O'REILLY"

Dk
S
RSN N
aMANRR.
NN N

,‘

SR
DN
NS

) 2%,
S et
]'% ‘ s"zgf;?,{q,fo;‘;ﬁ

s

/ "
Al

«,M,/ﬁn‘l i ‘w.,\c': f)
i

{
'l
K

.

S

Web Development

DEVELOPING WEB APPLICATIONS WITH PYTHON

Miguel Grinberg

vww .allitebooks.cond

http://www.allitebooks.org

O'REILLY"

Flask Web Development

Take full creative control of your web applications with Flask, the Python-
based microframework. With this hands-on book, you'll learn Flask from
the ground up by developing a complete social blogging application step
by step. Author Miguel Grinberg walks you through the framework's
core functionality, and shows you how to extend applications with
advanced web techniques such as database migration and web service
communication.

Rather than impose development guidelines as other frameworks do,
Flask leaves the business of extensions up to you. If you have Python
experience, this book shows you how to take advantage of that creative
freedom.

m Learn Flask's basic application structure and write an example app

m Work with must-have components—templates, databases, web
forms, and email support

m Use packages and modules to structure a large application that
scales

m Implement user authentication, roles, and profiles

m Build a blogging feature by reusing templates, paginating item
lists, and working with rich text

m Use a Flask-based RESTful API to expose app functionality to
smartphones, tablets, and other third-party clients

m Learn how to run unit tests and enhance application
performance

m Explore options for deploying your web app to a production
server

Miguel Grinberg has over 25 years of experience as a software engineer, and
currently works in the video broadcast industry. He blogs about a variety of
topics, including web development, robotics, and photography.

WEB DEVELOPMENT / PYTHON

US $39.99 CAN $41.99
ISBN: 978-1-449-37262-0

7814491372620

vww allitebooks.conl

Twitter: @oreillymedia
facebook.com/oreilly

http://www.allitebooks.org

Flask Web Development

Miguel Grinberg

Beijing + Cambridge - Farnham - Kdln - Sebastopol + Tokyo [KOAR{=|MN4

vww allitebooks.cond

http://www.allitebooks.org

Flask Web Development
by Miguel Grinberg

Copyright © 2014 Miguel Grinberg. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Rachel Roumeliotis ~ Cover Designer: Randy Comer
Production Editor: Nicole Shelby Interior Designer: David Futato
Copyeditor: Nancy Kotary lllustrator: Rebecca Demarest
Proofreader: Charles Roumeliotis

May 2014: First Edition

Revision History for the First Edition:
2014-04-25: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449372620 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Flask Web Development, the picture of a Pyrenean Mastiff, and related trade dress are trademarks
of O’'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37262-0
[LSI]

vww allitebooks.cond

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449372620
http://www.allitebooks.org

For Alicia.

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

vww allitebooks.cond

Preface. ..o Xi
Partl. Introduction to Flask
1o Installation.ooveiiiii 3
Using Virtual Environments 4
Installing Python Packages with pip 6
2. Basic Application StruCtUre.oovui ittt it ittt 7
Initialization 7
Routes and View Functions 8
Server Startup 9
A Complete Application 9
The Request-Response Cycle 12
Application and Request Contexts 12
Request Dispatching 14
Request Hooks 14
Responses 15
Flask Extensions 16
Command-Line Options with Flask-Script 17
B =11 1] (= 21
The Jinja2 Template Engine 22
Rendering Templates 22
Variables 23
Control Structures 24
Twitter Bootstrap Integration with Flask-Bootstrap 26
Custom Error Pages 29
Links 31
v

http://www.allitebooks.org

Static Files
Localization of Dates and Times with Flask-Moment

L] 0 1TSS

Cross-Site Request Forgery (CSRF) Protection
Form Classes

HTML Rendering of Forms

Form Handling in View Functions

Redirects and User Sessions

Message Flashing

DAtaAbAsES. o vttt e e it

SQL Databases
NoSQL Databases
SQL or NoSQL?
Python Database Frameworks
Database Management with Flask-SQLAlchemy
Model Definition
Relationships
Database Operations
Creating the Tables
Inserting Rows
Modifying Rows
Deleting Rows
Querying Rows
Database Use in View Functions
Integration with the Python Shell
Database Migrations with Flask-Migrate
Creating a Migration Repository
Creating a Migration Script
Upgrading the Database

Email Support with Flask-Mail
Sending Email from the Python Shell
Integrating Emails with the Application
Sending Asynchronous Email

Large Application Structure.coovviriiiiiiiiiiieinenenn.

Project Structure
Configuration Options
Application Package

32
33

37
37
38
40
41
44
46

49
49
50
51
51
52
54
56
57
58
58
60
60
60
62
63
64
64
65
66

69
69
70
71
72

75
75
76
78

vi

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Using an Application Factory 78

Implementing Application Functionality in a Blueprint 79
Launch Script 81
Requirements File 82
Unit Tests 83
Database Setup 85

Partll. Example: A Social Blogging Application

8. UserAuthentication...............oooiiiiiiiiiiiiiii 89
Authentication Extensions for Flask 89
Password Security 90

Hashing Passwords with Werkzeug 90
Creating an Authentication Blueprint 92
User Authentication with Flask-Login 94

Preparing the User Model for Logins 94

Protecting Routes 95

Adding a Login Form 96

Signing Users In 97

Signing Users Out 99

Testing Logins 99
New User Registration 100

Adding a User Registration Form 100

Registering New Users 102
Account Confirmation 103

Generating Confirmation Tokens with itsdangerous 103

Sending Confirmation Emails 105
Account Management 109

9. UserRoles.......covvveeeeiiiiiiiii m
Database Representation of Roles 111
Role Assignment 113
Role Verification 114

10. UserProfiles.........cooviiiiiiiiii i 119
Profile Information 119
User Profile Page 120
Profile Editor 122

User-Level Profile Editor 122

Administrator-Level Profile Editor 124

Table of Contents | vii

vww allitebooks.cond

http://www.allitebooks.org

1.

12.

13.

14.

User Avatars

BIOg POStS. ... oveeee e i e

Blog Post Submission and Display

Blog Posts on Profile Pages

Paginating Long Blog Post Lists
Creating Fake Blog Post Data
Rendering Data on Pages
Adding a Pagination Widget

Rich-Text Posts with Markdown and Flask-PageDown

Using Flask-PageDown

Handling Rich Text on the Server
Permanent Links to Blog Posts
Blog Post Editor

0] |10

Database Relationships Revisited
Many-to-Many Relationships
Self-Referential Relationships
Advanced Many-to-Many Relationships

Followers on the Profile Page

Query Followed Posts Using a Database Join

Show Followed Posts on the Home Page

USer COmMMeNES. . oot et et e e ieeeneeneeneeneeneeneeneens

Database Representation of Comments
Comment Submission and Display
Comment Moderation

Application Programming Interfaces...................eeeee..

Introduction to REST
Resources Are Everything
Request Methods
Request and Response Bodies
Versioning

RESTful Web Services with Flask
Creating an API Blueprint
Error Handling
User Authentication with Flask-HT TPAuth
Token-Based Authentication
Serializing Resources to and from JSON
Implementing Resource Endpoints

127

131
131
134
135
135
137
138
141
141
143
145
146

149
149
150
151
152
155
158
160

165
165
167
169

175
175
176
177
177
178
179
179
180
181
184
186
188

viii

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Pagination of Large Resource Collections 191
Testing Web Services with HT TPie 192

Partlll. The Last Mile

O -2 1T 197
Obtaining Code Coverage Reports 197
The Flask Test Client 200

Testing Web Applications 200
Testing Web Services 204
End-to-End Testing with Selenium 205
Is It Worth It? 209

16. Performance............ooiiiiiiiiiiiiii 211
Logging Slow Database Performance 211
Source Code Profiling 213

17. Deployment.cvvuniini ittt ittt ittt e enieraieraeeaaas 215
Deployment Workflow 215
Logging of Errors During Production 216
Cloud Deployment 217
The Heroku Platform 218

Preparing the Application 218
Testing with Foreman 222
Enabling Secure HTTP with Flask-SSLify 223
Deploying with git push 225
Reviewing Logs 226
Deploying an Upgrade 227
Traditional Hosting 227
Server Setup 227
Importing Environment Variables 228
Setting Up Logging 228

18. Additional Resources............oooiiiiiiiiiiiiiiiii 231
Using an Integrated Development Environment (IDE) 231
Finding Flask Extensions 232
Getting Involved with Flask 232

INAEX. .ot 235

Table of Contents | ix

Preface

Flask stands out from other frameworks because it lets developers take the driver’s seat
and have full creative control of their applications. Maybe you have heard the phrase
“fighting the framework” before. This happens with most frameworks when you decide
to solve a problem with a solution that isn’t the official one. It could be that you want to
use a different database engine, or maybe a different method of authenticating users.
Deviating from the path set by the frameworks developers will give you lots of
headaches.

Flask is not like that. Do you like relational databases? Great. Flask supports them all.
Maybe you prefer a NoSQL database? No problem at all. Flask works with them too.
Want to use your own homegrown database engine? Don't need a database at all? Still
fine. With Flask you can choose the components of your application or even write your
own if that is what you want. No questions asked!

The key to this freedom is that Flask was designed from the start to be extended. It comes
with a robust core that includes the basic functionality that all web applications need
and expects the rest to be provided by some of the many third-party extensions in the
ecosystem and, of course, by you.

In this book I present my workflow for developing web applications with Flask. I don’t
claim to have the only true way to build applications with this framework. You should
take my choices as recommendations and not as gospel.

Most software development books provide small and focused code examples that
demonstrate the different features of the target technology in isolation, leaving the “glue”
code that is necessary to transform these different features into a fully working appli-
cations to be figured out by the reader. I take a completely different approach. All the
examples I present are part of a single application that starts out very simple and is
expanded in each successive chapter. This application begins life with just a few lines of
code and ends as a nicely featured blogging and social networking application.

Xi

Who This Book Is For

You should have some level of Python coding experience to make the most of this book.
Although the book assumes no previous Flask knowledge, Python concepts such as
packages, modules, functions, decorators, and object-oriented programming are as-
sumed to be well understood. Some familiarity with exceptions and diagnosing issues
from stack traces will be very useful.

While working through the examples in this book, you will spend a great deal of time
in the command line. You should feel comfortable using the command line of your
operating system.

Modern web applications cannot avoid the use of HTML, CSS, and JavaScript. The
example application that is developed throughout the book obviously makes use of
these, but the book itself does not go into a lot of detail regarding these technologies
and how they are used. Some degree of familiarity with these languages is recommended
if you intend to develop complete applications without the help of a developer versed
in client-side techniques.

I released the companion application to this book as open source on GitHub. Although
GitHub makes it possible to download applications as regular ZIP or TAR files, I strongly
recommend that you install a Git client and familiarize yourself with source code version
control, at least with the basic commands to clone and check out the different versions
of the application directly from the repository. The short list of commands that you'll
need is shown in “How to Work with the Example Code ” on page xiii. You will want to
use version control for your own projects as well, so use this book as an excuse to learn
Git!

Finally, this book is not a complete and exhaustive reference on the Flask framework.
Most features are covered, but you should complement this book with the official Flask
documentation.

How This Book Is Organized
This book is divided into three parts:

Part I, Introduction to Flask, explores the basics of web application development with
the Flask framework and some of its extensions:

o Chapter 1 describes the installation and setup of the Flask framework.
o Chapter 2 dives straight into Flask with a basic application.

o Chapter 3 introduces the use of templates in Flask applications.

« Chapter 4 introduces web forms.

o Chapter 5 introduces databases.

xii | Preface

http://flask.pocoo.org
http://flask.pocoo.org

o Chapter 6 introduces email support.

o Chapter 7 presents an application structure that is appropriate for medium and
large applications.

Part IT, Example: A Social Blogging Application, builds Flasky, the open source blogging
and social networking application that I developed for this book:

o Chapter 8 implements a user authentication system.

o Chapter 9 implements user roles and permissions.

o Chapter 10 implements user profile pages.

o Chapter 11 creates the blogging interface.

o Chapter 12 implements followers.

o Chapter 13 implements user comments for blog posts.

o Chapter 14 implements an Application Programming Interface (API).

PartIII, The Last Mile, describes some important tasks not directly related to application
coding that need to be considered before publishing an application:

o Chapter 15 describes different unit testing strategies in detail.
o Chapter 16 gives an overview of performance analysis techniques.

o Chapter 17 describes deployment options for Flask applications, both traditional
and cloud based.

o Chapter 18 lists additional resources.

How to Work with the Example Code

The code examples presented in this book are available from GitHub at https://
github.com/miguelgrinberg/flasky.

The commit history in this repository was carefully created to match the order in which
concepts are presented in the book. The recommended way to work with the code is to
check out the commits starting from the oldest, then move forward through the commit
list as you make progress with the book. As an alternative, GitHub will also let you
download each commit as a ZIP or TAR file.

If you decide to use Git to work with the source code, then you need to install the Git
client, which you can download from http://git-scm.com. The following command
downloads the example code using Git:

$ git clone https://github.com/miguelgrinberg/flasky.git

Preface | xiii

https://github.com/miguelgrinberg/flasky
https://github.com/miguelgrinberg/flasky
http://git-scm.com

The git clone command installs the source code from GitHub into a flasky folder that
is created in the current directory. This folder does not contain just source code; a copy
of the Git repository with the entire history of changes made to the application is also
included.

In the first chapter you will be asked to check out the initial release of the application,
and then, at the proper places you will be instructed to move forward in the history.
The Git command that lets you move through the change historyisgit checkout. Here
is an example:

$ git checkout 1a

The 1a referenced in the command is a tag, a named point in the history of the project.
This repository is tagged according to the chapters of the book, so the 1a tag used in
the example sets the application files to the initial version used in Chapter 1. Most
chapters have more than one tag associated with them, so, for example, tags 5a, 5b, and
so on are incremental versions presented in Chapter 5.

In addition to checking out the source files for a version of the application, you may
need to perform some setup. For example, in some cases you will need to install addi-
tional Python packages or apply updates to the database. You will be told when these
are necessary.

You will normally not modify the source files of the application, but if you do, then Git
will not let you check out a different revision, as that would cause your local changes to
be lost. Before you can check out a different revision, you will need to revert the files to
their original state. The easiest way to do this is with the git reset command:

$ git reset --hard

This command will destroy your local changes, so you should save anything you don’t
want to lose before you use this command.

From time to time, you may want to refresh your local repository from the one on
GitHub, where bug fixes and improvements may have been applied. The commands
that achieve this are:

$ git fetch --all

$ git fetch --tags

$ git reset --hard origin/master
The git fetch commands are used to update the commit history and the tags in your
local repository from the remote one on GitHub, but none of this affects the actual
source files, which are updated with the git reset command that follows. Once again,
be aware that any time git resetis used you will lose any local changes you have made.

Another useful operation is to view all the differences between two versions of the
application. This can be very useful to understand a change in detail. From the command

xiv | Preface

line, the git diff command can do this. For example, to see the difference between
revisions 2a and 2b, use:

$ git diff 2a 2b

The differences are shown as a patch, which is not a very intuitive format to review
changes if you are not used to working with patch files. You may find that the graphical
comparisons shown by GitHub are much easier to read. For example, the differences
between revisions 2a and 2b can be viewed on GitHub at https://github.com/miguelgrin
berg/flasky/compare/2a...2b

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Flask Web Development by Miguel Grinberg
(O’Reilly). Copyright 2014 Miguel Grinberg, 978-1-449-3726-2”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Preface | xv

https://github.com/miguelgrinberg/flasky/compare/2a...2b
https://github.com/miguelgrinberg/flasky/compare/2a...2b
mailto:permissions@oreilly.com

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Safari® Books Online

Safari Books Online is an on-demand digital library that
Safa Tl delivers expert content in both book and video form from

BooksOntine the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xvi | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.bit.ly/flask-web-dev.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I could not have written this book alone. I have received a lot of help from family, co-
workers, old friends, and new friends I've made along the way.

I'd like to thank Brendan Kohler for his detailed technical review and for his help in
giving shape to the chapter on Application Programming Interfaces. 'm also in debt to
David Baumgold, Todd Brunhoft, Cecil Rock, and Matthew Hugues, who reviewed the
manuscript at different stages of completion and gave me very useful advice regarding
what to cover and how to organize the material.

Writing the code examples for this book was a considerable effort. I appreciate the help
of Daniel Hofmann, who did a thorough code review of the application and pointed out
several improvements. 'm also thankful to my teenage son, Dylan Grinberg, who sus-
pended his Minecraft addiction for a few weekends and helped me test the code under
several platforms.

O'Reilly has a wonderful program called Early Release that allows impatient readers to
have access to books while they are being written. Some of my Early Release readers
went the extra mile and engaged in useful conversations regarding their experience
working through the book, leading to significant improvements. I'd like to acknowledge

Preface | xvii

http://www.bit.ly/flask-web-dev
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Sundeep Gupta, Dan Caron, Brian Wisti and Cody Scott in particular for the contri-
butions they’ve made to this book.

The staff at O'Reilly Media has always been there for me. Above all I'd like to recognize
my wonderful editor, Meghan Blanchette, for her support, advice, and assistance from
the very first day we met. Meg has made the experience of writing my first book a
memorable one.

To conclude, T would like to give a big thank you to the awesome Flask community.

xviii | Preface

vww allitebooks.cond

http://www.allitebooks.org

PART |

Introduction to Flask

CHAPTER 1
Installation

Flask is a small framework by most standards, small enough to be called a “micro-
framework?” It is small enough that once you become familiar with it, you will likely be
able to read and understand all of its source code.

But being small does not mean that it does less than other frameworks. Flask was de-
signed as an extensible framework from the ground up; it provides a solid core with the
basic services, while extensions provide the rest. Because you can pick and choose the
extension packages that you want, you end up with a lean stack that has no bloat and
does exactly what you need.

Flask has two main dependencies. The routing, debugging, and Web Server Gateway
Interface (WSGI) subsystems come from Werkzeug, while template support is provided
by Jinja2. Werkzeug and Jinja2 are authored by the core developer of Flask.

There is no native support in Flask for accessing databases, validating web forms, au-
thenticating users, or other high-level tasks. These and many other key services most
web applications need are available through extensions that integrate with the core
packages. As a developer, you have the power to cherry-pick the extensions that work
best for your project or even write your own if you feel inclined to. This is in contrast
with a larger framework, where most choices have been made for you and are hard or
sometimes impossible to change.

In this chapter, you will learn how to install Flask. The only requirement you need is a
computer with Python installed.

The code examples in this book have been verified to work with
Python 2.7 and Python 3.3, so using one of these two versions is
strongly recommended.

http://flask.pocoo.org/
http://werkzeug.pocoo.org/
http://jinja.pocoo.org/

Using Virtual Environments

The most convenient way to install Flask is to use a virtual environment. A virtual
environment is a private copy of the Python interpreter onto which you can install
packages privately, without affecting the global Python interpreter installed in your
system.

Virtual environments are very useful because they prevent package clutter and version
conflicts in the system’s Python interpreter. Creating a virtual environment for each
application ensures that applications have access to only the packages that they use,
while the global interpreter remains neat and clean and serves only as a source from
which more virtual environments can be created. As an added benefit, virtual environ-
ments don't require administrator rights.

Virtual environments are created with the third-party virtualenv utility. To check
whether you have it installed in your system, type the following command:

$ virtualenv --version

If you get an error, you will have to install the utility.

Python 3.3 adds native support of virtual environments through the
venv module and the pyvenv command. pyvenv can be used instead
of virtualenv, but note that virtual environments created with py-
venv on Python 3.3 do not include pip, which needs to be installed
manually. This limitation has been removed in Python 3.4, where
pyvenv can be used as a complete virtualenv replacement.

Most Linux distributions provide a package for virtualenv. For example, Ubuntu users
can install it with this command:

$ sudo apt-get install python-virtualenv
If you are using Mac OS X, then you can install virtualenv using easy_install:
$ sudo easy_install virtualenv

If you are using Microsoft Windows or any operating system that does not provide an
official virtualenv package, then you have a slightly more complicated install procedure.

Using your web browser, navigate to https://bitbucket.org/pypa/setuptools, the home of
the setuptools installer. In that page, look for a link to download the installer script.
This is a script called ez_setup.py. Save this file to a temporary folder on your computer,
then run the following commands in that folder:

$ python ez_setup.py
$ easy_install virtualenv

4 | Chapter 1: Installation

The previous commands must be issued from an account with ad-
ministrator rights. On Microsoft Windows, start the command
prompt window using the “Run as Administrator” option. On Unix-
based systems, the two installation commands must be preceded with
sudo or executed as the root user. Once installed, the virtualenv util-
ity can be invoked from regular accounts.

Now you need to create the folder that will host the example code, which is available
from a GitHub repository. As discussed in “How to Work with the Example Code ” on
page xiii, the most convenient way to do this is by checking out the code directly from
GitHub using a Git client. The following commands download the example code from
GitHub and initialize the application folder to version “la,” the initial version of the
application:

$ git clone https://github.com/miguelgrinberg/flasky.git

$ cd flasky

$ git checkout 1a
The next step is to create the Python virtual environment inside the flasky folder using
the virtualenv command. This command has a single required argument: the name of
the virtual environment. A folder with the chosen name will be created in the current
directory and all files associated with the virtual environment will be inside. A com-
monly used naming convention for virtual environments is to call them venv:

$ virtualenv venv

New python executable in venv/bin/python2.7
Also creating executable in venv/bin/python
Installing setuptools............ done.
Installing pip.ccvevennnnn... done.

Now you have a venv folder inside the flasky folder with a brand-new virtual environ-
ment that contains a private Python interpreter. To start using the virtual environment,
you have to “activate” it. If you are using a bash command line (Linux and Mac OS X
users), you can activate the virtual environment with this command:

$ source venv/bin/activate
If you are using Microsoft Windows, the activation command is:
$ venv\Scripts\activate

When a virtual environment is activated, the location of its Python interpreter is added
to the PATH, but this change is not permanent; it affects only your current command
session. To remind you that you have activated a virtual environment, the activation
command modifies the command prompt to include the name of the environment:

(venv) $

Using Virtual Environments | 5

When you are done working with the virtual environment and want to return to the
global Python interpreter, type deactivate at the command prompt.

Installing Python Packages with pip

Most Python packages are installed with the pip utility, which virtualenv automatically
adds to all virtual environments upon creation. When a virtual environment is activated,
the location of the pip utility is added to the PATH.

If you created the virtual environment with pyvenv under Python 3.3,
then pip must be installed manually. Installation instructions are
available on the pip website. Under Python 3.4, pyvenv installs pip
automatically.

To install Flask into the virtual environment, use the following command:
(venv) $ pip install flask

With this command, Flask and its dependencies are installed in the virtual environment.
You can verify that Flask was installed correctly by starting the Python interpreter and
trying to import it:

(venv) $ python

>>> import flask
>>>

If no errors appear, you can congratulate yourself: you are ready for the next chapter,
where you will write your first web application.

6 | Chapter1:Installation

http://bit.ly/pip-install

CHAPTER 2
Basic Application Structure

In this chapter, you will learn about the different parts of a Flask application. You will
also write and run your first Flask web application.

Initialization

All Flask applications must create an application instance. The web server passes all
requests it receives from clients to this object for handling, using a protocol called Web
Server Gateway Interface (WSGI). The application instance is an object of class Flask,
usually created as follows:

from flask import Flask
app = Flask(__name__)

The only required argument to the Flask class constructor is the name of the main
module or package of the application. For most applications, Python’s __name__ variable
is the correct value.

The name argument that is passed to the Flask application construc-
tor is a source of confusion among new Flask developers. Flask uses
this argument to determine the root path of the application so that it
later can find resource files relative to the location of the application.

Later you will see more complex examples of application initialization, but for simple
applications this is all that is needed.

Routes and View Functions

Clients such as web browsers send requests to the web server, which in turn sends them
to the Flask application instance. The application instance needs to know what code
needs to run for each URL requested, so it keeps a mapping of URLs to Python functions.
The association between a URL and the function that handles it is called a route.

The most convenient way to define a route in a Flask application is through the
app. route decorator exposed by the application instance, which registers the decorated
function as a route. The following example shows how a route is declared using this
decorator:
QVAD)
def index():
return '<hil>Hello World!</h1>'

Decorators are a standard feature of the Python language; they can
modify the behavior of a function in different ways. A common pat-
tern is to use decorators to register functions as handlers for an event.

The previous example registers the function index() as the handler for the application’s
root URL. If this application were deployed on a server associated with the www.ex-
ample.com domain name, then navigating to http://www.example.com on your browser
would trigger index() to run on the server. The return value of this function, called the
response, is what the client receives. If the client is a web browser, the response is the
document that is displayed to the user.

Functions like index() are called view functions. A response returned by a view function
can be a simple string with HTML content, but it can also take more complex forms, as
you will see later.

Response strings embedded in Python code lead to code that is dif-
ficult to maintain, and it is done here only to introduce the concept
of responses. You will learn the proper way to generate responses in
Chapter 3.

If you pay attention to how some URLs for services that you use every day are formed,
you will notice that many have variable sections. For example, the URL for your Face-
book profile page is http://www.facebook.com/<your-name>, so your username is part
of it. Flask supports these types of URLs using a special syntax in the route decorator.
The following example defines a route that has a dynamic name component:

8 | Chapter2:Basic Application Structure

('/user/<name>")
def user(name):
return '<hi>Hello, %s!</h1>"' % name
The portion enclosed in angle brackets is the dynamic part, so any URLs that match the
static portions will be mapped to this route. When the view function is invoked, Flask
sends the dynamic component as an argument. In the earlier example view function,
this argument is used to generate a personalized greeting as a response.

The dynamic components in routes are strings by default but can also be defined with
atype. For example, route /user/<int:1d>would match only URLs that have an integer
in the 1d dynamic segment. Flask supports types int, float, and path for routes. The
path type also represents a string but does not consider slashes as separators and instead
considers them part of the dynamic component.

Server Startup

The application instance has a run method that launches FlasK’s integrated development
web server:

if __name__ == '__main__
app.run(debug=True)

The __name__ == '__main__' Python idiom is used here to ensure that the develop-
ment web server is started only when the script is executed directly. When the script is
imported by another script, it is assumed that the parent script will launch a different
server, so the app.run() call is skipped.

Once the server starts up, it goes into a loop that waits for requests and services them.
This loop continues until the application is stopped, for example by hitting Ctrl-C.

There are several option arguments that can be given to app.run() to configure the
mode of operation of the web server. During development, it is convenient to enable
debug mode, which among other things activates the debugger and the reloader. This is
done by passing the argument debug set to True.

The web server provided by Flask is not intended for production use.
You will learn about production web servers in Chapter 17.

A Complete Application

In the previous sections, you learned about the different parts of a Flask web application,
and now it is time to write one. The entire hello.py application script is nothing more

ServerStartup | 9

than the three parts described earlier combined in a single file. The application is shown

in Example 2-1.

Example 2-1. hello.py: A complete Flask application

from flask import Flask
app = Flask(__name__)

@app.route('/'")
def index():
return '<hi>Hello World!</h1>'

if __name__ == '__main__
app.run(debug=True)

If you have cloned the application’s Git repository on GitHub, you can
nowrungit checkout 2ato checkout this version of the application.

To run the application, make sure that the virtual environment you created earlier is
activated and has Flask installed. Now open your web browser and type http://
127.0.0.1:5000/ in the address bar. Figure 2-1 shows the web browser after connecting

to the application.

800 localhost:5000

[8 localhost:5000

4 | Reader J»

Hello World!

Figure 2-1. hello.py Flask application

Then launch the application with the following command:

10 | Chapter2: Basic Application Structure

vww allitebooks.cond

http://www.allitebooks.org

(venv) $ python hello.py
* Running on http://127.0.0.1:5000/
* Restarting with reloader

If you type any other URL, the application will not know how to handle it and will return
an error code 404 to the browser—the familiar error that you get when you navigate to
a web page that does not exist.

The enhanced version of the application shown in Example 2-2 adds a second route that
is dynamic. When you visit this URL, you are presented with a personalized greeting.

Example 2-2. hello.py: Flask application with a dynamic route

from flask import Flask
app = Flask(__name__)

(QVAD!
def index():
return '<hi>Hello World!</h1>'

('/user/<name>")
def user(name):
return '<hi>Hello, %s!</h1>"' % name
if __npame__ == '__main__
app.run(debug=True)

If you have cloned the application’s Git repository on GitHub, you can
now rungit checkout 2bto check out this version of the application.

To test the dynamic route, make sure the server is running and then navigate to http: //
localhost:5000/user /Dave. The application will respond with a customized greeting,
generated using the name dynamic argument. Try different names to see how the view
function always generates the response based on the name given. An example is shown
in Figure 2-2.

A Complete Application | 11

800 localhost:5000/user/Dave/ na
' © localhost:5000,u<c

Hello, Dave!

Figure 2-2. Dynamic route

The Request-Response Cycle

Now that you have played with a basic Flask application, you might want to know more
about how Flask works its magic. The following sections describe some of the design
aspects of the framework.

Application and Request Contexts

When Flask receives a request from a client, it needs to make a few objects available to
the view function that will handle it. A good example is the request object, which en-
capsulates the HTTP request sent by the client.

The obvious way in which Flask could give a view function access to the request object
is by sending it as an argument, but that would require every single view function in the
application to have an extra argument. Things get more complicated if you consider
that the request object is not the only object that view functions might need to access
to fulfill a request.

To avoid cluttering view functions with lots of arguments that may or may not be needed,
Flask uses contexts to temporarily make certain objects globally accessible. Thanks to
contexts, view functions like the following one can be written:

from flask import request

(QVAD]
def index():

12 | Chapter2: Basic Application Structure

user_agent = request.headers.get('User-Agent')
return '<p>Your browser is %s</p>' % user_agent

Note how in this view function request is used as if it was a global variable. In reality,
request cannot be a global variable if you consider that in a multithreaded server the
threads are working on different requests from different clients at the same time, so
each thread needs to see a different object in request. Contexts enable Flask to make
certain variables globally accessible to a thread without interfering with the other
threads.

A thread is the smallest sequence of instructions that can be man-
aged independently. It is common for a process to have multiple ac-
tive threads, sometimes sharing resources such as memory or file
handles. Multithreaded web servers start a pool of threads and se-
lect a thread from the pool to handle each incoming request.

There are two contexts in Flask: the application context and the request context. Table 2-1
shows the variables exposed by each of these contexts.

Table 2-1. Flask context globals

Variable name Context Description

current_app Application context The application instance for the active application.

g Application context An object that the application can use for temporary storage during the handling of
a request. This variable is reset with each request.

request Request context The request object, which encapsulates the contents of a HTTP request sent by the
client.

session Request context The user session, a dictionary that the application can use to store values that are

“remembered” between requests.

Flask activates (or pushes) the application and request contexts before dispatching a
request and then removes them when the request is handled. When the application
context is pushed, the current_app and g variables become available to the thread;
likewise, when the request context is pushed, request and session become available
as well. If any of these variables are accessed without an active application or request
context, an error is generated. The four context variables will be revisited in later chap-
ters in detail, so don’t worry if you don’t understand why they are useful yet.

The following Python shell session demonstrates how the application context works:

>>> from hello import app

>>> from flask import current_app
>>> current_app.name

Traceback (most recent call last):

RuntimeError: working outside of application context

The Request-Response Cyde | 13

>>> app_ctx = app.app_context()
>>> app_ctx.push()

>>> current_app.name

"hello’

>>> app_ctx.pop()

In this example, current_app.name fails when there is no application context active but
becomes valid once a context is pushed. Note how an application context is obtained
by invoking app.app_context() on the application instance.

Request Dispatching

When the application receives a request from a client, it needs to find what view function
to invoke to service it. For this task, Flask looks up the URL given in the request in the
application’s URL map, which contains a mapping of URLs to the view functions that
handle them. Flask builds this map using the app.route decorators or the equivalent
nondecorator version app.add_url_rule().

To see what the URL map in a Flask application looks like, you can inspect the map
created for hello.py in the Python shell. For this test, make sure that your virtual envi-
ronment is activated:

(venv) $ python

>>> from hello import app

>>> app.url_map

Map([<Rule '/' (HEAD, OPTIONS, GET) -> index>,

<Rule '/static/<filename>"' (HEAD, OPTIONS, GET) -> static>,
<Rule '/user/<name>' (HEAD, OPTIONS, GET) -> user>])

The / and /user/<name> routes were defined by the app.route decorators in the ap-

plication. The /static/<filename> route is a special route added by Flask to give access
to static files. You will learn more about static files in Chapter 3.

TheHEAD, OPTIONS, GET elementsshown in the URL map are the request methods that
are handled by the route. Flask attaches methods to each route so that different request
methods sent to the same URL can be handled by different view functions. The HEAD
and OPTIONS methods are managed automatically by Flask, so in practice it can be said
that in this application the three routes in the URL map are attached to the GET method.
You will learn about specifying different request methods for routes in Chapter 4.

Request Hooks

Sometimes it is useful to execute code before or after each request is processed. For
example, at the start of each request it may be necessary to create a database connection,
or authenticate the user making the request. Instead of duplicating the code that does
this in every view function, Flask gives you the option to register common functions to
be invoked before or after a request is dispatched to a view function.

14 | Chapter2: Basic Application Structure

Request hooks are implemented as decorators. These are the four hooks supported by
Flask:

o before_first_request: Register a function to run before the first request is
handled.

 before_request: Register a function to run before each request.

o after_request: Register a function to run after each request, if no unhandled ex-
ceptions occurred.

o teardown_request: Register a function to run after each request, even if unhandled
exceptions occurred.

A common pattern to share data between request hook functions and view functions is
to use the g context global. For example, a before_request handler canload the logged-
in user from the database and storeitin g. user. Later, when the view function is invoked,
it can access the user from there.

Examples of request hooks will be shown in future chapters, so don’t worry if this does
not quite make sense yet.

Responses

When Flask invokes a view function, it expects its return value to be the response to the
request. In most cases the response is a simple string that is sent back to the client as an
HTML page.

But the HTTP protocol requires more than a string as a response to a request. A very
important part of the HTTP response is the status code, which Flask by default sets to
200, the code that indicates that the request was carried out successfully.

When a view function needs to respond with a different status code, it can add the
numeric code as a second return value after the response text. For example, the following
view function returns a 400 status code, the code for a bad request error:
/M
def index():
return '<h1>Bad Request</h1>', 400

Responses returned by view functions can also take a third argument, a dictionary of
headers that are added to the HTTP response. This is rarely needed, but you will see an
example in Chapter 14.

Instead of returning one, two, or three values as a tuple, Flask view functions have the
option of returning a Response object. The make_response() function takes one, two,
or three arguments, the same values that can be returned from a view function, and
returns a Response object. Sometimes it is useful to perform this conversion inside the

The Request-Response Cyde | 15

view function and then use the methods of the response object to further configure the
response. The following example creates a response object and then sets a cookie in it:

from flask import make_response

¢/
def index():

response = make_response('<h1>This document carries a cookie!</h1>")

response.set_cookie('answer', '42")

return response
There is a special type of response called a redirect. This response does not include a
page document; it just gives the browser a new URL from which to load a new page.
Redirects are commonly used with web forms, as you will learn in Chapter 4.

A redirect is typically indicated with a 302 response status code and the URL to redirect
to given in a Location header. A redirect response can be generated using a three-value
return, or also with a Response object, but given its frequent use, Flask provides a
redirect() helper function that creates this response:

from flask import redirect

/"
def index():
return redirect('http://www.example.com')

Another special response is issued with the abort function, which is used for error
handling. The following example returns status code 404 if the id dynamic argument
given in the URL does not represent a valid user:

from flask import abort

('/user/<id>")
def get_user(id):
user = load_user(id)
if not user:
abort(404)
return '<hi>Hello, %s</h1>' % user.name

Note that abort does not return control back to the function that calls it but gives control
back to the web server by raising an exception.

Flask Extensions

Flask is designed to be extended. It intentionally stays out of areas of important func-
tionality such as database and user authentication, giving you the freedom to select the
packages that fit your application the best, or to write your own if you so desire.

16 | Chapter2: Basic Application Structure

There is a large variety of extensions for many different purposes that were created by
the community, and if that is not enough, any standard Python package or library can
be used as well. To give you an idea of how an extension is incorporated into an appli-
cation, the following section adds an extension to hello.py that enhances the application
with command-line arguments.

Command-Line Options with Flask-Script

Flask’s development web server supports a number of startup configuration options,
but the only way to specify them is by passing them as arguments to the app.run() call
in the script. This is not very convenient; the ideal way to pass configuration options is
through command-line arguments.

Flask-Script is an extension for Flask that adds a command-line parser to your Flask
application. It comes packaged with a set of general-purpose options and also supports
custom commands.

The extension is installed with pip:
(venv) $ pip install flask-script

Example 2-3 shows the changes needed to add command-line parsing to the hello.py
application.

Example 2-3. hello.py: Using Flask-Script

from flask.ext.script import Manager
manager = Manager(app)

...

if __pame__ == '__main__
manager.run()

Extensions developed specifically for Flask are exposed under the flask.ext name-
space. Flask-Script exports a class named Manager, which is imported from
flask.ext.script.

The method of initialization of this extension is common to many extensions: an in-
stance of the main class is initialized by passing the application instance as an argument
to the constructor. The created object is then used as appropriate for each extension. In
this case, the server startup is routed through manager. run(), where the command line
is parsed.

Flask Extensions | 17

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 2c to check out this version of the application.

With these changes, the application acquires a basic set of command-line options. Run-
ning hello.py now shows a usage message:

$ python hello.py
usage: hello.py [-h] {shell,runserver} ...

positional arguments:

{shell,runserver}
shell Runs a Python shell inside Flask application context.
runserver Runs the Flask development server i.e. app.run()

optional arguments:
-h, --help show this help message and exit

The shell command is used to start a Python shell session in the context of the appli-
cation. You can use this session to run maintenance tasks or tests, or to debug issues.

The runserver command, as its name implies, starts the web server. Running python
hello.py runserver starts the web server in debug mode, but there many more options
available:

(venv) $ python hello.py runserver --help

usage: hello.py runserver [-h] [-t HOST] [-p PORT] [--threaded]
[--processes PROCESSES] [--passthrough-errors] [-d]
[-r]

Runs the Flask development server i.e. app.run()

optional arguments:
-h, --help show this help message and exit
-t HOST, --host HOST
-p PORT, --port PORT
- -threaded
--processes PROCESSES
--passthrough-errors
-d, --no-debug
-r, --no-reload

The --host argument is a useful option because it tells the web server what network
interface to listen to for connections from clients. By default, Flask’s development web
server listens for connections on localhost, so only connections originating from
within the computer running the server are accepted. The following command makes
the web server listen for connections on the public network interface, enabling other
computers in the network to connect as well:

18 | Chapter2: Basic Application Structure

(venv) $ python hello.py runserver --host 0.0.0.0
* Running on http://0.0.0.0:5000/
* Restarting with reloader

The web server should now be accessible from any computer in the network at http://

a.b.c.d:5000, where “a.b.c.d” is the external IP address of the computer running the
server.

This chapter introduced the concept of responses to requests, but there is a lot more to
say about responses. Flask provides very good support for generating responses using
templates, and this is such an important topic that the next chapter is dedicated to it.

Flask Extensions | 19

http://a.b.c.d:5000
http://a.b.c.d:5000

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 3
Templates

The key to writing applications that are easy to maintain is to write clean and well-
structured code. The examples that you have seen so far are too simple to demonstrate
this, but Flask view functions have two completely independent purposes disguised as
one, which creates a problem.

The obvious task of a view function is to generate a response to a request, as you have
seen in the examples shown in Chapter 2. For the simplest requests this is enough, but
in general arequest triggers a change in the state of the application, and the view function
is also where this change is generated.

For example, consider a user who is registering a new account on a website. The user
types an email address and a password in a web form and clicks the Submit button. On
the server, a request that includes the data from the user arrives and Flask dispatches it
to the view function that handles registration requests. This view function needs to talk
to the database to get the new user added and then generate a response to send back to
the browser. These two types of tasks are formally called business logic and presentation
logic, respectively.

Mixing business and presentation logic leads to code that is hard to understand and
maintain. Imagine having to build the HTML code for a large table by concatenating
data obtained from the database with the necessary HTML string literals. Moving the
presentation logic into templates helps improve the maintainability of the application.

A template is a file that contains the text of a response, with placeholder variables for
the dynamic parts that will be known only in the context of a request. The process that
replaces the variables with actual values and returns a final response string is called
rendering. For the task of rendering templates, Flask uses a powerful template engine
called Jinja2.

21

The Jinja2 Template Engine

In its simplest form, a Jinja2 template is a file that contains the text of a response.
Example 3-1 shows a Jinja2 template that matches the response of the index() view
function of Example 2-1.

Example 3-1. templates/index.html: Jinja2 template
<h1sHello World!</h1>

The response returned by view function user() of Example 2-2 has a dynamic com-
ponent, which is represented by a variable. Example 3-2 shows the template that im-
plements this response.

Example 3-2. templates/user.html: Jinja2 template
<hi>Hello, {{ name }}!</h1>

Rendering Templates

By default Flask looks for templates in a templates subfolder located inside the applica-
tion folder. For the next version of hello.py, you need to store the templates defined
earlier in a new templates folder as index.html and user.html.

The view functions in the application need to be modified to render these templates.
Example 3-3 shows these changes.

Example 3-3. hello.py: Rendering a template

from flask import Flask, render_template
...

('/index")
def index():
return render_template('index.html")

('/user/<name>")
def user(name):
return render_template('user.html', name=name)

The function render_template provided by Flask integrates the Jinja2 template engine
with the application. This function takes the filename of the template as its first argu-
ment. Any additional arguments are key/value pairs that represent actual values for
variables referenced in the template. In this example, the second template is receiving
a name variable.

Keyword arguments like name=name in the previous example are fairly common but may
seem confusing and hard to understand if you are not used to them. The “name” on the

22 | Chapter3: Templates

left side represents the argument name, which is used in the placeholder written in the
template. The “name” on the right side is a variable in the current scope that provides
the value for the argument of the same name.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 3a to check out this version of the application.

Variables

The {{ name }} construct used in the template shown in Example 3-2 references a
variable, a special placeholder that tells the template engine that the value that goes in
that place should be obtained from data provided at the time the template is rendered.

Jinja2 recognizes variables of any type, even complex types such as lists, dictionaries
and objects. The following are some more examples of variables used in templates:

<p>A value from a dictionary: {{ mydict['key'] }}.</p>

<p>A value from a list: {{ mylist[3] }}.</p>

<p>A value from a list, with a variable index: {{ mylist[myintvar] }}.</p>
<p>A value from an object's method: {{ myobj.somemethod() }}.</p>

Variables can be modified with filters, which are added after the variable name with a
pipe character as separator. For example, the following template shows the name variable
capitalized:

Hello, {{ name|capitalize }}
Table 3-1 lists some of the commonly used filters that come with Jinja2.
Table 3-1. Jinja2 variable filters

Filter name Description

safe Renders the value without applying escaping

capitalize Convertsthe first character of the value to uppercase and the rest to lowercase

lower Converts the value to lowercase characters

upper Converts the value to uppercase characters

title (apitalizes each word in the value

trim Removes leading and trailing whitespace from the value

striptags Removesany HTML tags from the value before rendering

The safe filter is interesting to highlight. By default Jinja2 escapes all variables for se-
curity purposes. For example, if a variable is set to the value '<h1>Hello</h1>", Jinja2

The Jinja2 Template Engine | 23

will render the string as '&Llt;h1>Hello< /h1> ', which will cause the h1 ele-
ment to be displayed and not interpreted by the browser. Many times it is necessary to
display HTML code stored in variables, and for those cases the safe filter is used.

Never use the safe filter on values that aren’t trusted, such as text
entered by users on web forms.

The complete list of filters can be obtained from the official Jinja2 documentation.

Control Structures

Jinja2 offers several control structures that can be used to alter the flow of the template.
This section introduces some of the most useful ones with simple examples.

The following example shows how conditional statements can be entered in a template:

{% if user %}

Hello, {{ user }}!
{% else %}

Hello, Stranger!
{% endif %}

Another common need in templates is to render a list of elements. This example shows
how this can be done with a for loop:

{% for comment in comments %}
{{ comment }}
{% endfor %}

Jinja2 also supports macros, which are similar to functions in Python code. For example:

{% macro render_comment(comment) %}
{{ comment }}</1i>
{% endmacro %}

{% for comment in comments %}
{{ render_comment(comment) }}
{% endfor %}

To make macros more reusable, they can be stored in standalone files that are then
imported from all the templates that need them:

{% import 'macros.html' as macros %}

24 | Chapter3: Templates

http://bit.ly/jinja-filters

{% for comment in comments %}
{{ macros.render_comment(comment) }}
{% endfor %}

Portions of template code that need to be repeated in several places can be stored in a
separate file and included from all the templates to avoid repetition:

{% include 'common.html' %}

Yet another powerful way to reuse is through template inheritance, which is similar to
class inheritance in Python code. First, a base template is created with the name
base.html:

<html>
<head>
{% block head %}
<title>{% block title %}{% endblock %} - My Application</title>
{% endblock %}
</head>
<body>
{% block body %}
{% endblock %}
</body>
</html>

Here the block tags define elements that a derived template can change. In this example,
there are blocks called head, title, and body; note that title is contained by head. The
following example is a derived template of the base template:

{% extends "base.html" %}
{% block title %}Index{% endblock %}
{% block head %}
{{ super() 1}
<style>
</style>
{% endblock %}
{% block body %}
<h1>Hello, World!</h1>
{% endblock %}

The extends directive declares that this template derives from base.html. This directive
is followed by new definitions for the three blocks defined in the base template, which
are inserted in the proper places. Note that the new definition of the head block, which
is not empty in the base template, uses super () to retain the original contents.

Real-world usage of all the control structures presented in this section will be shown
later, so you will have the opportunity to see how they work.

The Jinja2 Template Engine | 25

Twitter Bootstrap Integration with Flask-Bootstrap

Bootstrap is an open source framework from Twitter that provides user interface com-
ponents to create clean and attractive web pages that are compatible with all modern
web browsers.

Bootstrap is a client-side framework, so the server is not directly involved with it. All
the server needs to do is provide HTML responses that reference Bootstrap’s cascading
style sheets (CSS) and JavaScript files and instantiate the desired components through
HTML, CSS, and JavaScript code. The ideal place to do all this is in templates.

The obvious way to integrate Bootstrap with the application is to make all the necessary
changes to the templates. A simpler approach is to use a Flask extension called Flask-
Bootstrap to simplify the integration effort. Flask-Bootstrap can be installed with pip:

(venv) $ pip install flask-bootstrap

Flask extensions are usually initialized at the same time the application instance is cre-
ated. Example 3-4 shows the initialization of Flask-Bootstrap.

Example 3-4. hello.py: Flask-Bootstrap initialization

from flask.ext.bootstrap import Bootstrap
...
bootstrap = Bootstrap(app)

Like Flask-Script in Chapter 2, Flask-Bootstrap is imported from the flask.ext name-
space and initialized by passing the application instance in the constructor.

Once Flask-Bootstrap is initialized, a base template that includes all the Bootstrap files
is available to the application. This template takes advantage of Jinja2’s template inher-
itance; the application extends a base template that has the general structure of the page
including the elements that import Bootstrap. Example 3-5 shows a new version of
user.html as a derived template.

Example 3-5. templates/user.html: Template that uses Flask-Bootstrap

{% extends "bootstrap/base.html" %}
{% block title %}Flasky{% endblock %}

{% block navbar %}
<div class="navbar navbar-inverse" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle"
data-toggle="collapse" data-target=".navbar-collapse"s>
Toggle navigation

26 | Chapter3: Templates

http://getbootstrap.com

</button>
Flasky
</div>
<div class="navbar-collapse collapse"s>
<ul class="nav navbar-nav'"s
<a href="/"sHome</1i>

</div>
</div>
</div>
{% endblock %}

{% block content %}
<div class="container"s
<div class="page-header"s
<hi>Hello, {{ name }}!</h1>
</div>
</div>
{% endblock %}

The Jinja2 extends directive implements the template inheritance by referencing boot-
strap/base.htmlfrom Flask-Bootstrap. The base template from Flask-Bootstrap provides
a skeleton web page that includes all the Bootstrap CSS and JavaScript files.

Base templates define blocks that can be overriden by derived templates. The block and
endblock directives define blocks of content that are added to the base template.

The user.html template above defines three blocks called title, navbar, and content.
These are all blocks that the base template exports for derived templates to define. The
title block is straightforward; its contents will appear between <title> tags in the
header of the rendered HTML document. The navbar and content blocks are reserved
for the page navigation bar and main content.

In this template, the navbar block defines a simple navigation bar using Bootstrap com-
ponents. The content block has a container <div> with a page header inside. The greet-
ing line that was in the previous version of the template is now inside the page header.
Figure 3-1 shows how the application looks with these changes.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 3b to check out this version of the application.
The Bootstrap official documentation is a great learning resource full
of copy/paste-ready examples.

Twitter Bootstrap Integration with Flask-Bootstrap | 27

http://getbootstrap.com/

L

800 Flasky

o),

[a]» | [6][+][@ iocalhost5000 ¢ impreie

Hello, Dave!

Figure 3-1. Twitter Bootstrap templates

Flask-Bootstraps base.html template defines several other blocks that can be used in
derived templates. Table 3-2 shows the complete list of available blocks.

Table 3-2. Flask-Bootstrap’s base template blocks

Block name Description
doc The entire HTML document

html_attribs Attributesinside the <html> tag

html The contents of the <htm|> tag
head The contents of the <head> tag
title The contents of the <title> tag
metas The list of <meta> tags
styles (ascading stylesheet definitions

body_attribs Attributesinside the <body> tag

body The contents of the <body> tag

navbar User-defined navigation bar

content User-defined page content

scripts JavaScript declarations at the bottom of the document

Many of the blocks in Table 3-2 are used by Flask-Bootstrap itself, so overriding them
directly would cause problems. For example, the styles and scripts blocks are where
the Bootstrap files are declared. If the application needs to add its own content to a block
thatalready has some content, then Jinja2’s super () function must be used. For example,

28 | Chapter3: Templates

this is how the scripts block would need to be written in the derived template to add
a new JavaScript file to the document:

{% block scripts %}
{{ super() 1}

<script type="text/javascript" src="my-script.js"></script>
{% endblock %}

Custom Error Pages

When you enter an invalid route in your browser’s address bar, you get a code 404 error
page. The error page is now too plain and unattractive, and it has no consistency with
the page that uses Bootstrap.

Flask allows an application to define custom error pages that can be based on templates,
like regular routes. The two most common error codes are 404, triggered when the client
requests a page or route thatis not known, and 500, triggered when there is an unhandled
exception. Example 3-6 shows how to provide custom handlers for these two errors.

Example 3-6. hello.py: Custom error pages

(404)
def page_not_found(e):
return render_template('404.html'), 404

(500)
def internal_server_error(e):
return render_template('500.html"'), 500

Error handlers return a response, like view functions. They also return the numeric
status code that corresponds to the error.

The templates referenced in the error handlers need to be written. These templates
should follow the same layout of the regular pages, so in this case they will have a
navigation bar and a page header that shows the error message.

The straightforward way to write these templates is to copy templates/user.html to
templates/404.html and templates/500.html and then change the page header element
in these two new files to the appropriate error message, but this will generate a lot of
duplication.

Jinja2’s template inheritance can help with this. In the same way Flask-Bootstrap pro-
vides a base template with the basic layout of the page, the application can define its
own base template with a more complete page layout that includes the navigation bar
and leaves the page content to be defined in derived templates. Example 3-7 shows
templates/base.html, a new template that inherits from bootstrap/base.html and defines
the navigation bar, but is itself a base template to other templates such as templates/
user.html, templates/404.html, and templates/500.html.

Custom Error Pages | 29

Example 3-7. templates/base.html: Base application template with navigation bar

{% extends "bootstrap/base.html" %}
{% block title %}Flasky{% endblock %}

{% block navbar %}
<div class="navbar navbar-inverse" role="navigation"s>
<div class="container"s>
<div class="navbar-header"s
<button type="button" class="navbar-toggle"
data-toggle="collapse" data-target=".navbar-collapse">
Toggle navigation

</button>
Flasky
</div>
<div class="navbar-collapse collapse"s
<ul class="nav navbar-nav's
Home</1i>

</div>
</div>
</div>
{% endblock %}

{% block content %}
<div class="container"s
{% block page_content %}{% endblock %}
</div>
{% endblock %}

In the content block of this template is just a container <div> element that wraps a new
empty block called page_content, which derived templates can define.

The templates of the application will now inherit from this template instead of directly
from Flask-Bootstrap. Example 3-8 shows how simple it is to construct a custom code
404 error page that inherits from templates/base.html.

Example 3-8. templates/404.html: Custom code 404 error page using template inheri-
tance

{% extends "base.html" %}
{% block title %}Flasky - Page Not Found{% endblock %}
{% block page_content %}

<div class="page-header"s
<h1>Not Found</h1>

30 | Chapter3: Templates

vww allitebooks.cond

http://www.allitebooks.org

</div>
{% endblock %}

Figure 3-2 shows how the error page looks in the browser.

enoe Flasky - Page Not Found e

[6] (216 oo 5000

Not Found

Figure 3-2. Custom code 404 error page

The templates/user.html template can now be simplified by making it inherit from the
base template, as shown in Example 3-9.

Example 3-9. templates/user.html: Simplified page template using template inheritance
{% extends "base.html" %}

{% block title %}Flasky{% endblock %}

{% block page_content %}

<div class="page-header">
<hi>Hello, {{ name }}!</h1>

</div>

{% endblock %}

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 3c to check out this version of the application.

Links

Any application that has more than one route will invariably need to include links that
connect the different pages, such as in a navigation bar.

Links | 31

Writing the URLs as links directly in the template is trivial for simple routes, but for
dynamic routes with variable portions it can get more complicated to build the URLs
right in the template. Also, URLs written explicitly create an unwanted dependency on
the routes defined in the code. If the routes are reorganized, links in templates may
break.

To avoid these problems, Flask provides the url_for () helper function, which generates
URLs from the information stored in the application’s URL map.

In its simplest usage, this function takes the view function name (or endpoint name for
routes defined with app.add_url_route()) as its single argument and returns its URL.
For example, in the current version of hello.py the call url_for('index') would re-
turn /. Callingurl_for('index', _external=True) would instead return an absolute
URL, which in this example is http://localhost:5000/.

Relative URLs are sufficient when generating links that connect the
different routes of the application. Absolute URLs are necessary on-
ly for links that will be used outside of the web browser, such as when
sending links by email.

Dynamic URLs can be generated with url_for() by passing the dynamic parts as key-
word arguments. For example, url_for('user', name='john', _external=True)
would return http://localhost:5000/user/john.

The keyword arguments sent to url_for() are not limited to arguments used by dy-
namic routes. The function will add any extra arguments to the query string. For ex-
ample, url_for('index', page=2) would return /?page=2.

Static Files

Web applications are not made of Python code and templates alone. Most applications
also use static files such as images, JavaScript source files, and CSS that are referenced
from the HTML code.

You may recall that when the hello.py application’s URL map was inspected in Chap-
ter 2, a static entry appeared in it. This is so because references to static files are treated
as a special route defined as /static/<filename>. For example, a call to
url_for('static', filename='css/styles.css', _external=True) would return
http://localhost:5000/static/css/styles.css.

In its default configuration, Flask looks for static files in a subdirectory called static
located in the application’s root folder. Files can be organized in subdirectories inside
this folder if desired. When the server receives the URL from the previous example, it

32 | Chapter3: Templates

generates a response that includes the contents of a file in the filesystem located at static/
css/styles.css.

Example 3-10 shows how the application can include a favicon.ico icon in the base
template for browsers to show in the address bar.

Example 3-10. templates/base.html: favicon definition

{% block head %}
{{ super() 1}

<link rel="shortcut icon" href="{{ url_for('static', filename = 'favicon.ico') }}"
type="1image/x-icon">
<link rel="icon" href="{{ url_for('static', filename = 'favicon.ico') }}"

type="1image/x-icon">
{% endblock %}

The icon declaration is inserted at the end of the head block. Note how super() is used
to preserve the original contents of the block defined in the base templates.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 3d to check out this version of the application.

Localization of Dates and Times with Flask-Moment

Handling of dates and times in a web application is not a trivial problem when users
work in different parts of the world.

The server needs uniform time units that are independent of the location of each user,
so typically Coordinated Universal Time (UTC) is used. For users, however, seeing times
expressed in UTC can be confusing, as users always expect to see dates and times pre-
sented in their local time and formatted according to the local customs of their region.

An elegant solution that allows the server to work exclusively in UTC is to send these
time units to the web browser, where they are converted to local time and rendered.
Web browsers can do a much better job at this task because they have access to time
zone and locale settings on the user’s computer.

There is an excellent client-side open source library written in JavaScript that renders
dates and times in the browser called moment.js. Flask-Moment is an extension for
Flask applications that integrates moment.js into Jinja2 templates. Flask-Moment is in-
stalled with pip:

(venv) $ pip install flask-moment

The extension is initialized as shown in Example 3-11.

Localization of Dates and Times with Flask-Moment | 33

http://momentjs.com

Example 3-11. hello.py: Initialize Flask-Moment

from flask.ext.moment import Moment
moment = Moment(app)

Flask-Moment depends on jquery.js in addition to moment.js. These two libraries need
to be included somewhere in the HTML document—either directly, in which case you
can choose what versions to use, or through the helper functions provided by the ex-
tension, which reference tested versions of these libraries from a Content Delivery Net-
work (CDN). Because Bootstrap already includes jquery.js, only moment.js needs to be
added in this case. Example 3-12 shows how this library is loaded in the scripts of the
base template.

Example 3-12. templates/base.html: Import moment.js library

{% block scripts %}
{{ super() 1}

{{ moment.include_moment() }}
{% endblock %}

To work with timestamps Flask-Moment makes a moment class available to templates.
The example in Example 3-13 passes a variable called current_time to the template for
rendering.

Example 3-13. hello.py: Add a datetime variable

from datetime import datetime

/M
def index():
return render_template('index.html',
current_time=datetime.utcnow())

Example 3-14 shows how current_time is rendered in the template.

Example 3-14. templates/index.html: Timestamp rendering with Flask-Moment

<p>The local date and time is {{ moment(current_time).format('LLL"') }}.</p>
<p>That was {{ moment(current_time).fromNow(refresh=True) }}</p>

The format('LLL") format renders the date and time according to the time zone and
locale settings in the client computer. The argument determines the rendering style,
from 'L' to 'LLLL' for different levels of verbosity. The format() function can also
accept custom format specifiers.

The fromNow() render style shown in the second line renders a relative timestamp and
automatically refreshes it as time passes. Initially this timestamp will be shown as “a few
seconds ago,” but the refresh option will keep it updated as time passes, so if you leave
the page open for a few minutes you will see the text changing to “a minute ago,” then
“2 minutes ago,” and so on.

34 | Chapter3: Templates

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 3e to check out this version of the application.

Flask-Moment implements the format(), fromNow(), fromTime(), calendar(),
valueOf(), and unix() methods from moment.js. Consult the documentation to learn
about all the formatting options offered.

Flask-Moment assumes that timestamps handled by the server-side
application are “naive” datetime objects expressed in UTC. See the
documentation for the datetime package in the standard library for
information on naive and aware date and time objects.

The timestamps rendered by Flask-Moment can be localized to many languages. A
language can be selected in the template by passing the language code to function

lang():
{{ moment.lang('es') }}

With all the techniques discussed in this chapter, you should be able to build modern
and user-friendly web pages for your application. The next chapter touches on an aspect
of templates not yet discussed: how to interact with the user through web forms.

Localization of Dates and Times with Flask-Moment | 35

http://momentjs.com/docs/#/displaying/
http://bit.ly/datepack

CHAPTER 4
Web Forms

The request object, introduced in Chapter 2, exposes all the information sent by the
clientwith arequest. In particular, request. formprovides access to form data submitted
in POST requests.

Although the support provided in Flask’s request object is sufficient for the handling of
web forms, there are a number of tasks that can become tedious and repetitive. Two
good examples are the generation of HTML code for forms and the validation of the
submitted form data.

The Flask-WTF extension makes working with web forms a much more pleasant ex-
perience. This extension is a Flask integration wrapper around the framework-agnostic
WTForms package.

Flask-WTF and its dependencies can be installed with pip:

(venv) $ pip install flask-wtf

Cross-Site Request Forgery (CSRF) Protection

By default, Flask-WTF protects all forms against Cross-Site Request Forgery (CSRF)
attacks. A CSRF attack occurs when a malicious website sends requests to a different
website on which the victim is logged in.

To implement CSRF protection, Flask-WTF needs the application to configure an en-
cryption key. Flask-WTF uses this key to generate encrypted tokens that are used to
verify the authenticity of requests with form data. Example 4-1 shows how to configure
an encryption key.

Example 4-1. hello.py: Flask-WTF configuration

app = Flask(__name__)
app.config['SECRET_KEY'] = 'hard to guess string'

37

http://pythonhosted.org/Flask-WTF/
http://wtforms.simplecodes.com/

The app.config dictionary is a general-purpose place to store configuration variables
used by the framework, the extensions, or the application itself. Configuration values
can be added to the app.config object using standard dictionary syntax. The configu-
ration object also has methods to import configuration values from files or the envi-
ronment.

The SECRET_KEY configuration variable is used as a general-purpose encryption key by
Flask and several third-party extensions. As its name implies, the strength of the en-
cryption depends on the value of this variable being secret. Pick a different secret key
in each application that you build and make sure that this string is not known by anyone.

For added security, the secret key should be stored in an environ-
ment variable instead of being embedded in the code. This techni-
que is described in Chapter 7.

Form Classes

When using Flask-WTE, each web form is represented by a class that inherits from class
Form. The class defines the list of fields in the form, each represented by an object. Each
field object can have one or more validators attached; validators are functions that check
whether the input submitted by the user is valid.

Example 4-2 shows a simple web form that has a text field and a submit button.

Example 4-2. hello.py: Form class definition

from flask.ext.wtf import Form
from wtforms import StringField, SubmitField
from wtforms.validators import Required

class NameForm(Form):
name = StringField('What is your name?', validators=[Required()])
submit = SubmitField('Submit')

The fields in the form are defined as class variables, and each class variable is assigned
an object associated with the field type. In the previous example, the NameForm form has
a text field called name and a submit button called submit. The StringField class rep-
resents an <input> element with a type="text" attribute. The SubmitField class rep-
resents an <input> element with a type="submit" attribute. The first argument to the
field constructors is the label that will be used when rendering the form to HTML.

The optional validators argument included in the StringField constructor defines
a list of checkers that will be applied to the data submitted by the user before it is ac-
cepted. The Required() validator ensures that the field is not submitted empty.

38 | Chapter4: Web Forms

The Form base class is defined by the Flask-WTF extension, so it is
imported from flask.ext.wtf. The fields and validators, however,
are imported directly from the WTForms package.

The list of standard HTML fields supported by WTForms is shown in Table 4-1.
Table 4-1. WTForms standard HTML fields

Field type Description

StringField Text field

TextAreaField Multiple-line text field

PasswordField Password text field

HiddenField Hidden text field

DateField Text field that accepts a datetime . date value in a given format
DateTimeField Text field that accepts a datetime . datetime value in a given format
IntegerField Text field that accepts an integer value

DecimalField Text field that accepts a decimal.Decimal value
FloatField Text field that accepts a floating-point value

BooleanField Checkbox with True and Fa'lse values

RadioField List of radio buttons

SelectField Drop-down list of choices

SelectMultipleField Drop-down list of choices with multiple selection

FileField File upload field

SubmitField Form submission button

FormField Embed a form as a field in a container form

FieldList List of fields of a given type

The list of WTForms built-in validators is shown in Table 4-2.

Form Classes | 39

Table 4-2. WTForms validators

Validator Description
Email Validates an email address
EqualTo Compares the values of two fields; useful when requesting a password to be entered twice for confirmation

IPAddress Validates an IPv4 network address
Length Validates the length of the string entered

NumberRange Validates that the value entered is within a numeric range

Optional Allows empty input on the field, skipping additional validators
Required Validates that the field contains data

Regexp Validates the input against a regular expression

URL Validates a URL

AnyOf Validates that the input is one of a list of possible values
NoneOf Validates that the input is none of a list of possible values

HTML Rendering of Forms

Form fields are callables that, when invoked, from a template render themselves to
HTML. Assuming that the view function passes a NameForm instance to the template as
an argument named form, the template can generate a simple HTML form as follows:

<form method="POST">
{{ form.name.label }} {{ form.name() }}
{{ form.submit() }}

</form>

Of course, the result is extremely bare. To improve the look of the form, any arguments

sent into the calls that render the fields are converted into HTML attributes for the field;
so, for example, you can give the field id or class attributes and then define CSS styles:

<form method="POST">
{{ form.name.label }} {{ form.name(id='my-text-field') }}
{{ form.submit() }}
</form>
But even with HTML attributes, the effort required to render a form in this way is
significant, so it is best to leverage Bootstrap’s own set of form styles whenever possible.
Flask-Bootstrap provides a very high-level helper function that renders an entire Flask-
WTF form using Bootstrap’s predefined form styles, all with a single call. Using Flask-
Bootstrap, the previous form can be rendered as follows:

{% import "bootstrap/wtf.html" as wtf %}
{{ wtf.quick_form(form) }}

40 | Chapter4: Web Forms

vww allitebooks.cond

http://www.allitebooks.org

The import directive works in the same way as regular Python scripts do and allows
template elements to be imported and used in many templates. The imported bootstrap/
wif.html file defines helper functions that render Flask-WTF forms using Bootstrap.
The wtf.quick_form() function takes a Flask-WTF form object and renders it using
default Bootstrap styles. The complete template for hello.py is shown in Example 4-3.

Example 4-3. templates/index.html: Using Flask-WTF and Flask-Bootstrap to render a
form

{% extends "base.html" %}
{% import "bootstrap/wtf.html" as wtf %}

{% block title %}Flasky{% endblock %}

{% block page_content %}
<div class="page-header"s
<h1>Hello, {% if name %}{{ name }}{% else %}Stranger{% endif %}!</h1>
</div>
{{ wtf.quick_form(form) }}
{% endblock %}

The content area of the template now has two sections. The first section is a page header
that shows a greeting. Here a template conditional is used. Conditionals in Jinja2 have
the format {% if variable %}...{% else %}...{% endif %}.If the condition eval-
uates to True, then what appears between the i1f and else directives is rendered to the
template. If the condition evaluates to False, then what’s between the else and endif
is rendered. The example template will render the string “Hello, Stranger!” when the
name template argument is undefined. The second section of the content renders the
NameForm object using the wtf.quick_form() function.

Form Handling in View Functions

In the new version of hello.py, the index() view function will be rendering the form
and also receiving its data. Example 4-4 shows the updated index() view function.

Example 4-4. hello.py: Route methods

('/', methods=['GET', 'POST'])
def index():
name = None
form = NameForm()
if form.validate_on_submit():
name = form.name.data
form.name.data = ''
return render_template('index.html', form=form, name=name)

Form Handling in View Functions | 41

The methods argument added to the app. route decorator tells Flask to register the view
function as a handler for GET and POST requests in the URL map. When methods is not
given, the view function is registered to handle GET requests only.

Adding POST to the method list is necessary because form submissions are much more
conveniently handled as POST requests. It is possible to submit a form as a GET request,
but as GET requests have no body, the data is appended to the URL as a query string and
becomes visible in the browser’s address bar. For this and several other reasons, form
submissions are almost universally done as POST requests.

The local name variable is used to hold the name received from the form when available;
when the name is not known the variable is initialized to None. The view function creates
an instance of the NameForm class shown previously to represent the form. The
validate_on_submit() method of the form returns True when the form was submitted
and the data has been accepted by all the field validators. In all other cases,
validate_on_submit() returns False. The return value of this method effectively
serves to decide whether the form needs to be rendered or processed.

When a user navigates to the application for the first time, the server will receive a GET
request with no form data, so validate_on_submit() will return False. The body of
the 1f statement will be skipped and the request will be handled by rendering the tem-
plate, which gets the form object and the name variable set to None as arguments. Users
will now see the form displayed in the browser.

When the form is submitted by the user, the server receives a POST request with the data.
The call to validate_on_submit() invokes the Required() validator attached to the
name field. If the name is not empty, then the validator accepts it and
validate_on_submit() returns True. Now the name entered by the user is accessible
asthedataattribute of the field. Inside the body of the if statement, this nameis assigned
to the local name variable and the form field is cleared by setting that data attribute to
an empty string. The render_template() call in the last line renders the template, but
this time the name argument contains the name from the form, so the greeting will be
personalized.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 4a to check out this version of the application.

Figure 4-1 shows how the form looks in the browser window when a user initially enters
the site. When the user submits a name, the application responds with a personalized

42 | Chapter4: Web Forms

greeting. The form still appears below it, so a user can submit it with a new name if
desired. Figure 4-2 shows the application in this state.

[-NeN] Flasky "

< > | @ localhost:5000

Hello, Stranger!

What is your name?

Submit

Figure 4-1. Flask-WTF web form

If the user submits the form with an empty name, the Required() validatior catches the
error, as seen in Figure 4-3. Note how much functionality is being provided automati-
cally. This is a great example of the power that well-designed extensions like Flask-WTF
and Flask-Bootstrap can give to your application.

[-NeN] Flasky "

< > | @ localhost:5000

Hello, Dave!

What is your name?

Submit

Figure 4-2. Web form after submission

Form Handling in View Functions | 43

800 Flasky "

4| » | [@ localhost:s000 G | Reade @»

Hello, Stranger!

What is your name?

l

This field is required.

Submit

Figure 4-3. Web form after failed validator

Redirects and User Sessions

The last version of hello.py has a usability problem. If you enter your name and submit
it and then click the refresh button on your browser, you will likely get an obscure
warning that asks for confirmation before submitting the form again. This happens
because browsers repeat the last request they have sent when they are asked to refresh
the page. When the last request sent is a POST request with form data, a refresh would
cause a duplicate form submission, which in almost all cases is not the desired action.

Many users do not understand the warning from the browser. For this reason, it is
considered good practice for web applications to never leave a POST request as a last
request sent by the browser.

This practice can be achieved by responding to POST requests with a redirect instead of
a normal response. A redirect is a special type of response that has a URL instead of a
string with HTML code. When the browser receives this response, it issues a GET request
for the redirect URL, and that is the page that is displayed. The page may take a few
more milliseconds to load because of the second request that has to be sent to the server,
but other than that, the user will not see any difference. Now the last request is a GET,
so the refresh command works as expected. This trick is known as the Post/
Redirect/Get pattern.

But this approach brings a second problem. When the application handles the POST
request, it has access to the name entered by the user in form.name.data, but as soon
as that request ends the form data is lost. Because the POST request is handled with a

44 | Chapter 4: Web Forms

redirect, the application needs to store the name so that the redirected request can have
it and use it to build the actual response.

Applications can “remember” things from one request to the next by storing them in
the user session, private storage that is available to each connected client. The user session
was introduced in Chapter 2 as one of the variables associated with the request context.
It’s called session and is accessed like a standard Python dictionary.

By default, user sessions are stored in client-side cookies that are
cryptographically signed using the configured SECRET_KEY. Any tam-
pering with the cookie content would render the signature invalid,
thus invalidating the session.

Example 4-5 shows a new version of the index() view function that implements redi-
rects and user sessions.

Example 4-5. hello.py: Redirects and user sessions

from flask import Flask, render_template, session, redirect, url_for

('/', methods=['GET', 'POST'])
def index():
form = NameForm()
if form.validate_on_submit():
session['name'] = form.name.data
return redirect(url_for('index"))
return render_template('index.html', form=form, name=session.get('name'))

In the previous version of the application, a local name variable was used to store the
name entered by the user in the form. That variable is now placed in the user session as
session['name'] so that it is remembered beyond the request.

Requests that come with valid form data will now end with a call to redirect(), ahelper
function that generates the HTTP redirect response. The redirect() function takes
the URL to redirect to as an argument. The redirect URL used in this case is the root
URL, so the response could have been written more concisely as redirect('/'), but
instead Flask’s URL generator function url_for() is used. The use of url_for() to
generate URLs is encouraged because this function generates URLs using the URL map,
so URLs are guaranteed to be compatible with defined routes and any changes made to
route names will be automatically available when using this function.

The first and only required argument to url_for() is the endpoint name, the internal
name each route has. By default, the endpoint of a route is the name of the view function
attached to it. In this example, the view function that handles the root URL is
index(), so the name given to url_for() is index.

Redirects and User Sessions | 45

The last change is in the render_template() function, which now obtains the name
argument directly from the session using session.get('name'). As with regular dic-
tionaries, using get() to request a dictionary key avoids an exception for keys that aren’t
found, because get() returns a default value of None for a missing key.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 4b to check out this version of the application.

With this version of the application, you can see that refreshing the page in your browser
results in the expected behavior.

Message Flashing

Sometimes it is useful to give the user a status update after a request is completed. This
could be a confirmation message, a warning, or an error. A typical example is when you
submit a login form to a website with a mistake and the server responds by rendering
the login form again with a message above it that informs you that your username or
password is invalid.

Flask includes this functionality as a core feature. Example 4-6 shows how the flash()
function can be used for this purpose.

Example 4-6. hello.py: Flashed messages

from flask import Flask, render_template, session, redirect, url_for, flash

('/', methods=['GET', 'POST'])
def index():

form = NameForm()

if form.validate_on_submit():
old_name = session.get('name')
if old_name is not None and old_name != form.name.data:

flash('Looks like you have changed your name!')

session['name'] = form.name.data
form.name.data = ''
return redirect(url_for('index"'))

return render_template('index.html',
form = form, name = session.get('name'))

In this example, each time a name is submitted it is compared against the name stored
in the user session, which would have been put there during a previous submission of
the same form. If the two names are different, the flash() function is invoked with a
message to be displayed on the next response sent back to the client.

46 | Chapter4: Web Forms

Calling flash() is not enough to get messages displayed; the templates used by the
application need to render these messages. The best place to render flashed messages is
the base template, because that will enable these messages in all pages. Flask makes a
get_flashed_messages() function available to templates to retrieve the messages and
render them, as shown in Example 4-7.

Example 4-7. templates/base.html: Flash message rendering

{% block content %}
<div class="container"s
{% for message in get_flashed_messages() %}
<div class="alert alert-warning"s
<button type="button" class="close" data-dismiss="alert"s×</button>
{{ message }}
</div>
{% endfor %}

{% block page_content %}{% endblock %}
</div>
{% endblock %}

In this example, messages are rendered using Bootstrap’s alert CSS styles for warning
messages (one is shown in Figure 4-4).

800 Flasky P

[| @ tocalnost:5000

Looks like you have changed your name!

Hello, Susan!

What is your name?

Submit

Figure 4-4. Flashed message

A loop is used because there could be multiple messages queued for display, one for
each time flash() was called in the previous request cycle. Messages that are retrieved

Message Flashing | 47

from get_flashed_messages() will not be returned the next time this function is called,
so flashed messages appear only once and are then discarded.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 4c to check out this version of the application.

Being able to accept data from the user through web forms is a feature required by most
applications, and so is the ability to store that data in permanent storage. Using databases
with Flask is the topic of the next chapter.

48 | Chapter4: Web Forms

CHAPTER 5
Databases

A database stores application data in an organized way. The application then issues
queries to retrieve specific portions as they are needed. The most commonly used da-
tabases for web applications are those based on the relational model, also called SQL
databases in reference to the Structured Query Language they use. But in recent years
document-oriented and key-value databases, informally known together as NoSQL da-
tabases, have become popular alternatives.

SQL Databases

Relational databases store data in tables, which model the different entities in the ap-
plication’s domain. For example, a database for an order management application will
likely have customers, products, and orders tables.

A table has a fixed number of columns and a variable number of rows. The columns
define the data attributes of the entity represented by the table. For example, a customers
table will have columns such as name, address, phone, and so on. Each row in a table
defines an actual data element that consists of values for all the columns.

Tables have a special column called the primary key, which holds a unique identifier for
each row stored in the table. Tables can also have columns called foreign keys, which
reference the primary key of another row from the same or another table. These links
between rows are called relationships and are the foundation of the relational database
model.

Figure 5-1 shows a diagram of a simple database with two tables that store users and
user roles. The line that connects the two tables represents a relationship between the
tables.

49

roles users

Rk] i
id T id
name username

password
role_id

AN

Figure 5-1. Relational database example

In this database diagram, the roles table stores the list of all possible user roles, each
identified by a unique id value—the table’s primary key. The users table contains the
list of users, each with its own unique id as well. Besides the id primary keys, the roles
table has a name column and the users table has username and password columns. The
role_id column in the users table is a foreign key that references the id of a role, and
in this way the role assigned to each user is established.

As seen in the example, relational databases store data efficiently and avoid duplication.
Renaming a user role in this database is simple because role names exist in a single place.
Immediately after a role name is changed in the roles table, all users thathavearole_1id
that references the changed role will see the update.

On the other hand, having the data split into multiple tables can be a complication.
Producing a listing of users with their roles presents a small problem, because users and
user roles need to be read from two tables and joined before they can be presented
together. Relational database engines provide the support to perform join operations
between tables when necessary.

NoSQL Databases

Databases that do not follow the relational model described in the previous section are
collectively referred to as NoSQL databases. One common organization for NoSQL
databases uses collections instead of tables and documents instead of records. NoSQL
databases are designed in a way that makes joins difficult, so most of them do not support
this operation at all. For a NoSQL database structured as in Figure 5-1, listing the users
with their roles requires the application itself to perform the join operation by reading
the role_1id field of each user and then searching the roles table for it.

A more appropriate design for a NoSQL database is shown in Figure 5-2. This is the
result of applying an operation called denormalization, which reduces the number of
tables at the expense of data duplication.

50 | Chapter5:Databases

vww allitebooks.cond

http://www.allitebooks.org

N
[users
id
username

password
role

Figure 5-2. NoSQL database example

A database with this structure has the role name explicitly stored with each user. Re-
naming a role can then turn out to be an expensive operation that may require updating
a large number of documents.

But it isn't all bad news with NoSQL databases. Having the data duplicated allows for
faster querying. Listing users and their roles is straightforward because no joins are
needed.

SQL or NoSQL?

SQL databases excel at storing structured data in an efficient and compact form. These
databases go to great lengths to preserve consistency. NoSQL databases relax some of
the consistency requirements and as a result can sometimes get a performance edge.

A full analysis and comparison of database types is outside the scope of this book. For
small- to medium-size applications, both SQL and NoSQL databases are perfectly ca-
pable and have practically equivalent performance.

Python Database Frameworks

Python has packages for most database engines, both open source and commercial.
Flask puts no restrictions on what database packages can be used, so you can work with
MySQL, Postgres, SQLite, Redis, MongoDB, or CouchDB if any of these is your favorite.

Asifthose weren’t enough choices, there are also a number of database abstraction layer
packages such as SQLAlchemy or MongoEngine that allow you to work at a higher level
with regular Python objects instead of database entities such as tables, documents, or
query languages.

There are a number of factors to evaluate when choosing a database framework:

Ease of use
When comparing straight database engines versus database abstraction layers, the
second group clearly wins. Abstraction layers, also called object-relational mappers
(ORMs) or object-document mappers (ODMs), provide transparent conversion of
high-level object-oriented operations into low-level database instructions.

SQLorNoSQL? | 51

Performance

The conversions that ORMs and ODMs have to do to translate from the object
domain into the database domain have an overhead. In most cases, the performance
penalty is negligible, but they may not always be. In general, the productivity gain
obtained with ORMs and ODMs far outweighs a minimal performance degrada-
tion, so this isn’t a valid argument to drop ORMs and ODMs completely. What
makes sense is to choose a database abstraction layer that provides optional access
to the underlying database in case specific operations need to be optimized by im-
plementing them directly as native database instructions.

Portability
The database choices available on your development and production platforms
must be considered. For example, if you plan to host your application on a cloud
platform, then you should find out what database choices this service offers.

Another portability aspect applies to ORMs and ODMs. Although some of these
frameworks provide an abstraction layer for a single database engine, others ab-
stract even higher and provide a choice of database engines—all accessible with the
same object-oriented interface. The best example of this is the SQLAlchemy ORM,
which supports a list of relational database engines including the popular MySQL,
Postgres, and SQLite.

Flask integration
Choosing a framework that has integration with Flask is not absolutely required,
but it will save you from having to write the integration code yourself. Flask inte-
gration could simplify configuration and operation, so using a package specifically
designed as a Flask extension should be preferred.

Based on these goals, the chosen database framework for the examples in this book will
be Flask-SQLAlchemy, the Flask extension wrapper for SQLAlchemy.

Database Management with Flask-SQLAIchemy

Flask-SQLAlchemy is a Flask extension that simplifies the use of SQLAlchemy inside
Flask applications. SQLAlchemy is a powerful relational database framework that sup-
ports several database backends. It offers a high-level ORM and low level access to the
database’s native SQL functionality.

Like most other extensions, Flask-SQLAlchemy is installed with pip:

(venv) $ pip install flask-sqlalchemy

In Flask-SQLAlchemy, a database is specified as a URL. Table 5-1 lists the format of
database URLs for the three most popular database engines.

52 | Chapter5:Databases

http://pythonhosted.org/Flask-SQLAlchemy/
http://www.sqlalchemy.org/

Table 5-1. Flask-SQLAlchemy database URLs

Database engine URL

MysQL mysql://username:password@hostname/database
Postgres postgresql://username:password@hostname/database
SQLite (Unix) sqlite:////absolute/path/to/database

SQLite (Windows) sqlite:///c./absolute/path/to/database

In these URLs, hostname refers to the server that hosts the MySQL service, which could
be localhost or a remote server. Database servers can host several databases, so data-
base indicates the name of the database to use. For databases that need authentication,
username and password are the database user credentials.

SQLite databases do not have a server, so hostname, username, and
password are omitted and database is the filename of a disk file.

The URL of the application database must be configured as the key
SQLALCHEMY_DATABASE_URI in the Flask configuration object. Another useful option is
the configuration key SQLALCHEMY_COMMIT_ON_TEARDOWN, which can be set to True to
enable automatic commits of database changes at the end of each request. Consult the
Flask-SQLAlchemy documentation for information on other configuration options.
Example 5-1 shows how to initialize and configure a simple SQLite database.

Example 5-1. hello.py: Database configuration
from flask.ext.sqlalchemy import SQLAlchemy
basedir = os.path.abspath(os.path.dirname(__file_))
app = Flask(__name__)
app.config[' SQLALCHEMY DATABASE_URI'] =\
'sqlite:///' + os.path.join(basedir, 'data.sqlite')
app.config[' SQLALCHEMY COMMIT ON_TEARDOWN'] = True
db = SQLAlchemy(app)

The db object instantiated from class SQLAlchemy represents the database and provides
access to all the functionality of Flask-SQLAlchemy.

Database Management with Flask-SQLAIchemy | 53

Model Definition

The term model is used to refer to the persistent entities used by the application. In the
context of an ORM, a model is typically a Python class with attributes that match the
columns of a corresponding database table.

The database instance from Flask-SQLAlchemy provides a base class for models as well
as a set of helper classes and functions that are used to define their structure. The roles
and users tables from Figure 5-1 can be defined as models Role and User as shown in
Example 5-2.

Example 5-2. hello.py: Role and User model definition

class Role(db.Model):
__tablename__ = 'roles'
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(64), unique=True)

def __repr__(self):
return '<Role %r>' % self.name

class User(db.Model):
__tablename__ = 'users'
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(64), unique=True, index=True)

def __repr__(self):
return '<User %r>' % self.username

The __tablename__ class variable defines the name of the table in the database. Flask-
SQLAlchemy assigns a default table nameif __tablename__is omitted, but those default
names do not follow the convention of using plurals for table names, so it is best to
name tables explicitly. The remaining class variables are the attributes of the model,
defined as instances of the db.Column class.

The firstargument given to the db. Column constructor is the type of the database column
and model attribute. Table 5-2 lists some of the column types that are available, along
with the Python type used in the model.

Table 5-2. Most common SQLAIlchemy column types

Type name Python type Description

Integer int Regular integer, typically 32 bits
Smallinteger {nt Short-range integer, typically 16 bits
Biginteger int or Llong Unlimited precision integer

Float float Floating-point number

Numeric decimal.Decimal Fixed-point number

54 | Chapter5:Databases

Type name Python type Description

String str Variable-length string

Text str Variable-length string, optimized for large or unbound length
Unicode unicode Variable-length Unicode string

UnicodeText ynicode Variable-length Unicode string, optimized for large or unbound length
Boolean bool Boolean value

Date datetime.date Date value

Time datetime.time Time value

DateTime datetime.datetime Dateand time value

Interval datetime.timedelta Timeinterval

Enum str List of string values

PickleType Any Python object Automatic Pickle serialization

LargeBinary str Binary blob

The remaining arguments to db.Column specify configuration options for each at-
tribute. Table 5-3 lists some of the options available.

Table 5-3. Most common SQLAlchemy column options

Option name Description

primary_key Ifsetto True, the column is the table’s primary key.

unique If set to True, do not allow duplicate values for this column.

index If set to True, create an index for this column, so that queries are more efficient.

nullable If set to True, allow empty values for this column. If set to False, the column will not allow null
values.

default Define a default value for the column.

Flask-SQLAlchemy requires all models to define a primary key col-
umn, which is normally named 1id.

Although it’s not strictly necessary, the two models include a __repr__() method to
give them a readable string representation that can be used for debugging and testing
purposes.

Model Definition | 55

Relationships

Relational databases establish connections between rows in different tables through the
use of relationships. The relational diagram in Figure 5-1 expresses a simple relationship
between users and their roles. This is a one-to-many relationship from roles to users,
because one role belongs to many users and users have only one role.

Example 5-3 shows how the one-to-many relationship in Figure 5-1 is represented in
the model classes.

Example 5-3. hello.py: Relationships

class Role(db.Model):
...
users = db.relationship('User', backref='role')

class User(db.Model):
...
role_id = db.Column(db.Integer, db.ForeignKey('roles.id"))

As seen in Figure 5-1, a relationship connects two rows through the user of a foreign
key. The role_id column added to the User model is defined as a foreign key, and that
establishes the relationship. The 'roles.id' argument to db.ForeignKey() specifies
that the column should be interpreted as having id values from rows in the roles table.

The users attribute added to model Role represents the object-oriented view of the
relationship. Given an instance of class Role, the users attribute will return the list of
users associated with that role. The firstargument todb. relationship() indicates what
model is on the other side of the relationship. This model can be provided as a string if
the class is not yet defined.

The backref argument to db.relationship() defines the reverse direction of the re-
lationship by adding a role attribute to the User model. This attribute can be used
instead of role_1id to access the Role model as an object instead of as a foreign key.

In most cases db.relationship() can locate the relationship’s foreign key on its own,
but sometimes it cannot determine what column to use as a foreign key. For example,
if the User model had two or more columns defined as Role foreign keys, then
SQLAlchemy would not know which one of the two to use. Whenever the foreign key
configuration is ambiguous, additional arguments to db.relationship() need to be
given. Table 5-4 lists some of the common configuration options that can be used to
define a relationship.

56 | Chapter5:Databases

Table 5-4. Common SQLAIchemy relationship options

Option name Description
backref Add a back reference in the other model in the relationship.

primaryjoin Specify the join condition between the two models explicitly. This is necessary only for ambiguous
relationships.

lazy Specify how the related items are to be loaded. Possible values are se Lect (items are loaded on
demand the first time they are accessed), {mmediate (items are loaded when the source object

is loaded), joined (items are loaded immediately, but as a join), subquer'y (items are loaded

immediately, but as a subquery), noload (items are never loaded), and dynam1ic (instead of
loading the items the query that can load them is given).

uselist If set to Fa'lse, use a scalar instead of a list.
order_by Specify the ordering used for the items in the relationship.
secondary Specify the name of the association table to use in many-to-many relationships.

secondaryjoin Specfy the secondary join condition for many-to-many relationships when SQLAIchemy cannot
determine it on its own.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 5a to check out this version of the application.

There are other relationship types besides the one-to-many. The one-to-one relationship
can be expressed as the one-to-many described earlier, but with the uselist option set
to False within the db.relationship() definition so that the “many” side becomes a
“one” side. The many-to-one relationship can also be expressed as a one-to-many if the
tables are reversed, or it can be expressed with the foreign key and the
db.relationship() definition both on the “many” side. The most complex relationship
type, the many-to-many, requires an additional table called an association table. You
will learn about many-to-many relationships in Chapter 12.

Database Operations

The models are now fully configured according to the database diagram in Figure 5-1
and are ready to be used. The best way to learn how to work with these models is in a
Python shell. The following sections will walk you through the most common database
operations.

Database Operations | 57

Creating the Tables

The very first thing to do is to instruct Flask-SQLAlchemy to create a database based
on the model classes. The db.create_all() function does this:

(venv) $ python hello.py shell
>>> from hello import db
>>> db.create_all()

If you check the application directory, you will now see a new file there called da-
ta.sqlite, the name that was given to the SQLite database in the configuration. The
db.create_all() function will not re-create or update a database table if it already
exists in the database. This can be inconvenient when the models are modified and the
changes need to be applied to an existing database. The brute-force solution to update
existing database tables is to remove the old tables first:

>>> db.drop_all()
>>> db.create_all()

Unfortunately, this method has the undesired side effect of destroying all the data in the
old database. A better solution to the problem of updating databases is presented near
the end of the chapter.

Inserting Rows
The following example creates a few roles and users:

>>> from hello import Role, User

>>> admin_role = Role(name='Admin')

>>> mod_role = Role(name='Moderator')

>>> user_role = Role(name='User"')

>>> user_john = User(username='john', role=admin_role)
>>> user_susan = User(username='susan', role=user_role)
>>> user_david = User(username='david', role=user_role)

The constructors for models accept initial values for the model attributes as keyword
arguments. Note that even the role attribute can be used, even though it is not a real
database column but a high-level representation of the one-to-many relationship. The
id attribute of these new objects is not set explicitly: the primary keys are managed by
Flask-SQLAlchemy. The objects exist only on the Python side so far; they have not been
written to the database yet. Because of that their id value has not yet been assigned:

>>> print(admin_role.id)
None

>>> print(mod_role.1d)
None

>>> print(user_role.id)
None

58 | Chapter5: Databases

Changes to the database are managed through a database session, which Flask-
SQLAlchemy provides as db. session. To prepare objects to be written to the database,
they must be added to the session:

>>> db.session.add(admin_role)

>>> db.session.add(mod_role)

>>> db.session.add(user_role)

>>> db.session.add(user_john)

>>> db.session.add(user_susan)
>>> db.session.add(user_david)

Or, more concisely:

>>> db.session.add_all([admin_role, mod_role, user_role,
user_john, user_susan, user_david])

To write the objects to the database, the session needs to be committed by calling its
commit() method:

>>> db.session.commit()
Check the 1d attributes again; they are now set:

>>> print(admin_role.id)

1

>>> print(mod_role.1id)
2

>>> print(user_role.id)
3

The db.session database session is not related to the Flask session
object discussed in Chapter 4. Database sessions are also called trans-
actions.

Database sessions are extremely useful in keeping the database consistent. The commit
operation writes all the objects that were added to the session atomically. If an error
occurs while the session is being written, the whole session is discarded. If you always
commit related changes together in a session, you are guaranteed to avoid database
inconsistencies due to partial updates.

A database session can also be rolled back. If db.session.rollback()
is called, any objects that were added to the database session are
restored to the state they have in the database.

Database Operations | 59

Modifying Rows

The add() method ofthe database session can also be used to update models. Continuing
in the same shell session, the following example renames the "Admin" role to
"Administrator":

>>> admin_role.name = 'Administrator’
>>> db.session.add(admin_role)
>>> db.session.commit()

Deleting Rows

The database session also has a delete() method. The following example deletes the
"Moderator" role from the database:

>>> db.session.delete(mod_role)

>>> db.session.commit()
Note that deletions, like insertions and updates, are executed only when the database
session is committed.

Querying Rows

Flask-SQLAlchemy makes a query object available in each model class. The most basic
query for a model is the one that returns the entire contents of the corresponding table:

>>> Role.query.all()

[<Role u'Administrator's, <Role u'User's]

>>> User.query.all()

[<User u'john's, <User u'susan's, <User u'david's]
A query object can be configured to issue more specific database searches through the
use of filters. The following example finds all the users that were assigned the "User"
role:

>>> User.query.filter_by(role=user_role).all()

[<User u'susan's, <User u'david's]
Itis also possible to inspect the native SQL query that SQLAlchemy generates for a given
query by converting the query object to a string:

>>> str(User.query.filter_by(role=user_role))
'SELECT users.id AS users_id, users.username AS users_username,
users.role_id AS users_role_id FROM users WHERE :param_1 = users.role_id'

If you exit the shell session, the objects created in the previous example will cease to
exist as Python objects but will continue to exist as rows in their respective database
tables. If you then start a brand new shell session, you have to re-create Python objects
from their database rows. The following example issues a query that loads the user role
with name "User":

60 | Chapter5:Databases

>>> user_role = Role.query.filter_by(name='User"').first()

Filters such as filter_by() are invoked on a query object and return a new refined
query. Multiple filters can be called in sequence until the query is configured as needed.

Table 5-5 shows some of the most common filters available to queries. The complete
list is in the SQLAlchemy documentation.

Table 5-5. Common SQLAIchemy query filters
filter() Returns a new query that adds an additional filter to the original query
filter_by() Retumsanew query that adds an additional equality filter to the original query
limit() Returns a new query that limits the number of results of the original query to the given number
offset() Returns a new query that applies an offset into the list of results of the original query
order_by() Retumsanew query that sorts the results of the original query according to the given criteria

group_by() Returnsa new query that groups the results of the original query according to the given criteria

After the desired filters have been applied to the query, a call to all() will cause the
query to execute and return the results as a list, but there are other ways to trigger the
execution of a query besides all(). Table 5-6 shows other query execution methods.

Table 5-6. Most common SQLAlchemy query executors

Option Description

allQ) Returns all the results of a query as a list

first() Returns the first result of a query, or None if there are no results

first_or_404() Returnsthe first result of a query, or aborts the request and sends a 404 eror as response if there
are no results

get() Returns the row that matches the given primary key, or None if no matching row is found

get_or_404() Returns the row that matches the given primary key. If the key is not found it aborts the request and
sends a 404 error as response

count() Returns the result count of the query

paginate() Returns a Pagination object that contains the specified range of results

Relationships work similarly to queries. The following example queries the one-to-
many relationship between roles and users from both ends:

>>> users = user_role.users

>>> users

[<User u'susan's>, <User u'david's]
>>> users[0].role

<Role u'User'>

Database Operations | 61

http://docs.sqlalchemy.org

The user_role.users query here has a small problem. The implicit query that runs
when the user_role.users expression is issued internally calls all() to return the list
of users. Because the query object is hidden, it is not possible to refine it with additional
query filters. In this particular example, it may have been useful to request that the user
list be returned in alphabetical order. In Example 5-4, the configuration of the relation-
ship is modified with a lazy = 'dynamic' argument to request that the query is not
automatically executed.

Example 5-4. app/models.py: Dynamic relationships

class Role(db.Model):
...
users = db.relationship('User', backref='role', lazy='dynamic')
...

With the relationship configured in this way, user_role.users returns a query that
hasn’t executed yet, so filters can be added to it:

>>> user_role.users.order_by(User.username).all()
[<User u'david's>, <User u'susan's>]

>>> user_role.users.count()

2

Database Use in View Functions

The database operations described in the previous sections can be used directly inside
view functions. Example 5-5 shows a new version of the home page route that records
names entered by users in the database.

Example 5-5. hello.py: Database use in view functions

('/', methods=['GET', 'POST'])
def index():
form = NameForm()
if form.validate_on_submit():
user = User.query.filter_by(username=form.name.data).first()
if user is None:
user = User(username = form.name.data)
db.session.add(user)
session['known'] = False
else:
session['known'] = True
session['name'] = form.name.data
form.name.data = ''
return redirect(url_for('index"))
return render_template('index.html',
form = form, name = session.get('name'),
known = session.get('known', False))

62 | Chapter5:Databases

In this modified version of the application, each time a name is submitted the application
checks for it in the database using the filter_by() query filter. A known variable is
written to the user session so that after the redirect the information can be sent to the
template, where it is used to customize the greeting. Note that for the application to
work, the database tables must be created in a Python shell as shown earlier.

The new version of the associated template is shown in Example 5-6. This template uses
the known argument to add a second line to the greeting that is different for known and
new users.

Example 5-6. templates/index.html

{% extends "base.html" %}
{% import "bootstrap/wtf.html" as wtf %}

{% block title %}Flasky{% endblock %}

{% block page_content %}

<div class="page-header"s
<hi>Hello, {% if name %}{{ name }}{% else %}Stranger{% endif %}'!'</h1>
{% if not known %}
<p>Pleased to meet you!</p>
{% else %}
<p>Happy to see you again!</p>
{% endif %}

</div>

{{ wtf.quick_form(form) }}

{% endblock %}

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 5b to check out this version of the application.

Integration with the Python Shell

Having to import the database instance and the models each time a shell session is started
is tedious work. To avoid having to constantly repeat these imports, the Flask-Script’s
shell command can be configured to automatically import certain objects.

To add objects to the import list the shell command needs to be registered with a
make_context callback function. This is shown in Example 5-7.

Example 5-7. hello.py: Adding a shell context

from flask.ext.script import Shell

def make_shell_context():

Integration with the Python Shell | 63

return dict(app=app, db=db, User=User, Role=Role)
manager.add_command("shell", Shell(make_context=make_shell_context))

The make_shell_context() function registers the application and database instances
and the models so that they are automatically imported into the shell:

$ python hello.py shell

>>> app

<Flask 'app'>

>>> db

<SQLAlchemy engine='sqlite:////home/flask/flasky/data.sqlite'>
>>> User

<class 'app.User's>

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 5c to check out this version of the application.

Database Migrations with Flask-Migrate

Asyoumake progress developing an application, you will find that your database models
need to change, and when that happens the database needs to be updated as well.

Flask-SQLAlchemy creates database tables from models only when they do not exist
already, so the only way to make it update tables is by destroying the old tables first, but
of course this causes all the data in the database to be lost.

A better solution is to use a database migration framework. In the same way source code
version control tools keep track of changes to source code files, a database migration
framework keeps track of changes to a database schema, and then incremental changes
can be applied to the database.

The lead developer of SQLAlchemy has written a migration framework called Alem-
bic, but instead of using Alembic directly, Flask applications can use the Flask-
Migrate extension, a lightweight Alembic wrapper that integrates with Flask-Script to
provide all operations through Flask-Script commands.

Creating a Migration Repository
To begin, Flask-Migrate must be installed in the virtual environment:

(venv) $ pip install flask-migrate

Example 5-8 shows how the extension is initialized.

64 | Chapter5:Databases

http://bit.ly/alembic-doc
http://bit.ly/alembic-doc
http://bit.ly/fl-migrate
http://bit.ly/fl-migrate

Example 5-8. hello.py: Flask-Migrate configuration

from flask.ext.migrate import Migrate, MigrateCommand
...

migrate = Migrate(app, db)
manager.add_command('db', MigrateCommand)

To expose the database migration commands, Flask-Migrate exposes a MigrateCommand
class that is attached to Flask-Script’s manager object. In this example the command is
attached using db.

Before database migrations can be maintained, it is necessary to create a migration
repository with the init subcommand:

(venv) $ python hello.py db init
Creating directory /home/flask/flasky/migrations...done
Creating directory /home/flask/flasky/migrations/versions...done
Generating /home/flask/flasky/migrations/alembic.inti...done
Generating /home/flask/flasky/migrations/env.py...done
Generating /home/flask/flasky/migrations/env.pyc...done
Generating /home/flask/flasky/migrations/README. . .done
Generating /home/flask/flasky/migrations/script.py.mako...done
Please edit configuration/connection/logging settings in
' [home/flask/flasky/migrations/alembic.ini' before proceeding.

This command creates a migrations folder, where all the migration scripts will be stored.

The files in a database migration repository must always be added to
version control along with the rest of the application.

Creating a Migration Script

In Alembic, a database migration is represented by a migration script. This script has
two functions called upgrade() and downgrade(). The upgrade() function applies the
database changes that are part of the migration, and the downgrade() function removes
them. By having the ability to add and remove the changes, Alembic can reconfigure a
database to any point in the change history.

Alembic migrations can be created manually or automatically using the revision and
migrate commands, respectively. A manual migration creates a migration skeleton
script with empty upgrade() and downgrade() functions that need to be implemented
by the developer using directives exposed by Alembic’s Operations object. An auto-
matic migration, on the other hand, generates the code for the upgrade() and

Database Migrations with Flask-Migrate | 65

downgrade() functions by looking for differences between the model definitions and
the current state of the database.

Automatic migrations are not always accurate and can miss some
details. Migration scripts generated automatically should always be
reviewed.

The migrate subcommand creates an automatic migration script:

(venv) $ python hello.py db migrate -m "initial migration”
INFO [alembic.migration] Context impl SQLiteImpl.
INFO [alembic.migration] Will assume non-transactional DDL.
INFO [alembic.autogenerate] Detected added table 'roles'
INFO [alembic.autogenerate] Detected added table 'users'
INFO [alembic.autogenerate.compare] Detected added index
'ix_users_username' on '['username']'
Generating /home/flask/flasky/migrations/versions/1bc
594146bb5_1initial_migration.py...done

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 5d to check out this version of the application.
Note that you do not need to generate the migrations for this appli-
cation as all the migration scripts are included in the repository.

Upgrading the Database

Once a migration script has been reviewed and accepted, it can be applied to the database
using the db upgrade command:

(venv) $ python hello.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade None -> 1bc594146bb5, initial migration

For a first migration, this is effectively equivalent to calling db.create_all(), but in
successive migrations the upgrade command applies updates to the tables without af-
fecting their contents.

If you have cloned the applications Git repository on GitHub, delete
your data.sqlite database file and then run Flask-Migrate’s upgrade
command to regenerate the database through the migration frame-
work.

66 | Chapter5:Databases

The topic of database design and usage is very important; entire books have been written
on the subject. You should consider this chapter as an overview; more advanced topics
will be discussed in later chapters. The next chapter is dedicated to sending email.

Database Migrations with Flask-Migrate | 67

CHAPTER 6
Email

Many types of applications need to notify users when certain events occur, and the usual
method of communication is email. Although the smtplib package from the Python
standard library can be used to send email inside a Flask application, the Flask-Mail
extension wraps smtplib and integrates it nicely with Flask.

Email Support with Flask-Mail

Flask-Mail is installed with pip:
(venv) $ pip install flask-mail

The extension connects to a Simple Mail Transfer Protocol (SMTP) server and passes
emails to it for delivery. If no configuration is given, Flask-Mail connects to localhost at
port 25 and sends email without authentication. Table 6-1 shows the list of configuration
keys that can be used to configure the SMTP server.

Table 6-1. Flask-Mail SMTP server configuration keys
Key Default Description
MAIL_HOSTNAME localhost Hostname or IP address of the email server
MAIL_PORT 25 Port of the email server
MAIL_USE_TLS False EnableTransport Layer Security (TLS) security
MAIL_USE_SSL False Enable Secure Sockets Layer (SSL) security
MAIL_USERNAME None Mail account username
MAIL_PASSWORD None Mail account password

During development it may be more convenient to connect to an external SMTP server.
As an example, Example 6-1 shows how to configure the application to send email
through a Google Gmail account.

69

Example 6-1. hello.py: Flask-Mail configuration for Gmail

import os

...

app.config['"MAIL_SERVER'] = 'smtp.googlemail.com'

app.config['"MAIL_PORT'] = 587

app.config['"MAIL_USE_TLS'] = True

app.config['"MAIL_USERNAME'] = os.environ.get('MAIL_USERNAME')
app.config['"MAIL_PASSWORD'] = os.environ.get('MAIL_PASSWORD')

Never write account credentials directly in your scripts, particularly
if you plan to release your work as open source. To protect your
account information, have your script import sensitive information
from the environment.

Flask-Mail is initialized as shown in Example 6-2.

Example 6-2. hello.py: Flask-Mail initialization

from flask.ext.mail import Mail
mail = Mail(app)

The two environment variables that hold the email server username and password need
to be defined in the environment. If you are on Linux or Mac OS X using bash, you can
set these variables as follows:

(venv) $ export MAIL_USERNAME=<Gmail username>
(venv) $ export MAIL_PASSWORD=<Gmail password>

For Microsoft Windows users, the environment variables are set as follows:

(venv) $ set MAIL_USERNAME=<Gmail username>
(venv) $§ set MAIL_PASSWORD=<Gmail password>

Sending Email from the Python Shell
To test the configuration, you can start a shell session and send a test email:

(venv) $ python hello.py shell
>>> from flask.ext.mail import Message
>>> from hello import mail
>>> msg = Message('test subject', sender='you@example.com',
. recipients=['you@example.com'])
>>> msg.body = 'text body'
>>> msg.html = 'HTML body'
>>> with app.app_context():
mail.send(msg)

70 | Chapter6: Email

Note that Flask-Mail’s send() function uses current_app, so it needs to be executed
with an activated application context.

Integrating Emails with the Application

To avoid having to create email messages manually every time, itisa good idea to abstract
the common parts of the application’s email sending functionality into a function. As
an added benefit, this function can render email bodies from Jinja2 templates to have
the most flexibility. The implementation is shown in Example 6-3.

Example 6-3. hello.py: Email support

from flask.ext.mail import Message

app.config['FLASKY MAIL_SUBJECT PREFIX'] = '[Flasky]'
app.config['FLASKY_MAIL_SENDER'] = 'Flasky Admin <flasky@example.com>'

def send_email(to, subject, template, **kwargs):
msg = Message(app.config['FLASKY_MAIL_SUBJECT_PREFIX'] + subject,
sender=app.config['FLASKY_MAIL_SENDER'], recipients=[to])
msg.body = render_template(template + '.txt', **kwargs)
msg.html = render_template(template + '.html', **kwargs)
mail.send(msg)

The function relies on two application-specific configuration keys that define a prefix
string for the subject and the address that will be used as sender. The send_email
function takes the destination address, a subject line, a template for the email body, and
a list of keyword arguments. The template name must be given without the extension,
so that two versions of the template can be used for the plain- and rich-text bodies. The
keyword arguments passed by the caller are given to the render_template() calls so
that they can be used by the templates that generate the email body.

The index() view function can be easily expanded to send an email to the administrator
whenever a new name is received with the form. Example 6-4 shows this change.

Example 6-4. hello.py: Email example

...
app.config['FLASKY_ADMIN'] = os.environ.get('FLASKY_ADMIN')
...
('/", methods=['GET', 'POST'])
def index():
form = NameForm()
if form.validate_on_submit():
user = User.query.filter_by(username=form.name.data).first()
if user is None:
user = User(username=form.name.data)
db.session.add(user)
session['known'] = False
if app.config['FLASKY_ADMIN']:

Email Support with Flask-Mail | 71

send_email(app.config['FLASKY_ADMIN'], 'New User',

'mail/new_user', user=user)

else:

session['known'] = True

session['name'] = form.name.data

form.name.data = ''

return redirect(url_for('index"))

return render_template('index.html', form=form, name=session.get('name'),

known=session.get('known', False))

The recipient of the email is given in the FLASKY_ADMIN environment variable loaded
into a configuration variable of the same name during startup. Two template files need
to be created for the text and HTML versions of the email. These files are stored in a
mail subfolder inside templates to keep them separate from regular templates. The email
templates expect the user to be given as a template argument, so the call to send_email()
includes it as a keyword argument.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 6a to check out this version of the application.

In addition to the MAIL_USERNAME and MAIL_PASSWORD environment variables described
earlier, this version of the application needs the FLASKY_ADMIN environment variable.
For Linux and Mac OS X users, the command to start the application is:

(venv) $ export FLASKY_ADMIN=<your-email-address>
For Microsoft Windows users, this is the equivalent command:
(venv) $ set FLASKY_ADMIN=<Gmail username>

With these environment variables set, you can test the application and receive an email
every time you enter a new name in the form.

Sending Asynchronous Email

If you sent a few test emails, you likely noticed that the mail.send() function blocks
for a few seconds while the email is sent, making the browser look unresponsive during
that time. To avoid unnecessary delays during request handling, the email send function
can be moved to a background thread. Example 6-5 shows this change.

Example 6-5. hello.py: Asynchronous email support

from threading import Thread

def send_async_email(app, msg):
with app.app_context():

72 | Chapter6: Email

mail.send(msg)

def send_email(to, subject, template, **kwargs):
msg = Message(app.config['FLASKY_MAIL_SUBJECT_PREFIX'] + subject,
sender=app.config['FLASKY_MAIL_SENDER'], recipients=[to])
msg.body = render_template(template + '.txt', **kwargs)
msg.html = render_template(template + '.html', **kwargs)
thr = Thread(target=send_async_email, args=[app, msg])
thr.start()
return thr

This implementation highlights an interesting problem. Many Flask extensions operate
under the assumption that there are active application and request contexts. Flask-Mail’s
send() function uses current_app, so it requires the application context to be active.
But when the mail.send() function executes in a different thread, the application con-
text needs to be created artificially using app.app_context().

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 6b to check out this version of the application.

If you run the application now, you will notice that it is much more responsive, but keep
in mind that for applications that send a large volume of email, having a job dedicated
to sending email is more appropriate than starting a new thread for every email. For
example, the execution of the send_async_email() function can be sent to a Celery
task queue.

This chapter completes the overview of the features that are a must-have for most web
applications. The problem now is that the hello.py script is starting to get large and that
makes it harder to work with. In the next chapter, you will learn how to structure alarger
application.

Email Support with Flask-Mail | 73

http://www.celeryproject.org/

CHAPTER 7
Large Application Structure

Although having small web applications stored in a single script can be very convenient,
this approach does not scale well. As the application grows in complexity, working with
a single large source file becomes problematic.

Unlike most other web frameworks, Flask does not impose a specific organization for
large projects; the way to structure the application is left entirely to the developer. In
this chapter, a possible way to organize a large application in packages and modules is
presented. This structure will be used in the remaining examples of the book.

Project Structure

Example 7-1 shows the basic layout for a Flask application.

Example 7-1. Basic multiple-file Flask application structure

| -flasky
[-app/
-templates/
-static/
| -main/
|-__init__.py
| -errors.py
| -forms.py
| -views.py

|-__init__.py
| -email.py
| -models.py
| -migrations/
| -tests/
|-__init__.py
| -test*.py
| -venv/
| -requirements. txt

75

| -config.py
| -manage.py

This structure has four top-level folders:
o The Flask application lives inside a package generically named app.

o The migrations folder contains the database migration scripts, as before.

o Unit tests are written in a tests package.

The venv folder contains the Python virtual environment, as before.
There are also a few new files:

o requirements.txt lists the package dependencies so that it is easy to regenerate an
identical virtual environment on a different computer.

o config.py stores the configuration settings.

 manage.py launches the application and other application tasks.

To help you fully understand this structure, the following sections describe the process
to convert the hello.py application to it.

Configuration Options

Applications often need several configuration sets. The best example of this is the need
to use different databases during development, testing, and production so that they don’t
interfere with each other.

Instead of the simple dictionary-like structure configuration used by hello.py, a hierar-
chy of configuration classes can be used. Example 7-2 shows the config.py file.

Example 7-2. config.py: Application configuration

import os
basedir = os.path.abspath(os.path.dirname(__file__))

class Config:
SECRET_KEY = os.environ.get('SECRET_KEY') or 'hard to guess string'
SQLALCHEMY_COMMIT_ON_TEARDOWN = True
FLASKY_MAIL_SUBJECT_PREFIX = '[Flasky]'
FLASKY_MAIL_SENDER = 'Flasky Admin <flasky@example.com>'
FLASKY_ADMIN = os.environ.get('FLASKY_ADMIN'")

def init_app(app):
pass

class DevelopmentConfig(Config):
DEBUG = True

76 | Chapter7:Large Application Structure

MAIL_SERVER = 'smtp.googlemail.com'

MAIL_PORT = 587

MAIL_USE_TLS = True

MAIL_USERNAME = os.environ.get('MAIL_USERNAME')

MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD')

SQLALCHEMY_DATABASE_URI = os.environ.get('DEV_DATABASE_URL') or \
'sqlite:///' + os.path.join(basedir, 'data-dev.sqglite')

class TestingConfig(Config):
TESTING = True
SQLALCHEMY_DATABASE_URI = os.environ.get('TEST_DATABASE_URL') or \
'sqlite:///' + os.path.join(basedir, 'data-test.sqlite')

class ProductionConfig(Config):
SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \
'sqlite:///' + os.path.join(basedir, 'data.sqlite')

config = {
'development': DevelopmentConfig,
'testing': TestingConfig,
'production': ProductionConfig,

'default': DevelopmentConfig
}

The Config base class contains settings that are common to all configurations; the dif-
ferent subclasses define settings that are specific to a configuration. Additional config-
urations can be added as needed.

To make configuration more flexible and safe, some settings can be optionally imported
from environment variables. For example, the value of the SECRET_KEY, due to its sen-
sitive nature, can be set in the environment, but a default value is provided in case the
environment does not define it.

The SQLALCHEMY_DATABASE_URI variable is assigned different values under each of the
three configurations. This enables the application to run under different configurations,
each using a different database.

Configuration classes can define a init_app() class method that takes an application
instance as an argument. Here configuration-specific initialization can performed. For
now the base Config class implements an empty init_app() method.

At the bottom of the configuration script, the different configurations are registered in
a config dictionary. One of the configurations (the one for development in this case)
is also registered as the default.

Configuration Options | 77

Application Package

The application package is where all the application code, templates, and static files live.
It is called simply app, though it can be given an application-specific name if desired.
The templates and static folders are part of the application package, so these two folders
are moved inside app. The database models and the email support functions are also
moved inside this package, each in its own module as app/models.py and app/email.py.

Using an Application Factory

The way the application is created in the single-file version is very convenient, but it has
one big drawback. Because the application is created in the global scope, there is no way
to apply configuration changes dynamically: by the time the script is running, the ap-
plication instance has already been created, so it is already too late to make configuration
changes. This is particularly important for unit tests because sometimes it is necessary
to run the application under different configuration settings for better test coverage.

The solution to this problem is to delay the creation of the application by moving it into
a factory function that can be explicitly invoked from the script. This not only gives the
script time to set the configuration but also the ability to create multiple application
instances—something that can also be very useful during testing. The application fac-
tory function, shown in Example 7-3, is defined in the app package constructor.

This constructor imports most of the Flask extensions currently in use, but because
there is no application instance to initialize them with, it creates them uninitialized by
passing no arguments into their constructors. The create_app() function is the appli-
cation factory, which takes as an argument the name of a configuration to use for the
application. The configuration settings stored in one of the classes defined in con-
fig.py can be imported directly into the application using the from_object() method
available in Flask’s app . config configuration object. The configuration object is selected
by name from the config dictionary. Once an application is created and configured,
the extensions can be initialized. Calling init_app() on the extensions that were created
earlier completes their initialization.

Example 7-3. app/__init__.py: Application package constructor

from flask import Flask, render_template
from flask.ext.bootstrap import Bootstrap
from flask.ext.mail import Mail

from flask.ext.moment import Moment

from flask.ext.sqlalchemy import SQLAlchemy
from config import config

bootstrap = Bootstrap()
mail = Mail()

moment = Moment()

db = SQLAlchemy()

78 | Chapter7:Large Application Structure

def create_app(config_name):
app = Flask(__name__)
app.config.from_object(config[config_name])
config[config_name].init_app(app)

bootstrap.init_app(app)
mail.init_app(app)
moment.init_app(app)
db.init_app(app)

attach routes and custom error pages here
return app

The factory function returns the created application instance, but note that applications
created with the factory function in its current state are incomplete, as they are missing
routes and custom error page handlers. This is the topic of the next section.

Implementing Application Functionality in a Blueprint

The conversion to an application factory introduces a complication for routes. In single-
script applications, the application instance exists in the global scope, so routes can be
easily defined using the app. route decorator. But now that the application is created at
runtime, the app.route decorator begins to exist only after create_app() is invoked,
which is too late. Like routes, custom error page handlers present the same problem, as
these are defined with the app.errorhandler decorator.

Luckily Flask offers a better solution using blueprints. A blueprint is similar to an ap-
plication in that it can also define routes. The difference is that routes associated with
a blueprint are in a dormant state until the blueprint is registered with an application,
at which point the routes become part of it. Using a blueprint defined in the global scope,
the routes of the application can be defined in almost the same way as in the single-
script application.

Like applications, blueprints can be defined all in a single file or can be created in a more
structured way with multiple modules inside a package. To allow for the greatest flexi-
bility, a subpackage inside the application package will be created to host the blueprint.
Example 7-4 shows the package constructor, which creates the blueprint.

Example 7-4. app/main/__init__.py: Blueprint creation

from flask import Blueprint
main = Blueprint('main', __name__)

from . import views, errors

Application Package | 79

Blueprints are created by instantiating an object of class Blueprint. The constructor
for this class takes two required arguments: the blueprint name and the module or
package where the blueprint is located. As with applications, Python’s__name__ variable
is in most cases the correct value for the second argument.

The routes of the application are stored in an app/main/views.py module inside the
package, and the error handlers are in app/main/errors.py. Importing these modules
causes the routes and error handlers to be associated with the blueprint. It is important
to note that the modules are imported at the bottom of the app/__init__.py script to
avoid circular dependencies, because views.py and errors.py need to import the main
blueprint.

The blueprint is registered with the application inside the create_app() factory func-
tion, as shown in Example 7-5.
Example 7-5. app/_init_.py: Blueprint registration

def create_app(config_name):
...

from main import main as main_blueprint
app.register_blueprint(main_blueprint)

return app
Example 7-6 shows the error handlers.

Example 7-6. app/main/errors.py: Blueprint with error handlers

from flask import render_template
from . import main

(404)
def page_not_found(e):
return render_template('404.html'), 404

(500)
def internal_server_error(e):
return render_template('500.html"'), 500

A difference when writing error handlers inside a blueprint is that if the errorhandler
decorator is used, the handler will only be invoked for errors that originate in the blue-
print. To install application-wide error handlers, the app_errorhandler must be used
instead.

Example 7-7 shows the routes of the application updated to be in the blueprint.

Example 7-7. app/main/views.py: Blueprint with application routes

from datetime import datetime
from flask import render_template, session, redirect, url_for

80 | Chapter7:Large Application Structure

from . import main

from .forms import NameForm
from .. import db

from ..models import User

('/", methods=['GET', 'POST'])
def index():
form = NameForm()
if form.validate_on_submit():
...
return redirect(url_for('.index'))
return render_template('index.html',
form=form, name=session.get('name'),
known=session.get('known', False),
current_time=datetime.utcnow())

There are two main differences when writing a view function inside a blueprint. First,
as was done for error handlers earlier, the route decorator comes from the blueprint.
The second difference is in the usage of the url_for () function. As you may recall, the
first argument to this function is the endpoint name of the route, which for application-
based routes defaults to the name of the view function. For example, in a single-script
application the URL for an 1index() view function can be obtained with
url_for('index").

The difference with blueprints is that Flask applies a namespace to all the endpoints
coming from a blueprint so that multiple blueprints can define view functions with the
same endpoint names without collisions. The namespace is the name of the blueprint
(the first argument to the Blueprint constructor), so the index() view function is
registered with endpoint name main.index and its URL can be obtained with
url_for('main.index"').

The url_for() function also supports a shorter format for endpoints in blueprints in
which the blueprint name is omitted, such as url_for("'.index"). With this notation,
the blueprint for the current request is used. This effectively means that redirects within
the same blueprint can use the shorter form, while redirects across blueprints must use
the namespaced endpoint name.

To complete the changes to the application page, the form objects are also stored inside
the blueprint in an app/main/forms.py module.

Launch Script

The manage.py file in the top-level folder is used to start the application. This script is
shown in Example 7-8.

Launch Script | 81

Example 7-8. manage.py: Launch script

#!/usr/bin/env python

import os

from app import create_app, db

from app.models import User, Role

from flask.ext.script import Manager, Shell

from flask.ext.migrate import Migrate, MigrateCommand

app = create_app(os.getenv('FLASK_CONFIG') or 'default')
manager = Manager(app)
migrate = Migrate(app, db)

def make_shell_context():
return dict(app=app, db=db, User=User, Role=Role)
manager.add_command("shell", Shell(make_context=make_shell_context))
manager.add_command('db', MigrateCommand)
if __name__ == '__main__
manager.run()

The script begins by creating an application. The configuration used is taken from the
environment variable FLASK_CONFIG if it’s defined; if not, the default configuration is
used. Flask-Script, Flask-Migrate, and the custom context for the Python shell are then
initialized.

As a convenience, a shebang line is added, so that on Unix-based operating systems the
script can be executed as . /manage. py instead of the more verbose python manage.py.

Requirements File

Applications must include a requirements.txt file that records all the package depen-
dencies, with the exact version numbers. This is important in case the virtual environ-
ment needs to be regenerated in a different machine, such as the machine on which the
application will be deployed for production use. This file can be generated automatically
by pip with the following command:

(venv) $ pip freeze >requirements.txt

It is a good idea to refresh this file whenever a package is installed or upgraded. An
example requirements file is shown here:

Flask==0.10.1
Flask-Bootstrap==3.0.3.1
Flask-Mail==0.9.0
Flask-Migrate==1.1.0
Flask-Moment==0.2.0
Flask-SQLAlchemy==1.0
Flask-Script==0.6.6
Flask-WTF==0.9.4

82 | Chapter7:Large Application Structure

Jinjaz==2.7.1
Mako==0.9.1
MarkupSafe==0.18
SQLAlchemy==0.8.4
WTForms==1.0.5
Werkzeug==0.9.4
alembic==0.6.2
blinker==1.3
itsdangerous==0.23

When you need to build a perfect replica of the virtual environment, you can create a
new virtual environment and run the following command on it:

(venv) $ pip install -r requirements.txt

The version numbers in the example requirements.txt file are likely going to be outdated
by the time you read this. You can try using more recent releases of the packages, if you
like. If you experience any problems, you can always go back to the versions specified
in the requirements file, as those are known to be compatible with the application.

Unit Tests

This application is very small so there isn’t a lot to test yet, but as an example two simple
tests can be defined as shown in Example 7-9.

Example 7-9. tests/test_basics.py: Unit tests

import unittest
from flask import current_app
from app import create_app, db

class BasicsTestCase(unittest.TestCase):
def setUp(self):
self.app = create_app('testing')
self.app_context = self.app.app_context()
self.app_context.push()
db.create_all()

def tearDown(self):
db.session.remove()
db.drop_all()
self.app_context.pop()

def test_app_exists(self):
self.assertFalse(current_app is None)

def test_app_is_testing(self):
self.assertTrue(current_app.config['TESTING'])

UnitTests | 83

The tests are written using the standard unittest package from the Python standard
library. The setUp() and tearDown() methods run before and after each test, and any
methods that have a name that begins with test_ are executed as tests.

If you want to learn more about writing unit tests with Python’s
unittest package, read the official documentation.

The setUp() method tries to create an environment for the test that is close to that of
arunning application. It first creates an application configured for testing and activates
its context. This step ensures that tests have access to current_app, like regular requests.
Then it creates a brand-new database that the test can use when necessary. The database
and the application context are removed in the tearDown() method.

The first test ensures that the application instance exists. The second test ensures that
the application is running under the testing configuration. To make the tests folder a
proper package, a tests/__init__.py file needs to be added, but this can be an empty file,
as the unittest package can scan all the modules and locate the tests.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 7a to check out the converted version of the ap-
plication. To ensure that you have all the dependencies installed, al-
sorun pip install -r requirements.txt.

To run the unit tests, a custom command can be added to the manage.py script.
Example 7-10 shows how to add a test command.

Example 7-10. manage.py: Unit test launcher command

def test():
"""Run the unit tests.
import unittest
tests = unittest.TestLoader().discover('tests')
unittest.TextTestRunner(verbosity=2).run(tests)

nwun

Themanager . command decorator makes it simple to implement custom commands. The
name of the decorated function is used as the command name, and the function’s doc-
string is displayed in the help messages. The implementation of test() function invokes
the test runner from the unittest package.

The unit tests can be executed as follows:

84 | Chapter7:Large Application Structure

http://bit.ly/py-unittest

(venv) $ python manage.py test
test_app_exists (test_basics.BasicsTestCase) ... ok
test_app_1is_testing (test_basics.BasicsTestCase) ... ok

Ran 2 tests in 0.001s

0K

Database Setup

The restructured application uses a different database than the single-script version.

The database URL is taken from an environment variable as a first choice, with a default
SQLite database as an alternative. The environment variables and SQLite database
filenames are different for each of the three configurations. For example, in the devel-
opment configuration the URL is obtained from environment variable
DEV_DATABASE_URL, and if that is not defined then a SQLite database with the name
data-dev.sqlite is used.

Regardless of the source of the database URL, the database tables must be created for
the new database. When working with Flask-Migrate to keep track of migrations, da-
tabase tables can be created or upgraded to the latest revision with a single command:

(venv) $ python manage.py db upgrade

Believe it or not, you have reached the end of Part I. You now have learned the basic
elements necessary to build a web application with Flask, but you probably feel unsure
about how all these pieces fit together to form a real application. The goal of Part II is
to help with that by walking you through the development of a complete application.

Database Setup | 85

PART I

Example: A Social
Blogging Application

CHAPTER 8
User Authentication

Most applications need to keep track of who its users are. When users connect with the
application, they authenticate with it, a process by which they make their identity
known. Once the application knows who the user is, it can offer a customized experience.

The most commonly used method of authentication requires users to provide a piece
of identification (either their email or username) and a secret password. In this chapter,
the complete authentication system for Flasky is created.

Authentication Extensions for Flask

There are many excellent Python authentication packages, but none of them do every-
thing. The user authentication solution presented in this chapter uses several packages
and provides the glue that makes them work well together. This is the list of packages
that will be used:

o Flask-Login: Management of user sessions for logged-in users

o Werkzeug: Password hashing and verification

o itsdangerous: Cryptographically secure token generation and verification
In addition to authentication-specific packages, the following general-purpose exten-
sions will be used:

o Flask-Mail: Sending of authentication-related emails

o Flask-Bootstrap: HTML templates
o Flask-WTF: Web forms

89

Password Security

The safety of user information stored in databases is often overlooked during the design
of web applications. If an attacker is able to break into your server and access your user
database, then you risk the security of your users, and the risk is bigger than you think.
It is a known fact that most users use the same password on multiple sites, so even if
you don't store any sensitive information, access to the passwords stored in your data-
base can give the attacker access to accounts your users have on other sites.

The key to storing user passwords securely in a database relies not on storing the pass-
word itself but a hash of it. A password hashing function takes a password as input and
applies one or more cryptographic transformations to it. The result is a new sequence
of characters that has no resemblance to the original password. Password hashes can be
verified in place of the real passwords because hashing functions are repeatable: given
the same inputs, the result is always the same.

Password hashing is a complex task that is hard to get right. It is
recommended that you don’t implement your own solution but in-
stead rely on reputable libraries that have been reviewed by the com-
munity. If you are interested in learning whats involved in generat-
ing secure password hashes, the article Salted Password Hashing -
Doing it Right is a worthwhile read.

Hashing Passwords with Werkzeug

Werkzeug’s security module conveniently implements secure password hashing. This
functionality is exposed with just two functions, used in the registration and verification
phases, respectively:

e generate_password_hash(password, method=pbkdf2:shai, salt_length=8):
This function takes a plain-text password and returns the password hash as a string
that can be stored in the user database. The default values for method and
salt_length are sufficient for most use cases.

o check_password_hash(hash, password): This function takes a password hash re-
trieved from the database and the password entered by the user. A return value of
True indicates that the password is correct.

Example 8-1 shows the changes to the User model created in Chapter 5 to accommodate
password hashing.

Example 8-1. app/models.py: Password hashing in User model

from werkzeug.security import generate_password_hash, check_password_hash

90 | Chapter8: User Authentication

http://bit.ly/saltedpass
http://bit.ly/saltedpass

class User(db.Model):
...
password_hash = db.Column(db.String(128))

def password(self):
raise AttributeError('password is not a readable attribute')

def password(self, password):
self.password_hash = generate_password_hash(password)

def verify_password(self, password):
return check_password_hash(self.password_hash, password)

The password hashing function is implemented through a write-only property called
password. When this property is set, the setter method will call Werkzeug’s
generate_password_hash() function and write the result to the password_hash field.
Attempting to read the password property will return an error, as clearly the original
password cannot be recovered once hashed.

The verify_password method takes a password and passes it to Werkzeug’s
check_password_hash() function for verification against the hashed version stored in
the User model. If this method returns True, then the password is correct.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 8a to check out this version of the application.

The password hashing functionality is now complete and can be tested in the shell:

(venv) $ python manage.py shell

>>> u = User()

>>> u.password = 'cat'

>>> u.password_hash
'pbkdf2:shal:1000$duxMkO0F$4735b293e397d6eeaf650aaf490fd90911928bed’
>>> u.verify_password('cat')

True

>>> u.verify_password('dog')
False

>>> u2 = User()

>>> u2.password = 'cat'

>>> u2.password_hash
'pbkdf2:shal:10005UjvnGeTP$875e28eb0874f44101d6b332442218f66975€e89"

Note how users u and u2 have completely different password hashes, even though they
both use the same password. To ensure that this functionality continues to work in the

Password Security | 91

future, the above tests can be written as unit tests that can be repeated easily. In
Example 8-2 a new module inside the fests package is shown with three new tests that
exercise the recent changes to the User model.

Example 8-2. tests/test_user_model.py: Password hashing tests

import unittest
from app.models import User

class UserModelTestCase(unittest.TestCase):
def test_password_setter(self):
u = User(password = 'cat')
self.assertTrue(u.password_hash is not None)

def test_no_password_getter(self):

u = User(password = 'cat')
with self.assertRaises(AttributeError):
u.password

def test_password_verification(self):
u = User(password = 'cat')
self.assertTrue(u.verify_password('cat'))
self.assertFalse(u.verify_password('dog'))

def test_password_salts_are_random(self):
u = User(password="'cat')
u2 = User(password="'cat"')
self.assertTrue(u.password_hash != u2.password_hash)

Creating an Authentication Blueprint

Blueprints were introduced in Chapter 7 as a way to define routes in the global scope
after the creation of the application was moved into a factory function. The routes related
to the user authentication system can be added to a auth blueprint. Using different
blueprints for different sets of application functionality is a great way to keep the code
neatly organized.

The auth blueprint will be hosted in a Python package with the same name. The blue-
print’s package constructor creates the blueprint object and imports routes from a
views.py module. This is shown in Example 8-3.

Example 8-3. app/auth/__init__.py: Blueprint creation

from flask import Blueprint

auth = Blueprint('auth', name__)

from . import views

92 | Chapter8: User Authentication

The app/auth/views.py module, shown in Example 8-4, imports the blueprint and de-
fines the routes associated with authentication using its route decorator. For now
a /login route is added, which renders a placeholder template of the same name.

Example 8-4. app/auth/views.py: Blueprint routes and view functions

from flask import render_template
from . import auth

('/login")
def login():
return render_template('auth/login.html")

Note that the template file given to render_template() is stored inside the auth folder.
This folder must be created inside app/templates, as Flask expects the templates to be
relative to the application’s template folder. By storing the blueprint templates in their
own folder, there is no risk of naming collisions with the main blueprint or any other
blueprints that will be added in the future.

Blueprints can also be configured to have their own independent
folder for templates. When multiple template folders have been
configured, the render_template() function searches the templates
folder configured for the application first and then searches the tem-
plate folders defined by blueprints.

The auth blueprint needs to be attached to the application in the create_app() factory
function as shown in Example 8-5.

Example 8-5. app/__init__.py: Blueprint attachment

def create_app(config_name):
...
from .auth import auth as auth_blueprint
app.register_blueprint(auth_blueprint, url_prefix='/auth")

return app

The url_prefix argument in the blueprint registration is optional. When used, all the
routes defined in the blueprint will be registered with the given prefix, in this
case /auth. For example, the /login route will be registered as /auth/login, and the fully
qualified URL under the development web server then becomes http://localhost:5000/
auth/login.

Creating an Authentication Blueprint | 93

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 8b to check out this version of the application.

User Authentication with Flask-Login

When users log in to the application, their authenticated state has to be recorded so that
it is remembered as they navigate through different pages. Flask-Login is a small but
extremely useful extension that specializes in managing this particular aspect of a user
authentication system, without being tied to a specific authentication mechanism.

To begin, the extension needs to be installed in the virtual environment:

(venv) $ pip install flask-login

Preparing the User Model for Logins

To be able to work with the application’s User model, the Flask-Login extension requires
a few methods to be implemented by it. The required methods are shown in Table 8-1.

Table 8-1. Flask-Login user methods

Method Description

is_authenticated() Mustretun True if the user has login credentials or False otherwise.

is_active() Must return True if the user is allowed to log in or False otherwise. A Fa'lse return
value can be used for disabled accounts.

is_anonymous() Must always return False for regular users.

get_id() Must return a unique identifier for the user, encoded as a Unicode string.

These four methods can be implemented directly as methods in the model class, but as
an easier alternative Flask-Login provides a UserMixin class that has default imple-
mentations that are appropriate for most cases. The updated User model is shown in
Example 8-6.

Example 8-6. app/models.py: Updates to the User model to support user logins

from flask.ext.login import UserMixin

class User(UserMixin, db.Model):
__tablename__ = 'users'
id = db.Column(db.Integer, primary_key = True)
email = db.Column(db.String(64), unique=True, index=True)
username = db.Column(db.String(64), unique=True, index=True)
password_hash = db.Column(db.String(128))
role_id = db.Column(db.Integer, db.ForeignKey('roles.id"))

94 | Chapter8: User Authentication

Note that an email field was also added. In this application, users will log in with their
email, as they are less likely to forget their email addresses than their usernames.

Flask-Login is initialized in the application factory function, as shown in Example 8-7.

Example 8-7. app/__init__.py: Flask-Login initialization
from flask.ext.login import LoginManager
login_manager = LoginManager()

login_manager.session_protection = 'strong'
login_manager.login_view = 'auth.login'

def create_app(config_name):
...
login_manager.init_app(app)
...

The session_protection attribute of the LoginManager object can be set to None,
'basic', or 'strong' to provide different levels of security against user session tam-
pering. With the 'strong' setting, Flask-Login will keep track of the client’s IP address
and browser agent and will log the user out if it detects a change. The login_view
attribute sets the endpoint for the login page. Recall that because the login route is inside
a blueprint, it needs to be prefixed with the blueprint name.

Finally, Flask-Login requires the application to set up a callback function that loads a
user, given the identifier. This function is shown in Example 8-8.

Example 8-8. app/models.py: User loader callback function

from . import login_manager
def load_user(user_1id):
return User.query.get(int(user_1id))

The user loader callback function receives a user identifier as a Unicode string. The
return value of the function must be the user object if available or None otherwise.

Protecting Routes

To protect a route so that it can only be accessed by authenticated users, Flask-Login
provides a login_required decorator. An example of its usage follows:

from flask.ext.login import login_required
('/secret')

def secret():
return 'Only authenticated users are allowed!'

User Authentication with Flask-Login | 95

If this route is accessed by a user who is not authenticated, Flask-Login will intercept
the request and send the user to the login page instead.

Adding a Login Form

The login form that will be presented to users has a text field for the email address, a
password field, a “remember me” checkbox, and a submit button. The Flask-WTF form
class is shown in Example 8-9.

Example 8-9. app/auth/forms.py: Login form

from flask.ext.wtf import Form
from wtforms import StringField, PasswordField, BooleanField, SubmitField
from wtforms.validators import Required, Email

class LoginForm(Form):
email = StringField('Email', validators=[Required(), Length(1l, 64),
Email()])
password = PasswordField('Password', validators=[Required()])
remember_me = BooleanField('Keep me logged in')
submit = SubmitField('Log In')

The email field takes advantage of the Length() and Email() validators provided by
WTForms. The PasswordField class represents an <input> element with
type="password". The BooleanField class represents a checkbox.

The template associated with the login page is stored in auth/login.html. This template
just needs to render the form using Flask-Bootstraps wtf.quick_form() macro.
Figure 8-1 shows the login form rendered by the web browser.

The navigation bar in the base.html template uses a Jinja2 conditional to display “Sign
In” or “Sign Out” links depending on the logged in state of the current user. The con-
ditional is shown in Example 8-10.

Example 8-10. app/templates/base.html: Sign In and Sign Out navigation bar links

<ul class="nav navbar-nav navbar-right"s
{% if current_user.is_authenticated() %}
Sign Out
{% else %}
Sign In</1li>
{% endif %}

The current_user variable used in the conditional is defined by Flask-Login and is
automatically available to view functions and templates. This variable contains the user
currently logged in, or a proxy anonymous user object if the user is not logged in.
Anonymous user objects respond to the is_authenticated() method with False, so
this is a convenient way to know whether the current user is logged in.

96 | Chapter8: User Authentication

®00 Flasky - Login s
< >][] [+ [ocalhosts000 (o]

Login

Email

Password

) Keep me logged in

Log In

Figure 8-1. Login form

Signing Users In

The

implementation of the login() view function is shown in Example 8-11.

Example 8-11. app/auth/views.py: Sign In route

from
from

from .

from
from

def

flask import render_template, redirect, request, url_for, flash
flask.ext.login import login_user

import auth

..models import User

.forms import LoginForm

('/login', methods=['GET', 'POST'])
login():
form = LoginForm()
if form.validate_on_submit():
user = User.query.filter_by(email=form.email.data).first()
if user is not None and user.verify_password(form.password.data):
login_user(user, form.remember_me.data)
return redirect(request.args.get('next') or url_for('main.index"'))
flash('Invalid username or password.')
return render_template('auth/login.html', form=form)

The view function creates a LoginForm object and uses it like the simple form in Chap-
ter 4. When the request is of type GET, the view function just renders the template, which

User Authentication with Flask-Login

97

in turn displays the form. When the form is submitted in a POST request Flask-WTF’s
validate_on_submit() function validates the form variables, and then attempts to log
the user in.

To log a user in, the function begins by loading the user from the database using the
email provided with the form. If a user with the given email address exists, then its
verify_password() method is called with the password that also came with the form.
If the password is valid, Flask-Login’s login_user () function is invoked to record the
user as logged in for the user session. The login_user() function takes the user to log
in and an optional “remember me” Boolean, which was also submitted with the form.
A value of False for this argument causes the user session to expire when the browser
window is closed, so the user will have to log in again next time. A value of True causes
a long-term cookie to be set in the user’s browser and with that the user session can be
restored.

In accordance with the Post/Redirect/Get pattern discussed in Chapter 4, the POST
request that submitted the login credentials ends with a redirect, but there are two
possible URL destinations. If the login form was presented to the user to prevent un-
authorized access to a protected URL, then Flask-Login saved the original URL in the
next query string argument, which can be accessed from the request.args dictionary.
If the next query string argument is not available, a redirect to the home page is issued
instead. If the email or the password provided by the user are invalid, a flash message
is set and the form is rendered again for the user to retry.

On a production server, the login route must be made available over
secure HTTP so that the form data transmitted to the server is en-
crypted. Without secure HTTP, the login credentials can be intercep-
ted during transit, defeating any efforts put into securing passwords
in the server.

The login template needs to be updated to render the form. These changes are shown
in Example 8-12.

Example 8-12. app/templates/auth/login.html: Render login form

{% extends "base.html" %}
{% import "bootstrap/wtf.html" as wtf %}

{% block title %}Flasky - Login{% endblock %}

{% block page_content %}

<div class="page-header"s
<h1>Login</h1>

</div>

<div class="col-md-4">
{{ wtf.quick_form(form) }}

98 | Chapter8: User Authentication

</div>
{% endblock %}

Signing Users Qut

The implementation of the logout route is shown in Example 8-13.

Example 8-13. app/auth/views.py: Sign Out route

from flask.ext.login import logout_user, login_required
('/logout")

def logout():
logout_user()
flash('You have been logged out.')
return redirect(url_for('main.index'))

To log a user out, Flask-Login’s logout_user () function is called to remove and reset
the user session. The logout is completed with a flash message that confirms the action
and a redirect to the home page.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 8c to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code. To
ensure that you have all the dependencies installed, also run pip
install -r requirements.txt

Testing Logins

To verify that the login functionality is working, the home page can be updated to greet
the logged-in user by name. The template section that generates the greeting is shown
in Example 8-14.

Example 8-14. app/templates/index.html: Greet the logged-in user

Hello,

{% if current_user.is_authenticated() %}
{{ current_user.username }}

{% else %}
Stranger

{% endif %}!

In this template once again current_user.is_authenticated() is used to determine
whether the user is logged in.

Because no user registration functionality has been built, a new user can be registered
from the shell:

User Authentication with Flask-Login | 99

(venv) $ python manage.py shell

>>> u = User(email="'john@example.com', username='john', password='cat')
>>> db.session.add(u)

>>> db.session.commit()

The user created previously can now log in. Figure 8-2 shows the application home page
with the user logged in.

@00 Flasky "

< >][] [+ [localhosts000

Hello, john!

Figure 8-2. Home page after successful login

New User Registration

When new users want to become members of the application, they must register with
it so that they are known and can log in. A link in the login page will send them to a
registration page, where they can enter their email address, username, and password.

Adding a User Registration Form

The form that will be used in the registration page asks the user to enter an email address,
username, and password. This form is shown in Example 8-15.

Example 8-15. app/auth/forms.py: User registration form

from flask.ext.wtf import Form
from wtforms import StringField, PasswordField, BooleanField, SubmitField
from wtforms.validators import Required, Length, Email, Regexp, EqualTo

100 | Chapter 8: User Authentication

from wtforms import ValidationError
from ..models import User

class RegistrationForm(Form):
email = StringField('Email', validators=[Required(), Length(1l, 64),
Email()])
username = StringField('Username', validators=[
Required(), Length(1, 64), Regexp('~[A-Za-z][A-Za-2z0-9_.]*S', 0O,
'Usernames must have only letters,
'numbers, dots or underscores')])
password = PasswordField('Password', validators=[
Required(), EqualTo('password2', message='Passwords must match.')])
password2 = PasswordField('Confirm password', validators=[Required()])
submit = SubmitField('Register')

def validate_email(self, field):
if User.query.filter_by(email=field.data).first():
raise ValidationError('Email already registered.")

def validate_username(self, field):
if User.query.filter_by(username=field.data).first():
raise ValidationError('Username already in use.')

This form uses the Regexp validator from WTForms to ensure that the username field
contains letters, numbers, underscores, and dots only. The two arguments to the vali-
dator that follow the regular expression are the regular expression flags and the error
message to display on failure.

The password is entered twice as a safety measure, but this step makes it necessary to
validate that the two password fields have the same content, which is done with another
validator from WTForms called EqualTo. This validator is attached to one of the pass-
word fields with the name of the other field given as an argument.

This form also has two custom validators implemented as methods. When a form de-
fines a method with the prefix validate_ followed by the name of a field, the method
is invoked in addition to any regularly defined validators. In this case, the custom val-
idators for email and username ensure that the values given are not duplicates. The
custom validators indicate a validation error by throwing a ValidationError exception
with the text of the error message as argument.

The template that presents this format is called /templates/auth/register.html. Like the
login template, this one also renders the form withwtf.quick_form(). The registration
page is shown in Figure 8-3.

New User Registration | 101

8n0e Flasky - Register "
a > |[£]] + | localhost:5000 o

Register

Email

Username

Password

Confirm password

Register

Figure 8-3. New user registration form

The registration page needs to be linked from the login page so that users who don't
have an account can easily find it. This change is shown in Example 8-16.

Example 8-16. app/templates/auth/login.html: Link to the registration page

<p>
New user?

Click here to register

</p>

Registering New Users

Handling user registrations does not present any big surprises. When the registration
form is submitted and validated, a new user is added to the database using the user-
provided information. The view function that performs this task is shown in
Example 8-17.

102 | Chapter 8: User Authentication

Example 8-17. app/auth/views.py: User registration route

('/register', methods=['GET', 'POST'])
def register():
form = RegistrationForm()
if form.validate_on_submit():
user = User(email=form.email.data,
username=form.username.data,
password=form.password.data)
db.session.add(user)
flash('You can now login.")
return redirect(url_for('auth.login"))
return render_template('auth/register.html', form=form)

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 8d to check out this version of the application.

Account Confirmation

For certain types of applications, it is important to ensure that the user information
provided during registration is valid. A common requirement is to ensure that the user
can be reached through the provided email address.

To validate the email address, applications send a confirmation email to users imme-
diately after they register. The new account is initially marked as unconfirmed until the
instructions in the email are followed, which proves that the user can be reached. The
account confirmation procedure usually involves clicking a specially crafted URL link
that includes a confirmation token.

Generating Confirmation Tokens with itsdangerous

The simplest account confirmation link would be a URL with the format http://
www.example.com/auth/confirm/<id> included in the confirmation email, where id is
the numeric id assigned to the user in the database. When the user clicks the link, the
view function that handles this route receives the user id to confirm as an argument
and can easily update the confirmed status of the user.

But this is obviously not a secure implementation, as any user who figures out the format
of the confirmation links will be able to confirm arbitrary accounts just by sending
random numbers in the URL. The idea is to replace the id in the URL with a token that
contains the same information securely encrypted.

If you recall the discussion on user sessions in Chapter 4, Flask uses cryptographically
signed cookies to protect the content of user sessions against tampering. These secure

Account Confirmation | 103

cookies are signed by a package called itsdangerous. The same idea can be applied to
confirmation tokens.

The following is a short shell session that shows how itsdangerous can generate a secure
token that contains a user id inside:

(venv) $ python manage.py shell

>>> from manage import app

>>> from itsdangerous import TimedJSONWebSignatureSerializer as Serializer

>>> s = Serializer(app.config['SECRET_KEY'], expires_in = 3600)

>>> token = s.dumps({ 'confirm': 23 })

>>> token

'eyJhbGci01JIUZIINLISIMV4cCI6MTMAMTcxODU10CwiaWFOIjoxMzgxNzEOOTU4fQ.ey ... "

>>> data = s.loads(token)

>>> data

{u'confirm': 23}
Itsdangerous provides several types of token generators. Among them, the class
TimedJSONWebSignatureSerializer generates JSON Web Signatures (JWS) with a
time expiration. The constructor of this class takes an encryption key as argument,

which in a Flask application can be the configured SECRET_KEY.

The dumps () method generates a cryptographic signature for the data given as an ar-
gument and then serializes the data plus the signature as a convenient token string. The
expires_in argument sets an expiration time for the token expressed in seconds.

To decode the token, the serializer object provides a loads() method that takes the
token as its only argument. The function verifies the signature and the expiration time
and, if found valid, it returns the original data. When the loads() method is given an
invalid token or a valid token that is expired, an exception is thrown.

Token generation and verification using this functionality can be added to the User
model. The changes are shown in Example 8-18.

Example 8-18. app/models.py: User account confirmation

from itsdangerous import TimedJSONWebSignatureSerializer as Serializer
from flask import current_app
from . import db

class User(UserMixin, db.Model):
...
confirmed = db.Column(db.Boolean, default=False)

def generate_confirmation_token(self, expiration=3600):
s = Serializer(current_app.config['SECRET_KEY'], expiration)
return s.dumps({'confirm': self.id})

def confirm(self, token):
s = Serializer(current_app.config['SECRET_KEY'])
try:

104 | Chapter 8: User Authentication

data = s.loads(token)
except:
return False
if data.get('confirm') != self.id:
return False
self.confirmed = True
db.session.add(self)
return True

The generate_confirmation_token() method generates a token with a default validity
time of one hour. The confirm() method verifies the token and, if valid, sets the new
confirmed attribute to True.

In addition to verifying the token, the confirm() function checks that the id from the
token matches the logged-in user, which is stored in current_user. This ensures that
even if a malicious user figures out how to generate signed tokens, he or she cannot
confirm somebody else’s account.

Because a new column was added to the model to track the con-
firmed state of each account, a new database migration needs to be
generated and applied.

The two new methods added to the User model are easily tested in unit tests. You can
find the unit tests in the GitHub repository for the application.

Sending Confirmation Emails

The current /register route redirects to /index after adding the new user to the database.
Before redirecting, this route now needs to send the confirmation email. This change
is shown in Example 8-19.

Example 8-19. app/auth/views.py: Registration route with confirmation email

from ..email import send_email

('/register', methods = ['GET', 'POST'])
def register():

form = RegistrationForm()

if form.validate_on_submit():
...
db.session.add(user)
db.session.commit()
token = user.generate_confirmation_token()
send_email(user.email, 'Confirm Your Account',

'auth/email/confirm', user=user, token=token)

flash('A confirmation email has been sent to you by email.')

Account Confirmation | 105

return redirect(url_for('main.index"))
return render_template('auth/register.html', form=form)

Note that a db.session.commit() call had to be added, even though the application
configured automatic database commits at the end of the request. The problem is that
new users get assigned an id when they are committed to the database. Because the id
is needed for the confirmation token, the commit cannot be delayed.

The email templates used by the authentication blueprint will be added in the folder
templates/auth/email to keep them separate from the HTML templates. As discussed in
Chapter 6, for each email two templates are needed for the plain- and rich-text versions
of the body. As an example, Example 8-20 shows the plain-text version of the confir-
mation email template, and you can find the equivalent HTML version in the GitHub
repository.

Example 8-20. app/auth/templates/auth/email/confirm.txt: Text body of confirmation
email

Dear {{ user.username }},

Welcome to Flasky!

To confirm your account please click on the following link:
{{ url_for('auth.confirm', token=token, _external=True) }}
Sincerely,

The Flasky Team

Note: replies to this email address are not monitored.

By default, url_for() generates relative URLs, so, for example,
url_for('auth.confirm', token='abc') returns the string '/auth/confirm/abc'.
This, of course, is not a valid URL that can be sent in an email. Relative URLs work fine
when they are used within the context of a web page because the browser converts them
to absolute by adding the hostname and port number from the current page, but when
sending a URL over email there is no such context. The _external=True argument is
added to the url_for() call to request a fully qualified URL that includes the scheme
(http:// or https://), hostname, and port.

The view function that confirms accounts is shown in Example 8-21.

Example 8-21. app/auth/views.py: Confirm a user account

from flask.ext.login import current_user

('/confirm/<token>"')

106 | Chapter 8: User Authentication

def confirm(token):
if current_user.confirmed:
return redirect(url_for('main.index"))
if current_user.confirm(token):
flash('You have confirmed your account. Thanks!')
else:
flash('The confirmation link is invalid or has expired.')
return redirect(url_for('main.index'))

This route is protected with the login_required decorator from Flask-Login, so that
when the users click on the link from the confirmation email they are asked to log in
before they reach this view function.

The function first checks if the logged-in user is already confirmed, and in that case it
redirects to the home page, as obviously there is nothing to do. This can prevent un-
necessary work if a user clicks the confirmation token multiple times by mistake.

Because the actual token confirmation is done entirely in the User model, all the view
function needs to do is call the confirm() method and then flash a message according
to the result. When the confirmation succeeds, the User model’s confirmed attribute is
changed and added to the session, which will be committed when the request ends.

Each application can decide what unconfirmed users are allowed to do before they
confirm their account. One possibility is to allow unconfirmed users to log in, but only
show them a page that asks them to confirm their accounts before they can gain access.

This step can be done using Flask’s before_request hook, which was briefly described
in Chapter 2. From a blueprint, the before_request hook applies only to requests that
belong to the blueprint. To install a hook for all application requests from a blueprint,
the before_app_request decorator must be used instead. Example 8-22 shows how this
handler is implemented.

Example 8-22. app/auth/views.py: Filter unconfirmed accounts in before_app_request
handler

def before_request():
if current_user.is_authenticated() \
and not current_user.confirmed \
and request.endpoint[:5] != 'auth.':
return redirect(url_for('auth.unconfirmed'))

('/unconfirmed')
def unconfirmed():
if current_user.is_anonymous() or current_user.confirmed:
return redirect('main.index')
return render_template('auth/unconfirmed.html")

Account Confirmation | 107

The before_app_request handler will intercept a request when three conditions are
true:

1. A user islogged in (current_user.is_authenticated() must return True).
2. The account for the user is not confirmed.

3. The requested endpoint (accessible as request.endpoint) is outside of the au-
thentication blueprint. Access to the authentication routes needs to be granted, as
those are the routes that will enable the user to confirm the account or perform
other account management functions.

If the three conditions are met, then a redirect is issued to a new /auth/unconfirmed
route that shows a page with information about account confirmation.

When a before_request or before_app_request callback returns a
response or a redirect, Flask sends that to the client without invok-
ing the view function associated with the request. This effectively
allows these callbacks to intercept a request when necessary.

The page that is presented to unconfirmed users (shown in Figure 8-4) just renders a
template that gives users instructions for how to confirm their account and offers a link
to request a new confirmation email, in case the original email was lost. The route that
resends the confirmation email is shown in Example 8-23.

Example 8-23. app/auth/views.py: Resend account confirmation email

('/confirm")

def resend_confirmation():
token = current_user.generate_confirmation_token()
send_emaill('auth/email/confirm’',
'Confirm Your Account', user, token=token)
flash('A new confirmation email has been sent to you by email.')
return redirect(url_for('main.index'))

This route repeats what was done in the registration route using current_user, the user
who is logged in, as the target user. This route is also protected with login_required
to ensure that when it is accessed, the user that is making the request is known.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 8e to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code.

108 | Chapter 8: User Authentication

800 Flasky - Confirm your accont "
4 b |[£][+ [< localhosts000 = | (@

Hello, john!

You have not confirmed your account yet.

Before you can access this site you need to confirm your account. Gheck your inbox, you should have received an
email with a confirmation link.

Need another confirmation email? Click here

Figure 8-4. Unconfirmed account page

Account Management

Users who have accounts with the application may need to make changes to their ac-
counts from time to time. The following tasks can be added to the authentication blue-
print using the techniques presented in this chapter:

Password updates
Security conscious users may want to change their passwords periodically. This is
an easy feature to implement, because as long as the user is logged in, it is safe to
present a form that asks for the old password and a new password to replace it.
(This feature is implemented as commit 8f in the GitHub repository.)

Password resets

To avoid locking users out of the application when they forget their passwords, a
password reset option can be offered. To implement password resets in a secure
way, it is necessary to use tokens similar to those used to confirm accounts. When
a user requests a password reset, an email with a reset token is sent to the registered
email address. The user then clicks the link in the email and, after the token is
verified, a form is presented where a new password can be entered. (This feature is
implemented as commit 8g in the GitHub repository.)

Email address changes
Users can be given the option to change the registered email address, but before the
new address is accepted it must be verified with a confirmation email. To use this

Account Management | 109

feature, the user enters the new email address in a form. To confirm the email
address, a token is emailed to that address. When the server receives the token back,
it can update the user object. While the server waits to receive the token, it can store
the new email address in a new database field reserved for pending email addresses,
or it can store the address in the token along with the id. (This feature is imple-
mented as commit 8h in the GitHub repository.)

In the next chapter, the user subsystem of Flasky will be extended through the use of
user roles.

110

| Chapter 8: User Authentication

CHAPTER 9
User Roles

Not all users of web applications are created equal. In most applications, a small per-
centage of users are trusted with extra powers to help keep the application running
smoothly. Administrators are the best example, but in many cases middle-level power
users such as content moderators exist as well.

There are several ways to implement roles in an application. The appropriate method
largely depends on how many roles need to be supported and how elaborate they are.
For example, a simple application may need just two roles, one for regular users and
one for administrators. In this case, having an is_administrator Boolean field in the
User model may be all that is necessary. A more complex application may need addi-
tional roles with varying levels of power in between regular users and administrators.
In some applications it may not even make sense to talk about discrete roles; instead,
giving users a combination of permissions may be the right approach.

The user role implementation presented in this chapter is a hybrid between discrete
roles and permissions. Users are assigned a discrete role, but the roles are defined in
terms of permissions.

Database Representation of Roles

A simple roles table was created in Chapter 5 as a vehicle to demonstrate one-to-many
relationships. Example 9-1 shows an improved Role model with some additions.

Example 9-1. app/models.py: Role permissions

class Role(db.Model):
__tablename__ = 'roles'
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(64), unique=True)
default = db.Column(db.Boolean, default=False, index=True)

m

permissions = db.Column(db.Integer)
users = db.relationship('User', backref='role', lazy='dynamic"')

The default field should be set to True for only one role and False for all the others.
The role marked as default will be the one assigned to new users upon registration.

The second addition to the model is the permissions field, which is an integer that will
be used as bit flags. Each task will be assigned a bit position, and for each role the tasks
that are allowed for that role will have their bits set to 1.

The list of tasks for which permissions are needed is obviously application specific. For
Flasky, the list of tasks is shown in Table 9-1.

Table 9-1. Application permissions

Task name Bit value Description

Follow users 0b00000001 (0x01) ~ Follow other users

Comment on posts made by others ~ 0b00000010 (0x02) Comment on articles written by others

Write articles 0b00000100 (0x04) Write original articles

Moderate comments made by others 0b00001000 (0x08) ~ Suppress offensive comments made by others
Administration access 0b70000000 (0x80) ~ Administrative access to the site

Note that a total of eight bits was allocated to tasks, and so far only five have been used.
The remaining three are left for future expansion.

The code representation of Table 9-1 is shown in Example 9-2.

Example 9-2. app/models.py: Permission constants

class Permission:
FOLLOW = 0x01
COMMENT = 0x02
WRITE_ARTICLES = 0x04
MODERATE_COMMENTS = 0x08
ADMINISTER = 0x80

Table 9-2 shows the list of user roles that will be supported, along with the permission
bits that define it.

Table 9-2. User roles

User role Permissions Description
Anonymous 0b00000000 (0x00) User who is not logged in. Read-only access to the application.

User 0b00000111 (0x07) Basic permissions to write articles and comments and to follow other users. This is the
default for new users.

Moderator 0b00001111 (0x0f) Adds permission to suppress comments deemed offensive or inappropriate.

Administrator 0b11111111 (0xff) ~ Full access, which includes permission to change the roles of other users.

112 | Chapter9: User Roles

Organizing the roles with permissions lets you add new roles in the future that use
different combinations of permissions.

Adding the roles to the database manually is time consuming and error prone. Instead,
a class method will be added to the Ro'le class for this purpose, as shown in Example 9-3.

Example 9-3. app/models.py: Create roles in the database

class Role(db.Model):
...

def insert_roles():
roles = {
'User': (Permission.FOLLOW |
Permission.COMMENT |
Permission.WRITE_ARTICLES, True),
'"Moderator': (Permission.FOLLOW |
Permission.COMMENT |
Permission.WRITE_ARTICLES |
Permission.MODERATE_COMMENTS, False),
'"Administrator': (Oxff, False)

for r in roles:
role = Role.query.filter_by(name=r).first()
if role is None:
role = Role(name=r)
role.permissions = roles[r][0]
role.default = roles[r][1]
db.session.add(role)
db.session.commit()

The insert_roles() function does not directly create new role objects. Instead, it tries
to find existing roles by name and update those. A new role object is created only for
role names that aren’t in the database already. This is done so that the role list can be
updated in the future when changes need to be made. To add a new role or change the
permission assignments for a role, change the roles array and rerun the function. Note
that the “Anonymous” role does not need to be represented in the database, as it is
designed to represent users who are not in the database.

To apply these roles to the database, a shell session can be used:

(venv) $ python manage.py shell

>>> Role.insert_roles()

>>> Role.query.all()

[<Role u'Administrator's, <Role u'User's, <Role u'Moderator's]

Role Assignment

When users register an account with the application, the correct role should be assigned
to them. For most users, the role assigned at registration time will be the “User” role, as

Role Assignment | 113

that is the role that is marked as a default role. The only exception is made for the
administrator, which needs to be assigned the “Administrator” role from the start. This
user is identified by an email address stored in the FLASKY_ADMIN configuration variable,
so as soon as that email address appears in a registration request it can be given the
correct role. Example 9-4 shows how this is done in the User model constructor.

Example 9-4. app/models.py: Define a default role for users

class User(UserMixin, db.Model):
...
def __init_ (self, **kwargs):
super(User, self).__init__(**kwargs)
if self.role is None:
if self.email == current_app.config['FLASKY_ADMIN']:
self.role = Role.query.filter_by(permissions=0xff).first()
if self.role is None:
self.role = Role.query.filter_by(default=True).first()
...

The User constructor first invokes the constructors of the base classes, and if after that
the object does not have a role defined, it sets the administrator or default roles de-
pending on the email address.

Role Verification

To simplify the implementation of roles and permissions, a helper method can be added
to the User model that checks whether a given permission is present, as shown in
Example 9-5.

Example 9-5. app/models.py: Evaluate whether a user has a given permission

from flask.ext.login import UserMixin, AnonymousUserMixin

class User(UserMixin, db.Model):
...

def can(self, permissions):
return self.role is not None and \
(self.role.permissions & permissions) == permissions

def is_administrator(self):
return self.can(Permission.ADMINISTER)

class AnonymousUser(AnonymousUserMixin):
def can(self, permissions):
return False

def is_administrator(self):
return False

114 | Chapter9: User Roles

login_manager.anonymous_user = AnonymousUser

The can() method added to the User model performs a bitwise and operation between
the requested permissions and the permissions of the assigned role. The method returns
True if all the requested bits are present in the role, which means that the user should
be allowed to perform the task. The check for administration permissions is so common
that it is also implemented as a standalone is_administrator() method.

For consistency, a custom AnonymousUser class that implements the can() and
is_administrator() methods is created. This object inherits from Flask-Login’s
AnonymousUserMixin class and is registered as the class of the object that is assigned to
current_user when the user is not logged in. This will enable the application to freely
call current_user.can() and current_user.is_administrator() without having to
check whether the user is logged in first.

For cases in which an entire view function needs to be made available only to users with
certain permissions, a custom decorator can be used. Example 9-6 shows the imple-
mentation of two decorators, one for generic permission checks and one that checks
specifically for administrator permission.

Example 9-6. app/decorators.py: Custom decorators that check user permissions

from functools import wraps
from flask import abort
from flask.ext.login import current_user

def permission_required(permission):
def decorator(f):
(f)
def decorated_function(*args, **kwargs):
if not current_user.can(permission):
abort(403)
return f(*args, **kwargs)
return decorated_function
return decorator

def admin_required(f):
return permission_required(Permission.ADMINISTER)(f)

These decorators are built with the help of the functools package from the Python stan-
dard library, and return an error code 403, the “Forbidden” HTTP error, when the
current user does not have the requested permissions. In Chapter 3, custom error pages
were created for errors 404 and 500, so now a page for the 403 error needs to be added
as well.

The following are two examples that demonstrate the usage of these decorators:

Role Verification | 115

from decorators import admin_required, permission_required

('/admin')

def for_admins_only():
return "For administrators!"

('/moderator')

(Permission.MODERATE_COMMENTS)
def for_moderators_only():
return "For comment moderators!"

Permissions may also need to be checked from templates, so the Permission class with
all the bit constants needs to be accessible to them. To avoid having to add a template
argument in every render_template() call, a context processor can be used. Context
processors make variables globally available to all templates. This change is shown in
Example 9-7.

Example 9-7. app/main/__init__.py: Adding the Permission class to the template con-
text

def inject_permissions():
return dict(Permission=Permission)

The new roles and permissions can be exercised in unit tests. Example 9-8 shows two
simple tests that also serve as a demonstration of the usage.

Example 9-8. tests/test_user_model.py: Unit tests for roles and permissions

class UserModelTestCase(unittest.TestCase):
...

def test_roles_and_permissions(self):
Role.insert_roles()
u = User(email='john@example.com', password='cat')
self.assertTrue(u.can(Permission.WRITE_ARTICLES))
self.assertFalse(u.can(Permission.MODERATE_COMMENTS))

def test_anonymous_user(self):
u = AnonymousUser()
self.assertFalse(u.can(Permission.FOLLOW))

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 9a to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code.

116 | Chapter9: User Roles

Before you move to the next chapter, it is a good idea to re-create or update the devel-
opment database so that all the user accounts that were created before roles and per-
missions existed have a role assigned.

The user system is now fairly complete. The next chapter will make use of it to create
user profile pages.

Role Verification | 117

CHAPTER 10
User Profiles

In this chapter, user profiles for Flasky are implemented. All socially aware sites give
their users a profile page, where a summary of the user’s participation in the website is
presented. Users can advertise their presence on the website by sharing the URL to their
profile page, so it is important that the URLs be short and easy to remember.

Profile Information

To make user profile pages more interesting, some additional information about users
can be recorded. In Example 10-1 the User model is extended with several new fields.

Example 10-1. app/models.py: User information fields

class User(UserMixin, db.Model):
...
name = db.Column(db.String(64))
location = db.Column(db.String(64))
about_me = db.Column(db.Text())
member_since = db.Column(db.DateTime(), default=datetime.utcnow)
last_seen = db.Column(db.DateTime(), default=datetime.utcnow)

The new fields store the user’s real name, location, self-written description, date of
registration, and date of last visit. The about_me field is assigned the type db.Text().
The difference between db.String and db.Text is that db.Text does not need a max-
imum length.

The two timestamps are given a default value of the current time. Note that
datetime.utcnow is missing the () at the end. This is because the default argument
todb.Column() can take a function as a default value, so each time a default value needs
to be generated the function is invoked to produce it. This default value is all that is
needed to manage the member_since field.

119

The last_seen field is also initialized to the current time upon creation, but it needs to
be refreshed each time the user accesses the site. A method in the User class can be
added to perform this update. This is shown in Example 10-2.

Example 10-2. app/models.py: Refresh last visit time of a user

class User(UserMixin, db.Model):
...

def ping(self):
self.last_seen = datetime.utcnow()
db.session.add(self)

The ping() method must be called each time a request from the user is received. Because
the before_app_request handler in the auth blueprint runs before every request, it can
do this easily, as shown in Example 10-3.

Example 10-3. app/auth/views.py: Ping logged-in user

def before_request():
if current_user.is_authenticated():
current_user.ping()
if not current_user.confirmed \
and request.endpoint[:5] != 'auth.':
return redirect(url_for('auth.unconfirmed'))

User Profile Page

Creating a profile page for each user does not present any new challenges. Example 10-4
shows the route definition.

Example 10-4. app/main/views.py: Profile page route

('/user/<username>")
def user(username):
user = User.query.filter_by(username=username).first()
if user is None:
abort(404)
return render_template('user.html', user=user)

This route is added in the main blueprint. For a user named john, the profile page will
be at http://localhost:5000/user/john. The username given in the URL is searched in the
database and, if found, the user.html template is rendered with it as the argument. An
invalid username sent into this route will cause a 404 error to be returned. The user.html
template should render the information stored in the user object. An initial version of
this template is shown in Example 10-5.

120 | Chapter 10: User Profiles

Example 10-5. app/templates/user.html: User profile template

{% block page_content %}
<div class="page-header"s
<h1>{{ user.username }}</h1>
{% if user.name or user.location %}
<p>
{% if user.name %}{{ user.name }}{% endif %}
{% if user.location %}
From
{{ user.location }}

{% endif %}
</p>
{% endif %}
{% if current_user.is_administrator() %}
<p>{{ user.email }}</p>
{% endif %}
{% if user.about_me %}<p>{{ user.about_me }}</p>{% endif %}
<p>
Member since {{ moment(user.member_since).format('L"') }}.
Last seen {{ moment(user.last_seen).fromNow() }}.
</p>
</div>
{% endblock %}

This template has a few interesting implementation details:

o The name and location fields are rendered inside a single <p> element. Only when
at least one of the fields is defined is the <p> element created.

o The user location field is rendered as a link to a Google Maps query.

« Ifthe logged-in user is an administrator, then email addresses are shown, rendered
as a mailto link.

As most users will want easy access to their own profile page, a link to it can be added
to the navigation bar. The relevant changes to the base.html template are shown in
Example 10-6.

Example 10-6. app/templates/base.html

{% if current_user.is_authenticated() %}

<a href="{{ url_for('main.user', username=current_user.username) }}"s
Profile

</1i>
{% endif %}

Using a conditional for the profile page link is necessary because the navigation bar is
also rendered for nonauthenticated users, in which case the profile link is skipped.

User Profile Page | 121

Figure 10-1 shows how the profile page looks in the browser. The new profile link in
the navigation bar is also shown.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 10a to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code.

8006 Flasky - john w

P | + [localhost:5000/ use

john

John Smith From Portland, OR

Python aficionado.

Member since 01/05/2014. Last seen a few seconds ago.

Figure 10-1. User profile page

Profile Editor

There are two different use cases related to editing of user profiles. The most obvious
is that users need to have access to a page where they can enter information about
themselves to present in their profile pages. A less obvious but also important require-
ment is to let administrators edit the profile of any users—not only the personal infor-
mation items but also other fields in the User model to which users have no direct access,
such as the user role. Because the two profile editing requirements are substantially
different, two different forms will be created.

User-Level Profile Editor

The profile edit form for regular users is shown in Example 10-7.

122 | Chapter10: User Profiles

Example 10-7. app/main/forms.py: Profile edit form

class EditProfileForm(Form):
name = StringField('Real name', validators=[Length(0, 64)])
location = StringField('Location', validators=[Length(0, 64)])
about_me = TextAreaField('About me')
submit = SubmitField('Submit')

Note that as all the fields in this form are optional, the length validator allows a length
of zero. The route definition that uses this form is shown in Example 10-8.

Example 10-8. app/main/views.py: Profile edit route
('/edit-profile', methods=['GET', 'POST'])

def edit_profile():

form = EditProfileForm()

if form.validate_on_submit():
current_user.name = form.name.data
current_user.location = form.location.data
current_user.about_me = form.about_me.data
db.session.add(user)
flash('Your profile has been updated.')
return redirect(url_for('.user', username=current_user.username))

form.name.data = current_user.name

form.location.data = current_user.location

form.about_me.data = current_user.about_me

return render_template('edit_profile.html', form=form)

This view function sets initial values for all the fields before presenting the form. For
any given field, this is done by assigning the initial value to form.<field-name>.data.
When form.validate_on_submit() is False, the three fields in this form are initialized
from the corresponding fields in current_user. Then, when the form is submitted, the
data attributes of the form fields contain the updated values, so these are moved back
into the fields of the user object and the object is added to the database session.
Figure 10-2 shows the Edit Profile page.

To make it easy for users to reach this page, a direct link can be added in the profile
page, as shown in Example 10-9.

Example 10-9. app/templates/user.html: Profile edit link

{% if user == current_user %}

Edit Profile

{% endif %}

The conditional that encloses the link will make the link appear only when users are
viewing their own profiles.

Profile Editor | 123

800 Flasky - Edit Profile)
4 k| [£]] + | localhost:5000 = | (@)

Edit Your Profile

Real name

John Smith

Location

Portland, OR

About me

Python aficionado.

Submit

Figure 10-2. Profile editor

Administrator-Level Profile Editor

The profile edit form for administrators is more complex than the one for regular users.
In addition to the three profile information fields, this form allows administrators to
edit a user’s email, username, confirmed status, and role. The form is shown in
Example 10-10.

Example 10-10. app/main/forms.py: Profile editing form for administrators

class EditProfileAdminForm(Form):
email = StringField('Email', validators=[Required(), Length(1l, 64),
Email()])
username = StringField('Username', validators=[
Required(), Length(l, 64), Regexp('~[A-Za-z][A-Za-z0-9_.]1*S$', 0O,

'Usernames must have only letters,
'numbers, dots or underscores')])

confirmed = BooleanField('Confirmed')

role = SelectField('Role', coerce=int)

name = StringField('Real name', validators=[Length(0, 64)])

location = StringField('Location', validators=[Length(0, 64)])

about_me = TextAreaField('About me')

submit = SubmitField('Submit')

124 | Chapter 10: User Profiles

def __init_ (self, user, *args, **kwargs):
super (EditProfileAdminForm, self).__init__(*args, **kwargs)
self.role.choices = [(role.id, role.name)
for role in Role.query.order_by(Role.name).all()]
self.user = user

def validate_email(self, field):
if field.data != self.user.email and \
User.query.filter_by(email=field.data).first():
raise ValidationError('Email already registered."')

def validate_username(self, field):
if field.data != self.user.username and \
User.query.filter_by(username=field.data).first():
raise ValidationError('Username already in use.')

The SelectField is WTForm’s wrapper for the <select> HTML form control, which
implements a dropdown list, used in this form to select a user role. An instance of
SelectField must have the items set in its choices attribute. They must be given as a
list of tuples, with each tuple consisting of two values: an identifier for the item and the
text to show in the control as a string. The chotices list is set in the form’s constructor,
with values obtained from the Role model with a query that sorts all the roles alpha-
betically by name. The identifier for each tuple is set to the id of each role, and since
these are integers, a coerce=int argument is added to the SelectField constructor so
that the field values are stored as integers instead of the default, which is strings.

The email and username fields are constructed in the same way as in the authentication
forms, but their validation requires some careful handling. The validation condition
used for both these fields must first check whether a change to the field was made, and
only when there is a change should it ensure that the new value does not duplicate
another user’s. When these fields are not changed, then validation should pass. To im-
plement this logic, the form’s constructor receives the user object as an argument and
saves it as a member variable, which is later used in the custom validation methods.

The route definition for the administrator’s profile editor is shown in Example 10-11.

Example 10-11. app/main/views.py: Profile edit route for administrators
('/edit-profile/<int:id>', methods=['GET', 'POST'])

def edit_profile_admin(id):
user = User.query.get_or_404(id)
form = EditProfileAdminForm(user=user)
if form.validate_on_submit():
user.email = form.email.data
user.username = form.username.data
user.confirmed = form.confirmed.data

Profile Editor | 125

user.role = Role.query.get(form.role.data)
user.name = form.name.data
user.location = form.location.data
user.about_me = form.about_me.data
db.session.add(user)
flash('The profile has been updated.')
return redirect(url_for('.user', username=user.username))
form.email.data = user.email
form.username.data = user.username
form.confirmed.data = user.confirmed
form.role.data = user.role_id
form.name.data = user.name
form.location.data = user.location
form.about_me.data = user.about_me
return render_template('edit_profile.html', form=form, user=user)

This route has largely the same structure as the simpler one for regular users. In this
view function, the user is given by its id, so Flask-SQLAlchemy’s get_or_404() con-
venience function can be used, knowing that if the id is invalid the request will return
a code 404 error.

The SelectField used for the user role also deserves to be studied. When setting the
initial value for the field, the role_1id is assigned to field.role.data because the list
of tuples set in the choices attribute uses the numeric identifiers to reference each
option. When the form is submitted, the id is extracted from the field’s data attribute
and used in a query to load the role object by its 1d. The coerce=int argument used in
the SelectField declaration in the form ensures that the data attribute of this field is
an integer.

To link to this page, another button is added in the user profile page, as shown in
Example 10-12.

Example 10-12. app/templates/user.html: Profile edit link for administrator

{% if current_user.is_administrator() %}
<a class="btn btn-danger"
href="{{ url_for('.edit_profile_admin', id=user.id) }}"s
Edit Profile [Admin]

{% endif %}

This button is rendered with a different Bootstrap style to call attention to it. The con-
ditional in this case makes the button appear in profile pages if the logged-in user is an
administrator.

126 | Chapter 10: User Profiles

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 10b to check out this version of the application.

User Avatars

The look of the profile pages can be improved by showing avatar pictures of users. In
this section, you will learn how to add user avatars provided by Gravatar, the leading
avatar service. Gravatar associates avatar images with email addresses. Users create an
account at http://gravatar.com and then upload their images. To generate the avatar
URL for a given email address, its MD5 hash is calculated:

(venv) $ python

>>> import hashlib

>>> hashlib.md5("' john@example.com'.encode('utf-8')).hexdigest()

'd4c74594d841139328695756648b6bd6 '
The avatar URLs are then generated by appending the MD5 hash to URL http://
www.gravatar.com/avatar/ or https://secure.gravatar.com/avatar/. For example, you
can type http://www.gravatar.com/avatar/d4c74594d841139328695756648b6bd6 in
your browser’s address bar to get the avatar image for the email address
john@example.com, or a default generated image if that email address does not have an
avatar registered. The query string of the URL can include several arguments that con-
figure the characteristics of the avatar image, listed in Table 10-1.

Table 10-1. Gravatar query string arguments

Argument name Description

s Image size, in pixels.
r Image rating. Options are "g", "pg", "r",and "x".
d The default image generator for users who have no avatars registered with the Gravatar service. Options are

"404" toreturn a 404 error, a URL that points to a default image, or one of the following image generators:

non non non

"mm", "identicon", "monsterid", "wavatar", "retro",or "blank".

fd Force the use of default avatars.

The knowledge of how to build a Gravatar URL can be added to the User model. The
implementation is shown in Example 10-13.

Example 10-13. app/models.py: Gravatar URL generation

import hashlib
from flask import request

class User(UserMixin, db.Model):

UserAvatars | 127

http://gravatar.com/

...
def gravatar(self, size=100, default='identicon', rating='g'):
if request.is_secure:
url = 'https://secure.gravatar.com/avatar'
else:
url = 'http://www.gravatar.com/avatar'
hash = hashlib.md5(self.email.encode('utf-8"')).hexdigest()
return '{url}/{hash}?s={size}&d={default}&r={rating}'.format(
url=url, hash=hash, size=size, default=default, rating=rating)

This implementation selects the standard or secure Gravatar base URL to match the
security of the client request. The avatar URL is generated from the base URL, the MD5
hash of the user’s email address, and the arguments, all of which have default values.
With this implementation it is easy to generate avatar URLs in the Python shell:

(venv) $ python manage.py shell

>>> u = User(email='john@example.com")

>>> u.gravatar()
"http://www.gravatar.com/avatar/d4c74594d84113932869575bd6?s=100&d=1denticon&r=g"'
>>> u.gravatar(size=256)
"http://www.gravatar.com/avatar/d4c74594d84113932869575bd6?s=2568&d=1denticon&r=g"'

The gravatar() method can also be invoked from Jinja2 templates. Example 10-14
shows how a 256-pixel avatar can be added to the profile page.

Example 10-14. app/tempaltes/user.html: Avatar in profile page

Using a similar approach, the base template adds a small thumbnail image of the logged-
in user in the navigation bar. To better format the avatar pictures in the page, custom
CSS classes are used. You can find these in the source code repository in a styles.css file
added to the application’s static file folder and referenced from the base.html template.
Figure 10-3 shows the user profile page with avatar.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 10c to check out this version of the application.

The generation of avatars requires an MD5 hash to be generated, which is a CPU-
intensive operation. If a large number of avatars need to be generated for a page, then
the computational work can be significant. Since the MD5 hash for a user will remain
constant, it can be cached in the User model. Example 10-15 shows the changes to the
User model to store the MD5 hashes in the database.

128 | Chapter 10: User Profiles

800 Flasky - john "

¥»< john
' John Smith
From Portland, OR
Python aficionado.

Member since 01/05/2014. Last seen a few seconds ago.

Edit Profile

Figure 10-3. User profile page with avatar

Example 10-15. app/models.py: Gravatar URL generation with caching of MD5 hashes

class User(UserMixin, db.Model):
...
avatar_hash = db.Column(db.String(32))

def __init__(self, **kwargs):
...
if self.emall is not None and self.avatar_hash is None:
self.avatar_hash = hashlib.md5(
self.email.encode('utf-8')).hexdigest()

def change_email(self, token):
...
self.emall = new_email
self.avatar_hash = hashlib.md5(
self.emaill.encode('utf-8')).hexdigest()
db.session.add(self)
return True

def gravatar(self, size=100, default='identicon', rating='g'):
if request.is_secure:
url = 'https://secure.gravatar.com/avatar'
else:
url = 'http://www.gravatar.com/avatar'
hash = self.avatar_hash or hashlib.md5(

UserAvatars | 129

self.emaill.encode('utf-8')).hexdigest()
return '{url}/{hash}?s={size}&d={default}&r={rating}'.format(
url=url, hash=hash, size=size, default=default, rating=rating)

During model initialization, the hash is calculated from the email and stored, and in the
event that the user updates the email address the hash is recalculated. The gravatar()
method uses the hash from the model if available; if not, it works as before and generates
the hash from the email address.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 10d to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code.

In the next chapter, the blogging engine that powers this application will be created.

130 | Chapter10: User Profiles

CHAPTER 11
Blog Posts

This chapter is dedicated to the implementation of Flasky’s main feature, which is to
allow users to read and write blog posts. Here you will learn a few new techniques for
reuse of templates, pagination of long lists of items, and working with rich text.

Blog Post Submission and Display

To support blog posts, a new database model that represents them is necessary. This
model is shown in Example 11-1.

Example 11-1. app/models.py: Post model

class Post(db.Model):
__tablename__ = 'posts'
id = db.Column(db.Integer, primary_key=True)
body = db.Column(db.Text)
timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow)
author_id = db.Column(db.Integer, db.ForeignKey('users.id'))

class User(UserMixin, db.Model):
...
posts = db.relationship('Post', backref='author', lazy='dynamic')

A blog post is is represented by a body, a timestamp, and a one-to-many relationship
from the User model. The body field is defined with type db.Text so that there is no
limitation on the length.

The form that will be shown in the main page of the application lets users write a blog
post. This form is very simple; it contains just a text area where the blog post can be
typed and a submit button. The form definition is shown in Example 11-2.

131

Example 11-2. app/main/forms.py: Blog post form

class PostForm(Form):
body = TextAreaField("What's on your mind?", validators=[Required()])
submit = SubmitField('Submit')

The index() view function handles the form and passes the list of old blog posts to the
template, as shown in Example 11-3.

Example 11-3. app/main/views.py: Home page route with a blog post

('/", methods=['GET', 'POST'])
def index():
form = PostForm()
if current_user.can(Permission.WRITE_ARTICLES) and \
form.validate_on_submit():
post = Post(body=form.body.data,
author=current_user._get_current_object())
db.session.add(post)
return redirect(url_for('.index"))
posts = Post.query.order_by(Post.timestamp.desc()).all()
return render_template('index.html', form=form, posts=posts)

This view function passes the form and the complete list of blog posts to the template.
The list of posts is ordered by their timestamp in descending order. The blog post form
is handled in the usual manner, with the creation of a new Post instance when a valid
submission is received. The current user’s permission to write articles is checked before
allowing the new post.

Note the way the author attribute of the new post object is set to the expression
current_user._get_current_object(). The current_user variable from Flask-
Login, like all context variables, is implemented as a thread-local proxy object. This
object behaves like a user object but is really a thin wrapper that contains the actual user
object inside. The database needs a real user object, which is obtained by calling
_get_current_object().

The form is rendered below the greeting in the index.html template, followed by the
blog posts. The list of blog posts is a first attempt to create a blog post timeline, with all
the blog posts in the database listed in chronological order from newest to oldest. The
changes to the template are shown in Example 11-4.

Example 11-4. app/templates/index.html: Home page template with blog posts

{% extends "base.html" %}
{% import "bootstrap/wtf.html" as wtf %}
<div>
{% if current_user.can(Permission.WRITE_ARTICLES) %}

{{ wtf.quick_form(form) }}
{% endif %}

132 | Chapter11: Blog Posts

</div>
<ul class="posts">
{% for post in posts %}
<1i class="post">
<div class="profile-thumbnail"s

<img class="img-rounded profile-thumbnail"
src="{{ post.author.gravatar(size=40) }}">

</div>
<div class="post-date">{{ moment(post.timestamp).fromNow() }}</div>
<div class="post-author"s

{{ post.author.username }}

</div>
<div class="post-body">{{ post.body }}</div>
</1i>
{% endfor %}

Note that the User.can() method is used to skip the blog post form for users who do
not have the WRITE_ARTICLES permission in their role. The blog post list is implemented
as an HTML unordered list, with CSS classes giving it nicer formatting. A small avatar
of the author is rendered on the left side, and both the avatar and the author’s username
are rendered as links to the user profile page. The CSS styles used are stored in a styles.css
file in the application’s static folder. You can review this file in the GitHub repository.
Figure 11-1 shows the home page with submission form and blog post list.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11a to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code.

Blog Post Submission and Display | 133

e 0o Flasky '

[a]»] [&] [+] mocalhosts0o0 ¢ [,Reader | (@]
Hello, john!

What's on your mind?

Submit

ann86 2 days ago
Integer pede justo, lacinia eget, tincidunt eget, tempus vel, pede.

andrea69 2 days ago
Nulla ac enim. Nulla ut erat id mauris vulputate elementum. In tempeor, turpis nec euismod scelerisque,
quam turpis adipiscing lorem, vitae mattis nibh ligula nec sem. Nunc nisl. Nullam varius.

marilyn89 2 days ago
Aenean sit amet justo. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices pasuere cubilia
Curae; Mauris viverra diam vitae quam. Fusce posuere felis sed lacus.

ﬁ' ! cheryl90 2 days ago

Figure 11-1. Home page with blog submission form and blog post list

Blog Posts on Profile Pages

The user profile page can be improved by showing a list of blog posts authored by the
user. Example 11-5 shows the changes to the view function to obtain the post list.

Example 11-5. app/main/views.py: Profile page route with blog posts

@main.route('/user/<username>')
def user(username):
user = User.query.filter_by(username=username).first()
if user is None:
abort(404)
posts = user.posts.order_by(Post.timestamp.desc()).all()
return render_template('user.html', user=user, posts=posts)

The list of blog posts for a user is obtained from the User . posts relationship, which is
a query object, so filters such as order_by() can be used on it as well.

The user.html template requires the HTML tree that renders a list of blog posts
like the one in index.html. Having to maintain two identical copies of a piece of HTML
isnotideal, so for cases like this, Jinja2’s include() directive is very useful. The user.html
template includes the list from an external file, as shown in Example 11-6.

134 | Chapter 11: Blog Posts

Example 11-6. app/templates/user.html: Profile page template with blog posts

<h3>Posts by {{ user.username }}</h3>
{% include '_posts.html' %}

To complete this reorganization, the tree from index.html is moved to the new
template _posts.html, and replaced with another include() directive. Note that the use
of an underscore prefix in the _posts.html template name is not a requirement; this is
merely a convention to distinguish standalone and partial templates.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11b to check out this version of the application.

Paginating Long Blog Post Lists

As the site grows and the number of blog posts increases, it will become slow and im-
practical to show the complete list of posts on the home and profile pages. Big pages
take longer to generate, download, and render in the web browser, so the quality of the
user experience decreases as the pages get larger. The solution is to paginate the data
and render it in chunks.

Creating Fake Blog Post Data

To be able to work with multiple pages of blog posts, it is necessary to have a test database
with a large volume of data. Manually adding new database entries is time consuming
and tedious; an automated solution is more appropriate. There are several Python
packages that can be used to generate fake information. A fairly complete one is Forg-
eryPy, which is installed with pip:

(venv) $ pip install forgerypy

The ForgeryPy package is not, strictly speaking, a dependency of the application, be-
cause it is needed only during development. To separate the production dependencies
from the development dependencies, the requirements.txt file can be replaced with a
requirements folder that stores different sets of dependencies. Inside this new folder a
dev.txt file can list the dependencies that are necessary for development and a prod.txt
file can list the dependencies that are needed in production. As there is a large number
of dependencies that will be in both lists, a common.txt file is added for those, and then
the dev.txt and prod.txt lists use the -r prefix to include it. Example 11-7 shows the
dev.txt file.

Paginating Long Blog Post Lists | 135

Example 11-7. requirements/dev.txt: Development requirements file

-r common. txt
ForgeryPy==0.1

Example 11-8 shows class methods added to the User and Post models that can generate
fake data.

Example 11-8. app/models.py: Generate fake users and blog posts

class User(UserMixin, db.Model):
...

def generate_fake(count=100):
from sqlalchemy.exc import IntegrityError
from random import seed
import forgery_py

seed()
for 1 in range(count):

u = User(email=forgery_py.internet.email_address(),
username=forgery_py.internet.user_name(True),
password=forgery_py.lorem_ipsum.word(),
confirmed=True,
name=forgery_py.name.full_name(),
location=forgery_py.address.city(),
about_me=forgery_py.lorem_1ipsum.sentence(),
member_since=forgery_py.date.date(True))

db.session.add(u)

try:

db.session.commit()
except IntegrityError:
db.session.rollback()

class Post(db.Model):
...

def generate_fake(count=100):
from random import seed, randint
import forgery_py

seed()
user_count = User.query.count()
for 1 in range(count):
u = User.query.offset(randint(0, user_count - 1)).first()
p = Post(body=forgery_py.lorem_ipsum.sentences(randint(1, 3)),
timestamp=forgery_py.date.date(True),
author=u)
db.session.add(p)
db.session.commit()

136 | Chapter 11: Blog Posts

The attributes of these fake objects are generated with ForgeryPy random information
generators, which can generate real-looking names, emails, sentences, and many more
attributes.

The email addresses and usernames of users must be unique, but since ForgeryPy gen-
erates these in completely random fashion, there is a risk of having duplicates. In this
unlikely event, the database session commit will throw an IntegrityError exception.
This exception is handled by rolling back the session before continuing. The loop iter-
ations that produce a duplicate will not write a user to the database, so the total number
of fake users added can be less than the number requested.

The random post generation must assign a random user to each post. For this the
offset() query filter is used. This filter discards the number of results given as an
argument. By setting a random offset and then calling first(), a different random user
is obtained each time.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11c to check out this version of the application.
To ensure that you have all the dependencies installed, also run pip
install -r requirements/dev.txt.

The new methods make it easy to create a large number of fake users and posts from
the Python shell:

(venv) $ python manage.py shell
>>> User.generate_fake(100)
>>> Post.generate_fake(100)

If you run the application now, you will see a long list of random blog posts on the home
page.

Rendering Data on Pages

Example 11-9 shows the changes to the home page route to support pagination.

Example 11-9. app/main/views.py: Paginate the blog post list

('/', methods=['GET', 'POST'])
def index():

...

page = request.args.get('page', 1, type=int)

pagination = Post.query.order_by(Post.timestamp.desc()).paginate(
page, per_page=current_app.config['FLASKY_POSTS_PER_PAGE'],
error_out=False)

posts = pagination.items

return render_template('index.html', form=form, posts=posts,

pagination=pagination)

Paginating Long Blog Post Lists | 137

The page number to render is obtained from the request’s query string, which is available
as request.args. When an explicit page isn't given, a default page of 1 (the first page)
is used. The type=int argument ensures that if the argument cannot be converted to
an integer, the default value is returned.

To load a single page of records, the call to all() is replaced with Flask-SQLAlchemy’s
paginate(). The paginate() method takes the page number as the first and only re-
quired argument. An optional per_page argument can be given to indicate the size of
each page, in number of items. If this argument is not specified, the default is 20 items
per page. Another optional argument called error_out can be set to True (the default)
toissue a code 404 error when a page outside of the valid range isrequested. Iferror_out
is False, pages outside of the valid range are returned with an empty list of items. To
make the page sizes configurable, the value of the per_page argument is read from an
application-specific configuration variable called FLASKY_POSTS_PER_PAGE.

With these changes, the blog post list in the home page will show a limited number of
items. To see the second page of posts, add a ?page=2 query string to the URL in the
browser’s address bar.

Adding a Pagination Widget

The return value of paginate() isan object of class Pagination, a class defined by Flask-
SQLAlchemy. This object contains several properties that are useful to generate page
links in a template, so it is passed to the template as an argument. A summary of the
attributes of the pagination object is shown in Table 11-1.

Table 11-1. Flask-SQLAlchemy pagination object attributes

Attribute Description

items The records in the current page
query The source query that was paginated
page The current page number

prev_num The previous page number
next_num The next page number
has_next True ifthereis a next page

has_prev True ifthere is a previous page

pages The total number of pages for the query
per_page The number of items per page

total The total number of items returned by the query

The pagination object also has some methods, listed in Table 11-2.

138 | Chapter 11: Blog Posts

Table 11-2. Flask-SQLAlchemy pagination object attributes

Method Description

iter_pages(left_edge=2, An iterator that returns the sequence of page numbers to display in a pagination

left_current=2, widget. The list will have Left_edge pages on the left side,
right_current=5, left_current pages to the left of the current page,
right_edge=2) right_current pages to the right of the current page, and

right_edge pages on the right side. For example, for page 50 of 100 this
iterator configured with default values will return the following pages: 1, 2,

None, 48, 49, 50, 51, 52, 53, 54, 55, None, 99, 100. A None value in the
sequence indicates a gap in the sequence of pages.

prev() A pagination object for the previous page.

next() A pagination object for the next page.

Armed with this powerful object and Bootstrap’s pagination CSS classes, it is quite easy
to build a pagination footer in the template. The implementation shown in
Example 11-10 is done as a reusable Jinja2 macro.

Example 11-10. app/templates/_macros.html: Pagination template macro

{% macro pagination_widget(pagination, endpoint) %}
<ul class="pagination"s
<li{% if not pagination.has_prev %} class="disabled"{% endif %}>
<a href="{% if pagination.has_prev %}{{ url_for(endpoint,
page = pagination.page - 1, **kwargs) }}{% else %}#{% endif %}">
«

</1i>
{% for p in pagination.iter_pages() %}
{% if p %}
{% if p == pagination.page %}
<li class="active">
<a href="{{ url_for(endpoint, page = p, **kwargs) }}"s{{ p }}
</1i>
{% else %}

<a href="{{ url_for(endpoint, page = p, **kwargs) }}"s{{ p }}
</1i>
{% endif %}
{% else %}
<li class="disabled">…</1i>
{% endif %}
{% endfor %}
<li{% if not pagination.has_next %} class="disabled"{% endif %}>
<a href="{% if pagination.has_next %}{{ url_for(endpoint,
page = pagination.page + 1, **kwargs) }}{% else %}#{% endif %}">
»

</1i>

Paginating Long Blog Post Lists | 139

{% endmacro %}

The macro creates a Bootstrap pagination element, which is a styled unordered list. It
defines the following page links inside it:

o A “previous page” link. This link gets the disabled class if the current page is the
first page.

o Links to the all pages returned by the pagination object’s iter_pages() iterator.
These pages are rendered as links with an explicit page number, given as an argu-
ment to url_for(). The page currently displayed is highlighted using the active
CSS class. Gaps in the sequence of pages are rendered with the ellipsis character.

o A “next page” link. This link will appear disabled if the current page is the last page.

Jinja2 macros always receive keyword arguments without having to include **kwargs
in the argument list. The pagination macro passes all the keyword arguments it receives
to the url_for() call that generates the pagination links. This approach can be used
with routes such as the profile page that have a dynamic part.

The pagination_widget macro can be added below the _posts.html template included
by index.html and user.html. Example 11-11 shows how it is used in the application’s
home page.

Example 11-11. app/templates/index.html: Pagination footer for blog post lists

{% extends "base.html" %}
{% import "bootstrap/wtf.html" as wtf %}
{% import "_macros.html" as macros %}

{% include '_posts.html' %}
<div class="pagination">
{{ macros.pagination_widget(pagination, '.index') }}
</div>
{% endif %}

Figure 11-2 shows how the pagination links appear in the page.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11d to check out this version of the application.

140 | Chapter 11: Blog Posts

e 0o Flasky '

(«]»] @ [+ [tecalhost:5000 ¢ [Reader] @
V¥4 phyllisT2 T3 days ago

L5 Quisque erat eros, viverra eget, congue eget, semper rutrum, nulla. Maecenas tincidunt lacus at velit.
Fusce lacus purus, aliquet at, feugiat non, pretium quis, lectus. Praesent blandit lacinia erat. Nullam orci
pede, venenatis non, sodales sed, tincidunt eu, felis.

maria71 13 days ago
Nullam varius.

Figure 11-2. Blog post pagination

Rich-Text Posts with Markdown and Flask-PageDown

Plain-text posts are sufficient for short messages and status updates, but users who want
to write longer articles will find the lack of formatting very limiting. In this section, the
text area field where posts are entered will be upgraded to support the Markdown syntax
and present a rich-text preview of the post.

The implementation of this feature requires a few new packages:
» PageDown, a client-side Markdown-to-HTML converter implemented in Java-

Script.

o Flask-PageDown, a PageDown wrapper for Flask that integrates PageDown with
Flask-WTF forms.

« Markdown, a server-side Markdown-to-HTML converter implemented in Python.

o Bleach, an HTML sanitizer implemented in Python.

The Python packages can all be installed with pip:

(venv) $ pip install flask-pagedown markdown bleach

Using Flask-PageDown

The Flask-PageDown extension defines a PageDownField class that has the same inter-
face as the TextAreaField from WTForms. Before this field can be used, the extension
needs to be initialized as shown in Example 11-12.

Example 11-12. app/__init__.py: Flask-PageDown initialization

from flask.ext.pagedown import PageDown
...

Rich-Text Posts with Markdown and Flask-PageDown | 141

http://daringfireball.net/projects/markdown/

pagedown = PageDown()

...

def create_app(config_name):
...
pagedown.init_app(app)
...

To convert the text area control in the home page to a Markdown rich-text editor, the
body field of the PostForm must be changed to a PageDownField as shown in
Example 11-13.

Example 11-13. app/main/forms.py: Markdown-enabled post form

from flask.ext.pagedown.fields import PageDownField

class PostForm(Form):
body = PageDownField("What's on your mind?", validators=[Required()])
submit = SubmitField('Submit')

The Markdown preview is generated with the help of the PageDown libraries, so these
must be added to the template. Flask-PageDown simplifies this task by providing a
template macro that includes the required files from a CDN as shown in Example 11-14.

Example 11-14. app/index.html: Flask-PageDown template declaration

{% block scripts %}

{{ super() 1}
{{ pagedown.include_pagedown() }}
{% endblock %}

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11e to check out this version of the application.
To ensure that you have all the dependencies installed also run pip
install -r requirements/dev.txt.

With these changes, Markdown-formatted text typed in the text area field will be im-
mediately rendered as HTML in the preview area below. Figure 11-3 shows the blog
submission form with rich text.

142 | Chapter 11: Blog Posts

e 0o Flasky '

(«]»] @ [+ [tecalhost:5000 ¢ [Reader] @

Hello, john!

What's on your mind?

This is a top-level heading
This is a reqular paragrap

This is a top-level heading
This is a regular paragraph

Submit

Figure 11-3. Rich-text blog post form

Handling Rich Text on the Server

When the form is submitted only the raw Markdown text is sent with the POST request;
the HTML preview that was shown on the page is discarded. Sending the generated
HTML preview with the form can be considered a security risk, as it would be fairly
easy for an attacker to construct HTML sequences that do not match the Markdown
source and submit them. To avoid any risks, only the Markdown source text is submit-
ted, and once in the server it is converted again to HTML using Markdown, a Python
Markdown-to-HTML converter. The resulting HTML will be sanitized with Bleach to
ensure that only a short list of allowed HTML tags are used.

The conversion of the Markdown blog posts to HTML can be issued in the _posts.html
template, but this is inefficient, as posts will have to be converted every time they are
rendered to a page. To avoid this repetition, the conversion can be done once when the
blog post is created. The HTML code for the rendered blog post is cached in a new field
added to the Post model that the template can access directly. The original Markdown
source is also kept in the database in case the post needs to be edited. Example 11-15
shows the changes to the Post model.

Example 11-15. app/models/post.py: Markdown text handling in the Post model

from markdown import markdown
import bleach

class Post(db.Model):
...
body_html = db.Column(db.Text)

Rich-Text Posts with Markdown and Flask-PageDown | 143

...

def on_changed_body(target, value, oldvalue, initiator):
allowed_tags = ['a', 'abbr', 'acronym', 'b', 'blockquote', 'code',
'em', '{', '1i', 'ol', 'pre', 'strong', 'ul',
|h1|, lhzl’ lh3l’ |pl]
target.body_html = bleach.linkify(bleach.clean(
markdown(value, output_format="html"),
tags=allowed_tags, strip=True))

db.event.listen(Post.body, 'set', Post.on_changed_body)

The on_changed_body function is registered as a listener of SQLAlchemy’s “set” event
for body, which means that it will be automatically invoked whenever the body field on
any instance of the class is set to a new value. The function renders the HTML version
of the body and stores it in body_htm1, effectively making the conversion of the Mark-
down text to HTML fully automatic.

The actual conversion is done in three steps. First, the markdown() function does an
initial conversion to HTML. The result is passed to clean(), along with the list of
approved HTML tags. The clean() function removes any tags not on the white list. The
final conversion is done with linkify(), another function provided by Bleach that
converts any URLs written in plain text into proper <a> links. This last step is necessary
because automatic link generation is not officially in the Markdown specification. Pa-
geDown supports it as an extension, so 1inkify() is used in the server to match.

The last change is to replace post.body with post.body_html in the template when
available, as shown in Example 11-16.

Example 11-16. app/templates/_posts.html: Use the HTML version of the post bodies in
the template

<div class="post-body">
{% if post.body_html %}
{{ post.body_html | safe }}
{% else %}
{{ post.body }}
{% endif %}
</div>

The | safe suffix when rendering the HTML body is there to tell Jinja2 not to escape
the HTML elements. Jinja2 escapes all template variables by default as a security meas-
ure. The Markdown-generated HTML was generated in the server, so it is safe to render.

144 | Chapter 11: Blog Posts

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11f to check out this version of the application.
This update also contains a database migration, so remember to run
python manage.py db upgrade after you check out the code. To
ensure that you have all the dependencies installed also run pip
install -r requirements/dev.txt.

Permanent Links to Blog Posts

Users may want to share links to specific blog posts with friends on social networks. For
this purpose, each post will be assigned a page with a unique URL that references it. The
route and view function that support permanent links are shown in Example 11-17.

Example 11-17. app/main/views.py: Permanent links to posts
('/post/<int:id>")
def post(id):
post = Post.query.get_or_404(id)
return render_template('post.html', posts=[post])

The URLs that will be assigned to blog posts are constructed with the unique id field
assigned when the post is inserted in the database.

For some types of applications, building permanent links that use
readable URLs instead of numeric IDs may be preferred. An alterna-
tive to numeric IDs is to assign each blog post a slug, which is a unique
string that is related to the post.

Note that the post.html template receives a list with just the post to render. Sending a
list is necessary so that the _posts.html template referenced by index.html and user.html
can be used in this page as well.

The permanent links are added at the bottom of each post in the generic _posts.html
template, as shown in Example 11-18.

Example 11-18. app/templates/_posts.html: Permanent links to posts

<ul class="posts">
{% for post in posts %}
<1i class="post">

<div class="post-content"s

<div class="post-footer"s
<a href="{{ url_for('.post', id=post.id) }}"s
<span class="label label-default"sPermalink

Permanent Links to Blog Posts | 145

</div>
</div>
</1i>
{% endfor %}

The new post.html template that renders the permanent link page is shown in
Example 11-19. It includes the example template.

Example 11-19. app/templates/post.html: Permanent link template
{% extends "base.html" %}

{% block title %}Flasky - Post{% endblock %}

{% block page_content %}

{% include '_posts.html' %}
{% endblock %}

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11g to check out this version of the application.

Blog Post Editor

The last feature related to blog posts is a post editor that allows users to edit their own
posts. The blog post editor will live in a standalone page. At the top of the page, the
current version of the post will be shown for reference, followed by a Markdown editor
where the source Markdown can be modified. The editor will be based on Flask-
PageDown, so a preview of the edited version of the blog post will be shown at the
bottom of the page. The edit_post.html template is shown in Example 11-20.

Example 11-20. app/templates/edit_post.html: Edit blog post template

{% extends "base.html" %}
{% import "bootstrap/wtf.html" as wtf %}

{% block title %}Flasky - Edit Post{% endblock %}

{% block page_content %}

<div class="page-header"s
<h1>Edit Post</h1>

</div>

<div>
{{ wtf.quick_form(form) }}

</div>

{% endblock %}

146 | Chapter 11: Blog Posts

{% block scripts %}

{{ super() 1}
{{ pagedown.include_pagedown() }}

{% endblock %}
The route that supports the blog post editor is shown in Example 11-21.

Example 11-21. app/main/views.py: Edit blog post route
('/edit/<int:1d>', methods=['GET', 'POST'])

def edit(id):
post = Post.query.get_or_404(id)

if current_user != post.author and \
not current_user.can(Permission.ADMINISTER):
abort(403)

form = PostForm()
if form.validate_on_submit():
post.body = form.body.data
db.session.add(post)
flash('The post has been updated.')
return redirect(url_for('post', id=post.id))
form.body.data = post.body
return render_template('edit_post.html', form=form)

This view function is coded to allow only the author of a blog post to edit it, except for
administrators, who are allowed to edit posts from all users. If a user tries to edit a post
from another user, the view function responds with a 403 code. The PostForm web form
class used here is the same one used on the home page.

To complete the feature, a link to the blog post editor can be added below each blog
post, next to the permanent link, as shown in Example 11-22.

Example 11-22. app/templates/_posts.html: Edit blog post links

<ul class="posts">
{% for post in posts %}
<1i class="post">

<div class="post-content"s
<div class="post-footer"s

{% if current_user == post.author %}

Edit

{% elif current_user.is_administrator() %}

Edit [Admin]

{% endif %}

Blog Post Editor | 147

</div>
</div>
</1i>
{% endfor %}

This change adds an “Edit” link to any blog posts that are authored by the current user.
For administrators, the link is added to all posts. The administrator link is styled dif-
ferently as a visual cue that this is an administration feature. Figure 11-4 shows how the
Edit and Permalink links look in the web browser.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 11h to check out this version of the application.

e 0o Flasky "

(«]»] @ [+ [tecalhost:5000 ¢ [Reader] @

john a few seconds ago
™

This is a top-level heading
This is a regular paragraph

miguel aday ago

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
lacreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

Figure 11-4. Edit and Permalink links in blog posts.

148 | Chapter 11: Blog Posts

CHAPTER 12
Followers

Socially aware web applications allow users to connect with other users. Applications
call these relationships followers, friends, contacts, connections, or buddies, but the fea-
ture is the same regardless of the name, and in all cases involves keeping track of di-
rectional links between pairs of users and using these links in database queries.

In this chapter, you will learn how to implement a follower feature for Flasky. Users will
be able to “follow” other users and choose to filter the blog post list on the home page
to include only those from the users they follow.

Database Relationships Revisited

As we discussed in Chapter 5, databases establish links between records using relation-
ships. The one-to-many relationship is the most common type of relationship, where a
record is linked with a list of related records. To implement this type of relationship, the
elements in the “many” side have a foreign key that points to the linked element on the
“one” side. The example application in its current state includes two one-to-many re-
lationships: one that links user roles to lists of users and another that links users to the
blog posts they authored.

Most other relationship types can be derived from the one-to-many type. The many-
to-one relationship is a one-to-many looked at from the point of view of the “many”
side. The one-to-one relationship type is a simplification of the one-to-many, where the
“many” side is constrained to only have at most one element. The only relationship type
that cannot be implemented as a simple variation of the one-to-many model is the many-
to-many, which has lists of elements on both sides. This relationship is described in
detail in the following section.

149

Many-to-Many Relationships

The one-to-many, many-to-one, and one-to-one relationships all have at least one side
with a single entity, so the links between related records are implemented with foreign
keys pointing to that one element. But how do you implement a relationship where both
sides are “many” sides?

Consider the classical example of a many-to-many relationship: a database of students
and the classes they are taking. Clearly, you can't add a foreign key to a class in the
students table, because a student takes many classes—one foreign key is not enough.
Likewise, you cannot add a foreign key to the student in the classes table, because classes
have more than one student. Both sides need a list of foreign keys.

The solution is to add a third table to the database, called an association table. Now the
many-to-many relationship can be decomposed into two one-to-many relationships
from each of the two original tables to the association table. Figure 12-1 shows how the
many-to-many relationship between students and classes is represented.

[students registrations classes

i | e i .
id 1 < student_id id
name class_id name

Figure 12-1. Many-to-many relationship example

The association table in this example is called registrations. Each row in this table
represents an individual registration of a student in a class.

Querying a many-to-many relationship is a two-step process. To obtain the list of classes
a student is taking, you start from the one-to-many relationship between students and
registrations and get the list of registrations for the desired student. Then the one-to-
many relationship between classes and registrations is traversed in the many-to-one
direction to obtain all the classes associated with the registrations retrieved for the stu-
dent. Likewise, to find all the students in a class, you start from the class and get a list
of registrations, then get the students linked to those registrations.

Traversing two relationships to obtain query results sounds difficult, but for a simple
relationship like the one in the previous example, SQLAlchemy does most of the work.
Following is the code that represents the many-to-many relationship in Figure 12-1:

registrations = db.Table('registrations',
db.Column('student_id', db.Integer, db.ForeignKey('students.id'")),
db.Column('class_1id', db.Integer, db.ForeignKey('classes.id"))

150 | Chapter12: Followers

class Student(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String)
classes = db.relationship('Class’,
secondary=registrations,
backref=db.backref('students', lazy='dynamic'),
lazy="dynamic')

class Class(db.Model):

id = db.Column(db.Integer, primary_key = True)

name = db.Column(db.String)
The relationship is defined with the same db. relationship() construct that is used for
one-to-many relationships, but in the case of a many-to-many relationship the addi-
tional secondary argument must to be set to the association table. The relationship can
be defined in either one of the two classes, with the backref argument taking care of
exposing the relationship from the other side as well. The association table is defined
as a simple table, not as a model, since SQLAlchemy manages this table internally.

The classes relationship uses list semantics, which makes working with a many-to-
many relationships configured in this way extremely easy. Given a student s and a class
¢, the code that registers the student for the class is:

>>> s.classes.append(c)

>>> db.session.add(s)
The queries that list the classes student s is registered for and the list of students regis-
tered for class c are also very simple:

>>> s.classes.all()

>>> c.students.all()
The students relationship available in the Class model is the one defined in the
db.backref() argument. Note that in this relationship the backref argument was ex-

panded to also havea lazy = 'dynamic' attribute, so both sides return a query that can
accept additional filters.

If student s later decides to drop class ¢, you can update the database as follows:

>>> s.classes.remove(c)

Self-Referential Relationships

A many-to-many relationship can be used to model users following other users, but
there is a problem. In the example of students and classes, there were two very clearly
defined entities linked together by the association table. However, to represent users
following other users, it is just users—there is no second entity.

A relationship in which both sides belong to the same table is said to be self-
referential. In this case the entities on the left side of the relationship are users, which

Database Relationships Revisited | 151

can be called the “followers” The entities on the right side are also users, but these are
the “followed” users. Conceptually, self-referential relationships are no different than
regular relationships, but they are harder to think about. Figure 12-2 shows a database
diagram for a self-referential relationship that represents users following other users.

users

| id |
email
username

follows

follower_id
followed_id >

A\

Figure 12-2. Followers, many-to-many relationship

The association table in this case is called follows. Each row in this table represents a
user following another user. The one-to-many relationship pictured on the left side
associates users with the list of “follows” rows in which they are the followers. The one-
to-many relationship pictured on the right side associates users with the list of “follows”
rows in which they are the followed user.

Advanced Many-to-Many Relationships

With a self-referential many-to-many relationship configured as indicated in the pre-
vious example, the database can represent followers, but there is one limitation. A com-
mon need when working with many-to-many relationships is to store additional data
that applies to the link between two entities. For the followers relationship, it can be
useful to store the date a user started following another user, as that will enable lists of
followers to be presented in chronological order. The only place this information can
be stored is in the association table, but in an implementation similar to that of the
students and classes shown earlier, the association table is an internal table that is fully
managed by SQLAlchemy.

To be able to work with custom data in the relationship, the association table must be
promoted to a proper model that the application can access. Example 12-1 shows the
new association table, represented by the Follow model.

152 | Chapter 12: Followers

Example 12-1. app/models/user.py: The follows association table as a model

class Follow(db.Model):
__tablename__ = 'follows'
follower_id = db.Column(db.Integer, db.ForeignKey('users.id'),
primary_key=True)
followed_id = db.Column(db.Integer, db.ForeignKey('users.id'),
primary_key=True)
timestamp = db.Column(db.DateTime, default=datetime.utcnow)

SQLAlchemy cannot use the association table transparently because that will not give
the application access to the custom fields in it. Instead, the many-to-many relationship
must be decomposed into the two basic one-to-many relationships for the left and right
sides, and these must be defined as standard relationships. This is shown in
Example 12-2.

Example 12-2. app/models/user.py: A many-to-many relationship implemented as two
one-to-many relationships
class User(UserMixin, db.Model):
#o...
followed = db.relationship('Follow',
foreign_keys=[Follow.follower_1id],
backref=db.backref('follower', lazy='joilned'),
lazy="dynamic',
cascade="'all, delete-orphan')
followers = db.relationship('Follow',
foreign_keys=[Follow.followed_1id],
backref=db.backref('followed', lazy='joined'),
lazy="dynamic',
cascade="all, delete-orphan')

Here the followed and followers relationships are defined as individual one-to-many
relationships. Note that it is necessary to eliminate any ambiguity between foreign keys
by specifying in each relationship which foreign key to use through the foreign_keys
optional argument. The db.backref() arguments in these relationships do not apply
to each other; the back references are applied to the Follow model.

The lazy argument for the back references is specified as joined. This lazy mode causes
the related object to be loaded immediately from the join query. For example, if a user
is following 100 other users, calling user.followed.all() will return a list of 100
Follow instances, where each one has the follower and followed back reference prop-
erties set to the respective users. The lazy="'joined' mode enables this all to happen
from a single database query. If lazy is set to the default value of select, then the
follower and followed users are loaded lazily when they are first accessed and each
attribute will require an individual query, which means that obtaining the complete list
of followed users would require 100 additional database queries.

Database Relationships Revisited | 153

The lazy argument on the User side of both relationships has different needs. These
are on the “one” side and return the “many” side; here a mode of dynamic is used, so
that the relationship attributes return query objects instead of returning the items di-
rectly, so that additional filters can be added to the query before it is executed.

The cascade argument configures how actions performed on a parent object propagate
to related objects. An example of a cascade option is the rule that says that when an
object is added to the database session, any objects associated with it through relation-
ships should automatically be added to the session as well. The default cascade options
are appropriate for most situations, but there is one case in which the default cascade
options do not work well for this many-to-many relationship. The default cascade be-
havior when an object is deleted is to set the foreign key in any related objects that link
to it to a null value. But for an association table, the correct behavior is to delete the
entries that point to a record that was deleted, as this effectively destroys the link. This
is what the delete-orphan cascade option does.

The value given to cascade is a comma-separated list of cascade op-
tions. This is somewhat confusing, but the option named all repre-
sents all the cascade options except delete-orphan. Using the value
all, delete-orphan leaves the default cascade options enabled and
adds the delete behavior for orphans.

The application now needs to work with the two one-to-many relationships to imple-
ment the many-to-many functionality. Since these are operations that will need to be
repeated often, it is a good idea to create helper methods in the User model for all the
possible operations. The four new methods that control this relationship are shown in
Example 12-3.

Example 12-3. app/models/user.py: Followers helper methods

class User(db.Model):
...
def follow(self, user):
if not self.is_following(user):
f = Follow(follower=self, followed=user)
db.session.add(f)

def unfollow(self, user):
f = self.followed.filter_by(followed_1id=user.id).first()
if f:
db.session.delete(f)
def is_following(self, user):
return self.followed.filter_by(

followed_id=user.id).first() is not None

def is_followed_by(self, user):

154 | Chapter 12: Followers

return self.followers.filter_by(
follower_id=user.id).first() is not None

The follow() method manually inserts a Follow instance in the association table that
links a follower with a followed user, giving the application the opportunity to set the
custom field. The two users who are connecting are manually assigned to the new Follow
instance in its constructor, and then the object is added to the database session as usual.
Note that there is no need to manually set the timestamp field because it was defined
with a default value that sets the current date and time. The unfollow() method uses
the followed relationship tolocate the Followinstance thatlinks the user to the followed
user who needs to be disconnected. To destroy the link between the two users, the Follow
object is simply deleted. The is_following() and is_followed_by() methods search
the left-and right-side one-to-many relationships respectively for the given user and
return True if the user is found.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 12a to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code.

The database part of the feature is now complete. You can find a unit test that exercises
the database relationship in the source code repository on GitHub.

Followers on the Profile Page

The profile page of a user needs to present a “Follow” button if the user viewing it is not
a follower, or an “Unfollow” button if the user is a follower. It is also a nice addition to
show the follower and followed counts, display the lists of followers and followed users,
and show a “Follows You” sign when appropriate. The changes to the user profile tem-
plate are shown in Example 12-4. Figure 12-3 shows how the additions look on the
profile page.

Example 12-4. app/templates/user.html: Follower enhancements to the user profile
header

{% if current_user.can(Permission.FOLLOW) and user != current_user %}
{% if not current_user.is_following(user) %}
<a href="{{ url_for('.follow', username=user.username) }}"
class="btn btn-primary"sFollow
{% else %}
<a href="{{ url_for('.unfollow', username=user.username) }}"
class="btn btn-default"sUnfollow
{% endif %}
{% endif %}

Followers on the Profile Page | 155

Followers: {{ user.followers.count() }}

<a href="{{ url_for('.followed_by', username=user.username) }}"s
Following: {{ user.followed.count() }}

{% if current_user.is_authenticated() and user != current_user and
user.is_following(current_user) %}

| Follows you

{% endif %}

800 Flasky - cheryl90 7

'y
A |»>] @ [Ll&locamosr:soou ¢ [uReader] 6

cheryl90

Deborah Hunter
From San Fernando

Maecenas pulvinar lobortis est.
Member since 12/28/2013. Last seen a day ago.

5 blog posts.

m Followers:) Following: @D |

Figure 12-3. Followers on the profile page

There are four new endpoints defined in these template changes. The /follow/<user-
name> route is invoked when a user clicks the “Follow” button on another user’s profile

page. The implementation is shown in Example 12-5.

Example 12-5. app/main/views.py: Follow route and view function

('/follow/<username>')

(Permission.FOLLOW)
def follow(username):
user = User.query.filter_by(username=username).first()
if user is None:
flash('Invalid user.')
return redirect(url_for('.index'))
if current_user.is_following(user):
flash('You are already following this user.')

156 | Chapter12: Followers

return redirect(url_for('.user', username=username))
current_user.follow(user)
flash('You are now following %s.' % username)
return redirect(url_for('.user', username=username))

This view function loads the requested user, verifies that it is valid and that it isn’t already
followed by the logged-in user, and then calls the follow() helper function in the User
model to establish thelink. The /unfollow/<username>route isimplemented in a similar
way.

The /followers/<username> route is invoked when a user clicks another user’s follower
count on the profile page. The implementation is shown in Example 12-6.

Example 12-6. app/main/views.py: Followers route and view function

('/followers/<username>"')
def followers(username):
user = User.query.filter_by(username=username).first()
if user is None:
flash('Invalid user.')
return redirect(url_for('.index'))
page = request.args.get('page', 1, type=int)
pagination = user.followers.paginate(
page, per_page=current_app.config['FLASKY_FOLLOWERS_PER_PAGE'],
error_out=False)
follows = [{'user': item.follower, 'timestamp': item.timestamp}
for item in pagination.items]
return render_template('followers.html', user=user, title="Followers of",
endpoint='.followers', pagination=pagination,
follows=follows)

This function loads and validates the requested user, then paginates its followers
relationship using the same techniques learned in Chapter 11. Because the query for
followers returns Follow instances, the list is converted into another list that has user
and timestamp fields in each entry so that rendering is simpler.

The template that renders the follower list can be written generically so that it can be
used for lists of followers and followed users. The template receives the user, a title for
the page, the endpoint to use in the pagination links, the pagination object, and the list
of results.

The followed_by endpoint is almost identical. The only difference is that the list of
users is obtained from the user.followed relationship. The template arguments are
also adjusted accordingly.

The followers.html template is implemented with a two-column table that shows user-
names and their avatars on the left and Flask-Moment timestamps on the right. You can
consult the source code repository on GitHub to study the implementation in detail.

Followers on the Profile Page | 157

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 12b to check out this version of the application.

Query Followed Posts Using a Database Join

The application’s home page currently shows all the posts in the database in descending
chronological order. With the followers feature now complete, it would be a nice addi-
tion to give users the option to view blog posts from only the users they follow.

The obvious way to load all the posts authored by followed users is to first get the list
of those users and then get the posts from each and sort them into a single list. Of course
that approach does not scale well; the effort to obtain this combined list will grow as the
database grows, and operations such as pagination cannot be done efficiently. The key
to obtaining the blog posts with good performance is doing it with a single query.

The database operation that can do this is called a join. A join operation takes two or
more tables and finds all the combination of rows that satisty a given condition. The
resulted combined rows are inserted into a temporary table that is the result of the join.
The best way to explain how joins work is through an example.

Table 12-1 shows an example users table with three users.

Table 12-1. users table

id username

1 john
2 susan

3 david

Table 12-2 shows the corresponding posts table, with some blog posts.
Table 12-2. Posts table

id author_id body

1 2 Blog post by susan

21 Blog post by john

33 Blog post by david

4 1 Second blog post by john

Finally, Table 12-3 shows who is following whom. In this table you can see that john is
following david, susan is following john, and david is not following anyone.

158 | Chapter 12: Followers

Table 12-3. Follows table

follower_id followed_id

1 3
2 1
2 3

To obtain the list of posts followed by user susan, the posts and follows tables must
be combined. First the follows table is filtered to keep just the rows that have susan as
the follower, which in this example are the last two rows. Then a temporary join table
is created from all the possible combinations of rows from the posts and filtered
follows tables in which the author_id of the post is the same as the followed_id of
the follow, effectively selecting any posts that appear in the list of users susan is following.
Table 12-4 shows the result of the join operation. The columns that were used to perform
the join are marked with * in this table.

Table 12-4. Joined table

id author_id* body follower_id followed_id*

2 1 Blog post by john 2 1
33 Blog post by david 2 3
4 1 Second blog post by john 2 1

This table contains exactly the list of blog posts authored by users that susan is following.
The Flask-SQLAlchemy query that literally performs the join operation as described is
fairly complex:
return db.session.query(Post).select_from(Follow).\

filter_by(follower_id=self.id).\

join(Post, Follow.followed_id == Post.author_id)
All the queries that you have seen so far start from the query attribute of the model that
is queried. That format does not work well for this query, because the query needs to
return posts rows, yet the first operation that needs to be done is to apply a filter to the
follows table. So a more basic form of the query is used instead. To fully understand
this query, each part should be looked at individually:

» db.session.query(Post) specifies that this is going to be a query that returns Post
objects.

o select_from(Follow) says that the query begins with the Follow model.

o filter_by(follower_id=self.id) performs the filtering of the follows table by
the follower user.

Query Followed Posts Using a Database Join | 159

o join(Post, Follow.followed_id == Post.author_id) joins the results of
filter_by() with the Post objects.

The query can be simplified by swapping the order of the filter and the join:

return Post.query.join(Follow, Follow.followed_id == Post.author_id)\
.filter(Follow.follower_1id == self.id)

By issuing the join operation first, the query can be started from Post.query, so now
the only two filters that need to be applied are join() and filter(). But is this the
same? It may seem that doing the join first and then the filtering would be more work,
but in reality these two queries are equivalent. SQLAlchemy first collects all the filters
and then generates the query in the most efficient way. The native SQL instructions for
these two queries are identical. The final version of this query is added to the Post model,
as shown in Example 12-7.

Example 12-7. app/models/user.py: Obtain followed posts
class User(db.Model):
#o...

def followed_posts(self):
return Post.query.join(Follow, Follow.followed_id == Post.author_id)\
.filter(Follow.follower_id == self.id)

Note that the followed_posts() method is defined as a property so that it does not
need the (). That way, all relationships have a consistent syntax.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 12c to check out this version of the application.

Joins are extremely hard to wrap your head around; you may need to experiment with
the example code in a shell before it all sinks in.

Show Followed Posts on the Home Page

The home page can now give users the choice to view all blog posts or just those from
followed users. Example 12-8 shows how this choice is implemented.

Example 12-8. app/main/views.py: Show all or followed posts

('/', methods = ['GET', 'POST'])
def index():
...
show_followed = False

160 | Chapter 12: Followers

if current_user.is_authenticated():
show_followed = bool(request.cookies.get('show_followed', ''))
if show_followed:
query = current_user.followed_posts
else:
query = Post.query
pagination = query.order_by(Post.timestamp.desc()).paginate(
page, per_page=current_app.config['FLASKY_POSTS_PER_PAGE'],
error_out=False)
posts = pagination.items
return render_template('index.html', form=form, posts=posts,
show_followed=show_followed, pagination=pagination)

The choice of showing all or followed posts is stored in a cookie called show_followed
that when set to a nonempty string indicates that only followed posts should be shown.
Cookies are stored in the request object as a request.cookies dictionary. The string
value of the cookie is converted to a Boolean, and based on its value a query local variable
is set to the query that obtains the complete or filtered lists of blog posts. To show all
the posts, the top-level query Post.query is used, and the recently added
User.followed_posts property is used when the list should be restricted to followers.
The query stored in the query local variable is then paginated and the results sent to the
template as before.

The show_followed cookie is set in two new routes, shown in Example 12-9.

Example 12-9. app/main/views.py: Selection of all or followed posts
('/all")

def show_all():
resp = make_response(redirect(url_for('.index"')))
resp.set_cookie('show_followed', '', max_age=30%24*60%60)
return resp

('/followed")

def show_followed():
resp = make_response(redirect(url_for('.index')))
resp.set_cookie('show_followed', '1', max_age=30%24*60*60)
return resp

Links to these routes are added to the home page template. When they are invoked, the
show_followed cookie is set to the proper value and a redirect back to the home page
is issued.

Cookies can be set only on a response object, so these routes need to create a response
object through make_response() instead of letting Flask do this.

The set_cookie() function takes the cookie name and the value as the first two argu-
ments. The max_age optional argument sets the number of seconds until the cookie

Show Followed Posts on the Home Page | 161

expires. Not including this argument makes the cookie expire when the browser window
is closed. In this case, an age of 30 days is set so that the setting is remembered even if
the user does not return to the application for several days.

The changes to the template add two navigation tabs at the top of the page that invoke
the /all or /followed routes to set the correct settings in the session. You can inspect the
template changes in detail in the source code repository on GitHub. Figure 12-4 shows
how the home page looks with these changes.

8006 Flasky a

[4 | > J @ [+ |L localhost:5000 € |yReade J @

Hello, john!

What's on your mind?

Submit

All Followers

:’:EE"' john 13 minutes ago
i 2

This is a top-level heading

This is a regular paragraph

Figure 12-4. Followed posts on the home page

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 12d to check out this version of the application.

If you try the application at this point and switch to the followed list of posts, you will
notice that your own posts do not appear in the list. This is of course correct, because
users are not followers of themselves.

Even though the queries are working as designed, most users will expect to see their
own posts when they are looking at those of their friends. The easiest way to address
this issue is to register all users as their own followers at the time they are created. This
trick is shown in Example 12-10.

162 | Chapter 12: Followers

Example 12-10. app/models/user.py: Make users their own followers on construction

class User(UserMixin, db.Model):
...
def __init__(self, **kwargs):
...
self.follow(self)

Unfortunately, you likely have several users in the database who are already created and
are not following themselves. If the database is small and easy to regenerate, then it can
be deleted and re-created, but if that is not an option, then adding an update function
that fixes existing users is the proper solution. This is shown in Example 12-11.

Example 12-11. app/models/user.py: Make users their own followers

class User(UserMixin, db.Model):
...

def add_self_follows():
for user in User.query.all():
if not user.is_following(user):
user.follow(user)
db.session.add(user)
db.session.commit()
...

Now the database can be updated by running the previous example function from the
shell:

(venv) $ python manage.py shell

>>> User.add_self_follows()
Creating functions that introduce updates to the database is a common technique used
to update applications that are deployed, as running a scripted update is less error prone
than updating databases manually. In Chapter 17 you will see how this function and
others like it can be incorporated into a deployment script.

Making all users self-followers makes the application more usable, but this change in-
troduces a few complications. The follower and followed user counts shown in the user
profile page are now increased by one due to the self-follower links. The numbers need
to be decreased by one to be accurate, which is easy to do directly in the template by
rendering {{ user.followers.count() - 1 }} and {{ user.followed.count() -
1 1}}. The lists of follower and followed users also must be adjusted to not show the
same user, another simple task to do in the template with a conditional. Finally, any unit
tests that check follower counts are also affected by the self-follower links and must be
adjusted to account for the self-followers.

Show Followed Posts on the Home Page | 163

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 12e to check out this version of the application.

In the next chapter, the user comment subsystem will be implemented—another very
important feature of socially aware applications.

164 | Chapter 12: Followers

CHAPTER 13
User Comments

Allowing users to interact is key to the success of a social blogging platform. In this
chapter, you will learn how to implement user comments. The techniques presented are
generic enough to be directly applicable to a large number of socially enabled applica-
tions.

Database Representation of Comments

Comments are not very different from blog posts. Both have a body, an author, and a
timestamp, and in this particular implementation both are written with Markdown
syntax. Figure 13-1 shows a diagram of the comments table and its relationships with
other tables in the database.

) e N ')
[users comments posts
id | id | id
username body body
body_html
timestamp
/ .
< author T(;d]
post_i >

Figure 13-1. Database representation of blog post comments

Comments apply specific blog posts, so a one-to-many relationship from the posts table
is defined. This relationship can be used to obtain the list of comments associated with
a particular blog post.

165

The comments table is also in a one-to-many relationship with the users table. This
relationship gives access to all the comments made by a user, and indirectly how many
comments a user has written, a piece of information that can be interesting to show in
user profile pages. The definition of the Comment model is shown in Example 13-1.

Example 13-1. app/models.py: Comment model

class Comment(db.Model):
__tablename__ = 'comments'
id = db.Column(db.Integer, primary_key=True)
body = db.Column(db.Text)
body_html = db.Column(db.Text)
timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow)
disabled = db.Column(db.Boolean)
author_id = db.Column(db.Integer, db.ForeignKey('users.id"'))
post_id = db.Column(db.Integer, db.ForeignKey('posts.id'))

def on_changed_body(target, value, oldvalue, initiator):
allowed_tags = ['a', 'abbr', 'acronym', 'b', 'code',
'strong']
target.body_html = bleach.linkify(bleach.clean(
markdown(value, output_format='html'),
tags=allowed_tags, strip=True))

em', 'i',

db.event.listen(Comment.body, 'set', Comment.on_changed_body)

The attributes of the Comment model are almost the same as those of Post. One addition
is the disabled field, a Boolean that will be used by moderators to suppress comments
that are inappropriate or offensive. As was done for blog posts, comments define an
event that triggers any time the body field changes, automating the rendering of the
Markdown text to HTML. The process is identical to what was done for blog posts in
Chapter 11, but since comments tend to be short, the list of HTML tags that are allowed
in the conversion from Markdown is more restrictive, the paragraph-related tags have
been removed, and only the character formatting tags are left.

To complete the database changes, the User and Post models must define the one-to-
many relationships with the comments table, as shown in Example 13-2.

Example 13-2. app/models/user.py: One-to-many relationships from users and posts to
comments

class User(db.Model):
...
comments = db.relationship('Comment', backref='author', lazy='dynamic')

class Post(db.Model):
...
comments = db.relationship('Comment', backref='post', lazy='dynamic')

166 | Chapter 13: User Comments

Comment Submission and Display

In this application, comments are displayed in the individual blog post pages that were
added as permanent links in Chapter 11. A submission form is also included on this
page. Example 13-3 shows the web form that will be used to enter comments—an ex-
tremely simple form that only has a text field and a submit button.

Example 13-3. app/main/forms.py: Comment input form

class CommentForm(Form):
body = StringField('', validators=[Required()])
submit = SubmitField('Submit')

Example 13-4 shows the updated /post/<int:id> route with support for comments.

Example 13-4. app/main/views.py: Blog post comments support

('/post/<int:id>', methods=['GET', 'POST'])
def post(id):
post = Post.query.get_or_404(id)
form = CommentForm()
if form.validate_on_submit():
comment = Comment(body=form.body.data,
post=post,
author=current_user._get_current_object())
db.session.add(comment)
flash('Your comment has been published.')
return redirect(url_for('.post', id=post.id, page=-1))
page = request.args.get('page', 1, type=int)
if page == -1:
page = (post.comments.count() - 1) / \
current_app.config['FLASKY_COMMENTS_PER_PAGE'] + 1
pagination = post.comments.order_by(Comment.timestamp.asc()).paginate(
page, per_page=current_app.config['FLASKY_COMMENTS_PER_PAGE'],
error_out=False)
comments = pagination.items
return render_template('post.html', posts=[post], form=form,
comments=comments, pagination=pagination)

This view function instantiates the comment form and sends it to the post.html template
for rendering. The logic that inserts a new comment when the form is submitted is
similar to the handling of blog posts. As in the Post case, the author of the comment
cannot be set directly to current_user because this is a context variable proxy object.
The expression current_user._get_current_object() returns the actual User object.

The comments are sorted by their timestamp in chronological order, so new comments
are always added at the bottom of the list. When a new comment is entered, the redirect
that ends the request goes back to the same URL, but the url_for() function sets the
page to -1, a special page number that is used to request the last page of comments so
that the comment just entered is seen on the page. When the page number is obtained

Comment Submission and Display | 167

from the query string and found to be -1, a calculation with the number of comments
and the page size is done to obtain the actual page number to use.

The list of comments associated with the post are obtained through the post.comments
one-to-many relationship, sorted by comment timestamp, and paginated with the same
techniques used for blog posts. The comments and the pagination object are sent to the
template for rendering. The FLASKY_COMMENTS_PER_PAGE configuration variable is add-
ed to config.py to control the size of each page of comments.

The comment rendering is defined in a new template _comments.html that is similar to
_posts.htmlbut uses a different set of CSS classes. This template is included by _post.html
below the body of the post, followed by a call to the pagination macro. You can review
the changes to the templates in the application’s GitHub repository.

To complete this feature, blog posts shown in the home and profile pages need a link to
the page with the comments. This is shown in Example 13-5.

Example 13-5. _app/templates/_posts.html: Link to blog post comments

<a href="{{ url_for('.post', id=post.id) }}#comments"s

{{ post.comments.count() }} Comments

Note how the text of the link includes the number of comments, which is easily obtained
from the one-to-many relationship between the posts and comments tables using
SQLAlchemy’s count() filter.

Also of interest is the structure of the link to the comments page, which is built as the
permanent link for the post with a #comments suffix added. This last part is called a
URL fragment and is used to indicate an initial scroll position for the page. The web
browser looks for an element with the id given and scrolls the page so that the element
appears at the top of the page. This initial position is set to the comments heading in
the post.html template, which is written as <h4 1id="comments">Comments<h4>.
Figure 13-2 shows how the comments appear on the page.

An additional change was made to the pagination macro. The pagination links for
comments also need the #comments fragment added, so a fragment argument was added
to the macro and passed in the macro invocation from the post.html template.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 13a to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code.

168 | Chapter 13: User Comments

eno Flasky - Post >

~ [+ [tocalhost:5000

3 john 20 minutes ago

" Thisisa top-level heading

This is a regular paragraph

Comments
Enter your comment
Submit
miguel a few seconds ago
Congratulations! This is a great article!
3 john a few seconds ago

%, Thank you!

Figure 13-2. Blog post comments

Comment Moderation

In Chapter 9 a list of user roles was defined, each with a list of permissions. One of the
permissions was Permission.MODERATE_COMMENTS, which gives users who have it in
their roles the power to moderate comments made by others.

This feature will be exposed as a link in the navigation bar that appears only to users
who are permitted to use it. This is done in the base.html template using a conditional,
as shown in Example 13-6.

Example 13-6. app/templates/base.html: Moderate comments link in navigation bar

{% if current_user.can(Permission.MODERATE_COMMENTS) %}
Moderate Comments
{% endif %}

Comment Moderation | 169

The moderation page shows the comments for all the posts in the same list, with the
most recent comments shown first. Below each comment is a button that can toggle the
disabled attribute. The /moderate route is shown in Example 13-7.

Example 13-7. app/main/views.py: Comment moderation route

('/moderate')

(Permission.MODERATE_COMMENTS)
def moderate():

page = request.args.get('page', 1, type=int)

pagination = Comment.query.order_by(Comment.timestamp.desc()).paginate(
page, per_page=current_app.config['FLASKY_COMMENTS_PER_PAGE'],
error_out=False)

comments = pagination.items

return render_template('moderate.html', comments=comments,

pagination=pagination, page=page)

This is a very simple function that reads a page of comments from the database and
passes them on to a template for rendering. Along with the comments, the template
receives the pagination object and the current page number.

The moderate.html template, shown in Example 13-8, is also simple because it relies on
the _comments.html subtemplate created earlier for the rendering of the comments.

Example 13-8. app/templates/moderate.html: Comment moderation template

{% extends "base.html" %}
{% import "_macros.html" as macros %}

{% block title %}Flasky - Comment Moderation{% endblock %}

{% block page_content %}
<div class="page-header"s>
<h1>Comment Moderation</h1>
</div>
{% set moderate = True %}
{% include '_comments.html' %}
{% if pagination %}
<div class="pagination"s>
{{ macros.pagination_widget(pagination, '.moderate') }}
</div>
{% endif %}
{% endblock %}

This template defers the rendering of the comments to the _comments.html template,
but before it hands control to the subordinate template it uses Jinja2’s set directive to
define a moderate template variable set to True. This variable is used by the _com-
ments.htmltemplate to determine whether the moderation features need to be rendered.

170 | Chapter 13: User Comments

The portion of the _comments.html template that renders the body of each comment
needs to be modified in two ways. For regular users (when the moderate variable is not
set), any comments that are marked as disabled should be suppressed. For moderators
(when moderate is set to True), the body of the comment must be rendered regardless
of the disabled state, and below the body a button should be included to toggle the state.
Example 13-9 shows these changes.

Example 13-9. app/templates/_comments.html: Rendering of the comment bodies

<div class="comment-body">
{% if comment.disabled %}
<p></p><i>This comment has been disabled by a moderator.</i></p>
{% endif %}
{% if moderate or not comment.disabled %}
{% if comment.body_html %}
{{ comment.body_html | safe }}
{% else %}
{{ comment.body }}
{% endif %}
{% endif %}
</div>
{% if moderate %}

{% if comment.disabled %}
<a class="btn btn-default btn-xs" href="{{ url_for('.moderate_enable',
id=comment.id, page=page) }}">Enable
{% else %}
<a class="btn btn-danger btn-xs" href="{{ url_for('.moderate_disable',
id=comment.id, page=page) }}">Disable
{% endif %}
{% endif %}

With these changes, users will see a short notice for disabled comments. Moderators
will see both the notice and the comment body. Moderators will also see a button to
toggle the disabled state below each comment. The button invokes one of two new
routes, depending on which of the two possible states the comment is changing to.
Example 13-10 shows how these routes are defined.

Example 13-10. app/main/views.py: Comment moderation routes

('/moderate/enable/<int:id>")

(Permission.MODERATE_COMMENTS)
def moderate_enable(id):
comment = Comment.query.get_or_404(id)
comment.disabled = False
db.session.add(comment)
return redirect(url_for('.moderate',
page=request.args.get('page', 1, type=int)))

Comment Moderation | 171

('/moderate/disable/<int:1d>")

(Permission.MODERATE_COMMENTS)

def moderate_disable(id):

comment = Comment.query.get_or_404(id)

comment.disabled = True
db.session.add(comment)

return redirect(url_for('.moderate',
page=request.args.get('page', 1, type=int)))

The comment enable and disable routes load the comment object, set the disabled field
to the proper value, and write it back to the database. At the end, they redirect back to
the comment moderation page (shown in Figure 13-3), and if a page argument was
given in the query string, they include it in the redirect. The buttons in the _com-
ments.html template were rendered with the page argument so that the redirect brings

the user back to the same page.

e 0o

Flasky - Comment Moderation "

<> [# [rocalhost:s000

3 john
g, Thank you!

Thank you!

Enable

Comment Moderation

miguel
Congratulations! This is a great article!

lill miguel
This comment has been disabled by a moderator.

a minute ago

2 minutes ago

a day ago

Figure 13-3. Comment moderation page

172 | Chapter 13: User Comments

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 13b to check out this version of the application.

The topic of social features is completed with this chapter. In the next chapter, you will
learn how to expose the application functionality as an API that clients other than web
browsers can use.

Comment Moderation | 173

CHAPTER 14
Application Programming Interfaces

In recent years, there has been a trend in web applications to move more and more of
the business logic to the client side, producing an architecture that is known as Rich
Internet Application (RIA). In RIAs, the server’s main (and sometimes only) function
is to provide the client application with data retrieval and storage services. In this model,
the server becomes a web service or Application Programming Interface (API).

There are several protocols by which RIAs can communicate with a web service. Remote
Procedure Call (RPC) protocols such as XML-RPC or its derivative Simplified Object
Access Protocol (SOAP) were popular choices a few years ago. More recently, the Rep-
resentational State Transfer (REST) architecture has emerged as the favorite for web
applications due to it being built on the familiar model of the World Wide Web.

Flask is an ideal framework to build RESTful web services due to its lightweight nature.
In this chapter, you will learn how to implement a Flask-based RESTful API.

Introduction to REST

Roy Fielding’s Ph.D. dissertation introduces the REST architectural style for web serv-
ices by listing its six defining characteristics:

Client-Server
There must be a clear separation between the clients and the server.

Stateless
A client request must contain all the information that is necessary to carry it out.
The server must not store any state about the client that persists from one request
to the next.

175

http://bit.ly/REST-fielding

Cache
Responses from the server can be labeled as cacheable or noncacheable so that
clients (or intermediaries between clients and servers) can use a cache for optimi-
zation purposes.

Uniform Interface
The protocol by which clients access server resources must be consistent, well de-
fined, and standardized. The commonly used uniform interface of REST web serv-
ices is the HTTP protocol.

Layered System
Proxy servers, caches, or gateways can be inserted between clients and servers as
necessary to improve performance, reliability, and scalability.

Code-on-Demand
Clients can optionally download code from the server to execute in their context.

Resources Are Everything

The concept of resources is core to the REST architectural style. In this context, a re-
source is an item of interest in the domain of the application. For example, in the blog-
ging application, users, blog posts, and comments are all resources.

Each resource must have a unique URL that represents it. Continuing with the blogging
example, a blog post could be represented by the URL /api/posts/12345, where 12345 is
a unique identifier for the post such as the post’s database primary key. The format or
contents of the URL do not really matter; all that matters is that each resource URL
uniquely identifies a resource.

A collection of all the resources in a class also has an assigned URL. The URL for the
collection of blog posts could be /api/posts/ and the URL for the collection of all com-
ments could be /api/comments/ .

An API can also define collection URLs that represent logical subsets of all the resources
in a class. For example, the collection of all comments in blog post 12345 could be
represented by the URL /api/posts/12345/comments/. It is a common practice to define
URLs that represent collections of resources with a trailing slash, as this gives them a
“folder” representation.

Be aware that Flask applies special treatment to routes that end with
a slash. If a client requests a URL without a trailing slash and the only
matching route has a slash at the end, then Flask will automatically
respond with a redirect to the trailing slash URL. No redirects are
issued for the reverse case.

176 | Chapter 14: Application Programming Interfaces

Request Methods

The client application sends requests to the server at the established resource URLs and
uses the request method to indicate the desired operation. To obtain the list of available
blog posts in the blogging API the client would send a GET request to http://www.exam-
ple.com/api/posts/, and to insert a new blog post it would send a POST request to the
same URL, with the contents of the blog post in the request body. To retrieve blog post
12345 the client would send a GET request to http://www.example.com/api/posts/
12345. Table 14-1 lists the request methods that are commonly used in RESTful APIs
with their meanings.

Table 14-1. HTTP request methods in RESTful APIs

Request Target Description HTTP
method status code
GET Individual resource Obtain the resource. 200
URL
GET Resource collection Obtain the collection of resources (or one page from it if the server 200
URL implements pagination).
POST Resource collection (reate a new resource and add it to the collection. The server chooses 201
URL the URL of the new resource and returnsitina Locat{ion header
in the response.
PUT Individual resource Modify an existing resource. Alternatively this method can also be 200
URL used to create a new resource when the client can choose the resource
URL.
DELETE Individual resource Delete a resource. 200
URL
DELETE Resource collection Delete all resources in the collection. 200
URL

The REST architecture does not require that all methods be imple-
mented for a resource. If the client invokes a method that is not
supported for a given resource, then a response with the 405 status
code for “Method Not Allowed” should be returned. Flask handles
this error automatically.

Request and Response Bodies

Resources are sent back and forth between client and server in the bodies of requests
and responses, but REST does not specify the format to use to encode resources. The
Content-Type header in requests and responses is used to indicate the format in which
aresource is encoded in the body. The standard content negotiation mechanisms in the
HTTP protocol can be used between client and server to agree on a format that both
support.

IntroductiontoREST | 177

The two formats commonly used with RESTful web services are JavaScript Object No-
tation (JSON) and Extensible Markup Language (XML). For web-based RIAs, JSON is
attractive because of its close ties to JavaScript, the client-side scripting language used
by web browsers. Returning to the blog example API, a blog post resource could be
represented in JSON as follows:

{

"url": "http://www.example.com/api/posts/12345",

"title": "Writing RESTful APIs in Python",

"author": "http://www.example.com/api/users/2",

"body": "... text of the article here ...",

"comments": "http://www.example.com/api/posts/12345/comments"
}

Note how the url, author, and comments fields in the blog post above are fully qualified
resource URLs. This is important because these URLs allow the client to discover new
resources.

In a well-designed RESTful API, the client just knows a short list of top-level resource
URLs and then discovers the rest from links included in responses, similar to how you
can discover new web pages while browsing the Web by clicking on links that appear
in pages that you know.

Versioning

In a traditional server-centric web application, the server has full control of the appli-
cation. When an application is updated, installing the new version in the server is
enough to update all users because even the parts of the application that run in the user’s
web browser are downloaded from the server.

The situation with RIAs and web services is more complicated, because often clients are
developed independently of the server—maybe even by different people. Consider the
case of an application where the RESTful web service is used by a variety of clients
including web browsers and native smartphone clients. The web browser client can be
updated in the server at any time, but the smartphone apps cannot be updated by force;
the smartphone owner needs to allow the update to happen. Even if the smartphone
owner is willing to update, it is not possible to time the deployment of the updated
smartphone applications to all the app stores to coincide exactly with the deployment
of the new server.

For these reasons, web services need to be more tolerant than regular web applications
and be able to work with old versions of its clients. A common way to address this
problem is to version the URLs handled by the web service. For example, the first release
of the blogging web service could expose the collection of blog posts at /api/v1.0/posts/.

Including the web service version in the URL helps keeps old and new features organized
so that the server can provide new features to new clients while continuing to support

178 | Chapter 14: Application Programming Interfaces

old clients. An update to the blogging service could change the JSON format of blog
posts and now expose blog posts as /api/v1.1/posts/, while keeping the older JSON for-
mat for clients that connect to /api/v1.0/posts/. For a period of time, the server handles
all the URLSs in their v1.1 and v1.0 variations.

Although supporting multiple versions of the server can become a maintenance burden,
there are situations in which this is the only way to allow the application to grow without
causing problems to existing deployments.

RESTful Web Services with Flask

Flask makes it very easy to create RESTful web services. The familiar route() decorator
along with its methods optional argument can be used to declare the routes that handle
the resource URLs exposed by the service. Working with JSON data is also simple, as
JSON data included with a request is automatically exposed as a request. json Python
dictionary and a response that needs to contain JSON can be easily generated from a
Python dictionary using Flask’s jsonify() helper function.

The following sections show how Flasky can be extended with a RESTful web service
that gives clients access to blog posts and related resources.

Creating an API Blueprint

Theroutes associated with a RESTful APIform a self-contained subset of the application,
so putting them in their own blueprint is the best way to keep them well organized. The
general structure of the API blueprint within the application is shown in Example 14-1.

Example 14-1. API blueprint structure

| -flasky
|-app/
|-api_1_0
|-__init__.py
| -user.py
| -post.py
| -comment.py
| -authentication.py
| -errors.py
| -decorators.py

Note how the package used for the API includes a version number in its name. When
a backward-incompatible version of the API needs to be introduced, it can be added as
another package with a different version number and both APIs can be served at the
same time.

RESTful Web Services with Flask | 179

This API blueprint implements each resource in a separate module. Modules to take
care of authentication, error handling, and to provide custom decorators are also in-
cluded. The blueprint constructor is shown in Example 14-2.

Example 14-2. app/api_1_0/__init__.py: API blueprint constructor

from flask import Blueprint

api = Blueprint('api', __name__)

from . import authentication, posts, users, comments, errors
The registration of the API blueprint is shown in Example 14-3.

Example 14-3. app/_init_.py: API blueprint registration

def create_app(config_name):
...
from .api_1_0 import api as api_1_0_blueprint
app.register_blueprint(api_1_0_blueprint, url_prefix='/api/v1.0")
...

Error Handling

A RESTful web service informs the client of the status of a request by sending the ap-
propriate HTTP status code in the response plus any additional information in the
response body. The typical status codes that a client can expect to see from a web service
are listed in Table 14-2.

Table 14-2. HTTP response status codes typically returned by APIs

HTTP status Name Description

code

200 0K The request was completed successfully.

201 (reated The request was completed successfully and a new resource was created as a result.
400 Bad request The request is invalid or inconsistent.

401 Unauthorized The request does not include authentication information.

403 Forbidden The authentication credentials sent with the request are insufficient for the request.
404 Not found The resource referenced in the URL was not found.

405 Method not allowed The request method requested is not supported for the given resource.

500 Internal server error ~ An unexpected error has occurred while processing the request.

The handling of status codes 404 and 500 presents a small complication, in that these
errors are generated by Flask on its own and will usually return an HTML response,
which is likely to confuse an API client.

180 | Chapter 14: Application Programming Interfaces

One way to generate appropriate responses for all clients is to make the error handlers
adapt their responses based on the format requested by the client, a technique called
content negotiation. Example 14-4 shows an improved 404 error handler that responds
with JSON to web service clients and with HTML to others. The 500 error handler is
written in a similar way.

Example 14-4. app/main/errors.py: Error handlers with HTTP content negotiation

(404)
def page_not_found(e):
if request.accept_mimetypes.accept_json and \
not request.accept_mimetypes.accept_html:

response = jsonify({'error': 'not found'})
response.status_code = 404
return response

return render_template('404.html'), 404

This new version of the error handler checks the Accept request header, which Werk-
zeug decodes into request.accept_mimetypes, to determine what format the client
wants the response in. Browsers generally do not specify any restrictions on response
formats, so the JSON response is generated only for clients that accept JSON and do not
accept HTML.

The remaining status codes are generated explicitly by the web service, so they can be
implemented as helper functions inside the blueprint in the errors.py module.
Example 14-5 shows the implementation of the 403 error; the others are similar.

Example 14-5. app/api/errors.py: API error handler for status code 403

def forbidden(message):
response = jsonify({'error': 'forbidden', 'message': message})
response.status_code = 403
return response

Now view functions in the web service can invoke these auxiliary functions to generate
error responses.

User Authentication with Flask-HTTPAuth

Web services, like regular web applications, need to protect information and ensure that
it is not given to unauthorized parties. For this reason, RIAs must ask their users for
login credentials and pass them to the server for verification.

It was mentioned earlier that one of the characteristics of RESTful web services is that
they are stateless, which means that the server is not allowed to “remember” anything
about the client between requests. Clients need to provide all the information necessary
to carry out a request in the request itself, so all requests must include user credentials.

RESTful Web Services with Flask | 181

The current login functionality implemented with the help of Flask-Login stores data
in the user session, which Flask stores by default in a client-side cookie, so the server
does not store any user-related information; it asks the client to store it instead. It would
appear that this implementation complies with the stateless requirement of REST, but
the use of cookies in RESTful web services falls into a gray area, as it can be cuambersome
for clients that are not web browsers to implement them. For that reason, it is generally
seen as a bad design choice to use them.

The stateless requirement of REST may seem overly strict, but it is
notarbitrary. Stateless servers can scale very easily. When servers store
information about clients, it is necessary to have a shared cache ac-
cessible to all servers to ensure that the same server always gets re-
quests from a given client. Both are complex problems to solve.

Because the RESTful architecture is based on the HTTP protocol, HTTP authentica-
tion is the preferred method used to send credentials, either in its Basic or Digest flavors.
With HTTP authentication, user credentials are included in an Authorization header
with all requests.

The HT TP authentication protocol is simple enough that it can be implemented directly,
but the Flask-HTTPAuth extension provides a convenient wrapper that hides the pro-
tocol details in a decorator similar to Flask-Login's login_required.

Flask-HTTPAuth is installed with pip:
(venv) $ pip install flask-httpauth

To initialize the extension for HTTP Basic authentication, an object of class
HTTPBasicAuth must be created. Like Flask-Login, Flask-HTTPAuth makes no as-
sumptions about the procedure required to verify user credentials, so this information
is given in a callback function. Example 14-6 shows how the extension is initialized and
provided with a verification callback.

Example 14-6. app/api_1_0/authentication.py: Flask-HTTPAuth initialization

from flask.ext.httpauth import HTTPBasicAuth
auth = HTTPBasicAuth()

def verify_password(email, password):
if email == '':
g.current_user = AnonymousUser()
return True
user = User.query.filter_by(email = email).first()
if not user:
return False
g.current_user = user
return user.verify_password(password)

182 | Chapter 14: Application Programming Interfaces

Because this type of user authentication will be used only in the API blueprint, the Flask-
HTTPAuth extension is initialized in the blueprint package, and not in the application
package like other extensions.

The email and password are verified using the existing support in the User model. The
verification callback returns True when the login is valid or False otherwise. Anony-
mous logins are supported, for which the client must send a blank email field.

The authentication callback saves the authenticated user in FlasK’s g global object so that
the view function can access it later. Note that when an anonymous login is received,
the function returns True and saves an instance of the AnonymousUser class used with
Flask-Login into g.current_user.

Because user credentials are being exchanged with every request, it
is extremely important that the API routes are exposed over secure
HTTP so that all requests and responses are encrypted.

When the authentication credentials are invalid, the server returns a 401 error to the
client. Flask-HTTPAuth generates a response with this status code by default, but to
ensure that the response is consistent with other errors returned by the API, the error
response can be customized as shown in Example 14-7.

Example 14-7. _app/api_1_0/authentication.py: Flask-HTTPAuth error handler

def auth_error():
return unauthorized('Invalid credentials')

To protect a route, the auth. login_required decorator is used:
('/posts/")

def get_posts():
pass

But since all the routes in the blueprint need to be protected in the same way, the
login_required decorator can be included once in a before_request handler for the
blueprint, as shown in Example 14-8.

Example 14-8. app/api_1_0/authentication.py: before_request handler with authenti-
cation

from .errors import forbidden_error

def before_request():

RESTful Web Services with Flask | 183

if not g.current_user.is_anonymous and \
not g.current_user.confirmed:
return forbidden('Unconfirmed account')

Now the authentication checks will be done automatically for all the routes in the blue-
print. As an additional check, the before_request handler also rejects authenticated
users who have not confirmed their accounts.

Token-Based Authentication

Clients must send authentication credentials with every request. To avoid having to

constantly transfer sensitive information, a token-based authentication solution can be
offered.

In token-based authentication, the client sends the login credentials to a special URL
that generates authentication tokens. Once the client has a token it can use it in place
of the login credentials to authenticate requests. For security reasons, tokens are issued
with an associated expiration. When a token expires, the client must reauthenticate to
get a new one. The risk of a token getting in the wrong hands is limited due to its short
lifespan. Example 14-9 shows the two new methods added to the User model that sup-
port generation and verification of authentication tokens using itsdangerous.

Example 14-9. app/models.py: Token-based authentication support

class User(db.Model):
...
def generate_auth_token(self, expiration):
s = Serializer(current_app.config['SECRET_KEY'],
expires_in=expiration)
return s.dumps({'id': self.id})

def verify_auth_token(token):
s = Serializer(current_app.config['SECRET_KEY'])
try:
data = s.loads(token)
except:
return None
return User.query.get(data['id'])

The generate_auth_token() method returns a signed token that encodes the user’s id
field. An expiration time given in seconds is also used. The verify_auth_token()
method takes a token and, if found valid, it returns the user stored in it. This is a static
method, as the user will be known only after the token is decoded.

To authenticate requests that come with a token, the verify_password callback for
Flask-HTTPAuth must be modified to accept tokens as well as regular credentials. The
updated callback is shown in Example 14-10.

184 | Chapter 14: Application Programming Interfaces

Example 14-10. app/api_1_0/authentication.py: Improved authentication verification
with token support

def verify_password(email_or_token, password):
if email_or_token == '':
g.current_user = AnonymousUser()
return True
if password ==
g.current_user = User.verify_auth_token(email_or_token)
g.token_used = True
return g.current_user is not None
user = User.query.filter_by(email=email_or_token).first()
if not user:
return False
g.current_user = user
g.token_used = False
return user.verify_password(password)

In this new version, the first authentication argument can be the email address or an
authentication token. If this field is blank, an anonymous user is assumed, as before. If
the password is blank, then the email_or_token field is assumed to be a token and
validated as such. If both fields are nonempty then regular email and password authen-
tication is assumed. With this implementation, token-based authentication is optional;
it is up to each client to use it or not. To give view functions the ability to distinguish
between the two authentication methods a g. token_used variable is added.

The route that returns authentication tokens to the client is also added to the API blue-
print. The implementation is shown in Example 14-11.

Example 14-11. app/api_1_0/authentication.py: Authentication token generation

('/token")
def get_token():
if g.current_user.is_anonymous() or g.token_used:
return unauthorized('Invalid credentials')
return jsonify({'token': g.current_user.generate_auth_token(
expiration=3600), 'expiration': 3600})

Since this route is in the blueprint, the authentication mechanisms added to the
before_request handler also apply to it. To prevent clients from using an old token to
request a new one, the g.token_used variable is checked, and in that way requests
authenticated with a token can be rejected. The function returns a token in the JSON
response with a validity period of one hour. The period is also included in the JSON
response.

RESTful Web Services with Flask | 185

Serializing Resources to and from JSON

A frequent need when writing a web service is to convert internal representation of
resources to and from JSON, which is the transport format used in HTTP requests and
responses. Example 14-12 shows a new to_json() method added to the Post class.

Example 14-12. app/models.py: Convert a post to a JSON serializable dictionary

class Post(db.Model):
...
def to_json(self):
json_post = {
'url': url_for('api.get_post', id=self.id, _external=True),
'body': self.body,
'body_html': self.body_html,
"timestamp': self.timestamp,
"author': url_for('api.get_user', id=self.author_id,
_external=True),
'comments': url_for('api.get_post_comments', id=self.id,
_external=True)
'comment_count': self.comments.count()
}

return json_post

The url, author, and comments fields need to return the URLs for the respective re-
sources, so these are generated with url_for () calls to routes that will be defined in the
API blueprint. Note that _external=True is added to all url_for() calls so that fully
qualified URLs are returned instead of the relative URLs that are typically used within
the context of a traditional web application.

This example also shows how it is possible to return “made-up” attributes in the rep-
resentation of a resource. The comment_count field returns the number of comments
that exist for the blog post. Although thisis not a real attribute of the model, it is included
in the resource representation as a convenience to the client.

The to_json() method for User models can be constructed in a similar way to Post.
This method is shown in Example 14-13.

Example 14-13. app/models.py: Convert a user to a JSON serializable dictionary

class User(UserMixin, db.Model):
...
def to_json(self):
json_user = {
'url': url_for('api.get_post', id=self.id, _external=True),
'username': self.username,
'member_since': self.member_since,
'last_seen': self.last_seen,
'posts': url_for('api.get_user_posts', id=self.id, _external=True),
'followed_posts': url_for('api.get_user_followed_posts',
id=self.id, _external=True),

186 | Chapter 14: Application Programming Interfaces

'post_count': self.posts.count()

}

return json_user

Note how in this method some of the attributes of the user, such as email and role, are
omitted from the response for privacy reasons. This example again demonstrates that
the representation of a resource offered to clients does not need to be identical to the
internal representation of the corresponding database model.

Converting a JSON structure to a model presents the challenge that some of the data
coming from the client might be invalid, wrong, or unnecessary. Example 14-14 shows
the method that creates a Post model from JSON.

Example 14-14. app/models.py: Create a blog post from JSON

from app.exceptions import ValidationError

class Post(db.Model):
...

def from_json(json_post):
body = json_post.get('body"')
if body is None or body == '':
raise ValidationError('post does not have a body')
return Post(body=body)

As you can see, this implementation chooses to only use the body attribute from the
JSON dictionary. The body_html attribute is ignored since the server-side Markdown
rendering is automatically triggered by a SQLAlchemy event whenever the body at-
tribute is modified. The timestamp attribute does not need to be given, unless the client
is allowed to backdate posts, which is not a feature of this application. The author field
is not used because the client has no authority to select the author of a blog post; the
only possible value for the author field is that of the authenticated user. The comments
and comment_count attributes are automatically generated from a database relationship,
so there is no useful information in them that is needed to create a model. Finally, the
url field is ignored because in this implementation the resource URLs are defined by
the server, not the client.

Note how error checking is done. If the body field is missing or empty then a
ValidationError exception is raised. Throwing an exception is in this case the appro-
priate way to deal with the error because this method does not have enough knowledge
to properly handle the condition. The exception effectively passes the error up to the
caller, enabling higher level code to do the error handling. The ValidationError class
is implemented as a simple subclass of Python’s ValueError. This implementation is
shown in Example 14-15.

RESTful Web Services with Flask | 187

Example 14-15. app/exceptions.py: ValidationError exception

class ValidationError(ValueError):
pass

The application now needs to handle this exception by providing the appropriate re-
sponse to the client. To avoid having to add exception catching code in view functions,
a global exception handler can be installed. A handler for the ValidationError excep-
tion is shown in Example 14-16.

Example 14-16. app/api_1_0/errors.py: API error handler for ValidationError excep-
tions
(ValidationError)

def validation_error(e):
return bad_request(e.args[0])

The errorhandler decorator is the same one that is used to register handlers for HTTP
status codes, but in this usage it takes an Exception class as argument. The decorated
function will be invoked any time an exception of the given class is raised. Note that the
decorator is obtained from the API blueprint, so this handler will be invoked only when
the exception is raised while a route from the blueprint is being processed.

Using this technique, the code in view functions can be written very cleanly and con-
cisely, without the need to include error checking. For example:
('/posts/"', methods=['POST'])
def new_post():
post = Post.from_json(request.json)
post.author = g.current_user
db.session.add(post)

db.session.commit()
return jsonify(post.to_json())

Implementing Resource Endpoints

What remains is to implement the routes that handle the different resources. The GET
requests are typically the easiest because they just return information and don’t need to
make any changes. Example 14-17 shows the two GET handlers for blog posts.

Example 14-17. app/api_1_0/posts.py: GET resource handlers for posts

('/posts/")
def get_posts():
posts = Post.query.all()
return jsonify({ 'posts': [post.to_json() for post in posts] })

('/posts/<int:id>")

188 | Chapter 14: Application Programming Interfaces

def get_post(id):
post = Post.query.get_or_404(id)
return jsonify(post.to_json())

The first route handles the request of the collection of posts. This function uses a list
comprehension to generate the JSON version of all the posts. The second route returns
a single blog post and responds with a code 404 error when the given 1d is not found
in the database.

The handler for 404 errors is at the application level, but it will pro-
vide a JSON response if the client requests that format. If a response
customized to the web service is desired, the 404 error handler can
be overridden in the blueprint.

The POST handler for blog post resources inserts a new blog post in the database. This
route is shown in Example 14-18.

Example 14-18. app/api_1_0/posts.py: POST resource handler for posts

('/posts/', methods=['POST'])
(Permission.WRITE_ARTICLES)
def new_post():
post = Post.from_json(request.json)
post.author = g.current_user
db.session.add(post)
db.session.commit()
return jsonify(post.to_json()), 201, \
{'Location': url_for('api.get_post', id=post.id, _external=True)}

This view function is wrapped in a permission_required decorator (shown in an up-
coming example) that ensures that the authenticated user has the permission to write
blog posts. The actual creation of the blog post is straightforward due to the error han-
dling support that was implemented previously. A blog post is created from the JSON
data and its author is explicitly assigned as the authenticated user. After the model is
written to the database, a 201 status code is returned and a Location header is added
with the URL of the newly created resource.

Note that for convenience to the client, the body of the response includes the new re-
source. This will save the client from having to issue a GET resource for it immediately
after creating the resource.

The permission_required decorator used to prevent unauthorized users from creating
new blog posts is similar to the one used in the application but is customized for the
API blueprint. The implementation is shown in Example 14-19.

RESTful Web Services with Flask | 189

Example 14-19. app/api_1_0/decorators.py: permission_required decorator
def permission_required(permission):
def decorator(f):
(f)
def decorated_function(*args, **kwargs):
if not g.current_user.can(permission):
return forbidden('Insufficient permissions')
return f(*args, **kwargs)
return decorated_function
return decorator

The PUT handler for blog posts, used for editing existing resources, is shown in
Example 14-20.

Example 14-20. app/api_1_0/posts.py: PUT resource handler for posts

('/posts/<int:id>', methods=['PUT'])
(Permission.WRITE_ARTICLES)
def edit_post(id):
post = Post.query.get_or_404(id)
if g.current_user != post.author and \
not g.current_user.can(Permission.ADMINISTER):
return forbidden('Insufficient permissions')
post.body = request.json.get('body', post.body)
db.session.add(post)
return jsonify(post.to_json())

The permission checks are more complex in this case. The standard check for permis-
sion to write blog posts is done with the decorator, but to allow a user to edit a blog post
the function must also ensure that the user is the author of the post or else is an ad-
ministrator. This check is added explicitly to the view function. If this check had to be
added in many view functions, building a decorator for it would be a good way to avoid
code repetition.

Since the application does not allow deletion of posts, the handler for the DELETE request
method does not need to be implemented.

The resource handlers for users and comments are implemented in a similar way.
Table 14-3 lists the set of resources implemented for this application. The complete
implementation is available for you to study in the GitHub repository.

Table 14-3. Flasky API resources

Resource URL Methods Description

Jusers/<int:id> GET A user

Jusers/<int:id>/posts/ GET The blog posts written by a user
Jusers/<intiid>/timeline/ GET The blog posts followed by a user
/posts/ GET, POST Al the blog posts

190 | Chapter 14: Application Programming Interfaces

http://bit.ly/flasky-git

Resource URL Methods Description

/posts/<int:id> GET,PUT Ablog post
/posts/<int:id/>comments/ GET,POST The comments on a blog post
/comments/ GET All the comments
/comments/<int:id> GET A comment

Note that the resources that were implemented enable a client to offer a subset of the
functionality that is available through the web application. The list of supported re-
sources could be expanded if necessary, such as to expose followers, to enable comment
moderation, and to implement any other features that a client might need.

Pagination of Large Resource Collections

The GET requests that return a collection of resources can be extremely expensive and
difficult to manage for very large collections. Like web applications, web services can
choose to paginate collections.

Example 14-21 shows a possible implementation of pagination for the list of blog posts.

Example 14-21. app/api_1_0/posts.py: Post pagination

('/posts/")
def get_posts():
page = request.args.get('page', 1, type=int)
pagination = Post.query.paginate(
page, per_page=current_app.config['FLASKY_POSTS_PER_PAGE'],
error_out=False)
posts = pagination.items
prev = None
if pagination.has_prev:
prev = url_for('api.get_posts', page=page-1, _external=True)
next = None
if pagination.has_next:
next = url_for('api.get_posts', page=page+l, _external=True)
return jsonify({
'posts': [post.to_json() for post in posts],
'prev': prev,
'next': next,
'count': pagination.total

b

The posts field in the JSON response contains the data items as before, but now it is
just a portion of the complete set. The prev and next items contain the resource URLs
for the previous and following pages, when available. The count value is the total number
of items in the collection.

This technique can be applied to all the routes that return collections.

RESTful Web Serviceswith Flask | 191

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 14a to check out this version of the application.
To ensure that you have all the dependencies installed, also run pip
install -r requirements/dev.txt.

Testing Web Services with HTTPie

To testa web service, an HTTP client must be used. The two most used clients for testing
web services from the command line are curl and HTTPie. The latter has a much more
concise and readable command line. HT TPie is installed with pip:

(venv) $ pip install httpie
A GET request can be issued as follows:

(venv) $ http --json --auth <emails>:<password> GET \
> http://127.0.0.1:5000/api/v1.0/posts

HTTP/1.0 200 OK

Content-Length: 7018

Content-Type: application/json

Date: Sun, 22 Dec 2013 08:11:24 GMT

Server: Werkzeug/0.9.4 Python/2.7.3

{
"posts": [
]J
"prev": null
"next": "http://127.0.0.1:5000/api/v1.0/posts/?page=2",
"count": 150
}

Note the pagination links included in the response. Since this is the first page, a previous
page is not defined, but a URL to obtain the next page and a total count were returned.

The same request can be issued by an anonymous user by sending an empty email and
password:

(venv) $ http --json --auth : GET http://127.0.0.1:5000/api/v1.0/posts/
The following command sends a POST request to add a new blog post:

(venv) $ http --auth <email>:<password> --json POST \
> http://127.0.0.1:5000/api/v1.0/posts/ \

> "body=I'm adding a post from the *command line*."
HTTP/1.0 201 CREATED

Content-Length: 360

Content-Type: application/json

Date: Sun, 22 Dec 2013 08:30:27 GMT

Location: http://127.0.0.1:5000/api/v1.0/posts/111
Server: Werkzeug/0.9.4 Python/2.7.3

192 | Chapter 14: Application Programming Interfaces

"author": "http://127.0.0.1:5000/api/v1.0/users/1",

"body": "I'm adding a post from the *command line*.",

"body_html": "<p>I'm adding a post from the command line.</p>",
"comments": "http://127.0.0.1:5000/api/v1.0/posts/111/comments",
"comment_count": 0,

"timestamp": "Sun, 22 Dec 2013 08:30:27 GMT",
"url": "http://127.0.0.1:5000/api/v1.0/posts/111"
}

To use authentication tokens, a request to /api/v1.0/token is sent:

(venv) $ http --auth <email>:<password> --json GET \
> http://127.0.0.1:5000/api/v1.0/token

HTTP/1.0 200 OK

Content-Length: 162

Content-Type: application/json

Date: Sat, 04 Jan 2014 08:38:47 GMT

Server: Werkzeug/0.9.4 Python/3.3.3

{
"expiration": 3600,
"token": "eyJpYXQ10jEzODg4MjQ3MjcsImV4cCI6MTM40DgyODMyNywiYWxnIjoiSFMy. .."
}
And now the returned token can be used to make calls into the API for the next hour
by passing it along with an empty password field:

(venv) $ http --json --auth eyJpYXQ...: GET http://127.0.0.1:5000/api/v1.0/posts/

When the token expires, requests will be returned with a code 401 error, indicating that
a new token needs to be obtained.

Congratulations! This chapter completes Part II, and with that the feature development
phase of Flasky is complete. The next step is obviously to deploy it, and that brings a
new set of challenges that are the subject of Part III.

RESTful Web Services with Flask | 193

PART II

The Last Mile

CHAPTER 15
Testing

There are two very good reasons for writing unit tests. When implementing new func-
tionality, unit tests are used to confirm that the new code is working in the expected
way. The same result can be obtained by testing manually, but of course automated tests
save time and effort.

A second, more important reason is that each time the application is modified, all the
unit tests built around it can be executed to ensure that there are no regressions in the
existing code; in other words, that the new changes did not affect the way the older code
works.

Unit tests have been a part of Flasky since the very beginning, with tests designed to
exercise specific features of the application implemented in the database model classes.
These classes are easy to test outside of the context of a running application, so given
that it takes little effort, implementing unit tests for all the features implemented in the
database models is the best way to ensure at least that part of the application starts robust
and stays that way.

This chapter discusses ways to improve and extend unit testing.

Obtaining Code Coverage Reports

Having a test suite is important, but it is equally important to know how good or bad it
is. Code coverage tools measure how much of the application is exercised by unit tests
and can provide a detailed report that indicates which parts of the application code are
not being tested. This information is invaluable, because it can be used to direct the
effort of writing new tests to the areas that need it most.

Python has an excellent code coverage tool appropriately called coverage. You can install
it with pip:

(venv) $ pip install coverage

197

This tool comes as a command-line script that can launch any Python application with
code coverage enabled, but it also provides more convenient scripting access to start
the coverage engine programmatically. To have coverage metrics nicely integrated into
the manage.py launcher script, the custom test command added in Chapter 7 can be
expanded with a - -coverage optional argument. The implementation of this option is
shown in Example 15-1.

Example 15-1. manage.py: Coverage metrics

#!/usr/bin/env python

import os

COV = None

if os.environ.get('FLASK_COVERAGE'):
import coverage
COV = coverage.coverage(branch=True, include='app/*")
COV.start()

def test(coverage=False):
"""Run the unit tests.
if coverage and not os.environ.get('FLASK_COVERAGE'):
import sys
os.environ['FLASK_COVERAGE'] = '1'
os.execvp(sys.executable, [sys.executable] + sys.argv)
import unittest
tests = unittest.TestLoader().discover('tests')
unittest.TextTestRunner(verbosity=2).run(tests)
if COV:
COV.stop()
COV.save()
print('Coverage Summary:')
COV.report()
basedir = os.path.abspath(os.path.dirname(__file__))
covdir = os.path.join(basedir, 'tmp/coverage')
COV.html_report(directory=covdir)
print('HTML version: file://%s/index.html' % covdir)
COV.erase()

nwwn

...

Flask-Script makes it very easy to define custom commands. To add a Boolean option
to the test command, add a Boolean argument to the test() function. Flask-Script
derives the name of the option from the argument name and passes True or False to
the function accordingly.

But integrating code coverage with the manage.py script presents a small problem. By
the time the - -coverage option is received in the test() function, it is already too late
to turn on coverage metrics; by that time all the code in the global scope has already

198 | Chapter15: Testing

executed. To get accurate metrics, the script restarts itself after setting the
FLASK_COVERAGE environment variable. In the second run, the top of the script finds
that the environment variable is set and turns on coverage from the start.

The coverage.coverage() function starts the coverage engine. The branch=True op-
tion enables branch coverage analysis, which, in addition to tracking which lines of code
execute, checks whether for every conditional both the True and False cases have ex-
ecuted. The include option is used to limit coverage analysis to the files that are inside
the application package, which is the only code that needs to be measured. Without the
include option, all the extensions installed in the virtual environment and the code for
the tests itself would be included in the coverage reports—and that would add a lot of
noise to the report.

After all the tests have executed, the text() function writes a report to the console and
also writes a nicer HTML report to disk. The HTML version is very good for displaying
coverage visually because it shows the source code lines color-coded according to their
use.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 15a to check out this version of the application.
To ensure that you have all the dependencies installed, also run pip
install -r requirements/dev.txt.

An example of the text-based report follows:

(venv) $ python manage.py test --coverage

Ran 19 tests in 50.609s

OK

Coverage Summary:

Name Stmts Miss Branch BrMiss Cover Missing
app/__init__ 33 0 0 0 100%
app/api_1_0/__init__ 3 0 0 0 100%
app/api_1_0/authentication 30 19 11 11 27%
app/api_1_0/comments 40 30 12 12 19%
app/api_1_0/decorators 11 3 2 2 62%
app/api_1_0/errors 17 10 0 0 41%
app/api_1_0/posts 35 23 9 9 27%
app/api_1_0/users 30 24 12 12 14%
app/auth/__init__ 3 0 0 0 100%
app/auth/forms 45 8 8 8 70%
app/auth/views 109 84 41 41 17%
app/decorators 14 3 2 2 69%

Obtaining Code Coverage Reports | 199

app/email 15 9 0 0 40%
app/exceptions 2 0 0 0 100%
app/main/__init__ 6 1 0 0 83%
app/main/errors 20 15 9 9 17%
app/main/forms 39 7 8 8 68%
app/main/views 169 131 36 36 19%
app/models 243 62 44 17 72%
TOTAL 864 429 194 167 44%

HTML version: file:///home/flask/flasky/tmp/coverage/index.html

The report shows an overall coverage of 44%, which is not terrible, but isn’t very good
either. The model classes, which have received all the unit testing attention so far, con-
stitute a total of 243 statements, of which 72% are covered in tests. Obviously the views.py
files in the main and auth blueprints and the routes in the api_1_0 blueprint all have
very low coverage, since these are not exercised in any of the existing unit tests.

Armed with this report, it is easy to determine which tests need to be added to the test
suite to improve coverage, but unfortunately not all parts of the application can be tested
as easily as the database models. The next two sections discuss more advanced testing
strategies that can be applied to view functions, forms, and templates.

Note that the contents of the Missing column have been omitted in the example report
to improve the formatting. This column indicates the source code lines that were missed
by the tests as a long list of line number ranges.

The Flask Test Client

Some portions of the application code rely heavily on the environment that is created
by a running application. For example, you can’t simply invoke the code in a view func-
tion to test it, as the function may need to access Flask context globals such as request
or session, it may be expecting form data in a POST request, and some view functions
may also require a logged-in user. In short, view functions can run only within the
context of a request and a running application.

Flask comes equipped with a test client to try to address this problem, at least partially.
The test client replicates the environment that exists when an application is running
inside a web server, allowing tests to act as clients and send requests.

The view functions do not see any major differences when executed under the test client;
requests are received and routed to the appropriate view functions, from which re-
sponses are generated and returned. After a view function executes, its response is
passed to the test, which can check it for correctness.

Testing Web Applications

Example 15-2 shows a unit testing framework that uses the test client.

200 | Chapter15:Testing

Example 15-2. tests/test_client.py: Framework for tests using the Flask test client

import unittest
from app import create_app, db
from app.models import User, Role

class FlaskClientTestCase(unittest.TestCase):
def setUp(self):

self.app = create_app('testing')
self.app_context = self.app.app_context()
self.app_context.push()
db.create_all()
Role.insert_roles()
self.client = self.app.test_client(use_cookies=True)

def tearDown(self):
db.session.remove()
db.drop_all()
self.app_context.pop()

def test_home_page(self):
response = self.client.get(url_for('main.index"))
self.assertTrue('Stranger' in response.get_data(as_text=True))

The self.client instance variable added to the test case is the Flask test client object.
This object exposes methods that issue requests into the application. When the test client
is created with the use_cookies option enabled, it will accept and send cookies in the
same way browsers do, so functionality that relies on cookies to recall context between
requests can be used. In particular, this approach enables the use of user sessions, so it
is necessary to log users in and out.

The test_home_page() test is a simple example of what the test client can do. In this
example, a request for the home page is issued. The return value of the get() method
of the test client is a Flask Response object, containing the response returned by the
invoked view function. To check whether the test was successful, the body of the re-
sponse, obtained from response.get_data(), is searched for the word "Stranger",
which is part of the “Hello, Stranger!” greeting shown to anonymous users. Note that
get_data() returns the response body as a byte array by default; passing as_text=True
returns a Unicode string that is much easier to work with.

The test client can also send POST requests that include form data using the post()
method, but submitting forms presents a small complication. The forms generated by
Flask-WTF have a hidden field with a CSRF token that needs to be submitted along
with the form. To replicate this functionality, a test would need to request the page that
includes the form, then parse the HTML text returned in the response and extract the
token so that it can then send the token with the form data. To avoid the hassle of dealing

The Flask Test Client | 201

with CSRF tokens in tests, it is better to disable CSRF protection in the testing config-
uration. This is as shown in Example 15-3.

Example 15-3. config.py: Disable CSRF protection in the testing configuration

class TestingConfig(Config):
#...
WTF_CSRF_ENABLED = False

Example 15-4 shows a more advanced unit test that simulates a new user registering an
account, logging in, confirming the account with a confirmation token, and finally log-
ging out.

Example 15-4. tests/test_client.py: Simulation of a new user workflow with the Flask
test client

class FlaskClientTestCase(unittest.TestCase):
...
def test_register_and_login(self):
register a new account
response = self.client.post(url_for('auth.register'), data={

'email': 'john@example.com',
'username': 'john',
'password': 'cat',

'password2': 'cat

b

self.assertTrue(response.status_code == 302)

login with the new account
response = self.client.post(url_for('auth.login'), data={

'email': 'john@example.com',

'password': 'cat'
}, follow_redirects=True)
data = response.get_data(as_text=True)
self.assertTrue(re.search('Hello,\s+john!"', data))
self.assertTrue('You have not confirmed your account yet' in data)

send a confirmation token

user = User.query.filter_by(email='john@example.com').first()

token = user.generate_confirmation_token()

response = self.client.get(url_for('auth.confirm', token=token),
follow_redirects=True)

data = response.get_data(as_text=True)

self.assertTrue('You have confirmed your account' in data)

log out

response = self.client.get(url_for('auth.logout'),
follow_redirects=True)

data = response.get_data(as_text=True)

self.assertTrue('You have been logged out' in data)

202 | Chapter15:Testing

The test begins with a form submission to the registration route. The data argument to
post() is a dictionary with the form fields, which must exactly match the field names
defined in the form. Since CSRF protection is now disabled in the testing configuration,
there is no need to send the CSRF token with the form.

The /auth/register route can respond in two ways. If the registration data is valid, a
redirect sends the user to the login page. In the case of an invalid registration, the re-
sponse renders the page with the registration form again, including any appropriate
error messages. To validate that the registration was accepted, the test checks that the
status code of the response is 302, which is the code for a redirect.

The second section of the test issues a login to the application using the email and
password just registered. This is done with a POST request to the /auth/login route. This
time a follow_redirects=True argument is included in the post() call to make the
test client work like a browser and automatically issue a GET request for the redirected
URL. With this option, status code 302 will not be returned; instead, the response from
the redirected URL is returned.

A successful response to the login submission would now have a page that greets the
user by the username and then indicates that the account needs to be confirmed to gain
access. Two assert statements verify that this is the page, and here it is interesting to note
that a search for the string 'Hello, john!' would not work because this string is as-
sembled from static and dynamic portions, with extra whitespace in between the parts.
To avoid an error in this test due to the whitespace, a more flexible regular expression
is used.

The next step is to confirm the account, which presents another small obstacle. The
confirmation URL is sent to the user by email during registration, so there is no easy
way to access it from the test. The solution presented in the example bypasses the token
that was generated as part of the registration and generates another one directly from
the User instance. Another possibility would have been to extract the token by parsing
the email body, which Flask-Mail saves when running in a testing configuration.

With the token at hand, the third part of the test is to simulate the user clicking the
confirmation token URL. This is achieved by sending a GET request to the confirmation
URL with the token attached. The response to this request is a redirect to the home
page, but once again follow_redirects=True was specified, so the test client requests
the redirected page automatically. The response is checked for the greeting and a flashed
message that informs the user that the confirmation was successful.

The final step in this test is to send a GET request to the logout route; to confirm that
this has worked, the test searches for a flashed message in the response.

The Flask Test Client | 203

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 15b to check out this version of the application.

Testing Web Services

The Flask test client can also be used to test RESTful web services. Example 15-5 shows
an example unit test class with two tests.

Example 15-5. tests/test_api.py: RESTful API testing with the Flask test client

class APITestCase(unittest.TestCase):
...
def get_api_headers(self, username, password):
return {
'"Authorization':
'Basic ' + b64encode(
(username + ':' + password).encode('utf-8')).decode('utf-8'),
'"Accept': 'application/json',
'Content-Type': 'application/json'

}

def test_no_auth(self):
response = self.client.get(url_for('api.get_posts'),
content_type="application/json')
self.assertTrue(response.status_code == 401)

def test_posts(self):
add a user
r = Role.query.filter_by(name="User').first()
self.assertIsNotNone(r)
u = User(email='john@example.com', password='cat', confirmed=True,
role=r)
db.session.add(u)
db.session.commit()

write a post
response = self.client.post(
url_for('api.new_post'),
headers=self.get_auth_header('john@example.com', 'cat'),
data=json.dumps({'body': 'body of the blog post'}))
self.assertTrue(response.status_code == 201)
url = response.headers.get('Location"')
self.assertIsNotNone(url)

get the new post
response = self.client.get(
url,
headers=self.get_auth_header('john@example.com', 'cat'))

204 | Chapter15:Testing

self.assertTrue(response.status_code == 200)
json_response = json.loads(response.data.decode('utf-8'))
self.assertTrue(json_response['url'] == url)
self.assertTrue(json_response['body'] == 'body of the *blog* post')
self.assertTrue(json_response['body_html'] ==

'<p>body of the blog post</p>')

The setUp() and tearDown() methods for testing the API are the same as for the regular
application, but the cookie support does not need to be configured because the API does
notuseit. The get_api_headers() methodisahelper method that returns the common
headers that need to be sent with all requests. These include the authentication creden-
tials and the MIME-type related headers. Most of the tests need to send these headers.

The test_no_auth() testis asimple test that ensures that a request that does not include
authentication credentials is rejected with error code 401. The test_posts() test adds
a user to the database and then uses the RESTful API to insert a blog post and then read
it back. Any requests that send data in the body must encode it with json.dumps(),
because the Flask test client does not automatically encode to JSON. Likewise, response
bodies are also returned in JSON format and must be decoded with json. loads () before
they can be inspected.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 15c to check out this version of the application.

End-to-End Testing with Selenium

The Flask test client cannot fully emulate the environment of a running application. For
example, any application that relies on JavaScript code running in the client browser
will not work, as the JavaScript code included in the responses returned to the test will
not be executed as they would be in a real web browser client.

When tests require the complete environment, there is no other choice than to use a
real web browser connected to the application running under a real web server. Fortu-
nately, most web browsers can be automated. Selenium is a web browser automation
tool that supports the most popular web browsers in the three major operating systems.

The Python interface for Selenium is installed with pip:

(venv) $ pip install selenium

Testing with Selenium requires the application to be running inside a web server that
is listening for real HTTP requests. The method that will be shown in this section starts
the application with the development server in a background thread while the tests run

End-to-End Testing with Selenium | 205

http://www.seleniumhq.org/

on the main thread. Under the control of the tests, Selenium launches a web browser
and makes it connect to the application to perform the required operations

A problem with this approach is that after all the tests have completed, the Flask server
needs to be stopped, ideally in a graceful way, so that background tasks such as the code
coverage engine can cleanly complete their work. The Werkzeug web server has a shut-
down option, but because the server is running isolated in its own thread, the only way
to ask the server to shut down is by sending a regular HTTP request. Example 15-6
shows the implementation of a server shutdown route.

Example 15-6. _app/main/views.py: Server shutdown route

('/shutdown")
def server_shutdown():

if not current_app.testing:

abort(404)
shutdown = request.environ.get('werkzeug.server.shutdown')
if not shutdown:

abort(500)
shutdown()
return 'Shutting down...'

The shutdown route will work only when the application is running in testing mode;
invoking it in other configurations will fail. The actual shutdown procedure involves
calling a shutdown function that Werkzeug exposes in the environment. After calling
this function and returning from the request, the development web server will know
that it needs to exit gracefully.

Example 15-7 shows the layout of a test case that is configured to run tests with Selenium.

Example 15-7. tests/test_selenium.py: Framework for tests using Selenium

from selenium import webdriver

class SeleniumTestCase(unittest.TestCase):
client = None

def setUpClass(cls):
start Firefox
try:
cls.client = webdriver.Firefox()
except:
pass

skip these tests i1f the browser could not be started
if cls.client:
create the application
cls.app = create_app('testing')
cls.app_context = cls.app.app_context()
cls.app_context.push()

206 | Chapter15:Testing

suppress logging to keep unittest output clean
import logging

logger = logging.getlLogger('werkzeug')
logger.setlLevel("ERROR")

create the database and populate with some fake data
db.create_all()

Role.insert_roles()

User.generate_fake(10)

Post.generate_fake(10)

add an administrator user
admin_role = Role.query.filter_by(permissions=0xff).first()
admin = User(email='john@example.com',
username='john', password='cat',
role=admin_role, confirmed=True)
db.session.add(admin)
db.session.commit()

start the Flask server in a thread
threading.Thread(target=cls.app.run).start()

def tearDownClass(cls):
if cls.client:
stop the flask server and the browser
cls.client.get('http://localhost:5000/shutdown')
cls.client.close()

destroy database
db.drop_all()
db.session.remove()

remove application context
cls.app_context.pop()

def setUp(self):
if not self.client:
self.skipTest('Web browser not available')

def tearDown(self):
pass

The setUpClass() and tearDownClass() class methods are invoked before and after
the tests in this class execute. The setup involves starting an instance of Firefox through
Selenium’s webdriver API and creating an application and a database with some initial
data for tests to use. The application is started in a thread using the standard app.run()
method. At the end the application receives a request to /shutdown, which causes the
background thread to end. The browser is then closed and the test database removed.

End-to-End Testing with Selenium | 207

Selenium supports many other web browsers besides Firefox. Con-
sult the Selenium documentation if you wish to use a different web
browser.

The setUp() method that runs before each test skips tests if Selenium cannot start the
web browser in the startUpClass() method. In Example 15-8 you can see an example
test built with Selenium.

Example 15-8. tests/test_selenium.py: Example Selenium unit test

class SeleniumTestCase(unittest.TestCase):
...

def test_admin_home_page(self):
navigate to home page
self.client.get('http://localhost:5000/")
self.assertTrue(re.search('Hello,\s+Stranger!"',
self.client.page_source))

navigate to login page
self.client.find_element_by link_text('Log In').click()
self.assertTrue('<hl>Login</h1>"' in self.client.page_source)

login

self.client.find_element_by name('email').\
send_keys (' john@example.com')

self.client.find_element_by name('password').send_keys('cat')

self.client.find_element_by_name('submit').click()

self.assertTrue(re.search('Hello,\s+john!"', self.client.page_source))

navigate to the user's profile page
self.client.find_element_by_link_text('Profile').click()
self.assertTrue('<h1>john</h1>"' in self.client.page_source)

This test logs in to the application using the administrator account that was created in
setUpClass() and then opens the profile page. Note how different the testing meth-
odology is from the Flask test client. When testing with Selenium, tests send commands
to the web browser and never interact with the application directly. The commands
closely match the actions that a real user would perform with mouse or keyboard.

The test begins with a call to get () with the home page of the application. In the browser,
this causes the URL to be entered in the address bar. To verify this step, the page source
is checked for the “Hello, Stranger!” greeting.

To go to the sign-in page, the test looks for the “Log In” link using
find_element_by_link_text() and then calls click() on it to trigger a real click in

208 | Chapter15: Testing

http://bit.ly/sel-docs

the browser. Selenium provides several find_element_by...() convenience methods
that can search for elements in different ways.

To log in to the application, the test locates the email and password form fields by their
names using find_element_by_name() and then writes text into them with
send_keys(). The form is submitted by calling click() on the submit button. The
personalized greeting is checked to ensure that the login was successful and the browser
is now on the home page.

The final part of the test locates the “Profile” link in the navigation bar and clicks it. To
verify that the profile page was loaded, the heading with the username is searched in
the page source.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 15d to check out this version of the application.
This update contains a database migration, so remember to run
python manage.py db upgrade after you check out the code. To
ensure that you have all the dependencies installed, also run pip
install -r requirements/dev.txt.

Is It Worth It?

By now you may be asking if testing using the Flask test client or Selenium is really
worth the trouble. It is a valid question, and it does not have a simple answer.

Whether you like it or not, your application will be tested. If you don’t test it yourself,
then your users will become the unwilling testers that will be finding the bugs, and then
you will have to fix bugs under pressure. Simple and focused tests like the ones that
exercise database models and other parts of the application that can be executed outside
of the context of an application should always be used, as they have a very low cost and
ensure the proper functioning of the core pieces of application logic.

End-to-end tests of the type that the Flask test client and Selenium can carry out are
sometimes necessary, but due to the increased complexity to write them, they should
be used only for functionality that cannot be tested in isolation. The application code
should be organized so that it is possible to push as much of the business logic as possible
into database models or other auxiliary classes that are independent of the context of
the application and thus can be tested easily. The code that exists in view functions
should be simple and just act as a thin layer that accepts requests and invokes the cor-
responding actions in other classes or functions that encapsulate the application logic.

So yes, testing is absolutely worth it. But it is important to design an efficient testing
strategy and write code that can take advantage of it.

IsitWorthIt? | 209

CHAPTER 16
Performance

Nobody likes slow applications. Long waits for pages to load frustrate users, so it is
important to detect and correct performance problems as soon as they appear. In this
chapter, two important performance aspects of web applications are considered.

Logging Slow Database Performance

When application performance slowly degenerates with time, it is likely due to slow
database queries, which get worse as the size of the database grows. Optimizing database
queries can be as simple as adding more indexes or as complex as adding a cache between
the application and the database. The explain statement, available in most database
query languages, shows the steps the database takes to execute a given query, often
exposing inefficiencies in database or index design.

But before starting to optimize queries, it is necessary to determine which queries are
the ones that are worth optimizing. During a typical request several database queries
may be issued, so it is often hard to identify which of all the queries are the slow ones.
Flask-SQLAlchemy has an option to record statistics about database queries issued
during a request. In Example 16-1 you can see how this feature can be used to log queries
that are slower than a configured threshold.

Example 16-1. app/main/views.py: Report slow database queries

from flask.ext.sqlalchemy import get_debug_gueries

def after_request(response):
for query in get_debug_gueries():
if query.duration >= current_app.config['FLASKY_SLOW_DB_QUERY_TIME']:
current_app.logger.warning(
'Slow query: %s\nParameters: %s\nDuration: %fs\nContext: %s\n' %
(query.statement, query.parameters, query.duration,

n

query.context))
return response

This functionality is attached to an after_app_request handler, which works in a sim-
ilar way to the before_app_request handler, but is invoked after the view function that
handles the request returns. Flask passes the response object to the after_app_request
handler in case it needs to be modified.

In this case, the after_app_request handler does not modify the response; it just gets
the query timings recorded by Flask-SQLAlchemy and logs any of the slow ones.

The get_debug_queries() function returns the queries issued during the request as a
list. The information provided for each query is shown in Table 16-1.

Table 16-1. Query statistics recorded by Flask-SQLAlchemy
statement TheSQL statement
parameters The parameters used with the SQL statement
start_time The time the query was issued
end_time The time the query returned
duration The duration of the query in seconds

context A string that indicates the source code location where the query was issued

The after_app_request handler walks the list and logs any queries that lasted longer
than a threshold given in the configuration. The logging is issued at the warning level.
Changing the level to “error” would cause all slow query occurrences to be emailed as
well.

The get_debug_queries() function is enabled only in debug mode by default. Un-
fortunately, database performance problems rarely show up during development be-
cause much smaller databases are used. For this reason, it is useful to use this option in
production. Example 16-2 shows the configuration changes that are necessary to enable
database query performance in production mode.

Example 16-2. config.py: Configuration for slow query reporting

class Config:
...
SQLALCHEMY_RECORD_QUERIES = True
FLASKY_DB_QUERY_TIMEOUT = 0.5
...

SQLALCHEMY_RECORD_QUERIES tells Flask-SQLAlchemy to enable the recording of query
statistics. The slow query threshold is set to half a second. Both configuration variables
were included in the base Conf1ig class, so they will be enabled for all configurations.

212 | Chapter 16: Performance

Whenever a slow query is detected, an entry will be written to Flask’s application logger.
To be able to store these log entries, the logger must be configured. The logging con-
figuration largely depends on the platform that hosts the application. Some examples
are shown in Chapter 17.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 16a to check out this version of the application.

Source Code Profiling

Another possible source of performance problems is high CPU consumption, caused
by functions that perform heavy computing. Source code profilers are useful in finding
the slowest parts of an application. A profiler watches a running application and records
the functions that are called and how long each takes to run. It then produces a detailed
report showing the slowest functions.

Profiling is typically done in a development environment. A source
code profiler makes the application run slower because it has to ob-
serve and take notes of all that is happening. Profiling on a produc-
tion system is not recommended, unless a lightweight profiler specif-
ically designed to run on a production environment is used.

Flask’s development web server, which comes from Werkzeug, can optionally enable
the Python profiler for each request. Example 16-3 adds a new command-line option
to the application that starts the profiler.

Example 16-3. manage.py: Run the application under the request profiler

def profile(length=25, profile_dir=None):
"""Start the application under the code profiler.
from werkzeug.contrib.profiler import ProfilerMiddleware
app.wsgi_app = ProfilerMiddleware(app.wsgi_app, restrictions=[length],
profile_dir=profile_dir)

o

app.run()

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 16b to check out this version of the application.

Source Code Profiling | 213

When the application is started with python manage.py profile, the console will show
the profiler statistics for each request, which will include the slowest 25 functions. The
--length option can be used to change the number of functions shown in the report.
If the - -profile-dir option is given, the profile data for each request will be saved to
a file in the given directory. The profiler data files can be used to generate more detailed
reports that include a call graph. For more information on the Python profiler, consult
the official documentation.

The preparations for deployment are complete. The next chapter will give you an over-
view of what to expect when deploying your application.

214 | Chapter 16: Performance

http://bit.ly/py-profile

CHAPTER 17
Deployment

The web development server that comes bundled with Flask is not robust, secure, or
efficient enough to work in a production environment. In this chapter, deployment
options for Flask applications are examined.

Deployment Workflow

Regardless of the hosting method used, there are a series of tasks that must be carried
out when the application is installed on a production server. The best example is the
creation or update of the database tables.

Having to run these tasks manually each time the application is installed or upgraded
is error prone and time consuming, so instead a command that performs all the required
tasks can be added to manage.py.

Example 17-1 shows a deploy command implementation that is appropriate for Flasky.

Example 17-1. manage.py: deploy command

@manager .command

def deploy():
"""Run deployment tasks.
from flask.ext.migrate import upgrade
from app.models import Role, User

migrate database to latest revision
upgrade()

create user roles
Role.insert_roles()

create self-follows for all users
User.add_self_follows()

215

The functions invoked by this command were all created before; they are just invoked
all together.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 17a to check out this version of the application.

These functions are all designed in a way that causes no problems if they are executed
multiple times. Designing update functions in this way makes it possible to run just this
deploy command every time an installation or upgrade is done.

Logging of Errors During Production

When the application is running in debug mode, Werkzeug’s interactive debugger ap-
pears whenever an error occurs. The stack trace of the error is displayed on the web
page and it is possible to look at the source code and even evaluate expressions in the
context of each stack frame using Flask’s interactive web-based debugger.

The debugger is an excellent tool to debug application problems during development,
but obviously it cannot be used in a production deployment. Errors that occur in pro-
duction are silenced and instead the user receives a code 500 error page. But luckily, the
stack traces of these errors are not completely lost, as Flask writes them to a log file.

During startup, Flask creates an instance of Python’s logging. Logger class and attaches
it to the application instance as app. logger. In debug mode, this logger writes to the
console, but in production mode there are no handlers configured for it by default, so
unless a handler is added logs are not stored. The changes in Example 17-2 configure a
logging handler that sends the errors that occur while running in production mode to
the list administrator emails configured in the FLASKY_ADMIN setting.

Example 17-2. config.py: Send email for application errors

class ProductionConfig(Config):
...

def init_app(cls, app):
Config.init_app(app)

email errors to the administrators

import logging

from logging.handlers import SMTPHandler

credentials = None

secure = None

if getattr(cls, 'MAIL_USERNAME', None) is not None:
credentials = (cls.MAIL_USERNAME, cls.MAIL_PASSWORD)

216 | Chapter 17: Deployment

if getattr(cls, 'MAIL_USE_TLS', None):
secure = ()
mail_handler = SMTPHandler(
mailhost=(cls.MAIL_SERVER, cls.MAIL_PORT),
fromaddr=cls.FLASKY_MAIL_SENDER,
toaddrs=[cls.FLASKY_ADMIN],
subject=cls.FLASKY_MAIL_SUBJECT_PREFIX + ' Application Error',
credentials=credentials,
secure=secure)
mail_handler.setLevel(logging.ERROR)
app.logger.addHandler(mail_handler)

Recall that all configuration instances have a init_app() static method that is invoked
by create_app(). In the implementation of this method for the ProductionConfig
class, the application logger is configured to log errors to an email logger.

The logging level of the email logger is set to Logging.ERROR, so only severe problems
are sent by email. Messages logged on lesser levels can be logged to a file, syslog, or any
other supported method by adding the proper logging handlers. The logging method
to use for these messages largely depends on the hosting platform.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 17b to check out this version of the application.

Cloud Deployment

The latest trend in application hosting is to host in the “cloud.” This technology, which
is formally known as Platform as a Service (Paa$), frees the application developer from
the mundane tasks of installing and maintaining the hardware and software platforms
on which the application runs. In the PaaS model, a service provider offers a fully man-
aged platform in which applications can run. The application developer uses tools and
libraries from the provider to integrate the application with the platform. The applica-
tion is then uploaded to the servers maintained by the provider and usually is deployed
within seconds. Most Paa$ providers offer ways to dynamically “scale” the application
by adding or removing servers as necessary to keep up with the number of requests
received.

Cloud deployments offer great flexibility and are relatively simple to set up, but of course
all that goodness comes at a price. Heroku, one of the most popular Paa$ providers that
offers very good support for Python, is studied in detail in the following section.

Cloud Deployment | 217

The Heroku Platform

Heroku was one of the first PaaS providers, having been in business since 2007. The
Heroku platform is very flexible and supports a long list of programming languages. To
deploy an application to Heroku, the developer uses Git to push the application to
Heroku’s own Git server. On the server the git push command automatically triggers
the installation, configuration, and deployment.

Heroku uses units of computing called dynos to measure usage and charge for the ser-
vice. The most common type of dyno is the web dyno, which represents a web server
instance. An application can increase its request handling capacity by using more web
dynos. The other type of dyno is the worker dyno, which is used to perform background
jobs or other support tasks.

The platform provides a large number of plug-ins and add-ons for databases, email
support, and many other services. The following sections expand on some of the details
involved in deploying Flasky to Heroku.

Preparing the Application

To work with Heroku, the application must be hosted in a Git repository. If you are
working with an application that is hosted on a remote Git server such as GitHub or
BitBucket, cloning the application will create a local Git repository that is perfect to use
with Heroku. If the application isn’t already hosted on a Git repository, one must be
created for it on your development machine.

If you plan on hosting your application on Heroku, it is a good idea
to start using Git from the very beginning. GitHub has installation
and setup guides for the three major operating systems in their help
guide.

Creating a Heroku account

You must create an account with Heroku before you can use the service. You can sign
up and host applications at the lowest service tier at no cost, so this is a great platform
to experiment with.

Installing the Heroku Toolbelt

The most convenient way to manage your Heroku applications is through the Heroku
Toolbelt command-line utilities. The Toolbelt is composed of two Heroku applications:

218 | Chapter 17: Deployment

http://help.github.com
http://help.github.com
http://heroku.com
https://toolbelt.heroku.com/

o heroku: The Heroku client, used to create and manage applications

o foreman: A tool that can simulate the Heroku environment on your own computer
for testing

Note that if you don’t have a Git client installed already, the Toolbelt installer also installs
Git for you.

The Heroku client utility has to have your Heroku account credentials before it connect
to the service. The heroku login command takes care of this:

$ heroku login

Enter your Heroku credentials.

Email: <your-email-address>

Password (typing will be hidden): <your-password>
Uploading ssh public key .../id_rsa.pub

It is important that your SSH public key is uploaded to Heroku, as
this is what enables the git push command. Normally the login
command creates and uploads a SSH public key automatically, but
the heroku keys:add command can be used to upload your public
key separately from the login command or if you need to upload
additional keys.

Creating an application

The next step is to create an application using the Heroku client. To do this, first make
sure your application is under Git source control and then run the following command
from the top-level directory:

$ heroku create <appname>

Creating <appname>... done, stack is cedar

http://<appname>.herokuapp.com/ | git@heroku.com:<appname>.git

Git remote heroku added
Heroku application names must be unique, so find a name that is not taken by any other
application. As indicated by the output of the create command, once deployed the
application will be available at http://<appname>.herokuapp.com. Custom domain
names can also be attached to the application.

As part of the application creation, Heroku allocates a Git server: git@heroku.com:<app-
name>.git. The create command adds this server to your local Git repository as a git
remote with the name heroku.

Provisioning a database

Heroku supports Postgres databases as an add-on. A small database of up to 10,000 rows
can be added to an application at no cost:

The Heroku Platform | 219

$ heroku addons:add heroku-postgresgl:dev
Adding heroku-postgresql:dev on <appname>... done, v3 (free)
Attached as HEROKU_POSTGRESQL_BROWN_URL
Database has been created and is available
! This database is empty. If upgrading, you can transfer
! data from another database with pgbackups:restore.
Use ‘heroku addons:docs heroku-postgresgl:dev’ to view documentation.

The HEROKU_POSTGRESQL_BROWN_URL reference is for the name of the environment vari-
able that has the database URL. Note that when you try this, you may get a color other
than brown. Heroku supports multiple databases per application, with each getting a
different color in the URL. A database can be promoted and that exposes its URL in a
DATABASE_URL environment variable. The following command promotes the brown
database created previously to primary:

$ heroku pg:promote HEROKU_POSTGRESQL_BROWN_URL
Promoting HEROKU_POSTGRESQL_BROWN_URL to DATABASE_URL... done
The format of the DATABASE_URL environment variable is exactly what SQLAlchemy

expects. Recall that the config.py script uses the value of DATABASE_URL if it is defined,
so the connection to the Postgres database will now work automatically.

Configuring logging

Logging of fatal errors by email was added earlier, but in addition to that it is very
important to configure logging of lesser message categories. A good example of this type
of message are the warnings for slow database queries added in Chapter 16.

With Heroku, logs must be written to stdout or stderr. The logging output is captured
and made accessible through the Heroku client with the heroku logs command.

The logging configuration can be added to the ProductionConfig class in its
init_app() static method, but since this type of logging is specific to Heroku, a new
configuration can be created specifically for that platform, leaving ProductionConfig
as a baseline configuration for different types of production platforms. The
HerokuConf1ig class is shown in Example 17-3.

Example 17-3. config.py: Heroku configuration

class HerokuConfig(ProductionConfig):

def init_app(cls, app):
ProductionConfig.init_app(app)

log to stderr

import logging

from logging import StreamHandler
file_handler = StreamHandler()
file_handler.setLevel(logging.WARNING)
app.logger.addHandler (file_handler)

220 | Chapter 17: Deployment

When the application is executed by Heroku, it needs to know that this is the configu-
ration that needs to be used. The application instance created in manage.py uses the
FLASK_CONFIG environment variable to know what configuration to use, so this variable
needs to be set in the Heroku environment. Environment variables are set using the
Heroku client’s config:set command:

$ heroku config:set FLASK_CONFIG=heroku
Setting config vars and restarting <appname>... done, v4
FLASK_CONFIG: heroku

Configuring email

Heroku does not provide a SMTP server, so an external server must be configured.
There are several third-party add-ons that integrate production-ready email sending
support with Heroku, but for testing and evaluation purposes it is sufficient to use the
default Gmail configuration inherited from the base Config class.

Because it can be a security risk to embed login credentials directly in the script, the
username and password to access the Gmail SMTP server are provided as environment
variables:

$ heroku config:set MAIL_USERNAME=<your-gmail-username>
$ heroku config:set MAIL_PASSWORD=<your-gmail-password>

Running a production web server

Heroku does not provide a web server for the applications it hosts. Instead, it expects
applications to start their own servers and listen on the port number set in environment
variable PORT.

The development web server that comes with Flask will perform very poorly because it
was not designed to run in a production environment. Two production-ready web
servers that work well with Flask applications are Gunicorn and uWSGL

To test the Heroku configuration locally, it is a good idea to install the web server in the
virtual environment. For example, Gunicorn is installed as follows:

(venv) $ pip install gunicorn
To run the application under Gunicorn, use the following command:

(venv) $ gunicorn manage:app

2013-12-03 09:52:10 [14363] [INFO] Starting gunicorn 18.0

2013-12-03 09:52:10 [14363] [INFO] Listening at: http://127.0.0.1:8000 (14363)
2013-12-03 09:52:10 [14363] [INFO] Using worker: sync

2013-12-03 09:52:10 [14368] [INFO] Booting worker with pid: 14368

The manage: app argument indicates the package or module that defines the application
to the left of the colon and the name of the application instance inside that package on
the right. Note that Gunicorn uses port 8000 by default, not 5000 like Flask.

The Heroku Platform | 221

http://gunicorn.org/
http://bit.ly/uwsgi-proj

Adding a requirements file

Heroku loads package dependencies from a requirements.txt file stored in the top-level
folder. All the dependencies in this file will be imported into a virtual environment
created by Heroku as part of the deployment.

The Heroku requirements file must include all the common requirements for the pro-
duction version of the application, the psycopg2 package to enable Postgres database
support, and the Gunicorn web server.

Example 17-4 shows an example requirements file.

Example 17-4. requirements.txt: Heroku requirements file

-r requirements/prod.txt
gunicorn==18.0
psycopg2==2.5.1

Adding a Procfile

Heroku needs to know what command to use to start the application. This command
is given in a special file called the Procfile. This file must be included in the top-level
folder of the application.

Example 17-5 shows the contents of this file.

Example 17-5. Procfile: Heroku Procfile

web: gunicorn manage:app

The format for the Procfile is very simple: in each line a task name is given, followed by
a colon and then the command that runs the task. The task name web is special; it is
recognized by Heroku as the task that starts the web server. Heroku will give this task
a PORT environment variable set to the port on which the application needs to listen for
requests. Gunicorn by default honors the PORT variable if it is set, so there is no need to
include it in the startup command.

Applications can declare additional tasks with names other than web
in the Procfile. These can be other services needed by the applica-
tion. Heroku launches all the tasks listed in the Procfile when the
application is deployed.

Testing with Foreman

The Heroku Toolbelt includes a second utility called Foreman, used to run the appli-
cation locally through the Procfile for testing purposes. The environment variables such
as FLASK_CONFIG thatare set through the Heroku client are available only on the Heroku

222 | Chapter 17: Deployment

servers, so they also must be defined locally so that the testing environment under
Foreman is similar. Foreman looks for these environment variables in a file
named .env in the top-level directory of the application. For example, the .env file can
contain the following variables:

FLASK_CONFIG=heroku
MAIL_USERNAME=<your-username>
MAIL_PASSWORD=<your-password>

Because the .env file contains passwords and other sensitive account
information, it should never be added to the Git repository.

Foreman has several options, but the main two are foreman run and foreman start.
The run command can be used to run arbitrary commands under the environment of
the application and is perfect to run the deploy command that the application uses to
create the database:

(venv) $ foreman run python manage.py deploy
The start command reads the Procfile and executes all the tasks in it:

(venv) $ foreman start

22:55:08 web.1 started with pid 4246

22:55:08 web.1 2013-12-03 22:55:08 [4249] [INFO] Starting gunicorn 18.0
22:55:08 web.1 2013-12-03 22:55:08 [4249] [INFO] Listening at: http://...
22:55:08 web.1 2013-12-03 22:55:08 [4249] [INFO] Using worker: sync

22:55:08 web.1 2013-12-03 22:55:08 [4254] [INFO] Booting worker with pid: 4254

Foreman consolidates the logging output of all the tasks started and dumps it to the
console, with each line prefixed with a timestamp and the task name.

It is possible to simulate multiple dynos using the - c option. For example, the following
command starts three web workers, each listening on a different port:

(venv) $ foreman start -c web=3

Enabling Secure HTTP with Flask-SSLify

When the user logs in to the application by submitting a username and a password in
a web form, these values can be intercepted during travel by a third party, as discussed
several times before. To prevent user credentials from being stolen in this way, it is
necessary to use secure HTTP, which encrypts all the communications between clients
and the server using public key cryptography.

Heroku makes all applications that are accessed on the herokuapp.com domain available
on both http:// and https:// without any configuration using Heroku’s own SSL certifi-

The Heroku Platform | 223

cate. The only necessary action is for the application to intercept any requests sent to
the http:// interface and redirect them to https://, and this is what the extension Flask-
SSLify does.

The extension needs to be added to the requirements.txt file. The code in Example 17-6
is used to activate the extension.

Example 17-6. app/__init__.py: Redirect all requests to secure HTTP

def create_app(config_name):
...
if not app.debug and not app.testing and not app.config['SSL_DISABLE']:
from flask.ext.sslify import SSLify
sslify = SSLify(app)
...

Support for SSL needs to be enabled only in production mode, and only when the
platform supports it. To make it easy to switch SSL on and off, a new configuration
variable called SSL_DISABLE is added. The base Config class sets it to True, so that SSL
is not used by default, and the class HerokuConfig overrides it. The implementation of
this configuration variable is shown in Example 17-7.

Example 17-7. config.py: Configure the use of SSL

class Config:
...
SSL_DISABLE = True

class HerokuConfig(ProductionConfig):
...
SSL_DISABLE = bool(os.environ.get('SSL_DISABLE'))

The value of SSL_DISABLE in HerokuConfig is taken from an environment variable of
the same name. If the environment variable is set to anything other than an empty string,
the conversion to Boolean will return True, disabling SSL. If the environment variable
does not exist or is set to an empty string, the conversion to Boolean will give a False
value. To prevent SSL from being enabled when using Foreman, it is necessary to add
SSL_DISABLE=1 to the .env file.

With these changes, the users will be forced to use the SSL server, but there is one more
detail that needs to be handled to make the support complete. When using Heroku,
clients do not connect to hosted applications directly but to a reverse proxy server that
redirects requests into the applications. In this type of setup, only the proxy server runs
in SSL mode; the applications receive all requests from the proxy server without SSL
because there is no need to use strong security for requests that are internal to the Heroku
network. This is a problem when the application needs to generate absolute URLs that
match the security of the request, because request.is_secure will always be False
when a reverse proxy server is used.

224 | Chapter 17: Deployment

An example of when this becomes a problem is the generation of avatar URLs. If you
recall from Chapter 10, the gravatar() method of the User model that generates the
Gravatar URLs checks request.is_secure to generate the secure or nonsecure version
of the URL. Generating a nonsecure avatar when the page was requested over SSL would
cause some browsers to display a security warning to the user, so all components of a
page must have matching security.

Proxy servers pass information that describes the original request from the client to the
redirected web servers through custom HTTP headers, so it is possible to determine
whether the user is communicating with the application over SSL by looking at these.
Werkzeug provides a WSGI middleware that checks the custom headers from the proxy
server and updates the request object accordingly so that, for example,
request.is_secure reflects the security of the request that the client sent to the reverse
proxy server and not the request that the proxy server sent to the application.
Example 17-8 shows how to add the ProxyFix middleware to the application.

Example 17-8. config.py: Support for proxy servers

class HerokuConfig(ProductionConfig):
...

def init_app(cls, app):
...

handle proxy server headers
from werkzeug.contrib.fixers import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app)

The middleware is added in the initialization method for the Heroku configuration.
WSGI middlewares such as ProxyFix are added by wrapping the WSGI application.
When a request comes, the middlewares get a chance to inspect the environment and
make changes before the request is processed. The ProxyFix middleware is necessary
not only for Heroku but in any deployment that uses a reverse proxy server.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 17c to check out this version of the application.
To ensure that you have all the dependencies installed, also run pip
install -r requirements.txt.

Deploying with git push

The final step in the process is to upload the application to the Heroku servers. Make
sure that all the changes are commited to the local Git repository and then use git push
heroku master to upload the application to the heroku remote:

The Heroku Platform | 225

$ git push heroku master

Counting objects: 645, done.

Delta compression using up to 8 threads.
Compressing objects: 100% (315/315), done.
Writing objects: 100% (645/645), 95.52 KiB, done.
Total 645 (delta 369), reused 457 (delta 288)

.---> Python app detected
.----> No runtime.txt provided; assuming python-2.7.4.
.----> Preparing Python runtime (python-2.7.4)

----- > Compiled slug size: 32.8MB
----- > Launching... done, v8
http://<appname>.herokuapp.com deployed to Heroku

To git@heroku.com:<appname>.git
* [new branch] master -> master
The application is now deployed and running, but it is not going to work correctly
because the deploy command was not executed. The Heroku client can run this com-
mand as follows:
$ heroku run python manage.py deploy
Running “python manage.py predeploy’ attached to terminal... up, run.8449

INFO [alembic.migration] Context impl PostgresqlImpl.
INFO [alembic.migration] Will assume transactional DDL.

After the database tables are created and configured, the application can be restarted so
that it starts cleanly:

$ heroku restart
Restarting dynos... done

The application shoud now be fully deployed and online at https://<appname>.hero-
kuapp.com.

Reviewing Logs

The logging output generated by the application is captured by Heroku. To view the
contents of the log, use the logs command:

$ heroku logs

226 | Chapter 17: Deployment

During testing it can also be convenient to tail the log file, which can be done as follows:

$ heroku logs -t

Deploying an Upgrade

When a Heroku application needs to be upgraded the same process needs to be repeated.
After all the changes have been committed to the Git repository, the following com-
mands perform an upgrade:

$ heroku maintenance:on

$ git push heroku master

$ heroku run python manage.py deploy
$ heroku restart

$ heroku maintenance:off

The maintenance option available on the Heroku client will take the application offline
during the upgrade and will show a static page that informs users that the site will be
coming back soon.

Traditional Hosting

The traditional hosting option involves buying or renting a server, either physical or
virtual, and setting up all the required components on it yourself. This is typically less
expensive than hosting in the cloud, but obviously much more laborious. The following
sections will give you an idea of the work involved.

Server Setup

There are several administration tasks that must be performed on the server before it
can host applications:

o Install a database server such as MySQL or Postgres. Using a SQLite database is also
possible but is not recommended for a production server due to its many limita-
tions.

o Install a Mail Transport Agent (MTA) such as Sendmail to send email out to users.
o Install a production-ready web server such as Gunicorn or uWSGI.
o Purchase, install, and configure a SSL certificate to enable secure HTTP.

« (Optional but highly recommended) Install a front-end reverse proxy web server
such as nginx or Apache. This process will serve static files directly and will forward
any other requests into the application’s web server listening on a private port on
localhost.

Traditional Hosting | 227

o Server hardening. This groups several tasks that have the goal of reducing vulner-
abilities in the server such as installing firewalls, removing unused software and
services, and so on.

Importing Environment Variables

Similarly to Heroku, an application running on a standalone server relies on certain
settings such as database URL, email server credentials, and configuration name. These
are stored in environment variables that must be imported before the application starts.

Because there is no Heroku or Foreman to import these variables, this task needs to be
done by the application itself during startup. The short code block in Example 17-9
loads and parses a.env file similar to the one used with Foreman. This code can be added
to the manage.py launch script before the application instance is created.

Example 17-9. manage.py: Import environment from .env file

if os.path.exists('.env'):
print('Importing environment from .env...')
for line in open('.env'):
var = line.strip().split('="
if len(var) ==
os.environ[var[0]] = var[1]

The .env file must contain at least the FLASK_CONFIG variable that selects the configu-
ration to use.

Setting Up Logging

For Unix-based servers, logging can be sent the syslog daemon. A new configuration
specific for Unix can be created as a subclass of ProductionConfig, as shown in
Example 17-10.

Example 17-10. config.py: Unix example configuration

class UnixConfig(ProductionConfig):

def init_app(cls, app):
ProductionConfig.init_app(app)

log to syslog

import logging

from logging.handlers import SysLogHandler
syslog_handler = SyslLogHandler()
syslog_handler.setLevel(logging.WARNING)
app.logger.addHandler (syslog_handler)

228 | Chapter 17: Deployment

With this configuration, application logs will be written to /var/log/messages. The syslog
service can be configured to write a separate log file or to send the logs to a different
machine if necessary.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 17d to check out this version of the application.

Traditional Hosting | 229

CHAPTER 18
Additional Resources

You are pretty much done with this book. Congratulations! I hope the topics that I have
covered have given you a solid base to begin building your own applications with Flask.
The code examples are open source and have a permissive license, so you are welcome
to use as much of my code as you want to seed your projects, even if they are of a
commercial nature. In this short final chapter, I want to give you a list of additional tips
and resources that might be useful as you continue working with Flask.

Using an Integrated Development Environment (IDE)

Developing Flask applications in an integrated development environment (IDE) can be
very convenient, since features such as code completion and an interactive debugger
can speed up the coding process considerably. Some of the IDEs that work well with
Flask are listed here:

o PyCharm: Commercial IDE from JetBrains with Community (free) and Professio-
nal (paid) editions, both compatible with Flask applications. Available on Linux,
Mac OS X, and Windows.

« PyDev: Open source IDE based on Eclipse. Available on Linux, Mac OS X, and
Windows.

o Python Tools for Visual Studio: Free IDE built as an extension to Microsoft’s Visual
Studio environment. For Microsoft Windows only.

231

http://bit.ly/py-charm
http://pydev.org
http://pytools.codeplex.com/

When configuring a Flask application to start under a debugger, add
the --passthrough-errors --no-reload options to the runserver
command. The first option disables the catching of errors by Flask so
that exceptions thrown while a request is handled are sent all the way
up to the debugger. The second disables the reloader module, which
confuses some debuggers.

Finding Flask Extensions

The examples in this book rely on several extensions and packages, but there are many
more that are also useful and were not discussed. Following is a short list of some ad-
ditional packages that are worth exploring:

o Flask-Babel: Internationalization and localization support

o Flask-RESTful: Tools for building RESTful APIs

o Celery: Task queue for processing background jobs

o Frozen-Flask: Conversion of a Flask application to a static website

o Flask-DebugToolbar: In-browser debugging tools

o Flask-Assets: Merging, minifying, and compiling of CSS and JavaScript assets
o Flask-OAuth: Authentication against OAuth providers

o Flask-OpenID: Authentication against OpenID providers

« Flask-WhooshAlchemy: Full-text search for Flask-SQLAlchemy models based on
Whoosh

o Flask-KVsession: Alternative implementation of user sessions that use server-side
storage

If the functionality that you need for your project is not covered by any of the extensions
and packages mentioned in this book, then your first destination to look for additional
extensions should be the official Flask Extension Registry. Other good places to search
are the Python Package Index, GitHub, and BitBucket.

Getting Involved with Flask

Flask would not be as awesome without the work done by its community of developers.
As you are now becoming part of this community and benefiting from the work of so
many volunteers, you should consider finding a way to give something back. Here are
some ideas to help you get started:

 Review the documentation for Flask or your favorite related project and submit
corrections or improvements.

232 | Chapter 18: Additional Resources

http://bit.ly/fl-babel
http://bit.ly/fl-rest
http://bit.ly/celery-doc
http://bit.ly/flask-frozen
http://bit.ly/flask-debug
http://bit.ly/fl-assets
http://bit.ly/fl-oauth
http://bit.ly/fl-opID
http://bit.ly/fl-whoosh
http://pythonhosted.org//Whoosh/
http://bit.ly/fl-kvses
http://bit.ly/fl-exreg
http://pypi.python.org
http://github.com
http://bitbucket.org

o Translate the documentation to a new language.

« Answer questions on Q&A sites such as Stack Overflow.

o Talk about your work with your peers at user group meetings or conferences.
« Contribute bug fixes or improvements to packages that you use.

o Write new Flask extensions and release them as open source.

o Release your applications as open source.

I hope you decide to volunteer in one of these ways or any others that are meaningful
to you. If you do, thank you!

Getting Involved with Flask | 233

http://stackoverflow.com

Index

Symbols decorators, 115
env file, 222, 228 E

A email, 221

handling, 1
application programming interfaces (APIs) error handling, 180

resources, 188

versioning, 178 F
authentication, 181, 184 Flask, 3
abort function, 16, 180
c add_url_route function, 14
doud, 217 after_app_request hook, 211

application factory function, 78
app_errorhandler decorator, 80, 180
before_app_request hook, 107
before_request hook, 15, 183

code coverage, 197
configuration, 211, 216, 228

D blueprints, 79, 92, 179

database configuration object, 78
association table, 150 context processors, 63, 116
filter_by query filter, 159 contexts, 12, 84
join query filter, 159 cookies, 161
joins, 158 current_app context variable, 13, 84
migrations, 64 debug argument, 9
NoSQL, 50 dynamic routes, 8
performance, 211 errorhandler decorator, 29, 79, 80, 188
relational model, 49 extension registry, 232
relationships, 56, 61, 149, 166 flash function, 46
SQL, 49 Flask class, 7

debugging, 216 flask.ext namespace, 17, 26

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

235

g context variable, 13, 15

get_flashed_messages template function, 47

jsonify function, 179
make_response function, 16, 161
methods argument, 42
redirect function, 16, 45
render_template function, 22, 46
request context variable, 12, 13
Response class, 16
route decorator, 8, 14, 79
run method, 9
SECRET_KEY configuration, 76
server shutdown, 206
session context variable, 13, 45
set_cookie method, 16
static files, 32
static folder, 33
templates folder, 22
test client, 200
URL map, 14
url_for function, 32, 45, 81, 106
url_prefix argument, 93
Flask-Bootstrap, 26
blocks, 28
quick_form macro, 40
Flask-HTTPAuth, 181
Flask-Login, 94
AnonymousUserMixin class, 115
current_user context variable, 96
LoginManager class, 95
login_required decorator, 95, 107
login_user function, 98
logout_user function, 99
UserMixin class, 94
user_loader decorator, 95
Flask-Mail, 69
asynchronous sending, 72
Gmail configuration, 69
Flask-Migrate, 64
Flask-Moment, 33
format method, 34
fromNow method, 34
lang method, 35
Flask-Script, 17
Flask-SQLAlchemy, 52
add session method, 58, 60
column options, 55
column types, 54
create_all method, 58

delete session method, 60
drop_all method, 58
filter_by query filter, 63
get_debug_queries function, 211
models, 54
MySQL configuration, 52
paginate query method, 191
Postgres configuration, 52
query executors, 61
query filters, 61
query object, 60
SQLALCHEMY_COMMIT_ON_TEAR-
DOWN configuration, 53
SQLALCHEMY_DATABASE_URI configu-
ration, 53, 76
SQLite configuration, 52
Flask-SSLify, 223
Flask-WTE 37
BooleanField class, 96
Cross-Site Request Forgery (CSRF), 37
custom validators, 101
Email validator, 96
EqualTo validator, 101
Form class, 38
form fields, 39
PasswordField class, 96
Regexp validator, 101
rendering, 40
Required validator, 38
StringField class, 38
SubmitField class, 38
validate_on_submit function, 98
validate_on_submit method, 42
validators, 38, 39
Foreman, 218, 222

Git, xiii, 218, 225
Gunicorn, 221, 222

H

Heroku, 218

Heroku client, 218
Heroku toolbelt, 218
HTTP status codes, 180
HTTPie, 192

236 | Index

integrated development environments (IDEs),
231
itsdangerous, 104, 184

J

JavaScript Object Notation (JSON), 177
serialization, 186

Jinja2, 3, 22
block directive, 25, 27
extends directive, 25, 27
filters, 23
for directive, 24
if directive, 24, 41
import directive, 24, 41
include directive, 25
macro directive, 24
safe filter, 24
set directive, 170
super macro, 25
template inheritance, 25
variables, 23

L

logging, 211, 211, 216, 220, 226, 228

M

manage.py, 76, 81, 228
coverage command, 197
db command, 64
deploy command, 215, 222
profile command, 213
runserver command, 18
shell command, 18, 63
test command, 84

P

pagination, 191

password security, hashing, 90
performance, 213
permissions, 112

pip, 6

platform as a service (PaaS), 217
post/redirect/get pattern, 44
Procfile, 222

profiling source code, 213
proxy servers, 225

R

Representational State Transfer (REST), 175
requirements file, 76, 82, 222
Rich Internet Applications (RIAs), 175

S

secure HTTP, 223
Selenium, 205

source code profiler, 213
syslog, 228

T

testing, 192, 197
unit tests, 83, 92, 116
web applications, 200
web services, 204
Twitter Bootstrap, 26

U

unittest, 83

URL fragment, 168
user roles, 111
uWSGI, 221

)

virtualenv, 4
activate command, 5
deactivate command, 6

W
Web Server Gateway Interface (WSGI), 7
Werkzeug, 3, 90, 213, 216

ProxyFix WSGI middleware, 225

Index |

237

About the Author

Miguel Grinberg has over 25 years of experience as a software engineer. At work, he
leads a team of engineers that develop video software for the broadcast industry. He has
a blog (http://blog.miguelgrinberg.com) where he writes about a variety of topics in-
cluding web development, robotics, photography, and the occasional movie review. He
lives in Portland, Oregon with his wife, four kids, two dogs, and a cat.

Colophon

The animal on the cover of Flask Web Development is a Pyrenean Mastiff (a breed of
Canis lupus familiaris). These giant Spanish dogs are descended from an ancient live-
stock guardian dog called the Molossus, which was bred by the Greeks and Romans and
is now extinct. However, this ancestor is known to have played a role in the creation of
many breeds that are common today, such as the Rottweiler, Great Dane, Newfound-
land, and Cane Corso. Pyrenean Mastiffs have only been recognized as a pure breed
since 1977, and the Pyrenean Mastiff Club of America is working to promote these dogs
as pets in the United States.

After the Spanish Civil War, the population of Pyrenean Mastiffs in their native home-
land plummeted, and the breed only survived due to the dedicated work of a few scat-
tered breeders throughout the country. The modern gene pool for Pyreneans stems
from this postwar population, making them prone to genetic diseases like hip dysplasia.
Today, responsible owners make sure their dogs are tested for diseases and x-rayed to
look for hip abnormalities before being bred.

Adult male Pyrenean Mastiffs can reach upwards of 200 pounds when fully grown, so
owning this dog requires a commitment to good training and plenty of outdoors time.
Despite their size and history as hunters of bears and wolves, the Pyrenean has a very
calm temperament and is an excellent family dog. They can be relied upon to take care
of children and protect the home, while at the same time being docile with other dogs.
With proper socialization and strong leadership, Pyrenean Mastiffs thrive in a home
environment and will provide an excellent guardian and companion.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	How to Work with the Example Code
	Using Code Examples
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Introduction to Flask
	Chapter 1. Installation
	Using Virtual Environments
	Installing Python Packages with pip

	Chapter 2. Basic Application Structure
	Initialization
	Routes and View Functions
	Server Startup
	A Complete Application
	The Request-Response Cycle
	Application and Request Contexts
	Request Dispatching
	Request Hooks
	Responses

	Flask Extensions
	Command-Line Options with Flask-Script

	Chapter 3. Templates
	The Jinja2 Template Engine
	Rendering Templates
	Variables
	Control Structures

	Twitter Bootstrap Integration with Flask-Bootstrap
	Custom Error Pages
	Links
	Static Files
	Localization of Dates and Times with Flask-Moment

	Chapter 4. Web Forms
	Cross-Site Request Forgery (CSRF) Protection
	Form Classes
	HTML Rendering of Forms
	Form Handling in View Functions
	Redirects and User Sessions
	Message Flashing

	Chapter 5. Databases
	SQL Databases
	NoSQL Databases
	SQL or NoSQL?
	Python Database Frameworks
	Database Management with Flask-SQLAlchemy
	Model Definition
	Relationships
	Database Operations
	Creating the Tables
	Inserting Rows
	Modifying Rows
	Deleting Rows
	Querying Rows

	Database Use in View Functions
	Integration with the Python Shell
	Database Migrations with Flask-Migrate
	Creating a Migration Repository
	Creating a Migration Script
	Upgrading the Database

	Chapter 6. Email
	Email Support with Flask-Mail
	Sending Email from the Python Shell
	Integrating Emails with the Application
	Sending Asynchronous Email

	Chapter 7. Large Application Structure
	Project Structure
	Configuration Options
	Application Package
	Using an Application Factory
	Implementing Application Functionality in a Blueprint

	Launch Script
	Requirements File
	Unit Tests
	Database Setup

	Part II. Example: A Social Blogging Application
	Chapter 8. User Authentication
	Authentication Extensions for Flask
	Password Security
	Hashing Passwords with Werkzeug

	Creating an Authentication Blueprint
	User Authentication with Flask-Login
	Preparing the User Model for Logins
	Protecting Routes
	Adding a Login Form
	Signing Users In
	Signing Users Out
	Testing Logins

	New User Registration
	Adding a User Registration Form
	Registering New Users

	Account Confirmation
	Generating Confirmation Tokens with itsdangerous
	Sending Confirmation Emails

	Account Management

	Chapter 9. User Roles
	Database Representation of Roles
	Role Assignment
	Role Verification

	Chapter 10. User Profiles
	Profile Information
	User Profile Page
	Profile Editor
	User-Level Profile Editor
	Administrator-Level Profile Editor

	User Avatars

	Chapter 11. Blog Posts
	Blog Post Submission and Display
	Blog Posts on Profile Pages
	Paginating Long Blog Post Lists
	Creating Fake Blog Post Data
	Rendering Data on Pages
	Adding a Pagination Widget

	Rich-Text Posts with Markdown and Flask-PageDown
	Using Flask-PageDown
	Handling Rich Text on the Server

	Permanent Links to Blog Posts
	Blog Post Editor

	Chapter 12. Followers
	Database Relationships Revisited
	Many-to-Many Relationships
	Self-Referential Relationships
	Advanced Many-to-Many Relationships

	Followers on the Profile Page
	Query Followed Posts Using a Database Join
	Show Followed Posts on the Home Page

	Chapter 13. User Comments
	Database Representation of Comments
	Comment Submission and Display
	Comment Moderation

	Chapter 14. Application Programming Interfaces
	Introduction to REST
	Resources Are Everything
	Request Methods
	Request and Response Bodies
	Versioning

	RESTful Web Services with Flask
	Creating an API Blueprint
	Error Handling
	User Authentication with Flask-HTTPAuth
	Token-Based Authentication
	Serializing Resources to and from JSON
	Implementing Resource Endpoints
	Pagination of Large Resource Collections
	Testing Web Services with HTTPie

	Part III. The Last Mile
	Chapter 15. Testing
	Obtaining Code Coverage Reports
	The Flask Test Client
	Testing Web Applications
	Testing Web Services

	End-to-End Testing with Selenium
	Is It Worth It?

	Chapter 16. Performance
	Logging Slow Database Performance
	Source Code Profiling

	Chapter 17. Deployment
	Deployment Workflow
	Logging of Errors During Production
	Cloud Deployment
	The Heroku Platform
	Preparing the Application
	Testing with Foreman
	Enabling Secure HTTP with Flask-SSLify
	Deploying with git push
	Reviewing Logs
	Deploying an Upgrade

	Traditional Hosting
	Server Setup
	Importing Environment Variables
	Setting Up Logging

	Chapter 18. Additional Resources
	Using an Integrated Development Environment (IDE)
	Finding Flask Extensions
	Getting Involved with Flask

	Index
	About the Author

