
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


by Chris Minnick and Eva Holland

Coding with 
JavaScript

www.allitebooks.com

http://www.allitebooks.org


Coding with JavaScript For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission 
of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions 
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 
748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and 
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be 
used without written permission. All other trademarks are the property of their respective owners. 
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO 
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF 
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING 
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY 
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND 
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS 
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, 
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, 
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE 
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT 
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A 
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE 
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR 
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET 
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS 
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department 
within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For technical support, 
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material 
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand. 
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you 
may download this material at http://booksupport.wiley.com. For more information about Wiley 
products, visit www.wiley.com.

Library of Congress Control Number: 2015938674

ISBN: 978‐1‐119‐05607‐2

ISBN 978‐1‐119‐05607‐2 (pbk); ISBN 978‐1‐119‐05605‐8 (ePDF); ISBN 978‐1‐119‐05606‐5 (ePub)

Manufactured in the United States of America

10   9   8   7   6   5   4   3   2   1

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org


Contents at a Glance
Introduction  ................................................................ 1

Part I: Getting Started with JavaScript  ......................... 5
Chapter 1: The World’s Most Misunderstood Programming Language ..................... 7
Chapter 2: Writing Your First JavaScript Program ...................................................... 19
Chapter 3: Working with Variables ................................................................................ 39
Chapter 4: Understanding Arrays .................................................................................. 55
Chapter 5: Working with Operators, Expressions, and Statements .......................... 67
Chapter 6: Getting into the Flow with Loops and Branches....................................... 81

Part II: Organizing Your JavaScript  ............................ 95
Chapter 7: Getting Functional ........................................................................................ 97
Chapter 8: Making and Using Objects ......................................................................... 117

Part III: JavaScript on the Web  ................................ 131
Chapter 9: Controlling the Browser with the Window Object ................................. 133
Chapter 10: Manipulating Documents with the DOM ................................................ 147
Chapter 11: Using Events in JavaScript ....................................................................... 169
Chapter 12: Integrating Input and Output .................................................................. 181
Chapter 13: Working with CSS and Graphics ............................................................. 195

Part IV: Beyond the Basics  ...................................... 211
Chapter 14: Searching with Regular Expressions ...................................................... 213
Chapter 15: Understanding Callbacks and Closures ................................................. 225
Chapter 16: Embracing AJAX and JSON ...................................................................... 237

Part V: JavaScript and HTML5  ................................. 253
Chapter 17: HTML5 APIs ............................................................................................... 255
Chapter 18: jQuery ......................................................................................................... 271

Part VI: The Part of Tens  .......................................... 289
Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next ................... 291
Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them ..................... 303
Chapter 21: Ten Online Tools to Help You Write Better JavaScript ....................... 313

Index  ...................................................................... 325

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Introduction  ................................................................ 1

About This Book .............................................................................................. 1
Foolish Assumptions ....................................................................................... 2
Icons Used In This Book ................................................................................. 3
Beyond the Book ............................................................................................. 4
Where to Go from Here ................................................................................... 4

Part I: Getting Started with JavaScript  .......................... 5

Chapter 1: The World’s Most Misunderstood  
Programming Language   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .7

What Is JavaScript? ......................................................................................... 8
The Eich‐man cometh............................................................................ 8
Mocha‐licious ......................................................................................... 9
We need more effects! ........................................................................... 9
JavaScript grows up .............................................................................. 9
Dynamic scripting language ............................................................... 10

What Does JavaScript Do? ............................................................................ 12
Why JavaScript? ............................................................................................. 13

JavaScript is easy to learn .................................................................. 13
Where is JavaScript? JavaScript is  everywhere! .............................. 14
JavaScript is powerful! ........................................................................ 18
JavaScript is in demand ...................................................................... 18

Chapter 2: Writing Your First JavaScript Program   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .19
Setting Up Your Development Environment .............................................. 19

Downloading and installing Chrome ................................................. 20
Downloading and installing a code editor ........................................ 21

Reading JavaScript Code .............................................................................. 29
Running JavaScript in the Browser Window .............................................. 29

Using JavaScript in an HTML event attribute ................................... 30
Using JavaScript in a script element ................................................. 31
Including external JavaScript files ..................................................... 33

Using the JavaScript Developer Console .................................................... 36
Commenting your code ....................................................................... 37

www.allitebooks.com

http://www.allitebooks.org


vi Coding with JavaScript For Dummies  

Chapter 3: Working with Variables   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .39
Understanding Variables .............................................................................. 39
Declaring Variables ....................................................................................... 41
Understanding Global and Local Scope ...................................................... 42
Naming Variables ........................................................................................... 44
Creating Constants Using the const Keyword ........................................... 46
Working with Data Types ............................................................................. 46

Number data type ................................................................................ 47
String data type .................................................................................... 49
Boolean data type ................................................................................ 52
NaN data type ....................................................................................... 53
undefined data type ............................................................................. 53

Chapter 4: Understanding Arrays  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .55
Making a List .................................................................................................. 55
Array Fundamentals ...................................................................................... 57

Arrays are zero indexed ...................................................................... 57
Arrays can store any type of data...................................................... 58

Creating Arrays .............................................................................................. 59
Using the new keyword method ........................................................ 59
Array literal ........................................................................................... 59

Populating Arrays .......................................................................................... 60
Understanding Multidimensional Arrays ................................................... 60
Accessing Array Elements ............................................................................ 62

Looping through arrays ...................................................................... 63
Array properties .................................................................................. 63
Array methods ..................................................................................... 64
Using array methods ........................................................................... 64

Chapter 5: Working with Operators, Expressions,  
and Statements   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67

Express Yourself ............................................................................................ 68
Hello, Operator .............................................................................................. 68

Operator precedence .......................................................................... 68
Types of Operators ....................................................................................... 72

Assignment operators ......................................................................... 72
Comparison operators ........................................................................ 73
Arithmetic operators ........................................................................... 73
String operator ..................................................................................... 75
Bitwise operators ................................................................................. 75
Logical operators ................................................................................. 77
Special operators ................................................................................. 78
Combining operators........................................................................... 80

www.allitebooks.com

http://www.allitebooks.org


vii  Table of Contents

Chapter 6: Getting into the Flow with Loops and Branches   .  .  .  .  .  .  .  .81
Branching Out ................................................................................................ 81

if . . . else................................................................................................ 82
Switch .................................................................................................... 84

Here We Go: Loop De Loop .......................................................................... 85
for ........................................................................................................... 86
for . . . in ................................................................................................ 88
while loops ............................................................................................ 90
do . . . while ........................................................................................... 91
break and continue .............................................................................. 92

Part II: Organizing Your JavaScript  ............................. 95

Chapter 7: Getting Functional   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .97
Understanding the Function of Functions .................................................. 97
Using Function Terminology ........................................................................ 99

Define a function .................................................................................. 99
Function head ....................................................................................... 99
Function body ...................................................................................... 99
Call a function..................................................................................... 100
Defining parameters and passing  arguments ................................. 100
Return a value .................................................................................... 100

The Benefits of Using Functions ................................................................ 101
Writing Functions ........................................................................................ 104
Returning Values ......................................................................................... 105
Passing and Using Arguments .................................................................... 106

Passing arguments by value ............................................................. 107
Passing arguments by reference ...................................................... 109
Calling a function without all of the arguments ............................. 109
Setting default parameter values ..................................................... 109
Calling a function with more argument than parameters ............. 110
Getting into arguments with the arguments object ...................... 110

Function Scope ............................................................................................ 111
Anonymous Function .................................................................................. 111

Knowing the differences between anonymous and named  
functions .......................................................................................... 112

Self-executing anonymous functions ............................................... 112
Do it Again with Recursion ......................................................................... 113
Functions within Functions ........................................................................ 114

www.allitebooks.com

http://www.allitebooks.org


viii Coding with JavaScript For Dummies  

Chapter 8: Making and Using Objects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .117
Object of My Desire ..................................................................................... 117
Creating Objects .......................................................................................... 119

Defining objects with object literals ................................................ 119
Defining objects with an Object  constructor ................................. 120

Retrieving and Setting Object Properties ................................................. 120
Dot notation ........................................................................................ 120
Square bracket notation ................................................................... 121

Deleting Properties ...................................................................................... 123
Working with Methods ................................................................................ 123

Using this ............................................................................................ 124
An Object-Oriented Way to Become Wealthy: Inheritance .................... 125

Constructing Objects with constructor functions ......................... 127
Modifying an object type .................................................................. 129
Creating Objects with Object.create ............................................... 129

Part III: JavaScript on the Web  ................................. 131

Chapter 9: Controlling the Browser with the Window Object   .  .  .  .  .133
Understanding the Browser Environment ................................................ 133

The user interface .............................................................................. 134
Loader ................................................................................................. 134
HTML parsing ..................................................................................... 136
CSS parsing ......................................................................................... 136
JavaScript parsing.............................................................................. 136
Layout and rendering ........................................................................ 137
Igniting the BOM ................................................................................ 137
The Navigator object ......................................................................... 137
The Window object ............................................................................ 140
Using the Window object’s methods ............................................... 145

Chapter 10: Manipulating Documents with the DOM  .  .  .  .  .  .  .  .  .  .  .  .  .147
Understanding the DOM ............................................................................. 147
Node Relationships ..................................................................................... 149
Using the Document Object’s Properties and Methods ......................... 153
Using the Element Object’s Properties and Methods ............................. 155
Working with the Contents of Elements ................................................... 159

innerHTML .......................................................................................... 160
Setting attributes ............................................................................... 161

Getting Elements by ID, Tag Name, or Class ............................................ 161
getElementById .................................................................................. 161
getElementsByTagName ................................................................... 162
getElementsByClassName ................................................................ 163

www.allitebooks.com

http://www.allitebooks.org


ix  Table of Contents

Using the Attribute Object’s Properties ................................................... 165
Creating and appending elements ................................................... 165
Removing elements ........................................................................... 166

Chapter 11: Using Events in JavaScript   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .169
Knowing Your Events .................................................................................. 169
Handling Events ........................................................................................... 171

Using inline event handlers .............................................................. 172
Event handling using element properties ....................................... 173
Event handling using addEventListener ......................................... 174
Stopping propagation ........................................................................ 179

Chapter 12: Integrating Input and Output   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .181
Understanding HTML Forms ...................................................................... 181

The form element ............................................................................... 181
The label element .............................................................................. 183
The input element .............................................................................. 184
The select element ............................................................................. 185
The textarea element......................................................................... 186
The button element ........................................................................... 186

Working with the Form Object ................................................................... 187
Using Form properties ...................................................................... 187
Using the Form object’s methods .................................................... 188
Accessing form elements .................................................................. 190
Getting and setting form element values ........................................ 191
Validating user input ......................................................................... 192

Chapter 13: Working with CSS and Graphics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .195
Using the Style Object ................................................................................. 195

Getting the current style of an element .......................................... 196
Setting style properties ..................................................................... 199

Animating Elements with the Style Object ............................................... 200
Working with Images ................................................................................... 203

Using the Image object ...................................................................... 203
Creating rollover buttons ................................................................. 203
Grow images on mouseover ............................................................. 205
Creating an image slideshow ............................................................ 206

Using the Style Object’s Animation Properties ....................................... 207

Part IV: Beyond the Basics  ....................................... 211

Chapter 14: Searching with Regular Expressions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .213
Finding It Out with Regular Expressions .................................................. 213
Writing Regular Expressions ...................................................................... 215

Using the RegExp object ................................................................... 216



x Coding with JavaScript For Dummies  

Regular expression literals ............................................................... 217
Testing regular expressions ............................................................. 219
Special character in regular expressions ....................................... 219

Using Modifiers ............................................................................................ 220
Coding with Regular Expressions .............................................................. 221

Chapter 15: Understanding Callbacks and Closures  .  .  .  .  .  .  .  .  .  .  .  .  .  .225
What Are Callbacks? .................................................................................... 225

Passing functions as arguments....................................................... 226
Writing functions with callbacks ..................................................... 226
Using named callback functions ...................................................... 227

Understanding Closures ............................................................................. 230
Using Closures ............................................................................................. 233

Chapter 16: Embracing AJAX and JSON  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .237
Working Behind the Scenes with AJAX ..................................................... 237

AJAX examples ................................................................................... 238
Viewing AJAX in action ..................................................................... 240
Using the XMLHttpRequest object ................................................ 243
Working with the same-origin policy .............................................. 245
Using CORS, the silver bullet for AJAX requests ........................... 247

Putting Objects in Motion with JSON ........................................................ 248

Part V: JavaScript and HTML5  ................................. 253

Chapter 17: HTML5 APIs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .255
Understanding How APIs Work .................................................................. 255

Checking HTML5 API browser support ........................................... 256
Getting to know HTML5’s APIs ......................................................... 257

Using Geolocation ........................................................................................ 259
What does geolocation do? .............................................................. 259
How does geolocation work?............................................................ 260
How do you use geolocation ............................................................ 261
Combining geolocation with Google maps ..................................... 263

Accessing Audio and Video ........................................................................ 266

Chapter 18: jQuery  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .271
Writing More and Doing Less ..................................................................... 271
Getting Started with jQuery ....................................................................... 272
The jQuery Object ....................................................................................... 273
Is Your Document Ready? .......................................................................... 274
Using jQuery Selectors ................................................................................ 274
Changing Things with jQuery ..................................................................... 275



xi  Table of Contents

Getting and setting attributes .......................................................... 276
Changing CSS ...................................................................................... 276
Manipulating elements in the DOM ................................................. 277

Events ............................................................................................................ 278
Using on(  ) to attach events ............................................................. 279
Detaching with off(  ) .......................................................................... 280
Binding to events that don’t exist yet ............................................. 281
Other event methods ........................................................................ 281

Effects ............................................................................................................ 282
Basic effects ........................................................................................ 282
Fading effects...................................................................................... 282
Sliding effects ..................................................................................... 283
Setting arguments for animation methods ..................................... 283
Custom effects with animate(  ) ........................................................ 283
Playing with jQuery animations ....................................................... 284

AJAX .............................................................................................................. 285
Using the ajax(  ) method ................................................................... 285
Shorthand AJAX methods ................................................................. 287

Part VI: The Part of Tens  .......................................... 289

Chapter 19: Ten JavaScript Frameworks and Libraries  
to Learn Next   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .291

Angular JS ..................................................................................................... 291
Backbone.js .................................................................................................. 293
Ember.js ........................................................................................................ 294
Famo.us ......................................................................................................... 295
Knockout ....................................................................................................... 296
QUnit ............................................................................................................. 297
underscore.js ............................................................................................... 297
Modernizr ..................................................................................................... 298
Handlebars.js ............................................................................................... 299
jQuery ............................................................................................................ 300

Chapter 20: Ten Common JavaScript Bugs and  
How to Avoid Them  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .303

Equality Confusion ...................................................................................... 304
Avoiding misuse of assignment........................................................ 304
Dodging the equals pitfalls ............................................................... 304

Mismatched Brackets .................................................................................. 305
Mismatched Quotes .................................................................................... 306
Missing Parentheses ................................................................................... 306
Missing Semicolon ....................................................................................... 307
Capitalization Errors ................................................................................... 307



xii Coding with JavaScript For Dummies  

Referencing Code Before It’s Loaded ........................................................ 307
Bad Variable Names .................................................................................... 310
Scope Errors ................................................................................................. 310
Missing Parameters in Function Calls ....................................................... 310
Counting Errors: Forgetting That JavaScript Counts from 0 .................. 311

Chapter 21: Ten Online Tools to Help You Write Better  
JavaScript  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .313

JSLint ............................................................................................................. 313
JSFiddle.net .................................................................................................. 314
JSBin .............................................................................................................. 315
javascriptcompressor.com ........................................................................ 316
jsbeautifier.org ............................................................................................. 317
JavaScript RegEx generator ........................................................................ 318
JSONformatter .............................................................................................. 319
jshint.com ..................................................................................................... 320
Mozilla Developer Network ........................................................................ 321
Douglas Crockford ....................................................................................... 322

Index  ...................................................................... 325



Introduction

J 

avaScript is hot! What started as a quick‐and‐dirty language created for 
one of the first web browsers has turned into the world’s most popular 

programming language. Demand for JavaScript programmers is at an all‐time 
high and only continues to grow.

This book is your key to becoming proficient in the core concepts of 
JavaScript. Whether your goal is to land a high‐paying job as a programmer 
or to make your own personal website more interactive, you can be confident 
that the content and techniques presented in this book are fully up to date 
with the most current JavaScript standards and best practices.

Coupled with engaging and interactive online exercises, each chapter con-
tains complete examples of real code that you can try and test in your own 
web browser at home.

Just as the only way to Carnegie Hall is to practice, practice, practice, the 
only way to become a better programmer is to code, code, code!

About This Book
This book is a friendly and approachable guide to getting started with writing 
JavaScript code. As programming languages go, JavaScript is fairly easy to 
pick up and start using. Because it’s so accessible, many people who started 
as web page authors have found themselves in the position of being responsi-
ble for maintaining, modifying, and writing JavaScript code. If that describes 
you, this book will quickly and easily bring you up to speed.

Whether you know a little JavaScript or you’ve never seen it, this book shows 
you how to write JavaScript the right way.

Topics covered in this book include the following:

 ✓ Understanding the basic structures of JavaScript programs

 ✓ Integrating JavaScript with HTML5 and CSS3

 ✓ Structuring your programs with functions

 ✓ Working with JavaScript Objects



2 Coding with JavaScript For Dummies  

 ✓ Using advanced JavaScript techniques, such as AJAX, callbacks, and 
 closures

 ✓ Getting started with jQuery

Learning JavaScript isn’t only about learning the syntax of the language. It’s 
also about accessing the tools and community that has been built around the 
language. Professional JavaScript programmers have greatly refined the tools 
and techniques used to write JavaScript over the language’s long and exciting 
history. Throughout the book, we mention important best practices and tools 
for testing, documenting, and writing better code faster!

To make this book easier to read, keep in mind the following:

 ✓ As a convention for this book, all JavaScript code and all HTML and CSS 
markup appears in monospaced type like this:

document.write("Hi!");

 ✓ The margins on a book page don’t have the same room as your moni-
tor likely does. Therefore, long lines of HTML, CSS, and JavaScript may 
break across multiple lines. Remember that your computer sees such 
lines as single lines of HTML, CSS, or JavaScript. We indicate that every-
thing should be on one line by breaking it at a punctuation character or 
space and then indenting any overage, like so:

document.getElementById("anElementInTheDocument").

addEventListener("click",doSomething,false);

 ✓ HTML and CSS don’t care very much about whether you use uppercase 
or lowercase letters or a combination of the two, but JavaScript cares 
a lot! In order to make sure that you get the correct results from the 
code examples in the book, always stick to the same capitalizations that 
we use.

Foolish Assumptions
We have a policy at our company, WatzThis?, to never assume (but, frankly, 
Eva is better at following the policy than Chris is). If you were ever 12 years 
old, you’ve probably heard the saying about what happens when you 
assume. If you don’t know, email us.

You don’t need to be a programming ninja or a hacker to understand pro-
gramming. You don’t need to understand how the guts of your computer 
work. You don’t even need to know how to count in binary.



3  Introduction

However, we do need to make a couple of assumptions about you. We 
assume that you can turn your computer on, that you know how to use a 
mouse and a keyboard, and that you have a working Internet connection and 
web browser. If you already know something about how to make web pages 
(it doesn’t take much!), you have a jump start on the material.

The other things you need to know to write and run JavaScript code are 
details we cover in this book. And the one thing you’ll find to be true is that 
programming requires attention to details.

Icons Used In This Book
Here’s a list of the icons we use in this book to flag text and information 
that’s especially noteworthy:

This icon highlights helpful tips that show you easy ways or shortcuts that 
will save you time or effort.

Whenever you see this icon, pay special attention. You won’t want to forget 
the information you’re about to read.

Be careful — very careful. This icon warns you of pitfalls to avoid.

This icon highlights the great exercises you can find on the website. If 
you’re interested in trying your hand at JavaScript, go online and visit 
www.dummies.com/go/codingwithjavascript.

This icon highlights technical details that you may or may not find interest-
ing. Feel free to skip this information, but if you’re the techie type, you might 
enjoy reading it.

http://www.dummies.com/go/codingwithjavascript


4 Coding with JavaScript For Dummies  

Beyond the Book
Here’s where you can find the online content for this book:

 ✓ Exercises: You can find all the exercises online by going to 
www.dummies.com/go/codingwithjavascript to access the exer-
cises at Codeacademy.

 ✓ Examples: You can find all the examples in the chapters at 
www.dummies.com/go/codingwithjavascript. Here you will find 
a directory labeled by chapter. Within the chapter, you will find each 
example labeled by its listing number

 ✓ Cheat Sheet: You can find lists of useful information at 
www.dummies.com/cheatsheet/codingwithjavascript.

 ✓ Extras: You can even find additional articles related to 
each part of the book. You can access this extra content at 
www.dummies.com/extras/codingwithjavascript.

 ✓ Updates: From time to time, we will need to make updates to a book. 
Code and specifications are constantly changing, so the commands and 
syntax that work today may not work tomorrow. You can find this infor-
mation at www.dummies.com/extras/codingwithjavascript.

Where to Go from Here
Coding with JavaScript is fun, and once you get a little knowledge under your 
belt, the world of interactive web applications is your oyster! So buckle up! 
We hope you enjoy the book and our occasional pearls of wisdom.

http://www.dummies.com/go/codingwithjavascript
http://www.dummies.com/go/codingwithjavascript
http://www.dummies.com/cheatsheet/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


Part I
Getting Started with 

JavaScript

 Visit http://www.dummies.com for great Dummies content online.

http://www.dummies.com


In this part . . .
 ✓ Find out how to write your first JavaScript program.

 ✓ Get the inside scoop on how to work with variables 
and arrays.

 ✓ Discover how to work with operators, expressions, 
and statements.

 ✓ Use loops and branches in your JavaScript coding.

 ✓ Visit http://www.dummies.com for great Dummies 
 content online.

www.allitebooks.com

http://www.dummies.com
http://www.allitebooks.org


The World’s Most Misunderstood 
Programming Language

In This Chapter
 ▶ Getting to know JavaScript

 ▶ Figuring out what JavaScript does

 ▶ Understanding why you need JavaScript

“People understand me so poorly that they don’t even understand my 
complaint about them not understanding me.”

— Søren Kierkegaard

J 

avaScript hasn’t always been as highly regarded as it is today. Some 
people have called it the best and worst programming language in the 

world. Over the last few years, there have been a great number of improve-
ments made to the way programmers write JavaScript and to JavaScript 
interpreters. These improvements have made JavaScript a much better lan-
guage today than it’s been in the past.

In this chapter, you discover what JavaScript is and a little bit of the history 
of the language. You also find out what JavaScript does and why you need to 
know it.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Chapter 1

https://www.goodreads.com/author/show/6172.S_ren_Kierkegaard


8 Part I: Getting Started with JavaScript  

What Is JavaScript?
Back in the very early days of the web, browsers were simple readers for web 
pages (see Figure 1-1). They had virtually no capabilities themselves, except 
for the ability to display text in various sized fonts. As soon as Microsoft 
released its Internet Explorer browser, the browser wars were on, and the fea-
tures started flying! One browser introduced the ability to display images, then 
another introduced the capability to have different fonts, and then blinking 
text, moving text, and all sorts of other wacky capabilities were introduced!

It wasn’t long before someone got the idea that browsers could actually do 
useful things themselves, rather than just acting as fancy document display 
programs.

The Eich‐man cometh
JavaScript got its start back in 1995 at Netscape. The creator of JavaScript, 
Brandon Eich, wrote JavaScript in record time (some say in as few as ten 
days!) by borrowing many of the best features from various other program-
ming languages. The rush to market also created some interesting quirks (or, 
less politely described, mistakes) in the design of the language. The result 
is a sort of Esperanto‐like language that looks deceptively familiar to people 
who are experienced with other programming languages.

Figure 1-1:  
The first 

web brow
sers weren’t 

much to 
look at.



9  Chapter 1: The World’s Most Misunderstood Programming Language

Mocha‐licious
The original name of JavaScript was Mocha. It was renamed LiveScript with 
the first beta deployment of Netscape Navigator and was then changed to 
JavaScript when it was built into the Netscape 2 browser in 1995. Microsoft 
very quickly reverse‐engineered JavaScript and introduced an exact clone 
of it in Internet Explorer, calling it Jscript in order to get around trademark 
issues.

Netscape submitted JavaScript to the standards organization known as 
Ecma International, and it was adopted and standardized as EMCAScript 
in 1997.

Brandon Eich, the creator of JavaScript, famously commented about 
the name of the standardized language; stating that ECMAScript was an 
“unwanted trade name that sounds like a skin disease.”

Not only is ECMAScript an unappealing name for a programming language, 
the name given to the language by Netscape and which most people refer 
to it as, is rather unfortunate as well. If you already know how to program 
in Java or if you learn how to at some point, it’s a very good idea to keep in 
mind that the two languages may have some similarities, but they are, in fact, 
quite different animals.

We need more effects!
When JavaScript debuted, it quickly became very popular as a way to make 
web pages more dynamic. So‐called Dynamic HTML (DHTML) was an early 
result of JavaScript being built into web browsers, and it enabled all sorts of 
fun effects, like the falling snowflake effect (see Figure 1-2), pop‐up windows, 
and curling web page corners, but also more useful things like drop‐down 
menus and form validation.

JavaScript grows up
Now entering its third decade, JavaScript has become the world’s most 
widely used programming language and virtually every personal computer in 
the world has at least one browser on it that can run JavaScript code.

JavaScript is flexible enough that it can be used and learned by nonpro-
grammers, but powerful enough that it can (and is) used by professional 
programmers to enable functionality on nearly every website on the Internet 
today, ranging from single‐page sites to gigantic sites like Google, Amazon, 
Facebook, and many, many others!



10 Part I: Getting Started with JavaScript  

Dynamic scripting language
JavaScript is often described as a dynamic scripting language. In order 
to understand what this means, we need to first define a couple of 
terms and provide some context.

Figure 1-2:  
JavaScript 

made it pos
sible to have 

snowflakes 
falling on 
your web 

page.

Common misconceptions about JavaScript
Over the years, JavaScript has had some pretty 
nasty things said about it. While sometimes 
rumors are interesting, they aren’t always true. 
The following list explains some common mis
conceptions about JavaScript:

 ✓ Myth: JavaScript is not a real programming 
language. Reality: JavaScript is often used 
for trivial tasks in web browsers, but that 
doesn’t make it any less of a programming 
language. In fact, JavaScript has many 
advanced features that have raised the bar 
for programming languages and are now 
being imitated in languages such as PHP, 
C++, and even Java.

 ✓ Myth: JavaScript is related to Java. Reality: 
Nope. The name JavaScript was invented 

purely as a marketing strategy because 
Java was incredibly popular at the time 
JavaScript came out.

 ✓ Myth: JavaScript is new. Reality: JavaScript 
has been around for over 20 years! Some 
of the professional JavaScript program
mers we know weren’t even born when 
JavaScript was created.

 ✓ Myth: JavaScript is buggy and runs 
 differently in different browsers. Reality: 
While this used to be true in some cases, 
browser makers decided to support the 
standardized version of JavaScript long 
ago. Every browser will run JavaScript the 
same today.



11  Chapter 1: The World’s Most Misunderstood Programming Language

Computer programs are sets of instructions that cause computers to do 
things. Every computer programming language has a set of instructions and 
a certain way that humans must write those instructions. The computer can’t 
understand these instructions directly. In order for a computer to under-
stand a programming language, it needs to go through a conversion process 
that translates human‐readable (and writable) instructions into machine 
language. Depending on when this translation takes place, programming lan-
guages can be roughly divided into two types: compiled and interpreted (see 
Figure 1-3).

Compiled programming languages
Compiled programming languages are languages in which a programmer must 
write the code and then run it through a special program called a compiler 
that interprets the given code and then converts it into machine language. 
The computer can then execute the compiled program.

Examples of compiled languages include C, C++. Fortran, Java, Objective‐C, 
and COBOL.

Interpreted programming languages
Interpreted languages are technically still compiled by the computer into 
machine language, but the compiling takes place by the user’s web browser 

Figure 1-3:  
Program

ming 
languages 

are clas
sified 

according 
to when the 
compilation 
takes place.



12 Part I: Getting Started with JavaScript  

right as the program is being run. Programmers who write interpreted lan-
guages don’t need to go through the step of compiling their code prior to 
handing it off to the computer to run.

The benefit of programming in an interpreted language is that it’s easy to 
make changes to the program at any time. The downside, however, is that 
compiling code as it’s being run creates another step in the process and can 
slow down the performance of programs.

Partially because of this performance factor, interpreted languages have 
gotten a reputation for being less than serious programming languages. 
However, because of better just‐in‐time compilers and faster computer pro-
cessors, this perception is rapidly changing. JavaScript is having a big impact 
in this regard.

Examples of interpreted programming languages include PHP, Perl, Haskell, 
Ruby and of course, JavaScript

What Does JavaScript Do?
If you use the web, you’re making use of JavaScript all the time. The list of 
things that can be enabled with JavaScript is extensive and ranges from 
simple notices you get when you forget to fill out a required field on a form to 
complex applications, such as Google Docs or Facebook. Here’s a short list of 
the most common uses for JavaScript on the web:

 ✓ Nifty effects

 ✓ Input validation

 ✓ Rollover effects

 ✓ Drop‐down/fly‐out menus

 ✓ Drag and drop features

 ✓ Infinitely scrolling web pages

 ✓ Autocomplete

 ✓ Progress bars

 ✓ Tabs within web pages

 ✓ Sortable lists

 ✓ Magic Zoom (see Figure 1-4)



13  Chapter 1: The World’s Most Misunderstood Programming Language

Why JavaScript?
JavaScript has become the standard for creating dynamic user interfaces 
for the web. Pretty much any time you visit a web page with animation, live 
data, a button that changes when you hover over it, or a drop‐down menu, 
JavaScript is at work. Because of its power and ability to run in any web 
browser, JavaScript coding is the most popular and necessary skill for a 
modern web developer to have.

JavaScript is easy to learn
Keep in mind that programming languages were created in order to 
give people a simple way to talk to computers and tell them what to do. 
Compared with machine language, the language that the computer’s CPU 
speaks, every programming language is easy and understandable. To give 

Figure 1-4:  
So‐called 

Magic Zoom 
effects are 

enabled 
using 

JavaScript.



14 Part I: Getting Started with JavaScript  

you a sample of what sort of instructions your computer is actually obeying, 
here is a machine language program to write out "Hello World".

b8    21 0a 00 00 
a3    0c 10 00 06 
b8    6f 72 6c 64 
a3    08 10 00 06 
b8    6f 2c 20 57 
a3    04 10 00 06 
b8    48 65 6c 6c 
a3    00 10 00 06 
b9    00 10 00 06 
ba    10 00 00 00 
bb    01 00 00 00 
b8    04 00 00 00 
cd    80 
b8    01 00 00 00 
cd    80 

Now look at one way you can accomplish this simple task with JavaScript:

alert("Hello World");

Much easier, yes?

Once you learn the basic rules of the road (called the syntax), such as when 
to use parentheses and when to use curly brackets ({}), JavaScript actually 
resembles plain old English.

The first step in learning any language, including programming languages, is 
to get over your fear of getting started. JavaScript makes this easy. There are 
thousands of sample bits of JavaScript code on the web that anyone can just 
pick up and start messing around with. You already have all the tools you 
need (see Chapter 2), and it’s easy to start small with JavaScript and gradu-
ally build up to making great and wonderful things.

Where is JavaScript? JavaScript 
is  everywhere!
Although JavaScript was originally designed to be used in web browsers, it 
has found a home in many other places. Today, JavaScript runs on smart-
phones and tablets, on web servers, in desktop applications, and in all sorts 
of portable devices.



15  Chapter 1: The World’s Most Misunderstood Programming Language

JavaScript in the web browser
The most common place to find JavaScript, and what it was originally 
designed to do, is running in web browsers. When JavaScript runs in this 
way, it’s called client‐side JavaScript.

Client‐side JavaScript adds interactivity to web pages. It accomplishes this in 
several ways:

 ✓ By controlling the browser itself or making use of functionality of the 
browser

 ✓ By manipulating the structure and content of web pages

 ✓ By manipulating the styles (such as fonts and layout) of web pages

 ✓ By accessing data from other sources

In order to understand how JavaScript is able to manipulate the structure 
and style of web pages, you need to know a little bit about HTML5 and CSS3.

HTML5
Hypertext Markup Language (HTML) is the language used to structure web 
pages. It works by marking up content (text and images) to give web brows-
ers information about the content, such as what is a heading, what is a para-
graph, where an image goes, and so on. Listing 1-1 shows a simple HTML 
document. Figure 1-5 shows how a web browser displays this document.

Listing 1-1: A Simple HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Hello, HTML!</title>
</head>
<body>
 <h1>This is HTML</h1>
 <p id="introduction">This simple document was written 

with Hypertext Markup Language.</p>
</body>
</html>

Here is everything you need to know about HTML right now in order to move 
forward with learning JavaScript:

 ✓ In HTML, the characters surrounded by angle brackets are called tags.

 ✓ The ending tag (which comes after the content being marked up) has a 
slash after the first angle bracket. For example </p> is an ending tag.



16 Part I: Getting Started with JavaScript  

 ✓ A group of two tags (beginning and ending), plus the content in between 
them, is called an element.

 ✓ Elements are generally organized in a hierarchal way (with elements 
nested within elements).

 ✓ Elements may contain name/value pairs, called attributes. If an element 
has attributes, they go in the beginning tag. Name/value pairs assign 
values, in quotes, to names (which aren’t in quotes) by putting an 
equals sign between them. For example, in the following tag, width and 
height are both attributes of the div element:

<div width="100" height="100"></div>

 ✓ Some elements don’t have content and therefore don’t need an ending 
tag. For example, the img tag, which simply inserts an image into a web 
page, looks like this:

<img src="myimage.jpg" width="320" height="200" 
alt="Here is a picture of my dog.">

All the data necessary to show the image is included in the beginning tag 
using attributes, so the img tag doesn’t require an ending tag.

When you write a web page with HTML, you can include JavaScript code 
directly in that document, or you can reference JavaScript code file (which 
end in .js) from the HTML document. Either way, your viewer’s web 
browser will download the JavaScript code and run it when a user accesses a 
web page containing that JavaScript.

Client-side JavaScript runs inside of your users’ web browsers.

Figure 1-5:  
Web brow

sers use 
HTML to 

render web 
pages.

www.allitebooks.com

http://www.allitebooks.org


17  Chapter 1: The World’s Most Misunderstood Programming Language

CSS3
Cascading Style Sheets (CSS) is the language used to add formatting and dif-
ferent layouts to web pages. The word style, when used in CSS, refers to many 
aspects of how the HTML document is presented to the user, including

 ✓ Typefaces (or font faces)

 ✓ Type size

 ✓ Colors

 ✓ Arrangement of elements in the browser window

 ✓ Sizes of elements

 ✓ Borders

 ✓ Backgrounds

 ✓ Creation of rounded corners on element borders

Like JavaScript, CSS can be either placed directly into an HTML document, 
or it can be linked to from the HTML document. Once it’s downloaded, it 
immediately does its thing and formats the document according to your 
specifications.

Style sheets in CSS are made up of CSS rules, which contain properties and 
values that should be applied to an element or a group of elements. Here’s an 
example of a CSS rule:

p{font-size: 14px; font-color: black; font-family: Arial, 
sans-serif}

This rule, reading from left to right, specifies that all p elements (which 
indicate paragraphs in HTML) should be displayed in text that is 14px large, 
black, and using the Arial font. If Arial isn’t available on the user’s computer, 
it should be displayed in some sans serif typeface.

The part of the CSS rule that’s outside of the curly brackets is called the 
selector. It selects the elements that the properties within the curly brackets 
apply to.

Throughout this book, you find out how to use JavaScript with HTML and 
CSS. We provide just enough information here to be able to show you how 
HTML and CSS work. If you need to learn more, you can find some excellent 
books about them. One that we highly recommend is Beginning HTML5 and 
CSS3 For Dummies by Ed Tittel and Chris Minnick (Wiley).



18 Part I: Getting Started with JavaScript  

JavaScript is powerful!
JavaScript running in a web browser used to be slow, and JavaScript got a 
bad reputation early on among programmers. Today, JavaScript code runs 
80 percent as fast as compiled code. And, it keeps getting faster all the time. 
What this means is that today’s JavaScript is much more powerful than the 
JavaScript of just a few years ago. And, it’s many times more powerful than 
the JavaScript that was first introduced in 1995.

JavaScript is in demand
JavaScript is not only the most widely known programming language, it’s also 
one of the most in-demand skills in the job market. It’s projected that the job 
market for JavaScript programmers will increase by 22 percent between 2010 
and 2020. Exciting things are happening with JavaScript, and there has never 
been a better time than right now to learn it.



Writing Your First JavaScript 
Program

In This Chapter
 ▶ Arranging your development environment

 ▶ Getting to know JavaScript code

 ▶ Understanding a simple JavaScript program

 ▶ Understanding the value of commenting your code

“The secret of getting ahead is getting started.”

— Mark Twain

S 
imple JavaScript programming isn’t difficult to understand. In this chap-
ter, you go through the process of setting up your computer for writing 

JavaScript. You also write your first JavaScript program and get to know the 
basic syntax behind everything you’ll do with JavaScript in your future as a 
programmer.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Setting Up Your Development 
Environment

It’s important to have all of your tools set up and in place before beginning 
to write your first JavaScript program. We walk you through the process of 
downloading and installing our favorite JavaScript development tools, which 

Chapter 2



20 Part I: Getting Started with JavaScript  

are, coincidentally, the ones we use in this book. If you have similar tools that 
you prefer, please feel free to use those. However, we recommend that you 
still read this section of the book in order to learn why we’ve chosen these 
tools and to make your own decisions about whether to use them.

After you install each of the tools, we share some tips and tricks with you for 
how to get the most out of each of them.

Downloading and installing Chrome
The web browser that we prefer to use when working with JavaScript is Google 
Chrome. If you prefer to use a different web browser day to day, that’s fine, 
of course. All browsers will run JavaScript very fast and correctly. However, 
some of the instructions in this book will be specific to Google Chrome, so 
we recommend that you at least go through the process of installing it on 
your computer in this chapter. We chose to use Google Chrome in this book 
because it offers excellent tools for making JavaScript programmers’ jobs 
easier and because it’s currently the most widely used web browser on the 
Internet. (Yes, it’s even more popular than Internet Explorer.)

If you don’t have Chrome installed, follow these steps to install it:

1. Go to www.google.com/chrome.

Figure 2-1 shows you what Google Chrome looks like.

2. Hover over the Download tab and choose the appropriate version for 
your computer.

3. Open the downloaded file and follow the instructions to install Chrome.

Now you have a supercharged JavaScript engine!
Google Chrome uses Google’s V8 JavaScript 
engine to parse, compile, and run JavaScript 
code. Depending on whose benchmarking test 
you believe, Chrome is either the fastest way to 
run JavaScript in a browser, or it’s one of the 
fastest. The major browser makers are con-
stantly competing to outdo each other. It doesn’t 
matter too much who is actually the fastest at 
any one time; the competition has increased the 
speed of every browser’s JavaScript engine by 
leaps and bounds in recent years.

If you want to see actual comparisons of 
how different browsers do in JavaScript 
performance tests, you can do so at 
http://arewefastyet.com (see figure). 
This site, which is maintained by Mozilla, cre-
ator of the Firefox browser, automatically 
checks and graphs JavaScript performance of 
the most popular browsers and is updated mul-
tiple times every day.

http://www.google.com/chrome
http://arewefastyet.com


21  Chapter 2: Writing Your First JavaScript Program

Downloading and installing a code editor
A source code editor, commonly referred to as code editor, is a text editor 
with added functionality that helps you write and edit programming code. 
The one we use is Sublime Text.

There are many code editors to choose from, so if you already have a favor-
ite that you like to use and that you’re comfortable with, please use it! A 
programmer’s code editor is a very personal choice, and many people will 
find that they just feel more comfortable with a specific one. If you find that 
Sublime Text just doesn’t fit your style, Table 2-1 lists some other options.

Figure 2-1:  
Installing 

Chrome 
is easy on 

either Mac 
or Windows.

Table 2-1 Examples of Other Code Editors

Name Location Compatible with . . .

Coda http://panic.com/coda Mac only

Aptana www.aptana.com Mac or Windows

Komodo Edit www.activestate.com/ 
komodo‐edit/downloads

Mac or Windows

(continued)

http://panic.com/coda
http://www.aptana.com
http://www.activestate.com/komodo-edit/downloads
http://www.activestate.com/komodo-edit/downloads


22 Part I: Getting Started with JavaScript  

We use Sublime Text (see Figure 2-2) for this book because it’s popular 
among JavaScript programmers, and it provides a simple user interface along 
with a large number of plugins for handling more advanced programming 
tasks as you gain more programming experience.

To install Sublime Text, follow these steps:

1. Go to http://sublimetext.com and choose the appropriate version 
for your operating system.

2. Open the downloaded file and follow the instructions for installing 
Sublime Text.

Getting started with Sublime Text
When you first open Sublime Text, you see a simple blank page with a cursor 
on it (see Figure 2-3).

If you’ve used Sublime Text, you may see a sidebar on the left, as shown in 
Figure 2-4. This sidebar shows your open files and the files in your project, if 
you’ve created one. The sidebar is useful, and we recommend that you have 
it open.

To open the sidebar, click View ➪ Sidebar ➪ Show Sidebar.

Table 2-1 (continued)
Name Location Compatible with . . .

Dreamweaver http://adobe.com/products/ 
dreamweaver.html

Mac or Windows

Eclipse www.eclipse.org Mac or Windows

Notepad++ http://notepad‐plus‐ 
plus.org

Windows only

TextMate http://macromates.com Mac only

BBEdit www.barebones.com/ 
products/bbedit

Mac only

EMacs www.gnu.org/software/emacs Mac or Windows

TextPad www.textpad.com Windows only

vim www.vim.org Mac or Windows

Netbeans https://netbeans.org Mac or Windows

http://sublimetext.com
http://adobe.com/products/dreamweaver.html
http://adobe.com/products/dreamweaver.html
http://www.eclipse.org
http://notepad-plus-plus.org
http://notepad-plus-plus.org
http://macromates.com
http://www.barebones.com/products/bbedit
http://www.barebones.com/products/bbedit
http://www.gnu.org/software/emacs
http://www.textpad.com
http://www.vim.org
https://netbeans.org


23  Chapter 2: Writing Your First JavaScript Program

Figure 2-2:  
Sublime 
Text is a 

seemingly 
simple‐ 
looking 

text editor 
with a lot 

of powerful 
features.

Figure 2-3:  
The initial 

Sublime 
Text user 
interface. 

How’s 
that for 

 simplicity?



24 Part I: Getting Started with JavaScript  

To get started with your first Sublime Text project file, follow these steps:

1. Choose File ➪ Save As.

The Save dialog box appears, and your default save location is shown. 
If you’re happy with storing your code in this folder (most likely the 
Documents folder [on OSX] or the My Documents folder [Windows]), 
then move on to Step 2. Otherwise, navigate to another location on your 
computer where you want to store your code files.

2. Create a new folder and name the folder

3. In the Save As text area, give this first file a name and then click Save.

The new filename appears in the sidebar and the name on the open tab 
change to your selected name.

4. Choose Project ➪ Save Project As and save the Sublime Text project 
file inside the folder you created.

Sublime Text project files are where Sublime Text stores information 
about what files and folders are associated with a project. Creating a 
project folder allows you to keep all the different types of files in your 
program better organized.

5. Choose Project ➪ Add Folder to Project, select the folder you created 
in Step 1, and then click Open.

A new collapsible list appears in the sidebar called Folders, and your 
folder, along with the contents of it (including the project file and 
MyFirstProgram.html), will be listed underneath it, as shown in Figure 2-5.

Figure 2-4:  
Sublime 

Text with 
the sidebar 

open.



25  Chapter 2: Writing Your First JavaScript Program

In order for you to keep all your files and folders organized, we pro-
vide some recommendations as to what you should name your files 
and folders. For example, you can name your new folder from Step 2 
MyFirstJavaScriptProject. the file in Step 3 MyFirstProgram, and the 
project from Step 4 myFirstProject.

Choosing a syntax color scheme
Sublime Text syntax colors are based on the type of code that you’re writing 
and the file extension. Input the following HTML and JavaScript code shown 
in Listing 2-1 into the file you’ve just created to see the default color scheme.

As you’re about to find out, JavaScript is finicky. Make sure that you capital-
ize and spell everything exactly as it is in the listing, or your script may not 
work correctly or at all.

Listing 2-1: A Sample HTML File Containing JavaScript

<!DOCTYPE html>
<html>
<head>
  <title>Hello, HTML!</title>
  <script>
    function countToTen(){
      var count = 0;
      while (count < 10) {
        count++;
        document.getElementById("theCount").innerHTML += 

count + "<br>";
      }
    }

Figure 2-5:  
Your first 
Sublime 

Text project 
is ready  

to go!

(continued)



26 Part I: Getting Started with JavaScript  

Listing 2-1 (continued)

Code-Line Before Listing Code  </script>
</head>
<body onload="countToTen();">
  <h1>Let's Count to 10 with JavaScript!</h1>
  <p id="theCount"></p>
</body>
</html>

Figure 2-6 shows what the file looks like in Sublime Text for us.

If you don’t like the color scheme that’s currently selected, you can change 
it by choosing Preferences ➪ Color Scheme and then selecting another color 
scheme.

Try out a few of the other color schemes and find one you like. The one we 
use for this book is called Monokai Bright.

If you’d like to try out the program you’ve just typed, follow these steps:

1. Save the file by choosing File ➪ Save.

2. Open your Chrome browser and press Ctrl + O.

An Open File window appears.

3. Navigate to the file on your computer and select it.

4. Click the Open button.

The file will open in your browser.

Figure 2-6:  
Sublime 

Text applies 
colors to all 

of the differ-
ent parts of 
your code.

www.allitebooks.com

http://www.allitebooks.org


27  Chapter 2: Writing Your First JavaScript Program

Your browser should look just like Figure 2-7. If it doesn’t, very carefully 
check your code — you probably have a small typo somewhere. Don't forget 
to save your file after making any changes!

You can also save your file by pressing command + S (on the Mac) or  
Control + S (On Windows). Once you become proficient with them, keyboard 
shortcuts will save you a lot of time.

Some helpful Sublime Text shortcuts
Sublime Text looks like an ordinary text editor, but don’t be fooled! A true 
mark of a master programmer is his or her ability to use keyboard shortcuts 
to crank out code and make edits as quickly as possible. Table 2-2 lists a few 
of the many keyboard shortcuts that Sublime Text provides. Practice these, 
and you’ll quickly be able to impress your friends and colleagues with your 
super-elite skills.

Figure 2-7:  
Running 
a simple 
counting 

program in 
Chrome.

Table 2-2 Commonly Used Sublime Text Editing  
 Keyboard Shortcodes

Mac Windows Description

Command+X Ctrl+X Delete line

Command+Return Ctrl+Enter Insert line after

Command+Shift+Return Ctrl+Shift+Enter Insert line before

Command+Control+Up 
Arrow

Ctrl+Shift+Up Arrow Move line/Selection Up

Command+Control+Down 
Arrow

Ctrl+Shift+Down 
Arrow

Move line/Selection 
down

(continued)



28 Part I: Getting Started with JavaScript  

Table 2-2 (continued)
Mac Windows Description

Command+L Ctrl+L Select line; repeat to 
select next lines

Command+D Ctrl+D Select word; repeat to 
select other occurrences

Control+M Ctrl+M Jump to closing  
parentheses; repeat to 
jump to opening paren-
theses

Control+Shift+M Ctrl+Shift+M Select all contents of 
current parentheses

Command+K+Command+K Ctrl+k+k Delete from cursor to end 
of line

Command+K+Delete Ctrl+K+Delete Delete from cursor to 
beginning of line

Command+] Ctrl+] Indent current line(s)

Command+[ Ctrl+[ Un-indent current line(s)

Command+Shift+D Ctrl+Shift+D Duplicate line(s)

Command+J Ctrl+J Join line below to the 
end of the current line

Command+/ Ctrl+/ Comment/un-comment 
current line

Command+Option+/ Ctrl+Shift+/ Block comment current 
selection

Command+Y Ctrl+Y Redo or repeat last key-
board shortcut command

Command+Shift+V Ctrl+Shift+V Paste and indent 
 correctly

Control+Space Ctrl+Space Select next auto- 
complete selection

Control+U Ctrl+U Soft Undo; jumps to 
your last change before 
undoing change when 
repeated

Control+Shift+Up Ctrl+Alt+Up Column selection up

Control+Shift+Down Ctrl+Alt+Down Column selection down

Control+Shift+W Alt+Shift+W Wrap selection in html 
tag



29  Chapter 2: Writing Your First JavaScript Program

Reading JavaScript Code
Before you get started with writing JavaScript programs, you need to be 
aware of a few rules of JavaScript:

 ✓ JavaScript is case-sensitive. We repeat this several times throughout 
the book, because it’s an error that those who are new to JavaScript 
make quite frequently. To JavaScript, the words pants and Pants are 
completely different.

 ✓ JavaScript doesn’t care much about white space. White space includes 
spaces, tabs, and line breaks — any character that doesn’t have a visual 
representation. When you’re writing JavaScript code, it doesn’t matter 
if you use one space, two spaces, a tab, or even a line break (in most 
cases) within the code. JavaScript will ignore white space. The one 
exception is when you’re writing out text that you want JavaScript to 
print to the screen. In this case, the white space you use will show up 
in the end result. The best practice, with regards to white space in your 
code, is to use enough space that your code is easy to read and to also 
be consistent with how you use this space.

 ✓ Watch out for reserved words. JavaScript has a list of words that have 
special meaning to the language. We list these words in Chapter 3. For 
now, just be aware that some words, such as function, while, break, and 
with have special meanings.

 ✓ JavaScript likes semicolons: JavaScript code is made up of statements. 
You can think of statements as similar to sentences. They are fundamen-
tal building blocks for JavaScript programs in the same way that sen-
tences are the building blocks of paragraphs. In JavaScript, statements 
end with a semicolon.

If you don’t use a semicolon at the end of a statement, JavaScript will put 
it there for you. This can lead to unexpected results, however, so it’s con-
sidered a best practice to always end statements with a semicolon.

Running JavaScript in the  
Browser Window

Although it’s seen in many different environments, the most common place 
to see JavaScript in the wild is running in web browsers. Controlling inputs 
and outputs, manipulating web pages, handling common browser events 
such as clicks and scrolls, and controlling the different features of web 
browsers is what JavaScript was born to do!



30 Part I: Getting Started with JavaScript  

To run JavaScript in a web browser, you have three options, all of which will 
be shown in the following pages:

 ✓ Put it directly in an HTML event attribute

 ✓ Put it between an opening and closing script tag

 ✓ Put it in a separate document and include it in your HTML document

Many times, you’ll use a combination of all three techniques within any one 
web page. However, knowing when to use each is important and is a skill that 
you’ll learn with more practice.

Using JavaScript in an HTML  
event attribute
HTML has several special attributes that are designed for triggering 
JavaScript when something happens in the web browser or when the user 
does something. Here’s an example of an HTML button with an event attri-
bute that responds to mouse click events:

<button id="bigButton" onclick="alert('Hello 
World!');">Click Here</button> 

In this case, when a user clicks on the button created by this HTML element, 
a popup will appear with the words “Hello World!”.

HTML has over 70 different event attributes. Table 2-3 shows the most com-
monly used ones.

Table 2-3 Commonly Used HTML Event Attributes

Attribute Description

onload Runs the script after the pages finishes loading

onfocus Runs the script when the element gets focus (such as when a 
text box is active)

onblur Runs the script when the element loses focus (such as when 
the user clicks a new text box in a form)

onchange Runs the script when the value of an element is changed



31  Chapter 2: Writing Your First JavaScript Program

Although they’re easy to use, using event attributes is actually considered 
a less-than-ideal practice by many JavaScript programmers. We demon-
strate them in this book because they are so widely used and easy to learn. 
However, for now, just be aware that there is a better way to write JavaScript 
code that responds to events than to use event attributes. We cover this 
better method in Chapter 11.

Using JavaScript in a script element
The HTML script element allows you to embed JavaScript into an HTML doc-
ument. Often script elements are placed within the head element, and, in fact, 
this placement was often stated as a requirement. Today, however, script ele-
ments are used within the head element as well as in the body of web pages.

The format of the script element is very simple:

<script>
 (insert your JavaScript here)
</script>

You saw an example of this type of script embedding in Listing 2-1. Listing 2-2 
shows another example of an HTML document with a script tag containing 
JavaScript. In this case, however, we place the script element at the bottom 
of the body element.

Attribute Description

onselect Runs the script when text has been submitted

onsubmit Runs the script when a form has been submitted

onkeydown Runs the script when a user is pressing a key

onkeypress Runs the script when a user presses a key

onkeyup Runs the script when a user releases a key

onclick Runs the script when a user mouse clicks an element

ondrag Runs the script when an element is dragged

ondrop Runs the script when a dragged element is being dropped

onmouseover Runs the script when a user moves a mouse pointer over an 
element



32 Part I: Getting Started with JavaScript  

Listing 2-2: Embedding JavaScript within a Script Element

<!DOCTYPE html>
<html>
<head>
 <title>Hello, HTML!</title>
</head>
<body>
 <h1>Let's Count to 10 with JavaScript!</h1>
 <p id="theCount"></p>
 <script>
   var count = 0;
   while (count < 10) {
    count++;
    document.getElementById("theCount").innerHTML +=  

count + "<br>";
   }
 </script>
</body>
</html>

If you create a new file in Sublime Text, input Listing 2-2 into it, and then  
open it in a web browser, you’ll notice that it does exactly the same thing as 
Listing 2-1.

Script placement and JavaScript execution
Web browsers normally load and execute scripts as they are loaded. A web 
page always gets read by the browser from the top down, just as you would 
read a page of text. Sometimes you’ll want to wait until the browser is done 
loading the contents of the web page before the script runs. In Listing 2-1, we 
accomplished this by using the onload event attribute in the body element. 
Another common way to delay execution is to simply place the code to be 
executed at the end of the code as in Listing 2-2.

Limitations of JavaScript in <script> elements
While much more commonly used and more widely accepted than inline 
scripting (putting JavaScript into event attributes), embedding JavaScript 
into a script element has some serious limitations.

The biggest limitation is that scripts embedded in this way can be used 
only within the web page where they live. In other words, if you put your 
JavaScript into a script element, you need to copy and paste that script ele-
ment exactly into every page where it exists. With some websites containing 
many hundreds of web pages, you can see how this can become a mainte-
nance nightmare.



33  Chapter 2: Writing Your First JavaScript Program

When to use JavaScript in <script> elements
This method of embedding JavaScript does have its uses. For bits of 
JavaScript that simply call other bits of JavaScript and that rarely (or prefer-
ably, never) change, it is acceptable and can even speed up the loading and 
display of your web pages by causing the web server to have to make fewer 
requests to the server.

Single page apps, which (as the name implies) contain only a single HTML 
page, are also great candidates for the use of this type of embedding because 
there will only ever be one place to update the script.

As a rule, however, you should seek to minimize the amount of JavaScript 
that you embed directly into an HTML document. The results will be easier 
maintenance and better organization of your code.

Including external JavaScript files
The third and most popular way to include JavaScript in HTML documents is 
by using the src attribute of the script element.

A script element with a src attribute works exactly like a script element with 
JavaScript between the tags, except that if you use the src attribute, the 
JavaScript is loaded into the HTML document from a separate file. Here’s an 
example of a script element with a src attribute:

<script src="myScript.js"></script>

In this case, you would have a separate file, named myScript.js, that would 
reside in the same folder as your HTML document. The benefits of using 
external JavaScript files are that using them

 ✓ Keeps your HTML files neater and less cluttered

 ✓ Makes your life easier because you need to modify JavaScript in only 
one place when something changes or when you make a bug fix

Creating a .js file
Creating an external JavaScript file is similar to creating an HTML file or 
another other type of file. To replace the embedded JavaScript in Listing 2-1 
with an external JavaScript file, follow these steps:

1. In Sublime Text, choose File ➪ New File.

2. Copy everything between <script> and </script> from 
MyFirstProgram.html and paste it into your new .js file.



34 Part I: Getting Started with JavaScript  

Notice that external JavaScript files don’t contain <script> elements, 
just the JavaScript.

3. Save your new file as countToTen.js in the same folder as 
MyFirstProgram.html.

4. In MyFirstProgram.html, modify your script element to add a  src 
attribute, like this:

<script src="countToTen.js"></script

Your copy of MyFirstProgram.html should now look like this:

<!DOCTYPE html>
<html>
<head>
 <title>Hello, HTML!</title>
 <script src="countToTen.js"></script> 
</head>
<body onload="countToTen();">
 <h1>Let's Count to 10 with JavaScript!</h1>
 <p id="theCount"></p>
</body>
</html>

Your new file, countToTen.js, should look like this:

function countToTen(){
 var count = 0;
 while (count < 10) {
   count++;
   document.getElementById("theCount").innerHTML +=  

count + "<br>";
 }
}

After you've saved both files, you should see them inside your project in the 
Sublime Text sidebar, as shown in Figure 2-8.

Keeping your .js files organized
External JavaScript files can sometimes get to be very large. In many cases, 
it’s a good idea to break them up into smaller files, organized by the type of 
functions they contain. For example, one JavaScript file may contain scripts 
related to the user login capabilities of your program, while another may con-
tain scripts related to the blogging capabilities.

For small programs, however, it’s usually sufficient to have just one file, and 
many people will name their single JavaScript file something generic, such as 
app.js, main.js, or scripts.js.



35  Chapter 2: Writing Your First JavaScript Program

JavaScript files don’t need to be in the same folder as the HTML file that 
includes them. In fact, we recommend that you create a new folder specifi-
cally for storing your external JavaScript files. Most people we know call this 
something like js.

Follow these steps to create a js folder inside of your Sublime Text project 
and move your js file into it:

1. Right-click on the name of your project in the Sublime Text sidebar.

A submenu appears.

2. Choose New Folder from the submenu.

A Folder Name text area appears at the bottom of the Sublime Text 
window.

3. Enter js into the folder name text field and press Enter.

A new folder called js appears in the sidebar.

4. Open countToTen.js and choose File ➪ Save As and save it in your 
new js folder.

5. Right-click on the version of countToTen.js that’s outside of your 
folder and choose Delete File from the submenu.

6. Open up MyFirstProgram.js and change your script element to 
reflect the new location of your js file, like this:

<script src="js/countToTen.js"></script>

Figure 2-8: 
Viewing 
multiple 

files in your 
 project 

folder in 
Sublime 

Text.



36 Part I: Getting Started with JavaScript  

When you open MyFirstProgram.html in your browser (or simply click 
refresh), it should look exactly like it did before you moved the JavaScript file 
into its own folder.

Using the JavaScript Developer Console
Sometimes, it’s helpful to be able to run JavaScript commands without 
 creating an HTML page and including separate scripts or creating <script> 
blocks. For these times, you can use the Chrome browser’s JavaScript 
Console (see Figure 2-9).

To access the JavaScript Console, find the Chrome menu in the upper-right 
corner of your browser. It looks like three horizontal lines. Click the Chrome 
menu and then find More Tools in the drop-down menu. Under More Tools, 
choose JavaScript Console from the drop-down menu.

And, yes, there is a faster way to open the JavaScript Console. Simply press 
Alt+Command+J (on Mac) or Control+Shift+J (on Windows).

Figure 2-9: 
JavaScript 
Console in 

the Chrome 
browser.

www.allitebooks.com

http://www.allitebooks.org


37  Chapter 2: Writing Your First JavaScript Program

The JavaScript Console is perhaps the best friend of the JavaScript devel-
oper. Besides allowing you to test and run JavaScript code quickly and easily, 
it also is where errors in your code are reported, and it has features that will 
help you track down and solve problems with your code.

Once you’ve opened the JavaScript console, you can start inputting com-
mands into it, which will run as soon as you press Enter. To try it out, open 
the JavaScript console and then type the following commands, pressing Enter 
after each one:

1080/33
40 + 2
40 * 34
100%3
34++
34--

Commenting your code
As you learn more JavaScript commands and start to write larger programs, 
it’s often helpful to be able to leave yourself little reminders of what you 
were thinking or what certain things do. In programmer-speak, we call these 
tiny notes to ourselves (or to anyone else who may work with your code) 
 comments. We call the process of writing these notes commenting.

The JavaScript engine completely ignores comments. They are there just 
for people. This is your time to explain things, clarify things, describe your 
 thinking, or even leave reminders to yourself about things you want to do in 
the future.

It is always a good idea to comment your code. Even if you think that your 
code is pretty self-explanatory at the time that you write it, we guarantee that 
you won’t think that eight months down the road when you need to modify it.

JavaScript gives you two ways to denote something as a comment:

 ✓ The single-line comment

 ✓ The multi-line comment

Single-line comments
Single-line comments start with //. Everything after these two slashes and up 
until the end of the line will be ignored by the JavaScript parser.



38 Part I: Getting Started with JavaScript  

Single-line comments don’t need to start at the beginning of a line. It’s quite 
common to see a single-line comment used on the same line as a piece of 
code that is not commented, in order to explain what that line means. For 
example:

pizzas = pizza + 1; // add one more pizza

Multi-line comments
Multi-line comments start with /* and tell the JavaScript parser to ignore 
everything up to */. Multi-line comments are useful for more extensive docu-
mentation of code. For example:

/* The countToTen function does the following things:
  * Initializes a variable called count
  * Starts a loop by checking the value of count to make 

sure it's less than 10
  * Adds 1 to the value of count
  * Appends the the current value of count, followed by a 

line break, to the paragraph with id='theCount'
  * Starts the loop over
*/

Using comments to prevent code execution
Besides being useful for documenting code, comments are often useful for 
isolating pieces of code in order to find problems. For example, if we wanted 
to see what the countToTen function would do if we removed the line from 
the loop that increments the value of count, we could comment out that line 
using a single-line comment, like this:

function countToTen(){
 var count = 0;
 while (count < 10) {
   // count++;
   document.getElementById("theCount").innerHTML +=  

count + "<br>";
 }
}

When you run this program, the line count++; will no longer run, and the 
program will print out 0s forever (or until you close the browser window).

We call what we just created an infinite loop. If you do run a modified version 
of this program, it won’t do any harm to your computer, but it will likely take 
your CPU for a wild ride of spinning in circles as fast as it can until you shut 
down the browser window in which you opened it in.



Working with Variables
In This Chapter

 ▶ Creating and using variables

 ▶ Understanding variable scope

 ▶ Knowing JavaScript’s data types

 ▶ Naming variables

 ▶ Using built‐in functions to work with variables

“Beauty is variable, ugliness is constant.”

— Douglas Horton (1891 – 1968)

I 
n this chapter, you discover how to create variables, fill them with values, 
use functions to find out what type of data is in your variables, convert 

between different data types, and manipulate the data in your variables.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Understanding Variables
Variables are representative names in a program. Just as x may stand for 
some as‐yet‐unknown value in algebra, or x may mark the spot where the 
treasure is buried on a pirate’s map, variables are used in programming to 
represent something else.

You can think about variables as containers that contain data. You can give 
these containers names, and later you can recall and change the data in a 
variable by using its name.

Chapter 3



40 Part I: Getting Started with JavaScript  

Without variables, every computer program would have only one purpose. 
For example, the following one‐line program doesn’t use variables:

alert(3 + 7);

Its purpose is to add together the numbers 3 and 7 and to print out the result 
in a browser popup window.

The program isn’t of much use, however (unless you happen to need to recall 
the sum of 3 and 7 on a regular basis). With variables, you can make a general 
purpose program that can add together any two numbers and print out the 
result, like the following example:

var firstNumber = 3;
var secondNumber = 7;
var total = Number(firstNumber) + Number(secondNumber);
alert (total);

Taken a step further, you can expand this program to ask the user for two 
numbers and then add them together, like the following example:

var firstNumber = prompt("Enter the first number");
var secondNumber = prompt("Enter the second number");
var total = Number(firstNumber) + Number(secondNumber);
alert (total);

Try out this program for yourself! (Chapter 2 shows how to use your code 
editor.) Follow these steps:

1. Open your code editor and create a basic HTML template.

2. Between <body> and </body>, insert an opening <script> tag and a 
closing </script> tag.

3. Between the opening and closing script tags, enter the preceding 
example code.

Your document should now look like this:

<html>
<head></head>
<body>
 <script>
 var firstNumber = prompt("Enter the first number");
 var secondNumber = prompt("Enter the second number");
 var total = Number(firstNumber) + 

Number(secondNumber);
 alert (total);
 </script>
</body>
</html>



41  Chapter 3: Working with Variables

4. Save your new HTML document as addtwo.html.

5. Open your HTML document in your web browser.

You should be prompted for a first number, as shown in Figure 3-1.

6. Enter the first number.

After you enter that number, you’ll be prompted for a second number.

7. Enter the second number.

After you give the program the second number, the result of adding the 
two numbers together will be displayed on the screen.

Declaring Variables
Declaring a variable is the technical term that’s used to describe the process 
of first creating a variable in a program. You may also hear it called initializa-
tion. Creating a variable, declaring a variable, and initializing a variable all 
refer to the same thing.

Variables in JavaScript can be created in one of two ways:

 ✓ Using a var keyword:

var myName;

 ✓ A variable created using a var keyword will have an initial value of unde-
fined unless you give it a value when you create it, such as

var myName = "Chris";

Figure 3-1:  
A general-

purpose 
program 

for adding 
two user 

submitted 
numbers.



42 Part I: Getting Started with JavaScript  

 ✓ Without a var keyword

myName = "Chris";

When you create a variable without a var keyword, it becomes a global variable. 
(In order to understand what a global variable means, see the next section.)

Notice the quotes around the value on the right in the preceding examples. 
These quotes indicate that the value should be treated as text, rather than as a 
number, a JavaScript keyword, or another variable. See the section on data types 
later in this chapter for more information about how and when to use quotes.

Understanding Global and Local Scope
How and where you declare a variable determines how and where your 
 program can make use of that variable. This concept is called variable scope. 
JavaScript has two types of scope:

 ✓ Global variables can be used anywhere inside of a program.

 ✓ Local (function) variables are variables that you create inside of a 
 protected program within a program, called a function.

When is equal not equal?
In English, it’s common and correct to 
read statements containing "="  as 
"var myName equals Chris". 
However, this interpretation is not correct in 
programming.

Take, for example,

var myName = "Chris";

The character that looks like an equal sign 
between the variable name (myName) and the 
value ("Chris") in the preceding example 
may look exactly like an equal sign, and it’s 
even produced using the key that is commonly 
called equal sign on the keyboard. However, in 

programming, the equal sign is actually called 
the assignment operator.

The difference between an assignment opera-
tor and an “equal to” is vital to understand:

 ✓ The assignment operator sets the thing to 
the left of it equal to the thing to the right 
of it, like this:

var myName = "Chris";

 ✓ “Equals” compares the value on the left 
to the value on the right and determines 
whether or not they are the same. Equals in 
JavaScript is written as ===.



43  Chapter 3: Working with Variables

The tragic tale of the missing var
There is really never a reason to create a vari-
able without using the var keyword, and doing 
so will cause you problems. If you leave out the 
var keyword, it just looks like you forgot it, so 
don’t do it!

The following example shows the kind of prob-
lem and confusion that can happen from not 
using the var keyword. It also demonstrates 
the use of a more advanced programming tool, 
called a function, which we cover in much more 
detail in Chapter 7. In short, functions let you put 
smaller programs within your programs.

In this first example, the programmer wants to 
have a variable called movie that is global, 
and a separate variable with the same name 
that is only valid within the function called 
showBadMovie. This is a perfectly normal 
thing to do, and under normal circumstances, 
the movie  variable inside the function 
wouldn’t affect the global variable. However, 
if you forget to use the var keyword when 
declaring the movie variable inside the function, 
bad things happen.

 var movie = "The Godfather";

 function showGoodMovie () {
 alert (movie + " is a good 

movie!");
 }

 function showBadMovie () {
 movie = "Speed 2: Cruise 

Control";
 alert (movie + " is a bad 

movie!");
 }

Notice that the var  keyword is miss-
ing from before the movie variable in 

showBadMovie(). JavaScript assumes 
that you want to override the global movie vari-
able, rather than create a local function vari-
able. The results are positively disastrous!

 showGoodMovie(); // pops up 
"The Godfather is a good 
movie!"

 showBadMovie(); // pops up 
"Speed 2: Cruise Control is 
a bad movie!"

 /* Oh no! The global variable 
is now Speed 2: Cruise 
Control, not the good movie 
name anymore! */

 showGoodMovie(); // pops up 
"Speed 2: Cruise Control is 
a good movie!"



44 Part I: Getting Started with JavaScript  

In general, using local variables is preferable to using globals because  
limiting the scope of variables reduces the chance that you’ll accidentally 
overwrite the value of a variable with another variable of the same name.

The use of globals can create problems in your program that can be difficult 
to track down and fix. We recommend that you never create variables with-
out using the var keyword. If you do have a need for a global variable, it is 
possible to create them with the use of a var keyword, and we recommend 
that you do it that way.

Naming Variables
Variable names can start with the following characters:

 ✓ Upper- or lowercase letter

 ✓ An underscore (_)

 ✓ A dollar sign ($)

Although you can use an underscore or dollar sign to start a variable, it’s 
best to begin with a letter. Unexpected characters can often cause your code 
to look confusing and difficult to read, especially if you are new to JavaScript 
coding.

After the first character, you can use any letter or number in your variable 
name, and it can be any length. JavaScript variables cannot contain spaces, 
mathematical operators, or punctuation (other than the underscore).

Always remember that JavaScript is case-sensitive. A variable named myname 
is not the same variable as Myname or myName.

Variable names are actually identifiers; the best thing you can do is to name a 
variable something precise and relevant. This naming convention may some-
times result in very long names, but as a rule, a longer name that accurately 
represents the variable is more useful than a shorter name that is vague.

Of course, there are limits to how long variable names can be without 
making your life more difficult. If you need to use 20 characters to accurately 
describe your variable, go for it. But, if you’re creating variable names like 
nameOfPersonWhoJustFilledOutTheFormOnMyWebsite, you may want 
to see whether you can simplify your life (as well as that of anyone else who 
may need to work with your code) by shortening to something more like  
personName.



45  Chapter 3: Working with Variables

Guidelines for creating good variable names
Although JavaScript gives you a lot of freedom in how you name your variables, it’s best to decide 
on some basic rules for yourself before you start programming. For example, do you start your 
variable names with a lowercase or uppercase letter? Do you use underscores between multiple 
words within a variable name, or do you use camelCase? As your code becomes more complex, 
the importance of correct naming becomes apparent.

Fortunately, you’re not on your own when you’re deciding on your style. There are some best prac-
tices that many professional JavaScript programmers agree upon and use when naming variables:

 ✓ Do not use names that are too short! Simple one letter names or nonsensical names are not 
a good option when naming variables.

 ✓ Use multiword names to be as precise as possible.

 ✓ In multiword names, always put adjectives to the left, as in var greenPython;.

Pick a style for multiple word names and be consistent. There are two ways to join words to create 
a name: camelCase and under_score. JavaScript is a flexible language, and you can use either 
method, although camelCase is generally the more commonly employed.

Some words cannot be used as variable names. Following is a list of reserved words that cannot 
be used as JavaScript variables, functions, methods, loop labels, or object names.

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super



46 Part I: Getting Started with JavaScript  

Creating Constants Using  
the const Keyword

Occasionally, your program may have a need for variables that can’t be 
changed. In these cases, you can declare your variable using the const key-
word. For example:

const heightOfTheEmpireStateBuilding = 1454;
const speedOfLight = 299792458;
const numberOfProblems = 99;
const meanNumberofBooksReadIn2014 = 12;

Constants abide by the same rules as other variables, but once you create a 
constant, its value cannot be changed during its lifetime (which lasts as long 
as the script is running).

Working with Data Types
A variable’s data type is the kind of data the variable can hold and what 
operations can be done with the value of the variable. The number 10, used 
in a sentence, is different than the number 10 used in an equation, for exam-
ple. Data types are the way JavaScript distinguishes between values that are 
meant to be words and values that are meant to be treated as mathematical 
expressions.

If you think about all the types of data that you work with on a daily basis — 
pie charts, recipes, short stories, newspaper articles, and so on — you’ll see 
just how much potential there is for things to get very complicated when it 
comes to data. The generous creators of JavaScript decided to make things 
very simple for you. It has just five basic data types.

Furthermore, JavaScript is what’s called a loosely typed language. What 
loosely typed means is that you don’t even need to tell JavaScript, or even 
know, whether a variable you’re creating will hold a word, a paragraph, a 
number, or a different type of data.

Loosely typed doesn’t mean that JavaScript doesn’t distinguish between 
words and numbers. JavaScript just is friendly about it and handles the work 
of figuring out what type of data you store in your variables largely behind 
the scenes.

www.allitebooks.com

http://www.allitebooks.org


47  Chapter 3: Working with Variables

JavaScript recognizes five basic, or primitive, types of data.

The C++ programming language has at least 12 different data types!

Number data type
Numbers in JavaScript are stored as 64-bit, floating point values. What this 
means, in English, is that numbers can range from 5e-324 (that’s -5 followed 
by 324 zeros) to 1.7976931348623157e+308 (move the decimal 308 spots to 
the right to see this giant number). Any number may have decimal points or 
not. Unlike most programming languages, JavaScript doesn’t have separate 
data types for integers (positive or negative numbers without a fractional 
part) and floating points (decimals).

Just how big is the biggest number JavaScript can use? Here it is, written out 
without scientific notation:

17976931348623157000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000

When you declare a number variable, you compile it from all of the following 
elements:

 ✓ The var keyword

 ✓ The name you want to give your variable

 ✓ The assignment operator

 ✓ A number (or even an equation that resolves to a number

 ✓ A semicolon

Here are some examples of valid number variables declarations:

var numberOfDucks = 4;

var populationOfSpain = 47200000;

var howManyTacos = 8;



48 Part I: Getting Started with JavaScript  

Number functions
JavaScript includes a built-in Number function for converting values to num-
bers. To use the Number function, simply put the value (or a variable holding 
the value) that you want to convert to a number between the parentheses 
after the Number function.

The Number function produces four kinds of output:

 ✓ Numbers that are formatted as text strings are converted to numbers 
that can be used for calculations, like this:

Number("42") // returns the number 42

 ✓ Text strings that can’t be converted to numbers return the value NaN, 
like this:

Number("eggs") // returns NaN

 ✓ The Boolean value true returns the number 1, like this:

Number(true) // returns 1

 ✓ The Boolean value false returns the number 0, like this:

Number(false) // returns 0

parseInt() function
To JavaScript, all numbers are actually floating point numbers. However, you 
can use the parseInt() function to tell JavaScript to consider only the non-
fractional part of the number (the integer), discarding everything after the 
decimal point.

parseInt(100.33); // returns 100

parseFloat(); function
You can use parseFloat() to specifically tell JavaScript to treat a number as 
a float. Or, you can even use it to convert a string to a number. For example:

parseFloat("10"); // returns 10
parseFloat(100.00); //returns 100.00
parseFloat("10"); //returns 10

Examples
Now you can play around with some numbers and number functions. Try 
entering the following expressions into the JavaScript console in your 
Chrome browser to see what results they produce.



49  Chapter 3: Working with Variables

You can open the JavaScript console in Chrome by pressing 
Command+Option+J (Mac) or Ctrl+Shift+J (Windows).

1 + 1
3 * 3
parseFloat("839");
parseInt("33.333333");
12 + "12"
"12" + 12
"12" * 2

Number variables must be declared without quotation marks. "10" is not 
the same as 10. The former is a string (which is covered in the next section), 
and if you accidentally declare a number variable inside of quotes, you’ll get 
unexpected results.

If you’re following along, you may have noticed some odd behaviors with 
the previous examples. For example, when you add "12" (a string) to 12 
(a number), the result is "1212" (a string). But, when you multiply "12" 
(a string) by 2 (a number) the result is 24 (a number). This is a case where 
JavaScript is really using its head!

In the first example, when you add, JavaScript guesses that, because one of 
the values in the addition equation is a string, you meant for both of them to 
be. So, it converts the number to a string and treats the plus symbol as a con-
catenation operator.

In the second example, when you multiply, one of the values in the operation 
is a number, and there’s no way to multiply strings together. JavaScript con-
verts the string to a number and then proceeds with the multiplication. But, 
what happens when you try to multiple two strings together?

"sassafras" * "orange"

The result is NaN (not a number). There’s just no way to convert sassafras or 
orange into a number, so JavaScript throws up its hands.

String data type
Strings can be made up of any characters:

 ✓ Letter

 ✓ Number

 ✓ Punctuation (such as commas and periods)

 ✓ Special characters that can be written using a backslash followed by 
character



50 Part I: Getting Started with JavaScript  

Some characters, such as quotes, have special meaning in JavaScript or 
require a special combination of characters, such as a tab or new line, to  
represent inside of a string. We call these special characters. Table 3-1 lists 
the special characters that you can use inside JavaScript strings.

You create a string variable by enclosing it in single or double quotes,  
like this:

var myString = "Hi, I'm a string.";

It doesn’t actually matter whether you use single or double quotes, as long as 
the beginning and ending quotes surrounding the string match up.

If you surround your string with single quotes, you can actually use double 
quotes within that string without a problem. The same goes for if you  
surround your strings with double quotes; you can use single quotes within 
the string without a problem.

However, if you create a string and surround it with one type of quote, you 
can’t use that type of quote inside the string, or the JavaScript parser will 
think you mean to end the string and will generate an error.

Escaping quotes
The solution to the problem of not being able to include quotes inside of a 
string surrounded with that type of quotes is to preface the quotes with a \. 
Adding a backslash before a quote is called escaping the quotes.

Table 3-1 JavaScript Special Characters
Code Outputs

\' single quote

\" double quote

\\ backslash

\n new line

\r carriage return

\t tab

\b backspace

\f form feed



51  Chapter 3: Working with Variables

String functions
JavaScript includes many helpful functions for working with and converting 
strings.

Here’s a list of the most frequently used built-in string functions:

 ✓ charAt() produces the character at a specified position. Note that the 
counting of characters starts with 0:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.charAt(3));
// returns a

 ✓ concat() combines one or more strings and returns the incorporated 
string:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.concat(' We love 

JavaScript!'));
// returns JavaScript is Fun! We love JavaScript!

 ✓ indexOf() searches and returns the position of the first occurrence of 
the searched character or substring within the string:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.indexOf('Fun');
// returns 14

 ✓ split() splits strings into an array of substrings:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.split('F'));
// returns ["JavaScript is ", "un!"]

 ✓ substr() extracts a portion of a string beginning at "start" through a 
specified length:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.substr(2,5));
// returns vaScr

 ✓ substring() extracts the characters within a string between two 
 specified positions:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.substring(2,5));
// returns Vas



52 Part I: Getting Started with JavaScript  

 ✓ toLowerCase() produces the string with all of its characters converted 
to lowercase:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.toLowerCase());
// returns javascript is fun!

 ✓ toUpperCase() produces the string with all of its characters converted 
to uppercase:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.toUpperCase());
// returns JAVASCRIPT IS FUN!

Boolean data type
Boolean variables store one of two possible values: either true or false.

The term Boolean is named after George Boole (1815–1864), who created an 
algebraic system of logic. Because it’s named after a person, you generally 
write it with an initial capital letter.

Boolean variables are often used for storing the results of comparisons. 
You can find out the Boolean value of a comparison or convert any value in 
JavaScript into a Boolean value by using the Boolean() function. For example:

var isItGreater = Boolean (3 > 20);
alert (isItGreater); // returns false

var areTheySame = Boolean ("tiger" === "Tiger"); 
alert (areTheySame); // returns false

The result of converting a value in JavaScript into a Boolean value using the 
Boolean() function depends on the value:

 ✓ In JavaScript, the following values always evaluate to a Boolean false 
value:

• NaN

• undefined

• 0 (numeric value zero)

• -0

• "" (empty string)

• false



53  Chapter 3: Working with Variables

 ✓ Anything that is not one of the preceding values evaluates to a Boolean 
true. For example:

• 74

• "Eva"

• "10"

• "NaN"

The number character "0" is not the same as the numeric value 0 (zero). 
While 0 will always result in a Boolean value of false, the string "0" will 
always result in a Boolean true.

Boolean values are primarily used with conditional expressions. The 
 following program creates a Boolean variable and then test its value using  
an if/then statement (which you can find out about in Chapter 5).

var b = true;
if (b == true) {
 alert ("It is true!");
 } else {
 alert ("It is false.");
 }

Boolean values are written without quotes around them, like this:

var myVar = true

On the other hand, var myVar = “true” creates a string variable.

NaN data type
NaN stands for Not a Number. It’s the result that you get when you try to do 
math with a string, or when a calculation fails or can’t be done. For example, 
it’s impossible to calculate the square root of a negative number. Trying to 
do so will result in NaN.

A more common occurrence that will produce NaN is an attempt to perform 
mathematical operations using strings that can’t be converted to numbers.

undefined data type
Even if you create a variable in JavaScript and don’t specifically give it a 
value, it still has a default value. This value is "undefined".



54 Part I: Getting Started with JavaScript  



Understanding Arrays
In This Chapter

 ▶ Identifying and defining arrays

 ▶ Building arrays

 ▶ Moving beyond 2D with multidimensional arrays

 ▶ Working within array elements

 ▶ Using array functions and properties

“I am large. I contain multitudes.”

— Walt Whitman

A 
rrays are a fundamental part of any programming language. In this 
 chapter, you discover what they are, how to use them, and what makes 

JavaScript arrays distinct from arrays in other programming  languages. You 
work with arrays to create lists, order lists, and add and remove items from 
lists.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Making a List
The earlier chapters in this book involve working with variables that 
are standalone pieces of data, such as: var myName = “Chris”, 
var  firstNumber = “3”, and var how ManyTacos = 8. There are 

Chapter 4



56 Part I: Getting Started with JavaScript  

often times in programming (and in life) where you want to store related data 
under a single name. For example, consider the following types of lists:

 ✓ A list of your favorite artists

 ✓ A program that selects and displays a different quote from a list of 
quotes each time its run

 ✓ A holiday card mailing list

 ✓ A list of your top music albums of the year

 ✓ A list of all your family and friends’ birthdays

 ✓ A shopping list

 ✓ A to‐do list

 ✓ A list of New Year’s resolutions

Using single‐value variables (see Chapter 3), you would need to create and 
keep track of multiple variables in order to accomplish any of these tasks. 
Here is an example of a list created using single‐value variables:

var artist1 = "Alphonse Mucha";
var artist2 = "Chiara Bautista";
var artist3 = "Claude Monet";
var artist4 = "Sandro Botticelli";
var artist5 = "Andy Warhol";
var artist6 = "Wassily Kadinski";
var artist7 = "Vincent Van Gough";
var artist8 = "Paul Klee";
var artist9 = "William Blake";
var artist10 = "Egon Schiele";
var artist11 = "Salvador Dali";
var artist12 = "Paul Cezanne";
var artist13 = "Diego Rivera";
var artist14 = "Pablo Picasso";

This approach could work in the short term, but you’d quickly run into difficul-
ties. For example, what if you wanted to sort the list alphabetically and move 
artists into the correct variable names based on their position in the alphabeti-
cal sort? You’d need to first move Mucha out of the artist1 variable (maybe 
into a temporary holding variable) and then move Bautista into the artist1 
variable. The artist2 spot would then be free for Blake, but don’t forget 
that Mucha is still in that temporary slot! Blake’s removal from artist9 frees 
that up for you to move someone else into the temporary variable, and so on. 
Creating a list in this way quickly becomes complicated and confusing.

Fortunately, JavaScript (and every other programming language we know of) 
supports the creation of variables containing multiple values, called arrays.

www.allitebooks.com

http://www.allitebooks.org


57  Chapter 4: Understanding Arrays

Arrays are a way to store groups of related data inside of a single vari-
able. With arrays, you can create lists containing any mix of string values, 
 numbers, Boolean values, objects, functions, any other type of data, and 
even other arrays!

Array Fundamentals
An array consists of array elements. Array elements are made up of the 
array name and then an index number that is contained in square brackets. 
The individual value within an array is called an array element. Arrays use 
numbers (called the index numbers) to access those elements. The following 
example illustrates how arrays use index numbers to access elements:

myArray[0] = "yellow balloon";
myArray[1] = "red balloon";
myArray[2] = "blue balloon";
myArray[3] = "pink balloon";

In this example, the element with the index number of 0 has a value of 
"yellow balloon". The element with an index number 3 has a value of 
"pink balloon". Just as with any variable, you can give an array any name 
that complies with the rules of naming JavaScript variables. By assigning 
index numbers in arrays, JavaScript gives you the ability to make a single 
variable name hold a nearly unlimited list of values.

Just so you don’t get too carried away, there actually is a limit to the number 
of elements that you can have in an array, although you’re very unlikely to 
ever reach it. The limit is 4,294,967,295 elements.

In addition to naming requirements (which are the same for any type of vari-
able, as described in chapter 3), arrays have a couple of other rules and spe-
cial properties that you need to be familiar with:

 ✓ Arrays are zero‐indexed

 ✓ Arrays can store any type of data

Arrays are zero indexed
JavaScript doesn’t have fingers or toes. As such, it doesn’t need to abide by 
our crazy human rules about starting counting at 1. The first element in a 
JavaScript array always has an index number of 0 (see Figure 4-1).



58 Part I: Getting Started with JavaScript  

What this means for you is that myArray[3] is actually the fourth element in 
the array.

Zero‐based numbering is a frequent cause of bugs and confusion for those 
new to programming, but once you get used to it, it will become quite natu-
ral. You may even discover that there are benefits to it, such as the ability to 
turn your guitar amp up to the 11th level.

Arrays can store any type of data
Each element in an array can store any of the data types (see Chapter 3), 
as well as other arrays. Array elements can also contain functions and 
JavaScript objects (see Chapters 7 and 8).

While you can store any type of data in an array, you can also store elements 
that contain different types of data, together, within one array, as shown in 
Listing 4-1.

Listing 4-1: Storing Different Types of Data in an Array

item[0] = "apple";
item[1] = 4+8;
item[2] = 3;
item[3] = item[2] * item[1];

Figure 4-1: 
JavaScript 
is similar to 

a  volume 
knob. It 

starts 
counting 

at zero!



59  Chapter 4: Understanding Arrays

Creating Arrays
JavaScript provides in two different ways for you to create new arrays:

 ✓ new keyword

 ✓ Array literal notation

Using the new keyword method
The new keyword method uses new Array() to create an array and add 
values to it.

var catNames = new Array("Larry", "Fuzzball", 
"Mr. Furly");

You may see this method used in your career as a programmer, and it’s a 
 perfectly acceptable way to create an array.

Many JavaScript experts recommend against using this method, however. 
The biggest problem with using the new keyword is what happens when 
you forget to include it. Forgetting to use the new keyword can dramatically 
change the way your program operates.

Array literal
A much simpler and safer way to create arrays is to use what is called the 
array literal method of notation. This is what it looks like:

var dogNames =["Shaggy", "Tennesee", "Dr. Spock"];

That’s all there is to it. The use of square brackets and no special keywords 
means that you’re less likely to accidentally leave something out. The array 
literal method also uses less characters than the new keyword method — and 
when you’re trying to keep your JavaScript as tidy as possible, every little bit 
helps!



60 Part I: Getting Started with JavaScript  

Populating Arrays
You can add values to an array when it is first created, or you can simply 
create an array and then add elements to it at a later time. Adding elements 
to an array works exactly the same as creating or modifying a variable, 
except that you specify the index number of the element that you want to 
create or modify. Listing 4-2, shows an example of creating an empty array 
and then adding elements to it.

Listing 4-2: Populating an Empty Array

var peopleList =[];
peopleList[0] = "Chris Minnick";
peopleList[1] = "Eva Holland";
peopleList[2] = "Abraham Lincoln";

You don’t always need to add elements sequentially. It is perfectly legal in 
JavaScript to create a new element out of sequence. For example, in the 
 preceding array, from Listing 4-2, you could add the following:

peopleList[99] = "Tina Turner";

Creating an array out of sequence like this effectively creates blank elements 
for all of the indexes in between peopleList[2] and peopleList[99].

So, if you check the length property of the peopleList array after adding an 
element with an index of 99, something interesting happens:

peopleList.length // returns 100

Even though you’ve only created four elements, JavaScript will say that the 
length of an array is 100 because the length is based on the highest num-
bered index, rather than on how many elements you’ve actually created.

Understanding Multidimensional Arrays
Not only can you store arrays inside of arrays, you can even put arrays inside 
of arrays inside of arrays. This can go on and on.

An array that contains an array is called a multidimensional array. To write 
a multidimensional array, you simply add more sets of square brackets to a 
variable name. For example:

var listOfLists[0][0];



61  Chapter 4: Understanding Arrays

Multidimensional arrays can be difficult to visualize when you first start 
working with them. Figure 4-2 shows a pictorial representation of a multidi-
mensional array.

You can also visualize multidimensional arrays as hierarchal lists or outlines. 
For example:

Top Albums by Genre

1. Country

1.1 Johnny Cash:Live at Folsom Prison

1.2 Patsy Cline:Sentimentally Yours

1.3 Hank Williams:I’m Blue Inside

2. Rock

2.1 T‐Rex:Slider

2.2 Nirvana:Nevermind

2.3 Lou Reed:Transformer

Figure 4-2: 
A pictorial 

representa-
tion of a 

multidimen-
sional array.



62 Part I: Getting Started with JavaScript  

3. Punk

3.1 Flipper:Generic

3.2 The Dead Milkmen:Big Lizard in my Backyard

3.3 Patti Smith:Easter

Here is a code that would create an array based on Figure 4-2:

var bestAlbumsByGenre = []
bestAlbumsByGenre[0] = "Country";
bestAlbumsByGenre[0][0] = "Johnny Cash:Live at Folsom 

Prison"
bestAlbumsByGenre[0][1] = "Patsy Cline:Sentimentally 

Yours";
bestAlbumsByGenre[0][2] = "Hank Williams:I'm Blue Inside";
bestAlbumsByGenre[1] = "Rock";
bestAlbumsByGenre[1][0] = "T-Rex:Slider";
bestAlbumsByGenre[1][1] = "Nirvana:Nevermind";
bestAlbumsByGenre[1][2] = "Lou Reed:Tranformer";
bestAlbumsByGenre[2] = "Punk";
bestAlbumsByGenre[2][0] = "Flipper:Generic";
bestAlbumsByGenre[2][1] = "The Dead Milkmen:Big Lizard in 

my Backyard";
bestAlbumsByGenre[2][2] = "Patti Smith:Easter";

Accessing Array Elements
You can access the elements of arrays in the same way that you set them, 
using square brackets and the index number. For example, to access the 
third element in any array called myArray, you would use the following:

myArray[2];

To access elements in a multidimensional array, just add more square brack-
ets to get to the element you want:

bestAlbumsByGenre[0][1]; // returns "Patsy_
Cline:Sentimentally Yours";

To test out setting and accessing the elements of an array, follow these steps:

1. Open your Chrome browser and the open the JavaScript console.

You can open your JavaScript Console using the Chrome menu or by 
pressing Command + Option + J on Mac or Ctrl + Shift + J in Windows.



63  Chapter 4: Understanding Arrays

2. In the console, type the following statement, followed by the Return 
or Enter key, to create an array called lengthsOfString:

 var lengthsOfString = [2,4,1.5,80]; 

3. Type the array name followed by the index number in square brack-
ets to retrieve the value of each array element.

For example:

lengthsOfString[0];
lengthsOfString[3];
lengthsOfString[2];

4. Enter an index number that doesn’t exist in the array.

For example:

 lengthsOfString[4]; 

Notice that the value of this array element is undefined.

5. Type the following command to create a new variable to hold the total 
length of string that you have:

 var totalLength = lengthsOfString[0] + 
lengthsOfString[1] + lengthsOfString[2] + 
lengthsOfString[3];

6. Finally, get the value of totalLength with this command:

 totalLength;

Looping through arrays
As you can imagine, working with multiple values of arrays by typing the 
array name and the index number can get tiring for your fingers after a while. 
Fortunately, there are easier ways to work with all of the elements in an 
array. The most common method is to use a programming construct called a 
loop. (We cover loops in much more detail in Chapter 6.)

It’s also possible to work with multiple elements in an array by using 
JavaScript’s built‐in array functions.

Array properties
You can access certain data about an array by accessing array properties. 
The way to access array properties in JavaScript is by using dot notation. 
To use dot notation, you type the name of the array, followed by a period, 



64 Part I: Getting Started with JavaScript  

followed by the property you want to access. (You can find out much 
more about properties in Chapter 8.) Table 4-1 lists all of the properties of 
JavaScript arrays.

The most commonly used array property is length. You have already seen 
the length property in action. Its purpose is to provide the number of ele-
ments in an array, whether defined or undefined. For example:

var myArray = [];
myArray[2000];
myArray.length; // returns 2001

You can also use the length property to truncate an array:

myArray.length;// returns 2001
myArray.length = 10;
myArray.length; // returns 10

Array methods
JavaScript array methods (also known as array functions) provide handy 
ways to manipulate and work with arrays. Table 4-2 shows a list of all the 
array methods along with descriptions of what they do or the values they 
produce.

Using array methods
The syntax for using array methods differs depending on the particular 
method you are trying to use. You do, however, access the functionality of 
every array method the same way that you access array properties: by using 
dot notation.

Table 4-1 JavaScript’s Array Properties

Property Return Value
prototype Allows the addition of properties and methods to an Array 

object
constructor A reference to the function that created the Array object’s 

prototype
length Either returns or sets the number of elements in an array



65  Chapter 4: Understanding Arrays

Table 4-2 JavaScript Array Methods

Method Return Value
concat() A new array made up of the current array, joined with other 

array(s) and/or value(s)
every() true if every element in the given array satisfies the pro-

vided testing function
filter() A new array with all of the elements of a current array that 

test true by the given function
forEach() Completes the function once for each element in the array
indexOf() The first occurrence of the specified value within the array. 

Returns ‐1 if the value is not found
join() Joins all the elements of an array into a string
lastIndexOf() The last occurrence of the specified value within the array. 

Returns ‐1 if value is not found
map() A new array with the result of a provided function on every 

element in the array
pop() Removes the last element in an array
push() Adds new items to the end of an array
reduce() Reduces two values of an array to a single value by apply-

ing a function to them (from left to right)
reduceRight() Reduces two values of an array to a single value by apply-

ing a function to them simultaneously (from right to left)
reverse() Reverses the order of elements in an array
shift() Removes the first element from an array and returns that 

element, resulting in a change in length of an array
slice() Selects a portion of an array and returns it as a new array
some() Returns true if one or more elements satisfy the provided 

testing function
sort() Returns an array after the elements in an array are sorted 

(default sort order is alphabetical and ascending)
splice() Returns a new array comprised of elements that were 

added or removed from a given array
toString() Converts an array to a string
unShift() Returns a new array with a new length by the addition of 

one or more elements



66 Part I: Getting Started with JavaScript  

For a complete reference to JavaScript array methods, with examples, visit 
https://docs.webplatform.org/wiki/javascript/Array#Methods.

Listing 4-3 shows some examples of the most commonly used JavaScript 
methods.

Listing 4-3: Commonly Used JavaScript Array Methods in Action

<html>
<head>
  <title>common array methods</title>
</head>
<body>
  <script>
    var animals = ["tiger" , "bear"];
    var fruit = ["cantaloupe" , "orange"];
    var dishes = ["plate" , "bowl" , "cup"];

    var fruitsAndAnimals = fruit.concat(animals);
    document.write (fruitsAndAnimals + "<br>");

    var whereIsTheTiger = animals.indexof("tiger";
    document.write ("The tiger has and index number of: " 

 + whereIsTheTiger + "<br>");
  </script>
</body>
</html>

Figure 4-3 shows the result of Listing 4-3 when run in a browser.

Figure 4-3: 
Commonly 

used 
JavaScript 

array 
methods in 

action.

https://docs.webplatform.org/wiki/javascript/Array%23Methods
https://docs.webplatform.org/wiki/javascript/Array#Methods


Working with Operators, 
Expressions, and Statements

In This Chapter
 ▶ Reading and coding JavaScript expressions

 ▶ Changing values with assignment operators

 ▶ Thinking logically with comparison operators

 ▶ Doing the math with arithmetic operators

 ▶ Getting wise to bitwise operators

 ▶ Putting it together with string operators

“Hello Operator. Can you give me number 9?”

— The White Stripes

J 
avaScript operators, expressions, and statements are the basic build-
ing blocks of programs. They help you manipulate and change values, 

 perform math, compare two or more values, and much, much more.

In this chapter, you discover how operators, expressions, and statements do 
their work and how you can best use them to your advantage.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Chapter 5



68 Part I: Getting Started with JavaScript  

Express Yourself
An expression is a piece of code that resolves to a value. Expressions can 
either assign a value to a variable, or they can simply have a value. For 
 example, both of the following are examples of valid expressions:

1 + 1 

a = 1;

Expressions can be short and simple, as illustrated in these examples, or 
they can be quite complicated.

The pieces of data (1 or a in these examples) in an expression are called 
 operands.

Hello, Operator
The engines that make expressions do their work are called operators. They 
operate on data to produce different results. The = and + in the preceding 
expressions are examples of operators.

Operator precedence
A single expression often will contain several operators. Consider the follow-
ing example:

a + 1 + 2 * 3 / 4;

Depending on the order in which you perform the different calculations, the 
final value of a could be any one of the following:

a = 1.75

a = 2.5

a = 2.25

In fact, the actual result of this expression will be 2.5. But how do you know 
this? Depending on the person doing the math, the division could be done 
first (3 / 4), the addition could be done first (1 + 2), or the multiplication 
could be done first (2 * 3).



69  Chapter 5: Working with Operators, Expressions, and Statements

Clearly, there must be a better way to figure out the answer, and there is! 
This is where operator precedence comes in. Operator precedence is the 
order in which operators in an expression are evaluated.

Operators are divided into groups of different levels of precedence, num-
bered from 0 to 19, as shown in Table 5-1.

Table 5-1 Operator Precedence

Operator Use Operator 
Associativity

Precedence Sample Use

( .. ) grouping n/a 0 — highest  
precedence

(1 + 3)

.. . .. operator property 
access

left to right 1 myCar.color

[ .. ] array access left to right 1 thingsToDo[4]

new . . .() creates an object (with 
arguments list)

n/a 1 new Car 
("red")

function . . .() function call left to right 2 function add 
Numbers (1,2)

new . . . create an object (with-
out a list)

right to left 2 new Car

. . .++ postfix increment n/a 3 number++

. . .‐‐ postfix decrement n/a 3 number‐‐

! . . . logical not right to left 4 !myVal

~ . . . bitwise not right to left 4 ~myVal

‐ . . . negation right to left 4 ‐aNumber

++ . . . prefix increment right to left 4 ++aNumber

‐‐ . . . prefix decrement right to left 4 ‐‐aNumber

typeof . . . typeof right to left 4 typeof myVar

void . . . void right to left 4 void(0)

delete . . . delete right to left 4 delete object.
property

. . . * . . . multiplication left to right 5 result = 3 * 7

. . . / . . . division left to right 5 result = 3 / 7

. . . % . . . remainder left to right 5 result = 7 % 3

. . . + . . . addition left to right 6 result = 3 + 7

(continued)



70 Part I: Getting Started with JavaScript  

Operator Use Operator 
Associativity

Precedence Sample Use

. . . ‐ . . . subtraction left to right 6 result = 3 ‐ 7

. . . << . . . bitwise left shift left to right 7 result = 3 << 7

. . . >> . . . bitwise right shift left to right 7 result = 3 >> 7

. . . >>> . . . bitwise unsigned right 
shift

left to right 7 result = 3 
>>> 7

. . . < . . . less than left to right 8 a < b

. . . <= . . . less than or equal to left to right 8 a <= b

. . . > . . . greater than left to right 8 a > b

. . . >= . . . greater than or equal to left to right 8 a >= b

. . . in . . . in left to right 8 value in 
values

. . . instan-
ceof . . .

instanceof left to right 8 myCar instan-
ceof car

. . . == . . . equality left to right 9 3 == “3” // 
true

. . . != . . . inequality left to right 9 3 != “3” // 
false

. . . === . . . strict equality left to right 9 3 === “3” // 
false

. . . !== . . . strict inequality left to right 9 3 !== “3” // 
true

. . . & . . . bitwise and left to right 10 result = a & b

. . . ^ . . . bitwise xor left to right 11 result = a ^ b

. . . | . . . bitwise or left to right 12 result = a | b

. . . && . . . logical and left to right 13 a && b

. . . || . . . logical or left to right 14 a || b

. . . ? . . . : . . . conditional right to left 15 a ? 3 : 7

. . . = . . . assignment right to left 16 a = 3

. . . += . . . assignment right to left 16 a += 3

. . . ‐= . . . assignment right to left 16 a ‐= 3

. . . *= . . . assignment right to left 16 a *= 3

. . . /= . . . assignment right to left 16 a /= 3

Table 5-1 (continued)



71  Chapter 5: Working with Operators, Expressions, and Statements

Operator Use Operator 
Associativity

Precedence Sample Use

. . . %= . . . assignment right to left 16 a %= 3

. . . <<= . . . assignment right to left 16 a <<= 3

. . . >>= . . . assignment right to left 16 a >>= 3

. . . >>>= . . . assignment right to left 16 a >>>= 3

. . . &= . . . assignment right to left 16 a &= 3

. . . ^= . . . assignment right to left 16 a ^= 3

. . . |= . . . assignment right to left 16 a |= 3

yield . . . yield right to left 17 yield [expres-
sion]

. . . , . . . comma / sequence left to right 18 a + b, c + d

The operator with the lowest number is said to have the highest precedence. 
This may seem confusing at first, but if you think of it in terms of the first 
person in a line (whoever is in spot 0, in this case) being the first person to 
get a delicious sandwich or cup of coffee, you’ll have no problem keeping it 
straight.

When an expression contains two or more operators that have the same 
precedence, they are evaluated according to their associativity. Associativity 
determines whether the operators are evaluated from left to right or right 
to left.

Using parentheses
The operator with the highest precedence in an expression is parentheses. 
In most cases, you can ignore the rules of operator precedence simply by 
grouping operations into subexpressions using parentheses. For example, 
the previous multi‐operator expression can be fully clarified in the following 
ways:

a = (1 + 2) * (3 / 4); // result: 2.25
a = (1 + (2 * 3)) / 4; // result: 1.75
a = ((1 + 2) *3) / 4; // result: 2.25
a = 1 + ((2 * 3) / 4); // result: 2.5 

Parentheses in expressions force the JavaScript interpreter to evaluate the 
contents of the parentheses first, from the inner most parentheses to the 
 outermost, before performing the operations outside of the parentheses.



72 Part I: Getting Started with JavaScript  

Upon consulting Table 5-1, you’ll see that the actual order of the precedence 
for the preceding expression is

a = 1 + ((2 * 3) / 4);

This statement makes the actual operator precedence explicit. Multiplication 
is done first, followed by division, followed by the addition.

Types of Operators
JavaScript has a number of types of operators. This section discusses the 
most commonly used types of operators.

Assignment operators
The assignment operator assigns the value of the operand on the right to the 
operand on the left:

a = 5;

After this expression runs, the variable a will have a value of 5. You can also 
chain assignment operators together in order to assign the same value to 
multiple variables, as in the following example:

a = b = c = 5;

Because the operator’s associativity is right to left (see Table 5-1), 5 will first 
be assigned to c, then the value of c will be assigned to b, and then the value 
if b will be assigned to a. The result of this expression is that a, b, and c all 
have a value of 5.

What do you think the end value of a will be after these expressions are 
evaluated?

var b = 1;

var a = b += c = 5;

To find out, open up the JavaScript console in Chrome and type each line, 
 followed by return or enter. The result of this statement is that a will be  
equal to 6.

You can find a complete list of the different assignment operators in in the 
“Combining operators” section, later in this chapter.



73  Chapter 5: Working with Operators, Expressions, and Statements

Table 5-2 JavaScript Comparison Operators

Operator Description Example
== Equality 3 == “3” // true

!= Inequality 3 != 3 // false

=== Strict equality 3 === “3” // false

!== Strict inequality 3 !== “3” // true

> Greater than 7 > 1 // true

>= Greater than or equal to 7 >= 7 // true

< Less than 7 < 10 // true

<= Less than or equal to 2 <= 2 // true

Comparison operators
Comparison operators test for equality or difference between operands and 
return a true or false value.

Table 5-2 shows a complete list of the JavaScript comparison operators.

Table 5-3 Arithmetic Operators

Operator Description Example
+ Addition a = 1 + 1

‐ Subtraction a = 10 ‐ 1

* Multiplication a = 2 * 2

/ Division a = 8 / 2

% Modulus a = 5 % 2

++ Increment a = ++b
a = b++
a++

‐‐ Decrement a = ‐‐b
a = b‐‐
a‐‐

Arithmetic operators
Arithmetic operators perform mathematical operations on operands and 
return the result. Table 5-3 shows a complete list of arithmetic operators.



74 Part I: Getting Started with JavaScript  

Listing 5-1 shows arithmetic operators at work.

Listing 5-1: Using Arithmetic Operators

<html>
<head>
  <title>arithmetic operators</title>
</head>
<body>
  <h1>Wild Birthday Game</h1>
  <p>
  <ul>
    <li>Enter the number 7</li>
    <li>Multiply by the month of your birth</li>
    <li>Subtract 1</li>
    <li>Multiply by 13</li>
    <li>Add the day of your birth</li>
    <li>Add 3</li>
    <li>Multiply by 11</li>
    <li>Subtract the month of your birth</li>
    <li>Subtract the day of your birth</li>
    <li>Divide by 10</li>
    <li>Add 11</li>
    <li>Divide by 100</li>
  </ul>
  </p>
  <script>
    var numberSeven = Number(prompt('Enter the number 

7'));
    var birthMonth = Number(prompt('Enter your birth 

month'));
    var calculation = numberSeven * birthMonth;
    calculation = calculation - 1;
    calculation = calculation * 13;
    var birthDay = Number(prompt('Enter the day of your 

birth'));
    calculation = calculation + birthDay;
    calculation = calculation + 3;
    calculation = calculation * 11
    calculation = calculation - birthMonth;
    calculation = calculation - birthDay;
    calculation = calculation / 10;
    calculation = calculation + 11;
    calculation = calculation / 100;

    document.write("Your birthday is " + calculation);
    </script>
</body>
</html>



75  Chapter 5: Working with Operators, Expressions, and Statements

The result of running Listing 5-1 in a browser is shown in Figure 5-1.

Figure 5-1: 
The wild 

arithmetic 
game.

String operator
The string operator performs operations using two strings. When used with 
strings, the + operator becomes the concatenation operator. Its purpose is to 
join together strings. Note that when you’re joining strings with the concat-
enation operator, no spaces are added. Thus, it’s very common to see state-
ments like the following, where strings containing nothing but a blank space 
are concatenated between other strings or spaces are added to the end or 
beginning of strings (before the quotation mark) in order to form a coherent 
sentence:

var greeting = "Hello, " + firstName + ". I'm" + " " + 
mood + " to see you.";

Bitwise operators
Bitwise operators treat operands as signed 32-bit binary representations of 
numbers in twos complement format. Here’s what that means, starting with 
the term binary.

Binary numbers are strings of 1s or 0s, with the position of the digit deter-
mining the value of a 1 in that position. For example, here’s how to write the 
number 1 as a 32-bit binary number:

00000000000000000000000000000001



76 Part I: Getting Started with JavaScript  

The right most position has a value of 1. Each position to the left of this posi-
tion has a value of twice the value of the number to its right. So, the following 
binary number is equal to 5:

00000000000000000000000000000101

Signed integers means that both negative and positive whole numbers can be 
represented in this form.

The term twos complement means that the opposite of any positive binary 
number is its negative (and vice versa, of course). So, to change the binary 5 
to a binary -5, simply flip all the bits:

11111111111111111111111111111101

Bitwise operators convert numbers to these 32-bit binary numbers and then 
convert them back to what we would consider normal numbers after the 
operation has been done.

Bitwise operators are difficult to understand at first. They’re not very com-
monly used in JavaScript, but we would be remiss if we didn’t cover them.

Table 5-4 lists the JavaScript bitwise operators.

Table 5-4 JavaScript Bitwise Operators

Operator Usage Description
Bitwise AND a & b Returns a 1 in each bit position for which the corre-

sponding bits of both operands are 1s

Bitwise OR a | b Returns a 1 in each bit position for which the corre-
sponding bits of either or both operands are 1s

Bitwise XOR a ^ b Returns a 1 in each bit position for which the cor-
responding bits of either but not both operands are 1s

Bitwise NOT ~a Inverts the bits of its operand

Left shift a << b Shifts a in binary representation b (<32) bits to the left 
shifting in zeros from the right

Sign-
propagating 
right shift

a >> b Shifts a in binary representation b (<32) bits to the 
right, discarding bits shifted off

Zero-fill 
right shift

a >>> b Shifts a in binary representation b (<32) bits to the 
right, discarding bits shifted off, and shifting in zeros 
from the left



77  Chapter 5: Working with Operators, Expressions, and Statements

Figure 5-2 shows a demonstration of each of the bitwise operators in the 
Chrome JavaScript console.

Logical operators
Logical operators evaluate a logical expression for truthiness or falseness. 
There are three logical operators, shown in Table 5-5.

You can also use the OR operator to set a default value for variables. For 
example, in the following expression, the value of myVar will be set to the 
value of x unless x evaluates to a false value (for example, if x hasn’t been 
defined). Otherwise, it will be set to the default value of 0.

var myVar = x||0; 

Figure 5-2: 
The 

JavaScript 
bitwise 

operators.

Table 5-5 Logical Operators

Operator Meaning Description
&& And Returns the first operand if it is true. Otherwise, it 

returns the second operand.

|| Or Returns the first operand if it is true. Otherwise, it 
returns the second operand.

! Not Takes only one operand. Returns false if its oper-
and can be converted to true. Otherwise, it returns 
false.



78 Part I: Getting Started with JavaScript  

Special operators
JavaScript’s special operators are a hodge-podge of miscellaneous other 
 symbols and words that perform other and important functions.

Conditional operator
The conditional operator (also known as the ternary operator) uses three 
operands. It evaluates a logical expression and then returns a value based on 
whether that expression is true or false. The conditional operator is the only 
operator that requires three operands. For example:

var isItBiggerThanTen = (value > 10) ? "greater than 10" : 
"not greater than 10";

Comma operator
The comma operator evaluates two operands and returns the value of the 
second one. It’s most often used to perform multiple assignments or other 
operations within loops. It can also serve as a shorthand for initializing vari-
ables. For example:

var a = 10 , b = 0;

Because the comma has the lowest precedence of the operators, its operands 
are always evaluated separately.

delete operator
The delete operator removes a property from an object or an element from 
an array.

When you use the delete operator to remove an element from an array, the 
length of the array stays the same. The removed element will have a value of 
undefined.

var animals = ["dog","cat","bird","octopus"];
console.log (animals[3]); // returns "octopus"
delete animals[3];
console.log (animals[3]); // returns "undefined"

in operator
The in operator returns true if the specified value exists in an array or object.

var animals = ["dog","cat","bird","octopus"];
if (3 in animals) {
 console.log ("it's in there");
}



79  Chapter 5: Working with Operators, Expressions, and Statements

In this example, if the animals array has an element with the index of 3, the 
string "it's in there" will print out to the JavaScript console.

instanceof operator
The instanceof operator returns true if the object you specify is the type of 
object that has been specified.

var myString = new String();
if (myString instanceof String) {
 console.log("yup, it's a string!");
}

new operator
The new operator creates an instance of an object. As you can see in 
Chapter 8, JavaScript has several built-in object types, and you can also 
define your own. In the following example, Date() is a built-in JavaScript 
object, while Pet() and Flower() are examples of objects that a program-
mer could create to serve custom purposes within a program.

var today = new Date();
var bird = new Pet();
var daisy = new Flower();

this operator
The this operator refers to the current object. It’s frequently used for 
retrieving properties within an object.

Chapter 8 covers the this operator in much more detail.

typeof operator
The typeof operator returns a string containing the type of the operand:

var businessName = "Harry's Watch Repair";
console.log typeof businessName; // returns "string"

void operator
The void operator causes an expression in the operand to be evaluated 
without returning a value. The place where you most often see void used is in 
HTML documents when a link is needed, but the creator of the link wants to 
override the default behavior of the link using JavaScript:

<a href="javascript:void(0);">This is a link, but it won't 
do anything</a>



80 Part I: Getting Started with JavaScript  

Combining operators
You can combine assignment operators with the other operators as a short-
hand method of assigning the result of an expression to a variable. For exam-
ple, the following two examples have the same result:

a = a + 10;

a += 10;

Table 5-6 lists all the possible combinations of the assignment operators with 
other operators.

Table 5-6 Combining the Assignment Operators  
 and Other Operators

Name Shorthand Standard Operator
Assignment x = y x = y

Addition assignment x += y x = x + y

Subtraction assignment x -= y x = x - y

Multiplication assign-
ment

x *= y x = x * y

Division assignment x /= y x = x / y

Remainder assignment x %= y x = x % y

Left shift assignment x <<= y x = x << y

Right shift assignment x >>= y x = x >> y

Unassigned right shift 
assignment

x >>>= y x = x <<< y

Bitwise AND assignment x &= y x = x & y

Bitwise XOR assignment x ^= y x = x ^ y

Bitwise OR assignment x |= y x = x | y



Getting into the Flow with Loops 
and Branches

In This Chapter
 ▶ Finding out about if/else branching

 ▶ Understanding the different types of loops

 ▶ Using loops to repeat statements

 ▶ Looping through the values of an array

“It’s not hard to make decisions when you know what your values are.”

— Roy Disney

I 
n earlier chapters of this book, we generally talk about and demonstrate 
linear JavaScript code. However, more often than not, there comes a time 

(many times, actually) in a program where you need a choice to be made or 
where you need to alter the straight‐ahead logic of a program to repeat state-
ments multiple times with different values. In this chapter, we discuss loop-
ing and branching statements.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Branching Out
Looping and branching statements are called control statements because 
they control the order in which JavaScript programs are run. You can use 
branching statements to create different paths for the execution of JavaScript 
code, depending on conditional logic. Loops are the simplest way to group 
JavaScript statements together in a program.

Chapter 6



82 Part I: Getting Started with JavaScript  

The logic of a JavaScript program often comes to a point where a choice 
must be made which will make all the difference. Figure 6-1 demonstrates, 
using JavaScript, a real‐world decision that can be solved using branching.

if . . . else
The if and else statements work together to evaluate a logical expression 
and run different statements based on the result. if statements can be, and 
often are, used by themselves. else statements must always be used in con-
junction with an if statement.

The basic syntax for an if statement is

if (condition) {
...
}

The condition here is any expression that evaluates to a Boolean (true or 
false) value. If the result of the expression is true, the statements between 
the brackets will be executed. If it’s false, they will just be skipped over.

The else statement comes in when you want to do something if the condi-
tion evaluates to false. For example:

Figure 6-1: 
Branching 

chooses the 
path. 

Daniel Oines, https://www.flickr.com/photos/dno1967b/8347363864 (Creative Commons License)

https://www.flickr.com/photos/dno1967b/8347363864%20
https://www.flickr.com/photos/dno1967b/8347363864


83  Chapter 6: Getting into the Flow with Loops and Branches

var age = 19;
if (age < 21){
 document.write ("You are under the legal drinking age in 

the U.S.");
} else {
 document.write ("What'll it be?");
}

Many other programming languages have a combination keyword called the 
elseif, which can be used multiple times in an if ... else statement until 
a true value occurs. JavaScript doesn’t have an elseif keyword.

However, you can get the same functionality as an elseif keyword by using 
if and else together with a space between them. For example:

if (time < 12){
 document.write ("Good Morning!");
} else if (time < 17){
 document.write ("Good Afternoon!");
} else if (time < 20){
 document.write ("Good Evening!");
} else {
 document.write ("Good Night!");
}

Understanding if . . . else shorthand
You should be aware of a couple of shortcuts 
for using if ... else statements. The first 
is to use a ternary operator in place of the 
if ... else. This is somewhat more difficult 
to read than a standard if ... else:

var whatToSay = (time < 12 ?  
"Good Morning" : 
"Hello");

In this case, the value of whatToSay is set to 
“Good Morning” if time is less than 12 and 
it’s set to “Hello” if time is not less than 12.

Another shorthand methods for writing 
if ... else statements uses the logical 
AND (&&) operator. Remember that the logical 
AND will only evaluate the second operand if 
the first evaluates to true. Programmers call this 
short‐circuiting because it’s not necessary for 

the second operand to be evaluated in a logical 
AND operation if the first operand results in a 
false value.

time < 12 && document.write 
("Good Morning!");

In the preceding example, the && statement 
first looks at whether times is less than 12. If it 
is, the string "Good Morning" will be writ-
ten to the HTML document. If it isn’t, nothing will 
be done because of the short‐circuiting side 
effect of the && operator.

This method is not commonly used, primarily 
because it’s difficult to understand and confus-
ing. However, you may come across something 
like this at times, and you’ll need to understand 
how it works.



84 Part I: Getting Started with JavaScript  

Notice the use of line breaks and spaces in the preceding examples. Many 
people have different styles for how to write if ... else statements. You 
may also see them written with fewer line breaks or without space between 
the keywords and brackets. These will work, too. However, whenever pos-
sible, it is preferable to choose ease of reading over brevity.

Switch
The switch statement chooses between multiple statements to execute 
based on possible values of a single expression. Each of these values in a 
switch statement is called a case. In English, you may say, for example:

“In the case that we are expecting six guests, order three pizzas. In the 
case that we are expecting 12 guests, order six pizzas. In the case that 
we’re expecting more than 20 guests, freak out.”

The syntax for the switch statement is

switch (expression) {
 case value1:
 // Statements
 break;
 case value2:
 // Statements
 break;
 case value3:
 // Statements
 break;
 default:
 // Statements
 break;
}

Notice the break statement after the statements associated with each 
case. The break statement tells the switch statement to stop and exit the 
switch statement. Without the break, the switch statement would continue 
and run the statements in the next clause, regardless of whether the expres-
sion meets the conditions of that case.

Forgetting a break statement within a switch can cause big problems, so be 
sure to always use it. Because a switch statement will run any statements 
within any case clause after a clause that evaluates to true, unpredictable 
results can occur when you forget a break statement. Problems caused by 
missing break statements are not easy to identify because they generally 
won’t produce errors, but will frequently produce incorrect results.



85  Chapter 6: Getting into the Flow with Loops and Branches

If no match is found in any of the case clauses, the switch statement will 
look for a default clause and execute the statement it contains.

The exception to the rule that you should always use a break statement 
between case clauses is the default clause. As long as the default clause 
is the last statement in your switch (which, it should be), you can safely omit 
the break after it because the program will break out of the switch after the 
last statement anyway.

Listing 6-1 shows an example of how you might use a switch statement.

Listing 6-1: Using a switch Statement to Personalize a Greeting

var languagePreference = "Spanish";
switch (languagePreference){
 case "English":
   console.log("Hello!");
   break;
 case "Spanish":
   console.log("Hola!");
   break;
 case "German":
   console.log("Guten Tag!");
   break;
 case "French":
   console.log("Bon Jour!");
   break;
 default:
   console.log("I'm Sorry, I don't Speak" + 

languagePreferance + "!");
}

Here We Go: Loop De Loop
Loops execute the same statement multiple times. JavaScript has several dif-
ferent types of loops:

 ✓ for

 ✓ for ... in

 ✓ do ... while

 ✓ while



86 Part I: Getting Started with JavaScript  

for
The for statement creates a loop using three expressions:

 ✓ Initialization: The initial value of a variable, typically a counter.

 ✓ Condition: A Boolean expression to be evaluated with each iteration of 
the loop.

 ✓ Final expression: An expression to be evaluated after each loop  iteration.

Although it’s not required to use all three expressions in a for loop, all three 
of them are nearly always included. The for loop is usually used to run code 
a predetermined number of times.

The following is an example of a simple for loop:

for (var x = 1; x < 10; x++){
 console.log(x);
}

Broken down, this is how the preceding for loop example works:

1. A new variable, in this case x, is initiated with the value of 1.

2. A test is performed to determine whether x is less than 10.

If it is, the statements inside the loop are executed (in this case, a con-
sole.log statement).

3. If not, the value of x is incremented using the increment operator (++).

4. The test is done again to determine whether x is less than 10.

If so, the statements inside the loop are executed.

5. The test repeats, until the condition expression no longer evaluates 
to true.

Figure 6-2 shows the result of running this for statement in the Chrome 
 developer tools.

Looping through an array
You can use for loops to list the contents of an array by testing the value of 
the counter against the value of the length property of the array. Be sure to 
remember that JavaScript arrays are zero‐indexed and that the value of any 
array.length will be one more than the highest index numbered element 
in the array. That is why we add ‐1 in Listing 6-2.



87  Chapter 6: Getting into the Flow with Loops and Branches

Listing 6-2: Listing the Contents of an Array with for Loop

<html>
<head>
 <title>Different Area Codes</title>
</head>
<body>
 <script>
   var areaCodes = ["770", "404", "718", "202", "901", 

"305", "312", "313", "215", "803"];
   for (x=0; x < areaCodes.length - 1; x++){
     document.write("Different Area Code:" + areaCodes[x] 

+ "<br>");
   }
 </script>
</body>
</html>

Figure 6-3 shows the output of running the program detailed in Listing 6-2.

Figure 6-2: 
A loop that 

counts from 
1 to 9.

Figure 6-3: 
Output of 
listing the 
contents 

of an array 
with a for 

loop.



88 Part I: Getting Started with JavaScript  

for . . . in
The for ... in statements loop through the properties in an object. You can 
also use a for ... in statement to loop through the values of an array.

The for ... in loop has an interesting quirk. It doesn’t care about the order 
of properties or elements that it’s looping through. For this reason, and 
because using for ... in loop is slower, you’re much better off using a stan-
dard for loop to loop through array elements.

Objects are data containers that have properties (what they are) and methods 
(what they do). Web browsers have a set of built-in objects that programmers 
can use to control the function of the browser. The most basic of these is the 
Document object. The write method of the Document object, for example, 
tells your browser to insert a specified value into the HTML document.

The Document object also has properties that it uses to track and give program-
mers information about the current document. The Document.images collec-
tion, for example, contains all of the img tags in the current HTML document.

In Listing 6-3, the for . . . in loop is used to list all the properties of the 
Document object.

Listing 6-3: Looping through the Document object with for ... in

<html>
<head>
 <title>document properties</title>
 <style>
   .columns {
    -webkit-column-count: 6; // Chrome, Safari, Opera
    -moz-column-count: 6; // Firefox
    column-count: 6;
   }
 </style>
</head>
<body>
 
 <div class="columns">

 <script>
   for (var prop in document){
     document.write (prop + "<br>");
 }
 </script>

 </div>

</body>
</html>



89  Chapter 6: Getting into the Flow with Loops and Branches

The results of running Listing 6-3 are shown in Figure 6-4.

You can also use a for ... in loop to output the values that are in the 
properties of the object, rather than just the property name. Listing 6-4 is a 
program that outputs the current values of each of the Document object’s 
properties.

Listing 6-4: Outputting the Property Names and Values of the Document  
Object with for . . . in

<html>
<head>
 <title>document properties with values</title>
 <style>
   .columns{
   -webkit-column-count: 6; /* Chrome, Safari, Opera */
   -moz-column-count: 6; /* Firefox */
   column-count: 6;
   }

(continued)

Figure 6-4: 
A list of all  

the proper-
ties of a 

Document 
object using 
the for ...  

in loop.



90 Part I: Getting Started with JavaScript  

Listing 6-4 (continued)

 </style>
</head>
<body>
 <div class="columns">
   <script>
     for (var prop in document){
       document.write (prop + ": " + document[prop] + 

"<br>");
     }
   </script>
 </div>
</body>
</html>

Figure 6-5 shows the output of Listing 6-4. Notice that many of the values of 
properties are in square brackets ([ ]). The square brackets indicate that the 
value of the property has multiple elements, such as in the case of an array 
or object.

while loops
The while statement creates a loop that runs as long as a condition evaluates 
to true. Listing 6-5 shows a webpage containing an example of the while loop.

Figure 6-5: 
Results of  
outputting  

the property  
names and  

values of the 
Document 
object with 
for ...  

in.



91  Chapter 6: Getting into the Flow with Loops and Branches

Listing 6-5: Using a while Loop

<html>
<head>
 <title>Guess the Word</title>
</head>
<body>
 <script>
   var guessedWord = prompt("What word am I thinking 

of?");
   while (guessedWord != "sandwich") { // as long as the 

guessed word is not sandwich
     prompt("No. That's not it. Try again.");

}
     alert("Congratulations! That's exactly right!"); // 

do this after exiting the loop
 </script>
</body>
</html>

do . . . while
The do ... while loop works in much the same way as the while loop, except 
that it puts the statements before the expression to test against. The effect 
is that the statements within a do ... while loop will always execute as 
least once.

Listing 6-6 demonstrates the use of a do ... while loop.

Listing 6-6: Using a do . . . while Loop

<html>
<head>
 <title>Let's Count</title>
</head>
<body>
 <script>
   var i = 0;
   do {
     i++;
     document.write(I + "<br>");
   } while (i<10);
 </script>
</body>
</html>



92 Part I: Getting Started with JavaScript  

break and continue
You can use break and continue to interrupt the execution of a loop. The 
break statement was shown previously in this chapter in the context of a 
switch statement, where it serves to break out of the switch after a success-
ful match.

In a loop, break does much the same thing. It causes the program to imme-
diately exit the loop, no matter whether the conditions for the completion of 
the loop have been met.

For example, in Listing 6-7, the word-guessing game will progress just as 
it does in Listing 6-5, but the loop will immediately terminate if no value is 
entered.

Listing 6-7: Using a break in a while Loop

<html>
<head>
 <title>Guess the Word</title>
</head>
<body>
 <script>
   var guessedWord = prompt("What word am I thinking 

of?");
   while (guessedWord != "sandwich") { 
     if (guessedWord =="") {break;} // exit the loop  

right away if user doesn't enter a value
     prompt("No. That's not it. Try again.");
     }
   alert("Congratulations! That's exactly right!"); 
 </script>
</body>
</html>

The continue statement causes the current iteration of the loop to stop 
and tells the program to start up again with the next iteration of the loop, 
 skipping the statements that come after the continue statement.

Listing 6-8 shows a program that counts from 1 to 20, but only prints out even 
numbers. Notice that the program determines whether a number is even by 
using the modulus operator to test whether the current value of the counter 
is divisible by two:



93  Chapter 6: Getting into the Flow with Loops and Branches

Listing 6-8: Counting and Using continue to Display Even Numbers

<html>
<head>
 <title>Count and show me even numbers</title>
</head>
<body>
 <script>
   for (var i = 0; i <= 20; i++){
     if (i%2 != 0){
       continue;
     }
     document.write (i + " is an even number.<br>");
   }
 </script>
</body>
</html>

When used in this way, continue can replace the functionality of an else 
 statement.

Figure 6-6 shows the result of running Listing 6-8 in a browser.

The break and continue statements can be useful, but they can also be 
dangerous. Their small size and great power make them easy to overlook 
when reading through code. For this reason, some programmers consider 
using them inside of a loop to be a bad practice. For more information on 
why and the complexities of the issue, read this discussion:

http://programmers.stackexchange.com/questions/58237/are- 
break-and-continue-bad-programming-practices

Figure 6-6: 
Counting 

and using 
continue to 

display even 
numbers.

http://programmers.stackexchange.com/questions/58237/are-break-and-continue-bad-programming-practices
http://programmers.stackexchange.com/questions/58237/are-break-and-continue-bad-programming-practices


94 Part I: Getting Started with JavaScript  



Part II
Organizing Your JavaScript

 See the article “Underscore — A Utility Belt for JavaScript” at www.dummies.com/ 
extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


In this part . . .
 ✓ Discover how to work with functions.

 ✓ Find out how to create and use objects.

 ✓ See the article “Underscore — A Utility Belt for JavaScript”  
at www.dummies.com/extras/codingwith 
javascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


Getting Functional
In This Chapter

 ▶ Writing functions

 ▶ Documenting functions

 ▶ Passing parameters

 ▶ Returning values

 ▶ Organizing programs with functions

“I write as a function. Without it I would fall ill and die. It’s much a part of 
one as the liver or intestine, and just about as glamorous.”

— Charles Bukowski

F  
unctions help you reduce code repetition by turning frequently used 
bits of code into reusable parts. In this chapter, you write some 

 functions and use them to make otherwise tedious tasks easy and fun!

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Understanding the Function of Functions
Functions are mini programs within your programs. Functions serve to handle 
particular tasks within the main program that may be required multiple times 
by different parts of the program.

If you’ve read any of the preceding chapters, you’ve seen a few functions in 
action. The following example is a simple function that, when run, simply 
adds a z to the end of a string.

Chapter 7



98 Part II: Organizing Your JavaScript  

function addZ(astring) {
 aString += "z";
 return aString;
}

To try out this function, follow these steps:

1. Open the JavaScript Console in Chrome.

2. Type in the function.

You can type it all on one line, or you can press Shift+Enter or 
Shift+Return after each line to create a line break without executing 
the code.

3. Press Return or Enter after the final curly brace.

The console should write out undefined.

4. Type the following command, followed by Return or Enter, to run the 
function:

addZ("I have JavaScript skill");

The result of running this function is shown in Figure 7-1.

Functions are a fundamental part of JavaScript programming, and they have 
a lot of rules and special powers that you need to be aware of as a JavaScript 
coder. Don’t worry if you aren’t able to memorize each detail about functions. 
It will take some practice to understand some of the more abstract concepts, 
and you may even need to read this chapter again. Eventually, everything will 
become clear to you, so just stick with it!

Figure 7‑1:  
Running 

your first 
function 

in the 
JavaScript 

console.



99  Chapter 7: Getting Functional

Using Function Terminology
Programmers have a number of words that are important to understand 
when they talk about functions. We use these words extensively in this chap-
ter and throughout this book. The following list is a quick summary of some 
of the lingo you’ll run into when you’re working with functions.

Define a function
When a function appears in JavaScript code, it doesn’t run. It’s simply cre-
ated and made available for use at a later time. The creation of the function 
so that it can be used later on is called defining a function.

You only need to define a function once in a program or on a web page. If you 
accidentally define the same function more than once, however, JavaScript 
won’t complain. It will simply use the most recently defined version of the 
function.

For example:

var myFunction = new Function() {
};

or

function myFunction(){
};

Function head
The function head is the part of the function definition that includes the 
 function keyword, the function name, and the parentheses.

For example:

function myFunction()

Function body
The function body is made up of the statements between the curly braces of 
the function.



100 Part II: Organizing Your JavaScript  

For example:

{
 // function body
}

Call a function
When you use a function, it’s called calling the function. Calling a function 
causes the statements in the function body to be executed.

For example:

myFunction();

Defining parameters and  
passing  arguments
Parameters are names that you give to pieces of data that are provided to a 
function when it’s called. Arguments are the values you provide to functions. 
When a function is called with arguments (according to the specified param-
eters of the function), programmers refer to that as passing the arguments 
into the function.

The syntax for defining a parameter is as follows:

function myFunction(parameter) {

The syntax for calling a function with an argument is as follows:

myFunction(myArgument);

Return a value
In addition to being able to accept input from the outside world, functions 
can also send back values after they’re finished running. When a function 
sends back something, it’s called returning a value.

To return a value, use the return keyword. For example:

return myValue;



101  Chapter 7: Getting Functional

The Benefits of Using Functions
Listing 7-1 shows a program that adds numbers together. It works great 
and does exactly what it’s supposed to do, using a for ...... in loop (see 
Chapter 6).

Listing 7‐1: A Program for Adding Numbers Using the for . . . in Loop

<html>
<head>
  <title>Get the total</title>
</head>
<body>
  <script>
    var myNumbers = [2,4,2,7];
    var total = 0;
    for (oneNumber in myNumbers){
      total = total + myNumbers[oneNumber];
    }
    document.write(total);
  </script>
</body>
</html>

If we had multiple sets of numbers to add together, however, we’d need to 
write a new loop statement specifically for each new array of numbers.

Listing 7-2 turns the program from Listing 7-1 into a function and then uses 
that function to find the sums of the elements in several different arrays.

Listing 7-2: A Function for Adding Numbers from an Array

<html>
<head>
  <title>Get the sum</title>
</head>
<body>
  <script>
     /**
    *Adds elements in an array
    *@param {Array.<number>} numbersToAdd 
    *@return {Number} sum
    */
    function addNumbers(numbersToAdd) {
      var sum = 0;
      for (oneNumber in numbersToAdd) {
        sum = sum + numbersToAdd[oneNumber];

(continued)



102 Part II: Organizing Your JavaScript  

Listing 7-2 (continued)

      }
      return sum;
    }

    var myNumbers = [2,4,2,7];
    var myNumbers2 = [3333,222,111];
    var myNumbers3 = [777,555,777,555];
    var sum1 = addNumbers(myNumbers);
    var sum2 = addNumbers(myNumbers2);
    var sum3 = addNumbers(myNumbers3);

    document.write(sum1 + "<br>");
    document.write(sum2 + "<br>");
    document.write(sum3 + "<br>");

  </script>
</body>
</html>

Documenting JavaScript with JSDoc
It’s a good practice to always document your JavaScript code using a standard system. The most 
widely used JavaScript documentation system, and thus the de-facto standard, is JSDoc.

The JSDoc language is a simple markup language that can be inserted inside of JavaScript files. 
Currently in its third version, JSDoc is based on the JavaDoc system that’s used for documenting 
code written in the Java programming language.

After you’ve annotated your JavaScript files with JSDoc, you can use a documentation generator, 
such as jsdoc-toolkit, to create HTML files documenting the code.

JSDoc markup goes inside of special block comment tags. The only difference between JSDoc 
markup and regular JavaScript block comments is that JSDoc markup starts with /** and ends with 
*/, whereas normal block comments in JavaScript only require one asterisk after the beginning 
slash. The extra asterisk in JSDoc markup tags allows you to create normal block quotes without 
having them be a part of the generated documentation.

The figure shows some code from the open source Angular JS JavaScript framework that has 
been annotated using JSDoc.



103  Chapter 7: Getting Functional

Different parts and aspects of a program can be documented with JSDoc using JDDoc tags. Here 
are the most popular tags:

JSDoc Tag Explanation
@author Programmer’s name
@constructor Indicates that a function is a constructor
@deprecated Indicates the method is deprecated
@exception Describes an exception thrown by a method; Synonymous with @throws
@exports Specifies a member that is exported by the module
@param Describes a method parameter
@private Indicates a member is private
@return Describes a return value. Synonymous with @returns
@returns Describes a return value. Synonymous with @return
@see Records an association to another object
@this Specifies the types of the object to which the keyword this refers within 

a function
@throws Describes an exception thrown by a method
@version Indicates the version number of a library



104 Part II: Organizing Your JavaScript  

The block comment that precedes the function in Listing 7-2 follows the 
format specified by the JavaScript documenting system, JSDoc. By comment-
ing your functions using this format, you not only make your programs much 
easier to read, you also can use these comments to automatically generate 
documentation for your programs. We cover function documentation in the 
sidebar “Documenting JavaScript with JSDoc.” You can read more about 
JSDoc at http://usejsdoc.org.

Functions are a great time, work, and space saver. Writing a useful function 
may initially take longer than writing JavaScript code outside of functions, 
but in the long term, your programs will be better organized, and you’ll save 
yourself a lot of headaches if you get into the habit of writing functions.

Writing Functions
A function declaration must be written in a specific order. A function declara-
tion consists of the following items, in this order:

 ✓ Function keyword

 ✓ Name of the function

 ✓ Parentheses, which may contain one or more parameters

 ✓ Pair of curly brackets containing statements

Sometimes, a function’s whole purpose will be to write a message to the 
screen in a web page. An example of a time when it’s useful to have a function 
like this is for displaying the current date. The following example function 
writes out the current date to the browser window:

function getTheDate(){
 var rightNow = newDate();
 document.write(rightNow.toDateString());
}

Follow these steps to try out this function:

1. Open the JavaScript Console in Chrome.

2. Type the function into the console.

Use Shift + Return (or Shift + Enter) after typing each line, in order to 
create a line break in the console without executing the code.

http://usejsdoc.org


105  Chapter 7: Getting Functional

3. After you enter the final }, press Return (or Enter) to run the code.

Notice that nothing happens, except that the word undefined appears in 
the console, letting you know that the function has been accepted, but 
that it didn’t return a value.

4. Call the function by typing the name of the function (getTheDate) 
followed by parentheses, followed by a semicolon:

getTheDate();

The function prints out the current date and time to the browser window, 
and then the console displays undefined because the function doesn’t 
have a return value; its purpose is simply to print out the date to the 
browser window.

The default return value of functions is undefined, so technically, 
undefined is a return value.

Returning Values
In the example in the preceding section, we create a function that just prints 
a string to the browser window. After the single document.write statement 
executes, there are no more statements to run and so the program exits the 
function and continues with the next statement after the function call.

Most functions return a value (other than undefined) after their work is 
done. You can then use this value in the rest of the program. Listing 7-3 
shows a function that returns a value. The return value of the function is then 
assigned to a variable and printed to the console.

Listing 7-3: Returning a Value from a Function

function getHello(){
  return "Hello!";
}

var helloText = getHello();
console.log (helloText);

The return statement is generally the last statement in a function. When 
it executes, the function exits. You can use the return statement to send 
any type of literal value (such as "Hello!" or 3) outside of the function or 
to return the value of a variable, an expression, an array or object, or even 
another function! (See Listing 7-4)



106 Part II: Organizing Your JavaScript  

Listing 7-4: Returning the Result of an Expression

function getCircumference(){
  var radius = 12;
  return 2 * Math.PI * radius;
}

console.log (getCircumference());

Passing and Using Arguments
In order for functions to be able to do the same thing with different input, 
they need a way for programmers to give them input. In Listing 7-2, earlier in 
this chapter, the parentheses after the name of a function in its declaration 
are used to specify parameters for the function.

The difference between parameters and arguments can be confusing at first. 
Here’s how it works:

 ✓ Parameters are the names you specify in the function definition.

 ✓ Arguments are the values you pass to the function. They take on the 
names of the parameters when they are passed.

When you call a function, you include data (arguments) in the places where 
the function definition has parameters. Note that the arguments passed 
to the function must be listed in the same order as the parameters in the 
 function definition.

In the following function, we define two parameters for the myTacos function:

function myTacos(meat,produce){
...
}

When you call this function, you include data (arguments) in the places 
where the function definition has parameters. Note that the arguments 
passed to the function must be listed in the same order as the parameters in 
the function definition:

myTacos("beef","onions");

The values passed to the function will become the values of the local 
 variables inside of the function and will be given the names of the function’s 
parameters.



107  Chapter 7: Getting Functional

Listing 7-5 expands the myTacos function to print out the values of the two 
arguments to the console. Passing an argument is like using a var statement 
inside of the function, except that the values can come from outside of the 
function.

Listing 7-5: Referring to Arguments Inside a Function Using the  
Parameter Names

function myTacos(meat,produce){
  console.log(meat); // writes "beef"
  console.log(produce); // writes "onions"
}

myTacos("beef","onions");

You can specify up to 255 parameters in a function definition. However, it’s 
highly unusual to need to write a function that takes anywhere near that 
many parameters! Just for the sake of keeping your code clean and under-
standable, if you find you need a lot of parameters, you should think about 
whether there’s a better way to do it.

Passing arguments by value
If you use a variable with one of the primitive data types to pass your 
 argument, the argument passes by value. What this means is the new vari-
able created inside the function is totally separate from the variable used to 
pass the argument, and no matter what happens after the value gets into the 
 function, the variable outside of the function won’t change.

Primitive data types in JavaScript are string, number, Boolean, 
undefined, and null.

In Listing 7-6, you see that several variables are created, given values, and 
then passed into a function. In this case, the parameters of the function have 
the same names as the variables used to pass the arguments. Even though 
the values of the variables inside the function get changed, the values of the 
original variables remain the same.



108 Part II: Organizing Your JavaScript  

Listing 7-6: Demonstration of Arguments Passed by Value

<html>
<head>
  <title>Arguments Passed By Value</title>
</head>
<body>
  <script>
    /**
    * Increments two numbers
    * @param {number} number1
    * @param {number} number2
    */
    function addToMyNumbers(number1,number2){
      number1++;
      number2++;
      console.log("number 1: " + number1);
      console.log("number 2: " + number2);
    }

    var number1 = 3;
    var number2 = 12;

    addToMyNumbers(number1,number2); // pass the arguments

    console.log("original number1: " + number1);
    console.log("original number2: " + number2);
  </script>
</body>
</html>

Figure 7-2 shows the output of this program in the JavaScript console.

Figure 7‑2: 
Variables 
outside of 
a  function 

aren’t 
affected by 

what  
happens 

inside the 
function.



109  Chapter 7: Getting Functional

Passing arguments by reference
Whereas JavaScript primitive variables (strings, numbers, Boolean, undefined, 
and null) are passed to functions by value, JavaScript objects are passed by 
reference. What this means is that if you pass an object as an argument to a 
function, any changes to that object within the function will also change the 
value outside of the function. The implications and uses of passing by refer-
ence are beyond the scope of this chapter but are covered in Chapter 8.

Calling a function without all  
the arguments
You don’t need to always call a function with the same number of parameters 
as are listed in the function definition. If a function definition contains three 
parameters, but you call it with only two, the third parameter will create a 
variable with a value of undefined in the function.

Setting default parameter values
If you want arguments to default to something other than undefined, you 
can set default values. The most widely supported and generally accepted 
way to do this is to test the arguments inside of the function value and set 
default values if the data type of the argument is undefined.

For example, in Listing 7-7, the function takes one parameter. Inside the func-
tion, a test is done to check whether the argument is undefined. If so, it will 
be set to a default value.

Listing 7-7: Setting Default Argument Values

function welcome(yourName){
 if (typeof yourName === 'undefined'){
   yourName = "friend";
 }

In the next version of JavaScript, called ECMAScript 6, you will be able to set 
default values for parameters inside the function head, as shown in Listing 7-8.

Listing 7-8: Setting Default Arguments in the Function Head

function welcome(yourName = "friend") {
 document.write("Hello," + yourName);
}



110 Part II: Organizing Your JavaScript  

EMCAScript 6 isn’t yet supported in every browser as of the publication date 
of this book, so this method of setting default argument values may not work 
for all the users of your program. For this reason, it’s still best to use the 
more compatible method of setting defaults, as shown in Listing 7-7.

Calling a function with more argument 
than parameters
If you call a function with more arguments than the number of parameters, 
local variables won’t be created for the additional arguments because the 
function has no way of knowing what to call them.

There is a neat trick that you can use to retrieve the values of arguments 
that are passed to a function but don’t have a matching parameter: the 
Argument- object.

Getting into arguments with  
the arguments object
When you don’t know how many arguments will be passed into a function, 
you can use the argument object, which is built-in to functions by JavaScript, 
to retrieve all the arguments and make use of them.

The Arguments object contains an array of all the arguments passed to a 
function. By looping through the array (using the for loop or the for ... in 
loop — see Chapter 6), you can make use of every argument, even if the 
number of arguments may change each time the function is called.

Listing 7-9 demonstrates the use of the Arguments object to present a wel-
come message to someone with two middle names as well as someone with 
one middle name.

Listing 7-9: Using the Arguments Object to Define a Function  
That Can Add an Arbitrary Number of Numbers

<html>
<head>
  <title>Welcome Message</title>
</head>
<body>
  <script>



111  Chapter 7: Getting Functional

    /**
    *Flexible Welcome Message
    */
    function flexibleWelcome(){
      var welcome = "Welcome,";
      for (i = 0; I < arguments.length; i++) {
        welcome = welcome + arguments[i] + "";
      }
      return welcome;
      }
    document.write(flexibleWelcome("Christopher" ,  

"James" , "Phoenix" , "Minnick") + "<br>");
    document. write(flexibleWelcome("Eva" , "Ann" , 

"Holland") + "<br>");

  </script>
</body>
</html>

Function Scope
Variables created inside a function by passing arguments or using the  var 
keyword are only available within that function. Programmers call this fea-
ture of JavaScript function scope. Variables created inside of a function are 
destroyed when the function exits.

However, if you create a variable inside a function without using the var 
keyword, that variable becomes a global variable and can be changed and 
accessed anywhere in your program.

Accidentally creating a global variable is the source of a large number of 
JavaScript bugs and errors, and it’s recommended that you always properly 
scope variables and never create a global variable unless it’s absolutely 
 necessary.

Anonymous Function
The function name part of the function head isn’t required, and you can 
create functions without names. This may seem like an odd thing to do 
because a function with no name is like a dog with no name; you have no way 
to call it! However, anonymous functions can be assigned to variables when 



112 Part II: Organizing Your JavaScript  

they are created, which gives you the same capabilities as using a name 
within the function head:

var doTheThing = function(thingToDo) {
 document.write("I will do this thing: " + thingToDo);
}

Knowing the differences between  
anonymous and named functions
There are a couple important, and sometimes useful, differences between 
creating a named function and assigning an anonymous function to a vari-
able. The first is that an anonymous function assigned to a variable only 
exists and can only be called after the program executes the assignment. 
Named functions can be accessed anywhere in a program.

The second difference between named functions and anonymous functions 
assigned to variables is that you can change the value of a variable and 
assign a different function to it at any point. That makes anonymous func-
tions assigned to variables more flexible than named functions.

Self-executing anonymous functions
Another use for anonymous functions is as self-executing functions. A self- 
executing anonymous function is a function that executes as soon as it’s  created.

To turn a normal anonymous function into a self-executing function, you 
simply wrap the anonymous function in parentheses and add a set of paren-
theses and a semicolon after it.

The benefit of using self-executing anonymous functions is that the variables 
you create inside of them are destroyed when the function exits. In this way, 
you can avoid conflicts between variable names, and you avoid holding vari-
ables in memory after they’re no longer needed. Listing 7-10 demonstrates 
how to write and use self-executing anonymous functions.

Listing 7-10: Using a Self-Executing anonymous function 

var myVariable = "I live outside the function.";
(function() {
  var myVariable = "I live in this anonymous function";
  document.write(myVariable);
})();
document.write(myVariable);



113  Chapter 7: Getting Functional

Web application programmers use anonymous functions regularly to accom-
plish a wide variety of modern effects in web pages. You read more about 
how to use them in Chapters 15 and 16.

Do it Again with Recursion
You can call functions from outside of the function or from within other 
 functions. You can even call a function from within itself. When a function 
calls itself, it’s using a programming technique called recursion.

You can use recursion in many of the same cases where you would use a 
loop, except that it repeats the statements within a function.

Listing 7-11 shows a simple recursive function. This recursive function has 
one big problem, however. Can you spot it?

Listing 7-11: A Fatally Flawed Recursive Function

function squareItUp(startingNumber) {
  var square = startingNumber * startingNumber;
  console.log(square);
  squareItUp(square);
}

Do you see the issue with this function? It never ends. It will just keep on 
 multiplying numbers together until you stop it.

Running this function will probably crash your browser, if not your computer. 
No permanent damage will be done, of course, but it’s enough for you to just 
read the code and notice the problem here.

Listing 7-12 improves upon the squareItUp() function by providing what’s 
called a base case. A base case is the condition under which a recursive func-
tion’s job is done and it should halt. Every recursive function must have a 
base case.

Listing 7-12: A Recursive Function to Square Numbers Until the  
Number Is Greater Than 1,000,000

function squareItUp(startingNumber) {
  square = startingNumber * startingNumber;

(continued)



114 Part II: Organizing Your JavaScript  

Listing 7-12 (continued)

  if (square > 1000000) {
    console.log(square);
  } else {
    squareItUp(square);
  }
}

There. That’s better! But, this function still has a big problem. What if some-
one passes a negative number, zero or 1 into it? The result of any of these 
cases would still be an infinite loop. To protect against such a situation, we 
need a termination condition. In Listing 7-13, a check to make sure that the 
argument isn’t less than or equal to 1 and that it isn’t something other than a 
number has been added. In both cases, the function will stop immediately.

Listing 7-13: A Recursive Function with Termination and Base Conditions

function squareItUp(startingNumber) {

  // Termination conditions, invalid input
  if ((typeof startingNumber != 'number') || 

(startingNumber <= 1)) {
    return - 1; // exit the function
  }

  square = staringNumber * startingNumber;

  //Base condition
  if (square > 1000000) {
      console.log(square); // Print the final value
    } else { // If the base condition isn't met, do it 

again.
      squareItUp(square);
  }
 
}

Functions within Functions
Functions can be declared within functions. Listing 7-14 demonstrates how 
this technique works and how it affects the scope of variables created within 
the functions.



115  Chapter 7: Getting Functional

Listing 7-14: Declaring Functions within Functions

function turnIntoAMartian(myName) {

  function recallName(myName) { 
    var martianName = myName + " Martian";
  }
  recallName(myName);
  console.log(martianName); // returns undefined
 
}

The preceding example demonstrates how nesting a function within a func-
tion creates another layer of scope. Variables created in the inner function 
aren’t directly accessible to the containing function. In order to get their 
values, a return statement is needed, as shown in Listing 7-15.

Listing 7-15: Returning Values from an Inner Function

function turnIntoAMartian(myName) {

  function recallName(myName) { 
   var martianName = myName + " Martian";
   return martianName;
 }
 var martianName = recallName(myName);
 console.log(martianName);

}



116 Part II: Organizing Your JavaScript  



Making and Using Objects
In This Chapter

 ▶ Understanding objects

 ▶ Using properties and methods

 ▶ Creating objects

 ▶ Using dot notation

 ▶ Working with objects

“We cannot do anything with an object that has no name.”

— Maurice Blanchot “Literature and the Right to Death”

I 
n this chapter, we show you why you should use objects, how to use 
them, and what special powers they have to make your programs and 

your programming better.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Object of My Desire
In addition to the five primitive data types (see Chapter 3,) JavaScript 
also has a data type called object. JavaScript objects encapsulate data and 
 functionality in reusable components.

To understand what objects are and how they work, it’s helpful to compare 
JavaScript objects with physical, real‐life things. Take a guitar, for example.

Chapter 8



118 Part II: Organizing Your JavaScript  

A guitar has things that make up what it is and has things that it does. Here 
are a few facts about the guitar we’re using for this example:

 ✓ It has six strings.

 ✓ It’s black and white.

 ✓ It’s electric.

 ✓ Its body is solid.

Some of the things this guitar can do (or that can be done to the guitar) are

 ✓ Strum strings

 ✓ Increase the volume

 ✓ Decrease the volume

 ✓ Tighten the strings

 ✓ Adjust the tone

 ✓ Loosen the strings

If this guitar were a JavaScript object instead of a real‐life object, the things 
that it does would be called its methods, and the things that make up the 
guitar, such as its strings and body type, would be its properties.

Methods and properties in objects are both written the same way; as name‐
value pairs, with a colon separating the name and the value. When a property 
has a function as its value, it’s known as a method.

In reality, everything within an object is a property. We just call a property 
with a function value by a different name: a method.

Listing 8-1 shows what our guitar’s properties might look like as a JavaScript 
object.

Listing 8-1: A JavaScript Guitar Object

var guitar = {
 bodyColor: "black",
 scratchPlateColor: "white",
 numberOfStrings: 6,
 brand: "Yamaha",
 bodyType: "solid",
 strum: function() {...},
 tune: function() {...}
};



119  Chapter 8: Making and Using Objects

Creating Objects
JavaScript has two ways to create objects:

 ✓ By writing an object literal

 ✓ By using the object constructor method

Which one you choose depends on the circumstances. In the next sections, 
you discover the pros and cons of each and when one is preferred over 
the other.

Defining objects with object literals
The object literal method of creating objects starts with a standard variable 
definition, using the var keyword, followed by the assignment operator:

var person =

In the right side of the statement, however, you’ll use curly braces with 
comma‐separated name/value pairs:

var person = {eyes: 2, feet: 2, hands: 2, eyeColor: 
"blue"};

If you don’t know the properties that your object will have when you create it 
or if your program requires that additional properties be added a later time, 
you can create the object with few, or even no properties, and then add prop-
erties to it later:

var person = {};
person.eyes = 2;
person.hair = "brown";

The methods in the examples earlier in this book have mostly been used 
to output text. document.write and console.log both use this method 
of separating properties with a period, so it may look familiar to you. The 
dot between the object name and the property indicates that the prop-
erty belongs to that object. Dot notation is covered in more detail in the 
“Retrieving and Setting Object Properties” section, later of this chapter.

Another thing to notice about objects is that, like arrays, objects can contain 
multiple different data types as the values of properties.



120 Part II: Organizing Your JavaScript  

The not‐so‐well‐kept secret to really understanding JavaScript is in knowing 
that arrays and functions are types of objects and that the number, string, 
and Boolean primitive data types can also be used as objects. What this 
means is that they have all the properties of objects and can be assigned 
properties in the same way as objects.

Defining objects with an  
Object  constructor
The second way to define an object is by using an Object constructor. This 
method declares the object using new Object and then populates it with 
properties. An example of using an Object constructor is shown in Listing 8-2.

Listing 8-2: Using an Object Constructor

var person = new Object();
person.feet = 2;
person.name = "Sandy";
person.hair = "black";

The Object constructor method of creating objects can be used, but it’s gen-
erally regarded as the inferior way to create objects. The main reasons are

 ✓ It requires more typing than the object literal method.

 ✓ It doesn’t perform as well in web browsers

 ✓ It’s more difficult to read than the object literal method.

Retrieving and Setting Object Properties
After you create an object and define its properties, you’ll want to be able to 
retrieve and change those properties. The two ways to access object proper-
ties are by using dot notation or square brackets notation.

Dot notation
In dot notation, the name of an object is followed by a period (or dot), 
 followed by the name of the property that you want to get or set.

To create a new property called firstName in the person object or to 
modify the value of an existing firstName property, you would use a 
 statement like the following:



121  Chapter 8: Making and Using Objects

person.firstName = "Glenn";

If the firstName property doesn’t already exist, this statement will create it. 
If it does exist, it will update it with a new value.

To retrieve the value of a property using dot notation, you would use the 
exact same syntax, but you would move the object and property names 
(called the property accessor) into a different position in the statement. For 
example, if you want to concatenate the values of person.firstName and 
person.lastName and assign them to a new variable called fullName, you 
would do the following:

var fullname = person.firstName + person.lastName;

Or, to write out the value of a person.firstName to your html document, 
just use the property accessor as you would any variable; such as

document.write (person.firstName);

Dot notation is generally the faster to type and easier to read way to set and 
retrieve object property values.

Square bracket notation
Square bracket notation uses, you guessed it, square brackets after the 
object name in order to get and set property values. To set a property value 
with square bracket notation, put the name of the property in quotes inside 
square brackets, like this:

person["firstName"] = "Iggy";

Square bracket notation has a couple of capabilities that dot notation 
doesn’t. The main one is that you can use variables inside of square bracket 
notation for cases where you don’t know the name of the property that you 
want to retrieve when you’re writing your program.

The following example does the exact same thing as the preceding example, 
but with a variable inside of the square brackets rather than a literal string. 
Using this technique, you can make a single statement that can function in 
many different circumstances, such as in a loop or a function:

var personProperty = "firstName";
person[personProperty] = "Iggy";



122 Part II: Organizing Your JavaScript  

Listing 8-3 shows a simple program that creates an object called chair, then 
loops through each of the object’s properties, and asks the user to input 
values for each. Once the user has entered a value for each of the properties, 
the writeChairReceipt function is called, which prints out each proper-
ties along with the value the user entered.

Listing 8-3: Chair Configuration Script

<html>
<head>
 <title>The WatzThis? Chair Configurator</title>
</head>
<body>
 <script>
   var myChair = {
     "cushionMaterial" : "", 
     "numberOfLegs" : "", 
     "legHeight" : ""
   };

   function configureChair() {
    var userValue;
    for (var property in myChair) { 
      if (myChair.hasOwnProperty(property)) { 
        userValue = prompt("Enter a value for " + 

property);
        myChair[property] = userValue;
       } 
     }
   }

   function writeChairReceipt() {
    document.write("<h2>Your chair will have the following 

configuration:</h2>");
    for (var property in myChair) { 
      if (myChair.hasOwnProperty(property)) { 
        document.write(property + ": " + myChair[property] 

+ "<br>");
       }
     }
   }

   configureChair();
   writeChairReceipt();
 </script>
</body>
</html>



123  Chapter 8: Making and Using Objects

Deleting Properties
You can delete properties from objects by using the delete operator. Listing 8-4 
demonstrates how this operator works.

Listing 8-4: Using the delete Operator

var myObject = {
 var1 : "the value",
 var2 : "another value",
 var3 : "yet another"
};

// delete var2 from myObject
delete myObject.var2;

// try to write the value of var2
document.write(myObject.var2); // result is an error

Working with Methods
Methods are properties with functions for their values. You define a method 
the same way that you define any function. The only difference is that a 
method is assigned to a property of an object. Listing 8-5 demonstrates the 
creation of an object with several properties, one of which is a method.

Listing 8-5: Creating a Method

var sandwich = {
meat:"",
cheese:"",
bread:"",
condiment:"",
makeSandwich: function (meat,cheese,bread,condiment) {
 sandwich.meat = meat;
 sandwich.cheese = cheese;
 sandwich.bread = bread;
 sandwich.condiment = condiment;
 var mySandwich = sandwich.bread + ", " + sandwich.meat +  

", " + sandwich.cheese + ", " + sandwich.
condiment;

 return mySandwich;
}
}



124 Part II: Organizing Your JavaScript  

To call the makeSandwich method of the sandwich object, you can then use 
dot notation just as you would access a property, but with parentheses and 
parameters supplied after the method name, as shown in Listing 8-6.

Listing 8-6: Calling a Method

<html>
<head>
 <title>Make me a sandwich</title>
</head>
<body>
 <script>

   var sandwich = {
   meat:"",
   cheese:"",
   bread:"",
   condiment:"",
   makeSandwich: function (meat,cheese,bread,condiment) {
     sandwich.meat = meat;
     sandwich.cheese = cheese;
     sandwich.bread = bread;
     sandwich.condiment = condiment;
     var mySandwich = sandwich.bread + 
       ", " + sandwich.meat + ", " + 
       sandwich.cheese + ", " + 
       sandwich.condiment;
     return mySandwich;
     }
   }

   var sandwichOrder =  
sandwich.makeSandwich("ham","cheddar","wheat","
spicy mustard");

   document.write (sandwichOrder);

 </script>
</body>
</html>

Using this
The this keyword is a shorthand for referencing the containing object of 
a method. For example, in Listing 8-7, every instance of the object name, 
sandwich, has been replaced with this. When the makeSandwich function 
is called as a method of the sandwich object, JavaScript understands that 
this refers to the sandwich object.



125  Chapter 8: Making and Using Objects

Listing 8-7: Using this Inside a Method

<html>
<head>
 <title>Make a sandwich</title>
</head>
<body>
 <script>

   var sandwich = {
     meat:"",
     cheese:"",
     bread:"",
     condiment:"",
     makeSandwich: function(meat,cheese,bread,condiment){
       this.meat = meat;
       this.cheese = cheese;
       this.bread = bread;
       this.condiment = condiment;
       var mySandwich = this.bread + ", " + this.meat + ", 

" + this.cheese + ", " + this.condiment;
       return mySandwich;
       }
     }

     var sandwichOrder =  
sandwich.makeSandwich("ham","cheddar","wheat","
spicy mustard");

     document.write (sandwichOrder);

 </script>
</body>
</html>

The result of using the this keyword instead of the specific object name is 
exactly the same in this case.

Where this becomes very useful is when you have a function that may apply 
to multiple different objects. In that case, the this keyword will reference 
the object that it’s called within, rather than being tied to a specific object.

In the next sections, you find out about constructor functions and inheri-
tance, both of which are enabled by the humble this statement.

An Object-Oriented Way to Become 
Wealthy: Inheritance

When you create objects, you’re not just limited to creating specific objects, 
such as your guitar, your car, your cat, or your sandwich. The real beauty of 



126 Part II: Organizing Your JavaScript  

objects is that you can use them to create types of objects, from which other 
objects can be created.

If you read the earlier sections in the chapter, every object created has been 
constructed directly from the Object type of object.

The examples of the constructor method of creating an object from the 
“Creating Objects” section, earlier in this chapter, demonstrates this clearly:

var person = new Object();

Here, a new person object of the type Object is created. This new person 
object contains all the default properties and methods of the Object type, 
but with a new name. You can then add your own properties and methods to 
the person object to make it specifically describe what you mean by person.

var person = new Object();
person.eyes = 2;
person.ears = 2;
person.arms = 2;
person.hands = 2;
person.feet = 2;
person.legs = 2;
person.species = "Homo sapien";

So, now you’ve set some specific properties of the person object. Imagine 
that you want to create a new object that’s a specific person, like Willie 
Nelson. You could simply create a new object called willieNelson and 
give it all the same properties as the person object, plus the properties that 
make Willie Nelson unique.

var willieNelson = new Object();
willieNelson.eyes = 2;
willieNelson.ears = 2;
willieNelson.arms = 2;
willieNelson.hands = 2;
willieNelson.feet = 2;
willieNelson.legs = 2;
willieNelson.species = "Homo sapien";
willieNelson.occupation = "musician";
willieNelson.hometown = "Austin";
willieNelson.hair = "Long";
willieNelson.genre = "country";

This method of defining the willieNelson object is wasteful, however. It 
requires you to do a lot of work, and there’s no indication here that Willie 
Nelson is a person. He just happens to have all the same properties as 
a person.



127  Chapter 8: Making and Using Objects

The solution is to create a new type of object, called Person and then make 
the willieNelson object be of the type Person.

Notice that when we talk about a type of object, we always capitalize the 
name of the object type. This isn't a requirement, but it is a nearly universal 
convention. For example, we say

var person = new Object();

or

var willieNelson = new Person();

Constructing Objects with  
constructor functions
To create a new type of object, you define a new constructor function. 
Constructor functions are formed just like any function in JavaScript, but 
they use the this keyword to assign properties to a new object. The new 
object then inherits the properties of the object type.

Here is a constructor function for our Person object type:

function Person(){
 this.eyes = 2;
 this.ears = 2;
 this.arms = 2;
 this.hands = 2;
 this.feet = 2;
 this.legs = 2;
 this.species = "Homo sapien";
}

To create a new object of the type Person now, all you need to do is to 
assign the function to a new variable. For example:

var willieNelson = new Person()

The willieNelson object inherits the properties of the Person object 
type. Even though you haven't specifically created any properties for the 
willieNelson object, it contains all the properties of Person.



128 Part II: Organizing Your JavaScript  

To test this out, run the code in Listing 8-8 in a web browser.

Listing 8-8: Testing Inheritance

<html>
<head>
 <title>Inheritance demo</title>
</head>
<body>
 <script>

   function Person(){
     this.eyes = 2;
     this.ears = 2;
     this.arms = 2;
     this.hands = 2;
     this.feet = 2;
     this.legs = 2;
     this.species = "Homo sapien";
   }
   var willieNelson = new Person();
   alert("Willie Nelson has " + willieNelson.feet + " 

feet!");
 </script>
</body>
</html>

The result of running Listing 8-8 in a browser is shown in Figure 8-1.

Figure 8-1: 
Willie 

Nelson 
is a 

Person



129  Chapter 8: Making and Using Objects

Modifying an object type
Suppose that you have your Person object type, which serves as the proto-
type for several objects. At some point you realize that the person, as well as 
all the objects that inherit from it, ought to have a few more properties.

To modify a prototype object, use the prototype property that every object 
inherits from Object. Listing 8-9 shows how this works.

Listing 8-9: Modifying a prototype Object

function Person(){
 this.eyes = 2;
 this.ears = 2;
 this.arms = 2;
 this.hands = 2;
 this.feet = 2;
 this.legs = 2;
 this.species = "Homo sapien";
}

var willieNelson = new Person();
var johnnyCash = new Person();
var patsyCline = new Person();

// Person needs more properties!
Person.prototype.knees = 2;
Person.prototype.toes = 10;
Person.prototype.elbows = 2;

// Check the values of existing objects for the new 
properties

document.write (patsyCline.toes); // outputs 10

Creating Objects with Object.create
Yet another way to create objects from other objects is to use the 
Object.create method. This method has the benefit of not requiring you 
to write a constructor function. It just copies the properties of a specified 
object into a new object. When an object inherits from another object, the 
object it inherits from is called the prototype.



130 Part II: Organizing Your JavaScript  

Listing 8-10 shows how Object.create can be used to create the 
willieNelson object from a prototype.

Listing 8-10: Using Object.create to Create an Object from a  
Prototype

// create a generic Person
var Person = {
 eyes: 2,
 arms: 2,
 feet: 2
}

// create the willieNelson object, based on Person
var willieNelson = Object.create(Person);

// test an inherited property
document.write (willieNelson.feet); // outputs 2



Part III
JavaScript on the Web

 Find out how to deal with slow web pages in the article “Deferred Loading with 
JavaScript” at www.dummies.com/extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript


In this part . . .
 ✓ Find out how to use the Window object to control the 

browser.

 ✓ Master manipulating documents with the DOM.

 ✓ Get the inside scoop on using events in JavaScript.

 ✓ Figure out how to integrate input and output.

 ✓ Discover how to work with CSS and graphics.

 ✓ Find out how to deal with slow web pages in the article 
“Deferred Loading with JavaScript” at www.dummies.com/ 
extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


Controlling the Browser with  
the Window Object

In This Chapter
 ▶ Understanding the BOM (Browser Object Model)

 ▶ Opening and closing windows

 ▶ Getting windows properties

 ▶ Resizing windows

“In making theories, always keep a window open so that you can throw one 
out if necessary.”

— Bela Lugosi

T 
he Browser Object Model (BOM) allows JavaScript to interact with the 
functionality of the web browser. Using the BOM, you can create and 

resize windows, display alert messages, and change the current page being 
displayed in the browser.

In this chapter, you discover what can be done with the browser window and 
how to use it to write better JavaScript programs.

Understanding the Browser Environment
Web browsers are complicated pieces of software. When they work well, 
they operate seamlessly and integrate all their functions into a smooth and 
seemingly simple web browsing experience. We all know that web browsers 
have an occasional hiccup and sometimes even crash. To understand why 
this happens, and to be able to make better use of browsers, it’s important 
to know the many different parts of the web browser and how these parts 
 interact with each other.

Chapter 9



134 Part III: JavaScript on the Web  

The user interface
The part of the web browser that you interact with when you type in a URL, 
click the home button, create or use a bookmark, or change your browser 
settings is called the user interface, or browser chrome (not to be confused 
with Google’s Chrome browser).

The browser chrome consists of the web browser’s menus, window frames, 
toolbars, and buttons that are outside of the main content window where 
web pages load, as shown in Figure 9-1.

Loader
The loader is the part of a web browser that communicates with web servers 
and downloads web pages, scripts, CSS, graphics, and all the other compo-
nents of a web page. Most often, loading is the part of displaying a web page 
that creates the longest wait time for the user.

Figure 9-1:  
The browser 

chrome.



135  Chapter 9: Controlling the Browser with the Window Object 

The HTML page is the first part of a web page that must be downloaded, as it 
contains links and embedded scripts and styles that need to be processed in 
order to display the page.

Figure 9-2 shows the Chrome Developer Tools’ Network tab. It displays a 
graphical view of everything that happens during the loading of a web page, 
along with a timeline showing how long the loading of each part takes.

Once the HTML document is downloaded, browsers will open several con-
nections to the server in order to download the other parts of the web page 
as quickly as possible. Generally, the parts of a web page that are linked from 
an HTML document (also known as the resources) are loaded in the order 
in which they appear in the HTML document. For example, a script that is 
linked in the head element of the page will be loaded before one that’s linked 
at the bottom of the page.

Figure 9-2:  
Web 

browser 
loading.



136 Part III: JavaScript on the Web  

The load order of resources is critical to the efficiency and speed at which 
the page can be displayed to the user. In order for a web page to be dis-
played correctly, the CSS styles that apply to that page need to be loaded and 
parsed. Because of this, CSS should always be loaded in the head element at 
the top of the web page.

JavaScript sometimes affects the display of a web page as well, but more 
often, it affects only the functionality. When a script will affect the display of 
a web page, it should be loaded in the head of the document (after the CSS). 
Scripts that aren’t critical to how the web page appears should be linked 
from the very end of the body element (right before the </body>), so as to 
not create a blocking scenario in which the browser waits for scripts to load 
before displaying anything to the user.

HTML parsing
After a web page is downloaded, the HTML parsing component of the browser 
goes to work parsing the HTML to create a model (called the Document 
Object Model or DOM) of the web page. The DOM, which is covered in detail 
in Chapter 10, is like a map of your web page. JavaScript programmers use 
this map to manipulate and access all the different parts of a web page.

Upon completion of the HTML parsing, the browser begins downloading the 
other components of the web page.

CSS parsing
Once the CSS for a web page is completely downloaded, the web browser will 
parse the styles and figure out which ones apply to the HTML document. CSS 
parsing is a complex process involving multiple passes over a document in 
order to apply each style correctly and to take into account how the styles 
impact each other.

JavaScript parsing
The next step in displaying a web page is the JavaScript parsing. The 
JavaScript parser compiles and runs every script in your web page in the 
order in which it appears in the document. If your JavaScript code adds or 
removes elements, text, or styles within the HTML DOM, the browser will 
update the HTML and CSS renderings accordingly.



137  Chapter 9: Controlling the Browser with the Window Object 

Layout and rendering
Finally, once all the web page’s resources have been loaded and parsed, the 
browser determines how to display the page and then displays it. Unless 
you’ve specified that a script included earlier in the document should wait 
until the end to be executed, the layout and rendering of your scripts will 
occur in the order they’re included in the document.

In general, it’s better to display a web page to the user as quickly as possible, 
even if the page may not be fully functional when it first appears. Modern 
websites frequently employ this strategy specifically (called deferred loading) 
to improve the perceived performance of their pages. If you’ve ever opened a 
web page and had to wait for a moment before you can use a form or interac-
tive element, you’ve seen deferred loading in action.

Igniting the BOM
JavaScript programmers can find out information about a user’s web browser 
and control aspects of the user’s experience through an API called the 
Browser Object Model.

There is no official standard for the Browser Object Model. Different brows-
ers implement it in different ways. However, there are some generally 
accepted standards for how JavaScript interacts with web browsers.

The Navigator object
The Navigator object provides JavaScript with access to information about 
the user’s web browser. The Navigator object takes its name from the first 
web browser to implement it, Netscape Navigator. The Navigator object 
isn’t built into JavaScript. Rather, it’s a feature of web browsers that is accessible 
using JavaScript. Nearly every web browser (and every modern web browser) 
has adopted the same terminology to refer to this highest‐level browser object.

The Navigator object accesses helpful information such as

 ✓ The name of the web browser

 ✓ The version of the web browser

 ✓ The physical location of the computer the browser is running on (if the 
user allows the browser to access geolocation data).

 ✓ The language of the browser

 ✓ The type of computer the browser is running on



138 Part III: JavaScript on the Web  

Table 9-1 shows all the properties of the browser Navigator object.

To get the properties of the Navigator object, you use the same syntax 
used to get the properties of any object — namely, dot notation or brackets 
notation. Listing 9.1, when opened in a web browser, will display all the cur-
rent properties and values of the Navigator object.

Listing 9-1: Properties of the Navigator Object and Their Values

<html>
<head>
  <style> 
    .columns {
     -webkit-column-count: 6; /* Chrome, Safari, Opera */
     -moz-column-count: 6; /* Firefox */
     column-count: 6;
     }
  </style>
</head>
<body>
  <div class="columns">
    <script>
      for (var prop in navigator){
        document.write (prop + ": " + navigator[prop] + 

"<br>");
      }
   </script>
 </div>
</body>
</html>

Table 9-1 The Properties of the Navigator Object

Property Use
appCodeName Gets the code name of the browser

appName Gets the name of the browser

appVersion Gets the browser version information

cookieEnabled Tells whether cookies are enabled in the browser

geolocation Can be used to locate the user’s physical location

language Gets the language of the browser

onLine Identifies whether the browser is online

platform Gets the platform the browser was compiled for

product Gets the browser engine name of the browser

userAgent Gets the user‐agent the browser sends to web servers.



139  Chapter 9: Controlling the Browser with the Window Object 

Figure 9-3 shows the output of Listing 9.1 when opened in a web browser.

If you run Listing 9.1 yourself, you’ll notice something interesting about 
the output: The values for the AppName properties are seemingly just plain 
wrong. For example, the browser used to generate the Figure 9-3 was Google 
Chrome, but AppName lists it as Netscape.

This misleading value is a relic from the days when programmers used the 
properties of the Navigator object to detect whether a user was using a 
particular browser and supported certain features.

When new browsers, such as Chrome and Firefox, came along, those brows-
ers adopted the Netscape browser AppName value in order to make sure they 
were compatible with websites that detected features in this way.

Today, browser detection isn’t recommended, and you can use better ways 
to detect browser support for particular functionality than by looking at the 
AppName property. The most common way to detect features today is by 
examining the DOM for objects associated with the feature you want to use. 
For example, if you want to find out if a browser supports the HTML5 audio 
element, you can use the following test:

var test_audio= document.createElement("audio");
if (test_audio.play) {
 console.log ("Browser supports HTML5 audio");
 } else {
 console.log ("Browser doesn't support HTML5 audio");
 }

Figure 9-3:  
Listing all of  

the properties  
of the 

Navigator 
object with  

their values.



140 Part III: JavaScript on the Web  

The Window object
The main area of a web browser is called the window. This is the area into 
which HTML documents (and associated resources) load. Each tab in a web 
browser is represented in JavaScript by an instance of the Window object. 
The Window object’s properties are listed in Table 9-2.

Table 9-2 The Window Object’s Properties

Property Use
closed A Boolean value indicating whether a window has 

been closed or not
defaultStatus Gets or sets the default text in the status bar of a 

window
document Refers to the Document object for the window
frameElement Gets the element, such as <iframe> or <object>, 

that the window is embedded in
frames Lists all the subframes in the current window
history Gets the user’s browser history for the current 

window.
innerHeight Gets the inner height of the window
innerWidth Gets the inner width of the window
length Gets the number of frames in the window
location Gets the Location object for the window
name Gets or sets the name of the window
navigator Gets the Navigator object for the window
opener Gets the Window object that created the current 

window
outerHeight Gets the outer height of the window, including 

 scrollbars and toolbars
pageXOffset Gets the number of pixels that have been scrolled 

 horizontally in the window
pageYOffset Gets the number of pixels that have been scrolled 

 vertically in the window
parent Refers to the parent of the current window
screen Refers to the Screen object of the window



141  Chapter 9: Controlling the Browser with the Window Object 

Some of the most common uses for the window properties include

 ✓ Opening a new location in the browsers window

 ✓ Finding the size of a browser window

 ✓ Returning to a previously open page (as in the back button functionality)

Opening a web page with the window.location property
Getting the value of the window.location property will return the URL of 
the current page. Setting the value of the window.location property with a 
new URL causes the browser to load the web page at that URL in the window.

Listing 9.2 is a web page with a script that requests a web page address from 
the user and then loads that page in the current browser window.

Listing 9-2: A Script for Loading a Web Page in the Browser Window  
Using the window.location Property

<html>
<head>
  <script>
    function loadNewPage (url){
      window.location = url;
    }
  </script>
</head>
<body>
  <script>
    var newURL = prompt("Please enter a web page 

address!");
    loadNewPage(newURL);
  </script>
</body>
</html>

Property Use

screenLeft Gets the horizontal pixel distance from the left side of 
the main screen to the left side of the current window

screenTop Gets the vertical pixel distance from the top of the 
window relative to the top of the screen

screenX Gets the horizontal coordinate relative to the screen

screenY Gets the vertical coordinate relative to the screen

self Refers to the current window

top Refers to the topmost browser window



142 Part III: JavaScript on the Web  

Figure 9-4 shows the output of Listing 9-2.

Determining the size of a browser window
When you’re designing a website or a web application to work and function on 
different types of devices (a technique known as responsive design),  knowing 
the size of the web browser, particularly the width, is critical.

The window.innerWidth and window.innerHeight properties give you 
this information, in pixels, for the current web browser window.

Using CSS to determine the size of a browser window is also possible and quite 
common. However, there are some differences in how CSS and JavaScript treat 
scrollbars that may influence which technique you decide to use.

Try a simple responsive design example using JavaScript. Run the program in 
Listing 9-3 in your web browser. If your web browser window width is below 
500 pixels, one message will be displayed. If your window’s width is greater 
than 500 pixels, a different message will be displayed.

Figure 9-4:  
The  

window. 
location  

property in 
action.



143  Chapter 9: Controlling the Browser with the Window Object 

Listing 9-3: Changing a Web Page Based on the Width of the Window

<html>
<head>
  <title>Adapting to the window.innerWidth</title>
</head>
<body>
  <script>
    var currentWidth = window.innerWidth;
    if (currentWidth > 500) {
      document.write("<h1>Your window is big.</h1>");
    } else {
      document.write("<h1>Your window is small.</h1>");
    }
  </script>
</body>
</html>

To test out the responsive design example in Listing 9.3, follow these steps:

1. In your web browser, open an HTML document containing the code in 
Listing 9-3.

If your window is more than 500px wide when you open your page, you’ll 
see a message that your window is big.

2. Drag the lower right corner of your browser to make the window as 
narrow as you can, as shown in Figure 9-5.

Figure 9-5:  
Displaying 
a different 

message 
for narrow 

browser 
width.



144 Part III: JavaScript on the Web  

3. Click your browser’s refresh button, or press Command+R (on Mac) or 
Ctrl+R (on Windows), to reload the page.

Notice that the message on the page now says your browser’s window  
is small.

Creating a Back button using location and history
The history property of the window object is a read-only reference to the his-
tory object, which stores information about the pages the user has accessed 
in the current browser window. By far the most common use of the history 
object is to enable buttons that return the user to a previously viewed page.

Listing 9-4: Implementing a Back Button in a Web Application

<html>
<head>
  <title>Creating a Back button</title>
  <script>
    function takeMeBack () {
      window.location(window.history.go(-1));
    }
    function getHistoryLength () {
      var l = window.history.length;
      return l;
    } 
  </script>
</head>
<body>
  <script>
    var historyLength = getHistoryLength();
    document.write ("<p>Welcome! The number of pages 

you've visited in this window is: " + 
historyLength + ".</p> ");

  </script>
  <br>
  <a href="javascript:void(0);" onclick="takeMeBack();">Go 

Back</a>
</body>
</html>

To use the back button in Listing 9-4, follow these steps:

1. Open a new browser window and visit any page you like, such as 
www.watzthis.com.

2. While in that same browser window, open an HTML document con-
taining the code in Listing 9-4.

3. Click the Go Back link.

Your browser will take you back to the last page you visited before the 
one containing the Back button.

http://www.watzthis.com


145  Chapter 9: Controlling the Browser with the Window Object 

Care to guess what happens if you open Listing 9-4 in a new browser tab 
before accessing any other web pages in that tab? If you guessed that nothing 
will happen, you're correct! If only ONE page (the current one) has been dis-
played in a window, there's nothing to go back to.

Using the Window object’s methods
In addition to its properties, the Window object also has some useful meth-
ods that JavaScript programmers should know and use. Table 9-3 shows the 
complete list of these methods.

A method is just another name for a function that's contained within an 
object.

Table 9-3 The Window Object's Methods

Method Use
alert() Displays an alert box with a message and an OK button

atob() Decodes a base-64 encoded string

blur() Causes the current window to lose focus

clearInterval() Cancels the timer set using setInterval()

clearTimeout() Cancels the timer set using setTimeout()

close() Closes the current window or notification

confirm() Displays a dialogue box with an optional message and 
two buttons; OK and Cancel

createPopup() Creates a pop-up window

focus() Sets the current window into focus

moveBy() Moves the current window by a specified amount

moveTo() Relocates a window to a specified position

open() Opens a new window

print() Prints the contents of the current window

prompt() Displays a dialogue box prompting the user for input

resizeBy() Resizes the window by a specified number of pixels

resizeTo() Resizes a window to a specified height and width.

scrollBy() Scrolls the document by a specified amount

scrollTo() Scrolls the document to a specific set of coordinates



146 Part III: JavaScript on the Web  

Method Use

setInterval() Calls a function or executes an expression repeatedly 
at specified intervals (in milliseconds)

setTimeout() Calls a function or executes an expression after a 
 specified interval (in milliseconds)

stop() Stops the current window from loading

Table 9-3 (continued)



Manipulating Documents 
with the DOM

In This Chapter
 ▶ Getting to know the DOM (Document Object Model)

 ▶ Working with nodes

 ▶ Moving around the tree

 ▶ Selecting elements

“No object is mysterious. The mystery is your eye.”

— Elisabeth Bowen

U 
nderstanding the DOM is key to being able to manipulate the text 
or HTML in a web page. Using the DOM, you can create anima-

tions, update data without refreshing web pages, move objects around in a 
browser, and much more!

Understanding the DOM
The Document Object Model is the interface for JavaScript to talk to and 
work with HTML documents inside of browser windows. The DOM can be 
visualized as an inverted tree, with each part of the HTML document branch-
ing off of its containing part.

Listing 10-1 is the markup for a web page. The DOM representation is shown 
in Figure 10-1.

Chapter 10



148 Part III: JavaScript on the Web   

Figure 10-1:  
A represen-
tation of the 

Document 
Object 

Model for 
Listing 10-1.

Listing 10-1: An HTML Document

<html>
<head>
  <title>Bob’s Appliances</title>
</head>
<body>
  <header>
    <img src="logo.gif" width="100" height="100" alt="Site 

Logo">
  </header>
  <div>
    <h1>Welcome to Bob’s</h1>
    <p>The home of quality appliances</p>
  </div>
  <footer>
    copyright &copy; Bob
  </footer>
</body>
</html>



149  Chapter 10: Manipulating Documents with the DOM

A DOM tree is made up of individual components, called nodes. The main 
node, from which every other node springs, is called the document node. The 
node under the document node is the root element node. For HTML docu-
ments, the root node is HTML. After the root node, every element, attribute, 
and piece of content in the document is represented by a node in the tree 
that comes from another node in the tree.

The DOM has several different types of nodes:

 ✓ Document node: The entire HTML document is represented in this node

 ✓ Element nodes: The HTML elements

 ✓ Attribute nodes: The Attributes associated with elements

 ✓ Text nodes: The text content of elements

 ✓ Comment nodes: The HTML comments in a document

Node Relationships
HTML DOM trees resemble family trees in the hierarchical relationship 
between nodes. In fact, the technical terms used to describe relationships 
between nodes in a tree take their names from familial relationships.

 ✓ Every node, except the root node, has one parent.

 ✓ Each node may have any number of children.

 ✓ Nodes with the same parent are siblings.

Because HTML documents often have multiple elements that are of the same 
type, the DOM allows you to access distinct elements in a node list using an 
index number. For example, you can refer to the first <p> element in a docu-
ment as p[0], and the second <p> element node as p[1].

Although a node list may look like an array, it’s not. You can loop through the 
contents of a node list, but you can’t use array methods on node lists.

In Listing 10-2, the three <p> elements are all children of the <div> element. 
Because they have the same parent, they are siblings.

In Listing 10-2, the HTML comments are also children of the section ele-
ment. The last comment before the closing section tag is called the last child 
of the section.

By understanding the relationships between document nodes, you can use 
the DOM tree to find any element within a document.



150 Part III: JavaScript on the Web   

Listing 10-2: Demonstration of Parent, Child, and Sibling Relationships 
in an HTML Document 

<html>
<head>
  <title>The HTML Family</title>
</head>
<body>
  <section> <!‐‐ proud parent of 3 p elements, child of 

body ‐‐>
    <p>First</p> <!‐‐ 1st child of section element, 

sibling of 2 p elements ‐‐>
    <p>Second</p> <!‐‐ 2nd p child of section element, 

sibling of 2 p elements ‐‐>
    <p>Third</p> <!‐‐ 3rd p child of section element, 

sibling of 2 p elements ‐‐>
  </section>
</body>
</html>

Listing 10-3 is an HTML document containing a script that outputs all the 
child nodes of the section element.

Listing 10-3: Displaying the Child Nodes of the section Element

<html>
<head>
  <title>The HTML Family</title>
</head>
<body>
  <section> <!‐‐ proud parent of 3 p elements, child of 

body ‐‐>
    <p>First</p> <!‐‐ 1st child of section element, 

sibling of 2 p elements ‐‐>
    <p>Second</p> <!‐‐ 2nd p child of section element, 

sibling of 2 p elements ‐‐>
    <p>Third</p> <!‐‐ 3rd p child of section element, 

sibling of 2 p elements ‐‐>
  </section>
  <h1>Nodes in the section element</h1>
  <script>
    var myNodelist =  

document.body.childNodes[1].childNodes;
    for (i = 0; i < myNodelist.length; i++){
      document.write (myNodelist[i] + "<br>");
    }
  </script>
</body>
</html>



151  Chapter 10: Manipulating Documents with the DOM

Figure 10-2 shows what the output of Listing 10-3 looks like in a browser. 
Notice that the first child node of the section element is a text node. If 
you look closely at the HTML markup in Listing 10-3, you’ll see that there is 
a single space between the opening section tag and the comment. Even 
something as simple as this single space creates an entire node in the DOM 
tree. This fact needs to be taken into consideration when you’re navigating 
the DOM using relationships between nodes.

The HTML DOM also provides a couple keywords for navigating nodes using 
their positions relative to their siblings or parents. The relative  properties are

 ✓ firstChild: References the first child of a node

 ✓ lastChild: References the last child of the node

 ✓ nextSibling: References the next node with the same parent node

 ✓ previousSibling: References the previous node with the same 
parent node

Listing 10-4 shows how you can use these relative properties to traverse 
the DOM.

Figure 10-2:  
Viewing the 

output of 
Listing 10-3.



152 Part III: JavaScript on the Web   

Listing 10-4: Using firstChild and lastChild to Highlight Navigation Links

<html>
<head>
  <title>Iguanas Are No Fun</title>
  <script>
    function boldFirstAndLastNav() {
      document.body.childNodes[1].firstChild.style.

fontWeight="bold";
      document.body.childNodes[1].lastChild.style.

fontWeight="bold";
    }
  </script>
     
</head>
<body>
  <nav><a href="home.html">Home</a> | <a  

href="why.html">Why Are Iguanas No Fun?</a> | 
<a href="what.html">What Can Be Done?</a> | <a 
href="contact.html">Contact Us</a></nav>

  <p>Iguanas are no fun to be around. Use the links above 
to learn more.</p>

  <script>
    boldFirstAndLastNav();
  </script>
</body>
</html>

Notice in Listing 10-4 that all the spacing must be removed between 
the elements within the <nav> element in order for the firstChild 
and lastChild properties to access the correct elements that we 
want to select and style.

Figure 10-3 shows what the document in Listing 10-4 looks like when 
previewed in a browser. Notice that just the first and last links in the 
navigation are bold.

This is the first example in which we use the DOM to make a change 
to existing elements within the document. However, this method of 
selecting elements is almost never used. It’s too prone to mistakes 
and too difficult to interpret and use.

In the next section, you see that the DOM provides us with a much 
better means of traversing and manipulating the DOM than counting 
its children.



153  Chapter 10: Manipulating Documents with the DOM

Using the Document Object’s 
Properties and Methods

The Document object provides properties and methods for working with 
HTML documents. The complete list of Document object properties is shown 
in Table 10-1. The Document object’s methods are shown in Table 10-2.

Figure 10-3:  
Previewing 
Listing 10-4  

in a 
browser.

Table 10-1 The Document Object’s Properties
Property Use

anchors Gets a list of all anchors (<a> elements with name 
 attributes) in the document

applets Gets an ordered list of all the applets in the document

baseURI Gets the base URI of the document

body Gets the <body> or <frameset> node of the 
 document body

cookie Gets or sets the name/value pairs of cookies in the 
 document

doctype Gets the Document Type Declaration associated with the 
document

documentElement Gets the element that is the root of the document (for 
example, the <html> element of an HTML document)

documentMode Gets the mode used by the browser to render the 
 document

(continued)



154 Part III: JavaScript on the Web   

Table 10-1 (continued)
Property Use

documentURI Gets or sets the location of the document

domain Gets the domain name of the server that loaded the 
document

embeds Gets a list of all <embed> elements in the document

forms Gets a collection of all <form> elements in the 
document

head Gets the <head> element in the document

images Gets a list of all <img> elements in the document

implementation Gets the DOMImplementation object that handles 
the document

lastModified Gets the date and time the current document was last 
modified

links Gets a collection of all <area> and <a> elements in the 
document that contain the href attribute

readyState Gets the loading status of the document. Returns 
loading while the document is loading, 
interactive when it has finished parsing, and 
complete when it has completed loading

referrer Gets the URL of the page that the current document was 
linked from

scripts Gets a list of <scripts> elements in the document

title Gets or sets the title of the document

URL Gets the full URL of the document

Table 10-2 The Document Object’s Methods
Method Use
addEventListener() Assigns an event handler to the document

adoptNode() Adopts a node from an external document

close() Finishes the output writing stream of the 
document that was previously opened with 
document.open()

createAttribute() Creates an attribute node

createComment() Creates a comment node



155  Chapter 10: Manipulating Documents with the DOM

Using the Element Object’s 
Properties and Methods

The Element object provides properties and methods for working with 
HTML elements within a document. Table 10-3 shows all the properties of the 
Element object. Table 10-4 lists all the methods of the Element object.

Method Use

createDocumentFragment() Creates an empty document fragment

createElement() Creates an element node

createTextNode() Creates a text node

getElementById() Gets the element that has the specified 
ID attribute

getElementByClassName() Gets all elements with specified class name

getElementByName() Gets all elements with the specified name

getElementsByTagName() Gets all elements with the specified tag 
name

importNode() Copies and imports a node from an external 
document

normalize() Clears the empty text nodes and joins 
adjacent nodes

open() Opens a document for writing

querySelector() Gets the first element that matches the 
specified group of selector(s) in the 
 document

querySelectorAll() Gets a list of all the elements that match the 
specified selector(s) in the document

removeEventListener() Clears an event handler that had been added 
using the .addEventListener() 
method from the document

renameNode() Renames an existing node

write() Writes JavaScript code or HTML 
expressions to a document

writeIn() Writes JavaScript code or HTML 
expressions to a document and adds a new 
line character after each statement

  



156 Part III: JavaScript on the Web   

Table 10-3 The Element Object’s properties
Method Use
accessKey Gets or sets the accesskey attribute of the 

 element

attributes Gets a collection of all the element’s attribute 
registered to the specified node (returns a 
NameNodeMap)

childElementCount Gets the number of child elements in the specified 
node

childNodes Gets a list of the element’s child nodes

children Gets a list of the element’s child elements

classList Gets the class name(s) of the element

className Gets or sets the value of the class attribute of the 
element

clientHeight Gets the inner height of an element, including 
padding

clientLeft Gets the left border width of the element

clientTop Gets the top border width of the element

clientWidth Gets the width of the element, including padding

contentEditable Gets or sets whether the element is editable

dir Gets or sets the value of the dir attribute of the 
 element

firstChild Gets the first child node of the element

firstElementChild Gets the first child element of the element

id Gets or sets the value of the id attribute of the 
element

innerHTML Gets or sets the content of the element

isContentEditable Returns true if the content of an element is 
editable; returns false if it is not editable

lang Gets or sets the base language of the elements 
attribute

lastChild Gets the last child node of the element

lastElementChild Gets the last child element of the element

namespaceURI Gets the namespace URI for the first node in the 
element

nextSibling Gets the next node at the same node level



157  Chapter 10: Manipulating Documents with the DOM

Method Use
nextElement 
Sibling

Gets the next element at the same node level

nodeName Gets the current node’s name

nodeType Gets the current node’s type

nodeValue Gets or sets the value of the node

offsetHeight Gets the height of the element, including vertical 
 padding, borders, and scrollbar

offsetWidth Gets the width of the element, including horizontal 
padding, borders, and scrollbar

offsetLeft Gets the horizontal offset position of the element.

offsetParent Gets the offset container of the element

offsetTop Gets the vertical offset position of the element

ownerDocument Gets the root element (document node) for an element

parentNode Gets the parent node of the element

parentElement Gets the parent element node of the element

previousSibling Gets the previous node at the same node tree level
previousElement 
Sibling

Gets the previous element node at the same node tree 
level

scrollHeight Gets the entire height of the element, including 
padding

scrollLeft Gets or sets the number of pixels the element’s 
 content is scrolled horizontally

scrollTop Gets or sets the number of pixels the element’s 
 content is scrolled vertically

scrollWidth Gets the entire width of the element, including  padding

style Gets or sets the value of the style attribute of the 
element

tabIndex Gets or sets the value of the tabindex attribute of 
the element

tagName Gets the tag name of the element

textContent Gets or sets the textual content of the node and its 
descendants

title Gets or sets the value of the title attribute of the 
element

length Gets the number of nodes in the NodeList

  



158 Part III: JavaScript on the Web   

Table 10-4 The Element Object’s Methods
Method Use
addEventLIstener() Registers an event handler to the 

element

appendChild() Inserts a new child node to the element 
(as a last child node)

blur() Eliminates focus from the element

click() Replicates a mouse‐click on the 
element

cloneNode() Clones the element

compareDocumentPosition() Compares the document position of two 
elements

contains() Yields true if the node is a descendant 
of a node; otherwise, yields false

focus() Gives focus to the element

getAttribute() Gets the specified attribute value of the 
element node

getAttributeNode() Gets the specified attribute node

getElementsByClassName() Gets a collection of all child elements 
with the stated class name.

getElementByTagName() Gets a collection of all the child 
elements with the stated tag name

getFeature() Gets an object that implements the 
API’s of the stated feature

hasAttribute() Yields true if the element has the 
stated attribute; otherwise, yields 
false

hasAttributes() Yields true if the element has any 
attributes; otherwise, yields false

hasChildNodes() Yields true if the element has any 
child nodes; otherwise, yields false

insertBefore() Enters a new child node before the 
stated existing node

isDefaultNamespace() Yields true if the stated 
namespaceURI is the default; 
otherwise, yields false

isEqualNode() Evaluates to see whether two elements 
are equal



159  Chapter 10: Manipulating Documents with the DOM

Working with the Contents 
of Elements

You can display node types and node values by using the HTML 
DOM. You also can set property values of elements within the DOM 
using the Element object. When you use JavaScript to set the prop-
erties of DOM elements, the new values are reflected in real‐time 
within the HTML document.

Method Use

isSameNode() Evaluates to see whether two elements 
are the same node

isSupported() Yields true if the stated feature is 
supported on the element

normalize() Joins the specified nodes with their 
adjacent nodes and removes any empty 
text nodes

querySelector() Gets the first child element that 
matches the stated CSS selector(s) of 
the element

querySelectorAll() Gets all the child elements that match 
the stated CSS selector(s) of the 
element

removeAttribute() Takes the stated attribute out of the 
element

removeAttributeNode() Takes the stated attribute node out of 
the element and retrieves the removed 
node

removeChild() Removes the stated child node

replaceChild() Replaces specified child node with 
another

removeEventListener() Removes the specified event handler

setAttribute() Changes or sets the stated attribute to 
the specified value

setAttributeNode() Changes or sets the stated attribute 
node

toString() Changes an element to a string

item() Get the node at the stated index in the 
NodeList

  



160 Part III: JavaScript on the Web   

Changing the properties of elements in a web document in order to reflect 
them instantly in the browser, without needing to refresh or reload the web 
page, is a cornerstone of what used to be called Web 2.0.

innerHTML
The most important property of an element that you can modify through the 
DOM is the innerHTML property.

The innerHTML property of an element contains everything between the 
beginning and ending tag of the element. For example, in the following code, 
the innerHTML property of the div element contains a p element and its text 
node child:

<body><div><p>This is some text.</p></div></body>

It’s very common in web programming to create empty div elements in your 
HTML document and then use the innerHTML property to dynamically insert 
HTML into the elements.

To retrieve and display the value of the innerHTML property, you can use 
the following code:

var getTheInner = document.body.firstChild.innerHTML;
document.write (getTheInner);

In the preceding code, the value that will be output by the 
document.write() method is

<p>This is some text.</p>

Setting the innerHTML property is done in the same way that you set the 
property of any object:

document.body.firstChild.innerHTML = "Hi there!";

The result of running the preceding JavaScript will be that the p element and 
the sentence of text in the original markup will be replaced with the words 
"Hi There!" The original HTML document remains unchanged, but the DOM 
representation and the rendering of the web page will be updated to reflect 
the new value. Because the DOM representation of the HTML document is 
what the browser displays, the display of your web page will also be updated.



161  Chapter 10: Manipulating Documents with the DOM

Setting attributes
To set the value of an HTML attribute, you can use the setAttribute() 
method:

document.body.firstChild.innerHTML.setAttribute("class", 
"myclass");

The result of running this statement is that the first child element of the 
body element will be given a new attribute named "class" with a value of 
"myclass".

Getting Elements by ID, Tag Name,  
or Class

The getElementBy methods provide easy access to any element or groups 
of elements in a document without relying on parent/child relationships of 
nodes. The three most commonly used ways to access elements are

 ✓ getElementById

 ✓ getElementsByTagName

 ✓ getElementsByClassName

getElementById
By far the most widely used method for selecting elements, getElementById 
is essential to modern web development. With this handy little tool, you can 
find and work with any element simply by referencing a unique id attribute. 
No matter what else happens in the HTML document, getElementById 
will always be there for you and will reliably select the exact element that 
you want.

Listing 10-5 demonstrates the awesome power of getElementById to enable 
you to keep all your JavaScript together in your document or to modularize 
your code. By using getElementById, you can work with any element, any-
where in your document just as long as you know its id.



162 Part III: JavaScript on the Web   

Listing 10-5: Using getElementById to Select Elements

<html>
<head>
  <title>Using getElementById</title>
  <script>
    function calculateMPG(miles,gallons){
      document.getElementById("displayMiles").innerHTML = 

parseInt(miles);
      document.getElementById("displayGallons").innerHTML 

= parseInt(gallons);
      document.getElementById("displayMPG").innerHTML = 

miles/gallons;
    }
  </script>
</head>
<body>
  <p>You drove <span id="displayMiles">___</span>  

miles.</p>
  <p>You used <span id="displayGallons">___</span>  

gallons of gas.</p>
  <p>Your MPG is <span id="displayMPG">___</span>.
  <script>
    var milesDriven = prompt("Enter miles driven");
    var gallonsGas = prompt("Enter the gallons of gas 

used");
    calculateMPG(milesDriven,gallonsGas);
  </script>
</body>
</html>

getElementsByTagName
The getElementsByTagName method returns a node list of all the elements  
with the specified tag name. For example, in Listing 10-6, getElementsByTag 
Name is used to select all h1 elements and change their innerHTML proper-
ties to sequential numbers.

Listing 10-6: Using getElementsByTagName to Select and  
Change Elements

<html>
<head>
  <title>Using getElementsByTagName</title>
  <script>
    function numberElements(tagName){
      var getTags =  

document.getElementsByTagName(tagName);



163  Chapter 10: Manipulating Documents with the DOM

      for(i=0; i < getTags.length; i++){
        getTags[i].innerHTML = i+1;
      }
    }
  </script>
</head>
<body>
  <h1>this text will go away</h1>
  <h1>this will get overwritten</h1>
  <h1>JavaScript will erase this</h1>
  <script>
    numberElements("h1");
  </script>
</body>
</html>

getElementsByClassName
The getElementsByClassName method works in much the same way as 
the getElementsByTagName, but it uses the values of the class attribute to 
select elements. The function in Listing 10-7 selects elements with a class of 
"error" and will change the value of their innerHTML property.

Listing 10-7: Using getElementsByClassName to Select and  
Change Elements 

<html>
<head>
  <title>Using getElementsByClassName</title>
  <script>
    function checkMath(result){
      var userMath =  

document.getElementById("answer1").value;
      var errors =  

document.getElementsByClassName("error");
      if(parseInt(userMath) != parseInt(result)) {
        errors[0].innerHTML = "That’s wrong. You entered " 

+ userMath + ". The answer is " + result;
      } else {
        errors[0].innerHTML = "Correct!";
      }
    }
  </script>
 </head>
<body>

(continued)



164 Part III: JavaScript on the Web   

Listing 10-7 (continued)
   <label for = "number1">4+1 = </label><input type="text" 

id="answer1" value="">
   <button id="submit" onclick="checkMath(4+1);">Check 

your math!</button>
   <h1 class="error"></h1>
</body>
</html>

The result of running Listing 10-7 in a web browser and entering a wrong 
answer is shown in Figure 10-4.

Notice that Listing 10-7 uses an onclick attribute inside the button element. 
This is an example of a DOM event handler attribute. You can find out more 
about event handlers in Chapter 11.

Figure 10-4:  
Using the 

get 
Elements 
ByClass 
Name to 

select an 
element for 

displaying 
an error 

message.



165  Chapter 10: Manipulating Documents with the DOM

Table 10-5 The Attribute Object’s Properties
Property Use
isId Yields true if the attribute is an Id; otherwise, yields false

name Gets the name of the attribute

value Gets or sets the value of the attribute

specified Yields true if the attribute has been specified; otherwise, 
yields false

Listing 10-8: Using document.createElement() to Generate a  
Table from an Array

<html>
<head>
  <title>Generating a list</title>
</head>
<body>
  <h1>Here are some types of balls</h1>
  <ul id="ballList">
  </ul>

  <script>
    var typeOfBall = ["basket", "base", "soccer", "foot", 

"hand"];
    for (i=0; i<typeOfBall.length; i++) {
      var listElement = document.createElement("li");
      listElement.innerHTML = typeOfBall[i];

Using the Attribute Object’s Properties
The Attribute object provides properties for working with attributes within 
the HTML elements. Table 10-5 lists all the Attribute object’s  properties.

Creating and appending elements
To create a new element in an HTML document, use the document.create 
Element() method. When you use createElement(), a new beginning and 
end tag of the type you specify will be created.

Listing 10-8 shows an example of how you can use this method to dynami-
cally create a list in an HTML document from an array.

(continued)



166 Part III: JavaScript on the Web   

Listing 10-9: Removing an Element from a Document

<html>
<head>
  <title>Remove an element</title>
  <script>
    function removeFirstParagraph(){
      var firstPara =  

document.getElementById("firstparagraph");
      firstPara.parentNode.removeChild(firstPara);
    }
  </script>
</head>
<body>
  <div id="gibberish">
    <p id="firstparagraph">Lorem ipsum dolor sit amet, 

consectetur adipiscing elit. Vestibulum 
molestie pulvinar ante, a volutpat est 
sodales et. Ut gravida justo ac leo euismod, 
et tempus magna posuere. Cum sociis natoque 
penatibus et magnis dis parturient montes, 
nascetur ridiculus mus. Integer non mi iaculis, 
facilisis risus et, vestibulum lorem. Sed quam 
ex, placerat nec tristique id, mattis fringilla 
ligula. Maecenas a pretium justo. Suspendisse 

Removing elements
For all the great things that it lets you do with HTML documents, the HTML 
DOM is not highly regarded by professional JavaScript programmers. It has 
a number of oddities and tends to make some things more difficult than they 
should be.

One of the big faults with the DOM is that it doesn’t provide any way to 
directly remove an element from a document. Instead, you have to tell the 
DOM to find the parent of the element you want to remove and then tell the 
parent to remove its child. It sounds a little confusing, but Listing 10-9 should 
clear it all up.

Listing 10-8 (continued)
      document.getElementById("ballList").appendChild 

(listElement);
    }
  </script>

</body>
</html>



167  Chapter 10: Manipulating Documents with the DOM

When you run Listing 10-9 in a browser and press the button, the onclick 
event calls the removeFirstParagraph() function.

The first thing removeFirstParagraph() does is to select the 
element that we actually want to remove, the element with the 
id = "firstparagraph". Then, the script selects the parent node of the 
first paragraph. It then uses the removeChild() method to remove the first 
paragraph.

sit amet nibh consectetur, tristique tellus 
quis, congue arcu. Etiam pellentesque dictum 
elit eget semper. Phasellus orci neque, semper 
ac tortor ac, laoreet ultricies enim.</p>

  </div>
  <button onclick="removeFirstParagraph();">That’s 

Gibberish!</button>
</body>
</html>



168 Part III: JavaScript on the Web   



Using Events in JavaScript
In This Chapter

 ▶ Finding out what’s happenin’

 ▶ Using event handlers to respond to events

 ▶ Knowing the types of event handlers

“And now, the sequence of events in no particular order:”

— Dan Rather

W 
eb pages are much more than just static displays of text and 
 graphics. JavaScript gives web pages interactivity and the ability 

to perform useful work. An important part of JavaScript’s ability to perform 
useful functions in the browser is its ability to respond to events.

Knowing Your Events
Events are the things that happen within the browser (such as a page 
 loading) and things the user does (such as clicking, pressing keys on the 
keyboard, moving the mouse, and so on). Events happen all the time in the 
browser.

The HTML DOM gives JavaScript the ability to identify and respond to events 
in a web browser. Events can be divided into groups according to what HTML 
elements or browser objects they apply to. Table 11-1 lists events that are 
supported by every HTML element.

Other types of events are supported by every element other than the body 
and frameset elements. These are listed in Table 11-2.

Chapter 11



170 Part III: JavaScript on the Web  

Table 11-1 Events Supported by All HTML elements

Event Occurs When . . .
abort The loading of a file is aborted.
change An elements value has changed since losing and regaining 

focus.
click A mouse has been clicked on an element.
dbclick A mouse has been clicked twice on an element.
input The value of an <input> or <textarea>  element is 

changed.
keydown A key is pressed down.
keyup A key is released after being pressed.
mousedown A mouse button has been pressed down on an element.
mouseenter A mouse pointer is moved onto the element that has the 

 listener attached.
mouseleave A mouse pointer is moved off of the element that has the 

 listener attached.
mousemove A mouse pointer is moved over an element.
mouseout A mouse pointer is moved off of the element or one of its 

 children that has the listener attached.
mouseover A mouse pointer is moved onto the element or one of its 

 children that the listener is attached to.
mouseup A mouse button is released over an element.
mousewheel A wheel button of a mouse is rotated.
onreset A form is reset.
select Text has been selected.
submit A form is submitted.

Table 11-2 Events Supported by Every Element Except 
  <body> and <frameset>

Event Occurs When . . .
blur An element has gone out of focus.
error A file failed to load.
focus An element has come into focus.
load A file and its attached files have finished loading.
resize The document has been resized.
scroll The document or an element has been scrolled.



171  Chapter 11: Using Events in JavaScript

Table 11-3 shows the events that are supported by the Window object.

In addition to these events, many other specifications define events that  
can happen. For example, the File API has a series of events related to file 
loading, and the HTML5 Media specification contains events related to audio 
and video playback. As you can see, a lot of things are going on (or can go 
on) in your browser!

For a complete list of events, you can visit https://developer.mozilla. 
org/en‐US/docs/Web/Events.

Handling Events
When JavaScript does something in response to these events, it’s called event 
handling.

Over the years, browser makers have implemented several ways for 
JavaScript programs to handle events. As a result, the landscape of 
JavaScript events has been one of incompatibilities between browsers.

Today, JavaScript is getting to the point where the old, inefficient techniques 
for handling events can soon be discarded. However, because these older 
techniques are still widely used, it’s important that they are covered here.

Table 11-3 Events supported by the Window Object

Event Occurs When . . .
afterprint The document print preview has been closed or the 

 document has started printing.
beforeprint The document print preview is open or the document is 

about to the printed.
beforeunload The window, the document, and its included files are about 

to be unloaded.
hashchange The part of the URL after the number sign (#) changes.
pagehide The browser leaves a page in the browser history.
pageshow The browser goes to a page in the session history.
popstate The active session history item changes.
unload The document or included file is being unloaded.

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events


172 Part III: JavaScript on the Web  

Using inline event handlers
The first system for handling events was introduced along with the first 
 versions of JavaScript. It relies on special event handler attributes, including 
the onclick event handler.

The inline event handler attributes are formed by adding the prefix on to an 
event. To use them, add the event attribute to an HTML element. When the 
specified event occurs, the JavaScript within the value of the attribute will 
be performed. For example, Listing 11-1 pops up an alert when the link is 
clicked.

Listing 11-1:  Attaching an onclick Event Handler to a Link Using  
Inline Method

<a href="home.html" onclick="alert('Go Home!');">Click 
Here To Go Home</a>

If you put this markup into an HTML document and click the link, you see an 
alert window with the words Go Home! When you dismiss the alert window, 
the link proceeds with the default event handler associated with the a 
 element — namely, following the link in the href attribute.

In many cases, you may not want the default action associated with an 
 element to happen. For example, what if you just wanted the alert window in 
Listing 11-1 to pop up without doing anything else?

JavaScript programmers have come up with several different methods to 
prevent default actions. One technique is to make the default action be 
 something that is inconsequential. For example, by changing the value of the 
href attribute to a #, the link will point to itself:

<a href="#" onclick="alert('Go Home!');">Click Here</a>

A better method, however, is to tell the event handler to return a boolean 
false value, which tells the default action not to run:

<a href="homepage.html" onclick="alert('Go Home!') 
;return false'>Click Here</a>



173  Chapter 11: Using Events in JavaScript

Event handling using element properties
One of the biggest problems with the older, inline technique of assigning 
events to elements is that it violates one of the best practices of program-
ming: keeping presentation (how something looks) separate from functional-
ity (what it does). Mixing up your event handlers and HTML tags makes your 
web pages more difficult to maintain, debug, and understand.

With version 3 of their browser, Netscape introduced a new event model 
that allows programmers to attach events to elements as properties.  
Listing 11-2 shows an example of how this model works.

Listing 11-2:  Attaching Events to Elements Using Event Properties

<html>
<head>
 <title>Counting App</title>
 <script>
 // wait until the window is loaded before registering the 

onclick event
 window.onload = initializer;
 // create a global counting variable
 var theCount = 0;
 /** 
 Registers onclick event
 */
 function initializer(){
 document.getElementById("incrementButton").onclick = 

increaseCount;
 }
 /**
 Increments theCount and displays result.
 */
 function increaseCount(){
 theCount++;
 document.getElementById("currentCount").innerHTML = 

theCount;
 }
 </script>
</head>
<body>
 <h1>Click the button to count.</h1>
 <p>Current Number: <span id="currentCount">0</span></p>
 <button id="incrementButton">Increase Count</button>
</body>
</html>



174 Part III: JavaScript on the Web  

One thing to notice about Listing 11-2 is that function names that are 
assigned to the event handler don’t have parentheses after them. What’s 
going on here is that the whole function is assigned to the event handler and 
is telling it “run this when this event happens,” rather than actually using a 
function call. If you add the parentheses after the function name, the function 
will be executed, and its result will be assigned to the onclick event, which 
is not what we want.

Event handling using addEventListener
Although the previous two methods of event handling are very commonly 
used and are supported by every browser, a more modern and flexible way 
to handle events (and the recommended way for new browsers) is to use the 
addEventListener() method.

The addEventListener method listens for events on any DOM node and 
triggers actions based on those events. When the function specified as an 
action for the event runs, it automatically receives a single argument, the 
Event object. By convention, we name this argument e.

addEventListener() has several benefits over using the DOM event 
 attributes:

 ✓ You can apply more than one event listener to an element.

 ✓ It works on any node in the DOM tree, not just on elements.

 ✓ It gives you more control over when it’s activated.

Listing 11-3 demonstrates the use of the addEventListener() method. 
This example has the same counting function as Listing 11-2, but it adds a 
second event handler to the button that increases the size of the number 
each time it’s clicked.

Listing 11-3:  Assigning an Event with addEventListener()

<html>
<head>
 <title>Counting App</title>
 <script>
 // wait until the window is loaded before registering  

the onclick event
 window.addEventListener('load',registerEvents,false);
 // create a global counting variable
 var theCount = 0;
 /** 



175  Chapter 11: Using Events in JavaScript

 Registers onclick events
 */
 function registerEvents(e){
document.getElementById("incrementButton").addEventListener 

('click',increaseCount,false);
document.getElementById("incrementButton").addEventListener 

('click',changeSize,false);
 }
 
 /**
 Increments theCount and displays result.
 */
 function increaseCount(e){
 theCount++;
 document.getElementById("currentCount").innerHTML = 

theCount;
 }
 /**
 Change the font size of the count text
 */
 function changeSize(e){
 document.getElementById("currentCount").style.fontSize = 

theCount;
 }
 </script>
</head>
<body>
 <h1>Click the button to count.</h1>
 <p>Current Number: <span id="currentCount">0</span></p>
 <button id="incrementButton">Increase Count</button>
</body>
</html>

Figure 11-1 shows what the page created by Listing 11-3 looks like after an 
exciting afternoon of clicking the button.

The addEventListener() method is implemented by using three 
 arguments.

The first argument is the event type. Unlike the other two event handling 
methods, addEventListener() just wants the name of the event, without 
the on prefix.

The second argument is the function to call when the event happens. As 
with the event properties method of event handling, it’s important to not use 
the parentheses here in order for the function to be assigned to the event 
 handler, rather than the result of running the function.



176 Part III: JavaScript on the Web  

The third argument is a Boolean value (true or false) that indicates the 
order in which event handlers execute when an element with an event has a 
parent element that also is associated with an event.

When elements are nested, it’s important to know which one will happen 
first. Figure 11-2 illustrates a common problem: The outer square is clickable, 
but so is the inner circle. When you click on the inner circle, should the event 
attached to the square happen first, or should the event attached to the 
circle happen first?

Most people would say that it makes sense that the circle event should 
happen first. However, when Microsoft implemented its version of events  
in Internet Explorer, it decided that the outer event (the square) should 
happen first.

Figure 11-2: 
Events 
within 

events.

Figure 11-1: 
Attaching 

two events 
to the same 

element 
increases 
the possi-

bilities!



177  Chapter 11: Using Events in JavaScript

The most common way for events to be handled in a situation like the one in 
Figure 11-2 is called bubbling up. Events on the inside-most element happen 
first and then bubble up to the outermost elements. To use the bubble up 
method, set the last argument of the addEventListener() method to false, 
which is also the default value.

The other way to handle this scenario is called the capture method. In 
 capture mode, the outermost events happen first, and the innermost events 
happen last.

Listing 11-4 shows an example demonstrating why knowing the order in 
which event handlers execute is important. The h1 elements have click 
events, but so do words within that header.

Listing 11-4:  Demonstrating Event Capture and Event Bubbling

<html>
<head>
 <title>Event capturing vs. Event bubbling</title>
 <style>
 #theText {font-size: 18px;}
 h1 {
 border:1px solid #000;
 background-color: #dadada;
 }
 #capEvent, #bubEvent {
 background-color: #666;
 }
 </style>
 <script>
 // wait until the window is loaded before registering  

the events
 window.addEventListener('load',registerEvents,false);
 /** 
 Registers onclick events
 */
 function registerEvents(e){
document.getElementById("capTitle").addEventListener 

('click',makeTiny,true);
document.getElementById("capEvent").addEventListener 

('click',makeHuge,true);
document.getElementById("bubTitle").addEventListener 

('click',makeTiny,false);
document.getElementById("bubEvent").addEventListener 

('click',makeHuge,false);
 }
 function makeHuge(e){
 console.log("making the text huge");
 document.getElementById("theText").style.fontSize = 

"80px";

(continued)



178 Part III: JavaScript on the Web  

Listing 11-4 (continued)

 }
 function makeTiny(e){
 console.log("making the text tiny");
 document.getElementById("theText").style.fontSize = 

"10px";
 }
 </script>
</head>
<body>
 <h1 id="capTitle">Event <span id="capEvent">capturing 

</span></h1>
 <h1 id="bubTitle">Event <span id="bubEvent">bubbling 

</span></h1>
 <p id="theText">Hello, Events!</p>
</body>
</html>

Figure 11-3 shows what Listing 11-4 looks like in a web browser.

In Figure 11-3, when the word capturing is clicked, the event registered to 
the larger container fires first, followed by the event registered to the event 
 containing the word capturing.

When you click the word bubbling, the event registered to that span fires 
first, followed by the event on its parent element.

Figure 11-3: 
Handling 

nested 
events.



179  Chapter 11: Using Events in JavaScript

Stopping propagation
In addition to bubbling and capturing, you can handle nested events 
in a third way: just do the single event and then stop. You can turn off 
 bubbling and capturing for an event (or even for all events) by using the 
stopPropagation() method.

If you don’t need event propagation in your script, it’s a good idea to just 
turn it off because all that bubbling and capturing does use system resources 
and can make your website slower.

Listing 11-5 demonstrates how to turn off event propagation.

Listing 11-5: Turning Off Event Propagation

function load(e){
 if (!e) var e = window.event;
 // set cancelBubble for IE 8 and earlier
 e.cancelBubble = true;
 
 if (e.stopPropagation) e.stopPropagation();
 
document.getElementById("capTitle").addEventListener 

('click',makeTiny,true);
document.getElementById("capEvent").addEventListener 

('click',makeHuge,true);
document.getElementById("bubTitle").addEventListener 

('click',makeTiny,false);
document.getElementById("bubEvent").addEventListener 

('click',makeHuge,false);
}



180 Part III: JavaScript on the Web  



Integrating Input and Output
In This Chapter

 ▶ Working with forms

 ▶ Using input

 ▶ Sending output

“Malfunction. Need Input.”

— Number 5, Short Circuit (1986)

H 
andling user input and sending back results are basic and necessary 
functions for any computer program. In this chapter, you find out how 

JavaScript and HTML can work together to receive and output data.

Understanding HTML Forms
The primary way to get input from users of web applications is through 
HTML forms. HTML forms give web developers the ability to create text 
fields, drop‐down selectors, radio buttons, checkboxes, and buttons. 
With CSS, you can adjust the look of a form to fit your particular website. 
JavaScript gives you the ability to enhance the functionality of your form.

The form element
All HTML forms are contained within a form element. The form element is the 
container that holds the input fields, buttons, checkboxes and labels that make 
up a user input area. The form element acts much like any container element, 
such as a div, article, or section. But it also contains some attributes that 
tell the browser what to do with the user input from the form fields it contains.

Listing 12-1 shows an HTML form containing two input fields and a submit 
button.

Chapter 12



182 Part III: JavaScript on the Web  

Listing 12-1: Example of an HTML Page Containing a Form

<html>
<head>
  <title>HTML form</title>
</head>
<body>

  <form action="subscribe.php" name="newsletterSubscribe" 
method="post">

    <label for="firstName">First Name: </label>
    <input type="text" name="firstName" 

id="firstName"><br>
    <label for="email">Email: <input type="text" 

name="email" id="email"></label><br>
    <input type="submit" value="Subscribe to our 

newsletter!">
  </form>

</body>
</html>

When you view this form in a web browser, it looks like Figure 12-1.

In the preceding example, the form element has three attributes:

 ✓ action: Tells the browser what to do with the user input. Often, the 
action is a server-side script.

 ✓ name: Specifies the name that the programmer assigned to this form. 
The name attribute of the form is useful for accessing the form using  
the DOM.

Figure 12-1: 
An HTML 

form.



183  Chapter 12: Integrating Input and Output

 ✓ method: Takes a value of either get or post, indicating whether the 
browser should send the data from the form in the URL or in the HTTP 
header.

In addition to these three attributes, the form element can also contain 
 several other attributes:

 ✓ accept-charset: Indicates the character sets that the server accepts. 
Unless you’re working with multilingual content (and even then), you 
can safely leave this attribute out.

 ✓ autocomplete: Indicates whether the input elements of the form 
should use autocomplete in the browser.

 ✓ enctype: Indicates the type of content that the form should 
submit to the server. For forms that are submitting only text data 
to the server, this should be set to text/html. If your form is sub-
mitting a file to the server (such as an uploaded graphic), the 
enctype should be multipart/form-data. The default value is 
application/x-www-form-urlencoded.

 ✓ novalidate: A Boolean value indicating whether the input from the 
form should be validated by the browser on submit. If this attribute isn’t 
specified, forms are validated by default.

 ✓ target: Indicates where the response from the server should be 
 displayed after the form is submitted. The default ("_self") is to open 
the response in the same browser window where the form was. Another 
option is to open the response in a new window ("_blank").

The label element
You can use the label element to associate an input field’s description 
(label) with the input field. The for attribute of the label element takes the 
value of the id attribute of the element that the label should be associated 
with, as shown in this example:

<label for="firstName">First Name: </label>
<input type="text" name="firstName">

Another method for associating a label with a form field is to nest the form 
field within the label element, as shown in this example:

<label>First Name: <input type="text"  
name="firstName"></label>

This method has the advantage of not requiring the input field to have an id 
(which is often just a duplicate of its name attribute).



184 Part III: JavaScript on the Web  

The input element
The HTML input element is the most fundamental form-related HTML 
 element. Depending on the value of its type attribute, it causes the browser 
to display (or not display) several types of input fields.

Most commonly, the input element’s type is set to "text", which creates 
a text input in the browser. The optional value attribute assigns a default 
value to the element, and the name attribute is the name that is paired with 
the value to form the name/value pair that can be accessed through the DOM 
and that is submitted along with the rest of the form values when the form is 
submitted.

A basic text input field looks like this:

<input type="text" name="streetAddress">

With HTML5, the input element gained a bunch of new possible type 
 attribute values. These new values allow the web developer to more pre-
cisely specify the type of value that should be provided in the input. They 
also allow the web browser to provide controls that are better suited to the 
type of input that’s required to do input validation and results in better web 
applications.

It may seem odd that this chapter focuses so much on the form capabilities 
of HTML, rather than jumping right into JavaScript. However, forms are an 
area where HTML can really reduce the workload of programmers, so it’s 
vital that JavaScript programmers learn what can be accomplished with 
forms through HTML.

The input element’s possible values for the type attribute are shown in 
Table 12-1.

Table 12-1 Possible Values for the input Element’s  
 Type Attribute

Value Description

button A clickable button

checkbox A checkbox

color A color picker

date A date control (year, month, and day)

datetime A date and time control (year, month, day, hour, minute, 
second, and fraction of a second based on the UTC time 
zone)



185  Chapter 12: Integrating Input and Output

As of this writing, not all browsers support all possible values for the input 
element’s type attribute. Using a type attribute that a browser doesn’t 
understand will just result in the display of a text input field.

The select element
The HTML select element defines either a drop-down or a multiselect input. 
The select element contains option elements that are the choices that the 
user will have in the select control, as shown in Listing 12-2.

Value Description

datetime-local A date and time control (year, month, day, hour, minute, 
second, and fraction of a second; no time zone)

email A field for an email address

file A file-select field and a Browse button

hidden A hidden input filed

image A submit button using an image, rather that the default 
button

month A month and year control

number A number input field

password A password filed

radio A radio button

range An input using a range of numbers, such as a slider con-
trol

reset A reset button

search A text field for entering a search string

submit A submit button

tel A filed for entering a telephone number

text Default; a single-line text field

time A control for entering a time (no time zone)

url A field for entering a URL

week A week and year control (no time zone)



186 Part III: JavaScript on the Web  

Listing 12-2: A Drop-Down Form Control, Created Using the  
select Element

<select name="favoriteColor">
 <option value="red">red</option>
 <option value="blue">blue</option>
 <option value="green">green<option>
</select>

The form created by the markup in Listing 12-2 is shown in Figure 12-2.

The textarea element
The textarea element defines a multiline text input field:

<textarea name="description" rows="4"  
cols="30"></textarea>

The button element
The button element defines another way to create a clickable button:

<button name="myButton">Click The Button</button>

The button element can be used in place of input elements with the type 
attribute set to 'submit'. Or, you can use button elements anywhere you 
need a button, but where you don’t want the submit action to happen.

If you don’t want the button to submit the form when clicked, you need to 
add a type attribute to it with the value of 'button'.

Figure 12-2: 
An HTML 

drop-down 
control.



187  Chapter 12: Integrating Input and Output

Working with the Form Object
The HTML DOM represents forms using the Form object. Through the Form 
object, you can get and set values of form fields, control the action that’s 
taken when a user submits a form, and change the behavior of the form.

Using Form properties
The properties of the Form object match up with the attributes of the 
HTML form element (see the section earlier in this chapter). They’re used 
for getting or setting the values of the HTML form element attributes with 
JavaScript. Table 12-2 lists all the properties of the Form object.

DOM objects are representations of HTML pages. Their purpose is to give 
you access (also known as programming interface) to the different parts of the 
document through JavaScript. Anything within an HTML document can be 
accessed and changed with JavaScript by using the DOM.

Table 12-2 Form Object Properties

Property Use
acceptCharset Gets or sets a list of character sets that are  supported 

by the server.

action Gets or sets the value of the action attribute of the 
form element.

autocomplete Gets or sets whether input elements can have their 
values automatically completed by the browser.

encoding Tells the browser how to encode the form data (either 
as text or as a file). This property is  synonymous with 
enctype.

enctype Tells the browser how to encode the form data (either 
as text or as a file).

length Gets the number of controls in the form.

method Gets or sets the HTTP method the browser uses to 
submit the form.

name Gets or sets the name of the form.

noValidate Indicates that the form does not need to be  validated 
upon submittal.

target Indicates the place to display the results of a  submitted 
form.



188 Part III: JavaScript on the Web  

You can find techniques for setting or getting the value of a form’s properties 
in Chapter 10. After referencing the form using one of these methods, you 
then access the property using dot notation or the square bracket method.

To get the value of the name property of the first form in a document, you 
could use the following statement:

document.getElementByTagName("form")[0].name

A more common way to access a form is by assigning it an id attribute and 
using getElementById to select it.

The DOM provides another, more convenient method for accessing forms: 
the forms collection. The forms collection lets you access the forms in a 
document in two different ways:

 ✓ By index number: When a form element is created in the document, it 
is assigned an index number, starting with zero. To access the first form 
in the document, use document.forms[0].

 ✓ By name: You can also access forms using the value of the name 
attribute of the form element. For example, to get the value of the 
action property of a form with a name of "subscribeForm", you 
would use document.forms.subscribeForm.action. Or you can 
use the square brackets method of accessing properties and write 
document.forms["subscribeForm"].action.

Using the Form object’s methods
The Form object has two methods: reset() and submit().

Using the autocomplete attribute
The autocomplete attribute in an HTML 
form element sets the default autocomplete 
value for the input elements inside the form. 
If you want the browser to provide autocom-
plete functionality for every input in the form, 
set autocomplete to ‘on’. If you want to be 
able to select which elements the browser can 

autocomplete or if your document provides 
its own autocomplete functionality (through 
JavaScript), set the form’s autocomplete 
attribute to ‘off’, and then you can set the 
autocomplete attribute for each individual 
input element within the form.



189  Chapter 12: Integrating Input and Output

The reset() method
The reset() method clears any changes to the form’s fields that were made 
after the page loaded and resets the default values. It does the same thing as 
the HTML reset button, which is created by using a type="reset" attribute 
with an input element, as shown in the following code:

<input type="reset" value="Clear the form">

The submit() method
The submit() method causes the form to submit its values according to the 
properties of the form (action, method, target, and so on). It does the same 
thing as the HTML submit button, which is created by using a type="submit" 
attribute with an input element, as shown in the following code:

<input type="submit" value="Submit the form">

Listing 12-3 demonstrates the use of the submit() and reset() methods, 
along with several of the form object’s properties.

Listing 12-3: Using the Form Object’s Properties and Methods

<html>
<head>
  <title>Subscribe to our newsletter!</title>
  <script>
    function setFormDefaults(){
      document.forms.subscribeForm.method = "post";
      document.forms.subscribeForm.target = "_blank";
      document.forms.subscribeForm.action =  

"http://watzthis.us9.list-manage.com/subscribe/
post?u=1e6d8741f7db587af747ec056&amp; 
id=663906e3ba";

  
      //register the button events
      document.getElementById('btnSubscribe').

addEventListener('click', submitForm);
      document.getElementById('btnReset').

addEventListener('click', resetForm);
    }
    function submitForm() {
      document.forms.subscribeForm.submit();
    }
    function resetForm() {
      document.forms.subscribeForm.reset();
    }
 </script>
</head>
<body onload="setFormDefaults();">

(continued)

http://watzthis.us9.list-manage.com/subscribe/post?u=1e6d8741f7db587af747ec056&amp;id=663906e3ba


190 Part III: JavaScript on the Web  

Listing 12-3 (continued)
 <form name="subscribeForm">
   <h2>Subscribe to our mailing list</h2>
   <label for="mce‐EMAIL">Email Address </label>
   <input type="email" value="" name="EMAIL" id="mce‐

EMAIL">
   <button type="button" id="btnSubscribe">Subscribe! 

</button>
   <button type="button" id="btnReset">Reset</button>
 </form>
</body>
</html>

Accessing form elements
JavaScript offers several different ways to access form input fields and their 
values. These ways are not all created equal, however, and differences of 
opinion exist among JavaScript programmers as to which technique is the 
best. The following list presents the different techniques and their benefits 
and drawbacks:

 ✓ Use the index number of the form and of its input fields. For example,  
to access the first input field in the first form, you could use the 
 following code:

document.forms[0].elements[0]

Avoid the preceding technique because it relies on the structure of the 
document and the order of the elements within the form not to change. 
As soon as someone decides that the email field should come before the 
first name field in the form, your whole script will break.

 ✓ Use the name of the form and the name of the input field. For example:

document.myForm.firstName

This technique has the benefit of being easy to read and easy to  use. It’s 
supported by every browser (and has been since very early in the devel-
opment of the DOM).

 ✓ Use getElementById to select the form and the name of the input 
field to select the input. For example:

document.getElementById("myForm").firstName

This technique requires you to assign an id attribute to the form of the 
element. For example, the preceding code would match an input field 
named firstName inside of the following form element.

<form id="myForm" action="myaction.php">
. . .
</form>



191  Chapter 12: Integrating Input and Output

 ✓ Use a unique id attribute value on the field to access the field 
directly. For example:

document.getElementById("firstName")

Something to remember when using the preceding technique is that if 
you have multiple forms on your page, you need to make sure that each 
form field has a unique id attribute (id attribute values must be unique 
anyway, so it’s not really an issue).

Getting and setting form element values
The DOM gives you access to form elements’ names and values using the 
name and value properties.

Listing 12-4 demonstrates the getting and setting of form input fields using a 
simple calculator application.

Listing 12-4: A Calculator App Demonstrating the Getting and Setting  
of Form Input Fields

<html>
<head>
  <title>Math Fun</title>
  <script>

    function registerEvents() {
      document.mathWiz.operate.addEventListener('click', 

doTheMath,false);
    }

    function doTheMath() {
      var first =  

parseInt(document.mathWiz.numberOne.value);
      var second =  

parseInt(document.mathWiz.numberTwo.value);
      var operator = document.mathWiz.operator.value;

      switch (operator){
        case "add":
          var answer = first + second;
          break;
        case "subtract":
          var answer = first - second;
    break;
  case "multiply":

(continued)



192 Part III: JavaScript on the Web  

Listing 12-4 (continued)

          var answer = first * second;
          break;
        case "divide":
          var answer = first / second;
          break;
    }
  
    document.mathWiz.theResult.value = answer;
   }
  </script>
</head>
<body onload="registerEvents();">
 <form name="mathWiz">
   <label>First Number: <input type="number" 

name="numberOne"></label><br>
   <label>Second Number: <input type="number" 

name="numberTwo"></label><br>
   <label>Operator: 
    <select name="operator">
      <option value="add"> + </option>
      <option value="subtract"> ‐ </option>
      <option value="multiply"> * </option>
      <option value="divide"> / </option>
    </select>
   </label>
   <br>
   <input type="button" name="operate" value="Do the 

Math!"><br>
   <label>Result: <input type="number" name="theResult"> 

</label>
 </form>
</body>
</html>

Validating user input
One of the most common uses for JavaScript is to check, or validate, form 
input before submitting user input to the server. JavaScript form validation 
provides an extra safeguard against bad or potentially unsafe data making 
its way into a web application. It also provides users with instant feedback 
about whether they’ve made a mistake.

Some of the most common JavaScript input validation tasks have been 
replaced by HTML attributes in HTML5. However, due to browser incompatibil-
ities, it’s still a good practice to validate user-submitted data using JavaScript.

In the calculator program in Listing 12-4, the input type was set to number for 
the operand units. This should cause the browser to prevent the user from 
submitting non-numeric values into these fields. Because the number input 



193  Chapter 12: Integrating Input and Output

type is relatively new, you can’t always count on the browsers to support it, 
so using JavaScript user input validation is important.

Listing 12-5 demonstrates an input validation script. The important thing to 
notice here is that the action of the form has been set to the input validation 
function. The submit() method of the form runs only after the tests in the 
input validation function have finished.

The line in the preceding code that does the real magic is this strange-looking 
one inside of the validate() function:

if (/^\d+$/.test(first) && /^\d+$/.test(second)) {

The characters between / and / make up what’s called a regular expression. 
A regular expression is a search pattern made up of symbols that represent 
groups of other symbols. In this case, we’re using a regular expression to 
check whether the values the user entered are both numeric. You can find 
out more about regular expressions in Chapter 14.

Input validation is such a common use for JavaScript that many different 
techniques have been created for doing it. Before you reinvent the wheel 
for your particular JavaScript application, do a search for “open source 
JavaScript input validation” and see whether any existing libraries of code 
can save you some time and give you more functionality.

Listing 12-5: Performing Input Validation with JavaScript

<html>
<head>
  <title>Math Fun</title>
  <script>

    function registerEvents() {
      document.mathWiz.operate.addEventListener('click', 

validate,false);
    }

    function validate() {
      var first = document.mathWiz.numberOne.value;
      var second = document.mathWiz.numberTwo.value;
      var operator = document.mathWiz.operator.value;

      if (/^\d+$/.test(first) && /^\d+$/.test(second)) {
   
        doTheMath();

      } else {

        alert("Error: Both numbers must be numeric");

(continued)



194 Part III: JavaScript on the Web  

Listing 12-5 (continued)

      }   

    }

    function doTheMath() {
      var first =  

parseInt(document.mathWiz.numberOne.value);
      var second = parseInt(document.mathWiz.numberTwo.

value);
      var operator = document.mathWiz.operator.value;
      switch (operator){
        case "add":
          var answer = first + second;
          break;
        case "subtract":
          var answer = first - second;
          break;
        case "multiply":
          var answer = first * second;
          break;
        case "divide":
          var answer = first / second;
          break;
      }
  
      document.mathWiz.theResult.value = answer;
   }
 </script>
</head>
<body onload="registerEvents();">
  <div id="formErrors"></div>
  <form name="mathWiz">
    <label>First Number: <input type="number" 

name="numberOne"></label><br>
    <label>Second Number: <input type="number" 

name="numberTwo"></label><br>
    <label>Operator: 
      <select name="operator">
        <option value="add"> + </option>
        <option value="subtract"> ‐ </option>
        <option value="multiply"> * </option>
        <option value="divide"> / </option>
      </select>
    </label>
    <br>
    <input type="button" name="operate" value="Do the 

Math!"><br>
    <label>Result: <input type="number" name="theResult"> 

</label>
  </form>
</body>
</html>



Working with CSS and Graphics
In This Chapter

 ▶ Editing styles

 ▶ Employing images

 ▶ Executing JavaScript animations

 ▶ Developing a slideshow

“To achieve style, begin by affecting none.”

— E.B. White, The Elements of Style

O 
nce you understand how to manipulate the DOM objects using 
JavaScript, web pages change from static documents into interactive 

applications that can respond to user input, change without reloading, and 
deliver live data to a variety of different computing devices.

Using the Style Object
The DOM’s Style object is a powerful tool for making a web page change 
its look and adapt in real time to user input or current browser conditions. 
The Style object gives programmers access to CSS style properties for any 
selected element or collection of elements in a document. (For more on the 
basic rules and syntax of CSS, see Chapter 1.)

Some of the things that you can do with the Style object are

 ✓ Change text colors to highlight keywords entered into search boxes

 ✓ Animate an object after a user clicks on it

 ✓ Change the border and background color of the part of a form the user 
is currently editing

Chapter 13



196 Part III: JavaScript on the Web  

 ✓ Expand and collapse or hide and show different parts of a page

 ✓ Create tips or help boxes that appear above the content of the page 
when a user clicks a link

The Style object works the same way as other DOM objects. It includes a set of 
properties that you can use to get or set different aspects of a selected  element.

The properties of the Style object mirror CSS properties. The difference 
between the two is that the DOM Style objects’ properties are spelled using 
camelCase instead of using CSS’s dashed format.

Table 13-1 shows a few of the most commonly used Style object properties, 
along with what CSS property they modify.

For a complete list of the Style object’s properties, and of every other DOM 
objects properties, visit http://overapi.com/html‐dom.

Getting the current style of an element
The Style object returns the currently applied inline styles of an element. It 
doesn’t tell you what the actual style is that the browser will render because 
it doesn’t include styles held in the external CSS files or styles inside of 
style elements.

For this reason, the Style object is not entirely useful for getting the style 
of an element. In Listing 13-1, the div element has an inline style and several 
style rules that are set within a style element.

Table 13-1 Common Style Object Properties  
 and Their CSS Equivalents

Property CSS Style Description
backgroundColor background‐color Gets or sets the background 

color of an element

borderWidth border‐width Sets the width of all four borders 
of an element

fontFamily font‐family Gets or sets a list of font family 
names assigned to the text in an 
element

lineHeight line‐height Gets or sets the distance 
between lines of text

textAlign text‐align Gets or sets the horizontal align-
ment of text in a black element

http://overapi.com/html-dom


197  Chapter 13: Working with CSS and Graphics

When using the Style object to get the style properties of an element, only 
styles set using JavaScript or inline CSS are returned.

Listing 13-1:  The Wrong Way to Get an Element’s Current Style

<html>
<head>
  <title>Getting Inline Styles</title>
  <style>
    #myText {
      color: white;
      background‐color: black;
      font‐family: Arial;
      margin‐bottom: 20px;
     }
    #stylesOutput {
      font‐size: 18px;
      font‐family: monospace;
    }
  </style>
  <script>
    function getElementStyles(e){
      var colorOutput = "color: " + e.target.style.color;
      var fontSizeOutput = "font size: " + e.target.style.

fontSize;
      document.getElementById("stylesOutput").innerHTML =  

colorOutput + "<br>" + fontSizeOutput;
    }

  </script>
</head>
<body>
  <div id="myText" style="font‐size: 26px;"  

onclick="getElementStyles(event);">Here is  
some text.</div>

  <div id="stylesOutput"></div>
</body>
</html>

Figure 13-1 shows what happens when you load this page in a browser and 
click on the div element.

The two important things to notice about the results of this script are

 ✓ The value of the Style object’s property is blank, even though the div’s 
color was set to white using CSS in the head.

 ✓ The value of the Style object’s font size is set correctly because the 
CSS font-size property was set using inline CSS.



198 Part III: JavaScript on the Web  

The style object’s properties behave like inline styles and will retrieve only 
the values of inline styles applied to an element.

A good way to get the current style of an element is by using window. 
get ComputedStyle(), as shown in Listing 13-2.

Listing 13-2:  The Correct Way to Get an Element's Current Style

<html>
<head>
  <title>Getting Computed Styles</title>
  <style>
    #myText {
      color: white;
      background-color: black;
      font-family: Arial;
      margin-bottom: 20px;
    }
    #stylesOutput {
      font-size: 18px;
      font-family: monospace;
    }
  </style>
  <script>
    function getElementStyles(e){
      var computedColor =  

window.getComputedStyle(e.target).
getPropertyValue("color");

      var computedSize = window.getComputedStyle 
(e.target).getPropertyValue("font-size");

      var colorOutput = "color: " + computedColor;
      var fontSizeOutput = "font size: " + computedSize;

Figure 13-1: 
The result 

of using the 
Style 

object to 
get an ele-

ment's style.



199  Chapter 13: Working with CSS and Graphics

Figure 13-2:  
Displaying 
computed 

styles.

      document.getElementById("stylesOutput").innerHTML = 
colorOutput + "<br>" + fontSizeOutput;

    }

  </script>
</head>
<body>
  <div id="myText" style="font‐size: 26px;"  

onclick="getElementStyles(event);">Here is some 
text.</div>

  <div id="stylesOutput"></div>
</body>
</html>

Figure 13-2 shows the output of Listing 13-2: showing the computed (and 
 correct) style property values.

Notice in Listing 13-2, the getPropertyValue function takes the CSS 
 property (font-size) rather than the style property (fontSize). The 
reason is that the script is querying the value of font-size directly from 
the element, rather than through the Style object (which will only tell us 
about the inline styles).

Setting style properties
To set properties of the Style object, select the element you want the 
new style to apply to and then use dot notation or bracket  notation  
to assign a new value to a property of the Style object.



200 Part III: JavaScript on the Web  

To change the border-width of an element that has the id of 
"borderedSquare", you would use the following code:

document.getElementById("borderedSquare").style.
borderWidth = "15px";

Animating Elements with  
the Style Object

You can use CSS styles to control the look of elements, but you can also use 
them to control the positioning of elements. By using JavaScript loops with 
style property modifications, you can create basic animations fairly easily.

In Listing 13-3, a JavaScript function moves a square across the screen by 
using a for loop to change the CSS 'left' property.

Listing 13-3:  Animating an Element with the Style Object

<html>
<head>
  <title>JavaScript animation</title>
  <style>
    #square {
      width: 100px;
      height: 100px;
      background-color: #333;
      position: absolute;
      left: 0px;
      top: 100px;
    }
  </style>
  <script>
    function moveSquare() {
      for (i=0; i<500; i++){
        document.getElementById("square").style.left = 

i+"px";
      }
    }
  </script>
</head>
<body onload="moveSquare();">
  <div id="square"></div>
</body>
</html>



201  Chapter 13: Working with CSS and Graphics

If you open this script in a browser, it seemingly opens with animation 
already complete. In fact, the animation actually does run, but it happens so 
fast that you can’t see it happening (unless you happen to have a very slow 
computer or very fast eyes).

What’s needed in order to make this animation run at human speed is a 
pause between each iteration of the loop. The most common way to create 
a loop with pauses is by using the setTimeout() method of the Window 
object.

The setTimeout() method takes two arguments:

 ✓ A function or piece of code to run

 ✓ A number of milliseconds (thousandths of a second) to wait before 
 running

By putting a call to setTimeout() within a function and calling the function 
recursively, we can gain control over how fast the animation runs. (For more 
on writing recursive functions, see Chapter 7.)

In Listing 13-4, the box is now moving at the much slower pace of 1 pixel per 
1/100th second. This example also features a few other improvements over 
Listing 13-3:

 ✓ The square is now clickable. Clicking the square triggers the animation.

 ✓ The animation of the square is based on the position of the square when 
the click event happens. Clicking on the square causes it to move 100 
pixels to the right of wherever it is when it is clicked.

Listing 13-4:  Animation with the Style Object, setTimeout(),  
and Recursion

<html>
<head>
  <title>JavaScript animation</title>
  <style>
    #square {
      width: 100px;
      height: 100px;
      background-color: #333;
      position: absolute;
      left: 0px;
      top: 100px;
    }
  </style>
  <script>

(continued)



202 Part III: JavaScript on the Web  

Listing 13-4 (continued)

    // wait until the window is loaded
    window.addEventListener('load',initialize,false);

  function initialize(){

    //move the square when clicked
    document.getElementById("square"). 

addEventListener('click',function(e){

      //get the starting position
      var left = window.getComputedStyle(e.target).

getPropertyValue("left");

      //convert left to a base 10 number
      left = parseInt(left, 10);
      moveSquare(left,100);

    }, false);

  }

  function moveSquare(left,numMoves) {
    document.getElementById("square").style.left = 

left+"px";

    if (numMoves > 0) {
      numMoves--;
      left++;
      setTimeout(moveSquare,10,left,numMoves);
    } else {
      return;
    }
  }
  </script>
</head>
<body>
  <div id="square"></div>
</body>
</html>

Figure 13-3 shows the output of Listing 13-4 when run in a browser.

Look closely at the code that registers the click event on the square. An 
anonymous function is used as an event handler. Although it may look con-
fusing at first glance, if you reduce it to its basic parts, it’s still just the same 
basic addEventListener() method at work, with its three arguments: 
the event type, the listener (in this case, an anonymous function), and the 
Boolean value for whether to use event capture.



203  Chapter 13: Working with CSS and Graphics

Working with Images
HTML img elements are normally pretty static, unchanging things — unless 
the image is an animation, of course. With JavaScript, effects such as the 
resizing of images, repositioning images, lightbox effects, rollover effects, and 
more are all possible by manipulating the attributes of the img element and 
by changing CSS styles.

Using the Image object
The DOM’s Image object gives you access to the properties of an HTML 
img element. Once you have that access, you can set and get values in order 
to change any of the valid attributes of the element. The properties of the 
Image object are shown in Table 13-2.

The most important and most widely used property of the Image object are 
the src property, the width property, and the height property. With these 
three properties, you can create image swap effects, amazing image size 
effects, cool rollover buttons, and a lot more!

Creating rollover buttons
A rollover button is a button that changes in some way when the mouse 
pointer is hovering over it. Rollover buttons are a great way to indicate to 
the user that an image can be clicked. You can also use them to reveal more 

Figure 13-3:  
JavaScript 

enables 
animations 

based on 
events.



204 Part III: JavaScript on the Web  

information about what will happen if a button or a link is clicked. You can 
even use them just for fun or aesthetics. Some web designers like to put so-
called easter eggs into their websites that will trigger image changes or other 
changes on a site when a mouse hovers over them or when someone clicks 
on certain hidden areas on a page.

You can create rollovers using CSS, but for more sophisticated rollovers 
or image swapping, JavaScript, or a combination of JavaScript and CSS, is 
required.

The example in Listing 13-5 shows how to create a simple image rollover 
effect in JavaScript.

Listing 13-5:  An Image Rollover Effect

<html>
<head>
  <title>Rollover image</title>
  <script>

    function swapImage(imgToSwap){
      imgToSwap.src = "button2.png";
      imgToSwap.alt = "you're mousing over my button!";
    }
    function swapBack(imgToSwap){
      imgToSwap.src = "button1.png";
      imgToSwap.alt = "mouse over me!";
    }

Table 13-2 Properties of the Image Object

Property Description
alt Gets or sets the value of an image’s alt attribute

complete Is true when the browser is finished loading the image

height Gets or sets the value of an image’s height attribute

isMap Gets or sets whether an image should be part of a 
server-side image-map

naturalHeight Gets the image’s original height

naturalWidth Gets the image’s original width

src Gets or sets the value of an image’s src attribute

useMap Gets or sets the value of an image’s usemap attribute

width Gets or sets the value of an image’s width attribute



205  Chapter 13: Working with CSS and Graphics

  </script>
</head>
<body>
  <img src="button1.png" id="myButton" 

onmouseover="swapImage(this);" 
onmouseout="swapBack(this);" alt="mouse over 
me!">

</body>
</html>

In order for the page in Listing 13-5 to work correctly, you’ll need to have the 
images named button1.png and button2.png saved in the same direc-
tory as your HTML file. You can create your own or download ours from the 
books’ website.

Grow images on mouseover
Another useful user interface trick to make your websites more user-friendly 
is to slightly increase the size of image buttons when a user hovers over 
them. This nice little trick subtly indicates that the target image is clickable 
and provides a little bit of interactivity as well.

Listing 13-6 modifies the code from Listing 13-5 to increase the image size by 
5 percent on mouseover events.

Be careful with increasing image sizes too far above the image’s natural size. 
If you increase it too much, the image quality will be noticeably degraded.

Listing 13-6:  Increasing Image Size on mouseover

<html>
<head>
  <title>Rollover image size</title>
  <script>

    function growImage(imgToGrow){
      imgToGrow.width += imgToGrow.width * .05;
      imgToGrow.height += imgToGrow.width * .05;
    }
    function restoreImage(imgToShrink){
      imgToShrink.width = imgToShrink.naturalWidth;
      imgToShrink.height = imgToShrink.naturalHeight;
    }
  </script>
</head>

(continued)



206 Part III: JavaScript on the Web  

Listing 13-6 (continued)

<body>
  <img src="button1.png" id="myButton" 

onmouseover="growImage(this);" onmouseout="rest
oreImage(this);" alt="mouse over me!">

</body>
</html>

You may have noticed that Listings 13-5 and 13-6 used the inline event 
method. While not ideal for actual web application development, inline 
events are frequently used for simple mouseover effects that are really 
 interface-related rather than functionality-related.

Creating an image slideshow
Slideshows (also known as carousels) are a popular way to display multiple 
images in a single space on a site. Often used on the homepage of websites, 
they can really liven up your site.

Slideshows often feature transition effects to switch between multiple 
images. These transition effects are generally created using a library of 
JavaScript functions, such as jQuery. You can also create transition effects 
using just ordinary JavaScript, CSS, and the DOM. In the interest of simplicity,  
the slideshow in Listing 13-7 only switches between images and doesn’t 
 feature a transition of any sort.

Listing 13-7:  A Slideshow Built Using JavaScript and CSS

<html>
<head>
  <title>JavaScript slideshow</title>

  <style>
    #carousel {
      position: absolute;
      width: 800px;
      height: 400px;
      top: 100px;
      left: 100px;
      display: hidden;
    }

  </style>
  <script>
    var slides = [



207  Chapter 13: Working with CSS and Graphics

      "<div id='slide1'>my first slide<br><img 
src='image1.jpg'></div>",

      "<div id='slide2'>my second slide<br><img 
src='image2.jpg'></div>",

      "<div id='slide3'>my third slide<br><img 
src='image3.jpg'></div>"];

    var currentSlide = 0;
    var numberOfSlides = slides.length-1;

    window.addEventListener("load",loader,false);
   
    function loader(){
      changeImage();
    }

    function changeImage(){
      console.log("changeImage function");
      if (currentSlide > numberOfSlides){
        currentSlide = 0;
      }
     
      document.getElementById("carousel"). 

innerHTML=slides[currentSlide];

      console.log('displaying slide' + currentSlide +  
"of " + numberOfSlides);

      currentSlide++;

      setTimeout(changeImage,1000);
    }

  </script>
</head>
<body>
  <div id="carousel"></div>
</body>
</html>

Using the Style Object’s Animation  
Properties

CSS3 and the DOM’s Style object have properties for simplifying the task 
of animating elements. Used together, the animation properties can enable 
you to create some pretty cool animations with minimal effort. The Style 
object’s animation properties are listed in Table 13-3.



208 Part III: JavaScript on the Web  

In Listing 13-8, a simple animation is created using CSS. The timing and key-
frames of the animation are first configured with CSS, and then JavaScript is 
used to pause and resume the animation. With a little creativity, there are 
many possibilities for how you could control this animation using JavaScript.

CSS3 animation is still pretty new, and not all browsers support it in the same 
way. Because it’s still considered an experimental technology, some brows-
ers require a browser prefix before the name of the animation properties.

In Listing 13-8, both the standard and prefixed CSS styles are included.

Listing 13-8: Controlling CSS3 Animation Using JavaScript

<!DOCTYPE> 
<html>
<head>
  <style> 
    #words {

Table 13-3 Animation-Related Properties of the Style Object

Property Description
animation Sets all the animation properties except 

the animationPlayState property 
simultaneously.

animationDelay Gets or sets a delay to happen before the 
animation starts

animationDirection Gets or sets whether the animation should 
play in reverse on some or all cycles

animationDuaration Gets or sets the length of time an animation 
takes to complete one cycle

animationFillMode Gets or sets what values are applied by the 
animation outside the time it’s executing

animationIterationCount Gets or sets the number of times an anima-
tion should be played

animationName Gets or sets a list of animations, using key-
frame at-rules

animationTimingFunction Gets or sets the speed curve that describes 
how the animation should progress over 
time

animationPlayState Gets or sets whether the animation is run-
ning or paused.



209  Chapter 13: Working with CSS and Graphics

      position: relative;
      width: 300px;
      height: 200px;
      text-align: center;
      padding-top: 20px;
      font-family: Arial;
      border-radius: 6px;
      color: white;

      /* Chrome, Safari, Opera */
      -webkit-animation-name: movewords;
      -webkit-animation-duration: 6s;
      -webkit-animation-timing-function: linear;
      -webkit-animation-delay: 0s;
      -webkit-animation-iteration-count: infinite;
      -webkit-animation-direction: alternate;
      -webkit-animation-play-state: running;
      /* Standard syntax */
      animation-name: movewords;
      animation-duration: 6s;
      animation-timing-function: linear;
      animation-delay: 0s;
      animation-iteration-count: infinite;
      animation-direction: alternate;
      animation-play-state: running;
    }

    /* Chrome, Safari, Opera */
    @-webkit-keyframes movewords {
      0%  {background:red; left:100px; top:0px;}
      25%  {background:blue; left:200px; top:100px;}
      50%  {background:blue; left:300px; top:200px;}
      75%  {background:blue; left:200px; top:200px;}
      100% {background:red; left:100px; top:0px;}
    }

    /* Standard syntax */
    @keyframes movewords {
      0%  {background:red; left:100px; top:0px;}
      25%  {background:blue; left:200px; top:100px;}
      50%  {background:blue; left:300px; top:200px;}
      75%  {background:blue; left:200px; top:200px;}
      100% {background:red; left:100px; top:0px;}
    }
  </style>
  <script>

    window.addEventListener("load",registerEvents,false);

    function registerEvents(e){
      document.getElementById("stop").addEventListener(" 

click",stopAni,false);

(continued)



210 Part III: JavaScript on the Web  

Listing 13-8 (continued)

      document.getElementById("go").addEventListener("clic
k",startAni,false);

    }
    function stopAni(){
      document.getElementById("words").style.

webkitAnimationPlayState = "paused";
      document.getElementById("words").style.

AnimationPlayState = "paused";
    }
    function startAni(){
      document.getElementById("words").style.

webkitAnimationPlayState = "running";
      document.getElementById("words").style.

AnimationPlayState = "running";
    }

  </script>
</head>
<body>

  <h1 id="words">Movin' Around</h1>

  <button type="button" id="stop">Pause</button>
  <button type="button" id="go">Run</button>

</body>
</html>



Part IV
Beyond the Basics

 Find out how to force web browsers to run a restricted version of JavaScript in the  
article “JavaScript Strict Mode” online at www.dummies.com/extras/ 
codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


In this part . . .
 ✓ Find out how to search with regular expressions.

 ✓ Discover how to use callbacks and closures.

 ✓ Go above and beyond by embracing AJAX and JSON.

 ✓ Find out how to force web browsers to run a restricted 
 version of JavaScript in the article “JavaScript Strict Mode” 
online at www.dummies.com/extras/ 
codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


Searching with Regular 
Expressions

In This Chapter
 ▶ Finding patterns with regular expressions

 ▶ Writing regular expressions

 ▶ Using regular expressions in JavaScript

“Creating problems is easy. We do it all the time. Finding solutions, ones 
that last and produce good results, requires guts and care.”

— Henry Rollins

R 
egular expressions are a powerful tool within many programming lan-
guages that help you find and change text within documents according 

to patterns within the text. The syntax for regular expressions can be intimi-
dating at first, but once you get the hang of it, there will be nothing you can’t 
do with text.

Finding It Out with Regular Expressions
Regular expressions are a way to look for patterns or character combinations 
in strings.

Example uses for regular expressions include

 ✓ Checking a user‐entered email address to make sure that it’s in the right 
format

 ✓ Finding and replacing all instances of a person’s name in an article

Chapter 14



214 Part IV: Beyond the Basics  

 ✓ Locating capitalized words in the middle of sentences throughout 
a book

 ✓ Finding strings of numbers that look like phone numbers inside a 
 document

Here’s what a regular expression looks like:

^((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}$

Looks pretty intimidating, right? Don’t worry, you’ll very soon have the tools 
needed to decode this expression, and you’ll discover that it’s a regular 
expression designed to match a common format for U.S. phone numbers:

(555)555‐5555

Regular expressions can be much simpler than the preceding example, 
 however. Listing 14-1 shows a simple example use for a regular expression, 
and Figure 14-1 shows what Listing 14-1 looks like when rendered in a browser.

Listing 14-1: Does the String Include "JavaScript"?

<html>
<head>
  <title>Looking for JavaScript</title>
  <script>
    window.addEventListener("load",registerEvents,false);
   
    function registerEvents(e){
      document.getElementById("ask")
    .  addEventListener("click",findAnswer,false);
    }
 
    function findAnswer(){
      //get the user's question
      var question = document.

getElementById("userQuestion").value;
      /* create a new regular expression object that 

will look for an exact match of the string 
"JavaScript". */

      var re = new RegExp("JavaScript");
    
      // if "JavaScript" is found in the user's question
      if (re.test(question)===true){
    
        //print out an answer.
        document.getElementById("answer").innerHTML = 

"JavaScript Question? Check out Coding with 
JavaScript For Dummies by Chris Minnick and Eva 
Holland";



215  Chapter 14: Searching with Regular Expressions

        //and yell "JavaScript!" in the console.
        console.log("JavaScript!");
      }
    }
  </script>
</head>
<body>
  <form id="userInput">
    <label>Enter your question:
    <textarea id="userQuestion"/>
    </label>
    <button id="ask" type="button">Get An Answer</button>
  </form>
  <div id="answer"/>
</body>
</html>

Writing Regular Expressions
Before you can make use of a regular expression, you need to create an 
object containing the expression. You can write regular expressions in one of 
two ways:

 ✓ By using a regular expression literal

 ✓ Through the constructor function of the RegExp object

Figure 14-1: 
The result 
of running 

Listing 
14-1 in a 

browser.



216 Part IV: Beyond the Basics  

Using the RegExp object
When you create a regular expression by calling the RegExp constructor 
function, the resulting object gets created at run time, rather than when 
the script is loaded. You should use the RegExp constructor function when 
you don’t know the value of the regular expression when you’re writing the 
script. For example, you may be asking the user to input a regular expression, 
or you may be getting the regular expression from an external source or cal-
culating some part of the regular expression when the script runs.

The program in Listing 14-2 creates a regular expression using a random 
letter and then asks the user to type a sentence. When the user submits the 
form, the program calculates how many instances of the random letter were 
in the user-submitted text.

Listing 14-2: Creating Regular Expressions at Run Time with  
the RegExp object

<html>
<head>
  <title>Letter Counting Game</title>
  <script>
    window.addEventListener('load',loader,false);

    //get a random letter
    var letter = String.fromCharCode(97 + Math.floor(Math.

random() * 26));

    /* Create a regular expression using the letter. Set 
the g option to find all occurrences. */

    var re = new RegExp(letter,'g');

    function loader(e){
      document.getElementById("getText").addEventListener(

'submit',countLetter,false);
    }

    function countLetter(e){
      e.preventDefault();
      document.getElementById("results").innerHTML = "The 

secret letter was " + letter +".";
      var userText = document.getElementById("userWords").

value;
      var matches = userText.match(re);
      if (matches){
        var count = matches.length;
      } else {
        var count = 0;
      }



217  Chapter 14: Searching with Regular Expressions

      document.getElementById("results").innerHTML += 
" You typed the secret letter " + count + " 
times.";

    }

  </script>
</head>
<body>
  <form id="getText">
    <p>I'm thinking of a letter! Type a sentence, and then 

I'll tell you how many times your sentence uses 
my secret letter!</p>

    <input type="text" name="userWords" id="userWords">
    <input type="submit" name="submit">
  </form>
  <div id="results"></div>
</body>
</html>

Figure 14-2 shows the result of running the preceding program in a web 
browser.

Regular expression literals
To create a regular expression literal, you enclose the value of the regular 
expression between slashes instead of quotes.

Figure 14-2: 
The Letter 

Counting 
Game result 

of Listing 
14-2.



218 Part IV: Beyond the Basics  

For example:

var myRegularExpression = /JavaScript/;

Regular expression literals are compiled by the browser when the script is 
loaded and remain constant through the life of the script. The result is that 
regular expression literals offer better performance for expressions that will 
be unchanging.

The preceding example uses a regular expression to look for an exact match 
of the string "JavaScript". A regular expression containing a string of char-
acters to be matched exactly is called a simple pattern.

In a real application or program, you’ll want to account for users who use 
some variation on the correct spelling. For example, a user may input any of 
the following words and clearly mean JavaScript:

 ✓ javascript

 ✓ Javascript

 ✓ java script

 ✓ JS

 ✓ js

There may even be more exotic variations. One of the wonderful and frustrat-
ing things about dealing with input from real live people is that you never 
know for sure what they’re going to do! In order to be able to detect varia-
tions in capitalization and spelling, you can use more sophisticated regular 
expressions to look for patterns or sets of characters, rather than just literal 
strings.

The following is a revised regular expression that will match "JavaScript" 
as well as "Javascript" or "javascript":

var myRegularExpression = /[Jj]ava[Ss]cript/;

Things are starting to look a little foreign, but if you understand the meaning 
of the different characters, you’ll see that this is actually still pretty simple. 
The square brackets in a regular expression define a character set and will 
match any one of the characters within that set. By writing [Jj], what you’re 
saying is that either a capital or lowercase j will match.



219  Chapter 14: Searching with Regular Expressions

Testing regular expressions
Sometimes when you’re writing regular expressions, it’s helpful to have an 
easy way to test an expression to make sure that it’s actually doing what you 
want. A number of websites and tools can help you test your regular expres-
sions. One such site is http://regex101.com. To use regex101.com, type 
your regular expression in the box at the top of the screen and type some 
text in the box underneath it. The site checks the text against using your 
regular expression and highlights the matches that are found.

Figure 14-3 shows regex101.com using our example regular expression to test 
against a question about JavaScript.

Special characters in regular expressions
Regular expressions make it possible for you to look for numbers in strings, 
letters, groups of letters, repetitions of characters, and much more.

To create complex search patterns, you can use the regular expression 
 special characters. The most commonly used special characters are listed 
in Table 14-1.

Figure 14-3: 
Using 

regex101.
com to test 

a regular 
expression.

http://regex101.com


220 Part IV: Beyond the Basics  

Using Modifiers
Modifiers can be used to modify several parameters of the search as a whole. 
To use modifiers, pass them as the second argument to the RegExp() 
 constructor function when you’re creating your regular expression object or 
put them after the ending / in a regular expression literal.

Table 14-1 Regular Expression Special Characters

Special Character Meaning
\ Designates whether the next character should be treated 

as a special character or whether it should be treated as a 
literal character. If the following character is a special char-
acter, the \ designates that it should be treated literally.

^ Finds the beginning of the input.

$ Finds the end of the input.

* Finds the preceding character 0 or more times.

+ Finds the preceding character 1 or more times.

? Finds the preceding character 0 or 1 time.

. Finds any single character except the newline character.

x|y Finds either x or y.

{n} Finds exactly n occurrences of the preceding character.

[xyz] Finds any one of the characters in the brackets.

[^xyz] Finds any characters other than the ones in the brackets.

[\b] Finds a backspace.

\b Finds a word boundary.

\B Finds a nonword boundary.

\d Finds a digit character.

\D Finds any nondigit character.

\n Finds a line feed.

\s Finds a single white space character, including space, tab, 
form feed, and line feed.

\S Finds a single nonwhite-space character.

\t Finds a tab.

\w Finds any alpha-numeric character, including an 
 underscore.

\W Finds any nonword character.



221  Chapter 14: Searching with Regular Expressions

The three modifiers are

 ✓ g (global): Indicates that the entire string should be searched, rather 
than just searching until the first match is found.

 ✓ i (case insensitive): Indicates that the case (upper or lower) of the char-
acters in the input should be ignored.

 ✓ m (multiline): Performs multiline matching. For example, when using ^ 
(start) and $ (end) special characters, treat each new line as a new start 
and end, rather than just considering the start and end of the input.

The following regular expression will match all the variations of the word 
JavaScript that we show earlier in this chapter throughout a document:

/javascript/ig

Coding with Regular Expressions
Regular expressions are used with the regular expression methods and with 
a subset of the string functions (see Chapter 3).

The regular expression methods are

 ✓ test: Tests for a match and returns true if a match is found and false 
if none is found.

 ✓ exec: Tests for a match and returns an array of information about 
the match.

If all you need to know is whether a string contains a match for the regular 
expression, you should use the test method. If you need to know where the 
match or matches are in a string, how many matches there are, and the text 
that was matched, you should use exec.

The string functions that can use regular expressions are shown in Table 14-2.

Email verification is a good, and surprisingly complex, use for regular expres-
sions. Every valid email address has certain rules that it conforms to. The 
basic rules are

 ✓ Must contain one @ symbol

 ✓ Must contain characters before and after the @ symbol

 ✓ Must contain at least one separating groups of characters after the 
@ symbol



222 Part IV: Beyond the Basics  

There are other rules, but things get complicated pretty quickly when you 
start talking about details, such as the fact that spaces are allowed in email 
addresses in certain cases, as are international characters.

For someone who is asking users to input a valid email address, usually any 
sort of simple test of the email address before accepting the input will dra-
matically cut down on fake entries.

Listing 14-3 demonstrates an email validation script. After a user enters an 
email address and presses the validate button, the script tests the email 
address against the following regular expression literal:

/\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b/i

This regular expression starts out with \b, the word boundary special char-
acter. A word boundary matches the start of a new word. After that, we have 
the following pattern:

[A-Z0-9._%+-]+

This matches one or more combination of letters or numbers, which may 
contain underscores, percent signs, or dashes.

@[A-Z0-9.-]+

Table 14-2 String Functions That Use Regular Expressions

Function Use
match Looks for a match of for the regular expression in a string. It returns 

an array of information about the match or returns null if no match 
is found.

search Tests for a match in a string. If one is found, it returns the index of the 
match. If no match is found it returns -1.

replace Searches for a match in a string and replaces the match with a 
replacement string.

split Breaks a string into an array of substrings, using a regular expression 
or fixed string.



223  Chapter 14: Searching with Regular Expressions

This part requires the @ symbol, followed by one or more combinations of 
letters, numbers, or dashes.

\.[A-Z]{2,4}\b/i

The end of the regular expression looks for a two to four character-long 
string (the com or net or org parts of an email address) followed by the end 
of the word. At the very end of the regular expression, it uses the /i modifier  
to indicate that the regular expression will match upper or lowercase 
 characters.

If a match occurs, then the data entered has passed the test, and a popup 
declaring the address 'valid!' appears.

Listing 14-3: An Email Validation Script

<html>
<head>
  <title>Email Validator</title>
  <script>
    window.addEventListener('load',loader,false);
    function loader(e){
      e.preventDefault();
      document.getElementById('emailinput').addEventListen

er('submit',validateEmail,false);
    }

    function validateEmail(e) {
      var re = /\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]

{2,4}\b/i;
      if (re.test(e.target.yourEmail.value)) {
        alert("valid!");
      } else {
        alert("invalid!");
      }
    } 

  </script>
</head>
<body>
  <form id="emailinput">
    <label>Enter an email address:
      <input type="text" id="yourEmail">
    </label>
    <input type="submit" value="Validate" id="validate">
  </form>
</body>
</html>



224 Part IV: Beyond the Basics  

The result of running Listing 14-3 in a browser is shown in Figure 14-4.

Figure 14-4: 
Using a 
regular 

expression 
in an email 
validation 

script.



Understanding Callbacks  
and Closures

In This Chapter
 ▶ Understanding callback functions

 ▶ Using callbacks

 ▶ Creating closures

“O, call back yesterday, bid time return.”

— William Shakespeare

C 
allbacks and closures are two of the most useful and widely used tech-
niques in JavaScript. In this chapter, you find out how and why to pass 

functions as parameters to other functions.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

What Are Callbacks?
JavaScript functions are objects. This statement is the key to understanding 
many of the more advanced JavaScript topics, including callback  functions.

Functions, like any other object, can be assigned to variables, be passed 
as arguments to other functions, and created within and returned from 
 functions.

Chapter 15



226 Part IV: Beyond the Basics  

Passing functions as arguments
A callback function is a function that is passed as an argument to another 
function. Callback functions are a technique that’s possible in JavaScript 
because of the fact that functions are objects.

Function objects contain a string with the code of the function. When you call 
a function by naming the function, followed by ( ), you’re telling the function 
to execute its code. When you name a function or pass a function without the 
( ), the function does not execute.

Chapter 11 has examples of callback functions where you can use the 
addEventListener method, such as

document.addEventListener('click',doSomething,false);

This method takes an event (click) and a Function object (doSomething) 
as arguments. The callback function doesn’t execute right away. Instead, 
the addEventListener method executes the function when the event 
occurs.

Writing functions with callbacks
Here’s a simple example function, doMath, that accepts a callback function 
as an argument:

function doMath(number1,number2,callback) {
  var result = callback(number1,number2);
  document.write ("The result is: ": + result);
}

This function is a generic function for returning the result of any math opera-
tion involving two operands. The callback function that you pass to it speci-
fies what actual operations will be done.

To call our doMath function, pass two number arguments and then a func-
tion as the third argument:

doMath(5,2,function(number1,number2){
  var calculation = number1 * number2 / 6;
  return calculation;
});

Listing 15-1 is a complete web page that contains the doMath function and 
then invokes it several times with different callback functions.



227  Chapter 15: Understanding Callbacks and Closures 

Listing 15-1: Calling a Function with Different Callback Functions

<html>
<head>
 <title>Introducing the doMath function</title>
 <script>
   function doMath(number1,number2,callback){

     var result = callback(number1,number2);
     document.getElementById("theResult").innerHTML += 

("The result is: " + result + "<br>");
   }
 
   document.addEventListener(’DOMContentLoaded’, 

function() { 
 
     doMath(5,2,function(number1,number2){
      var calculation = number1 * number2;
      return calculation;
     });

     doMath(10,3,function(number1,number2){
      var calculation = number1 / number2;
      return calculation;
     });

     doMath(81,9,function(number1,number2){
      var calculation = number1 % number2;
      return calculation;
     });

   }, false);
  </script>
</head>
<body>
  <h1>Do the Math</h1>
  <div id="theResult"</div>
</body>
</html>

The result of running Listing 15-1 in a browser is shown in Figure 15-1.

Using named callback functions
In the examples in the preceding section, the callback functions were all writ-
ten as anonymous functions. It’s also possible to define named functions and 
then pass the name of the function as a callback function.



228 Part IV: Beyond the Basics  

Anonymous functions (see Chapter 7) are functions that you create without 
giving them names.

Using named functions as callbacks can reduce the visual code clutter that 
can come with using anonymous functions. Listing 15-2 shows an example 
of how to use a named function as a callback. This example also features the 
 following two improvements over Listing 15-1:

 ✓ A test has been added to the doMath function to make sure that the 
callback argument is actually a function.

 ✓ It prints out the code of the callback function before it displays the 
result of running it.

Listing 15-2: Using Named Functions as Callbacks

<html>
<head>
   <title>doMath with Named Functions</title>
   <script>
     function doMath(number1,number2,callback){

      if (typeof callback === "function") {
 
      var result = callback(number1,number2);
      document.getElementById("theResult").innerHTML += 

(callback.toString() + "<br><br>The result is: 
" + result + "<br><br>");

      }
     }
 
     function multiplyThem(number1,number2){
      var calculation = number1 * number2;
      return calculation;
     }

Figure 15-1: 
Doing cal-
culations 

using call-
backs.



229  Chapter 15: Understanding Callbacks and Closures 

    function divideThem(number1,number2){
      var calculation = number1 / number2;
      return calculation;
    }  
    function modThem(number1,number2){
      var calculation = number1 % number2;
      return calculation;
    }  

    document.addEventListener('DOMContentLoaded', 
function() { 

      doMath(5,2,multiplyThem);

      doMath(10,3,divideThem);

      doMath(81,9,modThem);

    }, false);
  </script>
</head>
<body>
  <h1>Do the Math</h1>
  <div id="theResult"</div>
</body>
</html>

The result of running Listing 15-2 in a browser is shown in Figure 15-2.

Figure 15-2: 
Doing math 
with named 

callbacks.



230 Part IV: Beyond the Basics  

Using named functions for callbacks has two advantages over using 
 anonymous functions for callbacks:

 ✓ It makes your code easier to read.

 ✓ Named functions are multipurpose and can be used on their own or as 
callbacks.

Understanding Closures
A closure is the local variable for a function, kept alive after the function has 
returned.

Take a look at the example in Listing 15-3. In this example, an inner  function 
is defined within an outer function. When the outer function returns a refer-
ence to the inner function, the returned reference can still access the local 
data from the outer function.

In Listing 15-3, the greetVisitor function returns a function that is created 
within it called sayWelcome. Notice that the return statement doesn’t use () 
after sayWelcome. That’s because you don’t want to return the value of run-
ning the function, but rather the code of the actual function.

Listing 15-3: Creating a Function Using A Function

function greetVisitor(phrase) {
  var welcome = phrase + ". Great to see you!"; // Local 

variable
  var sayWelcome = function() {
  alert(welcome);
  } 
 return sayWelcome;
} 

var personalGreeting = greetVisitor('Hola Amiga');
personalGreeting(); // alerts "Hola Amiga. Great to see 

you!"

The useful thing about Listing 15-3 is that it uses the greetVisitor function 
to create a new custom function called personalGreeting that can still 
access the variables from the original function.

Normally, when a function has finished executing, the local variables within it 
are inaccessible. By returning a function reference (sayWelcome), however, 
the greetVisitor function’s internal data becomes accessible to the out-
side world.



231  Chapter 15: Understanding Callbacks and Closures 

The keys to understanding closures are to understand variable scope in 
JavaScript and to understand the difference between executing a function 
and a function reference. By assigning the return value of the greetVisitor 
function to the new personalGreeting function, the program stores 
the code of the sayWelcome function. You can test this by using the 
toString() method:

personalGreeting.toString()

If you add to Listing 15-3 an alert statement to output the toString() value 
of personalGreeting, you get the result shown in Figure 15-3.

In Figure 15-3, the variable welcome is a copy of the variable welcome from 
the original greetVisitor function at the time that the closure was created.

In Listing 15-4, a new closure is created using a different argument to the 
greetVisitor function. Even though calling greetVisitor() changes 
the value of the welcome variable, the result of calling the first function 
(personalGreeting) remains the same.

Listing 15-4: Closures Contain Secret References to Outer Function  
Variables

<html>
<head>
  <title>Using Closures</title>
  <script>
    function greetVisitor(phrase) { 

      var welcome = phrase + ". Great to see  
you!<br><br>"; // Local variable 

      var sayWelcome = function() { 
      document.getElementById("greeting").innerHTML += 

welcome; 
      } 

(continued)

Figure 15-3: 
A closure 

includes the 
code of the 

returned 
inner 

 function.



232 Part IV: Beyond the Basics  

Listing 15-4 (continued)

    return sayWelcome; 
    } 
    // wait until the document is loaded
    document.addEventListener('DOMContentLoaded', 

function() { 

    // make a function
    var personalGreeting = greetVisitor("Hola Amiga"); 
    // make another function
    var anotherGreeting = greetVisitor("Howdy, Friend");

    // look at the code of the first function
    document.getElementById("greeting").innerHTML += 
    "personalGreeting.toString() <br>" + personalGreeting.

toString() + "<br>";

    // run the  first function
    personalGreeting(); // alerts "Hola Amiga. Great to 

see you!""

    // look at the code of the 2nd function
    document.getElementById("greeting").innerHTML += 
    "anotherGreeting.toString() <br>" +  

anotherGreeting.toString() + "<br>";

    // run the 2nd function
    anotherGreeting(); // alerts "Howdy, Friend. Great to 

see you!"

    // check the first function
    personalGreeting(); // alerts "Hola Amiga. Great to 

see you!""

    // finish the addEventListener method
    }, false);
  </script>
</head>
<body>
  <p id="greeting"</p>
</body>
</html>

The result of running Listing 15-4 in a web browser is shown in Figure 15-4.

Closures are not hard to understand after you know the underlying concepts 
and have a need for them. Don’t worry if you don’t feel totally comfortable 
with them just yet. It’s fully possible to code in JavaScript without using clo-
sures, but once you do understand them, they can be quite useful and will 
make you a better programmer.



233  Chapter 15: Understanding Callbacks and Closures 

Using Closures
A closure is like keeping a copy of the local variables of a function as they 
were when the closure was created.

In web programming, closures are frequently used to eliminate the dupli-
cation of effort within a program or to hold values that need to be reused 
throughout a program so that the program doesn’t need to recalculate the 
value each time it’s used.

Another use for closures is to create customized versions of functions for 
specific uses.

In Listing 15-5, closures are used to create functions with error messages 
 specific to different problems that may occur in the program. All the error 
messages get created using the same function.

When a function’s purpose is to create other functions, it’s known as a 
 function factory.

Listing 15-5: Using a Function to Create Functions

<html>
<head>
  <title>function factory</title>
  <script>

(continued)

Figure 15-4: 
Creating 

customized 
greetings 

with  
closures.



234 Part IV: Beyond the Basics  

Listing 15-5 (continued)

    function createMessageAlert(theMessage){
      return function() {
        alert (theMessage);
      }
    }
 
    var badEmailError = createMessageAlert("Unknown email 

address!");
    var wrongPasswordError = createMessageAlert("That's 

not your password!");
 
    window.addEventListener('load', loader, false);
    function loader(){
      document.login.yourEmail.addEventListener('change', 

badEmailError);
      document.login.yourPassword.addEventListener('change 

',wrongPasswordError);
    }

  </script>
</head>
<body>
  <form name="login" id="loginform">
    <p>
      <label>Enter Your Email Address: 
        <input type="text" name="yourEmail">
      </label>
    </p>
    <p>
      <label>Enter Your Password: 
        <input type="text" name="yourPassword">
      </label>  
    </p>
    <button>Submit</button>
</body>
</html>

The key to understanding Listing 15-5 is the factory function.

function createMessageAlert(theMessage){
     return function() {
       alert (theMessage);
     }
   }



235  Chapter 15: Understanding Callbacks and Closures 

To use this function factory, assign its return value to a variable, as in the 
 following statement:

var badEmailError = createMessageAlert("Unknown email 
address!");

The preceding statement creates a closure that can be used elsewhere in the 
program just by running badEmailError as a function, as in the following 
event handler:

document.login.yourEmail.addEventListener('change',badEmai
lError);



236 Part IV: Beyond the Basics  



Embracing AJAX and JSON
In This Chapter

 ▶ Reading and writing JSON

 ▶ Understanding AJAX

 ▶ Using AJAX

“The Web does not just connect machines, it connects people.”

— Tim Berners‐Lee

A 
JAX is a technique for making web pages more dynamic by sending 
and receiving data in the background while the user interacts with the 

pages. JSON has become the standard data format used by AJAX applica-
tions. In this chapter, you find out how to use AJAX techniques to make your 
site sparkle!

Working Behind the Scenes with AJAX
Asynchronous JavaScript + XML (AJAX) is a term that’s used to describe a 
method of using JavaScript, the DOM, HTML, and the XMLHttpRequest 
object together to refresh parts of a web page with live data without needing 
to refresh the entire page. AJAX was first implemented on a large scale by 
Google’s Gmail in 2004 and then was given its name by Jesse James Garret 
in 2005.

The HTML DOM changes the page dynamically. The important innovation 
that AJAX made was to use the XMLHttpRequest object to retrieve data 
from the server asynchronously (in the background) without blocking the 
execution of the rest of the JavaScript on the web page.

Chapter 16



238 Part IV: Beyond the Basics  

Although AJAX originally relied on data formatted as XML (hence the X in the 
name), it’s much more common today for AJAX applications to use a data 
format called JavaScript Object Notation (JSON). Most people still call appli-
cations that get JSON data asynchronously from a server AJAX, but a more 
technically accurate (but less memorable) acronym would be AJAJ.

AJAX examples
When web developers first started to use AJAX, it became one of the hallmarks 
of what was labeled Web 2.0. The most common way for web pages to show 
dynamic data prior to AJAX was by downloading a new web page from the 
server. For example, consider craigslist.org, shown in Figure 16-1.

To navigate through the categories of listings or search results on Craigslist, 
you click links that cause the entire page to refresh and reveal the content of 
the page you requested.

While still very common, refreshing the entire page to display new data in 
just part of the page is unnecessarily slow and can provide a less smooth 
user experience.

Figure 16-1:  
Craigslist.

org is quite 
happy with 

Web 1.0, 
thank you 

very much.

http://craigslist.org


239  Chapter 16: Embracing AJAX and JSON

Compare the craigslist‐style navigation with the more application‐like 
 navigation of Google Plus, shown in Figure 16-2, which uses AJAX to load 
new content into part of the screen while the navigation bar remains static.

In addition to making web page navigation smoother, AJAX is also great for 
creating live data elements in a web page. Prior to AJAX, if you wanted to 
display live data, a chart, or an up‐to‐date view of an email inbox, you either 
needed to use a plug‐in (such as Adobe Flash) or periodically cause the web 
page to automatically refresh.

With AJAX, it’s possible to periodically refresh data through an asynchronous 
process that runs in the background and then update only the elements of 
the page that need to be modified.

See Chapter 10 to find out how to update the HTML and CSS of a web page 
using the HTML DOM’s methods and properties. AJAX relies on these same 
techniques to display web pages with updated data.

Weather Underground’s Wundermap, shown in Figure 16-3, shows a weather 
map with constantly changing and updating data overlays. The data for the 
map is retrieved from remote servers using AJAX.

Figure 16-2:  
Google Plus 
uses AJAX 

to provide a 
modern user 
experience.



240 Part IV: Beyond the Basics  

Viewing AJAX in action
In Figure 16-3, shown in the preceding section, the Chrome Developer Tools 
window is open to the Network tab. The Network tab shows all network activ-
ity involving the current web page. When a page is loading, this includes the 
requests and downloads of the page’s HTML, CSS, JavaScript, and images. 
After the page is loaded, the Network tab also displays the asynchronous 
HTTP requests and responses that make AJAX possible.

Follow these steps to view AJAX requests and responses in Chrome:

1. Open your Chrome web browser and navigate to 
www.wunderground.com/wundermap.

2. Open your Chrome Developer Tools by using the Chrome menu 
or by pressing Command+Option+I (on Mac) or Control+Shift+I 
(on Windows).

3. Open the Network tab.

Your Developer Tools window should now resemble Figure 16-4. You 
may want to drag the top border of the Developer Tools to make it 
larger at this point. Don’t worry if this makes the content area of the 

Figure 16-3:  
Wundermap 

uses AJAX 
to display 

live weather 
data.

http://www.wunderground.com/wundermap


241  Chapter 16: Embracing AJAX and JSON

browser too small to use. What’s going on in the Developer Tools is the 
important thing right now.

Notice that new items are periodically appearing in the Network tab. 
These are the AJAX requests and responses. Some of them are images 
returned from the server, and some are data for use by the client‐side 
JavaScript.

4. Click on one of the rows in the Name column of the Networks tab.

Additional data will be displayed about that particular item, as shown in 
Figure 16-5.

5. Click through the tabs (Headers, Preview, Response and so on) in the 
detailed data pane and examine the data.

The first tab, Headers, displays the HTTP request that was sent to the 
remote server. Take a look in particular at the Request URL. This is a 
standard website address that passes data to a remote server.

6. Select and copy the value of the Request URL from one of the items 
you inspected.

7. Open a new tab in your browser and paste the entire Request URL 
into the address bar.

A page containing data or an image opens, as in Figure 16-6.

Figure 16-4:  
The 

Network 
tab of the 

Developer 
Tools.



242 Part IV: Beyond the Basics  

Figure 16-5:  
Viewing 

additional 
information 

about a 
particular 
record in 

the Network 
tab.

Figure 16-6:  
The result 
of copying 

an HTTP 
Request 

URL from 
the Network 

tab.



243  Chapter 16: Embracing AJAX and JSON

8. Compare the results of opening the Request URL in a new tab with the 
results shown in the Response tab in the Developer Tools.

They should be similar, although they may not look identical because 
they weren’t run at the same time.

As you can see, there’s really no magic to AJAX. The JavaScript on the web 
page is simply requesting and receiving data from a server. Everything 
that happens behind the scenes is open to inspection through the Chrome 
Developer Tools (or the similar tools that are available with most other web 
browsers today).

Using the XMLHttpRequest object
The XMLHttpRequest object provides a way for web browsers to request 
data from a URL without having to refresh the page.

The XMLHttpRequest object was created and implemented first by 
Microsoft in its Internet Explorer browser and has since become a web 
 standard that has been adopted by every modern web browser.

You can use the methods and properties of the XMLHttpRequest object to 
retrieve data from a remote server or your local server. Despite its name, the 
XMLHttpRequest object can get other types of data besides XML, and it can 
even use different protocols to get the data besides HTTP.

Listing 16-1 shows how you can use XMLHttpRequest to load the contents of 
an external text document containing HTML into the current HTML document.

Listing 16-1:  Using XMLHttpRequest to Load External Data

<html>
<head>
 <title>Loading External Data</title>
 <script>
  window.addEventListener(’load’,init,false);
  function init(e){
   document.getElementById(’myButton’). 

addEventListener(’click’,documentLoader,false);
  }

  function reqListener () {
   console.log(this.responseText);
   document.getElementById(’content’).innerHTML = this.

responseText;
  }

(continued)



244 Part IV: Beyond the Basics  

Listing 16-1 (continued)

  function documentLoader(){
   var oReq = new XMLHttpRequest();
   oReq.onload = reqListener;
   oReq.open("get", "loadme.txt", true);
   oReq.send();
  } 
 </script>
</head>
<body>
  <form id="myForm">
  <button id="myButton" type="button">Click to  

Load</button>
  </form>
  <div id="content"></div>
</body>

 </html>

  The heart of this document is the documentLoader function:

function documentLoader(){
  var oReq = new XMLHttpRequest();
 oReq.onload = reqListener;
 oReq.open("get", "loadme.txt", true);
 oReq.send();
}

The first line of code inside the function creates the new XMLHttpRequest 
object and gives it the name of oReq:

var oReq = new XMLHttpRequest();

The methods and properties of the XMLHttpRequest object are accessible 
through the oReq object.

This second line assigns a function, reqListener, to the onload event of 
the oReq object. The purpose of this is to cause the reqListener function 
to be called when oReq loads a document:

oReq.onload = reqListener;

The third line uses the open method to create a request:

oReq.open("get", "loadme.txt", true);

In this case, the function uses the HTTP GET method to load the file called 
loadme.txt. The third parameter is the async argument. It specifies 



245  Chapter 16: Embracing AJAX and JSON

whether the request should be asynchronous. If it’s set to false, the send 
method won’t return until the request is complete. If it’s set to true, notifica-
tions about the completion of the request will be provided through event 
listeners. Because the event listener is set to listen for the load event, an 
asynchronous request is what’s desired.

It’s unlikely that you’ll run into a situation where you’ll want to set the async 
argument to false. In fact, some browsers have begun to just ignore this argu-
ment if it’s set to false and to treat it as if it’s true either way because of the 
bad effect on the user experience that synchronous requests have.

The last line in the documentLoader function actually sends the requests 
that you created with the open method:

oReq.send();

The .open method will get the latest version of the requested file. So-called 
live-data applications often use loops to repeatedly request updated data 
from a server using AJAX.

Working with the same-origin policy
If you save the HTML document in Listing 16-1 to your computer and open 
it in a web browser, more than likely, you won’t get the results that you’d 
expect. If you load the document from your computer and then open the 
Chrome Developer Tools JavaScript console, you will see a couple of error 
messages similar to the error in Figure 16-7.

Figure 16-7:  
Errors when 
trying to use 
XMLHttp 
Request 

on a local 
file.



246 Part IV: Beyond the Basics  

The problem here is what’s called the same-origin policy. In order to prevent 
web pages from causing users to unknowingly download code that may be 
malicious using XMLHttpRequest, browsers will return an error by default 
whenever a script tries to load a URL that doesn’t have the same origin. If you 
load a web page from www.example.com and a script on that page tries to 
retrieve data from www.watzthis.com, the browser will prevent the request 
with a similar error to the one you see in Figure 16-7.

The same-origin policy also applies to files on your local computer. If it 
didn’t, XMLHttpRequests could be used to compromise the security of your 
computer.

There’s no reason to worry about the examples in this book negatively 
 affecting your computer. However, in order for the examples in this chapter 
to work correctly on your computer, a way around the same-origin policy is 
needed.

The first way around the same-origin policy is to put the HTML file 
 containing the documentLoader function and the text file together onto 
the same web server. You can see an example of this working by going to 
www.codingjsfordummies.com/code/ch16/listing16-1.html.

The other way around the same-origin policy is to start up your browser with 
the same-origin policy restrictions temporarily disabled.

These instructions are to allow you to test your own files on your local 
 computer only. Do not surf the web with the same-origin policy disabled. 
You may expose your computer to malicious code.

To disable the same-origin policy on MACOS:

1. Close your Chrome browser.

2. Open the Terminal app and launch Chrome using the following 
 command:

/Applications/Google\ Chrome.app/Contents/MacOS/
Google\ Chrome --disable-web-security

To disable the same-origin policy in Windows:

1. Close your Chrome browser.

2. Open the Command prompt and navigate to the folder where you 
installed Chrome.

3. Type the following command to launch the browser:

Chrome.exe --disable-web-security

http://www.codingjsfordummies.com/code/ch16/listing16-1.html


247  Chapter 16: Embracing AJAX and JSON

Once the browser starts up, you’ll be able to run files containing AJAX 
requests locally until you close the browser. Once the browser is closed and 
reopened, the security restrictions will be re-enabled automatically.

Figure 16-8 shows the result of running Listing 16-1 in a browser without the 
same-origin policy errors.

Using CORS, the silver bullet  
for AJAX requests
It’s quite common for a web application to need to make requests to a differ-
ent server in order to retrieve data. For example, Google provides map data 
for free to third-party applications.

In order for the transactions between servers to be secure, mechanisms have 
been created for browsers and servers to work out their differences and 
establish trust.

Currently, the best method for allowing and restricting access to resources 
between servers is the standard called Cross-Origin Resource Sharing (CORS).

To see CORS in action, take a look at the Network tab in the Chrome 
Developer Tools while browsing Weather Underground’s Wundermap. 
Click on one of the requests starting with the following URL: 
http://stationdata.wunderground.com/cgi-bin/stationlookup.

Figure 16-8:  
Listing 16-1 

run in a 
browser 
with the 

same-
origin policy 

 disabled.

http://stationdata.wunderground.com/cgi-bin/stationlookup


248 Part IV: Beyond the Basics  

Click on the Headers tab, and you’ll see the following text within the HTTP 
header:

Access-Control-Allow-Origin: *

This is the CORS response header that this particular server is configured to 
send. The asterisk value after the colon indicates that this server will accept 
requests from any origin. If the owners of wunderground.com wanted to 
restrict access to the data at this script to only specific servers or authenti-
cated users, they could do so using CORS.

Putting Objects in Motion with JSON
In Listing 16-1, you use AJAX to open and display a text document containing 
a snippet of HTML. Another common use for AJAX is to request and receive 
data for processing by the browser.

For example, gasbuddy.com uses a map from Google along with data about 
gas prices, to present a simple and up-to-date view of gas prices in different 
locations, as shown in Figure 16-9.

Figure 16-9:  
gasbuddy.
com uses 

AJAX to 
display gas 
prices on a 

map.

http://gasbuddy.com


249  Chapter 16: Embracing AJAX and JSON

If you examine gasbuddy.com in the Network tab, you’ll find that some requests 
have responses that look something like the code shown in Listing 16-2.

Listing 16-2: Part of a Response to an AJAX Request on gasbuddy.com

([{id:"tuwtvtuvvvv",base:[351289344,822599680],zrange:[
11,11],layer:"m@288429816",features:[{id:"172
43857463485476481",a:[0,0],bb:[-8,-8,7,7,-47-
,7,48,22,-41,19,41,34],c:"{1:{title:\"Folsom 
Lake State Recreation Area\"},4:{type:1}}"}]},
{id:"tuwtvtuvvvw",zrange:[11,11],layer:"m@2884
29816"},{id:"tuwtvtuvvwv",base:[351506432,8242
91328],zrange:[11,11],layer:"m@288429816",feat
ures:[{id:"8748558518353272790",a:[0,0],bb:[-
8,-8,7,7,-41,7,41,22],c:"{1:{title:\"Deer Creek 
Hills\"},4:{type:1}}"}]},{id:"tuwtvtuvvww",zran
ge:[11,11],layer:"m@288429816"}])

If you take a small piece of data out of this block of code and reformat it, you 
get something like Listing 16-3, which should look more familiar to you.

Listing 16-3: gasbuddy.com Response Data, Reformatted

{id:"tuwtvtuvvvv",
base:[351289344,822599680],
zrange:[11,11],
layer:"m@288429816",
features:[{
id:"17243857463485476481",
a:[0,0],
bb:[-8,-8,7,7,-47,7,48,22,-41,19,41,34],
c:"{
1:{title:\"Folsom Lake State Recreation Area\"},
4:{type:1}
}"}
]}
}

By looking at the format of the data, you can see that it looks suspiciously 
like the name:value format of a JavaScript object literal (see Chapter 8).

The main reason JSON is so easy to use is because it’s already in a format 
that JavaScript can work with, so no conversion is necessary. For example, 
Listing 16-4 shows a JSON file containing information about this book.



250 Part IV: Beyond the Basics  

Listing 16-4: JASON Data Describing Coding with JavaScript  
For Dummies

{ "book_title": "Coding with JavaScript For Dummies",
 "book_author": "Chris Minnick and Eva Holland",
 "summary": "Everything beginners need to know to start 

coding with JavaScript!",
 "isbn":"9781119056072"
}

Listing 16-5 shows how this data can be loaded into a web page using 
JavaScript and then used to display its data in HTML.

Listing 16-5: Displaying JSON data with JavaScript

<html>
<head>
 <title>Displaying JSON Data</title>
 <script>
  window.addEventListener('load',init,false);
  function init(e){
   document.getElementById('myButton'). 

addEventListener('click',documentLoader,false);
  }

  function reqListener () {
   // convert the string from the file to an object with 

JSON.parse
   var obj = JSON.parse(this.responseText);

   // display the object's data like any object
   document.getElementById('book_title').innerHTML =  

obj.book_title;
   document.getElementById('book_author').innerHTML =  

obj.book_author;
   document.getElementById('summary').innerHTML =  

obj.summary;
  }

  function documentLoader(){
   var oReq = new XMLHttpRequest();
   oReq.onload = reqListener;
   oReq.open("get", "listing16-4.json", true);
   oReq.send();
  }
 </script>
</head>



251  Chapter 16: Embracing AJAX and JSON

<body>
  <form id="myForm">
  <button id="myButton" type="button">Click to  

Load</button>
  </form>
  <h1>Book Title</h1>
  <div id="book_title"></div>
  <h2>Authors</h2>
  <div id="book_author"></div>
  <h2>Summary</h2>
  <div id="summary"></div>
</body>
</html>

The key to displaying any JSON data that's brought into a JavaScript 
 document from an external source is to convert it from a string to an object 
using the JSON.parse method. After you do that, you can access the values 
within the JSON file using dot notation or bracket notation as you would 
access the  properties of any JavaScript object.

Figure 16-10 shows the results of running Listing 16-5 in a web browser and 
pressing the button to load the JSON data.

Figure 16-10:  
Displaying 
JSON data 

within an 
HTML page.



252 Part IV: Beyond the Basics  



Part V
JavaScript and HTML5

 Find out how to use polyfills to implement features in browsers that don’t yet support  
them in the article “Using Polyfills” online at www.dummies.com/extras/ 
codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


In this part . . .
 ✓ Find out how to use HTML5’s APIs to access a wide range of 

computer and mobile device functionality.

 ✓ Discover the basics of jQuery in order to speed up and simplify 
JavaScript development.

 ✓ Find out how to use polyfills to implement features in  
browsers that don’t yet support them in the article “Using 
Polyfills” online at www.dummies.com/extras/ 
codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


HTML5 APIs
In This Chapter

 ▶ Discovering APIs

 ▶ Taking advantage of geolocation

 ▶ Accessing media

“Language is a virus from outer space.”

— William S. Burroughs

H 
TML5’s APIs provide you with access to a wide range of computer and 
mobile device functionality. In this chapter, you discover how to use 

APIs, the standard methods and techniques used by APIs, and example code 
for working with some of the more exciting APIs.

Understanding How APIs Work
APIs, or Application Programming Interfaces, are sets of software routines 
and standards that give programmers access to the capabilities of a soft-
ware application. APIs are the means by which one computer program gives 
another computer program the ability to interact with it. When a web browser 
allows a JavaScript program to interact with it, it does so by using APIs.

For example, the W3C’s Battery Status APIs describes how browsers should 
report data about what’s currently happening with the battery in a device 
(such as a smartphone or tablet). Other programs (for example, JavaScript 
programs within web pages) can access the Battery Status API to find out 
whether the device’s battery is low, or charging, or how much battery time  
is left. You can then make use of this battery status information in your  
program.

Chapter 17



256 Part V: JavaScript and HTML5  

The language in an API is highly precise and describes exactly how the API 
should be implemented by web browsers. Figure 17-1 shows a quote from the 
most recent version of the Battery Status API.

Typically, an API is written up as a specification that tells what properties 
and methods are available to programmers, what arguments can be passed 
to the methods, and what sorts of values are returned by the properties.

In many cases with the APIs developed by standards bodies like the World 
Wide Web Consortium, the APIs are written to describe how programs 
should be able to interact with web browsers, rather than how they actually 
can. It’s up to the browser makers to decide whether to actually implement 
an API standard.

An API tells programmers how they can interact with software and how  
the software should respond. When you’re reading about APIs that describe 
ways to interact with web browsers, it’s important to keep in mind that  
just because an API exists doesn’t mean that programmers can actually  
use it. Many APIs have been proposed and written that haven’t yet been 
implemented or that have only been partially implemented in web  
browsers.

Checking HTML5 API browser support
The best source for checking which web browsers support a particular stan-
dard or proposed standard is www.caniuse.com. CanIUse.com lists all of 
HTML5’s elements and APIs and provides a table of browser support for each 
of them. Figure 17-2 shows the browser support, at the time of this writing, 
for the IndexedDB standard.

Figure 17-1:  
An engag-

ing excerpt 
from the 
Battery 

Status API.

http://www.caniuse.com


257  Chapter 17: HTML5 APIs

Getting to know HTML5’s APIs
The HTML5 standard defines and documents a number of APIs that 
JavaScript programmers can use to access the capabilities of web browsers 
in a standardized way.

Many of the HTML5 APIs are still not finalized and implemented by every web 
browser. The APIs that have been implemented are extremely useful and are 
expanding the limits of what’s possible in web apps.

The list of HTML5 APIs is constantly changing and growing. Table 17-1 lists 
the most popular and well‐supported APIs that are defined in HTML5 at  
this time.

You can find a more exhaustive list of HTML5 APIs on the website for this 
book at www.dummies.com/extras/codingwithjavascript.

Each HTML5 API is designed to precisely specify how programmers should 
be able to interact with functionality of web browsers or computers. The pro-
cess for these APIs to get from idea to reality, however, can be painfully long 
and complex.

Figure 17-2:  
Browser 

support for 
IndexedDB, 

according 
to caniuse.

com.

http://www.dummies.com/extras/codingwithjavascript


258 Part V: JavaScript and HTML5  

Table 17-1 HTML5 APIs
API Use
Battery Status Provides information about the battery status of the 

device

Clipboard Provides access to the operating system’s copy, cut 
and paste functionality

Drag and Drop Supports dragging and dropping items within and 
between browser windows

File Provides programs with secure access to the 
device’s file system

Forms Gives programs access to the new data types 
defined in HTML5

Geolocation Provides web applications with access to geograph-
ical location data about the user’s device

getUserMedia/Stream Provides access to external device data (such as 
webcam video)

Indexed database Creates a simple client‐side database system in the 
web browser

Internationalization Provides access to local‐sensitive formatting and 
string comparison

Screen Orientation Reads the screen orientation state (portrait or land-
scape) and gives programmers the ability to know 
when it changes and to lock it in place

Selection Supports selecting elements in JavaScript using  
CSS‐style selectors

Server‐sent events Allows the server to push data to the browser  
without the browser needing to request it

User Timing Gives programmers access to high precision time-
stamps to measure the performance of applications

Vibration Allows access to the vibration functionality of the 
device

Web Audio Processes or synthesizes audio

Web Speech Provides speech input and text‐to‐speech output 
features

Web storage Allows the storage of key‐value pairs in the browser

Web sockets Opens an interactive communication session 
between the browser and server



259  Chapter 17: HTML5 APIs

Several of the HTML5 APIs have passed through the gamut of test and review 
processes needed in order to become well supported standards. Foremost 
among these is the Geolocation API.

Using Geolocation
The Geolocation API gives programs access to the web browser’s geolocation 
functionality, which can tell the program the device’s location on Earth.

The Geolocation API is among the most well‐supported HTML5 APIs and is 
implemented in about 90 percent of desktop and mobile browsers, including 
all of the big ones, except for Opera Mini.

What does geolocation do?
The Geolocation API describes how JavaScript can interact with the 
navigator.geolocation object in order to get data about a device’s  
current position, including

 ✓ Latitude: The latitude in decimal degrees

 ✓ Longitude: The longitude in decimal degrees

 ✓ Altitude: The altitude in meters

 ✓ Heading: The direction the device is traveling

 ✓ Speed: The velocity of the device in meters per second

 ✓ Accuracy: The accuracy of the latitude and longitude, measured in 
meters

By obtaining some or all of this data, a JavaScript application running in a 
web browser can place a user on a map, query sources such as Google Maps 
for landmarks or restaurants local to the user, and much more.

API Use

Web workers Allows JavaScript to execute scripts in the  
background

XMLHTTPRequest 2 Improves XMLHttpRequest to eliminate the need 
to work around the same‐origin Policy errors and to 
make XMLHttpRequest work with new features 
of HTML5



260 Part V: JavaScript and HTML5  

How does geolocation work?
When JavaScript initiates a request for the devices position, through the 
Geolocation object, a number of steps take place, prior to the position 
information being returned.

The first thing to happen is that the browser needs to make sure that the 
user has given permission for the particular web app to access the device’s 
geolocation information. Different browsers prompt the user for permission 
in different ways, but it’s typically done through some sort of popup or  
notification.

The Chrome browser displays a geolocation icon and a message below the 
address bar when a website requests access to geolocation data, as shown in 
Figure 17-3.

After you give a website access to your geolocation data, the browser tries to 
find you. It does this through a number of different means, starting with the 
most accurate and proceeding through to less accurate ways.

If the program indicates that high accuracy is required, geolocation will spend 
a longer time trying to access highly accurate GPS information. Otherwise, the 
browser will attempt to balance speed with accuracy to obtain the most accu-
rate results from any of the following sources, when available:

 ✓ GPS satellite positioning

 ✓ Your wireless network connection

 ✓ The cell tower your phone or mobile device is connected to

 ✓ The IP address of your device or computer

Figure 17-3:  
Chrome 
displays 

geolocation 
requests 

below the 
address bar.



261  Chapter 17: HTML5 APIs

How do you use geolocation
The key to using geolocation is the navigator.geolocation object’s 
getCurrentPosition method. The getCurrentPosition method can 
take three arguments:

 ✓ success: A callback function that’s passed a Position object when 
geolocation is successful

 ✓ error: An optional callback function that’s passed the PositionError 
object when geolocation fails

 ✓ options: An optional PositionOptions object that can be used to 
control several aspects of how the geolocation lookup is performed

The Position object that’s returned by the getCurrentPosition method 
contains two properties:

 ✓ Position.coords: Contains a Coordinates object that describes the 
location

 ✓ Position.timestamp: The time when the location was retrieved

Listing 17-1 shows how you can use the getCurrentPosition method 
to get the Position object and loop through the return values in 
Position.coords.

Listing 17-1: Getting Position Information and Displaying It in  
the Browser

<html>
<head>
  <title>The Position object</title>
  <script>
    var gps = navigator.geolocation.getCurrentPosition(

    function (position) {
      for (key in position.coords) {
        document.write(key+': '+ position.coords[key]);
        document.write ('<br>');
      }
    });
  </script>
</head>
<body>

</body>
</html>



262 Part V: JavaScript and HTML5  

If the device you run this code on supports geolocation and the browser can 
determine your location, the results of running this script should resemble 
Figure 17-4.

Notice in Figure 17-4, that several of the properties of the Coordinates 
object are all null. This is because it was run using a desktop computer 
that doesn’t have the ability to get some of these coordinates. The result of 
running the same script in a mobile browser on a smartphone is shown in 
Figure 17-5.

Figure 17-4:  
Printing the 
return val-
ues of the 

Position 
object.

Figure 17-5:  
Getting 

geolocation 
data with a 

smartphone 
browser.



263  Chapter 17: HTML5 APIs

Notice that the mobile browser displays figures for altitude, but heading and 
speed are still null because the device was stationary at the time when the 
page was loaded.

Combining geolocation with Google maps
One of the most common things that programmers need to do with geoloca-
tion data is to display a location on a map. In order to do this, you first need 
to get the latitude and longitude. You’ve got that now. But, how do you draw 
the map and figure out where on the map that latitude and longitude are? 
That, it seems, is the daunting task.

Fortunately, there are people who have done this before and who have cre-
ated an API for interacting with their mapping software. Most famously, 
Google makes their mapping software available for free to anyone through 
the Google Maps API (even for commercial purposes, in most cases).

To use the Google Maps API, follow these steps:

1. Go to the Google APIs console at http://code.google.com/apis 
/console and log in with your Google Account.

2. After you log in, you may be asked to agree to the terms of use; if so, 
click Accept.

3. Click the button labeled Enable an API.

Your screen now displays a list of APIs and a Browse APIs search box.

4. In the Browse APIs search box, type Google Maps JavaScript API v3.

The link for this API appears.

5. Click the button that says OFF under the status heading.

This step turns the API ON.

After you activate the Google Maps JavaScript API, a green ON appears 
next to the API, as shown in Figure 17-6.

6. Click the Credentials link on the left navigation bar.

You see the API Access Screen.

7. Click the link labeled Create New Key.

The Create a New Key dialog box appears.

8. Click Browser key in the Create New Key dialog box.

A dialog box containing a text input field labeled Accept requests from 
these HTTP Referrers opens.

http://code.google.com/apis/console
http://code.google.com/apis/console


264 Part V: JavaScript and HTML5  

9. Leave the input box labeled Accept requests from these HTTP refer-
rers blank and click Create.

The dialog box closes, and your API key will be created.

In the Public API access section, you now find a long string of letters and 
numbers inside a box labeled Key for browser applications. This is your 
API key.

The API key is all you need to gain access to all the great functionality of the 
Google Maps API.

Now that you have access to the Google Maps JavaScript API, it’s time to try 
it out. The web page in Listing 17-2 gets the location of your computer using 
the navigator.geolocation object and then passes it to Google Maps to 
get a map. Notice the highlighted area of the code, showing where to insert 
your API key.

Listing 17-2: Mapping Your Location with the Geolocation API and the  
Google Maps API

<!DOCTYPE html>
<html>
<head>
  <title>Mapping your location</title>
  <style type="text/css">
    html, body, #map-canvas { height: 100%; margin: 0; 

padding: 0;}
  </style>

Figure 17-6:  
Activating 

the Google 
Maps API.



265  Chapter 17: HTML5 APIs

  <script type="text/javascript"
       src="https://maps.googleapis.com/maps/api/js?key=YO 

UR_API_KEY">
  </script>

  <script>

  // run the initialize function after the map loads
  google.maps.event.addDomListener(window, 'load', 

initialize);

  function initialize() {

    // get the Position object and send it to a callback 
function

    var gps = navigator.geolocation.getCurrentPosition(

    // the callback function
    function (position) {

      //set Google Map options, using latitude and 
longitude from position object

      var mapOptions = {
        center: { lat: position.coords.latitude, lng: 

position.coords.longitude},
        zoom: 8
      };

      // make the map and load it into the map-canvas div 
in the <body>

      var map = new google.maps.Map(document.
getElementById('map-canvas'),

             mapOptions);
    }
  );
};
</script>

</head>
<body>
  <div id="map-canvas"</div>
</body>
</html>

In order for this script to run correctly, you have to replace the text YOUR_
API_KEY with the API key that you obtained from Google.

The results of running Listing 17-2 in a browser are shown in Figure 17-7.



266 Part V: JavaScript and HTML5  

Accessing Audio and Video
Prior to HTML5, the only way for a web page to use a camera connected to 
a computer or built into a computer was through the use of plugins, such as 
Flash.

One of the major goals of HTML5 is to eliminate the need for plugins, with 
their constant updates and security issues. Since HTML5 was first proposed, 
there have been several attempts to define a standard for using input from 
cameras.

The latest and greatest API for enabling live video and audio communications 
through web browsers is called WebRTC (Web Real Time Communications).

At the heart of WebRTC is navigator.getUserMedia(), which does 
exactly what its name would imply: It gets media (audio and video) from the 
user (well, from the user’s device, specifically).

Figure 17-7:  
Finding  

yourself.



267  Chapter 17: HTML5 APIs

getUserMedia is currently supported in Chrome, Opera, and Firefox. If 
you want to use it in other browsers, such as Safari or Internet Explorer, 
you’ll need to use a tool called a polyfill. Visit the book’s website at 
www.dummies.com/extras/codingwithjavascript to learn about  
polyfills.

The first parameter of getUserMedia is an object with properties indicating  
what type of media you want to access. For example, if you want to access 
both video and audio, you would use the following object as the first  
parameter:

{video: true, audio: true}

The other parameters that getUserMedia takes are a success callback and 
an error callback. Listing 17-3 shows a sample use of getUserMedia.

Listing 17-3: Getting and Displaying User Video and Audio

<!DOCTYPE html>
<html>
<head>
  <title>Get the Media</title>
  <style type="text/css">
    html, body, #map-canvas { height: 100%; margin: 0; 

padding: 0;}
  </style>
  <script>
    window.addEventListener('DOMContentLoaded', function() 

{
    var v = document.getElementById('v');
    navigator.getUserMedia = (navigator.getUserMedia ||
                          navigator.webkitGetUserMedia ||
                          navigator.mozGetUserMedia ||
                          navigator.msGetUserMedia);

    if (navigator.getUserMedia) {
      // Request access to video only
      navigator.getUserMedia(
        {
          video:true,
          audio:false
        },
        function(stream) {
          var url = window.URL || window.webkitURL;
          v.src = url ? url.createObjectURL(stream) : 

stream;
          v.play();
        },

(continued)

http://www.dummies.com/extras/codingwithjavascript


268 Part V: JavaScript and HTML5  

Listing 17-3 (continued)

        function(error) {
          alert('Something went wrong. (error code ' + 

error.code + ')');
          return;
        }
      );
    } else {
        alert('Sorry, the browser you are using doesn\'t 

support getUserMedia');
        return;
    };
    });
  </script>
</head>
<body>
  <video id = "v"/>
</body>
</html>

Examine Listing 17-3’s key lines:

window.addEventListener('DOMContentLoaded', function() {

An event listener that waits until the DOM is loaded before running the rest 
of the code is

var v = document.getElementById('v');

The preceding line creates a new variable, called v, to hold a reference to the 
video element with an id ="v":

navigator.getUserMedia = (navigator.getUserMedia ||
          navigator.webkitGetUserMedia ||
          navigator.mozGetUserMedia ||
          navigator.msGetUserMedia);

getUserMedia is an experimental technology still not fully standard-
ized. Because of this, web browsers have different implementations of 
it, which they indicate by using vendor prefixes. This statement sets the 
value of the standard navigator.getUserMedia object to the vendor pre-
fixed version supported by the user’s current browser. So, when you’re 
using Firefox and call navigator.getUserMedia, you’re actually calling 
navigator.mozGetUserMedia:

if (navigator.getUserMedia) {



269  Chapter 17: HTML5 APIs

which checks to see whether the user’s browser supports getUserMedia:

navigator.getUserMedia(

Call the getUserMedia method:

{
  video:true,
  audio:false
}

The first parameter is an object telling which media you want to access:

function(stream) {

The success callback runs if the request to getUserMedia succeeds. It takes 
a single argument:

var url = window.URL || window.webkitURL;
v.src = url ? url.createObjectURL(stream) : stream;

The preceding two lines smooth out the differences between how different 
browsers handle the media stream object. The second line features our pal, 
the ternary operator! This statement sets the src property of the video ele-
ment to either url.createObjectUrl(stream) or to stream, depending 
on which method is supported by the browser:

v.play();

Finally, the video is played. If your computer supports getUserMedia and 
you have a camera, you’ll see video of yourself (or whatever the camera is 
pointing at) at this point:

function(error) {
  alert('Something went wrong. (error code ' + error.code 

+ ')');
  return;
}

The preceding code is an error callback. If the browser does support 
getUserMedia(), but the user doesn’t allow the browser to access the 
camera, this function will run and print out a specific error message:

else {
  alert('Sorry, the browser you are using doesn\'t support 

getUserMedia');
  return;
};



270 Part V: JavaScript and HTML5  

The preceding code is the else condition. If the user’s browser doesn’t sup-
port getUserMedia(), this alert will be displayed:

If the user’s browser does support getUserMedia, the user has a camera, 
and they allow the app to access the camera, the app will display live video 
in the browser window, as shown in Figure 17-8.

Figure 17-8:  
Success! 

The browser 
is displaying 

live video 
without a 

plugin.



jQuery
In This Chapter

 ▶ Understanding jQuery

 ▶ Selecting elements

 ▶ Creating animations and transitions with jQuery

“It’s best to have your tools with you. If you don’t, you’re apt to find 
something you didn’t expect and get discouraged.”

— Stephen King

j 
Query is the most popular JavaScript framework around and is used by 
nearly every JavaScript programmer in order to speed up and simplify 

JavaScript development. In this chapter, you discover the basics of jQuery 
and see why it’s so popular.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Writing More and Doing Less
jQuery is currently used by more than 61 percent of the top 100,000 websites. 
It’s so widely used that many people see it as an essential tool for doing 
JavaScript coding.

jQuery smoothes out some of the rough spots in JavaScript, such as problems 
with browser compatibilities, and makes selecting and changing parts of an 
HTML document easier. jQuery also includes some tools that you can use to 
add animation and interactivity to your web pages.

The basics of jQuery are easy to learn once you know JavaScript.

Chapter 18



272 Part V: JavaScript and HTML5  

Getting Started with jQuery
To get started with jQuery, you first need to include the jQuery library in 
your web pages. The easiest way to do this is to use a version hosted on a 
content delivery network (CDN). The other method for including jQuery is 
to download the library from the jQuery website and host it on your server. 
Listing 18-1 shows markup for a simple web page that includes jQuery.

Google has hosted versions of many different JavaScript  libraries, and  
you can find links and include tags for them at http://developers 
.google.com/speed/library.

Once you’ve found a link for a CDN‐hosted version, include it between your 
<head> and </head> tags in every page that will use jQuery functionality.

There are currently two branches of jQuery: the 1.x branch and the 
2.xbranch. The difference between the latest versions of the 1.xbranch and 
the latest versions of the 2.xbranch is that the 1.xbranch works in Internet 
Explorer 6‐8, while the 2.xbranch had eliminated support for these old and 
buggy browsers.

Listing 18-1:  Your First Web Page with jQuery

<html>
<head>
  <title>Hello JQuery</title>
  <style>
    #helloDiv {
      background: #333;
      color: #fff;
      font‐size: 24px;
      text‐align: center;
      border‐radius: 3px;
      width: 200px;
      height: 200px;
      display: none;
    }
  </style>
  <script src="http://code.jquery.com/jquery‐ 

1.11.2.min.js"></script>
</head>
<body>
  <button id="clickme">Click me!</button>
  <div id="helloDiv">Hello, JQuery!</div>

  <script>
  $( "#clickme" ).click(function () {
    if ( $( "#helloDiv" ).is( ":hidden" ) ) {

http://developers.google.com/speed/library
http://developers.google.com/speed/library


273  Chapter 18: jQuery

      $( "#helloDiv" ).slideDown( "slow" );
    } else {
      $( "div" ).hide();
    }
  });
  </script>
</body>
</html>

The jQuery Object
All of jQuery’s functionality is enabled by the jQuery object. The jQuery 
object can be referenced using two different methods: the jQuery keyword 
or the $ alias. Both methods work exactly the same. The difference is that $ is 
shorter, and so it’s become programmers' preferred method for using jQuery.

The basic syntax for using jQuery is the following:

$("selector").method();

The first part (in parentheses) indicates what elements you want to affect, 
and the second part indicates what should be done to those elements.

In reality, jQuery statements often perform multiple actions on selected 
elements by using a technique called chaining, which just attaches more 
methods to the selector with additional periods. For example, in Listing 18-2, 
chaining is used to first select a single element (with the ID of pageHeader) 
and then to style it.

Listing 18-2: Using Chaining

<html>
<head>
  <title>JQuery Chaining Example</title>
  <script src="http://code.jquery.com/jquery- 

1.11.2.min.js"></script>
</head>
<body>
  <div id="pageHeader"/>
  <script type="text/javascript">
    $("#pageHeader").text("Hello, world!").css("color", 

"red").css("font‐size",  
"60px"); 

  </script>
</body>
</html>



274 Part V: JavaScript and HTML5  

Chained jQuery methods can get pretty long and confusing after you put just 
a couple of them together. However, keep in mind, JavaScript doesn’t really 
care much about whitespace. It’s possible to reformat the chained statement 
from Listing 18-2 into the following, much more readable, statement:

$("#pageHeader")
  .text("Hello, world!")
  .css("color", "red")
  .css("font-size", "60px"); 

Is Your Document Ready?
jQuery has its own way to indicate that everything is loaded and ready to go: 
the document ready event. To avoid errors caused by the DOM or jQuery 
not being loaded when the scripts run, it’s important to use document ready, 
unless you put all your jQuery at the very bottom of your HTML document 
(as we do with Listing 18-1 and Listing 18-2.)

Here’s the syntax for using document ready:

$(document).ready(function(){

  // jQuery methods go here. . .

});

Any jQuery that you want to be executed upon loading of the page needs to 
be inside of a document ready statement. Named functions can go outside of 
document ready, of course, because they don’t run until they’re called.

Using jQuery Selectors
Unlike the complicated, and limited, means that JavaScript provides for 
selecting elements, jQuery makes element selection simple. In jQuery, pro-
grammers can use the same techniques they use for selecting elements with 
CSS. Table 18-1 lists the most frequently used jQuery and CSS selectors.

In addition to these basic selectors, you canmodify a section or combine 
selections in many different ways. For example, to select the first p element 
in a document, you can use

$('p:first')



275  Chapter 18: jQuery

To select the last p element, you can use

$('p:last')

To select the even numbered elements, you can use

$('li:even')

To select the odd numbered elements, you can use

$('li:odd')

To combine multiple selections, you can use commas. For example, the 
 following selector selects all the p, h1, h2, and h3 elements in a document.

$('p,h1,h2,h3')

You can selecteelements in many more ways with jQuery than with plain  
JavaScript. To see a complete list, visit www.dummies.com/extras/ 
codingwithjavascript.

Changing Things with jQuery
After you make a selection, the next step is to start changing some things. 
The three main categories of things you can change with jQuery are attri-
butes, CSS, and elements.

Table 18-1 The Common jQuery/CSS Selectors

Selector HTML Example jQuery Example
element <p></p> $('p').css 

('font-size','12')

.class <p class="redtext"> 
</p>

$('.redtext').css

#id <p id="intro"> 
</p>

$('#intro'). 
fadeIn('slow)

[attribute] <p data-role="content"> 
</p>

$('[data-role]'). 
show()

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


276 Part V: JavaScript and HTML5  

Getting and setting attributes
The attr() method gives you access to attribute values. All that you need in 
order to use attr() is the name of the attribute whose value you want to get 
or set. In the following code, the attr() method is used to change the value 
of the href attribute of an element with an id of "homepage-link".

$('a#homepage-link').attr('href') =  
"http://www.codingjsfordummies.com/";

The result of running this statement is that the selected element’s href attri-
bute will be changed in the DOM to the new value. When a user clicks the 
modified link, the browser will open the web page at the specified address, 
rather than the one that was originally written in the img element.

Modifying an element using jQuery changes only the element’s representa-
tion in the DOM (and therefore on the user’ screen). jQuery doesn’t modify 
the actual web page on the server, and if you view the source of the web 
page, you won’t see any changes.

Changing CSS
Changing CSS using jQuery is very similar to the technique we describe in 
Chapter 13 for modifying the Style object’s properties. jQuery makes modify-
ing the style properties much easier than standard JavaScript, and the style 
properties are spelled exactly the same as in CSS.

Listing 18-3 combines live CSS style changes with form events to give the user 
control over how large the text is.

Listing 18-3: Manipulating Styles with jQuery

<html>
<head>
  <title>JQuery CSS</title>
  <script src="http://code.jquery.com/jquery- 

1.11.2.min.js"></script>
  <script type="text/javascript">
    $(document).ready(function(){
  
    $('#sizer').change(function() {
      $('#theText').css('font-size',$('#sizer').val());
    });
    });



277  Chapter 18: jQuery

  </script>
</head>
<body>
  <div id="theText">Hello!</div>
  <form id="controller">
     <input type="range" id="sizer" min="10" max="100">
  </form>
</body>
</html>

Figure 18-1 shows the results of running Listing 18-3 in a browser.

Figure 18-1:  
Changing 
CSS with 
an input 

 element.

Manipulating elements in the DOM
jQuery features several methods for changing the content of element, moving 
elements, adding element, removing elements, and much more. Table 18-2 lists 
all the available methods for manipulating elements within the DOM.

Table 18-2 Manipulating Elements within the DOM

Method Description Example
text() Gets the combined text 

content of the matched 
elements, or sets the text 
content of the matched 
 elements

$('p').text('hello!')

(continued)



278 Part V: JavaScript and HTML5  

Events
Chapter 11 discusses the different methods for registering event handlers in 
JavaScript, which are all still perfectly valid in jQuery. However, jQuery has 
its own syntax for registering event listeners and handling events.

jQuery’s event method, on(), handles all of the complexity of ensuring that 
all browsers will handle events in the same way, and it also requires far less 
typing than the pure JavaScript solutions.

Method Description Example

html() Get the value of the first 
matched element, or set 
the contents of every 
matched element

$('div').html('<p>hi</p>')

val() Get the value of the first 
matched element, or set 
the value of every  
matched element

$('select#choices').val()

append() Insert content to the end  
of the matched elements

$('div #closing').append 
('<p>Thank You</p>')

prepend() Insert content at the 
 beginning of the matched 
elements

$('dive #introduction'). 
prepend('<p>To whom it  
may concern:</p>')

before() Insert content before the 
matched elements

$('#letter').before 
(header)

after() Insert content after the 
matched elements

$('#letter').after(footer)

remove() Remove the matched 
 elements

$('.phonenumber').remove()

empty() Remove all of the child 
nodes of the matched 
 elements

$('.blackout').empty()

Table 18-2 (continued)



279  Chapter 18: jQuery

Using on() to attach events
The jQuery on() method works in much the same way as addEvent 
Listener(). It takes an event and a function definition as arguments. When 
the event happens on the selected element (or elements), the function is 
executed. Listing 18-4 uses on() and a jQuery selector to change the color 
of every other row in a table when a button is clicked.

Listing 18-4: Changing Table Colors with the Click of a Button

<html>
<head>
  <title>jQuery CSS</title>
  <style>
    td {
      border: 1px solid black;
    }
  </style>
  <script src="http://code.jquery.com/jquery- 

1.11.2.min.js"></script>
  <script type="text/javascript">
    $(document).ready(function(){
  
      $('#colorizer').on('click',function() {
        $('#things tr:even').css('background','yellow');
      });

    });

  </script>
</head>
<body>
  <table id="things">
    <tr>
      <td>item1</td>
      <td>item2</td>
      <td>item3</td>
    </tr>
    <tr>
      <td>apples</td>
      <td>oranges</td>
      <td>lemmons</td>
    </tr>
    <tr>
      <td>merlot</td>
      <td>malbec</td>
      <td>cabernet sauvignon</td>
    </tr>

(continued)



280 Part V: JavaScript and HTML5  

Listing 18-4 (continued)
  </table>
  <form id="tableControl">
     <button type="button" id="colorizer">Colorize</button>
  </form>
</body>
</html>

Figure 18-2 shows the alternating table colors after the button is clicked.

Do you notice something seemingly odd about the colorized rows in  
Figure 18-2? The first and third rows of the table are colorized, but we told 
jQuery to colorize the even numbered rows. The explanation is simple:  
The even and odd determinations are based on the index number of the 
tr elements, which always start with 0. So, the colorized ones are the first 
(index number 0) and the third (index number 2).

Detaching with off()
The off() method can be used to unregister a previously set event listener. 
For example, if you want to disable the button in Listing 18-4 (maybe until the 
user paid for the use of this feature), you use the following statement:

$('#colorizer').off('click');

Or, if you want to remove all event listeners on an element, you can do so by 
calling off with no arguments:

$('colorizer').off();

Figure 18-2: 
Alternating 

table colors.



281  Chapter 18: jQuery

Binding to events that don’t exist yet
With the dynamic nature of today’s web, you sometimes need to register  
an event listener to an element that is created dynamically after the  
HTML loads.

To add event listeners to elements that are created dynamically, you can 
pass a selector that should be monitored for new elements to the on() 
method. For example, if you want to make sure that all rows, and all future 
rows, in the table are clickable, you can use the following statement:

$(document).on('click','tr',function(){  
  alert("Thanks for clicking!");
}

Other event methods
Besides on(), jQuery also has a simplified shortcut syntax for attaching event 
listeners to selected elements. jQuery has methods with the same names as 
the events that you can just pass the event handler to. For example, both of 
these statements accomplish the same thing:

$('#myButton').on('click',function() {
 alert('Thanks!');
}
$('#myButton').click(function() {
 alert('Thanks!');
}

Other shortcut event methods include

 ✓ change()

 ✓ click()

 ✓ dblclick()

 ✓ focus()

 ✓ hover()

 ✓ keypress()

 ✓ load()

For a complete list of event methods, visit the jQuery website at 
http://api.jquery.com/category/events.

http://api.jquery.com/category/events


282 Part V: JavaScript and HTML5  

Effects
jQuery makes a JavaScript programmer’s life much easier. It even makes 
simple animations and effects easier.

jQuery effects are so simple that they’re often overused. Once you see what 
can be done and have played with each of the different variations, it would 
probably be a good idea to build one web app that uses them all every time 
any event happens. Then, delete this file and consider this urge to overuse 
effects to be out of your system.

Basic effects
jQuery’s basic effects simply control whether selected elements are 
 displayed or not. The basic effects are

 ✓ hide(): The hide method hides the matched elements.

 ✓ show(): The show method shows the matched elements

 ✓ toggle(): The toggle method toggles between hiding and showing the 
matched elements. If the matched element is hidden, toggle will cause it 
to be shown. If it’s shown, toggle will cause it to be hidden.

Fading effects
You can transition selected elements between displaying and hiding by using 
a fade effect. The fading effects are

 ✓ fadeIn(): The fadeIn method causes the matched element to fade 
into view over a specified amount of time (become opaque).

 ✓ fadeOut(): The fadeout method causes the matched element to fade 
out over a specified amount of time (become transparent).

 ✓ fadeTo(): The fadeTo method can be used to adjust the opacity of ele-
ments to a specified level over a specified amount of time.

 ✓ fadeToggle(): The fadeToggle method fades matched elements in 
or out over a specified amount of time.



283  Chapter 18: jQuery

Sliding effects
The sliding effects transition selected elements between showing and hiding 
by using an animated slide effect. The sliding effects are

 ✓ slideDown(): The sildeDown method displays the matched elements 
with an upward sliding motion.

 ✓ slideUp(): The slideUp method hides the matched elements with an 
upward sliding motion.

 ✓ slideToggle(): The slideToggle method toggles between sliding up 
and sliding down.

Setting arguments for animation methods
Each of the jQuery animation methods has a set of optional arguments that 
control the details of how the animation takes places and when.

The arguments of the basic, sliding and fading methods are

 ✓ duration: Duration is a numeric value indicating how long (in millisec-
onds) the animation should take.

 ✓ easing:  Easing is a string value telling what easing function should be 
used to do the animation. An easing function determines how the ele-
ment animates. For example, it may start slow and speed up or start fast 
and slow down. jQuery has two easing functions built-in:

• swing (default): Progress slightly lower at the beginning and end 
than in the middle.

• linear: Progress at a constant rate through the animation.

 ✓ complete:  The complete argument specifies a function to execute 
when the current animation is finished.

Custom effects with animate()
The animate method performs a custom animation of CSS properties. To 
specify the animation, you pass a set of properties to the animate method. 
When it runs, the animation will move toward the values you set for each 



284 Part V: JavaScript and HTML5  

property. For example, to animate increasing with width and color of a div, 
you could use this statement:

('div #myDiv').animate(
{
 width: 800,
 color: 'blue' 
}, 5000);

In addition to the required CSS properties argument, the animate method 
takes the same optional arguments as the other animation methods.

Playing with jQuery animations
Listing 18-5 implements several of the jQuery animation methods. Try chang-
ing values and experimenting with the different settings for each of these 
methods and see what you come up with!

Listing 18-5 Fun with jQuery Animations

<html>
<head>
  <title>JQuery CSS</title>
  <style>
     td {
      border: 1px solid black;
    }
  </style>
  <script src="http://code.jquery.com/jquery- 

1.11.2.min.js"></script>
  <script type="text/javascript">
    // wait for the DOM to be ready
    $(document).ready(function(){
     // when the animator button is clicked, start doing 

things 
    $('#animator').on('click',function() {
      $('#items').fadeToggle(200);
      $('#fruits').slideUp(500);
      $('#wines').toggle(400,'swing',function(){
        $('#wines').toggle(400,'swing');
      });
      $('h1').hide();
      $('h1').slideDown(1000).animate({
        'color': 'red',
        'font-size': '100px'},1000),;
      });
    });
  </script>



285  Chapter 18: jQuery

</head>
<body>
  <h1>Here are a bunch of things!</h1>
  <table id="things">
     <tr id="items">
      <td>item1</td>
      <td>item2</td>
      <td>item3</td>
    </tr>
    <tr id="fruits">
      <td>apples</td>
      <td>oranges</td>
      <td>lemmons</td>
    </tr>
    <tr id="wines">
      <td>merlot</td>
      <td>malbec</td>
      <td>cabernet sauvignon</td>
    </tr>
  </table>
  <form id="tableControl">
    <button type="button" id="animator">Animate  

Stuff!</button>
  </form>
</body>
</html>

AJAX
One of the most useful things about jQuery is how it simplifies AJAX and 
makes working with external data easier.

Chapter 16, discusses AJAX, the technique of loading new data into a web 
page without refreshing the page. It also covers how to use JSON data in 
JavaScript.

Using the ajax() method
At the head of jQuery's AJAX capabilities lies the ajax() method. The 
ajax() method is the low-level way to send and retrieve data from an exter-
nal file. At its most simple, the AJAX method can take just a filename or URL 
as an argument, and it will load the indicated file. Your script can then assign 
the content of that file to a variable.



286 Part V: JavaScript and HTML5  

You can also specify many different options about how the external URL 
should be called and loaded, and you can set functions that should run if the 
request succeeds or fails.

For a complete list of the optional arguments of the ajax() method, visit 
http://api.jquery.com/jQuery.ajax.

In Listing 18-6, the script opens a text file containing a paragraph of text and 
displays that text inside of a div element.

Listing 18-6: Loading and Displaying an External File with jQuery  
and AJAX

<html>
<head>
  <title>Dynamic Introduction</title>
  <script src="http://code.jquery.com/jquery- 

1.11.2.min.js"></script>
  <script>
    // wait until everything is loaded
    $(document).ready(function(){
      // when the button is clicked
      $('#loadIt').on('click',function(){
       // get the value of the select and add .txt to it
       var fileToLoad = $('#intros').val() + '.txt';
       // open that file
       $.ajax({url:fileToLoad,success:function(result){
         // if successful with opening, display the file 

contents
          $('#introtext').html(result);
       }});
      });
    });
  </script>
</head>
<body>
  <h1>Select the type of introduction you would like:</h1>
  <form id="intro‐select">
    <select id="intros">
      <option value="none">Please Select</option>
      <option value="formal">Formal</option>
      <option value="friendly">Friendly</option>
      <option value="piglatin">Piglatin</option>
    </select>
    <button id="loadIt" type="button">Load It!</button>
  </form>
  <div id="introtext"></div>
</body>
</html>

http://api.jquery.com/jQuery.ajax


287  Chapter 18: jQuery

If you try to run Listing 18-6 on your local computer, you’ll run into the 
browser security restriction called same-origin policy, which won’t allow data 
to load via AJAX unless it’s loading from the same domain (see Chapter 16). 
To try out this example, visit http://www.codingjsfor 
dummies.com/extras/coding with javascript, upload it to your own 
web server, or disable your browsers security restrictions.

Shorthand AJAX methods
jQuery also has several shorthand methods for handling AJAX. The syntax for 
these is simplified because they’re designed for specific tasks. The shorthand 
AJAX methods are as follows:

 ✓ .get() loads data from a server using an HTTP GET request.

 ✓ .getJSON() loads JSON data from a server using an HTTP GET request.

 ✓ .getScript() loads a JavaScript file from a server using an HTTP GET 
request and then executes it.

 ✓ .post() loads data from a server and place the returned HTML into the 
matched element.

To use the shorthand methods, you can pass them a URL and, optionally, 
a success handler. For example, to get a file from a server using the get() 
method and then insert it into the page, you can do the following:

$.get( "getdata.html", function( data ) {
 $( ".result" ).html( data );
});

The preceding example is equivalent to the following full .ajax() statement:

$.ajax({
 url: getdata.html,
 success: function( data ) {
 $( ".result" ).html( data );
 }
});

The savings in effort isn’t enormous in this example. With more complex 
AJAX requests, learning and using the shorthand AJAX can result in more 
understandable and concise code.

http://www.codingjsfordummies.com/extras/coding%20with%20javascript
http://www.codingjsfordummies.com/extras/coding%20with%20javascript
http://www.codingjsfordummies.com/extras/coding


288 Part V: JavaScript and HTML5  



Part VI
The Part of Tens

 Enjoy an additional Part of Tens chapter at www.dummies.com/extras/ 
codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


In this part . . .
 ✓ Figure out which ten JavaScript frameworks and libraries to 

learn next.

 ✓ Discover ten common JavaScript bugs and how to avoid 
them.

 ✓ Take advantage of ten online tools that help you write better 
JavaScript.

 ✓ Enjoy an additional Part of Tens chapter at www.dummies. 
com/extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript


Ten JavaScript Frameworks  
and Libraries to Learn Next

In This Chapter
 ▶ Discovering some popular JavaScript frameworks and libraries

 ▶ Seeing what sites are using what frameworks and libraries

“I am hitting my head against the walls, but the walls are giving way.”

— Gustav Mahler

Y 
ou’ve only just begun your JavaScript journey. The universe of tools, 
frameworks, and libraries built with JavaScript and that will help you 

write better JavaScript programs is vast and growing at a mind‐boggling pace.

In this chapter, we list ten of our favorite JavaScript frameworks and libraries.  
You don’t need to learn them all, but a familiarity with all of them and profi-
ciency in a couple will help you tremendously in your JavaScript voyage.

Each of these tools has a loyal base of users, fans, and people who contribute 
to it. Under each tool, we list a few of the most well‐known sites that use it.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Angular JS
Angular JS, commonly referred to as Angular, is an open source JavaScript 
application framework (see Figure 19-1). Often confused with a library 
because of its lightweight design, Angular JS is maintained by Google and the 
community of developers.

Chapter 19



292 Part VI: The Part of Tens  

The framework adapts and extends traditional HTML to serve dynamic 
content through two‐way data‐bindings that allow for the automatic syn-
chronization of models (data) and views (web pages). As a result, AngularJS 
de‐emphasizes DOM manipulation with the goal of improving testability and 
performance.

Angular’s design goals are to

 ✓ Improve testability of the code by separating DOM manipulation from 
application logic.

 ✓ Emphasize the testing of code just as much as the writing of code.

 ✓ Create separation between the client‐side of the application and the 
server side.

 ✓ Provide structure for the application building process, from designing to 
the UI through writing logic to testing.

Who uses it? YouTube.com, Lynda.com, Netflix.com, and freelancer.com.

Figure 19-1: 
http:// 

angularjs. 
org.

http://angularjs.org
http://angularjs.org
http://angularjs.org


293  Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 

Backbone.js
Backbone.js, shown in Figure 19-2, is an open source MVC JavaScript library 
designed for building single‐page web apps. Developing web apps with 
Backbone gives your app structure and enforces the very good principle that 
communication with the server should be done through a RESTful API.

The result of using Backbone is that your code will be more modular, and 
you’ll be able to build and keep track of very complicated web apps with 
minimal code and in an organized way.

Backbone only has one dependency (underscore.js) and adds very minimal 
load to your web app.

Who uses it? reddit.com, bitbucket.org, tumblr.com, pintrest.com, and  
linkedin.com.

Figure 19-2: 
http:// 

back 
 bonejs. 

org.

http://backbonejs.org
http://backbonejs.org
http://backbonejs.org
http://backbonejs.org


294 Part VI: The Part of Tens  

Ember.js
Ember.js is one of the older MVC JavaScript frameworks, with roots going 
way back to 2007. Ember, shown in Figure 19-3, calls itself “a framework for 
creating ambitious web applications.” Like many of the other frameworks 
described in this chapter, it’s based on the MVC software architecture pat-
tern. Like Backbone, it’s designed for creating single‐page web applications.

Ember has a reputation for having a steep learning curve. However, once you 
know it, the benefits of using Ember are many. Ember is designed to favor 
convention over configuration. What this means for Ember developers is that 
if they write code according to Ember’s normal practices, Ember will infer 
much of the configuration of the app, rather than requiring the developer to 
specify everything about the app manually. This can be a great timesaver.

Who uses it? digitalocean.com, vine.co, nbcnews.com, twitch.tv, and  
mediabistro.com.

Figure 19-3: 
http:// 
emberjs. 

com.

http://emberjs.com
http://emberjs.com
http://emberjs.com


295  Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 

Famo.us
Famo.us, shown in Figure 19-4, is an open source JavaScript framework for 
creating complex user interfaces for any screen. It has a 3D rendering engine 
built into it, which makes it possible for developers to write JavaScript code 
that can move objects around the browser in 3D and to create effects and 
interfaces that previously were only available in native software applications. 
The result is that web apps created with Famo.us can be much faster and 
work much more smoothly than web apps built using just HTML5, CSS3, and 
JavaScript.

Who uses it? InkaBinka.com, SuperStereo, Requested App, and Japan Today.

Figure 19-4: 
http:// 
famo.us.

http://famo.us.
http://famo.us.


296 Part VI: The Part of Tens  

Knockout
Knockout, shown in Figure 19-5, is an open source JavaScript framework for 
simplifying dynamic JavaScript user interfaces. It uses the Model‐View‐View‐
Model pattern.

Knockout includes

 ✓ Declarative bindings

 ✓ Automatic User Interface Refresh (the UI updates automatically when 
data changes)

 ✓ Dependency tracking

 ✓ Templating

Who uses it? mlb.com, ancestry.com, Eventbrite.com, and ameritrade.com.

Figure 19-5: 
http:// 

knockoutjs. 
com.

http://knockoutjs.com
http://knockoutjs.com
http://knockoutjs.com


297  Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 

QUnit
QUnit (see Figure 19-6) is a unit testing framework for JavaScript, which is 
used by many open source JavaScript projects, including jQuery. It can test 
any generic JavaScript code and is known for being powerful as well as easy 
to use.

Who uses it? jQuery, jQuery UI, jQuery Mobile, sitepoint.com, and many 
JavaScript developers.

underscore.js
Underscore (see Figure 19-7) is a JavaScript library that provides many 
useful helper functions to programmers. Once you start using the features of 
Underscore, you’ll wonder how you ever got by without them.

Figure 19-6: 
http:// 
qunitjs. 

com.

http://qunitjs.com
http://qunitjs.com
http://qunitjs.com


298 Part VI: The Part of Tens  

Examples of Underscore helpers include sortBy (for sorting lists), groupBy 
(for grouping a collection into sets), contains (returns true if a list contains 
a specified value), shuffle (returns a shuffled copy of a list), and around 100 
other functions — many of which should have been built into JavaScript from 
the beginning.

Who uses it? dropbox.com, lifehacker.com, theverge.com, att.com, and 
gawker.com.

Modernizr
Modernizr, shown in Figure 19-8, is a JavaScript library for detecting the fea-
tures of a web browser in which it’s running. It’s most often used as a very 
simple and handy way to check whether a user’s browser can run a particu-
lar bit of JavaScript or make use of an API prior to attempting to use that fea-
ture. Modernizr is often used in conjunction with tools called Polyfills, which 
provide alternative ways to accomplish cutting‐edge features of modern 
browsers in less‐capable devices and browsers.

Figure 19-7: 
http:// 
under 

scorejs. 
com.

http://underscorejs.com
http://underscorejs.com
http://underscorejs.com
http://underscorejs.com


299  Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 

Who uses it? go.com, about.com, hostgator.com, addthis.com, and  
usatoday.com.

Handlebars.js
Handlebars, shown in Figure 19-9, is a client‐side JavaScript templating 
engine. It makes it possible for programmers to insert templates into HTML 
pages that will be parsed using live data that is passed to the Handlebars.js 
function.

Who uses it? meetup.com, mashable.com, flickr.com, wired.com, and  
overstock.com.

Figure 19-8: 
http:// 

modernizr. 
com.

http://modernizr.com
http://modernizr.com
http://modernizr.com


300 Part VI: The Part of Tens  

jQuery
JQuery (see Figure 19-10) is the “Write Less, Do More” JavaScript library. 
Used by over 60 percent of the most popular sites on the web, it has become 
an indispensable tool for most JavaScript programmers. Just a few of the 
things that jQuery makes easier include document manipulation, event han-
dling, animation, and Ajax.

In addition, jQuery has a plug‐in architecture that allows other developers to 
build upon the core jQuery functionality in order to create new libraries and 
frameworks.

Some of the most popular jQuery plugins include jQuery UI, jQuery 
Mobile, numerous effects, data pickers, image manipulation tools, and 
image sliders. You can find a complete list of available jQuery plugins at 
http://plugins.jquery.com.

Who uses it? WordPress.com, Pinterest, Amazon, Microsoft.com, Etsy, and 
many, many more.

Figure 19-9: 
http:// 

hand 
lebarsjs. 

com.

http://plugins.jquery.com
http://handlebarsjs.com
http://handlebarsjs.com
http://handlebarsjs.com
http://handlebarsjs.com


301  Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 

Figure 19-10: 
http://
jquery.

com

http://jquery.com


302 Part VI: The Part of Tens  



Ten Common JavaScript Bugs  
and How to Avoid Them

In This Chapter
 ▶ Catching mismatched brackets

 ▶ Steering clear of incorrect punctuation

 ▶ Fixing errors

 ▶ Adjusting bad variable names

“Have no fear of perfection — you’ll never reach it.”

— Salvador Dali

Even the best JavaScript programmers make mistakes. Sometimes, these 
 mistakes cause your program to not produce the results that you wanted, 
and sometimes they cause the program to not run at all. Any problem 
that causes a program not to run or not to run as expected is called a bug. 
Throughout this book, we give you tips and tools for finding and correcting 
bugs as they come up.

Part of becoming a better programmer is to be able to identify potential 
sources of bugs and stomp them out faster and earlier. Eventually, you’ll 
start noticing that you make fewer and fewer mistakes and that beautiful bug‐
free code flows from your fingertips on a regular basis. When this happens, 
you’re well on your way to becoming a JavaScript ninja.

In this chapter, we point out ten common mistakes that JavaScript programmers 
at all levels often make. We also give you pointers on how to prevent them.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

Chapter 20



304 Part VI: The Part of Tens  

Equality Confusion
Does x equal y? Is x true? The questions of equality are central to JavaScript 
and can seem quite confusing. They revolve around three areas in JavaScript: 
namely conditional statements and operators (if, &&, and so on), the equals 
operator (==), and the strict equals operator (===).

To complicate our lives even more, the assignment operator (=) looks 
 suspiciously like what most of us call an equals sign. Don’t be fooled! Here’s a 
quick rundown, with examples, of when each of =, ==, and === are appropriate 
and useful.

Avoiding misuse of assignment
The assignment operator assigns the operand on the right to the operand on 
the left. For example:

var a = 3;

This statement gives the new variable, named a, the value of 3.

An operand is anything in a program. Think of it as similar to a noun in 
 language, whereas operators (+,‐,*,/ and so on) are like verbs.

Assignment operators may also have expressions (sometimes quite 
 complicated expressions) on the right side, which are evaluated and then 
assigned to the variable on the left.

A common mistake that beginners to the language make is to mistake 
 assignment for comparison — for example:

if (a=4){.. .}

This code won’t run as expected if what you expected is to compare the 
value of a to the number 4.

Dodging the equals pitfalls
The equals operator (==) and its evil twin the not equals operator (!=) can 
be quite flexible, but also quite dangerous. We recommend that you use it as 
little as possible, if at all. Here’s why:

0 == '0'



305  Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 

Everyone who’s spent any time programming knows that a number inside of 
quotes isn’t really a number. But the == operator considers them to be the 
same, because it will make the two values the same type prior to comparing. 
This can lead to all sorts of problems that are difficult to track down.

If you do want to compare a string with a number and get a result of true if 
they appear the same, it’s much safer to do this explicitly as follows:

parseInt(0) === parseInt("0")

This statement also evaluates to true, but there is no voodoo magic 
involved. This brings us to our friends, the strict equals (===) and the strict 
not equals (!==). These guys will do exactly what you would expect. What 
would you think would be the result of the following statement?

0 === '0'

Correct! The two operands are clearly different types, and the result is false.

Mismatched Brackets
As a program becomes more complicated, and especially when you’re 
 working with JavaScript objects, the brackets start to pile up. You start to  
see weird behaviors or cryptic errors in your JavaScript console.

Here’s a JavaScript object with mismatched brackets:

{
   "status": "OK",
   "results": [{
       "id": 12,
       "title": "Coding JavaScript For Dummies",
       "author": "Chris Minnick and Eva Holland",
       "publication_date": "",
       "summary_short": "",
       "link": {
           "type": "review",
           "url": "",
           "link_text": "Read the New York Times Review  

of Coding JavaScript For Dummies"
       },
       "awards": [{
           "type": "Nobel Prize",
           "url": "",
         }]
}



306 Part VI: The Part of Tens  

Can you see the problems here? It may take some counting and matching, 
and if you don’t find it, you have a serious bug! When this happens, a good 
code editor can be invaluable! Sublime Text has a feature that will show you 
a brackets match (or at least what Sublime Text believes to be the match) 
when you place your cursor next to either a starting or ending bracket, as 
shown in Figure 20-1.

Mismatched Quotes
JavaScript allows you to use either single quotes or double quotes to define 
strings. However, JavaScript is not at all flexible with the rule that you must 
end your string with the same type of quote you started with. Also, look out 
for quotes and apostrophes in strings that are the same characters as the 
quotes surrounding the string! For example:

var movieName = "Popeye'; // error!
var welcomeMessage = 'Thank you, ' + firstName + ', let's 

learn JavaScript!' // error!

Missing Parentheses
This error most often crops up in conditional statements, especially those in 
which there are multiple conditions. Consider this example:

if (x > y) && (y < 1000) {
...
}

Figure 20-1: 
Highlighting 

matching 
brackets 

in Sublime 
Text.



307  Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 

What we want to do here is check that both of the conditions are true. 
However, there are actually three conditions at work here, and they all need 
parentheses. What’s missing in the preceding example is the parentheses 
around the big && condition, which says that both of the other conditions 
must be true in order to proceed with the code between the brackets.

In order to be correct, this statement should read as follows:

if ((x > y) && (y < 1000)) {
...
}

Missing Semicolon
JavaScript statements should always end with a semicolon. However, if you 
put each statement on its own line and leave off the semicolons, the code 
will still run as if the semicolons are there. Even though the code still runs, 
 leaving off the semicolon can lead to problems when you rearrange code or 
when two statements end up on the same line somehow.

The best way to avoid this error is to always use a semi‐colon at the end of a 
statement.

Capitalization Errors
JavaScript is case‐sensitive. This means that the variables you create need 
to be capitalized exactly the same every time you use them. It also means 
that functions (including built‐in JavaScript functions) need to be capitalized 
 correctly in order to work.

One of the most common places to see this error happen is with the 
 getElementByld method of the Document object. You would think that 
it would be spelled getElementBylD because that would make more 
 grammatical sense, but it isn’t correct!

Referencing Code Before It’s Loaded
JavaScript code (that isn’t functions) normally loads and runs in the order 
that it appears in a document. This can create problems if you reference 
HTML that’s positioned later in the document from a script that’s in the head 



308 Part VI: The Part of Tens  

of the document. For example, Listing 20-1 shows a script that the author 
intended to change the HTML between the start and end tags of an element 
within the HTML document, and Figure 20-2 shows how this script results in 
an error when previewed.

Listing 20-1:  Watch Out for Referencing Code or Markup  
Before It’s Loaded

\<html>
<head>
  <script>
   document.getElementById("myDiv").innerHTML = "This div 

is MY div";
  </script>
</head>
<body>
  <div id = "myDiv">This div is your div.</div>
</body>
</html>

This code will result in an error because at the time the JavaScript runs, the 
browser doesn’t yet know about the div with the id = "myDiv" that comes 
later in the web page.

Figure 20-2: 
Referencing 

HTML 
before it 

is loaded 
results in an 

error.



309  Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 

In order to avoid this issue, you have a couple of options:

 ✓ Place your JavaScript at the bottom of your HTML file, right before  
</body>.

 ✓ Put your JavaScript code into a function. Then you can call the function 
using an onload event attribute in the starting body tag.

In Listing 20-2, we resolved the problem shown in Listing 20-1 using the 
second method. Figure 20-3 shows the result when previewed in a web 
browser.

Listing 20-2:  Waiting Until the Page Is Finished Loading Before  
Running the Script

<html>
<head>
  <script>
  function nameMyDiv() {
    document.getElementById("myDiv").innerHTML = "This div 

is MY div";
  }
  </script>
</head>
<body onload = "nameMyDiv();">
  <div id = "myDiv">This div is your div</div>
</body>
</html>

Figure 20-3: 
Wait until 
the HTML 
is loaded 

before 
 running the 

script.



310 Part VI: The Part of Tens  

Bad Variable Names
The rules of variable naming in JavaScript are covered in detail in Chapter 3. 
One particularly hard-to-track-down rule is the prohibition against using 
reserved words as variable names.

Interestingly, JavaScript has over 60 reserved words and many others that 
you just shouldn’t use as variable names. Rather than memorizing all of 
the reserved words, the best way to avoid these types of naming errors is 
to simply come up with a more descriptive naming scheme that is highly 
unlikely to ever cross paths with a reserved word.

For example, the word name is one of JavaScript’s reserved words. If you 
get into the habit of being specific with what you’re naming, you’ll name 
variables for storing things, such as firstName, lastName, dogName, and 
nameOfTheWind; thus totally avoiding conflicts with reserved words.

Scope Errors
JavaScript has function scope and global scope. If you declare a variable 
without using the var keyword, that variable will have global scope and will 
be usable anywhere in your program. As we demonstrate in Chapter 3, the 
results can be detrimental to your program. In order to avoid scope errors, 
make sure to always use the var keyword to create new variables.

Missing Parameters in Function Calls
Whenever you create a function, you declare the number of parameters that 
should be passed to that function when it’s called. Calling the wrong number 
of functions won’t always result in an error in JavaScript, but it can produce 
unexpected results if the code within the function requires parameters that 
aren’t present.

Make sure to give your parameters descriptive names when you create a 
function and double-check every time that a function is called in order to 
make sure that the right number of parameters is passed.



311  Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 

Counting Errors: Forgetting That 
JavaScript Counts from 0

If you count to 10 in a JavaScript array, you’ll actually have 11 items  
(see Figure 20-4). Never forget that the first item in an array has an index of 0.

var myArray = new Array();
myArray[10] = "List of 10 Common Mistakes";
myArray.length; // produces 11!

Figure 20-4: 
Forgetting 

that 
JavaScript 

counts 
from 0 can 

lead to 
unexpected 

results.



312 Part VI: The Part of Tens  



Ten Online Tools to Help You 
Write Better JavaScript

In This Chapter
 ▶ Cleaning up with JSLint

 ▶ Playing with JSFiddle

 ▶ Making it pretty with JSbeautifier

 ▶ Making your JavaScript files smaller

“Never underestimate the power of a simple tool.”

— Craig Bruce

J 

avaScript has more libraries, resources, and helpful tools for working 
with it than for any other programming language. This chapter introduces 

ten of the best resources for helping you write more and better JavaScript.

Don’t forget to visit the website to check out the online exercises relevant to 
this chapter!

JSLint
JSLint, created by JavaScript super‐genius Douglas Crockford, is a code 
checker that is designed to tell you where your code has problems — and not 
just the kind of problems that would generate errors.

JSLint, shown in Figure 21-1, will tell you about things that thousands of 
JavaScript programmers do all the time, but that are problematic for one 
reason or another. If your code passes JSLint’s tests, it’s probably some 
pretty good code.

Chapter 21



314 Part VI: The Part of Tens  

JSFiddle.net
JSFiddle, shown in Figure 21-2, is an online program for running web applica-
tions in a test environment. When you go to JSFiddle.net, the first thing you 
see is a grid with four panes:

 ✓ One for HTML

 ✓ One for CSS

 ✓ One for JavaScript

 ✓ One for Results

Enter the appropriate type of code into any of the first three boxes and press 
the Run button, and the results will be displayed in the Results pane.

Figure 21-1: 
JSLint 

shows you 
where your 

code has 
problems.



315  Chapter 21: Ten Online Tools to Help You Write Better JavaScript

With JSFiddle, you can even save your fiddles and email the urls to other 
people to check out.

JSBin
JSBin (see Figure 21-3) is a code‐sharing site that allows you to write code 
while other people watch you. Whether you have exhibitionist tendencies, 
you’re teaching a junior developer, or you’re collaborating with other  
programmers on a  project, the functionality in JSBin can be very helpful for 
working out bugs, getting feedback, and sharing code.

Figure 21-2: 
JSFiddle.

net is a 
complete 

JavaScript 
playground.



316 Part VI: The Part of Tens  

javascriptcompressor.com
The smaller your JavaScript files are, the faster they’ll load. JavaScript 
Compressor.com, shown in Figure 21-4, has a window where you can drop 
your JavaScript. When you press Compress, a new version that’s function-
ally the same as your original code, but compressed, shows up in the lower 
window. Not only does the compressed code take up less disk space and 
bandwidth, it’s also  obfuscated, to hide its inner secrets from prying eyes.

Figure 21-3: 
Collaborate 
with JSBin.



317  Chapter 21: Ten Online Tools to Help You Write Better JavaScript

jsbeautifier.org
JSBeautifier (see Figure 21-5) is an online tool that takes your sloppy 
JavaScript and makes it pretty. Some of the techniques that it uses to 
beautify code include

 ✓ Inserting new lines

 ✓ Breaking lines of chained code

 ✓ Inserting spaces before conditional statements

 ✓ Making indentations standard throughout the script

Figure 21-4: 
javascript-

compressor.
com makes 

files smaller.



318 Part VI: The Part of Tens  

JavaScript RegEx generator
JavaScript Lab’s JavaScript RegEx Generator (www.jslab.dk/tools. 
regex.php), shown in Figure 21-6, is a user‐friendly form for pointing and 
clicking your way to  writing regular expressions. Simply click some buttons, 
enter text to match, set some options, and your regular expression shows up 
at the bottom.

Figure 21-5: 
Make 

your code 
pretty with 
http:// 
jsbeau 
tifier 
.org.

http://www.jslab.dk/tools.regex.php
http://www.jslab.dk/tools.regex.php
http://jsbeautifier.org
http://jsbeautifier.org
http://jsbeautifier.org
http://jsbeautifier.org


319  Chapter 21: Ten Online Tools to Help You Write Better JavaScript

JSONformatter
The JSON formatter and validator (http://jsonformatter.curious 
concept.com), shown in Figure 21-7, allows you to paste in unformatted 
JSON code, such as the code you would get from copying from the Chrome 
Developer Tools. It then makes the code pretty and makes sure that it’s valid.

Figure 21-6: 
Point and 

click regular 
expressions.

http://jsonformatter.curiousconcept.com
http://jsonformatter.curiousconcept.com


320 Part VI: The Part of Tens  

jshint.com
JShint (see Figure 21-8) is a tool that helps you detect errors and potential 
problems in your JavaScript. In addition, it will give you useful information 
about your JavaScript code as you write it.

Figure 21-7: 
The JSON 
formatter 

validates and  
arranges 

JSON data.



321  Chapter 21: Ten Online Tools to Help You Write Better JavaScript

Mozilla Developer Network
The Mozilla Developer Network’s JavaScript section (https://developer. 
mozilla.org/en‐US/docs/Web/JavaScript) is an essential resource 
for information about everything having to do with JavaScript. Its JavaScript 
resources, shown in Figure 21-9, include reference material, tutorials, articles, 
and demos for programmers at every level.

Figure 21-8: 
JShint 

detects 
problems 
with your 

code as you 
write it.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript


322 Part VI: The Part of Tens  

Douglas Crockford
Douglas Crockford is a hero to many JavaScript programmers. His website 
(http://javascript.crockford.com), shown in Figure 21-10, has a great 
collection of free videos on every aspect of JavaScript. These videos are 
essential to a programmer who is looking to move past beginner and into the 
more advanced levels of JavaScript expertise.

Figure 21-9: 
Mozilla 

Developer 
Network 
is one of 
the best 

JavaScript 
references.

http://javascript.crockford.com


323  Chapter 21: Ten Online Tools to Help You Write Better JavaScript

Figure 21-10: 
Douglas 

Crockford’s 
JavaScript 

videos.



324 Part VI: The Part of Tens  



Index

• Symbols •
-- (decrement) operator, 73
! (Not) logical operator, 77
!= (inequality) operator, 73
!= (not equals operator), 304–305
!== (strict inequality) operator, 73
% (modulus) operator, 73
& (Bitwise AND) operator, 76
&& (And) logical operator, 77
* (multiplication) operator, 73
/ (division) operator, 73
^ (Bitwise XOR) operator, 76
| (Bitwise OR) operator, 76
|| (Or) logical operator, 77
~ (Bitwise NOT) operator, 76
+ (addition) operator, 73
++ (increment) operator, 73
< (less than) operator, 73
<< (left shift) bitwise operator, 76
<= (less than or equal to) operator, 73
= (assignment operator)

combining with other operators, 80
defined, 42
misuse of, 304
overview, 72

== (equals) operator, 73, 304–305
=== (strict equality) operator, 73, 305
> (greater than) operator, 73
>= (greater than or equal to) operator, 73
>> (sign-propagating right shift) bitwise 

operator, 76
>>> (zero-fill right shift) bitwise 

operator, 76

• A •
abort event, 170
accept-charset attribute, form 

element, 183
acceptCharset property, Form object, 187

accessing
array elements

looping, 63
methods, 64–66
overview, 62–63
properties, 63–64

audio and video with WebRTC API,  
266–270

form elements, 190–191
accessKey property, Element object, 156
action attribute, form element, 182
action property, Form object, 187
addEventListener( ) method
Document object, 154
Element object, 158
handling events with, 174–178

addition (+) operator, 73
adoptNode( ) method, Document 

object, 154
after( ) method, jQuery, 278
afterprint event, 171
AJAX (Asynchronous JavaScript + XML)

Cross-Origin Resource Sharing, 247–248
examples, 238–240
jQuery
ajax( ) method, 285–287
shorthand methods, 287

overview, 237–238
same-origin policy, 245–247
viewing in action, 240–243
XMLHttpRequest object, 243–245

alert( ) method, Window object, 145
alt property, Image object, 204
anchors property, Document object, 153
And (&&) logical operator, 77
Angular JS framework, 291–292
animation property, Style object, 208
animationDelay property, Style 

object, 208
animationDirection property, Style 

object, 208



326 Coding with JavaScript For Dummies  

animationDuaration property, Style 
object, 208

animationFillMode property, Style 
object, 208

animationIterationCount property, Style 
object, 208

animationName property, Style object, 
208

animationPlayState property, Style 
object, 208

animations, jQuery, 283, 284–285
animationTimingFunction property, 

Style object, 208
anonymous functions, 111–113, 227–230

defined, 111–112
versus named functions, 112
self-executing, 112–113

APIs, HTML5
accessing audio and video, 266–270
checking browser support, 256–257
Geolocation

in browser, 260
combining with Google Maps API, 

263–266
geolocation object, 259
getCurrentPosition method,  

261–263
overview, 255–256, 257–259

appCodeName property, Navigator 
object, 138

append( ) method, jQuery, 278
appendChild( ) method, Element 

object, 158
applets property, Document object, 153
appName property, Navigator object, 138
appVersion property, Navigator 

object, 138
Aptana code editor, 21
arguments
Arguments object, 110–111
calling function with more argument than 

parameters, 110
calling function without, 109
overview, 100
passing, 106–107
passing by reference, 109
passing by value, 107–108

passing callback functions as, 226
setting default parameter values, 109–110

Arguments object, 110–111
arithmetic operators, 73–75
array literal method of notation, 59
arrays

array elements
defined, 57
looping, 63
methods, 64–66
overview, 62–63
properties, 63–64

creating with array literal method of 
notation, 59

creating with new keyword method, 59
index numbers, 57
looping through, 86–87
making lists, 55–57
multidimensional, 60–62
populating, 60
storing data, 58
zero-based numbering, 57–58

assignment operator (=)
combining with other operators, 80
defined, 42
misuse of, 304
overview, 72

associativity, 71, 72
Asynchronous JavaScript + XML (AJAX)

Cross-Origin Resource Sharing, 247–248
examples, 238–240
jQuery
ajax( ) method, 285–287
shorthand methods, 287

overview, 237–238
same-origin policy, 245–247
viewing in action, 240–243
XMLHttpRequest object, 243–245

atob( ) method, Window object, 145
attibutes property, Element object, 156
attr( ) method, jQuery, 276
attribute node, DOM, 149
Attribute object, 165–167
attributes. See also names of specific 

attributes
HTML5, 16, 161
jQuery, 276



327327  Index

autocomplete attribute, form element, 
183, 188

autocomplete property, Form object, 187

• B •
Backbone.js library, 293
backgroundColor property, Style 

object, 196
base case, recursive function, 113
baseURI property, Document object, 153
basic effects, jQuery, 282
Battery Status API, 255–256, 258
BBEdit code editor, 22
before( ) method, jQuery, 278
beforeprint event, 171
beforeunload event, 171
Beginning HTML5 and CSS3 For Dummies 

(Tittel and Minnick), 17
Berners-Lee, Tim, 237
binary numbers, 75–76
bitwise operators

Bitwise AND, 76
Bitwise NOT, 76
Bitwise OR, 76
Bitwise XOR, 76
in Chrome JavaScript console, 77
defined, 75
Left shift, 76
signed integers, 76
sign-propagating right shift, 76
twos complement, 76
zero-fill right shift, 76

Blanchot, Maurice, 117
blur event, 170
blur( ) method
Element object, 158
Window object, 145

body property, Document object, 153
BOM (Browser Object Model)

browser and, 137
defined, 133

Boole, George, 52
Boolean data type, 52–53
borderWidth property, Style object, 196
Bowen, Elizabeth, 147

brackets
brackets match feature, 306
mismatched, 305–306
square bracket notation

regular expressions, 218
retrieving and setting object properties 

with, 121–122
branching statements
if ... else statement, 82–84
operators, 81–82
switch statement, 84–85

break statement, loops, 91–93
browser

browser detection, 139
BOM and, 137
checking browser support for HTML5 

APIs, 256–257
Geolocation API in, 260
HTML parsing, 136
JavaScript in, 15
JavaScript parsing, 136
layout, 137
loader, 134–136
Navigator object, 137–139
rendering, 137
running JavaScript in browser window 

in HTML event attribute, 30–31
including external files, 33–36
JavaScript Console, 36–38
overview, 29–30
in script element, 31–33

user interface, 134
Window object

creating Back button, 144–145
determining size of browser window, 

142–144
methods, 145–146
opening web page with 
window.location property, 141

properties, 140–141
browser chrome (user interface), 134
Browser Object Model (BOM)

browser and, 137
defined, 133

Bruce, Craig, 313
bubble up method, event handling, 177



328 Coding with JavaScript For Dummies  

bugs, programming
capitalization errors, 307
counting errors, 311
equality errors

equals operators, 304–305
misuse of assignment operator, 304

mismatched brackets, 305–306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306–307
missing semicolon, 307
overview, 303
referencing code before loaded, 307–309
scope errors, 310
variable naming, 310

Bukowski, Charles, 97
Burroughs, William S., 255
button element, 186
button value, input element’s type 

attribute, 184

• C •
callbacks

defined, 225
passing functions as arguments, 226
using named callback functions, 227–230
writing functions with, 226–227

calling functions
defined, 100
with more argument than parameters, 110
without arguments, 109

capitalization, 29, 44, 127, 307
capture method, event handling, 177
Cascading Style Sheets 3 (CSS3)

determining size of browser window, 142
JavaScript and, 16
jQuery, 276–277
Style object

animating elements with, 200–203
animation properties, 207–210
getting current style of element,  

196–199
overview, 195–196
setting properties, 199–200

case insensitive (i) modifier, regular 
expressions, 221

case sensitivity, 29, 44, 127, 307
CDN (content delivery network), 272
chaining, jQuery, 273–274
change event, 170
charAt( ) function, 51
checkbox value, input element’s type 

attribute, 184
childElementCount property, Element 

object, 156
childNodes property, Element 

object, 156
children, DOM node relationships, 149
children property, Element object, 156
Chrome

downloading and installing, 20–21
JavaScript Console, 36–38

classList property, Element object, 156
className property, Element object, 156
clearInterval( ) method, Window 

object, 145
clearTimeout( ) method, Window 

object, 145
click event, 170
click( ) method, Element object, 158
clientHeight property, Element 

object, 156
clientLeft property, Element object, 

156
client-side JavaScript, 15
clientTop property, Element object, 156
clientWidth property, Element 

object, 156
Clipboard API, 258
cloneNode( ) method, Element object, 

158
close( ) method
Document object, 154
Window object, 145

closed property, Window object, 140
closures, 230–235
Coda code editor, 21
code editors

Aptana, 21
BBEdit, 22
Coda, 21
Dreamweaver, 22
Eclipse, 22



329329  Index

EMacs, 22
Komodo Edit, 21
Netbeans, 22
Notepad++, 22
overview, 21–22
Sublime Text

brackets match feature, 306
setting up, 22–25
shortcuts, 27–28
syntax color scheme, 25–27

TextMate, 22
TextPad, 22
vim, 22

coding
preventing code execution with 

comments, 38
referencing code before loaded, 307–309
with regular expressions, 221–224

color value, input element’s type 
attribute, 184

combining operators, 80
comma operator, 78
comment nodes, DOM, 149
commenting

multi-line comments, 38
preventing code execution, 38
single-line comments, 37–38

common misconceptions, JavaScript, 10
common programming errors

capitalization errors, 307
counting errors, 311
equality errors, 304–35

equals operators, 304–305
misuse of assignment operator, 304

mismatched brackets, 305–306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306–307
missing semicolon, 307
overview, 303
referencing code before loaded, 307–309
scope errors, 310
variable naming, 310

common uses of JavaScript, 12–13
compareDocumentPosition( ) method, 

Element object, 158

comparison operators
equals, 73
greater than, 73
greater than or equal to, 73
inequality, 73
less than, 73
less than or equal to, 73
strict equality, 73, 305
strict inequality, 73

compiled programming languages, 11
compilers, 11
complete argument, jQuery animation 

methods, 283
complete property, Image object, 204
computer programs, 11
concat( ) function

arrays, 65
defined, 51

concatenation operator, number data 
type, 49

condition expression, for loops, 86
conditional operator (ternary operator), 78
confirm( ) method, Window object, 145
const keyword, variables, 46
constants, 46
constructor functions, 127–128
constructor property, arrays, 64
contains helper function, Underscore 

library, 298
contains( ) method, Element object, 

158
content delivery network (CDN), 272
contentEditable property, Element 

object, 156
continue statement, loops, 91–93
control statements

branching statements
if ... else statement, 82–84
operators, 81–82
switch statement, 84–85

loops
arrays and, 63
break statement, 91–93
continue statement, 91–93
do ... while loops, 91
for ... in loops, 88–90



330 Coding with JavaScript For Dummies  

control statements (continued)
for loops, 86–87
overview, 85
while loops, 90–91

cookie property, Document object, 153
cookieEnabled property, Navigator 

object, 138
CORS (Cross-Origin Resource Sharing), 

247–248
counting errors, 311
createAttribute( ) method, 

Document object, 154
createComment( ) method, Document 

object, 154
createDocumentFragment( ) method, 

Document object, 155
createElement( ) method, Document 

object, 155
createPopup( ) method, Window 

object, 145
createTextNode( ) method, Document 

object, 155
Crockford, Douglas, 313, 322–323
Cross-Origin Resource Sharing (CORS), 

247–248
CSS3 (Cascading Style Sheets 3)

determining size of browser window, 142
JavaScript and, 16
jQuery, 276–277
Style object

animating elements with, 200–203
animation properties, 207–210
getting current style of element, 196–199
overview, 195–196
setting properties, 199–200

custom effects, jQuery, 283–284

• D •
Dali, Salvador, 303
data types

storing in arrays, 58
variables

Boolean data type, 52–53
NaN data type, 53
number data type, 47–49

overview, 46–47
string data type, 49–52
undefined data type, 53

date value, input element’s type 
attribute, 184

datetime value, input element’s type 
attribute, 184

datetime-local value, input element’s 
type attribute, 185

dbclick event, 170
declaring variables (initialization), 41–42
decrement (--) operator, 73
defaultStatus property, Window object, 

140
deferred loading, 137
delete operator, 78
development environment

downloading and installing Chrome, 
20–21

downloading and installing code editor, 
21–28

overview, 19–20
DHTML (Dynamic HTML), 9
dir property, Element object, 156
Disney, Roy, 81
division (/) operator, 73
doctype property, Document  

object, 153
document node, DOM, 149
Document object
for ... in loops, 88–90
methods, 154–155
properties, 153–154

Document Object Model (DOM)
Attribute object’s properties, 165–167
Document object’s properties and 

methods, 153–155
element contents, 159–161
Element object’s properties and 

methods, 155–159
getElementBy methods
getElementById method, 161–162
getElementsByClassName method, 

163–164
getElementsByTagName method,  

162–163



331331  Index

manipulating elements within, 277–278
node relationships, 149–153
overview, 147–149

document property, Window object, 140
document ready, jQuery, 274
documentElement property, Document 

object, 153
documentMode property, Document 

object, 153
documents. See also DOM
documentURI property, Document object, 

154
DOM (Document Object Model)
Attribute object’s properties, 165–167
Document object’s properties and 

methods, 153–155
element contents, 159–161
Element object’s properties and 

methods, 155–159
getElementBy methods
getElementById method, 161–162
getElementsByClassName method, 

163–164
getElementsByTagName method, 

162–163
manipulating elements within, 277–278
node relationships, 149–153
overview, 147–149

domain property, Document object, 154
dot notation

accessing array properties with, 63–64
retrieving and setting object properties 

with, 120–121
Douglas Crockford website, 322–323
do ... while loops, 91
Drag and Drop API, 258
Dreamweaver code editor, 22
duration argument, jQuery animation 

methods, 283
Dynamic HTML (DHTML), 9
dynamic scripting language

compiled programming languages, 11
interpreted programming languages, 

11–12
overview, 10–11

• E •
easing argument, jQuery animation 

methods, 283
easter eggs, 204
Eclipse code editor, 22
ECMAScript, 9
ECMAScript 6, 109–110
effects

JavaScript, 9
jQuery

animations, 284–285
basic, 282
custom, 283–284
fading, 282
setting arguments for animation 

methods, 283
sliding, 283

Magic Zoom effects, 13
Eich, Brandon, 8
element node, DOM, 149
Element object

methods, 158–159
properties, 156–157

elements
array

looping, 63
methods, 64–66
overview, 62–63
properties, 63–64

defined, 57
DOM
innerHTML property, 160
setting HTML attributes, 161

form
accessing, 190–191
values, 190–191

HTML5
creating and appending, 165–166
events supported by, 170
removing, 166–167
rendering web pages, 16

EMacs code editor, 22
email value, input element’s type 

attribute, 185



332 Coding with JavaScript For Dummies  

embedding JavaScript into element, 31–33
embeds property, Document object, 154
Ember.js framework, 294
empty( ) method, jQuery, 278
encoding property, Form object, 187
enctype attribute, form element, 183
enctype property, Form object, 187
ending tag, HTML5, 15
equality errors

equals operators, 304–305
misuse of assignment operator, 304

equals (==) operator, 73
equals operator (==), 304–305
error argument, getCurrentPosition 

method, 261
error event, 170
errors, programming

capitalization errors, 307
counting errors, 311
equality errors

equals operators, 304–305
misuse of assignment operator, 304

mismatched brackets, 305–306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306–307
missing semicolon, 307
overview, 303
referencing code before loaded, 307–309
scope errors, 310
variable naming, 310

escaping quotes, string data type, 50
event handler attribute, DOM, 164
event handling

defined, 171
inline event handlers, 172
stopping propagation, 179
using addEventListener ( ) method, 

174–178
using element properties, 173–174

events
event handling

defined, 171
inline event handlers, 172
stopping propagation, 179
using addEventListener ( ) 

method, 174–178

using element properties, 173–174
jQuery

binding to events that don’t exist, 281
off( ) method, 280
on( ) method, 278–280
shortcut event methods, 281

supported by all HTML elements, 170
supported by every element except 

<body> and <frameset> 
elements, 170

supported by Window object, 171
every( ) method, arrays, 65
exec method, regular expressions, 221
expressions, 68. See also operators; regular 

expressions
external JavaScript files

creating, 33–34
organizing, 34–36

• F •
fadeIn( ) method, jQuery, 282
fadeOut( ) method, jQuery, 282
fadeTo( ) method, jQuery, 282
fadeToggle( ) method, jQuery, 282
fading effects, jQuery, 282
Famo.us framework, 295
File API, 258
file value, input element’s type 

attribute, 185
filter( ) method, arrays, 65
final expression, for loops, 86
firstChild property, Element  

object, 156
firstchild property, HTML DOM,  

151–152
firstElementChild property, Element 

object, 156
focus event, 170
focus( ) method
Element object, 158
Window object, 145

fontFamily property, Style object, 196
for attribute, label element, 183
for loops, 86–87
forEach( ) method, arrays, 65
for ... in loops, 88–90



333333  Index

form element, 181–183
Form object

accessing elements, 190–191
element values, 191–192
methods, 188–190
properties, 187–188
validating user input, 192–194

Forms API, 258
forms collection, 188
forms property, Document object, 154
frameElement property, Window  

object, 140
frames property, Window object, 140
frameworks, JavaScript

Angular JS, 291–292
Ember.js, 294
Famo.us, 295
Knockout, 296
QUnit, 297

function (local) variables, 42, 44
function body, 99–100
function factory, 233–235
function head, 99
function scope, 111
functions

anonymous
defined, 111–112
versus named functions, 112
self-executing, 112–113

arguments
Arguments object, 110–111
calling function with more argument 

than parameters, 110
calling function without, 109
passing, 106–107
passing by reference, 109
passing by value, 107–108
setting default parameter values,  

109–110
benefits of, 101–102, 104
calling, 100
defined, 99
function body, 99–100
function head, 99
function scope, 111
functions within functions, 114–115

overview, 97–98
parameters, 100
recursion, 113–114
returning values, 100, 105–106
writing, 104–105
writing with callbacks, 226–227

• G •
g (global) modifier, regular expressions, 

221
Garret, Jesse James, 237
Geolocation API, 258

in browser, 260
combining with Google Maps API, 263–266
geolocation object, 259
getCurrentPosition method, 261–263

geolocation object, 259
geolocation property, Navigator 

object, 138
.get( ) method, AJAX, 287
getAttribute( ) method, Element 

object, 158
getAttributeNode( ) method, 

Element object, 158
getCurrentPosition method, 

Geolocation API, 261–263
getElementBy methods
getElementById( ) method, 155, 

161–162
getElementsByClassName( ) method, 

155, 158, 163–164
getElementsByTagName( ) method, 

155, 158, 162–163
getElementById( ) method, 155,  

161–162
getElementByName( ) method, 155
getElementsByClassName( ) method, 

155, 158, 163–164
getElementsByTagName( ) method, 

155, 158, 162–163
getFeature( ) method, Element object, 

158
.getJSON( ) method, AJAX, 287
.getScript( ) method, AJAX, 287
getUserMedia navigator, 266–270



334 Coding with JavaScript For Dummies  

getUserMedia/Stream API, 258
global (g) modifier, regular expressions, 

221
global variables, 42, 44
Google Chrome

downloading and installing, 20–21
JavaScript Console, 36–38

Google Maps API, 263–266
graphics, 203–207
greater than (>) operator, 73
greater than or equal to (>=) operator, 73
groupBy helper function, Underscore 

library, 298

• H •
Handlebars.js library, 299–300
hasAttribute( ) method, Element 

object, 158
hasAttributes( ) method, Element 

object, 158
hasChildNodes( ) method, Element 

object, 158
hashchange event, 171
head property, Document object, 154
height property, Image object, 203, 204
hidden value, input element’s type 

attribute, 185
hide( ) method, jQuery, 282
history property, Window object, 140
Horton, Douglas, 39
HTML event attributes
onblur attribute, 30
onchange attribute, 30
onclick attribute, 31
ondrag attribute, 31
ondrop attribute, 31
onfocus attribute, 30
onkeydown attribute, 31
onkeyup attribute, 31
onload attribute, 30
onmouseover attribute, 31
onselect attribute, 31
onsubmit attribute, 31

HTML forms
button element, 186
form element, 181–183

Form object
accessing elements, 190–191
element values, 191–192
methods, 188–190
properties, 187–188
validating user input, 192–194

input element, 184–185
label element, 183
select element, 185–186
textarea element, 186

html( ) method, jQuery, 278
HTML page, 135
HTML5 (Hypertext Markup Language 5). 

See also DOM
APIs

accessing audio and video, 266–270
checking browser support, 256–257
Geolocation, 259–266
overview, 255–256, 257–259

JavaScript and, 15–16
parsing, 136

• I •
i (case insensitive) modifier, regular 

expressions, 221
id property, Element object, 156
if ... else statement, 82–84
Image object
mouseover effects, 205–206
properties, 203
rollover buttons, 203–205
slideshows, 206–207

image value, input element’s type 
attribute, 185

images property, Document object, 154
implementation property, Document 

object, 154
importNode( ) method, Document 

object, 155
in operator, 78–79
increment (++) operator, 73
index numbers, arrays, 57
Indexed database API, 258
indexOf( ) function, 51
indexOf( ) method, arrays, 65
inequality (!=) operator, 73



335335  Index

infinite loops, 38
initialization (declaring variables), 41–42
initialization expression, for loops, 86
inline event handlers, 172
innerHeight property, Window  

object, 140
innerHTML property

DOM elements, 160
Element object, 156

innerWidth property, Window  
object, 140

input
button element, 186
form element, 181–183
Form object

accessing elements, 190–191
element values, 191–192
methods, 188–190
properties, 187–188
validating user input, 192–194

input element, 184–185
label element, 183
select element, 185–186
textarea element, 186

input element, 184–185
input event, 170
insertBefore( ) method, Element 

object, 158
instanceof operator, 79
interactivity, client-side JavaScript, 15
Internationalization API, 258
interpreted programming languages, 11–12
isContentEditable property, Element 

object, 156
isDefaultNamespace( ) method, 

Element object, 158
isEqualNode( ) method, Element 

object, 158
isId property, Attribute object, 165
isMap property, Image object, 204
isSameNode( ) method, Element  

object, 159
isSupported( ) method, Element 

object, 159
item( ) method, Element object, 159

• J •
JavaScript

Brandon Eich, 8
common misconceptions, 10
common uses for, 12–13
CSS3 and, 16
defined, 8
demand for, 18
development of, 9
documenting with JSDoc language,  

102–103
dynamic scripting language

compiled programming languages, 11
interpreted programming languages, 

11–12
overview, 10–11

effects, 9
HTML5 and, 15–16
parsing, 136
previous names for, 9
speed, 18
usability, 13–14
in web browser, 15

JavaScript Console
commenting

multi-line comments, 38
preventing code execution, 38
single-line comments, 37–38

overview, 36–37
JavaScript Object Notation (JSON)

formatter, 319–320
general discussion, 248–251

javascriptcompressor.com, 316–317
join( ) method, arrays, 65
jQuery

AJAX
ajax( ) method, 285–287
shorthand methods, 287

changing CSS, 276–277
document ready, 274
effects

animations, 284–285
basic, 282
custom, 283–284



336 Coding with JavaScript For Dummies  

jQuery (continued)
fading, 282
setting arguments for animation 

methods, 283
sliding, 283

events
binding to events that don’t exist, 281
off( ) method, 280
on( ) method, 278–280
shortcut event methods, 281

getting and setting attributes, 276
jQuery object, 273–274
manipulating elements within DOM, 

277–278
overview, 271–273
selectors, 274–275

JQuery library, 300–301
jQuery object, 273–274
jsbeautifier.org, 317–318
JSBin website, 315–316
JSDoc language, 102–103
JSFiddle.net, 314–315
jshint.com, 320–321
JSLint code checker, 313–314
JSON (JavaScript Object Notation)

formatter, 319–320
general discussion, 248–251

• K •
keydown event, 170
keyup event, 170
Kierkegaard, Søren, 7
King, Stephen, 271
Knockout framework, 296
Komodo Edit code editor, 21

• L •
label element, 183
lang property, Element object, 156
language property, Navigator  

object, 138
lastChild property
Element object, 156
HTML DOM, 151–152

lastElementChild property, Element 
object, 156

lastIndexOf( ) method, arrays, 65
lastModified property, Document 

object, 154
layout, browser, 137
left shift (<<) bitwise operator, 76
length property

arrays, 64
Element object, 157
Form object, 187
Window object, 140

less than (<) operator, 73
less than or equal to (<=) operator, 73
libraries, JavaScript

Backbone.js, 293
Handlebars.js, 299–300
JQuery, 300–301
Modernizr, 298–299
underscore.js, 297–298

lineHeight property, Style  
object, 196

links property, Document object, 154
lists, making with arrays, 55–57
literals, regular expression, 217–218
live-data applications, 245
LiveScript, 9
load event, 170
loader, browser, 134–136
loading, deferred, 137
local (function) variables, 42, 44
location property, Window object, 140
logical operators, 77
loops

arrays and, 63
break statement, 91–93
continue statement, 91–93
do ... while loops, 91
for ... in loops, 88–90
for loops, 86–87
overview, 85
while loops, 90–91

loosely typed language, 46
Lugosi, Bela, 133



337337  Index

• M •
m (multiline) modifier, regular expressions, 

221
Magic Zoom effects, 13
Mahler, Gustav, 291
map( ) method, arrays, 65
match function, regular expressions, 222
method attribute, form element, 183
method property, Form object, 187
methods. See also names of specific 

methods
array, 64–66
Document object, 154–155
Element object, 158–159
Form object, 188–190
objects

overview, 123–124
this keyword, 124–125

Window object, 145–146
Minnick, Chris, 17
misconceptions, JavaScript, 10
mismatched brackets, 305–306
mismatched quotes, 306
mistakes, programming

capitalization errors, 307
counting errors, 311
equality errors

equals operators, 304–305
misuse of assignment operator, 304

mismatched brackets, 305–306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306–307
missing semicolon, 307
overview, 303
referencing code before loaded, 307–309
scope errors, 310
variable naming, 310

Mocha, 9
Modernizr library, 298–299
modifiers, regular expressions, 220–221
modulus (%) operator, 73
month value, input element’s type 

attribute, 185
mousedown event, 170
mouseenter event, 170

mouseleave event, 170
mousemove event, 170
mouseout event, 170
mouseover effects, Image object, 205–206
mouseover event, 170
mouseup event, 170
mousewheel event, 170
moveBy( ) method, Window object, 145
moveTo( ) method, Window object, 145
Mozilla Developer Network, 321–322
multidimensional arrays, 60–62
multiline (m) modifier, regular 

expressions, 221
multi-line comments, 38
multiplication (*) operator, 73

• N •
name attribute, form element, 182
name property
Attribute object, 165
Form object, 187
Window object, 140

named functions
versus anonymous functions, 112
callback functions, 227–230

namespaceURI property, Element object, 
156

name/value pairs, HTML5, 16
naming variables, 44–45
NaN data type, 53
naturalHeight property, Image object, 

204
naturalWidth property, Image object, 

204
Navigator object, 137–139
navigator property, Window object, 140
Netbeans code editor, 22
Netscape, 9
new keyword method, 59
new operator, 79
nextElementSibling property, 

Element object, 157
nextSibling property
Element object, 156
HTML DOM, 151–152

node relationships, DOM, 149–153



338 Coding with JavaScript For Dummies  

nodeName property, Element object, 157
nodes, DOM, 149
nodeType property, Element object, 157
nodeValue property, Element object, 157
normalize( ) method
Document object, 155
Element object, 159

Not (!) logical operator, 77
not equals operator (!=), 304–305
Notepad++ code editor, 22
novalidate attribute, form element, 183
noValidate property, Form object, 187
number data type

concatenation operator, 49
Number functions, 48
overview, 47
parseFloat( ) function, 48
parseInt( ) function, 48

Number functions, number data type, 48
number value, input element’s type 

attribute, 185

• O •
object contructors, 120
object literals, 119–120
Object.create method, 129–130
objects. See also names of specific objects

capitalization, 127
creating

with constructor functions, 127–128
modifying object type, 129
with object contructors, 120
with object literals, 119–120
with Object.create method, 129–130
overview, 125–127

deleting properties, 123
methods

overview, 123–124
this keyword, 124–125

modifying object type, 129
overview, 117–118
retrieving and setting properties

with dot notation, 120–121
with square bracket notation, 121–122

off( ) method, jQuery, 280
offsetHeight property, Element  

object, 157

offsetLeft property, Element  
object, 157

offsetParent property, Element  
object, 157

offsetTop property, Element object, 157
offsetWidth property, Element  

object, 157
on( ) method, jQuery, 278–280
On the Web icon, 3
onblur attribute, HTML, 30
onchange attribute, HTML, 30
onclick attribute, HTML, 31
onclick event handler attribute, 172
ondrag attribute, HTML, 31
ondrop attribute, HTML, 31
onfocus attribute, HTML, 30
onkeydown attribute, HTML, 31
onkeyup attribute, HTML, 31
online content, 4
online content property, Navigator 

object, 138
online tools

Douglas Crockford, 322–323
javascriptcompressor.com, 316–317
jsbeautifier.org, 317–318
JSBin, 315–316
JSFiddle.net, 314–315
jshint.com, 320–321
JSLint, 313–314
JSON formatter, 319–320
Mozilla Developer Network, 321–322
RegEx generator, 318–319

onmouseover attribute, HTML, 31
onreset event, 170
onselect attribute, HTML, 31
onsubmit attribute, HTML, 31
open( ) method
Document object, 155
Window object, 145

opener property, Window object, 140
operands, 68
operator precedence, 68–72
operators

arithmetic, 73–75
assignment, 72
bitwise, 75–77
branching statements, 81–82
combining, 80



339339  Index

comparison, 73
defined, 68
logical, 77
operator precedence, 68–72
special

comma operator, 78
conditional operator (ternary 

operator), 78
delete operator, 78
instanceof operator, 79
new operator, 79
in operator, 78–79
this operator, 79
typeof operator, 79
void operator, 79

string, 75
options argument, 

getCurrentPosition method, 261
Or (||) logical operator, 77
outerHeight property, Window  

object, 140
ownerDocument property, Element 

object, 157

• P •
pagehide event, 171
pageshow event, 171
pageXOffset property, Window  

object, 140
pageYOffset property, Window  

object, 140
parameters

functions, 100
missing in function calls, 310
setting default values, 109–110

parent, DOM node relationships, 149
parent property, Window object, 140
parentElement property, Element 

object, 157
parentheses

missing, 306–307
operator precedence, 71–72

parentNode property, Element  
object, 157

parseFloat( ) function, number data 
type, 48

parseInt( ) function, number data  
type, 48

passing arguments
defined, 100
overview, 106–107
by reference, 109
by value, 107–108

password value, input element’s type 
attribute, 185

platform property, Navigator  
object, 138

Polyfills tools, 267, 298
pop( ) method, arrays, 65
popstate event, 171
populating arrays, 60
Position.coords property, Position 

object, 261
Position.timestamp property, 

Position object, 261
.post( ) method, AJAX, 287
prepend( ) method, jQuery, 278
previousElementSibling property, 

Element object, 157
previousSibling property
Element object, 157
HTML DOM, 151–152

print( ) method, Window object, 145
product property, Navigator object, 138
programming errors

capitalization errors, 307
counting errors, 311
equality errors

equals operators, 304–305
misuse of assignment operator, 304

mismatched brackets, 305–306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306–307
missing semicolon, 307
overview, 303
referencing code before loaded, 307–309
scope errors, 310
variable naming, 310

programming interface, 187
prompt( ) method, Window object, 145
propagation, stopping, 179



340 Coding with JavaScript For Dummies  

properties
array, 63–64
Attribute object, 165–167
Document object, 153–154
element, 173–174
Element object, 156–157
Form object, 187–188
Image object, 203
Navigator object, 138
object

deleting, 123
retrieving and setting, 120–122

Style object, 199–200, 207–210
Window object, 140–141

property accessors, 121
prototype property, arrays, 64
push( ) method, arrays, 65

• Q •
querySelector( ) method
Document object, 155
Element object, 159

querySelectorAll( ) method
Document object, 155
Element object, 159

QUnit framework, 297
quotes

escaping, 50
mismatched, 306

• R •
radio value, input element’s type 

attribute, 185
range value, input element’s type 

attribute, 185
Rather, Dan, 169
reading code, 29
readyState property, Document  

object, 154
recursion, 113–114
reduce( ) method, arrays, 65
reduceRight( ) method, arrays, 65
references, passing arguments by, 109
referrer property, Document object, 154
RegEx generator, 318–319
RegExp object, 216–217

regular expressions
coding, 221–224
defined, 193
modifiers, 220–221
overview, 213–215
simple pattern, 218
writing

literals, 217–218
RegExp object, 216–217
special characters in, 219–220
testing, 219

Remember icon, 3
remove( ) method, jQuery, 278
removeAttribute( ) method, Element 

object, 159
removeAttributeNode( ) method, 

Element object, 159
removeChild( ) method, Element 

object, 159
removeEventListener( ) method
Document object, 155
Element object, 159

renameNode( ) method, Document 
object, 155

rendering, browser, 137
replace function, regular expressions, 

222
replaceChild( ) method, Element 

object, 159
reserved words, JavaScript, 29
reset( ) method, Form object, 189
reset value, input element’s type 

attribute, 185
resize event, 170
resizeBy( ) method, Window object, 145
resources, web page, 135–136
return statement, 105
returning values, functions, 100, 105–106
reverse( ) method, arrays, 65
Rollins, Henry, 213
rollover buttons, Image object, 203–205
root element node, DOM, 149
running JavaScript in browser window

in HTML event attribute, 30–31
including external files, 33–36
JavaScript Console, 36–38
overview, 29–30
in script element, 31–33



341341  Index

• S •
same-origin policy, AJAX, 245–247
scope errors, 310
Screen Orientation API, 258
screen property, Window object, 140
screenLeft property, Window object, 141
screenTop property, Window object, 141
screenX property, Window object, 141
screenY property, Window object, 141
script element, 31–33
scripts property, Document object, 154
scroll event, 170
scrollBy( ) method, Window object, 145
scrollHeight property, Element  

object, 157
scrollLeft property, Element  

object, 157
scrollTo( ) method, Window object, 145
scrollTop property, Element object, 157
scrollWidth property, Element  

object, 157
search function, regular expressions, 222
search value, input element’s type 

attribute, 185
select element, 185–186
select event, 170
Selection API, 258
selectors

CSS, 17
jQuery, 274–275

self property, Window object, 141
self-executing anonymous functions, 

112–113
semicolons

JavaScript, 29
missing, 307

Server-sent events API, 258
setAttribute( ) method, Element 

object, 159
setAttributeNode( ) method, 

Element object, 159
setInterval( ) method, Window  

object, 146
setTimeout( ) method, Window object, 

146, 201

Shakespeare, William, 225
shift( ) method, arrays, 65
short-circuiting, 83
shortcut event methods, jQuery, 281
shortcuts
if ... else statement, 83
Sublime Text code editor, 27–28

show( ) method, jQuery, 282
shuffle helper function, Underscore  

library, 298
siblings, DOM node relationships, 149
signed integers, 76
sign-propagating right shift (>>) bitwise 

operator, 76
simple pattern, 218
single-line comments, 37–38
slice( ) method, arrays, 65
slideDown( ) method, jQuery, 283
slideshows, 206–207
slideToggle( ) method, jQuery, 283
slideUp( ) method, jQuery, 283
sliding effects, jQuery, 283
some( ) method, arrays, 65
sort( ) method, arrays, 65
sortBy helper function, Underscore  

library, 298
source code editors

Aptana, 21
BBEdit, 22
Coda, 21
Dreamweaver, 22
Eclipse, 22
EMacs, 22
Komodo Edit, 21
Netbeans, 22
Notepad++, 22
overview, 21–22
Sublime Text

brackets match feature, 306
setting up, 22–25
shortcuts, 27–28
syntax color scheme, 25–27

TextMate, 22
TextPad, 22
vim, 22



342 Coding with JavaScript For Dummies  

special characters
in regular expressions, 219–220
string data type, 50

special operators
comma operator, 78
conditional operator (ternary operator), 

78
delete operator, 78
instanceof operator, 79
new operator, 79
in operator, 78–79
this operator, 79
typeof operator, 79
void operator, 79

specified property, Attribute  
object, 165

speed, JavaScript, 18
splice( ) method, arrays, 65
split( ) function

defined, 51
regular expressions, 222

square bracket notation
regular expressions, 218
retrieving and setting object properties 

with, 121–122
src attribute, HTML, 33
src property, Image object, 203, 204
stop( ) method, Window object, 146
stopping propagation, 179
strict equality (===) operator, 73, 305
strict inequality (!==) operator, 73
string data type

escaping quotes, 50
overview, 49–50
special characters, 50
string functions
charAt( ) function, 51
concat( ) function, 51
indexOf( ) function, 51
split( ) function, 51
substr( ) function, 51
substring( ) function, 51
toLowerCase( ) function, 52
toUpperCase( ) function, 52

string functions
charAt( ) function, 51
concat( ) function, 51

indexOf( ) function, 51
regular expressions that use, 222
split( ) function, 51
substr( ) function, 51
substring( ) function, 51
toLowerCase( ) function, 52
toUpperCase( ) function, 52

string operators, 75
Style object

animating elements with, 200–203
animation properties, 207–210
getting current style of element,  

196–199
overview, 195–196
setting properties, 199–200

style property, Element object, 157
Sublime Text code editor

brackets match feature, 306
setting up, 22–25
shortcuts, 27–28
syntax color scheme, 25–27

submit event, 170
submit( ) method, Form object,  

189–190
submit value, input element’s type 

attribute, 185
substr( ) function, 51
substring( ) function, 51
subtraction (-) operator, 73
success argument, 

getCurrentPosition method, 261
switch statement, 84–85
syntax

color scheme, Sublime Text code editor, 
25–27

defined, 14
if ... else statement, 82–84

• T •
tabIndex property, Element object, 157
tagName property, Element object, 157
tags

HTML5, 15
JSDoc language, 103

target attribute, form element, 183
target property, Form object, 187



343343  Index

Technical Stuff icon, 3
tel value, input element’s type 

attribute, 185
ternary operator (conditional operator), 78
test method, regular expressions, 221
testing regular expressions, 219
text( ) method, jQuery, 277
text node, DOM, 149
text value, input element’s type 

attribute, 185
textAlign property, Style object, 196
textarea element, 186
textContent property, Element  

object, 157
TextMate code editor, 22
TextPad code editor, 22
this keyword, 124–125
this operator, 79
time value, input element’s type 

attribute, 185
Tip icon, 3
title property
Document object, 154
Element object, 157

Tittel, Ed, 17
toggle( ) method, jQuery, 282
toLowerCase( ) function, 52
tools

online
Douglas Crockford, 322–323
javascriptcompressor.com, 316–317
jsbeautifier.org, 317–318
JSBin, 315–316
JSFiddle.net, 314–315
jshint.com, 320–321
JSLint, 313–314
JSON formatter, 319–320
Mozilla Developer Network, 321–322
RegEx generator, 318–319

Polyfills, 267, 298
top property, Window object, 141
toString( ) method

arrays, 65
Element object, 159

toUpperCase( ) function, 52
Twain, Mark, 19

twos complement, 76
typeof operator, 79

• U •
undefined data type, 53
underscore.js library, 297–298
unload event, 171
unShift( ) method, arrays, 65
URL property, Document object, 154
url value, input element’s type 

attribute, 185
usability, JavaScript, 13–14
useMap property, Image object, 204
user interface (browser chrome), 134
User Timing API, 258
userAgent property, Navigator 

object, 138

• V •
val( ) method, jQuery, 278
value property, Attribute object, 165
values

passing arguments by, 107–108
setting default values for parameters, 

109–110
var keyword, 43
variables
const keyword, 46
data types

Boolean data type, 52–53
NaN data type, 53
number data type, 47–49
overview, 46–47
string data type, 49–52
undefined data type, 53

declaring, 41–42
global and local scope, 42, 44
naming, 44–45
overview, 39–41
var keyword, 43
variable naming errors, 310

Vibration API, 258
vim code editor, 22
void operator, 79



344 Coding with JavaScript For Dummies  

• W •
Warning icon, 3
Web Audio API, 258
web browser

browser detection, 139
BOM and, 137
checking browser support for HTML5 

APIs, 256–257
Geolocation API in, 260
HTML parsing, 136
JavaScript in, 15
JavaScript parsing, 136
layout, 137
loader, 134–136
Navigator object, 137–139
rendering, 137
running JavaScript in browser window 

in HTML event attribute, 30–31
including external files, 33–36
JavaScript Console, 36–38
overview, 29–30
in script element, 31–33

user interface, 134
Window object

creating Back button, 144–145
determining size of browser window, 

142–144
methods, 145–146
opening web page with 
window.location property, 141

properties, 140–141
Web Real Time Communications 

(WebRTC), 266–270
Web sockets API, 258
Web Speech API, 258
Web storage API, 258
Web workers API, 259
WebRTC (Web Real Time 

Communications), 266–270
week value, input element’s type 

attribute, 185
while loops, 90–91
White, E. B., 195
white space, 29
Whitman, Walt, 55

width property, Image object, 203, 204
Window object

creating Back button, 144–145
determining size of browser window, 

142–144
events supported by, 171
methods, 145–146
opening web page with 

window.location property, 141
properties, 140–141

word boundary, regular expressions, 222
write( ) method, Document object, 155
writeIn( ) method, Document object, 

155
writing functions, 104–105
writing JavaScript

reading code, 29
running JavaScript in browser window 

including external files, 33–36
JavaScript Console, 36–38
overview, 29–30
using in HTML event attribute, 30–31
using in script element, 31–33

setting up development environment 
downloading and installing Chrome, 

20–21
downloading and installing code editor, 

21–28
overview, 19–20

writing regular expressions
literals, 217–218
RegExp object, 216–217
special characters in, 219–220
testing, 219

• X •
XMLHTTPRequest 2 API, 259
XMLHttpRequest object, AJAX, 237, 

243–245

• Z •
zero-based numbering, arrays, 57–58
zero-fill right shift (>>>) bitwise 

operator, 76



About the Authors
Chris Minnick is an accomplished author, trainer, and web developer.  
Prior to cofounding WatzThis?, Chris was CEO of Minnick Web Services for  
18 years, where he managed and worked on hundreds of web and mobile 
projects for customers ranging from small businesses to some of the world’s 
largest companies.

Other books he’s authored or coauthored include Beginning HTML5 and CSS3 
For Dummies, Webkit For Dummies, CIW eCommerce Certification Bible, and 
XHTML. Since 2001, Chris has trained thousands of students in HTML, 
JavaScript, CSS, and mobile development.

Chris is an enthusiastic amateur winemaker, fiction writer, swimmer, and 
musician.

Eva Holland is an experienced writer, trainer, and cofounder of WatzThis?. 
She excels in presenting complicated subjects in easy‐to‐understand  language 
for beginners of all levels.

Eva has written, designed, and taught online, in‐person, and video courses. 
She has created curriculum for web development, mobile web development, 
and search engine optimization (SEO). Prior to founding WatzThis?, Eva 
served as COO of MWS, where she provided astute leadership, management, 
and vision that guided the company to its goals.

Eva is an outdoor enthusiast, songstress, tennis player, and lover of life.



Dedication
"A child of five would understand this. Send someone to fetch a 
child of five."

— Groucho Marx

http://www.brainyquote.com/quotes/authors/g/groucho_marx.html


Authors’ Acknowledgments
Chris Minnick and Eva Holland:

This book was really fun to write. Throughout the writing process, we worked 
hard to think about topics from a beginner’s perspective and to present the 
most modern and up‐to‐date introduction to JavaScript and web program-
ming possible. We’re proud of the result and would love to hear what you 
think of it and answer any questions you have.

This book is the result of a team effort, not only by your humble authors, but 
also by a talented crew of editors and other publishing professionals who are 
credited on the next page and who we’d like to personally thank for their 
great efforts.

Thank you to everyone at Wiley, including executive editor Steve Hayes, our 
project editor Kelly Ewing, and our technical editor Todd Shelton.

Thank you also to our agent, Carole Jelen.

Eva Holland: Thank you to my coauthor, business partner and friend, Chris 
Minnick, for the opportunity to work on this book and for his continued 
 support and his inspiring expanse of vision.

Chris Minnick: Thanks to my coauthor, esteemed colleague, and friend Eva 
Holland for simplicity, clarity, and inspired addition by subtraction.



Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Editor: Kelly Ewing

Copy Editor: Kelly Ewing

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

Production Editor: Siddique Shaik

Cover Image: ©Getty Images/Alwyn Cooper



WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used In This Book
	Beyond the Book
	Where to Go from Here

	Part I Getting Started with JavaScript
	Chapter 1 The World’s Most Misunderstood Programming Language
	What Is JavaScript?
	The Eich‐man cometh
	Mocha‐licious
	We need more effects!
	JavaScript grows up
	Dynamic scripting language

	What Does JavaScript Do?
	Why JavaScript?
	JavaScript is easy to learn
	Where is JavaScript? JavaScript is everywhere!
	JavaScript is powerful!
	JavaScript is in demand


	Chapter 2 Writing Your First JavaScript Program
	Setting Up Your Development Environment
	Downloading and installing Chrome
	Downloading and installing a code editor

	Reading JavaScript Code
	Running JavaScript in the Browser Window
	Using JavaScript in an HTML event attribute
	Using JavaScript in a script element
	Including external JavaScript files

	Using the JavaScript Developer Console
	Commenting your code


	Chapter 3 Working with Variables
	Understanding Variables
	Declaring Variables
	Understanding Global and Local Scope
	Naming Variables
	Creating Constants Using the const Keyword
	Working with Data Types
	Number data type
	String data type
	Boolean data type
	NaN data type
	undefined data type


	Chapter 4 Understanding Arrays
	Making a List
	Array Fundamentals
	Arrays are zero indexed
	Arrays can store any type of data

	Creating Arrays
	Using the new keyword method
	Array literal

	Populating Arrays
	Understanding Multidimensional Arrays
	Accessing Array Elements
	Looping through arrays
	Array properties
	Array methods
	Using array methods


	Chapter 5 Working with Operators, Expressions, and Statements
	Express Yourself
	Hello, Operator
	Operator precedence

	Types of Operators
	Assignment operators
	Comparison operators
	Arithmetic operators
	String operator
	Bitwise operators
	Logical operators
	Special operators
	Combining operators


	Chapter 6 Getting into the Flow with Loops and Branches
	Branching Out
	if . . . else
	Switch

	Here We Go: Loop De Loop
	for
	for . . . in
	while loops
	do. . . while
	break and continue



	Part II Organizing Your JavaScript
	Chapter 7 Getting Functional
	Understanding the Function of Functions
	Using Function Terminology
	Define a function
	Function head
	Function body
	Call a function
	Defining parameters and passing arguments
	Return a value

	The Benefits of Using Functions
	Writing Functions
	Returning Values
	Passing and Using Arguments
	Passing arguments by value
	Passing arguments by reference
	Calling a function without all the arguments
	Setting default parameter values
	Calling a function with more argument than parameters
	Getting into arguments with the arguments object

	Function Scope
	Anonymous Function
	Knowing the differences between anonymous and named functions
	Self-executing anonymous functions

	Do it Again with Recursion
	Functions within Functions

	Chapter 8 Making and Using Objects
	Object of My Desire
	Creating Objects
	Defining objects with object literals
	Defining objects with an Object constructor

	Retrieving and Setting Object Properties
	Dot notation
	Square bracket notation

	Deleting Properties
	Working with Methods
	Using this

	An Object-Oriented Way to Become Wealthy: Inheritance
	Constructing Objects with constructor functions
	Modifying an object type
	Creating Objects with Object.create



	Part III JavaScript on the Web
	Chapter 9 Controlling the Browser with the Window Object
	Understanding the Browser Environment
	The user interface
	Loader
	HTML parsing
	CSS parsing
	JavaScript parsing
	Layout and rendering
	Igniting the BOM
	The Navigator object
	The Window object
	Using the Window object’s methods


	Chapter 10 Manipulating Documents with the DOM
	Understanding the DOM
	Node Relationships
	Using the Document Object’s Properties and Methods
	Using the Element Object’s Properties and Methods
	Working with the Contents of Elements
	innerHTML
	Setting attributes

	Getting Elements by ID, Tag Name, or Class
	getElementById
	getElementsByTagName
	getElementsByClassName

	Using the Attribute Object’s Properties
	Creating and appending elements
	Removing elements


	Chapter 11 Using Events in JavaScript
	Knowing Your Events
	Handling Events
	Using inline event handlers
	Event handling using element properties
	Event handling using addEventListener
	Stopping propagation


	Chapter 12 Integrating Input and Output
	Understanding HTML Forms
	The form element
	The label element
	The input element
	The select element
	The textarea element
	The button element

	Working with the Form Object
	Using Form properties
	Using the Form object’s methods
	Accessing form elements
	Getting and setting form element values
	Validating user input


	Chapter 13 Working with CSS and Graphics
	Using the Style Object
	Getting the current style of an element
	Setting style properties

	Animating Elements with the Style Object
	Working with Images
	Using the Image object
	Creating rollover buttons
	Grow images on mouseover
	Creating an image slideshow

	Using the Style Object’s Animation Properties


	Part IV Beyond the Basics
	Chapter 14 Searching with Regular Expressions
	Finding It Out with Regular Expressions
	Writing Regular Expressions
	Using the RegExp object
	Regular expression literals
	Testing regular expressions
	Special characters in regular expressions

	Using Modifiers
	Coding with Regular Expressions

	Chapter 15 Understanding Callbacks and Closures
	What Are Callbacks?
	Passing functions as arguments
	Writing functions with callbacks
	Using named callback functions

	Understanding Closures
	Using Closures

	Chapter 16 Embracing AJAX and JSON
	Working Behind the Scenes with AJAX
	AJAX examples
	Viewing AJAX in action
	Using the XMLHttpRequest object
	Working with the same-origin policy
	Using CORS, the silver bullet for AJAX requests

	Putting Objects in Motion with JSON


	Part V JavaScript and HTML5
	Chapter 17 HTML5 APIs
	Understanding How APIs Work
	Checking HTML5 API browser support
	Getting to know HTML5’s APIs

	Using Geolocation
	What does geolocation do?
	How does geolocation work?
	How do you use geolocation
	Combining geolocation with Google maps

	Accessing Audio and Video

	Chapter 18 jQuery
	Writing More and Doing Less
	Getting Started with jQuery
	The jQuery Object
	Is Your Document Ready?
	Using jQuery Selectors
	Changing Things with jQuery
	Getting and setting attributes
	Changing CSS
	Manipulating elements in the DOM

	Events
	Using on() to attach events
	Detaching with off()
	Binding to events that don’t exist yet
	Other event methods

	Effects
	Basic effects
	Fading effects
	Sliding effects
	Setting arguments for animation methods
	Custom effects with animate()
	Playing with jQuery animations

	AJAX
	Using the ajax() method
	Shorthand AJAX methods



	Part VI The Part of Tens
	Chapter 19 Ten JavaScript Frameworks and Libraries to Learn Next
	Angular JS
	Backbone.js
	Ember.js
	Famo.us
	Knockout
	QUnit
	underscore.js
	Modernizr
	Handlebars.js
	jQuery

	Chapter 20 Ten Common JavaScript Bugs and How to Avoid Them
	Equality Confusion
	Avoiding misuse of assignment
	Dodging the equals pitfalls

	Mismatched Brackets
	Mismatched Quotes
	Missing Parentheses
	Missing Semicolon
	Capitalization Errors
	Referencing Code Before It’s Loaded
	Bad Variable Names
	Scope Errors
	Missing Parameters in Function Calls
	Counting Errors: Forgetting That JavaScript Counts from 0

	Chapter 21 Ten Online Tools to Help You Write Better JavaScript
	JSLint
	JSFiddle.net
	JSBin
	javascriptcompressor.com
	jsbeautifier.org
	JavaScript RegEx generator
	JSONformatter
	jshint.com
	Mozilla Developer Network
	Douglas Crockford


	Index
	Back Matter
	EULA




