) {
 if (!_.isString(age)) throw new Error("Expecting a string");
 var a;

 console.log("Attempting to parse an age");

 a = parseInt(age, 10);

8 | Chapter 1: Introducing Functional JavaScript

www.allitebooks.com

http://www.allitebooks.org

 if (_.isNaN(a)) {
 console.log(["Could not parse age:", age].join(' '));
 a = 0;
 }

 return a;
}

This function, although not comprehensive for parsing age strings, is nicely illustrative.
Use of parseAge is as follows:

parseAge("42");
// (console) Attempting to parse an age
//=> 42

parseAge(42);
// Error: Expecting a string

parseAge("frob");
// (console) Attempting to parse an age
// (console) Could not parse age: frob
//=> 0

The parseAge function works as written, but if you want to modify the way that errors,
information, and warnings are presented, then changes need to be made to the appro‐
priate lines therein, and anywhere else similar patterns are used. A better approach is
to “abstract” the notion of errors, information, and warnings into functions:

function fail(thing) {
 throw new Error(thing);
}

function warn(thing) {
 console.log(["WARNING:", thing].join(' '));
}

function note(thing) {
 console.log(["NOTE:", thing].join(' '));
}

Using these functions, the parseAge function can be rewritten as follows:
function parseAge(age) {
 if (!_.isString(age)) fail("Expecting a string");
 var a;

 note("Attempting to parse an age");
 a = parseInt(age, 10);

 if (_.isNaN(a)) {
 warn(["Could not parse age:", age].join(' '));
 a = 0;

Getting Started with Functional Programming | 9

 }

 return a;
}

Here’s the new behavior:
parseAge("frob");
// (console) NOTE: Attempting to parse an age
// (console) WARNING: Could not parse age: frob
//=> 0

It’s not very different from the old behavior, except that now the idea of reporting errors,
information, and warnings has been abstracted away. The reporting of errors, infor‐
mation, and warnings can thus be modified entirely:

function note() {}
function warn(str) {
 alert("That doesn't look like a valid age");
}

parseAge("frob");
// (alert box) That doesn't look like a valid age
//=> 0

Therefore, because the behavior is contained within a single function, the function can
be replaced by new functions providing similar behavior or outright different behaviors
altogether (Abelson and Sussman 1996).

Encapsulation and Hiding
Over the years, we’ve been taught that a cornerstone of object-oriented programming
is encapsulation. The term encapsulation in reference to object-oriented programming
refers to a way of packaging certain pieces of data with the very operations that manip‐
ulate them, as seen in Figure 1-8.

Figure 1-8. Most object-oriented languages use object boundaries to package data ele‐
ments with the operations that work on them; a Stack class would therefore package an
array of elements with the push, pop, and peek operations used to manipulate it

10 | Chapter 1: Introducing Functional JavaScript

JavaScript provides an object system that does indeed allow you to encapsulate data with
its manipulators. However, sometimes encapsulation is used to restrict the visibility of
certain elements, and this act is known as data hiding. JavaScript’s object system does
not provide a way to hide data directly, so data is hidden using something called closures,
as shown in Figure 1-9.

Figure 1-9. Using a closure to encapsulate data is a functional way to hide details from
a client’s view

Closures are not covered in any depth until Chapter 3, but for now you should keep in
mind that closures are kinds of functions. By using functional techniques involving
closures, you can achieve data hiding that is as effective as the same capability offered
by most object-oriented languages, though I hesitate to say whether functional encap‐
sulation or object-oriented encapsulation is better. Instead, while they are different in
practice, they both provide similar ways of building certain kinds of abstraction. In fact,
this book is not at all about encouraging you to throw away everything that you might
have ever learned in favor of functional programming; instead, it’s meant to explain
functional programming on its own terms so that you can decide if it’s right for your
needs.

Functions as Units of Behavior
Hiding data and behavior (which has the side effect of providing a more agile change
experience) is just one way that functions can be units of abstraction. Another is to
provide an easy way to store and pass around discrete units of basic behavior. Take, for
example, JavaScript’s syntax to denote looking up a value in an array by index:

var letters = ['a', 'b', 'c'];

letters[1];
//=> 'b'

While array indexing is a core behavior of JavaScript, there is no way to grab hold of
the behavior and use it as needed without placing it into a function. Therefore, a simple

Getting Started with Functional Programming | 11

example of a function that abstracts array indexing behavior could be called nth. The
naive implementation of nth is as follows:

function naiveNth(a, index) {
 return a[index];
}

As you might suspect, nth operates along the happy path perfectly fine:
naiveNth(letters, 1);
//=> "b"

However, the function will fail if given something unexpected:
naiveNth({}, 1);
//=> undefined

Therefore, if I were to think about the abstraction surrounding a function nth, I might
devise the following statement: nth returns the element located at a valid index within a
data type allowing indexed access. A key part of this statement is the idea of an indexed
data type. To determine if something is an indexed data type, I can create a function
isIndexed, implemented as follows:

function isIndexed(data) {
 return _.isArray(data) || _.isString(data);
}

The function isIndexed is also a function providing an abstraction over checking if a
piece of data is a string or an array. Building abstraction on abstraction leads to the
following complete implementation of nth:

function nth(a, index) {
 if (!_.isNumber(index)) fail("Expected a number as the index");
 if (!isIndexed(a)) fail("Not supported on non-indexed type");
 if ((index < 0) || (index > a.length - 1))
 fail("Index value is out of bounds");

 return a[index];
}

The completed implementation of nth operates as follows:
nth(letters, 1);
//=> 'b'

nth("abc", 0);
//=> "a"

nth({}, 2);
// Error: Not supported on non-indexed type

nth(letters, 4000);
// Error: Index value is out of bounds

12 | Chapter 1: Introducing Functional JavaScript

nth(letters, 'aaaaa');
// Error: Expected a number as the index

In the same way that I built the nth abstraction out of an indexed abstraction, I can
likewise build a second abstraction:

function second(a) {
 return nth(a, 1);
}

The second function allows me to appropriate the correct behavior of nth for a different
but related use case:

second(['a','b']);
//=> "b"

second("fogus");
//=> "o"

second({});
// Error: Not supported on non-indexed type

Another unit of basic behavior in JavaScript is the idea of a comparator. A comparator
is a function that takes two values and returns <1 if the first is less than the second, >1
if it is greater, and 0 if they are equal. In fact, JavaScript itself can appear to use the very
nature of numbers themselves to provide a default sort method:

[2, 3, -6, 0, -108, 42].sort();
//=> [-108, -6, 0, 2, 3, 42]

But a problem arises when you have a different mix of numbers:
[0, -1, -2].sort();
//=> [-1, -2, 0]

[2, 3, -1, -6, 0, -108, 42, 10].sort();
//=> [-1, -108, -6, 0, 10, 2, 3, 42]

The problem is that when given no arguments, the Array#sort method does a string
comparison. However, every JavaScript programmer knows that Array#sort expects a
comparator, and instead writes:

[2, 3, -1, -6, 0, -108, 42, 10].sort(function(x,y) {
 if (x < y) return -1;
 if (y < x) return 1;
 return 0;
});

//=> [-108, -6, -1, 0, 2, 3, 10, 42]

That seems better, but there is a way to make it more generic. After all, you might need
to sort like this again in another part of the code, so perhaps it’s better to pull out the
anonymous function and give it a name:

Getting Started with Functional Programming | 13

function compareLessThanOrEqual(x, y) {
 if (x < y) return -1;
 if (y < x) return 1;
 return 0;
}

[2, 3, -1, -6, 0, -108, 42, 10].sort(compareLessThanOrEqual);
//=> [-108, -6, -1, 0, 2, 3, 10, 42]

But the problem with the compareLessThanOrEqual function is that it is coupled to the
idea of “comparatorness” and cannot easily stand on its own as a generic comparison
operation:

if (compareLessThanOrEqual(1,1))
 console.log("less or equal");

// nothing prints

To achieve the desired effect, I would need to know about compareLessThanOrEqual’s
comparator nature:

if (_.contains([0, -1], compareLessThanOrEqual(1,1)))
 console.log("less or equal");

// less or equal

But this is less than satisfying, especially when there is a possibility for some developer
to come along in the future and change the return value of compareLessThanOrEqual
to -42 for negative comparisons. A better way to write compareLessThanOrEqual might
be as follows:

function lessOrEqual(x, y) {
 return x <= y;
}

Functions that always return a Boolean value (i.e., true or false only), are called
predicates. So, instead of an elaborate comparator construction, lessOrEqual is simply
a “skin” over the built-in <= operator:

[2, 3, -1, -6, 0, -108, 42, 10].sort(lessOrEqual);
//=> [100, 10, 1, 0, -1, -1, -2]

At this point, you might be inclined to change careers. However, upon further reflection,
the result makes sense. If sort expects a comparator, and lessThan only returns true
or false, then you need to somehow get from the world of the latter to that of the former
without duplicating a bunch of if/then/else boilerplate. The solution lies in creating
a function, comparator, that takes a predicate and converts its result to the -1/0/1 result
expected of comparator functions:

function comparator(pred) {
 return function(x, y) {
 if (truthy(pred(x, y)))

14 | Chapter 1: Introducing Functional JavaScript

 return -1;
 else if (truthy(pred(y, x)))
 return 1;
 else
 return 0;
 };
};

Now, the comparator function can be used to return a new function that “maps” the
results of the predicate lessOrEqual (i.e., true or false) onto the results expected of
comparators (i.e., -1, 0, or 1), as shown in Figure 1-10.

Figure 1-10. Bridging the gap between two “worlds” using the comparator function

In functional programming, you’ll almost always see functions interacting in a way that
allows one type of data to be brought into the world of another type of data. Observe
comparator in action:

[100, 1, 0, 10, -1, -2, -1].sort(comparator(lessOrEqual));
//=> [-2, -1, -1, 0, 1, 10, 100]

The function comparator will work to map any function that returns “truthy” or “falsey”
values onto the notion of “comparatorness.” This topic is covered in much greater depth
in Chapter 4, but it’s worth noting now that comparator is a higher-order function
(because it takes a function and returns a new function). Keep in mind that not every
predicate makes sense for use with the comparator function, however. For example,
what does it mean to use the _.isEqual function as the basis for a comparator? Try it
out and see what happens.

Throughout this book, I will talk about the ways that functional techniques provide and
facilitate the creation of abstractions, and as I’ll discuss next, there is a beautiful synergy
between functions-as-abstraction and data.

Data as Abstraction
JavaScript’s object prototype model is a rich and foundational data scheme. On its own,
the prototype model provides a level of flexibility not found in many other mainstream

Getting Started with Functional Programming | 15

6. The ECMAScript.next initiative is discussing the possibility of language support for classes. However, for
various reasons outside the scope of this book, the feature is highly controversial. As a result, it’s unclear when
and if classes will make it into JavaScript core.

7. One strong argument for a class-based object system is the historical use in implementing user interfaces.

8. Very often you will see a focus on list data structures in functional literature. In the case of JavaScript, the
array is a nice substitute.

9. The function lameCSV is meant for illustrative purposes and is in no way meant as a fully featured CSV parser.

programming languages. However, many JavaScript programmers, as is their wont,
immediately attempt to build a class-based object system using the prototype or closure
features (or both).6 Although a class system has its strong points, very often the data
needs of a JavaScript application are much simpler than is served by classes.7

Instead, using JavaScript bare data primitives, objects, and arrays, much of the data
modeling tasks that are currently served by classes are subsumed. Historically, func‐
tional programming has centered around building functions that work to achieve
higher-level behaviors and work on very simple data constructs.8 In the case of this book
(and Underscore itself), the focus is indeed on processing arrays and objects. The flex‐
ibility in those two simple data types is astounding, and it’s unfortunate that they are
often overlooked in favor of yet another class-based system.

Imagine that you’re tasked with writing a JavaScript application that deals with comma-
separated value (CSV) files, which are a standard way to represent data tables. For ex‐
ample, suppose you have a CSV file that looks as follows:

name, age, hair
Merble, 35, red
Bob, 64, blonde

It should be clear that this data represents a table with three columns (name, age, and
hair) and three rows (the first being the header row, and the rest being the data rows).
A small function to parse this very constrained CSV representation stored in a string is
implemented as follows:

function lameCSV(str) {
 return _.reduce(str.split("\n"), function(table, row) {
 table.push(_.map(row.split(","), function(c) { return c.trim()}));
 return table;
 }, []);
};

You’ll notice that the function lameCSV processes the rows one by one, splitting at \n
and then stripping whitespace for each cell therein.9 The whole data table is an array of
sub-arrays, each containing strings. From the conceptual view shown in Table 1-1, nes‐
ted arrays can be viewed as a table.

16 | Chapter 1: Introducing Functional JavaScript

Table 1-1. Simply nested arrays are one way to abstract a data table
name age hair

Merble 35 red

Bob 64 blonde

Using lameCSV to parse the data stored in a string works as follows:
var peopleTable = lameCSV("name,age,hair\nMerble,35,red\nBob,64,blonde");

peopleTable;
//=> [["name", "age", "hair"],
// ["Merble", "35", "red"],
// ["Bob", "64", "blonde"]]

Using selective spacing highlights the table nature of the returned array. In functional
programming, functions like lameCSV and the previously defined comparator are key
in translating one data type into another. Figure 1-11 illustrates how data transforma‐
tions in general can be viewed as getting from one “world” into another.

Figure 1-11. Functions can bridge the gap between two “worlds”

There are better ways to represent a table of such data, but this nested array serves us
well for now. Indeed, there is little motivation to build a complex class hierarchy rep‐
resenting either the table itself, the rows, people, or whatever. Instead, keeping the data
representation minimal allows me to use existing array fields and array processing
functions and methods out of the box:

_.rest(peopleTable).sort();

//=> [["Bob", "64", "blonde"],
// ["Merble", "35", "red"]]

Likewise, since I know the form of the original data, I can create appropriately named
selector functions to access the data in a more descriptive way:

function selectNames(table) {
 return _.rest(_.map(table, _.first));
}

Getting Started with Functional Programming | 17

10. That the object-oriented paradigm sprung from the simulation community in the form of the Simula pro‐
gramming language is no coincidence. Having written my share of simulation systems, I feel very strongly
that object orientation or actor-based modeling are compelling fits for simula.

function selectAges(table) {
 return _.rest(_.map(table, second));
}

function selectHairColor(table) {
 return _.rest(_.map(table, function(row) {
 return nth(row, 2);
 }));
}

var mergeResults = _.zip;

The select functions defined here use existing array processing functions to provide
fluent access to simple data types:

selectNames(peopleTable);
//=> ["Merble", "Bob"]

selectAges(peopleTable);
//=> ["35", "64"]

selectHairColor(peopleTable);
//=> ["red", "blonde"]

mergeResults(selectNames(peopleTable), selectAges(peopleTable));
//=> [["Merble", "35"], ["Bob", "64"]]

The simplicity of implementation and use is a compelling argument for using Java‐
Script’s core data structures for data modeling purposes. That’s not to say that there is
no place for an object-oriented or class-based approach. In my experience, I’ve found
that a functional approach centered around generic collection processing functions is
ideal for handling data about people and an object-oriented approach works best for
simulating people.10

If you are so inclined, the data table could be changed to a custom class-based model,
and as long as you use the selector abstractions, then the user would never know, nor
care. However, throughout this book, I strive to keep the data needs as simple as possible
and build abstract functions that operate on them. Constraining myself to functions
operating on simple data, interestingly enough, increases my flexibility. You might be
surprised how far these fundamental types will take you.

18 | Chapter 1: Introducing Functional JavaScript

www.allitebooks.com

http://www.allitebooks.org

11. You might come across the idea of JavaScript’s truthiness referring to the true-ness and false-ness of the
language’s native types. Although it’s important to know the details of what constitutes truth for JavaScript,
I like to simplify matters by reducing the number of rules that I need to consider for my own applications.

12. That the number zero is considered “truthy” is by design. That it is often used as a synonym for false is a
relic of a C heritage. If you wish to retain this behavior, then simply do not use truthy where you might
expect 0.

A Taste of Functional JavaScript
This is not a book about navigating around the quirks of JavaScript. There are many
other books that will help you along that path. However, before I start any JavaScript
project these days, I define two useful functions that I often find a need for: existy and
truthy.

The function existy is meant to define the existence of something. JavaScript has two
values—null and undefined—that signify nonexistence. Thus, existy checks that its
argument is neither of these things, and is implemented as follows:

function existy(x) { return x != null };

Using the loose inequality operator (!=), it is possible to distinguish between null,
undefined, and everything else. It’s used as follows:

existy(null);
//=> false

existy(undefined);
//=> false

existy({}.notHere);
//=> false

existy((function(){})());
//=> false

existy(0);
//=> true

existy(false);
//=> true

The use of existy simplifies what it means for something to exist in JavaScript. Mini‐
mally, it collocates the existence check in an easy-to-use function. The second function
mentioned, truthy, is defined as follows:11

function truthy(x) { return (x !== false) && existy(x) };

The truthy function is used to determine if something should be considered a synonym
for true, and is used as shown here:12

Getting Started with Functional Programming | 19

13. I use existy(target[name]) rather than Underscore’s has(target, name) because the latter will only
check self-keys.

truthy(false);
//=> false

truthy(undefined);
//=> false

truthy(0);
//=> true

truthy('');
//=> true

In JavaScript, it’s sometimes useful to perform some action only if a condition is true
and return something like undefined or null otherwise. The general pattern is as
follows:

{
 if(condition)
 return _.isFunction(doSomething) ? doSomething() : doSomething;
 else
 return undefined;
}

Using truthy, I can encapsulate this logic in the following way:
function doWhen(cond, action) {
 if(truthy(cond))
 return action();
 else
 return undefined;
}

Now whenever that pattern rears its ugly head, you can do the following instead:13

function executeIfHasField(target, name) {
 return doWhen(existy(target[name]), function() {
 var result = _.result(target, name);
 console.log(['The result is', result].join(' '));
 return result;
 });
}

The execution of executeIfHasField for success and error cases is as follows:
executeIfHasField([1,2,3], 'reverse');
// (console) The result is 3, 2, 1
//=> [3, 2, 1]

executeIfHasField({foo: 42}, 'foo');
// (console) The result is 42

20 | Chapter 1: Introducing Functional JavaScript

14. A wonderful site that I use for JavaScript browser benchmarking is located at http://www.jsperf.com.

//=> 42

executeIfHasField([1,2,3], 'notHere');
//=> undefined

Big deal, right? So I’ve defined two functions—this is hardly functional programming.
The functional part comes from their use. You may be familiar with the Array#map
method available in many JavaScript implementations. It’s meant to take a function and
call it for every element in an array, returning a new array with the new values. It’s used
as follows:

[null, undefined, 1, 2, false].map(existy);
//=> [false, false, true, true, true]

[null, undefined, 1, 2, false].map(truthy);
//=> [false, false, true, true, false]

This, ladies and gentlemen, is functional programming:

• The definition of an abstraction for “existence” in the guise of a function
• The definition of an abstraction for “truthiness” built from existing functions
• The use of said functions by other functions via parameter passing to achieve some

behavior

This book is all about code like this, but to an exquisite level of detail.

On Speed
I know what you’re thinking. This functional programming stuff has to be slow as a dog,
right?

There’s no way to deny that the use of the array index form array[0] will execute faster
than either of nth(array, 0) or _.first(array). Likewise, an imperative loop of the
following form will be very fast:14

for (var i=0, len=array.length; i < len; i++) {
 doSomething(array[i]);
}

An analogous use of Underscore’s _.each function will, all factors being equal, be slower:
_.each(array, function(elem) {
 doSomething(array[i]);
});

However, it’s very likely that all factors will not be equal. Certainly, if you had a function
that needed speed, then a reasonable manual transformation would be to convert the

Getting Started with Functional Programming | 21

http://www.jsperf.com

15. As with any story, there is always precedent. Prior to V8, the WebKit project worked on the SquirrelFish
Extreme engine that compiled JavaScript to native code. Prior to SquirrelFish was the Tamarin VM, which
was developed by Mozilla based on the ActionScript VM 2 by Adobe. Even more interesting is that most
JavaScript optimization techniques were pioneered by the older programming languages Self and Smalltalk.

16. Don’t worry if you’re not familiar with these optimization techniques. They are not important for the purposes
of this book, and will therefore not be on the test. I highly encourage studying up on them, however, as they
are nonetheless a fascinating topic.

17. A fun site that tracks worldwide IE6 usage is found at http://www.ie6countdown.com.

internal use of _.each into an analogous use of for or while. Happily, the days of the
ponderously slow JavaScript are coming to an end, and in some cases are a thing of the
past. For example, the release of Google’s V8 engine ushered in an age of runtime op‐
timizations that have worked to motivate performance gains across all JavaScript engine
vendors (Bak 2012).15 Even if other vendors were not following Google’s lead, the prev‐
alence of the V8 engine is growing, and in fact drives the very popular Chrome browser
and Node.js itself. However, other vendors are following the V8 lead and introducing
runtime speed enhancements such as native-code execution, just-in-time compilation,
faster garbage collection, call-site caching, and in-lining into their own JavaScript
engines.16

However, the need to support aging browsers like Internet Explorer 6 is a very real
requirement for some JavaScript programmers. There are two factors to consider when
confronted with legacy platforms: (1) the use of IE6 and its ilk is dying out, and (2) there
are other ways to gain speed before the code ever hits the browser.17 For example, the
subject of in-lining is particularly interesting, because many in-lining optimizations can
be performed statically, or before code is ever run. Code in-lining is the act of taking a
piece of code contained in, say, a function, and “pasting” it in place of a call to that very
function. Let’s take a look at an example to make things clearer. Somewhere in the depths
of Underscore’s _.each implementation is a loop very similar to the for loop shown
earlier (edited for clarity):

_.each = function(obj, iterator, context) {
 // bounds checking
 // check for native method
 // check for length property
 for (var i = 0, l = obj.length; i < l; i++) {
 // call the given function
 }
}

Imagine that you have a bit of code that looks as follows:
function performTask(array) {
 _.each(array, function(elem) {
 doSomething(array[i]);
 });
}

22 | Chapter 1: Introducing Functional JavaScript

http://www.ie6countdown.com

18. There are caveats that go along with using the Google Closure compiler, primary among them being that it
works to its optimal efficiency given a certain style of coding. However, when it works, it works wonders, as
I learned during my work on the ClojureScript compiler.

// ... some time later

performTask([1,2,3,4,5]);

A static optimizer could transform the body of performTask into the following:
function performTask(array) {
 for (var i = 0, l = array.length; i < l; i++) {
 doSomething(array[i]);
 }
}

And a sophisticated optimization tool could optimize this further by eliminating the
function call altogether:

// ... some time later

var array123 = [1,2,3,4,5];

for (var i = 0, l = array123.length; i < l; i++) {
 doSomething(array[i]);
}

Finally, a really amazing static analyzer could optimize it even further into five separate
calls:

// ... some time later

doSomething(array[1]);
doSomething(array[2]);
doSomething(array[3]);
doSomething(array[4]);
doSomething(array[5]);

And to top off this amazing set of optimizing transformations, you can imagine that if
these calls have no effects or are never called, then the optimal transformation is:

// ... some time later

That is, if a piece of code can be determined to be “dead” (i.e., not called), then it can
safely be eliminated via a process known as code elision. There are already program
optimizers available for JavaScript that perform these types of optimizations—the pri‐
mary being Google’s Closure compiler. The Closure compiler is an amazing piece of
engineering that compiles JavaScript into highly optimized JavaScript.18

There are many different ways to speed up even highly functional code bases using a
combination of best practices and optimization tools. However, very often we’re too

Getting Started with Functional Programming | 23

19. There are other functional libraries for JavaScript that could have served just as well as a foundation for this
book, including Functional JavaScript, Bilby, and even jQuery. However, my go-to choice is Underscore. Your
mileage may vary.

20. Cross-browser compatibility is an issue in the use of Underscore when it defers to the underlying methods;
the speed of execution is likely to be much faster than the Underscore implementation.

quick to consider matters of raw computation speed before we’ve even written a stitch
of correct code. Likewise, I sometimes find my mind drifting toward speed considera‐
tions even if raw speed is not needed for the types of systems that I create. Underscore
is a very popular functional programming library for JavaScript, and a great many ap‐
plications do just fine with it. The same can be said for the heavyweight champion of
JavaScript libraries, jQuery, which fosters many functional idioms.

Certainly there are legitimate domains for raw speed (e.g., game programming and low-
latency systems). However, even in the face of such systems’ execution demands, func‐
tional techniques are not guaranteed to slow things down. You would not want to use
a function like nth in the heart of a tight rendering loop, but functional structuring in
the aggregate can still yield benefits.

The first rule of my personal programming style has always been the following: Write
beautiful code. I’ve achieved this goal to varying degrees of success throughout my
career, but it’s always something that I strive for. Writing beautiful code allows me to
optimize another aspect of computer time: the time that I spend sitting at a desk typing
on a keyboard. I find a functional style of writing code to be exceptionally beautiful if
done well, and I hope that you’ll agree by the time you reach the end.

The Case for Underscore
Before moving on to the meat of the book, I’d like to explain why I chose Underscore
as my mode of expression. First of all, Underscore is a very nice library that offers an
API that is pragmatic and nicely functional in style. It would be fruitless for me to
implement, from scratch, all of the functions useful for understanding functional pro‐
gramming. Why implement map when the idea of “mappiness” is more important? That’s
not to say that I will not implement core functional tools in this book, but I do so with
Underscore as a foundation.19

Second, there is a greater than zero chance that running the preceding code snippets
using Array#map did not work. The likely reason is that in whichever environment you
chose to run it might not have had the map method on its array implementation. What
I would like to avoid, at any cost, is getting bogged down in cross-browser incompati‐
bility issues. This noise, while extremely important, is a distraction to the larger purpose
of introducing functional programming. The use of Underscore eliminates that noise
almost completely!20

24 | Chapter 1: Introducing Functional JavaScript

21. This a facet of the nature of programming in my opinion.

22. I’m particularly enamored with the microjs website for discovering JavaScript libraries.

Finally, JavaScript by its very nature enables programmers to reinvent the wheel quite
often. JavaScript itself has the perfect mix of powerful low-level constructs coupled with
the absence of mid- and high-level language features. It’s this odd condition that almost
dares people to create language features from the lower-level parts. Language evolution
will obviate the need to reinvent some of the existing wheels (e.g., module systems), but
we’re unlikely to see a complete elimination of the desire or need to build language
features.21 However, I believe that when available, existing high-quality libraries should
be reused.22 It would be fun to re-implement Underscore’s capabilities from scratch, but
it would serve neither myself (or my employer) nor you to do so.

Summary
This chapter covered a few introductory topics, starting with the motivation for learning
and using JavaScript. Among the current stable of popular programming languages, few
seem more poised for growth than JavaScript. Likewise, the growth potential seems
almost limitless. However, JavaScript is a flawed language that needs to call on powerful
techniques, discipline, or a mixture of both to be used effectively. One technique for
building JavaScript applications is called “functional programming,” which in a nutshell,
consists of the following techniques:

• Identifying an abstraction and building a function for it
• Using existing functions to build more complex abstractions
• Passing existing functions to other functions to build even more complex

abstractions

However, functions are not enough. In fact, functional programming very often works
best when implemented in concert with powerful data abstractions. There is a beautiful
symmetry between functional programming and data, and the next chapter dives into
this symmetry more deeply.

Summary | 25

http://microjs.com/

1. Aside from the fact that programmers rarely agree on even the most common terms.

CHAPTER 2

First-Class Functions and
Applicative Programming

The basics of functional programming, which treats functions as first-class elements of
a language, are covered in this chapter. I’ll provide a basis in the three common func‐
tions: map, reduce, and filter. Since programmers will likely be familiar with these func‐
tions, using them as a starting point should provide a nice foundation for the rest of the
book.

Functions as First-Class Things
Some programmers familiar with JavaScript, myself included, consider it to be a func‐
tional language. Of course, to say such a thing implies that others disagree with that
assessment. The reason for this disagreement stems from the fact that functional pro‐
gramming often has a relative definition, differing in minor and major ways from one
practitioner or theorist to another.1

This is a sad state of affairs, indeed. Thankfully, however, almost every single relative
definition of functional programming seems to agree on one point: a functional pro‐
gramming language is one facilitating the use and creation of first-class functions.

Typically, you will see this point accompanied by other definitional qualifications in‐
cluding but not limited to static typing, pattern matching, immutability, purity, and so
on. However, while these other points describe certain implementations of functional
programming languages, they fail in broad applicability. If I boil down the definition to
its essence, consisting of the terms “facilitating” and “first-class functions,” then it covers
a broad range of languages from Haskell to JavaScript—the latter being quite important

27

2. Haskell programs dealing with matters of I/O are often highly imperative in nature, but you would be hard-
pressed to find someone claiming that Haskell was not functional.

to this book. Thankfully, this also allows first-class functions to be defined in a
paragraph.2

The term “first-class” means that something is just a value. A first-class function is one
that can go anywhere that any other value can go—there are few to no restrictions. A
number in JavaScript is surely a first-class thing, and therefore a first-class function has
a similar nature:

• A number can be stored in a variable and so can a function:

var fortytwo = function() { return 42 };

• A number can be stored in an array slot and so can a function:

var fortytwos = [42, function() { return 42 }];

• A number can be stored in an object field and so can a function:

var fortytwos = {number: 42, fun: function() { return 42 }};

• A number can be created as needed and so can a function:

42 + (function() { return 42 })();
//=> 84

• A number can be passed to a function and so can a function:

function weirdAdd(n, f) { return n + f() }

weirdAdd(42, function() { return 42 });
//=> 84

• A number can be returned from a function and so can a function:

return 42;

return function() { return 42 };

The last two points define by example what we would call a “higher-order” function;
put directly, a higher-order function can do one or both of the following:

• Take a function as an argument
• Return a function as a result

28 | Chapter 2: First-Class Functions and Applicative Programming

www.allitebooks.com

http://www.allitebooks.org

In Chapter 1, comparator was used as an example of a higher-order function, but here
is yet another example:

_.each(['whiskey', 'tango', 'foxtrot'], function(word) {
 console.log(word.charAt(0).toUpperCase() + word.substr(1));
});

// (console) Whiskey
// (console) Tango
// (console) Foxtrot

Underscore’s _.each function takes a collection (object or array) and loops over its
elements, calling the function given as the second argument for each element.

I’ll dive deeper into higher-order functions in Chapter 4. For now, I’ll take a couple of
pages to talk about JavaScript itself, because as you may already know, while it supports
a functional style, it also supports a number of other programming paradigms.

JavaScript’s Multiple Paradigms
Of course JavaScript is not strictly a functional programming language, but instead
facilitates the use of other paradigms as well:
Imperative programming

Programming based around describing actions in detail

Prototype-based object-oriented programming
Programming based around prototypical objects and instances of them

Metaprogramming
Programming manipulating the basis of JavaScript’s execution model

Including only imperative, object-oriented, and metaprogramming restricts us to only
those paradigms directly supported by the built-in language constructs. You could fur‐
ther support other paradigms, like class orientation and evented programming, using
the language itself as an implementation medium, but this book does not deal with those
topics in depth. Before I get into the definition and details of JavaScript’s support for
first-class functions, let me take a brief moment to elucidate how the other three models
differ from functional programming. I’ll dig deeper into each topic throughout this
book, so for now a paragraph or two on each should suffice in transitioning you into
the functional programming discussion.

Imperative programming

An imperative programming style is categorized by its exquisite (and often infuriating)
attention to the details of algorithm implementation. Further, imperative programs are
often built around the direct manipulation and inspection of program state. For exam‐
ple, imagine that you’d like to write a program to build a lyric sheet for the song “99

Functions as First-Class Things | 29

Bottles of Beer.” The most direct way to describe the requirements of this program are
as such:

• Start at 99
• Sing the following for each number down to 1:

— X bottles of beer on the wall
— X bottles of beer
— Take one down, pass it around
— X-1 bottles of beer on the wall

• Subtract one from the last number and start over with the new value
• When you finally get to the number 1, sing the following last line instead:

— No more bottles of beer on the wall

As it turns out, this specification has a fairly straightforward imperative implementation
in JavaScript, as shown here:

var lyrics = [];

for (var bottles = 99; bottles > 0; bottles--) {
 lyrics.push(bottles + " bottles of beer on the wall");
 lyrics.push(bottles + " bottles of beer");
 lyrics.push("Take one down, pass it around");

 if (bottles > 1) {
 lyrics.push((bottles - 1) + " bottles of beer on the wall.");
 }
 else {
 lyrics.push("No more bottles of beer on the wall!");
 }
}

This imperative version, while somewhat contrived, is emblematic of an imperative
programming style. That is, the implementation describes a “99 Bottles of Beer” pro‐
gram and exactly a “99 Bottles of Beer” program. Because imperative code operates at
such a precise level of detail, they are often one-shot implementations or at best, difficult
to reuse. Further, imperative languages are often restricted to a level of detail that is good
for their compilers rather than for their programmers (Sokolowski 1991).

By comparison, a more functional approach to this same problem might look as follows:
function lyricSegment(n) {
 return _.chain([])
 .push(n + " bottles of beer on the wall")
 .push(n + " bottles of beer")
 .push("Take one down, pass it around")
 .tap(function(lyrics) {

30 | Chapter 2: First-Class Functions and Applicative Programming

 if (n > 1)
 lyrics.push((n - 1) + " bottles of beer on the wall.");
 else
 lyrics.push("No more bottles of beer on the wall!");
 })
 .value();
}

The lyricSegment function does very little on its own—in fact, it only generates the
lyrics for a single verse of the song for a given number:

lyricSegment(9);

//=> ["9 bottles of beer on the wall",
// "9 bottles of beer",
// "Take one down, pass it around",
// "8 bottles of beer on the wall."]

Functional programming is about pulling programs apart and reassembling them from
the same parts, abstracted behind function boundaries. Thinking in this way, you can
imagine that the lyricSegment function is the part of the “99 Bottles” program that
abstracts lyric generation. Therefore, the part of the program that abstracts the assembly
of the verse segments into a song is as follows:

function song(start, end, lyricGen) {
 return _.reduce(_.range(start,end,-1),
 function(acc,n) {
 return acc.concat(lyricGen(n));
 }, []);
}

And using it is as simple as:
song(99, 0, lyricSegment);

//=> ["99 bottles of beer on the wall",
// ...
// "No more bottles of beer on the wall!"]

Abstracting in this way allows you to separate out domain logic (i.e., the generation of
a lyrical verse) from the generic verse assembly machinery. If you were so inclined, you
could pass different functions like germanLyricSegment or agreementLyricSegment
into song to generate a different lyric sheet altogether. Throughout this book, I’ll use
this technique, and explain it in greater depth along the way.

Prototype-based object-oriented programming

JavaScript is very similar to Java or C# in that its constructor functions are classes (at
least at the level of implementation details), but the method of use is at a lower level.
Whereas every instance in a Java program is generated from a class serving as its
template, JavaScript instances use existing objects to serve as prototypes for specialized

Functions as First-Class Things | 31

3. There is an existential crisis lurking in the question, “who created the first object?”

instances.3 Object specialization, together with a built-in dispatch logic that routes calls
down what’s called a prototype chain, is far more low-level than class-oriented pro‐
gramming, but is extremely elegant and powerful. I will talk about exploiting JavaScript’s
prototype chain later in Chapter 9.

For now, how this relates to functional programming is that functions can also exist as
values of object fields, and Underscore itself is the perfect illustration:

_.each;

//=> function (array, n, guard) {
// ...
// }

This is great and beautiful, right? Well…not exactly. You see, because JavaScript is ori‐
ented around objects, it must have a semantics for self-references. As it turns out, its
self-reference semantics conflict with the notion of functional programming. Observe
the following:

var a = {name: "a", fun: function () { return this; }};

a.fun();
//=> {name: "a", fun: ...};

You’ll notice that the self-reference this returned from the embedded fun function
returns the object a itself. This is probably what you would expect. However, observe
the following:

var bFunc = function () { return this };
var b = {name: "b", fun: bFunc};

b.fun();
//=> some global object, probably Window

Well, this is surprising. You see, when a function is created outside of the context of an
object instance, its this reference points to the global object. Therefore, when I later
bound bFunc to the field b.fun, its reference was never updated to b itself. In most
programming languages offering both functional and object-oriented styles, a trade-off
is made in the way that self-reference is handled. JavaScript has its approach while
Python has a different approach and Scala has a different approach still. Throughout
this book, you’ll notice a fundamental tension between an object-oriented style and a
functional style, but Underscore provides some tools to relieve, if not eliminate, this
tension. This will be covered in greater depth later, but for now keep in mind that when
I use the word “function” I mean a function that exists on its own and when I use
“method” I mean a function created in the context of an object.

32 | Chapter 2: First-Class Functions and Applicative Programming

4. If you’re interested in a great book about JavaScript metaprogramming, then petition O’Reilly to have me
write it. ☺

Metaprogramming

Related to prototype-based object-oriented programming are the facilities provided by
JavaScript supporting metaprogramming. Many programming languages support met‐
aprogramming, but rarely do they provide the level of power offered by JavaScript. A
good definition of metaprogramming goes something like this: programming occurs
when you write code to do something and metaprogramming occurs when you write
code that changes the way that something is interpreted. Let’s take a look at an example
of metaprogramming so that you can better understand.

In the case of JavaScript, the dynamic nature of the this reference can be exploited to
perform a bit of metaprogramming. For example, observe the following constructor
function:

function Point2D(x, y) {
 this._x = x;
 this._y = y;
}

When used with new, the Point2D function gives a new object instance with the proper
fields set as you might expect:

new Point2D(0, 1);

//=> {_x: 0, _y: 1}

However, the Function.call method can be used to metaprogram a derivation of the
Point2D constructor’s behavior for a new Point3D type:

function Point3D(x, y, z) {
 Point2D.call(this, x, y);
 this._z = z;
}

And creating a new instance works like a champ:
new Point3D(10, -1, 100);

//=> {_x: 10, _y: -1, _z: 100}

Nowhere did Point3D explicitly set the values for this._x and this._y, but by
dynamically binding the this reference in a call to Point2D it became possible to change
the target of its property creation code.

I will not go too deeply into JavaScript metaprogramming in this book because it’s or‐
thogonal to functional programming, but I’ll take advantage of it occasionally through‐
out this book.4

Functions as First-Class Things | 33

Applicative Programming
So far in this book I’ve shown only one aspect of functional programming that deals
with a narrow band of the capabilities of functions—namely, applicative programming.
Applicative programming is defined as the calling by function B of a function A, supplied
as an argument to function B originally. I will not use the term “applicative” very often
in this book because variations of that word can appear in different contexts with dif‐
ferent meanings, but it’s good to know should you see it in the future. That said, the
three canonical examples of applicative functions are map, reduce, and filter. Observe
how they operate:

var nums = [1,2,3,4,5];

function doubleAll(array) {
 return _.map(array, function(n) { return n*2 });
}

doubleAll(nums);
//=> [2, 4, 6, 8, 10]

function average(array) {
 var sum = _.reduce(array, function(a, b) { return a+b });
 return sum / _.size(array);
}

average(nums);
//=> 3

/* grab only even numbers in nums */
function onlyEven(array) {
 return _.filter(array, function(n) {
 return (n%2) === 0;
 });
}

onlyEven(nums);
//=> [2, 4]

You can imagine that somewhere inside of map, reduce, and filter a call to the function
that’s passed in occurs, and indeed that is the case. In fact, the semantics of these func‐
tions can be defined in terms of that very relationship:

• _.map calls a function on every value in a collection in turn, returning a collection
of the results

• _.reduce collects a composite value from the incremental results of a function
supplied with an accumulation value and each value in a collection

34 | Chapter 2: First-Class Functions and Applicative Programming

• _.filter calls a predicate function (one returning a true or false value) and grabs
each value where said predicate returned true, returning them in a new collection

The functions map, reduce, and filter are as simple and as emblematic of applicative
functional programming as you can get, but Underscore provides numerous others for
your use. Before I get into those, let me take a moment to cover the idea of collection-
centric programming, which is often coupled with functional programming itself.

Collection-Centric Programming
Functional programming is extremely useful for tasks requiring that some operation
happen on many items in a collection. Certainly an array of numbers [1,2,3,4,5] is a
collection of numbers, but we can also envision that an object {a: 1, b: 2} is a col‐
lection of key/value pairs. Take the simple case of _.map using the _.identity function
(one that just returns its argument) as an example:

_.map({a: 1, b: 2}, _.identity);
//=> [1,2]

It would seem that _.map only deals with the value parts of the key/value pair, but this
limitation is only a matter of use. If we want to deal with the key/value pairs, then we
supply a function that expects them:

_.map({a: 1, b: 2}, function(v,k) {
 return [k,v];
});
//=> [['a', 1], ['b', 2]]

In the spirit of completeness, it’s worth noting that the function _.map can also take a
third argument, the collection itself:

_.map({a: 1, b: 2}, function(v,k,coll) {
 return [k, v, _.keys(coll)];
 });
//=> [['a', 1, ['a', 'b']], ['b', 2, ['a', 'b']]]

The point of a collection-centric view, as advocated by Underscore and functional pro‐
gramming in general, is to establish a consistent processing idiom so that we can reuse
a comprehensive set of functions. As the great luminary Alan Perlis once stated:

It is better to have 100 functions operate on one data structure than 10 functions on 10
data structures.

Throughout this book, I emphasize the notion of empowering our data through the use
of generic functions built on a collection-centric philosophy.

Applicative Programming | 35

Other Examples of Applicative Programming
To close out my discussion of applicative programming, I offer examples illustrating it,
with some dialog along the way.

reduceRight

You’ve already seen the _.reduce function, but I failed to mention its sibling _.reduce
Right. The two functions operate in much the same way, except that _.reduce works
from left to right, whereas _.reduceRight works from right to left. Observe the
differences:

var nums = [100,2,25];

function div(x,y) { return x/y };

_.reduce(nums, div);
//=> 2

_.reduceRight(nums, div);
//=> 0.125

The work of _.reduce is similar to (100/2) / 25 while _.reduceRight is (25/2) /
100. If the function supplied to the reduce siblings is associative, then they wind up
returning the same values, but otherwise the difference in ordering can prove useful.
Many common functions can be created using _.reduceRight. Here are a couple more
examples:

function allOf(/* funs */) {
 return _.reduceRight(arguments, function(truth, f) {
 return truth && f();
 }, true);
}

function anyOf(/* funs */) {
 return _.reduceRight(arguments, function(truth, f) {
 return truth || f();
 }, false);
}

Example usages of allOf and anyOf are as follows:
function T() { return true }
function F() { return false }

allOf();
//=> true
allOf(T, T);
//=> true
allOf(T, T, T , T , F);
//=> false

36 | Chapter 2: First-Class Functions and Applicative Programming

5. The allOf and anyOf functions could have just as easily been written using Underscore’s reduce, but I chose
to use the former for the purpose of illustrating reduceRight.

6. Passing null as the first argument to apply is worth a mention. Recall that the first argument to apply is the
“target” object setting the this reference inside the called function. Since I can’t know what the target object
should be, or even if it’s needed at all, I use null to signal that this should just refer to the global object.

anyOf(T, T, F);
//=> true
anyOf(F, F, F, F);
//=> false
anyOf();
//=> false

The _.reduceRight function has further advantages in languages providing lazy eval‐
uation, but since JavaScript is not such a language, evaluation order is the key factor
(Bird 1988).5

find

The find function is fairly straightforward; it takes a collection and a predicate and
returns the first element for which the predicate returns true. An example of find is as
follows:

_.find(['a', 'b', 3, 'd'], _.isNumber);
//=> 3

Notice the use of the built-in function _.isNumber as the predicate function. Underscore
comes with numerous predicates ready for use, including _.isEqual, _.isEmpty,
_.isElement, _.isArray, _.isObject, _.isArguments, _.isFunction, _.isString,
_.isNumber, _.isFinite, _.isBoolean, _.isDate, _.isRegExp, _.isNaN, _.isNull,
and _.isUndefined. I will use some or all of them over the course of this book.

reject

Underscore’s _.reject is essentially the opposite of _.filter; it takes a predicate and
returns a collection of values that excludes values for which the predicate returned
true. For example:

_.reject(['a', 'b', 3, 'd'], _.isNumber);
//=> ['a', 'b', 'd']

This is the same as reversing the truthiness of the predicate to _.filter. In fact, a simple
function called complement would perform just such a task:6

function complement(pred) {
 return function() {
 return !pred.apply(null, _.toArray(arguments));
 };
}

Applicative Programming | 37

The complement function takes a predicate and returns a function that reverses the sense
of the result of said predicate. It can then be used with _.filter to achieve the same
effect as _.reject:

.filter(['a', 'b', 3, 'd'], complement(.isNumber));
//=> ['a', 'b', 'd']

The complement function is an example of a higher-order function. Although I touched
briefly on what that means earlier, I will defer a deeper discussion until Chapter 3.

all

The _.all function takes a collection and a predicate, and returns true if all of the
elements within return true on the predicate check. For example:

_.all([1, 2, 3, 4], _.isNumber);
//=> true

Of course, if any of the elements fail the predicate test, then _.all returns false.

any

The _.any function takes a collection and a predicate, and returns true if any of the
elements within return true on the predicate check. For example:

_.any([1, 2, 'c', 4], _.isString);
//=> true

Of course, if all of the elements fail the predicate test, then _.any returns false.

sortBy, groupBy, and countBy

The last three applicative functions that I’ll discuss are related, in that they all perform
some action based on the result of a given criteria function. The first of the three,
_.sortBy, takes a collection and a function, and returns a sorted collection based on
the criteria determined by the passed function. For example:

var people = [{name: "Rick", age: 30}, {name: "Jaka", age: 24}];

_.sortBy(people, function(p) { return p.age });

//=> [{name: "Jaka", age: 24}, {name: "Rick", age: 30}]

The _.groupBy function takes a collection and a criteria function, and returns an object
where the keys are the criteria points returned by the function, and their associated
values are the elements that matched. For example:

var albums = [{title: "Sabbath Bloody Sabbath", genre: "Metal"},
 {title: "Scientist", genre: "Dub"},
 {title: "Undertow", genre: "Metal"}];

_.groupBy(albums, function(a) { return a.genre });

38 | Chapter 2: First-Class Functions and Applicative Programming

www.allitebooks.com

http://www.allitebooks.org

7. The cat function might receive functions in the arrays that it takes, but that is tangential to the point.

//=> {Metal:[{title:"Sabbath Bloody Sabbath", genre:"Metal"},
// {title:"Undertow", genre:"Metal"}],
// Dub: [{title:"Scientist", genre:"Dub"}]}

The _.groupBy function is extremely handy, and will show up numerous times through‐
out the course of this book.

The final applicative function I’ll discuss is called _.countBy. This function works sim‐
ilarly to _.groupBy, except that it returns an object with keys of the match criteria
associated with its count, as shown in the following:

_.countBy(albums, function(a) { return a.genre });

//=> {Metal: 2, Dub: 1}

That wraps up this discussion of applicative functional programming. I started with the
most common case of a functional style that you’re likely to encounter in JavaScript
code, so that you have some background knowledge before venturing deeper into the
wilderness. Up next, I’ll cover one more common topic in JavaScript code: closures.

Defining a Few Applicative Functions
I’ve shown many of the applicative functions offered by Underscore, but what about
creating some of your own? The process is fairly straightforward: define a function that
takes a function and then calls it.

A simple function that takes some number of arguments and concatenates them is not
applicative:

function cat() {
 var head = _.first(arguments);
 if (existy(head))
 return head.concat.apply(head, _.rest(arguments));
 else
 return [];
}

cat([1,2,3], [4,5], [6,7,8]);
//=> [1, 2, 3, 4, 5, 6, 7, 8]

While considerably useful, cat doesn’t expect to receive any functions as arguments.7

Likewise, a function construct that takes an element and an array and places the ele‐
ment in the front of the array may use cat:

function construct(head, tail) {
 return cat([head], _.toArray(tail));
}

Applicative Programming | 39

construct(42, [1,2,3]);
//=> [42, 1, 2, 3]

While construct uses cat within its body, it does not receive it as an argument, so it
fails the applicative test.

Instead, a function mapcat, defined as follows, is applicative:
function mapcat(fun, coll) {
 return cat.apply(null, _.map(coll, fun));
}

The function mapcat does indeed take a function, fun, that it uses in the same manner
as _.map, calling it for every element in the given collection. This use of fun is the
applicative nature of mapcat. Additionally, mapcat concatenates all of the elements of
the result of _.map:

mapcat(function(e) {
 return construct(e, [","]);
}, [1,2,3]);
//=> [1, ",", 2, ",", 3, ","]

The operation of mapcat is such that when the mapped function returns an array, it can
be flattened a level. We could then use mapcat and another function, butLast, to define
a third function, interpose:

function butLast(coll) {
 return _.toArray(coll).slice(0, -1);
}

function interpose (inter, coll) {
 return butLast(mapcat(function(e) {
 return construct(e, [inter]);
 },
 coll));
}

Using interpose is straightforward:
interpose(",", [1,2,3]);

//=> [1, ",", 2, ",", 3]

This is a key facet of functional programming: the gradual definition and use of discrete
functionality built from lower-level functions. Very often you will see (and in this book
I will preach the case vociferously) a chain of functions called one after the other, each
gradually transforming the result from the last to reach a final solution.

40 | Chapter 2: First-Class Functions and Applicative Programming

8. There has been some discussion within the ECMAScript effort to provide simple map (and set) types, divorced
from the prototype system. More information is found at http://wiki.ecmascript.org/doku.php?id=harmo
ny:simple_maps_and_sets.

9. JavaScript’s ability to provide uniform access across its associative data types is a boon in allowing you to
write a powerful suite of functions for manipulating data generically. JavaScript’s for…in loop and the indexed
access operator form the basis for much of Underscore.

Data Thinking
Throughout this book, I’ll take the approach of using minimal data types to represent
abstractions, from sets to trees to tables. In JavaScript, however, although its object types
are extremely powerful, the tools provided to work with them are not entirely functional.
Instead, the larger usage pattern associated with JavaScript objects is to attach methods
for the purposes of polymorphic dispatch. Thankfully, you can also view an unnamed
(not built via a constructor function) JavaScript object as simply an associative data
store.8

If the only operations that we can perform on a Book object or an instance of an Employee
type are setTitle or getSSN, then we’ve locked our data up into per-piece-of-
information micro-languages (Hickey 2011). A more flexible approach to modeling
data is an associative data technique. JavaScript objects, even minus the prototype ma‐
chinery, are ideal vehicles for associative data modeling, where named values can be
structured to form higher-level data models, accessed in uniform ways.9

Although the tools for manipulating and accessing JavaScript objects as data maps are
sparse within JavaScript itself, thankfully Underscore provides a bevy of useful opera‐
tions. Among the simplest functions to grasp are _.keys, _.values, and _.pluck. Both
_.keys and _.values are named according to their functionality, which is to take an
object and return an array of its keys or values:

var zombie = {name: "Bub", film: "Day of the Dead"};

_.keys(zombie);
//=> ["name", "film"]

_.values(zombie);
//=> ["Bub", "Day of the Dead"]

The _.pluck function takes an array of objects and a string and returns all of the values
at the given key for each object in the array:

_.pluck([{title: "Chthon", author: "Anthony"},
 {title: "Grendel", author: "Gardner"},
 {title: "After Dark"}],
 'author');

//=> ["Anthony", "Gardner", undefined]

Data Thinking | 41

http://wiki.ecmascript.org/doku.php?id=harmony:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=harmony:simple_maps_and_sets

All three of these functions deconstruct the given objects into arrays, allowing you to
perform sequential actions. Another way of viewing a JavaScript object is as an array of
arrays, each holding a key and a value. Underscore provides a function named _.pairs
that takes an object and turns it into this nested array:

_.pairs(zombie);

//=> [["name", "Bub"], ["film", "Day of the Dead"]]

This nested array view can be processed using sequential operations and reassembled
into a new object using Underscore’s _.object function:

.object(.map(_.pairs(zombie), function(pair) {
 return [pair[0].toUpperCase(), pair[1]];
}));

//=> {FILM: "Day of the Dead", NAME: "Bub"};

Aside from changing the key in some subtle way, another common function on maps
is to flip the keys and values via the _.invert function:

_.invert(zombie);
//=> {"Bub": "name", "Day of the Dead": "film"}

It’s worth mentioning that unlike in many other languages, JavaScript object keys can
only ever be strings. This may occasionally cause confusion when using _.invert:

.keys(.invert({a: 138, b: 9}));
//=> ['9', '138']

Underscore also provides functions for filling in and removing values from objects
according to the values that they take:

.pluck(.map([{title: "Chthon", author: "Anthony"},
 {title: "Grendel", author: "Gardner"},
 {title: "After Dark"}],
 function(obj) {
 return _.defaults(obj, {author: "Unknown"})
 }),
 'author');

//=> ["Anthony", "Gardner", "Unknown"]

In this example, each object is preprocessed with the _.defaults function to ensure
that the author field contains a useful value (rather than undefined). While _.de
faults augments incoming objects, two functions—_.pick and _.omit—(potentially)
filter objects based on their arguments:

var person = {name: "Romy", token: "j3983ij", password: "tigress"};

var info = _.omit(person, 'token', 'password');
info;
//=> {name: "Romy"}

42 | Chapter 2: First-Class Functions and Applicative Programming

var creds = _.pick(person, 'token', 'password');
creds;

//=> {password: "tigress", token: "j3983ij"};

Using the same “dangerous” keys, token and password, shows that the _.omit function
takes a blacklist to remove keys from an object, and _.pick takes a whitelist to take keys
(both nondestructively).

Finally, Underscore provides selector functions useful in finding certain objects based
on keyed criteria, _.findWhere and _.where. The _.findWhere function takes an array
of objects and returns the first one that matches the criteria given in the object in the
second argument:

var library = [{title: "SICP", isbn: "0262010771", ed: 1},
 {title: "SICP", isbn: "0262510871", ed: 2},
 {title: "Joy of Clojure", isbn: "1935182641", ed: 1}];

_.findWhere(library, {title: "SICP", ed: 2});

//=> {title: "SICP", isbn: "0262510871", ed: 2}

The _.where function operates similarly except that it operates over an array and returns
all of the objects that match the criteria:

_.where(library, {title: "SICP"});

//=> [{title: "SICP", isbn: "0262010771", ed: 1},
// {title: "SICP", isbn: "0262510871", ed: 2}]

This type of usage pattern points to a very important data abstraction: the table. In fact,
using Underscore’s object manipulation functions, you can derive an experience very
similar to that of SQL, where logical data tables are filtered and processed according to
a powerful declarative specification. However, as I’ll show next, to achieve a more fluent
table processing API, I’ll need to step it up beyond what Underscore provides and take
advantage of functional techniques. The functions created in this section implement a
subset of the relational algebra on which all SQL engines are built (Date 2003). I will
not dive deeply into the relational algebra, but will instead work at the level of a pseudo-
SQL. I assume a base-level proficiency in SQL-like languages.

“Table-Like” Data
Table 2-1 presents one way to look at the data in the library array.

Data Thinking | 43

10. It’s an odd mistake of history that the traditional SQL SELECT is actually the PROJECT statement in relational
algebra. I’ll use project for now because Underscore already provides select as an alias for filter.

Table 2-1. A data table view of an array of JavaScript objects
title isbn ed

SICP 0262010771 1

SICP 0262510871 2

Joy of Clojure 1935182641 1

Here, each row is equivalent to a JavaScript object and each cell is a key/value pair in
each object. The information in Table 2-2 corresponds to an SQL query of the form
SELECT title FROM library.

Table 2-2. A table of the titles
title

SICP

SICP

Joy of Clojure

A way to achieve the same effect using the tools that I’ve explored so far is as follows:
_.pluck(library, 'title');

//=> ["SICP", "SICP", "Joy of Clojure"]

The problem is that the result from the _.pluck function is of a different abstraction
than the table abstraction. While technically an array of strings is an array of objects,
the abstraction is broken using _.pluck. Instead, you need a function that allows a
similar capability to the SQL’s SELECT statement, while preserving the table abstraction.
The function project will serve as the stand-in for SELECT:10

function project(table, keys) {
 return _.map(table, function(obj) {
 return _.pick.apply(null, construct(obj, keys));
 });
};

The project function uses the _.pick function on each object in the array to pull out
whitelisted keys into new objects, thus preserving the table abstraction:

var editionResults = project(library, ['title', 'isbn']);

editionResults;
//=> [{isbn: "0262010771", title: "SICP"},
// {isbn: "0262510871", title: "SICP"},
// {isbn: "1935182641", title: "Joy of Clojure"}];

44 | Chapter 2: First-Class Functions and Applicative Programming

As shown, the project function itself returns a table-like data structure, which can be
further processed using project:

var isbnResults = project(editionResults, ['isbn']);

isbnResults;
//=> [{isbn: "0262010771"},{isbn: "0262510871"},{isbn: "1935182641"}]

Finally, the abstraction can be intentionally broken by purposefully pulling out only the
desired data:

_.pluck(isbnResults, 'isbn');
//=> ["0262010771", "0262510871", "1935182641"]

This intentional extraction is a deliberate act to “hand over” data from one module or
function to the next. While project works on the table abstraction, another fictional
function, populateISBNSelectBox, would probably work with arrays of strings that
might then construct DOM elements of the form <option value=

"1935182641">1935182641</option>. Functional programmers think deeply about
their data, the transformations occurring on it, and the hand-over formats between the
layers of their applications. Visually, you can picture the high-level data-centric thinking
as in Figure 2-1 (Gruber 2004).

Figure 2-1. Data transformations can be used to abstract tasks

Let’s explore this table abstraction just a little bit more before diving deeper into data
transformation and hand overs. For example, most SQL engines provide an AS statement
used to alias column names. In SQL, the AS looks like the following:

SELECT ed AS edition FROM library;

The preceding query would output the results shown in Table 2-3:

Table 2-3. A table of the aliased editions
edition

1

2

1

Data Thinking | 45

However, before I implement as to work against a table, it would behoove me to create
a utility function, rename, that renames keys based on a given renaming criteria map:

function rename(obj, newNames) {
 return _.reduce(newNames, function(o, nu, old) {
 if (_.has(obj, old)) {
 o[nu] = obj[old];
 return o;
 }
 else
 return o;
 },
 _.omit.apply(null, construct(obj, _.keys(newNames))));
};

One important point about the implementation of rename is that it uses the _.reduce
function to reconstruct an object using Underscore’s alternative mode for traversing
over the key/value pairings that preserves the “mappiness” of the accumulator. I take
advantage of this fact by renaming keys via direct array manipulation, according to the
renaming map. It will be more clear how this works with an example:

rename({a: 1, b: 2}, {'a': 'AAA'});

//=> {AAA: 1, b: 2}

I can implement an as function using rename to work against the table abstraction as
follows:

function as(table, newNames) {
 return _.map(table, function(obj) {
 return rename(obj, newNames);
 });
};

As you’ll notice, as works against the table abstraction by simply mapping the rename
over each of the contained objects. Observe:

as(library, {ed: 'edition'});

//=> [{title: "SICP", isbn: "0262010771", edition: 1},
// {title: "SICP", isbn: "0262510871", edition: 2},
// {title: "Joy of Clojure", isbn: "1935182641", edition: 1}]

Because both as and project work against the same abstraction, I can chain the calls
together to produce a new table like that given by the aforementioned SQL statement:

project(as(library, {ed: 'edition'}), ['edition']);

//=> [{edition: 1}, {edition: 2}, {edition: 1}];

Finally, I can square the circle of providing basic SQL capabilities against a table ab‐
straction by implementing a function akin to SQL’s WHERE clause, named restrict (Date
2011):

46 | Chapter 2: First-Class Functions and Applicative Programming

function restrict(table, pred) {
 return _.reduce(table, function(newTable, obj) {
 if (truthy(pred(obj)))
 return newTable;
 else
 return _.without(newTable, obj);
 }, table);
};

The restrict function takes a function that acts as a predicate against each object in
the table. Whenever the predicate returns a falsey value, the object is disregarded in the
final table. Here’s how restrict can work to remove all first editions:

restrict(library, function(book) {
 return book.ed > 1;
});

//=> [{title: "SICP", isbn: "0262510871", ed: 2}]

And like the rest of the functions that work against the table abstraction, restrict can
be chained:

restrict(
 project(
 as(library, {ed: 'edition'}),
 ['title', 'isbn', 'edition']),
 function(book) {
 return book.edition > 1;
});

//=> [{title: "SICP", isbn: "0262510871", edition: 2},]

An equivalent SQL statement could be written as follows:
SELECT title, isbn, edition FROM (
 SELECT ed AS edition FROM library
) EDS
WHERE edition > 1;

Although they’re not as attractive as the equivalent SQL, the functions project, as, and
restrict work against a common table abstraction—a simple array of objects. This is
data thinking.

Summary
This chapter focused on first-class functions. First-class functions are functions that can
be treated like any other piece of data:

• They can be stored in a variable.
• They can be stored in an array slot.

Summary | 47

• They can be stored in an object field.
• They can be created as needed.
• They can be passed to other functions.
• They can be returned from functions.

That JavaScript supports first-class functions is a great boon to practicing functional
programming. One particular form of functional programming—and one that most
readers will be familiar with—is known as applicative programming. Examples of func‐
tions that allow applicative programming such as _.map, _.reduce, and _.filter were
shown, and new applicative functions were created later.

What makes applicative programming particularly powerful is a focus in most Java‐
Script applications on dealing with collections of data, whether they’re arrays, objects,
arrays of objects, or objects of arrays. A focus on fundamental collection types allowed
us to build a set of SQL-like relational operators working against a simple “table” ab‐
straction built from arrays of objects.

The next chapter is a transition chapter to cover the fundamental topic of variable scope
and closures.

48 | Chapter 2: First-Class Functions and Applicative Programming

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Variable Scope and Closures

This chapter introduces variable scope, an important foundational topic not only to
functional programming, but to JavaScript in general. The term “binding” refers to the
act of assigning a value to a name in JavaScript via var assignment, function arguments,
this passing, and property assignment. This chapter first touches on dynamic scoping,
as displayed in JavaScript’s this reference, and proceeds onto function-level scoping
and how it works. All of this builds up to a discussion of closures, or functions that
capture nearby variable bindings when they are created. The mechanics of closures will
be covered, along with their general use cases and some examples.

The term “scope” has various meanings in common use among JavaScript programmers:

• The value of the this binding
• The execution context defined by the value of the this binding
• The “lifetime” of a variable
• The variable value resolution scheme, or the lexical bindings

For the purposes of this book, I’ll use scope to refer to the generic idea of the variable
value resolution scheme. I’ll dig deeper into various types of resolution schemes to cover
the full spectrum of scope provided by JavaScript, starting with the most straightfor‐
ward: global scope.

Global Scope
The extent of a scope refers to the lifetime of a variable (i.e., how long a variable holds
a certain value). I’ll start with variables with the longest lifespan—that of the “life” of
the program itself—globals.

In JavaScript, the following variable would have global scope:

49

aGlobalVariable = 'livin la vida global';

Any variable declared in JavaScript without the var keyword is created in the global
scope, or the scope accessible to every function and method in our program. Observe:

.map(.range(2), function() { return aGlobalVariable });
//=> ["livin la vida global", "livin la vida global"]

As shown, the variable aGlobalVariable is accessible from the anonymous function
(one created without a name) supplied to the _.map call. Global scope is simple to
understand and is used often in JavaScript programs (and sometimes with great effect).
In fact, Underscore creates a global named _ that contains all of its functions. Although
this may not provide the greatest name-spacing technique yet invented, it’s what Java‐
Script uses, and Underscore at least provides an escape hatch with the _.noConflict
function.

The funny thing about variables in JavaScript is that they are mutable by default (i.e.,
you can change their property values right in place):

aGlobalVariable = 'i drink your milkshake';

aGlobalVariable;
//=> "i drink your milkshake"

The problem with global variables, and the reason that they are so reviled, is that any
piece of code can change them for any reason at any time. This anarchic condition can
make for severe pain and missed holidays. In any case, the idea of global scope and its
dangers should be known to you by now. However, being defined at the top of a file or
lacking a var is not all that it takes for a variable to have global scope. Any object is wide
open for change (unless it’s frozen, which I’ll talk about in Chapter 7):

function makeEmptyObject() {
 return new Object();
}

The makeEmptyObject function does exactly what it says: it makes an empty object. I
can attach all manner of properties to the objects returned from this function, but so
too can any other piece of code that gets a reference to them. Any mutable object that
you pass around effectively allows change at a global scale on its properties. Heck, if I
wanted, I could change every function in the Underscore object to return the string
'nerf herder'—no one can stop me. This presents somewhat of a challenge to functional
programming in JavaScript. However, as I’ll show throughout this book, there are ways
to alleviate the problem of an implicit global scope.

Just because a global variable holds a certain value for the entire life of a program doesn’t
mean that when you refer to it you’ll get the global value. Scope becomes more inter‐
esting when we talk about something called lexical scope, described next.

50 | Chapter 3: Variable Scope and Closures

Lexical Scope
Lexical scope refers to the visibility of a variable and its value analogous to its textual
representation. For example, observe the following code:

aVariable = "Outer";

function afun() {
 var aVariable = "Middle";

 return _.map([1,2,3], function(e) {
 var aVariable = "In";

 return [aVariable, e].join(' ');
 });
}

What is the value of a call to afun?
afun();
//=> ["In 1", "In 2", "In 3"]

The innermost variable value, In, takes precedence when used within the function
passed to _.map. Lexical scope dictates that since the assignment aVariable to In occurs
textually close to its innermost use, then that is its value at the time of use. Figure 3-1
shows this condition graphically.

Figure 3-1. Variable lookup starts at the innermost scope and expands outward

Lexical Scope | 51

1. There are other scoping modes that JavaScript provides that complicate lookup, including this resolution,
function-level scope, and with blocks. I plan to cover all but the last of these.

2. To get a feel for what the early Lisps had to offer, read “Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I” by John McCarthy and the “LISP 1.5 Programmer’s Manual” by
McCarthy, Abrahams, Edwards, Hart, and Levin.

3. This is only one way to implement dynamic scoping, but it is likely the simplest.

In the simple case, variable lookup starts at the closest binding context and expands
outward until it finds a binding.1 Figure 3-1 describes lexical scoping, or the grouping
of names with values according to the surrounding source code. I will cover the me‐
chanics of different lookup schemes supported by JavaScript over the course of this
chapter, starting with dynamic scope.

Dynamic Scope
One of the most under appreciated and over-abused concepts in programming is that
of dynamic scoping. One reason for this is that very few languages use dynamic scope
as their primary binding resolution scheme. Dynamic scoping, however, is a simplistic
scheme used as the primary scoping mechanism in only a handful of modern pro‐
gramming languages, and has not seen widespread adoption outside of the earliest ver‐
sions of Lisp.2 Simulating a naive dynamic scoping mechanism requires very little code:

var globals = {};

First of all, dynamic scoping is built on the idea of a global table of named values.3 At
the heart of any JavaScript engine you will see—if not in implementation, then in spirit
—one big honking lookup table:

function makeBindFun(resolver) {
 return function(k, v) {
 var stack = globals[k] || [];
 globals[k] = resolver(stack, v);
 return globals;
 };
}

With globals and makeBindFun in place, we can move onto the policies for adding
bindings to the globals variable:

var stackBinder = makeBindFun(function(stack, v) {
 stack.push(v);
 return stack;
});

var stackUnbinder = makeBindFun(function(stack) {
 stack.pop();

52 | Chapter 3: Variable Scope and Closures

 return stack;
});

The function stackBinder performs a very simple task (i.e., it takes a key and a value
and pushes the value onto the global bindings map at the slot associated with the key).
Maintaining a global map of stacks associated with binding names is the core of dynamic
scoping, as shown in Figure 3-2.

Figure 3-2. You can imagine that any time you declare a variable it comes with a little
stack to hold its value; the current dynamic value is found at the top of the stack

The stackUnbinder function is the antithesis of stackBinder in that it pops the last
value binding off of the stack associated with a name. Finally, we’ll need a function to
look up bound values:

var dynamicLookup = function(k) {
 var slot = globals[k] || [];
 return _.last(slot);
};

The dynamicLookup function provides a convenient way to look up the value at the top
of a named value binding stack, and is used to simulate this reference resolution as you
might visualize it in Figure 3-3.

Figure 3-3. A lone function referencing “this” will deal with some global object (e.g., the
window in the browser)

Now that our binding and lookup functions are defined, I can note the effects that
various operations have on the simulated dynamic scope:

stackBinder('a', 1);
stackBinder('b', 100);

dynamicLookup('a');
//=> 1

Dynamic Scope | 53

globals;
//=> {'a': [1], 'b': [100]}

So far, everything looks as you might expect in the preceding code. Specifically, taking
the keyed arrays in globals as stacks, you might see that since a and b have been bound
only once each, the stacks would have only a single value inside. While dynamicLook
up cannot easily simulate the this resolution in an object method, you can think of it
as yet another push onto the stack, as shown in Figure 3-4.

Figure 3-4. An object method referencing “this” will deal with the object itself

In a dynamic scoping scheme, the value at the top of a stack in a binding is the current
value. Let’s investigate what would happen if we bind again:

stackBinder('a', '*');

dynamicLookup('a');
//=> '*'

globals;
//=> {'a': [1, '*'], 'b': [100]}

As you’ll notice, the new stack bound at a contains the stack [1, '*'], so any lookup
occurring with that condition will result in *. To retrieve the previous binding is as
simple as unbinding by popping the stack:

stackUnbinder('a');

dynamicLookup('a');
//=> 1

You may already imagine (or know) how a scheme like this (i.e., the manipulation of
global named stacks) may cause trouble, but if not observe the following:

function f() { return dynamicLookup('a'); };
function g() { stackBinder('a', 'g'); return f(); };

f();

//=> 1

54 | Chapter 3: Variable Scope and Closures

g();
//=> 'g'

globals;
// {a: [1, "g"], b: [100]}

Here we see that though f never manipulated the binding of a, the value that it saw was
subject to the whim of its caller g! This is the poison of dynamic scoping: the value of
any given binding cannot be known until the caller of any given function is known—
which may be too late.

A point of note in the preceding code is that I had to explicitly “unbind” a dynamic
binding, whereas in programming languages supporting dynamic binding this task is
done automatically at the close of the dynamic binding’s context.

JavaScript’s Dynamic Scope
This section has not been an exercise in theory, but instead has set up the discussion for
the one area where dynamic scoping rules apply to JavaScript, the this reference. In
Chapter 2, I mentioned that the this reference can point to different values depending
on the context in which it was first created, but it’s actually much worse than that.
Instead, the value of the this reference, like our binding of a, is also determined by the
caller, as shown in the following:

function globalThis() { return this; }

globalThis();
//=> some global object, probably Window

globalThis.call('barnabas');
//=> 'barnabas'

globalThis.apply('orsulak', [])
//=> 'orsulak'

Yep, the value of the this reference is directly manipulable through the use of apply or
call, as shown in Figure 3-5. That is, whatever object is passed into them as the first
argument becomes the referenced object. Libraries like jQuery use this as a way to pass
context objects and event targets into first-class functions, and as long as you keep your
wits about you, it can prove to be a powerful technique. However, dynamic scope can
confuse this.

Dynamic Scope | 55

Figure 3-5. Using the Function#call method allows you to set the “this” reference to a
known value

Thankfully, this problem does not arise if a this reference is never passed to call or
apply, or if it is bound to null. Additionally, Underscore provides the function _.bind
that allows you to lock the this reference from changing, like the following:

var nopeThis = _.bind(globalThis, 'nope');

nopeThis.call('wat');
//=> 'nope';

Because the this reference is dynamically scoped, you may often find, especially in the
case of event handling functions, that the this you get on something like a button click
is not useful and may break your app. To tackle a problem like this, you can use the
_.bindAll function to lock the this reference to a stable value for all of the named
methods, as shown here:

var target = {name: 'the right value',
 aux: function() { return this.name; },
 act: function() { return this.aux(); }};

target.act.call('wat');
// TypeError: Object [object String] has no method 'aux'

_.bindAll(target, 'aux', 'act');

target.act.call('wat');
//=> 'the right value'

And thus, Underscore saves us from the perils of dynamic scoping. Now that I’ve covered
dynamic scope in detail, it’s high time to cover function scope.

Function Scope
In order to illustrate the difference between dynamic and function scoping, I’ll need to
modify the logic for binding and lookup. Instead of accessing bindings in a global hash
map, the new model will instead require that all bindings be constrained to the smallest

56 | Chapter 3: Variable Scope and Closures

4. The ECMAScript.next activity has defined numerous ways to define “lexical” variable scoping. Lexical scop‐
ing works similarly to function scoping except that it’s “tighter.” That is, it binds variables within JavaScript
blocks and does not raise the declaration to the top of function bodies. I will not go into detail about lexical
scoping here, but it’s a topic well worth studying yourself.

5. The ECMAScript.next initiative is working through the specification of block-scope that would provide
another level of scoping finer-grained than function scope. It’s unclear when this feature will make it into
JavaScript core. Its eventual inclusion should help justify the next edition of this book (crossing fingers).

area possible (namely, the function). This follows the scoping model adhered to by
JavaScript.4

To simulate a function scoping scheme requires a bit of imagination. As you know, each
JavaScript function can refer to a this reference. In the previous section, I talked about
the dangers of the dynamic nature of this, but for the sake of illustration, I’ll use it to
prove a different point. First, observe how JavaScript acts by default:

function strangeIdentity(n) {
 // intentionally strange
 for(var i=0; i<n; i++);
 return i;
}

strangeIdentity(138);
//=> 138

In a language like Java, an attempt to access a variable like i, defined locally to a for
block, would provoke an access error. However, in JavaScript, all var declarations in a
function body are implicitly moved to the top of the function in which they occur. The
action of JavaScript to rearrange variable declarations is called hoisting. In other words,
the previously defined function would become something like:5

function strangeIdentity(n) {
 var i;
 for(i=0; i<n; i++);
 return i;
}

The implications of this are that any piece of code in the function can see all of the
variables defined inside. Needless to say, this can cause problems at times, especially if
you are not careful about how the variables are captured via closures (discussed in the
following section).

In the meantime, I can show how function scope can be simulated quite easily by using
the this reference:

function strangerIdentity(n) {
 // intentionally stranger still
 for(this['i'] = 0; this['i']<n; this['i']++);
 return this['i'];

Function Scope | 57

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

}

strangerIdentity(108);
//=> 108

Of course, this is not a true simulation because in this circumstance I’ve actually modi‐
fied the global object:

i;
//=> 108

Whoops! Instead, it would be more precise to supply a scratch space for the function
to operate on, and thanks to the magic of the this reference, I can supply it on the call:

strangerIdentity.call({}, 10000);
//=> 10000

i;
//=> 108

Although our original global i persists, at least I’ve stopped modifying the global envi‐
ronment. I’ve again not provided a true simulator, because now I can only access locals
inside of functions. However, there is no reason that I need to pass in an empty object
as context. In fact, in this faked-out JavaScript, it would be more appropriate to pass in
the global context, but not directly, or else I’d be back in the soup. Instead, a clone should
do:

function f () {
 this['a'] = 200;
 return this['a'] + this['b'];
}

var globals = {'b': 2};

f.call(_.clone(globals));
//=> 202

And checking the global context proves clean:
globals;
//=> {'b': 2}

This model is a reasonable facsimile of how function scoping operates. For all intents
and purposes, this is precisely what JavaScript does, except variable access is done im‐
plicitly within the function body instead of requiring an explicit lookup in this. Re‐
gardless of your thoughts about function-level scoping, at least JavaScript takes care of
the underlying machinery for us—small victories and all that.

58 | Chapter 3: Variable Scope and Closures

6. If you factor in the commentary on Hacker News, it’s closer to 36%. I have no citation for this because I just
made it up for fun.

Closures
JavaScript closures are one of life’s great mysteries. A recent survey on total Internet size
places blog posts about JavaScript closures at around 23%.6

I kid. Closures, for whatever reason, remain a mystery to a substantial number of pro‐
grammers for numerous reasons. In this section, I will take some time to go into detail
on closures in JavaScript, but thankfully for you, they’re quite simple. In fact, throughout
this section, I’ll build a small library that simulates scoping rules and closures. I’ll then
use this library to explore the details of this chapter, which include global scope, function
scope, free variables, and closures.

To start, it’s worth mentioning that closures go hand in hand with first-class functions.
Languages without first-class functions can support closures, but they’re often greatly
stunted. Thankfully, JavaScript supports first-class functions, so its closures are a pow‐
erful way to pass around ad hoc encapsulated states.

For the remainder of this chapter and the next, I will capitalize all of
the variables that are captured by a closure. This is in no way standard
practice in the JavaScript you’re likely to see in the wild, nor an en‐
dorsement of such activity, but only meant to teach. After these two
chapters I will no longer use this convention.

Having said all of that, a closure is a function that “captures” values near where it was
born. Figure 3-6 is a graphical representation of a closure.

Closures | 59

Figure 3-6. A closure is a function that “captures” values near where it was born

In the next few sections, I’ll cover closures in depth, starting with a closure simulator.

Simulating Closures
It took only 30 years, but closures are finally becoming a key feature of mainstream
programming languages. What is a closure? In a sentence, a closure is a function that
captures the external bindings (i.e., not its own arguments) contained in the scope in
which it was defined for later use (even after that scope has completed).

Before we go any further with how to simulate closures, let’s take a look at how they
behave by default. The simplest example of a closure is a first-class function that captures
a local variable for later use:

function whatWasTheLocal() {
 var CAPTURED = "Oh hai";

 return function() {
 return "The local was: " + CAPTURED;
 };
}

Using the whatWasTheLocal function is as follows:
var reportLocal = whatWasTheLocal();

60 | Chapter 3: Variable Scope and Closures

7. Closures are the programming language equivalent of vampires—they capture minions and give them ever‐
lasting life until they themselves are destroyed. The only difference is that closures don’t sparkle when exposed
to sunlight.

I’ve already talked about how function-local variables live only for the lifetime of a
function’s body, but when a closure captures a variable, it’s able to live for an indeter‐
minate extent:7

reportLocal();
//=> "The local was: Oh hai"

So it seems that the local variable CAPTURED was able to travel with the closure returned
by whatWasTheLocal—indeed, this is effectively what happened. But local variables are
not the only things that can be captured. As shown here, function arguments can be
captured as well:

function createScaleFunction(FACTOR) {
 return function(v) {
 return _.map(v, function(n) {
 return (n * FACTOR);
 });
 };
}

var scale10 = createScaleFunction(10);

scale10([1,2,3]);
//=> [10, 20, 30]

The function createScaleFunction takes a scaling factor and returns a function that,
given a collection of numbers, returns a list of its elements multiplied by the original
scaling factor. As you may have noticed, the returned function refers to a variable FACTOR
that seemingly falls out of scope once the createScaleFunction function exits. This
observation is only partially true because in fact, the variable FACTOR is retained within
the body of the return scaling function and is accessible anytime that function is called.
This variable retention is precisely the definition of a closure.

So how would we simulate a closure using our function-scoped this scratchpad from
the previous section? First of all, I’ll need to devise a way for capturing closed variables
while simultaneously maintaining access to non-closed variables normally. The most
straightforward way to do that is to grab the variables defined in the outer function
individually and bind them to the this of the returned function, as in the following:

function createWeirdScaleFunction(FACTOR) {
 return function(v) {
 this['FACTOR'] = FACTOR;
 var captures = this;

 return _.map(v, _.bind(function(n) {

Closures | 61

8. I could just refer directly to captures instead of dynamically passing it to the inner function passed to map
via Underscore’s bind, but then I would be using a closure to simulate a closure! That’s cheating.

9. Not free as in beer, and not free as in freedom, but instead free as in theft.

10. Another name for this could be higher-order since the function returns another function. I go more in depth
in Chapter 3.

 return (n * this['FACTOR']);
 }, captures));
 };
}

var scale10 = createWeirdScaleFunction(10);

scale10.call({}, [5,6,7]);
//=> [50, 60, 70];

Wow, keeping track of which variables are needed within the body of inner functions
seems like a real pain. If you needed to keep track manually, like in this example, then
JavaScript would be exceedingly difficult to write.8 Thankfully for us, the machinery
driving variable capture is automatic and straightforward to use.

Free variables

Free variables are related to closures in that it is the free variables that will be closed
over in the creation of said closure. The basic principle behind closures is that if a
function contains inner functions, then they can all see the variables declared therein;
these variables are called “free” variables.9 However, these variables can be grabbed and
carried along for later use in inner functions that “escape” from a higher-level function
via return.10 The only caveat is that the capturing function must be defined within the
outer function for the capture to occur. Variables used in the body of any function
without prior local declaration (neither passed into, nor defined locally) within a func‐
tion are then captured variables. Observe:

function makeAdder(CAPTURED) {
 return function(free) {
 return free + CAPTURED;
 };
}

var add10 = makeAdder(10);

add10(32);
//=> 42

The variable CAPTURED in the outer function is indeed captured in the returned function
performing the addition because the inner never declares CAPTURED, but refers to it
anyway. Thereafter, the function returned from makeAdder retains the variable CAPTURED

62 | Chapter 3: Variable Scope and Closures

11. I defined average in Chapter 2.

that was captured when it was created and uses it in its calculation. Creating another
adder will capture the same named variable CAPTURED but with a different value, because
it will be created during a later invocation of makeAdder:

var add1024 = makeAdder(1024);
add1024(11);
//=> 1035

add10(98);
//=> 108

And finally, as shown in the preceding code, each new adder function retains its own
unique instance of CAPTURED—the one captured when each was created. The value cap‐
tured can be of any type, including another function. The following function, average
Damp, captures a function and returns a function that calculates the average of some
value and the result of passing it to the captured function:11

function averageDamp(FUN) {
 return function(n) {
 return average([n, FUN(n)]);
 }
}

var averageSq = averageDamp(function(n) { return n * n });
averageSq(10);
//=> 55

Higher-order functions that capture other functions are a very powerful technique for
building abstractions. I will perform this kind of act throughout the course of this book
to great effect.

What happens if you create a function with a variable named the same as a variable in
a higher scope? I’ll talk briefly about this presently.

Shadowing

Variable shadowing happens in JavaScript when a variable of name x is declared within
a certain scope and then another variable of the same name is declared later in a lower
scope. Observe a simple example of shadowing:

var name = "Fogus";
var name = "Renamed";

name;
//=> "Renamed"

Closures | 63

That two consecutive declarations of variables with the same name assign the value of
the second should be no surprise. However, shadowing via function parameters is where
the complexity level rises:

var shadowed = 0;

function argShadow(shadowed) {
 return ["Value is", shadowed].join(' ');
}

What do you think is the value of the function call argShadow(108)? Observe:
argShadow(108)
//=> "Value is 108"

argShadow();
//=> "Value is "

The argument named shadowed in the function argShadow overrides the value assigned
to the same named variable at the global scope. Even when no arguments are passed,
the binding for shadowed is still set. In any case, the “closest” variable binding takes
precedence. You can also see this in action via the use of var:

var shadowed = 0;

function varShadow(shadowed) {
 var shadowed = 4320000;
 return ["Value is", shadowed].join(' ');
}

If you guessed the value returned value of varShadow(108) is now "Value is

4320000" then you’re absolutely correct. Shadowed variables are also carried along with
closures, as shown in the following:

function captureShadow(SHADOWED) {
 return function(SHADOWED) {
 return SHADOWED + 1;
 };
}

var closureShadow = captureShadow(108);

closureShadow(2);
//=> 3 (it would stink if I were expecting 109 here)

I tend to avoid shadowed variables when writing JavaScript code, but I do so only via
careful attention to naming. If you’re not careful, then shadowing can cause confusion
if you’ve not accounted for it. I’ll now move on to some quick closure usage examples
before wrapping up this chapter.

64 | Chapter 3: Variable Scope and Closures

Using Closures
In this section, I’ll touch briefly on the cases for using closures. Since the remainder of
the book will use closures extensively, there’s no need for me to belabor the point, but
it’s useful to show a few in action.

If you recall from “Other Examples of Applicative Programming” on page 36, the func‐
tion complement took a predicate function and returned a new function that returned
its opposite truthiness. While I glossed over the fact at the time, complement used a
closure to great effect. Rewriting to illustrate the closure:

function complement(PRED) {
 return function() {
 return !PRED.apply(null, _.toArray(arguments));
 };
}

The PRED predicate is captured by the returned function. Take the case of a predicate
that checks for evenness:

function isEven(n) { return (n%2) === 0 }

We can use complement to now define isOdd:
var isOdd = complement(isEven);

isOdd(2);
//=> false

isOdd(413);
//=> true

But what happens if the definition of isEven changes at some later time?
function isEven(n) { return false }

isEven(10);
//=> false

Will this change the behavior of isOdd? Observe:
isOdd(13);
//=> true;

isOdd(12);
//=> false

As you can see, the capture of a variable in a closure grabs the reference of the captured
thing (in this case, the predicate PRED) at the time that the closure is created. Since I
created a new reference for isEven by creating a fresh variable, the change was trans‐
parent to the closure isOdd. Let’s run this to ground:

Closures | 65

function showObject(OBJ) {
 return function() {
 return OBJ;
 };
}

var o = {a: 42};
var showO = showObject(o);

showO();
//=> {a: 42};

Everything is fine and good, no? Well, not exactly:
o.newField = 108;
showO();
//=> {a: 42, newField: 108};

Since the reference to o exists inside and outside of the closure, its changes can be
communicated across seemingly private boundaries. This is potentially a recipe for
confusion, so the typical use case minimizes the exposure of captured variables. A pat‐
tern you will see very often in JavaScript is to use captured variables as private data:

var pingpong = (function() {
 var PRIVATE = 0;

 return {
 inc: function(n) {
 return PRIVATE += n;
 },
 dec: function(n) {
 return PRIVATE -= n;
 }
 };
})();

The object pingpong is constructed within the anonymous function serving as a scope
block, and contains two closures inc and dec. The interesting part is that the captured
variable PRIVATE is private to the two closures and cannot be accessed through any
means but by calling one of the two functions:

pingpong.inc(10);
//=> 10

pingpong.dec(7);
//=> 3

Even adding another function is safe:
pingpong.div = function(n) { return PRIVATE / n };

pingpong.div(3);
// ReferenceError: PRIVATE is not defined

66 | Chapter 3: Variable Scope and Closures

The access protection provided by this closure pattern is a powerful technique available
to JavaScript programmers for keeping sanity in the face of software complexity.

Closures as an Abstraction
While closures provide for private access in JavaScript, they are a wonderful way to offer
abstraction (i.e., closures often allow you to create functions based solely on some
“configuration” captured at creation time). The implementations of makeAdder and
complement are good examples of this technique. Another example is a function named
plucker that takes a key into an associative structure—such as an array or an object—
and returns a function that, given a structure, returns the value at the key. The imple‐
mentation is as follows:

function plucker(FIELD) {
 return function(obj) {
 return (obj && obj[FIELD]);
 };
}

Testing the implementation reveals its behavior:
var best = {title: "Infinite Jest", author: "DFW"};

var getTitle = plucker('title');

getTitle(best);
//=> "Infinite Jest"

As I mentioned, plucker also works with arrays:
var books = [{title: "Chthon"}, {stars: 5}, {title: "Botchan"}];

var third = plucker(2);

third(books);
//=> {title: "Botchan"}

plucker comes in handy in conjunction with _.filter, which is used to grab objects
in an array with a certain field:

_.filter(books, getTitle);
//=> [{title: "Chthon"}, {title: "Botchan"}]

As this book proceeds, I will explore other uses and advantages of closures, but for now
I think the groundwork for understanding them has been laid.

Summary
This chapter focused on two foundational topics not only in JavaScript, but also for
functional programming in general: variable scope and closures.

Summary | 67

The focus on variable scope started with global scope, the largest available to JavaScript,
and worked its way inward through lexical scope and function scope. Additionally, I
covered dynamic scoping, especially as it manifests in the use and behavior of the this
reference, based on the use of the call and apply methods. While potentially confusing,
the dynamic this could be fixed to a certain value using Underscore’s _.bind and
_.bindAll functions.

My coverage of closures focused on how you could simulate them in a language with
all of JavaScript’s features, including the dynamic this. After simulating closures, I
showed how to not only use closures in your own functions, but also how they can be
viewed as a way to “tweak” existing functions to derive new functional abstractions.

In the next chapter, I will expand on first-class functions and delve into higher-order
functions, defined in terms of these points:

• Functions can be passed to other functions
• Functions can be returned from functions

If you’re unclear about the content of this chapter, then you might want to go back and
reread before proceeding on to the next chapter. Much of the power of higher-order
functions is realized in concert with variable scoping, and especially closures.

68 | Chapter 3: Variable Scope and Closures

CHAPTER 4

Higher-Order Functions

This chapter builds on Chapter 3 by extending the idea that functions are first-class
elements. That is, this chapter will explain that functions can not only reside in data
structures and pass as data; they can return from functions, too. Discussion of these first
“higher-order” functions will comprise the bulk of this chapter.

A higher-order function adheres to a very specific definition:

• It’s first-class (refer back to Chapter 2 if you need a refresher on this topic)
• Takes a function as an argument
• Returns a function as a result

I’ve already shown many functions that take other functions as arguments, but it’s worth
exploring this realm more deeply, especially since its dominance is palpable in functional
programming style.

Functions That Take Other Functions
You’ve already seen a gaggle of functions that take other functions, the more prominent
being _.map, _.reduce, and _.filter. All of these functions adhere to the definition of
higher-order. However, simply showing a few uses of each is insufficient for getting a
feel for the importance of function-taking functions in functional programming. There‐
fore, I’ll spend some time talking more about functions that take functions, and tie the
practice together with a discussion of closures. Once again, whenever showing code
utilizing a closure, I will capitalize the variable name of the captured value. It bears
repeating that the capitalization of captured variables is not a recommended practice,
but it serves well for book writing.

69

1. Underscore’s min function works similarly.

Thinking About Passing Functions: max, finder, and best
To start this discussion of function-taking functions, it’s worth working through a few
examples. Many programming languages with even modest core libraries include a
function called something like max, which is used to find the largest value (usually a
number) in a list or array. In fact, Underscore itself has such a function that performs
this very task:

_.max([1, 2, 3, 4, 5]);
//=> 5

_.max([1, 2, 3, 4.75, 4.5])
//=> 4.75

There’s nothing surprising in either result, but there is a limitation in this particular use
case. That is, what if we want to find the maximum value in an array of objects rather
than numbers? Thankfully, _.max is a higher-order function that takes an optional sec‐
ond argument. This second argument is, as you might have guessed, a function that is
used to generate a numeric value from the object supplied to it.1 For example:

var people = [{name: "Fred", age: 65}, {name: "Lucy", age: 36}];

_.max(people, function(p) { return p.age });

//=> {name: "Fred", age: 65}

This is a very useful approach to building functions because rather than baking in the
comparison of numeric values, _.max provides a way to compare arbitrary objects.
However, this function is still somewhat limited and not truly functional. To explain, in
the case of _.max, the comparison is always via the greater-than operator (>).

However, we can make a new function, finder, that takes two functions: one to build
a comparable value, and another to compare two values and return the “best” value of
the two. The implementation of finder is as follows:

function finder(valueFun, bestFun, coll) {
 return _.reduce(coll, function(best, current) {
 var bestValue = valueFun(best);
 var currentValue = valueFun(current);

 return (bestValue === bestFun(bestValue, currentValue)) ? best : current;
 });
}

Now, using the finder function, the operation of Underscore’s _.max can be simulated
via the following:

70 | Chapter 4: Higher-Order Functions

finder(_.identity, Math.max, [1,2,3,4,5]);

//=> 5

You’ll notice the use of the handy-dandy _.identity function that just takes a value
and returns it. Seems kinda useless, right? Perhaps, but in the realm of functional pro‐
gramming one needs to think in terms of functions, even when the best value is a value
itself.

In any case, we can now use finder to find different types of “best-fit” functions:
finder(plucker('age'), Math.max, people);

//=> {name: "Fred", age: 65}

finder(plucker('name'),
 function(x,y) { return (x.charAt(0) === "L") ? x : y },
 people);

//=> {name: "Lucy", age: 36}

This function of course prefers names that start with the letter L.

Tightening it up a bit

The implementation of finder is fairly small and works as we expect, but it duplicates
some logic for the sake of maximum flexibility. Notice a similarity in the implementation
of finder and the comparison logic for the best-value first-class function:

// in finder
return (bestValue === bestFun(bestValue, currentValue)) ? best : current);

// in the best-value function
return (x.charAt(0) === "L") ? x : y;

You’ll notice that the logic is exactly the same in both instances. That is, both algorithms
are returning some value or other based on the fitness of the first. The implementation
of finder can be tightened by making two assumption:

• That the best-value function returns true if the first argument is “better” than the
second argument

• That the best-value function knows how to “unwrap” its arguments

Keeping these assumptions in mind leads to the following implementation of a cleaner
best function (Graham 1993):

function best(fun, coll) {
 return _.reduce(coll, function(x, y) {
 return fun(x, y) ? x : y
 });
}

Functions That Take Other Functions | 71

best(function(x,y) { return x > y }, [1,2,3,4,5]);
//=> 5

With the duplication of logic removed, we now have a tighter, more elegant solution.
In fact, the preceding example shows once again that the pattern best(function(x,y)
{ return x > y }, ...) provides the same functionality as Underscore’s _.max or
even Math.max.apply(null, [1,2,3,4,5]). Chapter 5 discusses how functional pro‐
grammers capture patterns like this to create a suite of useful functions, so for now I’ll
defer that topic and instead hammer home the point about higher-order functions.

More Thinking About Passing Functions: repeat, repeatedly, and
iterateUntil
In the previous section, I created a function, finder, that took two functions. As it turned
out, the need to take two functions (one to unwrap a value and another to perform a
comparison), was overkill for that purpose—leading to the simplification to best. In
fact, you’ll find that in JavaScript it’s often overkill to create functions that take more
than one function in their arguments. However, there are cases where such a creation
is wholly justified, as I’ll discuss in this section.

The elimination of the extra function argument to finder was made because the same
functionality requiring two functions (i.e., unwrapping and comparison) was elimina‐
ted, due to the adoption of an assumption on the function given to best. However, there
are circumstances where placing assumptions on an algorithm is inappropriate.

I’ll walk through three related functions one by one and will discuss how they can be
made more generic (and the trade-offs of doing so) along the way.

First, let me start with a very simple function, repeat, which takes a number and a value
and builds an array containing some number of the value, duplicated:

function repeat(times, VALUE) {
 return _.map(_.range(times), function() { return VALUE; });
}

repeat(4, "Major");
//=> ["Major", "Major", "Major", "Major"]

The implementation of repeat uses the _.map function to loop over an array of the
numbers 0 to times - 1, plopping VALUE into an array 4 times. You’ll notice that the
anonymous function closes over the VALUE variable, but that’s not very important (nor
terribly interesting, in this case) at the moment. There are many alternatives to _.map
for implementing repeat, but I used it to highlight an important point, summarized as
“use functions, not values.”

72 | Chapter 4: Higher-Order Functions

Use functions, not values

The implementation of repeat in isolation is not a bad thing. However, as a generic
implementation of “repeatness,” it leaves something to be desired. That is, while a func‐
tion that repeats a value some number of times is good, a function that repeats a com‐
putation some number of times is better. I can modify repeat slightly to perform just
such a task:

function repeatedly(times, fun) {
 return _.map(_.range(times), fun);
}

repeatedly(3, function() {
 return Math.floor((Math.random()*10)+1);
});
//=> [1, 3, 8]

The function repeatedly is a nice illustration of the power of functional thinking. By
taking a function instead of a value, I’ve opened up “repeatness” to a world of possibility.
Instead of bottoming out immediately on a fixed value at the call-site, as repeat does,
we can fill an array with anything. If we truly want to plug in constant values using
repeatedly, then we need only do the following:

repeatedly(3, function() { return "Odelay!"; });

//=> ["Odelay!", "Odelay!", "Odelay!"]

In fact, the pattern illustrated by the use of a function returning a constant, no matter
what its arguments will pop up various times in this book, as well as in functional
libraries in the wild, but I’ll talk about that more in the next section and also in Chapter 5.

You’ll notice that I failed to list any parameters on the functions supplied to repeated
ly. This was a matter of expediency, since I chose not to use the incoming arguments.
In fact, because repeatedly is implemented as a call to _.map over the results of a call
to _.range, a number representing the current repeat count is supplied to the function
and could be used as you see fit. I’ve found this technique useful in generating some
known number of DOM nodes, each with an id containing the repeat count value, like
so:

repeatedly(3, function(n) {
 var id = 'id' + n;
 $('body').append($("<p>Odelay!</p>").attr('id', id));
 return id;
});

// Page now has three Odelays
//=> ["id0", "id1", "id2"]

In this case, I’ve used the jQuery library to append some nodes for me. This is a perfectly
legitimate use of repeatedly, but it makes changes to the “world” outside of the

Functions That Take Other Functions | 73

function. In Chapter 7 I will talk about why this is potentially problematic, but for now
I’d like to make repeatedly even more generic.

I said, “Use functions, not values”

I’ve moved away from the use of the static value in repeat, to a function that takes one
function instead in repeatedly. While this has indeed made repeatedly more open-
ended, it’s still not as generic as it could be. I’m still relying on a constant to determine
how many times to call the given function. Often you’ll know precisely how many times
a function should be called, but there will be other times when knowing when to quit
is not about “times” but about conditions. In other words, you may want to instead call
a given function until its return value crosses some threshold, changes sign, becomes
uppercase, and so on, and a simple value will not be sufficient. Instead, I can define
another function that is the logical progression beyond repeat and repeatedly named
iterateUntil; it’s defined as follows:

function iterateUntil(fun, check, init) {
 var ret = [];
 var result = fun(init);

 while (check(result)) {
 ret.push(result);
 result = fun(result);
 }

 return ret;
};

The function iterateUntil takes two functions: a function that performs some action
and another that checks a result, returning false if the result is a “stop” value. This is
truly repeatedly taken to the next level in that now even the repeat count is open-ended
and subject to the result of a function call. So how could you use iterateUntil? A
simple use would be to collect all of the results of some repeated computation until the
value crosses some threshold. For example, suppose you want to find all of the doubles
starting at 2 up to, at most, 1024:

iterateUntil(function(n) { return n+n },
 function(n) { return n <= 1024 },
 1);

//=> [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

To accomplish the same task with repeatedly requires that you know, before calling,
the number of times you need to call your function to generate the correct array:

repeatedly(10, function(exp) { return Math.pow(2,exp+1) });

//=> [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

74 | Chapter 4: Higher-Order Functions

Sometimes you know how many times you need to run some calculation, and sometimes
you know only how to calculate when to stop. An added advantage that iterateUn
til provides is that the repeating loop is a feed-forward function. In other words, the
result of some call to the passed function is fed into the next call of the function as its
argument. I will show how this is a powerful technique later in “Pipelining” on page 176,
but for now I think that we can proceed to the next section and talk about functions
that return other functions.

Functions That Return Other Functions
You’ve already seen a few functions that return a function as a result—namely, makeAd
der, complement, and plucker. As you might have guessed, all of these functions are
higher-order functions. In this section, I will talk more in depth about higher-order
functions that return (and sometimes also take) functions and closures. To start, recall
my use of repeatedly, which used a function that ignored its arguments and instead
returned a constant:

repeatedly(3, function() { return "Odelay!"; });

//=> ["Odelay!", "Odelay!", "Odelay!"]

This use of a function returning a constant is so useful that it’s almost a design pattern
for functional programming and is often simply called k. However, for the sake of
clarity, I’ll call it always; it’s implemented in the following way:

function always(VALUE) {
 return function() {
 return VALUE;
 };
};

The operation of always is useful for illustrating some points about closures. First, a
closure will capture a single value (or reference) and repeatedly return the same value:

var f = always(function(){});

f() === f();
//=> true

Because the function always produces a unique value, you can see that from one invo‐
cation of always to another, the captured function bound to VALUE is always the same
(Braithwaite 2013).

Any function created with function will return a unique instance, regardless of the
contents of its body. Using (function(){}) is a quick way to ensure that unique values
are generated. Keeping that in mind, a second important note about closures is that each
new closure captures a different value than every other:

Functions That Return Other Functions | 75

var g = always(function(){});

f() === g();
//=> false

Keeping these two rules in mind when using closures will help avoid confusion.

Moving on, plugging in always as a replacement for my anonymous function is a bit
more succinct:

repeatedly(3, always("Odelay!"));

//=> ["Odelay!", "Odelay!", "Odelay!"]

The always function is what’s known as a combinator. This book will not focus heavily
on combinators, but it’s worth covering the topic somewhat, as you will see them used
in code bases built in a functional style. However, I will defer that discussion until
Chapter 5; for now, I’d rather run through more examples of function-returning func‐
tions, especially focusing on how closures empower this approach.

However, before moving on, I’ll show the implementation of another function-
returning-function, invoker, that takes a method and returns a function that will invoke
that method on any object given. Observe:

function invoker (NAME, METHOD) {
 return function(target /* args ... */) {
 if (!existy(target)) fail("Must provide a target");

 var targetMethod = target[NAME];
 var args = _.rest(arguments);

 return doWhen((existy(targetMethod) && METHOD === targetMethod), function() {
 return targetMethod.apply(target, args);
 });
 };
};

The form of invoker is very similar to always; that is, it’s a function returning a function
that uses an original argument, METHOD, during a later invocation. The returned function
in this case is a closure. However, rather than returning a constant, invoker performs
some specialized action based on the value of the original call. Using invoker is as
follows:

var rev = invoker('reverse', Array.prototype.reverse);

_.map([[1,2,3]], rev);
//=> [[3,2,1]]

While it’s perfectly legitimate to directly invoke a particular method on an instance, a
functional style prefers functions taking the invocation target as an argument. Taking
advantage of the fact that invoker returns undefined when an object does not have a

76 | Chapter 4: Higher-Order Functions

2. The primary naiveté being that there is no uniqueness guarantee on the strings generated, but I hope the
intent is clear.

given method allows you to use JavaScript’s natural polymorphism to build polymorphic
functions. However, I’ll discuss that in Chapter 5.

Capturing Arguments to Higher-Order Functions
A useful way to think about why you might create functions that return another function
is that the arguments to the higher-order function serve to “configure” the behavior of
the returned function. In the case of the makeAdder higher-order function, its argument
serves to configure its returned function to always add that value to whatever number
it takes. Observe:

var add100 = makeAdder(100);
add100(38);
//=> 138

Specifically, by binding the function returned by makeAdder to the name add100, I’ve
specifically highlighted just how the return function is “configured.” That is, it’s config‐
ured to always add 100 to whatever you pass into it. This is a useful technique, but
somewhat limited in its ability. Instead, you’ll often see a function returning a function
that captures a variable, and this is what I’ll talk about presently.

Capturing Variables for Great Good
Imagine that you have a need for a function that generates unique strings. One such
naive implementation might look like the following:2

function uniqueString(len) {
 return Math.random().toString(36).substr(2, len);
};

uniqueString(10);
//=> "3rm6ww5w0x"

However, what if the function needed to generate unique strings with a certain prefix?
You could modify the uniqueString in the following way:

function uniqueString(prefix) {
 return [prefix, new Date().getTime()].join('');
};

uniqueString("argento");
//=> "argento1356107740868"

The new uniqueString seems to do the job. However, what if the requirements for this
function change once again and it needs to return a prefixed string with an increasing

Functions That Return Other Functions | 77

suffix starting at some known value? In that case, you’d like the function to behave as
follows:

uniqueString("ghosts");
//=> "ghosts0"

uniqueString("turkey");
//=> "turkey1"

The new implementation can include a closure to capture some increasing value, used
as the suffix:

function makeUniqueStringFunction(start) {
 var COUNTER = start;

 return function(prefix) {
 return [prefix, COUNTER++].join('');
 }
};

var uniqueString = makeUniqueStringFunction(0);

uniqueString("dari");
//=> "dari0"

uniqueString("dari");
//=> "dari1"

In the case of makeUniqueStringFunction, the free variable COUNTER is captured by the
returned function and manipulated whenever it’s called. This seems to work just fine,
but couldn’t you get the same functionality with an object? For example:

var generator = {
 count: 0,
 uniqueString: function(prefix) {
 return [prefix, this.count++].join('');
 }
};

generator.uniqueString("bohr");
//=> bohr0

generator.uniqueString("bohr");
//=> bohr1

But there is a downside to this (aside from the fact that it’s not functional) in that it’s a
bit unsafe:

// reassign the count
generator.count = "gotcha";
generator.uniqueString("bohr");
//=> "bohrNaN"

78 | Chapter 4: Higher-Order Functions

3. The ECMAScript.next initiative is working through the specification of a module system that would handle
visibility matters (among other things) based on simple declarations. More information is found at http://
wiki.ecmascript.org/doku.php?id=harmony:modules.

// dynamically bind this
generator.uniqueString.call({count: 1337}, "bohr");
//=> "bohr1337"

By this time, your system is in a perilous state indeed. The approach used in makeUni
queStringFunction hides the instance of COUNTER from prying eyes. That is, the
COUNTER variable is “private” to the closures returned. Now I’m not a stickler for private
variables and object properties, but there are times when hiding a critical implementa‐
tion detail from access is important. In fact, we could hide the counter in generator
using the JavaScript secret sauce:

var omgenerator = (function(init) {
 var COUNTER = init;

 return {
 uniqueString: function(prefix) {
 return [prefix, COUNTER++].join('');
 }
 };
})(0);

omgenerator.uniqueString("lichking-");
//=> "lichking-0"

But what’s the point? Creating a monstrosity like this is sometimes necessary, especially
when building module/namespace-like qualifications, but it’s not something that I’d like
to use often.3 The closure solution is clean, simple, and quite elegant, but it is also fraught
with dread.

Take care when mutating values

I plan to talk more about the dangers of mutating (i.e., changing) variables in Chap‐
ter 7, but I can take a moment to touch on it. The implementation of makeUniqueS
tringFunction uses a little piece of state named COUNTER to keep track of the current
value. While this piece of data is safe from outside manipulation, that it exists at all
causes a bit of complexity. When a function is reliant on only its arguments for the value
that it will return, it is known to exhibit something called referential transparency.

This seems like a fancy term, but it simply means that you should be able to replace any
call to a function with its expected value without breaking your programs. When you
use a closure that mutates a bit of internal code, you cannot necessarily do that because
the value that it returns is wholly dependent on the number of times that it was previ‐
ously called. That is, calling uniqueString ten times will return a different value than
if it were called 10,000 times. The only way that you can replace uniqueString with its

Functions That Return Other Functions | 79

http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://wiki.ecmascript.org/doku.php?id=harmony:modules

value is if you knew exactly how many times it was called at any given point, but that’s
not possible.

Again, I will talk more about this in Chapter 7, but it’s worth noting that I will avoid
functions like makeUniqueStringFunctions unless they’re absolutely necessary. In‐
stead, I think you’ll be surprised how seldom mutating a little bit of state is required in
functional programming. It takes some time to change your mind-set when faced with
designing functional programs for the first time, but I hope that after you finish reading
this book you’ll have a better idea of why a mutable state is potentially harmful, and that
you will have a desire to avoid it.

A Function to Guard Against Nonexistence: fnull
Before I move into Chapter 5, I’d like to build a couple higher-order functions for il‐
lustrative purposes. The first that I’ll discuss is named fnull. To describe the purpose
of fnull, I’d like to show a few error conditions that it’s meant to solve. Imagine that
we have an array of numbers that we’d like to multiply:

var nums = [1,2,3,null,5];

_.reduce(nums, function(total, n) { return total * n });
//=> 0

Well, clearly multiplying a number by null is not going to give us a helpful answer.
Another problem scenario is a function that takes a configuration object as input to
perform some action:

doSomething({whoCares: 42, critical: null});
// explodes

In both cases, a function like fnull would be useful. The use for fnull is in a function
that takes a function as an argument and a number of additional arguments, and returns
a function that just calls the original function given. The magic of fnull is that if any
of the arguments to the function that it returns are null or undefined, then the original
“default” argument is used instead. The implementation of fnull is the most compli‐
cated higher-order function that I’ll show to this point, but it’s still fairly reasonable.
Observe:

function fnull(fun /*, defaults */) {
 var defaults = _.rest(arguments);

 return function(/* args */) {
 var args = _.map(arguments, function(e, i) {
 return existy(e) ? e : defaults[i];
 });

 return fun.apply(null, args);
 };
};

80 | Chapter 4: Higher-Order Functions

4. The ECMAScript.next effort is working through a specification for default function parameters and the
assignment of their values (often called optional arguments). It’s unclear when this will make it into JavaScript
core, but from my perspective it’s a welcome feature. More information is found at http://wiki.ecmascript.org/
doku.php?id=harmony:parameter_default_values.

How fnull works is that it circumvents the execution of some function, checks its
incoming arguments for null or undefined, fills in the original defaults if either is
found, and then calls the original with the patched args. One particularly interesting
aspect of fnull is that the cost of mapping over the arguments to check for default values
is incurred only if the guarded function is called. That is, assigning default values is done
in a lazy fashion—only when needed.

You can use fnull in the following ways:
var safeMult = fnull(function(total, n) { return total * n }, 1, 1);

_.reduce(nums, safeMult);
//=> 30

Using fnull to create the safeMult function protects a product from receiving a null
or undefined. This also gives the added advantage of providing a multiplication func‐
tion that has an identity value when given no arguments at all.

To fix our configuration object problem, fnull can be used in the following way:
function defaults(d) {
 return function(o, k) {
 var val = fnull(_.identity, d[k]);
 return o && val(o[k]);
 };
}

function doSomething(config) {
 var lookup = defaults({critical: 108});

 return lookup(config, 'critical');
}

doSomething({critical: 9});
//=> 9

doSomething({});
//=> 108

This use of fnull ensures that for any given configuration object, the critical values are
set to sensible defaults. This helps to avoid long sequences of guards at the beginning
of functions and the need for the o[k] || someDefault pattern. Using fnull in the
body of the defaults function is illustrative of the propensity in functional style to build
higher-level parts from lower-level functions. Likewise, that defaults returns a func‐
tion is useful for providing an extra layer of checks onto the raw array access.4 Therefore,

Functions That Return Other Functions | 81

http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values
http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values

using this functional style allows you to encapsulate the defaults and check logic in
isolated functions, separate from the body of the doSomething function. Sticking with
this theme, I’m going to wrap up this chapter with a function for building object-field
validating functions.

Putting It All Together: Object Validators
To end this chapter, I’ll work through a solution to a common need in JavaScript: the
need to validate the veracity of an object based on arbitrary criteria. For example, imag‐
ine that you’re creating an application that receives external commands via JSON ob‐
jects. The basic form of these commands is as follows:

{message: "Hi!",
 type: "display"
 from: "http://localhost:8080/node/frob"}

It would be nice if there were a simple way to validate this message, besides simply taking
it and iterating over the entries. What I would like to see is something more fluent and
easily composed from parts, that reports all of the errors found with any given command
object. In functional programming, the flexibility provided by functions that take and
return other functions cannot be understated. In fact, the solution to the problem of
command validation is a general one, with a little twist to provide nice error reporting.

Here I present a function named checker that takes a number of predicates (functions
returning true or false) and returns a validation function. The returned validation
function executes each predicate on a given object, and it adds a special error string to
an array for each predicate that returns false. If all of the predicates return true, then
the final return result is an empty array; otherwise, the result is a populated array of
error messages. The implementation of checker is as follows:

function checker(/* validators */) {
 var validators = _.toArray(arguments);

 return function(obj) {
 return _.reduce(validators, function(errs, check) {
 if (check(obj))
 return errs
 else
 return _.chain(errs).push(check.message).value();
 }, []);
 };
}

The use of _.reduce is appropriate in this case because, as each predicate is checked,
the errs array is either extended or left alone. Incidentally, I like to use Underscore’s
_.chain function to avoid the dreaded pattern:

{
 errs.push(check.message);

82 | Chapter 4: Higher-Order Functions

 return errs;
}

The use of _.chain definitely requires more characters, but it hides the array mutation
nicely. (I’ll talk more about hiding mutation in Chapter 7.) Notice that the checker
function looks for a message field on the predicate itself. For purposes like this, I like
to use special-purpose validating functions that contain their own error messages at‐
tached as pseudo-metadata. This is not a general-purpose solution, but for code under
my control it’s a valid use case.

A basic test for validating a command object is as follows:
var alwaysPasses = checker(always(true), always(true));
alwaysPasses({});
//=> []

var fails = always(false);
fails.message = "a failure in life";
var alwaysFails = checker(fails);

alwaysFails({});
//=> ["a failure in life"]

It’s a bit of a pain to remember to set a message property on a validator every time you
create one. Likewise, it would be nice to avoid putting properties on validators that you
don’t own. It’s conceivable that message is a common enough property name that setting
it could wipe a legitimate value. I could obfuscate the property key to something like
_message, but that doesn’t help the problem of remembrance. Instead, I would prefer a
specific API for creating validators—one that is recognizable at a glance. My solution
is a validator higher-order function defined as follows:

function validator(message, fun) {
 var f = function(/* args */) {
 return fun.apply(fun, arguments);
 };

 f['message'] = message;
 return f;
}

A quick check of the validator function bears out this strategy:
var gonnaFail = checker(validator("ZOMG!", always(false)));

gonnaFail(100);
//=> ["ZOMG!"]

I prefer to isolate the definition of individual “checkers” rather than defining them in
place. This allows me to give them descriptive names, like so:

Putting It All Together: Object Validators | 83

5. Underscore’s has function in hasKeys checks an object for the existence of a keyed binding. I was tempted
to use existy(obj[k]), but that fails when the keyed value is null or undefined, both of which are con‐
ceivably legal values.

function aMap(obj) {
 return _.isObject(obj);
}

The aMap function can then be used as an argument to checker to provide a virtual
sentence:

var checkCommand = checker(validator("must be a map", aMap));

And, of course, the use is as you might expect:
checkCommand({});
//=> true

checkCommand(42);
//=> ["must be a map"]

Adding straightforward checkers is just as easy. However, maintaining a high level of
fluency might require a few interesting tricks. If you recall from earlier in this chapter,
I mentioned that arguments to a function-returning function can serve as behavior
configuration for the returned closure. Keeping this in mind will allow you to return
tweaked closures anywhere that a function is expected.

Take, for example, the need to validate that the command object has values associated
with certain keys. What would be the best possible way to describe this checker? I would
say that a simple list of the required keys would be beautifully fluent—for example,
something like hasKeys('msg', 'type'). To implement hasKeys to conform to this
calling convention, return a closure and adhere to the contract of returning an error
array as follows:

function hasKeys() {
 var KEYS = _.toArray(arguments);

 var fun = function(obj) {
 return _.every(KEYS, function(k) {
 return _.has(obj, k);
 });
 };

 fun.message = cat(["Must have values for keys:"], KEYS).join(" ");
 return fun;
}

You’ll notice that the closure (capturing KEYS) does the real work of checking the validity
of a given object.5 The purpose of the function hasKeys is to provide an execution
configuration to fun. Additionally, by returning a function outright, I’ve provided a

84 | Chapter 4: Higher-Order Functions

nicely fluent interface for describing required keys. This technique of returning a func‐
tion from another function—taking advantage of captured arguments along the way—
is known as “currying” (I will talk more about currying in Chapter 5). Finally, before
returning the closure bound to fun, I attach a useful message field with a list of all the
required keys. This could be made more informative with some additional work, but
it’s good enough as an illustration.

Using the hasKeys function is as follows:
var checkCommand = checker(validator("must be a map", aMap),
 hasKeys('msg', 'type'));

The composition of the checkCommand function is quite interesting. You can think of its
operation as a staged validation module on an assembly line, where an argument is
passed through various checkpoints and examined for validity. In fact, as you proceed
through this book, you’ll notice that functional programming can indeed be viewed as
a way to build virtual assembly lines, where data is fed in one end of a functional “ma‐
chine,” transformed and (optionally) validated along the way, and finally returned at the
end as something else.

In any case, using the new checkCommand checker to build a “sentence of conformity,”
works as you might have guessed:

checkCommand({msg: "blah", type: "display"});
//=> []

checkCommand(32);
//=> ["must be a map", "Must have values for keys: msg type"]

checkCommand({});
//=> ["Must have values for keys: msg type"]

And that nicely highlights the use of all that you’ve seen in this chapter. I will dig further
into these topics and checker will make appearances again throughout this book.

Summary
In this chapter, I discussed higher-order functions that are first-class functions that also
do one or both of the following:

• Take a function as an argument
• Return a function as a result

To illustrate passing a function to another, numerous examples were given, including
max, finder, best, repeatedly, and iterateUntil. Very often, passing values to func‐
tions to achieve some behavior is valuable, but sometimes such a task can be made more
generic by instead passing a function.

Summary | 85

The coverage of functions that return other functions started with the ever-valuable
always. An interesting feature of always is that it returned a closure, a technique that
you’ll see time and time again in JavaScript. Additionally, functions returning functions
allow for building powerful functions, such as fnull guards against unexpected nulls,
and let us define argument defaults. Likewise, higher-order functions were used to build
a powerful constraint-checking system, checker, using very little code.

In the next chapter, I will take everything that you’ve learned so far and put it in the
context of “composing” new functions entirely from other functions.

86 | Chapter 4: Higher-Order Functions

CHAPTER 5

Function-Building Functions

This chapter builds on the idea of first-class functions by explaining how and why one
builds functions on the fly. It explores various ways to facilitate function “composition”
—snapping together functions like Lego blocks to build richer functionality from parts.

The Essence of Functional Composition
Recall that the function invoker from Chapter 4 built a function taking an object as its
first argument and attempted to call a method on it. If you’ll recall, invoker returned
undefined if the method was not available on the target object. This can be used as a
way to compose multiple invokers together to form polymorphic functions, or functions
that exhibit different behaviors based on their argument(s). To do this, I’ll need a way
to take one or more functions and keep trying to invoke each in turn, until a non-
undefined value is returned. This function, dispatch, is defined imperatively as follows:

function dispatch(/* funs */) {
 var funs = _.toArray(arguments);
 var size = funs.length;

 return function(target /*, args */) {
 var ret = undefined;
 var args = _.rest(arguments);

 for (var funIndex = 0; funIndex < size; funIndex++) {
 var fun = funs[funIndex];
 ret = fun.apply(fun, construct(target, args));

 if (existy(ret)) return ret;
 }

 return ret;
 };
}

87

1. Recall that the construct function was defined all the way back in Chapter 2.

This is a lot of code to perform a simple task.1

To be clear, what you want to do is return a function that loops through an array of
functions, calls each with an object, and returns the first actual value it finds (i.e., “ex‐
isty”). However, despite its seeming complexity, dispatch fulfills the definition of pol‐
ymorphic JavaScript functions. It does so in a way that simplifies the task of delegating
to concrete method behaviors. For example, in the implementation of Underscore, you’ll
very often see the following pattern repeated in many different functions:

1. Make sure the target exists.
2. Check if there is a native version and use it if so.
3. If not, then do some specific tasks implementing the behavior:

• Do type-specific tasks, if applicable.
• Do argument-specific tasks, if applicable.
• Do argument count−specific tasks, if applicable.

In code-speak, this same pattern is expressed in the implementation of Underscore’s
_.map function:

_.map = _.collect = function(obj, iterator, context) {
 var results = [];
 if (obj == null) return results;
 if (nativeMap && obj.map === nativeMap) return obj.map(iterator, context);
 each(obj, function(value, index, list) {
 results[results.length] = iterator.call(context, value, index, list);
 });
 return results;
};

The use of dispatch can work to simplify some of this code and allow easier extensibility.
Imagine you’re tasked with writing a function to generate the string representation for
both array and string types. Using dispatch leads to an elegant implementation:

var str = dispatch(invoker(‘toString’, Array.prototype.toString),
 invoker(‘toString’, String.prototype.toString));

str("a");
//=> "a"

str(_.range(10));
//=> "0,1,2,3,4,5,6,7,8,9"

88 | Chapter 5: Function-Building Functions

2. Using Array.prototype.toString directly.

That is, by coupling invoker with dispatch, I can delegate down to concrete imple‐
mentations like Array.prototype.toString rather than using a single function that
groups type and existence checks via if-then-else.2

Of course, the operation of dispatch is not dependent on the use of invoker, but instead
adheres to a certain contract. That is, it will keep trying to execute functions until it runs
out or one returns an existy value. I can tap into this contract by supplying a function
that adheres to the contract at hand, as in stringReverse:

function stringReverse(s) {
 if (!_.isString(s)) return undefined;
 return s.split('').reverse().join("");
}

stringReverse("abc");
//=> "cba"

stringReverse(1);
//=> undefined

Now stringReverse can be composed with the Array#reverse method to define a new,
polymorphic function, rev:

var rev = dispatch(invoker('reverse', Array.prototype.reverse), stringReverse);

rev([1,2,3]);
//=> [3, 2, 1]

rev("abc");
//=> "cba"

In addition, we can exploit the contract of dispatch to compose a terminating function
that provides some default behavior by always returning an existy value or one that
always throws an exception. As a nice bonus, a function created by dispatch can also
be an argument to dispatch for maximum flexibility:

var sillyReverse = dispatch(rev, always(42));

sillyReverse([1,2,3]);
//=> [3, 2, 1]

sillyReverse("abc");
//=> "cba"

sillyReverse(100000);
//=> 42

The Essence of Functional Composition | 89

A more interesting pattern that dispatch eliminates is the switch statement manual
dispatch, which looks like the following:

function performCommandHardcoded(command) {
 var result;

 switch (command.type)
 {
 case 'notify':
 result = notify(command.message);
 break;
 case 'join':
 result = changeView(command.target);
 break;
 default:
 alert(command.type);
 }

 return result;
}

The switch statement in the performCommandHardcoded function looks at a field on a
command object and dispatches to relevant code depending on the command string:

performCommandHardcoded({type: 'notify', message: 'hi!'});
// does the nofity action

performCommandHardcoded({type: 'join', target: 'waiting-room'});
// does the changeView action

performCommandHardcoded({type: 'wat'});
// pops up an alert box

I can eliminate this pattern nicely using dispatch in the following way:
function isa(type, action) {
 return function(obj) {
 if (type === obj.type)
 return action(obj);
 }
}

var performCommand = dispatch(
 isa('notify', function(obj) { return notify(obj.message) }),
 isa('join', function(obj) { return changeView(obj.target) }),
 function(obj) { alert(obj.type) });

The preceding code starts with an isa function that takes a type string and an action
function and returns a new function. The returned function will call the action function
only if the type string and the obj.type field match; otherwise, it returns undefined.

90 | Chapter 5: Function-Building Functions

3. Some languages provide this kind of dispatch automatically as multimethods, i.e., function behavior deter‐
mined by the result of a list of predicates or an arbitrary function.

It’s the return of undefined that signals to dispatch to try the next dispatch
sub-function.3

To extend the performCommandHardcoded function, you would need to go in and
changed the actual switch statement itself. However, you can extend the performCom
mand function with new behavior by simply wrapping it in another dispatch function:

var performAdminCommand = dispatch(
 isa('kill', function(obj) { return shutdown(obj.hostname) }),
 performCommand);

The newly created performAdminCommand states that it first tries to dispatch on the kill
command, and if that fails then it tries the commands handled by performCommand:

performAdminCommand({type: 'kill', hostname: 'localhost'});
// does the shutdown action

performAdminCommand({type: 'flail'});
// alert box pops up

performAdminCommand({type: 'join', target: 'foo'});
// does the changeView action

You can also restrict the behavior by overriding commands earlier in the dispatch chain:
var performTrialUserCommand = dispatch(
 isa('join', function(obj) { alert("Cannot join until approved") }),
 performCommand);

Running through a couple of examples shows the new behavior:
performTrialUserCommand({type: 'join', target: 'foo'});
// alert box denial pops up

performTrialUserCommand({type: 'notify', message: 'Hi new user'});
// does the notify action

This is the essence of functional composition: using existing parts in well-known ways
to build up new behaviors that can later serve as behaviors themselves. In the remainder
of this chapter, I will discuss other ways to compose functions to create new behavior,
starting with the notion of currying.

Mutation Is a Low-Level Operation
You’ve already been exposed to examples of functions implemented in an imperative
fashion, and you will continue to see more as the book progresses. While often it’s ideal
to write code in a functional way, there are times when the primitives of a library, for

The Essence of Functional Composition | 91

4. The term “currying” has nothing at all to do with the delicious foodstuff. Instead, it’s named after the math‐
ematician Haskell Curry, who rediscovered a technique devised by another mathematician named Moses
Schönfinkel. While Haskell Curry certainly contributed heaps to computer science, I think we’ve missed a
fun opportunity to have a useful programming technique called schönfinkeling.

the sake of speed or expediency, should be implemented using imperative techniques.
Functions are quanta of abstraction, and the most important part of any given function
is that it adheres to its contract and fulfills a requirement. No one cares if a variable was
mutated deep within the confines of a function and never escaped. Mutation is some‐
times necessary, but I view it as a low-level operation—one that should be kept out of
sight and out of mind.

This book is not about spewing dogma regarding the virtues of functional program‐
ming. I think there are many functional techniques that offer ways to rein in the com‐
plexities of software development, but I realize that at times, there are better ways to
implement any given individual part (Figure 5-1).

Figure 5-1. An “evolved” programmer knows when to use the right tool

Whenever you’re building an application, it’s always wise to explore the parameters of
your personal execution needs to determine if a given implementation technique is
appropriate. This book, while about functional programming, advocates above all else
a full understanding of your problem and solution spaces to come to an understanding
of your best-possible solution. I will discuss this theme throughout Chapter 7, but for
now I present a recipe for delicious curry!4

Currying
You’ve already seen an example of a curried function (namely, invoker). A curried
function is one that returns a new function for every logical argument that it takes. In

92 | Chapter 5: Function-Building Functions

the case of invoker, you can imagine it operating in a slightly different (and more naive)
way, as shown here:

function rightAwayInvoker() {
 var args = _.toArray(arguments);
 var method = args.shift();
 var target = args.shift();

 return method.apply(target, args);
}

rightAwayInvoker(Array.prototype.reverse, [1,2,3])
//=> [3, 2, 1]

That is, the function rightAwayInvoker does not return a function that then awaits a
target object, but instead calls the method on the target taken as its second argument.
The invoker function, on the other hand, is curried, meaning that the invocation of the
method on a given target is deferred until its logical number of arguments (i.e., two) is
exhausted. You can see this in action via the following:

invoker('reverse', Array.prototype.reverse)([1,2,3]);
//=> [3, 2, 1]

The double parentheses give away what’s happening here (i.e., the function returned
from invoker bound to the execution of reverse is immediately called with the array
[1,2,3]).

Recall the idea that it’s useful to return functions (closures) that are “configured” with
certain behaviors based on the context in which they were created. This same idea can
be extended to curried functions as well. That is, for every logical parameter, a curried
function will keep returning a gradually more configured function until all parameters
have been filled (Figure 5-2).

Figure 5-2. An illustration of currying

Currying | 93

The idea of currying is simple, but there is one consideration that must be addressed.
That is, if a curried function returns one function per parameter, then which parameter
does the “uncurrying” start with, and with which does it end?

To Curry Right, or To Curry Left
The direction that you curry doesn’t really matter, but the choice will have some impli‐
cations on your API. For the purposes of this book (and my preference in general), I
will curry starting at the rightmost argument and move left. In a language like JavaScript
that allows you to pass any number of arguments, right-to-left currying allows you to
fix the optional arguments to certain values.

To illustrate what I mean by the difference in argument direction, observe the following
two functions:

function leftCurryDiv(n) {
 return function(d) {
 return n/d;
 };
}

function rightCurryDiv(d) {
 return function(n) {
 return n/d;
 };
}

The use of a division operation to illustrate currying works nicely because the result
changes if the arguments are switched (i.e., it’s not associative). Using the leftCurry
Div function, observe how the curried parameters produce a result:

var divide10By = leftCurryDiv(10);

The function produced on the initial call, with 10 named divide10By, produces a func‐
tion that, for all intents and purposes, contains a body pertaining to 10 / ?, where ? is
the curried rightmost parameter awaiting a value on the next call:

divide10By(2);
//=> 5

The second invocation of the curried function (named divide10By) now executes the
fully populated body 10 / 2, resulting in the value 5. However, if the rightCurryDiv
function is used, the behavior changes:

var divideBy10 = rightCurryDiv(10);

Now the body of the curried function named divideBy10 is instead ? / 10, awaiting
the leftmost argument before executing:

divideBy10(2);
//=> 0.2

94 | Chapter 5: Function-Building Functions

As I mentioned, I will begin currying from the rightmost argument, so my calculations
will operate as shown in Figure 5-2.

Another reason for currying from the right is that partial application handles working
from the left (partial application will be discussed in greater depth in the next section).
Between partial application and currying, I have both directions covered, allowing the
full range of parameter specialization. Having said all of that, I’ll presently implement
a few functions both manually curried (as in leftCurryDiv and rightCurryDiv) and
with an auto-currying function or two that I’ll also implement.

Automatically Currying Parameters
The functions over10 and divideBy10 were both curried by hand. That is, I explicitly
wrote the functions to return the right number of functions corresponding to the num‐
ber of function parameters. Likewise, for the purposes of illustration, my function
rightCurryDiv returned a function corresponding to a division function taking two
logical arguments. However, there is value in a simple higher-order function that takes
a function and returns a function “pinned” to receive only one argument; I’ll call this
function curry and implement it as follows:

function curry(fun) {
 return function(arg) {
 return fun(arg);
 };
}

The operation of curry can be summarized as follows:

• Takes a function
• Returns a function expecting one parameter

This seems like a fairly useless function, no? Why not simply use the function directly
instead? In many functional programming languages, there are few compelling reasons
to provide an unadorned delegation like curry provides, but in JavaScript the story is
slightly different. Very often in JavaScript, functions will take some number of expected
arguments and an additional number of “specialization” arguments. For example, the
JavaScript function parseInt takes a string and returns its equivalent integer:

parseInt('11');
//=> 11

Additionally, parseInt will accept a second argument that defines the radix to use when
parsing (i.e., the number base):

parseInt('11', 2);
//=> 3

Currying | 95

5. The Underscore map function is subject to this problem as well.

The preceding call, given a radix value of 2, means that the number is parsed as a binary
(base-2) number. Complications arise using parseInt in a first-class way because of that
optional second argument, as shown here:

['11','11','11','11'].map(parseInt)
//=> [11, NaN, 3, 4]

The problem here is that in some versions of JavaScript, the function given to Ar
ray#map will be invoked with each element of the array, the index of the element, plus
the array itself.5 So as you might have guessed, the radix argument for parseInt starts
with 0 and then becomes 1, 2, and then 3. Ouch! Thankfully, using curry, you can force
parseInt to receive only one argument on each call:

['11','11','11','11'].map(curry(parseInt));
//=> [11, 11, 11, 11]

I could have just as easily written a function that takes an arbitrary number of arguments
and figures out how to curry the remaining arguments, but I like to be explicit when
currying. The reason is that the use of a function like curry allows me to explicitly
control the behavior of the function being called by fixing (or ignoring) the optional
right-leaning arguments used for specialization.

Take, for example, the act of currying two function parameters using a curry2 function,
defined as such:

function curry2(fun) {
 return function(secondArg) {
 return function(firstArg) {
 return fun(firstArg, secondArg);
 };
 };
}

The curry2 function takes a function and curries it up to two parameters deep. Using
it to implement a version of the previously defined divideBy10 function is shown here:

function div(n, d) { return n / d }

var div10 = curry2(div)(10);

div10(50);
//=> 5

Just like rightCurryDiv, the div10 function awaits its first argument with a logical body
corresponding to ? / 10. And just for the sake of completion, curry2 can also be used
to fix the behavior of parseInt so that it handles only binary numbers when parsing:

96 | Chapter 5: Function-Building Functions

var parseBinaryString = curry2(parseInt)(2);

parseBinaryString("111");
//=> 7

parseBinaryString("10");
//=> 2

Currying is a useful technique for specifying the specialized behavior of JavaScript
functions and for “composing” new functions from existing functions, as I’ll show next.

Building new functions using currying

I showed a way to use curry2 to build a simple div10 function that expects a numerator
in a division operator, but that’s not the full extent of its usefulness. In fact, in exactly
the same way that closures are used to customize function behavior based on captured
variables, currying can do the same via fulfilled function parameters. For example, Un‐
derscore provides a _.countBy function that, given an array, returns an object keying
the count of its items tagged with some piece of data. Observe the operation of _.count
By:

var plays = [{artist: "Burial", track: "Archangel"},
 {artist: "Ben Frost", track: "Stomp"},
 {artist: "Ben Frost", track: "Stomp"},
 {artist: "Burial", track: "Archangel"},
 {artist: "Emeralds", track: "Snores"},
 {artist: "Burial", track: "Archangel"}];

_.countBy(plays, function(song) {
 return [song.artist, song.track].join(" - ");
});

//=> {"Ben Frost - Stomp": 2,
// "Burial - Archangel": 3,
// "Emeralds - Snores": 1}

The fact that _.countBy takes an arbitrary function as its second argument should pro‐
vide a hint about how you might use curry2 to build customized functionality. That is,
you can curry a useful function with _.countBy to implement custom counting func‐
tions. In the case of my artist counting activity, I might create a function named song
Count as follows:

function songToString(song) {
 return [song.artist, song.track].join(" - ");
}

var songCount = curry2(_.countBy)(songToString);

songCount(plays);
//=> {"Ben Frost - Stomp": 2,

Currying | 97

// "Burial - Archangel": 3,
// "Emeralds - Snores": 1}

The use of currying in this way forms a virtual sentence, effectively stating “to implement
songCount, countBy songToString.” You often see currying in the wild used to build
fluent functional interfaces. In this book you’ll see the same.

Currying three parameters to implement HTML hex color builders

Using the same pattern of implementation as curry2, I can also define a function that
curries up to three parameters:

function curry3(fun) {
 return function(last) {
 return function(middle) {
 return function(first) {
 return fun(first, middle, last);
 };
 };
 };
};

I can use curry3 in various interesting ways, including using Underscore’s _.uniq
function to build an array of all of the unique songs played:

var songsPlayed = curry3(_.uniq)(false)(songToString);

songsPlayed(plays);

//=> [{artist: "Burial", track: "Archangel"},
// {artist: "Ben Frost", track: "Stomp"},
// {artist: "Emeralds", track: "Snores"}]

By spacing out the call to curry3 and aligning it with the direct call of _.uniq, you might
see the relationship between the two more clearly:

 _.uniq(plays, false, songToString);

curry3(_.uniq) (false) (songToString);

In my own adventures, I’ve used curry3 as a way to generate HTML hexadecimal values
with specific hues. I start with a function rgbToHexString, defined as follows:

function toHex(n) {
 var hex = n.toString(16);
 return (hex.length < 2) ? [0, hex].join(''): hex;
}

function rgbToHexString(r, g, b) {
 return ["#", toHex(r), toHex(g), toHex(b)].join('');
}

98 | Chapter 5: Function-Building Functions

rgbToHexString(255, 255, 255);
//=> "#ffffff"

This function can then be curried to varying depths to achieve specific colors or hues:
var blueGreenish = curry3(rgbToHexString)(255)(200);

blueGreenish(0);
//=> "#00c8ff"

And that is that.

Currying for Fluent APIs
A tangential benefit of currying is that it very often lead to fluent functional APIs. In
the Haskell programming language, functions are curried by default, so libraries natu‐
rally take advantage of that fact. In JavaScript, however, functional APIs must be de‐
signed to take advantage of currying and must be documented to show how. However,
a general-purpose rule when determining if currying is an appropriate tool for any given
circumstance is this: does the API utilize higher-order functions? If the answer is yes,
then curried functions, at least to one parameter, are appropriate. Take, for example,
the checker function built in Chapter 4. It indeed accepts a function as an argument
used to check the validity of a value. Using curried functions to build a fluent checker
call is as simple as this:

var greaterThan = curry2(function (lhs, rhs) { return lhs > rhs });
var lessThan = curry2(function (lhs, rhs) { return lhs < rhs });

By currying two functions that calculate greater-than and less-than, the curried version
can be used directly where validator expects a predicate:

var withinRange = checker(
 validator("arg must be greater than 10", greaterThan(10)),
 validator("arg must be less than 20", lessThan(20)));

This use of curried functions is much easier on the eyes than directly using the anony‐
mous versions of the greater-than and less-than calculations. Of course, the within
Range checker works as you might expect:

withinRange(15);
//=> []

withinRange(1);
//=> ["arg must be greater than 10"]

withinRange(100);
//=> ["arg must be less than 20"]

So as you might agree, the use of curried functions can provide tangible benefits in
creating fluent interfaces. The closer your code gets to looking like a description of the

Currying | 99

6. More recent versions of JavaScript provide a method Function.bind that performs partial application (Her‐
man 2012).

activity that it’s performing, the better. I will strive to achieve this condition throughout
the course of this book.

The Disadvantages of Currying in JavaScript
While it’s nice to provide both curry2 and curry3, perhaps it would be better to provide
a function named curryAll that curries at an arbitrary depth. In fact, creating such a
function is possible, but in my experience it’s not very practical. In a programming
language like Haskell or Shen, where functions are curried automatically, APIs are built
to take advantage of arbitrarily curried functions. That JavaScript allows a variable
number of arguments to functions actively works against currying in general and is
often confusing. In fact, the Underscore library offers a plethora of different function
behaviors based on the type and count of the arguments provided to many of its func‐
tions, so currying, while not impossible, must be applied with careful attention.

The use of curry2 and curry3 is occasionally useful, and in the presence of an API
designed for currying, they can be an elegant approach to functional composition.
However, I find it much more common to partially apply functions at arbitrary depths
than to curry them, which is what I will discuss next.

Partial Application
You’ll recall that I stated, in effect, that a curried function is one that returns a progres‐
sively more specific function for each of its given arguments until it runs out of param‐
eters. A partially applied function, on the other hand, is a function that is “partially”
executed and is ready for immediate execution given the remainder of its expected
arguments, as shown in Figure 5-3.6

Figure 5-3. An illustration of partial application

100 | Chapter 5: Function-Building Functions

Textual descriptions and pictures are nice, but the best way to understand partial ap‐
plication is to see it in action. Imagine a different implementation of over10, as shown
here:

function divPart(n) {
 return function(d) {
 return n / d;
 };
}

var over10Part = divPart(10);
over10Part(2);
//=> 5

The implementation of over10Part looks almost exactly like the implementation of
leftCurryDiv, and that fact highlights the relationship between currying and partial
application. At the moment that a curried function will accept only one more argument
before executing, it is effectively the same as a partially applied function expecting one
more argument. However, partial application doesn’t necessarily deal with one argu‐
ment at a time, but instead deals with some number of partially applied arguments stored
for later execution, given the remaining arguments.

The relationship between currying and partial application is shown in Figure 5-4.

Figure 5-4. The relationship between currying and partial application; the curried func‐
tion needs three cascading calls (e.g. curried(3)(2)(1)) before FUN runs, whereas the
partially applied function is ready to rock, needing only one call of two args (e.g., parti‐
ally(2, 3))

While currying and partial application are related, they are used quite differently. Never
mind that my curry2 and curry3 functions work from right to left in the parameter list,
although that fact alone would be enough to motivate different API shapes and usage
patterns. The main difference with partial application is that it’s less confusing in the
face of the varargs function. JavaScript functions utilizing varargs usually directly bind

Partial Application | 101

7. You can also use the native bind method (if it’s available) to implement partial1 by replacing its body with
return fun.bind(undefined, arg1);.

8. Likewise, over10 can be implemented via native bind, when available, as var over10 = div.bind(unde
fined, 10); you can also use the native bind method, if it’s available, to implement partial2 by replacing
its body with return fun.bind(undefined, arg1, arg2).

the first few arguments and reserve the final arguments as optional or behavior spe‐
cializing. In other words, JavaScript APIs, while allowing any functionality, usually
concretely specify a known set of parameters, leading to concrete and default behavior.
The use of partial application can take advantage of this, as I’ll show next.

Partially Applying One and Two Known Arguments
Like currying, a discussion of partial application is best started simply. A function that
partially applies its first argument is written as follows:7

function partial1(fun, arg1) {
 return function(/* args */) {
 var args = construct(arg1, arguments);
 return fun.apply(fun, args);
 };
}

Observe that the function returned from partial1 captures the argument arg1 from
the original call and puts it at the front of the arglist of the executing call. You can see
this operation in action in the following:

var over10Part1 = partial1(div, 10);

over10Part1(5);
//=> 2

So again, I’ve re-created the operation of the over10 function by composing a function
from another function and a “configuration” argument.8 A function to partially apply
up to two arguments is implemented similarly:

function partial2(fun, arg1, arg2) {
 return function(/* args */) {
 var args = cat([arg1, arg2], arguments);
 return fun.apply(fun, args);
 };
}

var div10By2 = partial2(div, 10, 2)

div10By2()
//=> 5

102 | Chapter 5: Function-Building Functions

9. JavaScript’s native bind, when available, allows you to partially apply a function up to any number of argu‐
ments. To achieve the same effect as the body of partial, you can perform the following: fun.bind.ap
ply(fun, construct(undefined, args)).

10. Underscore also has a partial function that works just like the one in this chapter. However, Underscore’s
very nature is that the default argument ordering is not amenable to its use. Where partial really shines is
in creating new functions from existing functions. Having the collection first, as is the prevailing case in
Underscore, eliminates the power potential to specialize higher-order functions by partially applying a modi‐
fier function in the first argument position.

Partially applying one or two arguments is typically what you’ll see in practice, but it
would be useful to instead capture an arbitrary number of arguments for later execution,
as I’ll explain presently.

Partially Applying an Arbitrary Number of Arguments
Unlike currying, which is complicated by varargs in JavaScript, partial application of
an arbitrary number of arguments is a legitimate composition strategy. Thankfully, the
implementation of a function partial is not significantly more complex than either
partial1 nor partial2. In fact, the same basic implementation premise applies:

function partial(fun /*, pargs */) {
 var pargs = _.rest(arguments);

 return function(/* arguments */) {
 var args = cat(pargs, _.toArray(arguments));
 return fun.apply(fun, args);
 };
}

As you might have noticed, the principle is the same: partial captures some number
of arguments and returns a function that uses them as the prefix arguments for its final
call.9 In action, partial works exactly as you might expect:

var over10Partial = partial(div, 10);
over10Partial(2);
//=> 5

While the presence of varargs in JavaScript does not completely defeat the usefulness
of partial application, it can still complicate matters, as shown below:10

var div10By2By4By5000Partial = partial(div, 10, 2, 4, 5000);
div10By2By4By5000Partial();
//=> 5

While you might be aware that a number that you’re attempting to partially apply expects
a fixed number of arguments, the fact that it will accept any number can at times cause
confusion. In fact, the partially applied div function is just called one time with the
arguments 10 and 2, and the remaining arguments are simply ignored. Adding partial

Partial Application | 103

application as a level of misdirection only exacerbates the confusion. The good news is
that I’ve rarely run into this problem in practice.

Partial Application in Action: Preconditions
Recall the validator function from Chapter 4:

validator("arg must be a map", aMap)(42);
//=> false

The validator higher-order function takes a validation predicate and returns an array
of the errors encountered along the way. If the error array is empty, then there were no
reported errors. validator can also be used for more general purposes, such as the
manual validation of arguments to functions:

var zero = validator("cannot be zero", function(n) { return 0 === n });
var number = validator("arg must be a number", _.isNumber);

function sqr(n) {
 if (!number(n)) throw new Error(number.message);
 if (zero(n)) throw new Error(zero.message);

 return n * n;
}

Calls to the sqr function are checked as such:
sqr(10);
//=> 100

sqr(0);
// Error: cannot be zero

sqr('');
// Error: arg must be a number

This is fairly nice to my eyes, but it can be even better using partial application. While
there is certainly a class of errors that fall within the purview of essential data-check
failures, there is another set of errors that do not. That is, there is a class of errors that
pertains to the guarantees of a computation. In the latter case, you would say that there
are two types of guarantees:
Preconditions

Guarantees on the caller of a function

Postconditions
Guarantees on the result of a function call, assuming the preconditions were met

In English, the relationship between pre- and postconditions is described as follows:
given that you’ve provided a function data that it can handle, it will ensure that the return
meets a specific criteria.

104 | Chapter 5: Function-Building Functions

11. I leave this as an exercise for the reader.

I showed one function—sqr—that had two preconditions pertaining to the “number‐
ness” and “zeroness” of its lone argument. We could check these conditions every single
time, and that might be fine, but really they refer to a guarantee of sqr relative to the
context of a running application. Therefore, I can use a new function, condition1, and
partial application to attach the preconditions separately from essential calculations:

function condition1(/* validators */) {
 var validators = _.toArray(arguments);

 return function(fun, arg) {
 var errors = mapcat(function(isValid) {
 return isValid(arg) ? [] : [isValid.message];
 }, validators);

 if (!_.isEmpty(errors))
 throw new Error(errors.join(", "));

 return fun(arg);
 };
}

You’ll notice that the function returned from condition1 is meant to take only a single
argument. This is done primarily for illustrative purposes, as the vararg version is a bit
more complicated and obfuscates the point I’m trying to make.11 The point is that the
function returned by condition1 takes a function and a set of functions, each created
with validator, and either builds an Error or returns the value of the execution of
fun. This is a very simple but powerful pattern, used as shown here:

var sqrPre = condition1(
 validator("arg must not be zero", complement(zero)),
 validator("arg must be a number", _.isNumber));

This is a very fluent validation API, as far as JavaScript goes. Very often you’ll find that,
through function composition, your code becomes more declarative (i.e., it says what
it’s supposed to do rather than how). A run-through of the operation of sqrPre bears
out the operation of condition1:

sqrPre(_.identity, 10);
//=> 10

sqrPre(_.identity, '');
// Error: arg must be a number

sqrPre(_.identity, 0);
// Error: arg must not be zero

Partial Application | 105

12. I could have used partial instead of partial1 in this example, but sometimes I like more explicitness in
my code.

Recalling the definition of sqr, with its built-in error handling, you might have guessed
how we can use sqrPre to check its arguments. If not, then imagine an “unsafe” version
of sqr defined as follows:

function uncheckedSqr(n) { return n * n };

uncheckedSqr('');
//=> 0

Clearly, the square of the empty string shouldn’t be 0, even if it can be explained by
JavaScript’s foibles. Thankfully, I’ve been building a set of tools, realized in the creation
of validator, partial1, condition1, and sqrPre, to solve this particular problem,
shown here:12

var checkedSqr = partial1(sqrPre, uncheckedSqr);

The creation of the new function checkedSqr was fully formed through the creation of
functions, function-creating functions, and their interplay to build functions anew:

checkedSqr(10);
//=> 100

checkedSqr('');
// Error: arg must be a number

checkedSqr(0);
// Error: arg must not be zero

As shown in the preceding code, the new checkedSqr works exactly like sqr, except that
by separating the validity checks from the main calculation, I’ve achieved an ideal level
of flexibility. That is, I can now turn off condition checking altogether by not applying
conditions to functions at all, or even mix in additional checks at a later time:

var sillySquare = partial1(
 condition1(validator("should be even", isEven)),
 checkedSqr);

Because the result of condition1 is a function expecting another function to delegate
to, the use of partial1 combines the two:

sillySquare(10);
//=> 100

sillySquare(11);
// Error: should be even

sillySquare('');
// Error: arg must be a number

106 | Chapter 5: Function-Building Functions

sillySquare(0);
// Error: arg must not be zero

Now obviously you wouldn’t want to constrain the squaring of numbers to such a silly
degree, but I hope the point is clear. The functions that compose other functions should
themselves compose. Before moving on to the next section, it’s worth taking a step back
and seeing how to re-implement the command object (from Chapter 4) creation logic
with validation:

var validateCommand = condition1(
 validator("arg must be a map", _.isObject),
 validator("arg must have the correct keys", hasKeys('msg', 'type')));

var createCommand = partial(validateCommand, _.identity);

Why use the _.identity function as the logic part of the createCommand function? In
JavaScript, much of the safety that we achieve is built via discipline and careful thinking.
In the case of createCommand, the intention is to provide a common gateway function
used for creating and validating command objects, as shown below:

createCommand({});
// Error: arg must have right keys

createCommand(21);
// Error: arg must be a map, arg must have right keys

createCommand({msg: "", type: ""});
//=> {msg: "", type: ""}

However, using functional composition allows you to later build on top of the existing
creation abstraction in order to customize the actual building logic or the validation
itself. If you wanted to build a derived command type that required the existence of
another key, then you would further compose with the following:

var createLaunchCommand = partial1(
 condition1(
 validator("arg must have the count down", hasKeys('countDown'))),
 createCommand);

And as you might expect, createLaunchCommand works as follows:
createCommand({msg: "", type: ""});
// Error: arg must have the count down

createCommand({msg: "", type: "", countDown: 10});
//=> {msg: "", type: "", countDown: 10}

Whether you use currying or partial application to build functions, there is a common
limitation on both: they only compose based on the specialization of one or more of
their arguments. However, it’s conceivable that you might want to compose functions
based on the relationships between their arguments and their return values. In the next

Partial Application | 107

section, I will talk about a compose function that allows the end-to-end stitching of
functions.

Stitching Functions End-to-End with Compose
An idealized (i.e., not one that you’re likely to see in production) functional program is
a pipeline of functions fed a piece of data in one end and emitting a whole new piece of
data at the other. In fact, JavaScript programmers do this all the time. Observe:

!_.isString(name)

The pipeline in play here is built from the function _.isString and the ! operator,
where:

• _.isString expects an object and returns a Boolean value
• ! expects a Boolean value (in principle) and returns a Boolean

Functional composition takes advantage of this type of data chain by building new
functions from multiple functions and their data transformations along the way:

function isntString(str) {
 return !_.isString(str);
}

isntString(1);
//=> true

But this same function can be built from function composition, using the Underscore
function _.compose as follows:

var isntString = _.compose(function(x) { return !x }, _.isString);

isntString([]);
//=> true

The _.compose function works from right to left in the way that the resulting function
executes. That is, the result of the rightmost functions are fed into the functions to their
left, one by one. Using selective spacing, you can see how this maps to the original:

 ! _.isString("a");

_.compose(function(str) { return !str }, _.isString)("a");

In fact, the ! operator is useful enough to encapsulate it into its own function:
function not(x) { return !x }

The not function then composes as you’d expect:
var isntString = _.compose(not, _.isString);

108 | Chapter 5: Function-Building Functions

13. I defined splat way back in Chapter 1.

Using composition this way effectively turns a string into a Boolean value without ex‐
plicitly changing either one—a worthy result indeed. This model for composition can
form the basis for entire function suites where primitive data transformers are plugged
together like Lego blocks to build other functionality.

A function that I’ve already defined, mapcat, can be defined using _.compose in the
following way:13

var composedMapcat = _.compose(splat(cat), _.map);

composedMapcat([[1,2],[3,4],[5]], _.identity);
//=> [1, 2, 3, 4, 5]

There are infinite ways to compose functions to form further functionality, one of which
I’ll show presently.

Pre- and Postconditions Using Composition
If you recall from the previous section, I mentioned that preconditions define the con‐
straints under which a function’s operation will produce a value adhering to a different
set of constraints. These production constraints are called postconditions. Using con
dition1 and partial, I was able to build a function (checkedSqr) that checked the
input arguments to uncheckedSqr for conformance to its preconditions. However, if I
want to define the postconditions of the act of squaring, then I need to define them
using condition1 as such:

var sqrPost = condition1(
 validator("result should be a number", _.isNumber),
 validator("result should not be zero", complement(zero)),
 validator("result should be positive", greaterThan(0)));

I can run through each error case manually using the following:
sqrPost(_.identity, 0);
// Error: result should not be zero, result should be positive

sqrPost(_.identity, -1);
// Error: result should be positive

sqrPost(_.identity, '');
// Error: result should be a number, result should be positive

sqrPost(_.identity, 100);
//=> 100

Stitching Functions End-to-End with Compose | 109

14. Another option is to rewrite condition1 to work with an intermediate object type named Either that holds
either the resulting value or an error string.

But the question arises: how can I glue the postcondition check function onto the ex‐
isting uncheckedSqr and sqrPre? The answer, of course, is to use _.compose for the
glue: 14

var megaCheckedSqr = _.compose(partial(sqrPost, _.identity), checkedSqr);

And its use is exactly the same as checkedSqr:
megaCheckedSqr(10);
//=> 100

megaCheckedSqr(0);
// Error: arg must not be zero

Except:
megaCheckedSqr(NaN);
// Error: result should be positive

Of course, if the function ever throws a postcondition error, then that means that either
my preconditions are under-specified, my postconditions are over-specified, or my in‐
ternal logic is busted. As the provider of a function, a post-condition failure is always
my fault.

Summary
In this chapter, I worked through the idea that new functions can be built from existing
functions, be they generic or special-purpose. The first phase of composition is done
manually by just calling one function after another, then wrapping the calls in another
function. However, using specialized composition functions was often easier to read
and reason about.

The first composition function covered was _.curry, which took a function and some
number of arguments and returned a function with the rightmost arguments fixed to
those given. Because of the nature of JavaScript, which allows a variable number of
arguments, a few static currying functions—curry and curry2—were used to create
functions of known parameter sizes to a known number of curried arguments. In ad‐
dition to introducing currying, I implemented a few interesting functions using the
technique.

The second composition function covered was partial, which took a function and
some number of arguments and returned a function that fixed the leftmost arguments
to those given. Partial application via partial, partial1, and partial2 proved a much
more broadly applicable technique than currying.

110 | Chapter 5: Function-Building Functions

The final composition function covered was _.compose, which took some number of
functions and strung them end to end from the rightmost to the leftmost. The _.compose
higher-order function was used to build on the lessons learned from Chapter 4’s im‐
plementation of checker to provide a pre- and postcondition function “decorator,” using
a surprisingly small amount of code.

The next chapter is again a transition chapter covering a topic not very prevalent in
JavaScript, though more so in functional programming in general: recursion.

Summary | 111

1. You might actually think, “why not just use the length field on the array?” While this kind of pragmatic
thinking is extremely important for building great systems, it’s not helpful for learning recursion.

CHAPTER 6

Recursion

This chapter is a transitional chapter meant to smooth the way from thinking about
functions to thinking about a deeper understanding of a functional style, including
when to break from it and why doing so is sometimes a good idea. Specifically, this
chapter covers recursion, or functions calling themselves directly or through other
functions.

Self-Absorbed Functions (Functions That Call Themselves)
Historically, recursion and functional programming were viewed as related, or at least
they were often taught together. Throughout this chapter, I’ll explain how they’re related,
but for now, I can say that an understanding of recursion is important to functional
programming for three reasons:

• Recursive solutions involve the use of a single abstraction applied to subsets of a
common problem.

• Recursion can hide mutable state.
• Recursion is one way to implement laziness and infinitely large structures.

If you think about the essential nature of a function, myLength, that takes an array and
returns its length (i.e., number of elements), then you might land on the following
description:1

1. Start with a size of zero.
2. Loop through the array, adding one to the size for each entry.

113

3. If you get to the end, then the size is the length.

This is a correct description of myLength, but it doesn’t involve recursive thinking. In‐
stead, a recursive description would be as follows:

1. An array’s length is zero if it’s empty.
2. Add one to the result of myLength with the remainder of the array.

I can directly encode these two rules in the implementation of myLength, as shown here:
function myLength(ary) {
 if (_.isEmpty(ary))
 return 0;
 else
 return 1 + myLength(_.rest(ary));
}

Recursive functions are very good at building values. The trick in implementing a re‐
cursive solution is to recognize that certain values are built from subproblems of a larger
problem. In the case of myLength, the total solution can really be seen as adding the
lengths of some number of single-element arrays with the length of an empty array.
Since myLength calls itself with the result of _.rest, each recursive call gets an array
that is one element shorter, until the last call gets an empty array (see Figure 6-1).

Figure 6-1. A recursive myLength that “consumes” an array

Observe the operation of myLength below:
myLength(_.range(10));
//=> 10

myLength([]);
//=> 0

myLength(_.range(1000));
//=> 1000

It’s important to know that for minimal confusion, recursive functions should not
change the arguments given them:

114 | Chapter 6: Recursion

var a = _.range(10);

myLength(a);
//=> 10

a;
//=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

While a recursive function may logically consume its input arguments, it should never
actually do so. While myLength built up an integer return value based on its input, a
recursive function can build any type of legal value, including arrays and objects. Con‐
sider, for example, a function called cycle that takes a number and an array and builds
a new array filled with the elements of the input array, repeated the specified number
of times:

function cycle(times, ary) {
 if (times <= 0)
 return [];
 else
 return cat(ary, cycle(times - 1, ary));
}

The form of the cycle function looks similar to the myLength function. That is, while
myLength “consumed” the input array, cycle “consumes” the repeat count. Likewise,
the value built up on each step is the new cycled array. This consume/build action is
shown in Figure 6-2.

Figure 6-2. A recursive cycle that builds an array

Here’s cycle in action:
cycle(2, [1,2,3]);
//=> [1, 2, 3, 1, 2, 3]

_.take(cycle(20, [1,2,3]), 11);
//=> [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2]

Another self-recursive function that I’ll create is called unzip, which is the inverse of
Underscore’s _.zip function, constrained to pairs, shown here:

Self-Absorbed Functions (Functions That Call Themselves) | 115

_.zip(['a', 'b', 'c'], [1, 2, 3]);

//=> [['a', 1], ['b', 2], ['c', 3]]

Underscore’s _.zip takes two arrays and pairs each element in the first array with each
corresponding element in the second array. To implement a function that “unzips” arrays
like those generated by _.zip requires that I think about the “pairness” of the array
needing unzipping. In other words, if I think about the basic case, one array needing
unzipping, then I can begin to deconstruct how to solve the problem as a whole:

var zipped1 = [['a', 1]];

Even more basic than zipped1 would be the empty array [], but an unzipped empty
array is the resulting array [[],[]] (that seems like a good candidate for a terminating
case, so put that in the back of your mind for now). The array zipped1 is the simplest
interesting case and results in the unzipped array [['a'], [1]]. So given the termi‐
nating case [[],[]] and the base case zipped, how can I get to [['a'], [1]]?

The answer is as simple as a function that makes an array of the first element in zip
ped1 and puts it into the first array in the terminating case and the second element in
zipped1, and puts that into the second array of the terminating case. I can abstract this
operation in a function called constructPair:

function constructPair(pair, rests) {
 return [construct(_.first(pair), _.first(rests)),
 construct(second(pair), second(rests))];
}

While the operation of constructPair is not enough to give me general “unzippability,”
I can achieve an unzipped version of zipped1 manually by using it and the empty case:

constructPair(['a', 1], [[],[]]);
//=> [['a'], [1]]

_.zip(['a'], [1]);
//=> [['a', 1]]

_.zip.apply(null, constructPair(['a', 1], [[],[]]));
//=> [['a', 1]]

Likewise, I can gradually build up an unzipped version of a larger zipped array using
constructPair, as shown here:

constructPair(['a', 1],
 constructPair(['b', 2],
 constructPair(['c', 3], [[],[]])));

//=> [['a','b','c'],[1,2,3]]

Graphically, these manual steps are shown in Figure 6-3.

116 | Chapter 6: Recursion

Figure 6-3. Illustrating the operation of constructPair graphically

So using the knowledge of how constructPair works, I can now build a self-recursive
function unzip:

function unzip(pairs) {
 if (_.isEmpty(pairs)) return [[],[]];

 return constructPair(_.first(pairs), unzip(_.rest(pairs)));
}

The recursive call in unzip walks the given array of zipped pairs until it gets to an empty
array. It then walks back down the subarrays, using constructPair along the way to
build an unzipped representation of the array. Having implemented unzip, I should be
able to “undo” the result of a call to _.zip that has built an array of pairs:

unzip(_.zip([1,2,3],[4,5,6]));
//=> [[1,2,3],[4,5,6]]

All instances of myLength, cycle, and unzip were examples of self-recursion (or, in other
words, functions that call themselves). The rules of thumb when writing self-recursive
functions are as follows(Touretzky 1990):

• Know when to stop
• Decide how to take one step
• Break the problem into that step and a smaller problem

Table 6-1 presents a tabular way of observing how these rules operate.

Table 6-1. The rules of self-recursion
Function Stop When Take One Step Smaller Problem

myLength _.isEmpty 1 + ... _.rest

cycle times <= 0 cat(array ... times - 1

unzip _.isEmpty constructPair(_.first ... _.rest

Self-Absorbed Functions (Functions That Call Themselves) | 117

Observing these three rules will provide a template for writing your own recursive
functions. To illustrate that self-recursive functions of any complexity fall into this pat‐
tern, I’ll run through a more complex example and explain the similarities along the
way.

Graph Walking with Recursion
Another suitable problem solved by recursion in an elegant way is the task of walking
the nodes in a graph-like data structure. If I wanted to create a library for navigating a
graph-like structure, then I would be hard pressed to find a solution more elegant than
a recursive one. A graph that I find particularly interesting is a (partial) graph of the
programming languages that have influenced JavaScript either directly or indirectly.

Figure 6-4. A partial graph of programming language influences

I could use a class-based or object-based representation, where each language and con‐
nection is represented by objects of type Node and Arc, but I think I’d prefer to start with
something simple, like an array of arrays of strings:

var influences = [
 ['Lisp', 'Smalltalk'],
 ['Lisp', 'Scheme'],
 ['Smalltalk', 'Self'],
 ['Scheme', 'JavaScript'],
 ['Scheme', 'Lua'],
 ['Self', 'Lua'],
 ['Self', 'JavaScript']];

Each nested array in influences represents a connection of “influencer” to “influenced”
(e.g., Lisp influenced Smalltalk) and encodes the graph shown in Figure 6-4. A recursive
function, nexts, is defined recursively as follows(Paulson 1996):

function nexts(graph, node) {
 if (_.isEmpty(graph)) return [];

118 | Chapter 6: Recursion

 var pair = _.first(graph);
 var from = _.first(pair);
 var to = second(pair);
 var more = _.rest(graph);

 if (_.isEqual(node, from))
 return construct(to, nexts(more, node));
 else
 return nexts(more, node);
}

The function nexts walks the graph recursively and builds an array of programming
languages influenced by the given node, as shown here:

nexts(influences, 'Lisp');
//=> ["Smalltalk", "Scheme"]

The recursive call within nexts is quite different than what you’ve seen so far; there’s a
recursive call in both branches of the if statement. The “then” branch of nexts deals
directly with the target node in question, while the else branch ignores unimportant
nodes.

Table 6-2. The rules of self-recursion according to nexts
Function Stop When Take One Step Smaller Problem

nexts _.isEmpty construct(...) _.rest

It would take very little work to make nexts take and traverse multiple nodes, but I leave
that as an exercise to the reader. Instead, I’ll now cover a specific type of graph-traversal
recursive algorithm called depth-first search.

Depth-First Self-Recursive Search with Memory
In this section I’ll talk briefly about graph searching and provide an implementation of
a depth-first search function. In functional programming, you’ll often need to search a
data structure for a piece of data. In the case of hierarchical graph-like data (like influ
ences), the search solution is naturally a recursive one. However, to find any given node
in a graph, you’ll need to (potentially) visit every node in the graph to see if it’s the one
you’re looking for. One node traversal strategy called depth-first visits every leftmost
node in a graph before visiting every rightmost node (as shown in Figure 6-5).

Self-Absorbed Functions (Functions That Call Themselves) | 119

Figure 6-5. Traversing the influences graph depth-first

Unlike the previous recursive implementations, a new function depthSearch should
maintain a memory of nodes that it’s already seen. The reason, of course, is that another
graph might have cycles in it, so without memory, a “forgetful” search will loop until
JavaScript blows up. However, because a self-recursive call can only interact from one
invocation to another via arguments, the memory needs to be sent from one call to the
next via an “accumulator.” An accumulator argument is a common technique in recur‐
sion for communicating information from one recursive call to the next. Using an ac‐
cumulator, the implementation of depthSearch is as follows:

function depthSearch(graph, nodes, seen) {
 if (_.isEmpty(nodes)) return rev(seen);

 var node = _.first(nodes);
 var more = _.rest(nodes);

 if (_.contains(seen, node))
 return depthSearch(graph, more, seen);
 else
 return depthSearch(graph,
 cat(nexts(graph, node), more),
 construct(node, seen));
}

As you’ll notice, the third parameter, seen, is used to hold the accumulation of seen
nodes to avoid revisiting old nodes and their children. A usage example of depth
Search is as follows:

depthSearch(influences, ['Lisp'], []);
//=> ["Lisp", "Smalltalk", "Self", "Lua", "JavaScript", "Scheme"]

depthSearch(influences, ['Smalltalk', 'Self'], []);
//=> ["Smalltalk", "Self", "Lua", "JavaScript"]

120 | Chapter 6: Recursion

depthSearch(construct(['Lua','Io'], influences), ['Lisp'], []);
//=> ["Lisp", "Smalltalk", "Self", "Lua", "Io", "JavaScript", "Scheme"]

You may have noticed that the depthSearch function doesn’t actually do anything. In‐
stead, it just builds an array of the nodes that it would do something to (if it did anything)
in depth-first order. That’s OK because later I’ll re-implement a depth-first strategy using
functional composition and mutual recursion. First, let me take a moment to talk about
“tail calls.”

Tail (self-)recursion

While the general form of depthSearch looks very similar to the functions that came
before, there is one difference that is key. To highlight what I mean, consider Table 6-3.

Table 6-3. The rules of self-recursion according to depthSearch
Function Stop When Take One Step Smaller Problem

nexts _.isEmpty construct(... _.rest

depthSearch _.isEmpty depthSearch(more... depthSearch(cat...

The clear difference is that the “take one step” and “smaller problem” elements of depth
Search are recursive calls. When either or both of these elements are recursive calls,
then the function is known as tail-recursive. In other words, the last action that happens
in the function (besides returning a termination element) is a recursive call. Since the
last call in depthSearch is a recursive call, there is no way that the function body will
ever be used again. A language like Scheme takes advantage of this fact to deallocate the
resources used in a tail-recursive function body.

A reimplementation of myLength using a tail-recursive call is as follows:
function tcLength(ary, n) {
 var l = n ? n : 0;

 if (_.isEmpty(ary))
 return l;
 else
 return tcLength(_.rest(ary), l + 1);
}

tcLength(_.range(10));
//=> 10

By contrast, the recursive call in myLength (i.e., 1 + ...) revisits the function body to
perform that final addition. Perhaps one day JavaScript engines will optimize tail-
recursive functions to preserve memory. Until that time, we’re cursed to blow the call

Self-Absorbed Functions (Functions That Call Themselves) | 121

2. The ECMAScript 6 proposal currently has a section for tail-call optimization, so cross your fingers... I’ll cross
mine. See http://wiki.ecmascript.org/doku.php?id=harmony:proper_tail_calls.

3. A short-circuiting andify function can also be implemented via Underscore’s every function. Can you see
how?

stack on deeply recursive calls.2 However, as you’ll see later in this chapter, the tail
position of a function is still interesting.

Recursion and Composing Functions: Conjoin and Disjoin
Throughout this book, I’ve implemented some common function composition func‐
tions—curry1, partial, and compose—but I didn’t describe how to create your own.
Fortunately, the need to create composition functions is rare, as much of the composi‐
tion capabilities needed are provided by Underscore or are implemented herein. How‐
ever, in this section, I’ll describe the creation of two new combinators, orify and andi
fy, implemented using recursion.

Recall that I created a checker function way back in Chapter 4 that took some number
of predicates and returned a function that determined if they all returned truthiness for
every argument supplied. I can implement the spirit of checker as a recursive function
called andify:3

function andify(/* preds */) {
 var preds = _.toArray(arguments);

 return function(/* args */) {
 var args = _.toArray(arguments);

 var everything = function(ps, truth) {
 if (_.isEmpty(ps))
 return truth;
 else
 return _.every(args, _.first(ps))
 && everything(_.rest(ps), truth);
 };

 return everything(preds, true);
 };
}

Take note of the recursive call in the function returned by andify, as it’s particularly
interesting. Because the logical and operator, &&, is “lazy,” the recursive call will never
happen should the _.every test fail. This type of laziness is called “short-circuiting,” and
it is useful for avoiding unnecessary computations. Note that I use a local function,
everything, to consume the predicates given in the original call to andify. Using a
nested function is a common way to hide accumulators in recursive calls.

122 | Chapter 6: Recursion

http://wiki.ecmascript.org/doku.php?id=harmony:proper_tail_calls

4. The orify function can also be implemented via Underscore’s some function. Can you see how?

Observe the action of andify here:
var evenNums = andify(_.isNumber, isEven);

evenNums(1,2);
//=> false

evenNums(2,4,6,8);
//=> true

evenNums(2,4,6,8,9);
//=> false

The implementation of orify is almost exactly like the form of andify, except for some
logic reversals:4

function orify(/* preds */) {
 var preds = _.toArray(arguments);

 return function(/* args */) {
 var args = _.toArray(arguments);

 var something = function(ps, truth) {
 if (_.isEmpty(ps))
 return truth;
 else
 return _.some(args, _.first(ps))
 || something(_.rest(ps), truth);
 };

 return something(preds, false);
 };
}

Like andify, should the _.some function ever succeed, the function returned by ori
fy short-circuits (i.e., any of the arguments match any of the predicates). Observe:

var zeroOrOdd = orify(isOdd, zero);

zeroOrOdd();
//=> false

zeroOrOdd(0,2,4,6);
//=> true

zeroOrOdd(2,4,6);
//=> false

Self-Absorbed Functions (Functions That Call Themselves) | 123

5. A better solution is to use Underscore’s flatten function.

This ends my discussion of self-recursive functions, but I’m not done with recursion
quite yet. There is another way to achieve recursion and it has a catchy name: mutual
recursion.

Codependent Functions (Functions Calling Other
Functions That Call Back)
Two or more functions that call each other are known as mutually recursive. Two very
simple mutually recursive functions are the predicates to check for even and odd num‐
bers, shown here:

function evenSteven(n) {
 if (n === 0)
 return true;
 else
 return oddJohn(Math.abs(n) - 1);
}

function oddJohn(n) {
 if (n === 0)
 return false;
 else
 return evenSteven(Math.abs(n) - 1);
}

The mutually recursive calls bounce back and forth between each other, decrementing
some absolute value until one or the other reaches zero. This is a fairly elegant solution
that works as you expect:

evenSteven(4);
//=> true

oddJohn(11);
//=> true

If you adhere to the strict use of higher-order functions, then you’re likely to encounter
mutually exclusive functions more often. Take, for example, the _.map function. A
function that calls _.map with itself is a mind-bendingly indirect way to perform mutual
recursion. A function to flatten an array to one level serves as an example:5

function flat(array) {
 if (_.isArray(array))
 return cat.apply(cat, _.map(array, flat));
 else
 return [array];
}

124 | Chapter 6: Recursion

6. I’m using the term “clone” in the way often seen in JavaScript circles. In other prototypal languages (e.g., Self
or Io) a clone operation delegates to the original, cloned object until a change is made, whereby a copy occurs.

The operation of flat is a bit subtle, but the point is that in order to flatten a nested
array, it builds an array of each of its nested elements and recursively concatenates each
on the way back. Observe:

flat([[1,2],[3,4]]);
//=> [1, 2, 3, 4]

flat([[1,2],[3,4,[5,6,[[[7]]],8]]]);
//=> [1, 2, 3, 4, 5, 6, 7, 8]

Again, this is a fairly obscure use of mutual recursion, but one that fits well with the use
of higher-order functions.

Deep Cloning with Recursion
Another example where recursion seems like a good fit is to implement a function to
“deep” clone an object. Underscore has a _.clone function, but it’s “shallow” (i.e., it only
copies the objects at the first level):

var x = [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

var y = _.clone(x);

y;
//=> [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

x[1]['c']['d'] = 1000000;

y;
//=> [{a: [1, 2, 3], b: 42}, {c: {d: 1000000}}];

While in many cases, _.clone will be useful, there are times when you’ll really want to
clone an object and all of its subobjects.6 Recursion is a perfect task for this because it
allows us to walk every object in a nested fashion, copying along the way. A recursive
implementation of deepClone, while not robust enough for production use, is shown
here:

function deepClone(obj) {
 if (!existy(obj) || !_.isObject(obj))
 return obj;

 var temp = new obj.constructor();
 for (var key in obj)
 if (obj.hasOwnProperty(key))
 temp[key] = deepClone(obj[key]);

Codependent Functions (Functions Calling Other Functions That Call Back) | 125

 return temp;
}

When deepClone encounters a primitive like a number, it simply returns it. However,
when it encounters an object, it treats it like an associative structure (hooray for generic
data representations) and recursively copies all of its key/value mappings. I chose to use
the obj.hasOwnProperty(key) to ensure that I do not copy fields from the prototype.
I tend to use objects as associative data structures (i.e., maps) and avoid putting data
onto the prototype unless I must. The use of deepClone is as follows:

var x = [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

var y = deepClone(x);

_.isEqual(x, y);
//=> true

y[1]['c']['d'] = 42;

_.isEqual(x, y);
//=> false

The implementation of deepClone isn’t terribly interesting except for the fact that Java‐
Script’s everything-is-an-object foundation really allows the recursive solution to be
compact and elegant. In the next section, I’ll re-implement depthSearch using mutual
recursion, but one that actually does something.

Walking Nested Arrays
Walking nested objects like in deepClone is nice, but not frequently needed. Instead, a
far more common occurrence is the need to traverse an array of nested arrays. Very
often you’ll see the following pattern:

doSomethingWithResult(_.map(someArray, someFun));

The result of the call to _.map is then passed to another function for further processing.
This is common enough to warrant its own abstraction, I’ll call it visit, implemented
here:

function visit(mapFun, resultFun, array) {
 if (_.isArray(array))
 return resultFun(_.map(array, mapFun));
 else
 return resultFun(array);
}

The function visit takes two functions in addition to an array to process. The map
Fun argument is called on each element in the array, and the resulting array is passed to
resultFun for final processing. If the thing passed in array is not an array, then I just
run the resultFun on it. Implementing functions like this is extremely useful in light

126 | Chapter 6: Recursion

7. The JSON.parse method takes an optional “reviver” function and operates similarly to postDepth. That is,
after a form is parsed, JSON.parse passes to the reviver the associated key with the parsed data, and whatever
the reviver returns becomes the new value. People have been known to use the reviver for numerous reasons,
but perhaps the most common is to generate Date objects from date-encoded strings.

of partial application because one or two functions can be partially applied to form a
plethora of additional behaviors from visit. For now, just observe how visit is used:

visit(_.identity, _.isNumber, 42);
//=> true

visit(_.isNumber, _.identity, [1, 2, null, 3]);
//=> [true, true, false, true]

visit(function(n) { return n*2 }, rev, _.range(10));
//=> [18, 16, 14, 12, 10, 8, 6, 4, 2, 0]

Using the same principle behind flat, I can use visit to implement a mutually recursive
version of depthSearch called postDepth:7

function postDepth(fun, ary) {
 return visit(partial1(postDepth, fun), fun, ary);
}

The reason for the name postDepth is that the function performs a depth-first traversal
of any array performing the mapFun on each element after expanding its children. A
related function, preDepth, performs the mapFun call before expanding an element’s
children and is implemented as follows:

function preDepth(fun, ary) {
 return visit(partial1(preDepth, fun), fun, fun(ary));
}

There’s plenty of fun to go around in the case of pre-order depth-first search, but the
principle is sound; just perform the function call before moving onto the other elements
in the array. Let’s see postDepth in action:

postDepth(_.identity, influences);
//=> [['Lisp','Smalltalk'], ['Lisp','Scheme'], ...

Passing the _.identity function to the *Depth functions returns a copy of the influ
ences array. The execution scheme of the mutually recursive functions evenSteven,
oddJohn, postDepth and visit is itself a graph-like model, as shown in Figure 6-6.

Codependent Functions (Functions Calling Other Functions That Call Back) | 127

Figure 6-6. Mutually recursive functions execute in a graph-like way

What if I want to capitalize every instance of Lisp? There’s a function to do that:
postDepth(function(x) {
 if (x === "Lisp")
 return "LISP";
 else
 return x;
}, influences);

//=> [['LISP','Smalltalk'], ['LISP','Scheme'], ...

So the rule is that if I want to change a node, then I do something with it and return the
new value; otherwise, I just return the node. Of course, the original array is never
modified:

influences;
//=> [['Lisp','Smalltalk'], ['Lisp','Scheme'], ...

What if I want to build an array of all of the languages that another language has influ‐
enced? I could perform this act as follows:

function influencedWithStrategy(strategy, lang, graph) {
 var results = [];

 strategy(function(x) {
 if (_.isArray(x) && _.first(x) === lang)
 results.push(second(x));

 return x;
 }, graph);

128 | Chapter 6: Recursion

 return results;
}

The function influencedWithStrategy takes one of the depth-first searching functions
and walks the graph, building an array of influenced languages along the way:

influencedWithStrategy(postDepth, "Lisp", influences);
//=> ["Smalltalk", "Scheme"]

Again, while I mutated an array to build the results, the action was confined to the
internals of the influencedWithStrategy function localizing its effects.

Too Much Recursion!
As I mentioned in the earlier section about tail-recursion, current JavaScript engines
do not optimize recursive calls, even if they technically could. Therefore, when using
or writing recursive functions, you’ll occasionally run into the following error:

evenSteven(100000);
// Too much recursion (or some variant)

The problem with this error (called “blowing the stack”) is that the mutual-recursive
nature of evenSteven and oddJohn causes each function to be called thousands of times
before either one reaches zero. Because most JavaScript implementations have a limit
on the number of recursive calls, functions like these can “blow the stack” fairly easily
(Zakas 2010).

In this section, I’ll talk briefly about a control structure called a trampoline that helps
eliminate these types of errors. The basic principle is that instead of a deeply nested
recursive call, a trampoline flattens out the calls. However, before getting into that, let
me explore how I could manually fix the operation of evenSteven and oddJohn to not
blow the stack with recursive calls. One possible way is to return a function that wraps
the call to the mutually recursive function, instead of calling it directly. I can use parti
al1 as follows to achieve just that:

function evenOline(n) {
 if (n === 0)
 return true;
 else
 return partial1(oddOline, Math.abs(n) - 1);
}

function oddOline(n) {
 if (n === 0)
 return false;
 else
 return partial1(evenOline, Math.abs(n) - 1);
}

Too Much Recursion! | 129

As shown, instead of calling the mutually recursive function in the body of either
evenOline and oddOline, a function wrapping those calls is returned instead. Calling
either function with the termination case works as you’d expect:

evenOline(0);
//=> true

oddOline(0);
//=> false

Now I can manually flatten the mutual recursion via the following:
oddOline(3);
//=> function () { return evenOline(Math.abs(n) - 1) }

oddOline(3)();
//=> function () { return oddOline(Math.abs(n) - 1) }

oddOline(3)()();
//=> function () { return evenOline(Math.abs(n) - 1) }

oddOline(3)()()();
//=> true

oddOline(200000001)()()(); //... a bunch more ()s
//=> true

I suppose you could release these functions in a user-facing API, but I suspect that your
clients would be less than happy to use them. Instead, you might want to supply another
function, trampoline, that performs the flattening calls programmatically:

function trampoline(fun /*, args */) {
 var result = fun.apply(fun, _.rest(arguments));

 while (_.isFunction(result)) {
 result = result();
 }

 return result;
}

All that trampoline does is repeatedly call the return value of a function until it’s no
longer a function. You can see it in action here:

trampoline(oddOline, 3);
//=> true

trampoline(evenOline, 200000);
//=> true

trampoline(oddOline, 300000);
//=> false

130 | Chapter 6: Recursion

trampoline(evenOline, 200000000);
// wait a few seconds
//=> true

Because of the indirectness of the call chain, the use of a trampoline adds some overhead
to mutually recursive functions. However, slow is usually better than exploding. Again,
you might not want to force your users to use trampoline just to avoid stack explosions.
Instead, it can be hidden entirely with a functional facade:

function isEvenSafe(n) {
 if (n === 0)
 return true;
 else
 return trampoline(partial1(oddOline, Math.abs(n) - 1));
}

function isOddSafe(n) {
 if (n === 0)
 return false;
 else
 return trampoline(partial1(evenOline, Math.abs(n) - 1));
}

And these functions are used normally:
isOddSafe(2000001);
//=>true

isEvenSafe(2000001);
//=> false

Generators
Extrapolating from the nature of a trampoline, I’ll end this section by showing a couple
of examples of the infinite. Using recursion, I can demonstrate how to build and process
infinite streams of “lazy” data, and likewise call mutual functions until the heat death
of the sun. By lazy, I only mean that portions of a structure are not calculated until
needed. By contrast, consider the use of the cycle function defined earlier in this
chapter:

_.take(cycle(20, [1,2,3]), 11);
//=> [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2]

In this call, the array created by cycle is definitely not lazy, because it is fully constructed
before being passed to _.take. Even though _.take only needed 11 elements from the
cycled array, a full 60 elements were generated. This is quite inefficient, but alas, the
default in Underscore and JavaScript itself.

However, a basic (and some would say base) way to view an array is that it consists of
the first cell followed by the rest of the cells. The fact that Underscore provides a _.first
and _.rest hints at this view. An infinite array can likewise be viewed as a “first” or

Too Much Recursion! | 131

8. The call to console.log is for demonstrative purposes only.

“head,” and a “rest” or “tail.” However, unlike a finite array, the tail of an infinite array
may or may not yet exist. Breaking out the head and tail view into an object might help
to conceptualize this view (Houser 2013):

{head: aValue, tail: ???}

The question arises: what should go into the tail position of the object? The simple
answer, taken from what was shown in oddOline, is that a function that calculates the
tail is the tail. Not only is the tail a normal function, it’s a recursive function.

The head/tail object requires some maintenance, and is built using two functions: (1) a
function to calculate the value at the current cell, and (2) another function to calculate
the “seed” value for the next cell. In fact, the type of structure built in this way is a weak
form of what is known as a generator, or a function that returns each subsequent value
on demand. Keeping all of this in mind, the implementation of generator is
as follows:8

function generator(seed, current, step) {
 return {
 head: current(seed),
 tail: function() {
 console.log("forced");
 return generator(step(seed), current, step);
 }
 };
}

As shown, the current parameter is a function used to calculate the value at the head
position and step is used to feed a value to the recursive call. The key point about the
tail value is that it’s wrapped in a function and not “realized” until called. I can im‐
plement a couple of utility functions useful for navigating a generator:

function genHead(gen) { return gen.head }
function genTail(gen) { return gen.tail() }

The genHead and genTail functions do exactly what you think—they return the head
and tail. However, the tail return is “forced.” Allow me to create a generator before
demonstrating its use:

var ints = generator(0, _.identity, function(n) { return n+1 });

Using the generator function, I can define the full range of integers. Now, using the
accessor functions, I can start plucking away at the front:

genHead(ints);
//=> 0

genTail(ints);

132 | Chapter 6: Recursion

// (console) forced
//=> {head: 1, tail: function}

The call to genHead did not force the tail of ints, but a call to genTail did, as you might
have expected. Executing nested calls to genTail will likewise force the generator to a
depth equal to the number of calls:

genTail(genTail(ints));
// (console) forced
// (console) forced
//=> {head: 2, tail: function}

This is not terribly exciting, but using just these two functions I can build a more pow‐
erful accessor function like genTake, which builds an array out of the first n entries in
the generator:

function genTake(n, gen) {
 var doTake = function(x, g, ret) {
 if (x === 0)
 return ret;
 else
 return partial(doTake, x-1, genTail(g), cat(ret, genHead(g)));
 };

 return trampoline(doTake, n, gen, []);
}

As shown, genTake is implemented using a trampoline, simply because it makes little
sense to provide a function to traverse an infinite structure that explodes with a “Too
much recursion” error for an unrelated reason. Using genTake is shown here:

genTake(10, ints);
// (console) forced x 10
//=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

genTake(100, ints);
// (console) forced x 100
//=> [0, 1, 2, 3, 4, 5, 6, ..., 98, 99]

genTake(1000, ints);
// (console) forced x 1000
//=> Array[1000]

genTake(10000, ints);
// (console) forced x 10000
// wait a second
//=> Array[10000]

genTake(100000, ints);
// (console) forced x 100000
// wait a minute
//=> Array[100000]

Too Much Recursion! | 133

9. The ECMAScript.next activity is working through a design for generators in a future version of JavaScript.
More information can be found at ECMA script’s website.

10. There are caveats here. Of course you can still block your application any number of ways, but if used correctly,
the event architecture of JavaScript will help you to avoid doing so.

genTake(1000000, ints);
// (console) forced x 1000000
// wait an hour
//=> Array[1000000]

While not necessarily the fastest puppy in the litter, it’s interesting to see how the “tram‐
poline principle” works to define structures of infinite size, without blowing the stack,
and while calculating values on demand. There is one fatal flaw with generators created
with generator: while the tail cells are not calculated until accessed, they are calculated
every time they are accessed:

genTake(10, ints);
// (console) forced x 10
//=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Knowing that I already called genTake to calculate the first 10 entries, it would have
been nice to avoid performing the same actions again, but building a full-fledged gen‐
erator is outside the scope of this book.9

Of course there is no free lunch, even when using trampolines. While I’ve managed to
avoid exploding the call stack, I’ve just transferred the problem to the heap. Fortunately,
the heap is orders of magnitude larger than the JavaScript call stack, so you’re far less
likely to run into a problem of memory consumption when using a trampoline.

Aside from the direct use of a trampoline, the idea of “trampolineness” is a general
principle worth noting in JavaScript seen in the wild—something I’ll discuss presently.

The Trampoline Principle and Callbacks
Asynchronous JavaScript APIs—like setTimeout and the XMLHttpRequest library
(and those built on it like jQuery’s $.ajax)—have an interesting property relevant to
the discussion of recursion. You see, asynchronous libraries work off of an event loop
that is non-blocking. That is, if you use an asynchronous API to schedule a function
that might take a long time, then the browser or runtime will not block waiting for it to
finish. Instead, each asynchronous API takes one or more “callbacks” (just functions or
closures) that are invoked when the task is complete. This allows you to perform (ef‐
fectively) concurrent tasks, some immediate and some long-running, without blocking
the operation of your application.10

134 | Chapter 6: Recursion

http://bit.ly/10Py5VY

11. Next Sunday, A.D.

12. I’m using the jQuery promise-based interface to perform the GET and to fluently build the always and fail
handlers. Because of the nature of the concurrent execution, there is no guarantee that the console printing
will occur before or after the GET result. I show them in order for the sake of expediency. I’ll talk a little more
about jQuery promises in Chapter 8.

An interesting feature of non-blocking APIs is that calls return immediately, before any
of the callbacks are ever called. Instead, those callbacks occur in the not-too-distant
future:11

setTimeout(function() { console.log("hi") }, 2000);
//=> returns some value right away
// ... about 2 seconds later
// hi

A truly interesting aspect of the immediate return is that JavaScript cleans up the call
stack on every new tick of the event loop. Because the asynchronous callbacks are always
called on a new tick of the event loop, even recursive functions operate with a clean
slate! Observe the following:

function asyncGetAny(interval, urls, onsuccess, onfailure) {
 var n = urls.length;

 var looper = function(i) {
 setTimeout(function() {
 if (i >= n) {
 onfailure("failed");
 return;
 }

 $.get(urls[i], onsuccess)
 .always(function() { console.log("try: " + urls[i]) })
 .fail(function() {
 looper(i + 1);
 });
 }, interval);
 }

 looper(0);
 return "go";
}

You’ll notice that when the call to jQuery’s asynchronous $.get function fails, a recursive
call to looper is made. This call is no different (in principle) than any other mutually
recursive call, except that each invocation occurs on a different event-loop tick and starts
with a clean stack. For the sake of completeness, the use of asyncGetAny is as follows:12

var urls = ['http://dsfgfgs.com', 'http://sghjgsj.biz', '_.html', 'foo.txt'];

asyncGetAny(2000,

Too Much Recursion! | 135

 urls,
 function(data) { alert("Got some data") },
 function(data) { console.log("all failed") });
//=> "go"

// (console after 2 seconds) try: http://dsfgfgs.com
// (console after 2 seconds) try: http://sghjgsj.biz
// (console after 2 seconds) try: _.html

// an alert box pops up with 'Got some data' (on my computer)

There are better resources for describing asynchronous programming in JavaScript than
this book, but I thought it worth mentioning the unique properties of the event loop
and recursion. While tricky in practice, using the event loop for maximum benefit can
make for highly efficient JavaScript applications.

Recursion Is a Low-Level Operation
This chapter has dealt extensively with recursion, creating recursive functions, and rea‐
soning in the face of recursion. While this information is potentially useful, I should
make one caveat to the entire discussion: recursion should be seen as a low-level oper‐
ation and avoided if at all possible. The better path is to take a survey of the available
higher-order functions and plug them together to create new functions. For example,
my implementation of influencedWithStrategy, while clever in its way, was com‐
pletely unnecessary. Instead, I should have known that functions already available could
be mixed to produce the desired effect. First, I can create two auxiliary functions:

var groupFrom = curry2(_.groupBy)(_.first);
var groupTo = curry2(_.groupBy)(second);

Because I’m using a simple nested array for my graph representation, creating new
functions to operate on it is as simple as reusing existing array functions. I can explore
the operation of groupFrom and groupTo here:

groupFrom(influences);
//=> {Lisp:[["Lisp", "Smalltalk"], ["Lisp", "Scheme"]],
// Smalltalk:[["Smalltalk", "Self"]],
// Scheme:[["Scheme", "JavaScript"], ["Scheme", "Lua"]],
// Self:[["Self", "Lua"], ["Self", "JavaScript"]]}

groupTo(influences);
//=> {Smalltalk:[["Lisp", "Smalltalk"]],
// Scheme:[["Lisp", "Scheme"]],
// Self:[["Smalltalk", "Self"]],
// JavaScript:[["Scheme", "JavaScript"], ["Self", "JavaScript"]],
// Lua:[["Scheme", "Lua"], ["Self", "Lua"]]}

These are definitely fun functions (ha!), but they’re not sufficient. Instead, a function—
influenced—squares the circle in implementing my desired behavior:

136 | Chapter 6: Recursion

function influenced(graph, node) {
 return _.map(groupFrom(graph)[node], second);
}

And this is, effectively, the same as my recursive influencedWithStrategy function:
influencedWithStrategy(preDepth, 'Lisp', influences);
//=> ["Smalltalk", "Scheme"]

influenced(influences, 'Lisp');
//=>["Smalltalk", "Scheme"]

Not only does the implementation of influences require far less code, but it’s also
conceptually simpler. I already know what _.groupBy, _.first, second, and _.map do,
so to understand the implementation of influenced is to understand only how the data
transforms from one function to the other. This is a huge advantage of functional pro‐
gramming—pieces fitting together like Lego blocks, data flowing and transforming
along a pipeline of functions to achieve the desired final data form.

This is beautiful programming.

Summary
This chapter dealt with recursion, or functions that call themselves either directly or
through other functions. Self-calling functions were shown as powerful tools used to
search and manipulate nested data structures. For searching, I walked through tree-
walking examples (no pun intended) using the visit function, which called out to
depth-first searching functions.

Although the tree searching was a powerful technique, there are fundamental limita‐
tions in JavaScript that bound the number of recursive calls that can happen. However,
using a technique called trampolining, I showed how you can build functions that call
one another indirectly through an array of closures.

Finally, I felt the need to take a step back and make the point that recursion should be
used sparingly. Very often, recursive functions are more confusing and less direct than
higher-order or composed functions. The general consensus is to use function compo‐
sition first and move to recursion and trampolines only if needed.

In the next chapter, I will cover a topic often at odds with functional programming—
mutation, or the act of modifying variables in place—and how to limit or even outright
avoid it.

Summary | 137

CHAPTER 7

Purity, Immutability, and
Policies for Change

This chapter marks the point when a fully functional and practical style is explored.
Functional programming is not just about functions; it’s also a way of thinking about
how to build programs to minimize the complexities inherent in the creation of soft‐
ware. One way of reducing the complexity is to reduce or eliminate (ideally) the footprint
of state change taking place in our programs.

Purity
Imagine that you needed a function that, when given a number, returned a (pseudo)
random number greater than 0 and up to and including the number itself. Underscore’s
_.random function is almost correct, but it defaults to including zero. Therefore, as a
first approximation, you might write something like this:

var rand = partial1(_.random, 1);

Using rand is as simple as the following:
rand(10);
//=> 7

repeatedly(10, partial1(rand, 10));
//=> [2, 6, 6, 7, 7, 4, 4, 10, 8, 5]

_.take(repeatedly(100, partial1(rand, 10)), 5);
//=> [9, 6, 6, 4, 6]

You can use rand as the basis for a generator for random lowercase ASCII strings-with-
numbers of a certain length as follows:

function randString(len) {
 var ascii = repeatedly(len, partial1(rand, 26));

139

1. Jasmine is a lovely test framework that I personally use and highly recommend.

 return _.map(ascii, function(n) {
 return n.toString(36);
 }).join('');
}

And here’s the use of randString:
randString(0);
//=> ""

randString(1);
//=> "f"

randString(10);
//=> "k52k7bae8p"

Building the randString function is just like what I’ve shown throughout the course of
this book. Plugging functions into functions to build higher-level capabilities has been
what I’ve been building up to all this time, right? While randString technically fits this
definition, there is one big difference in the way that randString is constructed from
the way that the previous functions were. Can you see it? The answer lies in another
question. Can you test it?

The Relationship Between Purity and Testing
How would you test the function randString? That is, if you were using something like
Jasmine1 to build a spec for the randString function, how would you complete the
following code fragment?

describe("randString", function() {
 it("builds a string of lowercase ASCII letters/digits", function() {
 expect(randString()).to???(???);
 });
});

What validation function and value could you put into the parts labeled ??? to make
the specification pass? You could try to add a given string, but that would be a waste of
time, given that the whole point is to generate randomness. It may start to be clear now
that the problem with randString is that there is no way to predict what the result of a
call will be. This condition is very different from a function like _.map, where every call
is determinable from the arguments presented to it:

describe("_.map", function() {
 it(“should return an array made from...”, function(){
 expect(.map([1,2,3], sqr)).toEqual([1, 4, 9]);
 });

140 | Chapter 7: Purity, Immutability, and Policies for Change

http://pivotal.github.com/jasmine/

});
{
 expect(_.map([1,2,3], sqr)).toEqual([1, 4, 9]);
 });
});

The operation of _.map as just described is know as “pure.” A pure function adheres to
the following properties:

• Its result is calculated only from the values of its arguments.
• It cannot rely on data that changes external to its control.
• It cannot change the state of something external to its body.

In the case of randString, the first rule of purity is violated because it doesn’t take any
arguments to use in a calculation. The second rule is violated because its result is entirely
based on JavaScript’s random number generator, which is a black-box taking no input
arguments and producing opaque values. This particular problem is a problem at the
language level and not at the level of generating randomness. That is, you could create
a random number generator that was pure by allowing the caller to supply a “seed” value.

Another example of a function that breaks rule #1 is as follows:
PI = 3.14;

function areaOfACircle(radius) {
 return PI * sqr(radius);
}

areaOfACircle(3);
//=> 28.26

You probably already see where the problem lies, but for the sake of completeness,
assume that within a web page, another library is loaded with the following code frag‐
ment:

// ... some code

PI = "Magnum";

// ... more code

What is the result of calling areaOfACircle? Observe:
areaOfACircle(3);
//=> NaN

Whoops!

This kind of problem is especially nasty in JavaScript because of its ability to load arbi‐
trary code at runtime that can easily change objects and variables. Therefore, to write
functions that rely on data outside of its control is a recipe for confusion. Typically, when

Purity | 141

you attempt to test functions that rely on the vagaries of external conditions, all test
cases must set up those same conditions for the very purpose of testing. Observing a
functional style that adheres to a standard of purity wherever possible will not only help
to make your programs easier to test, but also easier to reason about in general.

Separating the Pure from the Impure
Because JavaScript’s Math.rand method is impure by design, any function that uses it is
likewise impure and likely more difficult to test. Pure functions are tested by building
a table of input values and output expectations. Other methods and functions within
JavaScript that infect code with impurity are Date.now, console.log, this, and use of
global variables (this is not a comprehensive list). In fact, because JavaScript passes
object references around, every function that takes an object or array is potentially
subject to impurity. I’ll talk later in this section about how to alleviate these kinds of
problems, but the gist of this is that while JavaScript can never be completely pure (nor
would we want that), the effects of change can be minimized.

While the randString function is undoubtedly impure as written, there are ways to
restructure the code to separate the pure from the impure parts. In the case of rand
String, the delineation is fairly clear: there is a character generation part, and a part
that joins the characters together. To separate the pure from the impure, then, is as
simple as creating two functions:

function generateRandomCharacter() {
 return rand(26).toString(36);
}

function generateString(charGen, len) {
 return repeatedly(len, charGen).join('');
}

Changing the implementation to generateString (which explicitly takes a function
intended for character generation) allows the following patterns of usage:

generateString(generateRandomCharacter, 20);
//=> "2lfhjo45n2nfnpbf7m7e"

Additionally, because generateString is a higher-order function, I can use partial to
compose the original, impure version of randomString:

var composedRandomString = partial1(generateString, generateRandomCharacter);

composedRandomString(10);
//=> "j18obij1jc"

Now that the pure part is encapsulated within its own function, it can be tested
independently:

describe("generateString", function() {
 var result = generateString(always("a"), 10);

142 | Chapter 7: Purity, Immutability, and Policies for Change

 it("should return a string of a specific length", function() {
 expect(result.constructor).toBe(String);
 expect(result.length).toBe(10);
 });

 it("should return a string congruent with its char generator", function() {
 expect(result).toEqual("aaaaaaaaaa");
 });
});

There’s still a problem testing the validity of the impure generateRandomCharacter
function, but it’s nice to have a handle on a generic, easily testable capability like gener
ateString.

Property-Testing Impure Functions
If a function is impure, and its return value is subject to conditions outside of its control,
then how can it be tested? Assuming that you’ve managed to reduce the impure part to
its bare minimum, like with generateRandomCharacter, then the matter of testing is
somewhat easier. While you cannot test the return value for specific values, you can test
it for certain characteristics. In the example of generateRandomCharacter, I could test
for the following characteristics:

• ASCII-ness
• Digit-ness
• String-ness
• Character-ness
• Lowercase-ness

To check each of these characteristics requires a lot of data, however:
describe("generateRandomCharacter", function() {
 var result = repeatedly(10000, generateRandomCharacter);

 it("should return only strings of length 1", function() {
 expect(_.every(result, _.isString)).toBeTruthy();
 expect(_.every(result, function(s) { return s.length === 1 })).toBeTruthy();
 });

it("should return a string of only lowercase ASCII letters or digits", function()
{
 expect(_.every(result, function(s) {
 return /[a-z0-9]/.test(s) })).toBeTruthy();

 expect(_.any(result, function(s) { return /[A-Z]/.test(s) })).toBeFalsy();

Purity | 143

 });
});

Testing the characteristics of only 10000 results of calls to generateRandomCharacter
is not enough for full test coverage. You can increase the number of iterations, but you’ll
never be fully satisfied. Likewise, it would be nice to know that the characters generated
fall within certain bounds. In fact, there is a limitation in my implementation that re‐
stricts it from generating every possible legal lowercase ASCII character, so what have
I been testing? I’ve been testing the incorrect solution. Solving the problem of creating
the wrong thing is a philosophical affair, far outside the depth of this book. For the
purposes of random password generation this might be a problem, but for the purposes
of demonstrating the separation and testing of impure pieces of code, my implemen‐
tation should suffice.

Purity and the Relationship to Referential Transparency
Programming with pure functions may seem incredibly limiting. JavaScript, as a highly
dynamic language, allows the definition and use of functions without a strict adherence
to the types of their arguments or return value. Sometimes this loose adherence proves
problematic (e.g., true + 1 === 2), but other times you know exactly what you’re doing
and can take advantage of the flexibility. Very often, however, JavaScript programmers
equate the ability of JavaScript to allow free-form mutation of variables, objects, and
array slots as essential to dynamism. However, when you exercise a libertarian view of
state mutation, you’re actually limiting your possibilities in composition, complicating
your ability to reason through the effects of any given statement, and making it more
difficult to test your code.

Using pure functions, on the other hand, allows for the easy composition of functions
and makes replacing any given function in your code with an equivalent function, or
even the expected value, trivial. Take, for example, the use of the nth function to define
a second function from Chapter 1:

function second(a) {
 return nth(a, 1);
}

The nth function is a pure function. That is, it will adhere to the following for any given
array argument. First, it will always return the same value given some array value and
index value:

nth(['a', 'b', 'c'], 1);
//=> 'b'

nth(['a', 'b', 'c'], 1);
// 'b'

You could run this call a billion times and as long as nth receives the array ['a', 'b',
'c'] and the number 1, it will always return the string 'b', regardless of the state of

144 | Chapter 7: Purity, Immutability, and Policies for Change

2. That’s not exactly true because nth checks array bounds and throws an error when an index exceeds the array’s
length. When changing underlying implementations, be aware of the tangential effects of the change in
addition to gains in raw speed.

anything else in the program. Likewise, the nth function will never modify the array
given to it:

var a = ['a', 'b', 'c'];

nth(a, 1);
//=> 'b'

a === a;
//=> true

nth(a, 1);
//=> 'b'

_.isEqual(a, ['a', 'b', 'c']);
//=> true

The one limiting factor, and it’s one that we’ve got to live with in JavaScript, is that the
nth function might return something that’s impure, such as an object, an array, or even
an impure function:

nth([{a: 1}, {b: 2}], 0);
//=> {a: 1}

nth([function() { console.log('blah') }], 0);
//=> function ...

The only way to rectify this problem is to observe a strict adherence to the use and
definition of pure functions that do not modify their arguments, nor depend on external
values, except where such effects have been minimized explicitly. Realizing that some
discipline is required to maintain functional purity, we will be rewarded with program‐
ming options. In the case of second, I can replace the definition of nth with something
equivalent and not miss a beat:2

function second(a) {
 return a[1];
}

Or maybe:
function second(a) {
 return _.first(_.first(a));
}

In either of these cases, the behavior of second has not changed. Because nth was a pure
function, its replacement in this case was trivial. In fact, because the nth function is

Purity | 145

pure, it could conceivably be replaced with the value of its result for a given array and
still maintain program consistency:

function second() {
 return 'b';
}

second(['a', 'b', 'c'], 1);
//=> 'b'

The ability to freely swap new functions without the confusion brought on by the bal‐
ancing act of mutation is a different way to look at freedom in program composition.
A related topic to purity and referential transparency is the idea of idempotence, ex‐
plained next.

Purity and the Relationship to Idempotence
With the growing prevalence of APIs and architectures following a RESTful style, the
idea of idempotence has recently thrust itself into the common consciousness. Idem‐
potence is the idea that executing an activity numerous times has the same effect as
executing it once. Idempotence in functional programming is related to purity, but
different enough to bear mention. Formally, a function that is idempotent should make
the following condition true:

someFun(arg) == _.compose(someFun, someFun)(arg);

In other words, running a function with some argument should be the same as running
that same function twice in a row with the same argument as in someFun(some
Fun(arg)). Looking back on the second function, you can probably guess that it’s not
idempotent:

var a = [1, [10, 20, 30], 3];

var secondTwice = _.compose(second, second);

second(a) === secondTwice(a);
//=> false

The problem, of course, is that the bare call to second returns the array [10, 20, 30],
and the call to secondTwice returns the nested value 20. The most straightforward
idempotent function is probably Underscore’s _.identity function:

var dissociativeIdentity = _.compose(_.identity, _.identity);

_.identity(42) === dissociativeIdentity(42);
//=> true

JavaScript’s Math.abs method is also idempotent:
Math.abs(Math.abs(-42));
//=> 42

146 | Chapter 7: Purity, Immutability, and Policies for Change

3. The Ruby programming language allows string mutation, and prior to version 1.9 fell victim to this kind of
trap. However, Ruby 1.9 Hash objects copy string keys and are therefore shielded. Unfortunately, it still allows
mutable objects as keys, so mutating those can and will break Hash lookups.

You need not sacrifice dynamism by adhering to a policy of pure functions. However,
bear in mind that any time that you explicitly change a variable, be it encapsulated in a
closure, directly or even in a container object (later this chapter), you introduce a time-
sensitive state. That is, at any given tick of the program execution, the total state of the
program is dependent on the subtle change interactions occurring. While you may not
be able to eliminate all state change in your programs, it’s a good idea to reduce it as
much as possible. I’ll get into isolated change later in this chapter, but first, related to
functional purity is the idea of immutability, or the lack of explicit state change, which
I’ll cover next.

Immutability
Very few data types in JavaScript are immutable by default. Strings are one example of
a data type that cannot be changed:

var s = "Lemongrab";

s.toUpperCase();
//=> "LEMONGRAB"

s;
//=> "Lemongrab"

It’s a good thing that strings are immutable because scenarios like the following might
occur, wreaking mass confusion:3

var key = "lemongrab";
var obj = {lemongrab: "Earl"};

obj[key] === "Earl";
//=> true

doSomethingThatMutatesStrings(key);

obj[key];
//=> undefined

obj["lemonjon"];
//=> "Earl"

This would be an unfortunate sequence of events. You’d likely find the problem with
some digging, but if there was a widespread culture of string mutating, then these kinds
of problems would pop up far more frequently than you’d like. Thankfully, that strings

Immutability | 147

4. Underscore’s extend function fooled me once, but really it was my own prejudices that allowed me to assume
that it was a pure function. Once I learned that it was not, I realized a fun way to take advantage of that fact,
as you’ll see in Chapter 9.

in JavaScript are immutable eliminates a whole class of nasty problems. However, the
following mutation is allowed in JavaScript:4

var obj = {lemongrab: "Earl"};

(function(o) {
 _.extend(o, {lemongrab: "King"});
})(obj);

obj;
//=> {lemongrab: "King"}

While we’re happy that strings are immutable, we tend not to blink an eye over the fact
that JavaScript objects are mutable. In fact, much of JavaScript has been built to take
advantage of mutability. However, as JavaScript gains more acceptability in industry,
larger and larger programs will be written using it. Imagine a depiction of the depen‐
dencies created by points of mutation within a very small program as shown in
Figure 7-1.

Figure 7-1. Even in small programs, the “web of mutation” is tangled, but it may be
manageable

However, as the program grows, the “web of mutation” likewise grows, gaining more
and more edges from one change dependency to the next, as shown in Figure 7-2.

148 | Chapter 7: Purity, Immutability, and Policies for Change

5. That’s not to say that all JavaScript programs work that way. In the past few years, there has been a growing
focus on discipline in design. One article of particular note along this theme is “Don’t Modify Objects You
Don’t Own” (Zakas 2010).

Figure 7-2. As programs grow, so grows the “web of mutation”

This state of affairs cannot be easily maintained. If every change affecting the web of
mutation causes widespread disturbances in the delicate relationships between the states
and their dependents, then any change affects the whole.5 In functional programming,
the ideal situation is that there is never mutation, and if you start with a policy of im‐
mutability, you’d be surprised how far you can get. In this section, I’ll discuss the virtues
of immutability and how to observe its dictum.

If a Tree Falls in the Woods, Does It Make a Sound?
Throughout this book, you’ll notice that I’ve often used mutable arrays and objects
within the implementations of many functions. To illustrate what I mean, observe the
implementation of a function, skipTake, that when given a number n and an array,
returns an array containing every nth element:

function skipTake(n, coll) {
 var ret = [];
 var sz = _.size(coll);

 for(var index = 0; index < sz; index += n) {
 ret.push(coll[index]);
 }

 return ret;
}

The use of skipTake is as follows:
skipTake(2, [1,2,3,4]);
//=> [1, 3]

Immutability | 149

6. The function is a convenient boundary for hiding mutation, but its not the only one. As I’ll show in Chap‐
ter 8, there are larger boundaries available to hide mutation. Historically, objects have served as nice bound‐
aries to hide mutations, and even whole libraries and systems have been written to leverage the inherent speed
of mutation while still presenting a nicely functional public facade.

skipTake(3, _.range(20));
//=> [0, 3, 6, 9, 12, 15, 18]

Within the implementation of skipTake, I very deliberately used an array coupled with
an imperative loop performing an Array#push. There are ways to implement skip
Take using functional techniques, therefore requiring no explicit mutation. However,
the for loop implementation is small, straightforward, and fast. More importantly, the
use of this imperative approach is completely hidden from the users of the skipTake
function. The advantage of viewing the function as the basic unit of abstraction is that
within the confines of any given function, implementation details are irrelevant as long
as they do not “leak out.” By “leak out” I mean that you can use a function as a boundary
for local state mutation, shielding change from the sight of external code.

Whether I used _.foldRight or while within skipTake is irrelevant to the users of the
function. All that they know, or care about, is that they will get a new array in return
and that the array that they passed in will not be molested.

If a tree falls in the woods, does it make a sound?
If a pure function mutates some local data in order to produce an immutable return value,
is that OK?

—Rich Hickey at http://clojure.org/tran
sients

As it turns out, the answer is yes.6

Immutability and the Relationship to Recursion
If you’ve read as many books on functional programming as me (or even two), then an
interesting pattern emerges. In almost every case, the topic of recursion and recursive
techniques is covered. There are many reasons why this is the case, but one important
reason relates to purity. In many functional programming languages, you cannot write
a function like summ using local mutation:

function summ(array) {
 var result = 0;
 var sz = array.length;

 for (var i = 0; i < sz; i++)
 result += array[i];

 return result;

150 | Chapter 7: Purity, Immutability, and Policies for Change

http://clojure.org/transients
http://clojure.org/transients

7. In other words, the state change in a recursive function is modeled in the stack much like I used a stack to
change dynamic values way back in Chapter 3.

}

summ(_.range(1,11));
//=> 55

The problem is that the function summ mutates two local variables: i and result. How‐
ever, in traditional functional languages, local variables are not actually variables at all,
but are instead immutable and cannot change. The only way to modify the value of a
local is to change it via the call stack, and this is exactly what recursion does. Below is
a recursive implementation of the same function:

function summRec(array, seed) {
 if (_.isEmpty(array))
 return seed;
 else
 return summRec(_.rest(array), _.first(array) + seed);
}

summRec([], 0);
//=> 0

summRec(_.range(1,11), 0);
//=> 55

When using recursion, state is managed via the function arguments, and change is
modeled via the arguments from one recursive call to the next.7 JavaScript allows this
kind of recursive state management, with recursion depth limits as mentioned in Chap‐
ter 6, but it also allows for the mutation of local variables. So why not use the one that’s
faster all the time? As I’ll discuss in the next section, there are also caveats to mutating
local state.

Defensive Freezing and Cloning
Because JavaScript passes arrays and objects by reference, nothing is truly immutable.
Likewise, because JavaScript object fields are always visible, there is no easy way to make
them immutable (Goetz 2005). There are ways to hide data using encapsulation to avoid
accidental change, but at the topmost level, all JavaScript objects are mutable, unless
they are frozen.

Recent versions of JavaScript provide a method, Object#freeze, that when given an
object or array, will cause all subsequent mutations to fail. In the case where strict mode
is used, the failure will throw a TypeError; otherwise, any mutations will silently fail.
The freeze method works as follows:

Immutability | 151

var a = [1, 2, 3];

a[1] = 42;

a;
//=> [1, 42, 3]

Object.freeze(a);

A normal array is mutable by default, but after the call to Object#freeze, the following
occurs:

a[1] = 108;

a;
//=> [1, 42, 3]

That is, mutations will no longer take effect. You can also use the Object#isFrozen
method to check if a is indeed frozen:

Object.isFrozen(a);
//=> true

There are two problems with using Object#freeze to ensure immutability:

• Unless you have complete control over the codebase, it might cause subtle (and not
so subtle) errors to occur.

• The Object#freeze method is shallow.

Regarding the willy-nilly freezing of objects, while it might be a good idea to practice
pervasive immutability, not all libraries will agree. Therefore, freezing objects and pass‐
ing them around to random APIs might cause trouble. However, the deeper (ha!) prob‐
lem is that Object#freeze is a shallow operation. That is, a freeze will only happen at
the topmost level and will not traverse nested objects. Observe:

var x = [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

Object.freeze(x);

x[0] = "";

x;
//=> [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

As shown, attempting to mutate the array a fails to make a modification. However,
mutating within a’s nested structures indeed makes a change:

x[1]['c']['d'] = 100000;

x;
//=> [{a: [1, 2, 3], b: 42}, {c: {d: 100000}}];

152 | Chapter 7: Purity, Immutability, and Policies for Change

To perform a deep freeze on an object, I’ll need to use recursion to walk the data struc‐
ture, much like deepClone in Chapter 6:

function deepFreeze(obj) {
 if (!Object.isFrozen(obj))
 Object.freeze(obj);

 for (var key in obj) {
 if (!obj.hasOwnProperty(key) || !_.isObject(obj[key]))
 continue;

 deepFreeze(obj[key]);
 }
}

The deepFreeze function then does what you might expect:
var x = [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

deepFreeze(x);

x[0] = null;

x;
//=> [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

x[1]['c']['d'] = 42;

x;
//=> [{a: [1, 2, 3], b: 42}, {c: {d: []}}];

However, as I mentioned before, freezing arbitrary objects might introduce subtle bugs
when interacting with third-party APIs. Your options are therefore limited to the
following:

• Use _.clone if you know that a shallow copy is appropriate
• Use deepClone to make copies of structures
• Build your code on pure functions

Throughout this book, I’ve chosen the third option, but as you’ll see in Chapter 8, I’ll
need to resort to using deepClone to ensure functional purity. For now, let’s explore the
idea of preserving immutability for the sake of purity in functional and object-centric
APIs.

Observing Immutability at the Function Level
With some discipline and adherence to the following techniques, you can create im‐
mutable objects and pure functions.

Immutability | 153

Many of the functions implemented in this book, and indeed in Underscore, share a
common characteristic: they take some collection and build another collection from it.
Consider, for example, a function, freq, that takes an array of numbers or strings and
returns an object of its elements keyed to the number of times they occur, implemented
here:

var freq = curry2(_.countBy)(_.identity);

Because I know that the function _.countBy is a nondestructive operation (i.e., doesn’t
mutate the input array), then the composition of it and _.identity should form a pure
function. Observe:

var a = repeatedly(1000, partial1(rand, 3));
var copy = _.clone(a);

freq(a);
//=> {1: 498, 2: 502}

Counting the frequencies of what is effectively a coin toss verifies that the result is almost
a 50/50 split. Equally interesting is that the operation of freq did not harm the original
array a:

_.isEqual(a, copy);
//=>true

Observing a policy of purity in function implementation helps to eliminate the worry
of what happens when two or more functions are composed to form new behaviors. If
you compose pure functions, what comes out are pure functions.

Because my implementation of skipTake was also pure, even though it used mutable
structures internally, it too can be composed safely:

freq(skipTake(2, a));
//=> {1: 236, 2: 264}

_.isEqual(a, copy);
//=> true

Sometimes, however, there are functions that do not want to cooperate with a plan of
purity and instead change the contents of objects with impunity. For example, the
_.extend function merges some number of objects from left to right, resulting in a single
object, as follows:

var person = {fname: "Simon"};

_.extend(person, {lname: "Petrikov"}, {age: 28}, {age: 108});
//=> {age: 108, fname: "Simon", lname: "Petrikov"}

The problem of course is that _.extend mutates the first object in its argument list:
person;
//=> {age: 108, fname: "Simon", lname: "Petrikov"}

154 | Chapter 7: Purity, Immutability, and Policies for Change

8. I use this technique in Chapter 8 to implement createPerson.

So _.extend is off the list of functions useful for composition, right? Well, no. The beauty
of functional programming is that with a little bit of tweaking you can create new ab‐
stractions. That is, rather than using object “extension,” perhaps object “merging” would
be more appropriate:

function merge(/*args*/) {
 return _.extend.apply(null, construct({}, arguments));
}

Instead of using the first argument as the target object, I instead stick a local empty
object into the front of _.extend’s arguments and mutate that instead. The results are
quite different, but probably as you’d expect:

var person = {fname: "Simon"};

merge(person, {lname: "Petrikov"}, {age: 28}, {age: 108})
//=> {age: 108, fname: "Simon", lname: "Petrikov"}

person;
//=> {fname: "Simon"};

Now the merge function can be composed with other pure functions perfectly safely—
from hiding mutability you can achieve purity. From the caller’s perspective, nothing
was ever changed.

Observing Immutability in Objects
For JavaScript’s built-in types and objects there is very little that you can do to foster
pervasive immutability except pervasive freezing—or rabid discipline. Indeed, with
your own JavaScript objects, the story of discipline becomes more compelling. To
demonstrate, I’ll define a fragment of a Point object with its constructor defined as
follows:

function Point(x, y) {
 this._x = x;
 this._y = y;
}

I could probably resort to all kinds of closure encapsulation tricks8 to hide the fact that
Point instances do not have publicly accessible fields. However, I prefer a more sim‐
plistic approach to defining object constructors with the “private” fields marked in a
special way (Bolin 2010).

Immutability | 155

9. Note that I excluded a constructor property, a la Point.prototype = {constructor: Point, ...}.
While not strictly required for this example, it’s probably best to adhere to a semblance of best practice in
production code.

As I’ll soon show, an API will be provided for manipulating points that will not expose
such implementation details. However, for now, I’ll implement two “change” methods,
withX and withY, but I’ll do so in a way that adheres to a policy of immutability:9

Point.prototype = {
 withX: function(val) {
 return new Point(val, this._y);
 },
 withY: function(val) {
 return new Point(this._x, val);
 }
};

On Point’s prototype, I’m adding the two methods used as “modifiers,” except in both
cases nothing is modified. Instead, both withX and withY return fresh instances of Point
with the relevant field set. Here’s the withX method in action:

var p = new Point(0, 1);

p.withX(1000);
//=> {_x: 1000, _y: 1}

Calling withX in this example returns an instance of the Point object with the _x field
set to 1000, but has anything been changed? No:

p;
//=> {_x: 0, _y: 1}

As shown, the original p instance is the same old [0,1] point that was originally con‐
structed. In fact, immutable objects by design should take their values at construction
time and never change again afterward. Additionally, all operations on immutable ob‐
jects should return new instances. This scheme alleviates the problem of mutation, and
as a side effect, allows a nice chaining API for free:

(new Point(0, 1))
 .withX(100)
 .withY(-100);

//=> {_x: 100, _y: -100}

So the points to take away are as follows:

• Immutable objects should get their values at construction time and never again
change

156 | Chapter 7: Purity, Immutability, and Policies for Change

10. There are ways to create immutable objects that share elements from one instance to another to avoid copying
larger structures entirely. However, this approach is outside the scope of this book.

11. Again, I intentionally excluded setting the constructor to avoid cluttering the example.

• Operations on immutable objects return fresh objects10

Even when observing these two rules you can run into problems. Consider, for example,
the implementation of a Queue type that takes an array of elements at construction time
and provides (partial) queuing logic to access them:11

function Queue(elems) {
 this._q = elems;
}

Queue.prototype = {
 enqueue: function(thing) {
 return new Queue(this._q + thing);
 }
};

As with Point, the Queue object takes its seed values at the time of construction. Addi‐
tionally, Queue provides an enqueue method that is used to add the elements used as the
seed to a new instance. The use of Queue is as follows:

var seed = [1, 2, 3];

var q = new Queue(seed);

q;
//=> {_q: [1, 2, 3]}

At the time of construction, the q instance receives an array of three elements as its seed
data. Calling the enqueue method returns a new instance as you might expect:

var q2 = q.enqueue(108);
//=> {_q: [1, 2, 3, 108]}

And in fact, the value of q seems correct:
q;
//=> {_q: [1, 2, 3]}

However, all is not sunny in Philadelphia:
seed.push(10000);

q;
//=> {_q: [1, 2, 3, 1000]}

Whoops!

Immutability | 157

That’s right, mutating the original seed changes the Queue instance that it seeded on
construction. The problem is that I used the reference directly at the time of construction
instead of creating a defensive clone. This time I’ll implement a new object SaferQueue
that will avoid this pitfall:

var SaferQueue = function(elems) {
 this._q = _.clone(elems);
}

A deepClone is probably not necessary because the purpose of the Queue instance is to
provide a policy for element adding and removal rather than a data structure. However,
it’s still best to maintain immutability at the level of the elements set, which the new
enqueue method does:

SaferQueue.prototype = {
 enqueue: function(thing) {
 return new SaferQueue(cat(this._q, [thing]));
 }
};

Using the immutability-safe cat function will eliminate a problem of sharing references
between one SaferQueue instance and another:

var seed = [1,2,3];
var q = new SaferQueue(seed);

var q2 = q.enqueue(36);
//=> {_q: [1, 2, 3, 36]}

seed.push(1000);

q;
//=> {_q: [1, 2, 3]}

I don’t want to lie and say that everything is safe. As mentioned before, the q instance
has a public field _q that I could easily modify directly:

q._q.push(-1111);

q;
//=> {_q: [1, 2, 3, -1111]}

Likewise, I could easily replace the methods on SaferQueue.prototype to do whatever
I want:

SaferQueue.prototype.enqueue = sqr;

q2.enqueue(42);
//=> 1764

158 | Chapter 7: Purity, Immutability, and Policies for Change

12. There are a growing number of JavaScript.next languages that were created because of the inconsistencies
and reliance on convention with JavaScript.

Alas, JavaScript will only provide so much safety, and the burden is therefore on us to
adhere to certain strictures to ensure that our programming practices are as safe as
possible.12

Objects Are Often a Low-Level Operation
One final point before moving on to controlled mutation is that while the use of bare
new and object methods is allowed, there are problems that could crop up because of
them:

var q = SaferQueue([1,2,3]);

q.enqueue(32);
// TypeError: Cannot call method 'enqueue' of undefined

Whoops. I forgot the new. While there are ways to avoid this kind of problem and either
allow or disallow the use of new to construct objects, I find those solutions more boil‐
erplate than helpful. Instead, I prefer to use constructor functions, like the following:

function queue() {
 return new SaferQueue(_.toArray(arguments));
}

Therefore, whenever I need a queue I can just use the construction function:
var q = queue(1,2,3);

Further, I can use the invoker function to create a function to delegate to enqueue:
var enqueue = invoker('enqueue', SaferQueue.prototype.enqueue);

enqueue(q, 42);
//=> {_q: [1, 2, 3, 42]}

Using functions rather than bare method calls gives me a lot of flexibility including, but
not limited to, the following:

• I do not need to worry as much about the actual types.
• I can return types appropriate for certain use cases. For example, small arrays are

quite fast at modeling small maps, but as maps grow, an object may be more ap‐
propriate. This change-over can occur transparently based on programmatic use.

• If the type or methods change, then I need only to change the functions and not
every point of use.

• I can add pre- and postconditions on the functions if I choose.

Immutability | 159

• The functions are composable.

Using functions in this way is not a dismissal of object-programming (in fact, it’s com‐
plementary). Instead, it pushes the fact that you’re dealing with objects at all into the
realm of implementation detail. This allows you and your users to work in functional
abstractions and allows implementers to focus on the matter of making changes to the
underlying machinery without breaking existing code.

Policies for Controlling Change
Let’s be realistic. While it’s wonderful if you can eliminate all unnecessary mutations
and side effects in your code, there will come a time when you’ll absolutely need to
change some state. My goal is to help you think about ways to reduce the footprint of
such changes. For example, imagine a small program represented as a dependency graph
between the places where an object is created and subsequently mutated over the course
of the program’s lifetime.

Figure 7-3. A web of mutation makes any change potentially global in its effects

Figure 7-3 should look familiar, since I talked about it earlier in this chapter. When you
pass around mutable objects and modify them within one function to another method
to a global scope, you’ve effectively lifted the effect of any change relevant to your
changed object to affecting the program as a whole. What happens if you add a function
that expects a certain value? What happens if you remove a method that makes a subtle
mutation? What happens if you introduce concurrency via JavaScript’s asynchronous
operations? All of these factors work to subvert your ability to make changes in the
future. However, what would it be like if change occurred only at a single point, as shown
in Figure 7-4?

160 | Chapter 7: Purity, Immutability, and Policies for Change

Figure 7-4. If you absolutely need to manage state, then the ideal situation is to isolate
it within a single place

This is a section about isolating change to single points of mutation and strategies for
achieving a compromise between the need to maintain state and to reduce complexity.
The way to control the scope of change is to isolate the thing that changes. That is, rather
than taking a random object and changing it in-place, a better strategy might be to hold
the object in a container and change that instead. That is:

var container = contain({name: "Lemonjon"});

container.set({name: "Lemongrab"});

versus:
var being = {name: "Lemonjon"};

being.name = "Lemongrab";

While this simplistic level of indirection allows you to more easily find the place where
a given value changes, it really doesn’t gain much over the in-place mutation scheme.
But I can take this line of thinking one step further and restrict change to occur as the
result of a function call:

var container = contain({name: "Lemonjon"});

container.update(merge, {name: "Lemongrab"});

The idea behind this thinking is two-fold. First, rather than replacing the value directly,
as with the fictional container#set method, change now occurs as the result of a func‐
tion call given the current value of the container and some number of arguments. Sec‐
ond, by adding this functional level of indirection, change can occur based on any
conceivable function, even those with domain-specific constraint checkers attached. By
contrast, consider how difficult it would be to check value constraints when objects are
mutated in-place, potentially at various points within your programs.

I can now show a very simple implementation of a container type:

Policies for Controlling Change | 161

function Container(init) {
 this._value = init;
};

Using this Container type is as follows:
var aNumber = new Container(42);

aNumber;
//=> {_value: 42}

However, there’s more left to implement, namely the update method:
Container.prototype = {
 update: function(fun /*, args */) {
 var args = _.rest(arguments);
 var oldValue = this._value;

 this._value = fun.apply(this, construct(oldValue, args));

 return this._value;
 }
};

The thinking behind the Container#update method is simple: take a function and some
arguments and set the new value based on a call with the existing (i.e., “old”) value.
Observe how this operates:

var aNumber = new Container(42);

aNumber.update(function(n) { return n + 1 });
//=> 43

aNumber;
//=> {_value: 43}

And an example that takes multiple arguments:
aNumber.update(function(n, x, y, z) { return n / x / y / z }, 1, 2, 3);
//=> 7.166666666666667

And an example showing the use of a constrained function:
aNumber.update(_.compose(megaCheckedSqr, always(0)));
// Error: arg must not be zero

This is just the beginning. In fact, in Chapter 9 I’ll extend the implementation of Con
tainer using the idea of “protocol-based extension.” However, for now, the seeds for
reducing the footprint of mutation have been sown.

162 | Chapter 7: Purity, Immutability, and Policies for Change

Summary
The chapter started by outlining and diving into functional purity, summarized as a
function that does not change, return, or rely on any variable outside of its own control.
While I spent a lot of time talking about functions that make no changes to their argu‐
ments, I did mention that if you need to mutate a variable internally then that was OK.
As long as no one knows you’ve mutated a variable then does it matter? I’d say no.

The next part of the chapter talked about the related topic of immutability. Immutable
data is often thwarted by JavaScript because changeable variables are the default. How‐
ever, by observing certain change patterns in your program, you can get as close to
immutable as possible. Again, what your callers don’t know won’t hurt them. Observing
immutability and purity was shown to help you not only reason about your program at
large, but also at the level of the unit test. If you can reason clearly about a function in
isolation, then you can more easily reason about composed functions.

In the next chapter, I will cover the notion of functional “pipeline.” This is very related
to function composition with _.compose, but diving deeper into the abstraction and
safety possibilities is worth devoting a chapter.

Summary | 163

CHAPTER 8

Flow-Based Programming

This chapter continues the discussion of functional style by showing how functions,
together with purity and isolated change, can compose to offer a fairly fluent program‐
ming style. The idea of snapping functional blocks together will be discussed herein and
demonstrated with relevant examples.

Chaining
If you recall, in the implementation of condition1 from Chapter 5, I resorted to using
the following lines of code:

// ...
 var errors = mapcat(function(isValid) {
 return isValid(arg) ? [] : [isValid.message];
 }, validators);
// ...

The reason for this bit of trickery was that while the final result needed to be an array
of error strings, each intermediate step could be either an array of suberror messages
or nothing at all. Another reason was that I wanted to combine disparate behaviors,
each with different return types. It would be much easier to compose these behaviors if
the return value of one was of a form agreeable to the input arguments to the other.
Take, for example, the following code:

function createPerson() {
 var firstName = "";
 var lastName = "";
 var age = 0;

 return {
 setFirstName: function(fn) {
 firstName = fn;
 return this;
 },

165

1. If you’re using a minified version of Underscore, you might actually see a differently named object here. That
is only the result of renaming by the chosen minification tool.

 setLastName: function(ln) {
 lastName = ln;
 return this;
 },
 setAge: function(a) {
 age = a;
 return this;
 },
 toString: function() {
 return [firstName, lastName, age].join(' ');
 }
 };
}

createPerson()
 .setFirstName("Mike")
 .setLastName("Fogus")
 .setAge(108)
 .toString();

//=> "Mike Fogus 108"

The “magic” that allows method chains is that each method in the chain returns the
same host object reference (Stefanov 2010). The chaining of methods via common re‐
turn value is effectively a design pattern in JavaScript finding its way into jQuery and
even Underscore. In fact, three useful functions in Underscore are _.tap, _.chain, and
_.value. If you recall from Chapter 2, I used these functions to implement the lyric
Segment function used to build a “99 bottles” song generator. However, in that imple‐
mentation I glossed over just how these functions operate.

The _.chain function is the most hardcore of the three, allowing you to specify an object
as an implicit target to repeated Underscore functions pretending to be methods. A
simple example works best to start understanding _.chain:

_.chain(library)
 .pluck('title')
 .sort();

//=> _

Um. What?1

Thankfully, there is a good explanation for why the Underscore object was returned.
You see, the _.chain function takes some object and wraps it in another object that
contains modified versions of all of Underscore’s functions. That is, where a function
like _.pluck has a call signature like function pluck(array, propertyName) by

166 | Chapter 8: Flow-Based Programming

2. The note function was defined all the way back in Chapter 1.

default, the modified version found in the wrapper object used by _.chain looks like
function pluck(propertyName). Underscore uses a lot of interesting trickery to allow
this to happen, but the result is that what passes from one wrapper method call to the
next is the wrapper object and not the target object itself. Therefore, whenever you want
to end the call to _.chain and extract the final value, the _.value function is used:

_.chain(library)
 .pluck('title')
 .sort()
 .value();

//=> ["Joy of Clojure", "SICP", "SICP"]

With the use of _.result, you take a value from the world of the wrapper object and
bring it into the “real world.” This notion will pop up again a couple of sections from
now. When using the _.chain function, you might receive results for any number of
buggy reasons. Imagine the following scenario:

var TITLE_KEY = 'titel';

// ... a whole bunch of code later

_.chain(library)
 .pluck(TITLE_KEY)
 .sort()
 .value();

//=> [undefined, undefined, undefined]

Because the code is compact, the problem is obvious—I misspelled “title.” However, in
a large codebase you’re likely to start debugging closer to the point of failure. Unfortu‐
nately, with the presence of the _.chain call, there is seemingly no easy way to tap into
the chain to inspect intermediate values. Not so. In fact, Underscore provides a _.tap
function that, given an object and a function, calls the function with the object and
returns the object:

_.tap([1,2,3], note);
;; NOTE: 1,2,3
//=> [1, 2, 3]

Passing the note function2 to Underscore’s tap shows that indeed the function is called
and the array returned. As you might suspect, _.tap is also available in the wrapper
object used by _.chain, and therefore can be used to inspect intermediate values, like so:

_.chain(library)
 .tap(function(o) {console.log(o)})
 .pluck(TITLE_KEY)
 .sort()

Chaining | 167

 .value();

// [{title: "SICP" ...
//=> [undefined, undefined, undefined]

Nothing seems amiss in the form of the library table, but what about if I move the tap
to a different location:

_.chain(library)
 .pluck(TITLE_KEY)
 .tap(note)
 .sort()
 .value();

// NOTE: ,,
//=> [undefined, undefined, undefined]

Now wait a minute; the result of the pluck is an odd looking array. At this point, the tap
has pointed to the location of the problem: the call to _.pluck. Either there is a problem
with TITLE_KEY or a problem with _.pluck itself. Thankfully, the problem lies in the
code under my control.

The use of _.chain is very powerful, especially when you want to fluently describe a
sequence of actions occurring on a single target. However, there is one limitation of
_chain—it’s not lazy. What I mean by what is hinted at in the following code:

_.chain(library)
 .pluck('title')
 .tap(note)
 .sort();

// NOTE: SICP,SICP,Joy of Clojure
//=> _

Even though I never explicitly asked for the wrapped value with the _.value function,
all of the calls in the chain were executed anyway. If _.chain were lazy, then none of the
calls would have occurred until the call to _.value.

A Lazy Chain
Taking a lesson from the implementation of trampoline from Chapter 6, I can imple‐
ment a lazy variant of _.chain that will not run any target methods until a variant of
_.value is called:

function LazyChain(obj) {
 this._calls = [];
 this._target = obj;
}

168 | Chapter 8: Flow-Based Programming

3. The term “thunk” has roots extending all the way back to ALGOL.

The constructor for the LazyChain object is simple enough; it takes a target object like
_.chain and sets up an empty call array. While the operation of trampoline from
Chapter 6 operated on an implicit chain of calls, LazyChain works with an explicit array
of…something. However, the question remains as to what it is that I put into the _calls
array. The most logical choice is, of course, functions, as shown below:

LazyChain.prototype.invoke = function(methodName /*, args */) {
 var args = _.rest(arguments);

 this._calls.push(function(target) {
 var meth = target[methodName];

 return meth.apply(target, args);
 });

 return this;
};

The LazyChain#invoke method is fairly straightforward, but I could stand to walk
through it. The arguments to LazyChain#invoke are a method name in the form of a
string, and any additional arguments to the method. What LazyChain#invoke does is
to “wrap” up the actual method call in a closure and push it onto the _calls array.
Observe what the _calls array looks like after a single invocation of LazyChain#in
voke here:

new LazyChain([2,1,3]).invoke('sort')._calls;
//=> [function (target) { ... }]

As shown, the only element in the _calls array after adding one link to the lazy chain
is a single function that corresponds to a deferred Array#sort method call on the array
[2,1,3].

A function that wraps some behavior for later execution is typically called a thunk3 (see
Figure 8-1). The thunk that’s stored in _calls expects some intermediate target that will
serve as the object receiving the eventual method call.

Chaining | 169

Figure 8-1. A thunk is a function waiting to be called

While thunks are not always functions in every programming language that supports
them, in JavaScript it makes sense to implement them as such because functions are
readily available.

Since the thunk is waiting to be called, why don’t I just call it to see what happens:
new LazyChain([2,1,3]).invoke('sort')._calls[0]();

// TypeError: Cannot read property 'sort' of undefined

Well, that was less than satisfying. The problem is that directly calling the thunk is not
enough to make it execute properly. If you’ll recall, the thunk expected a target object
to execute its closed-over method on. To make it work, I would need to somehow pass
the original array as an argument to the thunk, as shown in Figure 8-2.

Figure 8-2. To make the LazyChain work, I have to find a way to loop the original ob‐
ject back into the call

I could satisfy the argument lookback manually by pasting the array into the thunk call
as in the following:

170 | Chapter 8: Flow-Based Programming

new LazyChain([2,1,3]).invoke('sort')._calls[0]([2,1,3]);

//=> [1, 2, 3]

Placing the argument directly into the thunk call seems not only like cheating, but also
like a terrible API. Instead, I can use the _.reduce function to provide the loopback
argument not only to the initial thunk, but also every intermediate call on the _calls
array:

LazyChain.prototype.force = function() {
 return _.reduce(this._calls, function(target, thunk) {
 return thunk(target);
 }, this._target);
};

The LazyChain#force function is the execution engine for the lazy chaining logic. As
shown in Figure 8-3, the use of _.reduce nicely provides the same kind of trampolining
logic as demonstrated in Chapter 6. Starting with the initial target object, the thunk calls
are called, one by one, with the result of the previous call.

Figure 8-3. Using reduce allows me to pass the intermediate result forward into each
thunk

Now that LazyChain#force is in place, observe what happens when it is used to “ter‐
minate” a lazy chain:

new LazyChain([2,1,3]).invoke('sort').force();

//=> [1, 2, 3]

Excellent! The logic seems sound, but what happens when more links are added to the
chain? Observe:

new LazyChain([2,1,3])
 .invoke('concat', [8,5,7,6])
 .invoke('sort')
 .invoke('join', ' ')
 .force();

//=> "1 2 3 5 6 7 8"

Chaining | 171

I can chain as long as I want while remaining mindful of the way that the types change
from one link to the next. I mentioned earlier that LazyChain was lazy in its execution.
While you might see how that is indeed the case because thunks are stored in the _calls
array and never executed until LazyChain#force, it’s still better to show it actually being
lazy. First, let me implement a lazy version of _.tap that works with LazyChain instances:

LazyChain.prototype.tap = function(fun) {
 this._calls.push(function(target) {
 fun(target);
 return target;
 });

 return this;
}

The operation of LazyChain#tap is similar to LazyChain#invoke because the actual
work (i.e., calling a function and returning the target) is wrapped in a thunk. I show
how tap works below:

new LazyChain([2,1,3])
 .invoke('sort')
 .tap(alert)
 .force();

// alert box pops up
//=> "1,2,3"

But what happens if I never call LazyChain#force?
var deferredSort = new LazyChain([2,1,3])
 .invoke('sort')
 .tap(alert);

deferredSort;
//=> LazyChain

Nothing happens! I can hold onto deferredSort as long as I want and it’ll never execute
until I explicitly invoke it:

// ... in the not too distant future

deferredSort.force();

// alert box pops up
//=> [1, 2, 3]

This operation is very similar to the way that something like jQuery promises work.
Before I talk a little bit about promises, however, I want to explore an easy extension to
LazyChain that allows me to, well, chain lazy chains to other lazy chains. That is, keeping
in mind that at the heart of a LazyChain is just an array of thunks, I can change the
constructor to concatenate the arrays when presented with another LazyChain as its
argument:

172 | Chapter 8: Flow-Based Programming

4. Other JavaScript libraries that offer promises similar to jQuery’s include, but are not limited to: Q, RSVP.js,
when.js, and node-promises.

function LazyChainChainChain(obj) {
 var isLC = (obj instanceof LazyChain);

 this._calls = isLC ? cat(obj._calls, []) : [];
 this._target = isLC ? obj._target : obj;
}

LazyChainChainChain.prototype = LazyChain.prototype;

That is, if the argument to the constructor is another LazyChain instance, then just steal
its call chain and target object. Observe the chaining of chains:

new LazyChainChainChain(deferredSort)
 .invoke('toString')
 .force();

// an alert box pops up
//=> "1,2,3"

Allowing chains to compose in this way is a very powerful idea. It allows you to build
up a library of discrete behaviors without worrying about the final result. There are
other ways to enhance LazyChain, such as caching the result and providing an interface
that does not rely on strings, but I leave that as an exercise for the reader.

Promises
While LazyChain and LazyChainChainChain are useful for packaging the description
of a computation for later execution, jQuery4 provides something called a promise that
works similarly, but slightly differently. That is, jQuery promises are intended to provide
a fluent API for sequencing asynchronous operations that run concurrent to the main
program logic.

First, the simplest way to look at a promise is that it represents an unfulfilled activity.
As shown in the following code, jQuery allows the creation of promises via $.Deferred:

var longing = $.Deferred();

I can now grab a promise from the Deferred:
longing.promise();
//=> Object

The object returned is the handle to the unfulfilled action:
longing.promise().state();
//=> "pending"

Chaining | 173

As shown, the promise is in a holding pattern. The reason for this is of course that the
promise was never fulfilled. I can do so simply by resolving it:

longing.resolve("<3");

longing.promise().state();
//=> "resolved"

At this point, the promise has been fulfilled and the value is accessible:
longing.promise().done(note);
// NOTE: <3
//=> <the promise itself>

The Deferred#done method is just one of many useful chaining methods available in
the promise API. I will not go into depth about jQuery promises, but a more complicated
example could help to show how they differ from lazy chains. One way to build a promise
in jQuery is to use the $.when function to start a promise chain, as shown here:

function go() {
 var d = $.Deferred();

 $.when("")
 .then(function() {
 setTimeout(function() {
 console.log("sub-task 1");
 }, 5000)
 })
 .then(function() {
 setTimeout(function() {
 console.log("sub-task 2");
 }, 10000)
 })
 .then(function() {
 setTimeout(function() {
 d.resolve("done done done done");
 }, 15000)
 })

 return d.promise();
}

The promise chain built in the go function is very simple-minded. That is, all I’ve done
is to tell jQuery to kick off three asynchronous tasks, each delayed by increasingly longer
timings. The Deferred#then methods each take a function and execute them immedi‐
ately. Only in the longest-running task is the Deferred instance resolved. Running go
illustrates this example:

var yearning = go().done(note);

I tacked on a done call to the promise that will get called whenever the promise is
resolved. However, immediately after running go, nothing appears to have happened.

174 | Chapter 8: Flow-Based Programming

That’s because due to the timeouts in the subtasks, the console logging has not yet
occurred. I can check the promise state using the aptly named state method:

yearning.state();
//=> "pending"

As you might expect, the state is still pending. After a few seconds, however:
// (console) sub-task 1

The timeout of the first subtask triggers and a notification is printed to the console.
yearning.state();
//=> "pending"

Of course, because the other two actions in the original promise chain are awaiting
timeouts, the state is still pending. However, again waiting for some number of seconds
to pass shows the following:

// (console) sub-task 2

// ... ~5 seconds later

// NOTE: done done done done

Eventually, the final link in the deferred chain is called, and the done notification is
printed by the note function. Checking the state one more time reveals the following:

yearning.state();
//=> "resolved"

Of course, the promise has been resolved because the final subtask ran and called
resolve on the original Deferred instance. This sequence of events is very different
from that presented using LazyChain. That is, a LazyChain represents a strict sequence
of calls that calculate a value. Promises, on the other hand, also represent a sequence of
calls, but differ in that once they are executed, the value is available on demand.

Further, jQuery’s promise API is meant to define aggregate tasks composed of some
number of asynchronous subtasks. The subtasks themselves execute, as possible, con‐
currently. However, the aggregate task is not considered completed until every subtask
has finished and a value is delivered to the promise via the resolve method.

A lazy chain also represents an aggregate task composed of subtasks, but they, once
forced, are always run one after the other. The difference between the two can be sum‐
marized as the difference between aggregating highly connected tasks (LazyChain) ver‐
sus loosely related (Deferred) tasks.

Most of jQuery’s asynchronous API calls now return promises, so the result of an async
call is chainable according to the promise API. However, the complete specification of
this API is outside the scope of this book.

Chaining | 175

Pipelining
Chaining is a useful pattern for creating fluent APIs built around objects and method
calls, but is less useful for functional APIs. The Underscore library is built for chaining
via _.chain, as most functions take a collection as the first argument. By contrast, the
functions in this book take functions as their first argument. This choice was explicit,
to foster partial application and currying.

There are various downsides to method chaining including tight-coupling of object set
and get logic (which Fowler refers to as command/query separation [2010]) and awk‐
ward naming problems. However, the primary problem is that very often method chains
mutate some common reference from one call to the rest, as shown in Figure 8-4. Func‐
tional APIs, on the other hand, work with values rather than references and often subtly
(and sometimes not so subtly) transform the data, returning the new result.

Figure 8-4. Chained method calls work to mutate a common reference

In this section, I’ll talk about function pipelines and how to use them to great effect. In
an ideal world, the original data presented to a function should remain the same after
the call. The chain of calls in a functional code base are built from expected data values
coming in, nondestructive transformations, and new data returned—strung end to end,
as shown in Figure 8-5.

176 | Chapter 8: Flow-Based Programming

Figure 8-5. Pipelined functions work to transform data

A “faux” API for such a pipeline of transformations can look like the following:
pipeline([2, 3, null, 1, 42, false]
 , _.compact
 , _.initial
 , _.rest
 , rev);

//=> [1, 3]

The sequence of this pipeline call could be described as follows:

1. Take the array [2, 3, null, 1, 42, false] and pass it to the _.compact function.
2. Take the result of _.compact and pass it to _.initial.
3. Take the result of _.initial and pass it to _.rest.
4. Take the result of _.rest and pass it to rev.

In other words, the pipeline looks like the following if written out as nested calls:
rev(_.rest(_.initial(_.compact([2, 3, null, 1, 42, false]))));

//=> [1, 3]

This description should start setting off alarms bells in you brain. That’s because this
description is almost the same as the description of LazyChain#force. The same result/
call weaving is prevalent in both algorithms. Therefore, the implementation of pipe
line should look very similar to LazyChain#force, and indeed it is:

function pipeline(seed /*, args */) {
 return _.reduce(_.rest(arguments),
 function(l,r) { return r(l); },
 seed);
};

Pipelining | 177

5. If you want to be truly fancy, then you can call pipeline by its proper name: the thrush combinator. I’ll avoid
that temptation, however.

6. I guess, based on these vast differences, you could say that they are not similar at all.

The use of _.reduce makes pipeline almost trivial, however, with a seemingly small
amount of code comes great power. Before I dig into this power, look at a few examples
of pipeline in action:

pipeline();
//=> undefined

pipeline(42);
//=> 42

pipeline(42, function(n) { return -n });
//=> -42

The first argument to pipeline serves as the seed value, or in other words, the value
that starts as the argument to the first function. The result of each subsequent function
call is then fed into the next function until all are exhausted.5

Pipelines are somewhat similar to lazy chains, except they are not lazy and they work
against values rather than mutable references.6 Instead, pipelines are more akin to func‐
tions created using _.compose. The act of making a pipeline lazy is simply the act of
encapsulating it within a function (or thunk if you prefer):

function fifth(a) {
 return pipeline(a
 , _.rest
 , _.rest
 , _.rest
 , _.rest
 , _.first);
}

And now the act of forcing a pipeline is just to feed it a piece of data:
fifth([1,2,3,4,5]);
//=> 5

A very powerful technique is to use the abstraction built via a pipeline and insert it into
another pipeline. They compose thus:

function negativeFifth(a) {
 return pipeline(a
 , fifth
 , function(n) { return -n });
}

negativeFifth([1,2,3,4,5,6,7,8,9]);
//=> -5

178 | Chapter 8: Flow-Based Programming

This is interesting as an illustrative example, but it might be more compelling to show
how it could be used to create fluent APIs. Recall the implementation of the relational
algebra operators as, project, and restrict from Chapter 2. Each function took as its
first argument a table that it used to generate a new table, “modified” in some way. These
functions seem perfect for use in a pipeline such as one to find all of the first edition
books in a table:

function firstEditions(table) {
 return pipeline(table
 , function(t) { return as(t, {ed: 'edition'}) }
 , function(t) { return project(t, ['title', 'edition', 'isbn']) }
 , function(t) { return restrict(t, function(book) {
 return book.edition === 1;
 });
 });
}

And here’s the use of firstEditions:
firstEditions(library);

//=> [{title: "SICP", isbn: "0262010771", edition: 1},
// {title: "Joy of Clojure", isbn: "1935182641", edition: 1}]

For processing and extracting elements from the table, the relational operators worked
well, but with pipeline, I can make it nicer to deal with.

The problem is that the pipeline expects that the functions embedded within take a
single argument. Since the relational operators expect two, an adapter function needs
to wrap them in order to work within the pipeline. However, the relational operators
were designed very specifically to conform to a consistent interface: the table is the first
argument and the “change” specification is the second. Taking advantage of this con‐
sistency, I can use curry2 to build curried versions of the relational operators to work
toward a more fluent experience:

var RQL = {
 select: curry2(project),
 as: curry2(as),
 where: curry2(restrict)
};

I’ve decided to namespace the curried functions inside of an object RQL (standing for
relational query language) and change the names in two of the circumstances to more
closely mimic the SQL operators. Now that they are curried, implementing an improved
version of firstEditions reads more cleanly:

function allFirstEditions(table) {
 return pipeline(table
 , RQL.as({ed: 'edition'})
 , RQL.select(['title', 'edition', 'isbn'])
 , RQL.where(function(book) {

Pipelining | 179

7. I’m of the opinion that code should be written for readers.

 return book.edition === 1;
 }));
}

Aside from being easier to read,7 the new allFirstEditions function will work just as
well:

allFirstEditions(table);

//=> [{title: "SICP", isbn: "0262010771", edition: 1},
// {title: "Joy of Clojure", isbn: "1935182641", edition: 1}]

The use of pipelines in JavaScript, coupled with currying and partial application, works
to provide a powerful way to compose functions in a fluent manner. In fact, the functions
created in this book were designed to work nicely in pipelines. As an added advantage,
functional programming focuses on the transformation of data as it flows from one
function to the next, but this fact can often be obscured by indirection and deep function
nesting. Using a pipeline can work to make the data flow more explicit. However, pipe‐
lines are not appropriate in all cases. In fact, I would rarely use a pipeline to perform
side-effectful acts like I/O, Ajax calls, or mutations because they very often return noth‐
ing of value.

The data going into a pipeline should be the same after the pipeline has completed. This
helps ensure that the pipelines are composable. Is there a way that I can compose impure
functions along a pipeline-like structure? In the next section, I’ll talk a bit about a way
to perform side effects in a composable and fluent way, building on the lessons learned
while exploring chains and pipelines.

Data Flow versus Control Flow
In the lazyChain example, I separated out the execution specification (via .invoke)
from the execution logic (via .force). Likewise, with the pipeline function, I juxta‐
posed numerous pure functions to achieve the equivalent of a serial processing pipeline.
In both the cases of lazyChain and pipeline, the value moving from one node in the
call sequence to the next was stable. Specifically, lazyChain always returned some
LazyChain-like object up until the point force was called. Likewise, while at any point
in the pipeline the intermediate type could change, the change was known prior to
composition to ensure the proper values were fed from one stage to the next. However,
what if we want to compose functions that were not necessarily meant to compose?

In this final section of this chapter, I’ll talk about a technique for composing functions
of incongruous return types using a new kind of lazy pipeline called actions (Stan 2011).

180 | Chapter 8: Flow-Based Programming

8. By shape in this circumstance, I’m simply referring to the idea that the shape of an array of strings would be
very different than the shape of a floating-point number, which in turn is different than an object of strings
to arrays. You can substitute shape for “type” or “structure,” if you prefer, but I’ll stick to shape because the
pictures look prettier. The idea of visualizing shapes was inspired by the amazing Alan Dipert (Dipert 2012).

9. Although there is no reason that the result of force couldn’t be yet another lazy chain; but I digress.

If you imagine a function as a box of indeterminate behavior taking as input data of
some “shape” and outputting data of some other shape (possibly the same shape), then
Figure 8-6 might be what you’d picture.8

Figure 8-6. Function a takes a rectangular shaped thing and returns a database shaped
thing; function b takes a database shaped thing and returns a document shaped thing

Therefore, the reason that a lazy chain works properly is that the shape from one chained
method call to the next is consistent and only changes9 when force is called. Figure 8-7
illustrates this fact.

Data Flow versus Control Flow | 181

Figure 8-7. The shape flowing between calls in a lazy chain is stable, only (potentially)
changing when force is called

Similarly, the shape between the nodes of a pipeline or a composed function, while not
as stable as a common object reference, is designed to change in accordance with the
needs of the next node, as shown in Figure 8-8.

Figure 8-8. The shape flowing between calls in a pipeline or compose is designed to
change in expected ways

182 | Chapter 8: Flow-Based Programming

The problem is that if the shapes do not align, then neither pipeline, _.compose, nor
lazyChain will operate as expected:

pipeline(42
 , sqr
 , note
 , function(n) { return -n });

// NOTE: 1764
//=> NaN

Not cool. The reason that failed was because the shape of the type changed in mid-
stream to undefined (from note).

In fact, if you want to achieve the correct effect, then you’d need to do so manually:
function negativeSqr(n) {
 var s = sqr(n);
 note(n);
 return -s;
}

negativeSqr(42);
// NOTE: 1764
//=> -1764

While tenable, the amount of boilerplate involved in getting this to work for larger
capabilities grows quickly. Likewise, I could just change the note function to return
whatever it’s given, and while that might be a good idea in general, doing so here would
solve only a symptom rather than the larger disease of incompatible intermediate shapes.
That there are functions that can return incompatible shapes, or even no shape at all
(i.e., no return) requires a delicate orchestration of control flow to compose code. The
requirements of this delicate balance work against us in finding a way to compose func‐
tions that flow values from one to the next.

By now you might think that the way to fix this problem is to somehow find a way to
stabilize the shapes flowing between the nodes—that thinking is absolutely correct.

Finding a Common Shape
The complication in determining a common shape to flow between nodes of a different
sort is not picking a type (a regular object will do), but what to put into it. One choice
is the data that flows between each node; in the negativeSqr example, the object would
look like the following:

{values: [42, 1764, undefined, -1764]}

But what else is needed? I would say that a useful piece of data to keep around would
be the state, or target object used as the common target between nodes. Figure 8-9 shows

Data Flow versus Control Flow | 183

a way to visualize how actions could be composed, even in the face of disparate input
and output shapes.

Figure 8-9. The shape flowing between actions is made to be stable using a context
object

The last node (i.e., results) operates much in the same way as force in that it pulls the
answer out of the action object into the real world. In the case of the negativeSqr
function, the way to get the final answer is to retrieve the last element of the values
element or just return the state:

{values: [42, 1764, undefined, -1764],
 state: -1764}

Now, the implementation of the actions function to manage these intermediate states
is a hybrid of the pipeline and lazyChain implementations, as shown here:

function actions(acts, done) {
 return function (seed) {
 var init = { values: [], state: seed };

 var intermediate = _.reduce(acts, function (stateObj, action) {
 var result = action(stateObj.state);
 var values = cat(stateObj.values, [result.answer]);

 return { values: values, state: result.state };
 }, init);

 var keep = _.filter(intermediate.values, existy);

 return done(keep, intermediate.state);

184 | Chapter 8: Flow-Based Programming

10. Monad is the proper term for action, but I hesitate to use it in this section because I think that monads are
vastly weakened in the absence of a strong-type system and return-type polymorphism. However, that’s not
to say that monads cannot teach us valuable lessons in deconstruction for use in JavaScript.

 };
};

The actions function expects an array of functions, each taking a value and returning
a function that augments the intermediate state object. The actions function then re‐
duces over all of the functions in the array and builds up an intermediate state object,
as shown here:

...
 var intermediate = _.reduce(acts, function (stateObj, action) {
 var result = action(stateObj.state);
 var values = cat(stateObj.values, [result.answer]);

 return { values: values, state: result.state };
 }, init);
...

During this process, actions expects the result from each function to be an object of
two keys: answer and state. The answer value corresponds to the result of calling the
function and the state value represents what the new state looks like after the “action”
is performed. For a function like note, the state does not change. The intermediate
state object might have some bogus answers in it (e.g., the answer of note is unde
fined), so actions filters those out:

...
 var keep = _.filter(intermediate.values, existy);

 return done(keep, intermediate.state);
...

Finally, actions passes the filtered values (called keep) and state into the done func‐
tion to garner a final result. I could have only passed the state or values into the done
function, but I like to pass both for maximum flexibility, and because it helps for
illustration.

To demonstrate how actions works, I’ll need to break apart negativeSqr and recom‐
pose it as a series of actions. First, the sqr function obviously doesn’t know anything
about a state object, so I’ll need to create an adapter function, called mSqr:10

function mSqr() {
 return function(state) {
 var ans = sqr(state);
 return {answer: ans, state: ans};
 }
}

Data Flow versus Control Flow | 185

I can now use actions just to perform a double-squaring operation:
var doubleSquareAction = actions(
 [mSqr(),
 mSqr()],
 function(values) {
 return values;
});

doubleSquareAction(10);
//=> [100, 10000]

Since I returned the values array directly, the result of doubleSquareAction is all of
the intermediate states (specifically the square of 10 and the square of the square of 10).
However, this is almost the same as pipeline. The real magic comes when mixing
functions of differing shapes:

function mNote() {
 return function(state) {
 note(state);
 return {answer: undefined, state: state};
 }
}

The answer of the mNote function is, of course, undefined, since it is a function used
for printing; however, the state is just passed along. The mNeg function should by now
seem apparent:

function mNeg() {
 return function(state) {
 return {answer: -state, state: -state};
 }
}

And now composing these new functions into actions is shown here:
var negativeSqrAction = actions([mSqr(), mNote(), mNeg()],
 function(_, state) {
 return state;
 });

Its usage is shown here:
negativeSqrAction(9);
// NOTE: 81
//=> -81

Using the actions paradigm for composition is a general way to compose functions of
different shapes. Sadly, the preceding code seems like a lot of ceremony to achieve the
effects needed. Fortunately, there is a better way to define an action, without needing
to know the details of how a state object is built and avoiding the pile of boilerplate that
goes along with that knowledge.

186 | Chapter 8: Flow-Based Programming

A Function to Simplify Action Creation
In this section, I’ll define a function, lift, that takes two functions: a function to provide
the result of some action given a value, and another function to provide what the new
state looks like. The lift function will be used to abstract away the management of the
state object used as the intermediate representation of actions. The implementation of
lift is quite small:

function lift(answerFun, stateFun) {
 return function(/* args */) {
 var args = _.toArray(arguments);

 return function(state) {
 var ans = answerFun.apply(null, construct(state, args));
 var s = stateFun ? stateFun(state) : ans;

 return {answer: ans, state: s};
 };
 };
};

lift looks like it’s curried (i.e., it returns a function), and indeed it is. There is no reason
to curry lift except to provide a nicer interface, as I’ll show in a moment. In fact, using
lift, I can more nicely redefine mSqr, mNote, and mNeg:

var mSqr2 = lift(sqr);
var mNote2 = lift(note, _.identity);
var mNeg2 = lift(function(n) { return -n });

In the case of sqr and the negation function, both the answer and the state are the same
value, so I only needed to supply the answer function. In the case of note, however, the
answer (undefined) is clearly not the state value, so using _.identity allows me to
specify that it’s a pass-through action.

The new actions compose via actions:
var negativeSqrAction2 = actions([mSqr2(), mNote2(), mNeg2()],
 function(_, state) {
 return state;
 });

And their usage is the same as before:
negativeSqrAction(100);
// NOTE: 10000
//=> -10000

If I want to use lift and actions to implement a stackAction, then I could do so as
follows:

var push = lift(function(stack, e) { return construct(e, stack) });

Data Flow versus Control Flow | 187

The push function returns a new array, masquerading as a stack, with the new element
at the front. Since the intermediate state is also the answer, there is no need to supply a
state function. The implementation of pop needs both:

var pop = lift(_.first, _.rest);

Since I’m simulating a stack via an array, the pop answer is the first element. Conversely,
the state function _.rest return the new stack with the top element removed. I can now
use these two functions to compose two pushes and one pop, as follows:

var stackAction = actions([
 push(1),
 push(2),
 pop()
],
 function(values, state) {
 return values;
 });

Amazingly, by using the actions function, I’ve captured the sequence of stack events
as a value that has not yet been realized. To realize the result is as simple as this:

stackAction([]);

//=> [[1], [2, 1], 2]

As shown, the stackAction is just a function and can now be composed with other
functions to build higher-level behaviors. Since I’ve decided to return all of the inter‐
mediate answers, the resulting return value can participate in a vast array of composition
scenarios:

pipeline(
 []
 , stackAction
 , _.chain)
.each(function(elem) {
 console.log(polyToString(elem))
});

// (console) [[1], // the stack after push(1)
// (console) [2, 1], // the stack after push(2)
// (console) 2] // the result of pop([2, 1])

This is almost like magic, but by deconstructing it, I’ve tried to show that it really isn’t
magical at all. Instead, composing functions of different shapes is possible using a com‐
mon intermediate type and a couple of functions—lift and actions—to manage them
along the way. This management allows me to convert a problem that would typically
be a problem of control flow in keeping the types straight, into a problem of data
flow—the whole point of this chapter (Piponi 2010).

188 | Chapter 8: Flow-Based Programming

Summary
This chapter focused on exploring the possibilities in viewing behavior as a sequence
of discrete steps. In the first part of the chapter, I discussed chaining. Method chaining
is a common technique in JavaScript libraries, reaching the widest audience in jQuery.
In summary, method chaining is the act of writing object methods to all return a com‐
mon this reference so common methods can be called in sequence. Using jQuery
promises and Underscore’s _.chain function, I explored chaining. However, I also ex‐
plored the idea of “lazy chaining,” or sequencing some number of method calls on a
common target for later execution.

Following on the idea of a chain was that of the “pipeline,” or a sequence of function
calls that take in a piece of data and return a transformed piece of data at the other end.
Pipelines, unlike chains, work against data such as arrays and objects rather than a
common reference. Also, the type of data flowing through a pipeline can change as long
as the next step in the pipeline expects that particular type. As discussed, pipelines are
meant to be pure—no data was harmed by running it through.

While both chains and pipelines work against either a known reference or data types,
the idea of a sequence of actions is not limited to doing so. Instead, the implementation
of the actions type hides the details of managing an internal data structure used to mix
functions of varying return and argument types.

In the next and final chapter, I will talk about how functional programming facilitates
and indeed motivates a “classless” style of programming.

Summary | 189

CHAPTER 9

Programming Without Class

When people are first exposed to JavaScript and its minimal set of tools (functions,
objects, prototypes, and arrays), many are underwhelmed. Therefore, in order to “mod‐
ify” JavaScript to conform to their idea of what it takes to model software solutions, they
very often seek out or re-create class-based systems using the primordial ooze. This
desire is completely understandable given that in general people will often seek the
familiar. However, since you’ve come this far in exploring functional programming in
JavaScript, it’s worth tying all of the threads from the previous chapters into a coherent
exploration of how to reify functional and object-oriented thinking.

This chapter starts by walking the path of data and function thinking that I’ve talked
about throughout the book. However, while thinking in functions and simple data is
important, there will come a time when you may need to build custom abstractions.
Therefore, I will cover a way to “mix” discrete behaviors together to compose more
complex behaviors. I will also discuss how a functional API can be used to hide such
customizations.

Data Orientation
Throughout the course of this book, I’ve intentionally defined my data modeling needs
in terms of JavaScript primitives, arrays, and objects. That is, I’ve avoided creating a
hierarchy of types in favor of composing simple data together to form higher-level con‐
cepts like tables (Chapter 8) and commands (Chapter 4). Adhering to a focus on func‐
tions over methods allowed me to provide APIs that do not rely on the presence of object
thinking and methodologies. Instead, by adhering to the functional interfaces, the ac‐
tual concrete types implementing the data abstractions mattered less. This provided
flexibility to change the implementation details of the data while maintaining a consis‐
tent functional interface.

191

Figure 9-1 illustrates that when using a functional API, you don’t really need to worry
about what types are flowing between the nodes in a call chain.

Figure 9-1. When adhering to a functional interface, the type of intermediate data mat‐
ters little and can evolve (or devolve) as needed especially if you’re concerned primarily
with the beginning and end of a computation

Of course, the functions themselves should be able to handle the types flowing between,
but well-designed APIs are meant to compose and should abstract the details of inter‐
mediate types. However, there are times when object-centric thinking is crucial. For
example, the LazyChain implementation from Chapter 8 specifically deals with the lazy
execution of methods on a target object. Clearly, the very nature of the problem leads
to a solution where methods are called on some object. However, the implementation
requires that the user of LazyChain deal directly with the creation of instances of that
type. Thanks to JavaScript’s extreme flexibility, there is no need to create a specialized
LazyChain type. Instead, a lazy chain is whatever is returned from a function lazy
Chain responding to .invoke and .force.

function lazyChain(obj) {
 var calls = [];

 return {
 invoke: function(methodName /* args */) {
 var args = _.rest(arguments);

192 | Chapter 9: Programming Without Class

1. That the chain array is private slightly complicates the ability to chain lazy chains with other lazy chains.
However, to handle this condition requires a change to force to identify and feed the result of one lazy chain
to the next.

 calls.push(function(target) {
 var meth = target[methodName];

 return meth.apply(target, args);
 });

 return this;
 },
 force: function() {
 return _.reduce(calls, function(ret, thunk) {
 return thunk(ret);
 }, obj);
 }
 };
}

This is almost the exact code as in the implementation of LazyChain except for the
following:

• The lazy chain is initiated via a function call.
• The call chain (in calls) is private data.1

• There is no explicit LazyChain type.

The implementation of lazyChain is shown here:
var lazyOp = lazyChain([2,1,3])
 .invoke('concat', [7,7,8,9,0])
 .invoke('sort');

lazyOp.force();
//=> [0, 1, 2, 3, 7, 7, 8, 9]

There are certainly times to create explicit data types, as I’ll show in the next section,
but it’s good to defer their definition until absolutely necessary. Instead, a premium is
placed on programming to abstractions. The idea of how to interact with a lazy chain
is more important than a specific LazyChain type.

JavaScript provides numerous and powerful ways to defer or eliminate the need to create
named types and type hierarchies, including:

• Usable primitive data types
• Usable aggregate data types (i.e., arrays and objects)
• Functions working on built-in data types

Data Orientation | 193

• Anonymous objects containing methods
• Typed objects
• Classes

Graphically, the points above can be used as a checklist for implementing JavaScript
APIs, as shown in Figure 9-2.

Figure 9-2. A “hierarchy” of data thinking

Very often, JavaScript developers will invert the hierarchy shown in Figure 9-2 and start
immediately with constructing classes, thus blowing their abstraction budget from the
start. If you instead choose to start with built-in types coupled with a fluent, functional
API, then you allow yourself a lot of flexibility for expansion.

Building Toward Functions
For most programming tasks, the activities happening in the middle of some compu‐
tation are of primary importance (Elliott 2010). Take, for example, the idea of reading
in a form value, validating it, performing operations on the new type, and finally sending
the new value somewhere else as a string. The acts of getting to and from a string are
small compared to the validation and processing steps.

At the moment, the tools that I’ve created to fulfill this kind of task are a mix of functional
and object-based thinking. However, if I factor toward functions only, then a fluent
solution can evolve.

194 | Chapter 9: Programming Without Class

First of all, the lazy chains are clearly object-centric and in fact require the stringing of
methods to operate. However, lazy chaining can be deconstructed into three stages:

1. Acquire some object.
2. Define a chain in relation to the object.
3. Execute the chain.

The act of acquiring an object is trivial; it simply occurs as part of running JavaScript
code. Defining a chain, however, is where it gets interesting. Whereas a lazy chain is
defined in terms of the actions to perform on a specific instance, by lifting its creation
into a function, I can make lazy operations generic across types of objects instead:

function deferredSort(ary) {
 return lazyChain(ary).invoke('sort');
}

This allows me to create lazy sorts on any array via a regular function call:
var deferredSorts = _.map([[2,1,3], [7,7,1], [0,9,5]], deferredSort);

//=> [<thunk>, <thunk>, <thunk>]

Naturally, I’d like to execute each thunk, but since I’m factoring to functions, I’d prefer
to encapsulate the method call:

function force(thunk) {
 return thunk.force();
}

Now I can execute arbitrary lazy chains:
_.map(deferredSorts, force);

//=> [[1,2,3], [1, 7, 7], [0, 5, 9]]

And now that I’ve “lifted” the method calls into the realm of functional application, I
can define discrete chunks of functionality corresponding to the atoms of data
processing:

var validateTriples = validator(
 "Each array should have three elements",
 function (arrays) {
 return _.every(arrays, function(a) {
 return a.length === 3;
 });
 });

var validateTripleStore = partial1(condition1(validateTriples), _.identity);

Data Orientation | 195

Aggregating the validation into its own function (or many functions, perhaps) allows
me to change validation independent of any of the other steps in the activity. Likewise,
it allows me to reuse validations later for similar activities.

Double checking that the validation works as expected:
validateTripleStore([[2,1,3], [7,7,1], [0,9,5]]);
//=> [[2,1,3], [7,7,1], [0,9,5]])

validateTripleStore([[2,1,3], [7,7,1], [0,9,5,7,7,7,7,7,7]]);
// Error: Each array should have three elements

Now I can also define other processing steps that are (not necessarily) lazy:
function postProcess(arrays) {
 return _.map(arrays, second);
}

Now I can define a higher-level activity that aggregates the pieces into a domain-specific
activity:

function processTriples(data) {
 return pipeline(data
 , JSON.parse
 , validateTripleStore
 , deferredSort
 , force
 , postProcess
 , invoker('sort', Array.prototype.sort)
 , str);
}

The use of processTriples is as follows:
processTriples("[[2,1,3], [7,7,1], [0,9,5]]");

//=> "1,7,9"

The nice part about adding validations to your pipelines is that they will terminate early
when given bad data:

processTriples("[[2,1,3], [7,7,1], [0,9,5,7,7,7,7,7,7]]");

// Error: Each array should have three elements

This allows me to now use this function anywhere that such a pipeline of transforma‐
tions might be appropriate:

$.get("http://djhkjhkdj.com", function(data) {
 $('#result').text(processTriples(data));
});

You could make this process more generic by abstracting out the reporting logic:

196 | Chapter 9: Programming Without Class

var reportDataPackets = _.compose(
 function(s) { $('#result').text(s) },
 processTriples);

Exploring the use of reportDataPackets is as follows:
reportDataPackets("[[2,1,3], [7,7,1], [0,9,5]]");
// a page element changes

Now you can attach this discrete behavior to your application to achieve a desired effect:
$.get("http://djhkjhkdj.com", reportDataPackets);

Creating functions in general allows you to think about problems as the gradual trans‐
formation of data from one end of a pipeline to another. As you’ll recall from
Figure 9-1, each transformation pipeline can itself be viewed as a discrete activity, pro‐
cessing known data types in expected ways. As shown in Figure 9-3, compatible pipelines
can be strung end to end in a feed-forward manner, while incompatible pipelines can
be linked via adapters.

Figure 9-3. Linking pipelines directly or via adapters

Data Orientation | 197

From a program-wide perspective, pipelines with adapters can be attached to input and
output sources. This type of thinking allows you to compose a system from smaller,
known parts, while allowing the flexibility to interchange pieces and intermediate data
representations as needed in the future. The idea of data flowing through transformers
is a scalable notion, from the level of a single function up to the level of whole systems.

However, there are times when object-level thinking is appropriate, especially when
concrete types adhering to generic mixins are the right abstraction. In the next section,
I’ll talk about the idea of a mixin and how it can be used to build up toward functional
abstractions.

Mixins
While I’ve spent a lot of time and pages outlining a functional style of programming,
there are times when objects and methods are just the right solution. In this section, I
will outline an approach called mixin-based extension, which is similar to the way that
class-based systems are built but intentionally constrained. Before diving into mixins
directly, let me take a moment to motivate the need for object-thinking. Imagine a
function polyToString that takes an object and returns a string representation of it. A
naive implementation of polyToString could be written as follows:

function polyToString(obj) {
 if (obj instanceof String)
 return obj;
 else if (obj instanceof Array)
 return stringifyArray(obj);

 return obj.toString();
}

function stringifyArray(ary) {
 return ["[", _.map(ary, polyToString).join(","), "]"].join('');
}

As shown, the initial implementation of polyToString can be written as nested if
statements where each branch checks the type. The addition of stringifyArray is added
to create nicer looking string representations for strings. Running through a few tests
shows polyToString in action:

polyToString([1,2,3]);
//=> "[1,2,3]"

polyToString([1,2,[3,4]]);
//=> "[1,2,[3,4]]"

Seems reasonable, no? However, attempting to create the representation requires that I
add a new if branch into the body of polyToString, which is kind of silly. A better
approach might be to use something like dispatch from Chapter 5, which takes some

198 | Chapter 9: Programming Without Class

2. For the sake of expediency, I’ve delegated out to JSON.stringify since this section is not about converting
objects to strings; nor, for that matter, is it about stringifying in general.

number of functions and attempts to execute each, returning the first non-undefined
value:

var polyToString = dispatch(
 function(s) { return _.isString(s) ? s : undefined },
 function(s) { return _.isArray(s) ? stringifyArray(s) : undefined },
 function(s) { return s.toString() });

Again, the types are checked, but by using dispatch, I’ve at least abstracted each check
into a separate function and have opened the door to further composition for extension
purposes. Of course, that the use of dispatch works as expected is a nice bonus also:

polyToString(42);
//=> "42"

polyToString([1,2,[3,4]]);
//=> "[1, 2, [3, 4]]"

polyToString('a');
//=> "a"

As you might imagine, new types still present a problem if they do not already have a
nice #toString implementation:

polyToString({a: 1, b: 2});
//=> "[object Object]"

However, rather than causing the pain of needing to modify a nested if, dispatch allows
me to simply compose another function:

var polyToString = dispatch(
 function(s) { return _.isString(s) ? s : undefined },
 function(s) { return _.isArray(s) ? stringifyArray(s) : undefined },
 function(s) { return _.isObject(s) ? JSON.stringify(s) : undefined },
 function(s) { return s.toString() });

And again, the new implementation of polyToString works as expected:
polyToString([1,2,{a: 42, b: [4,5,6]}, 77]);

//=> '[1,2,{"a":42,"b":[4,5,6]},77]'

The use of dispatch in this way is quite elegant,2 but I can’t help but feel a little weird
about it. Adding support for yet another type, perhaps Container from Chapter 7 can
illustrate my discomfort:

polyToString(new Container(_.range(5)));

//=> {"_value":[0,1,2,3,4]}"

Mixins | 199

Certainly I could make this more pleasing to the eye by adding yet another link in the
chain of calls composing dispatch, consisting of something like the following:

...
 return ["@", polyToString(s._value)].join('');
...

But the problem is that dispatch works in a very straightforward way. That is, it starts
from the first function and tries every one until one of them returns a value. Encoding
type information beyond a single hierarchical level would eventually become more
complicated than it needs to be. Instead, an example like customized toString opera‐
tions is a good case for method methodologies. However, accomplishing this goal is
typically done with JavaScript in ways that go against the policies that I outlined in the
Preface:

• Core prototypes are modified.
• Class hierarchies are built.

I’ll talk about both of these options before moving on to mixin-based extension.

Core Prototype Munging
Very often, when creating new types in JavaScript, you’ll need specialized behaviors
beyond those composed or extended. My Container type is a good example:

(new Container(42)).toString();
//=> "[object Object]"

This is unacceptable. The obvious choice is that I can attach a Container-specific to
String method onto the prototype:

Container.prototype.toString = function() {
 return ["@<", polyToString(this._value), ">"].join('');
}

And now all instances of Container will have the same toString behavior:
(new Container(42)).toString();
//=> "@<42>"

(new Container({a: 42, b: [1,2,3]})).toString();
//=> "@<{"a":42,"b":[1,2,3]}>"

Of course, Container is a type that I control, so it’s perfectly acceptable to modify its
prototype—the burden falls on me to document the expected interfaces and use cases.
However, what if I want to add the ability to some core object? The only choice is to
step on the core prototype:

Array.prototype.toString = function() {
 return "DON'T DO THIS";

200 | Chapter 9: Programming Without Class

}

[1,2,3].toString();
//=> "DON'T DO THIS"

The problem is that if anyone ever uses your library, then any array that she creates is
tainted by this new Array#toString method. Therefore, for core types like Array and
Object, it’s much better to keep custom behaviors isolated to functions that are delegated
to custom types. I did this very thing in Container#toString by delegating down to
polyToString. I’ll take this approach later when I discuss mixins.

Class Hierarchies
In Smalltalk, everything happens somewhere else.

—Adele Goldberg

When approaching the task of defining a system using a class-based object-oriented
methodology, you typically attempt to enumerate the types of “things” that comprise
your system and how they relate to one another. When viewing a problem through an
object-oriented lens, more often than not the way that one class relates to another is in
a hierarchical way. Say employees are kinds of people who happen to be either account‐
ants, custodians, or CEOs. These relationships form an hierarchy of types used to de‐
scribe the residents of any given system.

Imagine that I want to implement my Container type as a hierarchy of types (see
Figure 9-4).

Figure 9-4. Representing Container types in a hierarchy

Mixins | 201

The diagram in Figure 9-4 states that at the root of the hierarchy is the Container type
and from that derives ObservableContainer, which is used to attach functions that
receive state change information. From ObservableContainer, I derive a Hole type that
is “set-able.” Finally, I define two different Hole types that have differing semantics for
just how to assign values.

Using a stripped-down JavaScript class library based on a tiny library created by John
Resig, I can sketch how this hierarchy might be constructed (Resig 2008):

function ContainerClass() {}
function ObservedContainerClass() {}
function HoleClass() {}
function CASClass() {}
function TableBaseClass() {}

ObservedContainerClass.prototype = new ContainerClass();
HoleClass.prototype = new ObservedContainerClass();
CASClass.prototype = new HoleClass();
TableBaseClass.prototype = new HoleClass();

Now that all of the hierarchical relationships are stitched together, I can test if they
resolve as I expect:

(new CASClass()) instanceof HoleClass;
//=> true

(new TableBaseClass()) instanceof HoleClass;
//=> true

(new HoleClass()) instanceof CASClass;
//=> false

This is what I would expect—inheritance travels up the hierarchy, but not down. Now,
putting some stubs in for implementation:

var ContainerClass = Class.extend({
 init: function(val) {
 this._value = val;
 },
});

var c = new ContainerClass(42);

c;
//=> {_value: 42 ...}

c instanceof Class;
//=> true

The ContainerClass just holds a value. However, the ObservedContainerClass pro‐
vides some extra functionality:

202 | Chapter 9: Programming Without Class

3. In a nutshell, run-to-completion refers to a property of JavaScript’s event loop. That is, any call paths running
during a particular “tick” of the event loop are guaranteed to complete before the next “tick.” This book is not
about the event-loop. I recommend David Flanagan’s JavaScript: The Definitive Guide, 6th Edition, for a
comprehensive dive into the JavaScript event system (and into JavaScript in general).

var ObservedContainerClass = ContainerClass.extend({
 observe: function(f) { note("set observer") },
 notify: function() { note("notifying observers") }
});

Of course, the ObservedContainerClass doesn’t do much on its own. Instead, I’ll need
a way to set a value and notify:

var HoleClass = ObservedContainerClass.extend({
 init: function(val) { this.setValue(val) },
 setValue: function(val) {
 this._value = val;
 this.notify();
 return val;
 }
});

As you might expect, the hierarchy is available to new HoleClass instances:
var h = new HoleClass(42);
// NOTE: notifying observers

h.observe(null);
// NOTE: set observer

h.setValue(108);
// NOTE: notifying observers
//=> 108

And now, at the bottom of the hierarchy, I start adding new behavior:
var CASClass = HoleClass.extend({
 swap: function(oldVal, newVal) {
 if (!_.isEqual(oldVal, this._value)) fail("No match");

 return this.setValue(newVal);
 }
});

A CASClass instance adds additional compare-and-swap semantics that say, “provide
what you think is the old value and a new value, and I’ll set the new value only if the
expected old and actual old match.” This change semantic is especially nice for asyn‐
chronous programming because it provides a way to check that the old value is what
you expect, and did not change. Coupling compare-and-swap with JavaScript’s
run-to-completion guarantees is a powerful way to ensure coherence in asynchronous
change.3

Mixins | 203

http://shop.oreilly.com/product/9780596805531.do

You can see it in action here:
var c = new CASClass(42);
// NOTE: notifying observers

c.swap(42, 43);
// NOTE: notifying observers
//=> 43

c.swap('not the value', 44);
// Error: No match

So with a class-based hierarchy, I can implement small bits of behavior and build up to
larger abstractions via inheritance.

Changing Hierarchies
However, there is a potential problem. What if I want to add a new type in the middle
of the hierarchy, called ValidatedContainer, that allows you to attach validation func‐
tions used to check that good values are used. Where does it go?

As shown in Figure 9-5, the logical place seems to be to put ValidatedContainer at the
same level as ObservedContainer.

Figure 9-5. Extending the hierarchy

It’s conceivable that I’d want all Hole instances to allow validation, but I don’t really
know that for certain (never mind the problem of multiple inheritance). I certainly do
not want to assume that my users will want that behavior. What would be nice is if I
could just extend it where needed. For example, if the CAS class needed validators, then

204 | Chapter 9: Programming Without Class

I could put ValidatedContainer above it in the hierarchy and just extend from it, as
shown in Figure 9-6.

Figure 9-6. Moving a special-case class lower in the hierarchy is tricky

However, if a new type comes along that needs compare-and-swap semantics, but
doesn’t need validation, then the hierarchy in Figure 9-6 is problematic. I definitely
shouldn’t force that implementation to inherit from CAS.

The big problem with class hierarchies is that they are created under the assumption
that we know the set of needed behaviors from the start. That is, object-oriented tech‐
niques prescribe that we start with a hierarchy of behaviors and fit our classes into that
determination. However, as ValidatedContainer shows, some behaviors are difficult
to classify ontologically. Sometimes behaviors are just behaviors.

Flattening the Hierarchy with Mixins
Let me try to simplify matters here. Imagine if I could take the base functionalities
contained in Container, ObservedContainer, ValidatedContainer, and Hole and just
put them all at the same level (see Figure 9-7).

Figure 9-7. Flattening the hierarchy

If you blur your eyes a little, then Figure 9-7 shows that when flattening the hierarchy,
what’s left is not an implicit relationship between one type and another. In fact, the boxes

Mixins | 205

4. Mixins in this chapter are a cross between what’s commonly known as a “protocol” and the Template method
design pattern, minus the hierarchy.

do not really define types at all. Instead, what they define are sets of discrete behaviors,
or mixins. If all we have are behaviors, then the way to make new behaviors is to either
define them anew or “mix” in existing behaviors.4 This again hearkens back to the idea
of composing existing functionality to create new functions.

So let me start anew with an implementation of Container:
function Container(val) {
 this._value = val;
 this.init(val);
}

Container.prototype.init = _.identity;

The implementation of this new Container constructor looks much like the imple‐
mentation from Chapter 7, except this one has a call to an init method. The presence
of the init call defines a mixin—or the means by which extension of the Container
occurs in addition to the way that clients interact with it. Specifically, the mixin protocol
for Container is as follows:
Extension protocol

Must provide an init method

Interface protocol
Constructor only

When designing APIs via mixin extension, you’ll often need to delegate to unknown
functions. This not only provides a standard for interacting with the types, but also
allows extension points. In the case of Container, the init call delegates to Underscore’s
_.identity. Later on I will override init, but for now, see how Container is used:

var c = new Container(42);

c;
//=> {_value: 42}

So the new Container acts like the old. However, what I’d like to do is create a new type
with similar, yet different behavior. The type that I have in mind, called a Hole, has the
following semantics:

• Holds a value
• Delegates to a validation function to check the value set
• Delegates to a notification function to notify interested parties of value changes

I can map these semantics directly to code, as shown in the following:

206 | Chapter 9: Programming Without Class

var HoleMixin = {
 setValue: function(newValue) {
 var oldVal = this._value;

 this.validate(newValue);
 this._value = newValue;
 this.notify(oldVal, newValue);
 return this._value;
 }
};

The HoleMixin#setValue method defines a set of circumstances that must be met in
order for a type to qualify as a Hole. Any type extending Hole should offer notify and
validate methods. However, there is no real Hole type yet, only a mixin that describes
“holiness.” The implementation of a Hole constructor is fairly simple:

var Hole = function(val) {
 Container.call(this, val);
}

The signature for the Hole constructor is the same as for Container; in fact, the use of
the Container.call method taking the Hole instance’s this pointer ensures that what‐
ever Container does on construction will occur in the context of the Hole instance.

The mixin protocol specification for HoleMixin is as follows:
Extension protocol

Must provide notify, validate and init methods

Interface protocol
Constructor and setValue

The need for the init method is derived from the direct use of Container in the con‐
structor. Failing to meet any given mixin, particularly the Container mixin, has poten‐
tially dire consequences:

var h = new Hole(42);
//TypeError: Object [object Object] has no method 'init'

That the Container extension interface was not met means that any attempt to use Hole
at the moment will fail. But despair not; the interesting thing about mixin extension is
that any given type is composed of existing mixins, either outright or through extension.

Based on the illustration shown in Figure 9-8, the fulfillment of the Hole type requires
either implementing or mixing in both ObserverMixin and ValidateMixin.

Mixins | 207

Figure 9-8. Using mixins to “mix” behaviors

Since neither of these mixins exist, I’ll need to create them, starting with the Observer
Mixin:

var ObserverMixin = (function() {
 var _watchers = [];

 return {
 watch: function(fun) {
 _watchers.push(fun);
 return _.size(_watchers);
 },
 notify: function(oldVal, newVal) {

208 | Chapter 9: Programming Without Class

5. The ECMAScript.next effort has described an Object.observe method that works similarly to the features
described herein. The specification should become a reality in JavaScript core sometime before the heat death
of the sun. More information is found at http://wiki.ecmascript.org/doku.php?id=harmony:observe.

 _.each(_watchers, function(watcher) {
 watcher.call(this, oldVal, newVal);
 });

 return _.size(_watchers);
 }
 };
}());

The use of the JavaScript closure mojo (function() {...}()); to encapsulate the
_watchers object is the common way to hide data, and it is therefore the preferred way
to hide a bit of mixin state as well. The watch function takes a function of two values,
the old value and the new, and adds it to the _watchers array. The watch method also
returns the number of watchers stored. The notify method then loops over the _watch
ers and calls each function, finally returning the number of watchers notified. The
implementation of ObserverMixin could be enhanced to be more robust in the face of
watch function failure, and also to allow the removal of watchers, but I leave that as an
exercise to the reader.5

The second missing mixin is the ValidateMixin, implemented as follows:
var ValidateMixin = {
 addValidator: function(fun) {
 this._validator = fun;
 },
 init: function(val) {
 this.validate(val);
 },
 validate: function(val) {
 if (existy(this._validator) &&
 !this._validator(val))
 fail("Attempted to set invalid value " + polyToString(val));
 }
};

As shown, it’s the ValidateMixin that finally fulfills the init extension requirement.
This makes sense since a valid initialization step is to validate the starting value of the
container. The other two functions, addValidator and validate, set the validation
function and call it (if set) respectively.

Now that the mixins are in place, it’s time to mix them together to fulfill the requirements
of the Hole type:

_.extend(Hole.prototype
 , HoleMixin

Mixins | 209

http://wiki.ecmascript.org/doku.php?id=harmony:observe

 , ValidateMixin
 , ObserverMixin);

I mentioned in Chapter 7 that Underscore’s _.extend function is tricky because it
modifies the target object. However, in the case of mixin extension, this behavior is
exactly what I want. That is, by using _.extend, I copy all of the methods into Hole.mix
in. So how does the fully mixed implementation work? Observe:

var h = new Hole(42);

That the constructor works at all is a good sign to start. What if I add a validator that is
guaranteed to fail?

h.addValidator(always(false));

h.setValue(9);
// Error: Attempted to set invalid value 9

Since I attached a validator returning false in all cases, I’ll never be able to set another
value again unless I remove the validation function directly. However, let me create a
new Hole instance with a less restrictive validator:

var h = new Hole(42);

h.addValidator(isEven);

The new instance should allow only even numbers as values:
h.setValue(9);
// Error: Attempted to set invalid value 9

h.setValue(108);
//=> 108

h;
//=> {_validator: function isEven(n) {...},
// _value: 108}

That the Hole instance h allows only even numbers is of limited value, but for illustration
purposes it serves well. Below I’ll add a watcher using the watch method:

h.watch(function(old, nu) {
 note(["Changing", old, "to", nu].join(' '));
});
//=> 1

h.setValue(42);
// NOTE: Changing 108 to 42
//=> 42

Passing in the even number 42 shows that the watcher is called, so adding another should
also work:

210 | Chapter 9: Programming Without Class

h.watch(function(old, nu) {
 note(["Veranderende", old, "tot", nu].join(' '));
});
//=> 2

h.setValue(36);
// NOTE: Changing 42 to 36
// NOTE: Veranderende 42 tot 36
//=> 36

So I’ve managed to create a new JavaScript type by both using constructor calls, and by
mixing discrete packets of functionality into a coherent hole…I mean whole. In the next
section, I’ll talk about how to use mixin extension to add new capabilities to existing
types.

New Semantics via Mixin Extension
Adding new capabilities to existing JavaScript types couldn’t be simpler; you just muck
with the prototype and, kaboom you’ve attached new behavior. Well, kaboom is the
operative term here because it’s rarely that simple. It’s not always straightforward to
extend existing types because you never know whether you might break some delicate
internal balance. Keeping that in mind, I will explore how to extend the capabilities of
the Hole type to include new change semantics. First, I like the idea of providing the
setValue method as a low-level way to tap into the change machinery. However, I would
like to provide another method, swap, that takes a function and some number of argu‐
ments and sets the new value based on the result of a call to said function with the current
value and the arguments. The best way to present this idea is to show the implementation
and some examples:

var SwapMixin = {
 swap: function(fun /* , args... */) {
 var args = _.rest(arguments)
 var newValue = fun.apply(this, construct(this._value, args));

 return this.setValue(newValue);
 }
};

The swap method on the SwapMixin indeed takes a function and some arguments. The
new value is then calculated using the function given the _value and the additional
arguments. The mixin protocol specification for SwapMixin is as follows:
Extension protocol

Must provide a setValue method and a _value property

Interface protocol
The swap method

I can actually test the SwapMixin in isolation:

Mixins | 211

var o = {_value: 0, setValue: _.identity};

_.extend(o, SwapMixin);

o.swap(construct, [1,2,3]);
//=> [0, 1, 2, 3]

So, as shown, the logic behind the swap mixin seems sound. Before I use it to enhance
Hole, let me implement another mixin, SnapshotMixin, used to offer a way to safely
grab the value in the Hole instance:

var SnapshotMixin = {
 snapshot: function() {
 return deepClone(this._value);
 }
};

The SnapshotMixin provides a new method named snapshot that clones any object
contained therein. Now, the new specification of Hole stands as:

_.extend(Hole.prototype
 , HoleMixin
 , ValidateMixin
 , ObserverMixin
 , SwapMixin
 , SnapshotMixin);

And now, any new Hole instances will have the enhanced behavior:
var h = new Hole(42);

h.snapshot();
//=> 42

h.swap(always(99));
//=> 99

h.snapshot();
//=> 99

Mixin extension is not only a powerful way to define new types, but also useful for
enhancing existing types. Bear in mind that there are caveats in that it’s not always
straightforward to extend existing types, and additionally any extension will take place
globally.

New Types via Mixin Mixing
Now that I’ve shown how to define two base types (Container and Hole), let me im‐
plement one more called CAS, which offers compare-and-swap semantics. That is, any
change to the type occurs based on an assumption that you know what the existing value
happens to be. The definition starts by using the construction behavior of Hole:

212 | Chapter 9: Programming Without Class

var CAS = function(val) {
 Hole.call(this, val);
}

The interesting part of the definition of the CASMixin is that it overrides the swap method
on the SwapMixin as shown here:

var CASMixin = {
 swap: function(oldVal, f) {
 if (this._value === oldVal) {
 this.setValue(f(this._value));
 return this._value;
 }
 else {
 return undefined;
 }
 }
};

The CASMixin#swap method takes two arguments instead of the one taken by SwapMix
in. Additionally, the CASMixin#swap method returns undefined if the expected value
does not match the actual _value. There are two ways to mix the implementation of the
CAS types. First, I could simply leave out the SwapMixin on the extension and use the
CASMixin instead, since I know that the swap method is the only replacement. However,
I will instead use ordering to _.extend to take care of the override:

_.extend(CAS.prototype
 , HoleMixin
 , ValidateMixin
 , ObserverMixin
 , SwapMixin
 , CASMixin
 , SnapshotMixin);

While I knew that the SwapMixin was fully subsumed by the CASMixin, leaving it in is
not entirely bad. The reason is that if I do not control the SwapMixin, then it’s conceivable
that it may gain enhancements at a future date beyond simply the swap method. By
leaving in the extension chain, I get any enhancements for free in the future. If I do not
like the future “enhancements,” then I can choose to remove SwapMixin later. To wrap
this section up, the CAS type is used as follows:

var c = new CAS(42);

c.swap(42, always(-1));
//=> -1

c.snapshot();
//=> -1

c.swap('not the value', always(100000));
//=> undefined

Mixins | 213

6. If you come from a Scala background, then the mixin-based development outlined here is far from realizing
the well-known Cake pattern (Wampler 2009). However, with some work and runtime mixin inspection, you
can achieve a rough approximation, providing an additional capability for large-scale module definition.

c.snapshot();
//=> -1

And that concludes the discussion of mixin extension. However, there is one more point
to make about it: mixin extension, if done correctly, is an implementation detail. In fact,
I would still reach for simple data like primitives, arrays, and objects (as maps) over
mixin-based programming. Specifically, I’ve found that when you’re dealing with a large
number of data elements, then simple data is best because you can use common tools
and functions to process it—the more generic data processing tools available, the better.
On the other hand, you will definitely find a need to create highly specialized types with
well-defined interfaces driving per-type semantics.6 It’s in the case of these specialized
types that I’ve found mixin-based development a real advantage.

Simple data is best. Specialized data types should be, well, special.

Methods Are Low-Level Operations
That the types created in the previous sections are object/method-centric is a technical
detail that need not leak into a functional API. As I’ve stressed throughout this book,
functional APIs are composable and if created well, do not require explicit knowledge
of the intermediate types between composition points. Therefore, by simply creating a
function-based API for accessing and manipulating the container types, I can hide most
of the detail of their implementation.

First, let me start with the container:
function contain(value) {
 return new Container(value);
}

Simple, right? If I were providing a container library, then I would offer the contain
function as the user-facing API:

contain(42);
//=> {_value: 42} (of type Container, but who cares?)

For developers, I might additionally provide the mixin definitions for extension
purposes.

The Hole functional API is similar, but beefier:
function hole(val /*, validator */) {
 var h = new Hole();
 var v = _.toArray(arguments)[1];

214 | Chapter 9: Programming Without Class

 if (v) h.addValidator(v);

 h.setValue(val);

 return h;
}

I’ve managed to encapsulate a lot of the logic of validation within the confines of the
hole function. This is ideal because I can compose the underlying methods in any way
that I want. The usage contract of the hole function is much simpler than the combined
use of the Hole constructor and the addValidator method:

var x = hole(42, always(false));
// Error: Attempted to set invalid value 42

Likewise, although setValue is a method on the type, there is no reason to expose it
functionally. Instead, I can expose just the swap and snapshot functions instead:

var swap = invoker('swap', Hole.prototype.swap);

And the swap function works as any invoker-bound method, with the target object as
the first argument:

var x = hole(42);

swap(x, sqr);
//=> 1764

Exposing the functionality of the CAS type is very similar to Hole:
function cas(val /*, args */) {
 var h = hole.apply(this, arguments);
 var c = new CAS(val);
 c._validator = h._validator;

 return c;
}

var compareAndSwap = invoker('swap', CAS.prototype.swap);

I’m using (abusing) private details of the Hole type to implement most of the capability
of the cas function, but since I control the code to both types, I can justify the coupling.
In general, I would avoid that, especially if the abused type is not under my immediate
control.

Finally, I can now implement the remaining container functions as generic delegates:
function snapshot(o) { return o.snapshot() }
function addWatcher(o, fun) { o.watch(fun) }

And these functions work exactly how you might guess:

Mixins | 215

var x = hole(42);

addWatcher(x, note);

swap(x, sqr);
// NOTE: 42 chapter01.js:38
//=> 1764

var y = cas(9, isOdd);

compareAndSwap(y, 9, always(1));
//=> 1

snapshot(y);
//=> 1

I believe that by putting a functional face on the container types, I’ve achieved a level of
flexibility not obtainable via an object/method focus.

}).call(“Finis”);
This chapter concludes my coverage of functional programming in JavaScript by show‐
ing how it lends to building software. Even though some problems seemingly call for
object or class-based thinking, very often there are functional ways to achieve the same
goals. Not only will there be functional ways to build parts of your system, but building
your system functionally often leads to more flexibility in the long term by not tying
your users to an object-centric API.

Likewise, even when a problem calls for object-thinking, approaching the problem with
a functional eye can lead to vastly different solutions than object-oriented programming
dictates. If functional composition has proven useful, how might object composition
fare? In this chapter, I discussed mixin-based design and how it is indeed a functionally
flavored style of object composition.

Writing this book has been a joy for me and I hope has been an enlightening adventure
for you. Learning functional programming shouldn’t be seen as a goal in itself, but
instead a technique for achieving your goals. There may be times when it is just not a
good fit, but even then, thinking functionally can and will help change the way you build
software in general.

216 | Chapter 9: Programming Without Class

APPENDIX A

Functional JavaScript in the Wild

In no way does this book represent even a modicum of original thinking regarding
functional programming in JavaScript. For many years—indeed, for as long as JavaScript
has existed—people have pushed the boundaries of its support for a functional style. In
this appendix, I’ll attempt to briefly summarize what I perceive as a fair sampling of the
offerings in languages and libraries on the topic of functional JavaScript. No ranking is
implied.

Functional Libraries for JavaScript
There are numerous noteworthy JavaScript libraries available in the wild. I’ll run
through the high-level features of a few herein and provide a few examples along the way.

Functional JavaScript
Oliver Steele’s Functional JavaScript library is the first functional library that I discov‐
ered. It provides all of the normal higher-order functions like map, but it provides a very
interesting string-based short-form function format. That is, to square the numbers in
an array, one would normally write the following:

map(function(n) { return n * n }, [1, 2, 3, 4]);
//=> [2, 4, 9, 16]

However, with the Functional JavaScript function literal string, the same code be written
as:

map('n*n', [1, 2, 3, 4]);
//=> [2, 4, 9, 16]

Functional JavaScript also provides currying of the function literal strings:
var lessThan5 = rcurry('<', 5);

217

http://osteele.com/sources/javascript/functional/

lessThan5(4);
//=> true

lessThan5(44);
//=> false

Functional JavaScript is a masterful piece of JavaScript metaprogramming and well
worth exploring for its technical insights.

Underscore-contrib
A long time ago (in Internet years) I wrote a functional JavaScript library named Doris
heavily inspired by Steele’s Functional JavaScript and the Clojure programming lan‐
guage. I used Doris for some internal libraries but eventually deprecated it in favor of
Underscore and (when possible) ClojureScript. When writing this book, I resurrected
the Doris source code, ported it to Underscore, cleaned up the code, and renamed it
Lemonad (pronounced lemonade), then moved most of the capabilities into the official
Underscore-contrib library.

Underscore-contrib is built on Underscore and provides dozens of useful applicative,
higher-order and monadic functions. When importing Underscore-contrib, the func‐
tions are mixed into the Underscore _ object, allowing you to turn Underscore up to
11. In addition to the core functionality, I’ve implemented a number of “extras” for
Underscore-contrib, including the following:
Codd

A relational algebra library

Friebyrd
A library providing an embedded logic system

Minker
A library providing an embedded datalog
var a = ['a','a','b','a'];
var m = _.explode("mississippi");

_.frequencies(a)
//=> {a: 3, b: 1}

_.frequencies(m)
//=> {p: 2, s: 4, i: 4, m: 1}

There are many more functions available. Fortunately, most of the functions defined in
this book are available in Lemonad or Underscore-contrib, so consider this the unofficial
manual.

218 | Appendix A: Functional JavaScript in the Wild

http://fogus.github.io/lemonad/

RxJS
Microsoft’s Reactive Extensions for JavaScript (RxJS) is a set of libraries that facilitate
asynchronous, event-driven programming models. RxJS works against an Observa
ble abstraction that allows you to process asynchronous data streams via a rich, LINQ-
like functional query model.

When I was a younger man (this of course dates me) I spent a seemingly limitless amount
of time playing my old Nintendo NES system. The Japanese company Konami created
many interesting games, but prime among them was my favorite, Contra. The goal of
Contra was…well, no one cares anymore, but one interesting point was that there was
a cheat code that you could enter to get 30 extra lives. The cheat code is described as
follows:

var codes = [
 38, // up
 38, // up
 40, // down
 40, // down
 37, // left
 39, // right
 37, // left
 39, // right
 66, // b
 65 // a
];

The cheat code was entered via the game controller before the game started, and it was
the only reason that I ever completed the game. If you want to add the Konami Code
(as it’s commonly called) to a web page, then you can do so with RxJS. A useful method
to compare a sequence of values with RxJS is called sequenceEqual, and can be used to
check that a stream of integers matches the Konami Code:

function isKonamiCode(seq) {
 return seq.sequenceEqual(codes);
}

RxJS allows you to tap into many sources of asynchronous events, including a page
document’s key presses, as shown:

var keyPressStream = $(document).keyupAsObservable()
 .select(function (e) { return e.keyCode })
 .windowWithCount(10, 10);

The keyPressStream represents a stream of keycodes built from keypress events. Rather
than observing on every keypress, RxJS allows you to chunk the stream into aggregate
segments using the windowWithCount method. One additional point is that RxJS adorns
jQuery itself with relevant Observable creating methods, and will do the same for var‐
ious other JavaScript frameworks. This seamless integration with existing libraries is a
pleasure to work with.

Functional Libraries for JavaScript | 219

http://reactive-extensions.github.com/RxJS/

Now that I have a stream of keycodes, I can declaratively tell RxJS what I would like to
do with them:

keyPressStream
 .selectMany(isKonamiCode)
 .where(_.identity)
 .subscribe(function () {
 alert("You now have thirty lives!");
 });

Of note is that the where method could transform the data values along the way, but I
chose to pass them through using Underscore’s _.identity function. The function
given to the select method is what will run whenever the function assigned via the
selectMany returns a truthy value. If I were to load the preceding code into a web page
and push the correct sequence of arrow keys followed by the characters “a” and “b,” then
an alert box would launch.

RxJS is an amazing library that provides a way to capture asynchronous flow as a
value—a truly mind-bending paradigm.

Bilby
If Lemonad turns Underscore up to 11, then Bilby turns Lemonad up to 12 or beyond.
A self-contained functional library, Brian McKenna’s Bilby stretches the possibilities of
functional style in JavaScript. It’s worth exploring Bilby to learn its entire feature set,
but one that is particularly nice is its implementation of multimethods.

Bilby’s multimethods are similar to the dispatch function defined in Chapter 5 but
more robust and flexible. Using Bilby, you can define functions that dispatch on any
number of interesting conditions. Bilby provides a module system called environments
that aggregate related methods and properties:

var animals = bilby.environment();

Before adding a multimethod I can define a few helper functions:
function voice(type, sound) {
 return ["The", type, "says", sound].join(' ');
}

function isA(thing) {
 return function(obj) {
 return obj.type == thing;
 }
}

function say(sound) {
 return function(obj) {
 console.log(voice(obj.type, sound));

220 | Appendix A: Functional JavaScript in the Wild

http://bilby.brianmckenna.org/

 }
}

Using these helpers I can tell Bilby:

• The name of the method
• A predicate that checks the arguments
• An action function that performs the method behaviors

The Environment#method takes the three arguments just listed:
var animals = animals.method('speak', isA('cat'), say("mew"));

As shown, adorning an environment with a new multimethod returns a new environ‐
ment. I can now call speak:

animals.speak({type: 'cat'});
// The cat says mew

Adding a new polymorphic behavior is simple:
var animals = animals.method('speak', isA('dog'), say("woof"));

And calling speak with a dog object works as expected:
animals.speak({type: 'cat'});
// The cat says mew

animals.speak({type: 'dog'});
// The dog says woof

Of course, I can match an arbitrary condition within the dispatch predicate:
var animals = animals.method('speak',
 function(obj) {
 return (isA('frog')(obj) && (obj.status == 'dead'))
 },
 say('Hello ma, baby!'));

So passing in a dead frog works the same:
animals.speak({type: 'frog', status: 'dead'});
// The frog says Hello ma, baby!

Bilby provides much more than multimethods, including a trampoline that allows you
to return functions, monadic structures, validation helpers, and much more.

allong.es
Reginald Braithwaite’s allong.es library has a bevy of useful function combinators in its
arsenal. However, an interesting aspect from my perspective (and something that I didn’t
cover in depth) is its support for stateful iterators:

Functional Libraries for JavaScript | 221

http://allong.es/

var iterators = require('./allong.es').iterators
var take = iterators.take,
 map = iterators.map,
 drop = iterators.drop;

var ints = iterators.numbers();

Aside from the necessary import seance required to get the correct allong.es iteration
functions, I also defined an iterator, ints, over all numbers. I can then “perform” some
operations over the ints iterator:

var squares = take(drop(map(ints, function(n) {
 return n * n;
}), 100000), 100);

Just for fun, I squared all of the integers, dropped the first 100,000 results, then grabbed
the next 100. The magic of the allong.es iterator is that I’ve not actually performed any
calculation yet. Only when I query the iterator using an external iterator (in my case,
for) will any of the calculations occur:

var coll = [];
for (var i = 0; i < 100; i++) {
 coll.push(squares())
}

coll;
//=> [10000200001,
// 10000400004,
// 10000600009,
// 10000800016,
// 10001000025,
// 10001200036,
// ...
// 10020010000]

I can check the math by manually squaring the number 100,001 (because I dropped
100,000, recall):

100001 * 100001
//=> 10000200001

And, as shown, the manual calculation matches with the first element in the coll array.
There is too much in allong.es (and about iterators in general) to do justice here. I highly
recommend you explore.

Other Functional Libraries
There are a growing number of JavaScript libraries supporting varying degrees of func‐
tional programming. The grandmaster of them all—jQuery—has always been some‐
what functional, but with the inclusion of promises has gotten more so. A nice project
that I’ve followed since its inception is Reducers, which implements a generalized

222 | Appendix A: Functional JavaScript in the Wild

https://github.com/Gozala/reducers

reducible collections API inspired by Clojure’s reducer functionality. The Lo-Dash
project is a major fork of Underscore that attempts a cleaner core and more performance.
The Mori project by David Nolen is a facade over the ClojureScript core library, in‐
cluding its persistent data structures. The Udon library is a very straightforward func‐
tional library akin to Lemonad. Finally, the prelude.ls project is also a straightforward
functional affair. However, where prelude.ls differs is that it’s originally written in the
statically typed language TypeScript and compiled to JavaScript.

Functional Programming Languages Targeting JavaScript
When a functional library simple doesn’t cut it, more and more programmers are turn‐
ing to new languages using JavaScript as their compilation target. I’ll outline just a few
of the languages that I’m familiar with (to varying degrees herein). Don’t take a lan‐
guage’s inclusion as an endorsement and don’t take a language’s exclusion as a rejection.
Included are only the handful that I’ve either used on real projects, contributed to in
some way, or studied in my spare time.

ClojureScript
The ClojureScript programming language is a variant of Clojure that compiles down to
JavaScript. It has many of the same features as Clojure, including but not limited to the
following:

• Persistent data structures
• Reference types
• Namespaces
• Strong JavaScript interop
• Laziness
• Destructuring assignment
• Protocols, types, and records

A taste of ClojureScript is as follows:
(defn hi [name]
 (.log js/console (str "Hello " name "!")))

(hi "ClojureScript")

;; (console) Hello ClojureScript

ClojureScript is an exciting language targeting the large-scale JavaScript application
space. Indeed, I’ve used it to great effect in building robust single-page applications with

Functional Programming Languages Targeting JavaScript | 223

http://lodash.com/
http://lodash.com/
https://github.com/swannodette/mori
https://github.com/beastaugh/udon
http://gkz.github.com/prelude-ls/
http://www.clojurescript.net

1. And its predecessor. Pedestal is at http://pedestal.io/.

the Pedestal web framework.1 You can find out more about ClojureScript in the second
edition of my other book, The Joy of Clojure.

CoffeeScript
CoffeeScript is a popular programming language that is the very embodiment of “Java‐
Script: The Good Parts” with a very clean syntax. The “hello world” example is simply
trivial:

hi = (name) ->
 console.log ['Hello ', name, '!'].join ''

hi 'CoffeeScript'

(console) Hello CoffeeScript

Some of the additional features above JavaScript include:

• Literate programming support (something I love a lot)
• Varargs
• List comprehensions
• Destructuring assignment

Its level of support for functional programming is effectively that of JavaScript, but its
balance of features and syntax can act to make a functional style much cleaner.

Roy
Roy is a statically typed functional programming language inspired by ML in the early
stages of its life. While Roy provides many of the features common to ML-family lan‐
guages including pattern matching, structural types, and tagged unions, its type system
is most interesting to me. If I implement a hi function that attempts to concatenate
strings s in JavaScript, then I’m set for a rude surprise:

let hi name: String =
 alert "Hello " + name + "!"

// Error: Type error: String is not Number

Roy reserves the + operator for mathematical operations, disallowing the concatenation
overload. However, Roy provides a ++ operator that will suffice:

let hi name: String =
 console.log "Hello " ++ name ++ "!"

224 | Appendix A: Functional JavaScript in the Wild

http://pedestal.io/
http://coffeescript.org/
http://roy.brianmckenna.org/

And calling the hi function is as simple as this:
hi "Roy"

// Hello Roy!

I, for one, will follow Roy’s progress and hope to see good things come from it.

Elm
Like Roy, Elm is a statically typed language that compiles down to JavaScript. Also like
Roy, Elm will not allow willy-nilly string concatenation using +, as shown here:

hi name = plainText ("Hello " + name + "!")

-- Type error (Line 1, Column 11):
-- String is not a {Float,Int}
-- In context: + "Hello "

Once again, like Roy, Elm reserves the ++ function for such use:
hi name = plainText ("Hello " ++ name ++ "!")

main = hi "Elm"

-- (page text) Hello Elm!

However, where Elm really departs from Roy is that instead of merely being a pro‐
gramming language, it truly is a system for development. That is, Elm provides a lan‐
guage centered around the Functional Reactive Programming (FRP) paradigm. In a
nutshell, FRP integrates a time model with an event system for the purposes of sanely
building robust systems centered on system-wide change effects. I could never ade‐
quately cover FRP in these pages, as it could in fact, fill its own book. If you’re looking
to stretch your mind, then Elm is a nice system for just such an exercise.

Functional Programming Languages Targeting JavaScript | 225

http://elm-lang.org/

APPENDIX B

Annotated Bibliography

Books
Structure and Interpretation of Computer Programs by Harold Abelson, Gerald Jay
Sussman, and Julie Sussman (MIT Press, 1996)

This book is among the most influential programming books ever written. Every
page is a gem and every other sentence worthy of highlight. It moves very quickly
through the material and requires focused attention and study—but it’s well worth
the effort.

Extreme Programming Explained: Embrace Change by Kent Beck (Addison-Wesley,
1999)

An engaging book that elucidates the tenets of a revolution in programming.

Introduction to Functional Programming by Richard J. Bird and Philip Wadler (Pren‐
tice Hall, 1998)

I prefer the first edition.

Closure: The Definitive Guide by Michael Bolin (O’Reilly, 2010)
Bolin’s ideas on JavaScript pseudo-classical inheritance have been very influential
to my own style.

JavaScript Allongé by Reginald Braithwaite (Leanpub, 2013)
I was fortunate enough to read an early draft of Reg’s great book and think it would
make a nice follow-up to my book. Functional JavaScript turned up to 11.

JavaScript: The Good Parts by Douglas Crockford (O’Reilly, 2008)
Crockford’s book is like a well-written, beautifully shot horror movie. It’s the
Suspiria of programming books. It’ll give you nightmares, but you won’t be able to
look away.

227

http://shop.oreilly.com/product/0636920001416.do
https://leanpub.com/javascript-allonge
http://shop.oreilly.com/product/9780596517748.do

An Introduction to Database Systems by C.J. Date (Addison-Wesley, 2003)
A must-read.

SQL and Relational Theory: How to Write Accurate SQL Code by C.J. Date (O’Reilly,
2011)

An amazing book for truly understanding the underpinnings of relational algebra
and why the queries we write are so slow.

JavaScript: The Definitive Guide, 6th Edition by David Flanagan (O’Reilly, 2011)
The ultimate book on JavaScript in my opinion.

Domain Specific Languages by Martin Fowler (Addison-Wesley, 2010)
A profound writer and thinker on a profound topic.

Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995)

Much loved and derided, the original goal of the Gang of Four’s book, to find a
common language for describing system building, was a worthy one.

Java Concurrency in Practice by Brian Goetz, et al. (Addison-Wesley, 2005)
Absolutely essential reading if you ever plan to write a pile of Java code.

On Lisp by Paul Graham (Prentice Hall, 1993)
Considered by many to be the definitive book on Lisp.

Effective JavaScript: 68 Specific Ways to Harness the Power of JavaScript by David
Herman (Addison-Wesley, 2012)

Like JavaScript Allongé, Herman’s book would make a nice companion to my book.

The Joy of Clojure, Second Edition by Chris Houser and Michael Fogus (Manning,
2013)

One of my goals in writing Functional JavaScript was to provide a smooth transition
to understanding Joy without prior Clojure knowledge.

Hints for Computer System Design by Butler W. Lampson (Xerox Palo Alto Research
Center, 1983)

Lampson has influenced much of modern programming even though you might
never have heard his name.

ML for the Working Programmer, Second Edition by L.C. Paulson (Cambridge Univer‐
sity Press, 1996)

What could you possibly learn about functional JavaScript by reading about ML?
A lot, as it turns out.

Applicative High Order Programming: Standard ML in Practice by Stefan Sokolowski
(Chapman & Hall Computing, 1991)

A long-forgotten gem.

228 | Appendix B: Annotated Bibliography

http://shop.oreilly.com/product/9780596805531.do

JavaScript Patterns by Stoyan Stefanov (O’Reilly, 2010)
Not really patterns in the “design patterns” sense, but rather patterns of structure
that you’ll see in JavaScript programs. A very nice read.

Common Lisp: A Gentle Introduction to Symbolic Computation by David S. Touretzky
(Addison-Wesley/Benjamin Cummings, 1990)

What could you possibly learn about functional JavaScript by reading about Lisp?
A lot it turns out.

Programming Scala by Dean Wampler and Alex Payne (O’Reilly, 2009)
A well-written book on Scala, available free online.

High Performance JavaScript by Nicolas Zakas (O’Reilly, 2010)
An essential read when it’s time to speed up your functional abstractions.

Presentations
“Pushing The Limits of Web Browsers…or Why Speed Matters” by Lars Bak

An invited keynote presentation at the 2012 Strange Loop conference. Bak is an
engaging speaker who has been a driving force behind language-speed optimiza‐
tions for decades.

“Programming with Values in Clojure” by Alan Dipert
A presentation given at the 2012 Clojure/West conference.

“The Next Mainstream Programming Language: A Game Developer’s Perspective” by
Tim Sweeney

A presentation given at the Symposium on Principles of Programming Languages
in 2006.

Blog Posts
Can functional programming be liberated from the von Neumann paradigm? by Conal
Elliott

An exploration into how and why I/O corrupts the functional ideal that strives for
declarativness.

Markdown by John Gruber
Markdown’s ubiquity is nigh.

Rich Hickey Q&A by Rich Hickey and Michael Fogus. Code Quarterly 2011.
Chock full of gems about programming, design, and languages and systems.

Monads are Tress with Grafting by Dan Piponi
The paper that helped me tremendously in understanding monads. YMMV.

Presentations | 229

http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/9780596155964.do
http://shop.oreilly.com/product/9780596802806.do
http://bit.ly/144rBkj
http://bit.ly/Z1zrwS
http://bit.ly/Z1zrwS
http://bit.ly/Z1zrwS
http://daringfireball.net/projects/markdown/
http://codequarterly.com/2011/rich-hickey/
http://bit.ly/12Hhe56

Simple JavaScript Inheritance by John Resig
While I tend to dislike hierarchy building, Resig’s implementation is very clean and
instructive.

Understanding Monads With JavaScript by Ionut G. Stan
Stan’s monad implementation was highly important for my own understanding of
monads. Additionally, the actions implementation is derived from his code.

Execution in the Kingdom of Nouns by Steve Yegge
Yegge popularized the verbs vs nouns argument in OO vs functional programming.
While his points are debatable, his imagery is stellar.

Maintainable JavaScript: Don’t modify objects you don’t own by Nicholas Zakas
Zakas has been thinking about good JavaScript style for a very long time.

Journal Articles
“Why functional programming matters” by John Hughes. The Computer Journal
(1984)

The definitive treatise on the matter. While the examples given are sometimes un‐
fortunate, the prose is well worth a read.

230 | Appendix B: Annotated Bibliography

http://bit.ly/ZN2nr2
http://bit.ly/109vWDm
http://bit.ly/19FFUgz
http://bit.ly/10yBkQ0

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
_. (Underscore functions)

_.all, 38
_.any, 38
_.chain, 166
_.clone, 125
_.compose, 108, 111
_.countBy, 38
_.defaults, 42
_.extend, 154
_.findWhere, 43
_.groupBy, 38
_.invert, 42
_.keys, 41
_.map, 140
_.max, 70, 72
_.noConflict, 50
_.object, 42
_.omit, 43
_.pairs, 42
_.pick, 44
_.pluck, 41, 44
_.random, 139
_.reduce, 34, 36, 46
_.reduceRight, 36
_.reject, 37
_.sortBy, 38
_.tap, 167
_.value, 167

_.values, 41
_.where, 43
_.zip, 115

(see also functions)

A
abstract tasks, 45, 67
accumulator arguments, 120, 122
_.all function, 38
allong.es library (Braithwaite), 221
always function, 76
An Introduction to Database Systems (Date),

228
andify function, 122
_.any function, 38
Applicative High Order Programming: Stan‐

dard ML in Practice (Sokolowski), 228
applicative programming, 34–40, 48
arguments

accumulator arguments, 120
capturing to higher-order functions, 77
in recursive functions, 114
partial application of, 100–108

array indexing, 11
Array#forEach method, 2
Array#map method, 21
Array#sort method, 13
arrays

building with recursion, 115

231

“consuming” with recursion, 114
nested, 16, 42, 126

associative data, 41
asynchronous change, ensuring coherence in,

203
asynchronous libraries, 134

B
Batman (Bruce Wayne), xiii
best function, 71
Bilby library (McKenna), 220
binding, definition of, 49
“blowing the stack” error, 129
Braithwaite, Reginald, 221

C
callbacks, 134
captured variable, 63
_.chain function, 166
chaining (see method chaining)
class hierarchies, 201–211

basics of, 201
changing, 204
flattening with mixins, 205

class-based object system, 16, 191
client-service application architectures, 1
Clojure programming language, 218
ClojureScript programming language, 223–224
_.clone function, 125
Closure: The Definitive Guide (Bolin), 227
closures, 59–67

as abstractions, 67
definition of, 59, 60
hiding data with, 11
overview of, 67
simulation of, 60–64
using, 65, 75

Codd library (Fogus), 218
code elision, 23
code in-lining, 22
CoffeeScript programming language, 224
collection-centric programming, 35
combinators, 76, 122
command/query separation, 176
Common Lisp: A Gentle Introduction to Sym‐

bolic Computation (Touretzky), 229
comparator function, 13
comparators, 14

compare-and-swap semantics, 203, 212
comparison, of arbitrary objects, 70
complement function, 65
_.compose function, 108, 111
constructPair function, 116
control flow vs. data flow, 180–188
core prototype munging, 200
_.countBy function, 38
Crockford, Douglas, xiv, xvi
cross-browser incompatibility, 24
currying, 93–100

automatic, 95
definition of, 93
direction of, 94
disadvantages of, 100
for fluent APIs, 99
left-to-right currying, 93
overview of, 110
vs. partial application, 101
and pipelines, 180
right-to-left currying, 93–97

D
data

as abstraction, 16
generating lazy, 131
generating random, 139
graph-like structure, 118
immutable types of, 147
table-like data, 43

data flow vs. control flow, 180–188
data handling

associative data technique, 41
functional vs. object-oriented, 18
improving explicitness of, 180

data hiding, 11, 79
data orientation, 191–198
data tables, 16
data transformation

for abstract tasks, 45
functions and, 17
nondestructive, 7
pipelined functions for, 176

data-centric thinking, 45
declarative, 43, 105, 220
deepClone function, 125
_.defaults function, 42
default values, assigning lazily, 81
depthSearch function, 119

232 | Index

Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma, Helm, Johnson,
and Vlissides), 228

dispatch function, 87
Domain Specific Languages (Fowler), 228
dynamic scope, 52–56

E
ECMAScript.next, 3, 16, 41, 57, 79, 81, 122, 134,

209
Effective JavaScript: 68 Specific Ways to Harness

the Power of JavaScript (Herman), 228
Elm programming language, 225
encapsulation, 10
executeIfHasField, 20
existy function, 19
_.extend function, 154
extent, 49
Extreme Programming Explained: Embrace

Change (Beck), 227

F
filter function, 34
find function, 37
finder function, 70
_.findWhere function, 43
first-class functions

and closures, 59
building on the fly, 87
definition of, 28
and higher-order functions, 69
overview of, 47

flow-based programming, 165–189
chaining, 165–175
data flow vs. control flow, 180–188
pipelining, 176–180

fnull function, 80
free variables, 62
Friebyrd library (Fogus), 218
function scope, 57
Function#apply method, 2–3

and dynamic scope, 52
Function#call method, 3, 55–56

and dynamic scope, 55
as subclass initializer, 33, 207

functional composition, 87–111
compose function, 108
creating combinators, 122

currying, 93–100
essence of, 87–92
overview of, 110
partial application, 100–108
vs. object-oriented approach, 216

Functional JavaScript
focus on arrays and objects, 16
notational conventions used, xv
prerequisites to learning, xvi
source code for, xiv
topic outline, xvi

Functional JavaScript library (Steele), 217
functional programming

basics of, 4–24
chain of calls in, 176
definition of, 27
example of, 21
flexibility of, 216
idempotence and, 146
vs. imperative programming, 30
JavaScript support for, xiii, 1, 217–223
key facet of, 40
vs. metaprogramming, 33
and mutation, 92
vs. object-oriented approach, 6, 10, 18, 191
overview of, 25
vs. prototype-based OOP, 32, 200
reducing complexity with, 139
relation to recursion, 113
speed of, 21–24

Functional Reactive Programming (FRP), 225
functions

always function, 76
andify function, 122
applicative functions, 39
as units of abstraction, 8
as units of behavior, 11
best function, 71
building with currying, 97
comparator function, 13
complement function, 65
deepClone function, 125
definition of, 32
depthSearch function, 119
dispatch function, 87
existy function, 19
filter function, 34
find function, 37
finder function, 70

Index | 233

first-class functions, 28–33, 47, 59, 69, 87
fnull function, 80
function-building functions, 87–111
function-returning functions, 75–82
function-taking functions, 69–75
higher-order functions, 15, 69–86, 136
and immutability, 153
in functional programming, 6
of incongruous return types, 180
invoker function, 76, 93
iterateUntil function, 74
makeUniqueStringFunction, 78
map function, 34
mutually recursive, 124–129
nexts function, 118
parseAge function, 9
plucker function, 67
polymorphic functions, 87
pure functions, 141, 154
reduce function, 34
repeat function, 72
repeatedly function, 73, 75
restrict function, 47
selector functions, 43
self-recursive functions, 113–124
truthy function, 19, 65
uniqueString function, 77
unzip function, 115
visit function, 126

(see also _. Underscore functions)

G
global scope, 49
Google Apps, 1
Google Closure compiler, 23
_.groupBy function, 38

H
hex color builders, 98
Hickey, Rich, 150
High Performance JavaScript (Zakas), 229
higher-order functions, 69–86

always function, 76
best function, 71
capturing arguments to, 77
capturing variables, 77
definition of, 69
finder function, 70

fnull function, 80
function-returning functions, 75–82
function-taking functions, 69–75
invoker function, 76
iterateUntil function, 74
_.max function, 70
overview of, 85
vs. recursion, 136
repeatedly function, 73, 75

Hints for Computer System Design (Lampson),
228

HTML hex colors builders, 98

I
idempotence, 146
immutability, 147–160

at function level, 153
benefits of, 147, 149
defensive freezing and cloning, 151
in objects, 155–159
overview of, 163
policies for, 160
and recursion, 150

imperative programming, 3, 30, 92
implicit global scope, 50
in-lining optimizations, 22
Introduction to Functional Programming (Bird

and Wadler), 227
_.invert function, 42
invoker function, 76, 93
iterateUntil function, 74

J
Java Concurrency in Practice (Goetz), 228
JavaScript

as a functional language, 27
asynchronous APIs, 134
dynamic scope in, 55
eliminating named types/hierarchies with,

193
everything-is-an-object foundation of, 126
first-class functions and, 59
functional libraries for, 217–223
functional programming languages for, 223
immutability in, 147
limitations of, 3, 129
multiple paradigms of, 29–33
object prototype model, 16

234 | Index

reasons to use, 1, 18
this-reference semantics, 32
validation in, 82

JavaScript Allongé (Braithwaite), 227
JavaScript Patterns (Stefanov), 229
JavaScript: The Definitive Guide, 6th Edition

(Flanagan), 228
JavaScript: The Good Parts (Crockford), xvi, 3,

227
jQuery

functional idioms in, 24
promises, 173

K
_.keys function, 41

L
lazy data, definition of, 131
LazyChain object, 168, 192
Lemonad library (Fogus), xiv, 218
lexical scope, 51
lookup schemes, 52

M
makeUniqueString function, 78
map function, 34, 140
Math#max, 70, 72
_.max function, 70, 72
McKenna, Brian, 220
metaprogramming, 33
method chaining

benefits of, 165
_.chain function, 166
downsides to, 176
lazy chains, 168
overview of, 189
promises, 173
_.tap function, 167
_.value function, 167

methods
definition of, 32
as low-level operations, 214

Microsoft’s RxJS library, 219
Minker library (Fogus), 218
mixin-based extensions, 198–216
mixins, 198–216

and class hierarchies, 201–211

definition of, 206
flattening hierarchies with, 205
need for, 198
new semantics with, 211
new types with, 212
vs. core prototype munging, 200

ML for the Working Programmer, Second Edi‐
tion (Paulson), 228

monads, 185
mutations

as low-level operation, 92
avoid by freezing, 151–153
hiding, 83, 149–151, 153–154
in JavaScript, 146, 148
policies for control of, 160

(see also immutability)
mutually recursive functions, 124
myLength operation, 114

N
nexts function, 118
_.noConflict function, 50
number, generating random, 139

O
_.object function, 42
object oriented programming (OOP), 4, 10, 32,

191, 216
object validators, 82
Object#freeze operation, 151
object-centric thinking, 192, 198
objects

comparing arbitrary, 70
deep cloning of, 125
defensive freezing of, 151
as low-level operations, 159
mutability of, 148
pervasive freezing of, 155

_.omit function, 43
On Lisp (Graham), 228
OOP (see object oriented programming)
optimizations, 22

P
_.pairs function, 42
parseAge function, 9

Index | 235

partial application, 100–108
of arbitrary number of arguments, 103
vs. currying, 101
of one and two known arguments, 102
overview of, 110
and pipelines, 180
preconditions, 104

_.pick function, 44
pipelining, 176–180, 189, 197
_.pluck function, 41, 44
plucker function, 67
polymorphic functions, 87
predicates, 14
program optimizers, 23
Programming Scala (Wampler and Payne), 229
promises, 173
property testing, 143–144
prototype chains, 32
prototype-based object-oriented programming,

32, 200
purity, 139–147

determination of, 139
and idempotence, 146
isolating impure functions, 142
overview of, 163
properties of, 141
and referential transparency, 144
testing impure functions, 143

R
_.random functions, 139
random numbers, 139
Reactive Extensions for JavaScript (RxJS), 219
recursion, 113–137

benefits of, 113
codependent function, 124–129
deep cloning with, 125
and immutability, 150
lazy data streams, 131
as low-level operation, 136
overview of, 137
potential errors, 129, 133
rules of thumb for, 117
self-absorbed functions, 113–124
traversing nested arrays, 126

_.reduce function, 34–36, 46
_.reduceRight function, 36
referential transparency, 79, 144
_.reject function, 37

rename utility, 46
repeat function, 72
repeatedly function, 73, 75
RESTful architectures, 146
restrict function, 47
Roy programming language, 224
run-to-completion guarantees, 203
runtime speed enhancements, 21
RxJS library, 219

S
scope

definitions of, 49
extent of, 49
variable scope, 49–58

searches, depth-first self-recursive, 119
select* functions, 18
selector functions, 43
self-absorbed functions, 113–124

benefits of, 113
building arrays with, 115
“consuming” arrays with, 114
creating combinators, 122
depth-first search, 119
for graph-like data structures, 118
rules of thumb for, 117, 121

self-recursion, 117
shadowing, 63
short-circuiting laziness, 122
single-page application architectures, 1
_.sortBy function, 38
SQL and Relational Theory: How to Write Ac‐

curate SQL Code (Date), 228
stack explosions, 129
static optimization, 22
Steele, Oliver, 217
Structure and Interpretation of Computer Pro‐

grams (Abelson, Sussman, and Sussman),
227

T
tables

table-like data, 43
with nested arrays, 16

tail (self)-recursion, 121
_.tap function, 167
tasks

abstract, 45, 67

236 | Index

performing concurrent, 134
test-driven development (TDD), 8
The Joy of Clojure, Second Edition (Houser and

Fogus), 228
this reference, 55
this-reference semantics, 32
thunks, definition of, 169
time-sensitive states, 147
“Too much recursion” error, 129, 133
trampoline, 129

and callbacks, 134–136
trampoline principle, 134

trampoline principle, 134
truthy function, 19, 65

U
Underscore-contrib library, 218
Underscore.js

description of, xiii
downloading, xiii
first arguments in, 176
interacting with, xiii
reasons for choosing, 24

uniqueString function, 77
unzip function, 115

V
validation testing

and purity, 140

of impure functions, 143
validators, 82
_.value function, 167
_.values function, 41
values, building with recursion, 114
var keyword, 50
variable scope, 49–58

dynamic scope, 52–56
function scope, 57–58
global scope, 49–50
lexical scope, 51–52
overview of, 67

variables
capturing, 77
creating private, 79
free variables, 62
lifetime of, 49
mutability of, 50, 79
shadowing of, 63

visit function, 126

W
“web of mutation”, 148–149, 160
_.where function, 43

Z
_.zip function, 115
zombie, 41–42

Index | 237

About the Author
Michael Fogus is a software developer with experience in distributed simulation, ma‐
chine vision, and expert systems construction. He’s actively involved in the Clojure and
Underscore.js communities.

Colophon
The animal on the cover of Functional JavaScript is an eider duck (Somateria mollissi‐
ma), a sea-duck that ranges between 50−70 cm in length. Eider ducks can be found
along the coast of Europe, North America, and the east coast of Siberia. They spend
their winters in temperate zones after breeding in the Arctic and other northern tem‐
perate regions. In flight, eider ducks have been clocked at speeds of 113 km/h (70 mph).

Eider nests are often built close to the ocean and are lined with eiderdown—plucked
from the breast of a female eider. The lining has been harvested for use as pillow and
quilt fillers, a sustainable practice that happens after the ducklings have left the nest
without harm to the birds. Eiderdown has been replaced in more recent years by syn‐
thetic alternatives and down from domestic farm geese.

Male eider ducks are characterized by their black and white plumage and green nape;
the female is brown. In general, eiders are bulky and large with a wedge-shaped bill.
They feed on crustaceans and mollusks. Their favored food, mussels, are swallowed
whole, the shells crushed in the gizzard and excreted.

This species has populations of between 1.5 and 2 million in North America and Europe;
the numbers in eastern Siberia are large but unknown. One colony of eiders—about
1,000 pairs of ducks—on the Farne Islands in Northumberland, England, enjoys a bit
of fame for being the subject of one of the first bird protection laws in the year 676. The
law was established by Saint Cuthbert, patron saint of Northumberland, giving the ducks
a local nickname of “Cuddy’s ducks” (“Cuddy” being short for “Cuthbert”).

In the 1990s, there were eider die-offs in Canada’s Hudson Bay that were attributed to
changing ice flow patterns. According to data gathered by the Canadian Wildlife Serv‐
ices, the population has shown recovery in the years since.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga‐
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Foreword by Jeremy Ashkenas
	Foreword by Steve Vinoski
	Preface
	What Is Underscore?
	Getting Underscore
	Using Underscore
	The Source Code for Functional JavaScript
	Running the Code in This Book
	Notational Conventions

	Whom Functional JavaScript Is Written For
	A Roadmap for Functional JavaScript
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Functional JavaScript
	The Case for JavaScript
	Some Limitations of JavaScript

	Getting Started with Functional Programming
	Why Functional Programming Matters
	Functions as Units of Abstraction
	Encapsulation and Hiding
	Functions as Units of Behavior
	Data as Abstraction
	A Taste of Functional JavaScript
	On Speed

	The Case for Underscore
	Summary

	Chapter 2. First-Class Functions and Applicative Programming
	Functions as First-Class Things
	JavaScript’s Multiple Paradigms

	Applicative Programming
	Collection-Centric Programming
	Other Examples of Applicative Programming
	Defining a Few Applicative Functions

	Data Thinking
	“Table-Like” Data

	Summary

	Chapter 3. Variable Scope and Closures
	Global Scope
	Lexical Scope
	Dynamic Scope
	JavaScript’s Dynamic Scope

	Function Scope
	Closures
	Simulating Closures
	Using Closures
	Closures as an Abstraction

	Summary

	Chapter 4. Higher-Order Functions
	Functions That Take Other Functions
	Thinking About Passing Functions: max, finder, and best
	More Thinking About Passing Functions: repeat, repeatedly, and
 iterateUntil

	Functions That Return Other Functions
	Capturing Arguments to Higher-Order Functions
	Capturing Variables for Great Good
	A Function to Guard Against Nonexistence: fnull

	Putting It All Together: Object Validators
	Summary

	Chapter 5. Function-Building Functions
	The Essence of Functional Composition
	Mutation Is a Low-Level Operation

	Currying
	To Curry Right, or To Curry Left
	Automatically Currying Parameters
	Currying for Fluent APIs
	The Disadvantages of Currying in JavaScript

	Partial Application
	Partially Applying One and Two Known Arguments
	Partially Applying an Arbitrary Number of Arguments
	Partial Application in Action: Preconditions

	Stitching Functions End-to-End with Compose
	Pre- and Postconditions Using Composition

	Summary

	Chapter 6. Recursion
	Self-Absorbed Functions (Functions That Call Themselves)
	Graph Walking with Recursion
	Depth-First Self-Recursive Search with Memory
	Recursion and Composing Functions: Conjoin and Disjoin

	Codependent Functions (Functions Calling Other Functions That Call
 Back)
	Deep Cloning with Recursion
	Walking Nested Arrays

	Too Much Recursion!
	Generators
	The Trampoline Principle and Callbacks

	Recursion Is a Low-Level Operation
	Summary

	Chapter 7. Purity, Immutability, and Policies for Change
	Purity
	The Relationship Between Purity and Testing
	Separating the Pure from the Impure
	Property-Testing Impure Functions
	Purity and the Relationship to Referential Transparency
	Purity and the Relationship to Idempotence

	Immutability
	If a Tree Falls in the Woods, Does It Make a Sound?
	Immutability and the Relationship to Recursion
	Defensive Freezing and Cloning
	Observing Immutability at the Function Level
	Observing Immutability in Objects
	Objects Are Often a Low-Level Operation

	Policies for Controlling Change
	Summary

	Chapter 8. Flow-Based Programming
	Chaining
	A Lazy Chain
	Promises

	Pipelining
	Data Flow versus Control Flow
	Finding a Common Shape
	A Function to Simplify Action Creation

	Summary

	Chapter 9. Programming Without Class
	Data Orientation
	Building Toward Functions

	Mixins
	Core Prototype Munging
	Class Hierarchies
	Changing Hierarchies
	Flattening the Hierarchy with Mixins
	New Semantics via Mixin Extension
	New Types via Mixin Mixing
	Methods Are Low-Level Operations

	}).call(“Finis”);

	Appendix A. Functional JavaScript in the Wild
	Functional Libraries for JavaScript
	Functional JavaScript
	Underscore-contrib
	RxJS
	Bilby
	allong.es
	Other Functional Libraries

	Functional Programming Languages Targeting JavaScript
	ClojureScript
	CoffeeScript
	Roy
	Elm

	Appendix B. Annotated Bibliography
	Books
	Presentations
	Blog Posts
	Journal Articles

	Index
	About the Author

