
•฀฀For฀those฀who฀love฀fast฀and฀effective฀solutions,฀you฀can฀use฀the฀jqPlot฀library฀to฀

•฀฀If฀you฀want฀more฀power฀and฀need฀to฀create฀data฀visualization฀beyond฀traditional฀
charts,฀then฀D3฀is฀the฀JavaScript฀library฀for฀you

•฀฀For฀ high-performance,฀ more฀ professional฀ solutions฀ for฀ interactive฀ charts,฀ the฀

•฀฀If฀you฀are฀an฀experienced฀developer฀and฀want฀to฀take฀things฀further,฀the฀book฀
also฀shows฀you฀how฀to฀develop฀your฀own฀graphics฀library฀starting฀from฀scratch฀

Full฀of฀step-by-step฀examples฀that฀introduce฀you฀gradually฀to฀all฀aspects฀of฀chart฀
development,฀from฀the฀data฀source฀to฀the฀choice฀of฀which฀solution฀to฀apply.฀This฀book฀
provides฀a฀number฀of฀tools฀that฀can฀be฀the฀starting฀point฀for฀any฀project฀requiring฀
graphical฀representations฀of฀data,฀whether฀using฀commercial฀libraries฀or฀your฀own.฀

needed฀ to฀ manage฀ data฀ from฀ every฀ possible฀ source,฀ from฀ high-end฀ scientific฀
instruments฀to฀Arduino฀boards,฀from฀PHP฀SQL฀databases฀queries฀to฀simple฀HTML฀
tables,฀and฀from฀Matlab฀calculations฀to฀reports฀in฀Excel.฀You฀will฀be฀able฀to฀provide฀
cutting-edge฀charts฀exploiting฀the฀growing฀power฀of฀modern฀browsers.

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xix

About the Technical Reviewer ... xxi

Acknowledgments ... xxiii

Introduction .. xxv

Chapter 1: Charting Technology Overview ■ ...1

Chapter 2: jQuery Basics ■ ...19

Chapter 3: Simple HTML Tables ■ ...43

Chapter 4: Drawing a Line Chart ■ ..61

Chapter 5: Drawing a Bar Chart ■ ...81

Chapter 6: Drawing a Pie Chart ■ ...85

Chapter 7: Creating a Library for Simple Charts ■ ...113

Chapter 8: Introducing jqPlot ■ ..131

Chapter 9: Line Charts with jqPlot ■ ...151

Chapter 10: Bar Charts with jqPlot ■ ..221

Chapter 11: Pie Charts and Donut Charts with jqPlot ■ ..257

Chapter 12: Candlestick Charts with jqPlot ■ ...267

Chapter 13: Scatter Charts and Bubble Charts with jqPlot ■ ...273

Chapter 14: Funnel Charts with jqPlot ■ ...283

Chapter 15: Adding Controls to Charts ■ ..287

Chapter 16: Embedding jqPlot Charts in jQuery Widgets ■ ..303

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

vi

Chapter 17: Handling Input Data ■ ...319

Chapter 18: Moving from jqPlot to Highcharts ■ ..329

Chapter 19: Working with D3 ■ ..373

Chapter 20: Line Charts with D3 ■ ..401

Chapter 21: Bar Charts with D3 ■ ...449

Chapter 22: Pie Charts with D3 ■ ...481

Chapter 23: Candlestick Charts with D3 ■ ..503

Chapter 24: Scatterplot and Bubble Charts with D3 ■ ..513

Chapter 25: Radar Charts with D3 ■ ...545

Chapter 26: Handling Live Data with D3 ■ ..557

Appendix A: Guidelines for the Examples in the Book ■ ...573

Appendix B: jqPlot Plug-ins ■ ...581

Index ...583

www.allitebooks.com

http://www.allitebooks.org

xxv

Introduction

Welcome to the world of charts. If you are holding this book in your hands, you are undoubtedly interested in data
visualization, perhaps with the hope of developing web pages illed with interactive charts. Or, maybe your purpose is
to improve your knowledge of the jqPlot, D3, or Highcharts library. Whatever your objective, I hope this book enables
you to achieve it.

In addition to the various types of charts and JavaScript libraries, this book covers a range of topics: the jQuery
library and selections, HTML5 and the canvas, widgets and controls, graphic manipulation with scalable vector
graphics (SVG) technology, and mathematical concepts (scales and domains, curve itting and trend lines, clustering
analysis, and much more).

I have enriched this wide range of topics with many examples, each tightly focused on a particular one and
presented to you in an ordered sequence, with step-by-step instructions.

Chart development can be easy once you know the process and have the right tools at the ready. herefore,
in presenting this material, I have included helpful, reusable code snippets as well as explanations of underlying
concepts. After reading this book, you will be equipped to create any type of data visualization, either traditional or
newer, with conidence.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Charting Technology Overview

When we need to represent data or qualitative structures graphically in order to show a relationship—to make
a comparison or highlight a trend—we make use of charts. A chart is a graphic structure consisting of symbols,
such as lines, in a line chart; bars, in a bar chart; or slices, in a pie chart. Charts serve as valid tools that can help us
discern and understand the relationships underlying large quantities of data. It is easier for humans to read graphic
representations, such as a chart, than raw numeric data. Nowadays, use of charts has become common practice in
a wide variety of professional fields as well as in many other aspects of daily life. For this reason, charts have come
to take on many forms, depending on the stucture of the data and the phenomenon that is being highlighted. For
example, if you have data separated into different groups and want to represent the percentage of each, with respect
to the total, you usually display these groups of data in a pie chart or a bar chart. In contrast, if you want to show the
trend of a variable over time, a line chart is typically the best choice.

In this book, you will learn how to create, draw, and adapt charts to your needs, using various technologies based
on JavaScript. Before you start using JavaScript to develop charts, however, it is important that you understand the
basic concepts that will be covered in the chapters of this book. In this chapter, I will provide a brief overview of these
concepts.

First, I will show you how to recognize the most common elements that make up a chart. Knowledge of these
elements will prove helpful, because you will find them in the form of components, variables, and objects defined
within the specialized JavaScript libraries created for the realization of charts.

Next, I will present a list of the most common types of charts. The greater your knowledge of charts and their
features, the easier it will be to choose the right representation for your data. Making the right choice is essential if you
are to underline the relationships you want to represent, and just reading the data will not be sufficent. Only when you
have become familiar with the most common types of charts will you be able to choose which is the most suitable for
your purposes.

Once you have become familiar with these concepts, you will need to learn how it is possible to realize them via
the Web and what the current technologies are that can help you achieve this aim. Thus, in the second part of the
chapter, I will discuss these technical aspects, presenting one by one the technologies involved in the development of
the examples provided in this book.

Finally, given that all our work will focus on the development of code in JavaScript, I thought it would be helpful
to provide a brief description of certain types of data. Those who are not familiar with JavaScript can benefit from this
quick reference source on the forms that the data will take within the code. However, I strongly recommend that the
reader research in greater depth the concepts and technologies discussed in this chapter.

Elements in a Chart
As you will soon see, charts can assume a variety of forms. In a chart the data take on graphic structure through the
use of symbols specific to the type of chart; there are, however, some features that are common to all charts.

Generally, every chart has a title, appearing at the top, that provides a short description of the data. Less
frequently, subtitles or footnotes are used to supply additional descriptions (mostly data-related information, such as
references, places, dates, and notes).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

2

Charts often have axes—two perpendicular lines that allow the user to refer to the values of the coordinates (x, y)
for each data point P(x, y), as shown in Figure 1-1. The horizontal line usually represents the x axis, and the vertical
line, the y axis.

A scale is defined on each axis. The scale can be either numerical or categorical. Each axis is divided into
segments corresponding to the particular range of values represented by the scale. The boundaries between one
segment and the next are called ticks. Each tick reports the value of the scale associated with that axis. Generally, call
these tick labels.

Figure 1-2 shows four axes with different scales. Axes a and b have numerical scales, with a being a linear scale,
and b, a logarithmic scale. Axes c and d have categorical scales, with c being ordinal and therefore following an
ascending order, whereas d is only a sequence of categories without any particular order.

Along with each axis, it is good practice to display a label briefly describing the dimension represented; these
are called axis labels. If the scale is numerical, the label should show the units of measure in brackets. For instance,
if you had an x axis reporting the timing for a set of data, you might write “time” as an axis label, with the second unit
(in this case, seconds) in square brackets as [s] (see Figure 1-3).

In the drawing area displaying the chart, a line grid may be included to aid in the visual alignment of data.
Figure 1-4 shows a grid for a chart with a linear time scale on the x axis and a logarithmic scale on the y axis.

Figure 1-1. A two-dimensional chart

Figure 1-2. Four axes with different scales

Figure 1-3. An axis label

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

3

You have seen how data can be represented symbolically. However, text labels can also be used to highlight
specific data points. Point labels provide values in a chart right at the corresponding points in a chart, whereas tool
tips are small frames that appear dynamically, when you pass the mouse over a given point. These two types of labels
are shown in Figure 1-5.

Data are often grouped in several series, and in order to represent these in the same chart, they must be
distinguishable. The most common approach is to assign a different color to each series. In other cases, for example,
with line charts, the line stroke (dashed, dotted, and so on) can also be used to distinguish different series. Once you
have established a sequence of colors (or strokes), it is necessary to add a table demonstrating the correspondence
between colors and groups. This table is called the legend and is shown in Figure 1-6.

Figure 1-4. A chart with two different scales

Figure 1-5. The point label and the tooltip of a data point

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

4

Although it may seem trivial to discuss the concepts covered in this section, it is important to define the
terminology of the elements that I will be referring to throughout the book. They form the building blocks with
which you will be building your charts. You will also see how JavaScript libraries specializing in the representation of
charts use these terms, associating them with editing and setting components (see the section “Inserting Options” in
Chapter 8).

Most Common Charts
This section contains a brief overview of the most common types of charts. These charts will each be described more
thoroughly in the following chapters of the book.

Histogram: Adjacent rectangles erected on the x axis, split into discrete intervals (bins) and
with an area proportional to the frequency of the observation for that bin (see Figure 1-7).

Bar chart: Similar in shape to a histogram, but different in essence, this is a chart with
rectangular bars of a length proportional to the values they represent. Each bar identifies a
group of data (see Figure 1-7).

Figure 1-6. A legend

Figure 1-7. A histogram and a bar chart

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

5

Line chart: A sequence of ordered data points connected by a line. Data points P(x, y) are
reported in the chart, representing the scales of two axes, x and y (see Figure 1-8).

Pie chart: A circle (pie) divided into segments (slices). Each slice represents a group of
data, and its size is proportional to the percentage value (see Figure 1-8).

Bubble chart: A two-dimensional scatterplot in which a third variable is represented by the
size of the data points (see Figure 1-9).

Radar chart: A chart in which a series of data is represented on many axes, starting radially
from a point of origin at the center of the chart. This chart often takes on the appearance
of a spiderweb (see Figure 1-9).

Figure 1-8. A line chart and a pie chart

Figure 1-9. A bubble chart and a radar chart

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

6

Candlestick chart: A type of chart specifically used to describe price trends over time. Each
data point consists of four values, generally known as open-high-low-close (OHLC) values,
and assumes a shape resembling a candlestick (see Figure 1-10).

Note ■ Open-high-low-close (OHLC) are four numeric values typically used to illustrate movement in the price of a

financial instrument over time.

How to Realize Charts on the Web
Now that I have described the most common types of charts and the elements that compose them, the next step is to
take a quick look at the technologies available today that will allow you to realize your chart.

Nowadays, web technologies are in constant flux: each day, new solutions are proposed, solving problems that
only a short time ago would have proven to be quite complex. These innovations will afford you the possibility to
realize highly interactive charts, with eye-catching graphics, all by writing only a few lines of JavaScript code. The
whole thing can be done fast and easily, as most of the work is done for you, by the JavaScript libraries, which are
highly specialized in chart representation. These libraries are now to be found all over the network.

In this book, you will work with jqPlot, Highcharts, and D3, which are currently the most widely used libraries
and which can provide general solutions to practically any problem that may arise in the process of chart realization.

But, before stepping through these libraries one by one (which you will do in later chapters), you must first
survey all the technologies that constitute the basis for chart development in JavaScript, as these will accompany you
throughout the rest of the book.

HTML5
Recently, there has been a lot of talk about HTML5, which is practically revolutionizing the way in which web
applications are developed. Before its advent, if you wanted to introduce interactive graphical content, the use of
applications such as Adobe Flash was pretty much the obligatory path. But, dealing with Flash or similar applications
for developing charts or other graphic representations on the Web involves an obvious limitation: dependency on
a plug-in, to be installed on the end user’s machine. In addition, these kinds of applications are not supported on
smartphones. Thanks to HTML5, developers can now create advanced graphics and animation without relying
on Flash.

Figure 1-10. A candlestick chart

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

7

As you read through this book, you will see how HTML5 has also led to the birth of many other technologies,
some new, others old but renewed, such as JavaScript. In fact, as a language, JavaScript is experiencing a rebirth, as
a result of the new libraries developed precicely to take advantage of the innovations introduced by HTML5. HTML5
has many new syntactical features, including the <canvas> elements and the integration of scalar vector graphics
(SVG) content. Owing to these elements, it will be very easy to integrate multimedia and graphical content on the Web
without using Flash.

In Flash’s place, you will be using JavaScript libraries, such as jQuery, jqPlot, Highcharts, and D3. Currently, these
are the most widespread and complete libraries available for the realization tasks such as the graphic visualization
of data. The world of web technologies is constantly evolving, however; on the Internet, you can always find new
libraries, with characteristics similar to those contained in this book.

Charting with SVG and CANVAS
Among all the possible graphic applications that can be implemented with the new technologies introduced by
HTML5, I will focus on the representation and visualization of data through charts. Using JavaScript as a programming
language, we can now take advantage of the powerful rendering engines embedded in new browsers. As the basis
of the new capabilities of this language, I will refer to the HTML5 canvas and SVG. Instead of drawing static images
on the server and then downloading them into the browser, SVG and canvas allow you to develop fully interactive
charts and thus to enrich your graphic representations with built-in animation, transitions, and tool tips. This is
because SVG and canvas content is drawn in the browser, and so the graphic elements that make up the chart can be
transformed without refreshing the page. This feature is essential for visualizing real-time data, which require that the
chart be continually updated, as the data change. Operating in this way will ensure a true client-side charting. In fact,
by making use of these technologies, charts are actually drawn on the client and only require that the data be passed
from the server. This aspect affords a considerable number of advantages, the foremost being elimination of the need
for large graphics files to be downloaded from the server.

Canvas vs SVG
Both HTML5 canvas and SVG are web technologies that allow you to create rich graphics in the browser, but they are
fundamentally different. Throughout this text, you will see mainly two JavaScript frameworks: jqPlot and D3. jqPlot,
based on the jQuery framework, makes use of the HTML5 <canvas> element to draw its charts. In contrast, D3 does
not make use of canvas; it relies on SVG technology for graphic representations.

SVG is an XML-based vector graphic format. SVG content can be static, dynamic, interactive, or animated,
which makes it very flexible. You can also style the SVG elements with Cascading Style Sheets (CSS) and add dynamic
behavior to them, using the application programming interface (API) methods provided by the SVG document
object model (DOM). In choosing this format, you can, therefore, obtain much more than simple vector graphics and
animation: you can develop highly interactive web applications, with scripting, advanced animation, events, filters,
and almost anything else your imagination might suggest.

The HTML5 canvas specification is a versatile JavaScript API, allowing you to code programmatic drawing
operations. Canvas, by itself, lets you define a canvas context object, shown as a <canvas> element on your HTML
page. This element can then be drawn inside, using either a two-dimensional or three-dimensional drawing context,
with Web Graphics Library (WebGL). I will cover only the first option; jqPlot uses a two-dimensional drawing context.
The two-dimensional context provides you with a powerful API that performs quick drawing operations on a bitmap
surface—the canvas. Unlike SVG, there are no DOM nodes for the shapes, only pixels.

The advantages of canvas, compared with SVG, are high drawing performance and faster graphics and image
editing. Whenever it is necessary to work at the pixel level, canvas is preferable. However, with canvas, not having
DOM nodes on which to work can be a disadvantage, especially if you do not use a JavaScript framework, such
as jqPlot. Another disadvantage is poor text-rendering capabilities.

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

8

The advantages of SVG, compared with canvas, are resolution independence, good support for animation, and
the ability to animate elements, using a declarative syntax.Most important, though, is having full control over each
element, using the SVG DOM API in JavaScript. Yet, when complexity increases, slow rendering can be a problem, but
browser providers are working hard to make browsers faster (see Tables 1-1 and 1-2).

Table 1-1. Web Browsers and Engines

Browser Current Engine Developer License

Google Chrome 29 Blink Google, Opera, Samsung, Intel,
others

GNU Lesser General Public License
(LGPL), Berkeley Software Distribution
(BSD) style

Mozilla Firefox 23 Gecko Netscape/Mozilla Foundation Mozilla Public License (MPL)

Internet Explorer 10 Trident Microsoft Proprietary

Apple Safari 6 WebKit Apple, KDE, Nokia, Blackberry,
Palm, others

GNU LGPL, BSD style

Table 1-2. Web Technology Support: Comparison of Web Browsers

Browser

Technology Internet Explorer 10 Chrome 29 Firefox 23 Safari 6

SVG (v.1.1)

Filters Yes (from 10) Yes Yes Yes (from 6)

Synchronized Multimedia Integration
Language (SMIL) animation

No Yes Yes Partial

Fonts No Yes No Yes

Fragment identifiers Yes No Yes No

HTML effects Partial Partial Yes Partial

CSS backgrounds Yes Yes Partial Yes

CSS Yes Yes Yes Yes

HTML5

Canvas Yes(from 9) Yes Yes Yes

New elements Yes Yes Yes Yes

Video elements Yes(from 9) Yes Yes Yes

JavaScript API

JavaScript Object Notation (JSON)
parsing

Yes Yes Yes Yes

WebGL No Yes Partial Partial

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

9

The DOM
Working with libraries that act at the level of the structural elements of an HTML page, we cannot avoid talking about
the DOM. I will be referring to this concept often, as it is the basic structure underlying every web page. The World
Wide Web Consortium (W3C) felt the need, and rightly so, to create an official standard for the representation of
structured documents, so as to develop guidelines for all programming languages and platforms.The tree structure of
HTML documents, as well as those of XML, follows the guidelines developed by this standard perfectly. Following is
an example of an HTML document:

<HTML>
 <HEAD>
 <TITLE>A title</TITLE>
 </HEAD>
 <BODY>
 Hello

 </BODY>
</HTML>

The DOM tree of this document can be represented as shown in Figure 1-11.

Figure 1-11. An example of tree structure of the DOM

But, the DOM standard is not limited to developing guidelines on how the DOM should be structured in a
document; the standard also defines a number of features designed to act on the elements that compose a document.
Thus, any action pertaining to a document (creating, inserting, deleting) should follow the DOM standard. As a result,
regardless of the programming language that you are using or the platform on which you are working, you will always
find the same functionality expressed by this standard. Often, the term DOM also applies to the API, which manages
all the elements of a web page.

All this is important, because anyone choosing to read this book is interested in developing charts that not only
use the DOM, but that are also part of it and whose every aspect can be inspected and manipulated in JavaScript.
Throughout the book, you will learn how to make the best use of jQuery, jqPlot, and Highcharts (jQuery extentions)
as well as D3 libraries. With these JavaScript libraries, you can access every chart element, such as changing the color
and position of objects.

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

10

Developing in JavaScript
Although it is likely that most people who have chosen to read this book already have a good knowledge of JavaScript,
this may not in fact be the case. For this reason, I have structured the book in a practical way, giving step-by-step
examples and providing all the code that must be written in the examples. As such, this book offers newcomers an
opportunity to study the language and those who have not used it for some time a chance to refresh their memories.

To start working with the JavaScript libraries that you will be using to develop your charts, it is necessary to
prepare a development environment. It is true that to develop JavaScript code, you could simply use a text editor, such
as Notepad (or, even better, Notepad++), but developers generally prefer to use specialized applications, usually called
integrated development enviroments (IDEs), to develop code. As well as providing a text editor with differentiated
colors corresponding to the keywords used in the code, such applications also contain a set of tools designed to
facilitate the work. These applications can check if there are any errors in the code, supply debugging tools, make it
easy to manage files, and assist in deployment on the server, among many other operations.

Nowadays, there are many JavaScript IDEs on the network, but some of the most prominent are Aptana Studio
(see Figure 1-12); Eclipse Web Developer, with the JavaScript test driver (JSTD) plug-in installed; and NetBeans.
These editors also allow you to develop Hypertext Preprocessor (PHP), CSS, and HTML (for information on how to
use the Aptana Studio IDE to set up a workspace in which to implement the code for this book, see Appendix A, or use
the source code accompanying the book directly; you can find the code samples in the Source Code/Download area
of the Apress web site [www.apress.com/9781430262893]).

Figure 1-12. The Aptana Studio 3 IDE

http://www.apress.com/9781430262893

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

11

For those who prefer not to install too many applications on their computer, there are online JavaScript IDEs.
These allow users to edit JavaScript code in a web page working as an IDE and to check their result directly from the
same web page. Unfortunately, many of these IDEs charge a fee. However, jsFiddle (http://jsfiddle.net) is an
online IDE that requires no payment and that, in addition to editing, provides code sharing and the option of adding
libraries, such as jQuery and D3.(see Figure 1-13).

jsFiddle can prove very useful. As well as letting the user include many JavaScript libraries (see Figure 1-14), it
offers the respective different versions released, thus allowing him or her to test any incompatibilities in real time.

Figure 1-13. The online IDE jsFiddle

http://jsfiddle.net/

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

12

Running and Debugging JavaScript
JavaScript, if we want to define it in a client–server framework, is a completely client-side programming language. It is
not subject to compilation, and parts of the code, apart from HTML documents, can be found in many other types of
files that are specific to other languages, such as .JSP or .PHP.

These code fragments pass unaffected through the application servers without ever being processed. Only the
browser is responsible for running the JavaScript code. Therefore, JavaScript code is run only when a web page is
downloaded or afterward, in response to an event. If the JavaScript code is of a considerable size or might be useful
subsequently, it can be defined externally in a .JS file; here, you will find all the JavaScript libraries and frameworks
that will be mentioned throughout this text. Regardless of its form, however, JavaScript runs directly from the browser.

So, even if you do not use a real IDE for the development and debugging of JavaScript code, you can simply insert
the code in an empty HTML file and then load this file directly in a browser (Chrome, Internet Explorer, and Firefox
are the most common). To distinguish it from the rest of the text on the page, you must separate the code by putting it
inside the <script></scripts> tags:

<script type="text/javascript">
// JavaScript code
</script>

Figure 1-14. jsFiddle offers a set of the most popular JavaScript libraries

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

13

If the JavaScript code resides in an external file, then it will be necessary to include it in the HTML page, writing

<script type="text/javascript" src="library.js"></script>

Therefore, as long as the execution of JavaScript is not required for the purpose of installing something, you have
everything you need. Who does not have a web browser on his or her operating system?

Data Types in JavaScript
As mentioned earlier, this book will neither explain the rules and syntax for the programming of good JavaScript code
nor will it linger too long on programming details. Nevertheless, the code that we are going to develop is centered
on charts, or rather the processing of data and how to display them. Let us start with the simplest case. The smallest
building block of all data structures is the variable (when it contains a single value). In handling the types of data,
JavaScript is very different from other programming languages. , You do not have to specify the type of value (int,
string, float, boolean, and so on) when you want to store JavaScript in a variable; you need only define it with the var
keyword.

In Java or C a variable containing an integer value is declared differently from one containing a text:

int value = 3;
String text = "This is a string value";

In JavaScript the type of stored value does not matter. Everything is declared with var, so the same declarations are

var value = 3;
var text = "This is a string value";

Thus, in JavaScript we can think of variables as containers for storing any type of value.
For the sake of simplicity, here the variables are seen as containers of a single value, thus representing the

simplest data structure. Actually, however, variables may also contain types of data that are more complex: arrays and
objects.

Note ■ The use of variables in JavaScript is actually a bit more complicated. You can also use a variable without ever

declaring it with the var keyword. The var keyword will declare the variable within the current scope. If var is missing,

JavaScript will search for a variable with the same name declared at an upper level of scope. If JavaScript does not find

this variable, a new one is declared; otherwise, JavaScript will use the values in the variable found. As a result, an

incorrect use of variables can sometimes lead to errors that are difficult to detect.

Arrays

An array is a sequence of values separated by a comma and enclosed in square brackets []:

var array = [1, 6, 3, 8, 2, 4];

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

14

Arrays are the simplest and most widely used data structure in JavaScript, so you should become very familiar
with them. It is possible to access any value in an array by specifying its index (position in the array) in the brackets,
immediately following the name of the array. In JavaScript the indexes start from 0:

array[3] //returns 8

Arrays can contain any type of data, not just integers:

var fruits = ["banana", "apple", "peach"];

There are a many functions that can help us handle this kind of object. Because of its usefulness, I will be using
this object frequently throughout the book, and it therefore seems proper to give it a quick look.

It is possible to know the number of the values in an array by writing

fruits.length //returns 3

Or, if you know the values, you can get the corresponding index with

fruits.indexOf("apple") //returns 1

Moreover, there is a set of functions that allow us to add and remove items in an array. push() and pop()
functions add and remove the last element in an array, whereas shift() and unshift() functions add and remove the
first element in an array:

fruits.push("strawberry");
// Now the array is ["banana", "apple", "peach", "strawberry"];
fruits.pop(); //returns "strawberry"
// Now the array is ["banana", "apple", "peach"];
fruits.unshift("orange", "pear");
// Now the array is ["orange", "pear", "banana", "apple", "peach"];
fruits.shift(); //returns "orange"
// Now the array is ["pear", "banana", "apple", "peach"];

Sometimes, it is necessary to make a loop through every value in an array in order to perform some action with
it. An approach that is widely used in other programming languages is the use of the function for(). For example, to
calculate the sum of the values in an array, you would write

var sum = 0;
for (var i = 0; i < array.length; i++) {
 sum += array[i];
}

But, in JavaScript it is more common to use the forEach() function, where d assumes the values in the array, one
by one, following the sequence:

var sum = 0;
array.forEach(function(d) {
 sum += d;
});

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

15

Objects

Arrays are useful for simple lists of values, but if you want structured data, you need to define an object. An object is
a custom data structure whose properties and values you define. You can define an object by enclosing its properties
between two curly brackets { }; every property is defined by a name followed by a colon (:) and the assigned value, and
commas separate each property/value pair:

var animal = {
 species: "lion",
 class: "mammalia",
 order: "carnivora",
 extinct: false,
 number: 123456
};

In JavaScript code, dot notation refers to each value, specifying the name of the property:

animal.species //Returns "lion"

Now that you have learned about both objects and arrays, you can see how it is possible to combine them in
order to get more complex data structures in JavaScript. You can create arrays of objects or objects of arrays, or even
objects of objects. Square brackets are used to indicate an array, curly brackets, an object. For example, let us define
an array of objects in this way:

var animals = [
 {
 species: "lion",
 class: "mammalia",
 order: "carnivora",
 extinct: false,
 number: 123456
 },
 {
 species: "gorilla",
 class: "mammalia",
 order: "primates",
 extinct: false,
 number: 555234
 },
 {
 species: "octopus",
 class: "cephalopoda",
 order: "octopoda",
 extinct: false,
 number: 333421
 }
];

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

16

To get the values of these data structures, you need to use both the square brackets with the index and the name
of the property:

animals[0].extinct //return false
animals[2].species //return "octopus"

Firebug and DevTools
To debug, if you are using an IDE, you can easily make use of the various debugging tools that are included with
it. If you do not have access to an IDE, however, you can still avail yourself of external tools. Think of the browser
as a development environment, where debugging tools can be integrated through plug-ins that are downloadable
from Internet. There are many tools currently available on the Internet, but the one I want to propose is Firebug, a
web development tool for those who prefer to use the browser Mozilla Firefox. Firebug is an add-in that integrates
seamlessly into the Firefox browser, as demonstrated in Figure 1-15.

Figure 1-15. Firebug is an extention of Mozilla Firefox and is fully integrated into the browser

Firebug will prove a very useful tool throughout, especially when using use the jQuery and D3 libraries, which
require that the structure of the DOM always be kept under control. This tool will allow you to monitor the structure of
the DOM directly.

For those who prefer to use Google Chrome, however, there is DevTools, which is already integrated into the
browser (see Figure 1-16). To access this tool, simply click the button at the top-right corner of the browser.

Next, select Tools ➤ Developer Tools, or simply right-click any page element, and then select Inspect element in
the context menu.

With these two tools, you can easily inspect not only each element of the DOM—its attributes and their
values—but also the CSS styles applied to them. You can also input changes to these values to observe the effects

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

17

in real time without having to modify the code on file and save it every time. Firebug and DevTools also include
various tools for monitoring the performance of the page, for both rendering and networking.

With DevTools, particular attention should be paid to the use of the console as well. Through it, you can access
diagnostic information, using methods such as console.log(). This method is frequently used to display the values of
many variables through the console, passing the name of the variable as an argument, with the addition of text as an
indication:

var x = 3;
console.log("The value of x is " + x); // The value of x is 3

It is also possible to enter commands and perform interactions with the document, using methods such as $()
or profile().For further information on these methods, see the documentation regarding the Console API
(https://developers.google.com/chrome-developer-tools/docs/console-api) and the Command Line API
(https://developers.google.com/chrome-developer-tools/docs/commandline-api).

Figure 1-16. With DevTools it is possible to monitor a lot of information about your web page

https://developers.google.com/chrome-developer-tools/docs/console-api
https://developers.google.com/chrome-developer-tools/docs/commandline-api

CHAPTER 1 ■ CHARTING TECHNOLOGY OVERVIEW

18

JSON
JSON is a specific syntax for organizing data as JavaScript objects. This format is generally used in browser-based
code, especially in JavaScript. JSON represents a valid alternative to XML for organizing data. Both are independent
from the programming language, but JSON is faster and easier to parse with JavaScript than XML, which is a full-
markup language. Moreover, jqPlot and D3 work well with JSON. Its structure follows perfectly the rules that we have
seen for objects and arrays defined in JavaScript:

var company = {
 "name": "Elusive Dinamics",
 "location": "France",
 "sites": 2,
 "employees": 234,
 "updated": true
};

Summary
This first chapter has introduced you to many of the fundamental concepts that will accompany you throughout the
book. First, you examined the most common types of charts and the elements that compose them. You also took a
quick look at many of the technical aspects you need to know when setting about developing a chart on the Web.
Finally, you briefly explored the types of data used in the JavaScript examples in this book.

I mentioned that the majority of your work will be done by specialized JavaScript libraries. In the next chapter,
you will learn about the jQuery library. This library will provide you with a whole range of tools that act directly, at the
level of the DOM. Later in the book, you will find that knowledge of this library is vital: many of the graphics libraries
(including jqPlot and Highcharts) are built on it.

19

CHAPTER 2

jQuery Basics

In the previous chapter, you learned about the DOM tree and saw how HTML documents are composed of many
elements that can be created, modified, and deleted from the initial context. These operations are performed by the
browser via JavaScript commands that, as discussed previously, can be executed either at the time of page loading or
as a result of events that follow. A JavaScript library that manages all these operations in a simple and well-established
manner has been developed for this purpose. This library is jQuery, and it is completely open source. It was created in
2006 by Jon Resig and continues to be improved on by a team of developers. Because of its usefulness, compared with
classic JavaScript, and its ability to manipulate DOM elements, jQuery is currently the most widely used JavaScript
library and constitutes a point of reference for all web developers.

Any developer who plans to include the jQuery library in a web page will soon discover the truth of the now
well-known motto that accompanies thisUI libraries: “Write less, do more.” In the spirit of this slogan, jQuery has
introduced three new concepts in the development of JavaScript code—concepts you need to keep in mind when
using the methods provided by thisUI libraries:

Choosing elements of the HTML page (selections) on which to apply jQuery methods through •฀
Cascading Style Sheets (CSS) selectors

Building chains of jQuery methods, applicable in sequence on a same selection •฀

Making implicit iterations, using jQuery wrappers •฀

In this chapter, after seeing how to include the jQuery library in the Web pages that you will develop, the
concept of the “selection” will be introduced. Selections are the base of the jQuery library and it will be important to
understand them and how to implement them, as they will be discussed throughout the book. Through a series of
small examples and using the technique of chaining methods, you will browse a range of functions provided by the
jQuery library that will allow you to manipulate the selections in order to create, hide, and change the various DOM
elements and their content.In the last part of this chapter, I will introduce the jQuery user interface library
(jQuery UI), illustrating some of its most common widgets . You will learn their basic features and discover how to
incorporate them within a web page.

The aim of this chapter is to provide a quick view of jQuery—its functionality and basic concepts. A detailed
description of each of its methods is beyond the scope of this book. In all the examples in this text, these methods will
be explained contextually. However, you may also want to consult the documentation on the official jQuery web site
(http://jquery.com/).

http://jquery.com/

CHAPTER 2 ■ JQUERY BASICS

20

Including the jQuery Library
Now, there are two ways to include the jQuery library in your web page.

•฀ Local method: Download the necessary libraries locally, and then add them to the web page.

•฀ CDN method: Set the link directly to the sites that provide these JavaScript libraries.

The sites offering these libraries are known as content delivery networks (CDNs). A CDN is a large system of
servers that provide content with high availability and high performance to end users. When a user attempts to access
a file, the CDN picks the server nearest to the user. One of the most used CDNs is Google Hosted Libraries. This
service supplies web applications with reliable access to many of the most popular open source JavaScript libraries,
such as jQuery.

To load the libraries from this service, you need to copy the following HTML snippet and paste it directly into
your web page:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">
</script>

Another CDN site from which to obtain any version of the jQuery library is the official CDN site of jQuery itself:
code.jquery.com. If you prefer to use this site’s URL, you need to copy and paste this HTML snippet:

<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>

Note ■ All the examples in this chapter use version 1.9.1 of the jQuery library.

If you choose to follow the local option instead, you need to copy and paste the relative path of the jQuery library.
This path will vary, depending on where the library is situated on the web server or on your PC. It is good practice to
create an appropriate local directory for loading all the libraries you will need to include.

For example, you may decide to put your jQuery library in an src directory and the web pages that you are
developing in a charts directory, as shown in Figure 2-1. In this case, you have to use this relative path:

<script src="../src/js/jquery-1.9.1.js"></script>

http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js
http://code.jquery.com/
http://code.jquery.com/jquery-1.9.1.min.js

CHAPTER 2 ■ JQUERY BASICS

21

Note ■ For details on how to set up on a web server or PC a workspace in which to develop the examples in this book,

see Appendix A. You will also find information on the different versions of the libraries, how to download them, and how to

include them in the workspace.

Selections
A selection is a group of HTML elements that have been chosen in order to be manipulated in some way. In effect, this
is the main concept behind jQuery. Let us take as an example the simple HTML page in Listing 2-1:

Listing 2-1. ch2_01a.html

<HTML>
<HEAD>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
</HEAD>
<BODY>

Figure 2-1. An example of how a directory might be organized on a web server

http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js

CHAPTER 2 ■ JQUERY BASICS

22

<div> This is the first text</div>
<div class="selected"> This is the second text</div>
<div> This is the last text</div>
</BODY>
</HTML>

In this page there are three <div> elements containing three different texts. The second element in the list has
been marked with the class name ‘selected’. To select all three <div> elements, you can use the selector ‘div’, which
identifies them among all the elements on the page.

Next, you write the jQuery() function, with the selector passed as an argument. In this way, you will have
selected the three elements and their contents. To get the text, you use the function text(), placing it in chain to the
jQuery() function call and adding this line at the end of the <body> section, as shown in Listing 2-2.

Listing 2-2. ch2_01a.html

<script>
var text = jQuery('div').text();
console.log(text);
</script>

All text contained in the three <div> elements has been assigned to the variable text. To view its contents (very
useful in debugging), you can use the function console.log() and then, on Google Chrome, select Inspect element
by right-clicking the page directly (see Figure 2-2).

Depending on the frequency with which you make your selections, you can also call this function with $(), as
shown in Listing 2-3. We will be using this option in the examples provided in this book.

Listing 2-3. ch2_01b.html

<script>
var text = $('div').text();
console.log(text);
</script>

In contrast, if you want to select only one of the three <div> elements, you can distinguish them by assigning a
class name to each element and then apply the selector to the name of the element chosen, instead of the tag element
(Listing 2-4).

Listing 2-4. ch2_01c.html

<script>
var text = $('.selected').text();
console.log(text);
</script>

Figure 2-2. The variable text contains the text within the three <div> elements

CHAPTER 2 ■ JQUERY BASICS

23

In this case, the variable text contains only the text of the second <div> element, as demonstrated in Figure 2-3.

Once you understand how to make a selection, you will discover how to manipulate any element by changing its
content or attributes. You can even add other elements or remove an element from the page. In this regard, jQuery
provides us with the necessary tools, thanks to the large number of methods it affords.

Chaining Methods
jQuery is designed to allow jQuery methods to be chained. Once the selection of an element or a set of elements is
made, the next step is to apply a sequence of methods to it. This sequence can be written using chaining.

Using the previous example (see Listing 2-1), let us say you want to replace the text in the second <div> element
with another phrase and hide the other two elements so that they no longer appear in the web page. To do this, you
are going to replace the line “This is the second text” with a new line, “This is a new text,” hiding the other text at the
same time. Figure 2-4 shows what appears before any change is applied.

Now, you apply the following chain of methods:

$('div').hide().filter('.selected').text('This is a new text').show();

All three <div> elements are included in the selection and then hidden. In the selection you chose, only the
elements with the class name ‘selected’ and their content are replaced with a new text. Only these last elements must
be shown. So, at the end of this chain of command, the result will be

The Wrapper Set
When jQuery is involved, we deal with wrapper sets. In the previous example, there are three <div> elements. You
will often make selections containing several elements, but you will never need to specify a programmatic loop. Here,
when you applied the hide() method in order to hide all three elements, you did not use a for or while construct
(i.e., $(‘div’).each(function() {}). Therefore, a wrapper set may be defined as a group of elements (selection)
amenable to any manipulation, as if it were a single item.

Figure 2-3. The content of the text variable displayed by Inspect element in the Google Chrome browser

Figure 2-4. The text displayed by the web page without using the jQuery methods chain

CHAPTER 2 ■ JQUERY BASICS

24

jQuery and the DOM
jQuery is a library that principally works on the document object model (DOM) and that always refers to it for all its
features. jQuery, like the DOM, treats each web page like a tree structure, in which each tag (also called element) is
a node. The root of this tree is the document, which is the element that contains all the other elements of the DOM.
jQuery provides a set of methods that simplify the manipulation of this kind of object, allowing you to add dynamism
to your page.

The ready() Method
If you want to write a JavaScript code that manipulates DOM elements, the DOM needs to be loaded before you
can operate on it. But, you need to operate before the browser has loaded all assets completely. To this end, jQuery
provides you with the ready() method. This is a custom event handler that is bound to the DOM of the document
object. The ready() method takes only one parameter: a function containing the code, which should be executed just
after the DOM is loaded, but before the user can see all the assets in the browser.

$(document).ready(function() {
 // we write the JavaScript code here.
});

Traversing the DOM with Selections
You have seen how to select a group of DOM elements, using a specific CSS selector passed as an argument that
identifies them. However, the potential of jQuery does not end there; starting from the position of the selection within
the DOM, it is possible to traverse the DOM to get a new set of selected elements to operate on. jQuery provides us
with a set of methods to apply to a selection.

Let us take as an example the simple HTML code in Listing 2-5:

Listing 2-5. ch2_03a.html

<HTML>
<HEAD>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
</HEAD>
<BODY>
<div class="fruits">
 <div>Apple</div>
 <div>Orange</div>
 <div>Banana</div>
 <div>Strawberry</div>
</div>
</BODY>
</HTML>

This page will show a list of four fruits. As you have already seen, if you make a selection with ‘div’ as selector, you
will get a sequence of the five elements:

<div class="fruits">
 <div>Apple</div>
 <div>Orange</div>

http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js

CHAPTER 2 ■ JQUERY BASICS

25

 <div>Banana</div>
 <div>Strawberry</div>
</div>
<div>Apple</div>
<div>Orange</div>
<div>Banana</div>
<div>Strawberry</div>

You need to pay special attention to the first <div> element. You will find the other four <div> fruits in the
selection, although these will then be repeated in successive elements. This is because the selector ‘div’ selects
every <div> element, along with its contents, regardless of whether an element therein will in turn be selected. It is
important to take this into account whenever you want to subject this type of selection to further manipulations.

Now, if you write the snippet in Listing 2-6, you get the text in an alert dialog box, as shown in Figure 2-5. , You
can see that the text in the last row includes all fruits.

Listing 2-6. ch2_03a.html

<script>
 var text = $('div').text();
 alert(text);
</script>

Often, however, you need to access a specific value of the selection directly. For example, to access the second
element of the current selection directly, you can write

var text = $('div:eq(1)').text();

You have used the function eq() with the index of the element in the selection you wish to choose. Now, you have
only this text:

Similarly, if you want to select the third element of the sequence, you can directly write

var text = $('div:eq(2)').text();

Or, if you prefer, you can make a traversing, using the next() method to move the selection from one element to
the next:

var text = $('div:eq(1)').next().text();

Figure 2-5. The alert dialog box shows the text contained within the elements of the selection

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ JQUERY BASICS

26

You then get this alert message:

Now, let us look at an example that demonstrates the difference between the selection and the DOM structure.
This sometimes causes confusion. You must remember that the eq() method makes a sort of subselection; next(),
prev(), parent(), children(), nextAll(), and prevAll() shift the selection onto the DOM.

In fact, if you write the chain

var text = $('div:eq(1)').prev().text();

you do not get anything, because the element selected by ‘div:eq(1)’ is the first on the list (but second in the
selection). Therefore, if you try to shift the selection to a previous element in the DOM, you do not get anything. If you
want to shift the selection to the parent <div> element, called ‘fruits’, you need to use the parent() method:

var text = $('div:eq(1)').parent().text();

Now, you get the parent element, which is the same as the first element of the selection. Figure 2-6 presents
the result.

Had you written the command

var text = $('div:eq(0)').text();

you would have obtained the same result.

Create and Insert New Elements
So far, you have seen that by passing an argument in the function jQuery() or in its alias $(), you obtained a selection
of all the items that have that tag in the DOM or the same class name. Now, suppose you pass as an argument a tag
that is not present in the HTML page. Here, you have just created a new item to add to the DOM. Moreover, this
element is, for all intents and purposes, a selection and may therefore be subjected to any kind of manipulation, even
if it has not yet been physically added to the web page. By adding some specific jQuery methods at the end of the
method chain, you will decide where to insert the newly created element.

For instance, as shown in the previous example, by writing the snippet

$('<div>Lemon</div>').appendTo('div:eq(2)');

you create a new element in the list of fruits. Then, you append it after the third element of the selection (the
second element of the list). Figure 2-7 shows how the list in the web page appears after the change is applied .

Figure 2-6. The alert dialog box shows the four fruits within the first element

CHAPTER 2 ■ JQUERY BASICS

27

There are many methods that specify where and how to insert the elements just created: prepend(), after(),
before(), append(), appendTo(), prependTo(), insertAfter(), insertBefore(), wrap(), wrapAll(), wrapInner(),
and so on.

For more details on the use of these functions, the reader is advised to consult the documentation on the official
jQuery web site (http://jquery.com/).

Remove, Hide, and Replace Elements
Another set of very useful jQuery methods includes those methods that allow us to eliminate static elements
from the page (from the DOM) or at least to hide them. Sometimes, these methods can be useful even for replacing
one element with another.

To remove the “Orange” fruit from the list, simply write

$('div:eq(2)').remove();

If you want to hide it, you write

$('div:eq(2)').hide();
 ...
$('div:eq(2)').show();

In this case, however, further on in the code, it will be possible to show “Orange” again.
If you use remove() instead (see Listing 2-7), the element corresponding to the selector ‘div:eq(2)’ changes, and

it would not be possible to recover the removed element.

Listing 2-7. ch2_04c.html

$('div:eq(2)').remove();
var text = $('div:eq(2)').text();
alert(text); //returns 'Banana'

Figure 2-7. The list can be increased dynamically, adding new elements

http://jquery.com/

CHAPTER 2 ■ JQUERY BASICS

28

Finally, if you want to replace “Orange” with “Pineapple,” you can do so with the replaceWith() method, as
follows:

$('div:eq(2)').replaceWith('<div>Pineapple<div>');

Now, you have a new list of fruits, as demonstrated in Figure 2-8.

jQuery UI: Widgets
Along with the jQuery library, there is another library that can help you integrate your web page with interactive and
graphic objects: the jQuery UI. This library provides a whole range of tools, such as widgets, themes, effects, and
interactions, that enrich web pages, turning them into highly interactive web applications. For our purposes, widgets
are of particular interest. These small graphic applications can prove a valuable tool that, when added to your web
pages, makes your charts even more interactive. Widgets facilitate interaction the program beneath the web page and
very often are real mini-applications. In their simplest forms, widgets appear as tables, accordions, combo boxes, or
even buttons.

As with the jQuery library, you will need to include the plug-in file in the web page if you want to integrate its
widgets. You must also include the CSS file representing the theme. This can be done through the Google Hosted
Libraries service:

<link rel="stylesheet" href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css" />
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">
</script>
<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/jquery-ui.min.js">
</script>

You can also download from the official CDN jQuery site:

<link rel="stylesheet" href="http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css" />
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="http://code.jquery.com/ui/1.10.3/jquery-ui.min.js"></script>

If you prefer to download the libraries locally or to use the workspace in the source code accompanying this book
(see Appendix A), you can refer to the libraries as follows:

<link rel="stylesheet" href="../src/css/smoothness/jquery-ui-1.10.3.custom.min.css" />
<script src="../src/js/jquery-1.9.1.js"></script>
<script src="../src/js/jquery-ui-1.10.3.custom.min.js"></script>

Figure 2-8. The list can be dynamically reduced by removing some of its elements

http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/jquery-ui.css
http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/jquery-ui.css
http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/jquery-ui.min.js
http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/jquery-1.9.1.min.js
http://code.jquery.com/ui/1.10.3/jquery-ui.min.js

CHAPTER 2 ■ JQUERY BASICS

29

Note ■ The theme for the jQuery UI widgets used in this book is smoothness. The list of available themes is

vast and covers many combinations of colors and shapes. This well-stocked list is available on ThemeRoller

(http://jqueryui.com/themeroller). ThemeRoller is a page on the official jQuery web site that allows you to preview

widgets and to then download your favorite theme from those available.

On visiting the official jQuery UI web site (http://jqueryui.com/), you will notice that the widgets provided by
this library are numerous. Here, I will discuss only the most common examples, especially those that are most likely to
be integrated into a page containing charts.

As you will see throughout this book, some of these widgets will be used as containers, exploiting their particular
capabilities, such as resizing and encapsulation, including these:

Accordions•฀

Tabs•฀

Other widgets will be used to replace the simple controls that HTML offers, as the former are much more
advanced and rich in functionality, including the following:

Buttons•฀

Combo boxes•฀

Menu•฀

Sliders•฀

Still other widgets will also perform the function of indicators. With these, you will see how to integrate a
particular widget class:

Progress bars •฀

Accordion
An accordion widget is a set of collapsible panels that enable the web page to show a large amount of information in a
compact space. Each panel can hold a thematic area or, as you will see in later chapters, different types of charts. The
content is revealed by clicking the tab for each panel, allowing the user to move from one panel to another without
changing the page. The panels of the accordion expand and contract, according to the choice of the user, such that
only one panel shows its content at any given time.

The HTML structure you need to write in order to obtain an accordion widget in the page is composed of an
outer <div> tag containing all the panels. Each panel in turn is specified by a heading placed between two <h3> tags
and a <div></div> pair, with the content in between. Listing 2-8 represents a simple accordion with four panels.

Listing 2-8. ch2_05.html

<div id="accordion">
 <h3>First header</h3>
 <div>First content panel</div>
 <h3>Second header</h3>
 <div>Second content panel</div>
 <h3>Third header</h3>
 <div>Third content panel</div>

http://jqueryui.com/themeroller
http://jqueryui.com/

CHAPTER 2 ■ JQUERY BASICS

30

 <h3>Fourth header</h3>
 <div>Fourth content panel</div>
</div>

In JavaScript code, you need to add the snippet in Listing 2-9 in order to obtain an accordion widget.

Listing 2-9. ch2_05.html

$(function() {
 $("#accordion").accordion();
});

Figure 2-9 illustrates our accordion.

But, that is not enough. It would be better if you could control the style of the accordion. This can be
accomplished by adding the code given in Listing 2-10.

Listing 2-10. ch2_05.html

<style type="text/css">
 .ui-accordion {
 width: 690px;
 margin: 2em auto;
 }
 .ui-accordion-header {
 font-size: 15px;
 font-weight: bold;
 }
 .ui-accordion-content {
 font-size: 12px;
 }
</style>

Figure 2-9. An accordion consists of collapsible panels suitable for containing information in a limited amount of space

CHAPTER 2 ■ JQUERY BASICS

31

The result is shown in Figure 2-10.

Tab
A widget that is very similar to the accordion in its functionality is the panel with tabs. Here, each panel is unique, but
there are several tabs at the top, identified by different headings. Nonetheless, this widget affords the possibility to
show a large amount of information in a limited space, and the user can choose to view the content of only one tab at
a time. More significant is the loss of the vertical expansion of panels.

The HTML structure you need to write in order to obtain a tab widget in the web page is slightly more complex
than the previous one. The headings are given in an unordered list , in which each item must be referenced to
an anchor tag <a>. The contents of every tab are enclosed in a <div></div> pair, with an id attribute corresponding to
the references in the anchor tags (see Listing 2-11).

Listing 2-11. ch2_06.html

<div id="tabs">

 First header
 Second header
 Third header
 Fourth header

 <div id="tabs-1">
 <p>First tab panel</p>
 </div>
 <div id="tabs-2">
 <p>Second tab panel</p>
 </div>
 <div id="tabs-3">
 <p>Third tab panel</p>
 </div>
 <div id="tabs-4">
 <p>Fourth tab panel</p>
 </div>
</div>

Figure 2-10. By modifying the CSS style properties, you can change the accordion’s appearance as you like

CHAPTER 2 ■ JQUERY BASICS

32

In JavaScript code, you need to specify the tab widget, as shown in Listing 2-12.

Listing 2-12. ch2_06.html

$(function() {
 $("#tabs").tabs();
});

The CSS style classes must also be defined, as shown in Listing 2-13.

Listing 2-13. ch2_06.html

<style type="text/css">
 .ui-tabs {
 width: 690px;
 margin: 2em auto;
 }
 .ui-tabs-header {
 font-size: 15px;
 font-weight: bold;
 }
 .ui-tabs-panel {
 font-size: 12px;
 }
</style>

When the procedure is complete, you will get the widgets illustrated in Figure 2-11.

Button
Among all the widgets available, the button remains the most commonly used. Previously, there were two ways to
insert a button in a web page. The first was the classic method, with the tag <input type="button"/>. A more modern
approach was the <button> tag. But, thanks to jQuery, there is another kind of button that we have not yet considered.
We can create an anchor tag <a> as a button, calling it “anchor button.” When the user clicks it on the page, the
browser loads the corresponding link. How to insert in a blank web page all three of the examples described is shown
in Listing 2-14.

Figure 2-11. The tab widget consists of multiple panels that occupy the same area

CHAPTER 2 ■ JQUERY BASICS

33

Listing 2-14. ch2_07.html

<button>A button element</button>
<input type="submit" value="A submit button" />
An anchor

Without further specification or JavaScript code, when you load the page, you see the buttons presented in
Figure 2-12.

To refer to them by using a JavaScript function, write the snippet provided in Listing 2-15.

Listing 2-15. ch2_07.html

$(function() {
 $("input[type=submit], a, button")
 .button()
 .click(function(event) {
 event.preventDefault();
 });
});

In this way, you will get a more presentable set of buttons, as demonstrated in Figure 2-13.

You can enrich your buttons by adding icons. jQuery UI offers a huge set of icons, but you may also use larger,
personal icons. Listing 2-16 shows how to write the four buttons into your web page:

Listing 2-16. ch2_08.html

<button>Button with icon only</button>
<button>Button with custom icon on the left</button>
<button>Button with two icons</button>
<button>Button with two icons and no text</button>

You have added four buttons to highlight four possible cases: a button with only an icon; a button with text and
an icon on the left side; a button with text and an icon on each side; and a button with two icons and no text
(see Figure 2-14). Looking at the HTML code, you can see that actually all four buttons have text inside, but this
feature can be disabled in order to get a button without text. Listing 2-17 illustrates the assignment of icons to the
various buttons, with the icon name being assigned to the primary and secondary (optional) attributes. Furthermore,
by setting the text attribute to ‘false’, you can obtain a button without text.

Figure 2-12. The web page shows three types of buttons: a simple button element, a submit button, and an anchor button

Figure 2-13. The three types of buttons are now represented by the jQuery UI button widgets

CHAPTER 2 ■ JQUERY BASICS

34

Listing 2-17. ch2_08.html

$(function() {
 $("button:first").button({
 icons: {
 primary: "ui-icon-locked"
 },
 text: false
 }).next().button({
 icons: {
 primary: "ui-icon-italy"
 }
 }).next().button({
 icons: {
 primary: "ui-icon-gear",
 secondary: "ui-icon-triangle-1-s"
 }
 }).next().button({
 icons: {
 primary: "ui-icon-gear",
 secondary: "ui-icon-triangle-1-s"
 },
 text: false
 });
});

To insert customized icons, you need to define their address as a CSS file, using the function url(), as
demonstrated in Listing 2-18.

Listing 2-18. ch2_08.html

<style>
.ui-button .ui-icon-italy {
 background-image: url("icon/exit24x24.png");
 width: 24px;
 height: 24px;
}
</style>

Figure 2-14 shows the set of buttons you have just created.

Figure 2-14. Each button can be easily enriched with icons

Combo Box
The combo box is another widely used control in web pages and in many applications. A combo box is an editable
drop down menu, from which the user can select an entry. To insert a combo box in your page, you need to define a
specific structure of elements, as shown in Listing 2-19.

CHAPTER 2 ■ JQUERY BASICS

35

Listing 2-19. ch2_09.html

<div class="ui-widget">
 <label>Select your destination:</label>
 <select id="combobox">
 <option value="">Select one...</option>
 <option value="Amsterdam">Amsterdam</option>
 <option value="London">London</option>
 <option value="Rome">Rome</option>
 </select>
</div>

Next, you need to refer this structure using the JavaScript code, first choosing the elements with $() and then
activating the structure as a jQuery combo box widget:

$(function() {
 $("#combobox").combobox();
});

Let us add a pinch of CSS style:

<style>
 .ui-widget {
 font-size: 18px;
 }
</style>

Figure 2-15 illustrates the combo box widget, which represents the starting point for a whole series of
functionalities for enabling the capture of events.

Menu
Having just considered the combo box, you cannot overlook the possibility of including an interactive menu on your
home page. With such a menu, the user can make a series of choices, such as selecting options on how to represent a
chart.

In HTML an unordered list is defined as , and a list of items, as . If you want to add a submenu as an
item, you only need to insert an embedded unordered list . To illustrate how to build a menu, let us take a look at
Listing 2-20.

Figure 2-15. A combo box is a drop-down menu allowing the user to make a choise among various options

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ JQUERY BASICS

36

Listing 2-20. ch2_10.html

<ul id="menu">
 <li class="ui-state-disabled">Advanced
 Filter

 Zoom

 10%
 25%
 50%
 100%

As with the preceding widgets, you must activate the menu by adding the following function:

$(function() {
 $("#menu").menu();
});

You also need to include the CSS style settings:

<style>
 .ui-menu {
 width: 150px;
 }
</style>

Now, you have a menu on the page, as shown in Figure 2-16.

Figure 2-16. A drop-down menu lets you categorize different options

CHAPTER 2 ■ JQUERY BASICS

37

Slider
When you begin to develop various types of charts, you will find that several parameters have to be set each time.
These parameters may be modified in real time by the user by means of sliders. These sliders enable the user to
change parameters within a certain range.

As with many of the other widgets, first you add the <div> element to represent the slider in the web page.

<div id="slider"></div>

Then, as always, you activate the widget with a JavaScript function, specifying the widget’s attributes within.
For example, to specify the default position of the slider handle, you set the value attribute to a percentage value
ranging from 0 to 100. Similarly, the orientation can be set by assigning the string ‘horizontal’ or ‘vertical’ to the
orientation attribute. For the range attribute, you can indicate if the range (the shaded area of the slider track)
covered by the slider should start from the ‘min’ value or the ‘max’ value (see Figure 2-19). Thus, if you were to set the
range attribute to ‘min’, the range would extend from the minimum value to the slider handle. The animation attribute
is another setting to consider. The slider widget has animation built in: when the user clicks the slider track, the
handle moves from its current position to reach the clicked point; this can be done slowly or quickly. You can choose
how fast the handle moves by setting the animation attribute to ‘fast’ or ‘slow’. The attributes ‘true’ and ‘false’
indicate if the animation is enabled or disabled (see Listing 2-21).

Listing 2-21. ch2_12.html

$(function() {
 $("#slider").slider({
 value: 60,
 orientation: 'horizontal',
 range: 'min',
 animate: 'slow'
 });
});

Once you have defined the fundamental attributes of the slider, you have to decide its size (and that of the
handle) and add CSS style settings. When you define the length and width of the slider, you need to take into account
the orientation you have chosen, setting the height and width attributes accordingly. In this case, we want to
represent a slider horizontally; thus, the width attribute will be far greater than the height attribute (see Listing 2-22).

Listing 2-22. ch2_12.html

<style>
 .ui-slider {
 width: 400px;
 height: 10px;
 }
 .ui-slider .ui-slider-handle {
 width: 12px;
 height: 20px;
 }
</style>

If you load the web page in a browser, you can see the slider (see Figure 2-17).

CHAPTER 2 ■ JQUERY BASICS

38

Sometimes, you will need to use multiple sliders; you will need to organize these horizontally (you can find
a similar structure, e.g., in the equalizer of a stereo). When specifying several sliders, it is not necessary to define
multiple <div> elements: all that is required is a single <div> element, with "eq" as its id, to mark it. Then, within this
<div> element, you define each slider as a pair containing its default value (i.e., where the respective
handles appear on the slider tracks), as demonstrated in Listing 2-23.

Listing 2-23. ch2_13.html

<div id="eq">
 88
 77
 55
 33
 40
 45
 70
</div>

Now, you must implement a JavaScript function, this time one that is slightly more complex. First, using the
$("#eq > span") selector, you make a selection on the seven elements. Then, with the parseInt() function,
you assign all the values contained in pairs to the corresponding value attributes in order that the
handles be in the positions shown in Figure 2-18 (see Listing 2-24).

Listing 2-24. ch2_13.html

$(function() {
 $('#eq > span').each(function() {
 // read initial values from markup and remove that
 var value = parseInt($(this).text(), 10);
 $(this).empty().slider({
 value: value,
 range: 'min',
 animate: 'slow',
 orientation: 'vertical'
 });
 });
});

Even for this equalizer-like structure, it is necessary to add some CSS style settings, such as the margins between
the different sliders (see Listing 2-25).

Listing 2-25. ch2_13.html

<style>
 #eq span {
 height:180px;
 float:left;

Figure 2-17. A slider is a widget that allows you to select a numeric value in a range

CHAPTER 2 ■ JQUERY BASICS

39

 margin:15px;
 width:10px;
 }
</style>

In the end, you get the bars illustrated in Figure 2-18.

Progress Bar
When you are developing complex operations, the system may require a long time to finish its tasks. While the user
is on hold, to prevent the system from appearing to be locked, it is usual to represent the percentage of the process
completed with a progress bar. Defining a progress bar is very simple:

<div id="progressbar"></div>

You must also write the corresponding function in JavaScript in order to activate the progress bar, as shown in
Listing 2-26.

Listing 2-26. ch2_11a.html

$(function() {
 $("#progressbar").progressbar({
 value: 37
 });
});

Figure 2-18. The sliders can also be grouped in series to achieve more complex controls (e.g., an equalizer)

CHAPTER 2 ■ JQUERY BASICS

40

Next, you add the CSS style settings, as illustrated in Listing 2-27.

Listing 2-27. ch2_11a.html

<style>
 .ui-progressbar {
 height: 20px;
 width: 600px;
 }
</style>

But, what you get is not the desired result; you get a static progress bar, fixed at the 37 percent mark (see Figure 2-19).

To obtain a fully functional progress bar, you need to set its attribute value with a counter value directly
connected to the underlying iteration of the process. Furthermore, if you want to increase the dynamism of the
progress bar, you can use an animated graphics interchange format (GIF) image as its background. Listing 2-28
displays the addition of CSS style properties to the progress bar.

Listing 2-28. ch2_11b.html

<style>
 .ui-progressbar {
 height: 20px;
 width: 600px;
 }
 .ui-progressbar .ui-progressbar-value {
 background-image: url(images/pbar-ani.gif);
 }
</style>

The GIF image in Figure 2-20 gives a greater sense of the progress of the operation.

Figure 2-20. A progress bar with an animated GIF gives a highly dynamic appearance to the web page

Figure 2-19. With a progress bar, you can display the status of a process

CHAPTER 2 ■ JQUERY BASICS

41

Note ■ Animated GIFs suitable for any kind of progress bar can be easily and safely obtained from the web site

ajaxload (www.ajaxload.info). Simply choose the type of progress bar that you want to use, then the foreground and

background colors, and the site automatically generates a preview of the animated GIF. If the image is to your liking, you

can proceed with downloading it.

Otherwise, you can use the animated GIF (pbar-ani.gif) included in the code that accompanies this book, in the

charts/images directory (you can find the code samples in the Source Code/Download area of the Apress web site

[www.apress.com/9781430262893]).

Concluding Thoughts on the jQuery Library
By now, you are probably wondering why we started with a library (jQuery) that, apparently, does not have anything
to do with the development of charts or with data visualization in general. You have seen that the jQuery UI library
provides us with graphic elements, but its use is far from what you would expect when thinking about charts.

Actually, we had to start here. You have decided to work with the JavaScript language, with the aim of
implementing graphic elements (which are nothing more than DOM elements) in web pages. At the heart of all this
are the concepts introduced through this library. The selections, the chains of methods, the structure, the practice of
using CSS styles—these are the basis of web programming and, even more so, of chart development. And, what better
way to obtain these fundamentals than with the jQuery library?

As you progress through the book, you will find that most of the JavaScript libraries that you operate (jqPlot,
Highcharts, and so on) must necessarily include the jQuery library. Even the D3 library, which does not use jQuery,
has been structured in such a way as to be able to manage selections, chains of methods, structure—that is, the
concepts that now form the basis of development in JavaScript.

That is why it is important to know jQuery.

Summary
Before starting to develop charts directly with JavaScript, it was necessary to introduce some fundamental tools
that form the basis of the development of this type of code. In this second chapter, then, you were introduced to the
jQuery and jQuery UI libraries. With jQuery, you learned how to manipulate DOM elements dynamically, through
selections and chains of methods. With jQuery UI, you discovered how to enrich your pages with interactive graphic
elements: the jQuery UI widgets.

In the next chapter, you will begin to implement your charts, using everything you have learned so far. You will
start with the processing of incoming data, which you will do by parsing an HTML table.

http://www.ajaxload.info/
http://www.apress.com/9781430262893

43

CHAPTER 3

Simple HTML Tables

One of the simplest and most widely used forms of data display in an HTML page is the HTML table. Precisely
because of its broad utility, the table was one of the first elements to be developed in HTML.

In this chapter, you will see how a table is structured and the HTML tags that implement it. The proper use of
these tags can make the difference between a readable table and an incomprehensible one that will not allow you to
perceive the underlying relationships.

Then, you will build a table containing data that you will use both here and in the next chapters. The purpose of
this example is to understand the nature of a table and how data are structured within it. This is a crucial step toward
being able to build the type of chart that best fits a particular data structure.

The charts responsible for the data visualization are fully implemented in JavaScript. Because the data that you
need to represent in a chart are contained in an HTML table, you will see, in the second part of this chapter, how
to implement a series of parsers in JavaScript language. Using the jQuery library, you will discover how easy it is to
implement parsers that read specific data within the HTML table. These data, collected in arrays, are very accessible
from the JavaScript language and easy to manipulate.

Creating a Table for Your Data
A table is simply a structure of nested tags, with the <table> tag as the root. The process for building this structure is
not difficult, but it requires some forethought. First, you need to sketch out the table either on a piece of paper or at
least, for those who are more familiar with tables, mentally. This helps determine the number of columns, rows, and
headings that should be included in the table. Within the pair of tags <table></table>, you insert as many rows as
are required as <tr></tr> pairs. Each <tr> tag creates a row inside the table. Then, you have to define the cells. Often,
the top row contains headings, so you must specify them. You use the <th></th> pair to indicate the text that should
be treated as a heading. For specifying ordinary cells, you use the <td></td> pair of tags. You must be careful to keep
the number of cells consistent within the rows.

There are other tags that carry out functions designed to enrich the structure of a table. The <caption> tag
is usually placed immediately after the opening <table> tag, and, when rendered, the content in the <caption>
tag is shown above the table, in the middle. The tags <thead>, <tfoot>, and <tbody> improve the table structure
significantly and provide additional hooks for Cascading Style Sheets (CSS) and JavaScript.

This is the basic procedure for building a table structure with HTML. Now, for a better understanding, you are
going to create a table with a simple example.

Your Example’s Goals
The Statistical Office of the Republic of Unhappy Children has recently published results regarding the number of
balloons lost in space. You want to put this value in an HTML table.

CHAPTER 3 ■ SIMPLE HTML TABLES

44

Through this simple example, you will become familiar with the structuring of data within an HTML table,
learning how to apply the jQuery selections in order to extract the data contained within.

Moreover, you will discover the role played by the CSS styles in terms of a table’s graphics. By varying colors and
text style, you can create a wide range of graphic themes. You will also see how to adjust the background colors by
using gradients in order to give the cells in the table a three-dimensional appearance.

Listing 3-1 offers a set of data consisting of the number of balloons lost monthly for several countries over a
period of six months.

Listing 3-1. ch3_01.html

<HTML>
<HEAD>
<TITLE>MyChart</TITLE>
</HEAD>
<BODY>
<table class="myTable">
<caption>Balloons Lost in Space</caption>
<thead>
 <tr>
 <td></td>
 <th>May 2013</th>
 <th>Jun 2013</th>
 <th>Jul 2013</th>
 <th>Aug 2013</th>
 <th>Sep 2013</th>
 <th>Oct 2013</th>
 </tr>
</thead>
<tbody>
 <tr>
 <th>USA</th>
 <td>12</td>
 <td>40</td>
 <td>75</td>
 <td>23</td>
 <td>42</td>
 <td>80</td>
 </tr>
 <tr>
 <th>Canada</th>
 <td>3</td>
 <td>22</td>
 <td>40</td>
 <td>27</td>
 <td>35</td>
 <td>21</td>
 </tr>

CHAPTER 3 ■ SIMPLE HTML TABLES

45

 <tr>
 <th>Australia</th>
 <td>60</td>
 <td>80</td>
 <td>16</td>
 <td>28</td>
 <td>33</td>
 <td>26</td>
 </tr>
 <tr>
 <th>Brazil</th>
 <td>46</td>
 <td>7</td>
 <td>14</td>
 <td>26</td>
 <td>36</td>
 <td>24</td>
 </tr>
</tbody>
<tfoot>
 <tr>
 <td colspan="7">Data from Statistical Office of the Republic of Unhappy Children</td>
 </tr>
</tfoot>
</table>
</BODY>
</HTML>

This simple HTML code gives the results shown in Figure 3-1.

Figure 3-1. A raw HTML table without any CSS style

As you can see, this table is completely devoid of any graphics. It is presented as a series of strings in a table
structure, but that is all. This is the moment CSS style comes into play.

CHAPTER 3 ■ SIMPLE HTML TABLES

46

Applying CSS to Your Table
CSS enriches the graphics mode of the table, making it more readable and, at the same time, more attractive. Each
element of the HTML page can be referred to CSS style classes, and its graphical features can be adjusted by setting
the attributes of these classes. In this way, you can use CSS to style the table as you like. It is possible to set a several
style attributes for any element of an HTML page. This can be done thanks to CSS3.

Note ■ This book does not discuss CSS styles in great detail, nor does it list all their possibilities. The subject is

vast, and to treat it in depth could be misleading, for our purposes. However, the specific cases in this book list all the

 attributes that need to be set, thus allowing you to become more familiar with the vast world of CSS.

The definition of classes and their attributes is written inside the pair <style></style> in this way:

element.class {
 attribute: value;
}

Or, if you prefer, these definitions can be written in a CSS file that is subsequently included in one or more web
pages. Thus, you can define the following CSS style classes for your table, writing the rows of code in the <head>
section of the web page, as shown in Listing 3-2.

Listing 3-2. ch3_02a.html

<style type="text/css">
table.myTable caption {
 font-size: 14px;
 padding-bottom: 5px;
 font-weight: bold;
}
table.myTable {
 font-family: verdana, arial, sans-serif;
 font-size:11px;
 color:#333333;
 border-width: 1px;
 border-color: #666666;
 border-collapse: collapse;
}
table.myTable th {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background-color: #bbd0da;
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ SIMPLE HTML TABLES

47

Looking at the table, you can see that the data are now much easier to read, and the appearance is also much
more pleasant. The graphical representation above is only one of the infinite number of combinations possible. The
attributes that can be set are so numerous that there are virtually no limits to the form your table can take. You can
also integrate images and backgrounds to further increase the graphic capabilities.

Adding Color Gradation to Your Table
Now, you will continue to refine the appearance of your table. You have already made significant progress, but you can
go further.

As you can see, the background color of the cells in the table is uniform, but you can create color gradients,
assigning specific values to the CSS attributes. Because this can be somewhat difficult, the web page Ultimate CSS
Gradient Generator (http://www.colorzilla.com/gradient-editor) can serve as a useful tool, helping you generate
the gradients graphically by allowing you to select the colors and directions that they will take (see Figure 3-3).

Figure 3-2. An HTML table in which you applied some CSS styles

table.myTable td {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background-color: #dedede;
}
</style>

Now, if you load the web page again, you can see the new layout of the table, as demonstrated in Figure 3-2.

http://www.colorzilla.com/gradient-editor

CHAPTER 3 ■ SIMPLE HTML TABLES

48

From the Ultimate CSS Gradient web page, let us choose two presets to our liking, selecting the preset Grey 3D #4
for the gray cells and Blue Pipe #2 for the heading cells. Next, you copy the CSS attributes and paste them in your web
page, as shown in Listing 3-3.

Listing 3-3. ch3_02b.html

table.myTable th {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background: rgb(225,255,255); /* Old browsers */

Figure 3-3. Ultimate CSS Gradient Generator allows you to generate CSS gradients very easily

CHAPTER 3 ■ SIMPLE HTML TABLES

49

 background: -moz-linear-gradient(top, rgba(225,255,255,1) 0%,
 rgba(225,255,255,1) 7%,
 rgba(225,255,255,1) 12%,
 rgba(253,255,255,1) 12%,
 rgba(230,248,253,1) 30%,
 rgba(200,238,251,1) 54%,
 rgba(190,228,248,1) 75%,
 rgba(177,216,245,1) 100%); /* FF3.6+ */
 background: -webkit-gradient(
 linear, left top, left bottom,
 color-stop(0%,rgba(225,255,255,1)),
 color-stop(7%,rgba(225,255,255,1)),
 color-stop(12%,rgba(225,255,255,1)),
 color-stop(12%,rgba(253,255,255,1)),
 color-stop(30%,rgba(230,248,253,1)),
 color-stop(54%,rgba(200,238,251,1)),
 color-stop(75%,rgba(190,228,248,1)),
 color-stop(100%,rgba(177,216,245,1))); /* Chrome,Safari4+ */
 background: -webkit-linear-gradient(
 top,
 rgba(225,255,255,1) 0%,
 rgba(225,255,255,1) 7%,
 rgba(225,255,255,1) 12%,
 rgba(253,255,255,1) 12%,
 rgba(230,248,253,1) 30%,
 rgba(200,238,251,1) 54%,
 rgba(190,228,248,1) 75%,
 rgba(177,216,245,1) 100%); /* Chrome10+,Safari5.1+ */
 background: -o-linear-gradient(
 top,
 rgba(225,255,255,1) 0%,
 rgba(225,255,255,1) 7%,
 rgba(225,255,255,1) 12%,
 rgba(253,255,255,1) 12%,
 rgba(230,248,253,1) 30%,
 rgba(200,238,251,1) 54%,
 rgba(190,228,248,1) 75%,
 rgba(177,216,245,1) 100%); /* Opera 11.10+ */
 background: -ms-linear-gradient(
 top,
 rgba(225,255,255,1) 0%,
 rgba(225,255,255,1) 7%,
 rgba(225,255,255,1) 12%,
 rgba(253,255,255,1) 12%,
 rgba(230,248,253,1) 30%,
 rgba(200,238,251,1) 54%,
 rgba(190,228,248,1) 75%,
 rgba(177,216,245,1) 100%); /* IE10+ */

CHAPTER 3 ■ SIMPLE HTML TABLES

50

 background: linear-gradient(
 to bottom,
 rgba(225,255,255,1) 0%,
 rgba(225,255,255,1) 7%,
 rgba(225,255,255,1) 12%,
 rgba(253,255,255,1) 12%,
 rgba(230,248,253,1) 30%,
 rgba(200,238,251,1) 54%,
 rgba(190,228,248,1) 75%,
 rgba(177,216,245,1) 100%); /* W3C */
 filter: progid:DXImageTransform.Microsoft.gradient(
 startColorstr='#e1ffff', endColorstr='#b1d8f5',GradientType=0); /* IE6-9 */}
table.myTable td {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background: rgb(242,245,246); /* Old browsers */
 background: -moz-linear-gradient(
 top,
 rgba(242,245,246,1) 0%,
 rgba(227,234,237,1) 37%,
 rgba(200,215,220,1) 100%); /* FF3.6+ */
 background: -webkit-gradient(
 linear, left top, left bottom,
 color-stop(0%,rgba(242,245,246,1)),
 color-stop(37%,rgba(227,234,237,1)),
 color-stop(100%,rgba(200,215,220,1))); /* Chrome,Safari4+ */
 background: -webkit-linear-gradient(
 top,
 rgba(242,245,246,1) 0%,
 rgba(227,234,237,1) 37%,
 rgba(200,215,220,1) 100%); /* Chrome10+,Safari5.1+ */
 background: -o-linear-gradient(
 top, rgba(242,245,246,1) 0%,
 rgba(227,234,237,1) 37%,
 rgba(200,215,220,1) 100%); /* Opera 11.10+ */
 background: -ms-linear-gradient(
 top,
 rgba(242,245,246,1) 0%,
 rgba(227,234,237,1) 37%,
 rgba(200,215,220,1) 100%); /* IE10+ */
 background: linear-gradient(
 to bottom,
 rgba(242,245,246,1) 0%,
 rgba(227,234,237,1) 37%,
 rgba(200,215,220,1) 100%); /* W3C */
 filter: progid:DXImageTransform.Microsoft.gradient(
 startColorstr='#f2f5f6', endColorstr='#c8d7dc',GradientType=0); /* IE6-9 */

CHAPTER 3 ■ SIMPLE HTML TABLES

51

Adding Color Gradation to Your Table, Using Files
Color gradation is another style attribute that you can select for your table. The following example uses background
images that allow the cells of the table to have color gradation. To achieve this, you must include two .jpg files in
which you have drawn two color gradations: blue for heading cells and gray for cells with general values, as shown in
Listing 3-4.

Listing 3-4. ch3_02c.html

table.myTable th {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background:#b5cfd2 url('images/cell-blue.jpg');
}
table.myTable td {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background:#dcddc0 url('images/cell-grey.jpg');
}

Figure 3-4. The CSS background attribute can be set with gradients to give the table a better appearance

You will immediately notice that the added code is quite extensive. Every browser has different specifications
regarding the application of gradients on the attribute background. Because the user of your web site can request your
page from any type of browser, you must cover all possibilities.

In Figure 3-4, you can see how the application of the gradients to the various cells gives the table a
three-dimensional appearance.

CHAPTER 3 ■ SIMPLE HTML TABLES

52

You have seen how to build an HTML table and how to assign it CSS styles. Now, let us look at the role that
JavaScript will play throughout the book: data analysis and display in a chart. The input data, in this case, are
represented in a table, but could be data obtained from a database or read from a file.

Parsing the Table Data
The previous chapter described the basics of the jQuery library. With the help of the functions provided by this library,
in this chapter and the ones that follow, you will develop different kinds of charts displaying data in a table. But, where
should you put the JavaScript code? Inside the <script></script> tag pairs, you will add the $(document).ready()
function, writing your JavaScript code inside it in order to add all the events, or whatever else you want to include,
before the window loads. Everything you write inside the brackets is executed as soon as the document object model
(DOM) is registered by the browser. This lets you hide or show the elements of the page before it is open.

Importing the jQuery Library
To work with the jQuery functions, you have to import the jQuery library. It is not necessary that you download it from
the jQuery web site and save it to your server; the web page can directly access the library from the distribution site.
Listing 3-5 represents the starting point of the JavaScript code that you are going to write.

Figure 3-5. The same HTML table, but with another CSS style

Note ■ The two .jpg background files used to color the individual cells of the table can be found in the code that

 accompanies this book, in the Source Code/Download area of the Apress web site (www.apress.com).

Figure 3-5 illustrates the same HTML table, but this time, using the two images as backgrounds, the faded colors
simulate shadows, giving the table a three-dimensional appearance.

http://www.apress.com/

CHAPTER 3 ■ SIMPLE HTML TABLES

53

Listing 3-5. ch3_03a.html

<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script></script>
<script>
$(document).ready(function(){
 //add your code here
});
</script>

Note ■ If you are using the source code that accompanies the book, replace the reference to the jQuery library with

<script type="text/javascript" src="../src/jquery.min.js"></script>

Once the preliminaries are completed, you start immediately with the code. First, you will create a JavaScript
object called tableData to hold all the information:

<script>
$(document).ready(function(){
 var tableData = {};
});

This variable will be used as a container for data parsed from the table. Brackets are used so as to consider it an
object. You can add any property to this object by stating the tableData.myNewProperty and setting that property to
whichever value you choose. In the same way, you can store the table elements in another variable:

$(document).ready(function(){
 var tableData = {};
 var table = $('table');
});

With this statement, you point to all the elements contained within the <table></table> tag pairs. With just a
few words, you have made a selection.

xLabels
The first property you create in the tableData object is xLabels. It will contain the values for the labels on the x axis.
These labels correspond to the cell content of the table headings. The labels are read in the order in which the data
were collected, that is, from left to right. You find these values in the <th> tags (see Figure 3-6).

http://code.jquery.com/jquery-1.9.1.min.js

CHAPTER 3 ■ SIMPLE HTML TABLES

54

In Listing 3-6, xLabels is defined as an array, and, using the each() method, each <th> element is looped through,
pushing its content into this array. Taking a closer look at the table, you can see that the <th> elements are nested
within the <thead> tag. Therefore, a correct selection necessitates that you specify the hierarchy with 'thead th'.

Listing 3-6. ch3_03b.html

$(document).ready(function(){
 var tableData = {};
 var table = $('table')
 tableData.xLabels = [];
 table.find('thead th').each(function(){
 tableData.xLabels.push($(this).html());
 });
});

Just for debugging, to see the contents of these arrays, you can use the console (see the section “Firebug and
DevTools” in Chapter 1), calling the log() function to show the content of the variable passed as argument:

console.log(tableData.xLabels);

You have thus defined a new array, xLabels, containing the values shown in Figure 3-7.

Figure 3-6. Parsing the headings with the 'thead th' as selector

CHAPTER 3 ■ SIMPLE HTML TABLES

55

Extracting the Labels

You now need to extract the labels, referring the series of data from the table, as illustrated in Figure 3-8. In your table,
you can identify these labels with the names of countries, shown on the left side.

Figure 3-8. Parsing the names of countries with 'tbody th' as selector

Figure 3-7. The content of the xLabels array, displayed in Firebug

To capture the labels, you consider that they are grouped as <th> elements in the <tbody> group. Just as with
xLabels, you define a new property of tableData: legend (see Listing 3-7). You assign this name because, in any kind
of chart, the identifiers of the series are generally reported in a legend. So, you write a code similar to the previous one,
this time using the selection 'tbody th'.

Listing 3-7. ch3_03c.html

$(document).ready(function(){
 ...
 table.find('thead th').each(function(){
 tableData.xLabels.push($(this).html());
 });

CHAPTER 3 ■ SIMPLE HTML TABLES

56

 tableData.legend = [];
 table.find('tbody th').each(function(){
 tableData.legend.push($(this).html());
 });
});

Using the console on Firebug, you can see the content of the legend array, as displayed in Figure 3-9.

Figure 3-9. The content of the legend array, displayed in Firebug

By analyzing the points listed in the table, you can easily distinguish what will go on the x axis and what will go on
the y axis. You collected data for several series (countries) at different times (months). It is easy to see that time will be
represented on the x axis, using xLabels to fill its ticks; you assign a month for each tick. Furthermore, a whole series
of values must be distributed on the y axis. You do not know the numeric values of the ticks on the y axis a priori, or
how many ticks are necessary, but you need to calculate them. First, it is common practice, in these cases, to find the
highest and lowest values in the data. You can select all the data with the 'tbody td' selector, as shown in Listing 3-8.

Listing 3-8. ch3_03d.html

$(document).ready(function(){
 ...
 table.find('tbody th').each(function(){
 tableData.legend.push($(this).html());
 });
 var tmp = [];
 table.find('tbody td').each(function(){
 var thisVal = parseFloat($(this).text());
 tmp.push(thisVal);
 });
 if(Math.min.apply(null, tmp) > 0)
 tableData.minVal = 0;
 else
 tableData.minVal = Math.min.apply(null, tmp);
 tableData.maxVal = Math.max.apply(null, tmp);
});

You want the minimum value on the y axis to be equal to 0 and to assume lower values only if there are negative
values in the table. In this case, there are only positive numbers, so the minVal is 0, and maxVal is 80.

Then, you use these two values to calculate the ticks on the y label. Based on these values, you should extend the
y axis in a range from 0 to 80. Actually, it is best to extend the maximum value, so as not to have the maximum point of
your data touching the top of the chart. You can multiply your maximum value by a coefficient (e.g., 10 percent). Let
us correct the last line of Listing 3-8, introducing the coefficient, as demonstrated in Listing 3-9.

You have multiplied the maximum value, returned from the Math.max.apply() function, for the factor 1.1,
thereby increasing the value by 10 percent (max + 0.1*max = 1.1*max).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ SIMPLE HTML TABLES

57

Listing 3-9. ch3_03e.html

if(Math.min.apply(null, tmp) > 0)
 tableData.minVal = 0;
else
 tableData.minVal = Math.min.apply(null, tmp);
tableData.maxVal = 1.1 * Math.max.apply(null, tmp);

With regard to the number of ticks and their content, Listing 3-10 defines a yLabels array as a property of
tableData. To quantify the number of ticks on the y axis so that it represents an optimal compromise, you must first
determine what might be a suitable distance (in pixels) between one tick and the next. You divide the extent of the y
axis by a number that represents the pixel distance between ticks. You may think that a distance of 30 pixels could be
enough. The result is not an integer, so you need to round up.

Listing 3-10. ch3_03f.html

$(document).ready(function(){
 ...
 tableData.maxVal = 1.1 * Math.max.apply(null, tmp);
 tableData.yLabels = [];
 var yDeltaPixels = 30;
 var h = 360;
 var w = 460;
 var nTicks = Math.round(h / yDeltaPixels);
 var yRange = tableData.maxVal - tableData.minVal;
 var yDelta = Math.ceil(yRange / nTicks);
 var yVal = tableData.minVal;
 while(yVal < (tableData.maxVal - yDelta)){
 tableData.yLabels.push(yVal);
 yVal += yDelta;
 }
 tableData.yLabels.push(yVal);
 tableData.yLabels.push(tableData.maxVal);
});

If you investigate the contents of the yLabels array, you will find 12 values of y corresponding to 12 ticks,
as shown in Figure 3-10. These labels will be displayed next to each tick.

Figure 3-10. The content of the yLabels array, displayed in Firebug

The values in the yLabels array are dependent on many factors, for instance, the dimension in which you want
to represent the y axis (here, you chose 360 pixels), with each tick spaced 30 pixels apart: what you get here is 12 ticks.
Also, if you want to know how many units of y correspond to the distance between one tick and the next, you calculate
yDelta (rounded up), which, in this case, is eight. In fact, the values of yLabels are all multiples of eight.

CHAPTER 3 ■ SIMPLE HTML TABLES

58

dataGroups
The next property you need to create is dataGroups, a two-level array that contains all the values, grouped by series.
Each series is an array of values, and dataGroups is an array of series. To group the data of different series, you use the
<tr> tag. Each row in the table is, in fact, a series, and you can take all the values inside it because they are delimited
by <td> tags, the cell tag. You capture the values, reading the data from left to right (see Figure 3-11), in conjunction
with the direction of the times reported in the headings.

Figure 3-11. Parsing of groups of data for multiseries

Next, you loop through the rows of the table, using 'tbody tr' as a selector (see Listing 3-11); for every step of
this iteration, you must loop for each cell in order to reach the values.

Listing 3-11. ch3_03g.html

$(document).ready(function(){
 ...
 tableData.yLabels.push(tableData.maxVal);
 tableData.dataGroups = [];

CHAPTER 3 ■ SIMPLE HTML TABLES

59

 table.find('tbody tr').each(function(i){
 tableData.dataGroups[i] = [];
 $(this).find('td').each(function(){
 var tdVal = parseFloat($(this).text());
 tableData.dataGroups[i].push(tdVal);
 });
 });
});

In the end, you can see the four arrays (one for each series) contained in the dataGroups array, as shown
in Figure 3-12.

Figure 3-12. The content of the dataGroups array, displayed in Firebug

If you want to access the values contained in a particular series, you may do so as follows:

console.log(tableData.dataGroups[0]);
console.log(tableData.dataGroups[1]);
...

Ready for Implementing Graphics
Now that you have extracted all the data in the table and placed them in separate arrays, you are ready to begin to
implement the graphics and convert these data into graphic elements.

This will be the topic of the next three chapters, in which you will see these data first represented in a line chart
(Chapter 4), then in a bar chart (Chapter 5), and, finally, in a pie chart(Chapter 6).

Summary
The purpose of this chapter was to provide an introduction to the approach you must follow when you have a data
structure to manipulate. With this chapter, you began to see how to develop your own library, based on the tools that
the jQuery library provides.

You started with the creation of an HTML table, the most primitive form of data representation. Despite its
simplicity, this table can be problematic if you do not set it well. Data representation in the form of a table has been
chosen as a testing ground to begin looking at how jQuery is able to make selections of specific HTML elements on
the page and, more specifically here, of tags that make up the HTML table. On this basis, you built a set of parsers to
extract data from a complex structure (an HTML table, in this case, but, as you will see, from other types of structure,
too). The data were thus separated into different groups, in a format that was easier to manipulate.

In the next chapter, you will begin to use the first graphic elements that the canvas offers, while continuing to
use the jQuery library. As a first step, you will learn how to develop a line chart, using data obtained with the parsers
developed in this chapter.

61

CHAPTER 4

Drawing a Line Chart

In the previous chapter, you built an HTML table as a sample of structured data and developed parsers in JavaScript
to extract the data into arrays. In this chapter, you will build a line chart with JavaScript as one of the possible
visualizations for the data in the table from Chapter 3.

Before you start to convert the data into graphic elements to achieve your line chart, you need a place in which to
use it. Therefore, I will begin this chapter by introducing the canvas. You will see what this is and how to implement it,
and, in the end, you will integrate it into your web page.

Once you understand what the canvas is, you can begin to actualize the elements that will make up your line
chart. The first components that you are going to deal with are the axes, on which you will apply, according to the data
to be represented, the ticks and the labels, followed by a grid as . background. Finally, you will complete your line
chart by drawing the lines that represent the data read from the HTML table.

The last part of the chapter explains how to add other components less fundamental but very important in a line
chart: the title and the legend.

Defining the Canvas
HTML5 technology allows you to define a drawing area called canvas on your web site. This area is defined as a real
tag element, which occupies a defined area in a determined position, according to where the tag <canvas> is inserted.

In the previous chapter, you first developed an HTML table containing some data and then a set of parsers so that
these data were accessible through arrays. Continuing from the point where you left off, you now add the <canvas>
element, on which you can then draw all the elements of the line chart.

Thus, let us insert the <canvas> element within the <body> section, right where you want to place an area
reserved for your chart (see Listing 4-1). Then, you have to insert the following tag before all the other tags related to
the table, so that your chart is represented above the table when the page is loaded.

Listing 4-1. ch4_01.html

</HEAD>
<BODY>
<canvas id="myCanvas" width="500" height="400"> </canvas>
<table class="myTable">
 <caption>Balloons lost in space</caption>
 <thead>
...

In these tag statements, you have specified the size of the drawing area, too. To avoid having the drawing overlap
the table, you can move the HTML table below the canvas. Therefore, in Cascading Style Sheets (CSS) styles, you need
to define the new position of the table, as shown in Listing 4-2. The top attribute defines the distance from the top
edge of the web page, whereas the left attribute defines the distance of the table from the left edge.

CHAPTER 4 ■ DRAWING A LINE CHART

62

Listing 4-2. ch4_01.html

<style>
...
table.myTable {
 font-family: verdana,arial,sans-serif;
 font-size:11px;
 color:#333333;
 border-width: 1px;
 border-color: #666666;
 border-collapse: collapse;
 position: fixed;
 top: 450px;
 left: 20px;
}
...
</style>

Now that you have added the canvas to your page, you use it in JavaScript code. With jQuery, you have already
seen that you can make a selection on any document object model (DOM) element, and the <canvas> tag is no
exception. Then, applying a jQuery selection to this tag and assigning it to a variable (canvas, in this example), you
can access the canvas using the JavaScript code (see Listing 4-3).

Because multiple canvases can be present in a web page, it will be necessary to distinguish them from each other.
To this end, you assign the name ‘myCanvas’ to the id attribute of the <canvas> element.

Listing 4-3. ch4_01.html

$(document).ready(function(){
 var canvas = $("#myCanvas");
 var tableData = {};
 var table = $('table');
 ...
});

To draw your charts, you will use the canvas two-dimensional drawing application programming interface
(canvas 2D drawing API), and so you have to set the canvas context on it. This context will provide you with all the
objects and methods you need to draw and manipulate two-dimensional graphics in in the canvas drawing area. You
set the context of your work on the canvas 2D API and assign it to the variable ctx, as demonstrated in Listing 4-4.

Listing 4-4. ch4_01.html

$(document).ready(function(){
 var canvas = $("#myCanvas");
 var ctx = canvas.get(0).getContext("2d");
 var tableData = {};
 var table = $('table');
 ...
});

CHAPTER 4 ■ DRAWING A LINE CHART

63

Note ■ If you were to try to use the canvas in an Internet Explorer browser below version 9, you would fail.

Fortunately, Google has developed a library, ExplorerCanvas (exCanvas), that translates canvas commands into

vector language markup (VML), a proprietary language supported by Internet Explorer. All you have to do is include

the excanvas.js script in your web page. You can reference the script, using a conditional comment to make sure

that only Internet Explorer sees and downloads this script.

<!--[if IE]><script src="excanvas.js"></script><![endif]-->

For further information, see the documentationpprovided on Google Code’s ExplorerCanvas web page

(http://excanvas.sourceforge.net).

Setting the Canvas
Let us take a look at the example you used in Chapter 3 to structure data in a table. You have a series for countries and
some series of numeric values, with a time sequence for values taken month by month. Generally, it is preferable to
use the x axis as the time axis; here, the y axis reports the number of balloons lost in space. You have seen that your
data consist of four different series, one for each country, so there are four lines to represent in your chart. How do you
distinguish between them? Usually, these are differentiated by color or by different graphic traits. For instance, a line
may be drawn in a continuous manner, dashed, or dotted. In this case, you will use four different colors.

Thus, you need to set up an array of hexadecimal color values, which you will call colors, as shown in Listing 4-5.

Listing 4-5. ch4_01.html

$(document).ready(function(){
 ...
 var ctx = canvas.get(0).getContext("2d");
 var colors = ['#be1e2d', '#666699', '#92d5ea', '#ee8310'];
 var tableData = {};
 var table = $('table');
 ...
});

By default the canvas 2D API uses coordinates, starting from the top-left corner as the zero point, and the y
coordinate grows with positive values, moving downward (see Figure 4-1). In contrast, the x coordinate is the same for
both systems. Therefore, you must make some changes, applying the translate() method of the canvas 2D API to the
context in order to change the position of the origin point of the axes, as presented in Listing 4-6.

Figure 4-1. Canvas translation to obtain the origin point in the bottom-left corner

http://excanvas.sourceforge.net/

CHAPTER 4 ■ DRAWING A LINE CHART

64

Listing 4-6. ch4_01.html

$(document).ready(function(){
 ...
 var colors = ['#be1e2d', '#666699', '#92d5ea', '#ee8310'];
 ctx.translate(0, canvas.height());
 var tableData = {};
 var table = $('table');
 ...
});

Now, the origin point of the chart is in the bottom-left corner. Unfortunately, it is not possible to reverse the
direction of the y axis. Hence, you will write negative values of y to mean positive values, and vice versa. Normally,
the chart would not take the whole drawing area, only the central area, bounded by margins. To add this border to
your canvas, you draw a rectangle, which restricts the drawing area, excluding margins (see Listing 4-7). The w and
h variables are the width and height, respectively, of the rectangle. These values are calculated taking the size of the
canvas and margins into account.

The rectangle can be drawn using the strokeRect() function of the context, in which the first and the second
argument are the (x, y) coordinates in the top-left corner, and the other two are the width and height of the rectangle.

Listing 4-7. ch4_01.html

$(document).ready(function(){
 ...
 ctx.translate(0, canvas.height());
 var margin = {top: 30, right: 10, bottom: 10, left: 30},
 w = canvas.width() - margin.left - margin.right,
 h = canvas.height() - margin.top - margin.bottom;
 ctx.strokeRect(margin.left, -margin.bottom, w, -h);
 var tableData = {};
 var table = $('table');
 ...
});

Figure 4-2 shows the areas covered by the canvas and the HTML table in the web page.

CHAPTER 4 ■ DRAWING A LINE CHART

65

Drawing a Line Chart
Now that the drawing area is set up, you can begin to draw on it. Next, you will implement the line chart,
component by component.

A line chart is a graph in which there are two Cartesian axes, x and y, which are assigned to two variables. On this
two-dimensional graph, you will represent all (x, y) data points and then connect them with a line (see Figure 4-3).

Figure 4-2. Representation of the parts of the canvas

CHAPTER 4 ■ DRAWING A LINE CHART

66

Therefore, before you begin to draw the lines on the xy plane, you will need to implement the two axes. Moreover,
because you will be dealing with numeric values, it is also important to find a way to present these values in the right
positions. Thus, you have to add scales to both axes, on which you will draw ticks and the corresponding values
(tick labels). These scales will vary, depending on the ranges covered by the data on both axes.

Drawing Axes, Tick Labels, and the Grid
You start with the tick labels. In the previous chapter, you stored these values inside the xLabels and yLabels arrays.
Now, place them along the axes of the chart.

Using native methods to write text directly on the canvas might seem to be the best choice, but it is actually
preferable to use another approach. This is because the ability to manipulate and draw text on canvas is not yet well
supported. The other method is to create dynamic text in HTML and then, using the power of CSS, modify the text to
suit your needs. At first this may seem quite complex, but it will prove useful and practical.

You will create dynamic text with JavaScript embedded in unordered lists of tags containing all the tick
labels, for both the x axis and the y axis. Thanks to CSS, you subsequently modify the labels’ style and position in the
HTML page, overlapping the canvas. You have to write the JavaScript code to generate HTML rows in the HTML page
at the time of loading.

For example, to generate the ticks and labels on the x axis, use the code in Listing 4.8.

Listing 4-8. ch4_01.html

$(document).ready(function(){
 ...
 tableData.dataGroups = [];
 table.find('tbody tr').each(function(i){
 tableData.dataGroups[i] = [];
 $(this).find('td').each(function(){
 var tdVal = parseFloat($(this).text());
 tableData.dataGroups[i].push(tdVal);
 });
 });

 var xDelta = w / (tableData.xLabels.length -1);
 var xlabelsUL = $('<ul class="labels-x">')
 .width(w)
 .height(h)
 .insertBefore(canvas);
 $.each(tableData.xLabels, function(i){
 var thisLi = $('' + this + '')

Figure 4-3. (1) A cartesian chart, (2) a data point, (3) a line chart

CHAPTER 4 ■ DRAWING A LINE CHART

67

 .prepend('')
 .css('left', xDelta * i)
 .width(0)
 .appendTo(xlabelsUL);
 var label = thisLi.find('span.label');
 label.addClass('label');
 });
});

For debugging, you can use Firebug to see not only the content of a variable, but also the dynamically generated
code. In fact, by selecting the HTML tab from the Firebug menu, you can see the entire tree structure of HTML code,
including the part that you just generated dynamically for displaying the tick labels on the x axis (see Figure 4-4).

Figure 4-4. By selecting the HTML tab in Firebug, you can see the HTML structure dynamically generated

As you will note in Figure 4-4, each item on the list contains two spans: one for the tick and one for the tick label.
Now, you need to do the same thing with the y labels, by writing the code in Listing 4.9.

Listing 4-9. ch4_01.html

$(document).ready(function(){
 ...
 $.each(tableData.xLabels, function(i){
 var thisLi = $(''+this+'')
 .prepend('')
 .css('left', xDelta * i)
 .width(0)
 .appendTo(xlabelsUL);
 var label = thisLi.find('span.label');
 label.addClass('label');
 });

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ DRAWING A LINE CHART

68

 var yScale = h / yRange;
 var liBottom = h / (tableData.yLabels.length-1);
 var ylabelsUL = $('<ul class="labels-y">')
 .width(w)
 .height(h)
 .insertBefore(canvas);
 $.each(tableData.yLabels, function(i){
 var thisLi = $('' + this + '')
 .prepend('')
 .css('bottom', liBottom * i)
 .prependTo(ylabelsUL);
 var label = thisLi.find('span:not(.line)');
 var topOffset = label.height() / -2;
 if(i == 0){ topOffset = -label.height(); }
 else if(I == tableData.yLabels.length - 1){ topOffset = 0; }
 label
 .css('margin-top', topOffset)
 .addClass('label');
 });
});

But, if you load the page, you will see only two unordered lists, reporting all the values contained in the
xLabels and yLabels arrays (see Figure 4-5).

CHAPTER 4 ■ DRAWING A LINE CHART

69

Figure 4-5. If you use just JavaScript, the browser displays only two unordered lists partially covered by the table
(the rectangle containing the canvas is not visible.

CHAPTER 4 ■ DRAWING A LINE CHART

70

This is miles from what you could have been imagining. In fact, these do not look like ticks and labels at all. It
is here that you can see the power of CSS and how it can totally change the appearance of a list, adapting it to your
purposes. Looking at the two unordered lists, the first thing you will want to do is delete the black dot alongside each
item. So, let us write the CSS style class definition, referring to the and tags as shown in Listing 4-10.

Listing 4-10. ch4_01.html

<style>
 ...
table.myTable td {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background:#dcddc0 url('images/cell-grey.jpg');
}
ul, .li {
 margin: 0;
 padding: 0;
}
</style>

Then, you add an additional CSS style class that will let you write the lists not at the top of the page, but above
the canvas (see Listing 4-11). To attach styles to the HTML elements you generated, you referred to them with a
specific class name inserted in the tag: <ul class = "labels-x"> and <ul class = "labels-y ">. Consequently, in the
CSS, you will refer to them by these names, preceded by a '.'.

Listing 4-11. ch4_01.html

<style>
 ...
ul, .li {
 margin: 0;
 padding: 0;
}
.labels-x, .labels-y {
 position: absolute;
 left: 37;
 top: 37;
 list-style: none;
}
</style>

If you load the page now, you will see the changes illustrated in Figure 4-6. The two unordered lists have become
two columns of text labels, covering the left side of the canvas. In addition, the rectangle representing the drawing
area of the canvas is shown at the top of the web page (the space occupied by the lists is now free).

CHAPTER 4 ■ DRAWING A LINE CHART

71

But, by adding more CSS classes, as in Listing 4-12, you can complete your work, finally creating an xy plane with
ticks, ticks labels, and a grid background, as shown in Figure 4-7.

Listing 4-12. ch4_01.html

<style>
 ...
.labels-x, .labels-y {
 position: absolute;
 left: 37;
 top: 37;
 list-style: none;
}

Figure 4-6. The unordered lists have become two columns of text labels laid over the canvas

CHAPTER 4 ■ DRAWING A LINE CHART

72

.labels-x li {
 position: absolute;
 bottom: 0;
 height: 100%;
}
.labels-x li span.label {
 position: absolute;
 color: #555;
 top: 100%;
 margin-top: 5px;
 left:-15;
}
.labels-x li span.line{
 position: absolute;
 border: 0 solid #ccc;
 border-left-width: 1px;
 height: 100%;
}
.labels-y li {
 position: absolute;
 bottom: 0;
 width: 100%;
}
.labels-y li span.label {
 position: absolute;
 color: #555;
 right: 100%;
 margin-right: 5px;
 width: 100px;
 text-align: right; }
.labels-y li span.line {
 position: absolute;
 border: 0 solid #ccc;
 border-top-width: 1px;
 width: 100%;
}
</style>

CHAPTER 4 ■ DRAWING A LINE CHART

73

That is incredible! Starting with two simple unordered lists, it is possible to obtain a chart with a grid, x and
y labels, and ticks—all with only a few CSS style statements.

Drawing Lines on the Chart
In the previous chapter, you stored all the data in a property of the tableData object called dataGroups. This array has
many series, so you need to iterate through and for each of them to plot a line on the grid just drawn. You have already
figured the increment to effect on x for every data point for the xLabels array, and this value is in the xDelta variable,
so you do not need to calculate it again.

You can, therefore, determine the thickness of the lines, setting the lineWidth property of the context to 5 pixels,
as shown in Listing 4-13.

Figure 4-7. The grid lines for a line chart

CHAPTER 4 ■ DRAWING A LINE CHART

74

Listing 4-13. ch4_02.html

$(document).ready(function(){
 ...
 $.each(tableData.xLabels, function(i){
 ...
 });
 ctx.lineWidth = 5;
});

Now, you are ready to loop through the dataGroups array and draw the lines. For each series, you need to start
from the first data point, so you use the function ctx.moveTo(0,-point[i]) to move the context to the first y value
(the x is 0 because it is the first point). The variable i is the index to iterate between the series. With the function
ctx.strokeStyle(), you assign each line a color, which is previously defined in an array. Then, you effectively begin
to draw the line, creating a path in which each step is defined by a line starting from the current point and pointing
to a new one with (x, y) coordinates. This is expressed by the ctx.lineTo(x,y) function. The new x coordinate is
the current x value plus the xDelta calculated before. The new y coordinate is the next value in the array identified
by points[j], where j is the index of the value contained in each series. When the loop has completed the j values,
the path will end with the closePath() function. The path will then go to the next series,effecting increments of the
variable i, and the loop will be repeated until all series are completed. All this can be better expressed in Listing 4-14.

Listing 4-14. ch4_02.html

$(document).ready(function(){
 ...
 ctx.lineWidth = 5;
 for(var i in tableData.dataGroups){
 var points = tableData.dataGroups[i];
 ctx.moveTo(0, -points[i]);
 ctx.strokeStyle = colors[i];
 ctx.beginPath();
 var xVal = margin.left;
 for(var j in points){
 var relY = (points[j] * h /tableData.maxVal) + 10;
 ctx.lineTo(xVal, -relY);
 xVal += xDelta;
 }
 ctx.stroke();
 ctx.closePath();
 }
});

Moreover, in order to avoid having the lines in your chart appear under the grid, instead of above it, you add
the CSS statement for the canvas, as presented in Listing 4-15.

Listing 4-15. ch4_02.html

<style>
 ...
canvas {
 position: relative;
}

CHAPTER 4 ■ DRAWING A LINE CHART

75

ul, .li {
 margin: 0;
 padding: 0;
}
 ...
</style>

Figure 4-8 shows your line chart, achieved with the combination of JavaScript code and CSS styles.

Figure 4-8. The line chart representing the data in the table

Adding a Legend
Each series in the line chart is represented by a different color, but at the moment, you have no reference linking color
and country, so you must draw a legend. A legend is a small table reporting the identifiers of a charts’ series. You have
already created a legend array containing the names of the countries. You loop through this array, generating an
unordered list, as shown in Listing 4-16.

CHAPTER 4 ■ DRAWING A LINE CHART

76

Listing 4-16. ch4_03.html

$(document).ready(function(){
 ...
 ctx.lineWidth = 5;
 for(var i in tableData.dataGroups){
 ...
 }
 var legendList = $('<ul class="legend">')
 .insertBefore(canvas);
 for(var i in tableData.legend){
 $('' + tableData.legend[i] + '')
 .prepend('')
 .appendTo(legendList);
 }
});

Because with the legend you have added another element to the canvas, you need to define as well the CSS styles
for it, as demonstrated in Listing 4-17.

Listing 4-17. ch4_03.html

<style>
 ...
.labels-y li span.line {
 position: absolute;
 border: 0 solid #ccc;
 border-top-width: 1px;
 width: 100%;
}
.legend {
 list-style: none;
 position: absolute;
 left: 520px;
 top: 40px;
 border: 1px solid #000;
 padding: 10px;
}
.legend li span {
 width: 12px;
 height: 12px;
 float: left;
 margin: 3px;
}
</style>

A legend thus appears on the right side of the chart, as shown in Figure 4-9.

CHAPTER 4 ■ DRAWING A LINE CHART

77

Adding a Title
An often overlooked and omitted element is the title. This element, however, adds readability to the chart. Let us then
add a text at the top of the page, using the content of the caption element of the table (see Listing 4-18).

Listing 4.18. ch4_04.html

$(document).ready(function(){
 ...
 for(var i in tableData.legend){
 $(''+ tableData.legend[i] +'')
 .prepend('')
 .appendTo(legendList);
 }
 $('<div class="chart-title">' + table.find('caption').html() + '</div>')
 .insertBefore(canvas);});

Figure 4-9. Adding a legend reporting the name of the countries

CHAPTER 4 ■ DRAWING A LINE CHART

78

At the same time, you add CSS style attributes to the new class chart-title, as shown in Listing 4-19. Defining the
top and left attributes (similar to what you did with the table), you can set the position of the title in the web page.

Listing 4.19. ch4_04.html

<style>
 ...
.legend li span {
 width: 12px;
 height: 12px;
 float: left;
 margin: 3px;
}
.chart-title {
 font-size: 24;
 font-weight: bold;
 position: absolute;
 left: 150px;
 top: 10px;
 width: 100%;
}
</style>

Figure 4-10 illustrates your completed line chart.

CHAPTER 4 ■ DRAWING A LINE CHART

79

Hiding the Table
You started showing data, using an HTML table, and then parsed all the values inside the table, using JavaScript code,
and realized the values by building a line chart. At this point, showing the table may seem superfluous, so you can
hide it from the user who will load the page. A good approach is to remove it from the page entirely, using jQuery
(see Listing 4-20). After all the data are parsed, you select the table, and its contents, and hide it by applying the
hide() function to the selection. It is very simple!

Figure 4-10. Adding a title above the line chart

CHAPTER 4 ■ DRAWING A LINE CHART

80

Listing 4.20. ch4_04.html

$(document).ready(function(){
 ...
 $('<div class="chart-title">' + table.find('caption').html() + '</div>')
 .insertBefore(canvas);
 $('table').hide();
});

Summary
In this chapter, you began to look at how to make a line chart graphically by using the jQuery library and
manipulating the data that you extracted with the parser developed in the previous chapter. You also saw that it
is possible to give a shape to the grid and axis label with CSS styles.

In the next chapter, you will learn how to use the same data to generate another type of chart that is very
common: the bar chart.

81

CHAPTER 5

Drawing a Bar Chart

In the previous chapter, you created a line chart, using the data in an HTML table. However, the same data can be
represented by other charts, including the well-known bar chart. With this type of data visualization, you still have
the two axes (x and y), but x, instead of being represented as a continuous scale of values, is used to represent groups,
which may or may not follow an increasing trend.

In this chapter, you will continue to use the code written in the previous chapter, and you will see how, by making
a few changes to the code (very few!), you can convert your line chart into a bar chart. Once you have implemented
the data parsers and set all the graphic elements, such as the axes, the tick labels, and the grid, you will find that it is
very easy to switch from a line chart to a bar chart.

Drawing a Bar Chart
The first thing to change is the way in which you calculate the xDelta variable. In this case, the x axis has lost its
meaning and serves only to group data in different sectors. The HTML table has six different dates, and so you divide
the x axis into six segments. In the line chart these six dates were in correspondence with the grid lines, giving you five
segments. Let us modify the xDelta variable, taking these differences into account, as shown in Listing 5-1.

Listing 5-1. ch5_01a.html

$(document).ready(function(){
 ...
 table.find('tbody tr').each(function(i){
 tableData.dataGroups[i] = [];
 $(this).find('td').each(function(){
 var tdVal = parseFloat($(this).text());
 tableData.dataGroups[i].push(tdVal);
 });
 });
 var xDelta = w / (tableData.xLabels.length);
 var xlabelsUL = $('<ul class="labels-x">')
 .width(w)
 .height(h)
 .insertBefore(canvas);
...
});

CHAPTER 5 ■ DRAWING A BAR CHART

82

Now, delete the rows that are no longer necessary, shown in bold in Listing 5-2.

Listing 5-2. ch5_01b.html

$(document).ready(function(){
 ...
//delete the following rows
 ctx.lineWidth = 5;
 for(var i in tableData.dataGroups){
 var points = tableData.dataGroups[i];
 ctx.moveTo(0,-points[i]);
 ctx.strokeStyle = colors[i];
 ctx.beginPath();
 var xVal = margin.left;
 for(var j in points){
 var relY = (points[j]*h/tableData.maxVal) + 10;
 ctx.lineTo(xVal,-relY);
 xVal += xDelta;
 }
 ctx.stroke();
 ctx.closePath();
 } //end delete
...
});

In their place, you can now write the code (see Listing 5-3).

Listing 5-3. ch5_01c.html

$(document).ready(function(){
 ...
 $.each(tableData.yLabels, function(i){
 var thisLi = $(''+this+'')
 .prepend('')
 .css('bottom',liBottom*i)
 .prependTo(ylabelsUL);
 var label = thisLi.find('span:not(.line)');
 var topOffset = label.height()/-2;
 if(i == 0){ topOffset = -label.height(); }
 else if(i== tableData.yLabels.length-1){ topOffset = 0; }
 label
 .css('margin-top', topOffset)
 .addClass('label');
 });

 var barGroupMargin = 4;
 for(var i in tableData.dataGroups){
 ctx.beginPath();
 var n = tableData.dataGroups.length;
 var lineWidth = (xDelta - barGroupMargin * 2) / n;
 var strokeWidth = lineWidth - (barGroupMargin * 2);
 ctx.lineWidth = strokeWidth;

CHAPTER 5 ■ DRAWING A BAR CHART

83

 var points = tableData.dataGroups[i];
 var xVal = (xDelta – n * strokeWidth - (n - 1) * (lineWidth - strokeWidth)) / 2;
 for(var j in points){
 var relX = margin.left + (xVal - barGroupMargin) + (i * lineWidth) + lineWidth / 2;
 ctx.moveTo(relX, -margin.bottom);
 var relY = margin.bottom + points[j] * h / tableData.maxVal;
 ctx.lineTo(relX, -relY);
 xVal += xDelta;
 }
 ctx.strokeStyle = colors[i];
 ctx.stroke();
 ctx.closePath();
 }

 var legendList = $('<ul class="legend">')
 .insertBefore(canvas);
 for(var i in tableData.legend){
 $(''+ tableData.legend[i] +'')
 .prepend('')
 .appendTo(legendList);
 }
...
});

Because you are working with a bar chart rather than a line chart, the x axis reports the categories. This means
that the x labels should no longer appear in correspondence with ticks, but at the center of each interval, delimited
by two ticks. To do this quickly and easily, you have to edit the margin-left Cascading Style Sheets (CSS) attribute
relative to the x labels, using the css() jQuery function directly (see Listing 5-4).

Listing 5-4. ch5_01d.html

$(document).ready(function(){
 ...
 $.each(tableData.xLabels, function(i){
 var thisLi = $('' + this + '')
 .prepend('')
 .css('left', xDelta * i)
 .width(0)
 .appendTo(xlabelsUL);
 var label = thisLi.find('span.label');
 label
 .css('margin-left', '40px')
 .addClass('label');
 });
 ...
});

The resulting bar chart is illustrated in Figure 5-1.

CHAPTER 5 ■ DRAWING A BAR CHART

84

Summary
In this chapter, you saw how easy it is to create a bar chart, using what you learned in the previous chapters. In the
next chapter, you will implement another type of chart that uses neither a grid, nor axes, but cirular sectors:
the pie chart. You will also discover how to insert animations in response to certain events, such as mouse clicks, to
increase the interactivity of your chart.

Figure 5-1. A bar chart representing the data in the table

85

CHAPTER 6

Drawing a Pie Chart

Similar to what you have done in the last two chapters, in this chapter, you will learn to build a pie chart, using the
data contained in your HTML table.

Starting from the point at which you parsed all the data (see Chapter 3), you will discover how to implement this
interesting kind of object and explore how to create your first animations.

Drawing a Pie Chart
This type of chart is quite different from the previous two (line and bar charts). It consists of a circle (a pie) that
represents the sum of all the values (see Figure 6-1). This pie is divided into slices of different colors, one for each
series present in the data. The size of the slices is proportional to the totality of all the values in the series, in relation to
the sum of all the values in the pie. Thus, each slice expresses the percentage that each series contributes to the sum
with its value.

Figure 6-1. A pie chart

Let us see how to implement the particular features of this kind of chart.

Setting the Canvas
As previously stated, in developing your pie chart, you will start with the code that was obtained at the end of Chapter 3,
that is, with the data contained in an HTML table and a number of parsers implemented to extract data from the table
and place them within different arrays. Listing 6-1 shows the status of the code at the end of Chapter 3.

CHAPTER 6 ■ DRAWING A PIE CHART

86

Listing 6-1. ch6_01.html

<HTML>
<HEAD>
<TITLE>MyChart</TITLE>
<style type="text/css">
table.myTable caption {
 font-size: 14px;
 padding-bottom: 5px;
 font-weight: bold;
}
table.myTable {
 font-family: verdana,arial,sans-serif;
 font-size:11px;
 color:#333333;
 border-width: 1px;
 border-color: #666666;
 border-collapse: collapse;
}
table.myTable th {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background:#b5cfd2 url('images/cell-blue.jpg');
}
table.myTable td {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666666;
 background:#dcddc0 url('images/cell-grey.jpg');
}
</style>
</HEAD>
<BODY>
<canvas id="myCanvas" width="500" height="400"> </canvas>
<table class="myTable">
 <caption>Balloons Lost in Space</caption>
 <thead>
 <tr>
 <td></td>
 <th>May 2013</th>
 <th>Jun 2013</th>
 <th>Jul 2013</th>
 <th>Aug 2013</th>
 <th>Sep 2013</th>
 <th>Oct 2013</th>
 </tr>
 </thead>

CHAPTER 6 ■ DRAWING A PIE CHART

87

 <tbody>
 <tr>
 <th>USA</th>
 <td>12</td>
 <td>40</td>
 <td>75</td>
 <td>23</td>
 <td>42</td>
 <td>80</td>
 </tr>
 <tr>
 <th>Canada</th>
 <td>3</td>
 <td>22</td>
 <td>40</td>
 <td>27</td>
 <td>35</td>
 <td>21</td>
 </tr>
 <tr>
 <th>Australia</th>
 <td>60</td>
 <td>80</td>
 <td>16</td>
 <td>28</td>
 <td>33</td>
 <td>26</td>
 </tr>
 <tr>
 <th>Brazil</th>
 <td>46</td>
 <td>7</td>
 <td>14</td>
 <td>26</td>
 <td>36</td>
 <td>24</td>
 </tr>
 </tbody>
 <tfoot>
 <tr><td colspan="7">Data from Statistical Office of the Republic of Unhappy
 Children</td></tr>
 </tfoot>
</table>
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script>
$(document).ready(function(){
 var tableData = {};
 var table = $('table');
 tableData.xLabels = [];
 table.find('thead th').each(function(){
 tableData.xLabels.push($(this).html());
 });

http://code.jquery.com/jquery-1.9.1.min.js

CHAPTER 6 ■ DRAWING A PIE CHART

88

 tableData.legend = [];
 table.find('tbody th').each(function(){
 tableData.legend.push($(this).html());
 });
 var tmp = [];
 table.find('tbody td').each(function(){
 var thisVal = parseFloat($(this).text());
 tmp.push(thisVal);
 });
 if(Math.min.apply(null, tmp) > 0)
 tableData.minVal = 0;
 else
 tableData.minVal = Math.min.apply(null, tmp);
 tableData.maxVal = 1.1 * Math.max.apply(null, tmp);
 tableData.yLabels = [];
 var yDeltaPixels = 30;
 var nTicks = Math.round(h / yDeltaPixels);
 var yRange = tableData.maxVal - tableData.minVal;
 var yDelta = Math.ceil(yRange / nTicks);
 var yVal = tableData.minVal;
 while(yVal < (tableData.maxVal - yDelta)){
 tableData.yLabels.push(yVal);
 yVal += yDelta;
 }
 tableData.yLabels.push(yVal);
 tableData.yLabels.push(tableData.maxVal);
 tableData.dataGroups = [];
 table.find('tbody tr').each(function(i){
 tableData.dataGroups[i] = [];
 $(this).find('td').each(function(){
 var tdVal = parseFloat($(this).text());
 tableData.dataGroups[i].push(tdVal);
 });
 });
});
</script>
</BODY>
</HTML>

So, let us begin with the definition of the canvas context. Unlike with line and bar charts, you do not need to
translate the context, because in pie charts there are no axes to represent; you define the margins and the size of the
canvas instead (see Listing 6-2). Note the values passed into strokeRect(): the y values must be passed as positive
(there is no translation).

Listing 6-2. ch6_01.html

$(document).ready(function(){
 var canvas = $("#myCanvas");
 var ctx = canvas.get(0).getContext("2d");
 var colors = ['#be1e2d', '#666699', '#92d5ea', '#ee8310'];
 var margin = {top: 30, right: 10, bottom: 10, left: 30},
 w = canvas.width() - margin.left - margin.right,

CHAPTER 6 ■ DRAWING A PIE CHART

89

 h = canvas.height() - margin.top - margin.bottom;
 ctx.strokeRect(margin.left,margin.top,w,h);
 var tableData = {};
 var table = $('table');
 tableData.xLabels = [];
 ...
});

Implementing the Pie Chart
Next, you define the center point of the circle of the pie chart (see Listing 6-3). Assuming that it corresponds to the
center of the drawing area, you define two variables, center_x and center_y, representing the coordinates of the
center point, and from there you begin to build your chart. Once you have defined a pieMargin to establish a distance
between the edges of the circle and margins, you define the radius. The size of the drawing area depends on the
difference between the pieMargin (which is fixed) and the center of the circle (which is dynamic). Thus, the radius will
change, adapting to the size of the drawing area. All these values must be calculated, taking the margin into account.

Listing 6-3. ch6_01.html

$(document).ready(function(){
 ...
 ctx.strokeRect(margin.left,margin.top,w,h);
 var pieMargin = margin.top + 30;
 var center_x = Math.round(w / 2) + margin.left;
 var center_y = Math.round(h / 2) + margin.top;
 var radius = center_y - pieMargin;
 var counter = 0.0;
 var tableData = {};
 var table = $('table');
 tableData.xLabels = [];
 ...
});

The pie represents the sum of all the values written in the table. You therefore define a function called dataSum
and then a variable with the same name, as shown in Listing 6-4.

Listing 6-4. ch6_01.html

$(document).ready(function(){
 ...
 table.find('tbody tr').each(function(i){
 tableData.dataGroups[i] = [];
 $(this).find('td').each(function(){
 var tdVal = parseFloat($(this).text());
 tableData.dataGroups[i].push(tdVal);
 });
 });
 var dataSum = function(){
 var dataSum = 0;
 for(var i in tableData.dataGroups){

CHAPTER 6 ■ DRAWING A PIE CHART

90

 var points = tableData.dataGroups[i];
 for(var j in points){
 dataSum += points[j];
 }
 }
 return dataSum;
 }
 var dataSum = dataSum();
});

You then write an unordered list tag, with every list item consisting of a label shown next to its
corresponding slice, as demonstrated in Listing 6-5.

Listing 6-5. ch6_01.html

$(document).ready(function(){
 ...
 var dataSum = dataSum();
 var labels = $('<ul class="labels">')
 .insertBefore(canvas);
});

Now, as Listing 6-6 illustrates, you can draw the slices of the pie, one by one.

Listing 6-6. ch6_01.html

$(document).ready(function(){
 ...
 var labels = $('<ul class="labels">')
 .insertBefore(canvas);
 for(var i in tableData.dataGroups){
 var sum = 0;
 var points = tableData.dataGroups[i];
 for(var j in points){
 sum += points[j];
 }
 var fraction = sum/dataSum;
 ctx.beginPath();
 ctx.moveTo(centerx, centery);
 ctx.arc(centerx, centery, radius,
 counter * Math.PI * 2 - Math.PI * 0.5,
 (counter + fraction) * Math.PI * 2 - Math.PI * 0.5, false);
 ctx.lineTo(centerx, centery);
 ctx.closePath();
 ctx.fillStyle = colors[i];
 ctx.fill();
 var sliceMiddle = (counter + fraction/2);
 var distance = radius * 1.2;
 var labelx = Math.round(centerx + Math.sin(sliceMiddle * Math.PI * 2) *
 (distance));
 var labely = Math.round(centery - Math.cos(sliceMiddle * Math.PI * 2) *
 (distance));
 var leftPlus = (labelx < centerx) ? '40' : '0' ;

CHAPTER 6 ■ DRAWING A PIE CHART

91

 var percentage = parseFloat((fraction*100).toFixed(2));
 var labelval = percentage + "%";
 var labeltext = $('' + labelval +'')
 .css('font-size', radius / 8)
 .css('color', colors[i]);
 var label = $('<li class="label-pos">')
 .appendTo(labels)
 .css({left: labelx-leftPlus, top: labely})
 .append(labeltext);
 counter+=fraction;
 }
});

Let us break down the listing:

You are using a path to draw each slice, employing the •฀ ctx.arc() function to account for the
circle’s edge.

The •฀ counter is the cumulative value directly correlated to the percentage covered by the slices
already drawn, and it is a value from 0 to 1. When this value is 1, you have drawn 100 percent
of the pie.

The variable •฀ fraction is the percentage covered by each single slice, and the corresponding
percentage is stored in the variable with the same name: percentage.

Next, you define the •฀ sliceMiddle variable, which represents the angle (percentage) of the
bisector of each slice. You use the sliceMiddle value to place the label at the right angle,
which is perfectly in the middle of the slice.

You choose to place the label reporting the percentage just outside the slices (but nothing •฀
would prevent you from representing them inside). The distance variable is how far from the
center of the pie you decide to place the label. Here, you select a value corresponding to 120
percent of the radius.

Each label is written in the web page as a dynamic •฀ tag, in a font size that is proportional
to the size of the pie and a color corresponding to the country (series).

If you want to see how these dynamically generated rows are structured, you can use Firebug or DevTools
(see Chapter 1), selecting the HTML tab from the menu. Figure 6-2 shows the particular structure that you just
generated dynamically.

Figure 6-2. Using Firebug, it is possible to see the HTML structure dynamically generated

CHAPTER 6 ■ DRAWING A PIE CHART

92

Completing the Pie Chart
To complete your pie chart, you need to add a title. You can take it directly, from inside the table, making a selection
on caption, as presented in Listing 6-7.

Listing 6-7. ch6_01.html

$(document).ready(function(){
 ...
 for(var i in tableData.dataGroups){
 ...
 }
 $('<div class="chart-title">'+table.find('caption').html() + '</div>')
 .insertBefore(canvas);
});

The last but not least element to add to your chart is a legend. This is especially important for this type of chart,
as there are no references to the data series that correspond to the colors of the slices. Thus, you must add this element,
as shown in Listing 6-8.

Listing 6-8. ch6_01.html

$(document).ready(function(){
 ...
 $('<div class="chart-title">'+table.find('caption').html() + '</div>')
 .insertBefore(canvas);
 var legendList = $('<ul class="legend">')
 .insertBefore(canvas);
 for(var i in tableData.legend){
 $(''+ tableData.legend[i] +'')
 .prepend('')
 .appendTo(legendList);
 }
});

Also, you have added many classes to be referenced in the Cascading Style Sheets (CSS) styles statements
(see Listing 6-9). Furthermore, you must place the canvas in top part of the page, so you need to position the table
below it, setting the top and left CSS attributes of the table.myTable class.

Listing 6-9. ch6_01.html

<style>
 ...
table.myTable {
 font-family: verdana,arial,sans-serif;
 font-size:11px;
 color:#333333;
 border-width: 1px;
 border-color: #666666;
 border-collapse: collapse;

CHAPTER 6 ■ DRAWING A PIE CHART

93

 position: fixed;
 top: 450px;
 left: 20px;
}
 ...
ul, .li {
 margin: 0;
 padding: 0;
}
.labels {
 list-style: none;
}
.label-pos, label {
 position: absolute;
 margin-left: 0px;
 margin-top: 0px;
 padding:0;
}
.label { display: block;
 color: #fff;
 font-weight: bold;
 font-size: 1em;
}
.chart-title {
 font-size: 24;
 font-weight: bold;
 position: absolute;
 left: 150px;
 top: 10px;
 width: 100%;
}
.legend {
 list-style: none;
 position: absolute;
 left:520;
 top: 40;
 border: 1px solid #000;
 padding: 10px;
}
.legend li span {
 width: 12px;
 height: 12px;
 float: left;
 margin: 3px;
}
</style>

Finally, you obtain your pie chart presented in Figure 6-3.

CHAPTER 6 ■ DRAWING A PIE CHART

94

Adding Effects
Now that you have obtained your pie chart, you will investigate further, learning how to improve the appearance of
your chart by adding interesting effects to it. You will see how you can manipulate the color of the slices by adding
gradients. You will also discover how to animate the slices in order to create a pie chart that is interactive.

Adding a Gradient Effect
You drew your pie chart with slices filled with uniform color, but you can make some changes. For instance, you can
add a gradient effect to the slices. To accomplish this, you need to replace

ctx.fillStyle = colors[i];

with the rows in Listing 6-10.

Figure 6-3. The pie chart representing the data in the table

CHAPTER 6 ■ DRAWING A PIE CHART

95

Listing 6-10. ch6_02.html

$(document).ready(function(){
 ...
 ctx.beginPath();
 ctx.moveTo(center_x, center_y);
 ctx.arc(center_x, center_y, radius,
 counter * Math.PI * 2 - Math.PI * 0.5,
 (counter + fraction) * Math.PI * 2 - Math.PI * 0.5, false);
 ctx.lineTo(center_x, center_y);
 ctx.closePath();
 var sliceGradientColor = "#ddd";
 var sliceGradient = ctx.createLinearGradient(0, 0, w, h);
 sliceGradient.addColorStop(0, sliceGradientColor);
 sliceGradient.addColorStop(1, colors[i]);
 ctx.fillStyle = sliceGradient;
 ctx.fill();
 var sliceMiddle = (counter + fraction/2); ...
});

For the purpose of these examples, the display of the HTML table is no longer required, so you can hide it, selecting
it and then chaining the hide() function (see Listing 6-11).

Listing 6-11. ch6_02.html

$(document).ready(function(){
 ...
 $('table').hide();
});

As you can see in Figure 6-4, you have chosen a white color as gradient color overlapping the existing colors, but
you could choose any color just by writing a red-green-blue (RGB) hexadecimal into the sliceGradientColor.

Figure 6-4. Adding a white gradient to your pie chart

CHAPTER 6 ■ DRAWING A PIE CHART

96

Adding a Better Gradient Effect
But, to be honest, you are not very happy with your result, so you make additional changes to achieve a better gradient
effect (see Listing 6-12). This time, you choose a dark color, almost black, as a color gradient, assigning a very dark
gray to the sliceGradientColor variable. Furthermore, you separate the slices by creating spaces of division, so as to
enhance the gradient effect even more. Instead of drawing the slices separated, a better choice is to draw the spaces
in between, creating a white border. Thus, you define the sliceBorderWidth variable, with which you can adjust the
division size, and the sliceBorderStyle variable, to set the white color.

Listing 6-12. ch6_03.html

$(document).ready(function(){
 ...
 ctx.beginPath();
 ctx.moveTo(center_x, center_y);
 ctx.arc(center_x, center_y, radius,
 counter * Math.PI * 2 - Math.PI * 0.5,
 (counter + fraction) * Math.PI * 2 - Math.PI * 0.5, false);
 ctx.lineTo(center_x, center_y);
 ctx.closePath();
 var sliceGradientColor = "#222";
 var sliceBorderStyle = "#fff";
 var sliceBorderWidth = 4;
 var sliceGradient = ctx.createLinearGradient(0, 0, w*.7, h*.7);
 sliceGradient.addColorStop(0, sliceGradientColor);
 sliceGradient.addColorStop(1, colors[i]);
 ctx.fillStyle = sliceGradient;
 ctx.fill();
 ctx.lineWidth = sliceBorderWidth;
 ctx.strokeStyle = sliceBorderStyle;
 ctx.stroke();
 var sliceMiddle = (counter + fraction / 2);
 ...
});

Figure 6-5 shows the same pie chart, but with a black gradient that gives more depth to the slices.

CHAPTER 6 ■ DRAWING A PIE CHART

97

Creating a Pie Chart with a Slice Pulled Out
Pies are usually eaten, and, to entice you to do so, often the baker will pull a slice away from the rest of the pie to better
display his or her wares. Joking aside, if, among the different series represented in a pie chart, you want to highlight
one in particular, sometimes the relevant slice is pulled out.

Now, suppose you are interested in the third series; you can pull this slice out. To do this, first you will need to
add two new variables in the loop through the slices: startAngle and endAngle, as shown in Listing 6-13.

Listing 6-13. ch6_04.html

$(document).ready(function(){
 ...
 for(var i in tableData.dataGroups){
 var sum = 0;
 var points = tableData.dataGroups[i];
 for(var j in points){
 sum += points[j];
 }
 var fraction = sum / dataSum;
 var startAngle = counter * Math.PI * 2 - Math.PI * 0.5;
 var endAngle = (counter + fraction) * Math.PI * 2 - Math.PI * 0.5;
 ctx.beginPath();
 ctx.moveTo(center_x, center_y);
 ...
 }
 ...
});

Inside the for() loop, you have to write code that is active only for the third slice—that is, when the index i is 2
(see Listing 6-14).

Figure 6-5. Adding a black gradient and space divisions to your pie chart

CHAPTER 6 ■ DRAWING A PIE CHART

98

Listing 6-14. ch6_04.html

$(document).ready(function(){
 ...
 for(var i in tableData.dataGroups){
 var sum = 0;
 var points = tableData.dataGroups[i];
 for(var j in points){
 sum += points[j];
 }
 var fraction = sum / dataSum;
 var startAngle = counter * Math.PI * 2 - Math.PI * 0.5;
 var endAngle = (counter + fraction) * Math.PI * 2 - Math.PI * 0.5;
 if(i == 2){
 var currentPullOutDistance = 20;
 var maxPullOutDistance = 25;
 var ratio = currentPullOutDistance/maxPullOutDistance;
 var midAngle = (startAngle + endAngle) / 2;
 var actualPullOutDistance = currentPullOutDistance *
 (Math.pow(1 - ratio, .8) + 1);
 var startx = centerx + Math.cos(midAngle) * actualPullOutDistance;
 var starty = centery + Math.sin(midAngle) * actualPullOutDistance;
 ctx.beginPath();
 ctx.moveTo(startx, starty);
 ctx.arc(startx, starty, radius, startAngle,endAngle, false);
 ctx.lineTo(startx, starty);
 ctx.closePath();
 }else{
 ctx.beginPath();
 ctx.moveTo(centerx, centery);
 ctx.arc(centerx, centery, radius, startAngle,endAngle, false);
 ctx.lineTo(centerx, centery);
 ctx.closePath();
 }
 var sliceGradientColor = "#222";
 var sliceBorderStyle = "#fff";
 var sliceBorderWidth = 4;
 ...
 }
 ...
});

Figure 6-6 shows the chart with a slice pulled out.

CHAPTER 6 ■ DRAWING A PIE CHART

99

In this example, you have seen how to pull a slice out of the pie. This is the first step toward the goal that you have
set for yourself, that is, to make your pie chart interactive. The next step will be to create an animation in which you
can see a slice being extracted from the chart.

Inserting an Animation to Pull Out the Slice
With JavaScript there are no limits to the changes that you can make to your chart, except your imagination. An
additional touch to your chart might be to create an animation. For example, when the page has just been loaded, you
could display the pie chart still intact and then, gradually, pull out the slice you want to highlight with an animation.

The code that you are developing is gradually becoming more complex; therefore, it is necessary to begin
grouping lines of code together, according to their functionality, thus avoiding a repetitive and less readable code.
Let us start with the code for the gradient effect. First, you write the sliceGradient() function, which manages the
color gradient effect. This function accepts only one argument: the color gradient overlapping the slices. The function
returns a value assigned to the two-dimensional context of the canvas each time you want to apply a gradient effect to it.
After the function, let us pull out of the for() loop the definitions of the sliceBorderStyle and the sliceBorderWidth
variables.

Listing 6-15. ch6_05.html

$(document).ready(function(){
 ...
 var dataSum = dataSum();
 var labels = $('<ul class="labels">')
 .insertBefore(canvas);

 function sliceGradient(color){
 var sliceGradientColor = "#222";
 var sliceGradient = ctx.createLinearGradient(0, 0, w * .7, h * .7);
 sliceGradient.addColorStop(0, sliceGradientColor);

Figure 6-6. The pie chart with a slice pulled out

CHAPTER 6 ■ DRAWING A PIE CHART

100

 sliceGradient.addColorStop(1, color);
 return sliceGradient;
 }
 var sliceBorderStyle = "#fff";
 var sliceBorderWidth = 4;

 for(var i in tableData.dataGroups){
 var sum = 0;
 var points = tableData.dataGroups[i];
 ...
 }
 ...
});

Another function you want to develop is fraction() (see Listing 6-16). This function calculates a value from
0 to 1 that represents the fraction of the slice in relation to the total pie. As you will see, the value returned will, in
many cases, be useful.

Listing 6-16. ch6_05.html

$(document).ready(function(){
 ...
 var sliceBorderStyle = "#fff";
 var sliceBorderWidth = 4;

 function fraction(i) {
 var sum = 0;
 var points = tableData.dataGroups[i];
 for(var j in points){
 sum += points[j];
 }
 return (sum/dataSum);
 }

 for(var i in tableData.dataGroups){
 var sum = 0;
 var points = tableData.dataGroups[i];
 ...
 }
 ...
});

You now collect the whole sequence of functions, which you call with the context ctx, as demonstrated in
Listing 6-17. This sequence, if correctly parameterized, is always the same, so you can collect it in a function you will
call drawSlice().

Listing 6-17. ch6_05.html

$(document).ready(function(){
 ...
 function fraction(i) {
 var sum = 0;
 var points = tableData.dataGroups[i];

CHAPTER 6 ■ DRAWING A PIE CHART

101

 for(var j in points){
 sum += points[j];
 }
 return (sum/dataSum);
 }

 function drawSlice(centerx, centery, radius, counter, i) {
 var startAngle = counter * Math.PI * 2 - Math.PI * 0.5;
 var endAngle = (counter + fraction(i)) * Math.PI * 2 - Math.PI * 0.5;
 ctx.beginPath();
 ctx.moveTo(centerx, centery);
 ctx.arc(centerx, centery, radius, startAngle,endAngle, false);
 ctx.lineTo(centerx, centery);
 ctx.closePath();
 ctx.fillStyle = sliceGradient(colors[i]);
 ctx.fill();
 ctx.lineWidth = sliceBorderWidth;
 ctx.strokeStyle = sliceBorderStyle;
 ctx.stroke();
 }

 for(var i in tableData.dataGroups){
 var sum = 0;
 var points = tableData.dataGroups[i];
 ...
 }
 ...
});

You can apply the same logic to the code used to generate labels as an HTML unordered list , as shown
in Listing 6-18.

Listing 6-18. ch6_05.html

$(document).ready(function(){
 ...
 function drawSlice(centerx,centery,radius,counter,i) {
 ...
 ctx.lineWidth = sliceBorderWidth;
 ctx.strokeStyle = sliceBorderStyle;
 ctx.stroke();
 }

 function drawLabels(i, counter) {
 var sliceMiddle = (counter + fraction(i)/2);
 var distance = radius * 1.2;
 var labelx = Math.round(centerx + Math.sin(sliceMiddle * Math.PI * 2) *
 (distance));
 var labely = Math.round(centery - Math.cos(sliceMiddle * Math.PI * 2) *
 (distance));
 var leftPlus = (labelx < centerx) ? '40' : '0' ;
 var percentage = parseFloat((fraction(i)*100).toFixed(2));

CHAPTER 6 ■ DRAWING A PIE CHART

102

 var labelval = percentage + "%";
 var labeltext = $('' + labelval +'')
 .css('font-size', radius / 8)
 .css('color', colors[i]);
 var label = $('<li class="label-pos">')
 .appendTo(labels)
 .css({left: labelx-leftPlus, top: labely})
 .append(labeltext);
 }

 for(var i in tableData.dataGroups){
 var sum = 0;
 var points = tableData.dataGroups[i];
 ...
 }
 ...
});

After these statements, the part in the code handling the loop through the slices is reduced to what is shown
in Listing 6-19.

Listing 6-19. ch6_05.html

$(document).ready(function(){
 ...
 function drawLabels(i, counter) {
 ...
 }

 for(var i in tableData.dataGroups){
 if(i == 2){
 counterAtI2 = counter;
 }else{
 drawSlice(centerx, centery, radius, counter, i);
 }
 drawLabels(i, counter);
 counter += fraction(i);
 }

 $('<div class="chart-title">'+table.find('caption').html() + '</div>')
 .insertBefore(canvas);
 ...
});

As you can see, the readability of the code has increased considerably, and it is also much easier to effect changes
where necessary. After you have properly separated the various parts of the code, you move on to the code that
handles the animation. The heart of the animation is the setInterval() function (see Listing 6-20). This function
has two arguments: the first is a function that implements the action to be performed, and the second is the length of
the time intervals between each execution of the function as first argument (in milliseconds). Hence, you define the
next() function, which, for every execution, will draw the slice ever more distant from the center, until it reaches the

CHAPTER 6 ■ DRAWING A PIE CHART

103

maxPullOutDistance. Therefore, you need a counter k, which will increase step by step until it reaches a maximum,
in which each execution of the function draws the slice in the same place, making it appear as if the animation is
finished (actually, it is always running).

Listing 6-20. ch6_05.html

$(document).ready(function(){
 ...
 for(var i in tableData.dataGroups){
 if(i == 2){
 counterAtI2 = counter;
 }else{
 drawSlice(centerx,centery,radius,counter,i);
 }
 drawLabels(i,counter);
 counter+=fraction(i);
 }

 var nextMove = setInterval(next, 100);
 var k = 0;
 function next() {
 var midAngle = Math.PI * (2 * counterAtI2 + fraction(2) - 0.5);
 var currentPullOutDistance = k;
 var maxPullOutDistance = 45;
 var ratio = currentPullOutDistance / maxPullOutDistance;
 var actualPullOutDistance = currentPullOutDistance * (Math.pow(1 - ratio, .8) + 1);
 var startx = centerx + Math.cos(midAngle) * actualPullOutDistance;
 var starty = centery + Math.sin(midAngle) * actualPullOutDistance;
 drawSlice(startx, starty, radius, counterAtI2, 2);
 if(k < maxPullOutDistance){
 k++;
 }else{
 k = maxPullOutDistance;
 clearInterval(nextMove);
 }
 }

 $('<div class="chart-title">'+table.find('caption').html() + '</div>')
 .insertBefore(canvas);
 ...
});

If you load the web page, you can see your animation, as presented left to right in Figure 6-7.

CHAPTER 6 ■ DRAWING A PIE CHART

104

Clicking a Slice to Pull It Out
In the previous example, you saw how you can implement an animation. In this and the following example you will
take a further step: adding the ability to start the animation as a result of particular events. The most common type
of event, and one that is well suited to pie charts, is to click a particular slice. . Once clicked, the slice will be pulled
straight out of the pie. You will also learn to handle the return of the slice to the pie when another slice is clicked.

You write a new slice() function, which will build a slice object and all its attributes, such as startAngle, endAngle,
counter, and fraction (see Listing 6-21). So far, you have done this implicitly, but this way, is more correct. You also
define the sliceAll array, which will contain all the slices of the pie.

Listing 6-21. ch6_06.html

$(document).ready(function(){
 ...
 function drawLabels(i, counter) {
 ...
 }

 function slice(counter,i){
 var startAngle = counter * Math.PI * 2 - Math.PI * 0.5;
 var endAngle = (counter + fraction(i)) * Math.PI * 2 - Math.PI * 0.5;
 this.startAngle = startAngle;
 this.endAngle = endAngle;
 this.counter = counter;
 this.fraction = fraction(i);
 return this;
 }
 var allSlices = new Array();

 for(var i in tableData.dataGroups){
 ...
 }
 ...
});

You modify the for() loop slightly just by adding the definition of slices, using the new slice() function, as shown
in Listing 6-22.

Figure 6-7. Different frames of the animation while the slice is being pulled away from the pie chart

CHAPTER 6 ■ DRAWING A PIE CHART

105

Listing 6-22. ch6_06.html

$(document).ready(function(){
 ...
 var allSlices = new Array();

 for(var i in tableData.dataGroups){
 allSlices[i] = new slice(counter, i);
 drawSlice(centerx, centery, radius, counter, i);
 drawLabels(i, counter);
 counter += fraction(i);
 }
 var nextMove = setInterval(next, 100);
 var k = 0;
 ...
});

Before going any further, let us add the global variables to the code (see Listing 6-23). At the same time, the
nextMove and k variables must to be deleted or commented out.

Listing 6-23. ch6_06.html

$(document).ready(function(){
 ...
 for(var i in tableData.dataGroups){
 allSlices[i] = new slice(counter,i);
 drawSlice(centerx,centery,radius,counter,i);
 drawLabels(i,counter);
 counter+=fraction(i);
 }
 var sliceToPullout = -1;
 var sliceToPullin = 0;
 //var nextMove = setInterval(next, 100);
 //var k = 0;
 function next() {
 ...
 }
 ...
});

Next, you activate the capture of the mouse click event on the canvas and link it to a function you will call
handleChartClick(), as illustrated in Listing 6-24.

Listing 6-24. ch6_06.html

$(document).ready(function(){
 ...
 function next() {
 ...
 }

CHAPTER 6 ■ DRAWING A PIE CHART

106

 $('#myCanvas').click(handleChartClick);
 $('<div class="chart-title">'+table.find('caption').html() + '</div>')
 .insertBefore(canvas);
 $('table').hide();
});

Now, you have to implement thehandleChartClick() function, which you have just inserted as argument in the
click() function (see Listing 6-25). The mouseX and mouseY variables store the coordinates of the point on the canvas
where you click the mouse button. These values are analyzed to ascertain whether they correspond to the pie surface
and to which slice they correspond. Once the slice has been identified, it is marked as outgoing, and the one currently
pulled out is marked as incoming. Then, the next() function is thrown. This implements the actions to be taken on
the canvas.

Furthermore, you must take into consideration the possibility that the clicked slice is the slice extracted. In this
case, you go back to the initial state, when all the slices are in the pie.

Listing 6-25. ch6_06.html

$(document).ready(function(){
 ...
 function next() {
 ...
 }

 function handleChartClick (clickEvent) {
 var mouseX = clickEvent.pageX - this.offsetLeft;
 var mouseY = clickEvent.pageY - this.offsetTop;
 var xFromCentre = mouseX - centerx;
 var yFromCentre = mouseY - centery;
 var distanceFromCentre =
 Math.sqrt(Math.pow(Math.abs(xFromCentre), 2) +
 Math.pow(Math.abs(yFromCentre), 2));
 if (distanceFromCentre <= radius) {
 var clickAngle = Math.atan2(yFromCentre, xFromCentre);
 if(yFromCentre < 0 && xFromCentre < 0)
 clickAngle = (Math.PI + clickAngle) + Math.PI;
 for (var i in allSlices) {
 if (clickAngle >= allSlices[i].startAngle &&
 clickAngle <= allSlices[i].endAngle) {
 sliceToPullin = sliceToPullout;
 sliceToPullout = i;
 if(sliceToPullout == sliceToPullin)
 sliceToPullout = -1;
 next(sliceToPullout,sliceToPullin);
 }
 }
 }
 }
 $('#myCanvas').click (handleChartClick);
 $('<div class="chart-title">'+table.find('caption').html() + '</div>')
 .insertBefore(canvas);
 $('table').hide();
});

CHAPTER 6 ■ DRAWING A PIE CHART

107

You replace the already existing next() function with a new one that takes two parameters: out and ins
(see Listing 6-26). Each slice is identified with a number that corresponds to the index of the loop through the series.
Out and ins are variables that store information about which slice must be pulled out of the pie and which slice must
be reinserted. Only when a slice is clicked is the event captured, and the next() function is thrown. The first thing it
does is to clear the entire canvas with the clearRect() function. As the loop is passed through all the slices, they are
drawn, one by one. If the slice’s index is equal to the variable out, the slice will be pulled out of the pie, but if its index
is equal to ins, it will be pulled into the pie.

Listing 6-26. ch6_06.html

$(document).ready(function(){
 ...
 function next(out,ins) {
 ctx.clearRect (0, 0, canvas.width(), canvas.height());
 ctx.lineWidth = 1;
 ctx.strokeStyle = '#000';
 ctx.strokeRect(margin.left,margin.top,w,h);
 for(var i in allSlices){
 var counter = allSlices[i].counter;
 var startAngle = allSlices[i].startAngle;
 var endAngle = allSlices[i].endAngle;
 var fraction = allSlices[i].fraction;
 var maxPullOutDistance = 30;
 if(i == out){
 //Pull out
 var currentPullOutDistance = 30;
 var ratio = currentPullOutDistance / maxPullOutDistance;
 var midAngle = (startAngle + endAngle) / 2;
 var actualPullOutDistance =
 currentPullOutDistance * (Math.pow(1 - ratio, .8) + 1);
 var startx = centerx + Math.cos(midAngle) * actualPullOutDistance;
 var starty = centery + Math.sin(midAngle) * actualPullOutDistance;
 drawSlice(startx, starty, radius, counter, i);
 }else if(i == ins){
 //Push In
 var currentPullOutDistance = 0;
 var ratio = currentPullOutDistance / maxPullOutDistance;
 var midAngle = (startAngle + endAngle) / 2;
 var actualPullOutDistance = currentPullOutDistance *
 (Math.pow(1 - ratio, .8) + 1);
 var startx = centerx + Math.cos(midAngle) * actualPullOutDistance;
 var starty = centery + Math.sin(midAngle) * actualPullOutDistance;
 drawSlice(startx, starty, radius, counter, i);
 }else{
 drawSlice(centerx, centery, radius, counter, i);
 }
 }
 }

CHAPTER 6 ■ DRAWING A PIE CHART

108

 function handleChartClick (clickEvent) {
 ...
 }
 ...
});

Now, when you load the web page, you get an interactive pie chart (see Figure 6-8)!

Figure 6-8. The user can choose which slice to extract from the pie

Clicking a Slice to Pull It Out with Animation
Now that you understand how to connect an event to a function, you have to make sure that the mouse click activates
an animation. First, you add two counters, as shown in Listing 6-27. These are used to store the steps (distance) to
cover from the center of the pie for the outgoing and incoming slices. When one counter is at the maximum distance,
the other must be at 0.

CHAPTER 6 ■ DRAWING A PIE CHART

109

Listing 6-27. ch6_06.html

$(document).ready(function(){
 ...
 var sliceToPullout = -1;
 var sliceToPullin = 0;
 var k1 = 0;
 var k2 = 20;
 function next() {
 ...
 }
 ...
});

You insert two animations simultaneously, one handling the incoming slice and the other handling the outgoing
slice. To accomplish this, you call two different setInterval() functions; one for when the index i matches the out
value and the other for when i matches the ins value (see Listing 6-28). You must also define two different functions
that describe two different actions so that you can pass them as arguments to the two setInterval() functions.

Listing 6-28. ch6_06.html

$(document).ready(function(){
 ...
 function next(out,ins) {
 ctx.clearRect (0, 0, canvas.width(), canvas.height());
 ctx.lineWidth = 1;
 ctx.strokeStyle = '#000';
 ctx.strokeRect(margin.left,margin.top,w,h);
 for(var i in allSlices){
 var counter = allSlices[i].counter;
 var startAngle = allSlices[i].startAngle;
 var endAngle = allSlices[i].endAngle;
 var fraction = allSlices[i].fraction;
 var maxPullOutDistance = 25;
 if(i == out){
 var nextMove = setInterval(pullOut, 100);
 }else if(i == ins){
 var nextMove = setInterval(pushIn, 100);
 }else{
 drawSlice(centerx, centery, radius, counter, i);
 }
 }
}

 function handleChartClick (clickEvent) {
 ...
 }
 ...
});

Now, you have to implement the pullout() function (see Listing 6-29). There is nothing new here, compared
with the previous examples, except that at the end, you need to manage the k1 counter.

CHAPTER 6 ■ DRAWING A PIE CHART

110

Listing 6-29. ch6_06.html

$(document).ready(function(){
 ...
 function next() {
 ...
 }

 function pullOut(){
 var s = sliceToPullout;
 var counter = allSlices[s].counter;
 var startAngle = allSlices[s].startAngle;
 var endAngle = allSlices[s].endAngle;
 var fraction = allSlices[s].fraction;
 var maxPullOutDistance = 25;
 var currentPullOutDistance = k1;
 var ratio = currentPullOutDistance / maxPullOutDistance;
 var midAngle = (startAngle + endAngle) / 2;
 var actualPullOutDistance = currentPullOutDistance * (Math.pow(1 - ratio, .8) + 1);
 var startx = centerx + Math.cos(midAngle) * actualPullOutDistance;
 var starty = centery + Math.sin(midAngle) * actualPullOutDistance;
 drawSlice(startx, starty, radius, counter, s);
 if(k1 < 20){
 k1++;
 }else{
 k1 = 20;
 clearInterval(nextMove);
 }
 }

 function handleChartClick (clickEvent) {
 ...
 }
 ...
});

The same applies for the pushIn() function, as demonstrated in Listing 6-30.

Listing 6-30. ch6_06.html

$(document).ready(function(){
 ...
 function pullOut() {
 ...
 }

 function pushIn(){
 var s = sliceToPullin;
 var counter = allSlices[s].counter;
 var startAngle = allSlices[s].startAngle;
 var endAngle = allSlices[s].endAngle;
 var fraction = allSlices[s].fraction;
 var maxPullOutDistance = 25;

CHAPTER 6 ■ DRAWING A PIE CHART

111

 var currentPullOutDistance = k2;
 var ratio = currentPullOutDistance / maxPullOutDistance;
 var midAngle = (startAngle + endAngle) / 2;
 var actualPullOutDistance = currentPullOutDistance * (Math.pow(1 - ratio, .8) + 1);
 var startx = centerx + Math.cos(midAngle) * actualPullOutDistance;
 var starty = centery + Math.sin(midAngle) * actualPullOutDistance;
 drawSlice(startx, starty, radius, counter, s);
 if(k2 > 0){
 k2--;
 }else{
 k2 = 0;
 clearInterval(nextMove);
 }
 }

 function handleChartClick (clickEvent) {
 ...
 }
 ...
});

For the event handler function, handleChartClick(), you need to reset the values for the k1 and k2 counters so
that a new animation starts every time you click a slice (see Listing 6-31).

Listing 6-31. ch6_06.html

$(document).ready(function(){
 ...
 function handleChartClick (clickEvent) {
 ...
 if (distanceFromCentre <= radius) {
 var clickAngle = Math.atan2(yFromCentre, xFromCentre);
 if(yFromCentre < 0 && xFromCentre < 0)
 clickAngle = (Math.PI + clickAngle) + Math.PI;
 for (var i in allSlices) {
 if (clickAngle >= allSlices[i].startAngle &&
 clickAngle <= allSlices[i].endAngle) {
 sliceToPullin = sliceToPullout;
 sliceToPullout = i;
 if(sliceToPullout == sliceToPullin)
 sliceToPullout = -1;
 k1 = 0;
 k2 = 20;
 next(sliceToPullout,sliceToPullin);
 }
 }
 }
 }
 ...
});

With this example, you can see the possibility of implementing a chart with interactive animations that react to
events triggered by the users.

CHAPTER 6 ■ DRAWING A PIE CHART

112

Other Effects
Throughout the book, you will find that there are other effects that you can add to your chart, and you will see many of
them are already implemented in specialized libraries in the representation of charts.

One such effect drawing a chart on the browser, can be done so that the elements that compose the chart are
drawn one after the other, instead of all at once. This effect results in a fluctuating animation. Another effect that will
be discussed in detail is the highlighting of the elements representing data (such as a slice, a bar, or a data point on
a line). When the user mouses over one of these items, the chart may show some small animations, such as changing
the shape or color of the element or creating a small box containing additional information (a tooltip).

Summary
With this chapter, you have finished learning about the development of the three most common charts, using the
same set of data obtained from an HTML table. You have also seen that it is possible to enrich your chart by inserting
animations in response to certain events triggered by the user, such as clicking one of the slice in a pie chart to pull it
out of the chart.

In the next chapter, you will come to the end of the first part of this book. You will discover how all that you
have implemented separately in the last few chapters can be merged into a single module: a JavaScript library that
produces charts. You will come to understand how these kinds of libraries work—libraries that you will study in detail
in other parts of the book.

113

CHAPTER 7

Creating a Library for Simple Charts

As a conclusion to this first part of the book, you will use everything you have learned so far to create a library of your
own from scratch. This will be a library specialized in representing the three different types of charts that you have
seen so far: line, bar, and pie charts.

What you will be developing is a very simplified model of the JavaScript libraries currently available on the
Internet. The purpose is to help you understand the mechanisms that underlie such specialized libraries for chart
representation.

By including all the steps in this simple example, you can better see how this class of libraries works, even for
examples that are much more complex. Following the flow of data, from their definition in the HTML page to their
processing within the library, you will discover how the data are converted into graphic elements to form the type
of chart you are most interested in. The gradual implementation of this library will illuminate the reasons why the
jQuery library is the basis of many such libraries. Thanks to its functions, it is possible to manage the components of
the HTML page dynamically. This library also plays a key role in the implementation and management of a number
of parameters that will have a direct influence on the properties of graphic elements created, thus characterizing the
different chart representations that are possible without your having to modify the code, each time specifying
a JavaScript object in which you will pass all these parameters.

In the previous chapters, you have already developed the code you will need here. You have seen how to manage
data iteratively, how to convert the data into graphics, thanks to the context of the canvas and the many functions that
jQuery provides. In this way, you created three of the most common types of charts.You will use the code that you
developed to create your library, discovering how to parameterize it so that you can decide which chart to represent
and how to do so when it is time to call your library, without modifying the code.

Creating a Library
First, you need to define your new library and include it in your web page. To this end, you create a new file that
contains the definition of the myLibrary() function. You save this file as myLibrary.js; this will be your library and
can be reused whenever you want to include it in a web page (see Listing 7-1).

Listing 7-1. myLibrary.js

function myLibrary(target, data, options){
 //add the JavaScript code here
}

At the same time, you begin to implement a new web page, including the myLibrary file in it, as shown in
Listing 7-2.

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

114

Listing 7-2. ch7_01.html

<HTML>
<HEAD>
<TITLE>MyChart</TITLE>
</HEAD>
<BODY>
<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="./mylibrary.js"></script>
<script>
$(document).ready(function(){

 // add data and options here

 myLibrary("#myCanvas", data, options);
});
</script>
<canvas id="myCanvas" width="500" height="400"> </canvas>
</BODY>
</HTML>

As you can see, first you have included the jQuery library in the web page, so that you will be able to take
advantage of all the methods that this library offers when using your code.

Note ■ If you prefer to include the jQuery library with a content delivery network (CDN) service, you need to use this

reference:

<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>

For further information about the workspace and library’s path, see Appendix A.

Main Features: Target, Data, and Options
Inside the $(document).ready() function, you call your library with the myLibrary() function. With this call, you pass
three different arguments:

•฀ target

•฀ data

•฀ options

You will find that this type of call is very common in many libraries, including jqPlot and Highcharts.
Thus, in implementing your library, you already begin to deal with the concepts that will form the basis of
subsequent chapters.

http://code.jquery.com/jquery-1.9.1.min.js

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

115

target is the name given to the ID class of the canvas. The target is passed into the library
to enable you to define a context and draw all the graphics needed inside. Nothing prevents
you from using different canvases in the same web page, each representing a different type
of chart, but all must be distinguishable by means of a different name given to the target.

data is the array containing your input data. In the previous chapters, you used the data
contained in a table and pulled it out through the parser you implemented. This helped
you understand the potential of jQuery, but, in fact, most of the time these input values can
have any origin and assume any form. Usually, the conversion into a readable format is not
the job of the library, but of other, supporting code. Thus, for your library, the input format
must be an array.

options is an object data type and can also assume complex structures, for which you need
to specify a number of properties associated with attribute values. You will use this type of
structure to pass a whole series of parameters to the library, characterizing all the graphic
components of your chart. Basically, this entails defining a set of guidelines on how you
want your library to represent your chart.

Once you become familiar with these basic concepts, you will see how all the libraries covered by this book, as
well as others on the Internet, will be much easier to comprehend and use.

The library that you are implementing, like all others, will accept input data in the form of an array. Instead of
implementing the parser, which extracts values from an HTML table, you write data directly, in the form of numerical
arrays. The data variable will be defined within $(document).ready() before calling the myLibrary()function (see
Listing 7-3).

Listing 7-3. ch7_01.html

$(document).ready(function(){
 var data = [[12, 40, 75, 23, 42, 80],
 [3, 22, 40, 27, 35, 21],
 [60, 80, 16, 28, 33, 26],
 [46, 7, 14, 26, 36, 24]];
 myLibrary("#myCanvas",data,options);
});

Asmentioned earlier, these are the numerical values of the HTML table (see Figure 7-1). But, what happened
to the heading, with the months of the year and the names of nations?You will express these two sets of values as an
array as well, but instead of introducing them as input data, you use them as properties of the chart to be inserted
through options.

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

116

You can consider the months of the year tick labels (also called categories), but with regard to the names of
nations, these are nothing more than the names of the series of values, which will be reported in a legend and to
which a different color will be assigned. In fact, most of the labelswill be assigned to the components of the chart, so it
is preferable to pass them through options (see Listing 7-4). Previously, you defined a sequence of colors through an
array. Thus, you will pass this array in options as well.

Listing 7-4. ch7_01.html

$(document).ready(function(){
 var data = [[12, 40, 75, 23, 42, 80],
 [3, 22, 40, 27, 35, 21],
 [60, 80, 16, 28, 33, 26],
 [46, 7, 14, 26, 36, 24]];
 var options = {
 categories: ["May 2012", "Jun 2012", "Jul 2012",
 "Aug 2012", "Sep 2012", "Oct 2012"],
 series: ["USA","Canada","Australia", "Brazil"],
 colors: ['#be1e2d', '#666699', '#92d5ea', '#ee8310'],
 };
 myLibrary("#myCanvas",data,options);
});

Figure 7-1. The input data can come from any kind of source (e.g., a table); the important thing to keep the data structure

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

117

However, you have forgotten the most important thing. What type of chart do you want to use? You will specify
this information in options as well, defining, in this particular case, a type property with three possible values:

•฀ line

•฀ bar

•฀ pie

This is the tip of the iceberg in terms of what you can parameterize within your chart. In implementing your
library, any parameter that characterizes the appearance or functionality of a graphic element can be set externally
through the options object, as demonstrated in Listing 7-5.

Listing 7-5. ch7_01.html

$(document).ready(function(){
 var data = [[12, 40, 75, 23, 42, 80],
 [3, 22, 40, 27, 35, 21],
 [60, 80, 16, 28, 33, 26],
 [46, 7, 14, 26, 36, 24]];
 var options = {
 //type: 'line',
 type: 'bar',
 //type: 'pie',
 categories: ["May 2012", "Jun 2012", "Jul 2012",
 "Aug 2012", "Sep 2012", "Oct 2012"],
 series: ["USA","Canada","Australia", "Brazil"],
 colors: ['#be1e2d', '#666699', '#92d5ea', '#ee8310'],
 };
 myLibrary("#myCanvas",data,options);
});

Here, we take only a few, small cases as examples, because our purpose is illustrative; what is important is to
understand the basic methodology. For instance, when defining the canvas in previous cases, you specified margins
in the drawing area. However, this is a case in which it would be more appropriate to leave the possibility open for
these parameters to be defined outside the library, directly by the users.

In other cases, there might be even more specific parameters, typical of a single type of chart. In this case, you
will have a further nested structure, such as an options object inside another options object that is specific to only
one type of chart. Such an approach is the basis, for example, of the large number of properties and subproperties
that constitute the options object in jqPlot, a library that you will look into in the next part of the book. Therefore, by
way of example, let us insert the barGroupMargin property as a specific parameter to the bar chart (see Figure 7-2).
With this property, you can control the distance between the bars. Because this property is specific to only one type of
chart, it will be specified within a bar object, contained in turn inside options.

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

118

Even the margins of the canvas can be defined as properties within options. In this way, you can adjust the
position of your chart without needing each time to change the code in the myLibrary.js library.

Using this approach, you subdivide the properties, depending on the area of influence in the hierarchy of
options, assigning them to the object that describes that area (see Figure 7-3).

In this case, you have a number of properties to be set within the options object, as shown in Listing 7-6.

Listing 7-6. ch7_01.html

$(document).ready(function(){
 var data = [[12, 40, 75, 23, 42, 80],
 [3, 22, 40, 27, 35, 21],
 [60, 80, 16, 28, 33, 26],
 [46, 7, 14, 26, 36, 24]];
 var options = {
 //type: 'line',
 type: 'bar',
 //type: 'pie',
 categories: ["May 2012", "Jun 2012", "Jul 2012",
 "Aug 2012", "Sep 2012", "Oct 2012"],

Figure 7-3. The hierarchy of the options object reflects the hierarchy of the elements that form the chart

Figure 7-2. Setting the barGroupMargin property, you can modify the distance between the bars

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

119

 series: ["USA","Canada","Australia", "Brazil"],
 colors: ['#be1e2d', '#666699', '#92d5ea', '#ee8310'],
 margins: {top: 30, right: 10, bottom: 10, left: 30},
 bar: {
 barGroupMargin: 4
 }
 };
 myLibrary("#myCanvas",data,options);
});

You have thus finished defining all there is to define in the web page. Now, the input data must be processed and
converted into graphic elements, using the data array. You also have a whole series of parameters characterizing the
chart within your options object. Finally, you have indicated the target, that is, the canvas on which you will draw
your chart. So, let us look inside myLibrary to tackle all these issues.

Implementing the Library
Now that you have finished defining everything in the web page, you must begin to implement your library. If you go
back to look at the code that you used to obtain your line chart, bar chart, and pie chart, you will find that these codes
have many parts in common. It is these common parts that form the backbone of the library, whereas those parts
specific to a type of chart will be implemented separately, within an if() statement that will activate only if the type
selected in options corresponds.

Setting the Canvas
One of the common parts of the code is the definition of the context to apply to the canvas, shown in Listing 7-7.

Listing 7-7. myLibrary.js

function myLibrary(target,data,options){
 var canvas = $(target);
 var margin = options.margins;
 var w = canvas.width() - margin.left - margin.right,
 h = canvas.height() - margin.top - margin.bottom;

 var ctx = canvas.get(0).getContext("2d");
 if(options.type === 'pie'){
 ctx.strokeRect(margin.left, margin.top, w, h);
 } else {
 ctx.translate(0, canvas.height());
 ctx.strokeRect(margin.left, -margin.bottom, w, -h);
 }
};

As you can see, it is here that the target argument is used. With regard to the definition of the margins, you must
remember to define them within the options object, and so you will read the values that have been defined inside.To
access these values is really very simple; you just have to define the statement each time it is necessary:

options.property

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

120

Thus, margins will use options.margins. In this part of code, the only thing that distinguishes between the three
types of charts is the rectangle defining the design area, the orientation of which agrees with the page for the pie chart,
whereas for the line chart and the bar chart, the orientation is reversed. That is why ctx.translate() is applied only if
options.type is different from 'pie'.

Drawing the Axes, Tick Labels, and Grid
Now, let us add the code to your library. This code handles the creation of the x and y axis tick labels. These
components are only needed for line charts and bar charts, as these are represented on the Cartesian axes; the pie chart
does not use them. Therefore, you apply the condition inside the if() statement so that the code is executed only for
these two types of charts. The code you are implementing is the same as that used in the previous chapters, except that
in this case, you have replaced the variables with others available in the options object and data array (see Listing 7-8).

Listing 7-8. myLibrary.js

function myLibrary(target,data,options){
 ...
 var ctx = canvas.get(0).getContext("2d");
 if(options.type === 'pie'){
 ctx.strokeRect(margin.left, margin.top, w, h);
 } else {
 ctx.translate(0, canvas.height());
 ctx.strokeRect(margin.left, -margin.bottom, w, -h);
 }

 if(options.type === 'line' || options.type === 'bar'){
 var minVal = 0;
 var maxVal = 0;
 data.forEach(function(d,i){
 var min = Math.min.apply(null, d);
 if(min < minVal)
 minVal = min;
 var max = Math.max.apply(null, d);
 if(max > maxVal)
 maxVal = max;
 });
 maxVal = 1.1 * maxVal;

 //calculate yLabels
 var yLabels = [];
 var yDeltaPixels = 30;
 var nTicks = Math.round(h / yDeltaPixels);
 var yRange = maxVal - minVal;
 var yDelta = Math.ceil(yRange / nTicks);
 var yVal = minVal;
 while(yVal < (maxVal - yDelta)){
 yLabels.push(yVal);
 yVal += yDelta;
 }
 yLabels.push(yVal);
 yLabels.push(maxVal);

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

121

 //draw xLabels
 if(options.type === 'line'){
 var xDelta = w / (options.categories.length - 1);
 }
 if(options.type === 'bar'){
 var xDelta = w / (options.categories.length);
 }
 var xlabelsUL = $('<ul class="labels-x">')
 .width(w)
 .height(h)
 .insertBefore(canvas);
 $.each(options.categories, function(i){
 var thisLi = $('' + this + '')
 .prepend('')
 .css('left', xDelta * i)
 .width(0)
 .appendTo(xlabelsUL);
 var label = thisLi.find('span.label');
 });

 //draw yLabels
 var yScale = h / yRange;
 var liBottom = h / (yLabels.length-1);
 var ylabelsUL = $('<ul class="labels-y">')
 .width(w)
 .height(h)
 .insertBefore(canvas);
 $.each(yLabels, function(i){
 var thisLi = $('' + this + '')
 .prepend('')
 .css('bottom', liBottom * i)
 .prependTo(ylabelsUL);
 var label = thisLi.find('span:not(.line)');
 var topOffset = label.height()/-2;
 if(i == 0){ topOffset = -label.height(); }
 else if(i== yLabels.length-1){ topOffset = 0; }
 label
 .css('margin-top', topOffset)
 .addClass('label');
 });
 }
};

If you take a look at the Cascading Style Sheets (CSS) styles defined in the previous chapters, for the three types of
charts, you will see that they are not all the same, especially for certain classes of style. To overcome this problem, the
simplest approach is to define these attributes, using the css() function for the various classes of style (or, rather, the
tag representing them) at the time of their definition. Thus, you can have style classes with the same name for all three
types of charts, but with different values precisely because each of them has its own css() functions.

For example, when you define the CSS class span.label, which regulates the x axis tick labels, these must behave
differently, according to whether you are working on a line chart or a bar chart. If you want to represent a line chart,
the tick labels will be reported at the ticks, but if you want to represent a bar chart, the labels should be reported at

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

122

two ticks. You therefore have to define the attributes of the same span.label class in a different way, and you do so by
adding a left margin of 40 pixels with the css() function exclusive to bar charts. The relevant part of the code is shown
in Listing 7-9.

Listing 7-9. myLibrary.js

function myLibrary(target,data,options){
 ...
 if(options.type === 'line' || options.type === 'bar'){
 ...
 $.each(options.categories, function(i){
 var thisLi = $('' + this + '')
 .prepend('')
 .css('left', xDelta * i)
 .width(0)
 .appendTo(xlabelsUL);
 var label = thisLi.find('span.label');
 if(options.type === 'line'){
 label.addClass('label');
 }
 if(options.type === 'bar'){
 label.css('margin-left', '40px')
 .addClass('label');
 }
 });

 //draw yLabels
 var yScale = h / yRange;
 var liBottom = h / (yLabels.length-1);
 ...
 }
};

Because we are talking about CSS classes, let us add to your web page all the definitions that you used in the
previous chapters, definitions that remain valid for all three types. But, instead of adding them directly to your web
page, writing them between the <style></style> tags, you have to considerthese CSS definitions a part of the library;
therefore, it is better to write them in a new CSS file, which you will call myLibrary.css (see Listing 7-10).

Listing 7-10. myLibrary.css

canvas {
 position: relative;
}
ul,.li {
 margin: 0;
 padding: 0;
}
.labels-x, .labels-y {
 position: absolute;
 left: 37;
 top: 37;
 list-style: none;
}

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

123

.labels-x li {
 position: absolute;
 bottom: 0;
 height: 100%;
}
.labels-x li span.label {
 position: absolute;
 color: #555;
 top: 100%;
 margin-top: 5px;
 left:-15;
}
.labels-x li span.line{
 position: absolute;
 border: 0 solid #ccc;
 border-left-width: 1px;
 height: 100%;
}
.labels-y li {
 position: absolute;
 bottom: 0;
 width: 100%;
}
.labels-y li span.label {
 position: absolute;
 color: #555;
 right: 100%;
 margin-right: 5px;
 width: 100px;
 text-align: right;
}
.labels-y li span.line {
 position: absolute;
 border: 0 solid #ccc;
 border-top-width: 1px;
 width: 100%;
}
.legend {
 list-style: none;
 position: absolute;
 left: 520px;
 top: 40px;
 border: 1px solid #000;
 padding: 10px;
}
.legend li span {
 width: 12px;
 height: 12px;
 float: left;
 margin: 3px;
}

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

124

.chart-title {
 font-size: 24;
 font-weight: bold;
 position: absolute;
 left: 150px;
 top: 10px;
 width: 100%
}

To make these CSS style settings effective, the new CSS file must be included in your web page, along with a link
to the file, as presented in Listing 7-11.

Listing 7-11. myLibrary.js

<HEAD>
<TITLE>MyChart</TITLE>
</HEAD>
<BODY>
<script type="text/javascript" src="../src/jquery.min.js"></script>
<link href="./myLibrary.css" rel="stylesheet" type="text/css">
<script type="text/javascript" src="./mylibrary.js"></script>
<script>
...

Drawing Data
You now have to define the portion of the code that converts the input data into graphic elements, using the
context of the canvas (see Listing 7-12). This part is specific to each type of chart, and so you will have a different
implementation for each.

Listing 7-12. myLibrary.js

function myLibrary(target,data,options){
 ...
 if(options.type === 'line' || options.type === 'bar'){
 ...
 }
 if(options.type === 'line'){
 // draw DATA
 ctx.lineWidth = 5;
 for(var i in data){
 var points = data[i];
 ctx.moveTo(0,-points[i]);
 ctx.strokeStyle = options.colors[i];
 ctx.beginPath();
 var xVal = margin.left;
 for(var j in points){
 var relY = (points[j] * h / maxVal) + 10;
 ctx.lineTo(xVal,-relY);
 xVal += xDelta;
 }

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

125

 ctx.stroke();
 ctx.closePath();
 }
 } // end of LINE

 if(options.type === 'bar'){
 var barGroupMargin = options.bar.barGroupMargin;
 for(var i in data){
 ctx.beginPath();
 var n = data.length;
 var lineWidth = (xDelta - barGroupMargin * 2) / n;
 var strokeWidth = lineWidth - (barGroupMargin * 2);
 ctx.lineWidth = strokeWidth;
 var points = data[i];
 var xVal = (xDelta - n * strokeWidth - (n - 1) * (lineWidth - strokeWidth)) / 2;
 for(var j in points){
 var relX = margin.left + (xVal - barGroupMargin) +
 (i * lineWidth) + lineWidth / 2;
 ctx.moveTo(relX,-margin.bottom);
 var relY = margin.bottom + points[j] * h / maxVal;
 ctx.lineTo(relX, -relY);
 xVal += xDelta;
 }
 ctx.strokeStyle = options.colors[i];
 ctx.stroke();
 ctx.closePath();
 }
 } // end of bar

 if(options.type === 'pie'){
 var pieMargin = margin.top + 50;
 var centerx = Math.round(w / 2) + margin.left;
 var centery = Math.round(h / 2) + margin.top;
 var radius = centery - pieMargin;
 var counter = 0.0;
 var dataSum = function(){
 var dataSum = 0;
 for(var i in data){
 var points = data[i];
 for(var j in points){
 dataSum += points[j];
 }
 }
 return dataSum;
 }
 var dataSum = dataSum();
 var labels = $('<ul class="labels">')
 .css('list-style','none')
 .insertBefore(canvas);
 for(var i in data){
 var sum = 0;

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

126

 var points = data[i];
 for(var j in points){
 sum += points[j];
 }
 var fraction = sum / dataSum;
 ctx.beginPath();
 ctx.moveTo(centerx, centery);
 ctx.arc(centerx, centery, radius,
 counter * Math.PI * 2 - Math.PI * 0.5,
 (counter + fraction) * Math.PI * 2 - Math.PI * 0.5, false);
 ctx.lineTo(centerx, centery);
 ctx.closePath();
 ctx.fillStyle = options.colors[i];
 ctx.fill();
 var sliceMiddle = (counter + fraction / 2);
 var distance = radius * 1.2;
 var labelx = Math.round(centerx +
 Math.sin(sliceMiddle * Math.PI * 2) * (distance));
 var labely = Math.round(centery -
 Math.cos(sliceMiddle * Math.PI * 2) * (distance));
 var leftPlus = (labelx < centerx) ? '40' : '0' ;
 var percentage = parseFloat((fraction * 100).toFixed(2));
 var labelval = percentage + "%";
 var labeltext = $('' + labelval +'')
 .css('font-size', radius / 8)
 .css('color', options.colors[i])
 .css('font-weight', 'bold');
 var label = $('<li class="label-pos">')
 .appendTo(labels)
 .css({left: labelx-leftPlus, top: labely, position: 'absolute',
 padding: 0})
 append(labeltext);
 counter+=fraction;
 }
 } //end of pie
};

Adding the Legend
The last part of the code to be defined in your library is that which implements the legend component (see Listing 7-13).
Because this part is the same for all three types of charts, it is not subjected to the if() statement. Note that within the
code, the series are read by the options.series, and the colors, by the options.colors array.

Listing 7-13. myLibrary.js

function myLibrary(target,data,options){
 ...
 if(options.type === 'pie'){
 ...
 } //end of pie

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

127

 //draw the legend
 var legendList = $('<ul class="legend">')
 .insertBefore(canvas);
 for(var i in options.series){
 $(''+ options.series[i] +'')
 .prepend('')
 .appendTo(legendList);
 }
};

If you assign the three values 'pie', 'line', and 'bar' to the type property, you will have the same three charts
that you obtained in the previous sections, except that the code that generates them is condensed into one unique
version: the myLibrary.js library. In addition, you now have the advantage of being able to configure everything from
outside the library.

Default Values
But, let us say you forget to define a parameter in options. What happens then? The page you are launching would
definitely not work correctly. In fact, all libraries, including your very simple one, must contain all the values defined
within options, which in turn must be already defined with a default value. This is a very important concept, and you
will see it with the jqPlot and Highcharts libraries.

You have learned that all graphic elements can be characterized by standard parameters and that these, one
by one, create a tree structure property attribute that you can find in the options object. Any library, no matter how
simple or complex, has such an internal structure. Indeed, each library must provide its options structure, in which
each property is already specified with a default value, so that if this property is not stated in the options object and
passed as an argument to the myLibrary() function, you do not get any error, because a value would already be
assigned to that property. However, the reason for this is not merely to ensure that your library runs if you forget to
enter a value, but to get maximum results with minimum effort. Imagine a much more complex library than the one
you have just implemented, a library in which the properties to be defined are several. A library of this kind may well
be jqPlot. As you will see, you need to define only a few lines to get great results. In fact, it will be enough to write only
the parameters you want to change; this spares you a lot of time and effort.

To better understand this concept, if you do not wish to define a value in the property barGroupMargin, because,
for example, its default value of 4 suits your needs, then you simply do not have to write any reference to it within the
options object, as shown in Listing 7-14.

Listing 7-14. ch7_01b.html

var options = {
 type: 'bar',
 categories: ["May 2012", "Jun 2012", "Jul 2012",
 "Aug 2012", "Sep 2012", "Oct 2012"],
 series: ["USA", "Canada", "Australia", "Brazil"],
 colors: ['#be1e2d', '#666699', '#92d5ea', '#ee8310'],
 margins: {top: 30, right: 10, bottom: 10, left: 30},
 bar: {}
}

And, the library, with appropriate modifications placed for handling the absence of this value, assigns the default
value of 4 (see Listing 7-15).

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

128

Listing 7-15. myLibrary.js

function myLibrary(target,data,options){
 ...
 if(options.type === 'line'){
 ...
 } // end of LINE

 if(options.type === 'bar'){
 if(typeof options.bar.barGroupMargin!= 'undefined') {
 var barGroupMargin = options.bar.barGroupMargin;
 } else {
 var barGroupMargin = 4;
 }
 for(var i in data){
 ctx.beginPath();
 var n = data.length;
 ...
 } // end of bar
 ...
};

Figure 7-4 shows the three types of charts that you have implemented in the last three chapters, but this time the
code for generating them is all in a single file.

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

129

Figure 7-4. The library generates three type of charts: (a) a line chart, (b) a bar chart, and (c) a pie chart

CHAPTER 7 ■ CREATING A LIBRARY FOR SIMPLE CHARTS

130

Summary
With this chapter, you have concluded the first part of the book. You have seen how it is possible to create a library in
JavaScript that is specific to the representation of data in charts.

Learning to reuse an already implemented code to develop a library of your own, you have come to understand
how a library of this kind is structured and what the functions are that the various parts perform. Of particular
importance is the introduction to the tree structure, which we refer to as options, common to many libraries. The
options object plays an important role in defining all the settings of your graphical components and therefore in
defining how your chart will be represented.

In addition, you have seen how data, via an input array, are managed internally for this class of libraries, the role
that the jQuery library plays, and the reason why the data are structured on it.

In the next chapter, you will start the second part of the book, in which the jqPlot and Highcharts libraries will
be discussed in full. These libraries are enjoying some success among web developers. Although they are much more
complex and feature rich than the library you have just developed, with them you will find all the concepts covered in
this chapter.

131

CHAPTER 8

Introducing jqPlot

With this chapter, you start the second part of the book, concerning the jqPlot library. In the course of this chapter,
you will be introduced to the basic concepts that underlie this library. After seeing how the library is structured and
the files that compose it, you will begin to understand how easy it is to make a chart using only a few lines of code.

With a series of examples, and through the use of plug-ins, you will gradually learn how to represent any type of
chart. Everything will be done using the $.jqPlot() function, whose three arguments characterize all the features of
the jqPlot library: the target canvas, the input data array, and the options object.

Finally, after a brief illustration of how to customize a chart through the use of Cascading Style Sheets (CSS)
styles, you will take a quick look at how thinking in modules can make your implementations ordered, maintainable,
and reusable. Let us, therefore, begin our introduction to this wonderful library.

The jqPlot library
jqPlot is a JavaScript library specialized for the generation of charts in web pages. Written completely in pure
JavaScript, jqPlot is an open source project, fully developed and maintained by Chris Leonello since 2009. When
extended, the jQuery library reaches its full potential functionality. It is for this reason, in addition to its simplicity,
that jqPlot is one of the most popular libraries for the representation of charts today.

jqPlot has been very successful and has virtually supplanted other, previous libraries, such as Flot, many aspects
of which, including look and feel, jqPlot retains. In fact, the author of jqPlot often admits that he was a dedicated
user of Flot but that, over time, he came to realize its limitations. The old library lacked many capabilities; moreover,
its architecture was structured in such a way as to make it difficult to expand. So, Leonello felt the need to create a
new library that preserved all that was good in Flot but that allowed it to grow. As such, he rewrote its architecture
completely. jqPlot has a highly modular structure and, as you will see, is based on a large number of plug-ins, each
of which plays a certain role. Hence, its strongest feature is its pluggability. Every object the user draws, be it a line,
an axis, a shadow, or the grid itself, is handled by a plug-in. Every plot element has customizable setting options, and
every added plug-in can expand the functionality of the plot.

The plug-ins gradually increased in number, widening the library’s targets further. jqPlot is now a versatile and
expandable library, suitable for those who want to develop professional charts in a just a few steps.

In most cases, jqPlot allows you to draw beautiful charts without adding too many lines of code. Indeed, you will
see that jqPlot (perhaps even more than jQuery) has embraced the philosophy “Write less, do more.” I think that this is
the libary’s most appreciated aspect. Every day, more and more developers are added to the list of jqPlot users.

Including Basic Files
When you decide to take advantage of jqPlot to draw a chart on your web site, there is, as a starting point, a set of
critical files that needs to be included.

CHAPTER 8 ■ INTRODUCING JQPLOT

132

As mentioned earlier, jqPlot is essentially an extention of jQuery, and so operating with it requires the inclusion of
the jQuery plug-in (see Table 8-1). You can download this plug-in from the official jqPlot web site (www.jqplot.com),
along with all the other plug-ins that make up the jqPlot library, including the CSS file. These files are grouped in different
distributions, depending on the release version.

Table 8-1. The distributions of jqPlot and versions of jQuery on which they are based

jqPlot Version jQuery Version

1.0.6–1.0.8 1.9.1

1.0.2–1.0.5 1.6.4

Note ■ All the examples in this book use version 1.0.8 of the jqPlot library.

However, there is a small set of files that represents the core of the library and that is indispensable if you want
to include every function made possible by jqPlot. This set of basic files consists of the jQuery plug-in, the jqPlot
plug-in, and a jqPlot CSS file. There is another file that needs to be imported, but only if you want to load the page
in an Internet Explorer browser that is below version 9: an ExplorerCanvas (excanvas) script. This optional file
compensates for the lack of canvas functionality introduced by HTML5.

Thus, within the <head></head> tags of your web page, you are going to include these files (for further
information on how to set up a workspace, see Appendix A):

<!--[if lt IE 9]><script type="text/javascript" src="../src/excanvas.js"></script><![endif]-->
<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />

Instead of working with the jqPlot library locally, by downloading it from the web site, you can also use a content
delivery network (CDN) service, just as you have done with jQuery. jsDelivr (www.jsdelivr.com/#!jqplot) is a CDN
web site that offers all the most recent distributions of jqPlot.If you want to use this service, you can modify the URL as
follows:

<!--[if lt IE 9]><script type="text/javascript"
src="http://cdn.jsdelivr.net/excanvas/r3/excanvas.js"></script><![endif]-->
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css"
href="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css" />

As you will soon discover, in the network, you will come across similar files, some with and others without the
abbreviation “min” (for “minified”). You should always try to use the min versions, the compressed versions of these
files. They are faster to load. You should use their normal versions (without “min”) only when your intent is to modify
these libraries internally.

http://www.jqplot.com/
http://www.jsdelivr.com/#!jqplot
http://cdn.jsdelivr.net/excanvas/r3/excanvas.js
http://code.jquery.com/jquery-1.9.1.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css

CHAPTER 8 ■ INTRODUCING JQPLOT

133

Plot Basics
Now that you have seen how the jqPlot library is structured and have looked at the set of files you require to operate
with it, you can begin to learn how to use these files within your web page. In chart development, there are two basic
steps: the creation of an area in which to represent the chart and the insertion of a section for the JavaScript code
needed to call all the functions, variables, and series of objects that the jqPlot library makes available.

Adding a Plot Container
In Chapters 3–7, you saw how the canvas was used as a drawing area in which to develop your charts. Similarly, the
jqPlot library requires the definition of a container (a <div> element) within the <body> section of the HTML page.
This container will function as a canvas for the library.

Throughout this chapter, this container is referred to as the target. Within a web page, each target (in this case,
the plot container) is identified by a specific id. In this book, you will always find myChart as an identifier of the target
(, but it can take any name, and you must always bear in mind that more than one target may be assigned to the same
web page. Furthermore, it is also important to specify a width and a height for the target. These will define the size of
the drawing area within the web page (see Listing 8-1).

Listing 8-1. ch8_01.html

<BODY>
 ...
 <div id="myChart" style="height:400px; width:500px;"></div>
 ...
</BODY>

Creating the Plot
To be entered, jqPlot commands and almost all JavaScript code must be enclosed within a <scripts> tag. But, a web
page is divided into two sections: head and body. So, which is the best place to insert JavaScript code? Although it is
possible to place code in both sections of a library, it is preferable to place it in only one, depending on the library.
Considering how jqPlot works, you will be putting the code between the <head></head> tags.

Furthermore, jqPlot is an extension of jQuery, so you need to call all its methods inside the $(document).ready()
function if you want your code to be executed (see Listing 8-2).

Listing 8-2. ch8_01.html

$(document).ready(function(){
 // Insert all jqPlot code here.
});

Then, to create the actual plot, you must call the $.jqplot plug-in with the id of the target in which you want to
draw the chart. This call is executed by the following jQuery function:

$.jqplot(target, data, options);

The jqplot() function has three arguments; target, which is the ID of the target element in which the plot is to
be rendered—the ID attribute that you specify in the plot container; data, consisting of an array for data series; and
options, the main feature of jqPlot. Within options, you will enter the customization settings necessary to make your
chart more suitable to your needs and tastes.

CHAPTER 8 ■ INTRODUCING JQPLOT

134

If you do not define any options (yes, it is optional!), you can produce a chart following the settings for standard
options. In fact, many options are already defined, and it is not necessary to change the all settings every time you
develop a chart. If the standard options meet your requirements, you do not need to define them. This will save you a
lot of time and avoids having to write many lines of code. For example, let us write the function in Listing 8-3.

Listing 8-3. ch8_01.html

$(document).ready(function(){
 $.jqplot ('myChart', [[100, 110, 140, 130, 80, 75, 120, 130, 100]]);
});

With only a few lines of code, you can produce charts like the one in Figure 8-1.

Figure 8-1. A line chart created with only a few lines of code

From what you have just seen, you can surmise that if you do not specify any options, the default outcome will be
a line chart, and the data that you have added will be interpreted as such. The values in the array are, therefore, the y
values, and the indexes of their sequence are reported on the x axis. In later chapters, you will learn how these values
are interpreted and how to get different types of charts from the linear one.

Using jqPlot Plug-ins
The most recent jqPlot distribution offers approximately thirty plug-ins (for a list of all the jqPlot plug-ins, see
Appendix B). Each is specialized to perform a specific task, and the name is often indicative of function. You will be
looking at many of these plug-ins in the following chapters—at their uses and their main options.

CHAPTER 8 ■ INTRODUCING JQPLOT

135

Let us take, for instance, BarRenderer. This plug-in is necessary if you want the input data to be interpreted as a
bar chart:

$.jqplot ('myChart', [[100, 110, 140, 130, 80, 75, 120, 130, 100]],
{
 series:[{renderer: $.jqplot.BarRenderer}]
});

In jqPlot, we often refer to a plug-in as a renderer. This is because the architecture of the framework specifies that
each plug-in must cover a specific task. If the developer deems it necessary, then he or she will include it. In addition,
real renderer should be as independent as possible from one another. In fact, you can add as many plug-ins as you wish,
and generally their order is not important. Some plug-ins do not require that you specify any extra option or setup; they
are already defined and are directly activated just by virtue of being included. One such plug-in is Highlighter, which
highlights data points near the mouse. However, if you are not satisfied with the default settings, you can always define
the properties with new values; these plug-ins also contain additional, settable properties. Other plug-ins provide
functionalities that have to be specified in the options argument in order to be activated.

Thus, both the basic elements of the jqPlot library and the additional components, which are introduced
gradually by the included plug-ins, can be characterized by a series of attributes (in a manner very similar to that seen
with the CSS style). The jqPlot library calls these attributes options.

Understanding jqPlot Options
The key to using jqPlot effectively is to understand jqPlot’s options. The properties of any object in a chart are defined
by attributes, which can take different values. It is very important to understand how to set and use these attributes
through object types that I will refer to as options.

Inserting Options
So far, you have seen how the jqPlot() function is called within the JavaScript code and how to include the plug-ins
and data, but you have not yet observed how to enter options. You can customize the default line chart by passing
different attributes to the $.jqplot() function in this way:

$(document).ready(function(){
 $.jqplot ('myChart', [[100, 110, 140, 130, 80, 75, 120, 130, 100]],
 {
 //All the attributes here.
 });
});

The first thing to note is that it is not possible to set properties directly in the chart object after you call
$.jqplot(). At best, this will not do anything. You have to pass all the attributes in the options argument.

The options argument represents the jqPlot object in each of its properties. Everything that characterizes a chart
is expressed by a number of properties, which are set to certain values. These values differentiate a bar chart from a
line chart, regulate the stroke of a line or the length of an axis, indicate whether to display a legend and where, and
so on. Usually, when including the various plug-ins, it is not necessary to specify values for all properties; they are
already set to a default value. It is because of these default values that, in adding a plug-in, you can realize a nice chart
without adding a single line of code.If you specify a property explicitly, you are actually overwriting the value of a
property already defined with a default value.

CHAPTER 8 ■ INTRODUCING JQPLOT

136

Because our aim is to set the jqPlot object, and because this is made up of a series of components, it will be
necessary to build the options object with a structure that perfectly reflects these components by defining a whole
series of objects with their properties. Recalling the object corresponding to the component and assigning a value to
one of its properties inside the options object, you are going to overlay the default value and change the property of
the respective component of the jqPlot object. The most commonly used objects you can define inside the options
object are

•฀ seriesColors

•฀ stackSeries

•฀ title

•฀ axesDefaults

•฀ axes

•฀ seriesDefaults

•฀ series

•฀ legend

•฀ grid

•฀ cursor

•฀ highlighter

Each name reflects the component of the chart that will be affected by a change in its property value. These
objects are built by a whole series of well-defined properties, each with its own default value.

This is the structure of the jqPlot object:

jqplot object > component objects > object properties > default value

In Listing 8-4, you can see the corresponding structure that you need to follow when defining the options object.

Listing 8-4. ch8_02c.html

var options = {
 axes:{
 yaxis:{
 min: 70,
 max: 150
 },
 ...
 },
 ...
};

I believe that the easiest object to add to a chart is the title. It does not contain any property, and can often be
considered a property itself of the jqPlot object. Moreover, it is possible to set a text value directly on it, text that will
be the title of your chart. Given its simplicity, the title is a good starting point for understanding how to use options
(Listing 8-5).

CHAPTER 8 ■ INTRODUCING JQPLOT

137

Listing 8-5. ch8_02a.html

$(document).ready(function(){
 $.jqplot ('myChart', [[100, 110, 140, 130, 80, 75, 120, 130, 100]],
 {
 title: 'My first jqPlot chart'
 });
});

If you prefer, you can also define the properties of objects externally, with the jqplot() function, assigning
properties to a variable. This variable will then be passed as an argument in the jqPlot() function, as shown in
Listing 8-6. This variable is actually the options object.

Listing 8-6. ch8_02a.html

var options = { title: 'My first jqPlot chart' };
$.jqplot ('myChart', [[100, 110, 140, 130, 80, 75, 120, 130, 100]], options);

In both cases, you now have a chart with a title at the top (see Figure 8-2).

Figure 8-2. Adding a title to a line chart

To better understand how to set the jqPlot properties within the options object, let us take an example, referring
to the API Documentation section of the jqPlot web site (www.jqplot.com/docs/files/jqplot-core-js.html). Let
us say you want to hide the grid lines in your chart. In the list of properties belonging to the grid object, you will find
what you are looking for:

this.drawGridlines = true.

http://www.jqplot.com/docs/files/jqplot-core-js.html

CHAPTER 8 ■ INTRODUCING JQPLOT

138

this is the instance of the grid, and true is the default value assigned to the jqplot object at the time of its
creation. Because you want the grid to be hidden (a behavior different from that of default), you will need to replace
the value true with the value false within the jqPlot object. To do this, you have to add the drawGridlines property
within the options object definition, maintaining the structure object:{property:attribute}.

options = {grid:{drawGridlines: false}};

Now, you have a chart without grid lines (see Figure 8-3).

Figure 8-3. Hiding the grid lines in a line chart

For a full list of attributes that can be set, you can go to the official jqPlot web site
(www.jqplot.com/docs/index/General.html) or read the jqPlotOptions.txt file contained in each distribution.

Handling Options on Axes
Axes are handled a little differently from the other normal component objects, because they have four distinct children,
namely, xaxis, yaxis, x2axis, and y2axis. To illustrate axes, we therefore need a more deeply nested example. Let us say
you want to specify the min and max attributes on the y axis. To do so, you will need to specify the options object with the
structure shown in Listing 8-7.

http://www.jqplot.com/docs/index/General.html

CHAPTER 8 ■ INTRODUCING JQPLOT

139

Listing 8-7. ch8_02c.html

var options = {
 axes:{
 yaxis:{
 min:70,
 max:150
 }
 }
};

Now, the range on the y axis is between the max and min properties that you defined in options (see Figure 8-4).

Figure 8-4. A line chart focused on a specific range on the y axis

To make things easier, jqPlot provides a handy shortcut that enables us to assign the same value to the properties
of all axes in one go: the axesDefaults object. If you want to set the same value to both x and y (or x2 and y2), you
need to specify these properties only for the axesDefaults option object, assigning the value once (see Listing 8-8).

Listing 8-8. ch8_02d.html

$(document).ready(function(){

 var options = {
 axesDefaults:{
 min:0,
 max:20
 }
 };
 $.jqplot ('myChart', [[1,4,8,13,8,7,12,10,5]], options);
});

CHAPTER 8 ■ INTRODUCING JQPLOT

140

Inserting Series of Data
Earlier, you saw how to produce a simple line chart, using the settings for standard options (see the section “Creating
the Plot”). In this example the array of data was passed directly as the second argument in the function $.jqplot().
However, you can also define an array of data as a variable externally and then pass it as the second argument.

$(document).ready(function(){
 var data = [[100,110,140,130,80,75,120,130,100]];
 $.jqplot ('myChart', data);
});

Here, you find a single series of data corresponding to the values on the y axis. But, as you will see, it is possible to
pass data as (x, y) pairs of values and also to pass multiple series of data at once. These input modes vary, depending
on the chart you are designing and the requirements of the various plug-ins used. For example, if you want to input
multiple data series, you need to declare four different arrays, as shown in Listing 8-9.

Listing 8-9. ch8_03a.html

$(document).ready(function(){
 var series1 = [1, 2, 3, 2, 3, 4];
 var series2 = [3, 4, 5, 6, 5, 7];
 var series3 = [5, 6, 8, 9, 7, 9];
 var series4 = [7, 8, 9, 11, 10, 11];
 $.jqplot ('myChart', [series1, series2, series3, series4]);
});

jqPlot is able to manage multiple series without having to specify any property in options. In fact, the browser
will display a line chart with as many lines as there are data series, each in a different color, as shown in Figure 8-5.

Figure 8-5. A multiseries line chart with different colors for each series

CHAPTER 8 ■ INTRODUCING JQPLOT

141

As you can see, as well as making the code more readable and tidy, the externally defined series of data can also
assist in the future extension and manipulation of the data. Using all the tools that JavaScript makes available, you can
create, manipulate, sort, calculate, and compute an infinite variety of data.

It is possible to change the properties of the options object even for series of data. The series are inserted in a
particular order into an array passed as a second argument in the $.jqplot() function. This order will be reflected in
the creation of the series objects inside the jqPlot object. For instance, if you want only the second series not to show
its marker points, it will be necessary to leave empty the space for the properties of the first series (not to overwrite its
attributes) and then set the showMarker property to 'false' in the second space. In so doing, jqPlot will overwrite only the
values of the property of the second series. To accomplish this, you must write the options object as shown in Listing 8-10.

Listing 8-10. ch8_03b.html

$(document).ready(function(){
 var series1 = [1, 2, 3, 2, 3, 4];
 var series2 = [3, 4, 5, 6, 5, 7];
 var series3 = [5, 6, 8, 9, 7, 9];
 var series4 = [7, 8, 9, 11, 10, 11];
 var options = {
 series: [{},
 {
 showMarker: false
 }]
 }

 $.jqplot ('myChart', [series1, series2, series3, series4], options);
});

The result of these settings is the chart with four series in Figure 8-6. Note that the third series from the top has no
marker point.

Figure 8-6. A multiseries chart with a series showing no markers

CHAPTER 8 ■ INTRODUCING JQPLOT

142

If you decide to set the showMarker property in axesDefaults, instead of in the axes object, you will assign the
same value for all the series at once (see Listing 8-11).

Listing 8-11. ch8_03c.html

$(document).ready(function(){
 var series1 = [1, 2, 3, 2, 3, 4];
 var series2 = [3, 4, 5, 6, 5, 7];
 var series3 = [5, 6, 8, 9, 7, 9];
 var series4 = [7, 8, 9, 11, 10, 11];
 var options = {
 seriesDefaults: { showMarker: false }
 };
 $.jqplot ('myChart', [series1, series2, series3, series4], options);
});

Now, none of the series in the chart show any marker points (see Figure 8-7).

Figure 8-7. A multiseries chart with no markers

There is a third way to enter the data as an array. You have just seen a case in which an array is defined for each
series and then passed to the $.jqplot() function, all gathered in one array:

var series1 = [1, 2, 3, 2, 3, 4];
var series2 = [3, 4, 5, 6, 5, 7];
var series3 = [5, 6, 8, 9, 7, 9];
var series4 = [7, 8, 9, 11, 10, 11];
$.jqplot ('myChart', [series1, series2, series3, series4], options);

CHAPTER 8 ■ INTRODUCING JQPLOT

143

But, it is also possible to define all the series in a single variable, which you call dataSets:

var dataSets = {
 data1: [[1,1], [2,2], [3,3], [4,2], [5,3], [6,4]],
 data2: [[1,3], [2,4], [3,5], [4,6], [5,5], [6,7]],
 data3: [[1,5], [2,6], [3,8], [4,9], [5,7], [6,9]],
 data4: [[1,7], [2,8], [3,9], [4,11], [5,10], [6,11]]
};

Once you have declared the dataSets variable, in order to access the values, you have to specify the series inside
it, with dataSets. as a prefix. Thus, when you need to pass the four series individually as a second argument of the
jqplot() function, you must do so in this way:

$.jqplot ('myChart', [dataSets.data1, dataSets.data2, dataSets.data3, dataSets.data4], options);

Although, at the moment, this whole operation may seem too laborious, later you will see that gathering all the
data in a data set can be useful in special cases.

Renderers and Plug-ins: A Further Clarification
Normally, a renderer is an object that is attached to something in the plot in order to draw it. A plug-in, as well as
adding drawing functionality, can perform other functions, such as event handling; making calculations; and handling
the format of strings and values, such as dates. So, it is possible to consider a renderer a drawing plug-in, but the
converse is not always true.

Let us examine this slight difference in more detail with the help of some examples. You have seen, for instance,
that by entering only a single data series, you can obtain a line chart by default (see the section “Creating the Plot”).
If you want to render this series as a bar chart, you need to attach the barRenderer plugin to the seriesDefaults
object in options. Moreover, when switching from a line chart to a bar chart, it is necessary to create categories
on the x axis in order to have the bars well separated from each other. To do this, you need to attach the
CategoryAxisRenderer to the axes object in options (see Listing 8-12).

Listing 8-12. ch8_04a.html

$(document).ready(function(){
 var data = [[100, 110, 140, 130, 80, 75, 120, 130, 100]];
 var options = {
 seriesDefaults: {
 renderer: $.jqplot.BarRenderer
 },
 axes:{
 xaxis:{
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
 }
 $.jqplot ('myChart', data, options);
});

However, calling the two renderers in options is not enough. You must also load them in the page, so you have to
include the corresponding plug-ins, as shown in Listings 8-13 and 8-14 (CDN service).

CHAPTER 8 ■ INTRODUCING JQPLOT

144

Listing 8-13. ch8_04a.html

<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
<script type="text/javascript" src="../src/plugins/jqplot.barRenderer.min.js"></script>
<script type="text/javascript" src="../src/plugins/jqplot.categoryAxisRenderer.min.js"></script>

Listing 8-14. ch8_04a.html

<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css"
href="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css" />
<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.barRenderer.min.js"></script>
<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.categoryAxisRenderer.min.js"></script>

If you reload your page in the browser, the line chart has just become a bar chart, as shown in Figure 8-8.

Figure 8-8. A bar chart

By calling these two renderers to options, you replace the default renderer valid for all series in the plot with
these category renderers. The latter have in turn several properties set on default values, which may be modified as
well. Many of these properties may be specific to that particular renderer, and so they will be added to those already
defined in the jqplot object in order to introduce new features to the plot.

http://code.jquery.com/jquery-1.9.1.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.barRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.categoryAxisRenderer.min.js

CHAPTER 8 ■ INTRODUCING JQPLOT

145

Even for this class of additional properties, you can change the default values through the options object. First,
assign the desired renderer to the renderer property. Then, specify all the properties you want to set inside the
rendererOptions property. All these properties will be specified in the component object on which you want to act.
For example, if you want each bar of a given series to have a different color, you need to change the varyBarColor
property, replacing the default value false with true (see Listing 8-15).

Listing 8-15. ch8_04b.html

var options = {
 seriesDefaults: {
 renderer: $.jqplot.BarRenderer,
 rendererOptions: {
 varyBarColor: true
 }
 },
 axes:{
 xaxis:{
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
}

With the changes you have just made, the BarRenderer plugin will automatically assign a different color to each
bar (see Figure 8-9).

Figure 8-9. A bar chart with different colors

CHAPTER 8 ■ INTRODUCING JQPLOT

146

Plug-ins also have specific properties that can be set inside the options object. As mentioned earlier, not all
jqPlot plug-ins are renderers, and those that are not are easily recognizable in the jqPlot distribution, because they
do not contain the term renderer in their file names. These plug-ins perform specific functions that are not directly
related to a particular type of component in the plot. Such features enhance the capability of jqPlot in general.
Highlighter, for instance, is a plug-in that highlights data points when they are moused over. As you will see, this
plug-in has a series of tools within it that handles formatting specifiers for data values and that can show tool tip
content with an HTML structure. Other notable plug-ins include Trendline, which automatically computes and
draws trend lines for plotted data; Cursor, which represents the cursor, as displayed in the plot; and PointLabels,
which places labels at the data points.

CSS Customization
Much of the styling of jqPlot charts is done through CSS. The jquery.jqplot.css file is available in every distribution,
and it is one of the three fundamental files to be included in your web page in order to obtain a jqPlot chart.

All the components that make up the chart can be customized through CSS without having to set any of their
properties in the options object. This is to maintain consistency with all other objects in the web page: the style of the
chart, and all that is in it (inside the canvas), must be managed by CSS files, like any other HTML object. The names
of the CSS classes ruling the style of jqPlot objects begin with the prefix .jqplot-*. For example, the style class that
affects all axes is .jqplot-axis.

To illustrate how it is possible to modify some elements of the chart using CSS, let us look at how to change
the font and font size of the chart title. As with any HTML element, you simply have to recall the CSS selector of the
jqPlot element and modify the attributes. So, in this case, you add the CSS style setting in Listing 8-16.

Listing 8-16. ch8_02e.html

<style>
 .jqplot-title {
 font:italic bold 22px arial,sans-serif;
 }
</style>

With this new CSS statement, you have changed the style of the title, as Figure 8-10 shows.

Figure 8-10. Two different CSS styles applied to the title

CHAPTER 8 ■ INTRODUCING JQPLOT

147

Thinking in Modules
When things get increasingly complex, and the lines to add to your web site become many, it is best to think in terms
of modules. As well as providing better visibility and ease of maintenance, creating separate modules also promotes
the reusability of what you have just created. Let us analyze the current situation with your web page in Listing 8-17.

Listing 8-17. ch8_05a.html

<HTML>
<HEAD>
<TITLE>My first chart</TITLE>
<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
<style>
 .jqplot-title {
 font: italic bold 22px arial,sans-serif;
 }
</style>
<script class="code" type="text/javascript">
$(document).ready(function(){
 var data = [[100, 110, 140, 130, 80, 75, 120, 130, 100]];
 $(document).ready(function(){
 $.jqplot ('myChart', data,
 {
 title: 'My first jqPlot chart'
 });
 });
});
</script>
</HEAD>
<BODY>
 <div id="myChart" style="height:400px; width:500px;"></div>
</BODY>
</HTML>

If you load this web page in the browser, you obtain the line chart in Figure 8-11.

CHAPTER 8 ■ INTRODUCING JQPLOT

148

As is evident, the part that regulates the style of the page is contained within the <style></style> pair of tags,
whereas JavaScript, or the jqPlot code, is within the <script></script> pair of tags. These are the two main areas in
which we add lines of code. But, it is interesting to note that these two sections can be copied and pasted into two
separate external files. The style section will be copied in a file that we will call myCss.css (see Listing 8-18).

Listing 8-18. myCss.css

.jqplot-title {
 font: italic bold 22px arial,sans-serif;
}

The JavaScript code will be copied in a file that we will name myJS.js (see Listing 8-19).

Listing 8-19. myJS.js

$(document).ready(function(){
 var data = [[100, 110, 140, 130, 80, 75, 120, 130, 100]];
 $.jqplot ('myChart', data,
 {
 title: 'My first jqPlot chart'
 });
});

Now, you can change your HTML page by removing the copied parts and including the two newly created files
(see Listing 8-20).

Figure 8-11. A simple line chart

CHAPTER 8 ■ INTRODUCING JQPLOT

149

Listing 8-20. ch8_05b.html

<HTML>
<HEAD>
 <TITLE>My first chart</TITLE>
 <script type="text/javascript" src="../src/jquery.min.js"></script>
 <script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
 <link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
 <script type="text/javascript" src="myJS.js"></script>
 <link rel="stylesheet" type="text/css" href="myCss.css" />
</HEAD>
<BODY>
 <div id="myChart" style="height:400px; width:500px;"></div>
</BODY>
</HTML>

If you now load the page in your browser, you will not see any difference, compared with the initial case, in which
the JavaScript code and CSS styles were on the same page (see Figure 8-11).

Being aware of the possibility of working in modules will enable you to write a code that can be reused by
multiple charts. This can be very useful when you want to create, for example, a standard set of CSS styles that
assigns a graphic theme that will be common to all your charts. Or, if you have developed methods in JavaScript the
application of which can be valuable in many other cases, then you can include these methods externally in each
HTML page of your personal library.

Summary
In this chapter, you took your first steps with the jqPlot library. In particular, you looked at how the library is designed
and at key concepts, such as plug-ins and options. With a series of examples, you gradually learned how to use the
three different arguments passed to the function $.jqPlot(): the target, which is the jqPlot library canvas; input
data—their format and the various input modes; and, especially, the options object, through which the settings of all
the components of the library are performed. options will constitute the core of all implementations that you will be
looking at in later chapters.

In the following chapters, you will be using the jqPlot library more specifically, implementing all the most
common chart types. In the next chapter, you will begin with line charts.

151

CHAPTER 9

Line Charts with jqPlot

In the previous chapter, you observed the most basic use of jqPlot, in which a series of data serves to plot a line, with
no need for any additional options. You saw that in order to create the most basic type of chart, a line chart, , you do
not need to include plug-ins.

In this chapter, you will begin to examine in more detail the possibilities that the jqPlot library affords by
exploring the various plug-ins and their functionality. First, because the line chart is represented on the Cartesian
axes, you will be introduced to the use of pairs of values (x, y) as input data. You will then move on to the study the
axes and how to create them, using the appropriate plug-ins. You will also analyze in detail how to implement the
various elements connected to the axes as ticks, axis labels, and grid. A discussion of logarithmic scale (log scale)
follows.

Next, you will learn how to realize multiseries line charts through the treatment of multiple series of data at the
same time. You will discover how, by setting the lines and markers, you can modify patterns, shapes, and even colors.
In addition, you will view how to create an animation by adjusting the speed at which the browser draws the chart.

Moreover, you will investigate the way in which the jqPlot library lets you manipulate different formats of date
and time values. You will also see how it is possible to customize some elements, using the HTML format, along
with the highlighting of data points. In the final part of the chapter, you will deal with more complex cases, such as
generating a trend line and working with band charts.

Using (x, y) Pairs as Input Data
So far, for simplicity’s sake, the input data have been passed in as an array of y values (see Listing 9-1). If jqPlot finds
y values only, x values are assigned as 1, 2, 3, and so on, following their order in the array.

Listing 9-1. ch9_01.html

$(document).ready(function(){
 var plot1 = $.jqplot ('myChart', [[100,110,140,130,80,75,120,130,100]]);
});

In Figure 9-1, you can see along the x axis a sequence of integer numbers, which are the indexes of the
array passed as data.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

152

When you are working with a linear plot, it is better to use arrays with pairs of values (x, y), as this avoids many
complications, such as the need to enter the data in a particular order, which is not always possible or correct. In
fact, using pairs of values, the data should not be listed in order of increasing x value; jqPlot will do that for you.
Furthermore, the values of x need not be equidistant, but can follow any distribution. In Listing 9-2, pairs of values
(x, y) have been inserted in which the x values are neither sorted nor evenly distributed.

Listing 9-2. ch9_02.html

$(document).ready(function(){
 var data = [[[10,100], [80,130], [65,75], [40,130],
 [60,80], [30,140], [70,120], [20,110], [95,100]]];
 $.jqplot ('myChart', data);
});

In Figure 9-2, you can see how jqPlot sorts all the points in the chart, regardless of the order in which they were
entered and whether they have been uniformly distributed along the x axis.

Figure 9-1. The x axis reports the indexes of the values inserted

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

153

First Steps in the Development of a Line Chart: The Axes
Before looking at the more complex aspects of the line chart in detail, let us first examine the basis on which this kind
of chart is represented: the axes. Proper management of the axes is crucial if you want to develop a chart that effects a
perfect visualization of data. To this end, you need a good understanding of the modes of action that the jqPlot library
offers through the use of specific properties in the options object.

Add a Title and Axis Labels
When developing a chart, the first step is to add a title and to manage the axis labels, using the
CanvasAxisLabelRenderer plug-in.

But, in order to function properly, this plug-in requires another plug-in, one that provides the writing
functionality: CanvasTextRenderer. With this plug-in, you can render label text directly on canvas elements.
This allows you to treat the text like any other graphic element, giving you the ability to rotate the text as you wish.
By default the axis label on the y axis is now rotated by 90 degrees, as shown in Figure 9-3.

Figure 9-2. A simple line chart with nonuniformly distributed points on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

154

To integrate this new functionality, you need to add the two plug-ins to the basic set of plug-ins:

<script type="text/javascript" src="../src/plugins/jqplot.canvasTextRenderer.min.js">
</script>
<script type="text/javascript"
 src="../src/plugins/jqplot.canvasAxisLabelRenderer.min.js"></script>

Or, if you prefer to use a content delivery network (CDN) service, you can do so as follows:

<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.canvasTextRenderer.min.js"></script>
<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.canvasAxisLabelRenderer.min.js"></script>

Having created the options variable, you must then specify some properties inside, as shown in Listing 9-3. You
have already seen how to add a title by assigning a string to the title object. Then, have to make an explicit call to
the canvasAxisLabelRenderer object in order to activate its functionality, and by doing so inside the axesDefaults
object, it will be valid for all axes. To assign the text in both the x axis and y axis labels, you have to set the label
properties in the xaxis and yaxis child objects of the axes object. Its tree structure will allow you to carry out different
changes at the level of each individual axis.

Listing 9-3. ch9_03a.html

$(document).ready(function(){
 var data = [[100, 110, 140, 130, 80, 75, 120, 130, 100]] ;
 var options = {
 title: 'My Line Chart',

Figure 9-3. Without including the CanvasAxisLabelRenderer plug-in, the y axis label is horizontal. When the plug-in
is included, the y axis label is rotated vertically



http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisLabelRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisLabelRenderer.min.js

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

155

 axesDefaults: {
 labelRenderer: $.jqplot.CanvasAxisLabelRenderer
 },
 axes: {
 xaxis: {
 label: "X Axis"
 },
 yaxis: {
 label: "Y Axis"
 }
 }
 };
 $.jqplot ('myChart', data, options);
});

Figure 9-4 illustrates the chart the listing code produces.

Axis Properties
As with axis labels, there are several properties that can be specified within the axes object. For example, looking at
the chart (see Figure 9.4), you can see that the line starts from the x value 1, whereas the x axis starts from the value 0,
thus leaving an empty space. Another space is seen at the end of the x range (between 9 and 10). If you want to act on

Figure 9-4. A line chart with the y axis label vertically oriented

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

156

these distances (between the limits of the axes and the end points of your data set), you have to use the pad properties.
You apply the padding to extend the range above and below the data bounds. The data range is multiplied by this
factor to determine minimum and maximum axis bounds. A value of 0 will be interpreted to mean no padding, and
pad will be set to 1. Thus, by adding the pad properties to the xaxis object and setting pad to 1 (see Listing 9-4), you get
the chart in Figure 9-5.

Listing 9-4. ch9_03b.html

xaxis: {
 label: "X Axis",
 pad: 1
},

Now, the x axis starts from value 1 and ends with 9, as does the line representing the data series. To better
understand the concept of padding, you will now set the pad property to 2 (see Listing 9-5). This means that you want
to extend the current range (which is 10) two times. As a result, you will have a chart with an x axis that goes from –4 to
14, as demonstrated in Figure 9-6. This is because jqPlot tends to keep the data in a symmetrical manner, showing it in
the middle.

Listing 9-5. ch9_03c.html

xaxis: {
label: "X Axis",
pad: 2
},

Figure 9-5. The same line chart as in Figure 9-4, with pad set to 1 on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

157

Another way to control the range in which you can display your data is by using the min and max properties
(see Listing 9-6).

Listing 9-6. ch9_03d.html

xaxis: {
 label: "X Axis",
 min: 1,
 max: 9
},

Figure 9-7 shows the x axis with the new range.

Figure 9-6. The same line chart, with pad set to 2 on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

158

Other useful properties are those that control subdivisions (split axes) and their underlying numeric term: the
ticks properties. As their use is not limited to simple options under the axes object—they are themselves an object
and require a renderer plug-in in order to work—their treatment deserves a separate section.

Axes Ticks
A tick is a component that shows the value of a tick or grid line in the plot. A tick’s behavior in the plot can be specified
inside axes objects in options, and, being an object itself, a tick has several properties that can be set inside the
tickOption property. For example, you may need to set a specific number of grid lines for each axis. This can be done
in different ways. The most simple entails directly specifying the numberTicks property (see Listing 9-7). If you set its
value to 5, you will get five ticks on the x axis: 0, 3, 6 ,9, and 12 (see Figure 9-8).

Listing 9-7. ch9_03e.html

xaxis: {
 label: "X Axis",
 numberTicks: 5
},

Figure 9-7. The same line chart, with defined max and min on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

159

This can be applied to the y axis, too. In that case, you need to set the same properties in the yaxis object. From
what you can see, the intervals at which the x axis is divided are uniform, and so the ticks are equidistant. Another way
to do this is to define the ticks you want displayed on the chart directly, as shown in Listing 9-8.

Listing 9-8. ch9_03f.html

xaxis: {
 label: "X Axis",
 ticks: [0,3,6,9,12]
},

This produces the same chart (see Figure 9-9).

Figure 9-8. A line chart with a prefixed number of ticks on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

160

But, it is generally preferable to use this approach when you want an uneven distribution of ticks along the axis,
as in Listing 9-9. The line of the grid will also follow this nonuniformity, as it will be drawn in correspondence with
each tick (see Figure 9-10).

Listing 9-9. ch9_03g.html

xaxis: {
 label: "X Axis",
 ticks: [1,2,3,7,9]
},

Figure 9-9. A line chart with directly defined ticks on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

161

Ticks are so important in a chart that they have a plug-in that is dedicated specifically to them:
CanvasAxisTickRenderer.

If you want to create a chart without grid lines while keeping the values on ticks, you can set the showGridLine
property to 'false'. Before that, however, you need to include the plug-in in the web page:

<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
<script type="text/javascript"
 src="../src/plugins/jqplot.canvasTextRenderer.min.js"></script>
<script type="text/javascript"
 src="../src/plugins/jqplot.canvasAxisLabelRenderer.min.js"></script>
<script type="text/javascript"
 src="../src/plugins/jqplot.canvasAxisTickRenderer.min.js"></script>

Or, if you prefer to use a CDN service, you can do so as follows:

<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.canvasTextRenderer.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.canvasAxisLabelRenderer.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.canvasAxisTickRenderer.min.js"></script>

You must then make the settings inside the axesDefaults object, because you want to hide the grid lines for both
axes. Remember to call the plug-in just included with the tickRenderer property (see Listing 9-10). Furthermore, you
must not forget to delete the ticks property defined within the xaxis object.

Figure 9-10. A line chart with nonuniform, prefixed ticks on the x axis

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

162

Listing 9-10. ch9_04a.html

axesDefaults: {
 labelRenderer: $.jqplot.CanvasAxisLabelRenderer,
 tickRenderer: $.jqplot.AxisTickRenderer,
 tickOptions: {
 showGridline: false
 }
},
axes: {
 xaxis: {
 label: "X Axis" //remove the comma here
 },

As in Figure 9-11, you get a chart without a grid.

Sometimes, you need to hide the grid lines only for one axis, for example, the x axis (see Figure 9-12). In this case,
you have to call the renderer inside only the xaxis object. In Listing 9-11, you can see the rows of code that must be
removed from axesDefaults and then written within the xaxis object.

Figure 9-11. A line chart without grid lines

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

163

Listing 9-11. ch9_04b.html

axesDefaults: {
 labelRenderer: $.jqplot.CanvasAxisLabelRenderer
 //delete all this lines
 //tickRenderer: $.jqplot.AxisTickRenderer,
 //tickOptions: {
 //showGridline: false
 //}
},
axes: {
 xaxis: {
 label: "X Axis",
 tickRenderer: $.jqplot.AxisTickRenderer,
 tickOptions: {
 showGridline: false
 }
 },
 ...

Another possible functionality you may want to add is one that allows you to handle the format of the numeric
values as strings. The most common situation in which this could be useful is when you want to show percentage
values on the y axis. To accomplish this, you need to add the char '%' after the numeric value, as shown in Listing 9-12.

Figure 9-12. A line chart with only horizontal grid lines

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

164

Listing 9-12. ch9_04c.html

yaxis: {
 label: "Y Axis",
 tickRenderer: $.jqplot.AxisTickRenderer,
 tickOptions: {
 formatString:'%d%'
 }
}

As Figure 9-13 illustrates, the chart now reports percentage values on the y axis.

Later, you will see other cases in which this kind of string formatting proves to be a very powerful tool
(see the section “Handling Date Values”).

Using the Log Scale
Depending on the trend of the data that you want to represent in a chart, it is sometimes necessary to use a log
scale on one, or even both, of the axes. jqPlot supports the log scale, including the LogAxisRenderer plug-in in your
web page.

<script type="text/javascript"
 src="../src/plugins/jqplot.logAxisRenderer.min.js"></script>

Figure 9-13. A line chart reporting percentages on the y axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

165

LOG SCALE

The log scale uses intervals corresponding to orders of magnitude (generally ten) rather than a standard linear

scale. This allows you to represent a large range of values (v) on an axis.

The logarithm is another way of writing exponentials, and you can use it to separate the exponent (x) and place

it on an axis.

For example, an increase of one point on a log scale corresponds to an increase of 10 times that value. Similarly,

an increase of two points corresponds to an increase of 100 times that value. And so on.

On the axis on which you want to represent the data in log scale, it is only necessary to add the renderer
property with the plug-in reference. In this case, you need to create a data array that follows an exponential trend
approximately. So, you use the array of [x, y] pairs in Listing 9-13.

Listing 9-13. ch9_11.html

var data = [[0,1.2],[10,2.4],[20,5.6],[30,12],[40,23],
 [50,60],[60,120],[70,270],[80,800]];

Next, you put the y axis on log scale, as shown in Listing 9-14.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

166

Listing 9-14. ch9_11.html

$.jqplot ('myChart', [data],{
 axes:{
 xaxis:{},
 yaxis:{ renderer: $.jqplot.LogAxisRenderer }
 }
});

In Figure 9-14, you can see how the data assume, in a semilog scale (log scale on one axis), a shape
approximating to a straight line.

The Multiseries Line Chart
Now that the axes on which you will represent your line chart have been well specified, the time has come to address
the multiseries line chart. Typically, you will need to display more than a single series of data in the same chart.
Indeed, very often the purpose of a chart is precisely the comparison of different data series.

The jqPlot library provides us with the tools needed to manage multiseries charts. By acting on the patterns,
shapes, and colors of lines and markers, it is possible to introduce graphic effects that can aid in the representation of
different data series.

Multiple Series of Data
So far, you have been working with only a single set of data. Sometimes, however, you want to represent more than
one data set at once. In Chapter 1, you saw that in jqPlot, multiple series are handled in the same way as a single set.
Each series must first be defined separately by assigning it to a variable and then combined with the other series in an
array. This array is then passed as the second argument to the jqPlot() function (see Listing 9-15).

Figure 9-14. A line chart on a semilog scale on the y axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

167

Listing 9-15. ch9_05a.html

$(document).ready(function(){
 var data1 = [1, 2, 3, 2, 3, 4];
 var data2 = [3, 4, 5, 6, 5, 7];
 var data3 = [5, 6, 8, 8, 7, 9];
 var data4 = [7, 8, 9, 9, 10, 11];
 var options = {
 title:'Multiple Data Arrays'
 };
 $.jqplot ('myChart', [data1, data2, data3, data4], options);
});

Figure 9-15 shows the resulting multiseries chart from Listing 9-15.

Figure 9-15. A multiseries line chart

The system automatically gives each series a different color. This sequence of colors is defined within jqPlot as
the default. Here are the colors that jqPlot will assign to the series, in order:

seriesColors: ["#4bb2c5", "#c5b47f", "#EAA228", "#579575",
 "#839557", "#958c12", "#953579", "#4b5de4",
 "#d8b83f", "#ff5800", "#0085cc"]

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

168

These values stand for '#rrggbb', where rr, gg, and bb are the hexadecimal values for red, green, and blue.
The browser combines these values to generate all the colors needed for the series.

When there are more than 11 series, jqPlot starts the sequence again from the beginning. If you do not want
this or simply need to do things differently, you can define an array with a different sequence of colors in the
seriesColors property, such as the series given in Listing 9-16. Figure 9-16 shows a variation of gray, but run the
example, and see the difference for yourself (the colors ranging from blue to violet).

Note ■ To check the color codes, I suggest visiting the web site HTML Color Codes (http://html-color-codes.info).

Listing 9-16. ch9_05b.html

var options = {
 seriesColors: ["#105567","#805567","#bb5567","#ff5567"],
 title:'Multiple Data Arrays'
};

Figure 9-16. A multiseries line chart with a customized color set

http://html-color-codes.info/

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

169

You can also attribute a specific color, using two functions: rgba(r,g,b,a) and rgb(r,g,b). You insert these
functions directly in each value of the array to be allocated to the seriesColors property, as shown in Listing 9-17.

Listing 9-17. ch9_05c.html

seriesColors: ["rgba(16,85,103,0.2)", "rgba(128,85,103,0.6)",
 "rgb(187,85,103)", "rgb(250,85,103)"],

Whereas you have been specifying colors through the combination of red, green, and blue light required to
achieve a given color, with the rgba() function, a new variable, a, is introduced. This a (for “alpha”) stands for the
level of opacity/transparency of a color. As Figure 9-17 demonstrates, defining low alpha values lets you see what lies
behind the colored object.

Smooth-Line Chart
In addition to choosing whether to represent dot markers and the straight lines linking them, often you will decide
that you want to get a smooth curve progress, as presented in Figure 9-18. This can be done simply by using the
smooth property and setting it to 'true' (see Listing 9-18).

Figure 9-17. A multiseries line chart with different levels of transparency

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

170

Listing 9-18. ch9_06.html

$(document).ready(function(){
 var data1 = [1, 2, 3, 2, 3, 4];
 var data2 = [3, 4, 5, 6, 5, 7];
 var data3 = [5, 6, 8, 8, 7, 9];
 var data4 = [7, 8, 9, 9, 10, 11];
 var options = {
 title:'Multiple Data Arrays',
 seriesDefaults: {
 rendererOptions: {
 smooth: true
 }
 }
 };
 $.jqplot ('myChart', [data1, data2, data3, data4], options);
});

Figure 9-18. A multiseries line chart with smoothed lines

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

171

Line and Marker Style
Another key aspect that you need to take into account while designing your line chart is how lines and markers are
displayed. You can represent a chart using a line, a sequence of markers, or both. By default, jqPlot shows each series
with dot markers for every point corresponding to the [x, y] pairs and a line joining them in sequence.

All this can be controlled using two key properties belonging to the series objects: linePattern and lineWidth;
while adding the markerOptions property, it is also possible to act on two other properties affecting marker
components: style and size. Listing 9-19 is an example of these settings.

Listing 9-19. ch9_07a.html

$(document).ready(function(){
 var data1 = [1, 2, 3, 2, 3, 4];
 var data2 = [3, 4, 5, 6, 5, 7];
 var data3 = [5, 6, 8, 9, 7, 9];
 var data4 = [7, 8, 9, 11, 10, 11];
 var options = {
 title: 'Multiple Data Arrays',
 series:[{
 linePattern: 'dashed',
 lineWidth:2,
 markerOptions: { style: 'diamond' }
 },
 {
 showLine:false,
 markerOptions: { size: 7, style: 'x' }
 },
 {
 markerOptions: { style: 'circle' }
 },
 {
 lineWidth:5,
 linePattern: 'dotted',
 markerOptions: { style: 'filledSquare', size: 10 }
 }]
 }
 $.jqplot ('myChart', [data1, data2, data3, data4], options);
});

Figure 9-19 illustrates the result of the settings in Listing 9-19.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

172

The lines on a chart can be drawn as solid, dashed, or dotted with the linePattern property. By default every line
drawn is solid, so if you want a line to have a different style, it is necessary to specify it in options. You saw in Listing 9-19
that it is possible to set the linePattern property to 'dotted' or 'dashed' in order to obtain a dotted or dashed
line, respectively. In Listing 9-20, you can see that it is also possible to obtain a customized line pattern, defining the
format as an array ([dash length, gap length, and so on]). A line looks best when the array assigned to the linePattern
property has an even number of elements, such that the line begins with a dash and ends with a gap. The linePattern
property can also create a customized pattern, using a shorthand string notation of dash (-) and dot (.) characters.
Listing 9-20 provides examples.

Listing 9-20. ch9_07b.html

var options = {
 title: 'Multiple Data Arrays',
 seriesDefaults: {
 showMarker: false
 },
 series: [{ linePattern: 'dashed'},
 { linePattern: 'dotted'},
 { linePattern: [4, 3, 1, 3, 1, 3]},
 { linePattern: '-.'}]
};

Figure 9-19. In a line chart it is possible to set different markers and patterns

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

173

Figure 9-20 shows the examples of customized line patterns used in Listing 9-20.

Animated Charts
When you load your web page in the browser, you will note that the chart is drawn almost instantaneously. You can
slow down the drawing speed, adjusting it to your preference; a slower speed gives a floating effect to the chart while
its elements are being drawn (see Listing 9-21).

Listing 9-21. ch9_23.html

var options = {
 title: 'Multiple Data Arrays',
 seriesDefaults: {
 showMarker: false,
 rendererOptions: {
 smooth: true,
 animation: { show: true }
 }
 }
};

Figure 9-21 shows the sequence in which the chart is drawn, giving it an animated look.

Figure 9-20. A multiseries line chart with different patterns

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

174

More Than One y Axis
jqPlot supports multiple y axes in relation to the same x axis. This can be useful when, in a single chart, you want to
display different series distributed on different y scales, but with the same x values. In such cases, it is wise to set the
y axes with the color of the corresponding series so that you can determine the correct y value of any given point.
As input data, let us create three data arrays containing the same x values but with y values distributed on different
ranges, as shown in Listing 9-22. Using the same x values is not mandatory, but it is smart to do so.

Listing 9-22. ch9_12.html

var data1 = [[10, 200], [20, 230], [30, 214], [40, 212], [50, 225], [60, 234]];
var data2 = [[10, 455], [20, 470], [30, 465], [40, 432], [50, 455], [60, 464]];
var data3 = [[10, 40], [20, 60], [30, 54], [40, 52], [50, 65], [60, 54]];

It is very important to specify the correct range of values for each y axis in order to be able to compare the
different series of values easily (see Listing 9-23). In the series object, you need to specify explicitly three values,
each of which assigns a series to a different y axis. If you want to keep the default setting for a particular series, that is,
representation along the default y axis, you must still assign an empty object {} in the position corresponding to that
series. In fact, in this example the first element of the series array is just an empty object {}.

In addition, you need to set the useSeriesColor property for the axesDefaults object to 'true'. In so doing,
jqPlot will assign the color of the series to the corresponding y axis. Thus, by using three default colors, you will get
light blue for the first series, orange for the second, and gray-brown for the third.

Figure 9-21. An animated multiseries line chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

175

Listing 9-23. ch9_12.html

var options = {
 series:[
 {},
 {yaxis: 'y2axis'},
 {yaxis: 'y3axis'}
],
 axesDefaults:{useSeriesColor: true},
 axes:{
 xaxis: {min: 0, max: 70},
 yaxis: {min: 190, max: 240},
 y2axis: {min: 430, max: 480},
 y3axis: {min: 35, max: 80}
 }
};
$.jqplot ('myChart', [data1, data2, data3], options);

Figure 9-22 presents the three series, each represented in relation to the values of its y axis. The axes are shown
here in different grayscale shades, but they actually assume the colors corresponding to the related series.

Figure 9-22. A multiseries line chart with multiple y axes

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

176

Data with JavaScript
As discussed previously, it is preferable to define data arrays separately and outside the jqPlot function. You have
seen how to create an array containing numeric values that are either y values or [x, y] pairs. Yet, because jqPlot
belongs to the world of JavaScript, there is another approach that often proves to be very useful: generating data series
through JavaScript methods.

Generating Data, Using Math Functions
The jqPlot library is based on JavaScript, and, as with all programming languages, it allows you to implement
functions that generate sequences of values to use as input data. For example, Listing 9-24 takes three of the most
used and best-known mathematical functions (sine, cosine, power) and creates an array of data through them.

Listing 9-24. ch9_08a.html

$(document).ready(function(){
 var options = {
 title:'Math function Arrays'
 };

 varcosPoints = [];
 for (vari=0; i< 2 * Math.PI; i += 0.1){
 cosPoints.push([i, Math.cos(i)]);
 }

 varsinPoints = [];
 for (vari=0; i< 2 * Math.PI; i += 0.1){
 sinPoints.push([i, 2 * Math.sin(i-.8)]);
 }

 varpowPoints = [];
 for (vari=0; i< 2 * Math.PI; i += 0.1) {
 powPoints.push([i, 2.5 + Math.pow(i/4, 2)]);
 }

 $.jqplot ('myChart', [cosPoints, sinPoints, powPoints], options);
});

Figure 9-23 illustrates how the points generated by the three functions in the listing form, on a line chart,
the characteristic trends of the three mathematical functions.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

177

Because this is a function with a high density of points, and because the objective here is to highlight trends, it is
best not to display the marker points (see Figure 9-24). It is also preferable to enable smoothing in options, as shown
in Listing 9-25.

Figure 9-23. A line chart reporting three different series of data generated from mathematical functions

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

178

Listing 9-25. ch9_08b.html

var options = {
 title: 'Math function Arrays',
 seriesDefaults: {
 rendererOptions: {
 smooth: true
 },
 markerOptions: { show: false }
 }
};

Figure 9-24. The same line chart, but rendered more legibly

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

179

Generating Random Data
You have just seen how to generate input data by using mathematical functions. Similarly, it is sometimes necessary
to generate random data. For instance, let us say you have just finished writing your jqPlot chart and would like to try
inputting dummy data. To this end, the use randomly generated data is best. The function in Listing 9-26 generates
random data, with every point generated according to the value of the previous one. At each step, the new value
is determined by a random number that is added to or subtracted from the preceding number. This results in a
continuous series of data, starting from a value passed as an argument to the function.

Listing 9-26. ch9_09.html

function generateRandomData(npts, start, delta) {
 var data = [];
 if (delta == null) {
 delta = start;
 start = (Math.random() - 0.5) * 2 * delta;
 }
 for (j=0; j<npts; j++) {
 data.push([j, start]);
 start += (Math.random() - 0.5) * 2 * delta;
 }
 return data;
}

You are using three arguments: npts is the number of points to generate, start is the starting value, and delta
is the maximum value to add or subtract randomly at every step. The function returns an array that will be passed as
input data to the chart. You can define it externally:

var data = generateRandomData(30, 100, 1);
$.jqplot('myChart', [data]);

Or, you can pass it directly:

$.jqplot ('myChart', [makeContinuousData(30, 100, 1)]);

As a result, you get a chart like the one in Figure 9-25 (it will be different every time).

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

180

Handling Date Values
A kind of value that is used, especially in other charts (e.g., bar charts), is date type. These specialized values are not
so easy to deal with, and jqPlot has a plug-in for them: DateAxisRenderer. This plug-in expands JavaScript’s native
date-handling capabilities, allowing you to represent date values in any unambiguous form, not just in milliseconds.

The DateAxisRenderer Plug-in
A date can be represented in many ways, and its format varies, depending on country and use. A date consists of day,
month, and year indicators. These can be ordered differently, and with one, two, or four digits; or, you may even want
to use only one or two of the indicators (e.g., month, year). Furthermore, various characters act as separators. Let us
take, for example, 04/07/2012: “4” stands for the fourth month (April), “7” is the seventh day of the month, and “2012”
is the year. Such a date can be shown in numerous ways: '07/04/2012', '07/04/12', '04/07/12', '7-Apr-12', '7-
Apr', 'Apr-12', '7 April', '2012', and so on.

The standard format for date values is as follows:

'YYYY-MM-DD HH:MM<PM or AM>'

Figure 9-25. A line chart representing a random series of data

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

181

This string contains all the necessary information—a bit too much, perhaps. In fact, you will often require only
a part of the date information: sometimes, you may need to report only day and month, or, if you refer to time, you
may need to handle only hours and minutes, and so on.

Once the DateAxisRenderer plug-in is included, jqPlot accepts almost any recognizable value. After the value has
been internally parsed, it will be rendered on the axis on which you made the call to the plug-in, represented in the
format specified in tickOptions.formatString.

Table 9-1 shows the acceptable format codes.

Table 9-1. Date and Time Formats Accepted by jqPlot

Code Result Description

Years

%Y 2008 Four-digit year

%y 08 Two-digit year

Months

%m 09 Two-digit month

%#m 9 One- or two-digit month

%B September Full month name

%b Sep Abbreviated month name

Days

%d 05 Two-digit day of month

%#d 5 One- or two-digit day of month

%e 5 One- or two-digit day of month

%A Sunday Full name of day of the week

%a Sun Abbreviated name of day of the week

%w 0 Number of day of the week (0 = Sunday, 6 = Saturday)

%o th Ordinal suffix string following day of the month

Hours

%H 23 Hours in 24-hour format (two digits)

%#H 3 Hours in 24-hour integer format (one or two digits)

%I 11 Hours in 12-hour format (two digits)

%#I 3 Hours in 12-hour integer format (one or two digits)

%p pm am or pm

Minutes

%M 09 Minutes (two digits)

%#M 9 Minutes (one or two digits)

(continued)

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

182

Code Result Description

Seconds

%S 02 Seconds (two digits)

%#S 2 Seconds (one or two digits)

%s 1206567625723 Unix timestamp (seconds past 1970-01-01 00:00:00)

Milliseconds

%N 008 Milliseconds (three digits)

%#N 8 Milliseconds (one to three digits)

Time zone

%O 360 Difference in minutes between local time and
Greenwich mean time (GMT)

%Z Mountain Standard Time
(MST)

Name of time zone, as reported by browser

%G –06:00 Hours and minutes between GMT

Shortcuts

%F 2008-03-26 %Y-%m-%d

%T 05:06:30 %H:%M:%S

%X 05:06:30 %H:%M:%S

%x 03/26/08 %m/%d/%y

%D 03/26/08 %m/%d/%y

%#c Wed Mar 26 15:31:00 2008 %a %b %e %H:%M:%S %Y

%v 3-Sep-2008 %e-%b-%Y

%R 15:31 %H:%M

%r 3:31:00 PM %I:%M:%S %p

Characters

%n \n New line

%t \t Tab

%% % Percent symbol

Table 9-1. (continued)

To get a clearer idea of how jqPlot handles date values, let us look at a series of examples illustrating various
formats. Regardless of the format, however, you must always include the DateAxisRenderer plug-in in the <head>
section of the web page.

<script type="text/javascript"
 src="../src/plugins/jqplot.dateAxisRenderer.min.js"></script>

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

183

Handling Date Values in Different Formats
This first example deals with the exchange rate over a period of time, with day-by-day point values. To this end, the
input data array should have a sequence of [x, y] values inside it, where x is a date value. The sequence of x values does
not comply with the temporal order; jqPlot will sort those points along the x- axis. In Listing 9-27, you use a series of
x input values, with different formats for the first five.

Listing 9-27. ch9_13a.html

var line1 = [['14-Oct-2012', 1300.41], ['2012-10-15', 1310.50],
 ['2012/10/16', 1322.88], ['17 Oct 2012', 1312.41],
 ['10/18/2012', 1308.16], ['19-Oct-2012', 1310.71],
 ['20-Oct-2012', 1305.01],['21-Oct-2012', 1300.85],
 ['22-Oct-2012', 1290.67]];

Next, you have to call the renderer inside the xaxis object in options in order to activate it. You want to represent
the days of the month in which you follow the trend of the exchange values, so you will set the output format without
including the year, which remains unchanged. In addition, at the beginning, you want to show the day of the month
in numerical form and then the month written with the first three characters, separated by a space. Simply put, in
Listing 9-28 the format will be '%d %b', where %d stands for day, in digits, and %b, for the first three characters
of month. The y values are dollars, so you need to add the dollar sign ($) as a prefix for the ticks of the y axis. To
accomplish this, you must use the formatString property for the y ticks as well.

Listing 9-28. ch9_13a.html

var options = {
 title: 'Handling Date Values',
 axes:{
 xaxis:{
 renderer: $.jqplot.DateAxisRenderer,
 tickOptions:{
 formatString:'%d %b'
 }
 },
 yaxis:{
 tickOptions:{
 formatString:'$%d'
 }
 }
 }
};
$.jqplot('myChart', [line1], options);

Figure 9-26 shows the dollar value, with the prefix $, on the y axis and the day and month on the x axis.
This is only one of the several formats you can set to represent values on ticks.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

184

Handling Time Values
Let us say you want to draw a chart representing visits to a museum. It is possible to make time explicit in the input
data (hours, minutes, seconds). This allows you to handle these time values in the same manner as in previous
example (see Listing 9-27), for instance, by creating a chart containing data collected on a given day. Here, too,
the date can be set with any of the previously discussed formats. You can express time in various ways: in a 12-hour
format, with am or pm suffixes, or directly, in a 24-hour format, either including or ignoring seconds and minutes.
Listing 9-29 illustrates an array with a sequence of time values at 2-hour intervals.

Listing 9-29. ch9_13b.html

var line1 = [['2012-10-14 08:00AM', 30],['2012-10-14 10:00AM', 60],
 ['2012-10-14 00:00PM', 120], ['2012-10-14 02:00PM', 60],
 ['2012-10-14 04:00PM', 100], ['2012-10-14 06:00PM', 40]];

With regard to the output format, you must remember to manage the time format as well; because you are
interested only in the hours of the day, you set '%R' as 'formatString' (see Listing 9-30).

Listing 9-30. ch9_13b.html

var options = {
 title: 'Museum Visitors',
 axes:{
 xaxis:{
 label: 'time',

Figure 9-26. A line chart with date values on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

185

 renderer:$.jqplot.DateAxisRenderer,
 tickOptions:{
 formatString: '%R'
 }
 },
 yaxis:{
 label: 'visitors'
 }
 }
};
$.jqplot('myChart', [line1], options);

The browser will show the chart presented in Figure 9-27.

Highlighting
An eye-catching effect that you can add to your chart is highlighting (i.e., having your plot react to mouseover. For
example, the Highlighter plug-in will highlight data points near the mouse, with a nice dynamic effect. This can be
enhanced by displaying a tool tip with the data point value.

Figure 9-27. A bar chart with time values on the x axis

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

186

Cursor Highlighter
The following example will serve to familiarize you with highlighting. This functionality is very important and consists
in activation of an event when you mouse over particular elements in the chart. Generally, these are elements that
represent the data and that, in a line chart, for example, are represented by a point (or, more precisely, by the marker;
you will see that this applies to other types of chart as well: a bar in a bar chart, a slice in a pie chart, and so on).

By default the triggered event is just one highlight of the data, represented by a tool tip showing its (x, y) values.
To add these functionalities to your charts, you have to include a set of plug-ins:

<script type="text/javascript" src="../src/plugins/jqplot.highlighter.min.js">
</script>
<script type="text/javascript" src="../src/plugins/jqplot.cursor.min.js">
</script>

In Listing 9-31, as input data, you use a series of [x, y] pairs with date values on the x axis and numeric values
on the y axis.

Listing 9-31. ch9_14a.html

var line1 = [['14-Oct-12', 1300.41], ['15-Oct-12', 1310.50],['16-Oct-12', 1322.88],
 ['17-Oct-12', 1312.41],['18-Oct-12', 1308.16],['19-Oct-12', 1310.71],
 ['20-Oct-12', 1305.01],['21-Oct-12', 1300.85],['22-Oct-12', 1290.67]];

As you have already seen, in order to handle date values, you need to include the DateAxisRenderer plug-in.

<script type="text/javascript"
 src="../src/plugins/jqplot.dateAxisRenderer.min.js"></script>

In Listing 9-32, you see the options object, containing two new objects: highlighter and cursor.

Listing 9-32. ch9_14a.html

var options = {
 title: 'Data Point Highlighting',
 axes:{
 xaxis:{
 renderer: $.jqplot.DateAxisRenderer,
 tickOptions:{
 formatString: '%b %#d'
 }
 },
 yaxis:{
 tickOptions:{
 formatString: '$%d'
 }
 }
 },
 highlighter:{
 show: true,
 sizeAdjust: 7.5
 },

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

187

 cursor:{
 show: false
 }
};

In Figure 9-28 a tool tip appears when the cursor moves over a data point on the chart. By default this tool
tip reports both x and y values, separated by a comma, using the axis formatters, but this can be customized with
a different format string.

In Listing 9-32, you will note that the cursor has been disabled, by setting its show property to 'false'
(it is enabled by default). Enabling it, as in Listing 9-33, you will see the mouse cursor changing when it enters the
graph area and displaying an optional tool tip in the bottom-right corner, reporting the mouse position. The tool tip
can be in a fixed location, or it can follow the mouse. The pointer style, set to 'crosshair' by default, can also be
customized.

Listing 9-33. ch9_14b.html

 ...
 highlighter: {
 show: true,
 sizeAdjust: 7.5
 },

Figure 9-28. Data point highlighting on a line chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

188

 cursor: {
 show: true,
 tooltipLocation:'ne'
 }
});

Figures 9-29 shows a tool tip reporting the cursor coordinates. Note that the cursor is represented by a black
cross in the middle of the chart.

Highlighting with HTML Format
You can change the content of a tool tip, using HTML tags as format. This makes the possibilities of customization
almost unlimited. In fact, you can think of the tool tip as a little web page in which to add any type of element, such as
an image or an anchor link (for more details, see Chapter 10). For example, you can use the settings shown in Listing 9-34
with an HTML format string assigned to the formatString property.

Listing 9-34. ch9_14c.html

highlighter: {
 show: true,
 sizeAdjust: 7.5,
 showMarker: false,
 tooltipAxes: 'xy',
 yvalues: 4,
 formatString:'<table class="jqplot-highlighter"> \
 <tr><td>date:</td><td>%s</td></tr> \
 <tr><td>value:</td><td>%s</td></tr></table>'
},

As a result, the tool tip with the content will behave like a small HTML page, as shown in Figure 9-30.

Figure 9-29. A line chart showing the cursor coordinates

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

189

Interacting with the Chart: Limit Lines and Zooming
Once you have a line chart with its graphics and elements well set, the next step is to introduce interactive elements.
For instance, it may be necessary for the user to employ threshold values in order to see which data are external to
these values. The user mayalso need to vary this threshold to determine which data lie inside and which lie outside it.
Often, a lot of data are represented. In this case, the user may need to analyze only a detail.

The jqPlot library provides a solution for both cases with limit lines and zooming. Let us look at some examples
addressing these issues in detail.

Drawing a Limit Line on the Chart
Another feature that can be very useful is the CanvasOverlay plug-in. It enables you to draw horizontal and vertical
lines on your charts, with the purpose of indicating a limit, a threshold, or a deadline or of delimiting a particular
range. This can be done by including the CanvasOverlay plug-in in the web page:

<script type="text/javascript"
 src="../src/plugins/jqplot.canvasOverlay.min.js"></script>

Figure 9-30. A line chart with an HTML tool tip

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

190

By including this plug-in, you have a new object in options: canvasOverlay. Within this object, you will define an
array of objects with their properties. Each of these objects will be represented by a line drawn on the canvas on which
jqPlot creates your chart. Five types of objects are already defined in canvasOverlay:

•฀ horizontalLine

•฀ verticalLine

•฀ dashedHorizontalLine

•฀ dashedVerticalLine

•฀ Line (generic)

To see how to insert these limit lines in your charts, let us start from a simple line chart in which you want to
show two horizontal limit lines with different colors: a red line marking the upper limit, and a dashed blue line, the
lower limit.

In Listing 9-35, you define the two objects: a horizontalLine for the lower limit and a dashedHorizontalLine
for the upper limit. Once you have defined the two lines, you must specify their attributes. The meaning of their
attributes, such as y values, lineWidth, and color, is evident. The lineCap property specifies the type of ending
placed on the line; it can be round, butt, or square.

Listing 9-35. ch9_15.html

$(document).ready(function(){
 var data = [100, 110, 140, 130, 80, 75, 120, 130, 100];
 var options = {
 canvasOverlay: {
 show: true,
 objects: [
 {horizontalLine: {
 y: 70,
 lineWidth: 3,
 color: 'rgb(255, 0, 0)',
 shadow: true,
 lineCap: 'butt'
 }},
 {dashedHorizontalLine: {
 y: 145,
 lineWidth: 4,
 color: 'rgb(0, 0, 255)',
 shadow: false,
 dashPattern: [8, 16],
 lineCap: 'round'
 }}
]
 }
 };
 $.jqplot('myChart', [data], options);
});

Figure 9-31 displays the two limit lines delimiting the line chart between the values 70 and 145.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

191

You have just seen how to delimit line chart between two limit lines, In more complex cases (but not in this case,
which is less common), it may be convenient to vary the value of these limits, and thus be able to move them at will,
for instance, by clicking a series of buttons. In the next example, you will continue to implement the current chart by
adding buttons that serve to slide the limit lines on the surface of the chart.

Adding Buttons to Your Charts
Using the previous example (see Listing 9-35), you will now see how to add buttons to a chart. Buttons can be placed
in any part of a web page, as they are outside the canvas. Here, their function is to allow you to shift the limit lines as
you wish, just by clicking them.

For this purpose, you will need four buttons: two to move the limit lines upward and two to move them
downward, labeled as follows:

Low Limit Up•฀

Low Limit Down•฀

High Limit Up•฀

High Limit Down•฀

You can add the four buttons defined in Listing 9-36 anywhere in the <body> section of the web page.

Figure 9-31. A line chart with lower and upper limits

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

192

Listing 9-36. ch9_16.html

<div>
 <button onclick="lineup(myPlot, 'lowlimit')">Low Limit Up</button>
 <button onclick="linedown(myPlot, 'lowlimit')">Low Limit Down</button>
</div>
<div>
 <button onclick="lineup(myPlot, 'hilimit')">High Limit Up</button>
 <button onclick="linedown(myPlot, 'hilimit')">High Limit Down</button>
</div>

These rows will generate the four buttons shown in Figure 9-32.

In Chapter 2, you were introduced to JQuery User Interface library (jQuery UI) widgets that can be used as
controls. Given the potential of this type of control, it is advisable to use the button widget provided by the library
(for further information on how to use these widgets, see Chapter 15). If you want to use jQuery UI widgets to replace
the four buttons, you need to include the following plug-ins:

<lin k rel="stylesheet" href="http://code.jquery.com/ui/1.10.3/themes/smoothness

/jquery-ui.css" />
<script src="http://code.jquery.com/ui/1.10.3/jquery-ui.min.js"></script>

If, however, you would rather refer to the libraries installed locally (see Appendix A), you have to include
the following code:

<link rel="stylesheet" href="../src/css/smoothness/jquery-ui-1.10.3.custom.min.css" />
<script src="../src/js/jquery-ui-1.10.3.custom.min.js"></script>

And, in the <body> section of the HTML page, you add code in Listing 9-37.

Listing 9-37. ch9_16.html

<script>
$(function() {
 $('button')
 .button()
 .click(function(event) {
 event.preventDefault();
 });
});
</script>

The buttons are now displayed in jQuery UI style (or, more precisely, with the “smoothness” theme, one of many),
as you can see in Figure 9-33.

Figure 9-32. The buttons added to the chart in order to move the limit lines



http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/jquery-ui.min.js

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

193

At this point, these buttons are totally inactive. You need to develop two JavaScript functions; these will be executed
when the buttons are pressed. The first function, lineup(),will increase the y value of the line passed as argument
(high limit or low limit) and then force a new drawing of the chart. The second function, linedown(), will decrease the y
value. These two functions must be external to the jQuery function $(document).ready() (see Listing 9-38).

Listing 9-38. ch9_16.html

function lineup(plot, name) {
 var co = plot.plugins.canvasOverlay;
 var line = co.get(name);
 line.options.y += 5;
 co.draw(plot);
}

functionlinedown(plot, name) {
 var co = plot.plugins.canvasOverlay;
 var line = co.get(name);
 line.options.y -= 5;
 co.draw(plot);
}

The next step consists in assigning the object returned by the $.jqplot()function to a variable:

myPlot = $.jqplot('myChart', [data], options);

Note ■ Take care not to write varmyPlot, or you will not see any changes in the chart when you press the buttons.

The last step is to name the two lines inside the canvasOverlay object, as demonstrated in Listing 9-39.

Listing 9-39. ch9_16.html

objects: [
 {horizontalLine: {
 name: 'lowlimit',
 y: 70,
 lineWidth: 3,
 color: 'rgb(255, 0, 0)',
 shadow: true,
 lineCap: 'butt'
 }},
 {dashedHorizontalLine: {
 name: 'hilimit',
 y: 145,

Figure 9-33. The same four buttons, but displayed using the jQuery UI

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

194

 lineWidth: 4,
 color: 'rgb(0, 0, 255)',
 shadow: false,
 dashPattern: [8, 16],
 lineCap: 'round'
 }}
]

In the end, you get a chart containing the four buttons, as shown in Figure 9-34.

Sometimes, you need to add vertical lines to your chart, especially when you have to mark a deadline. In this
case we shall work as before, but with some differences. For example, let us say you want to place a single vertical
line representing a deadline in your line chart. In this case, you use the code in Listing 9-40.

Figure 9-34. A line chart with a set of buttons that vary the lower and upper thresholds

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

195

Listing 9-40. ch9_17.html

$(document).ready(function(){
 var data = [100, 110, 140, 130, 80, 75, 120, 130, 100];
 var options = {
 canvasOverlay: {
 show: true,
 objects: [
 {verticalLine: {
 name: 'lowlimit',
 x: 5,
 lineWidth: 3,
 color: 'rgb(50, 200, 50)',
 shadow: true,
 lineCap: 'butt',
 yOffset: 0
 }}
]
 }
 };
 myPlot = $.jqplot('myChart', [data], options);
});

This time, you will need only two buttons.

<div>
 <button onclick="lineright(myPlot, 'lowlimit')">Postpone Deadline</button>
 <button onclick="lineleft(myPlot, 'lowlimit')">Anticipate Deadline</button>
</div>

Now, you must develop two JavaScript functions that will shift the limit lines horizontally as the buttons are
pressed. Like the JavaScript functions seen previously, the two functions in Listing 9-41 have to be placed external to
the jQuery function $(document).ready().

Listing 9-41. ch9_17.html

functionlineright(plot, name) {
 var co = plot.plugins.canvasOverlay;
 var line = co.get(name);
 line.options.x += 1;
 co.draw(plot);
}

functionlineleft(plot, name) {
 var co = plot.plugins.canvasOverlay;
 var line = co.get(name);
 line.options.x -= 1;
 co.draw(plot);
}

The result is the chart in Figure 9-35, with a green vertical line in the middle. By clicking the two buttons,
the line will move to the left if you want to anticipate, or to the right if you want to postpone, the deadline.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

196

Zooming
Often, when you are dealing with a large amount of data, you end up with a line made up of thousands of points on
your chart. It is precisely in such a case that the zooming function can be indispensable. Starting from a macroscopic
view, you can zoom in on part of the line to get a microscopic view of the data.

The Cursor plug-in also enables a plot-zooming function. By clicking and dragging the cursor on the plot, you
can zoom in on and scroll small sections of your chart. If you double-click, you can reset all and go back to the
macroscopic view. Thus, you need to include the Cursor plug-in in your web page, and because you have date values
on the x axis, the DateAxisRenderer plug-in must be included as well:

<script type="text/javascript"
 src="../src/plugins/jqplot.dateAxisRenderer.min.js"></script>
<script type="text/javascript" src="../src/plugins/jqplot.cursor.min.js"></script>

Figure 9-35. A line chart with a green horizontal limit line

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

197

Or, if you prefer to use a CDN service, you can do so as follows:

<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.dateAxisRenderer.min.js"></script>
<script type="text/javascript"
 src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.cursor.min.js"></script>

Listing 9-42 illustrates the availability of a large amount of incoming data.

Listing 9-42. ch9_18.html

var data = [["6/22/2012 10:00:00", 110.32], ["6/8/2012 10:00:00", 115.84],
 ["5/26/2012 10:00:00", 121.23], ["5/11/2012 10:00:00", 122.12],
 ["4/27/2012 10:00:00", 120.69], ["4/13/2012 10:00:00",123.24],
 ["3/30/2012 10:00:00", 116.78], ["3/16/2012 10:00:00", 115.16],
 ["3/2/2012 10:00:00", 113.57], ["2/17/2012 10:00:00", 120.45],
 ["2/2/2012 10:00:00", 121.28], ["1/20/2012 10:00:00", 124.7],
 ["1/5/2012 10:00:00", 130.07], ["12/22/2011 10:00:00", 129.36],
 ["12/8/2011 10:00:00", 130.76], ["11/24/2011 10:00:00", 133.96],
 ["11/10/2011 10:00:00", 140.02] ,["10/27/2011 10:00:00", 138.36],
 ["10/13/2011 10:00:00", 140.54], ["9/29/2011 10:00:00", 140.91],
 ["9/15/2011 10:00:00", 140.15], ["9/2/2011 10:00:00", 138.25],
 ["8/25/2011 10:00:00", 137.29], ["8/11/2011 10:00:00", 139.15],
 ["7/28/2011 10:00:00", 144.86], ["7/14/2011 10:00:00", 145.32],
 ["6/30/2011 10:00:00", 148.12], ["6/16/2011 10:00:00", 146.43],
 ["6/2/2011 10:00:00", 147], ["5/19/2011 10:00:00", 144.62],
 ["5/5/2011 10:00:00", 143.2], ["4/21/2011 10:00:00", 144.06],
 ["4/7/2011 10:00:00", 137.45], ["3/24/2011 10:00:00", 138.08],
 ["3/10/2011 10:00:00", 137.92], ["2/25/2011 10:00:00", 131.18],
 ["2/11/2011 10:00:00", 129.64], ["1/28/2011 10:00:00", 133.9],
 ["1/14/2011 10:00:00", 134.25], ["12/31/2010 10:00:00", 137],
 ["12/17/2010 10:00:00", 136.69], ["12/3/2010 10:00:00", 144.87],
 ["11/19/2010 10:00:00", 146.7], ["11/5/2010 10:00:00", 143.97],
 ["10/22/2010 10:00:00", 139.6], ["10/8/2010 10:00:00", 133.39],
 ["9/24/2010 10:00:00", 130.27], ["9/10/2010 10:00:00", 132.75],
 ["8/27/2010 10:00:00", 130.25]];

It is very simple to enable the zooming function. Simply set the zoom property to 'true' in options, as shown
in Listing 9-43.

Listing 9-43. ch9_18.html

var options = {
 series: [{
 neighborThreshold: -1
 }],
 axes:{
 xaxis:{
 renderer: $.jqplot.DateAxisRenderer,
 min:'August 1, 2010 16:00:00',

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.cursor.min.js

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

198

 tickInterval: '6 months',
 tickOptions: {formatString: '%#m/%#d/%Y'}
 }
 },
 cursor:{
 show: true,
 zoom: true,
 showTooltip: false
 }
};
myPlot = $.jqplot('myChart', [data], options);

Or, if you prefer, you can disable the double-clicking that resets the zoom. The Cursor plug-in also extends the
plot object (the value returned by the $.jqplot() function) by using the resetZoom() method externally. Moreover,
this method can be called from the user code or another HTML element, such as a button, to reset the plot zoom.

You can define this function inside the jQuery ready() function:

 $('.button-reset').click(function() { myPlot.resetZoom() });

Then, insert the following row anywhere you want to in order to place the button in the <body> section of
the web page:

<button class="button-reset">Reset Zoom</button>

Figure 9-36 offers a sequence of pictures representing the line chart at different moments. The first picture is the
line chart as displayed from the browser, without any zooming. The second picture shows an area of the chart selected
by the user, with the intention of zooming. The final picture illustrates the result of this zooming. If the user clicks
the Reset Zoom button, the browser will display the first picture again.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

199

Changing Chart Appearance
Thanks to its several plug-ins, jqPlot can render the chart components, including the text, directly on canvas. By now it
must be clear that the highlight of the jqPlot library is the potential to change the look of any chart element by varying
the default values of the jqPlot properties and of the plug-ins added. But, this is not the only method for effecting such
change. If you want to modify the appearance of an element in an HTML page, you have recourse to the CSS style.
This is true even for jqPlot elements.

It is possible to refer to several (but not all) jqPlot objects with CSS classes in order to change the style of these
objects without having to set their attributes in options. The objects can be customized by CSS, using a CSS class such
as .jqplot-*.

Figure 9-36. A detail of the line chart extracted by zooming

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

200

Customizing Text, Using CSS
The jqPlot library provides CSS classes with which you can change some properties without referring to the options
object. By way of an example, you will use some of these classes to change the text inside a chart. Let us start by
implementing a simple multiseries line chart with only a title and an axis label defined in options (see listing 9-44).

Listing 9-44. ch9_10a.html

$(document).ready(function(){
 var data1 = [1, 2, 3, 2, 3, 4];
 var data2 = [3, 4, 5, 6, 5, 7];
 var data3 = [5, 6, 8, 9, 7, 9];
 var data4 = [7, 8, 9, 11, 10, 11];
 var options = {
 title: 'Multiseries Line Chart,
 axesDefaults: {
 label: 'Axis Label'
 }
 };
 $.jqplot('myChart',[data1, data2, data3, data4], options);
});

You add the <style> section in Listing 9-45, which can be extracted as a CSS file.

Listing 9-45. ch9_10a.html

<style>
.jqplot-title {
 font-family: "Arial Black";
 font-size: 24px;
 color: lightblue;
}

.jqplot-xaxis-label {
 font-size: 24px;
}

.jqplot-axis {
 font-family: "Arial";
 font-size: 16px;
}

.jqplot-xaxis {
 color: green;
}

.jqplot-yaxis {
 color: orange;
 font-weight: bold;
}
</style>

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

201

Figure 9-37 shows the situation before and after the settings of CSS style in Listing 9-45, allowing us to see the
changes made.

Changing the Background Color
Continuing with the previous example (see Listing 9-45), you now discover that by simply adding a single property to
options (highlighted in Listing 9-46), you can obtain a black background. as demonstrated in Figure 9-38.

Listing 9-46. ch9_10b.html

var options = {
 title: 'Multiple Data Arrays',
 axesDefaults: {
 label: 'Axis Label'
 },
 grid: {
 background: '#000000'
 }
};

Figure 9-37. Some CSS styles applied to the tick labels and title

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

202

Further Customization, Using CSS
This time, you will change not only the background to the grid, but also the space that surrounds your chart, making
it even more attractive. You will accomplish this by applying CSS styles directly to the chart elements.

For example, counter to the default setting (gray grid, white background), let us say you decide to place your chart
on a completely black background. In this case, you need to create a container with a <div> element incorporated
inside the myChart target (another<div> element):

<div class="chart-container">
 <div id="myChart" style="height:400px; width:500px;"></div>
</div>

This container serves to extend the area on which the black background will be placed; we refer to the container
by setting its class with chart-container.

At this point, the most important thing to keep in mind is that the two <div> elements, the container and the
target, can now be suitably characterized by changing their CSS styles. This can be done by specifying attributes for
the .chart-container, as shown in Listing 9-47 (as for the elements of the target, these have already been set, using
the .jqplot-* classes). In the .chart-container class, you set the background property to 'black'; the size of the
container is established with the width and height properties. You also use the padding property in order to better
center the target inside the container. The padding clears an area around the content of an element, extending its
background color. The four values are, respectively, top, right, bottom, and left padding.

Listing 9-47. ch9_20.html

<style type="text/css">
.chart-container {
 background : #000000;

Figure 9-38. A line chart with a black background

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

203

 padding: 30px 0px 80px 30px;
 width: 560px;
 height: 330px;
}
...
</style>

The combined result emerging from the CSS customization of the container and the target is the chart
shown in Figure 9-39.

Setting the Grid
By default, the grids of your charts are gray. In the previous example (see Listing 9-47), however, you saw how you can
change the grid by setting the properties within the grid object in options. In this example, you continue to modify
the same multiseries line chart, but this time, you will focus on the grid properties.

You can change both the grid color and thickness. For instance, you might want a black grid, with increased
thickness, in which case you must define the gridLineColor and gridLineWidth properties. Moreover, sometimes,
by default, jqPlot might display your chart with a grid that is too thick and that could hinder rather than aid in
readability. In such instances, you will need to reduce the number of ticks. This can be done very easily, by setting the
numberTicks property in a specific way for each axis within the axes object in options. Listing 9-48 includes all
these changes.

Figure 9-39. A multiseries line chart with a black background

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

204

Listing 9-48. ch9_10d.html

var options = {
 title: 'Multiseries Line Chart',
 axesDefaults: {
 label: 'AxisLabel'
 },
 grid: {
 background: '#000000',
 gridLineColor: '#ffffff',
 gridLineWidth: 2
 },
 axes: {
 xaxis: {
 numberTicks: 5,
 min: 0,
 max: 8
 },
 yaxis: {
 numberTicks: 3,
 min: 0,
 max: 12
 }
 }
};

In the end, you get a new chart with the desired grid (see Figure 9-40).

Figure 9-40. A multiseries line chart with a customized grid

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

205

Note that there is a gray outline delimiting the chart: the border. You can change that as well, or disable it,
as in Listing 9-49. You can set the drawBorder property to 'false' and disable the shadow, too.

Listing 9-49. ch9_20e.html

grid: {
 drawBorder: false,
 shadow: false,
 gridLineColor: '#000000',
 gridLineWidth: 2,
},

Following these changes, you obtain a more readable grid, such as the one in Figure 9-41, which has a border
the same color as the grid (white).

Working with Areas on Line Charts
So far, you have seen that the line chart basically consists of sets of points connected by lines, describing trends of
a certain size. Now, you may find that such a view is somewhat limited. Often, the most interesting part of a line chart
is the area that a line (or several lines) delimits in some way.

Figure 9-41. A more readable multiseries line chart, with a customized grid

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

206

Area Charts
A line chart can be converted into an area chart. In this example, you will use the multiseries line chart you have
already created (see Listing 9-50), effecting changes in order to get a new chart mixing areas and lines. Here, you will
see that very few changes need to be made to achieve the desired effect.

Listing 9-50. ch9_22a.html

$(document).ready(function(){
 var data1 = [1, 2, 3, 2, 3, 4];
 var data2 = [3, 4, 5, 6, 5, 7];
 var data3 = [5, 6, 8, 9, 7, 9];
 var data4 = [7, 8, 9, 11, 10, 11];
 var options = {
 title:'Multiple Data Arrays'
 };
 $.jqplot ('myChart', [data1, data2, data3, data4], options);
});

First, in options you have to insert the fill attribute in the series that you want to represent as an area. This time,
you choose seriesDefaults to apply the representation by area to all series. In this way, you obtain an area chart.
To make the chart nicer, you can add other options, such as smoothing (see Listing 9-51).

Listing 9-51. ch9_22a.html

var options = {
 title: 'Multiple Data Arrays',
 seriesDefaults: {
 showMarker: false,
 rendererOptions: {
 smooth: true
 },
 fill: true
 }
};

But, when running the web page, you immediately find that something is wrong: the area of the last series is
covering the others (see Figure 9-42).

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

207

Before applying the fill attribute to series, you need to consider the order in which the corresponding areas
of the series should be represented. In this case, it is only necessary to order the sequence of series in a different way:

$.jqplot ('myChart', [data4, data3, data2, data1], options);

The result is an accurate area chart, as seen in Figure 9-43.

Figure 9-42. An area chart with one series covering the others

Figure 9-43. A multiseries area chart rendered correctly

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

208

Line and Area Charts
Mixing lines and areas in the same chart can also create a very nice effect. Continuing with the previous example
(see Listing 9-51), instead of setting the fill property in seriesDefaults and therefore applying the fill for all the
series, you can decide to do so series by series in order to choose which series must be represented as area and
which as line, as shown in Listing 9-52.

Listing 9-52. ch9_22b.html

var options = {
 title:'Multiple Data Arrays',
 seriesDefaults: {
 showMarker: false,
 rendererOptions: {
 smooth: true
 }
 },
 series: [{}, {fill: true}, {}, {fill: true}]
};

Figure 9-44 shows how is possible to combine line and area charts.

Band Charts
Band charts (also called high-low line charts or range charts) are a type of chart that combines the features of an
area chart with those of a line chart.

A band chart is a line chart enhanced with an underlying shaded area (see Figure 9-45). This area represents the
upper and lower boundaries of a range of values on the y axis. This range varies with the x, such that, in the end,
you have a band.

Figure 9-44. A combined line and area chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

209

You can use a band to indicate a particular interval on the y axis, which varies with the value on the x axis,
correlated with the trend of a line inside it, illustrating, for example, confidence intervals or error bands. Another use
might be to highlight a distribution that varies with time and the line showing the arithmetic mean.

Using jqPlot, the bands can be automatically computed or manually assigned. If assigned manually, the bounds
of the band must be supplied as two arrays of [x, y] values. The first array delimits the lower bound line; the second
array, the upper bound line. These two arrays are joined as the two elements of another array that is passed to the
bandData property inside options.

First, let us define a data array with pairs of [x, y] values and the band array bdata, containing the two arrays:
lower bound line and upper bound line (see Listing 9-53).

Listing 9-53. ch9_24a.html

var data = [[10,100],[20,110],[30,140],[40,130],
 [50,80],[60,75],[70,120],[80,130],[90,100]];
varbdata =[[[10,90],[20,100],[30,130],[40,120],
 [50,70],[60,65],[70,110],[80,120],[90,90]],
 [[10,110],[20,120],[30,150],[40,140],
 [50,90],[60,85],[70,130],[80,140],[90,110]]];

Then, in options, use the code shown in Listing 9-54. Figure 9-46 presents the resulting banded-line chart.

Listing 9-54. ch9_24a.html

var options = {
 series: [{
 rendererOptions: { bandData: bdata }
 }],
 seriesDefaults: {
 shadow: false,
 showMarker: false
 }
};
$.jqplot ('myChart', [data], options);

Figure 9-45. A band chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

210

If you choose to draw a smooth-line chart, the band will be smoothed out as well. Listing 9-55 gives the code,
and Figure 9-47, the outcome.

Listing 9-55. ch9_24b.html

rendererOptions: {
 bandData: bdata,
 smooth: true
}

Figure 9-46. A banded-line chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

211

The number of points in the band data arrays does not have to correspond to the number of points in the data
series. Also, band data will be drawn as smoothed lines if the data series is smoothed. The band does not have
to be symmetrical, with respect to the main line. The band can be made asymmetrical by inserting an array with
asymmetrical y values in the bdata array, as demonstrated in Listing 9-56.

Listing 9-56. ch9_24c.html

varbdata =[[[10,90],[30,100],[40,100],[50,70],
 [60,65], [70,110],[80,120],[90,90]],
 [[10,110],[30,150],[40,140],[50,120],
 [60,85], [70,130],[80,140],[90,110]]];

Now, the band in Figure 9-48 is not symmetrical, with respect to the main line.

Figure 9-47. A smooth-banded-line chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

212

But, providing band data is not mandatory; they can be automatically computed by jqPlot. To activate this feature
without using any arrays, you have to set the bands object’s show property to 'true' in rendererOptions, as in
Listing 9-57. As you can see in Figure 9-49, by default the band interval covers +/-3 percent of the y value of the main line.

Listing 9-57. ch9_24d.html

series: [{
 rendererOptions: {
 bands: { show: true},
 smooth: true
 }
}],

Figure 9-48. A nonuniform banded-line chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

213

Filling Between Lines in a Line Chart
You have just learned about bands. Why not fill the area between two series lines? Even this task is possible with
jqPlot, as well. By setting the properties within the fillBetween object, it is possible to control the area between
two lines on a plot.

Here, you are starting with a very simple multiseries line chart (the same example used for other cases),
described in Listing 9-58.

Listing 9-58. ch9_5a.html

$(document).ready(function(){
 var data1 = [1, 2, 3, 2, 3, 4];
 var data2 = [3, 4, 5, 6, 5, 7];
 var data3 = [5, 6, 8, 9, 7, 9];
 var data4 = [7, 8, 9, 11, 10, 11];
 var options = {
 title:'Multiple Data Arrays',
 };
 $.jqplot('myChart', [data1, data2, data3, data4], options);
});

Using this multiseries line chart, you can consider every series, with an index starting from 0, for the first series;
1, for the second series; 2, for the third; and so on.

So, if you want to fill the area between two lines, you need to specify in the series1 and series2 attributes the
two indexes corresponding to them. For instance, if you want to fill the area between the second and the fourth series,
you have to set series1 to 1 (second series) and series 2 to 3 (fourth series), as shown in Listing 9-59. Optionally,
you can set the color of the delimited area by using the color attribute or, better, with an rgba() function.

Figure 9-49. A banded-line chart with a band interval of +/-3 percent

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

214

Listing 9-59. ch9_25.html

var options = {
 title: 'Multiple Data Arrays',
 fillBetween: {
 series1: 1, //second series
 series2: 3, //fourth series
 color: "rgba(10, 120, 130, 0.7)"
 }
});

In Figure 9-50, you can see that the selected area, between the second and the fourth series, is colored.

You can bind a JavaScript function to a button that serves to update the plot’s settings for each series and then
replot everything. To do this, let us add the function in Listing 9-60 inside the jQuery ready() function.

Listing 9-60. ch9_26.html

$("button[name=changeFill]").click(function(e) {
 plot1.fillBetween.series1 = parseInt($("input[name=series1]").val());
 plot1.fillBetween.series2 = parseInt($("input[name=series2]").val());
 plot1.replot();
});

Figure 9-50. A multiseries line chart with a colored area between two lines

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

215

For the previous JavaScript function to work, you need to assign the variable plot1 with the value returned
by the function $.jqplot():

plot1 = $.jqplot ('myChart', [data1, data2, data3, data4], options);

And, in the <body> section of the web page, you must add two input text areas and a button, as shown
in Listing 9-61.

Listing 9-61. ch9_26.html

<label for="series1">First Series: </label>
<input type="text" name="series1" value="1" />
<label for="series2"> Second Series: </label>
<input type="text" name="series2" value="3" />
<button name="changeFill">Change Fill</button>

The result is given in Figure 9-51.

To replace the simple HTML controls with a jQuery UI widget, you have to make some changes to the
code in order to integrate it, as reported in Listing 9-62.

Listing 9-62. ch9_26ui.html

<link rel="stylesheet" href="../src/css/smoothness/jquery-ui-1.10.3.custom.min.css" />
<script src="../src/js/jquery-ui-1.10.3.custom.min.js"></script>
...
$("button[name=changeFill]").click(function(e) {
 plot1.fillBetween.series1 = parseInt($("#combobox").val());

Figure 9-51. A multiseries line chart with a selectable colored area

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

216

 plot1.fillBetween.series2 = parseInt($("#combobox2").val());
 plot1.replot();
});
...
<div class="ui-widget">
<label>First Series : </label>
<select id="combobox">
 <option value="0">1</option>
 <option value="1">2</option>
 <option value="2">3</option>
 <option value="3">4</option>
</select>
</div>
<div class="ui-widget">
<label>Second Series : </label>
<select id="combobox2">
 <option value="0">1</option>
 <option value="1">2</option>
 <option value="2">3</option>
 <option value="3">4</option>
</select>
</div>
<button name="changeFill">Change Fill</button>
<script>
$(function() {
 $('button')
 .button()
 .click(function(event) {
 event.preventDefault();
 });
});
</script>

The result is the chart shown in Figure 9-52.

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

217

Trend Lines
jqPlot is really full of surprises. In addition to all the things you have already seen regarding the line chart, jqPlot can
calculate and represent trend lines. These are generally straight lines drawn in a chart, but sometimes they can be
exponential (if they are linear in a log scale). A trend line indicates the general pattern or direction of the series data
plotted in a chart. The line is drawn by using statistical techniques. This function is performed by another plug-in:
Trendline.

To enable this function, you need to include the plug-in in the web page:

<script type="text/javascript" src="../src/plugins/jqplot.trendline.min.js"></script>

After that, you need only activate the plug-in, adding the row that enables it, as in Listing 9-63.

Listing 9-63. ch9_27a.html

$(document).ready(function(){
 var data = [100, 110, 140, 130, 135, 132, 140, 135, 142]
 $.jqplot.config.enablePlugins = true;
 $.jqplot ('myChart', [data]);
});

Figure 9-52. A multiseries line chart with a selectable colored area

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

218

With these few lines it is possible to obtain a trend line, as in Figure 9-53.

But, if you prefer to express the properties explicitly, you can do so through the use of options. This enables you to
handle the trend line in the same way as other objects in the chart. Let us say you would like to change the line’s color
and increase its thickness to make it stand out (see Listing 9-64).

Listing 9-64. ch9_27b.html

var options = {
 seriesDefaults: {
 trendline: {
 show:true,
 color: '#ff0000',
 lineWidth: 4
 }
 }
}
$.jqplot ('myChart', [data], options);

You now gain more control of the trend line. Figure 9-54 shows a line with property settings in the trendline
object (the trend line is thicker and is displayed with a deep red color on the browser).

Figure 9-53. The linear trend line of a line chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

219

As mentioned earlier, it is possible to use trend line curves, which indicate an exponential trend followed
by the points of the chart. Let examine this in the next example, in Listing 9-65.

Listing 9-65. ch9_28.html

$(document).ready(function(){
 var data = [[10, 1.44], [30, 6.98], [50, 10.7], [70, 37.5], [90, 78.1]];
 var options = {
 seriesDefaults: {
 trendline: {
 show:true,
 color: '#ff0000',
 lineWidth: 4,
 type: 'exponential'
 }
 }
 }
 $.jqplot ('myChart', [data], options);
});

Figure 9-55 presents a line chart in which you have plotted a series of points following an exponential trend.
You can, therefore, highlight this with an exponential trend line.

Figure 9-54. A customized linear trend line in a line chart

CHAPTER 9 ■ LINE CHARTS WITH JQPLOT

220

Summary
In this rich chapter, you have become well versed in the jqPlot world. You looked at the many possibilities that this
library provides, enabling you to implement line charts to the best of your ability. You learned how to manipulate the
basic elements on which to plot your chart, such as axes and ticks. In particular, you saw how to manage multiple
data series in the same chart (multiseries charts), adding various graphic effects. You also explored the way in which
the jqPlot library allows you to manipulate different formats of date and time values. Moreover, you saw how it is
possible to customize some elements, using the HTML format, along with the highlighting of data points. In the
final part of the chapter, you dealt with more complex cases, such as generating a trend line and working with
band charts.

In the next chapter, one that is full of arguments, you will face other new concepts, applied this time to bar charts.

Figure 9-55. A customized exponential trend in a line chart

221

CHAPTER 10

Bar Charts with jqPlot

In this chapter, you will deal with another large class of charts: bar charts. In the previous chapter, you were shown
ways to characterize line charts, the default chart type in jqPlot. Now, using the BarRenderer plug-in, you will discover
how the structure of the main jqPlot object is gradually enriched with new properties and objects. Through practical
examples, you will see how to change the values of property and object attributes with rendererOptions.

Sometimes, it is possible to obtain different representations using the same set of data. Learning how to choose
which representation is most suitable to your needs is one of the fundamental objectives of this book. To this end,
using one set of data, you will see how to switch from a grouped bar chart to a stacked bar chart, in both cases
choosing between a vertical and a horizontal representation.

In addition, you will learn how it is possible to represent a combined chart with the jqPlot library, for example,
how to represent a line chart and a bar chart at the same time, and how, simply by slowing down the speed of drawing,
you can get a simple but eye-catching animation., You will also become acquainted with a particular type of bar chart,
the Marimekko chart, which is implemented by the jqPlot library in a very satisfactory way.

In the last part of the chapter, I will introduce the use of events in jqPlot. This is a complex subject, but thanks
to special jQuery functions, you can achieve significant interactive effects with only a few lines of code. The chapter
concludes with a typical example in this regard: how to customize tool tips.

Using the BarRenderer Plug-In to Create Bar Charts
When you have a set of data that is divided into various categories, and there is a need to compare these
categories with one another, then a bar chart may be the representation that is best suited to your needs. You have
seen that without including any plug-ins, by default the incoming data are interpreted as points joined to form a line.
To tell jqPlot that the incoming data must be used to draw a bar chart, you have to place a set of plug-ins in the <head>
section of the HTML page:

<script type="text/javascript" src="../src/plugins/jqplot.dateAxisRenderer.min.js"></script>
<script type="text/javascript"
 src="../src/plugins/jqplot.canvasAxisTickRenderer.min.js"></script>
<script type="text/javascript" src="../src/plugins/jqplot.categoryAxisRenderer.min.js"></script>
<script type="text/javascript" src="../src/plugins/jqplot.barRenderer.min.js"></script>

Or, if you prefer to use a content delivery network (CDN) service, you may do so as follows:

<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.dateAxisRenderer.min.js"></script>
<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisTickRenderer.min.js"></script>

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.dateAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisTickRenderer.min.js

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

222

<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.categoryAxisRenderer.min.js"></script>
<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.barRenderer.min.js"></script>

To set the input data so that it may be used in a bar chart, you must insert an array in the format [label, y],
where x is no longer present, but an indicative label takes its place. This label is often a string value. In fact, when we
talk about bar charts, we are no longer interested in following the trend of a variable (y values) in relation to another
variable (x values), but rather, are interested in comparing categories, or groups, of data (labels). For this example,
you will use five groups, each of which represents a state, reported as a label:

var data = [['Germany', 12], ['Italy', 8], ['Spain', 6], ['France', 10], ['UK', 7]];

Once you have included the BarRenderer plug-in, you have to activate it, assigning its reference to the renderer
property within the series object (see Listing 10-1). You will do the same thing with the second plug-in,
CategoryAxisRenderer, specifying it only for the xaxis object.

Listing 10-1. ch10_01a.html

var options = {
 title: 'Foreign Customers',
 series:[{renderer:$.jqplot.BarRenderer}],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
};
$.jqplot ('myChart', [data], options);

Next, in the <body> section of the HTML page, you add the following row:

<div id="myChart" style="height:300px; width:500px;"></div>

In this way, you get a simple bar chart, as shown in Figure 10-1. Every state contained in the data array is
represented by a blue bar, with the height corresponding to the y value.

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.categoryAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.barRenderer.min.js

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

223

Rotate Axis Tick Labels
Often, it may be necessary or desirable to rotate the tick labels reported on the x axis. For instance, the text may be too
long to be reported, and in order to maintain the readability of the labels, you need to write them so that they incline
at a certain angle. This rotation is achieved by including the CanvasTextRenderer plug-in:

<script type="text/javascript" src="../src/plugins/jqplot.canvasTextRenderer.min.js"></script>

Or, if you prefer to use a CDN service, you may do so as follows:

<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.canvasTextRenderer.min.js"></script>

Here, too, simply including the plug-in will not be enough; you must also activate it by passing its reference to the
tickRenderer property, as demonstrated in Listing 10-2. Then, you need to specify certain properties in tickOptions:
you set the angle property to –30 degrees. With this value, you are indicating the degrees of inclination of the text, with
respect to the x axis. If the value is positive, the text will rotate in a clockwise direction; if negative (as in Listing 10-2),
counterclockwise.

Listing 10-2. ch10_01b.html

var options = {
 title: 'Foreign customers',
 series:[{ renderer: $.jqplot.BarRenderer }],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 tickRenderer: $.jqplot.CanvasAxisTickRenderer,

Figure 10-1. A simple bar chart



http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

224

 tickOptions: {
 angle: -30,
 fontSize: '10pt'
 }
 }
 }
};
$.jqplot ('myChart', [data], options);

If you now load the web page in your browser, at the bottom of your chart,, you will see that all the labels are
rotated counterclockwise, with respect to the x axis (see Figure 10-2).

Modify the Space Between the Bars
Working with bar charts, perhaps the most common requirement is to vary the amount of space between bars. This
space can be adjusted directly, by setting the barMargin property with different values. Because this property does not
belong to the jqplot object, but is specific to the BarRenderer plug-in, you have to specify it within rendererOptions.
Whenever you include a renderer plug-in, you also include a whole new set of properties not belonging to the original
jqplot object. So, if you want a value that is different from the default of one of these properties, you will need to write
this property in rendererOptions, setting the new value. For instance, let us apply a space of 30 pixels between bars,
as illustrated in Listing 10-3.

Listing 10-3. ch10_02.html

var options = {
 title: 'Foreign Customers',
 seriesDefaults:{
 renderer:$.jqplot.BarRenderer,
 rendererOptions: {
 barMargin: 30
 },
 },
 axes: {

Because the width of the chart remains the same, as a consequence of increasing the barMargin property to 30,
all bars are narrower than before (see Figure 10-3).

Figure 10-2. A bar chart with rotated labels on the x axis

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

225

Adding Values at the Top of Bars
The jqPlot library allows you to handle even point labels. Although you can use them in line charts, as well, point
labels are an important component of bar charts. Point labels, if activated, explicitly show the y value above the bars,
enhancing the readability of values, especially for the stacked bar chart. To activate this functionality, you need to
include another plug-in:

<script type="text/javascript" src="../src/plugins/jqplot.pointLabels.min.js"></script>

Or, if you prefer to use a CDN service, you may do so as follows:

<script type="text/javascript"
 src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.pointLabels.min.js"></script>

You may have noticed that PointLabels is not a renderer plug-in and that it is therefore already active. This time,
there will be no need to pass a reference in the renderer property. The process is very simple and quick: in options,
you set the show property of the pointLabels object to 'true' (see Listing 10-4).

Listing 10-4. ch10_03.html

seriesDefaults:{
 renderer:$.jqplot.BarRenderer,
 pointLabels: { show: true }
},

As shown in Figure 10-4, with the point labels activated, the y value will appear above each bar.

Figure 10-3. The space between bars is adjustable with a new property introduced by the plug-in

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.pointLabels.min.js

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

226

Bars with Negative Values
Generally, we are accustomed to seeing bar charts with all positive y values, but this is not always the case. If you
want to represent negative values on a bar chart, however, you must be careful. If you try to use an input data array
containing negative values, as in the following example

var data = [['Germany', -12], ['Italy', -8], ['Spain', -6], ['France', -10], ['UK', -7]];

you get the bar chart in Figure 10-5.

Figure 10-5. This bar chart has interpreted the negative values badly

Figure 10-4. A bar chart reporting the y value above each bar

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

227

This is not what you really wanted. The bars are drawn as if they were still positive. Only the point labels show
the values of y properly. Furthermore, the values reported on the y axis are not correlated with the representation of
the bars, which should start at the top and go down to the corresponding negative value on the y axis. To overcome
all these issues, you need to set the fillToZero property to 'true', a property belonging to the BarRenderer plug-in;
therefore, you have to specify this in rendererOptions (see Listing 10-5).

Listing 10-5. ch10_04a.html

var options = {
 title: 'Foreign Customers',
 seriesDefaults:{
 renderer:$.jqplot.BarRenderer,
 rendererOptions: { fillToZero: true },
 pointLabels: { show: true }
 },
 ...

Now, jqPlot can represent the negative bars correctly (see Figure 10-6).

Figure 10-6. A simple bar chart with negative values

This functionality is better appreciated when both positive and negative values are represented in the same
bar chart:

var data = [['Germany', -12], ['Italy', 8], ['Spain', -6], ['France', 10], ['UK', -7]];

As you can see in Figure 10-7, a slightly darker color distinguishes the bars with negative values.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

228

Bar Charts with More Than One Set of Data
You have seen how line charts manage multiple series, and so you might expect bar charts to afford the same
possibility. In the transition from single series to multiple series, you need to make some changes in the way input
data are organized. Hence, you start from the format for the input data array for a single series:

var data = [['Germany', 12], ['Italy', 8], ['Spain', 6], ['France', 10], ['UK', 7]];

First, you have to specify a customized ticks array, which must contain the names of the groups, or categories,
of data (the values you want to report on the x axis). The number of ticks should match the number of y values in
each series.

var ticks = ['Germany', 'Italy', 'Spain', 'France', 'UK'];

Because you are working with more than one series, you can specify at least three series of data. Each series
represents a further classification of the data, so you can distinguish one from the other by means of a label reporting
the group the data belong to. Now, you have to insert only y values for each series (from the ticks array), as in
Listing 10-6, given that the x values are the same for each.

Listing 10-6. ch10_05.html

var data = [12, 8, 6, 10, 7]; // Electronics customers
var data2 = [14, 12, 4, 14, 11]; // Software customers
var data3 = [18, 10, 5, 9, 9]; // Mechanics customers

With regard to the names indicating the series, you must specify these within the series object (see Listing 10-7),
assigning them one by one to the label property of each series.

Figure 10-7. A simple bar chart with positive and negative values

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

229

Listing 10-7. ch10_05.html

var options = {
 title: 'Foreign Customers',
 seriesDefaults:{
 renderer:$.jqplot.BarRenderer,
 },
 series:[
 {label: 'Electronics'},
 {label: 'Software'},
 {label: 'Mechanics'}
],
 axes: {
 ...

Now, as always within options, you assign the ticks array to the ticks property of the xaxis object (see Listing 10-8).
In so doing ,you have assigned each tick generated on the x axis to a string contained in the array.

Listing 10-8. ch10_05.html

axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 }
},

You have just seen that working with multiple series simply adds a further categorization of data. In addition to
being divided into categories represented on the x axis, the data are divided into multiple series, each representing a
different group. To distinguish one series from another, it is necessary to draw the corresponding bars with different
colors. But, if you were to stop there, the user observing this chart would not have any information regarding which
group is indicated by which color. The introduction of a legend is therefore required (see Listing 10-9).

Listing 10-9. ch10_05.html

var options = {
 title: 'Foreign Customers',
 seriesDefaults: {
 renderer: $.jqplot.BarRenderer,
 },
 series:[
 {label: 'Electronics'},
 {label: 'Software'},
 {label: 'Mechanics'}
],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 }
 },

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

230

 legend: {
 show: true,
 placement: 'outsideGrid',
 location: 'e'
 }
};
$.jqplot ('myChart', [data, data2, data3], options);

You thus obtain a multiseries bar chart, as illustrated in Figure 10-8. As you can see, when you use multiple series,
you must use different colors in order to distinguish between them.

Vertical and Horizontal Bar Charts
Looking at the chart in Figure 10-8, you will note that each group is represented by a color. The assigned colors follow
the sequence specified internally to jqPlot by default, and that sequence is reflected in the line chart. Each country has
three columns represented in its segment on the x- axis, with every segment bounded by grid lines.

This kind of bar chart is generally defined as a vertical bar chart. Nothing prevents us from representing the same input
data with bars oriented horizontally, but here, too, you will need to make changes in the format of the input data arrays.
In this case, it is necessary to use [y, n] pairs, where n is an integer value that is assigned to a string (see Listing 10-10).
The strings are the label descriptions contained in the ticks array, and n is its index.

Figure 10-8. A multiseries bar chart containing a legend

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

231

Listing 10-10. ch10_06.html

var data = [[12, 1], [8, 2], [6, 3], [10, 4], [7, 5]];
var data2 = [[14, 1], [12, 2], [4, 3], [14, 4], [11, 5]];
var data3 = [[18, 1], [10, 2], [5, 3], [9, 4], [9, 5]];
var ticks = ['Germany', 'Italy', 'Spain', 'France', 'UK'];

After you have changed the format of the input data arrays, you must set the barDirection property to
'horizontal' ('vertical' is the default value). As shown in Listing 10-11, you have to do so in seriesDefaults in
order to apply the horizontal orientation to all series. This time, it is necessary to assign the ticks array to the ticks
property in the yaxis object, instead of the xaxis object, as before.

Listing 10-11. ch10_06.html

var options = {
 title: 'Foreign Customers',
 seriesDefaults:{
 renderer: $.jqplot.BarRenderer,
 rendererOptions: {
 barDirection: 'horizontal'
 }
 },
 series:[
 {label: 'Electronics'},
 {label: 'Software'},
 {label: 'Mechanics'}
],
 axes: {
 yaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 }
 },
 legend: {
 show: true,
 placement: 'outsideGrid',
 location: 'e'
 }
};

$.jqplot ('myChart', [data, data2, data3], options);

Now, you get the horizontal multiseries bar chart shown in Figure 10-9.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

232

Vertical Stacked Bars
When you need to break down data series into their constituent parts, while retaining the ability to compare these
data series as a whole, you have to use a stacked chart. jqPlot library supports such charts. With stacked bar charts,
it is especially appropriate to add point labels, to make the chart more readable. The values reported are cumulative,
that is, the sum of the underlying bars in the stack, as in Listing 10-12.

Listing 10-12. ch10_07.html

var data = [12, 8, 6, 10, 7];
var data2 = [14, 12, 4, 14, 11];
var data3 = [18, 10, 5, 9, 9];
var ticks = ['Germany', 'Italy', 'Spain', 'France', 'UK'];

 var options = {
 title: 'Foreign Customers',
 stackSeries: true,
 seriesDefaults:{
 renderer:$.jqplot.BarRenderer,
 pointLabels: { show: true,location: 's' }
 },

Figure 10-9. A horizontal multiseries bar chart

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

233

 series:[
 {label: 'Electronics'},
 {label: 'Software'},
 {label: 'Mechanics'}
],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 }
 },
 legend: {
 show: true,
 placement: 'outsideGrid',
 location: 'e'
 }
};

$.jqplot ('myChart', [data, data2, data3], options);

By setting values for the pointLabels property, you can specify the location where the point labels are shown:
'n', 's',' e', 'w', 'ne', 'nw', 'se', or 'sw'. These values should be interpreted as the cardinal points indicating the
direction in which to draw the point label, with respect to the top of the bar. In this example, you choose 's' (south) to
display the value just below the top of the bar, in the colored area, as presented in Figure 10-10.

Figure 10-10. A vertical multiseries stacked bar chart

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

234

Horizontal Stacked Bars
In the same way, you can create a horizontal stacked bar chart. In this case, in order to represent the point labels
inside the segments, you need to set them to 'w' (west) (see Listing 10-13).

Listing 10-13. ch10_08.html

var data = [[12, 1], [8, 2], [6, 3], [10, 4], [7, 5]];
var data2 = [[14, 1], [12, 2], [4, 3], [14, 4], [11, 5]];
var data3 = [[18, 1], [10, 2], [5, 3], [9, 4], [9, 5]];
var ticks = ['Germany', 'Italy', 'Spain', 'France', 'UK'];

var options = {
 title: 'Foreign Customers',
 stackSeries: true,
 seriesDefaults:{
 renderer: $.jqplot.BarRenderer,
 rendererOptions: {
 barDirection: 'horizontal'
 },
 pointLabels: { show: true, location: 'w' }
 },
 series:[
 {label: 'Electronics'},
 {label: 'Software'},
 {label: 'Mechanics'}
],
 axes: {
 yaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 }
 },
 legend: {
 show: true,
 placement: 'outsideGrid',
 location: 'e'
 }
};

$.jqplot ('myChart', [data, data2, data3], options);

In Figure 10-11, you can see how the values are shown near the end of the bar (west), in the colored area.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

235

Combination Charts: Lines in Bar Charts
A combination chart is a chart that combines two or more chart types in a single chart. In the following example,
you will consider a bar chart series and a line chart series represented at the same time in one chart. For this kind of
representation, you need to use a dual y axis. Each series has its own unit and magnitude and so must conform to one
of these axes. Therefore, you have to use primary and secondary axes. You have to activate the autoscale functionality,
too, in order to force the y axes to line up tick marks, thus obtaining consistent grid lines.

Let us, therefore, define the two input series (see Listing 10-14). The array data contains the [label1, y1] pairs
of values to be presented as a bar chart. The array line contains the [label2, y2] pairs of values to be presented as a
line chart.

Listing 10-14. ch10_09.html

var data = [['Germany', 12], ['Italy', 8], ['Spain' ,6], ['France', 10], ['UK', 7]];
var line = [['BMW', 45], ['AlfaRomeo', 30], ['Seat', 24],['Renault', 36], ['Mini', 30]];

This case is useful for understanding the utility of having multiple y axes to work on (jqPlot supports up to nine
y axes and two x axes). Here, you have two series, the sequences of which are defined by the order in which you pass
them as a second argument in the function $.jqplot():

$.jqplot ('myChart', [data, line], options);

The array data, the series intended for the bar chart, is first, and the array line, intended for the line chart, is
second. This is very important. Having established this order, in options, you need to specify two elements within
the series object, as shown in Listing 10-15. In the first element only, you activate the BarRenderer plug-in, whereas
in the second, you define two supplementary axes: x2axis and y2axis. Now, you have four axes to work with, and,
consequently, you have to specify them within the axes object. On yaxis and y2axis, you must activate autoscale.

Figure 10-11. A horizontal multiseries stacked bar chart

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

236

Listing 10-15. ch10_09.html

var options = {
 title: 'Foreign customers',
 series:[{renderer: $.jqplot.BarRenderer},
 {
 xaxis: 'x2axis',
 yaxis: 'y2axis'
 }],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer
 },
 x2axis: {
 renderer: $.jqplot.CategoryAxisRenderer
 },
 yaxis: {
 autoscale: true
 },
 y2axis: {
 autoscale: true,
 renderOptions: {
 alignTicks: true
 }
 }
 }
};

The result is the chart in Figure 10-12, containing bars and lines at the same time.

Figure 10-12. A line chart combined with a bar chart

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

237

Animated Plot
The jqPlot library also provides you with the ability to animate your charts. To this end, you do not need any further
plug-ins. Starting from the previous example, the combination chart (see Listing 10-15), you can assign a different
speed for each series. In defining a drawing speed, it is as though you were slowing down the creation of an element
of the chart by the browser. This produces a dynamic effect during the drawing process, thus creating an animation.
Furthermore, by assigning different speeds to different parts, you can obtain very nice effects.

As we can see in Listing 10-16, in options, you have to activate the animation functionality by setting to 'true'
the animate and the animateReplot properties. Then, you define a different speed for each series, using a numeric
value (number of milliseconds).

Listing 10-16. ch10_10.html

var options = {
 animate: true,
 animateReplot: true,
 title: 'Foreign Customers',
 series:[{
 renderer: $.jqplot.BarRenderer,
 rendererOptions: {
 animation: {
 speed: 2500
 },
 }
 },{
 xaxis: 'x2axis',
 yaxis: 'y2axis',
 rendererOptions: {
 animation: {
 speed: 2500
 },
 }
 }],
 axes: {
 xaxis: { renderer: $.jqplot.CategoryAxisRenderer },
 x2axis: {renderer: $.jqplot.CategoryAxisRenderer },
 yaxis: { autoscale:true, numberTicks: 6 },
 y2axis: { autoscale:true, numberTicks: 6 }
 }
};

When you load this chart in a browser, you obtain an animation in which a line chart and a bar chart are drawn
slowly and smoothly. Figure 10-13 shows how the animation develops in successive stages. The line chart is drawn
from left to right, following the order of the data points, and, simultaneously, the bars grow to reach their respective y
values.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

238

Marimekko Chart
A kind of chart that can be derived from the bar chart is the so-called Marimekko chart (also called Mekko chart), named
for its resemblance to a Marimekko print. This type of chart has been adopted in the business world. Marimekko charts are
essentially stacked column charts. Here, however, all the bars are of equal height. Moreover, there are no spaces between
the bars, and the bars are divided into several segments, the height of which is correlated to a percentage (see Figure 10-14).

Figure 10-13. An animated combined line–bar chart

Figure 10-14. A Marimekko pattern

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

239

Marimekko charts are designed to report percentage values on both axes: the percentage covered by each
category along the x axis, where each bar is placed, and the percentage covered by each category along the y axis,
represented by the segments into which each bar is divided.

jqPlot allows you to develop this kind of chart, using two specific plug-ins: MekkoRenderer and
MekkoAxisRenderer:

<script class="include" type="text/javascript"
 src="../src/plugins/jqplot.mekkoRenderer.min.js"></script>
<script class="include" type="text/javascript"
 src="../src/plugins/jqplot.mekkoAxisRenderer.min.js"></script>
<script class="include" type="text/javascript"
 src="../src/plugins/jqplot.canvasTextRenderer.min.js"></script>
<script class="include" type="text/javascript"
 src="../src/plugins/jqplot.canvasAxisLabelRenderer.min.js"></script>

Or, if you prefer to use a CDN service, you may do so as follows:

<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.mekkoRenderer.min.js"></script>
<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.mekkoAxisRenderer.min.js"></script>
<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.canvasTextRenderer.min.js"></script>
<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.canvasAxisLabelRenderer.min.js"></script>

Along with these two plug-ins, you need to include CanvasTextRenderer and CanvasAxisLabelRenderer. Data are
specified for each bar in the chart. You can specify data as an array of y values or as an array of [label, value] pairs.
In Listing 10-17, note that labels are used only for the first series; labels for subsequent series will be ignored.

Listing 10-17. ch10_11.html

var bar1 = [['bananas', 10],['apples', 7],['pears', 4],
 ['peaches', 8],['lemons', 7],['oranges',5]];
var bar2 = [9, 5, 8, 11, 9, 4];
var bar3 = [11, 4, 7, 3, 8, 7];
var bar4 = [5, 8, 11, 4, 12, 3];
var barLabels = ['Italy', 'Spain', 'France', 'Greece'];

In options, you activate the MekkoRenderer plug-in, assigning it to the seriesDefaults object. You can add a
legend on the right side of the chart by setting the show property of the legend object to 'true'. If you want to place
labels for each bar below the x axis, you must assign the barLabels array to the barLabels property on the x axis.

Listing 10-18. ch10_11.html [no callout]

var options = {
 title: 'Fruit Consumption in 2012',
 seriesDefaults:{renderer: $.jqplot.MekkoRenderer},
 legend:{show: true},
 axesDefaults:{
 renderer: $.jqplot.MekkoAxisRenderer
 },






http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.mekkoRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.mekkoRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.mekkoAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.mekkoAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisLabelRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisLabelRenderer.min.js

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

240

 axes:{
 xaxis:{
 barLabels: barLabels,
 tickOptions:{formatString: '%d'}
 }
 }
};

$.jqplot('myChart', [bar1, bar2, bar3, bar4], options);

Now, you get the Mekko chart illustrated in Figure 10-15.

Figure 10-15. A Mekko chart

Bar Chart Events
In a bar chart, if you move the cursor over a bar, it will be highlighted by default. Events are triggered when you mouse
over a bar and also when you click a bar. The ability to capture these events and to manage them is very important,
and the jqPlot library allows you to do so. You can implement a specific response action for different types of events,
thus making your chart much more interactive. The response you obtain can depend on where you find the mouse
pointer or which targets you click.

Table 10-1 reports events that, owing to their wealth of elements, lend themselves to application in a bar chart.
Let us take a look at such events one by one.

Table 10-1. Handling Events with the jqPlot Library

Event When Triggered

jqplotDataClick You click with the left mouse button on the data point.

jqplotRightClick You click with the right mouse button on the data point.

jqplotDataMouseOver You mouse over the data point.

jqplotDataHighlight The data point is highlighted.

jqplotDataUnhighlight The data point is unhighlighted.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

241

The jqplotDataClick Event
This example presents the jqplotDataClick event—the clicked series index, the point, and its data values.

Let us start by considering the first example, the simple bar chart (see Listing 10-19).

Listing 10-19. ch10_12.html

var data = [['Germany', 12], ['Italy', 8], ['Spain', 6],
 ['France', 10], ['UK', 7]];

var options = {
 title: 'Foreign Customers',
 series:[{renderer: $.jqplot.BarRenderer}],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
};

$.jqplot ('myChart', [data], options);

Inside the jQuery ready() function, you add the function in Listing 10-20. This is a jQuery function in which
you bind the jqplotDataClick event with the execution of a function. As argument, this event takes some values of
attributes of the jqPlot object, such as seriesIndex, pointIndex, and data. These values will be converted into a string
and concatenated with the jQuery html() function. This HTML text will be sent to the info1 element in the web page.

Listing 10-20. ch10_12.html

$('#myChart').bind('jqplotDataClick',
 function (ev, seriesIndex, pointIndex, data) {
 $('#info1').html('series: ' + seriesIndex +
 ', point: '+pointIndex+', data: '+data);
 }
);

Now, you add a element where you want to show the text with values. This element will show a
“Nothing yet” message until you click a bar. Then, a new text will replace the message with values, depending on the
point clicked:

<div>You clicked: Nothing yet</div>

Figure 10-16 shows the message corresponding to the event triggered when the user clicks the “France” bar.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

242

The jqplotRightClick Event
This example covers another event that jqPlot provides: jqplotRightClick. This event requires an explicit activation
in options (see Listing 10-21). This causes jqPlot to fire a jqplotRightClick event when the user right-clicks a bar.

Listing 10-21. ch10_13.html

var options = {
 title: 'Foreign Customers',
 captureRightClick: true,
 series:[{renderer: $.jqplot.BarRenderer}],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
};

Next, you need to replace the previous jqPlot function with the one in Listing 10-22.

Listing 10-22. ch10_13.html

$('#myChart').bind('jqplotDataRightClick',
 function (ev, seriesIndex, pointIndex, data) {
 $('#info1').html('series: ' + seriesIndex +
 ', point: '+pointIndex+', data: '+data);
 }
);

The general effect is the same, but this time you have to right-click instead of left-click. Right-clicking the “Spain”
bar gives you the result in Figure 10-17.

Figure 10-16. By clicking a bar, you can obtain its values

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

243

Other Bar Chart Events
Often, you may want to capture another event: when the cursor is moused over a bar, jqPlot fires a jqplotDataMouseOver
event. This event is also generated when you have explicitly disabled the highlighting. The event will fire continuously as
the user passes the mouse over the bar. In contrast, another event, jqplotDataHighlight, fires only once, when the user
first passes the mouse over the bar. When the user moves out of a bar, jqPlot fires a third event: jqplotDataUnhighlight.
These last two events are generated only if highlighting is enabled.

Continuing from the previous example (see Listing 10-22), you replace the jQuery function that captures the
jqplotDataClick event with two other functions (see Listing 10-23). The first will send an HTML text to the info1
element with the same values as before as soon as you mouse over a bar. The second will replace the previous string in
the info1 element with 'Nothing' just as you move out of the bar.

Listing 10-23. ch10_14a.html

$('#myChart').bind('jqplotDataHighlight',
 function (ev, seriesIndex, pointIndex, data) {
 $('#info1').html('series: ' + seriesIndex +
 ', point: '+pointIndex+', data: '+data);
 }
);

$('#myChart').bind('jqplotDataUnhighlight',
 function (ev) {
 $('#info1').html('Nothing');
 }
);

Now, you want to see the difference in behavior between the jqplotDataMouseOver event and the
jqPlotDataHighlight event. There is no better way to understand this difference than with an example that allows
you to compare them. This time, you will count the number of events fired when you mouse over a bar. To do this,

Figure 10-17. By right-clicking a bar, you obtain its values

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

244

you define a counter, nEvents, initializing it to 0. As expected, with the jqPlotDataHighlight event, the counter
is set to 1 whenever you mouse over a bar and assumes the value 0 when you move out of the bar. With the
jqplotDataMouseOver event the behavior is very different: the counter increases continuously, keeping the cursor
over the same bar. In both cases, you use the jqplotDataUnhighlight event to reset the counter every time you move
out of a bar.

First, you need to change the info1 HTML element:

<div>Events: Nothing yet</div>

Then, to study the behavior of the jqplotDataHighlight event, you replace the two jQuery functions with the
two in Listing 10-24.

Listing 10-24. ch10_14b.html

nEvents = 0;
$('#myChart').bind('jqplotDataHighlight',
 function (ev, seriesIndex, pointIndex, data) {
 nEvents = nEvents + 1;
 $('#info1').html(nEvents);
 }
);

$('#myChart').bind('jqplotDataUnhighlight',
 function (ev) {
 $('#info1').html('Nothing');
 nEvents = 0;
 }
);

As presented in Figure 10-18, while keeping the mouse on the “Spain” bar, the counter gives a steady 1.

Figure 10-18. Counting how many jqPlotDataHighlight events occur

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

245

To study the behavior of the jqplotDataMouseOver event, you replace the two jQuery functions with the two in
Listing 10-25.

Listing 10-25. ch10_14c.html

nEvents = 0;
$('#myChart').bind('jqplotDataMouseOver',
 function (ev, seriesIndex, pointIndex, data) {
 nEvents = nEvents + 1;
 $('#info1').html(nEvents);
 }
);

$('#myChart').bind('jqplotDataUnhighlight',
 function (ev) {
 $('#info1').html('Nothing');
 nEvents = 0;
 }
);

As shown in Figure 10-19, while keeping the mouse on the “Spain” bar, the counter continuously increases
its value.

Figure 10-19. Counting how many jqplotDataMouseOver events occur

Clicking the Bar to Show Information in Text
Because of jqPlot’s potential in managing events, let us take the opportunity to look at a common case. By clicking
a bar, you can get information about that bar and show it in a text box on the HTML page. This is made possible by
binding a listener to the jqlotDataClick event.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

246

For this example, you start with the code used to generate the horizontal stacked bar chart (see Listing 10-26).

Listing 10-26. ch10_15.html

var data = [12, 8, 6, 10, 7];
var data2 = [14, 12, 4, 14, 11];
var data3 = [18, 10, 5, 9, 9];
var ticks = ['Germany', 'Italy', 'Spain', 'France', 'UK'];

var options = {
 title: 'Foreign Customers',
 stackSeries: true,
 seriesDefaults:{
 renderer: $.jqplot.BarRenderer,
 pointLabels: { show: true, location: 's' }
 },
 series:[
 {label: 'Electronics'},
 {label: 'Software'},
 {label: 'Mechanics'}
],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 }
 },
 legend: {
 show: true,
 placement: 'outsideGrid',
 location: 'e'
 }
};

$.jqplot ('myChart', [data, data2, data3], options);

As in the previous examples for events, in the end you add a jQuery function that captures the jqplotDataClick
event and that sends a set of information to the info1 element (see Listing 10-27).

Listing 10-27. ch10_15.html

$('#myChart').bind('jqplotDataClick',
 function (ev, seriesIndex, pointIndex, data) {
 $('#info1').html('series: ' + seriesIndex +
 ', point: '+pointIndex+', data: '+data);
 }
);

Whenever you click a bar, this function will refresh the information displayed where you have placed the
element with 'info1' as id. Here, you add the element to the HTML page:

Information will be provided here

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

247

Now, by clicking the highlighted area of a bar, you get all the data relative to that bar in the text box, as seen
in Figure 10-20.

Handling Legends
Working with bar charts, you made use of the legend, a key component of most charts. The legend is a defined
element within jqPlot. Usually, you need only call the legend object in options to make the legend pop up next to
your chart. Here, you will analyze this useful element in more detail.

When does using a legend become necessary? When you are dealing with multiseries data, that is, when you have
a grouping of data, often distinguished by different colors. The legend does nothing but report in a small space the
relationship that exists between each color and a label distinguishing the elements of the group.

Adding a Legend
The previous example (see Figure 10-20) is perfect for studying legends. By observing the stacked chart, you can easily
see that the bars for each country are made up of three portions, which are characterized by different colors. Thus,
you understand that three series are represented in the chart. Furthermore, you also have information about the
amount that each series contributes to the overall value, but still you lack crucial information: which categories are
represented by which colors. By adding a legend, you will clarify the association between the three colors and these
categories: “Mechanics,” “Software,” and “Electronics.”

Therefore, continuing to work using the code from the previous example (see Listings 10-26 and 10-27), let us
add the legend definition to the options object, as shown in Listing 10-28. To do this, you do not have to include any
plug-ins; you need only set the show attribute to 'true'.

Figure 10-20. By clicking a stacked bar, you obtain its values

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

248

Listing 10-28. ch10_15.html

var options = {
 ...
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 }
 },
 legend: {
 show: true,
 placement: 'outsideGrid',
 location: 'e'
 }
};

$.jqplot ('myChart', [data,data2,data3],options);

Figure 10-21 illustrates the chart with a legend.

Figure 10-21. A stacked bar chart with a legend

The placement attribute specifies where you want the legend; omitting it, you get the default behavior: the
legend is drawn inside the chart. To avoid covering the bars, you can change the position of the legend by setting the
location attribute, as given in Listing 10-29.

Listing 10-29. ch10_16a.html

legend: {
 show: true,
}

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

249

Thus, as Figure 10-22 shows, the chart is changed, with the legend drawn inside (by default), in the top-right
corner ('ne' [northeast]).

Figure 10-22. The default legend position is inside the chart, in the top-right corner

For a more thorough approach, it is best to use the Cascading Style Sheets (CSS) customization. You will use
some CSS classes for the legend to modify the default attributes—mainly, the CSS class table.jqplot-table-legend.

For example, you can add the specifications to the CSS class offered in Listing 10-30.

Listing 10-30. ch10_16b.html

<style>
 table.jqplot-table-legend {
 background-color: rgba(175, 175, 175, 1);
 font: "Arial Narrow";
 font-style: italic;
 font-size: 13pt;
 color: white;
 }
</style>

And, the legend will change, as demonstrated in Figure 10-23.

Figure 10-23. The modified legend, using CSS styles

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

250

The Enhanced Legend
If you look at several plug-ins in the jqPlot distribution, you will find a plug-in related to legends: EnhancedLegendRenderer.
This plug-in extends the functionalities of the legend: clicking the legend items, you can show or hide the corresponding
series. You can see this with a concrete example. First, you include the plug-in in your web page:

<script type="text/javascript"
 src="../src/plugins/jqplot.enhancedLegendRenderer.min.js"></script>

Or, if you prefer to use a CDN service, you may do so as follows:

<scr ipt type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins

/jqplot.enhancedLegendRenderer.min.js"></script>

Then, you must activate the plug-in in options in the same way you have done with other plug-ins, as presented
in Listing 10-31.

Listing 10-31. ch10_16c.html

legend: {
 renderer: $.jqplot.EnhancedLegendRenderer,
 show: true,
 placement: 'outsideGrid',
 location: 'ne'
}

After you load the page in your browser, you get the chart in Figure 10-24. If you click an item from the legend,
the corresponding series will disappear from the chart, leaving an empty space. This can be useful if you want to analyze
only a subset of series, ignoring others. Let us therefore click “Software” in the legend and look at what happens.

Figure 10-24. You can hide a series by selecting an item in the legend



http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.enhancedLegendRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.enhancedLegendRenderer.min.js

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

251

In the legend in Figure 10-24, the orange segments belonging to Software series have disappeared, and the item
“Software” is stricken out.

This effect is cumulative, and you can hide all the series, one by one. If you click a strikeout item again, the
corresponding series will appear once more in the chart.

Custom Legend Highlighting
You have just seen how to use the legend that jqPlot provides by default. But, you can create a custom legend by
implementing a simple table in HTML and then populating it dynamically, filling it with the labels for your series.
Because you must start from scratch to create your own legend, it is first necessary to select a style. You can define
the CSS style by using an external CSS file or writing the style directly in the web page, such as the one given in
Listing 10-32.

Listing 10-32. ch10_17.html

<style type="text/css">
table.sample {
 border-width: thin;
 border-spacing: 0px;
 border-style: outset;
 border-color: rgb(221, 221, 221);
 border-collapse: collapse;
}
table.sample th {
 border-width: 1px;
 padding: 1px;
 border-style: inset;
 border-color: gray;
}
table.sample td {
 border-width: 1px;
 padding: 1px;
 border-style: inset;
 border-color: gray;
}
</style>

You have used three different CSS classes. The first specifies the style for the entire table. The other two are
defined to specify a specific style for the headings and the cells, respectively.

After defining the style, for our purposes, you can use the code of a simple bar chart (see Listing 10-33).

Listing 10-33. ch10_17.html

var data = [['Germany', 12], ['Italy', 8], ['Spain', 6], ['France', 10], ['UK', 7]];

var options = {
 title: 'Foreign Customers',
 series:[{renderer:$.jqplot.BarRenderer}],

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

252

 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
};

$.jqplot ('myChart', [data], options);

The next step to bind the custom legend to jqplotDataHighlight and jqplotDataUnhighlight events
(see Listing 10-34). You have already seen these and how it is possible to bind an object to them using jQuery methods.
In this case, you will do a lot more; you will ensure that the whole custom legend is dynamically created with only a
few lines of jQuery. These will include the data array. Compared with the default legend offered by jqPlot, here you
are able to obtain much more than the labels indicative of the groups’ series membership. It is also possible to add
summary values (using JavaScript functions) or simply the value of y.

Listing 10-34. ch10_17.html

$(document).ready(function(){

 var data = ...
 var options = ...

 $.jqplot ('myChart', [data], options);

 $.each(data, function(index, val) {
 $('#legend1').append('<tr><td>'+val[0]+'</td><td>'+val[1]+'</td></tr>');
 });

 $('#myChart').bind('jqplotDataHighlight',
 function (ev, seriesIndex, pointIndex, data) {
 var color = 'rgb(100%, 90%, 50%)';
 $('#legend1 tr').css('background-color', '#ffffff');
 $('#legend1 tr').eq(pointIndex+1).css('background-color', color);
 });

 $('#myChart').bind('jqplotDataUnhighlight',
 function (ev, seriesIndex, pointIndex, data) {
 $('#legend1 tr').css('background-color', '#ffffff');
 });

});

The first jQuery function handles the values of the data array. The other two bind the legend to the highlighting
events when you mouse over the legend items. Moreover, these functions also bind a variation in style attributes to
these events, in this case, the background color of the item.

Now, you need to define two different areas in which to insert the chart and the legend. You can accomplish this
using an HTML table. So, you add the code in Listing 10-35 to the <body> section of the HTML page.

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

253

Listing 10-35. ch10_17.html

<table style="margin-left:auto; margin-right:auto;">
<tr>
 <td><div id="myChart" style="width:460px; height:340px;"></div></td>
 <td><div style="height:340px;">
 <table id="legend1" class="sample" >
 <tr><th>Nation</th><th>Customers</th></tr>
 </table>
 </div>
 </td>
</tr>
</table>

Finally, you can load the new page with the new custom legend (see Figure 10-25).

Custom Tool Tip
In addition to legends, another very commonly used item in the bar chart is the tool tip. Just as there is the possibility
to create a custom legend using code, it is also possible to customize tool tips, creating very original effects. When you
mouse over a bar and highlight it, a tool tip will be shown, but, different from the default jqPlot tool tip, this will be
totally built in HTML format. This greatly expands your possibilities of artistic expression, giving your chart a touch of
personality (using jqPlot, everything risks appearing too “standard jqPlot”). In this example, you would like to show
how a small icon image can give a very nice effect to a bar chart.

Before starting to write code, let us create a directory, and name it flags (you can name it as you prefer). In this
directory you will store all the portable network graphics (PNG) image files you are going to use. These icons are flags
of nations, which you will report on the x axis of the bar chart. It is very easy to find and download these PNG files
from the Internet.

Figure 10-25. A custom HTML legend

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

254

Note ■ The PNG files required to show the flags in the tool tips are included in the source code accompanying the

book, which you will find on the Source Code/Downloads tab of the book’s Apress product page

(www.apress.com/9781430262893).

When you have finished with the flag images, the first step is to create a custom tool tip. You need to bind tool tips
to the jqplotDataHighlight and jqplotDataUnhighlight events. You can create custom tool tips dynamically with a
few lines of jQuery.

Here, you start with the bar chart you have already used (see Listing 10-36), as it represents a simple example to
understand the way to develop this kind of custom tool tip.

Listing 10-36. ch10_18.html

var data = [['Germany', 12], ['Italy', 8], ['Spain', 6], ['France', 10], ['UK', 7]];

var options = {
 title: 'Foreign Customers',
 series:[{renderer:$.jqplot.BarRenderer}],
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
};

$.jqplot ('myChart', [data], options);

You have to add two other arrays of data, containing some strings (see Listing 10-37). You will use these in the
dynamically generated tool tip.

Listing 10-37. ch10_18.html

var tick = ['Germany', 'Italy', 'Spain', 'France', 'UK'];
var icon = ['germany.png', 'italy.png', 'spain.png', 'france.png', 'uk.png'];

You assign the return value of the jqplot() function to a variable, because you will need to use it later.

var myPlot = $.jqplot ('myChart', [data], options);

The jQuery code for binding the events to your custom tool tip is in Listing 10-38.

Listing 10-38. ch10_18.html

$('#myChart').bind('jqplotDataHighlight',
 function (ev, seriesIndex, pointIndex, data) {
 var chart_left = $('#myChart').offset().left;
 var chart_top = $('#myChart').offset().top;
 var x = data[0]*95+20;
 var y = myPlot.axes.yaxis.u2p(data[1]);
 var color = 'rgb(30%,50%,60%)';

http://www.apress.com/9781430262893

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

255

 $('#tooltip1').css({left:chart_left+x, top:chart_top+y});
 $('#tooltip1').html('<span style="font-size:16px; font-weight:bold; color:' +
 color + ';">' + tick[data[0] - 1] +
 '
<img src="flags/'+ icon[data[0] - 1]+
 '" width="30" height="20">
 n:' + data[1]);
 $('#tooltip1').show();
 }
);

$('#myChart').bind('jqplotDataUnhighlight',
 function (ev, seriesIndex, pointIndex, data) {
 $('#tooltip1').empty();
 $('#tooltip1').hide();
 }
);

Finally, you must create two <div> elements in the <body> section of the web page, as in Listing 10-39. In the first
element, jqPlot will generate your custom tool tip on the canvas; in the second, jqPlot will create the canvas drawing
the bar chart.

Listing 10-39. ch10_18.html

<div id="myChart" style="height:300px; width:500px;"></div>
<div id="tooltip1" style="position:absolute; height:0px; width:0px;"></div>

Figure 10-26 shows the “Germany” bar highlighted with the customized tool tip beside it. This will happen for all
the bars in the bar chart, each showing the corresponding flag in the tool tip, every time the user highlights them by
mousing over.

Figure 10-26. A bar chart with custom tool tips

CHAPTER 10 ■ BAR CHARTS WITH JQPLOT

256

Summary
In this chapter, you have seen how your data can be represented in a bar chart, using the BarRenderer plug-in.
You began to see how, with the inclusion of this renderer plug-in, the structure of the main jqPlot object is gradually
enriched with new properties and objects. Through practical examples, you learned how to change the values of
property and object attributes with rendererOptions.

You also learned that it is sometimes possible to obtain different representations, using the same set of data.
Knowing how to choose which representation is more suitable to your needs is one of the fundamental objectives of
this book. For this purpose, you used the same set of data, both in a grouped bar chart and in a stacked bar chart.
In both cases, you realized data representations with vertical and horizontal bars.

Later in this chapter, you looked at examples that demonstrated how jqPlot allows you to deal with events, using
special functions. In addition, you further examined the legend component and the possibility of customizing legends
using HTML code. Then, you applied the same approach to tool tips.

Often, the type of data that requires a bar chart representation may also be well represented by means of another
type of chart: the pie chart. In the next chapter, you will discover how the jqPlot library handles this type of chart.

257

CHAPTER 11

Pie Charts and Donut Charts
with jqPlot

Pie charts and donut charts are an excellent way to show the breakdown of data into their constituent parts. A pie
chart is a circular chart divided into sectors, or “slices,” and its main purpose is to illustrate their relative proportions:
the arc length of each slice is proportional to the quantity it represents. A donut chart is very similar to a pie chart but
has a hole in the center and supports the comparison of multiple series. In this chapter, you will look at both kinds
of charts. The chapter concludes with a discussion of multidimentionsional pie charts.

Pie Charts
In jqPlot, data are interpreted as a line chart by default. If you want to show your data in a pie chart, you need to
include the PieRenderer plug-in:

<script type="text/javascript" src="../src/plugins/jqplot.pieRenderer.min.js">
</script>

Or, if you prefer to use a content delivery network (CDN) service, you can do so as follows:

<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.pieRenderer.min.js"></script>

To better understand the use of this plug-in, let us take, for example, the amount of food a person consumes in
a given period of time. This is a case in which a pie chart proves to be the best choice for data representation. All the
food eaten makes up the whole group, and the various types of foods are the components you want to compare. Each
type of food will be represented by a slice identified by means of a different color. The size of each slice will give a
precise idea of the proportion that food type occupies in the diet of a person. You can start with a data array of [label,
amount] pairs of values, as shown in Listing 11-1.

Listing 11-1. ch11_01a.html

var data = [['Dairy', 212],['Meat', 140], ['Grains', 276],
 ['Fish', 131],['Vegetables', 510], ['Fruit', 325]];

Now, you can define the options. As you can see in Listing 11-2, you need to activate the plug-in and apply it to
the defaultSeries object.

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.pieRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.pieRenderer.min.js

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

258

Listing 11-2. ch11_01a.html

var options = {
 seriesDefaults: {
 renderer: jQuery.jqplot.PieRenderer,
 rendererOptions: {
 showDataLabels: true
 }
 }
};

$.jqplot ('myChart', [data], options);

Figure 11-1 shows a simple pie chart without specification of additional attributes.

Figure 11-1. A simple pie chart

As demonstrated in Figure 11-1, inside its sectors the pie chart reports the percentage by default. If, instead, you
want to display the value, as shown at the top right of Figure 11-2, you need to set 'value' on the dataLabels property
in renderOptions, as given in Listing 11-3.

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

259

Listing 11-3. ch11_01b.html

rendererOptions: {
 showDataLabels: true,
 dataLabels: 'value'
}

If you want to add a margin to separate the slices of the pie, as illustrated in the lower-left of Figure 11-2, we need
to set the sliceMargin property to 6 (see Listing 11-4).

Listing 11-4. ch11_01c.html

rendererOptions: {
 showDataLabels: true,
 dataLabels: 'value',
 sliceMargin: 6
}

Figure 11-2. Different ways to set a pie chart

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

260

Furthermore, if you want to show the pie chart with empty slices, as seen in the lower-right of Figure 11-2, you
can set the fill property to 'false' and the lineWidth property to 5 in order to shade the slices, with lines that are a
little thicker (see Listing 11-5).

Listing 11-5. ch11_01d.html

rendererOptions: {
 showDataLabels: true,
 dataLabels: 'value',
 sliceMargin: 6,
 fill: false,
 // stroke the slices with a little thicker line.
 lineWidth: 5
}

Donut Charts
One of the main problems with pie charts is their inability to display multiple series simultaneously. Hence, you
must decide whether to represent each series separately, with a pie chart or, preferably, to use a donut (also spelled
“doughnut”) chart. This kind of chart requires and uses options that are identical to those of pie charts; therefore, the
transition from pie chart to donut chart is immediate.You will look at the simplicity of such a transition with an easy
example.

First, as with the pie chart, you need to include a specific plug-in in order to obtain a donut chart:

<script type="text/javascript" src="../src/plugins/jqplot.donutRenderer.min.js"> </script>

The only change you have to make in the options object is to replace the pieRenderer object with
DonutRenderer in the renderer call and then to modify the starting angle of the first sector in the rendererOptions
object. By default the chart starts on the left side of the circle, but normally it must start at the top. So, it is necessary
to set the startAngle property to–90 degrees (see Listing 11-6).

Listing 11-6. ch11_02.html

var options = {
 seriesDefaults: {
 // Make this a pie chart.
 renderer:$.jqplot.DonutRenderer,
 rendererOptions: {
 showDataLabels: true,
 dataLabels: 'value',
 sliceMargin: 3,
 startAngle: -90
 }
 }
};
jQuery.jqplot ('myChart', [data], options);

In this way, you get a donut chart (see Figure 11-3), which is very similar to the pie chart in the lower right of
Figure 11-2.

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

261

But, we choose to use a donut chart instead of a pie chart because it allows us to represent multiple series at the
same time and thus to compare the proportions of its components. Therefore, to continue with the example, you can
compare the food consumed by two different groups of people. Listing 11-7 illustrates how to add another data array.

Listing 11-7. ch11_02.html

var data2 = [
 ['Dairy', 185],['Meat', 166], ['Grains', 243],
 ['Fish', 166],['Vegetables', 499], ['Fruit', 370]
];

Adding this second array to data, you modify the listing:

$.jqplot ('myChart', [data, data2], options);

Figure 11-4 presents the donut chart reporting the two series of values.

Figure 11-3. A simple donut chart

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

262

Looking at Figure 11-4, you can see at once that something fundamental is missing: a legend. A legend is required
because the plug-in automatically assigns a color to each sector, and so without a color reference, it is very hard to
understand the chart. Hence, after you set the show property of the legend to 'true', you can select the location of
the legend. To determine in which position to place the legend, jqPlot uses the location property, to which values
corresponding to the cardinal directions are assigned: 'n' (north), 's' (south), 'e' (east), and 'w' (west). But, it is
also possible to use a combination, for instance, 'ne', to indicate the northeast position.

Let us say you decide to locate the legend on the right side of the chart, so you assign 'e' to the location
property (see Listing 11-8).

Listing 11-8. ch11_02.html

legend: {
 show:true,
 location: 'e'
}

The legend automatically reports the labels contained in the data arrays, as displayed in Figure 11-5.

Figure 11-4. A multiseries donut chart

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

263

Multilevel Pie Charts
The multilevel pie chart is a modern format that is good for visualizing data that are used for displaying hierarchical
relationships. This kind of chart offers a hierarchical structure, starting from a root node in the center of the circle, and
you can follow the memberships as they gradually move into the outer circles. To better understand this kind of chart,
let us take as an example a series of animals and gradually determine their hierarchical groups.

As input data array, you want to insert three arrays (see Listing 11-9). This will generate three levels of hierarchy.
In the first array, you insert the last level, up to the third array, which represents the root.

Listing 11-9. ch11_03.html

var data = [['Cat', 1],['Dog', 1], ['Mouse', 1],['Snake', 1],
 ['Turtle', 1], ['Jellyfish', 1], ['Cuttlefish', 1]];
var data2 = [['Mammals', 3],['Reptiles', 2], ['Mollusks', 2]];
var data3 = [['Vertebrates', 5],['Invertebrates', 2]];

To generate a multilevel pie chart, you actually need to modify a donut chart, setting the diameter of the inner
hole to zero. Instead of displaying a numerical value, in this case you need to show the name of the animal or animal
group represented by the label; you must set the dataLabels property to 'label'. The last thing to modify is the set
of colors. The default colors provided by jqPlot are not adequate, and it is necessary to define a set of colors for each
level of the hierarchy.It is preferable to assign similar colors to animals belonging to the same group and to do likewise
for the successive levels of the hierarchy. In Listing 11-10, special attention is paid to the sequence of colors that are
assigned to each series (hierarchical level).

Listing 11-10. ch11_03.html

var options = {
 seriesDefaults: {
 renderer:$.jqplot.DonutRenderer,

Figure 11-5. A multiseries donut chart with a legend

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

264

 rendererOptions: {
 showDataLabels: true,
 dataLabels: 'label',
 startAngle: -90,
 innerDiameter: 0,
 ringMargin: 2,
 shadow: false
 }
 },
 series: [
 {
 seriesColors: ['#4bb2c5', '#4baacc', '#4b88aa', '#bbb2c5',
 '#bbaa99', '#c5dd99', '#dddd77']
 },
 {
 seriesColors: ['#4bbbbb', '#ccb2c5', '#c5ff99']
 },
 {
 seriesColors: ['#aa5555', '#a3ffaa']
 }]
};

$.jqplot ('myChart', [data, data2, data3], options);

In the end, your efforts are rewarded with the multilevel pie chart in Figure 11-6.

Figure 11-6. A multilevel pie chart

CHAPTER 11 ■ PIE CHARTS AND DONUT CHARTS WITH JQPLOT

265

Summary
In this chapter, you have seen how the jqPlot library allows you to represent your data by means of a pie chart (with
a single series of data) or with a donut chart (with multiples series of data) while also obtaining a quick overview of
some of the main properties and how to set them in options. In the last part of the chapter, you created a multilevel
pie chart: a classic example of how you can generate a type of chart that is not among the standard charts proposed by
the library by modifying certain properties appropriately.

In the next chapter, you will see how the jqPlot library lets you realize candlestick charts and how to handle the
particular data format open-high-low-close (OHLC), which is the basis of this kind of chart.

267

CHAPTER 12

Candlestick Charts with jqPlot

Candlestick charts are widely used in the analysis of a currency over time or of price movements. This chart consists
of a series of vertical bars, called candlesticks. They show the opening, closing, lowest, and highest price in a given
time period (see Figure 12-1). For this reason, this kind of chart is often called an OHLC chart (when it reports
open-high-low-close values) or an HLC chart (when it reports onlyhigh-low-close values).

Figure 12-1. Different ways to represent OHLC data: (a) line, (b) real body

Candlesticks may be depicted as simple lines or as boxes (called real body) with lines at the ends (called wicks or
shadows). The height of each candlestick indicates the price range for a given period. In a box representation the real
body is the area between the opening and closing price.If, however, the candlestick is represented by a simple vertical
line, two small horizontal ticks indicate the opening (tick to the left) and closing (tick to the right) price. In addition,
in candlestick charts, data plots are colored differently, according to whether prices rise or fall.

In this chapter, you will see how particular OHLC data can be represented. You will also learn how to format such
charts with either lines or real bodies. First, though, you need to include the OHLCRenderer plug-in.

OHLC Charts
To enable jqPlot to draw candlestick charts, you must include a specific plug-in in your web page: OHLCRenderer.

You need to include the DateAxisRenderer plug-in as well, because in candlestick charts, you usually place date
values on the x axis:

<script type="text/javascript" src="../src/plugins/jqplot.dateAxisRenderer.min.js">
</script>
<script type="text/javascript" src="../src/plugins/jqplot.ohlcRenderer.min.js">
</script>

CHAPTER 12 ■ CANDLESTICK CHARTS WITH JQPLOT

268

In regard to the input data array, you have to respect a specific order:

 ['timestamp', open, max, min, close]

For this example, you are using a set of real data available online. The data are taken from a comma-separated
values (CSV) file generated by a free tool, called Dukascopy, which is also available online (www.dukascopy.com).
You choose euro–US dollar exchange values from a period of approximately one month in 2012. Let us assign all these
values to a variable, as in Listing 12-1.

Listing 12-1. ch12_01a.html

var ohlc = [
['8/08/2012 0:00:01', 1.238485, 1.2327, 1.240245, 1.23721],
['8/09/2012 0:00:01', 1.23721, 1.22671, 1.23873, 1.229295],
['8/10/2012 0:00:01', 1.2293, 1.22417, 1.23168, 1.228975],
['8/12/2012 0:00:01', 1.229075, 1.22747, 1.22921, 1.22747],
['8/13/2012 0:00:01', 1.227505, 1.22608, 1.23737, 1.23262],
['8/14/2012 0:00:01', 1.23262, 1.23167, 1.238555, 1.232385],
['8/15/2012 0:00:01', 1.232385, 1.22641, 1.234355, 1.228865],
['8/16/2012 0:00:01', 1.22887, 1.225625, 1.237305, 1.23573],
['8/17/2012 0:00:01', 1.23574, 1.22891, 1.23824, 1.2333],
['8/19/2012 0:00:01', 1.23522, 1.23291, 1.235275, 1.23323],
['8/20/2012 0:00:01', 1.233215, 1.22954, 1.236885, 1.2351],
['8/21/2012 0:00:01', 1.23513, 1.23465, 1.248785, 1.247655],
['8/22/2012 0:00:01', 1.247655, 1.24315, 1.254415, 1.25338],
['8/23/2012 0:00:01', 1.25339, 1.252465, 1.258965, 1.255995],
['8/24/2012 0:00:01', 1.255995, 1.248175, 1.256665, 1.2512],
['8/26/2012 0:00:01', 1.25133, 1.25042, 1.252415, 1.25054],
['8/27/2012 0:00:01', 1.25058, 1.249025, 1.25356, 1.25012],
['8/28/2012 0:00:01', 1.250115, 1.24656, 1.257695, 1.2571],
['8/29/2012 0:00:01', 1.25709, 1.251895, 1.25736, 1.253065],
['8/30/2012 0:00:01', 1.253075, 1.248785, 1.25639, 1.25097],
['8/31/2012 0:00:01', 1.25096, 1.249375, 1.263785, 1.25795],
['9/02/2012 0:00:01', 1.257195, 1.256845, 1.258705, 1.257355],
['9/03/2012 0:00:01', 1.25734, 1.25604, 1.261095, 1.258635],
['9/04/2012 0:00:01', 1.25865, 1.25264, 1.262795, 1.25339],
['9/05/2012 0:00:01', 1.2534, 1.250195, 1.26245, 1.26005],
['9/06/2012 0:00:01', 1.26006, 1.256165, 1.26513, 1.26309],
['9/07/2012 0:00:01', 1.26309, 1.262655, 1.281765, 1.281625],
['9/09/2012 0:00:01', 1.28096, 1.27915, 1.281295, 1.279565],
['9/10/2012 0:00:01', 1.27957, 1.27552, 1.28036, 1.27617],
['9/11/2012 0:00:01', 1.27617, 1.2759, 1.28712, 1.28515],
['9/12/2012 0:00:01', 1.28516, 1.281625, 1.29368, 1.290235]];

In options you activate the OHLCRenderer plug-in by calling it on the series object. Because you need to handle
date values on the x axis, you must activate the dateAxisRenderer object in the xaxis object. With this type of chart, it
is better to define the period of time you want to represent, regardless of the input data, in order to have more precise
control over what is displayed. To this end, you specify the min and max properties in xaxis object. You can also see
that with dateAxisRenderer, you can choose the tick interval, using literal expressions ('1 day', 'n days', '1 week',
'n weeks', '1 month', 'n months', where n is any integer greater than 1). Furthermore, note that yaxis has not been
defined or rather that y values have been attributed to y2axis. This has been done in order that the y axis be situated
on the right edge of the chart rather than the default left edge (see Listing 12-2).

http://www.dukascopy.com/

CHAPTER 12 ■ CANDLESTICK CHARTS WITH JQPLOT

269

Listing 12-2. ch12_01a.html

var options = {
 title: 'EUR-USD Exchange',
 seriesDefaults:{ yaxis: 'y2axis'},
 axes: {
 xaxis: {
 renderer: $.jqplot.DateAxisRenderer,
 tickOptions: {formatString: '%b %e'},
 min: "08-07-2012 16:00",
 max: "09-12-2012 16:00",
 tickInterval: "1 weeks"
 },
 y2axis: {
 tickOptions:{ formatString: '$%.2f'}
 }
 },
 series: [{ renderer: $.jqplot.OHLCRenderer}]
};

$.jqplot('myChart', [ohlc], options);

You now have the OHLC chart shown in Figure 12-2.

Figure 12-2. An OHLC chart with lines

Insofar as you had integers, you represented them just as they are entered in the input data array. But, this is not
always possible. Often, you must deal with numbers that have many digits after the decimal point and that are not of
the same length. It is therefore necessary to standardize these numbers, reporting only the significant digits. You can
accomplish this by setting the formatString property. This particular case requires a float value with two decimal
points: '%.2f'.

CHAPTER 12 ■ CANDLESTICK CHARTS WITH JQPLOT

270

Using Real Bodies and Shadows
The candlestick chart you have just seen is formatted with bar lines. If you want a box representation, with real bodies
and shadows, you need to set an additional property: the candlestick (see Listing 12-3).

Listing 12-3. ch12_01b.html

series: [{
 renderer: $.jqplot.OHLCRenderer,
 rendererOptions:{ candleStick: true }
}]

Now, let us look at the real bodies that replace the horizontal ticks on bar lines. In Figure 12-3 the white boxes
indicate when the price rises (the opening price is lower than the closing price), black boxes, when the price falls
(the closing price is lower than the opening price).

Figure 12-3. An OHLC chart with boxes

Comparing Candlesticks
Ocassionally, you will need to compare candlesticks representing different categories at particular time. In such cases,
you do not have dates on the x axis, but the names of the subjects themselves. The input data array will be different;
you must separate the OHLC data, using the labels of the categories from which they were taken. For each entity,
you insert an array with five values:

[n, open, max, min, close]

Here, instead of the timestamp, n is an integer corresponding to the index of the tick array. Thus, you define these
OHLC values in the data1 array, as shown in Listing 12-4. In the ticks array, you use four different labels to indicate
each of the four OHLC values.

CHAPTER 12 ■ CANDLESTICK CHARTS WITH JQPLOT

271

Listing 12-4. ch12_02.html

var data1 = [[1, 75, 80, 40, 55], [2, 30, 60, 15, 50],
 [3, 64, 75, 48, 50], [4, 67, 78, 20, 36]];
var ticks = ['Apple', 'Ubuntu', 'Microsoft', 'Android'];

You replace the call to the DateAxisRenderer plug-in with one to the CategoryAxisRenderer plug-in:

<script type="text/javascript" src="../src/plugins/jqplot.categoryAxisRenderer.min.js">
</script>
<script type="text/javascript" src="../src/plugins/jqplot.ohlcRenderer.min.js">
</script>

As you can see in Listing 12-5, the settings in options are very simple. First, you have to replace
$.jqplot.DateAxisRenderer with $.jqplot.CategoryAxisRenderer in the renderer property. Furthermore,
you assign the ticks array to the ticks object in the xaxis.

Listing 12-5. ch12_02.html

var options = {
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks
 },
 },
 series: [{
 renderer: $.jqplot.OHLCRenderer,
 rendererOptions:{ candleStick: true}
 }]
};

$.jqplot ('myChart', [data1], options);

This chart gives a perfect picture of a box representation with real bodies; the box is filled when the price falls
and empty when the price rises (see Figure 12-4).

CHAPTER 12 ■ CANDLESTICK CHARTS WITH JQPLOT

272

Summary
In this chapter, you have seen how, by means of a candlestick chart, particular OHLC data can be represented.
You have also learned how to format such charts with either lines or real bodies.

In the next chapter, I will discuss a whole class of charts sharing a common feature: their aim is to represent
a distribution of data. Through this exploration, you will discover how to realize scatter charts, bubble charts,
and block plots with the jqPlot library.

Figure 12-4. A comparative candlestick chart

273

CHAPTER 13

Scatter Charts and Bubble Charts
with jqPlot

In this chapter, I will discuss a category of charts that are particularly useful when representing a data distribution. It is
likely you will often find yourself interested in how a set of data is distributed along the space defined by two different
parameters, shown along the x axis and y axis. Such data distribution can suggest correlation or clustering.

The scatter chart is the best choice for the display of data distribution, especially when a large set of data needs
to be analyzed. Thus, you will first learn how to realize this kind of chart, using a simple example. Subsequently, you
will see how, once two different data groups (clusters) are defined, it is possible to highlight correlations between
the x and y variables via trend lines.

Finally, you will analyze two other types of charts: bubble charts and block charts. These may be considered
variations of the scatter chart—variations in which data points are replaced with bubbles or blocks. Bubble charts are
used when you need to represent data with three different parameters (the scatter chart works only with two); the third
parameter is represented by the radius of the bubble. The block chart, is a particular kind of scatter chart, in which,
instead of data points, you use a box containing a label.

Scatter Chart (xy Chart)
At first glance, you might think that a scatter chart (also called a scatter plot or xy chart) is a line chart in which the points
are not connected, but this would be a mistake. In fact, scatter charts, along with bubble charts and block charts, are a
particular type of chart. In a scatter chart, points are represented by the (x, y) pair, but you can get many points with the
same x value, making it both difficult and unnecessary to join them with a line. The purpose of a line chart is to follow the
progress of a y value in the range of an x value. The purpose of a scatter chart is to display a collection of points that may
or may not have some sort of relationship (which can be nonlinear). Furthermore, you may want to analyze these points
and their distribution in an (x, y) space, as when, for example, they are distributed in spatially separate groups.

You use the default settings (as in a line chart), disabling the line between the points. Let us take, for instance,
two collections of (x, y) data that may present some form of relationship, as shown in Listing 13-1.

Listing 13-1. ch13_04a.html

var data = [[400, 35], [402, 37], [650, 55], [653, 56], [650, 50],
 [700, 55], [600, 37], [601, 43], [450, 38], [473, 37],
 [480, 42], [417, 37], [510, 41], [553, 44], [570, 39],
 [527, 41], [617, 41], [625, 49]];

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

274

var data2 = [[100, 40], [600, 80], [200, 50], [300, 55], [400, 60],
 [500, 70], [123, 43], [110, 41], [157, 45], [160, 48],
 [237, 49], [248, 55], [287, 50], [321, 59], [359, 52],
 [387, 62], [466, 68], [533, 74], [344, 60], [323, 51],
 [430, 65]];

The points that you have entered do not follow any order, unlike those in a line chart. As previously stated,
you use the default settings, disabling the lines between the points by setting the showLine property to ‘false’
(see Listing 13-2).

Listing 13-2. ch13_04a.html (Disabling the lines between the points using ‘false’)

var options = {
 title: 'Scatter Chart',
 seriesDefaults: {
 showLine: false,
 showMarkers: true
 }
};
$.jqplot('myChart', [data, data2], options);

You thus obtain the scatter chart in Figure 13-1, in which the two collections of data cover two different areas of
the chart. The points are divided into well-defined groups.

Figure 13-1. A scatter chart

Only once the two data collections are represented does it makes sense to determine whether they follow
a linear or exponential trend. Here, you can use the trend line functionality of jqPlot. You therefore include the
Trendline plug-in:

<script type="text/javascript" src="../src/plugins/jqplot.trendline.min.js"></script>

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

275

Or, if you prefer to use a content delivery network (CDN) service, you may do so as follows:

<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.trendline.min.js"></script>

Then, activate the Trendline plug-in for both series, assigning each line a different color (see Listing 13-3).

Listing 13-3. ch13_04b.html

var options = {
 title: 'Scatter Chart',
 seriesDefaults: {
 showLine: false,
 showMarkers: true
 },
 series: [{
 trendline: {
 show: true,
 color: '#0000ff',
 type: 'exponential'
 }
 },{
 trendline: {
 show:true,
 color: '#ff0000'
 }
 }]
};

As a result, you get a scatter chart with two different series, each with its own trend line, as illustrated in Figure 13-2.

Figure 13-2. A scatter chart with trend lines

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.trendline.min.js

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

276

Bubble Chart
You use a bubble chart when you need to display data in three dimensions. Each entity is therefore represented by a
triplet (v1, v2, v3) of independent values. Two of these values are expressed by plotting a disk with an (x, y) point as
center. The third value is expressed by the disk radius (r). Hence, the (v1, v2, v3) triplet must be converted to (x, y, r).
Which of the three (v1, v2, v3) values is the radius and which is x or y depends on the skill of the chart designer.

Similar to xy charts, bubble charts are often used to identify probable relationships between the data represented
or even to see whether they fall into different groups. Such an approach is commonly found in scientific, medical, and
economic data analysis.

There is a specific plug-in for bubble charts in jqPlot: BubbleRenderer. It is therefore necessary to include this
plug-in in your web page:

<script type="text/javascript" src="../src/plugins/jqplot.bubbleRenderer.min.js"></script>

Or, if you prefer to use a CDN service, you may do so as follows:

<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.bubbleRenderer.min.js"></script>

The input data array has four values per item:

[x, y, radius, <label or object>]

The first two values represent the (x, y) coordinates, the third value (pay attention!) is proportional to the radius
of the bubble, and the last value represents the reference label (you can actually pass an object, too; more on this in a
moment). Listing 13-4 defines an array containing characteristic values of seven European nations: as a value for x,
you will insert the surface area; for y, the population; and the radius will represent an economic value. The fourth
value is a label reporting the name of the state.

Listing 13-4. ch13_01a.html

var data = [[301,60,29392,"Italy"], [675,65,34205,"France"],
 [506,46,30625,"Spain"], [357,81,37896,"Germany"],
 [450,9,37333,"Sweden"], [30,11,37736,"Belgium"],
 [132,11,27624,"Greece"]];

Now, let us analyze how to set the options variable (see Listing 13-5). You need to activate the BubbleRenderer
plug-in in the seriesDefault object and set the bubbleGradients property to ‘true’. This will fill the “bubbles” with
a color gradient, giving a sense of depth: the disks are thus made to appear as if they were spheres. As you can see,
for this plug-in, you do not need to create an array containing labels for the bubbles and then assign it explicitly to
an object in options; the labels are automatically read by the same input data array. The settings to be specified in
options are few and simple.

Listing 13-5. ch13_01a.html (Setting the options variable)

var options = {
 title: 'Bubble Chart with Gradient Fills',
 seriesDefaults:{
 renderer: $.jqplot.BubbleRenderer,
 rendererOptions: {
 bubbleGradients: true
 },

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.bubbleRenderer.min.js

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

277

 shadow: true
 },
 axes: {
 xaxis: {
 label: "Total area [*1000 km3]"
 },
 yaxis: {
 label: "Population [million]"
 }
 }
};

$.jqplot('myChart', [data], options);

Finally, with these few rows of code, you get the wonderful bubble chart shown in Figure 13-3.

Figure 13-3. A bubble chart

Earlier, we I mentioned the possibility of passing an object as the fourth value in the input data array. Here, you
can see in detail what this involves. You can pass, simultaneously, an object that allows you to define both the label
and the color to be attributed to each individual element (bubble). Using the previous example (see Listing 13-5),
you attach colors that are different from those of the default sequence. For example, let us say you want to emphasize
the value of one country over that of the others. You take Sweden and assign it the color red. You assign the other
countries various shades of brown. You then move the Sweden data to a new array, data2; this is to ensure that the
“Sweden” bubble is always in the foreground and that it is not overlapped by other bubbles (see Listing 13-6).

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

278

Listing 13-6. ch13_02.html

var data = [[301, 60, 29392, {label: 'Italy',color:'#b39524'}],
 [675, 65, 34205, {label: 'France', color:'#c39564'}],
 [506, 46, 30625, {label: 'Spain',color:'#a39544'}],
 [357, 81, 37896, {label: 'Germany', color:'#b39524'}],
 [30, 11, 37736, {label: 'Belgium',color:'#c39544'}],
 [132, 11, 27624, {label: 'Greece', color:'#a39564'}]];
var data2 = [[450, 9, 37333, {label: 'Sweden', color:'#ff2524'}]];

Using the same options, you need only modify the jqplot() function, as shown in Listing 13-7. You take this
smallshortcut, knowing that the rightmost array item is the one that will be drawn last and that it will, consequently,
appear in the foreground.

Listing 13-7. ch13_02.html (modifying the jqplot() function)

$.jqplot('myChart',[data, data2],options);

Figure 13-4 presents the result.

Figure 13-4. A bubble chart with a selected state in the foreground

The default sequence of colors suits you fine here, but you decide to change the gradient fill to a transparent
effect. To accomplish this, you must add the bubbleAlpha property and assign the desired value of transparency
to it, as demonstrated in Listing 13-8.

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

279

Listing 13-8. ch13_01b.html

seriesDefaults:{
 renderer: $.jqplot.BubbleRenderer,
 rendererOptions: {
 bubbleGradients: true,
 bubbleAlpha: 0.6
 },
 shadow: true
},

Figure 13-5 shows the bubbles with a gradient fill with a transparent effect that affords a glimpse of the
underlying bubbles.

Block Chart
A block chart (also called a block plot) is very similar to the bubble chart, but instead of disks, it uses rectangles.
Here, the size of the rectangles has no significance except to provide space for those in which a label is applied to a
given (x, y) pair.

Figure 13-5. A bubble chart with transparency

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

280

As with the bubble chart, it is necessary to include the BlockRenderer plug-in in the web page:

<script type="text/javascript" src="../src/plugins/jqplot.blockRenderer.min.js"></script>

Or, if you prefer to use a CDN service, you may do so as follows:

<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.blockRenderer.min.js"></script>

In this example you will use three series of data. The input data array should have this format:

[x, y, 'Label'],

Now, you define three different arrays, as shown in Listing 13-9.

Listing 13-9. ch13_03.html

var data1 = [[10, 30, 'Copper'], [100, 40, 'Gold'], [50, 50, 'Silver'],
 [12, 78, 'Lead'], [44, 66, 'Brass']];
var data2 = [[68, 15, 'Maple'], [33, 22, 'Oak'],[10, 90, 'Ebony'],
 [94, 30, 'Beech'],[70, 70, 'Ash']];
var data3 = [[22, 16, 'PVC'], [56, 76, 'PE'], [33, 78, 'PET'],
 [27, 60, 'PC'], [70, 44, 'PU']];

In options, you need only activate the BlockRenderer plug-in in the seriesDefault object (see Listing 13-10).

Listing 13-10. ch13_03.html (Activating the BlockRenderer plug-in)

var options = {
 seriesDefaults:{
 renderer: $.jqplot.BlockRenderer
 }
};

$.jqplot ('myChart', [data1, data2, data3], options);

Figure 13-6 gives the block chart you have just defined, in which each series is marked by a different color.

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.blockRenderer.min.js

CHAPTER 13 ■ SCATTER CHARTS AND BUBBLE CHARTS WITH JQPLOT

281

Summary
In this chapter, you have learned how to represent a distribution. You will probably often find yourself interested in
examining how data are distributed in space in order to uncover any possible trends or clusters. Depending on what
you want to stand out more, you can choose to represent data by means of a scatter chart, a bubble chart, or a block
chart. In addition, you have seen how to highlight the trend of a distribution.

In the next chapter, I will gather other types of charts that you have not yet looked at but that are standard types
belonging to the jqPlot library. First, you will study funnel charts and how to set their properties through options.
Then, you will discover Bezier curves—what they are and how they can be implemented by jqPlot.

Figure 13-6. A block chart

283

CHAPTER 14

Funnel Charts with jqPlot

Funnel charts are used to show the progressive reduction of data as they go down one level to the next. The chart
consists of an inverted pyramid, or funnel, divided into different levels. Each level has its own area, which is
proportional to a given percentage value. A funnel chart is similar to a pie chart in that both express a whole divided
into its constituent parts. But, the funnel chart specifies levels, which succeed one another in a very precise sequence.
This sequence may express a hierarchical order, the steps of a process, and so on. A pie chart cannot do this.

Creating a Funnel Chart
Even for this specialized chart, jqPlot provides a specific plug-in: FunnelRenderer. You therefore need to include it:

<script type="text/javascript" src="../src/plugins/jqplot.funnelRenderer.min.js"></script>

Or, if you prefer to use a content delivery network (CDN) service, you can do so as follows:

<script type="text/javascript"
src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.funnelRenderer.min.js"></script>

With jqPlot, you must be aware of a behavior that is specific to this renderer plug-in: FunnelRenderer reorders
the data, in descending order. The largest value is displayed at the top of the funnel, with the lesser values placed
below. The area of each funnel section corresponds to the value of its data point, relative to the sum of all values
(percentage). With this renderer, you need to use the following format for the input data array:

 ['label',value]

Thus, for this example, you define the data array as shown:

var data = [['Sony', 1], ['Samsung', 13], ['LG', 14], ['Philips', 5]];

For options, you have to activate the FunnelRenderer plug-in in the seriesDefaults object, and, optionally,
you can add a legend reporting the labels of the series, as presented in Listing 14-1.

Listing 14-1. ch14_01a.html

var options = {
 seriesDefaults: {
 renderer: $.jqplot.FunnelRenderer
 },

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.funnelRenderer.min.js

CHAPTER 14 ■ FUNNEL CHARTS WITH JQPLOT

284

 title: {
 text: 'Basic Funnel Chart'
 },
 legend: {
 location: 'e',
 show: true
 }
};

$.jqplot('myChart', [data], options);

Figure 14-1 is a basic funnel chart.

Figure 14-1. A simple funnel chart

As you can see, the order of items has been changed, with the element with the highest value at the top, and
so on, down to the item with the lowest value. This is the basic chart, but you can enrich it, for example, by adding
labels reporting the percentages. To this end, you must add the dataLabel property, setting it to ‘percent’ and then
enabling it with showDataLabel, set to ‘true’ (see Listing 14-2).

Listing 14-2. ch14_01b.html

seriesDefaults: {
 renderer: $.jqplot.FunnelRenderer,
 rendererOptions: {
 dataLabels: 'percent',
 showDataLabels: true
 }
},

As you can see in Figure 14-2, percentage values are now reported in their corresponding sections of the
funnel chart.

CHAPTER 14 ■ FUNNEL CHARTS WITH JQPLOT

285

You can make further changes. For example, let us say you want to decrease the spacing between funnel sections,
as in Figure 14-3. You can accomplish this through the values passed to the sectionMargin property. By assigning the
value 0 to the sectionMargin property, you eliminate the space between the sections completely (see Listing 14-3).

Listing 14-3. ch14_01c.html

rendererOptions: {
 dataLabels: 'percent',
 showDataLabels: true,
 sectionMargin: 0
}

Figure 14-2. A funnel chart with a legend and percentages

Figure 14-3. A funnel chart without spaces between sections

CHAPTER 14 ■ FUNNEL CHARTS WITH JQPLOT

286

Alternatively, you may want to represent the various sectors as unfilled and increase the width of their boundary
lines, as in Figure 14-4. To do this, you need to use two properties: fill and lineWidth. First, you set the fill
property to ‘false’ which causes jqPlot to draw the section with an empty area; then, you set the lineWidth property
to 4, thereby increasing the thickness of the sections’ edges, making them more visible (see Listing 14-4).

Listing 14-4. ch14_01d.html

rendererOptions: {
 dataLabels: 'percent',
 showDataLabels: true,
 fill: false,
 lineWidth: 4
}

Summary
In this chapter, you learned how to make certain types of funnel charts and how to change their properties
through options.

In the next chapter, I will cover a topic I have touched on in previous chapters: controls. I will describe the
importance of introducing controls in a chart, understanding that a property of options is hidden behind every
control.This affords the user the opportunity to select a property’s attributes in real time.

Figure 14-4. A funnel chart with no filled sections

287

CHAPTER 15

Adding Controls to Charts

Sometimes, it can be useful to change settings directly from the browser at runtime and then replot the chart with
these new settings. A typical way of doing this is to add active controls. These controls make the chart interactive,
allowing the user to make choices in real time, such as deciding how the chart should be represented.By inserting
controls, you give the user the ability to control the values of the chart's attributes, which you would normally have to
set in options.

In this chapter, you will look at introducing controls within your web page. You will also consider the factors that
lead to the choice of one type of control over another. A series of examples featuring three of the most commonly used
controls, will take you deeper into this topic.

Adding Controls
One way to group controls is according to their functionality.Some controls (e.g., buttons, menus) work as switches
(command controls) with which the user can trigger a particular event or launch a command. Other controls
(e.g., check boxes, radio buttons, combo boxes, sliders) are bound to a specific value or property. With this type of
control, the user makes a choice or enters values through a text field (text area). Still other controls (e.g., scrollbars)
have a navigation function and are especially suitable in situations in which it is necessary to move an object, such as
a selected item in a list or a large image enclosed in a frame or in the web page.

Here, you will be investigating those controls that are linked to values and that let the user interact with a chart by
making choices. These controls should, in some way, graphically represent the values that a particular property can
assume (the same values that you would usually assign to the properties within the options object, limited to those
that you want to make available to the user). Your choice of control will depend on the property to set and the values
that it can assume:

To enable the user to make a single selection from a set of values (e.g., one of three possible •฀
colors), the choice of mutually exclusive radio buttons as controls is optimal (see Figure 15-1a).

To let the user select which series should be visible in a chart, you will need to use •฀
check boxes (see Figure 15-1b).

To allow the user to choose within a range of values for a particular attribute (e.g., changing •฀
the color of an object through adjustment of the red-green-blue (RGB) values that define the
color), a slider is generally the best choice (see Figure 15-1c) (in this case, you would use three
sliders as controls, corresponding to the colors red, green, and blue).

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

288

The list of possible controls does not end there. But, an understanding of the mechanisms that underlie these
controls enables a chart developer to handle the vast majority of cases, including those that are the most complex.

In the following examples, you will discover how to apply these three controls to your chart.

Using Radio Buttons
To illustrate the use of controls, let us first look at radio buttons. Radio buttons are a set of small buttons grouped in
list form (see Figure 15-1a). They are generally represented as small, empty circles, with text to the side. As previously
stated, this type of control is linked to a certain value or property. The particularity of radio buttons is that their values
are mutually exclusive; therefore, the user can choose only one of them.

By way of illustration, let us take a simple multiseries line chart, in which, instead of displaying all the series,
you want to allow the user to decide which series will be shown. To make a selection, the user will click one of the
radio buttons, filling the circle with a dot. The series corresponding to that control will then be drawn on the chart.

Adding Radio Button Controls
First, you need to write the HTML page, importing all the necessary libraries (see Listing 11-1).

Listing 15-1. ch15_01.html

<HTML>
<HEAD>
<TITLE>Selection series with controls</TITLE>
<!--[if lt IE 9]>
<script type="text/javascript" src="../src/excanvas.js"></script>
<![endif]-->
<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
<script>
$(document).ready(function(){

 //add your code here

});

Figure 15-1. Three of the most commonly used controls: (a) radio buttons, (b) check boxes, (c) sliders

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

289

</script>
</HEAD>
<BODY>
<div id="myChart" style="height: 300px; width: 500px;"></div>
 <!-- add the table with the controls here -->
</BODY>
</HTML>

Or, if you prefer to use the content delivery network (CDN) service, you use the following code:

<!--[if lt IE 9]>
<script src="http://cdn.jsdelivr.net/excanvas/r3/excanvas.js"></script>
<![endif]-->
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script type="text/javascript"
 src="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css"
 href="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css" />

You start with a line chart in which you will be representing four sets of values. Every element in each series will
be represented by an (x, y) pair of values; you insert the values of these four series in a data set defined within the
jQuery $(document).ready() function, as shown in Listing 15-2.

Listing 15-2. ch15_01.html

var dataSet = {
 data1: [[1, 1], [2, 2], [3, 3], [4, 2], [5, 3], [6, 4]],
 data2: [[1, 3], [2, 4], [3, 5], [4, 6], [5, 5], [6, 7]],
 data3: [[1, 5], [2, 6], [3, 8], [4, 9], [5, 7], [6, 9]],
 data4: [[1, 7], [2, 8], [3, 9], [4, 11], [5, 10], [6, 11]]
};

But, instead of displaying all four series with lines of different colors, as seen previously, you provide the user the
opportunity to display only one series at a time. Once the chart is loaded in the browser, the userwill be able to select
any one of the four series and switch between them, without having to load a new page.

You begin by representing only the first series (data1) (see Listing 15-3).

Listing 15-3. ch15_01.html

var options = {
 seriesDefaults: {
 showMarker: false
 },
 title: 'Series selection',
 axes: {
 xaxis: {},
 yaxis: {
 min: 0,
 max: 12
 }
 }
};

var plot1 = $.jqplot('myChart', [dataSet.data1], options);

http://cdn.jsdelivr.net/excanvas/r3/excanvas.js
http://code.jquery.com/jquery-1.9.1.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

290

Note ■ In this example, you store the value returned by the $.jqplot() function within the plot1 variable. This allows

you to access the contents of jqplot object, change the values, and call its methods, including the replot() function,

which lets you draw the chart again, including the new changes.

The user will be selecting an option from a set of possible choices; the radio buttons is the best choice of control
for this purpose. Therefore, let us assign one series to each radio button. As you can see in Listing 15-4, all the controls
(buttons) are contained in an inner list within a table. Each button is specified by an <input> element in which the
four series are also specified as values.

Listing 15-4. ch15_01.html

<table>
<tr>
 <td>
 <div>

 <input name="dataSeries" value="data1" type="radio" checked />First Series
 <input name="dataSeries" value="data2" type="radio" />Second Series
 <input name="dataSeries" value="data3" type="radio" />Third Series
 <input name="dataSeries" value="data4" type="radio" />Fourth Series

 </div> </td>
</tr>
</table>

However, setting the controls definition in an HTML page is not enough; you must also create functions that
relate the radio buttons to the jqPlot chart. Depending on which radio button is in the checked state, a different set
from the data set will be loaded in the chart.

In selecting a different radio button, the user changes the checked attribute from 'false' to 'true'. The status
change of a radio button involves the activation of the change() function, which detects this event. This function
assigns a new set from the data set to the plot1 variable (containing all the information about your jqPlot chart) and
finally forces the replot of the chart. The new data are thus represented in the chart, without having to reload the page
(see Listing 15-5).

Listing 15-5. ch15_01.html

$(document).ready(function(){
 ...
 var plot1 = $.jqplot ('myChart', [dataSet.data1], options);
 $("input[type=radio][name=dataSeries]").attr("checked", false);
 $("input[type=radio][name=dataSeries][value=data1]").attr("checked", true);
 $("input[type=radio][name=dataSeries]").change(function(){
 var val = $(this).val();
 plot1.series[0].data = dataSet[val];
 plot1.replot();
 });
});

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

291

To customize the elements within the table of controls, you can add a little bit of Cascading Style Sheets (CSS)
style, as demonstrated in Listing 15-6.

Listing 15-6. ch15_01.html

<style>
li {
 font-family: "Verdana";
 font-size: 16px;
 font-weight: bold;
 text-shadow: 1px 2px 2px #555555;
 margin: 3px;
 list-style: none;
}
</style>

If you load this web page in the browser, you obtain the chart in Figure 15-2.

Figure 15-2. With radio buttons it is possible to select only one series of data

Now, the user can choose which series will be shown in the chart. Having selected the radio button as a control,
the chart will display only one set of data at a time.

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

292

Accessing Attributes after the Chart Has Already Been Drawn
So far, you have used the options object to define the property values of your chart (by changing the default values)
and then passed it as an argument to the $.jqplot() function. But, this applies only when you want to characterize
your chart before it is drawn. What can you do if you need to access the attribute values subsequently?

In fact, by introducing the controls as an argument, you have also introduced the possibility of changing these
attributes after the chart has been drawn. Therefore, there must be a way to access these values, edit them, and then
run the command to redraw the chart (as when you used the replot() function) (see Listing 15-5).

You have seen that you can receive the entire jqplot object as the value returned by the $.jqplot() function and
store it in a variable (in the previous example, the plot1 variable) so that you can access its content later.

A jqplot object contains practically all the objects—their properties and methods—that define the whole jqPlot
library, and every particular instance (e.g., plot1) is realized in the representation of a specific chart.

Thus, when you are writing a JavaScript code to define the functions that handle particular events (such as the
use of controls by the user), you can access these values and change them after the page has designed the chart and
then run the command to redraw it with the desired changes. This adds the interactivity you need in your charts.

Continuing with the previous example (see Listings 15-1 to 15-6), you note that the lines are all drawn in blue.
Let us now make some changes so that this time the user can choose the color with which the series will be drawn.

To do this, you add another set of controls to the table: a second column of radio buttons, each representing a
color (see Listing 15-7).

Listing 15-7. ch15_02.html

<table>
<tr>
 <td>
 <div>

 <input name="dataSeries" value="data1" type="radio" checked />First series
 <input name="dataSeries" value="data2" type="radio" />Second series
 <input name="dataSeries" value="data3" type="radio" />Third series
 <input name="dataSeries" value="data4" type="radio" />Fourth series

 </div>
 </td>
 <td>
 <div>

 <input name="colors" value="#4bb2c5" type="radio" checked />Blue
 <input name="colors" value="#ff3333" type="radio" />Red
 <input name="colors" value="#44bb44" type="radio" />Green
 <input name="colors" value="#ffaa22" type="radio" />Orange

 </div>
 </td>
</tr>
</table>

Next, you add the rows highlighted in bold in Listing 15-8 to your JavaScript code.

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

293

Listing 15-8. ch15_02.html

$("input[type=radio][name=dataSeries]").attr("checked", false);
$("input[type=radio][name=dataSeries][value=data1]").attr("checked", true);
$("input[type=radio][name=dataSeries]").change(function(){
 var val = $(this).val();
 plot1.series[0].data = dataSet[val];
 plot1.series[0].renderer.shapeRenderer.strokeStyle = col;
 plot1.replot();
});

var col = "#4bb2c5";
$("input[type=radio][name=colors]").change(function(){
 col = $(this).val();
});

Figure 15-3 illustrates how the user can decide the series to represent, selecting among four different colors.
This is an example of how adding controls increases the interactivity between the user and chart.

Figure 15-3. The user can select a different combination of colors and series

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

294

Using Sliders
In the previous example the user first set the color by checking one of the radio buttons in the second column and
then chose the series to be represented with that color by selecting it from the first column. This process, therefore,
involved two selections, made at two different times. This time, you will keep unchanged the first column, from which
the user selects the series to be displayed (mutual exclusion), but in place of the column of radio buttons, you will
insert a set of three sliders. In this scenario, the user selects the series to be displayed, and, once it is drawn on the
chart, in a predefined color, he or she can modify this color by adjusting the three RGB values that compose it. Now,
you have a selection, followed by a fine adjustment.

When you are required to change the value of an attribute by scrolling through contiguous values in a given
range, sliders are the kind of control needed. In this case, three sliders are necessary, one for each color (red, green,
blue), so that the user can adjust the RGB values to obtain the desired color.

Using the previous example (see Listings 15-7 and 15-8), first you choose the jQuery Interface library (jQuery UI)
to obtain the sliders (for details on how to implement the slider using jQuery UI widgets, see Chapter 2). Thus, before
adding the sliders to the web page, you must import all the necessary files that are part of this library:

<link rel="stylesheet"
 href="http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css" />
<script src="http://code.jquery.com/ui/1.10.3/jquery-ui.min.js"></script>

Note ■ If you are working in the workspace made available with the source code that accompanies this book

(see Appendix A), you may access the libraries already contained in the workspace by using the following references:

<link rel="stylesheet" href="../src/css/smoothness/jquery-ui-1.10.3.custom.min.css" />

<script type="text/javascript" src="../src/js/jquery-ui-1.10.3.custom.min.js"></script>

Once you have imported all the files, you can start inserting the three sliders in the HTML table. As you can see in
Listing 15-9, you eliminate the second column, containing the radio buttons, replacing it with a set of <div> elements
(if you are starting directly from here, you can copy the entire listing instead of just the text in bold). The jQuery UI will
convert them into sliders (see Chapter 2).

Listing 15-9. ch15_04.html

<table>
<tr>
 <td>
 <div>

 <input name="dataSeries" value="data1" type="radio" checked />First series
 <input name="dataSeries" value="data2" type="radio" />Second series
 <input name="dataSeries" value="data3" type="radio" />Third series
 <input name="dataSeries" value="data4" type="radio" />Fourth series

 </div>
 </td>

http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/jquery-ui.min.js

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

295

 <td>
 <div id="red">
 <div id="slider-text">
 <div id="0">0</div>
 <div id="1">255</div>
 </div>
 </div>
 <div id="green">
 <div id="slider-text">
 <div id="0">0</div>
 <div id="1">255</div>
 </div>
 </div>
 <div id="blue">
 <div id="slider-text">
 <div id="0">0</div>
 <div id="1">255</div>
 </div>
 </div>
 </td>
</tr>
</table>

Furthermore, you have also added two numerical values to each slider with the slider-text id. These values
are nothing more than labels that are used to display the minimum and maximum for the range of values (0–255)
covered by the three sliders. This methodology can be very useful when you have to represent a scale for each slide in
the web page.

Let us now add all the CSS style directives to make sure these new controls can be displayed correctly in the
context of the existing page (see Listing 15-10).

Listing 15-10. ch15_04.html

<style>
...
#red, #green, #blue {
 float: left;
 margin: 15px;
 left: 50px;
}
#red .ui-slider-range {
 background: #ef2929;
}
#red .ui-slider-handle {
 border-color: #ef2929;
}
#green .ui-slider-range {
 background: #8ae234;
}
#green .ui-slider-handle {
 border-color: #8ae234;
}

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

296

#blue .ui-slider-range {
 background: #729fcf;
}
#blue .ui-slider-handle {
 border-color: #729fcf;
}
#slider-text div {
 font-family: "Verdana";
 font-size: 10px;
 position: relative;
 left: 17px;
}
</style>

With regard to the section of code in JavaScript, you keep only the part that manages the radio buttons for the
selection of the desired series, integrating it with a new section of code that handles the RGB values, adjusted through
the three sliders, as shown in Listing 15-11. The three RGB values are then converted to hexadecimal numbers
through an appropriate function and combined to form the HTML color code, expressed by a pound sign (#),
followed by six hexadecimal characters ('rrggbb'), where each pair represents a value from 0 to 255, translated into
hexadecimal format.

Listing 15-11. ch15_04.html

$(document).ready(function(){

...

 $("input[type=radio][name=dataSeries]").attr("checked", false);
 $("input[type=radio][name=dataSeries][value=data1]").attr("checked", true);
 $("input[type=radio][name=dataSeries]").change(function(){
 var val = $(this).val();
 plot1.series[0].data = dataSets[val];
 plot1.series[0].renderer.shapeRenderer.strokeStyle = "#" + col;
 plot1.replot();
 });

 var col = "4bb2c5";

 function hexFromRGB(r, g, b) {
 var hex = [
 r.toString(16),
 g.toString(16),
 b.toString(16)
];
 $.each(hex, function(nr, val) {
 if (val.length === 1) {
 hex[nr] = "0" + val;
 }
 });
 return hex.join("").toUpperCase();
 };

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

297

 $("#red, #green, #blue").slider({
 orientation: "vertical",
 range: "min",
 max: 255,
 change: refreshPlot
 });

// set col to default "#4bb2c5";
 $("#red").slider("value", 255);
 $("#green").slider("value", 140);
 $("#blue").slider("value", 60);

 function refreshPlot() {
 var r = $("#red").slider("value");
 var g = $("#green").slider("value");
 var b = $("#blue").slider("value");
 var col = hexFromRGB(r, g, b);
 plot1.series[0].renderer.shapeRenderer.strokeStyle = "#" + col;
 plot1.replot();
 }

 $("[id=0]").css('top','90px');
 $("[id=1]").css('top','-20px');

});

The last two lines of code in Listing 15-11 use the jQuery css() function to assign a CSS style to a specific
selection of HTML elements (see Chapter 2). The selection is made on all elements with id = 0 and id = 1, that is,
the <div> elements containing the labels for the sliders’ scale.You set the CSS top attribute to place each scale label
next to the corresponding slider, at a specific height.

In Figure 15-4 the user can decide the series to display and change its by modifying the RBG values through
three sliders.

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

298

Using Check Boxes
In the previous examples, the user could choose only one among the number of series that could be displayed.
However, typically the user will want to be able to decide which series should be displayed and which should not,
choosing, for instance, to display two or more sets at the same time. This entails dealing with multiple choices within
the same group. To enable the user make this kind of choice, you have to opt for check boxes.

Generally, check boxes are grouped in a list, represented by empty boxes (see Figure 15-1). Unlike radio buttons,
these controls are not mutually exclusive, but rather multiple choice. Thus, you can select all, some, or none of the
values that they represent(whereas with radio buttons an item has to be selected)

Similar to radio buttons, there is a check box for each series, and if a check box is checked, the corresponding
series is shown in the chart. Yet, unlike radio buttons, check boxes are independent of each other: their state (checked
or unchecked) does not affect the status of the others.

Often, when you have a list of check boxes, it can be very useful to add two buttons with the “CheckAll/UncheckAll”
functionality, thereby allowing the choice of selecting/deselecting all the check boxes with one click.

Using the previous example (see Listing 15-9 to 15-11), the data set and options settings are the same; the only
thing you need to change is the data passed in the $.jqplot() function. In this case, the whole data set will be passed
as an argument.

var plot1 = $.jqplot ('myChart', [dataSet.data1, dataSet.data2, dataSet.data3, dataSet.data4],
options);

Figure 15-4. A chart with three slider widgets added to adjust the RGB levels

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

299

Let us delete the table containing the previous controls (radio buttons, sliders) and substitute it with a new one
containing check boxes, as shown in Listing 15-12 (if you are starting directly from here, you can copy the entire listing
without considering the previous controls). Moreover, in addition to the four controls for as many series, you can add
a button at the end to manage the feature “CheckAll/UncheckAll .”

Listing 15-12. ch15_03.html

<table>
<tr>
 <td>
 <div>

 <input name="data1" type="checkbox" checked />First series
 <input name="data2" type="checkbox" checked />Second series
 <input name="data3" type="checkbox" checked />Third series
 <input name="data4" type="checkbox" checked />Fourth series
 <input type="button" name="checkall" value="Uncheck All">

 </div>
 </td>
</tr>
</table>

As with radio buttons, you have to add jQuery methods to bind the events that have occurred with these controls.
First, you define the status of each check box. Normally, they should all be checked. Then, you define five jQuery
methods, enabling or disabling the series to be represented, and then force the replot.

From the code, you must delete all the rows that handled the previous controls and in their place, write the
methods in Listing 15-13.

Listing 15-13. ch15_03.html

$("input[type=checkbox][name=data1]").change(function(){
 if(this.checked){
 plot1.series[0].data = dataSet.data1;
 plot1.replot();
 } else {
 plot1.series[0].data = [];
 plot1.replot();
 }
});

$("input[type=checkbox][name=data2]").change(function(){
 if(this.checked){
 plot1.series[1].data = dataSet.data2;
 plot1.replot();
 } else {
 plot1.series[1].data = [];
 plot1.replot();
 }
});

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

300

$("input[type=checkbox][name=data3]").change(function(){
 if(this.checked){
 plot1.series[2].data = dataSet.data3;
 plot1.replot();
 } else {
 plot1.series[2].data = [];
 plot1.replot();
 }
});

$("input[type=checkbox][name=data4]").change(function(){
 if(this.checked){
 plot1.series[3].data = dataSet.data4;
 plot1.replot();
 } else {
 plot1.series[3].data = [];
 plot1.replot();
 }
});

$("input[type=button][name=checkall]").click(function(){
 if(this.value == "Check All"){
 plot1.series[0].data = dataSet.data1;
 plot1.series[1].data = dataSet.data2;
 plot1.series[2].data = dataSet.data3;
 plot1.series[3].data = dataSet.data4;
 $("input[type=checkbox][name=data1]").prop("checked", true);
 $("input[type=checkbox][name=data2]").prop("checked", true);
 $("input[type=checkbox][name=data3]").prop("checked", true);
 $("input[type=checkbox][name=data4]").prop("checked", true);
 this.value = "Uncheck All";
 plot1.replot();
 } else {
 plot1.series[0].data = [];
 plot1.series[1].data = [];
 plot1.series[2].data = [];
 plot1.series[3].data = [];
 $("input[type=checkbox][name=data1]").prop("checked", false);
 $("input[type=checkbox][name=data2]").prop("checked", false);
 $("input[type=checkbox][name=data3]").prop("checked", false);
 $("input[type=checkbox][name=data4]").prop("checked", false);
 this.value = "Check All";
 plot1.replot();
 }
});

As shown in Figure 15-5, the user can now select the series he or she wants to see displayed in the chart.

CHAPTER 15 ■ ADDING CONTROLS TO CHARTS

301

If you click the button labeled “Uncheck all,” all the check boxes will be unchecked, and the corresponding series
will be hidden in the plot. Subsequently, the button will show the label “Check All.” When clicking it this time, all the
check boxes will be checked, and the corresponding series will be shown in the chart.

The features covered in this last example are very similar to the legend provided by the EnhancedLegendRenderer
plug-in (see the section “Handling Legends” in Chapter 10). In that case, by clicking the colored square corresponding
to a series, you can decide whether that series should be represented in the chart. But, here you have also added
the possibility of checking and unchecking all the series with just one click, and this functionality is not at present
implemented in the plug-in (although someone is proposing it). This is another small example of how to expand the
functionality that a library provides through the use of controls.

Summary
In this chapter, you have seen how to use various controls, such as radio buttons, sliders, and check boxes, to
increase the interactivity of a chart. With the introduction of controls, we, as programmers, are no longer the only ones
to have direct control of the values of the properties of the chart; through such controls the user is also able to make
the appropriate choices.

In addition, you learned how to integrate jQuery UI widgets with the jqPlot library, using these widgets
as controls. In the next chapter, you will complete this integration by using jQuery UI widgets as containers for your
charts. This combination greatly expands the possibilities for development and representation of charts using the
jqPlot library.

Figure 15-5. A custom legend with check boxes and a button

303

CHAPTER 16

Embedding jqPlot Charts in jQuery
Widgets

In Chapter 2, you saw several examples of jQuery UI widgets used as containers. In this chapter, you’ll exploit such
capability to represent the charts within these containers. This enables you to exploit the great potential of the jQuery
UI widgets to further improve the way in which your charts are represented.

The advantages of combining jQuery UI and jqPlot libraries are various: you can display more charts occupying
the same space in the web page, and at the same time keep the context of the page clean and tidy. Another advantage
is that jQuery UI widgets can be resized, and even users can resize a jqPlot chart.

In this chapter, you’ll explore three simple cases where the benefits just mentioned will be made evident. You’ll
also become more confident in working with jQuery UI widgets, even more so than you did in Chapter 2.

jqPlot Charts on Tabs
The first widget you’re going to use as a container is the tab (see the section “Tab” in Chapter 2). Inserting charts
inside tabs allows you to display different charts on the same page within a limited area. In this example, you’ll place
three different jqPlot charts within three tabs, called Tab 1, Tab 2, and Tab 3. In the first tab you’ll place a bar chart, in
the second tab you’ll place a multiseries line chart, and in the last tab a pie chart. You won’t be analyzing these charts
in detail, because they are exactly the same kind of charts used in previous chapters. Each type of chart requires its
specific plug-ins, and Listing 16-1 shows a list of the plug-ins that are needed.

Listing 16-1. ch16_01.html

<!--[if lt IE 9]>
<script src="http://cdn.jsdelivr.net/excanvas/r3/excanvas.js"></script>
<![endif]-->
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js">
</script>
<link rel="stylesheet" type="text/css"
 href="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css" />
<script src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.pieRenderer.min.js">
</script>

http://cdn.jsdelivr.net/excanvas/r3/excanvas.js
http://code.jquery.com/jquery-1.9.1.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.pieRenderer.min.js

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

304

<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.dateAxisRenderer.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.canvasTextRenderer.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.canvasAxisTickRenderer.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.categoryAxisRenderer.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins
 /jqplot.barRenderer.min.js"></script>

In addition, you are going to use jQuery widgets as containers, and these also require some files to be included:

<link rel="stylesheet" href="http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css" />
<script src="http://code.jquery.com/ui/1.10.3/jquery-ui.min.js"></script>

Note ■ For those of you working on the workspace made available with the book’s source code, you can use the

libraries already contained in the workspace. Use the following references:

<script src="../src/js/jquery-1.9.1.js"></script>

<script src="../src/jquery.jqplot.min.js"></script>

<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />

<link rel="stylesheet" href="../src/css/smoothness/jquery-ui-1.10.3.custom.min.css" />

<script src="../src/js/jquery-ui-1.10.3.custom.min.js"></script>

<script src="../src/plugins/jqplot.pieRenderer.min.js"></script>

<script src="../src/plugins/jqplot.dateAxisRenderer.min.js"></script>

<script src="../src/plugins/jqplot.canvasTextRenderer.min.js"></script>

<script src="../src/plugins/jqplot.canvasAxisTickRenderer.min.js"></script>

<script src="../src/plugins/jqplot.categoryAxisRenderer.min.js"></script>

<script src="../src/plugins/jqplot.barRenderer.min.js"></script>

With the introduction of so many graphic elements on the web page, the use of Cascading Style Sheets (CSS)
styles becomes increasingly important. You need to define some settings in order to modify the tabs’ appearance so
that they will fit to your needs. Add the style settings in Listing 16-2.

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.dateAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.dateAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasTextRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisTickRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.canvasAxisTickRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.categoryAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.categoryAxisRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.barRenderer.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.barRenderer.min.js
http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/jquery-ui.min.js

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

305

Listing 16-2. ch16_01.html

<style>
.ui-tabs {
 width: 690px;
 margin: 2em auto;
}
.ui-tabs-nav {
 font-size: 12px;
}
.ui-tabs-panel {
 font-size: 14px;
}
.jqplot-target {
 font-size: 18px;
}
ol.description {
 list-style-position: inside;
 font-size: 15px;
 margin: 1.5em auto;
 padding: 0 15px;
 width: 600px;
}
</style>

You are going to use three different charts, which have already been used in previous chapters (see Chapter 9 for
the line chart, Chapter 10 for the bar chart, and Chapter 11 for the pie chart). This chapter, therefore, doesn’t cover
the details of their settings. Add them to our web page, replacing the usual target name myChart with chart1, chart2,
and chart3. As you can see in Listing 16-3, in these charts you have defined the options objects directly within the
three jqplot() functions. Their return values are stored in three different variables: plot1, plot2, and plot3. These
variables will be used to handle the respective charts within the JavaScript code.

Listing 16-3. ch16_01.html

var bar1 = [['Germany', 12], ['Italy', 8], ['Spain', 6],
 ['France', 10], ['UK', 7]];
var data1 = [1, 2, 3, 2, 3, 4];
var data2 = [3, 4, 5, 6, 5, 7];
var data3 = [5, 6, 8, 9, 7, 9];
var data4 = [7, 8, 9, 11, 10, 11];
var pie1 = [
 ['Dairy', 212], ['Meat', 140], ['Grains', 276],
 ['Fish', 131], ['Vegetables', 510], ['Fruit', 325]
];

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

306

var plot1 = $.jqplot ('chart1', [bar1], {
 title: 'Foreigner customers',
 series:[{renderer:$.jqplot.BarRenderer}],
 axesDefaults: {
 tickRenderer: $.jqplot.CanvasAxisTickRenderer ,
 tickOptions: {
 angle: -30,
 fontSize: '10pt'
 }
 },
 axes: {
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer
 }
 }
});

var plot2 = $.jqplot ('chart2', [data1, data2, data3, data4],{});

var plot3 = $.jqplot ('chart3', [pie1], {
 seriesDefaults: {
 renderer: jQuery.jqplot.PieRenderer,
 rendererOptions: {
 showDataLabels: true,
 dataLabels: 'value',
 fill: false,
 sliceMargin: 6,
 lineWidth: 5
 }
 }
});

Now it is time to add the jQueryUI tabs() function at the end of the $(document).ready() function, as shown in
Listing 16-4.

Listing 16-4. ch16_01.html

$(document).ready(function(){
...
 $("#tabs").tabs();
});

This call creates the tabs container, and consequently you need to bind the tabs to your plots (see Listing 16-5).

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

307

Listing 16-5. ch16_01.html

$('#tabs').bind('tabsshow', function(event, ui) {
 if (ui.index === 0 && plot1._drawCount === 0) {
 plot1.replot();
 }
 else if (ui.index === 1 && plot2._drawCount === 0) {
 plot2.replot();
 }
 else if (ui.index === 2 && plot3._drawCount === 0) {
 plot3.replot();
 }
});

Selecting a tab will replot the content of the chart within it. Now, in the <body> part of the web page, you need
to add the <div> elements that the jQuery UI library will convert into tabs. The way to do that is to specify a <div>
element with tabs as id. Inside it, you define a list of three items, each representing a tab. After the list, you must
define another three subdivisions of tabs: three additional <div> elements called tabs-1, tabs-2, and tabs-3. You are
going to put these into your charts: chart1, chart2, and chart3 (see Listing 16-6).

Listing 16-6. ch16_01.html

<div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tabs-1">
 <p>This is the bar chart</p>
 <div id="chart1" style="height:300px; width:650px;"></div>
 </div>
 <div id="tabs-2">
 <p>This is the line chart</p>
 <div id="chart2" style="height:300px; width:650px;"></div>
 </div>
 <div id="tabs-3">
 <p>This is the pie chart</p>
 <div id="chart3" style="height:300px; width:650px;"></div>
 </div>
</div>

Figure 16-1 shows the final result.

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

308

Figure 16-1. A page with three tabs containing different charts

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

309

jqPlot Charts on Accordions
Another commonly used type of jQuery container is the accordion. This time you’ll put the previous three charts into
accordions. The list of plug-ins to include with the web page remains the same as in the previous example. You
need to make some changes in the CSS styles; there are specific CSS classes for accordions, and their attributes need
to be specified. They are shown in Listing 16-7.

Listing 16-7. ch16_02.html

<style type="text/css">
.ui-accordion {
 width: 690px;
 margin: 2em auto;
}
.ui-accordion-header {
 font-size: 12px;
}
.ui-accordion-content {
 font-size: 14px;
}
.jqplot-target {
 font-size: 18px;
}
ol.description {
 list-style-position: inside;
 font-size: 15px;
 margin: 1.5em auto;
 padding: 0 15px;
 width: 600px;
}
.section {
 width: 400px;
 height: 200px;
 margin-top: 20px;
 margin-left: 20px;
}
</style>

As you did in the previous example, you must create the jQueryUi widget. You can do this by calling the
accordion() function:

$("#accordion").accordion();

You also need to bind this accordion to your charts, as shown in Listing 16-8. When you select an accordion tab,
the event makes sure that the respective chart is redrawn inside it, calling the replot() function.

Listing 16-8. ch16_02.html

$('#accordion').bind('accordionchange', function(event, ui) {
 var index = $(this).find("h3").index (ui.newHeader[0]);
 if (index === 0) {
 plot1.replot();
 }

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

310

 else if (index === 1) {
 plot2.replot();
 }
 else if (index === 2) {
 plot3.replot();
 }
});

As you can see, the way in which you define the accordions is very similar to the way you define the tabs.
In the same way, you now define the <div> elements that will be converted into accordion tabs in the HTML code
(see Listing 16-9).

Listing 16-9. ch16_02.html

<div id="accordion" style="margin-top:50px">
 <h3>Section 1</h3>
 <div>
 <p>This is the bar chart</p>
 <div class="section" id="chart1" data-height="200" data-width="400"></div>
 </div>

 <h3>Section 2</h3>
 <div>
 <p>This is the multiseries line chart</p>
 <div class="section" id="chart2" data-height="200" data-width="400"></div>
 </div>

 <h3>Section 3</h3>
 <div>
 <p>This is the pie chart</p>
 <div class="section" id="chart3" data-height="200" data-width="400"></div> </div>
</div>

As you can see in Figure 16-2, the result is similar to the previous one, but this time the different charts are
replaced by sliding the accordion tab vertically.

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

311

Figure 16-2. An accordion widget containing three charts

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

312

Resizable and Draggable Charts
Two other features that you can widely exploit in your charts enable users to resize and drag the container area. A
resizable frame within a web page allows you to arbitrarily change its size and the size of the objects it contains. This
feature could be combined with the ability to drag elements within the page, which would enable them to occupy
different positions relative to the original.

In addition to giving fluidity to the layout of the page, this feature can sometimes be useful when you want the
user to interactively manage spaces occupied by different frames on the page (see Figure 16-3).

In this section, you’ll see two examples. In the first example, you will focus on the resizing applied to a line chart.
You’ll see how easy it is to resize a chart contained within a container. In the second example, you’ll further develop
the example by adding two more line charts. Once the draggable property is enabled for all three charts, you will see
how you can change their positions to your liking, or even exchange them.

A Resizable Line Chart
In this example you’ll use a simple line chart. Thus, you’ll no longer need to include all of the jqPlot plug-ins, except
those needed for the jQuery container and the basic jqPlots library:

<!--[if lt IE 9]>
<script type="text/javascript" src="../src/excanvas.js"></script>
<![endif]-->
<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
<link rel="stylesheet" href="../src/css/smoothness/jquery-ui-1.10.3.custom.min.css" />
<script src="../src/js/jquery-ui-1.10.3.custom.min.js"></script>

Or if you prefer to use a content delivery network (CDN) service:

<!--[if lt IE 9]><script type="text/javascript"
src="http://cdn.jsdelivr.net/excanvas/r3/excanvas.js"></script><![endif]-->
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css" />
<link rel="stylesheet" href="http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css" />
<script src="http://code.jquery.com/ui/1.10.3/jquery-ui.min.js"></script>

Figure 16-3. Enclosing the charts in jQueryUI containers enables you to resize and move them around the page

http://cdn.jsdelivr.net/excanvas/r3/excanvas.js
http://code.jquery.com/jquery-1.9.1.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.js
http://cdn.jsdelivr.net/jqplot/1.0.8/jquery.jqplot.min.css
http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/jquery-ui.min.js

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

313

Even here it is necessary to specify some CSS styles, as shown in Listing 16-10.

Listing 16-10. ch16_03.html

<style type="text/css">
.chart-container {
 border: 1px solid darkblue;
 padding: 30px 0px 30px 30px;
 width: 900px;
 height: 400px;
}
#chart1 {
 width: 96%;
 height: 96%;
}
</style>

To the <body> part of the web page, you now add the <div> element, which will be the container enclosing the
line chart called chart1 (see Listing 16-11).

Listing 16-11. ch16_03.html

<div class="chart-container">
 <div id="chart1"></div>
</div>

Now, after you have defined the chart-container as container, you can handle it with two jQuery methods—the
resizable() function adds the resizable functionality and the bind() function binds the event of resizing to the
replotting of the chart (see Listing 16-12).

Listing 16-12. ch16_03.html

$(document).ready(function(){
 var plot1 = $.jqplot ('chart1', [[100, 110, 140, 130, 80, 75, 120, 130, 100]]);

 $('div.chart-container').resizable({delay: 20});
 $('div.chart-container').bind('resize', function(event, ui) {
 plot1.replot();
 });
});

The result is a resizable chart, shown in Figure 16-4, with a small grey triangle in the bottom-right corner. By
clicking on it, the user can resize the container and consequently the jqPlot chart.

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

314

Three Draggable Line Charts
Starting from the previous example, you will add two more line charts by placing them in two independent containers.
The goal here—in addition to making all three containers resizable—is to make the containers draggable. The final
result is a web page with three line charts, the position of which can be changed by dragging them, even exchanging
their positions.

Start by making some small additions to the previous example. In Listing 16-13, you add the other two containers
(chart-container2 and chart-container3) with the new line charts inside, naming them chart2 and chart3,
respectively.

Listing 16-13. ch16_03b.html

<BODY>
<div class="chart-container">
 <div id="chart1"></div>
</div>
<div class="chart-container2">
 <div id="chart2"></div>
</div>
<div class="chart-container3">
 <div id="chart3"></div>
</div>
</BODY>

Now that you have created the container for the new line chart, it is necessary to define them through three
distinct $.jqplot() functions (see Listing 16-14). The values returned by these three functions will be passed to the
three variables: plot1, plot2, and plot3. This is because you need to redraw each of the three charts whenever a
change is made to the container, by using the replot() function on these three variables.

Figure 16-4. A resizable line chart

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

315

Listing 16-14. ch16_03b.html

$(document).ready(function(){
 var plot1 = $.jqplot ('chart1', [[100, 110, 140, 130, 80, 75, 120, 130, 100]],
 {seriesColors: ["#bb0000"]});
 var plot2 = $.jqplot ('chart2', [[120, 90, 150, 120, 110, 75, 90, 120, 110]],
 {seriesColors: ["#00bb00"]});
 var plot3 = $.jqplot ('chart3', [[130, 110, 140, 100, 80, 135, 120, 90, 110]],
 {seriesColors: ["#0000bb"]});

 $('div.chart-container').resizable({delay:20});
 ...
});

Now you’ll activate the draggable feature for the three containers. Doing this is really quite simple; you need to
add the function to the three jQuery selections applied to each container, as shown in Listing 16-15. Moreover, you’ll
add the resizing feature for the two new containers the same way as was done for the first container.

Listing 16-15. ch16_03b.html

$(document).ready(function(){
 ...
 var plot3 = $.jqplot ('chart3', [[130, 110, 140, 100, 80, 135, 120, 90, 110]],
 {seriesColors: ["#0000bb"]});

 $('div.chart-container').draggable({cursor: 'move'});
 $('div.chart-container2').draggable({cursor: 'move'});
 $('div.chart-container3').draggable({cursor: 'move'});

 $('div.chart-container').resizable({delay: 20});
 $('div.chart-container').bind('resize', function(event, ui) {
 plot1.replot();
 });
 $('div.chart-container2').resizable({delay: 20});
 $('div.chart-container2').bind('resize', function(event, ui) {
 plot2.replot();
 });
 $('div.chart-container3').resizable({delay: 20});
 $('div.chart-container3').bind('resize', function(event, ui) {
 plot3.replot();
 });
});

Nothing remains but to add CSS styles, thus defining the initial position and size of each container, as shown in
Listing 16-16.

Listing 16-16. ch16_03b.html

<style type="text/css">
.chart-container {
 border: 1px solid darkblue;
 padding: 30px 0px 30px 30px;
 width: 300px;

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

316

 height: 200px;
 position: relative;
 float: left;
}
.chart-container2 {
 border: 1px solid darkblue;
 padding: 30px 0px 30px 30px;
 width: 200px;
 height: 200px;
 position: relative;
 float: left;
 margin-left: 20px;
}
.chart-container3 {
 border: 1px solid darkblue;
 padding: 30px 0px 30px 30px;
 width: 500px;
 height: 200px;
 position: relative;
 float: left;
 margin-left: 20px;
}
#chart1 {
 width: 96%;
 height: 96%;
}
#chart2 {
 width: 96%;
 height: 96%;
}
#chart3 {
 width: 96%;
 height: 96%;
}
</style>

In Figure 16-5, you can see the page layout when the page is initially loaded. Figure 16-6 shows a situation in
which the user has changed the position and the size of the third chart to align it below the other two.

Figure 16-5. The web page shows the three line charts enclosed in three different containers

CHAPTER 16 ■ EMBEDDING JQPLOT CHARTS IN JQUERY WIDGETS

317

Summary
In this chapter you have seen how to exploit the potential of widgets that the jQuery UI library makes available to you,
widgets that help you improve the way your charts are represented. You have seen how to enclose more charts inside
containers, such as accordions and tabs, so that you can view them one by one, even when they occupy the same
area. You have also seen how to resize these containers, extending such capability to the charts developed with the
jqPlot library.

So far you have deepened the graphical and representational aspects of your chart. In the next chapter, you’ll
learn about the core of your charts: data management. So far the variety of data defined in the page has been limited,
in order to make the examples easier to comprehend. In reality, it is very unlikely that data will be defined on the
same web page that contains the code management chart. More likely, the data are provided by external files or by
databases through SQL queries.

Figure 16-6. By dragging and resizing the containers, the original layout can be changed

319

CHAPTER 17

Handling Input Data

Once you have dealt with all the graphical aspects of a chart, it is time to analyze input data in more detail. In the
previous chapters, you assigned the values of input data to arrays. These arrays were defined in the same HTML page
within which the jqPlot code resides. You have frequently used these two ways:

var plot1 = $.jqplot ('chart1', [[100, 110, 140, 130, 80, 75, 120, 130, 100]]);

and

var data = [[100, 110, 140, 130, 80, 75, 120, 130, 100]];

In actuality, it is often necessary to interface with other technologies in order to obtain such data, and to do so
you need to find a way that is well suited to any source of data. The need to use a common text format that can be
easily handled by different scripting languages (especially JavaScript) and that remains comprehensible to humans,
led to the use of the JavaScript Object Notation (JSON) format. You have briefly read about this kind of format in
Chapter 1, but now you’ll see how to use it concretely to handle input data from external sources.

This chapter studies in detail the JSON format, first illustrating the structure of the data in this format and then
showing you how to use them with the jqPlot library. To this purpose, you’ll see two different ways to handle JSON
data—the first makes use of a jqPlot plug-in and the second uses a jQuery function that specializes in parsing
JSON data.

Regardless of how the data coming from an external source are structured, if you want to have a complete
overview of the management and handling of real data, you also need to take into account how this data are generated
and the consequent acquisition mode. Therefore, in the last part of the chapter, you’ll develop a real-time chart
exclusively using the jqPlot library.

In fact, regardless of the format of the input data, many times the data source is not only external, but it is also
continuous—the input data consists of a train of data in which the values are produced one at a time, serially and
uninterrupted. Hence, the chart that will display this type of data will not only have to manage a format of data
coming from an external source but needs also to be able to update itself continuously, thereby ensuring that the data
representation (in this case, the real-time chart) is always updated.

Using the JSON Format
This section covers the JSON format, including various options for using it with the library jqPlot. First of all, you will
learn how there can be structured data in the JSON format, by analyzing some syntax diagrams. Then you will move
on to practical examples.

CHAPTER 17 ■ HANDLING INPUT DATA

320

The JSON Format
JSON is a data exchange format. Thanks to its tree structure, in which each element is referred as a name-value pair,
it is easy for humans to read and write it and for machines to parse and generate it. This is the main reason for its
increasingly prevalent use.

The JSON structure is built on the combination of two different structures: arrays and objects (see Figure 17-1).
Within them you can define all of the classic primitive values commonly used, even in other languages: numbers,
Booleans, strings, and null value. This allows values contained in it to be exchanged between various programming
languages. (At www.json.org, you can find a list of all languages that handle the JSON format, along with a list of all
the related technologies, such as libraries, modules, plug-ins, and so on.)

Figure 17-1. Syntax diagrams for JSON

Just to understand the syntax diagrams in Figure 17-1 better, you can analyze how a JSON format is structured.
You must take into account two things. The first is that both the objects and the arrays contain a series of values
identified by the value labels in the diagrams. value refers to any type of value, such as a string, a number, or a
Boolean, and it can even be an object or an array.

In addition to this, you can easily guess that the JSON structure is a tree structure with different levels. The tree
will have as nodes either arrays or objects; the leaves are the values contained in them.

Consider some examples. If you have a JSON structure with only one level, you will have only two possibilities:

An array of values•฀

An object with values•฀

If you extend the structure to two levels, the possibilities are four (assuming for simplicity that the tree is symmetrical):

An array of arrays•฀

An array of objects•฀

An object with arrays•฀

An object with objects•฀

http://www.json.org/

CHAPTER 17 ■ HANDLING INPUT DATA

321

And so on; the cases gradually become more complex.
The classic JSON structure is precisely the structure of the jqPlot library options object that you have already

used frequently in this book. In fact, you have seen that, thanks to the objects that have a string associated with each
value, these tree structures can describe any type of element. Even very complex elements, such as charts, can be
easily understood and manipulated.

A Practical Case: The jqPlot Data Renderer
Referring to JSON as an exchange format, this section considers the simple case in which the external data source
is a text file. In this example, you will use data rendered directly by the jqPlot library: the json2 plug-in. This plug-in
allows you to read the data in JSON format contained in a file in order to use them as input data. For your part,
the only thing you are required to do is assign the external source to the dataRenderer property.

Start by implementing a blank HTML page, as shown in Listing 17-1.

Listing 17-1. ch17_01a.html

<HTML>
<HEAD>
 <TITLE>Chapter 17</TITLE>
<!--[if lt IE 9]>
<script type="text/javascript" src="../src/excanvas.js"></script>
<![endif]-->
<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
<script>
$(document).ready(function(){
 //Add the JavaScript code here
});
</script>
</HEAD>
<BODY>
<div id="myChart" style="height:300px; width:500px;"></div>
</BODY>
</HTML>

In order to have the data renderer interpret the data, the external source must return a valid jqPlot data array.
To extend the chart with this functionality, you need to include the jqplot.json2 plug-in:

<script type="text/javascript" src="../src/plugins/jqplot.json2.min.js"></script>

Or use the content delivery network (CDN) service:

<script type="text/javascript"
 src="http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.json2.min.js"> </script>

As an external source, you can choose a TXT file containing the data. For this example, you’ll create a new TXT
file with Notepad or any other text editor. After you have edited the data as reported in Listing 17-2, save the file as
jsondata.txt.

http://cdn.jsdelivr.net/jqplot/1.0.8/plugins/jqplot.json2.min.js

CHAPTER 17 ■ HANDLING INPUT DATA

322

Listing 17-2. jsondata.txt

[[30, 12, 24, 54, 22, 11, 64, 33, 22]]

On the web page where you want to manage the data in an external file, you need to add the code in Listing 17-3.

Listing 17-3. ch17_01a.html

$(document).ready(function(){
 var ajaxDataRenderer = function(url, plot, options) {
 var ret = null;
 $.ajax({
 async: false,
 url: url,
 dataType:"json",
 success: function(data) {
 ret = data;
 }
 });
 return ret;
 };
 var jsonurl = "./jsondata.txt";
 var options = {
 title: "AJAX JSON Data Renderer",
 dataRenderer: ajaxDataRenderer,
 dataRendererOptions: {
 unusedOptionalUrl: jsonurl
 }
 };
 $.jqplot('myChart', jsonurl,options);
});

You’ll get the chart shown in Figure 17-2, which derives its data directly from the TXT file.

Figure 17-2. A line chart representing data from the jsondata.txt file

CHAPTER 17 ■ HANDLING INPUT DATA

323

If you want to insert more than one series, the format of data within the TXT file remains the same as the format
used for the input data arrays (see Listing 17-4). After you have copied this data in a file with an editor, save this file as
jsondata2.txt.

Listing 17-4. jsondata2.txt

[[1,3,2,4,3,4,1,2],
[6,7,9,6,8,9,10,9],
[15,12,11,9,11,12,13,14]]

Figure 17-3 shows a chart with the three series read from the TXT file.

Figure 17-3. A multiseries line chart representing data from a TXT file

JSON and $.getJSON()
There is another way to use external JSON data in your jqPlot charts. Instead of using the json2 jqPlot plug-in as a
data renderer, jQuery provides a method that performs the same functions; it’s called $.getJSON().

This method reads a JSON file and parses it. It also can load JSON-encoded data directly from a server by making
an HTTP GET request. It is widely used in many applications on the Web, not only for jqPlot. This method has three
arguments:

$.getJSON(url, data, success(data, textStatus, jqXHR));

Only url is mandatory; the other two arguments are optional. url is a string containing the URL of the JSON file
or the URL of the server for the request. data is a string to be sent to the server with the request, and success() is a
callback function that will be executed if the request succeeds.

The data contained in the file must follow the rules for JSON encoding. Because you are using them in order to be
encoded by jqPlot, they should have this format:

{ "series_name1": [value1, value2, value3, ...],
 "series_name2": [value1, value2, value3, ...], ... }

CHAPTER 17 ■ HANDLING INPUT DATA

324

Create a new TXT file and save it as jsondata3.txt. This file contains data from four distinct series, as shown
in Listing 17-5.

Listing 17-5. jsondata3.txt

{"data1": [1,2,3,2,3,4],
 "data2": [3,4,5,6,5,7],
 "data3": [5,6,8,9,7,9],
 "data4": [7,8,9,11,10,11]}

The next step consists of the call to the getJSON() method:

$.getJSON('./jsondata3.txt', '', myPlot);

You must pay attention to write the right URL. In this example, the TXT file is in the same directory of the HTML
file, so you need to add ./ as a prefix to the name of the file. The second argument is an empty string, because you do
not need to send any data to the URL (it is a file, not a server application). myPlot is the returned value of the function,
which checks if the loading of $.jqplot() is good. As you can see in Listing 17-6, you only need to add your own
function, within which you have defined the $.jqplot() function. In this case, the data to pass—such as data1, data2,
and so on—belongs to the data object and must be therefore passed as data.data1, data.data2, and so on.

Listing 17-6. ch17_02.html

$(document).ready(function(){
 var myPlot = function (data, textStatus, jqXHR) {
 $.jqplot ('myChart',[data.data1, data.data2, data.data3, data.data4]);
 };
 $.getJSON('./jsondata3.txt', '', myPlot);
});

You thus obtain a multiseries line chart (see Figure 17-4) as if you had written the data directly on the web page,
but the chance to work with servers and other applications extends your capabilities enormously.

Figure 17-4. A multiseries line chart representing data on a TXT file

CHAPTER 17 ■ HANDLING INPUT DATA

325

Real-Time Charts
Real-time charts automatically update themselves, thus allowing you to represent streams of data from a source that
produces data continuously. This source can be a server, an application, a device connected to a PC, and so on. It is in
such cases that a chart assumes the role of a true indicator, that is, a device which provides a visual indication of how a
certain property varies over time.

You are now going to develop a simple real-time line chart using only the jqPlot library. Consider, for instance,
that you want to implement an indicator of a magnitude that varies from 0 to 100%. This quantity could be, for
example, the consumption of a resource (such as CPU), but can be applied to many other things such as temperature,
the number of participants or connections, and so on. In this case, you’ll start with the value of 50% and generate
random variations in real time, simply for the sake of simulating a data source. It is possible to adapt this example to
any other case, just by replacing the random function with a function that acquires data externally.

You’ll implement a web page in which a line chart is represented, a chart in which there is only a small stretch set
to the value of 50% (see Figure 17-5). This will be the starting point for the values of the streaming data.

Figure 17-5. The real-time chart before acquiring data shows only a small stretch as its starting point

Listing 17-7 shows all that is needed to obtain the chart shown in Figure 17-5. In options, you define the limits of
the range of the axes so that there are no variations during the chart update. To give the animation a more fluid effect,
you eliminate the markers on the line and enable the smooth mode. Under the chart, you’ll insert a button to start the
update in real time.

Listing 17-7. ch17_03.html

<HTML>
<HEAD>
<TITLE>Real-time chart</TITLE>
<!--[if lt IE 9]>
<script type="text/javascript" src="../src/excanvas.js"></script>
<![endif]-->
<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />

CHAPTER 17 ■ HANDLING INPUT DATA

326

<script class="code" type="text/javascript">
$(document).ready(function(){
 data = [50, 50];
 var options = {
 axes: {
 xaxis: {min: 1, max: 21, numberTicks: 5},
 yaxis: {min: 0, max: 100,numberTicks: 6,
 tickOptions:{formatString: '%d%'}
 }
 },
 seriesDefaults: {
 showMarker: false,
 rendererOptions: {smooth: true}
 }
 };
var plot1 = $.jqplot ('myChart', [data], options);
});
</script>
</HEAD>
<BODY>
<div id="myChart" style="height: 300px; width: 500px;"></div>
<button>Start Updates</button>
</BODY>
</HTML>

Inserting Listing 17-8, you now capture the click event of the button and link it to the execution of the
doUpdate() function. Once the button is pressed, you can delete it from the web page.

Listing 17-8. ch17_03.html

$(document).ready(function(){
 ...
 var plot1 = $.jqplot ('myChart', [data],options);
 $('button').click(function(){
 doUpdate();
 $(this).hide();
 });
});

Hence, in Listing 17-9, you implement the function that generates random variations.

Listing 17-9. ch17_03.html

$(document).ready(function(){
 ...
 $('button').click(function(){
 doUpdate();
 $(this).hide();
 });
 function getRandomInt (min, max){
 return Math.floor(Math.random() * (max - min + 1)) + min;
 }
});

CHAPTER 17 ■ HANDLING INPUT DATA

327

This function generates integer values between min and max values (which can be negative). These values are
passed as arguments to the function. You set a possible variation between -3 and 3, which will be applied to the last
values acquired. The real-time values are stored in an array called data, which operates as a sort of buffer. This array
contains only 20 values, so that the first (the eldest) will be deleted and a new acquired value will be inserted in the
last position of the array. As you can see in Figure 17-4, at the beginning you’ll see an oscillating line that extends the
length of the chart. Then the right end of the line will move, following the trend of the magnitude observed.

To obtain an animation you need to refresh the chart, so for each update you need to destroy the current chart
(plot1), replace the data array with the new one, and then replot the whole plot1 chart. At the end, you need to
call the setTimeout() function, which will in turn call the doUpdate() function again. Thus, the cycle is repeated
endlessly. You can update the chart every second (1,000 milliseconds), but these values, in other cases, will be chosen
depending on the source data.

Go ahead and add Listing 17-10 to your code.

Listing 17-10. ch17_03.html

$(document).ready(function(){
 ...
 function getRandomInt (min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
 }
 function doUpdate() {
 var last = data[data.length-1];
 if(data.length > 19){
 data.shift();
 }
 var newlast = last + getRandomInt(-3, 3);
 if(newlast < 0)
 newlast = 0;
 data.push(newlast);
 if (plot1) {
 plot1.destroy();
 }
 plot1.series[0].data = data;
 plot1.replot({resetAxes: true});
 plot1 = $.jqplot ('myChart', [data], options);
 setTimeout(doUpdate, 1000)
 }
});

Figure 17-6 demonstrates how the real-time chart shows the stream of data varying around the value of 50%.

CHAPTER 17 ■ HANDLING INPUT DATA

328

Summary
In this chapter you have seen how input data often come from external sources and how it is possible to handle them.
In a particular way, you have seen how external data in JSON format can be used as input data arrays for the charts
developed with the jqPlot library. In regard to the management of the data generated in real time, you have seen a simple
but effective example in which you implemented a real-time line chart that is updated as the acquired data vary.

In the next chapter, you’ll make the acquaintance of another library. In many ways, it’s very similar to jqPlot
and it’s called Highcharts. Through many examples, you’ll see how this commercial library, keeps many of the basic
features of jqPlot, but also greatly expands your possibilities and adds more features for your charts. As you will see
soon, the Highcharts library provides more functionality than you have seen so far.

Figure 17-6. A real-time line chart representing values moment by moment

329

CHAPTER 18

Moving from jqPlot to Highcharts

Following in the footsteps of the jqPlot framework, a new JavaScript library is catching up, called Highcharts. This is a
commercial product and was completed in late 2009 by the Norwegian company Highsoft Solutions AS. As this book
is being written, this new library is at version 3.0.1 and is increasingly being offered in the market as a new solution for
the professional representation of charts.

Since we have been referring in many ways to the syntax and structure of jqPlot, it seemed appropriate to add
the Highcharts library to the end of this first part of the book, dedicating a separate chapter to it. This framework has
inherited all the advantages of jqPlot: it is possible to implement a complete chart on a web page by adding only a few
lines of code. Highcharts is also capable of interfacing with many other JavaScript frameworks, including jQuery. Just
like jqPlot, its syntax is simple, essential, and intuitive, but without precluding the possibility of further extensions and
customizations. And that’s not all.

Highcharts is a professional product, so it goes far beyond what the jqPlot library can offer. In this chapter you’ll
see how, starting with the cases you have already seen in jqPlot, it is possible to add more features to your charts. In
fact, in the first examples you’ll see how to expand the already good graphical capabilities that you’ve achieved thanks
to the jqPlot library. You’ll do this with further enhancements to the chart elements, such as tooltips, marker points,
and the grid. Moreover, you’ll discover how this library contains a number of themes and learn how you can apply
them to your chart in order to give it a look that is always different. Another example illustrates how the Highcharts
library reads data directly from a file. Finally, in the last part of the chapter, you’ll take a step forward with the creation
of three types of very particular charts, as follows:

•฀ The Master and Slave chart—A very useful solution when you need to visualize a huge
amount of data but want to analyze only one detail at a time.

•฀ The Gantt chart—A chart that’s particularly suited to the scheduling of processes and
projects.

•฀ Combined chart—A very rich visualization created to combine different types of charts.

These three charts types are possible thanks to the Highcharts library. So get ready to familiarize with this
beautiful library at the exact point where you left off with jqPlot, by placing and gradually inserting these new features.

The Highcharts Distribution
Regarding the use of Highcharts, this product has both commercial and free, noncommercial licenses. Clearly, the
free use of the Highcharts library is restricted only for personal and nonprofit purposes.

After downloading the package of files that make up the distribution, you can see that it contains a large group of
files. (See Appendix A for further information.)

The main file is highcharts.js, which is the real core of the framework and it is essential to include this file in
your web pages if you want to draw your chart with Highcharts. The way to include it is always the same, and you can
do this in two ways: via the local method or the content delivery network (CDN) service.

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

330

For the local method, use the following:

 <script type="text/javascript" src="../src/js/highcharts.js"></script>

You have two CDN service options. If you want to have the latest stable version, write:

<script src="http://code.highcharts.com/highcharts.js"></script>

Otherwise, if you want to include a specific version, use the following:

<script src="http://code.highcharts.com/3.0.5/highcharts.js"></script>

Also, along with highcharts.js you also need to include jQuery since, like jqPlot, it is built upon that library, and
therefore requires your access to it. Even in this case you can choose the local solution:

<script type="text/javascript" src="../src/js/jquery-1.9.1.js"></script>

or the CDN solution:

<script type="text/javascript" src="http://code.jquery.com/jquery-1.9.1.min.js">
</script>

However, it is also possible to work with other libraries as a base instead of jQuery, by using some adapter files
contained within the distribution. Thus you can replace jQuery with libraries such as MooTools or Prototype.

When you delve further inside the distribution, you’ll see another file called highcharts-more.js. This file
contains all the functionalities concerning some extensions and special cases of the library such as, for example, those
required to develop gauges, ranges, and polar charts. Furthermore, there is a group of files that plays a similar role to
the plug-ins in jqPlots, since each of these files adds a specific functionality to your chart. You can find them in the
directory /js/modules. Table 18-1 describes the module files.

Finally, you can find a directory called /js/themes containing the themes, which are described in Table 18-2.
They are covered in more detail later, in a separate section.

Table 18-1. The modules in the Highcharts distribution (v.3.0.5)

Module Description

annotations.js A utility to add annotations to the chart elements.

canvas-tools.js An additional file for Android 2.x devices that do not support SVG. It contains canvg, the
JavaScript parser for SVG.

data.js A utility to ease parsing of input sources, such as CSV, HTML tables, or grid views, into basic
configuration options for direct use in the Highcharts constructor.

exporting.js It allows users to download the chart as a PDF, PNG, JPEG, or SVG vector image.

funnel.js Required for the drawing of funnel charts.

Heatmap.js Required for the drawing of heatmaps.

map.js Required for working on geographical maps.

http://code.highcharts.com/highcharts.js
http://code.highcharts.com/3.0.5/highcharts.js
http://code.jquery.com/jquery-1.9.1.min.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

331

Similarities and Differences
This section explores the similarities and differences between the jqPlot library, which you now know well, and the
new Highcharts library. You will find many points in common, both in the way you define the options structure and in
many other aspects such as the data handling.

However, to better understand the similarities and differences between these two libraries, you will study a
multiseries line chart, and using the same data set, you will generate two representations (one for each library). Thus,
analyzing the two cases, you’ll compare both the structure of the code and the representation itself.

Start with the example of the basic multiseries line chart that you saw earlier with jqPlot (see Listing 18-1).

Listing 18-1. ch18_01x.html

<script type="text/javascript" src="../src/jquery.min.js"></script>
<script type="text/javascript" src="../src/jquery.jqplot.min.js"></script>
<link rel="stylesheet" type="text/css" href="../src/jquery.jqplot.min.css" />
<script type="text/javascript">
$(document).ready(function(){
 var series1 = [1, 2, 3, 2, 3, 4];
 var series2 = [3, 4, 5, 6, 5, 7];
 var series3 = [5, 6, 8, 9, 7, 9];
 var series4 = [7, 8, 9, 11, 10, 11];
 $.jqplot ('myChart', [series1, series2, series3, series4]);
});
</script>

You can build its practical equivalent using the Highcharts library instead, as shown in Listing 18-2.

Listing 18-2. ch18_01a.html

<script type="text/javascript" src="../src/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="../src/js/highcharts.js"></script>
<script>
var series1 = [1, 2, 3, 2, 3, 4];
var series2 = [3, 4, 5, 6, 5, 7];
var series3 = [5, 6, 8, 9, 7, 9];
var series4 = [7, 8, 9, 11, 10, 11];
$(function () {
 $('#myChart').highcharts({

Table 18-2. The themes in the Highcharts distribution (v.3.0.5)

Themes Description

dark-blue.js It adds a dark blue background to the chart. The colors of the series are vivid.

dark-green.js It adds a dark green background to the chart. The colors of the series are vivid.

gray.js It adds a black background to the chart. The colors of the series are vivid.

grid.js It intensifies the grid below the chart. The colors of the series are vivid.

skies.js It adds a sky with some clouds as background. The colors of the series are dark.

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

332

 chart: {
 type: 'line'
 },
 series: [{ data: series1 },
 { data: series2 },
 { data: series3 },
 { data: series4 }]
 });
});
</script>

The similarity in the syntax is pretty obvious. The structure, passed as an argument to the highcharts() function,
is very similar to the structure that you used to define as options in jqPlot. In Highcharts, this structure is defined as
a configuration object. Nothing will prohibit you from defining it externally via an options variable in a manner very
similar to what you do with jqPlot, as shown in Listing 18-3.

Listing 18-3. ch18_01a.html

var options = {
 chart: {
 type: 'line'
 },
 series: [{ data: series1 },
 { data: series2 },
 { data: series3 },
 { data: series4 }]
}
$(function () {
 $('#myChart').highcharts(options);
});

Loading the same data, but using the two different libraries, you get the charts shown in Figure 18-1.

Figure 18-1. Comparison between the two line charts generated with the jqPlot (left) and Highcharts (right) libraries

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

333

From Figure 18-1, you can see that the layout of the two charts is quite different. Moreover, in its basic
configuration, the Highcharts library provides a title, a legend, and axis labels, even though these were not specified
explicitly. Furthermore, even tooltips are active, and in fact, if you move the mouse over the points of the lines,
a tooltip will appear immediately, reporting information related to that point.

In addition, while the page is loading the chart, it’s drawn gradually from left to right with an animation. By
default, a legend is also added, corresponding to the legend generated by the enhancedLegendRenderer plug-in of
jqPlot (see the “Handling Legends” section in Chapter 10); in fact, the items inside the legend are active and if you
click on them the corresponding series is deleted from the chart. In addition, a detail of no small importance, the
scale of the axes and the grid are updated automatically. They adapt to the new range covered by the remaining sets in
order to optimize the display. This is a gradual effect and is included by default.

So it is clear that the starting point of Highcharts is pretty much the culmination of jqPlot. In fact, as you’ll
see later, this library will further expand your capabilities, without the need to touch the code, or write additional
functions or JavaScript libraries.

From the basic code, as in the case of options in jqPlot, the configuration object in Highcharts is made up of
many components. Within these components there is a whole set of properties prepopulated with default values.
If these properties are not explicitly specified, then the chart will follow the default values. The behavior is almost
the same as in options for jqPlot. This provides a considerable advantage to the developer who makes use of these
libraries. Although these libraries do not specify all attributes, they do represent the most common types of charts.
This greatly facilitates a developer’s work, especially when less experienced.

The component objects most commonly used within the object configuration are:

•฀ chart—Where the properties are defined as the layout, events, animations, relative margins,
and drawing area size

•฀ series—Where you assign the arrays corresponding to the data series and their properties

•฀ xAxis and yAxis—Where you define the properties for the axes and axis labels

•฀ title and subtitle—Where you insert the title and the eventual subtitle of the chart

•฀ legend—Where you specify everything about the legend

•฀ tooltip—Where you specify everything about the tooltips

As you can see, all of these components are already familiar. You therefore won’t examine them in more depth
in this chapter. Those who wish to delve deeper into the components of the configuration object can refer to the full
documentation on the official web site of the Highcharts library (http://api.highcharts.com/highcharts).

Line Charts with Highcharts
You started off by considering a simple line chart, to understand the similarities and differences between the jqPlot
and Highcharts libraries. As was done for the jqPlot library, this section introduces the Highcharts library by treating
the implementation of line charts in greater detail.

Figure 18-2. By default, a tooltip reports the x and y values of the point and the name of the series to which it belongs

http://api.highcharts.com/highcharts

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

334

First, you’ll complete the simple line chart by adding more elements. Later, you’ll look at different ways in which
you can define input data, especially by managing their categories and ranges. Hence, you’ll look at further graphical
aspects, such as the grid, tooltips, and the legend, and at how to customize these elements. Finally, you’ll learn about
the themes this library makes available, including what they are and how to use them.

Completing the Line Chart
The line chart you just created with Highcharts was generated without defining any property in the configuration
object, it simply highlighted everything that comes by default from the Highcharts library. First, you’ll define a set of
properties that complete the chart, then you’ll be adding more, to enrich the chart with some new features that are not
always provided by the jqPlot library. So, as a first step, add the properties and their attributes that are highlighted in
bold in Listing 18-4 to your basic code.

Listing 18-4. ch18_01b.html

<script type="text/javascript" src="../src/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="../src/js/highcharts.js"></script>
<script>
var series1 = [1, 2, 3, 2, 3, 4];
var series2 = [3, 4, 5, 6, 5, 7];
var series3 = [5, 6, 8, 9, 7, 9];
var series4 = [7, 8, 9, 11, 10, 11];
$(function () {
 $('#myChart').highcharts({
 chart: {
 type: 'line',
 marginTop: 60,
 marginLeft: 60
 },
 title: {
 text: 'Central Art Museum',
 x: 10
 },
 subtitle: {
 text: '27th April,2013',
 x: 10
 },
 xAxis: {
 title: {
 text: 'Time',
 x: 100
 },
 categories:
 ['9:00', '11:00', '13:00', '15:00', '17:00', '19:00'],
 tickmarkPlacement: 'on'
 },
 yAxis: {
 title: {
 text: 'Visitors'
 }
 },

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

335

 series: [{
 data: series1,
 name: 'Australia'
 }, {
 data: series2,
 name: 'Belgium'
 }, {
 data: series3,
 name: 'Canada'
 }, {
 data: series4,
 name: 'Danmark'
 }],
 legend: {
 layout: 'vertical',
 align: 'right',
 verticalAlign: 'top',
 y: 60
 }
 });
});
</script>

<div id="myChart" style="width: 600px; height: 400px;"></div>

You’ll get the line chart in Figure 18-3.

Figure 18-3. A complete line chart with the Highcharts library

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

336

Different Ways of Handling Input Data
Generally, input data with two coordinates (x, y) can be treated in two different ways. If the sequence of the values of
x is the same for all series, as the example in question, it is preferable to handle the coordinates separately. You define
an array of y values for each series, and an array containing all the values x. The y arrays are passed to as many data
properties, within the series component, specifying their name with a string in the name property. Instead the x array
is passed to the categories property in xAxis. In the second way, you directly define arrays containing both values, x
and y. Since this choice is more laborious, it is preferable when the series do not share the same values on any of the
two coordinates. However, by way of example, you would have had the same results if you had defined the points as in
Listing 18-5.

Listing 18-5. ch18_01c.html

var serie1 = [[Date.UTC(2013, 3, 27, 9), 1],
 [Date.UTC(2013, 3, 27, 11), 2],
 [Date.UTC(2013, 3, 27, 13), 3],
 [Date.UTC(2013, 3, 27, 15), 2],
 [Date.UTC(2013, 3, 27, 17), 3],
 [Date.UTC(2013, 3, 27, 19), 4]]

var serie2 = [[Date.UTC(2013, 3, 27, 9), 3],
 [Date.UTC(2013, 3, 27, 11), 4],
 [Date.UTC(2013, 3, 27, 13), 5],
 [Date.UTC(2013, 3, 27, 15), 6],
 [Date.UTC(2013, 3, 27, 17), 5],
 [Date.UTC(2013, 3, 27, 19), 7]];

var serie3 = [[Date.UTC(2013, 3, 27, 9), 5],
 [Date.UTC(2013, 3, 27, 11), 6],
 [Date.UTC(2013, 3, 27, 13), 8],
 [Date.UTC(2013, 3, 27, 15), 9],
 [Date.UTC(2013, 3, 27, 17), 7],
 [Date.UTC(2013, 3, 27, 19), 9]];

var serie4 = [[Date.UTC(2013, 3, 27, 9), 7],
 [Date.UTC(2013, 3, 27, 11), 8],
 [Date.UTC(2013, 3, 27, 13), 9],
 [Date.UTC(2013, 3, 27, 15), 11],
 [Date.UTC(2013, 3, 27, 17), 10],
 [Date.UTC(2013, 3, 27, 19), 11]];
$(function () {
 $('#myChart').highcharts({

...

 xAxis: {
 title: {
 text: 'Time',
 x: 100
 },

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

337

 type: 'datetime',
 //categories: ['9:00', '11:00', '13:00', '15:00', '17:00', '19:00'],
 tickmarkPlacement: 'on'
 },
...
 });
});

This example is a good way to introduce a method that is used very frequently in Highcharts when you have to
deal with datetime data: Date.UTC(). This is a JavaScript function that gives the number of milliseconds passed from
0:00 on January 1, 1970 to the date passed as an argument. The number of arguments that it can accept is variable,
depending on how precise the date should be:

Date.UTC(years, months, days, hours, minutes, seconds)

If you want to specify only the days of a year, it is sufficient to write only the first three arguments:

Date.UTC(2012, 4, 27)

If, as in this example, you are talking about hours, then you need to specify four arguments:

Date.UTC(2013, 3, 27, 11)

Note ■ The months’ range is 0-11 (not 1-12), the days’ range is 1-31 days (as usual), and the hours’ range is 0-23.

That is why April is indicated with the number 3 in the example.

You have just seen the two ways to pass input data in the Highcharts library. But what you’ll be using in the
following examples is a third option, which allows you to define a range of values on the x-axis without defining any
array of categories (in my opinion, this choice is better suited to a bar chart than to a line chart, but it is important to
deal with this now, in order to get the complete picture of the situation). Indeed, in a line chart the values on the x-axis
increase based on a very precise scale. Highcharts provides a component called plotOptions, which allows you to
define two particular properties: pointInterval and pointStart. With pointInterval, you can define the interval
between one point and the next, and with pointStart, you define the starting value of the scale on x. Because you
have to deal with the hours of a day on the x-axis, you have a data type datetime. Therefore, in order to obtain the
same result on the x-axis without specifying the values passed to categories, you add the new component to the
configuration object, as shown in Listing 18-6.

Listing 18-6. ch18_01d.html

plotOptions: {
 line: {
 pointInterval: 2 * 3600 * 1000,// h * m* s hour
 pointStart: Date.UTC(2013, 3, 27, 9, 0, 0)
 }
},

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

338

The grid: Advanced Management
One of the features that makes Highcharts a more advanced library than jqPlot is the management of the grid
underlying the chart. In fact, this library provides you with some properties that allow you to alternate different types
of grid layout on the same chart, creating pleasing and innovative effects. You’ll see how this is possible by modifying
the example you’ve been working on (see Listing 18-7).

Listing 18-7. ch18_01e.html

xAxis: {
 title: {
 text: 'Time',
 x: 100
 },
 type: 'datetime',
 gridLineWidth: 1,
 gridLineDashStyle: 'dot',
 minPadding: 0.1,
 maxPadding: 0.1,
 tickInterval: 4 * 3600 * 1000
},
yAxis: {
 title: {
 text: 'Visitors'
 },
 tickInterval: 4,
 gridLineColor: '#618661',
 minorTickInterval: 2,
 minorGridLineColor: '#618661',
 minorGridLineDashStyle: 'dashdot',
 alternateGridColor: {
 linearGradient: {
 x1: 0, y1: 1,
 x2: 1, y2: 1
 },
 stops : [
 [0, "#F8F8EE"],
 [1, "#A2B9A6"]
],
 },
 lineWidth: 1,
 lineColor: '#CACACA',
 tickWidth: 2,
 tickLength: 4,
 tickColor: '#CACACA'
},

In addition to no longer having straight lines connecting the dots, but rather curves (corresponding to what you
obtained with smooth in jqPlot), you need to change the type of chart from line to spline (see Listing 18-8).

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

339

Listing 18-8. ch18_01e.html

chart: {
 type: 'spline',
 marginTop: 60,
 marginLeft: 60
},

plotOptions: {
 spline: {
 pointInterval: 2 * 3600 * 1000,// h * m* s hour
 pointStart: Date.UTC(2013, 3, 27, 9, 0, 0)
 }
},

From these changes you get the chart shown in Figure 18-4.

There are two different classes of properties for grid lines, beginning with grid- and -minorGrid, and they can
be defined both on the x-axis and on the y-axis, independently. This division into two different classes allows you to
define two different types of grids for each axis, which will alternate between them line by line, giving a richer and
more diversified chart.

Also with regard to the areas that are defined between the lines of the grid, it is possible to apply alternating
colors, even with a gradient whose orientation can be adjusted. This is all thanks to the alternateGridColor
property, which contains two additional properties to define. With linearGradient it is possible to give the gradient
an orientation—0 and 1 specify the two extremes of the gradient on x and y. With stops, you can define the colors
assigned to 0 and 1.

Figure 18-4. A grid with alternating colors, a dash style, and a gradient effect

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

340

Customizing Tooltips with HTML
What in jqPlot constituted a real customization, here is formalized through the use of four properties defined within the
tooltip component. useHTML, which if set to true, activates the construction mode of the new tooltip structure through
HTML tags. With the headerFormat, pointFormat, and footerFormat properties, you can define the header, the
body, and the tail of the tooltip, respectively. Dynamic values that change from point to point are accessible by
including them in braces in the HTML structure. With { series.color } and { series.name }, you can access the
color and the name of the series, whereas with { point.x } and { point.y }, you can access the x- and y-values of
the point (see Listing 18-9).

Listing 18-9. ch18_01e.html

tooltip: {
 useHTML: true,
 headerFormat: '<small>{point.key}</small><table>',
 pointFormat: '<tr><td style="color: {series.color}">' +
 '<img src="flags/{series.name}.png" '+
 'height="22" width="32"> {series.name}:</td>' +
 '<td style="text-align: right">{point.y}</td></tr>',
 footerFormat: '</table>'
},

Note ■ The PNG files required to show the flags in the tooltips are included in the source code which is available on

the Source Code/Downloads tab of the book’s Apress product page (www.apress.com/9781430262893).

Figure 18-5 shows the result of what you have just done.

Figure 18-5. With the HTML customization of the tooltips, it is possible to modify their default layout

http://www.apress.com/9781430262893

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

341

Customizing the Legend with HTML
The same type of customization is also applicable to the legend, as shown in Figure 18-6.

It is necessary to enable the useHTML property here also, and then to write a function that returns a string
containing the HTML code to the labelFormatter property (see Listing 18-10).

Listing 18-10. ch18_01f.html

legend: {
 layout: 'vertical',
 align: 'right',
 verticalAlign: 'top',
 y: 60,
 useHTML: true,
 labelFormatter: function () {
 return '<table><tr><td style="color: '+this.color +
 '"><img src="flags/'+ this.name +
 '.png" height="15" width="20"> ' +
 this.name;+'</td></tr></table>'
 }
},

Adding Bands
Colored bands can be used to highlight or define regions in your chart. This functionality is fully integrated in
Highcharts in the plotBands component and can be implemented with a very few lines. This component takes an
array of bands, and you can define all of its properties within each band. Depending on where plotBands is
defined—on the x-axis or the y-axis—you get horizontal or vertical bands. The from and to properties define the limits
of the bands. Using the color property, you can decide with which color it will be drawn. In addition, within each
band you can add a text reference thanks to the label property.

This example shows the use of vertical bands, so you need to add the plotBands component on the x-axis,
as shown in Listing 18-11.

Listing 18-11. ch18_01g.html

xAxis: {
 ...
 plotBands: [{
 from: Date.UTC(2013, 3, 27, 8, 0, 0),
 to: Date.UTC(2013, 3, 27, 9, 0, 0),

Figure 18-6. A legend, customized using HTML with images and colors

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

342

 color: '#CACACA',
 label: {
 text: 'Close',
 style: {
 color: '#000000'
 }
 }
 },{
 from: Date.UTC(2013, 3, 27, 19, 0, 0),
 to: Date.UTC(2013, 3, 27, 20, 0, 0),
 color: '#CACACA',
 label: {
 text: 'Close',
 style: {
 color: '#000000'
 }
 }
 },{
 from: Date.UTC(2013, 3, 27, 12, 30, 0),
 to: Date.UTC(2013, 3, 27, 14, 0, 0),
 color: '#FFE7B6',
 label: {
 text: 'Lunch',
 style: {
 color: '#000000'
 }
 }
 }],
 ...
},

Be sure to erase the settings of the grid with alternating areas, which is no longer needed, by deleting the
alternateGridColor property and all of its contents within the yAxis component. These changes are indicated by the
bold code lines in Listing 18-12.

Listing 18-12. ch18_01g.html

yAxis: {

// You have to delete the following rows
 alternateGridColor: {
 linearGradient: {
 x1: 0, y1: 1,
 x2: 1, y2: 1
 },
 stops : [
 [0, "#F8F8EE"],
 [1, "#A2B9A6"]
],
 },
//

},

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

343

Moreover, you can make further customizations. If you do not like the default colors, you can replace them, for
example, with the sequence of colors in jqPlot. You assign them directly to the colors component (see Listing 18-13).

Listing 18-13. ch18_01g.html

$('#myChart').highcharts({
 colors: ["#4bb2c5", "#c5b47f", "#EAA228", "#579575"],
 chart: {
 ...

Figure 18-7 shows the result.

Customizing the Marker Points
For those who are used to working with jqPlot, Highcharts provides many additional features. You have seen how
to customize both the legend and the tooltips. And what of the marker points? Well, you can affect many operations
even on these chart components. For example, suppose you wanted to display an icon in place of one of the marker
points, in order to highlight a particular characteristic of that given point on the graph at a first glance (see the note
that follows the code listing). In order to do this, you specify the appropriate properties directly in the input array
(see Listing 18-14), precisely at the point where you want the marker point.

Listing 18-14. ch18_01g.html

var series1 = [1, 2, 3, {y:2, marker:{ symbol:'url(icon/info.png)'}}, 3, 4];
var series2 = [3, 4, 5, 6, 5, 7];
var series3 = [5, 6, 8, 9, 7, 9];
var series4 = [7, 8, 9, 11, 10, 11];

Figure 18-7. Delimiting some areas of the chart with colored bands can enrich it with further information

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

344

Note ■ You can find the icon image info.png in the source code accompanying the book or you can also download

similar icons from the OpenIcon Library site at the following URL: http://openiconlibrary.sourceforge.net. This site

contains a huge collection of icons available for downloading.

Each value in the input array can be treated as a component object, whereby it is possible to specify all the
properties and thus to override the default values. Such an approach allows you to differentiate behavior and layout at
the level of individual data points.

That is in fact what will appear in place of the marker point (see Figure 18-8).

The Themes of Highcharts
In jqPlot you have seen the management of the styles of the various components through the definition of the
properties of Cascading Style Sheets (CSS) classes, but you haven’t yet seen themes in action. You might consider a
theme such as a particular set of styles on the various constituent elements of the web page. These configurations are
stored in special files so that they can be reused. They often produce a personalized style that’s easily recognizable.
These configurations are often referred to as themes.

Within its distribution, Highcharts provides some themes you can use to characterize your chart:

Grid•฀

Skies•฀

Gray•฀

Dark blue•฀

Dark green•฀

To set these themes on your web site, you must include the JS file that shows the same style name. For the local
method, use the following:

<script src="../src/js/themes/dark-blue.js" type="text/javascript"></script>

Or if you prefer to use a CDN service:

<script src="http://code.highcharts.com/themes/dark-blue.js"></script>

The effects of these themes on the layout of your chart, shown in Figure 18-9, are remarkable.

Figure 18-8. Any icon can replace the original marker point, giving further info about a specific point in a series

http://openiconlibrary.sourceforge.net/
http://code.highcharts.com/themes/dark-blue.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

345

Reading Data from a File
Often, those who use Highcharts or similar libraries need to read the data contained in a file. This is very important
because your web page, with its JavaScript code, can be considered a real application that reads the data produced
somewhere else, and this data can vary each time the page is called by the browser.

The application that produces the data writes the data into a file that’s accessible from the network, such as a
CSV file. When users want to see the data in a chart, the browser calls the HTML page where you have written the
Highcharts code. It is the HTML page that reads, each time, the data contained in the CSV file (which may not even
be on the same computer) so the users always see the updated data. The developer does not need to reprogram a
different page each time, and the application that writes the data to a CSV file will do so independently. A further step
is taken when there’s a database instead of a file, from which to request the data.

Reading a CSV File Using $.get()
To read the contents of a file, jQuery library provides a very useful function: $.get().

$.get("aFile.html", function(data) { ... });

This function loads files from the servers using an HTTP GET request, and allows you to read its content using a
nested function. (For further information, see the jQuery API reference at http://api.jquery.com/jQuery.get/.)

Figure 18-9. In selecting a theme, you can accentuate certain aspects of your chart and increase the brightness of some colors

http://api.jquery.com/jQuery.get/

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

346

To illustrate the process of file reading, a CSV file is a good choice, since this format is quite common and simple
to use. Listing 18-15 shows the process of reading a simple CSV file containing columns of data.

Listing 18-15. data_08a.csv

date,open,min,max,close,
08/08/2012,1.238485,1.2227,1.250245,1.2372,
08/09/2012,1.23721,1.21671,1.24873,1.229295,
08/10/2012,1.2293,1.21417,1.25168,1.228975,
08/12/2012,1.229075,1.21747,1.23921,1.22747,
08/13/2012,1.227505,1.21608,1.24737,1.23262,
08/14/2012,1.23262,1.22167,1.248555,1.232385,
08/15/2012,1.232385,1.21641,1.254355,1.228865,
08/16/2012,1.22887,1.215625,1.247305,1.23573,
08/17/2012,1.23574,1.21891,1.23824,1.2333,
08/19/2012,1.23522,1.22291,1.245275,1.23323,
08/20/2012,1.233215,1.21954,1.256885,1.2351,
08/21/2012,1.23513,1.21465,1.258785,1.247655,
08/22/2012,1.247655,1.22315,1.264415,1.25338,
08/23/2012,1.25339,1.232465,1.288965,1.255995,
08/24/2012,1.255995,1.228175,1.276665,1.2512,
08/26/2012,1.25133,1.23042,1.292415,1.25054,
08/27/2012,1.25058,1.239025,1.28356,1.25012,
08/28/2012,1.250115,1.22656,1.287695,1.2571,
08/29/2012,1.25709,1.221895,1.29736,1.253065,
08/30/2012,1.253075,1.218785,1.27639,1.25097,
08/31/2012,1.25096,1.239375,1.283785,1.25795,
09/02/2012,1.257195,1.226845,1.298705,1.257355,
09/03/2012,1.25734,1.22604,1.271095,1.258635,
09/04/2012,1.25865,1.23264,1.282795,1.25339,
09/05/2012,1.2534,1.230195,1.27245,1.26005,
09/06/2012,1.26006,1.246165,1.28513,1.26309,
09/07/2012,1.26309,1.232655,1.291765,1.281625,
09/09/2012,1.28096,1.24915,1.311295,1.279565,
09/10/2012,1.27957,1.24552,1.30036,1.27617,
09/11/2012,1.27617,1.2459,1.29712,1.28515,
09/12/2012,1.28516,1.241625,1.31368,1.290235,
09/13/2012,1.227505,1.20608,1.25737,1.23262,
09/14/2012,1.24262,1.22167,1.278555,1.232385,
09/15/2012,1.252385,1.21641,1.284355,1.228865,
09/16/2012,1.24887,1.225625,1.257305,1.23573,
09/17/2012,1.24574,1.22891,1.26824,1.2333,
09/19/2012,1.24522,1.23291,1.255275,1.23323,
09/20/2012,1.233215,1.21954,1.256885,1.2351,
09/21/2012,1.22513,1.21465,1.248785,1.247655,
09/22/2012,1.227655,1.21315,1.254415,1.25338,
09/23/2012,1.22339,1.202465,1.258965,1.255995,
09/24/2012,1.215995,1.208175,1.256665,1.2512,
09/26/2012,1.22133,1.20042,1.252415,1.25054,
09/27/2012,1.22058,1.209025,1.25356,1.25012,
09/28/2012,1.230115,1.21656,1.257695,1.2571,
09/29/2012,1.24709,1.221895,1.25736,1.253065,

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

347

09/30/2012,1.233075,1.218785,1.25639,1.25097,
09/31/2012,1.24096,1.229375,1.263785,1.25795,
10/02/2012,1.257195,1.226845,1.258705,1.257355,
10/03/2012,1.25734,1.22604,1.271095,1.258635,
10/04/2012,1.25865,1.23264,1.282795,1.25339,
10/05/2012,1.2534,1.210195,1.28245,1.26005,
10/06/2012,1.26006,1.226165,1.28513,1.26309,
10/07/2012,1.26309,1.232655,1.281765,1.281625,
10/09/2012,1.28096,1.24915,1.291295,1.279565,
10/10/2012,1.29957,1.25552,1.31036,1.27617,
10/11/2012,1.30617,1.2559,1.32712,1.28515,
10/12/2012,1.28516,1.261625,1.31368,1.290235,

The file contains five columns. The first is a list of datetime values and marks the time along the x-axis, whereas
the next four are OHLC (open-high-low-close) data types. To handle the first type of data, you need to build a proper
parser. This will contain a regex expression to capture the values of day, month, and year in the first column, and a
function that reconstructs them in a format that the code can manage (see Listing 18-16).

Listing 18-16. ch18_02a.html

Highcharts.Data.prototype.dateFormats['m/d/Y'] = {
 regex: '^([0-9]{1,2})\/([0-9]{1,2})\/([0-9]{4})$',
 parser: function (match) {
 return Date.UTC(match[3], match[1] - 1, +match[2]);
 }
};

Now you must make sure that the JavaScript code can read the data contained in the CSV file. To this end, you
have to declare the function $.get(), and the file name and a function that scan the contents passed as arguments.
Within the $.get() function, you put the highcharts() function, so that it has the visibility of all data contained in the
file, through the csv variable (see Listing 18-17).

Listing 18-17. ch18_02a.html

$.get('data_08a.csv', function (csv) {
 $('#myChart').highcharts(options);
});

Now it is time to define all the properties of the various components of the chart. As in jqPlot, even with
Highcharts, when considering increasingly complex cases, it is better to reason in modules. So, from now on, you’ll
define the configuration object externally via the options variable, which you then pass as an argument to the
highcharts() function (see Listing 18-18).

Listing 18-18. ch18_02a.html

$.get('data_08.csv', function (csv) {
 var options = {
 colors: ["#005B06", "#000000", "#9D3C27", "#000000"],
 data: {
 csv: csv
 },

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

348

 subtitle: {
 text: 'Prices of the day',
 style: {
 color: '#005B06',
 fontSize: '12px'
 }
 },
 title: {
 text: 'Spaghetti Lunghetti',
 style: {
 color: '#005B06',
 fontSize: '16px'
 }
 },
 xAxis: {
 type: 'datetime',
 tickInterval: 7 * 24 * 3600 * 1000, // one week
 tickWidth: 0,
 gridLineWidth: 1,
 labels: {
 align: 'left'
 }
 },
 yAxis: {
 title: {
 text: 'Dollars ($)',
 style: {
 color: '#005B06',
 fontSize: '12px'
 }
 }
 },
 plotOptions: {
 area: {
 fillColor: {
 linearGradient: { x1: 0, y1: 0, x2: 0, y2: 1},
 stops: [[0, '#00602F'], [1, '#FFFFFF']]
 },
 lineWidth: 1,
 marker: {
 enabled: false
 },
 shadow: false,
 states: {
 hover: { lineWidth: 1 }
 },
 threshold: null
 },
 },
 series: [{
 name: 'Open',
 type: 'area',

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

349

 lineWidth: 4,
 marker: {
 radius: 4
 },
 },{ visible: false},
 {
 name: 'Max',
 type: 'spline',
 lineWidth: 4,
 marker: {
 enabled: false
 }
 },{ visible: false}]
 };
 $('#myChart').highcharts(options);
});

To activate reading the data written into a file, you need to include the data module, which you can find in the
distribution. For the local method, use the following:

<script src="../src/js/modules/data.js"></script>

Or if you prefer to use a CDN service:

<script src="http://code.highcharts.com/modules/data.js"></script>

Loading the page in the browser, you get the chart in Figure 18-10.

Figure 18-10. By default all the series in an imported CSV file are read; you can hide them if need be

http://code.highcharts.com/modules/data.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

350

Excluding CSV Columns from Your Data
Note that the CSV file contains a list of OHLC values that occupy the last four columns of data. Suppose that, in this
case, you are interested in displaying only those columns containing the open and max values. You want to neglect the
remaining two. If you look at the series object, you still need to define four different series, the second and fourth of
which are hidden in the chart (not deleted!). Thus, the references of the min and close series remain in the legend.
If you click on them, these series will appear on the chart, and many times this is not desirable.

You must take a different approach when you want to display only the first columns, excluding the last (if you
want, for example, to display only open, or open and min, or open, min, and max). In order to do this, you need to specify
only the first column, or the first two, or the first three respectively in the series object. But you cannot skip a series to
consider the next directly.

So this method is optimal if you intend to view all of the series in the file, but sometimes that is not the case. You’ll
often have files with a large number of columns, but want to extract only a few. You then need to follow a different
approach, for example, to enter a JavaScript function that acts as a parser and extracts only the columns that interest
you. You’ll now see how to modify the previous example in order to do just that.

First insert a parser immediately after the function $.get() has read all the data contained in the CSV file. You
define two arrays that will contain the data columns open and max, both correlated to their date. Subsequently through
a line-by-line scan, the two arrays will be filled with the corresponding values. In this way, you exclude the columns
that do not interest you and you can work only on the open and max variables, which will be passed to the series
object. Listing 18-19 shows the code for this.

Listing 18-19. ch18_02b.html

$.get('data_08a.csv', function (csv) {
 var open = [];
 var max = [];
 var lines = csv.split('\n');
 $.each(lines, function(lineNo, line) {
 var items = line.split(',');
 if (lineNo != 0) {
 open.push([items[0], parseFloat(items[1])]);
 max.push([items[0], parseFloat(items[3])]);
 }
 });
...

The data object inside options (see Listing 18-20) is no longer necessary; therefore, you should delete it.

Listing 18-20. ch18_02b.html

var options = {
 colors: ["#005B06", "#9D3C27"],
 //data: {
 //csv: csv
 //},

You pass the two arrays directly to the series object using the data property (see Listing 18-21).

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

351

Listing 18-21. ch18_02b.html

series: [{
 data: open,
 name: 'Open',
 type: 'area',
 lineWidth: 4,
 marker: {
 radius: 4
 },
},{
 data: max,
 name: 'Max',
 type: 'spline',
 lineWidth: 4,
 marker: {
 enabled: false
 }
}]

Figure 18-11 shows the new chart with no more references to the unwanted series.

Exporting the Chart
A completely new feature that Highcharts offers is the capability for users to export the chart from your browser in various
formats, including as a PNG or JPG image, as an SVG vector, or as a PDF document. It is even possible to print the image.
All of this is done via a menu you access using the small button in the upper-right corner of the chart (see Figure 18-12).

Figure 18-11. By adding a parser, it is possible to filter only for series of interest (look at the legend)

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

352

This button will appear in your charts whenever you include the exporting module in the web page. You can find
this module in the Highcharts distribution. For the local method, use the following:

<script src="../src/js/modules/exporting.js"></script>

Or if you prefer to use a CDN service:

<script src="http://code.highcharts.com/modules/exporting.js"></script>

The Master Detail Chart
An example of line chart that aptly illustrates the functionality that a library such as Highcharts can provide is
the master detail chart. This type of line chart is composed of two representations of the same line chart shown
simultaneously. The purpose is to bring focus to a particular part of the line chart without losing the chart as a whole.

The two charts are called master and detail charts. As you can see in Figure 18-13, the master chart is usually
much smaller and is placed in a marginal position with respect to the detail chart; it is often shown at the bottom
with its x-axis aligned with the detail chart, so as to provide a sense of perspective. The detail chart is located on the
foreground so that the users can focus on it. The detail chart shows in more detail the selected area of the master chart.

Figure 18-13. A master and detail chart

Figure 18-12. By clicking the icon in the upper-right corner of the chart, you’ll access a context menu that contains
options for exporting the chart

Master detail charts are a good choice when you have to deal with large amounts of data that would be hard to
view in their entirety. Often this data is written in external files taken from other applications. Continuing with the
previous Spaghetti Lunghetti prices example, you’ll build a master detail chart from a CSV file.

http://code.highcharts.com/modules/exporting.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

353

Before starting with the real example, you need to include the library files and the dark green theme with the
local method:

<script type="text/javascript" src="../src/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="../src/js/highcharts.js"></script>
<script type="text/javascript" src="../src/js/modules/data.js"></script>
<script type="text/javascript" src="../src/js/themes/dark-green.js"></script>

Or if you prefer to use a CDN service:

<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="http://code.highcharts.com/highcharts.js"></script>
<script src="http://code.highcharts.com/modules/data.js"></script>
<script src="http://code.highcharts.com/themes/dark-green.js"></script>

Since in this example you’ll be using the same CSV file from the previous example (see Listing 18-15), you’ll need a
proper parser to read the data correctly. This parser will contain a regex expression to capture the values of day, month,
and year. Listing 18-22 present the parser that you had previously developed anew (see Listing 18-16), as it’s still valid.

Listing 18-22. ch18_03.html

<script>
$(function () {
 Highcharts.Data.prototype.dateFormats['m/d/Y'] = {
 regex: '^([0-9]{1,2})\/([0-9]{1,2})\/([0-9]{4})$',
 parser: function (match) {
 return Date.UTC(match[3], match[1] - 1, +match[2]);
 }
 };
});
</script>
...
<div id="myChart" style="width: 600px; height: 400px;"></div>

Don’t forget to add a <div> element with myChart as id.
The master detail chart is made up of two line charts, which you define through two variables: masterChart

and detailChart (see Listing 18-23). These two charts will be drawn in two distinct areas, master-container and
detail-container. Thanks to jQuery, you’ll create two <div> elements with these identifiers. These two charts will
be created by two JavaScript functions, createDetail() and createMaster(). This duality is maintained even in the
definition of the two configuration objects that govern the layouts and behaviors of the two charts: detailOptions
and masterOptions.

Listing 18-23. ch18_03.html

$.get('data_08a.csv', function (csv) {

 var masterChart,detailChart;
 function createMaster() {
 masterChart = $('#master-container')
 .highcharts(masterOptions, function(masterChart) {
 createDetail(masterChart);
 }).highcharts(); // return chart instance
 }

http://code.jquery.com/jquery-1.9.1.min.js
http://code.highcharts.com/highcharts.js
http://code.highcharts.com/modules/data.js
http://code.highcharts.com/themes/dark-green.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

354

 function createDetail(masterChart) {
 var detailData = [],
 detailStart = Date.UTC(2012, 7, 1);

 jQuery.each(masterChart.series[0].data, function(i, point) {
 if (point.x >= detailStart) {
 detailData.push(point.y);
 }
 });
 detailChart = $('#detail-container').highcharts(detailOptions)
 .highcharts();
 }

 var $container = $('#myChart')
 .css('position', 'relative');

 var $detailContainer = $('<div id="detail-container">')
 .appendTo($container);

 var $masterContainer = $('<div id="master-container">')
 .css({ position: 'absolute', top: 300, height: 80, width: '100%'})
 .appendTo($container);

 createMaster();
});

Each time the chart is redrawn, the createDetail() function is called first. It creates the corresponding chart.
Inside the function, there is the call to the createMaster() function, which creates the second chart based on the
selected area in the first chart.

Now you must define two configuration objects. In Listing 18-24, you define the options regarding the master
chart. When looking at the masterOptions object, focus your attention on the definition of the events property inside
the chart object. As you can see, a generic function is defined within the selection property. In fact, in the master
chart, you’ll need to select a particular range with the mouse. This chart section will thus be displayed in the detail
chart. It is precisely this feature that is implemented through this function. The extremesObject variable stores the
interval of the x-axis covered by the selected area, passing it to the event.xAxis[0] value. Hence, you extract the
maximum and minimum values of this range (min and max), which are just the extremes you need. These values are
then used both to draw the points in the detail chart and to draw the shaded areas in the master chart. In fact, the next
step is to use an each() function to select the data between the min and max values. All of these data points are stored
into the detailData array. This array will be the input data array for the detail chart.

Listing 18-24. ch18_03.html

var masterOptions = {
 colors: ['#FFE76D'],
 data: {
 csv: csv
 },
 chart: {
 reflow: false,
 borderWidth: 0,
 backgroundColor: null,
 marginLeft: 50,

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

355

 marginRight: 20,
 zoomType: 'x',
 events: {
 selection: function(event) {
 var extremesObject = event.xAxis[0],
 min = extremesObject.min,
 max = extremesObject.max,
 detailData = [],
 xAxis = this.xAxis[0];
 jQuery.each(this.series[0].data, function(i, point) {
 if (point.x > min && point.x < max) {
 detailData.push({
 x: point.x,
 y: point.y
 });
 }
 });
 xAxis.removePlotBand('mask-before');
 xAxis.addPlotBand({
 id: 'mask-before',
 from: Date.UTC(2012, 1, 1),
 to: min,
 color: 'rgba(1, 1, 1, 0.5)'
 });
 xAxis.removePlotBand('mask-after');
 xAxis.addPlotBand({
 id: 'mask-after',
 from: max,
 to: Date.UTC(2013, 1, 1),
 color: 'rgba(1, 1, 1, 0.5)'
 });
 detailChart.series[0].setData(detailData);
 return false;
 }
 }
 },
 title: {
 text: null
 },
 xAxis: {
 type: 'datetime',
 showLastTickLabel: true,
 title: {
 text: null
 }
 },
 yAxis: {
 gridLineWidth: 0,
 labels: {
 enabled: false
 },

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

356

 title: {
 text: null
 },
 min: 1.25,
 max: 1.31
 },
 tooltip: {
 formatter: function() {
 return false;
 }
 },
 legend: {
 enabled: false
 },
 credits: {
 enabled: false
 },
 plotOptions: {
 series: {
 fillColor: {
 linearGradient: [0, 0, 0, 70],
 stops: [
 [0, '#FFE76D'],
 [1, 'rgba(0, 0, 0, 0)']
]
 },
 lineWidth: 1,
 marker: {
 enabled: false
 },
 shadow: false,
 states: {
 hover: {
 lineWidth: 1
 }
 },
 enableMouseTracking: false
 }
 },
 series: [{
 name: 'open',
 type: 'area',
 lineWidth: 2
 }],
 exporting: {
 enabled: false
 }
};

Another use of min and max values is to delimit the selected area in the master chart. You achieve this by adding
two bands and identifying them with the mask-before and mask-after IDs. These bands are meant to shade the
area that has not been selected. Thus the first band will start from a date that will be the lowest possible value of

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

357

your experimental data (beyond the left edge of the master chart). So, for example, you assign the value Date.UTC
(2012,1,1) to the from property, and the band will correspond to the min value that’s assigned to the to property.
The same thing applies to the second band. It starts from the max value, which is assigned to the from property, and it
ends up with the highest possible value of the experimental data (beyond the right edge of the master chart). You can
assign Date.UTC(2013,1,1) to the to property.

In Listing 18-25, you define the options for the detail chart. As you can see, this definition is not very different
from the line chart’s definition.

Listing 18-25. ch18_03.html

var detailOptions = {
 colors: ["#FFE76D"],
 data: {
 csv: csv
 },
 chart: {
 marginBottom: 120,
 reflow: false,
 marginLeft: 50,
 marginRight: 20,
 style: {
 position: 'absolute'
 }
 },
 credits: {
 enabled: false
 },
 title: {
 text: 'Spaghetti Lunghetti',
 style:{
 color: '#FFE76D',
 fontSize: '16px'
 }
 },
 xAxis: {
 type: 'datetime'
 },
 yAxis: {
 title: {
 text: null
 },
 maxZoom: 0.1
 },
 tooltip: {
 formatter: function() {
 var point = this.points[0];
 return Highcharts.dateFormat('%A %B %e %Y', this.x) + ':
'+
 Highcharts.numberFormat(point.y, 2) +' USD';
 },
 shared: true
 },

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

358

 legend: {
 enabled: false
 },
 plotOptions: {
 series: {
 marker: {
 enabled: false,
 states: {
 hover: {
 enabled: true,
 radius: 3
 }
 }
 }
 }
 },
 series: [{
 name: 'Open',
 lineWidth: 4
 }],
 exporting: {
 enabled: false
 }
};

Finally, here is the master detail chart (see Figure 18-14).

Figure 18-14. The master chart is on the bottom and the detail chart is in the foreground

From the master chart, you can use the mouse to select the section that interests you and you’ll be able to
see it in detail.

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

359

Bar and Pie Charts with Highcharts
In this section, you’ll examine three brief examples that show how Highcharts implements the common
bar and pie charts.

In fact, you’ll see how simple it is to implement a bar chart. With the help of some examples, you’ll see how it is
even easier to switch between a grouped and a stacked mode, from horizontal to vertical. Even implementing a pie
chart is very simple and intuitive. This is important because, as you’ll see in the subsequent sections, bars and pies are
themselves used as components for more complex types of charts.

Bar Charts
Since bar charts are simple to implement, you’ll start immediately with a stacked vertical bar chart. First of all,
remember to include the library files and a theme, such as the dark green theme included here:

<script type="text/javascript" src="../src/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="../src/js/highcharts.js"></script>
<script type="text/javascript" src="../src/js/themes/dark-green.js"></script>

Or if you prefer to use a CDN service:

<script type="text/javascript" src="http://code.jquery.com
 /jquery-1.9.1.min.js"></script>
<script type="text/javascript"
 src="http://code.highcharts.com/3.0.5/highcharts.js"></script>
<script type="text/javascript" src="http://code.highcharts.com/themes
 /dark-green.js"></script>

You’ll see how, by just changing a property, you can get all kinds of bar charts. Then, in order to create a bar chart
with vertical bars, it is necessary to specify the type property as column (see Listing 18-26).

Listing 18-26. ch18_04a.html

$(function () {
 var data1 = [46.6, 14.8, 0, 61.6];
 var data2 = [2.6, 13.8, 72.6, 9.1];
 var data3 = [3.3, 53.5, 77.1, 10.6];

 var options = {
 chart: {
 type: 'column'
 },
 title: {
 text: 'Nutrition label'
 },
 xAxis: {
 categories: ['Carrots', 'Beans', 'Chicken', 'Bread']
 },
 yAxis: {
 min: 0,

http://code.jquery.com/jquery-1.9.1.min.js
http://code.jquery.com/jquery-1.9.1.min.js
http://code.highcharts.com/3.0.5/highcharts.js
http://code.highcharts.com/themes/dark-green.js
http://code.highcharts.com/themes/dark-green.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

360

 title: {
 text: 'Calories'
 }
 },
 legend: {
 reversed: true
 },
 plotOptions: {
 series: {
 stacking: 'normal'
 }
 },
 series: [{
 name: 'Carbohydrate',
 data: data1
 },{
 name: 'Fat',
 data: data2
 },{
 name: 'Protein',
 data: data3
 }]
 }
 $('#myChart').highcharts(options);
});

And Figure 18-15 shows our chart.

Figure 18-15. A simple stacked bar chart

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

361

If you want a horizontal stacked bar chart, you must define the type property as bar, as shown in Listing 18-27.

Listing 18-27. ch18_04b.html

chart: {
 type: 'bar'
},

Here is the chart, converted from vertical to horizontal (see Figure 18-16).

If you instead want a normal grouped bar chart, you just delete the plotOptions object through options,
as shown in Listing 18-28.

Listing 18-28. ch18_04c.html

//Delete the plotOptions object
plotOptions: {
 series: {
 stacking: 'normal'
 }
},

You’ll get the two grouped bar charts, as you can see in Figure 18-17.

Figure 18-16. A simple horizontal stacked bar chart

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

362

Pie Charts
Building a pie chart with the Highcharts library is also really simple (see Listing 18-29). Highcharts accepts the
incoming data with the format [label, value], and then converts the values into percentages, from which it creates the
slices in the right proportions.

Listing 18-29. ch18_04d.html

$(function () {
 var data2 = [['Analysis', 5], ['Designing', 10], ['Developing', 20],
 ['Deploying', 5], ['Test', 28], ['Debugging', 23], ['Sale', 9]];
 //Add options here
 $('#myChart').highcharts(options);
});

Take a look at the properties specified within the pie object in the plotOptions object. By setting the
allowPointSelect property to true and the cursor property to pointer (see Listing 18-30), you enable the
management of a particular event. When the user clicks on a slice, it’s extracted from the cake and goes to the distance
specified in the slicedOffset property.

Listing 18-30. ch18_04d.html

var options = {
 colors: ['#65Af43', '#FFE76D', '#BB43F2',
 '#A50f33', '#15CACA', '#612BF3', '#FF8E04'],
 chart: {
 },
 title: {
 text: 'Developing of the X Weapon'
 },
 yAxis: {
 min: 0,
 title: {
 text: 'Calories'
 }
 },

Figure 18-17. The previous bar charts in the grouped version

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

363

 tooltip: {
 pointFormat: '{series.name}: {point.y}%',
 },
 plotOptions: {
 pie: {
 allowPointSelect: true,
 cursor: 'pointer',
 showInLegend: true,
 slicedOffset: 20
 }
 },
 series: [{
 type: 'pie',
 name: 'Budget',
 data: data2,
 borderColor: '#888888',
 borderWidth: 1,
 dataLabels: {
 enabled: true,
 color: '#bbbbbb',
 connectorColor: '#bbbbbb',
 format: '{point.name}: {point.y}%</div>'
 },
 }]
}

Figure 18-18 shows the pie chart using the dark green theme.

Figure 18-18. A pie chart with all elements included

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

364

Gantt Charts
Another type of chart that you can create easily using Highcharts is the Gantt chart (see Figure 18-19). This is a type
of bar chart, developed in 1910 by Henry Gantt, used for project scheduling. In more recent times, it has been used to
represent relationships between activities. For example, in books on advanced programming in Java or C++, you could
commonly find that such a chart represents the synchronicity or non-synchronicity between the calls of the various
functions.

To implement this type of chart, you must include the extension module highcharts-more.js. This extension
includes many types of components that have been developed more recently, including the columrange type, which
allows you to implement the classic bars of a bar chart, but with the difference of defining both a maximum value
(high) and a minimum value (low). It’s therefore useful to represent a range, both horizontally (on x) and vertically
(on y). The Gantt chart describes time intervals on the x-axis, whereas it requires a classification in groups along the
y-axis. This classification could be easily done by passing an array of names to the categories property.

In the following example, you’ll use the gray theme. Before you implement the chart, you need to include these
two files on the web page:

<script type="text/javascript" src="../src/js/highcharts-more.js"></script>
<script type="text/javascript” src="../src/js/themes/gray.js"></script>

Or if you prefer to use a CDN service:

<script src="http://code.highcharts.com/highcharts-more.js"></script>
<script src="http://code.highcharts.com/themes/gray.js"></script>

Remember that Gantt charts express the range of times, and therefore you can define them through an array with
two values for each element: [low, high]. Because they are datetime values, the suggested choice is to use the function
Date.UTC() to define these intervals of time (see Listing 18-31).

Listing 18-31. ch18_05.html

var data1 = [[Date.UTC(2012, 0, 1), Date.UTC(2012, 1, 15)],
 [Date.UTC(2012, 0, 20), Date.UTC(2012, 1, 28)],
 [Date.UTC(2012, 1, 4), Date.UTC(2012, 3, 30)],
 [Date.UTC(2012, 2, 10), Date.UTC(2012, 5, 15)],
 [Date.UTC(2012, 4, 1), Date.UTC(2012, 7, 19)],

Figure 18-19. A Gantt chart representing the development process of a project

http://code.highcharts.com/highcharts-more.js%22
http://code.highcharts.com/themes/gray.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

365

 [Date.UTC(2012, 6, 1), Date.UTC(2012, 10, 15)],
 [Date.UTC(2012, 9, 1), Date.UTC(2012, 11, 28)];

Now you define the configuration object with the options variable (see Listing 18-32). In the chart component
object, you need to set the inverted property to true. This is because you want the bars to be horizontal. You must be
careful, however, because in doing so, you reverse the axes. The vertical axis will be the x-axis, and the horizontal one
will be the y-axis. You need to take this into account when you define every property and especially when you need to
figure out how to enter the data correctly.

Listing 18-32. ch18_05.html

var options = {
 chart: {
 type: 'columnrange',
 inverted: true
 },

The first consequence of this reversal is that you have to enter the names of the categories in the xAxis object in
order for them to appear on the vertical axis. After you have entered a title and a subtitle in the chart, you insert an array
of strings in the categories property containing the names to be assigned to each time interval (see Listing 18-33).

Listing 18-33. ch18_05.html

title: {
 text: 'Developing of the X Weapon'
},
subtitle: {
 text: 'Half Guns inc.'
},

xAxis: {
 categories: ['Analysis', 'Designing', 'Developing',
 'Deploying', 'Test', 'Debugging', 'Sale']
},
...

On the other hand, you have to consider the y-axis as the time axis and define the grid accordingly. You define
the axis label with the title property, and the type of data the axis will have to manage by specifying datetime in the
type property. Then you have to set the minPadding and maxPadding properties to 0. This will force the chart to fill the
entire x-axis with the time intervals defined in the input data (see Listing 18-34).

Listing 18-34. ch18_05.html

yAxis: {
 title: {
 text: 'Scheduling'
 },
 type: 'datetime',
 minPadding: 0,
 maxPadding: 0,

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

366

 gridLineWidth: 1,
 gridLineColor: '#bbbbbb',
 minorTickInterval: 14 * 24 * 3600000 //2 week
},
...

You have already told the Highcharts library to interpret the data as columnrange through the type property
within the chart object. Now is the time to define its properties, and you can do either within the series object or,
as in this example, within the columnrange object placed under the plotOptions object (see Listing 18-35). Unless
it is otherwise specified, you’ll have all the bars of the same color because they belong to the same series, but since
you want the opposite, you must activate the colorByPoint properties with true and then specify the desired color
sequence as an array to the colors property. Finally, after disabling both the legend and the tooltips, you pass the data
to the data property in the series object.

Listing 18-35. ch18_05.html

...
plotOptions:{
 columnrange:{
 colorByPoint: true,
 colors:['#65Af43','#FFE76D','#BB43F2','#A50f33',
 '#15CACA','#612BF3','#FF8E04']
 }
},
legend: {
 enabled: false
},
tooltip: {
 enabled: false
},
series: [{
 data: data1,
 borderColor: 'black',
 borderWidth: 2
}]
}
$('#myChart').highcharts(options);

At the end, here is our Gantt chart (see Figure 18-20).

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

367

Combined Charts
Perhaps the aspect that distinguishes the Highcharts library and currently constitutes its showpiece is its ability
to overlap several types of charts together in the same chart, thus creating truly spectacular representations.
Furthermore, the library is structured in a way that the superimposed charts remain distinct in their configuration
values, and thus easily manageable. You can develop them separately and then eventually bring them together.

In the next example, you’ll join the pie and Gantt charts you already implemented and add a third chart, a line
chart. First, import all the necessary files, including the gray theme:

<script type="text/javascript" src="../src/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="../src/js/highcharts.js"></script>
<script type="text/javascript" src="../src/js/highcharts-more.js"></script>
<script type="text/javascript" src="../src/js/themes/gray.js"></script>

Or if you prefer to use CDN service:

<script src="http://code.highcharts.com/jquery-1.9.1.js"></script>
<script src="http://code.highcharts.com/highcharts.js"></script>
<script src="http://code.highcharts.com/highcharts-more.js"></script>
<script src="http://code.highcharts.com/themes/gray.js"></script>

You need to define the data that will be used for all three charts (see Listing 18-36). In data1, you enter the data
[low, high] defining the intervals of the Gantt chart. In data2, you enter the data for the Pie chart. Note that, for the
sake of convenience, the values are already expressed as percentages. In data3, you enter the [x, y] data representing
the various points of a line chart (here you defined the datetime values as y values and numerical values as x values,
because you have reversed the axes). Finally, you add the definition of a color gradient within the gradient variable to
avoid writing it several times in the configuration object.

Figure 18-20. A Gantt chart

http://code.highcharts.com/jquery-1.9.1.js
http://code.highcharts.com/highcharts.js
http://code.highcharts.com/highcharts-more.js
http://code.highcharts.com/themes/gray.js

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

368

Listing 18-36. ch18_06.html

var data1 = [[Date.UTC(2012, 0, 1), Date.UTC(2012, 1, 15)],
 [Date.UTC(2012, 0, 20), Date.UTC(2012, 1, 28)],
 [Date.UTC(2012, 1, 4), Date.UTC(2012, 3, 30)],
 [Date.UTC(2012, 2, 10), Date.UTC(2012, 5, 15)],
 [Date.UTC(2012, 4, 1), Date.UTC(2012, 7, 19)],
 [Date.UTC(2012, 6, 1), Date.UTC(2012, 10, 15)],
 [Date.UTC(2012, 9, 1), Date.UTC(2012, 11, 28)]];
var data2 = [5, 10, 20, 5, 28, 23, 9];
var data3 = [[140, Date.UTC(2012,0,1)],
 [120, Date.UTC(2012, 1, 28)],
 [58, Date.UTC(2012, 3, 30)],
 [78, Date.UTC(2012, 5, 15)],
 [44, Date.UTC(2012, 7, 19)],
 [33, Date.UTC(2012, 10, 15)],
 [1, Date.UTC(2012, 11, 28)]];
var gradient = {x1:0, y1:0, x2:0, y2:1};

You can now begin to define the configuration object (see Listing 18-37). Since the color sequence of the previous
example worked well, you’ll use it again in this example. Then you activate the inverted property using true to
reverse the x- and y-axes. Finally, add a title and a subtitle to your chart.

Listing 18-37. ch18_06.html

var options = {
 colors:['#65Af43', '#FFE76D', '#BB43F2',
 '#A50f33', '#15CACA', '#612BF3', '#FF8E04'],
 chart: {
 inverted: true
 },
 title: {
 text: 'Developing of the X Weapon'
 },
 subtitle:{
 text: 'Half Guns inc.'
 },

For the combination chart, you need to define two different scales on the x-axis—one that will contain the
categories as in the previous example and the other that’s a linear type to represent the linear chart (see Listing 18-38).
Regarding the y-axis, you have to define a time scale and also manage the grid. The main grid that follows the tick on
the y-axis scans the months, whereas you’ll set the minor grid to scan the two-week periods.

Listing 18-38. ch18_06.html

xAxis:[{
 categories: ['Analysis', 'Designing', 'Casting',
 'Develop', 'Test', 'Debugging', 'Sale']
},{
 title: {
 text: 'Budget'
 },

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

369

 labels: {
 enabled: false
 },
 opposite: true,
 tickInterval: 20
}],
yAxis: {
 title: {
 text: 'Scheduling'
 },
 type: 'datetime',
 minPadding: 0,
 maxPadding: 0,
 gridLineWidth: 1,
 gridLineColor: '#bbbbbb',
 minorTickInterval: 14 * 24 * 3600000 //2 week
},

For the Gantt chart, you need to make some changes compared to the previous version (see Listing 18-39). You
apply a color gradient to the bars and the areas. Here, you can use the gradient transparency to create a dynamic
appearance.

Listing 18-39. ch18_06.html

plotOptions:{
 columnrange:{
 colorByPoint: true,
 colors: [{
 linearGradient: gradient,
 stops: [[0, 'rgba(101, 175, 67, 1)'],
 [1, 'rgba(101, 175, 67, 0)']]
 },{
 linearGradient: gradient,
 stops: [[0, 'rgba(255, 231, 109, 1)'],
 [1, 'rgba(255, 231, 109, 0)']]
 },{
 linearGradient: gradient,
 stops: [[0, 'rgba(187, 67, 242, 1)'],
 [1, 'rgba(187, 67, 242, 0)']]
 },{
 linearGradient: gradient,
 stops: [[0, 'rgba(165, 15, 51, 1)'],
 [1, 'rgba(165, 15, 51, 0)']]
 },{
 linearGradient: gradient,
 stops: [[0, 'rgba(21, 202, 202, 1)'],
 [1, 'rgba(21, 202, 202, 0)']]
 },{
 linearGradient: gradient,
 stops: [[0, 'rgba(97, 43, 243, 1)'],
 [1,'rgba(97, 43, 243, 0)']]
 },{

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

370

 linearGradient: gradient,
 stops: [[0, 'rgba(255, 142, 4, 1)'],
 [1, 'rgba(255, 142, 4, 0)']]
 }]
 }
},

You also disable the legend and tooltips, and you begin to enter the properties for the three types of chart. Inside
the series object, you define three different objects, each corresponding to a chart. When you work with combined
charts, you have to keep the order in which they are drawn in mind. In fact, each chart, defined in the series object,
is drawn over the previous one. If there are overlapping parts, they will be covered. So the order in which you define
the charts into the series object is important.

First, define the line chart in order to make it the background. In this example, you can also modify the shape,
size, and also the color of the marker. Then you define the Gantt chart, remembering to add the value 0 to the xAxis
property. This means that the data in the Gantt chart, namely data1, is passed to the first x-axis. Finally, you define
the properties of the pie chart, and with the center property you can move the pie in such a position as not to overlap
the other charts (see Listing 18-40). With the size property, you can reduce the size of the pie in order to better
adapt it to your needs. Highcharts, unlike jqPlot, includes connectors, which are lines connecting the label to the
corresponding slice.

Listing 18-40. ch18_06.html

 legend: {
 enabled: false
 },
 tooltip: {
 enabled: false
 },
 series: [{
 type: 'line',
 data: data3,
 xAxis:1,
 color: ['#ddddaa'],
 lineWidth: 4,
 dashStyle: 'dash',
 marker: {
 fillColor: 'rgba(0,0,0,1)',
 lineWidth: 4,
 lineColor: '#ddddaa',
 radius: 7
 }
 },{
 type: 'columnrange',
 data: data1,
 borderWidth: 0,
 xAxis:0
 },{
 type: 'pie',
 name: 'Budget',
 data: data2,
 borderColor: '#888888',
 borderWidth: 1,

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

371

 center: [370, 40],
 size: 100,
 showInLegend: false,
 dataLabels: {
 enabled: true,
 color: '#bbbbbb',
 connectorColor: '#bbbbbb',
 formatter: function() {
 return ''+ Math.round(this.percentage) +'%';
 }
 },
 xAxis:1
 }]
}
$('#myChart').highcharts(options);

The finished combined chart is shown in Figure 18-21.

Highstock Library
When you visit the official web site of Highcharts, you will find, along with this library, indications to another library
called Highstock. This library is fully integrated into Highcharts and provides a range of features and tools to be
further introduced in your charts. It allows you to create very advanced navigation tools that transform your charts
into real tools for the professional analysis of large amounts of data covering very long periods of time.

Figure 18-21. A combined chart with three different types of chart

CHAPTER 18 ■ MOVING FROM JQPLOT TO HIGHCHARTS

372

If your interest in the development of the chart lead you to face very sophisticated professional needs, especially
in economic analysis, this library will prove to be an indispensable tool. Since its contents primarily include tools to
integrate within existing charts and their respective high specificity to particular needs, this topic is not discussed in
this book. However, I strongly recommend you have a look at its contents through the various demos made available
on the official web site (www.highcharts.com/products/highstock). There is also a large amount of documentation
that exists in this regard (see the API Highstock Reference at http://api.highcharts.com/highstock).

Summary
This chapter, covering the Highcharts library, concludes the second part of this book. You have seen how this library
has somehow inherited all the basic features of jqPlot and has extended them to a much more professional level.

By implementing the basis of a simple line chart, this chapter compared the two libraries, highlighting the
similarities and differences. Then you saw how to handle customizations of components with Highcharts on and how
to read data from a file.

With Highcharts, you have therefore implemented other types of charts such as the Gantt chart and the Master
and Detail chart, both of which highlight the increased possibilities of development this library has to offer.

Finally, again taking bar charts and pie charts as examples, you learned how Highcharts allows you to combine
several different types of charts simultaneously in the same drawing area, further expanding the possibility to develop
even more innovative and eye-catching charts.

The next chapter begins the third and final part of the book by talking about the D3 library. It introduces all the
basic concepts of the library and proposes some basic examples to get started. You’ll discover it as an alternative to
the worlds of jqPlot, Highcharts, and other similar libraries, based on jQuery and on the Canvas. You’ll see how this
library uses SVG technology to create all the graphic elements needed to build charts as if they were small bricks.
Finally, you’ll analyze the strengths and differences of everything you have seen so far.

http://www.highcharts.com/products/highstock
http://api.highcharts.com/highstock

373

CHAPTER 19

Working with D3

This chapter begins the third part of the book, concerning the D3 library. This library has a separate section of
the book dedicated to it because it differs in many aspects from the jqPlot and Highcharts libraries. In the various
sections of this chapter, and as you delve deeper into the aspects of the library in the next chapters, you’ll be able
to appreciate that D3 has a unique and innovative structure. First of all, it does not use jQuery, but it reproduces
all the features necessary for data visualization. Whereas in the jqPlot and Highcharts libraries, chart components
are already created, requiring the users only to adjust their properties via the options object, D3 has virtually the
opposite approach.

The D3 library allows you to build any representation, starting with the most basic graphical elements such as
circles, lines, squares, and so on. Certainly, such an approach greatly complicates the implementation of a chart, but
at the same time, it allows you to develop completely new graphical representations, free from having to follow the
preset patterns that the other graphic libraries provide.

Thus, in the course of this chapter, you’ll become acquainted with the basic concepts that underlie this library.
You’ll see how some of them—such as selections, selectors, and method chains—are taken from the jQuery library.
You’ll also find out how to manipulate the various Document Object Model (DOM) elements, especially the creation
of Scalable Vector Graphics (SVG) elements, which are the essential building blocks of the graphical representations.

The chapter closes with a brief introduction to the transformations and transitions of SVG elements.
You’ll start with an introduction to this wonderful library.

FIREBUG: DEBUGGING D3 CODE

Before beginning with some practical examples, I would like to remind you to use FireBug for debugging. At the

least, be sure to get a good debugging tool in JavaScript that allows you to view the DOM tree of the web page

upon which you’ll be working (see the “FireBug and DevTool” section in Chapter 1).

Using a debugging tool with the D3 library is essential, given that unlike the other libraries you have seen, it

is not structured with premodeled objects. With D3, it is necessary to start from scratch, implementing all the

chart elements one by one. Therefore, those who are familiar with development will realize that choosing a good

debugging tool is essential to solving any problems that arise.

With FireBug it is possible to edit, debug, and monitor CSS, SVG, and HTML. You can change their values in real

time and see the effects. It also provides a console where you can read out the log, which is suitably placed

within the JavaScript code to monitor the content of the variables used. This can be achieved by calling the log()

function of the console object and passing the variable interested as argument:

console.log (variable);

CHAPTER 19 ■ WORKING WITH D3

374

It is possible to add some text for reference, as well:

console.log ("this is the value:");

You will see that, when working with D3, FireBug is crucial for inspecting the dynamic structures of SVG elements

that JavaScript generates in the DOM.

Introducing D3
D3 is a JavaScript library that, in a manner similar to the jQuery library, allows direct inspection and manipulation of
the DOM, but is intended solely for data visualization. It really does its job excellently. In fact, the name D3 is derived
from data-driven documents. D3 was developed by Mike Bostock, the creator of the Protovis library, which D3 is
designed to replace.

This library is proving to be very versatile and powerful, thanks to the technologies upon which it is based:
JavaScript, SVG, and CSS. D3 combines powerful visualization components with a data-driven approach to DOM
manipulation. In so doing, D3 takes full advantage of the capabilities of the modern browser.

D3 allows you to bind arbitrary data to the DOM. Its strength is its capability to affect several transformations of the
document. For example, a set of data could be converted into an interactive SVG graphical structure such as a chart.

You have seen that the strength of jqPlot, as a JavaScript framework, is that it provides structured solutions, which
you manipulate through the settings of options. Unlike jqPlot, the strength of D3 is precisely the opposite. It provides
the building blocks and tools to assemble structures based on SVG. The result of this approach is the continuous
development of new structures, which are graphically rich and open to all sorts of interactions and animations. D3 is
the perfect tool for those who want to develop new graphics solutions for aspects not covered by existing frameworks.

D3 does not use the jQuery library, but it has many similar concepts in it, including the method-chaining
paradigm and the selections. It provides a jQuery-like interface to the DOM, which means you don’t need to know all
the features of SVG in much detail. In order to handle the D3 code, you need to be able to use objects and functions
and to understand the basics of SVG and CSS, which are used extensively. The sacrifices that go into mastering all of
this knowledge are rewarded with the amazing visualizations you can create.

SVG provides the building blocks for the artwork; it allows you to draw all the basic shape primitives such as
lines, rectangles, and circles, as well as text. It allows you to build complex shapes with paths.

Starting with a Blank HTML Page
It’s time to practice the concepts just outlined. First, start with a blank page, shown in Listing 19-1. This will be the
starting point for all of the D3 examples.

Listing 19-1. ch19_01a.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>

 // CSS Style here

</style>
</head>
<body>

http://d3js.org/d3.v3.js

CHAPTER 19 ■ WORKING WITH D3

375

 <!-- HTML elements here -->

<script type="text/javascript">

 // D3 code here

</script>
</body>
</html>

Although, at first glance, you see only a simple HTML blank page, there are some small measures you must take
when you work with D3. The most simple and clear measure is to include the library D3:

<script src="../src/d3.v3.js"></script>

Or if you prefer to use a content delivery network (CDN) service:

<script src="http://d3js.org/d3.v3.js"></script>

When entering the URL of the remote D3 library, make sure that the website always includes the latest version.
Another measure, which is less obvious, is to add the <head> of the page:

<meta charset="utf-8">

If you do not specify this row, you will soon find out that the D3 code you added does not run. Last, but not least,
where you add the various parts of the code is very important. It is advisable to include all the JavaScript code of D3 at
the end of the <body> section, after all the HTML elements.

Using Selections and Operators
To start working with D3, it is necessary to become familiar with the concept of selections. Having to deal with
selections involves the use of three basic objects:

•฀ Selections

•฀ Selectors

•฀ Operators

A selection is an array of node elements extracted from the current document. In order to extract a specific set
of elements (selection), you need to use selectors. These are patterns that match elements in the tree structure of the
document. Once you get a selection, you might wish to perform some operations on it and so you use operators.
As a result of their operation, you get a new selection, and so it is possible to apply another operator, and so on.

Selectors and operators are defined by the W3C (World Wide Web Consortium) APIs and are supported by all modern
browsers. Generally, you’ll operate on HTML documents, and so you’ll work on the selection of HTML elements.

Selections and Selectors
To extract a selection from a document, D3 provides two methods:

•฀ select

•฀ selectAll

http://d3js.org/d3.v3.js

CHAPTER 19 ■ WORKING WITH D3

376

d3.select("selector") selects the first element that matches the selector, returning a selection with only one
element.

d3.selectAll("selector") instead selects all elements that match the selector, returning a selection with all
these elements.

There is no better way to understand these concepts than to do so gradually, with some simple examples. Starting
from the HTML page just described, add two paragraphs containing some text and then make a selection with D3
(see Listing 19-2).

Listing 19-2. ch19_01a.html

<body>
<p>First paragraph</p>
<p>Second paragraph</p>
<script type="text/javascript">
 var selection = d3.select("p");
 console.log(selection);
</script>
</body>

d3.select is the top-level operator; "p" is the selector; and the selection is the returned value of the operator
you assign to a variable. With this D3 command, you want to select the first element <p> in the web page. Using the
log function, you can see the selection with FireBug in Figure 19-1.

Figure 19-1. The FireBug console enables you to see the content of the selection

Since you used the select() method, you have a selection with only one element, although in the web page there
are two. If you want to select both, you use selectAll(), as in Listing 19-3.

Listing 19-3. ch19_01b.html

<script type="text/javascript">
 var selection = d3.selectAll("p");
 console.log(selection);
</script>

Figure 19-2 shows both elements.

CHAPTER 19 ■ WORKING WITH D3

377

Now you have a selection with two elements. The great innovation that jQuery and D3 introduce with the concept
of selection is that for loops are no long necessary. Instead of coding recursive functions to modify elements, you can
operate on entire selections at once.

Operators
Once you have learned to make selections, it is time to apply operators to them.

An operator is a method that’s applied to a selection, or generally to a set of elements, and it specifically
“operates” a manipulation. For example, it can get or set a property of the elements in the selection, or can act in some
way on their content. For example, you may want to replace existing text with new text. For this purpose, you use the
text() operator, shown in Listing 19-4.

Listing 19-4. ch19_02.html

<body>
<p>First paragraph</p>
<p>Second paragraph</p>
<script type="text/javascript">
 var selection = d3.selectAll("p");
 selection.text("we add this new text");
</script>
</body>

The page now reports twice for the same text, where before there were two paragraphs (see Figure 19-3).

Figure 19-2. FireBug shows the selection of all the <p> elements in the web page

CHAPTER 19 ■ WORKING WITH D3

378

You defined the variable selection and then applied the operator to this variable. But there is another way to write all
this; you can use the methods of chain functionality, especially when you apply multiple operators to the same selection.

d3.selectAll("p").text("we add this new text");

You have seen that by passing a parameter to the text() operator, you are going to replace the existing text. So it
is as if the function were setText("new text"). But you do not always want that. If you do not pass any arguments,
the function will have a different behavior. It will return the value of the text already present. This can be very useful
for further processing, or for assigning this string value to a variable or an array. Therefore, without parameters, it is as
if it were getText().

var text = d3.select("p").text();
console.log(text);

The text variable contains the "First paragraph" string (see Figure 19-4).

Figure 19-4. The FireBug console shows the text contained in the selection

Figure 19-3. The text contained in the two <p> elements has been replaced in the browser on the left and is shown in
FireBug on the right

There are operators for every kind of object upon which you’d want operate. These operators can set the content of:

•฀ Attributes

•฀ Styles

•฀ Properties

•฀ HTML

•฀ Text

CHAPTER 19 ■ WORKING WITH D3

379

You just saw the text() operator in action. Next, you’ll see some of the other operators.

Note ■ If you want to learn more about operators, I suggest you visit the API reference for the D3 library at this link:

https://github.com/mbostock/d3/wiki/API-Reference.

For example, it is helpful to be able to change a CSS style and you can do so with the style() operator. Listing 19-5
replaces the existing text using text() and then modifies its style to be written in red, adding the style() operator to
the methods chain.

Listing 19-5. ch19_03.html

<body>
<p>Existing black text</p>
<script type="text/javascript">
 d3.selectAll("p").style('color','red').text("New red text");
</script>
</body>

Figure 19-5 shows the original text on the left and the newly styled text on the right.

Figure 19-5. The original text is replaced by the new red text, applying the chain method upon the selection

Another operator, attr(), acts at the level of attributes of elements. This operator will be used when you create
new SVG elements; in fact, it allows you to define the attributes while you are creating the tags, before inserting
them in the web page. Here you can see how it can modify an existing attribute. In Listing 19-6, you’re changing the
alignment of a title to be displayed in the middle of the page (see Figure 19-6).

Listing 19-6. ch19_04.html

<body>
<h1>Title</h1>
<script type="text/javascript">
 d3.select('h1').attr('align','center');
</script>
</body>

https://github.com/mbostock/d3/wiki/API-Reference

CHAPTER 19 ■ WORKING WITH D3

380

Creating New Elements
Now that you have seen how to act at the level of elements and how to modify both attributes and content,
it is time to see how to create new items. To do this, D3 provides a number of operators
(https://github.com/mbostock/d3/wiki/API-Reference), among which the most commonly used are:

•฀ html()

•฀ append()

•฀ insert()

The html() Method
This section shows how the html() method operates. You always start from a selection and then apply this operator to
add an element inside. For example, you select a particular tag as a container, and then write a string that is passed as
an argument. The string then becomes the content of the tag (see Listing 19-7).

Listing 19-7. ch19_05.html

<body>
<p>A paragraph</p>
<script type="text/javascript">
 d3.select('p').html("<h1>New Paragraph</h1>");
</script>
</body>

Here, you first select the <p> tag with select() and then with html() you replace its contents with a new
element, <h1>. Figure 19-7 shows the original text on the left and the newly formatted version on the right.

Figure 19-6. With the D3 library it is possible to dynamically add a title to a web page

Figure 19-7. The text in a paragraph element <p> is replaced with a heading element <h>

https://github.com/mbostock/d3/wiki/API-Reference

CHAPTER 19 ■ WORKING WITH D3

381

You can see this change better, using FireBug (see Figure 19-8)

Figure 19-8. FireBug clearly shows the insertion of the head element (on the right) to replace the content of the
paragraph element (on the left)

Figure 19-9. An unordered list of three fruits

Practically, the html() function replaces the contents of the selection with the HTML code passed as an
argument. Exactly as its name suggests, this function allows you to dynamically write HTML code within the elements
of the selection.

The append() Method
Another popular method for adding elements is append().

Recall that when you’re using the html() operator, the content of the selected tag, if any, is replaced with the new
one passed as an argument. The append() operator instead adds a new element, passed as its argument, to the end of
all the existing elements contained in the selected tag. The content of the newly created element must be added to the
chain of methods, using text() if it is only a string, or append(), html() or insert() if it is a further element.

In order to understand this last point, add an unordered list with some items containing fruit names to the
page (see Figure 19-9).

CHAPTER 19 ■ WORKING WITH D3

382

Say that you now want to add Oranges to this list. In order to do this, you must select the unordered list tag
and then use append() to add a list item tag . But append() creates only the tag, so in order to insert the string
"Oranges" inside it, you need to add the text() operator to the chain of methods (see Listing 19-8).

Listing 19-8. ch19_06.html

<body>

 Apples
 Pears
 Bananas

<script type="text/javascript">
 d3.select('ul').append('li').text("Oranges");
</script>
</body>

Figure 19-10 shows the list with the added element.

Figure 19-10. Using the append() operator, you have added the Oranges item to the end of the list

Figure 19-11 shows it in FireBug.

CHAPTER 19 ■ WORKING WITH D3

383

In this case, you have used simple text as the content for the new element added to the list, but the append()
operator can do more. In fact, as previously noted, the content of an element may be yet another element. This
allows you to create an entire tree of HTML elements, all by exploiting a chain method. In fact, the content of the
new element created by the append() operator can in turn be created by another operator, such as another append()
operator. Look at Listing 19-9. It is a simple example that will help you better understand this concept.

This time, you want to create a sub-category of fruits, Citrus fruits, in which we shall assign the Oranges, Lemons,
and Grapefruits items. In order to do this, you need to add a new list item with the string "Citrus fruits" as
its content. This works the same way as in the previous example, concatenating the text() operator just after the
append() operator. Then you need to create a new list item. This time, its content is an unordered list. Thus, you need
to concatenate two append() operators in order to create a list item element nested in an unordered list
element. You can then add two other new elements to the nested unordered list, again with the append() operator.

Listing 19-9. ch19_06b.html

<body>

 Apples
 Pears
 Bananas

<script type="text/javascript">
 d3.select('ul').append('li').text("Citrus fruits");
 d3.select('ul').append('ul').append('li').text("Oranges");
 d3.select('ul').select('ul').append('li').text("Lemons");
 d3.select('ul').select('ul').append('li').text("Grapefruits");
</script>
</body>

Figure 19-12 shows the new nested list of citrus fruits on the browser and the HTML structure that generates
it on FireBug.

Figure 19-11. FireBug shows the HTML structure with the added element

CHAPTER 19 ■ WORKING WITH D3

384

The insert() Method
The last operator, insert(), has a particular behavior. If you use it with only one argument, it behaves as if you were
using append(). Normally, it is used with two arguments. The first indicates the tag to add, and the second is the
matching tag where you want to insert it. In fact, replace append() with insert() in the preceding fruit list example,
and you will obtain a different result, shown in Figure 19-13 (the original list is on the left and new one with Oranges
added is on the right).

d3.select('ul').insert('li','li').text("Oranges");

Figure 19-13. Using the insert() operator, you can insert the Oranges item at the top of the list

Figure 19-12. FireBug shows the HTML structure with a nested unordered list in the browser on the left and in FireBug
on the right

CHAPTER 19 ■ WORKING WITH D3

385

Now the new element is at the top of the unordered list. But if you wanted to insert a new item in a different
location than the first? You can use the CSS selector nth-child(i) to do this, where i is the index of the element.
Therefore, if you use the selector li:nth-child(i), you are going to select the i-th element. Thus, if you want to
insert an element between the second and the third element, you need to call the third element in the insert()
operator (remember that this operator puts the new element before the one called):

d3.select('ul').insert('li','li:nth-child(2)').text("Oranges");

This will insert the new Orange item between the second and the third items in the list, as shown in Figure 19-14
(in the browser on the left and in FireBug on the right).

Figure 19-14. Using the CSS selector nth-child, you can add the Oranges item in any position in the list

HTML(), APPEND(), AND INSERT() OPERATORS:
A BETTER UNDERSTANDING

Sometimes, understanding the functionality of these three operators isn’t easy. Consider this schematic HTML

structure, containing a generic parent tag and some children tags inside:

<parent>
 <child></child>
 <child></child>
 <child></child>
</parent>

The following simple diagrams show what each operator does exactly, in order to better understand the different

behaviors. It is crucial that you fully understand the functionality of these three operators if you want to exploit the

full potential of the D3 library.

CHAPTER 19 ■ WORKING WITH D3

386

When you need to create a new tag element at the end of a list of other tags at the same level of the HTML

structure, use the append() operator. Figure 19-15 shows the behavior of this operator.

Figure 19-16. The insert() operator adds a child tag before the child tag is passed as a second argument

Figure 19-17. You can pass a child of the list as the argument using the CSS selector nth-child()

Figure 19-15. The append() operator adds a child tag to the end of the list

When you need to create a new tag element at the beginning of a list of other tags at the same level of the HTML

structure, use the insert() operator. Figure 19-16 shows the behavior of this operator.

When you need to create a new tag element at a specific position in a list of other tags, always at the same level

of the HTML structure, use the insert() operator. Figure 19-17 shows the behavior of this operator.

CHAPTER 19 ■ WORKING WITH D3

387

When you need to create a new tag element in place of another tag or in place of a list of other tags at the same

level of the HTML structure, use the html() operator. Figure 19-18 illustrates the behavior of this operator.

Figure 19-18. The html() operator replaces the contents of the parent tag with the tag passed as the argument

Inserting Data into Elements
You have just seen how to create new elements in your document. But how can you put the data inside? This is where
the data() operator comes in, by passing an array of data as an argument.

For each element in the selection, a value will be assigned in the array following the same order of the sequence.
This correspondence is indicated by a generic function in which d and i are passed as arguments.

function(d,i) {
 // code with d and i
 // return some elaboration of d;
}

This function will be executed as many times as there are elements in the list: i is the index of the sequence and d is the
value in the data array corresponding to that index. Many times you are not interested in the value of i and use only d.

For those familiar with the for loop, it is as if you had written:

for(i=0; i < selection.length; i++){
 d = input_array[i];
 // code with d and i
 //return output_array[i];
}

To understand the whole thing, there is no better way than to provide an example. Define an array containing the
names of three fruits. You’ll create an unordered list with three empty items and create a selection of these items with
selectAll(). You must have a corresponding number of items in the selection and values in the array; otherwise, the
values in surplus will not be evaluated. You associate the array to the selection and then, applying function(d), write
the values of each item within the list (see Listing 19-10).

Listing 19-10. ch19_07.html

<body>

CHAPTER 19 ■ WORKING WITH D3

388

<script type="text/javascript">
 var fruits = ['Apples', 'Pears', 'Bananas'];

 d3.selectAll('li').data(fruits).text(function(d){
 return d;
 });
</script>
</body>

Figure 19-19 shows the result in the browser on the left and in FireBug on the right. In FireBug, you can see the
HTML structure used for each list item content, which was not present when you wrote Listing 19-10. These
added text items are the values of the fruits array.

Figure 19-19. It is possible to fill the content of HTML elements with array values

The data() operator does not just bind data to elements, it computes a connection between the element of the
selection and the data provided. All goes well as long as the length of the array is equal to the number of elements in
the selection. But what if it is not so? If you have a selection with three elements and provide an array with five values,
the two extra values will be stored in a special selection called “enter.” This selection is accessible via the enter()
operator on the return value of a call to data. You can see this in the example in Listing 19-11.

Listing 19-11. ch19_08.html

<body>

<script type="text/javascript">
 var fruits = ['Apples', 'Pears', 'Bananas', 'Oranges', 'Strawberries'];
 var list = d3.select('ul');
 var fruits = list.selectAll('li').data(fruits);
 fruits.enter().append('li').text(function(d){
 return d;
 });

CHAPTER 19 ■ WORKING WITH D3

389

 fruits.text(function(d){
 return d;
 });
</script>
</body>

First, you define the array with five different fruits. Then, you make a selection that contains the list and assign it
to the variable list. From this selection, you make a further selection containing the three empty list items and assign
the fruits array to it. From this association, the last two values of the array will advance (Oranges and Strawberries),
and thus they will be stored in the enter selection. Now you must pay particular attention to this point: usually it is
best to deal with the enter selection first. Therefore, you have to access the enter selection and use append() in order
to create two new list items with the two fruits advanced. Then you write the values in the fruit selection within the
three existing list items.

You get a list with all five fruits, in the order in which they were entered. Figure 19-20 shows the change in the
browser on the top and in FireBug on the bottom.

Figure 19-20. It is possible to fill the content of HTML elements with array values and to integrate them with other
elements if they are not enough

CHAPTER 19 ■ WORKING WITH D3

390

Applying Dynamic Properties
You have seen how to define and modify styles, attributes, and other properties with the use of functions provided by the
D3 framework. But so far, they have been treated as constants. It is time to take a leap forward. One of the advantages
of the JavaScript language and especially of the D3 (and jQuery) library lies in its ability to make the content of a page
dynamic. In fact, you have just seen how to delete, create, and manipulate the element tags in a web page. A similar
approach is also applicable to other types of values such as CSS styles or the attributes of elements you created or
manipulated through the selections mechanism. You could even create different options relating to events or controls.

D3 provides you with a set of specific functions for this purpose. Despite their apparent simplicity, these
functions can be a powerful tool for those who know how to make full use of their mechanisms.

In the example in Listing 19-12, you use a generic function to assign a random color to the paragraphs. Every time
the page is loaded, it shows a different set of colors.

Listing 19-12. ch19_09.html

<body>
<p>the first paragraph</p>
<p>the second paragraph</p>
<p>the third paragraph</p>
<p>the last paragraph</p>
<script>
d3.selectAll("p").style("color", function() {

 r = Math.round((Math.random() * 255));
 g = Math.round((Math.random() * 255));
 b = Math.round((Math.random() * 255));
 return "rgb("+r+", "+g+", "+b+")";

});
</script>
</body>

Figure 19-21 on the left shows the results of one loaded page and another, on the right, with different colors
applied to it. Every time you load the page, you get a different color combination.

Figure 19-21. The colors change each time the page loads

CHAPTER 19 ■ WORKING WITH D3

391

Certainly, this is a very trivial example, but it shows the basic idea. Any value that you assign to an attribute, a
text, or a style can be dynamically generated from a function.

Adding SVG Elements
You have finally arrived at the point where you can apply what you learned to create beautiful displays. In this section,
you’ll begin to learn about the peculiarities of the D3 library, with the creation and manipulation of graphic elements
such as lines, squares, circles, and more. All of this will be done primarily by using nested structures of two tags: <svg>
for graphic elements and <g> for application groups.

First, you’ll learn how to create an SVG element and how to nest it in a group using the <g> tag. Later, you’ll
discover what SVG transformations are and how to apply them to groups of elements. Finally, with a further example,
you’ll see how to animate these elements with SVG transitions, in order to get nice animations.

Creating an SVG Element
You can start from a <div> tag, which will be used as a container for the visualization, similarly to what jQuery does
with <canvas>. From this <div> tag, you create the root tag <svg> using the append() operator. Then you can set the
size of the visualization by acting on the height and width attributes using the attr() operator (see Listing 19-13).

Listing 19-13. ch19_10.html

<body>
<div id="circle"></div>
<script type="text/javascript">
 var svg = d3.select('#circle')
 .append('svg')
 .attr('width', 200)
 .attr('height', 200);
</script>
</body>

From FireBug, you can see the <body> structure with the new <svg> element and its attributes (see Figure 19-22).

Figure 19-22. FireBug shows the <svg> tag you just created

CHAPTER 19 ■ WORKING WITH D3

392

You can also add a basic shape to the root tag <svg>. Let’s add a yellow circle (see Listing 19-14). Once you
understand this principle, it is very simple to repeat it whenever you wish.

Listing 19-14. ch19_10.html

<script type="text/javascript">
 var svg = d3.select('#circle')
 .append('svg')
 .attr('width', 200)
 .attr('height', 200);

 svg.append('circle')
 .style('stroke', 'black')
 .style('fill', 'yellow')
 .attr('r', 40)
 .attr('cx', 50)
 .attr('cy', 50);
</script>

Figure 19-23 shows the perfect yellow circle.

Figure 19-24. In FireBug, it is possible to follow the development of the tag structure

Figure 19-23. A perfect yellow circle

In FireBug, you can see how the tree structure of the tags gradually takes shape from the root <svg>, specifying all
the attributes (see Figure 19-24).

CHAPTER 19 ■ WORKING WITH D3

393

Now that you have seen how to create graphics using SVG tags, the next step is to apply transformations
to them.

Transformations
A key aspect of D3 is its transformation capability. This extends the concept of SVG transformations in JavaScript.
Once an object is created in SVG, from a simple square to more complex structures, it can be subjected to various
transformations. The most common transformations include:

•฀ Scale

•฀ Translate

•฀ Rotate

Note ■ If you are interested in learning more about transformations, I suggest that you visit this page:

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform. It lists all the available

transformations, with simple explanations.

Typically, you use sequences of these basic transformations to obtain more complex transformations. As always,
you’ll see a series of small examples to illustrate the concept of transformations. First, you’ll draw a small red square
in the same way you drew the yellow circle (see Listing 19-15). For this purpose, you use the <rect> tag. The only
difference from <circle> is that for rectangles, you need to specify the position of the rectangle’s top-left corner with x
and y instead of the center of the circle. Then you have to specify the size of the rectangle, and since it is a square,
the sides will be equal.

Listing 19-15. ch19_11a.html

<div id="square"></div>
<script type="text/javascript">
 var svg = d3.select('#square')
 .append('svg')
 .attr('width', 200)
 .attr('height', 200);
 svg.append('rect')
 .style('stroke', 'black')
 .style('fill', 'red')
 .attr('x', 50)
 .attr('y', 50)
 .attr('width', 50)
 .attr('height', 50);
</script>

It’s a good time to introduce another concept that will be useful when in dealing with SVG elements: groups of
elements. You’ll often need to apply a series of operations, including only the transformations at times, to a group of
shapes or to a complex shape (consisting of multiple basic shapes). This is possible by grouping several items together
in a group, which is reflected in SVG by putting all the elements in a tag <g>. So if you want to apply a transformation
to the red square for example, you need to insert it within a group (see Listing 19-16).

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform

CHAPTER 19 ■ WORKING WITH D3

394

Listing 19-16. ch19_11a.html

var svg = d3.select('#square')
 .append('svg')
 .attr('width', 200)
 .attr('height', 200);

var g = svg.append("svg:g");

g.append('rect')
 .style('stroke', 'black')
 .style('fill', 'red')
 .attr('x', 50)
 .attr('y', 50)
 .attr('width', 50)
 .attr('height', 50);

Figure 19-25 shows how the SVG structure appears in FireBug.

Figure 19-26. A red square is a good object upon which to apply transformations

Figure 19-25. FireBug shows the SVG structure corresponding to the red square

In the browser, you’ll a small red square like the one shown in Figure 19-26.

CHAPTER 19 ■ WORKING WITH D3

395

Now you’ll apply all the transformations, one by one. Start with the translation, which in SVG is expressed by
the translate(x, y) function, where x and y are the amount of pixels by which the square will be moved
(see Listing 19-17).

Listing 19-17. ch19_11b.html

var g = svg.append("svg:g")
 .attr("transform", "translate(" + 100 + ",0)");

Here I put the value 100 outside of the string passed as an attribute, to understand that at that point you can
insert a previously defined variable. This will make the transformation more dynamic. With this line, you moved the
square to the right 100 pixels (see Figure 19-27).

Figure 19-27. Now the red square appears right-shifted by 100 pixels

Another transformation that you can apply to the square is called scaling. In this SVG, it is expressed through the
function scale(s) or scale(sx, sy). If you pass a single parameter in the function, the scaling will be uniform, but
if you pass two parameters, you can apply the expansion of the square in a different way horizontally and vertically.
Listing 19-18 increases the size of the red square by two times. Thus, you need to apply the scale() transformation
and to pass the value 2 as a parameter. The number passed is the factor by which the size of the square will be
multiplied. Since you’ve passed a single parameter, scaling is uniform.

Listing 19-18. ch19_11c.html

var g = svg.append("svg:g")
 .attr("transform","scale(2)");

Figure 19-28 shows the square scaled by two times. The square has doubled in height and width.

CHAPTER 19 ■ WORKING WITH D3

396

If you want non-uniform scaling, you can use something like Listing 19-19 to obtain a result similar to Figure 19-29.
Non-uniform scaling can distort a figure to give another picture. In this case, you get a rectangle from a square.

Listing 19-19. ch19_11d.html

var g = svg.append("svg:g")
 .attr("transform","scale(2, 1)");

Figure 19-29. A rectangle obtained by applying non-uniform scaling to a square

Figure 19-28. The red square has doubled its size

The last kind of transformation is rotation. It is expressed in SVG with the function rotate(degree,x,y),
where the first argument is the angle of rotation (clockwise) in degrees, and x and y are the coordinates of the
center of rotation.

Say you want the center of rotation to correspond with the center of the square, which is located at x = 75 and
y = 75. If you wish to draw a rhombus, you need to perform a rotation of 45 degrees on the square (see Listing 19-20).

Listing 19-20. ch19_11e.html

var g = svg.append("svg:g")
 .attr("transform","rotate(45, 75, 75)");

You get the rhombus (see Figure 19-30).

CHAPTER 19 ■ WORKING WITH D3

397

But the most interesting effect involves applying the transformations in a sequence, thereby creating a chain
(see Listing 19-21).

Listing 19-21. ch19_11f.html

var g = svg.append("svg:g")
 .attr("transform", "translate(-30, 0),scale(2, 1),rotate(45, 75, 75)");

From this listing, you obtain the shape in Figure 19-31.

Figure 19-30. A rhombus is the result you obtain when you rotate a square

Figure 19-31. A rhombus obtained by applying a chain of transformations to a square

Transitions
You have seen that values of attributes, styles, and so forth, can be dynamic, according to the definition set with the
help of certain functions. But D3 offers more—you can even animate your shapes. D3 provides three functions to
this purpose:

•฀ transition()

•฀ delay()

•฀ duration()

CHAPTER 19 ■ WORKING WITH D3

398

Naturally, you’ll apply these functions to the SVG elements, thanks to D3, which can recognize any kind of values
and interpolate them.

You define a transition when an SVG shape passes from one state to another. Both the starting state and
the final state are characterized by several parameters that define the color, the shape, the size, and the position
of an object. You take as the initial state the one defined in the yellow circle example (refer to Listing 19-14). In
Listing 19-22, you subject the circle to a transition consisting of three different mutations: the circle changes its
color to black (setting fill to black), it reduces its area (changing r from 40 to 10), and it moves slightly to the right
(changing cx from 50 to 150).

Listing 19-22. ch19_12.html

<div id="circle"></div>
<script>
var svg = d3.select('#circle')
 .append('svg')
 .attr('width', 200)
 .attr('height', 200);

svg.append('circle')
 .style('stroke', 'black')
 .style('fill', 'yellow')
 .attr('r', 40)
 .attr('cx', 50)
 .attr('cy', 50)
 .transition()
 .delay(100)
 .duration(4000)
 .attr("r", 10)
 .attr("cx", 150)
 .style("fill", "black");
</script>

So, in this example, you add the transition() method to the methods chain. This separates the initial state
from the final one and warns D3 of a transition. Immediately after the transition(), there are two other functions:
delay() and duration().

The delay() function takes one argument: the time that must elapse before the transition begins. The
duration() function, in contrast, is defined as the time taken by the transition. The greater the value of the parameter
passed, the slower the transition will be.

Following these three functions, you add all the attributes characterizing the final state of the figure to the
method chain. D3 interpolates the intermediate values depending on the time you have established, and will generate
all the intermediate figures with those values. What appears before your eyes is an animation in which the yellow
circle turns black, moving to the left and decreasing in size. All of this takes four seconds.

Figure 19-32 shows the transition sequence whereby you can see the changes to the circle.

CHAPTER 19 ■ WORKING WITH D3

399

The simple examples you have seen so far were applied to one graphic element at a time. The next step is to apply
what you have learned to groups of elements, so as to create more complex graphics. Subsequent chapters provide
good examples in which this basic concept of the D3 library will be put into practice.

Summary
This chapter covered the highlights of the D3 library. Even without making use of the jQuery library, D3 can manage
selections, selectors and operators in a very similar way. Through a series of examples, you have seen how to
manipulate DOM elements by changing their attributes, and by creating new ones when needed. In the second part
of the chapter, you learned what the main object of manipulations with the D3 library is: SVG elements. These are
the graphic building blocks with which you build your charts. Finally, you took a quick look at how to apply SVG
transformations to these graphic elements and then at how to exploit SVG transitions to generate nice animations.

The next chapter puts what you have learned so far about the D3 library into practice, by implementing line
charts. Taking one SVG element after another, you’ll see how to achieve similar results to those obtained with the
jqPlot and Highcharts libraries.

Figure 19-32. Different instances of the animation of a circle subjected to transitions

401

CHAPTER 20

Line Charts with D3

In this chapter, you are going to create a line chart with ticks and labels. D3 is not a charting framework like jqPlot. It
does allow you, however, to add Scalable Vector Graphics (SVG) elements to a document, and by manipulating these
elements, you can create any kind of visualization. Such flexibility enables you to build any type of chart, building it up
brick by brick.

You’ll begin by looking at how to build the basic elements of a line chart using the D3 commands introduced in
the previous chapter. In particular, you’ll be analyzing the concepts of scales, domains, and ranges, which you’ll be
encountering frequently. These constitute a typical aspect of the D3 library, in terms of how it manages sets of values.

Once you understand how to manage values in their domains, scales, and intervals, you’ll be ready to move on
to the realization of the chart components, such as axes, axis labels, the title, and the grid. These components form
the basis upon which you’ll be drawing the line chart. Unlike in jqPlot, these components are not readily available but
must be developed gradually. This will result in additional work, but it will also enable you to create special features.
Your D3 charts will be able to respond to particular needs, or at least, they will have a totally original look. By way of
example, you’ll see how to add arrows to the axes.

Another peculiarity of the D3 library is the use of functions that read data contained in a file. You’ll see how these
functions work and how to exploit them for your needs.

Once you have the basic knowledge necessary to implement a line chart, you’ll see how to implement a
multiseries line chart. You’ll also read about how to implement a legend and how to associate it with the chart.

Finally, to conclude, you’ll analyze a particular case of line chart: the difference line chart. This will help you
understand clip area paths—what they are and what their uses are.

Developing a Line Chart with D3
You’ll begin to finally implement your chart using the D3 library. In this and in the following sections, you’ll discover
a different approach toward chart implementation compared to the one adopted with libraries such as jqPlot and
Highcharts. Here the implementation is at a lower level and the code is much longer and more complex; however,
nothing beyond your reach.

Now, step by step, or better, brick by brick, you’ll discover how to produce a line chart and the elements that
compose it.

Starting with the First Bricks
The first “brick” to start is to include the D3 library in your web page (for further information, see Appendix A):

<script src="../src/d3.v3.min.js"></script>

CHAPTER 20 ■ LINE CHARTS WITH D3

402

Or if you prefer to use a content delivery network (CDN) service:

<script src="http://d3js.org/d3.v3.min.js"></script>

The next “brick” consists of the input data array in Listing 20-1. This array contains the y values of the data series.

Listing 20-1. ch20_01.html

var data = [100, 110, 140, 130, 80, 75, 120, 130, 100];

Listing 20-2 you define a set of variables related to the size of the visualization where you’re drawing the chart.
The w and h variables are the width and height of the chart; the margins are used to create room at the edges of
the chart.

Listing 20-2. ch20_01.html

w = 400;
h = 300;
margin_x = 32;
margin_y = 20;

Because you’re working on a graph based on an x-axis and y-axis, in D3 it is necessary to define a scale,
a domain, and a range of values for each of these two axes. Let’s first clarify these concepts and learn how they are
managed in D3.

Scales, Domains, and Ranges
You have already had to deal with scales, even though you might not realize it. The linear scale is more natural to
understand, although in some examples, you have used a logarithmic scale (see the sidebar, “The Log Scale" in
Chapter 9). A scale is simply a function that converts a value in a certain interval, called a domain, into another value
belonging to another interval, called a range. But what does all this mean exactly? How does this help you?

Actually, this can serve you every time you want to affect the conversion of a value between two variables
belonging to different intervals, but keeping its “meaning” with respect to the current interval. This relates to the
concept of normalization.

Suppose that you want to convert a value from an instrument, such as the voltage reported by a multimeter. You
know that the voltage value would read between 0 and 5 volts, which is the range of values, also known as the domain.

You want to convert the voltage measured on a scale of red. Using Red-Green-Blue (RGB) codes, this value will be
between 0 and 255. You have now defined another color range, which is the range.

Now suppose the voltage on the multimeter reads 2.7 volts, and the color scale shown in red corresponds to 138
(actually 137.7). You have just applied a linear scale for the conversion of values. Figure 20-1 shows the conversion
of the voltage value into the corresponding R value on the RGB scale. This conversion operates within a linear scale,
since the values are converted linearly.

http://d3js.org/d3.v3.min.js

CHAPTER 20 ■ LINE CHARTS WITH D3

403

But of what use is all of this? First, conversions between different intervals are not so uncommon when you aim
to visualize data in a chart, and second, such conversions are managed completely by the D3 library. You do not need
to do any calculations; you just need to define the domains, the range, and the scale to apply.

Translating this example into D3 code, you can write:

var scale = d3.scale.linear(),
 .domain([0,5]),
 .range([0,255]);
console.log(Math.round(scale(2.7))); //it returns 138 on FireBug console

Inside the Code
You can define the scale, the domain, and the range; therefore, you can continue to implement the line chart by
adding Listing 20-3 to your code.

Listing 20-3. ch20_01.html

y = d3.scale.linear().domain([0, d3.max(data)]).range([0 + margin_y, h - margin_y]);
x = d3.scale.linear().domain([0, data.length]).range([0 + margin_x, w - margin_x]);

Because the input data array is one-dimensional and contains the values that you want to represent on the y-axis,
you can extend the domain from 0 to the maximum value of the array. You don’t need to use a for loop to find this
value. D3 provides a specific function called max(date), where the argument passed is the array in which you want to
find the maximum.

Now is the time to begin adding SVG elements. The first element to add is the <svg> element that represents
the root of all the other elements you’re going to add. The function of the <svg> tag is somewhat similar to that of the
canvas in jQuery and jqPlot. As such, you need to specify the canvas size with w and h. Inside the <svg> element, you
append a <g> element so that all the elements added to it internally will be grouped together.

Subsequently, apply a transformation to this group <g> of elements. In this case, the transformation consists of a
translation of the coordinate grid, moving it down by h pixels, as shown in Listing 20-4.

Figure 20-1. The conversion from the voltage to the R value is managed by the D3 library

CHAPTER 20 ■ LINE CHARTS WITH D3

404

Listing 20-4. ch20_01.html

var svg = d3.select("body")
 .append("svg:svg")
 .attr("width", w)
 .attr("height", h);

var g = svg.append("svg:g")
 .attr("transform", "translate(0," + h + ")");

Another fundamental thing you need in order to create a line chart is the path element. This path is filled with
the data using the d attribute.

The manual entry of all these values is too arduous and in this regard D3 provides you with a function that does
it for you: d3.svg.line. So, in Listing 20-5, you declare a variable called line in which every data is converted into a
point (x, y).

Listing 20-5. ch20_01.html

var line = d3.svg.line()
 .x(function(d,i) { return x(i); })
 .y(function(d) { return -1 * y(d); });

As you’ll see in all the cases where you need to make a scan of an array (a for loop), in D3 such a scan is handled
differently through the use of the parameters d and i. The index of the current item of the array is indicated with i,
whereas the current item is indicated with d. Recall that you translated the y-axis down with a transformation. You
need to keep that mind; if you want to draw a line correctly, you must use the negative values of y. This is why you
multiply the d values by -1.

The next step is to assign a line to a path element (see Listing 20-6).

Listing 20-6. ch20_01.html

g.append("svg:path").attr("d", line(data));

If you stopped here and launch the web browser on the page, you would get the image shown in Figure 20-2.

Figure 20-2. The default behavior of an SVG path element is to draw filled areas

This seems to be wrong somehow, but you must consider that in the creation of images with SVG, the role
managed by CSS styles is preponderant. In fact, you can simply add the CSS classes in Listing 20-7 to have the line
of data.

CHAPTER 20 ■ LINE CHARTS WITH D3

405

Listing 20-7. ch20_01.html

<style>
path {
 stroke: steelblue;
 stroke-width: 3;
 fill: none;
}

line {
 stroke: black;
}
</style>

Thus, with the CSS style classes suitably defined, you’ll get a line as shown in Figure 20-3.

Figure 20-3. The SVG path element draws a line if the CSS style classes are suitably defined

But you are still far from having a line chart. You must add the two axes. To draw these two objects, you use
simple SVG lines, as shown in Listing 20-8.

Listing 20-8. ch20_01.html

// draw the x axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(w))
 .attr("y2", -y(0))

// draw the y axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(0))
 .attr("y2", -y(d3.max(data))-10)

Now is the time to add labels. For this purpose there is a D3 function that greatly simplifies the job: ticks().
This function is applied to a D3 scale such as x or y, and returns rounded numbers to use as ticks. You need to use the
function text(String) to obtain the string value of the current d (see Listing 20-9).

CHAPTER 20 ■ LINE CHARTS WITH D3

406

Listing 20-9. ch20_01.html

//draw the xLabels
g.selectAll(".xLabel")
 .data(x.ticks(5))
 .enter().append("svg:text")
 .attr("class", "xLabel")
 .text(String)
 .attr("x", function(d) { return x(d) })
 .attr("y", 0)
 .attr("text-anchor", "middle");

// draw the yLabels
g.selectAll(".yLabel")
 .data(y.ticks(5))
 .enter().append("svg:text")
 .attr("class", "yLabel")
 .text(String)
 .attr("x", 25)
 .attr("y", function(d) { return -y(d) })
 .attr("text-anchor", "end");

To align the labels, you need to specify the attribute text-anchor. Its possible values are middle, start, and end,
depending on whether you want the labels aligned in the center, to the left, or to the right, respectively.

Here, you use the D3 function attr() to specify the attribute, but it is possible to specify it in the CSS style as well,
as shown in Listing 20-10.

Listing 20-10. ch20_01.html

.xLabel {
 text-anchor: middle;
}

.yLabel {
 text-anchor: end;
}

In fact, writing these lines is pretty much the same thing. Usually, however, you’ll prefer to set these values in
the CSS style when you plan to change them—they are understood as parameters. Instead, in this case, or if you want
them to be a fixed property of an object, it is preferable to insert them using the attr() function.

Now you can add the ticks to the axes. This is obtained by drawing a short line for each tick. What you did for tick
labels you now do for ticks, as shown in Listing 20-11.

Listing 20-11. ch20_01.html

//draw the x ticks
g.selectAll(".xTicks")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xTicks")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(0))

CHAPTER 20 ■ LINE CHARTS WITH D3

407

 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(0)-5)

// draw the y ticks
g.selectAll(".yTicks")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yTicks")
 .attr("y1", function(d) { return -y(d); })
 .attr("x1", x(0)+5)
 .attr("y2", function(d) { return -y(d); })
 .attr("x2", x(0))

Figure 20-4 shows the line chart at this stage.

Figure 20-4. Adding the two axes and the labels on them, you finally get a simple line chart

As you can see, you already have a line chart. Perhaps by adding a grid, as shown in Listing 20-12, you can make
things look better.

Listing 20-12. ch20_01.html

//draw the x grid
g.selectAll(".xGrids")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xGrids")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(0))
 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(d3.max(data))-10);
// draw the y grid
g.selectAll(".yGrids")
 .data(y.ticks(5))
 .enter().append("svg:line")

CHAPTER 20 ■ LINE CHARTS WITH D3

408

 .attr("class", "yGrids")
 .attr("y1", function(d) { return -y(d); })
 .attr("x1", x(w))
 .attr("y2", function(d) { return -y(d); })
 .attr("x2", x(0));

You can make a few small additions to the CSS style (see Listing 20-13) in order to get a light gray grid as the
background of the line chart. Moreover, you can define the text style as it seems more appropriate, for example by
selecting Verdana for the font, with size 9.

Listing 20-13. ch20_01.html

<style>
path {
 stroke: steelblue;
 stroke-width: 3;
 fill: none;
}
line {
 stroke: black;
}
.xGrids {
 stroke: lightgray;
}
.yGrids {
 stroke: lightgray;
}
text {
 font-family: Verdana;
 font-size: 9pt;
}
</style>

The line chart is now drawn with a light gray grid, as shown in Figure 20-5.

Figure 20-5. A line chart with a grid covering the blue lines

CHAPTER 20 ■ LINE CHARTS WITH D3

409

Look carefully at the Figure 20-5. The gray lines of the grid are drawn above the blue line representing the data.
In other words, to be more explicit, you must be careful about the order in which you draw the SVG elements. In fact
it is convenient to first draw the axes and the grid and then eventually to move on to the representation of the input data.
Thus, you need to put all items that you want to draw in the right order, as shown in Listing 20-14.

Listing 20-14. ch20_01.html

<script>
var data = [100,110,140,130,80,75,120,130,100];
w = 400;
h = 300;
margin_x = 32;
margin_y = 20;
y = d3.scale.linear().domain([0, d3.max(data)]).range([0 + margin_y, h - margin_y]);
x = d3.scale.linear().domain([0, data.length]).range([0 + margin_x, w - margin_x]);
var svg = d3.select("body")
 .append("svg:svg")
 .attr("width", w)
 .attr("height", h);

var g = svg.append("svg:g")
 .attr("transform", "translate(0," + h + ")");

var line = d3.svg.line()
 .x(function(d,i) { return x(i); })
 .y(function(d) { return -y(d); });

// draw the y axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(w))
 .attr("y2", -y(0));

// draw the x axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(0))
 .attr("y2", -y(d3.max(data))-10);

//draw the xLabels
g.selectAll(".xLabel")
 .data(x.ticks(5))
 .enter().append("svg:text")
 .attr("class", "xLabel")
 .text(String)
 .attr("x", function(d) { return x(d) })
 .attr("y", 0)
 .attr("text-anchor", "middle");

CHAPTER 20 ■ LINE CHARTS WITH D3

410

// draw the yLabels
g.selectAll(".yLabel")
 .data(y.ticks(5))
 .enter().append("svg:text")
 .attr("class", "yLabel")
 .text(String)
 .attr("x", 25)
 .attr("y", function(d) { return -y(d) })
 .attr("text-anchor", "end");

//draw the x ticks
g.selectAll(".xTicks")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xTicks")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(0))
 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(0)-5);

// draw the y ticks
g.selectAll(".yTicks")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yTicks")
 .attr("y1", function(d) { return -1 * y(d); })
 .attr("x1", x(0)+5)
 .attr("y2", function(d) { return -1 * y(d); })
 .attr("x2", x(0));

//draw the x grid
g.selectAll(".xGrids")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xGrids")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(0))
 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(d3.max(data))-10);

// draw the y grid
g.selectAll(".yGrids")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yGrids")
 .attr("y1", function(d) { return -1 * y(d); })
 .attr("x1", x(w))
 .attr("y2", function(d) { return -y(d); })
 .attr("x2", x(0));

CHAPTER 20 ■ LINE CHARTS WITH D3

411

// draw the x axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(w))
 .attr("y2", -y(0));

// draw the y axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(0))
 .attr("y2", -y(d3.max(data))+10);

// draw the line of data points
g.append("svg:path").attr("d", line(data));
</script>

Figure 20-6 shows the line chart with the elements drawn in the correct sequence. In fact, the blue line
representing the input data is now on the foreground covering the grid and not vice versa.

Using Data with (x, y) Values
So far, you have used an input data array containing only the values of y. In general, you’ll want to represent points
that have x and y values assigned to them. Therefore, you’ll extend the previous case by using the input data array in
Listing 20-15.

Listing 20-15. ch20_02.html

var data = [{x: 0, y: 100}, {x: 10, y: 110}, {x: 20, y: 140},
 {x: 30, y: 130}, {x: 40, y: 80}, {x: 50, y: 75},
 {x: 60, y: 120}, {x: 70, y: 130}, {x: 80, y: 100}];

Figure 20-6. A line chart with a grid drawn correctly

CHAPTER 20 ■ LINE CHARTS WITH D3

412

You can now see how the data is represented by dots containing both the values of x and y. When you use a
sequence of data, you’ll often need to immediately identify the maximum values of both x and y (and sometimes
the minimum values too). In the previous case, you used the d3.max and d3.min functions, but these operate only
on arrays, not on objects. The input data array you inserted is an array of objects. How do you solve this? There are
several approaches. Perhaps the most direct way is to affect a scan of the data and find the maximum values for both
x and y. In Listing 20-16, you define two variables that will contain the two maximums. Then scanning the values of
x and y of each object at a time, you compare the current value of x and y with the values of xMax and yMax, in order to
see which value is larger. The greater of the two will become the new maximum.

Listing 20-16. ch20_02.html

var xMax = 0, yMax = 0;
data.forEach(function(d) {
 if(d.x > xMax)
 xMax = d.x;
 if(d.y > yMax)
 yMax = d.y;
});

Several useful D3 functions work on arrays, so why not create two arrays directly from the input array of
objects—one containing the values of x and the other containing the values of y? You can use these two arrays
whenever necessary, instead of using the array of objects, which is far more complex (see Listing 20-17).

Listing 20-17. ch20_02.html

var ax = [];
var ay = [];
data.forEach(function(d,i){
 ax[i] = d.x;
 ay[i] = d.y;
})
var xMax = d3.max(ax);
var yMax = d3.max(ay);

This time you assign both x and y to the line of data points, as shown in Listing 20-18. This operation is very
simple even when you’re working with an array of objects.

Listing 20-18. ch20_02.html

var line = d3.svg.line()
 .x(function(d) { return x(d.x); })
 .y(function(d) { return -y(d.y); })

As for the rest of the code, there is not much to be changed—only a few corrections to the values of x and y
bounds, as shown in Listing 20-19.

Listing 20-19. ch20_02.html

y = d3.scale.linear().domain([0, yMax]).range([0 + margin_y, h - margin_y]);
x = d3.scale.linear().domain([0, xMax]).range([0 + margin_x, w - margin_x]);
...
// draw the y axis
g.append("svg:line")

CHAPTER 20 ■ LINE CHARTS WITH D3

413

 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(0))
 .attr("y2", -y(yMax)-20)
...
//draw the x grid
g.selectAll(".xGrids")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xGrids")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(0))
 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(yMax)-10)

// draw the y grid
g.selectAll(".yGrids")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yGrids")
 .attr("y1", function(d) { return -1 * y(d); })
 .attr("x1", x(xMax)+20)
 .attr("y2", function(d) { return -1 * y(d); })
 .attr("x2", x(0))

Figure 20-7 shows the outcome resulting from the changes made to handle the y values introduced by the input
data array.

Figure 20-7. A line chart with a grid and axis labels that take into account the y values entered with the input array

CHAPTER 20 ■ LINE CHARTS WITH D3

414

Controlling the Axes’ Range
In the line chart you just drew in the code, the data line will always be at the top of the chart. If your data oscillates at
very high levels, with the scale of y starting at 0, you risk having a flattened trend line. It is also not optimal when the
upper limit of the y-axis is the maximum value of y. Here, you’ll add a check on the range of the axes. For this purpose
in Listing 20-20, you define four variables that specify the lower and upper limits of the x- and y-axes.

Listing 20-20. ch20_03.html

var xLowLim = 0;
var xUpLim = d3.max(ax);
var yUpLim = 1.2 * d3.max(ay);
var yLowLim = 0.8 * d3.min(ay);

You consequently replace all the limit references with these variables. Note that the code becomes somewhat
more readable. Specifying these four limits in a direct manner enables you to modify them easily as the need arises.
In this case, only the range covered by the experimental data on y, plus a margin of 20%, is represented, as shown
in Listing 20-21.

Listing 20-21. ch20_03.html

y = d3.scale.linear().domain([yLowLim, yUpLim]).range([0 + margin_y, h - margin_y]);
x = d3.scale.linear().domain([xLowLim, xUpLim]).range([0 + margin_x, w - margin_x]);

...

//draw the x ticks
g.selectAll(".xTicks")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xTicks")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(yLowLim))
 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(yLowLim)-5)

// draw the y ticks
g.selectAll(".yTicks")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yTicks")
 .attr("y1", function(d) { return -y(d); })
 .attr("x1", x(xLowLim))
 .attr("y2", function(d) { return -y(d); })
 .attr("x2", x(xLowLim)+5)

//draw the x grid
g.selectAll(".xGrids")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xGrids")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(yLowLim))

CHAPTER 20 ■ LINE CHARTS WITH D3

415

 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(yUpLim))

// draw the y grid
g.selectAll(".yGrids")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yGrids")
 .attr("y1", function(d) { return -y(d); })
 .attr("x1", x(xUpLim)+20)
 .attr("y2", function(d) { return -y(d); })
 .attr("x2", x(xLowLim))

// draw the x axis
g.append("svg:line")
 .attr("x1", x(xLowLim))
 .attr("y1", -y(yLowLim))
 .attr("x2", 1.2*x(xUpLim))
 .attr("y2", -y(yLowLim))

// draw the y axis
g.append("svg:line")
 .attr("x1", x(xLowLim))
 .attr("y1", -y(yLowLim))
 .attr("x2", x(xLowLim))
 .attr("y2", -1.2*y(yUpLim))

Figure 20-8 shows the new line chart with the y-axis range between 60 and 160, which displays the line better.

Figure 20-8. A line chart with y-axis range focused around the y values

Adding the Axis Arrows
In order to better understand the graphical versatility of D3, especially in the implementation of new features, you’ll
learn to add arrows to the x- and y-axes. To do this, you must add the two paths in Listing 20-22, as they will draw the
arrows at the ends of both axes.

CHAPTER 20 ■ LINE CHARTS WITH D3

416

Listing 20-22. ch20_04.html

g.append("svg:path")
 .attr("class", "axisArrow")
 .attr("d", function() {
 var x1 = x(xUpLim)+23, x2 = x(xUpLim)+30;
 var y2 = -y(yLowLim),y1 = y2-3, y3 = y2+3
 return 'M'+x1+','+y1+','+x2+','+y2+','+x1+','+y3;
});

g.append("svg:path")
 .attr("class", "axisArrow")
 .attr("d", function() {
 var y1 = -y(yUpLim)-13, y2 = -y(yUpLim)-20;
 var x2 = x(xLowLim),x1 = x2-3, x3 = x2+3
 return 'M'+x1+','+y1+','+x2+','+y2+','+x3+','+y1;
});

In the CCS style, you add the axisArrow class, as shown in Listing 20-23. You can also choose to enable the fill
attribute to obtain a filled arrow.

Listing 20-23. ch20_04.html

.axisArrow {
 stroke: black;
 stroke-width: 1;
 /*fill: black; */
}

Figure 20-9 shows the results, with and without filling.

Figure 20-9. Two different ways to represent the arrows on the axes

CHAPTER 20 ■ LINE CHARTS WITH D3

417

Adding a Title and Axis Labels
In this section, you’ll add a title to the chart. It is quite a simple thing to do, and you will use the SVG element called
text with appropriate changes to the style, as shown in Listing 20-24. This code will place the title in the center, on top.

Listing 20-24. ch20_05.html

g.append("svg:text")
 .attr("x", (w / 2))
 .attr("y", -h + margin_y)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My first D3 line chart");

Figure 20-10 shows the title added to the top of the line chart.

Figure 20-10. A line chart with a title

Following a similar procedure, you can add labels to the axes as well (see Listing 20-25).

Listing 20-25. ch20_05.html

g.append("svg:text")
 .attr("x", 25)
 .attr("y", -h + margin_y)
 .attr("text-anchor", "end")
 .style("font-size", "11px")
 .text("[#]");

g.append("svg:text")
 .attr("x", w - 40)
 .attr("y", -8)
 .attr("text-anchor", "end")
 .style("font-size", "11px")
 .text("time [s]");

CHAPTER 20 ■ LINE CHARTS WITH D3

418

Figure 20-11 shows the two new axis labels put beside their corresponding axes.

Now that you have learned how to make a line chart, you’re ready to try some more complex charts. Generally,
the data you want to display in a chart are not present in the web page, but rather in external files. You’ll integrate the
following session on how to read data from external files with what you have learned so far.

Drawing a Line Chart from Data in a CSV File
When designing a chart, you typically refer to data of varied formats. This data often come from several different
sources. In the most common case, you have applications on the server (which your web page is addressed to) that
extract data from a database or by instrumentation, or you might even have data files collected in these servers.
The example here uses a comma-separated value (CSV) file residing on the server as a source of data. This CSV file
contains the data and could be loaded directly on the server or, as is more often the case, could be generated by other
applications.

It is no coincidence that D3 has been prepared to deal with this type of file. For this purpose, D3 provides the
function d3.csv(). You’ll learn more about this topic with an example.

Reading and Parsing Data
First of all, you need to define the size of the “canvas,” or better, the size and margins of the area where you want to draw
the chart. This time, you define four margins. This will give you more control over the drawing area (see Listing 20-26).

Listing 20-26. ch20_06a.html

<!DOCTYPE html>
<meta charset="utf-8">
<style>
</style>
<body>
<script src="http://d3js.org/d3.v3.js"></script>
<script>

Figure 20-11. A more complete line chart with title and axes labels

http://d3js.org/d3.v3.js

CHAPTER 20 ■ LINE CHARTS WITH D3

419

var margin = {top: 70, right: 20, bottom: 30, left: 50},
 w = 400 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

Now you deal with the data; write the data in Listing 20-27 with a text editor into a file and save it as data_01.csv.

Listing 20-27. data_01.csv

date,attendee
12-Feb-12,80
27-Feb-12,56
02-Mar-12,42
14-Mar-12,63
30-Mar-12,64
07-Apr-12,72
18-Apr-12,65
02-May-12,80
19-May-12,76
28-May-12,66
03-Jun-12,64
18-Jun-12,53
29-Jun-12,59

This data contain two sets of values separated by a comma (recall that CSV stands for comma-separated values).
The first is in date format and lists the days on which there was a particular event, such as a conference or a meeting.
The second column lists the number of attendees. Note that the dates are not enclosed in any quote marks.

In a manner similar to jqPlot, D3 has a number of tools that the control time formats. In fact, to handle dates
contained in the CSV file, you must specify a parser, as shown in Listing 20-28.

Listing 20-28. ch20_06a.html

var parseDate = d3.time.format("%d-%b-%y").parse;

Here you need to specify the format contained in the CSV file: %d indicates the number format of the days, %b
indicates the month reported with the first three characters, and %y indicates the year reported with the last two digits.
You can specify the x and y values, assigning them with a scale and a range, as shown in Listing 20-29.

Listing 20-29. ch20_06a.html

var x = d3.time.scale().range([0, w]);
var y = d3.scale.linear().range([h, 0]);

Now that you have dealt with the correct processing of input data, you can begin to create the graphical
components.

Implementing Axes and the Grid
You’ll begin by learning how to graphically realize the two Cartesian axes. In this example, shown in Listing 20-30, you
follow the most appropriate way to specify the x-axis and y-axis through the function d3.svg.axis().

CHAPTER 20 ■ LINE CHARTS WITH D3

420

Listing 20-30. ch20_06a.html

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .ticks(5);

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5);

This allows you to focus on the data, while all the axes-related concerns (ticks, labels, and so on) are
automatically handled by the axis components. Thus, after you create xAxis and yAxis, you assign the scale of x
and y to them and set the orientation. Is it simple? Yes; this time you don’t have to specify all that tedious stuff about
axes—their limits, where to put ticks and labels, and so on. Unlike the previous example, all this is automatically done
with very few rows. I chose to introduce this concept now, because in the previous example, I wanted to emphasize
the fact that every item you design is a brick that you can manage with D3, regardless of whether this process is then
automated within the D3 library.

Now you can add the SVG elements to the page, as shown in Listing 20-31.

Listing 20-31. ch20_06a.html

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

Notice how the x-axis is subjected to translation. In fact, in the absence of specifications, the x-axis would be
drawn at the top of the drawing area. Moreover, you also need to add to the CSS style. See Listing 20-32.

Listing 20-32. ch20_06a.html

<style>
body {
 font: 10px verdana;
}
.axis path,
.axis line {
 fill: none;
 stroke: #333;
}
</style>

CHAPTER 20 ■ LINE CHARTS WITH D3

421

Figure 20-12 shows the result.

Using FireBug, you can see the structure of the SVG elements as you have just defined them (see Figure 20-13).

You can see that all the elements are automatically grouped within the group <g> tag. This gives you more control
to apply possible transformations to the separate elements.

You can also add a grid if you want. You build the grid the same way you built the axes. In fact, in the same
manner, you define two grid variables—xGrid and yGrid—using the axis() function in Listing 20-33.

Figure 20-13. FireBug shows the structure of the SVG elements created dynamically to display the axes

Figure 20-12. An empty chart ready to be filled with data

CHAPTER 20 ■ LINE CHARTS WITH D3

422

Listing 20-33. ch20_06a.html

var yAxis = d3.svg.axis()
 ...
var xGrid = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .ticks(5)
 .tickSize(-h, 0, 0)
 .tickFormat("");

var yGrid = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5)
 .tickSize(-w, 0, 0)
 .tickFormat("");

And in the bottom of the JavaScript code, you add the two new SVG elements to the others, as shown in
Listing 20-34.

Listing 20-34. ch20_06a.html

svg.append("g")
 .attr("class", "y axis")
 .call(yAxis)

svg.append("g")
 .attr("class", "grid")
 .attr("transform", "translate(0," + h + ")")
 .call(xGrid);

svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

Both elements are named with the same class name: grid. Thus, you can style them as a single element (see
Listing 20-35).

Listing 20-35. ch20_06a.html

<style>
...
.grid .tick {
 stroke: lightgrey;
 opacity: 0.7;
}
.grid path {
 stroke-width: 0;
}
</style>

Figure 20-14 shows the horizontal grid lines you have just defined as SVG elements.

CHAPTER 20 ■ LINE CHARTS WITH D3

423

Your chart is now ready to display the data from the CSV file.

Drawing Data with the csv() Function
It’s now time to display the data in the chart, and you can do so with the D3 function d3.csv(), as shown in Listing 20-36.

Listing 20-36. ch20_06a.html

d3.csv("data_01.csv", function(error, data) {
// Here we will put all the SVG elements affected by the data
// on the file!!!
});

The first argument is the name of the CSV file; the second argument is a function where all the data within the file
is handled. All the D3 functions that are in some way influenced by these values must be placed in this function. For
example, you use svg.append() to create new SVG elements, but many of these functions need to know the x and y
values of data. So you’ll need to put them inside the csv() function as a second argument.

All the data in the CSV file is collected in an object called data. The different fields of the CSV file are recognized
through their headers. The first thing you’ll add is an iterative function where the data object is read item by item.
Here, date values are parsed. You must ensure that all attendee values are read as numeric (this can be done by
assigning each value to itself with a plus sign before it). See Listing 20-37.

Listing 20-37. ch20_06a.html

d3.csv("data_01.csv", function(error, data) {
 data.forEach(function(d) {
 d.date = parseDate(d.date);
 d.attendee = +d.attendee;
 });
});

Only now is it possible to define the domain on x and y in Listing 20-38, because only now do you know the
values of this data.

Figure 20-14. Beginning to draw the horizontal grid lines

CHAPTER 20 ■ LINE CHARTS WITH D3

424

Listing 20-38. ch20_06a.html

d3.csv("data_01.csv", function(error, data) {
 data.forEach(function(d) {
 ...
 });

 x.domain(d3.extent(data, function(d) { return d.date; }));
 y.domain(d3.extent(data, function(d) { return d.attendee; }));
});

Once data from the file is read and collected, it constitutes a set of points (x, y) that must be connected by a line.
You’ll use the SVG element path to build this line, as shown in Listing 20-39. As you saw previously, the function d3.
svg.line() makes the work easier.

Listing 20-39. ch20_06a.html

d3.csv("data_01.csv", function(error, data) {
 data.forEach(function(d) {
 ...
 });
...
var line = d3.svg.line()
 .x(function(d) { return x(d.date); })
 .y(function(d) { return y(d.attendee); });
});

You can also add the two axes labels and a title to the chart. This is a good example of how to build <g> groups
manually. Previously the group and all the elements inside were created by functions; now you need to do this
explicitly. If you wanted to add the two axis labels to one group and the title to another, you’d need to specify two
different variables: labels and title (see Listing 20-40).

Listing 20-40. ch20_06a.html

d3.csv("data_01.csv", function(error, data) {
 data.forEach(function(d) {
 ...
 });
...
 var labels = svg.append("g")
 .attr("class","labels")

 labels.append("text")
 .attr("transform", "translate(0," + h + ")")
 .attr("x", (w-margin.right))
 .attr("dx", "-1.0em")
 .attr("dy", "2.0em")
 .text("[Months]");
 labels.append("text")
 .attr("transform", "rotate(-90)")
 .attr("y", -40)
 .attr("dy", ".71em")
 .style("text-anchor", "end")

CHAPTER 20 ■ LINE CHARTS WITH D3

425

 .text("Attendees");

 var title = svg.append("g")
 .attr("class","title");

 title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A D3 line chart from CSV file");
});

In each case you create an SVG element <g> with the append() method, and define the group with a class name.
Subsequently, you assign the SVG elements to the two groups, using append() on these variables.

Finally, you can add the path element, which draws the line representing the data values (see Listing 20-41).

Listing 20-41. ch20_06a.html

d3.csv("data_01.csv", function(error, data) {
 data.forEach(function(d) {
 ...
 });
...

 svg.append("path")
 .datum(data)
 .attr("class", "line")
 .attr("d", line);
});

Even for this new SVG element, you must not forget to add its CSS style settings, as shown in Listing 20-42.

Listing 20-42. ch20_06a.html

<style>
...
.line {
 fill: none;
 stroke: steelblue;
 stroke-width: 1.5px;
}
</style>

Figure 20-15 shows the nice line chart reporting all the data in the CSV file.

CHAPTER 20 ■ LINE CHARTS WITH D3

426

Adding Marks to the Line
As you have seen for the line chart of jqPlot, even here it is possible to make further additions. For example, you could
put data marker on the line.

Inside the d3.csv() function at the end of all the added SVG elements, you can add markers (see Listing 20-43).
Remember that these elements depend on the data, so they must be inserted inside the csv() function.

Listing 20-43. ch20_06b.html

d3.csv("data_01.csv", function(error, data) {
 data.forEach(function(d) {
 ...
 });
...

 svg.selectAll(".dot")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 3.5)
 .attr("cx", function(d) { return x(d.date); })
 .attr("cy", function(d) { return y(d.attendee); });
});

In the style part of the file, you add the CSS style definition of the .dot class in Listing 20-44.

Figure 20-15. A complete line chart with all of its main components

CHAPTER 20 ■ LINE CHARTS WITH D3

427

Listing 20-44. ch20_06b.html

.dot {
 stroke: steelblue;
 fill: lightblue;
}

Figure 20-16 shows a line chart with small circles as markers; this result is very similar to the one obtained with
the jqPlot library.

These markers have a circle shape, but it is possible to give them many other shapes and colors. For example, you
can use markers with a square shape (see Listing 20-45).

Listing 20-45. ch20_06c.html

<style>
.dot {
 stroke: darkred;
 fill: red;
}
</style>
...
svg.selectAll(".dot")
 .data(data)
 .enter().append("rect")
 .attr("class", "dot")
 .attr("width", 7)
 .attr("height", 7)
 .attr("x", function(d) { return x(d.date)-3.5; })
 .attr("y", function(d) { return y(d.attendee)-3.5; });

Figure 20-17 shows the same line chart, but this time it uses small red squares for markers.

Figure 20-16. A complete line chart with markers

CHAPTER 20 ■ LINE CHARTS WITH D3

428

You could also use markers in the form of a yellow rhombus, often referred to as diamonds (see Listing 20-46).

Listing 20-46. ch20_06d.html

<style>
.dot {
 stroke: orange;
 fill: yellow;
}
</style>
...
svg.selectAll(".dot")
 .data(data)
 .enter().append("rect")
 .attr("class", "dot")
 .attr("transform", function(d) {
 var str = "rotate(45," + x(d.date) + "," + y(d.attendee) + ")";
 return str;
 })
 .attr("width", 7)
 .attr("height", 7)
 .attr("x", function(d) { return x(d.date)-3.5; })
 .attr("y", function(d) { return y(d.attendee)-3.5; });

Figure 20-18 shows markers in the form of a yellow rhombus.

Figure 20-17. One of the many marker options

CHAPTER 20 ■ LINE CHARTS WITH D3

429

Line Charts with Filled Areas
In this section, you put point markers aside and return to the basic line chart. Another interesting feature you can add
to your chart is to fill in the area below the line. Do you remember the d3.svg.line() function? Well, here you are
using the d3.svg.area() function. Just as you have a line object in D3, you have an area object as well. Therefore, to
define an area object, you can add the rows in bold in Listing 20-47 to the code, in the section just below the definition
of the line object.

Listing 20-47. ch20_07.html

var line = d3.svg.line()
 .x(function(d) { return x(d.date); })
 .y(function(d) { return y(d.attendee); });

var area = d3.svg.area()
 .x(function(d) { return x(d.date); })
 .y0(h)
 .y1(function(d) { return y(d.attendee); });

var labels = svg.append("g")
...

As you can see, to define an area you need to specify the three functions that delimit the edges: x, y0, and y1. In
this case, y0 is constant, corresponding to the bottom of the drawing area (the x-axis). You now need to create the
corresponding element in SVG, which is represented by a path element, as shown in Listing 20-48.

Listing 20-48. ch20_07.html

d3.csv("data_01.csv", function(error, data) {

 data.forEach(function(d) {
 d.date = parseDate(d.date);

Figure 20-18. Another marker option

CHAPTER 20 ■ LINE CHARTS WITH D3

430

 d.attendee = +d.attendee;
 });

...
svg.append("path")
 .datum(data)
 .attr("class", "line")
 .attr("d", line);

svg.append("path")
 .datum(data)
 .attr("class", "area")
 .attr("d", area);
});

As shown in Listing 20-49, you need to specify the color setting in the corresponding CSS style class.

Listing 20-49. ch20_07.html

.area {
 fill: lightblue;
}

Figure 20-19 shows an area chart derived from the line chart.

Figure 20-19. An area chart

CHAPTER 20 ■ LINE CHARTS WITH D3

431

Multiseries Line Charts
Now that you’re familiar with the creation of the basic components of a line chart using SVG elements, the next step is
to start dealing with multiple data series: multiseries line charts. The most important element covered in this section
is the legend. You’ll learn to create one by exploiting the basic graphical elements that SVG provides.

Working with Multiple Series of Data
So far, you’ve been working with a single series of data. It is now time to move on to multiseries. In the previous
example, you used a CSV file as a source of data. Now, you’ll look at another D3 function: d3.tsv(). It performs the
same task as csv(), but operates on tab-separated value (TSV) files.

Copy Listing 20-50 into your text editor and save it as data_02.tsv (see the following note).

Note ■ The values in a TSV file are tab-separated, so when you write or copy Listing 20-50, remember to check that

there is only one tab character between each value.

Listing 20-50. data_02.tsv

Date europa asia america
12-Feb-12 52 40 65
27-Feb-12 56 35 70
02-Mar-12 51 45 62
14-Mar-12 63 44 82
30-Mar-12 64 54 85
07-Apr-12 70 34 72
18-Apr-12 65 36 69
02-May-12 56 40 71
19-May-12 71 55 75
28-May-12 45 32 68
03-Jun-12 64 44 75
18-Jun-12 53 36 78
29-Jun-12 59 42 79

Listing 20-50 has four columns, where the first column is a date and the other three are values from different
continents. The first column contains the x values; the others are the corresponding y values of the three series.

Start writing the code in Listing 20-51; there isn’t any explanation, because this code is virtually identical to the
previous example.

Listing 20-51. ch20_08a.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 10px verdana;
}

http://d3js.org/d3.v3.js

CHAPTER 20 ■ LINE CHARTS WITH D3

432

.axis path,

.axis line {
 fill: none;
 stroke: #333;
}

.grid .tick {
 stroke: lightgrey;
 opacity: 0.7;
}
.grid path {
 stroke-width: 0;
}

.line {
 fill: none;
 stroke: steelblue;
 stroke-width: 1.5px;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 30, left: 50},
 w = 400 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;
var parseDate = d3.time.format("%d-%b-%y").parse;
var x = d3.time.scale().range([0, w]);
var y = d3.scale.linear().range([h, 0]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .ticks(5);

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5);

var xGrid = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .ticks(5)
 .tickSize(-h, 0, 0)
 .tickFormat("");

var yGrid = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5)

CHAPTER 20 ■ LINE CHARTS WITH D3

433

 .tickSize(-w, 0, 0)
 .tickFormat("");

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

var line = d3.svg.line()
 .x(function(d) { return x(d.date); })
 .y(function(d) { return y(d.attendee); });

// Here we add the d3.tsv function
// start of the part of code to include in the d3.tsv() function
d3.tsv("data_02.tsv", function(error, data) {

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

 svg.append("g")
 .attr("class", "grid")
 .attr("transform", "translate(0," + h + ")")
 .call(xGrid);

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);
});
//end of the part of code to include in the d3.tsv() function

var labels = svg.append("g")
 .attr("class","labels");

labels.append("text")
 .attr("transform", "translate(0," + h + ")")
 .attr("x", (w-margin.right))
 .attr("dx", "-1.0em")
 .attr("dy", "2.0em")
 .text("[Months]");
labels.append("text")
 .attr("transform", "rotate(-90)")
 .attr("y", -40)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Attendees");

CHAPTER 20 ■ LINE CHARTS WITH D3

434

var title = svg.append("g")
 .attr("class","title");

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A multiseries line chart");
</script>
</body>
</html>

When you deal with multiseries data in a single chart, you need to be able to identify the data quickly and as a
result you need to use different colors. D3 provides some functions generating an already defined sequence of colors.
For example, there is the category10() function, which provides a sequence of 10 different colors. You can create a
color set for the multiseries line chart just by writing the line in Listing 20-52.

Listing 20-52. ch20_08a.html

...
var x = d3.time.scale().range([0, w]);
var y = d3.scale.linear().range([h, 0]);
var color = d3.scale.category10();
var xAxis = d3.svg.axis()
...

You now need to read the data in the TSV file. As in the previous example, just after the call of the d3.tsv()
function, you add a parser, as shown in Listing 20-53. Since you have to do with date values on the x-axis, you have to
parse this type of value. You’ll use the parseDate() function.

Listing 20-53. ch20_08a.html

d3.tsv("data_02.tsv", function(error, data) {
 data.forEach(function(d) {
 d.date = parseDate(d.date);
 });
...
});

You’ve defined a color set, using the category10() function in a chain with a scale() function. This means that
D3 handles color sequence as a scale. You need to create a domain, as shown in Listing 20-54 (in this case it will be
composed of discrete values, not continuous values such as those for x or y). This domain consists of the headers in
the TSV file. In this example, you have three continents. Consequently, you’ll have a domain of three values and a
color sequence of three colors.

Listing 20-54. ch20_08a.html

d3.tsv("data_02.tsv", function(error, data) {
 data.forEach(function(d) {
 d.date = parseDate(d.date);
 });

CHAPTER 20 ■ LINE CHARTS WITH D3

435

 color.domain(d3.keys(data[0]).filter(function(key) {
 return key !== "date";
 }));
...
});

In Listing 20-53, you can see that data[0] is passed as an argument to the d3.keys() function. data[0] is the
object corresponding to the first row of the TSV file:

Object { date=Date {Sun Feb 12 2012 00:00:00 GMT+0100},
europa="52", asia="40", america="65"}.

The d3.keys() function extracts the name of the values from inside an object, the same name which we find as a
header in the TSV file. So using d3.keys(data[0]), you get the array of strings:

["date","europa","asia","america"]

You are interested only in the last three values, so you need to filter this array in order to exclude the key "date".
You can do so with the filter() function. Finally, you’ll assign the three continents to the domain of colors.

["europa","asia","america"]

The command in Listing 20-55 reorganizes all the data in an array of structured objects. This is done by the
function map() with an inner function, which maps the values following a defined structure.

Listing 20-55. ch20_08a.html

d3.tsv("data_02.tsv", function(error, data) {
...
 color.domain(d3.keys(data[0]).filter(function(key) {
 return key !== "date";
 }));

 var continents = color.domain().map(function(name) {
 return {
 name: name,
 values: data.map(function(d) {
 return {date: d.date, attendee: +d[name]};
 })
 };
 });
...
});

So this is the array of three objects called continents.

[Object { name="europa", values=[13]},
 Object { name="asia", values=[13]},
 Object { name="america", values=[13]}]

CHAPTER 20 ■ LINE CHARTS WITH D3

436

Every object has a continent name and a values array of 13 objects:

[Object { date=Date, attendee=52 },
 Object { date=Date, attendee=56 },
 Object { date=Date, attendee=51 },
 ...]

You have the data structured in a way that allows for subsequent handling. In fact, when you need to specify the
y domain of the chart, you can find the maximum and minimum of all values (not of each single one) in the series
with a double iteration (see Listing 20-56). With function(c), you make an iteration of all the continents and with
function(v), you make an iteration of all values inside them. In the end, d3.min and d3.max will extract only one
value.

Listing 20-56. ch20_08a.html

d3.tsv("data_02.tsv", function(error, data) {
...
 var continents = color.domain().map(function(name) {
 ...
 });

 x.domain(d3.extent(data, function(d) { return d.date; }));
 y.domain([
 d3.min(continents, function(c) {
 return d3.min(c.values, function(v) { return v.attendee; });
 }),
 d3.max(continents, function(c) {
 return d3.max(c.values, function(v) { return v.attendee; });
 })
]);
...
});

Thanks to the new data structure, you can add an SVG element <g> for each continent containing a line path,
as shown in Listing 20-57.

Listing 20-57. ch20_08a.html

d3.tsv("data_02.tsv", function(error, data) {
...

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

 var continent = svg.selectAll(".continent")
 .data(continents)
 .enter().append("g")
 .attr("class", "continent");

CHAPTER 20 ■ LINE CHARTS WITH D3

437

 continent.append("path")
 .attr("class", "line")
 .attr("d", function(d) { return line(d.values); })
 .style("stroke", function(d) { return color(d.name); });
});

The resulting multiseries line chart is shown in Figure 20-20.

Adding a Legend
When you are dealing with multiseries charts, the next logical step is to add a legend in order to categorize the series
with colors and labels. Since a legend is a graphical object like any other, you need to add the SVG elements that allow
you to draw it on the chart (see Listing 20-58).

Listing 20-58. ch20_08a.html

d3.tsv("data_02.tsv", function(error, data) {
...
 continent.append("path")
 .attr("class", "line")
 .attr("d", function(d) { return line(d.values); })
 .style("stroke", function(d) { return color(d.name); });

 var legend = svg.selectAll(".legend")
 .data(color.domain().slice().reverse())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) { return "translate(0," + i * 20 + ")"; });

Figure 20-20. A multiseries line chart

CHAPTER 20 ■ LINE CHARTS WITH D3

438

 legend.append("rect")
 .attr("x", w - 18)
 .attr("y", 4)
 .attr("width", 10)
 .attr("height", 10)
 .style("fill", color);

 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });
});

The resulting multiseries line chart is shown in Figure 20-21, with a legend.

Interpolating Lines
Do you remember the smooth effect on the lines when you tackled multiseries line charts with the jqPlot library?
(If not, you can find it in the “Smooth Line Chart” section in Chapter 9.) In a line chart ,you usually have the data points
connected by sequence, one by one, in a straight line. You have also seen how to join the points into a curved line.
In fact, the effect was obtained via an interpolation. The D3 library covers interpolations of data points in a more
correct way from a mathematical point of view. You, therefore, need to delve a little deeper into this concept.

When you have a set of values and want to represent them using a line chart, you essentially want to know the
trend that these values suggest. From this trend, you can evaluate which values may be obtained at intermediate
points between a data point and the next. Well, with such an estimate you are actually affecting an interpolation.
Depending on the trend and the degree of accuracy you want to achieve, you can use various mathematical methods
that regulate the shape of the curve that will connect the data points.

Figure 20-21. A multiseries line chart with a legend

CHAPTER 20 ■ LINE CHARTS WITH D3

439

The most commonly used method is the spline. (If you want to deepen your knowledge of the topic, visit
http://paulbourke.net/miscellaneous/interpolation/.) Table 20-1 lists the various types of interpolation that the
D3 library makes available.

Now that you understand better what an interpolation is, you can see a practical case. In the previous example,
you had three series represented by differently colored lines and made up of segments connecting the data points
(x,y). But it is possible to draw corresponding interpolating lines instead.

As shown in Listing 20-59, you just add the interpolate() method to the d3.svg.line to get the desired effect.

Listing 20-59. ch20_08b.html

var line = d3.svg.line()
 .interpolate("basis")
 .x(function(d) { return x(d.date); })
 .y(function(d) { return y(d.attendee); });

Figure 20-22 shows the interpolating lines applied to the three series in the chart. The straight lines connecting
the data points have been replaced by curves.

Table 20-1. The options for interpolating lines available within the D3 library

Options Description

basis A B-spline, with control point duplication on the ends.

basis-open An open B-spline; may not intersect the start or end.

basis-closed A closed B-spline, as in a loop.

bundle Equivalent to basis, except the tension parameter is used to straighten the spline.

cardinal A Cardinal spline, with control point duplication on the ends.

cardinal-open An open Cardinal spline; may not intersect the start or end, but will intersect other control points.

cardinal-closed A closed Cardinal spline, as in a loop.

Linear Piecewise linear segments, as in a polyline.

linear-closed Close the linear segments to form a polygon.

monotone Cubic interpolation that preserves a monotone effect in y.

step-before Alternate between vertical and horizontal segments, as in a step function.

step-after Alternate between horizontal and vertical segments, as in a step function.

You find these options by visiting https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate.

http://paulbourke.net/miscellaneous/interpolation/
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate

CHAPTER 20 ■ LINE CHARTS WITH D3

440

Difference Line Chart
This kind of chart portrays the area between two series. In the range where the first series is greater than the second
series, the area has one color, where it is less the area has a different color. A good example of this kind of chart
compares the trend of income and expense across time. When the income is greater than the expenses, the area will
be green (usually the green color stands for OK), whereas when it is less, the area is red (meaning BAD). Write the
values in Listing 20-60 in a TSV (or CSV) file and name it data_03.tsv (see the note).

Note ■ The values in a TSV file are tab-separated, so when you write or copy Listing 20-60, remember to check that

there is only one tab character between each value.

Listing 20-60. data_03.tsv

Date income expense
12-Feb-12 52 40
27-Feb-12 56 35
02-Mar-12 31 45
14-Mar-12 33 44
30-Mar-12 44 54
07-Apr-12 50 34
18-Apr-12 65 36
02-May-12 56 40
19-May-12 41 56
28-May-12 45 32
03-Jun-12 54 44
18-Jun-12 43 46
29-Jun-12 39 52

Figure 20-22. A smooth multiseries line chart

CHAPTER 20 ■ LINE CHARTS WITH D3

441

Start writing the code in Listing 20-61; explanations aren’t included this time, as the example is virtually identical
to the previous one.

Listing 20-61. ch20_09.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 10px verdana;
}
.axis path,
.axis line {
 fill: none;
 stroke: #333;
}
.grid .tick {
 stroke: lightgrey;
 opacity: 0.7;
}
.grid path {
 stroke-width: 0;
}
</style>
</head>
<body>
<script type="text/javascript">

var margin = {top: 70, right: 20, bottom: 30, left: 50},
 w = 400 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var parseDate = d3.time.format("%d-%b-%y").parse;
var x = d3.time.scale().range([0, w]);
var y = d3.scale.linear().range([h, 0]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .ticks(5);

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5);

var xGrid = d3.svg.axis()
 .scale(x)
 .orient("bottom")

http://d3js.org/d3.v3.js

CHAPTER 20 ■ LINE CHARTS WITH D3

442

 .ticks(5)
 .tickSize(-h, 0, 0)
 .tickFormat("");

var yGrid = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5)
 .tickSize(-w, 0, 0)
 .tickFormat("");

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

// Here we add the d3.tsv function
// start of the part of code to include in the d3.tsv() function
d3.tsv("data_03.tsv", function(error, data) {

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

 svg.append("g")
 .attr("class", "grid")
 .attr("transform", "translate(0," + h + ")")
 .call(xGrid);

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

});
//end of the part of code to include in the d3.tsv() function

var labels = svg.append("g")
 .attr("class","labels");

labels.append("text")
 .attr("transform", "translate(0," + h + ")")
 .attr("x", (w-margin.right))
 .attr("dx", "-1.0em")
 .attr("dy", "2.0em")
 .text("[Months]");
labels.append("text")

CHAPTER 20 ■ LINE CHARTS WITH D3

443

 .attr("transform", "rotate(-90)")
 .attr("y", -40)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Millions ($)");

var title = svg.append("g")
 .attr("class","title");

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A difference chart");
</script>
</body>
</html>

First you read the TSV file to check whether the income and expense values are positive. Then you parse all the
date values (see Listing 20-62).

Listing 20-62. ch20_09.html

d3.tsv("data_03.tsv", function(error, data) {

 data.forEach(function(d) {
 d.date = parseDate(d.date);
 d.income = +d.income;
 d.expense = +d.expense;
 });
 ...
});

Here, unlike the example shown earlier (the multiseries line chart), there is no need to restructure the data,
so you can create a domain on x and y, as shown in Listing 20-63. The maximum and minimum are obtained by
comparing income and expense values with Math.max and Math.min at every step, and then finding the values
affecting the iteration at each step with d3.min and d3.max.

Listing 20-63. ch20_09.html

d3.tsv("data_03.tsv", function(error, data) {
 data.forEach(function(d) {
 ...
 });

 x.domain(d3.extent(data, function(d) { return d.date; }));
 y.domain([
 d3.min(data, function(d) {return Math.min(d.income, d.expense); }),
 d3.max(data, function(d) {return Math.max(d.income, d.expense); })
]);
 ...
});

CHAPTER 20 ■ LINE CHARTS WITH D3

444

Before adding SVG elements, you need to define some CSS classes. You’ll use the color red when expenses are
greater than income, and green otherwise. You need to define these colors, as shown in Listing 20-64.

Listing 20-64. ch20_09.html

<style>
...
.area.above {
 fill: darkred;
}

.area.below {
 fill: lightgreen;
}

.line {
 fill: none;
 stroke: #000;
 stroke-width: 1.5px;
}
</style>

Since you need to represent lines and areas, you define them by using the interpolation between data points
(see Listing 20-65).

Listing 20-65. ch20_09.html

d3.tsv("data_03.tsv", function(error, data) {
 ...

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

 var line = d3.svg.area()
 .interpolate("basis")
 .x(function(d) { return x(d.date); })
 .y(function(d) { return y(d["income"]); });

 var area = d3.svg.area()
 .interpolate("basis")
 .x(function(d) { return x(d.date); })
 .y1(function(d) { return y(d["income"]); });

});

As you can see, you are actually defining only the line of income points; there is no reference to expense values.
But you are interested in the area between the two lines of income and expenditure, so when you define the path
element, in order to draw this area, you can put the expense values as a border, with a generic function iterating the
d values (see Listing 20-66).

CHAPTER 20 ■ LINE CHARTS WITH D3

445

Listing 20-66. ch20_09.html

d3.tsv("data_03.tsv", function(error, data) {
 ...

 var area = d3.svg.area()
 .interpolate("basis")
 .x(function(d) { return x(d.date); })
 .y1(function(d) { return y(d["income"]); });

 svg.datum(data);

 svg.append("path")
 .attr("class", "area below")
 .attr("d", area.y0(function(d) { return y(d.expense); }));

 svg.append("path")
 .attr("class", "line")
 .attr("d", line);

});

If you load the web page now, you should get the desired area (see Figure 20-23).

But all the areas are green. Instead, you want some of these areas to be red. You need to select the areas enclosed
by the income and expense lines, where the income line is above the expense line, and exclude the areas that do not
correspond to this scheme. When you deal with areas, portions of which must be added or subtracted, it is necessary
to introduce the clip path SVG element.

Figure 20-23. An initial representation of the area between both trends

CHAPTER 20 ■ LINE CHARTS WITH D3

446

Clip paths are SVG elements that can be attached to previously drawn figures with a path element. The clip path
describes a “window” area, which shows only in the area defined by the path. The other areas of the figure remain
hidden.

Take a look at Figure 20-24. You can see that the line of income is black and thick. All green areas (light gray in the
printed book version) above this line should be hidden by a clip path. But what clip path do you need? You need the
clip path described by the path that delimits the lower area above the income line.

You need to make some changes to the code, as shown in Listing 20-67.

Listing 20-67. ch20_09.html

d3.tsv("data_03.tsv", function(error, data) {
 ...

 svg.datum(data);

 svg.append("clipPath")
 .attr("id", "clip-below")
 .append("path")
 .attr("d", area.y0(h));

 svg.append("path")
 .attr("class", "area below")
 .attr("clip-path", "url(#clip-below)")
 .attr("d", area.y0(function(d) { return y(d.expense); }));

 svg.append("path")
 .attr("class", "line")
 .attr("d", line);

});

Now you need to do to same thing for the red areas (dark gray in the printed book version). Always starting from
the area enclosed between the income and expense lines, you must eliminate the areas below the income line. So, as
shown in Figure 20-25, you can use the clip path that describes the area above the income line as the window area.

Figure 20-24. Selection of the positive area with a clip path area

CHAPTER 20 ■ LINE CHARTS WITH D3

447

Translating this into code, you need to add another clipPath to the code, as shown in Listing 20-68.

Listing 20-68. ch20_09.html

d3.tsv("data_03.tsv", function(error, data) {
 ...

 svg.append("path")
 .attr("class", "area below")
 .attr("clip-path", "url(#clip-below)")
 .attr("d", area.y0(function(d) { return y(d.expense); }));

 svg.append("clipPath")
 .attr("id", "clip-above")
 .append("path")
 .attr("d", area.y0(0));

 svg.append("path")
 .attr("class", "area above")
 .attr("clip-path", "url(#clip-above)")
 .attr("d", area.y0(function(d) { return y(d.expense); }));

 svg.append("path")
 .attr("class", "line")
 .attr("d", line);

});

In the end, both areas are drawn simultaneously, and you get the desired chart (see Figure 20-26).

Figure 20-25. Selection of the negative area with a clip path area

CHAPTER 20 ■ LINE CHARTS WITH D3

448

Summary
This chapter shows how to build the basic elements of a line chart, including axes, axis labels, titles, and grids. In
particular you have read about the concepts of scales, domains, and ranges.

You then learned how to read data from external files, particularly CSV and TSV files. Furthermore, in starting
to work with multiple series of data, you learned how to realize multiseries line charts, including learning about all the
elements needed to complete them, such as legends.

Finally, you learned how to create a particular type of line chart: the difference line chart. This has helped you to
understand clip area paths.

In the next chapter, you’ll deal with bar charts. Exploiting all you’ve learned so far about D3, you’ll see how it is
possible to realize all the graphic components needed to build a bar chart, using only SVG elements. More specifically,
you’ll see how, using the same techniques, to implement all the possible types of multiseries bar charts, from stacked
to grouped bars, both horizontally and vertically orientated.

Figure 20-26. The final representation of the difference area chart

449

CHAPTER 21

Bar Charts with D3

In this chapter, you will see how, using the D3 library, you can build the most commonly used type of chart: the bar
chart. As a first example, you will start from a simple bar chart to practice the implementation of all the components
using scalar vector graphic (SVG) elements.

Drawing a Bar Chart
In this regard, as an example to work with we choose to represent the income of some countries by vertical bars,
so that we may compare them. As category labels, you will use the names of the countries themselves. Here, as you
did for line charts, you decide to use an external file, such as a comma-separated values (CSV) file, which contains all
the data. Your web page will then read the data contained within the file using the d3.csv() function. Therefore,
write the data from Listing 21-1 in a file and save it as data_04.csv.

Listing 21-1. data_04.csv

country,income
France,14
Russia,22
Japan,13
South Korea,34
Argentina,28

Listing 21-2 shows a blank web page as a starting point for the development of your bar chart. You must
remember to include the D3 library in the web page (see Appendix A for further information). If you prefer to use a
content delivery network (CDN) service, you can replace the reference with this:

<script src="http://d3js.org/d3.v3.min.js"></script>

Listing 21-2. ch21_01.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="../src/d3.v3.js"></script>
</head>

http://d3js.org/d3.v3.min.js

CHAPTER 21 ■ BAR CHARTS WITH D3

450

<body>
<script type="text/javascript">
// add the D3 code here
</script>
</body>
</html>

First, it is good practice to define the size of the drawing area on which you wish to represent your bar chart.
The dimensions are specified by the w and h (width and height) variables, but you must also take the space for margins
into account. These margin values must be subtracted from w and h, suitably restricting the area to be allocated to
your chart (see Listing 21-3).

Listing 21-3. ch21_01.html

<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 30, left: 40},
 w = 500 - margin.left - margin.right,
 h = 350 - margin.top - margin.bottom;
var color = d3.scale.category10();
</script>

Moreover, if you look at the data in the CSV file (see Listing 21-1), you will find a series of five countries with their
relative values. If you want to have a color for identifying each country, it is necessary to define a color scale, and this,
as you have already seen, could be done with the category10() function.

The next step is to define a scale on the x axis and y axis. You do not have numeric values on the x axis but string
values identifying the country of origin. Thus, for this type of value, you have to define an ordinal scale as shown in
Listing 21-4. In fact, the function rangeRoundBands divides the range passed as argument into discrete bands, which is
just what you need in a bar chart. For the y axis, since it represents a variable in numerical values, you simply choose a
linear scale.

Listing 21-4. ch21_01.html

<script type="text/javascript">
...
var color = d3.scale.category10();
var x = d3.scale.ordinal()
 .rangeRoundBands([0, w], .1);
var y = d3.scale.linear()
 .range([h, 0]);
<script type="text/javascript">

Now you need to assign the two scales to the corresponding axes, using the d3.svg.axis() function. When you
are dealing with bar charts, it is not uncommon that the values reported on the y axis are not the nominal values,
but their percentage of the total value. So, you can define a percentage format through d3.format(), and then you
assign it to tick labels on the y axis through the tickFormat() function (see Listing 21-5).

Listing 21-5. ch21_01.html

<script type="text/javascript">
...
var y = d3.scale.linear()
 .range([h, 0]);

CHAPTER 21 ■ BAR CHARTS WITH D3

451

var formatPercent = d3.format(".0%");
var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .tickFormat(formatPercent);
<script type="text/javascript">

Finally, it is time to start creating SVG elements in your web page. Start with the root as shown in Listing 21-6.

Listing 21-6. ch21_01.html

<script type="text/javascript">
...
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .tickFormat(formatPercent);

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
<script type="text/javascript">

And now, to access the values contained in the CSV file, you have to use the d3.csv() function, as you have done
already, passing the file name as first argument and the iterative function on the data contained within as the second
argument (see Listing 21-7).

Listing 21-7. ch21_01.html

<script type="text/javascript">
...
var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("data_04.csv", function(error, data) {
 var sum = 0;
 data.forEach(function(d) {
 d.income = +d.income;
 sum += d.income;
 });
 //insert here all the svg elements depending on data in the file
});
<script type="text/javascript">

CHAPTER 21 ■ BAR CHARTS WITH D3

452

During the scan of the values stored in the file through the forEach() loop, you ensure that all values of income will
be read as numeric values and not as a string: this is possible by assigning every value to itself with a plus sign before it.

values = +values

And in the meantime, you also carry out the sum of all income values. This sum is necessary for you to
compute the percentages. In fact, as shown in Listing 21-8, while you are defining the domains for both the axes,
the “single income”/sum ratio is assigned to the y axis, thus obtaining a domain of percentages.

Listing 21-8. ch21_01.html

...
d3.csv("data_04.csv", function(error, data) {
 data.forEach(function(d) {
 ...
 });

 x.domain(data.map(function(d) { return d.country; }));
 y.domain([0, d3.max(data, function(d) { return d.income/sum; })]);

});

After setting the values on both axes, you can draw them adding the corresponding SVG elements in Listing 21-9.

Listing 21-9. ch21_01.html

d3.csv("data_04.csv", function(error, data) {
...
 y.domain([0, d3.max(data, function(d) { return d.income/sum; })]);

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);
});

Usually, for bar charts, the grid is required only on one axis: the one on which the numeric values are shown.
Since you are working with a vertical bar chart, you draw grid lines only on the y axis (see Listing 21-10). On the other
hand, grid lines are not necessary on the x axis, because you already have a kind of classification in areas of discrete
values, often referred to as categories. (Even if you had continuous values to represent on the x axis, however, for the
bar chart to make sense, their range on the x axis should be divided into intervals or bins. The frequency of these
values at each interval is represented by the height of the bar on the y axis, and the result is a histogram.)

Listing 21-10. ch21_01.html

...
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .tickFormat(formatPercent);

CHAPTER 21 ■ BAR CHARTS WITH D3

453

var yGrid = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5)
 .tickSize(-w, 0, 0)
 .tickFormat("");

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("data_04.csv", function(error, data) {
 ...
 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);
});

Since the grid lies only on the y axis, the same thing applies for the corresponding axis label. In order to separate
the components of the chart between them in some way, it is good practice to define a variable for each SVG element
<g> which identifies a chart component, generally with the same name you use to identify the class of the component.
Thus, just as you define a labels variable, you also define a title variable. And so on, for all the other components
that you intend to add.

Unlike jqPlot, it is not necessary to include a specific plug-in to rotate the axis label; rather, use one of the possible
transformations which SVG provides you with, more specifically a rotation. The only thing you need to do is to pass the
angle (in degrees) at which you want to rotate the SVG element. The rotation is clockwise if the passed value is positive.
If, as in your case, you want to align the axis label to the y axis, then you will need to rotate it 90 degrees counterclockwise:
so specify rotate(–90) as a transformation (see Listing 21-11). Regarding the title element, you place it at the top of
your chart, in a central position.

Listing 21-11. ch21_01.html

d3.csv("data_04.csv", function(error, data) {
 ...

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

var labels = svg.append("g")
 .attr("class","labels");

labels.append("text")
 .attr("transform", "rotate(–90)")
 .attr("y", 6)

CHAPTER 21 ■ BAR CHARTS WITH D3

454

 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Income [%]");

var title = svg.append("g")
 .attr("class","title");

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My first bar chart");

});

Once you have defined all of the SVG components, you must not forget to specify the attributes of the CSS classes
in Listing 21-12.

Listing 21-12. ch21_01.html

<style>
body {
 font: 14px sans-serif;
}

.axis path,
.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
.grid .tick {
 stroke: lightgrey;
 opacity: 0.7;
}
.grid path {
 stroke-width: 0;
}

.x.axis path {
 display: none;
}
</style>

At the end, add the SVG elements which make up your bars. Since you want to draw a bar for each set of data,
here you have to take advantage of the iterative function(error,data) function within the d3.csv() function.
As shown in Listing 21-13, you therefore add the data(data) and enter() functions within the function chain.
Moreover, defining the function(d) within each attr() function, you can assign data values iteratively, one after the
other, to the corresponding attribute. In this way, you can assign a different value (one for each row in the CSV file) to
the attributes x, y, height, and fill, which affect the position, color, and size of each bar. With this mechanism each
.bar element will reflect the data contained in one of the rows in the CSV file.

CHAPTER 21 ■ BAR CHARTS WITH D3

455

Listing 21-13. ch21_01.html

d3.csv("data_04.csv", function(error, data) {
 ...

 title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My first bar chart");

 svg.selectAll(".bar")
 .data(data)
 .enter().append("rect")
 .attr("class", "bar")
 .attr("x", function(d) { return x(d.country); })
 .attr("width", x.rangeBand())
 .attr("y", function(d) { return y(d.income/sum); })
 .attr("height", function(d) { return h - y(d.income/sum); })
 .attr("fill", function(d) { return color(d.country); });
});

At the end, all your efforts will be rewarded with the beautiful bar chart shown in Figure 21-1.

Figure 21-1. A simple bar chart

Drawing a Stacked Bar Chart
You have introduced the bar chart with the simplest case where you had a number of groups represented per country
and a corresponding value (income). Very often, you need to represent data which are a bit more complex, for example,
data in which you want to divide the total income sector by sector. In this case, you will have the income for each country

CHAPTER 21 ■ BAR CHARTS WITH D3

456

divided into various portions, each of which represents the income of a sector of production. For our example, we will
use a CSV file in a way that is very similar to that used in the previous example (see Listing 21-1), but with multiple values
for each country, so that you may work with multiseries bar charts. Therefore, write the data in Listing 21-14 with a text
editor and save it as data_05.csv.

Listing 21-14. data_05.csv

Country,Electronics,Software,Mechanics
Germany,12,14,18
Italy,8,12,10
Spain,6,4,5
France,10,14,9
UK,7,11,9

Looking at the content of the file, you may notice that the columns are now four. The first column still contains
the names of the nations, but now the incomes are three, each corresponding to a different sector of production:
electronics, software, and mechanics. These titles are listed in the headers.

Start with the code of the previous example, making some changes and deleting some rows, until you get the
code shown in Listing 21-15. The pieces of code in bold are the ones that need to be changed (the title and the CSV
file)m while those that are not present must be deleted. Those of you who are starting directly from this section can
easily copy the contents shown in Listing 21-15.

Listing 21-15. ch21_02.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 14px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
.x.axis path {
 display: none;
}
</style>
</head>
<body>
<script type="text/javascript">
var color = d3.scale.category10();

var margin = {top: 70, right: 20, bottom: 30, left: 40},
 w = 500 - margin.left - margin.right,
 h = 350 - margin.top - margin.bottom;

http://d3js.org/d3.v3.js

CHAPTER 21 ■ BAR CHARTS WITH D3

457

var x = d3.scale.ordinal()
 .rangeRoundBands([0, w], .1);

var y = d3.scale.linear()
 .range([h, 0]);

var formatPercent = d3.format(".0%");

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .tickFormat(formatPercent);

var yGrid = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5)
 .tickSize(-w, 0, 0)
 .tickFormat("");

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("data_05.csv", function(error, data) {

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);
});
var labels = svg.append("g")
 .attr("class","labels");

labels.append("text")
 .attr("transform", "rotate(–90)")
 .attr("x", 50)
 .attr("y", -20)

CHAPTER 21 ■ BAR CHARTS WITH D3

458

 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Income [%]");

var title = svg.append("g")
 .attr("class","title")

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A stacked bar chart");
</script>
</body>
</html>

Now think of the colors and the domain you want to set. In the previous case, you drew each bar (country) with
a different color. In fact, you could even give all the bars of the same color. Your approach was an optional choice,
mainly due to aesthetic factors. In this case, however, using a set of different colors is necessary to distinguish the
various portions that compose each bar. Thus, you will have a series of identical colors for each bar, where each color
will correspond to a sector of production. A small tip: when you need a legend to identify various representations of
data, you need to use a sequence of colors, and vice versa. You define the domain of colors relying on the headers of
the file and deleting the first item, “Country,” through a filter (see Listing 21-16).

Listing 21-16. ch21_02.html

d3.csv("data_05.csv", function(error, data) {

 color.domain(d3.keys(data[0]).filter(function(key) {
 return key !== "Country"; }));

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 ...

On the y axis you must not plot the values of the income, but their percentage of the total. In order to do this, you
need to know the sum of all values of income, so with an iteration of all the data read from the file, you may obtain the
sum. Again, in order to make it clear to D3 that the values in the three columns (Electronics, Mechanics, and Software)
are numeric values, you must specify them explicitly in the iteration in this way:

values = +values;

In Listing 21-17, you see how the forEach() function iterates the values of the file and, at the same time,
calculates the sum you need to obtain your percentages.

CHAPTER 21 ■ BAR CHARTS WITH D3

459

Listing 21-17. ch21_02.html

d3.csv("data_05.csv", function(error, data) {

 color.domain(d3.keys(data[0]).filter(function(key) {
 return key !== "Country"; }));

 var sum= 0;

 data.forEach(function(d){
 d.Electronics = +d.Electronics;
 d.Mechanics = +d.Mechanics;
 d.Software = +d.Software;
 sum = sum +d.Electronics +d.Mechanics +d.Software;
 });

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 ...

Now you need to create a data structure which can serve your purpose. Build an array of objects for each bar
in which each object corresponds to one of the portions in which the total income is divided. Name this array
“countries” and create it through an iterative function (see Listing 21-18).

Listing 21-18. ch21_02.html

d3.csv("data_05.csv", function(error, data) {
 ...
 data.forEach(function(d){
 d.Electronics = +d.Electronics;
 d.Mechanics = +d.Mechanics;
 d.Software = +d.Software;
 sum = sum +d.Electronics +d.Mechanics +d.Software;
 });

 data.forEach(function(d) {
 var y0 = 0;
 d.countries = color.domain().map(function(name) {
 return {name: name, y0: y0/sum, y1: (y0 += +d[name])/sum }; });
 d.total = d.countries[d.countries.length - 1].y1;
 });

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 ...

Using the Firebug console (see the section “Firebug and DevTool” in Chapter 1), you can directly see the internal
structure of this array. Thus, add (temporarily) the call to the console to the code passing the countries array as an
argument, as shown in Listing 21-19.

CHAPTER 21 ■ BAR CHARTS WITH D3

460

Listing 21-19. ch21_02.html

data.forEach(function(d) {
 var y0 = 0;
 d.countries = color.domain().map(function(name) {
 return {name: name, y0: y0/sum, y1: (y0 += +d[name])/sum }; });
 d.total = d.countries[d.countries.length - 1].y1;
 console.log(d.countries);
});

Figure 21-2 shows the internal structure of the countries array along with all its content how it is displayed by
the Firebug console.

Figure 21-2. The Firebug console shows the content and the structure of the countries array

If you analyze in detail the first element of the array:

 [Object { name="Electronics", y0=0, y1=0.08053691275167785},
 Object { name="Software", y0=0.08053691275167785, y1=0.174496644295302},
 Object { name="Mechanics", y0=0.174496644295302, y1=0.2953020134228188}]

You may notice that each element of the array is, in turn, an array containing three objects. These three objects
represent the three categories (the three series of the multiseries bar chart) into which you want to split the data. The
values of y0 and y1 are the percentages of the beginning and the end of each portion in the bar, respectively.

After you have arranged all the data you need, you can include it in the domain of x and y, as shown in
Listing 21-20.

Listing 21-20. ch21_02.html

d3.csv("data_05.csv", function(error, data) {
 ...
 data.forEach(function(d) {
 ...
 console.log(d.countries);
 });

 x.domain(data.map(function(d) { return d.Country; }));
 y.domain([0, d3.max(data, function(d) { return d.total; })]);

CHAPTER 21 ■ BAR CHARTS WITH D3

461

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 ...

And then, in Listing 21-21 you start to define the rect elements which will constitute the bars of your chart.

Listing 21-21. ch21_02.html

d3.csv("data_05.csv", function(error, data) {
 ...
 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

 var country = svg.selectAll(".country")
 .data(data)
 .enter().append("g")
 .attr("class", "country")
 .attr("transform", function(d) {
 return "translate(" + x(d.Country) + ",0)"; });

 country.selectAll("rect")
 .data(function(d) { return d.countries; })
 .enter().append("rect")
 .attr("width", x.rangeBand())
 .attr("y", function(d) { return y(d.y1); })
 .attr("height", function(d) { return (y(d.y0) - y(d.y1)); })
 .style("fill", function(d) { return color(d.name); });
});

You have seen the internal structure of the array with the library, and since D3 always starts with basic graphics,
the most complex part lies in translating the data structure into a hierarchical structure of SVG elements. The <g> tag
comes to your aid to build proper hierarchical groupings. In this regard, you have to define an element <g> for each
country. First, you need to use the data read from the CSV file iteratively. This can be done by passing the data array
(the original data array, not the countries array you have just defined) as argument to the data() function. When all
this is done, you have five new group items <g>, as five are the countries which are listed in the CSV file and five are
also the bars which will be drawn. The position on the x axis of each bar should also be managed. You do not need
to do any calculations to pass the right x values to translate(x,0) function. In fact, as shown in Figure 21-3, these
values are automatically generated by D3, exploiting the fact that you have defined an ordinal scale on the x axis.

Figure 21-3. Firebug shows the different translation values on the x axis that are automatically generated by the D3 library

CHAPTER 21 ■ BAR CHARTS WITH D3

462

Within each of the group elements <g>, you must now create the <rect> elements, which will generate the
colored rectangles for each portion. Furthermore, it will be necessary to ensure that the correct values are assigned
to the y and height attributes, in order to properly place the rectangles one above the other, avoiding them from
overlapping, and thus to obtain a single stacked bar for each country.

This time, it is the countries array which will be used, passing it as an argument to the data() function. Since
it is necessary to make a further iteration for each element <g> that you have created, you will pass the iterative
function(d) to the data() function as an argument. In this way, you create an iteration in another iteration: the
first scans the values in data (countries); the second, inner one scans the values in the countries array (sectors of
production). Thus, you assign the final percentages (y1) to the y attributes, and you assign the difference between
the initial and final percentage (y0–y1) to the height attributes. The values y0 and y1 have been calculated previously
when you have defined the objects contained within the countries array one by one (see Figure 21-4).

Figure 21-4. Firebug shows the different height values attributed to each rect element

Figure 21-5. A stacked bar chart

At the, end you can admire your stacked bar chart in Figure 21-5.

Looking at your stacked bar chart, you immediately notice that something is missing. How do you recognize the
sector of production, and what are their reference colors? Why not add a legend?

As you did for the other chart components, you may prefer to define a legend variable for this new component. Once
you have created the group element <g>, an iteration is required also for the legend (see Listing 21-22). The iteration has
to be done on the sectors of production. For each item, you need to acquire the name of the sector and the corresponding
color. For this purpose, this time you will exploit the color domain which you have defined earlier: for the text element,
you will use the headers in the CSV file, whereas for the color you directly assign the value of the domain.

CHAPTER 21 ■ BAR CHARTS WITH D3

463

Listing 21-22. ch21_02.html

d3.csv("data_05.csv", function(error, data) {
 ...
 country.selectAll("rect")
 .data(function(d) { return d.countries; })
 .enter().append("rect")
 .attr("width", x.rangeBand())
 .attr("y", function(d) { return y(d.y1); })
 .attr("height", function(d) { return (y(d.y0) - y(d.y1)); })
 .style("fill", function(d) { return color(d.name); });

 var legend = svg.selectAll(".legend")
 .data(color.domain().slice().reverse())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + i * 20 + ")"; });

 legend.append("rect")
 .attr("x", w - 18)
 .attr("y", 4)
 .attr("width", 10)
 .attr("height", 10)
 .style("fill", color);

 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });
});

Just to complete the topic of stack bar charts, using the D3 library it is possible to represent the bars in
descending order, by adding the single line in Listing 21-23. Although you do not really need this feature in your case,
it could be useful in certain other particular cases.

Listing 21-23. ch21_02.html

d3.csv("data_05.csv", function(error, data) {
 ...
 data.forEach(function(d) {
 ...
 console.log(d.countries);
 });

 data.sort(function(a, b) { return b.total - a.total; });

 x.domain(data.map(function(d) { return d.Country; }));
 ...
});

CHAPTER 21 ■ BAR CHARTS WITH D3

464

Figure 21-6 shows your stacked bars represented along the x axis in descending order.

A Normalized Stacked Bar Chart
In this section, you will see how to convert the preceding chart in a normalized chart. By “normalized,” we mean that
the range of values to be displayed in the chart is converted into another target range, which often goes from 0 to 1,
or 0 to 100 if you are talking about percentages (a very similar concept was treated in relation to the “Ranges, Domains,
and Scales” section in Chapter 19). Therefore, if you want to compare different series covering ranges of values that
are very different from each other, you need to carry out a normalization, reporting all of these intervals in percentage
values between 0 and 100 (or between 0 and 1). In fact, having to compare multiple series of data, we are often
interested in their relative characteristics. In our example, for instance, you might be interested in how the mechanical
sector affects the economic income of a nation (normalization), and also in comparing how this influence differs
from country to country (comparison between normalized values). So, in order to respond to such a demand, you can
represent your stacked chart in a normalized format.

You have already reported the percentage values on the y axis; however, the percentages of each sector of
production were calculated with respect to the total amount of the income of all countries. This time, the percentages
will be calculated with respect to the income of each country. Thus, in this case you do not care how each individual
portion partakes (in percentage) of the global income (referring to all five countries), but you care only about the
percentage of income which each single sector produces in the respective country. In this case, therefore, each
country will be represented by a bar at 100%. Now, there is no information about which country produces more
income than others, but you are interested only in the information internal to each individual country.

All of this reasoning is important for you to understand that, although starting from the same data, you will need
to choose a different type of chart depending on what you want to focus the attention of those who would be looking
at the chart.

For this example, you are going to use the same file data_05.csv (refer to Listing 21-14); as we have just said,
the incoming information is the same, but it is its interpretation which is different. In order to normalize the previous
stacked bar chart, you need to effect some changes to the code. Start by extending the left and the right margins by just
a few pixels as shown in Listing 21-24.

Figure 21-6. A sorted stacked bar chart with a legend

CHAPTER 21 ■ BAR CHARTS WITH D3

465

Listing 21-24. ch21_03.html

var margin = {top: 70, right: 70, bottom: 30, left: 50},
 w = 500 - margin.left - margin.right,
 h = 350 - margin.top - margin.bottom;

In Listing 21-25, inside the d3.csv() function you must eliminate the iterations for calculating the sum of the
total income, which is no longer needed. Instead, you add a new iteration which takes the percentages referred to
each country into account. Then, you must eliminate the definition of the y domain, leaving only the x domain.

Listing 21-25. ch21_03.html

d3.csv("data_05.csv", function(error, data) {
 color.domain(d3.keys(data[0]).filter(function(key) {
 return key !== "Country"; }));

 data.forEach(function(d) {
 var y0 = 0;
 d.countries = color.domain().map(function(name) {
 return {name: name, y0: y0, y1: y0 += +d[name]}; });
 d.countries.forEach(function(d) { d.y0 /= y0; d.y1 /= y0; });
 });

 x.domain(data.map(function(d) { return d.Country; }));

 var country = svg.selectAll(".country")
 ...

With this new type of chart, the y label would be covered by the bars. You must therefore delete or comment out
the rotate() function in order to make it visible again as shown in Listing 21-26.

Listing 21-26. ch21_03.html

labels.append("text")
 //.attr("transform", "rotate(–90)")
 .attr("x", 50)
 .attr("y", -20)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Income [%]");

While you’re at it, why not take the opportunity to change the title to your chart? Thus, modify the title as shown
in Listing 21-27.

Listing 21-27. ch21_03.html

 title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A normalized stacked bar chart");

CHAPTER 21 ■ BAR CHARTS WITH D3

466

Even the legend is no longer required. In fact, you will replace it with another type of graphic representation which
has very similar functions. Thus, you can delete the lines which define the legend in Listing 21-28 from the code.

Listing 21-28. ch21_03.html

var legend = svg.selectAll(".legend")
 .data(color.domain().slice().reverse())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + i * 20 + ")"; });

 legend.append("rect")
 .attr("x", w - 18)
 .attr("y", 4)
 .attr("width", 10)
 .attr("height", 10)
 .style("fill", color);

 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });

Now that you have removed the legend and made the right changes, if you load the web page you get the
normalized stacked bar chart in Figure 21-7.

Figure 21-7. A normalized stacked bar chart

CHAPTER 21 ■ BAR CHARTS WITH D3

467

Without the legend, you must once again know, in some way, what the colors in the bars refer to; you are going to
label the last bar on the right with labels reporting the names of the groups.

Start by adding a new style class in Listing 21-29.

Listing 21-29. ch21_03.html

<style>
...
.x.axis path {
 display: none;
}
.legend line {
 stroke: #000;
 shape-rendering: crispEdges;
}
</style>

Hence, in place of the code that you have just removed, as shown in Listing 21-28, you add the code in
Listing 21-30.

Listing 21-30. ch21_03.html

country.selectAll("rect")
 .data(function(d) { return d.countries; })
 .enter().append("rect")
 .attr("width", x.rangeBand())
 .attr("y", function(d) { return y(d.y1); })
 .attr("height", function(d) { return (y(d.y0) - y(d.y1)); })
 .style("fill", function(d) { return color(d.name); });

var legend = svg.select(".country:last-child")
 .data(data);

legend.selectAll(".legend")
 .data(function(d) { return d.countries; })
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d) {
 return "translate(" + x.rangeBand()*0.9 + "," +
 y((d.y0 + d.y1) / 2) + ")";
 });

legend.selectAll(".legend")
 .append("line")
 .attr("x2", 10);

legend.selectAll(".legend")
 .append("text")
 .attr("x", 13)
 .attr("dy", ".35em")
 .text(function(d) { return d.name; });
});

CHAPTER 21 ■ BAR CHARTS WITH D3

468

As you add the labels to the last bar, the SVG elements which define them must belong to the group
corresponding to the last country. So, you use the .country: last-child selector to get the last element of the
selection containing all the bars. So, the new chart will look like Figure 21-8.

Drawing a Grouped Bar Chart
Always using the same data contained in data_05.csv, you can obtain another representation: a grouped bar
chart. This representation is most appropriate when you want to focus on the individual income for each sector
of production. In this case, you do not care in what measure the sectors partake of the total income. Thus, the
percentages disappear and are replaced by y values written in the CSV file.

Listing 21-31 shows the part of code that is almost comparable to that present in other previous examples, so we
will not discuss it in detail. In fact, you will use it as a starting point upon which to add other code snippets.

Listing 21-31. ch21_04.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="../src/d3.v3.js"></script>
<style>
body {
 font: 14px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}

Figure 21-8. A normalized stacked bar chart with labels as legend

CHAPTER 21 ■ BAR CHARTS WITH D3

469

.x.axis path {
 display: none;
}
</style>
</head>
<body>
<script type="text/javascript">
var color = d3.scale.category10();

var margin = {top: 70, right: 70, bottom: 30, left: 50},
 w = 500 - margin.left - margin.right,
 h = 350 - margin.top - margin.bottom;

var yGrid = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5)
 .tickSize(-w, 0, 0)
 .tickFormat("")

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("data_05.csv", function(error, data) {

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis)

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);
});
</script>
</body>
</html>

For this specific purpose, you need to define two different variables on the x axis: x0 and x1, both following an
ordinal scale as shown in Listing 21-32. The x0 identifies the ordinal scale of all the groups of bars, representing a
country, while x1 is the ordinal scale of each single bar within each group, representing a sector of production.

CHAPTER 21 ■ BAR CHARTS WITH D3

470

Listing 21-32. ch21_04.html

var margin = {top: 70, right: 70, bottom: 30, left: 50},
 w = 500 - margin.left - margin.right,
 h = 350 - margin.top - margin.bottom;

var x0 = d3.scale.ordinal()
 .rangeRoundBands([0, w], .1);
var x1 = d3.scale.ordinal();
var y = d3.scale.linear()
 .range([h, 0]);

...

Consequently, in the definition of the axes, you assign the x0 to the x axis, and the y to the y axis (see Listing 21-33).
Instead, the variable x1 will be used later only as a reference for the representation of the individual bar.

Listing 21-33. ch21_04.html

...
var y = d3.scale.linear()
 .range([h, 0]);

var xAxis = d3.svg.axis()
 .scale(x0)
 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");
...

Inside the d3.csv() function, you extract all the names of the sectors of production with the keys() function and
exclude the “country” header by filtering it out from the array with the filter() function as shown in Listing 21-34.
Here, too, you build an array of objects for each country, but the structure is slightly different. The new array looks
like this:

[Object { name="Electronics", value=12},
 Object { name="Software", value=14},
 Object { name="Mechanics", value=18}]

Listing 21-34. ch21_04.html

...
d3.csv("data_05.csv", function(error, data) {
 var sectorNames = d3.keys(data[0]).filter(function(key) {
 return key !== "Country"; });
 data.forEach(function(d) {
 d.countries = sectorNames.map(function(name) {
 return {name: name, value: +d[name]
 };
 });
 ...
});

CHAPTER 21 ■ BAR CHARTS WITH D3

471

Once you define the data structure, you can define the new domains as shown in Listing 21-35.

Listing 21-35. ch21_04.html

d3.csv("data_05.csv", function(error, data) {
 ...
 data.forEach(function(d) {
 ...
 });

 x0.domain(data.map(function(d) { return d.Country; }));
 x1.domain(sectorNames).rangeRoundBands([0, x0.rangeBand()]);
 y.domain([0, d3.max(data, function(d) {
 return d3.max(d.countries, function(d) { return d.value; });
 })]);

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);
...

As mentioned before, with x0 you specify the ordinal domain with the names of each country. Instead, in x1 the
names of the various sectors make up the domain. Finally, in y the domain is defined by numerical values. Update
the values passed in the iterations with the new domains (see Listing 21-36).

Listing 21-36. ch21_04.html

d3.csv("data_05.csv", function(error, data) {
 ...
 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

 var country = svg.selectAll(".country")
 .data(data)
 .enter().append("g")
 .attr("class", "country")
 .attr("transform", function(d) {
 return "translate(" + x0(d.Country) + ",0)";
 });

 country.selectAll("rect")
 .data(function(d) { return d.countries; })
 .enter().append("rect")
 .attr("width", x1.rangeBand())
 .attr("x", function(d) { return x1(d.name); })
 .attr("y", function(d) { return y(d.value); })
 .attr("height", function(d) { return h - y(d.value); })
 .style("fill", function(d) { return color(d.name); });
});

CHAPTER 21 ■ BAR CHARTS WITH D3

472

Then, externally to the csv() function you can define the SVG element which will represent the axis label on the
y axis, as shown in Listing 21-37. It does not need to be defined within the csv() function, since it is independent from
the data contained in the CSV file.

Listing 21-37. ch21_04.html

d3.csv("data_05.csv", function(error, data) {
 ...
});

var labels = svg.append("g")
 .attr("class","labels")

labels.append("text")
 .attr("transform", "rotate(–90)")
 .attr("y", 5)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Income");
</script>

One last thing . . . you need to add an appropriate title to the chart as shown in Listing 21-38.

Listing 21-38. ch21_04.html

labels.append("text")
 ...
 .text("Income");

var title = svg.append("g")
 .attr("class","title")

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A grouped bar chart");
</script>

And Figure 21-9 is the result.

CHAPTER 21 ■ BAR CHARTS WITH D3

473

In the previous case, with the normalized bar chart, you looked at an alternative way to represent a legend.
You have built this legend by putting some labels which report the series name on the last bar (refer to Figure 21-8).
Actually you made use of point labels. These labels can contain any text and are directly connected to a single value in
the chart. At this point, introduce point labels. You will place them at the top of each bar, showing the numerical value
expressed by that bar. This greatly increases the readability of each type of chart.

As you have done for any other chart component, having defined the PointLabels variable, you use it in order
to assign the chain of functions applied to the corresponding selection. Also, for this type of component, which has
specific values for individual data, you make use of an iteration for the data contained in the CSV file. The data on
which you want to iterate are the same data you used for the bars. You therefore pass the same iterative function(d)
to the data() function as argument (see Listing 21-39). In order to draw the data on top of the bars, you will apply a
translate() transformation for each PointLabel.

Listing 21-39. ch21_04.html

d3.csv("data_05.csv", function(error, data) {
 ...
country.selectAll("rect")
 ...
 .attr("height", function(d) { return h - y(d.value); })
 .style("fill", function(d) { return color(d.name); });

var pointlabels = country.selectAll(".pointlabels")
 .data(function(d) { return d.countries; })
 .enter().append("g")
 .attr("class", "pointlabels")

Figure 21-9. A grouped bar chart

CHAPTER 21 ■ BAR CHARTS WITH D3

474

 .attr("transform", function(d) {
 return "translate(" + x1(d.name) + "," + y(d.value) + ")";
 })
 .append("text")
 .attr("dy", "-0.3em")
 .attr("x", x1.rangeBand()/2)
 .attr("text-anchor", "middle")
 .text(function(d) { return d.value; });
 ...
});

And finally, there is nothing left to do but to add a legend, grouped in the classic format, to the chart
(see Listing 21-40).

Listing 21-40. ch21_04.html

d3.csv("data_05.csv", function(error, data) {
 ...
 pointlabels.append("text")
 ...
 .text(function(d) { return d.value; });

 var legend = svg.selectAll(".legend")
 .data(color.domain().slice().reverse())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + i * 20 + ")";
 });

 legend.append("rect")
 .attr("x", w - 18)
 .attr("y", 4)
 .attr("width", 10)
 .attr("height", 10)
 .style("fill", color);

 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });
});

Figure 21-10 shows the new chart with point labels and a segments legend.

CHAPTER 21 ■ BAR CHARTS WITH D3

475

Horizontal Bar Chart with Negative Values
So far you have used only positive values, but what if you have both positive and negative values? How can you
represent them in a bar chart? Take, for example, this sequence of values containing both positive and negative values
(see Listing 21-41).

Listing 21-41. ch21_05.html

var data = [4, 3, 1, -7, -10, -7, 1, 5, 7, -3, -5, -12, -7, -11, 3, 7, 8, -1];

Before analyzing the data to be displayed, start adding margins to your charts as shown in Listing 21-42.

Listing 21-42. ch21_05.html

var data = [4, 3, 1, -7, -10, -7, 1, 5, 7, -3, -5, -12, -7, -11, 3, 7, 8, -1];

var margin = {top: 30, right: 10, bottom: 10, left: 30},
 w = 700 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

In this particular case, you will make use of horizontal bars where the values in the input array will be represented
on the x axis, with the value 0 in the middle. In order to achieve this, it is first necessary to find the maximum value
in absolute terms (both negative and positive). You then create the x variable on a linear scale, while the y variable is
assigned to an ordinal scale containing the sequence in which data are placed in the input array (see Listing 21-43).

Figure 21-10. A grouped bar chart reporting the values above each bar

CHAPTER 21 ■ BAR CHARTS WITH D3

476

Listing 21-43. ch21_05.html

...
var margin = {top: 30, right: 10, bottom: 10, left: 30},
 w = 700 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var xMax = Math.max(-d3.min(data), d3.max(data));

var x = d3.scale.linear()
 .domain([-xMax, xMax])
 .range([0, w])
 .nice();

var y = d3.scale.ordinal()
 .domain(d3.range(data.length))
 .rangeRoundBands([0, h], .2);

In Listing 21-44, you assign the two scales to the corresponding x axis and y axis. This time, the x axis will
be drawn in the upper part of the chart while the y axis will be oriented downwards (the y values are growing
downwards).

Listing 21-44. ch21_05.html

var y = d3.scale.ordinal()
 .domain(d3.range(data.length))
 .rangeRoundBands([0, h], .2);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("top");
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");

At this point, there is nothing left to do but to begin to implement the drawing area. Create the root <svg>
element, assigning the margins that have been previously defined. Then, you define the x axis and y axis
(see Listing 21-45).

Listing 21-45. ch21_05.html

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

CHAPTER 21 ■ BAR CHARTS WITH D3

477

svg.append("g")
 .attr("class", "x axis")
 .call(xAxis);

svg.append("g")
 .attr("class", "y axis")
 .attr("transform", "translate("+x(0)+",0)")
 .call(yAxis);

Finally, you need to insert a <rect> element for each bar to be represented, being careful to divide the bars into
two distinct groups: negative bars and positive bars (see Listing 21-46). These two categories must be distinguished in
order to set their attributes separately, with a CSS style class (e.g., color).

Listing 21-46. ch21_05.html

svg.append("g")
 .attr("class", "y axis")
 .attr("transform", "translate("+x(0)+",0)")
 .call(yAxis);

svg.selectAll(".bar")
 .data(data)
 .enter().append("rect")
 .attr("class", function(d) {
 return d < 0 ? "bar negative" : "bar positive";
 })
 .attr("x", function(d) { return x(Math.min(0, d)); })
 .attr("y", function(d, i) { return y(i); })
 .attr("width", function(d) { return Math.abs(x(d) - x(0)); })
 .attr("height", y.rangeBand());

In fact, if you analyze the structure with Firebug in Figure 21-11, you will see that the iteration has created two
different types of bars within the same group, recognizable by the characterization of the class name “bar positive”
and “bar negative.” Through these two different names, you apply two different CSS styles in order to distinguish the
bars with negative values from those with positive values.

Figure 21-11. Firebug shows how it is possible to distinguish the positive from the negative bars, indicating the
distinction in the class of each rect element

CHAPTER 21 ■ BAR CHARTS WITH D3

478

According to what we have just said, you set the style class attributes for negative and positive bars as in
Listing 21-47.

Listing 21-47. ch21_05.html

<style>
.bar.positive {
 fill: red;
 stroke: darkred;
}
.bar.negative {
 fill: lightblue;
 stroke: blue;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
}
body {
 font: 14px sans-serif;
}
</style>

At the end, you get the chart in Figure 21-12 with red bars for positive values and blue bars for negative values.

Figure 21-12. A horizontal bar chart

CHAPTER 21 ■ BAR CHARTS WITH D3

479

Summary
In this chapter, you have covered almost all of the fundamental aspects related to the implementation of a bar chart,
the same type of chart which was developed in the first section of the book using the jqPlot library. Here, you made
use of the D3 library. Thus, you saw how you can realize a simple bar chart element by element; then you moved on to
the various cases of stacked bar charts and grouped bar charts, to finally look at a most peculiar case: a horizontal bar
chart which portrays negative values.

In the next chapter, you will continue with the same approach: you will learn how to implement pie charts in a
way similar to that used when working with jqPlot, but this time you will be using the D3 library.

481

CHAPTER 22

Pie Charts with D3

In the previous chapter, you have just seen how bar charts represent a certain category of data. You have also seen that
starting from the same data structure, depending on your intentions you could choose one type of chart rather than
another in order to accentuate particular aspects of the data. For instance, in choosing a normalized stacked bar chart,
you wanted to focus on the percentage of income that each sector produces in its country.

Very often, such data represented by bar charts can also be represented using pie charts. In this chapter, you will
learn how to create even this type of chart using the D3 library. Given that this library does not provide the graphics
which are already implemented, as jqPlot does, but requires the user to build them using basic scalar vector graphics
(SVG) elements, you will start by looking at how to build arcs and circular sectors. In fact, as with rectangles for bar
charts and lines for line charts, these shapes are of fundamental importance if you are to realize pie charts (using
circular sectors) or donut charts (using arcs). After you have implemented a classic example of a pie chart, we will
deepen the topic further, by creating some variations. In the second part of the chapter, you will tackle donut charts,
managing multiple series of data that are read from a comma-separated values (CSV) file.

Finally, we will close the chapter with a chart that we have not dealt with yet: the polar area diagram. This type of
chart is a further evolution of a pie chart, in which the slices are no longer enclosed in a circle, but all have different
radii. With polar area diagram, the information will no longer be expressed only by the angle that a slice occupies but
also by its radius.

The Basic Pie Charts
To better highlight the parallels between bar charts and pie charts, in this example you will use the same CSV file that
you used to create a basic bar chart (see the “Drawing a bar chart” section in Chapter 21). Thus, in this section, your
purpose will be to implement the corresponding pie chart using the same data. In order to do this, before you start
“baking” pies and donuts, you must first obtain “baking trays” of the right shape. The D3 library also allows you to
represent curved shapes such as arches and circular sectors, although there actually are no such SVG elements.
In fact, as you will soon see, thanks to some of its methods D3 can handle arcs and sectors as it handles other real
SVG elements (rectangles, circles, lines, etc.). Once you are confident with the realization of these elements, your
work in the creation of a basic pie chart will be almost complete. In the second part of this section, you will produce
some variations on the theme, playing mainly with shape borders and colors in general.

CHAPTER 22 ■ PIE CHARTS WITH D3

482

Drawing a Basic Pie Chart
Turn your attention again to data contained in the CSV file named data_04.csv (see Listing 22-1).

Listing 22-1. data_04.csv

country,income
France,14
Russia,22
Japan,13
South Korea,34
Argentina,28

Now, we will demonstrate how these data fit well in a pie chart representation. First, in Listing 22-2, the drawing
area and margins are defined.

Listing 22-2. ch22_01a.html

var margin = {top: 70, right: 20, bottom: 30, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

Even for pie charts, you need to use a sequence of colors to differentiate the slices between them. Generally, it is
usual to use the category10() function to create a domain of colors, and that is what you have done so far. You could
do the same thing in this example, but this is not always required. We thus take advantage of this example to see how
it is possible to pass a sequence of custom colors. Create a customized example by defining the colors to your liking,
one by one, as shown in Listing 22-3.

Listing 22-3. ch22_01a.html

var margin = {top: 70, right: 20, bottom: 30, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var color = d3.scale.ordinal()
 .range(["#ffc87c", "#ffeba8", "#f3b080", "#916800", "#dda66b"]);

Whereas previously you had bars built with rect elements, now you have to deal with the sections of a circle.
Thus, you are dealing with circles, angles, arches, radii, etc. In D3 there is a whole set of tools which allow you to work
with these kinds of objects, making your work with pie charts easier.

To express the slices of a pie chart (circle sectors), D3 provides you with a function: d3.svg.arc(). This function
actually defines the arches. By the term “arc,” we mean a particular geometric surface bound by an angle and by two
circles, one with a smaller radius (inner radius) and the other with a larger radius (outer radius). The circular sector,
i.e., the slice of a pie chart, is nothing more than an arc with an inner radius equal to 0 (see Figure 22-1).

CHAPTER 22 ■ PIE CHARTS WITH D3

483

First, you calculate a radius which is concordant to the size of the drawing area. Then, according to this range,
you delimit the outer radius and inner radius, which in this case is 0 (see Listing 22-4).

Listing 22-4. ch22_01a.html

...
var color = d3.scale.ordinal()
 .range(["#ffc87c", "#ffeba8", "#f3b080", "#916800", "#dda66b"]);

var radius = Math.min(w, h) / 2;
var arc = d3.svg.arc()
 .outerRadius(radius)
 .innerRadius(0);

D3 also provides a function to define the pie chart: the d3.layout.pie() function. This function builds a layout
that allows you to compute the start and end angles of an arc in a very easy way. It is not mandatory to use such a
function, but the pie layout automatically converts an array of data into an array of objects. Thus, define a pie with an
iterative function on income values as shown in Listing 22-5.

Listing 22-5. ch22_01a.html

...
var arc = d3.svg.arc()
 .outerRadius(radius)
 .innerRadius(0);

var pie = d3.layout.pie()
 .sort(null)
 .value(function(d) { return d.income; });

Now, as seen in Listing 22-6, you insert the root element <svg>, assigning the correct dimensions and the
appropriate translate() transformation.

Figure 22-1. By increasing the inner radius, it is possible to switch from a circle sector to an arc

CHAPTER 22 ■ PIE CHARTS WITH D3

484

Listing 22-6. ch22_01a.html

...
var pie = d3.layout.pie()
 .sort(null)
 .value(function(d) { return d.income; });

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +(w / 2 + margin.left) +
 "," + (h / 2 + margin.top) + ")");

Next, for the reading of data in CSV files, you use the d3.csv() function, as always. Here too you must ensure
that the income is interpreted in numeric values and not as strings. Then, you write the iteration with the forEach()
function and assign the values of income with the sign ‘+’ beside them, as shown in Listing 22-7.

Listing 22-7. ch22_01a.html

...
 .append("g")
 .attr("transform", "translate(" +(w/2+margin.left)+
 "," +(h/2+margin.top)+ ")");

d3.csv("data_04.csv", function(error, data) {

 data.forEach(function(d) {
 d.income = +d.income;
 });

});

It is now time to add an <arc> item, but this element does not exist as an SVG element. In fact, what you use here
really is a <path> element which describes the shape of the arc. It is D3 itself which builds the corresponding path
thanks to the pie() and arc() functions. This spares you a job which is really too complex. You are left only with the
task of defining these elements as if they were <arc> elements (see Listing 22-8).

Listing 22-8. ch22_01a.html

d3.csv("data_04.csv", function(error, data) {

 data.forEach(function(d) {
 d.income = +d.income;
 });

 var g = svg.selectAll(".arc")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "arc");

CHAPTER 22 ■ PIE CHARTS WITH D3

485

 g.append("path")
 .attr("d", arc)
 .style("fill", function(d) { return color(d.data.country); });

});

If you analyze the SVG structure with Firebug, you can see in Figure 22-2 that the arc paths are created
automatically, and that you have a <g> element for each slice.

Figure 22-2. With Firebug, you can see how the D3 library automatically builds the arc element

Moreover, it is necessary to add an indicative label to each slice so that you can understand which country it
relates to, as shown in Listing 22-9. Notice the arc.centroid() function. This function computes the centroid of the
arc. The centroid is defined as the midpoint between the inner and outer radius and the start and end angle. Thus, the
label text appears perfectly in the middle of every slice.

Listing 22-9. ch22_01a.html

d3.csv("data_04.csv", function(error, data) {
 ...
 g.append("path")
 .attr("d", arc)
 .style("fill", function(d) { return color(d.data.country); });

 g.append("text")
 .attr("transform", function(d) {
 return "translate(" + arc.centroid(d) + ")"; })
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.country; });

});

Even for pie charts, it is good practice to add a title at the top and in a central position (see Listing 22-10).

CHAPTER 22 ■ PIE CHARTS WITH D3

486

Listing 22-10. ch22_01a.html

d3.csv("data_04.csv", function(error, data) {
 ...
 g.append("text")
 .attr("transform", function(d) {
 return "translate(" + arc.centroid(d) + ")"; })
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.country; });

 var title = d3.select("svg").append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")")
 .attr("class","title")

 title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My first pie chart");
});

As for the CSS class attributes, you can add the definitions in Listing 22-11.

Listing 22-11. ch22_01a.html

<style>
body {
 font: 16px sans-serif;
}

.arc path {
 stroke: #000;
}
</style>

At the end, you get your first pie chart using the D3 library, as shown in Figure 22-3.

CHAPTER 22 ■ PIE CHARTS WITH D3

487

Some Variations on Pie Charts
Now, you will effect some changes to the basic pie chart that you have just created, illustrating some of the infinite
possibilities of variations on the theme that you can obtain:

working on color sequences;•฀

sorting the slices in a pie chart;•฀

adding spaces between the slices;•฀

representing the slices only with outlines;•฀

combining all of the above.•฀

Working on Color Sequences

In the previous example, we defined the colors in the scale, and in the preceding examples we used the category10()
function. There are other already defined categorical color scales: category20(), category20b(), and category20c().
Apply them to your pie chart, just to see how they affect its appearance. Listing 22-12 shows a case in which you use
the category10() function. For the other categories, you only need to replace this function with others.

Listing 22-12. ch22_01b.html

var color = d3.scale.category10();

Figure 22-4 shows the color variations among the scales (reflected in different grayscale tones in print).
The category10() and category20() functions generate a scale with alternating colors; instead, category20b() and
category 20c() generate a scale with a slow gradation of colors.

Figure 22-3. A simple pie chart

CHAPTER 22 ■ PIE CHARTS WITH D3

488

Sorting the Slices in a Pie Chart

Another thing to notice is that, by default, the pie chart in D3 undergoes an implicit sorting. Thus, in case you had not
made the request explicitly by passing null to the sort() function, as shown in Listing 22-13.

Listing 22-13. ch22_01c.html

var pie = d3.layout.pie()
 //.sort(null)
 .value(function(d) { return d.income; });

Then, the pie chart would have had looked different, as shown in Figure 22-5.

Figure 22-4. Different color sequences: a) category10, b) category20, c) category20b, d) category20c

CHAPTER 22 ■ PIE CHARTS WITH D3

489

In a pie chart, the first slice is the greatest, and then the other slices are gradually added in descending order.

Adding Spaces Between the Slices

Often, the slices are shown spaced out between them, and this can be achieved very easily. You just need to make
some changes to the CSS style class for the path elements as shown in Listing 22-14.

Listing 22-14. ch22_01d.html

.arc path {
 stroke: #fff;
 stroke-width: 4;
}

Figure 22-6 shows how the pie chart assumes a more pleasing appearance when the slices are spaced apart by a
white gap.

Figure 22-5. A simple pie chart with sorted slices

CHAPTER 22 ■ PIE CHARTS WITH D3

490

Representing the Slices Only with Outlines

It is a little more complex to draw your pie chart with slices which are bounded only by colored borders and empty
inside. You have seen similar cases with jqPlot. Change the CSS style class, as shown in Listing 22-15.

Listing 22-15. ch22_01e.html

.arc path {
 fill: none;
 stroke-width: 6;
}

In fact, this time you do not want to fill the slices with specific colors, but you want the edges, defining them, to
be colored with specific colors. So you need to replace the fill with the stroke attribute in the style definition of
the SVG element. Now it is the line which is colored with the indicative color. But you need to make another change,
which is a little bit more complex to understand.

You are using the borders of every slice to specify the colored part, but they are actually overlapped. So, the
following color covers the previous one partially and it is not so neat to have all the slices attached. It would be better
to add a small gap. This could be done very easily, simply by applying a translation for each slice. Every slice should be
driven off the center by a small distance, in a centrifugal direction. Thus, the translation is different for each slice and
here you exploit the capabilities of the centroid() function, which gives you the direction (x and y coordinates) of the
translation (see Listing 22-16).

Listing 22-16. ch22_01e.html

var g = svg.selectAll(".arc")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "arc")

Figure 22-6. The slices are separated by a white space

CHAPTER 22 ■ PIE CHARTS WITH D3

491

 .attr("transform", function(d) {
 a = arc.centroid(d)[0]/6;
 b = arc.centroid(d)[1]/6;
 return "translate(" + a +","+b + ")";
 })

g.append("path")
 .attr("d", arc)
 .style("stroke", function(d) { return color(d.data.country); });

Figure 22-7 illustrates how these changes affect the pie chart.

Figure 22-7. A pie chart with unfilled slices

Mixing All of This

But it does not end here. You can create a middle solution between these last two pie charts: get the slices with more
intensely colored edges and fill them with a lighter color. It is enough to define two identical but differently colored
paths, as shown in Listing 22-17. The first will have a uniform color which is slightly faint, while the second will have
only colored edges and the inside will be white.

Listing 22-17. ch22_01f.html

var g = svg.selectAll(".arc")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "arc")
 .attr("transform", function(d) {
 a = arc.centroid(d)[0]/6;
 b = arc.centroid(d)[1]/6;
 return "translate(" + a +","+b + ")";
 })

CHAPTER 22 ■ PIE CHARTS WITH D3

492

g.append("path")
 .attr("d", arc)
 .style("fill", function(d) { return color(d.data.country); })
 .attr('opacity', 0.5);

g.append("path")
 .attr("d", arc)
 .style("stroke", function(d) { return color(d.data.country); });

Figure 22-8 shows the spaced pie chart with two paths that color the slices and their borders.

Figure 22-8. A different way to color the slices in a pie chart

Donut Charts
As the pie chart is to the bar chart, so the donut chart is to the multiseries bar chart. In fact, when you have multiple
sets of values, you would have to represent them with a pie chart for each series. If you use donuts charts instead, you
can represent them all together and also compare them in a single chart (see Figure 22-9).

CHAPTER 22 ■ PIE CHARTS WITH D3

493

Begin by writing the code in Listing 22-18; we will not provide any explanation because it is identical to the
previous example.

Listing 22-18. ch22_02.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 16px sans-serif;
}
.arc path {
 stroke: #000;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 30, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

Figure 22-9. A diagram representing the parallelism between pie charts and bar charts both with one and with
multiple series of data

http://d3js.org/d3.v3.js

CHAPTER 22 ■ PIE CHARTS WITH D3

494

var color = d3.scale.ordinal()
 .range(["#ffc87c", "#ffeba8", "#f3b080", "#916800", "#dda66b"]);

var radius = Math.min(w, h) / 2;

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +(w/2+margin.left)+
 "," +(h/2+margin.top)+ ")");

var title = d3.select("svg").append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")")
 .attr("class","title");

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A donut chart");
</script>
</body>
</html>

For an example of multiseries data, you will add another column of data representing the expense to the file
data_04.csv as shown in Listing 22-19, and you will save this new version as data_06.csv.

Listing 22-19. data_06.csv

country,income,expense
France,14,10
Russia,22,19
Japan,13,6
South Korea,34,12
Argentina,28,26

You have added a new set of data. Differently from the previous example, you must, therefore, create a new arc
for this series. Then, in addition to the second arc, you add a third one. This arc is not going to draw the slices of a
series, but you are going to use it in order to distribute labels circularly. These labels show the names of the countries,
providing an alternative to a legend. Thus, divide the radius into three parts, leaving a gap in between to separate the
series as shown in Listing 22-20.

Listing 22-20. ch22_02.html

var arc1 = d3.svg.arc()
 .outerRadius(0.4 * radius)
 .innerRadius(0.2 * radius);
var arc2 = d3.svg.arc()
 .outerRadius(0.7 * radius)
 .innerRadius(0.5 * radius);

CHAPTER 22 ■ PIE CHARTS WITH D3

495

var arc3 = d3.svg.arc()
 .outerRadius(radius)
 .innerRadius(0.8 * radius);

You have just created two arcs to manage the two series, and consequently it is now necessary to create two pies,
one for the values of income and the other for the values of expenses (see Listing 22-21).

Listing 22-21. ch22_02.html

var pie = d3.layout.pie()
 .sort(null)
 .value(function(d) { return d.income; });
var pie2 = d3.layout.pie()
 .sort(null)
 .value(function(d) { return d.expense; });

You use the d3.csv() function to read the data within the file as shown in Listing 22-22. You do the usual
iteration of data with forEach() for the interpretation of income and expense as numerical values.

Listing 22-22. ch22_02.html

d3.csv("data_06.csv", function(data) {

 data.forEach(function(d) {
 d.income = +d.income;
 d.expense = +d.expense;
 });

});

In Listing 22-23, you create the path elements which draw the various sectors of the two donuts, corresponding
to the two series. With the functions data(), you bind the data of the two pie layouts to the two representations. Both
the donuts must follow the same sequence of colors. Once the path element is defined, you connect it with a text
element in which the corresponding numeric value is reported. Thus, you have added some labels which make it
easier to read the chart.

Listing 22-23. ch22_02.html

var g = svg.selectAll(".arc1")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "arc1");

g.append("path")
 .attr("d", arc1)
 .style("fill", function(d) { return color(d.data.country); });

g.append("text")
 .attr("transform", function(d) {
 return "translate(" + arc1.centroid(d) + ")"; })
 .attr("dy", ".35em")
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.income; });

CHAPTER 22 ■ PIE CHARTS WITH D3

496

var g = svg.selectAll(".arc2")
 .data(pie2(data))
 .enter().append("g")
 .attr("class", "arc2");

g.append("path")
 .attr("d", arc2)
 .style("fill", function(d) { return color(d.data.country); });

g.append("text")
 .attr("transform", function(d) {
 return "translate(" + arc2.centroid(d) + ")"; })
 .attr("dy", ".35em")
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.expense; });

Now, all that remains to do is to add the external labels carrying out the functions of the legend as shown
in Listing 22-24.

Listing 22-24. ch22_02.html

g.append("text")
 .attr("transform", function(d) {
 return "translate(" + arc3.centroid(d) + ")"; })
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.country; });

And so you get the donut chart shown in Figure 22-10.

Figure 22-10. A donut chart

CHAPTER 22 ■ PIE CHARTS WITH D3

497

Polar Area Diagrams
Polar area diagrams are very similar to pie charts, but they differ in how far each sector extends from the center of the
circle, giving the possibility to represent a further value. The extent of every slice is proportional to this new added
value (see Figure 22-11).

Figure 22-11. In a polar area diagram, each slice is characterized by a radius r and an angle

Consider the data in the file data_04.csv again and add an additional column which shows the growth of the
corresponding country as shown in Listing 22-25. Save it as data_07.csv.

Listing 22-25. data_07.csvl

country,income,growth
France,14,10
Russia,22,19
Japan,13,9
South Korea,34,12
Argentina,28,16

Start writing the code in Listing 22-26; again, we will not explain this part because it is identical to the previous
examples.

Listing 22-26. ch22_03.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 16px sans-serif;
}

http://d3js.org/d3.v3.js

CHAPTER 22 ■ PIE CHARTS WITH D3

498

.arc path {
 stroke: #000;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 30, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var color = d3.scale.ordinal()
 .range(["#ffc87c", "#ffeba8", "#f3b080", "#916800", "#dda66b"]);

var radius = Math.min(w, h) / 2;

var pie = d3.layout.pie()
 .sort(null)
 .value(function(d) { return d.income; });

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +(w/2-margin.left)+
 "," +(h/2+margin.top)+ ")");

var title = d3.select("svg").append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")")
 .attr("class","title");

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A polar area diagram");
</script>
</body>
</html>

In Listing 22-27, you read the data in the data_07.csv file with the d3.csv() function and make sure that the
values of income and growth are interpreted as numeric values.

Listing 22-27. ch22_03.html

d3.csv("data_07.csv", function(error, data) {

 data.forEach(function(d) {
 d.income = +d.income;
 d.growth = +d.growth;
 });
});

CHAPTER 22 ■ PIE CHARTS WITH D3

499

Differently to the previous examples, here you define not only an arc, but an arc which will vary with the variation
of data being read; we will call it arcs, since the outerRadius is no longer constant but is proportional to the growth
values in the file. In order to do this, you need to apply a general iterative function, and then the arcs must be declared
within the d3.csv() function (see Listing 22-28).

Listing 22-28. ch22_03.html

d3.csv("data_07.csv", function(error, data) {

 data.forEach(function(d) {
 d.income = +d.income;
 d.growth = +d.growth;
 });

 arcs = d3.svg.arc()
 .innerRadius(0)
 .outerRadius(function(d,i) { return 8*d.data.growth; });
});

Now, you just have to add the SVG elements which draw the slices with labels containing the values of growth
and income (see Listing 22-29). The labels reporting income values will be drawn inside the slices, right at the value
returned by the centroid() function. Instead, as regards the labels reporting the growth values, these will be drawn
just outside the slices. To obtain this effect, you can use the x and y values returned by centroid() and multiply them
by a value greater than 2. You must recall that the centroid is at the very center of the angle and in the middle between
innerRadius and outerRadius. Therefore, multiplying them by 2, you get the point at the center of the outer edge
of the slice. If you multiply them by a value greater than 2, then you will find x and y positions outside the slice, right
where you want to draw the label with the value of growth.

Listing 22-29. ch22_03.html

var g = svg.selectAll(".arc")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "arc");

g.append("path")
 .attr("d", arcs)
 .style("fill", function(d) { return color(d.data.country); });

g.append("text")
 .attr("class","growth")
 .attr("transform", function(d) {
 a = arcs.centroid(d)[0]*2.2;
 b = arcs.centroid(d)[1]*2.2;
 return "translate(" +a+","+b+ ")"; })
 .attr("dy", ".35em")
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.growth; });

g.append("text")
 .attr("class","income")
 .attr("transform", function(d) {

CHAPTER 22 ■ PIE CHARTS WITH D3

500

 return "translate(" +arcs.centroid(d)+ ")"; })
 .attr("dy", ".35em")
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.income; });

One thing you have not yet done to the pie chart is adding a legend. In Listing 22-30, we define, outside the
d3.csv() function, an element <g> in which to insert the table of the legend, and inside the function we define all the
elements related to the countries, since defining them requires access to the values written in the file.

Listing 22-30. ch22_03.html

var legendTable = d3.select("svg").append("g")
 .attr("transform", "translate(" +margin.left+ ","+margin.top+")")
 .attr("class","legendTable");

d3.csv("data_07.csv", function(error, data) {
...
 var legend = legendTable.selectAll(".legend")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + i * 20 + ")"; });

 legend.append("rect")
 .attr("x", w - 18)
 .attr("y", 4)
 .attr("width", 10)
 .attr("height", 10)
 .style("fill", function(d) { return color(d.data.country); });

 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d.data.country; });
});

Finally, you can make some adjustments to the CSS style classes as shown in Listing 22-31.

Listing 22-31. ch22_03.html

<style>
body {
 font: 16px sans-serif;
}
.arc path {
 stroke: #fff;
 stroke-width: 4;
}

CHAPTER 22 ■ PIE CHARTS WITH D3

501

.arc .income {
 font: 12px Arial;
 color: #fff;
}
</style>

And here is the polar area diagram (see Figure 22-12).

Figure 22-12. A polar area diagram

Summary
In this chapter, you learned how to implement pie charts and donut charts using the D3 library, following almost the
same guidelines as those provided in the previous chapters. Furthermore, at the end of the chapter you learned how
to make a polar area diagram, a type of chart which you had not met before and which the D3 library allows you to
implement easily.

In the next chapter, you will implement the two types of Candlestick chart which you had already discussed in the
first part of the book covering the jqPlot library, only this time you will be using the D3 library.

503

CHAPTER 23

Candlestick Charts with D3

In this short but nonetheless important chapter, you will look at candlestick charts. This type of chart is based on
a particular data format (OHLC, or open-high-low-close) that you have already dealt with when the jqPlot library
was covered (see Chapter 12). With jqPlot, you had a special plug-in to deal with and represent such data in an
appropriate manner; instead, with D3 you have to build all of the graphic elements one by one, and above all you will
need to implement a parser to read OHLC data from an external file. Moreover, another nontrivial aspect that you
need to solve is how to deal with date and time data.

Although this sounds complex, in this chapter you will discover how the D3 library provides you with tools which
make things easy and immediate for you.

You will first begin with building a simple OHLC chart, in order to focus particularly on the reading of the OHLC
data. Then you will look in detail at how D3 handles date and time data, and finally you will represent the OHLC chart
using only scalar vector graphics (SVG) elements such as lines.

In the last part, you will convert your OHLC chart in a more complete candlestick chart by means of only a few
modifications.

Creating an OHLC Chart
Because of the capability of D3 to build new graphical structures from small graphical components, you can also
create candlestick charts such as those generated with jqPlot. You have already seen that a candlestick chart requires
a well-defined data structure: a timeline of data which consists of a date and the four OHLC values. You copy the data
from Listing 23-1 into a file and save it as data_08.csv.

Listing 23-1. data_08.csv

date,open,min,max,close,
08/08/2012,1.238485,1.2327,1.240245,1.2372,
08/09/2012,1.23721,1.22671,1.23873,1.229295,
08/10/2012,1.2293,1.22417,1.23168,1.228975,
08/12/2012,1.229075,1.22747,1.22921,1.22747,
08/13/2012,1.227505,1.22608,1.23737,1.23262,
08/14/2012,1.23262,1.23167,1.238555,1.232385,
08/15/2012,1.232385,1.22641,1.234355,1.228865,
08/16/2012,1.22887,1.225625,1.237305,1.23573,
08/17/2012,1.23574,1.22891,1.23824,1.2333,
08/19/2012,1.23522,1.23291,1.235275,1.23323,
08/20/2012,1.233215,1.22954,1.236885,1.2351,
08/21/2012,1.23513,1.23465,1.248785,1.247655,
08/22/2012,1.247655,1.24315,1.254415,1.25338,

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

504

08/23/2012,1.25339,1.252465,1.258965,1.255995,
08/24/2012,1.255995,1.248175,1.256665,1.2512,
08/26/2012,1.25133,1.25042,1.252415,1.25054,
08/27/2012,1.25058,1.249025,1.25356,1.25012,
08/28/2012,1.250115,1.24656,1.257695,1.2571,
08/29/2012,1.25709,1.251895,1.25736,1.253065,
08/30/2012,1.253075,1.248785,1.25639,1.25097,
08/31/2012,1.25096,1.249375,1.263785,1.25795,
09/02/2012,1.257195,1.256845,1.258705,1.257355,
09/03/2012,1.25734,1.25604,1.261095,1.258635,
09/04/2012,1.25865,1.25264,1.262795,1.25339,
09/05/2012,1.2534,1.250195,1.26245,1.26005,
09/06/2012,1.26006,1.256165,1.26513,1.26309,
09/07/2012,1.26309,1.262655,1.281765,1.281625,
09/09/2012,1.28096,1.27915,1.281295,1.279565,
09/10/2012,1.27957,1.27552,1.28036,1.27617,
09/11/2012,1.27617,1.2759,1.28712,1.28515,
09/12/2012,1.28516,1.281625,1.29368,1.290235,

In what by now has become almost a habit, you begin by writing the code which is common to almost all charts
and does not require further explanations (see Listing 23-2).

Listing 23-2. ch23_01.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 16px sans-serif;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 30, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")");

var title = d3.select("svg").append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")")
 .attr("class","title");

http://d3js.org/d3.v3.js

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

505

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My candlestick chart");
</script>
</body>
</html>

Since in the first column of the file there are values of date type, you need to define a parser to set their format
(see Listing 23-3).

Listing 23-3. ch23_01.html

...
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var parseDate = d3.time.format("%m/%d/%Y").parse;
...

A candlestick chart is a type of data representation which is generally temporal, i.e., the four OHLC data are
related to a single time unit and their variations over time are visible along the x axis. You will therefore have an x axis
on which you will have to handle time values, whereas on the y axis you will assign a linear scale. In defining the x axis,
you make sure that the dates are reported showing only day and month, which will be indicated by the first three initial
characters (see Listing 23-4).

Listing 23-4. ch23_01.html

var parseDate = d3.time.format("%m/%d/%Y").parse;

var x = d3.time.scale()
 .range([0, w]);

var y = d3.scale.linear()
 .range([h, 0]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .tickFormat(d3.time.format("%d-%b"))
 .ticks(5);

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");

...

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

506

Now observing what is inside the data file (Listing 23-1), you can see five columns of data, of which the last four
are numbers. The first column contains dates which must be submitted to the parser, while the other four are to be
interpreted as numeric values. Moreover, you need to figure out which are the maximum and minimum values among
all of the OHLC data. Manage all these aspects within the iterative function forEach() as shown in Listing 23-5.

Listing 23-5. ch23_01.html

...
var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")");

d3.csv("data_08.csv", function(error, data) {
 var maxVal = -1000;
 var minVal = 1000;
 data.forEach(function(d) {
 d.date = parseDate(d.date);
 d.open = +d.open;
 d.close = +d.close;
 d.max = +d.max;
 d.min = +d.min;
 if (d.max > maxVal)
 maxVal = d.max;
 if (d.min < minVal)
 minVal = d.min;
 });
});
...

Next, in Listing 23-6, you create the domains of x and y. While on the x axis, the domain will handle dates,
the y domain will have an extension which will cover all the values between the minimum and maximum values that
have just been found (minVal and maxVal).

Listing 23-6. ch23_01.html

d3.csv("data_08.csv", function(error, data) {

 data.forEach(function(d) {
 ...
 });

 x.domain(d3.extent(data, function(d) { return d.date; }));
 y.domain([minVal,maxVal]);
});

Once the domains are well defined you can draw the two axes x and y with the SVG elements along with their
labels as shown in Listing 23-7.

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

507

Listing 23-7. ch23_01.html

d3.csv("data_08.csv", function(error, data) {
 ...
 y.domain([minVal,maxVal]);

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis)

 svg.append("text")
 .attr("class", "label")
 .attr("x", w)
 .attr("y", -6)
 .style("text-anchor", "end");

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Dollar [$]");
});

And you use the SVG element <line> to plot the data on the OHLC chart (see Listing 23-8). The ext line is the
vertical line which defines the range between the high and low values. The close and open lines are two horizontal
lines corresponding to open and close values.

Listing 23-8. ch23_01.html

d3.csv("data_08.csv", function(error, data) {
 ...
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Dollar [$]")

 svg.selectAll("line.ext")
 .data(data)
 .enter().append("svg:line")
 .attr("class", "ext")
 .attr("x1", function(d) { return x(d.date)})

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

508

 .attr("x2", function(d) { return x(d.date)})
 .attr("y1", function(d) { return y(d.min);})
 .attr("y2", function(d) { return y(d.max); });

 svg.selectAll("line.close")
 .data(data)
 .enter().append("svg:line")
 .attr("class", "close")
 .attr("x1", function(d) { return x(d.date)+5})
 .attr("x2", function(d) { return x(d.date)-1})
 .attr("y1", function(d) { return y(d.close);})
 .attr("y2", function(d) { return y(d.close); });

 svg.selectAll("line.open")
 .data(data)
 .enter().append("svg:line")
 .attr("class", "open")
 .attr("x1", function(d) { return x(d.date)+1})
 .attr("x2", function(d) { return x(d.date)-5})
 .attr("y1", function(d) { return y(d.open);})
 .attr("y2", function(d) { return y(d.open); });
});

Thanks to the way in which you have defined the classes of the newly generated elements, you can define
attributes to the CSS styles for all of the three lines together, by using the line class, or defining them individually
using the line.open, line.close, and line.ext classes (see Listing 23-9).

Listing 23-9. ch23_01.html

<style>
body {
 font: 16px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
line.open, line.close, line.ext {
 stroke: blue;
 stroke-width: 2;
 shape-rendering: crispEdges;
}
</style>

At the end, you get the candlestick chart shown in Figure 23-1, which has nothing to envy those obtained
with jqPlot.

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

509

Date Format
Having to deal with this class of charts which makes use of OHLC data, you will always deal with time and date values
along the x axis. Therefore taking a cue from this observation, analyze how the D3 library handles this type of data.

What would have happened if in the previous example you did not have the dates of the days and months
zero-padded, or the year was reported with only two digits (e.g., “8/9/12”)? Inside the d3.csv() function, D3 would
not have been able to read dates with this format, and consequently, the candlestick chart would not have appeared.
Actually, what you need to do is very simple, i.e., guess the correct sequence of formatters to insert in the parser.
By formatter, we mean a set of characters with the “%” sign before, which according to the specific (case-sensitive)
character expresses a unit of time written in a certain way.

var parseDate = d3.time.format("%m/%e/%y").parse;

Even dates expressed literally can be handled in the same way. You have already seen this format of dates:

08-Aug-12,1.238485,1.2327,1.240245,1.2372,

It can be handled with this parser:

var parseDate = d3.time.format("%d-%b-%y").parse;

But there are much more complex cases, such as the following:

Monday 16 April 2012,1.238485,1.2327,1.240245,1.2372,

And it can be handled with this parser:

var parseDate = d3.time.format("%A %e %B %Y").parse;

Figure 23-1. An OHLC chart

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

510

All separation characters (including spaces) between the different values should be reported in the same position
in the parser. Thus, if the dates are defined in this way . . .

'8 Aug-12',1.238485,1.2327,1.240245,1.2372,

You have to insert both the space and the quotes in the string defining the parser or the date would not be
recognized.

var parseDate = d3.time.format("'%d %b-%y'").parse;

You must also keep in mind that the only separation character which can not be added in a csv file is “, ”. If you
must insert it, you have to use a TSV (tab-separated values) file.

Table 23-1 includes all the available formatters. Their combination should cover any input size.

Table 23-1. D3 Date and Time Formatters

Formatter Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time, as “%a %b %e %H:%M:%S %Y”

%d Zero-padded day of the month as a decimal number [01,31]

%e Space-padded day of the month as a decimal number [1,31]

%H Hour (24-hour clock) as a decimal number [00,23]

%I Hour (12-hour clock) as a decimal number [01,12]

%j Day of the year as a decimal number [001,366]

%m Month as a decimal number [01,12]

%M Minute as a decimal number [00,59]

%p Either am or pm

%S Second as a decimal number [00,61]

%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]

%w Weekday as a decimal number [0(Sunday),6]

%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53]

%x Date, as “%m/%d/%y”

%X Time, as “%H:%M:%S”

%y Year without century as a decimal number [00,99]

%Y Year with century as a decimal number

%Z Time zone offset, such as “–0700”

%% A literal “%” character

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

511

Box Representation in Candlestick Charts
With jqPlot, you also saw other ways to display OHLC data. For example, often such data are represented by a vertical
line and a vertical box covering it for a certain length. The vertical line is the same representation as the previous
candlestick, it lies between the high and low value of the OHLC. Instead, the box represents the range between the
open and close values. Moreover, if the open value is greater than the close value, the box will be of a given color,
but if the opposite happens, of another color.

You use the same data contained in the data_08.csv file, and starting from the code in the previous example,
you will look at the changes to be made.

Replace the ext, open, and close lines with these three new lines: ext, ext1, and ext2 (see Listing 23-10).
Then you have to add the rectangle representing the box. The lines should be black, whereas the boxes should be red
when the open values are greater than close values, or else, in the opposite case, the boxes will be green.

Listing 23-10. ch23_02.html

svg.selectAll("line.ext")
 .data(data)
 .enter().append("svg:line")
 .attr("class", "ext")
 .attr("x1", function(d) { return x(d.date)})
 .attr("x2", function(d) { return x(d.date)})
 .attr("y1", function(d) { return y(d.min);})
 .attr("y2", function(d) { return y(d.max);});

svg.selectAll("line.ext1")
 .data(data)
 .enter().append("svg:line")
 .attr("class", "ext")
 .attr("x1", function(d) { return x(d.date)+3})
 .attr("x2", function(d) { return x(d.date)-3})
 .attr("y1", function(d) { return y(d.min);})
 .attr("y2", function(d) { return y(d.min); });

svg.selectAll("line.ext2")
 .data(data)
 .enter().append("svg:line")
 .attr("class", "ext")
 .attr("x1", function(d) { return x(d.date)+3})
 .attr("x2", function(d) { return x(d.date)-3})
 .attr("y1", function(d) { return y(d.max);})
 .attr("y2", function(d) { return y(d.max); });

svg.selectAll("rect")
 .data(data)
 .enter().append("svg:rect")
 .attr("x", function(d) { return x(d.date)-3; })
 .attr("y", function(d) { return y(Math.max(d.open, d.close));})
 .attr("height", function(d) {
 return y(Math.min(d.open, d.close))-y(Math.max(d.open, d.close));})
 .attr("width",6)
 .attr("fill",function(d) {
 return d.open > d.close ? "darkred" : "darkgreen" ;});
});

CHAPTER 23 ■ CANDLESTICK CHARTS WITH D3

512

The last thing is to set the CSS style classes in Listing 23-11.

Listing 23-11. ch23_02.html

<style>
body {
 font: 16px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
line.ext, line.ext1, line.ext2 {
 stroke: #000;
 stroke-width: 1;
 shape-rendering: crispEdges;
}
</style>

And the chart in Figure 23-2 is the result.

Summary
In this chapter, you have seen the types of candlestick chart already discussed in the first part of the book dedicated
to the jqPlot library, but this time you used D3. You have seen how you can easily get similar results while keeping full
control over every single graphic element. In addition, since this kind of chart uses time data, here you have delved
deeper into how the D3 library manages this type of data and the various ways to manage format.

Continuing to follow the parallelism between the jqPlot library and the D3 library regarding the implementation
of the various types of chart, in the next chapter you will learn about scatter plots and bubble charts and how to
implement them with the D3 library.

Figure 23-2. A candlestick chart

513

CHAPTER 24

Scatterplot and Bubble Charts with D3

In this chapter, you will learn about scatterplot charts. Whenever you have a set of data pairs [x, y] and you want
to analyze their distribution in the xy plane, you will refer to this type of chart. Thus, you will see first how to make
this type of chart using the D3 library. In the first example, you will begin reading a TSV (tab-separated values) file
containing more than one series of data, and through them, you will see how to achieve a scatterplot.

Once the scatterplot is completed, you will see how to represent the data points using markers with particular
shapes, either choosing them from a predefined set or by creating original.

This class of charts is very important. It is a fundamental tool for analyzing data distributions; in fact, from these
diagrams you can find particular trends (trendlines) and groupings (clusters). In this chapter, two simple examples
will show you how you can represent trendlines and clusters.

Moreover, you will see how to add the highlighting functionality to your charts by the event handling and how the
D3 library manages it.

Finally, the chapter will close with a final example in which you will need to represent data with three parameters
[x, y, z]. Therefore, properly modifying the scatterplot, you will discover how you can get a bubble chart, which is a
scatterplot modified to be able to represent an additional parameter.

Scatterplot
Thanks to the D3 library, there is no limit to the graphic representations which you can generate, combining graphical
elements as if they were bricks. The creation of scatterplots is no exception.

You begin with a collection of data (see Listing 24-1), this time in a tabulated form (therefore a TSV file) which
you will copy and save as a file named data_09.tsv. (See the following Note.)

Note ■ Notice that the values in a TSV file are TAB separated, so when you write or copy Listing 24-1, remember to

check that there is only a TAB character between each value.

Listing 24-1. data_09.tsv

time intensity group
10 171.11 Exp1
14 180.31 Exp1
17 178.32 Exp1
42 173.22 Exp3
30 145.22 Exp2
30 155.68 Exp3

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

514

23 200.56 Exp2
15 192.33 Exp1
24 173.22 Exp2
20 203.78 Exp2
18 187.88 Exp1
45 180.00 Exp3
27 181.33 Exp2
16 198.03 Exp1
47 179.11 Exp3
27 175.33 Exp2
28 162.55 Exp2
24 208.97 Exp1
23 200.47 Exp1
43 165.08 Exp3
27 168.77 Exp2
23 193.55 Exp2
19 188.04 Exp1
40 170.36 Exp3
21 184.98 Exp2
15 197.33 Exp1
50 188.45 Exp3
23 207.33 Exp1
28 158.60 Exp2
29 151.31 Exp2
26 172.01 Exp2
23 191.33 Exp1
25 226.11 Exp1
60 198.33 Exp3

Suppose that the data contained in the file belong to three different experiments (labeled as Exp1, Exp2, and
Exp3), each applied to a different object (for example, three luminescent substances), in which you want to measure
how their emission intensity varies over time. The readings are done repeatedly and at different times. Your aim will
be to represent these values in the xy plane in order to analyze their distribution and eventual properties.

Observing the data, you can see that they are composed of three columns: time, intensity, and group
membership. This is a typical data structure which can be displayed in the form of a scatterplot. You will put the time
scale on the x axis, put the intensity values on the y axis, and finally identify groups by the shape or by the color of the
markers which will mark the position of the point in the scatterplot.

As it has become customary, you begin by writing the code in Listing 24-2. This code represents your starting
code, and since it is common to almost all charts you have seen in the previous example, it does not require further
explanation.

Listing 24-2. ch24_01.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 16px sans-serif;
}

http://d3js.org/d3.v3.js

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

515

.axis path,

.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 40, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var color = d3.scale.category10();

var x = d3.scale.linear()
 .range([0, w]);

var y = d3.scale.linear()
 .range([h, 0]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left+ "," +margin.top+ ")");

var title = d3.select("svg").append("g")
 .attr("transform", "translate(" + margin.left+ "," +margin.top+ ")")
 .attr("class","title");

title.append("text")
 .attr("x", (w / 2))
 .attr("y", –30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My Scatterplot");
</script>
</body>
</html>

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

516

In Listing 24-3, you read the tabulated data from the TSV file with the d3.tsv() function, making sure that the
numerical values will be read as such. Here, even if you have times on the first column, these do not require parsing
since they are seconds and can thus be considered on a linear scale.

Listing 24-3. ch24_01.html

...
var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left+ "," +margin.top+ ")");

d3.tsv("data_09.tsv", function(error, data) {
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 });
});

var title = d3.select("svg").append("g")
 .attr("transform", "translate(" + margin.left+ "," +margin.top+ ")")
 .attr("class","title");
...

Also with regard to the domains, the assignment is very simple, as shown in Listing 24-4. Furthermore, you will
use the nice() function, which rounds off the values of the domain.

Listing 24-4. ch24_01.html

d3.tsv("data_09.tsv", function(error, data) {
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 });

 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 y.domain(d3.extent(data, function(d) { return d.intensity; })).nice();
});

You add also the axis label, bringing “Time [s]” on the x axis and “Intensity” on the y axis, as shown in Listing 24-5.

Listing 24-5. ch24_01.html

d3.tsv("data_09.tsv", function(error, data) {
 ...
 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 y.domain(d3.extent(data, function(d) { return d.intensity; })).nice();

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

517

 svg.append("text")
 .attr("class", "label")
 .attr("x", w)
 .attr("y", h + margin.bottom - 5)
 .style("text-anchor", "end")
 .text("Time [s]");

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(–90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");
});

Finally, you have to draw the markers directly on the graph. These can be represented by the SVG element
<circle>. The data points to be represented on the scatterplot will therefore be of small dots of radius 3.5 pixels
(see Listing 24-6). To define their representation of different groups, the markers are drawn in different colors.

Listing 24-6. ch24_01.html

d3.tsv("data_09.tsv", function(error, data) {
 ...
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");

 svg.selectAll(".dot")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 3.5)
 .attr("cx", function(d) { return x(d.time); })
 .attr("cy", function(d) { return y(d.intensity); })
 .style("fill", function(d) { return color(d.group); });
});

Now you have so many colored markers on the scatterplot, but no reference to their color and the group to which
they belong. Therefore, it is necessary to add a legend showing the names of the various groups associated with the
different colors (see Listing 24-7).

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

518

Listing 24-7. ch24_01.html

d3.tsv("data_09.tsv", function(error, data) {
 ...
 svg.selectAll(".dot")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 3.5)
 .attr("cx", function(d) { return x(d.time); })
 .attr("cy", function(d) { return y(d.intensity); })
 .style("fill", function(d) { return color(d.group); });

 var legend = svg.selectAll(".legend")
 .data(color.domain())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 20) + ")"; });

 legend.append("rect")
 .attr("x", w - 18)
 .attr("width", 18)
 .attr("height", 18)
 .style("fill", color);

 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });
});

After all the work is complete, you get the scatterplot shown in Figure 24-1.

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

519

Markers and Symbols
When you want to represent a scatterplot, an aspect not to be underestimated is the shape of the marker with which
you want to represent the data points. Not surprisingly, the D3 library provides you with a number of methods that
manage the marker representation by symbols. In this chapter, you will learn about this topic since it is well suited to
this kind of chart (scatterplots), but does not alter its application to other types of chart (e.g., line charts).

Using Symbols as Markers
D3 library provides a set of symbols that can be used directly as a marker. In Table 24-1, you can see a list reporting
various predefined symbols.

Figure 24-1. A scatterplot showing the data distribution

Table 24-1. Predefined Symbols in D3 Library

Symbol Description

Circle A circle

Cross A Greek cross (or plus sign)

Diamond A rhombus

Square An axis-aligned square

Triangle-down A downward-pointing equilateral triangle

Triangle-up An upward-pointing equilateral triangle

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

520

Continuing with the previous example, you replace the dots in the scatterplot chart with different symbols used
as markers. These symbols will vary depending on the series of membership of the data (Exp1, Exp2, or Exp3). So this
time, to characterize the series to which data belong, it will be both the color and the shape of the marker.

First, you need to assign each series to a symbol within the groupMarker object, as shown in Listing 24-8.

Listing 24-8. ch24_01b.html

var margin = {top: 70, right: 20, bottom: 40, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var groupMarker = {
 Exp1: "cross",
 Exp2: "diamond",
 Exp3: "triangle-down"
};

var color = d3.scale.category10();

Then, you delete from the code the lines concerning the representation of the dots (see Listing 24-9). These lines
will be replaced with others generating the markers (see Listing 24-10).

Listing 24-9. ch24_01b.html

svg.selectAll(".dot")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 3.5)
 .attr("cx", function(d) { return x(d.time); })
 .attr("cy", function(d) { return y(d.intensity); })
 .style("fill", function(d) { return color(d.group); });

Actually, you are going to generate symbols that are nothing more than the predefined SVG paths. You may guess
this from the fact that in Listing 24-10 the addition of the symbols is performed through the use of the append("path")
function. Concerning instead the generation of the symbol as such, the D3 library provides a specific function:
d3.svg.symbol(). The symbol to be displayed is passed as argument through the type() function, for example if you
want to use the symbols to cross utilize type("cross").

In this case, however, the symbols to be represented are three and they depend on the series of each point. So,
you have to implement an iteration on all data by function (d) applied to groupMarker, which will return the string
corresponding to the “cross”, “diamond”, and “triangle-down” symbols.

Finally, being constituted by a SVG path, the symbol can also be changed by adjusting the Cascading Style Sheets
(CSS) styles. In this example, you can choose to represent only the outlines of the symbols by setting the fill attribute
to white.

Listing 24-10. ch24_01b.html

d3.tsv("data_09.tsv", function(error, data) {
 ...
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

521

 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");

 svg.selectAll("path")
 .data(data)
 .enter().append("path")
 .attr("transform", function(d) {
 return "translate(" + x(d.time) + "," + y(d.intensity) + ")";
 })
 .attr("d", d3.svg.symbol().type(function(d) {
 return groupMarker[d.group];
 }))
 .style("fill", "white")
 .style("stroke", function(d) { return color(d.group); })
 .style("stroke-width", "1.5px");

 var legend = svg.selectAll(".legend")
...
});

Figure 24-2 shows the scatterplot using various symbols in place of dots.

Using Customized Markers
You have just seen that the markers with the D3 library are nothing more than SVG paths. You could use this to your
advantage by customizing your chart with the creation of other symbols that will be added to those already defined.

Figure 24-2. In a scatterplot, the series could be represented by different symbols

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

522

On the Internet, you can find a huge number of SVG symbols; once you have decided what symbol to use,
you get its path in order to add it in your web page. More enterprising readers can also decide to edit SVG symbols
with a SVG editor. I suggest you to use the Inkscape editor (see Figure 24-3); you can download it from its official site:
http://inkscape.org. Or, more simply, you can start from an already designed SVG symbol and then modify it
according to your taste. To do this, I recommend using the SVG Tryit page at this link: www.w3schools.com/svg/
tryit.asp?filename=trysvg_path (see Figure 24-4).

Figure 24-4. Tryit is a useful tool to preview SVG symbols in real time inserting the path

Figure 24-3. Inkscape: a good SVG editor for generating symbols

http://inkscape.org/
http://www.w3schools.com/svg/tryit.asp?filename=trysvg_path
http://www.w3schools.com/svg/tryit.asp?filename=trysvg_path

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

523

Therefore, choose three new symbols (e.g., a crescent moon, a star, and the Mars symbol) that go to replace
the default ones. You extract their path and then insert into the definition of a new object, which you call markers,
as shown in Listing 24-11.

Listing 24-11. ch24_01c.html

var margin = {top: 70, right: 20, bottom: 40, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var markers = {
 mars: "m15,7 a 7,7 0 1,0 2,2 z l 1,1 7-7m-7,0 h 7 v 7",
 moon: "m15,3 a 8.5,8.5 0 1,0 0,13 a 6.5,6.5 0 0,1 0,-13",
 star: "m11,1 3,9h9l-7,5.5 2.5,8.5-7.5-5-7.5,5 2.5-8.5-7-6.5h9z"
};

var groupMarker = {
 ...

Now you have to update the associations between symbols and groups that you defined within the groupMarker
variable, as shown in Listing 24-12.

Listing 24-12. ch24_01c.html

var groupMarker = {
 Exp1: markers.star,
 Exp2: markers.moon,
 Exp3: markers.mars
};

The last thing you can do is to change the definition of the path when you are creating the SVG elements
(see Listing 24-13).

Listing 24-13. ch24_01c.html

svg.selectAll("path")
 .data(data)
 .enter().append("path")
 .attr("transform", function(d) {
 return "translate(" + x(d.time) + "," + y(d.intensity) + ")";
 })
 .attr("d", function(d) { return groupMarker[d.group]; })
 .style("fill", "white")
 .style("stroke", function(d) { return color(d.group); })
 .style("stroke-width", "1.5px");

At the end, you obtain a scatterplot reporting the symbols that you have personally created or downloaded from
the Internet (see Figure 24-5).

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

524

Adding More Functionalities
Now that you have learned how to represent a distribution of data using scatterplots, it is time to introduce the
trendline and clusters. Very often, analyzing in detail some sets of points in the data distribution, you can see that they
follow a particular trend or tend to congregate in clusters. Therefore, it will be very useful to highlight this graphically.
In this section, you will see a first example of how to calculate and represent linear trendlines. Then, you will see a
second example which will illustrate a possibility of how to highlight some clusters present in the xy plane.

Trendlines
As for the jqPlot library, in which you had a plug-in that gave you the trendline directly, with the D3 library you need
to implement not only the graphics but also its calculation.

For reasons of simplicity, you will calculate the trendline of a set of points (a series) following a linear trend. To do
this, you use the method of least squares. This method ensures that you find, given a set of data, the line that best fits
the trend of the points, as much as possible by minimizing the error (the sum of the squares of the errors).

Note ■ For further information, I suggest you visit the Wolfram MathWorld article at

http://mathworld.wolfram.com/LeastSquaresFitting.html.

For this example, you will continue working with the code of the scatterplot, but excluding all the changes made
with the insertion of symbols. To avoid unnecessary mistakes and more repetition, Listing 24-14 shows the code you
need to use as the starting point for this example.

Figure 24-5. A scatterplot with a customized set of markers

http://mathworld.wolfram.com/LeastSquaresFitting.html

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

525

Listing 24-14. ch24_02.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 16px sans-serif;
}
.axis path, .axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 40, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;
var color = d3.scale.category10();
var x = d3.scale.linear()
 .range([0, w]);
var y = d3.scale.linear()
 .range([h, 0]);
var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");
var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")");
d3.tsv("data_09.tsv", function(error, data) {
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 });
 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 y.domain(d3.extent(data, function(d) { return d.intensity; })).nice();
 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

http://d3js.org/d3.v3.js

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

526

 svg.append("text")
 .attr("class", "label")
 .attr("x", w)
 .attr("y", h + margin.bottom - 5)
 .style("text-anchor", "end")
 .text("Time [s]");
 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");
 svg.selectAll(".dot")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 3.5)
 .attr("cx", function(d) { return x(d.time); })
 .attr("cy", function(d) { return y(d.intensity); })
 .style("fill", function(d) { return color(d.group); });
 var legend = svg.selectAll(".legend")
 .data(color.domain())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 20) + ")";
 });
 legend.append("rect")
 .attr("x", w - 18)
 .attr("width", 18)
 .attr("height", 18)
 .style("fill", color);
 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });
});
var title = d3.select("svg").append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")")
 .attr("class","title");
title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

527

 .style("font-size", "22px")
 .text("My Scatterplot");
</script>
</body></html>

First, you define all the variables that will serve for the method of least squares within the tsv() function,
as shown in Listing 24-15. For each variable you define an array of size 3, since there are three series to be represented
in your chart.

Listing 24-15. ch24_02.html

d3.tsv("data_09.tsv", function(error, data) {

 sumx = [0,0,0];
 sumy = [0,0,0];
 sumxy = [0,0,0];
 sumx2 = [0,0,0];
 n = [0,0,0];
 a = [0,0,0];
 b = [0,0,0];
 y1 = [0,0,0];
 y2 = [0,0,0];
 x1 = [9999,9999,9999];
 x2 = [0,0,0];
 colors = ["","",""];

 data.forEach(function(d) {
 ...
});

Now you exploit the iteration of data performed during the parsing of data, to calculate simultaneously all
the summations necessary for the method of least squares (see Listing 24-16). Moreover, it is convenient for the
representation of a straight line to determine the maximum and minimum x values in each series.

Listing 24-16. ch24_02.html

d3.tsv("data_09.tsv", function(error, data) {
 ...
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 for(var i = 0; i < 3; i=i+1)
 {
 if(d.group == "Exp"+(i+1)){
 colors[i] = color(d.group);
 sumx[i] = sumx[i] + d.time;
 sumy[i] = sumy[i] + d.intensity;
 sumxy[i] = sumxy[i] + (d.time * d.intensity);
 sumx2[i] = sumx2[i] + (d.time * d.time);
 n[i] = n[i] +1;

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

528

 if(d.time < x1[i])
 x1[i] = d.time;
 if(d.time > x2[i])
 x2[i] = d.time;
 }
 }
 });

 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 ...
});

Once you have calculated all the summations, it is time to make the calculation of the least squares in
Listing 24-17. Since the series are three, you will repeat the calculation for three times within a for() loop.
Furthermore, within each loop you directly insert the creation of the SVG element for drawing the line corresponding
to the result of each calculation.

Listing 24-17. ch24_02.html

d3.tsv("data_09.tsv", function(error, data) {
 ...
 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 y.domain(d3.extent(data, function(d) { return d.intensity; })).nice();

 for(var i = 0; i < 3; i = i + 1){
 b[i] = (sumxy[i] - sumx[i] * sumy[i] / n[i]) /
 (sumx2[i] - sumx[i] * sumx[i] / n[i]);
 a[i] = sumy[i] / n[i] - b[i] * sumx[i] / n[i];
 y1[i] = b[i] * x1[i] + a[i];
 y2[i] = b[i] * x2[i] + a[i];
 svg.append("svg:line")
 .attr("class","trendline")
 .attr("x1", x(x1[i]))
 .attr("y1", y(y1[i]))
 .attr("x2", x(x2[i]))
 .attr("y2", y(y2[i]))
 .style("stroke", colors[i])
 .style("stroke-width", 4);
 }

Now that you have completed the whole, you can see the representation of the three trendlines within
the scatterplot, as shown in Figure 24-6.

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

529

Clusters
When you work with the scatterplot, you may need to perform a clustering analysis. On the Internet, there are many
analysis methods and algorithms that allow you to perform various operations of identification and research of
clusters.

The cluster analysis is a classification technique that has the aim to identify data groups (clusters precisely)
within a distribution of data (in this case, the scatterplot on the xy plane). The assignment of the various data points
to these clusters is not defined a priori, but it is the task of cluster analysis to determine the criteria for selection and
grouping. These clusters should be differentiated as much as possible, and in this case, as the grouping criterion, the
cluster analysis will be based on the exaxt distances between the various data points and a point representative of the
cluster called centroid (see Figure 24-7).

Thus, the aim of this analysis is primarily to identify possible similarities within a data distribution, and in this
regard there is nothing more appropriate of a scatterplot chart in which you can highlight these similarities through
the different colors of the different points depending on the cluster membership.

Figure 24-6. Each group shows its trendline

Figure 24-7. The cluster analysis groups a set of data points around a centroid for each cluster

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

530

In this section, you will see how to implement a cluster analysis algorithm and then how it is possible to integrate
it into a scatterplot.

K-Mean Algorithm

Given the complexity of the cluster analysis, this chapter will not go into this topic in detail. You are interested only
in highlighting the various points of the scatterplot in a different way from that of the series to which they belong
(Exp1, Exp2, and Exp3). In this example, you want to color the data points depending on the cluster to which they
belong. In order to do this, you will use a simple case of cluster analysis: the K-means algorithm. You define first
the number of clusters into which you want to divide all the data, and then for each cluster, a representative point
(centroid) is chosen. The distance between each data point and the three centroids is considered as a criterion for
membership.

There are some examples available on the Internet in which the K-means method is applied, and it is
totally implemented in JavaScript; among them I choose one developed by Heather Arthur
(https://github.com/harthur/clusterfck), but you can replace it with any other.

For the example in question, I have taken the liberty to modify the code to make it as easy as possible. Starting
from the data points contained within the TSV file, and representing them in a scatterplot, you are practically
analyzing how these points are distributed in space xy. Now you are interested to recognize in this distribution, for
example, three different clusters.

To do so you will apply the following algorithm:

 1. Make a random choice of three data points as cluster centroids.

 2. Iterate over all the data points in the file, assigning each of them to the cluster that has the
closest centroid. At the end, you have all the data points divided into three clusters.

 3. Within each cluster, a new centroid is calculated, which this time will not correspond to
any given point but will be the “midpoint” interposed between all points in the cluster.

 4. Recalculate steps 2 and 3 until the new centroids correspond to the previous ones (that is,
the coordinates of the centroids in the xy plane remain unchanged).

Once the algorithm is completed, you will have the points in the scatterplot with three different colors
corresponding to three different clusters.

Please note that in this algorithm there is no optimization, and thus the result will always be different every time
you upload the page in your browser. In fact, what you get every time is a possible solution, not the “best solution.”

Now to keep some of modularity, you will write the code of the analysis of clusters in an external file which you
will call kmeans.js.

First, you will implement the randomCentroids() function, which will choose k points (in this example, k = 3)
among those contained in the file (here passed within the points array) to assign them as centroids of the k clusters
(see Listing 24-18). This function corresponds to the point 1 of the algorithm.

Listing 24-18. kmeans.js

function randomCentroids(points, k) {
 var centroids = points.slice(0);
 centroids.sort(function() {
 return (Math.round(Math.random()) - 0.5);
 });
 return centroids.slice(0, k);
}:

Now you have to assign all the points contained in the file to the three different clusters. To do this, you need
to calculate the distance between each data point and the centroid in question, and thus you need to implement

https://github.com/harthur/clusterfck

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

531

a specific function that calculates the distance between two points. In Listing 24-19, it is defined the distance()
function, which returns the distance between v1 and v2 generic points.

Listing 24-19. kmeans.js

function distance(v1, v2) {
 var total = 0;
 for (var i = 0; i < v1.length; i++) {
 total += Math.pow((v2[i] - v1[i]), 2);
 }
 return Math.sqrt(total);
};

Now that you know how to calculate the distance between two points, you can implement a function that is able
to decide which is the cluster assignment of each data point, calculating its distance with all centroids and choosing
the smaller one. Thus, you can add the closestCentroid() function to the code, as shown in Listing 24-20.

Listing 24-20. kmeans.js

function closestCentroid(point, centroids) {
 var min = Infinity;
 var index = 0;
 for (var i = 0; i < centroids.length; i++) {
 var dist = distance(point, centroids[i]);
 if (dist < min) {
 min = dist;
 index = i;
 }
 }
 return index;
}:

Now you can write the function that expresses the algorithm first exposed in its entirety. This function requires
two arguments, the input data points (points) and the number of clusters into which they will be divided (k)
(see Listing 24-21). Within it, you then choose the centroids using the newly implemented randomCentroids()
function (point 1 of the algorithm).

Listing 24-21. kmeans.js

function kmeans(points, k) {
 var centroids = randomCentroids(points, k);
};

Once you have chosen the three centroids, you can assign all data points (contained in the points array) to
the three clusters, defining the assignment array as shown in Listing 24-22 (point 2 of the algorithm). This array
has the same length of the points array and is constructed in such a way that the order of its elements corresponds
to the order of data points. Every element contains the number of the cluster to which they belong. If, for example,
in the third element of the assignment array you have a value of 2, then it will mean that the third data point
belongs to the third cluster (clusters are 0, 1, and 2).

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

532

Listing 24-22. kmeans.js

function kmeans(points, k) {
 var centroids = randomCentroids(points, k);
 var assignment = new Array(points.length);
 var clusters = new Array(k);
 var movement = true;
 while (movement) {
 for (var i = 0; i < points.length; i++) {
 assignment[i] = closestCentroid(points[i], centroids);
 }
 movement = false;
 }
 return clusters;
};

Finally, by selecting a cluster at a time, you will recalculate the centroids and with these repeat the whole process
until you get always the same values. First, as you can see in Listing 24-23, you make an iteration through the iterator
j to analyze a cluster at a time. Inside of it, based on the contents of the assignment array, you fill the assigned array
with all data points belonging to the cluster. These values serve you for the calculation of the new centroid defined in
the newCentroid variable. To determine its new coordinates [x, y], you sum all x and y values, respectively, of all points
of the cluster. These amounts are then divided by the number of points, so the x and y values of the new centroid are
nothing more than the averages of all the coordinates.

To do all this, you need to implement a double iteration (two for() loops) with the g and i iterators. The iteration
on g allows you to work on a coordinate at a time (first x, then y, and so on), while the iteration on i allows you to sum
point after point in order to make the summation.

If the new centroids differ from the previous ones, then the assignment of the various data points to clusters
repeats again, and the cycle begins again (steps 3 and 4 of the algorithm).

Listing 24-23. kmeans.js

function kmeans(points, k) {
 ...
 while (movement) {
 for (var i = 0; i < points.length; i++) {
 assignment[i] = closestCentroid(points[i], centroids);
 }
 movement = false;
 for (var j = 0; j < k; j++) {
 var assigned = [];
 for (var i = 0; i < assignment.length; i++) {
 if (assignment[i] == j) {
 assigned.push(points[i]);
 }
 }
 if (!assigned.length) {
 continue;
 }
 var centroid = centroids[j];
 var newCentroid = new Array(centroid.length);
 for (var g = 0; g < centroid.length; g++) {
 var sum = 0;

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

533

 for (var i = 0; i < assigned.length; i++) {
 sum += assigned[i][g];
 }
 newCentroid[g] = sum / assigned.length;
 if (newCentroid[g] != centroid[g]) {
 movement = true;
 }
 }
 centroids[j] = newCentroid;
 clusters[j] = assigned;
 }
 }
 return clusters;
};

Applying the Cluster Analysis to the Scatterplot

Having concluded the JavaScript code for the clustering analysis, it is time to come back to the web page. As you did
for the example of the trendlines, you will use the code of the scatterplot as shown in Listing 24-24. This is the starting
point on which you make the various changes and additions needed to integrate the cluster analysis.

Listing 24-24. ch24_03.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 16px sans-serif;
}
.axis path, .axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 40, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;
var color = d3.scale.category10();
var x = d3.scale.linear()
 .range([0, w]);
var y = d3.scale.linear()
 .range([h, 0]);
var xAxis = d3.svg.axis()
 .scale(x)

http://d3js.org/d3.v3.js

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

534

 .orient("bottom");
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");
var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")");
d3.tsv("data_09.tsv", function(error, data) {
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 });
 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 y.domain(d3.extent(data, function(d) { return d.intensity; })).nice();
 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);
 svg.append("text")
 .attr("class", "label")
 .attr("x", w)
 .attr("y", h + margin.bottom - 5)
 .style("text-anchor", "end")
 .text("Time [s]");
 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(–90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");
 var legend = svg.selectAll(".legend")
 .data(color.domain())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 20) + ")";
 });
 legend.append("rect")
 .attr("x", w - 18)
 .attr("width", 18)
 .attr("height", 18)
 .style("fill", color);
 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

535

 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });
});
var title = d3.select("svg").append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")")
 .attr("class","title");
title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My Scatterplot");
</script>
</body>
</html>

First, you need to include the file kmeans.js you have just created in order to use the functions defined within
(see Listing 24-25).

Listing 24-25. ch24_03.html

...
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<script src="./kmeans.js"></script>
<style>
body {
 ...

Prepare an array which will hold the data to be analyzed and call it myPoints. Once this is done, you can finally
add the call to the kmean() function, as shown in Listing 24-26.

Listing 24-26. ch24_03.html

d3.tsv("data_09.tsv", function(error, data) {
 var myPoints = [];
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 myPoints.push([d.time, d.intensity]);
 });
 var clusters = kmeans(myPoints, 3);
 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 y.domain(d3.extent(data, function(d) { return d.intensity; })).nice();
 ...
};

http://d3js.org/d3.v3.js

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

536

Finally, you modify the definition of the circle SVG elements so that these are represented in the basis of
the results returned by the kmeans() function, as shown in Listing 24-27.

Listing 24-27. ch24_03.html

d3.tsv("data_09.tsv", function(error, data) {
 ...
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(–90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");

 for(var i = 0; i < 3; i = i + 1){
 svg.selectAll(".dot" + i)
 .data(clusters[i])
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 5)
 .attr("cx", function(d) { return x(d[0]); })
 .attr("cy", function(d) { return y(d[1]); })
 .style("fill", function(d) { return color(i); });
 }

 var legend = svg.selectAll(".legend")
 .data(color.domain())
 .enter().append("g")
 ...
};

In Figure 24-8, you can see the representation of one of the possible results which could be obtained after a
clustering analysis.

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

537

Highlighting Data Points
Another functionality that you have not yet covered with the library D3, but you have seen with the jqPlot library
(see Chapter 10) is highlighting and the events related to it. The D3 library even allows you to add this functionality
to your charts and handle events in a way that is very similar to that seen with the jqPlot library.

The D3 library provides a particular function to activate or remove event listeners: the on() function. This
function is applied directly to a selection by chaining method and generally requires two arguments: the type and
the listener.

selection.on(type, listener);

The first argument is the type of event that you want to activate, and it is expressed as a string containing the
event name (such as mouseover, submit, etc.). The second argument is typically made up of a function which acts as a
listener and makes an operation when the event is triggered.

Based on all this, if you want to add the highlighting functionality, you need to manage two particular events:
one is when the user hovers the mouse over a data point by highlighting it, and the other is when the user moves out
the mouse from above the data point, restoring it to its normal state. These two events are defined in the D3 library as
mouseover and mouseout. Now you have to join these events to two different actions. With mouseover, you will enlarge
the volume of data points and you will increase the vividness of its color to further constrast it with the others. Instead,
you will do the complete opposite with mouseout, restoring the color and size of the original data points.

Listing 24-28 shows the highlight functionality applied to the scatterplot code.

Listing 24-28. ch24_04.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">

Figure 24-8. The scatterplot shows one possible solution of the clustering analysis applied to the data in the TSV file

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

538

<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
 font: 16px sans-serif;
}
.axis path, .axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
</style>
</head>
<body>
<script type="text/javascript">
var margin = {top: 70, right: 20, bottom: 40, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;
var color = d3.scale.category10();
var x = d3.scale.linear()
 .range([0, w]);
var y = d3.scale.linear()
 .range([h, 0]);
var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");
var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")");
d3.tsv("data_09.tsv", function(error, data) {
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 });
 x.domain(d3.extent(data, function(d) { return d.time; })).nice();
 y.domain(d3.extent(data, function(d) { return d.intensity; })).nice();
 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);
 svg.append("text")
 .attr("class", "label")
 .attr("x", w)
 .attr("y", h + margin.bottom - 5)
 .style("text-anchor", "end")
 .text("Time [s]");

http://d3js.org/d3.v3.js

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

539

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(–90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");

 var dots = svg.selectAll(".dot")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 5)
 .attr("cx", function(d) { return x(d.time); })
 .attr("cy", function(d) { return y(d.intensity); })
 .style("fill", function(d) { return color(d.group); })
 .on("mouseover", function() { d3.select(this)
 .style("opacity",1.0)
 .attr("r", 15);
 })
 .on("mouseout", function() { d3.select(this)
 .style("opacity",0.6)
 .attr("r", 5);
 }) ;

 var legend = svg.selectAll(".legend")
 .data(color.domain())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 20) + ")";
 });
 legend.append("rect")
 .attr("x", w - 18)
 .attr("width", 18)
 .attr("height", 18)
 .style("fill", color);
 legend.append("text")
 .attr("x", w - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });
});
var title = d3.select("svg").append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")")
 .attr("class","title");
title.append("text")
 .attr("x", (w / 2))

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

540

 .attr("y", –30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My Scatterplot");
</script>
</body>
</html>

Before loading the web page to see the result, you need to dull all the colors of the data points by setting
the opacity attribute in the CSS styles, as shown in Listing 24-29.

Listing 24-29. ch24_04.html

<style>
body {
 font: 16px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
.dot {
 stroke: #000;
 opacity: 0.6;
}
</style>

Figure 24-9 shows one of many data points in the bubble chart in two different states. On the left you can see
the data point in its normal state, while on the right it is highlighted.

Figure 24-9. A bubble assumes two states: normal on the left and highlighted when moused over on the right

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

541

Bubble Chart
It is very easy to build a bubble chart by effecting only a few changes to the previous scatterplot example. First of all,
you need to add a new column to your data. In this case (see Listing 24-30), you add bandwidth values as the last
column to the data_09.tsv and you save it as data_10.tsv.

Listing 24-30. data_10.tsv

time intensity group bandwidth
10 171.11 Exp1 20
14 180.31 Exp1 30
17 178.32 Exp1 10
42 173.22 Exp3 40
30 145.22 Exp2 35
30 155.68 Exp3 80
23 200.56 Exp2 10
15 192.33 Exp1 30
24 173.22 Exp2 10
20 203.78 Exp2 20
18 187.88 Exp1 60
45 180.00 Exp3 10
27 181.33 Exp2 40
16 198.03 Exp1 30
47 179.11 Exp3 20
27 175.33 Exp2 30
28 162.55 Exp2 10
24 208.97 Exp1 10
23 200.47 Exp1 10
43 165.08 Exp3 10
27 168.77 Exp2 20
23 193.55 Exp2 50
19 188.04 Exp1 10
40 170.36 Exp3 40
21 184.98 Exp2 20
15 197.33 Exp1 30
50 188.45 Exp3 10
23 207.33 Exp1 10
28 158.60 Exp2 10
29 151.31 Exp2 30
26 172.01 Exp2 20
23 191.33 Exp1 10
25 226.11 Exp1 10
60 198.33 Exp3 10

Now you have a third parameter in the list of data corresponding to the new column bandwidth. This value
is expressed by a number, and in order to read it as such you need to add the bandwidth variable to the parsing of
data, as shown in Listing 24-31. You must not forget to replace the name of the TSV file with data_10.tsv in the
tsv() function.

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

542

Listing 24-31. ch24_05.html

d3.tsv("data_10.tsv", function(error, data) {
 var myPoints = [];
 data.forEach(function(d) {
 d.time = +d.time;
 d.intensity = +d.intensity;
 d.bandwidth = +d.bandwidth;
 myPoints.push([d.time, d.intensity]);
 });
 ...
});

Now you can turn all the dots into circular areas just by increasing their radius, since they are already set as SVG
element <circle> as shown in Listing 24-32 The radii of these circles must be proportional to the bandwidth value,
which therefore can be directly assigned to the r attribute. The 0.4 value is a correction factor which fits the bandwidth
values to be very well represented in the bubble chart (in other cases, you will need to use other values as a factor).

Listing 24-32. ch24_05.html

d3.tsv("data_10.tsv", function(error, data) {
 ...
 svg.append("text")
 .attr("class", "label")
 .attr("transform", "rotate(–90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Intensity");

 svg.selectAll(".dot")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", function(d) { return d.bandwidth * 0.4 })
 .attr("cx", function(d) { return x(d.time); })
 .attr("cy", function(d) { return y(d.intensity); })
 .style("fill", function(d) { return color(d.group); })
 .on("mouseover", function() { d3.select(this)
 .style("opacity",1.0)
 .attr("r", function(d) { return d.bandwidth * 0.5 });
 })
 .on("mouseout", function() { d3.select(this)
 .style("opacity",0.6)
 .attr("r", function(d) { return d.bandwidth * 0.4 });
 });

var legend = svg.selectAll(".legend")
 ...
});

Last but not least, you need to update the title of the new chart as shown in Listing 24-33.

CHAPTER 24 ■ SCATTERPLOT AND BUBBLE CHARTS WITH D3

543

Listing 24-33. ch24_05.html

title.append("text")
 .attr("x", (w / 2))
 .attr("y", –30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My Bubble Chart");

And Figure 24-10 will be the result.

Summary
In this chapter, you briefly saw how to generate bubble charts and scatterplots with the D3 library. Even here, you
carried out the same type of charts which you saw in the second part of the book with the jqPlot library. Thus, you
can get an idea of these two different libraries and of the respective approaches in the implementation of the same
type of charts.

In the next chapter, you will implement a type of chart with which you still have not dealt with in the book:
radar charts. This example of representation is not feasible with jqPlot, but it is possible to implement it thanks to D3
graphic elements. Thus, the next chapter will be a good example of how to use the potentialities of the D3 library to
develop other types of charts which differ from those most commonly encountered.

Figure 24-10. A bubble chart

545

CHAPTER 25

Radar Charts with D3

This chapter covers a type of chart that you have not yet read about: the radar chart. First you will get to know what it
is, including its basic features, and how to create one using the SVG elements provided by the D3 library.

You’ll start by reading a small handful of representative data from a CSV file. Then, making reference to the data,
you’ll see how it is possible to implement all the components of a radar chart, step by step. In the second part of the
chapter, you’ll use the same code to read data from more complex file, in which both the number of series and the
amount of data to be processed are greater. This approach is a fairly common practice when you need to represent
a new type of chart from scratch. You begin by working with a simple but complete example, and then, once you’ve
implemented the basic example, you’ll extend it with more complex and real data.

Radar Chart
Radar charts are also known as web or spider charts, for the typical web structure they assume (see Figure 25-1).
They are two-dimensional charts that enable you to represent three or more quantitative variables. They consist
of a sequence of spokes, all having the same angle, with each spoke representing one of the variables. A point is
represented on every spoke and the point’s distance from the center is proportional to the magnitude of the given
variable. Then a line connects the point reported on each spoke, thus giving the plot a web-like appearance. Without
this connecting line, the chart would look more like a scanning radar.

Figure 25-1. A radar chart looks like a spider web

CHAPTER 25 ■ RADAR CHARTS WITH D3

546

Building Auto Scaling Axes
Copy the following data and save it in a file as data_11.csv (see Listing 25-1).

Listing 25-1. data_11.csv

section,set1,set2,
A,1,6,
B,2,7,
C,3,8,
D,4,9,
E,5,8,
F,4,7,
G,3,6,
H,2,5,

In Listing 25-2, you define the drawing area and the margins. You then create a color sequence with the
category10() function.

Listing 25-2. ch25_01.html

var margin = {top: 70, right: 20, bottom: 40, left: 40},
 w = 500 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var color = d3.scale.category20();

In the drawing area you just defined, you also have to define a specific area that can accommodate a circular shape,
which in this case is the radar chart. Once you have defined this area, you define the radius like a Cartesian axis. In fact,
each spoke on a radar chart is considered an axis upon which you place a variable. You therefore define a linear scale
on the radius, as shown in Listing 25-3.

Listing 25-3. ch25_01.html

var circleConstraint = d3.min([h, w]);
var radius = d3.scale.linear()
 .range([0, (circleConstraint / 2)]);

You need to find the center of the drawing area. This is the center of the radar chart, and the point from which all
the spokes radiate (see Listing 25-4).

Listing 25-4. ch25_01.html

var centerXPos = w / 2 + margin.left;
var centerYPos = h / 2 + margin.top;

Begin to draw the root element <svg>, as shown in Listing 25-5.

Listing 25-5. ch25_01.html

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + centerXPos + ", " + centerYPos + ")");

CHAPTER 25 ■ RADAR CHARTS WITH D3

547

Now, as shown in Listing 25-6, you read the contents of the file with the d3.csv() function. You need to verify
that the read values set1 and set2 are interpreted as numeric values. You also want to know which is the maximum
value among all these, in order to define a scale that extends according to its value.

Listing 25-6. ch25_01.html

d3.csv("data_11.csv", function(error, data) {
 var maxValue = 0;
 data.forEach(function(d) {
 d.set1 = +d.set1;
 d.set2 = +d.set2;
 if(d.set1 > maxValue)
 maxValue = d.set1;
 if(d.set2 > maxValue)
 maxValue = d.set2;
 });
});

Once you know the maximum value of the input data, you set the full scale value equal to this maximum value
multiplied by one and a half. In this case, instead of using the automatic generation of ticks on the axes, you have to
define them manually. In fact, these ticks have a spherical shape and consequently, quite particular features. This
example divides the range of the radius axis into five ticks. Once the values of the ticks are defined, you can assign a
domain to the radius axis (see Listing 25-7).

Listing 25-7. ch25_01.html

d3.csv("data_11.csv", function(error, data) {
 ...
 data.forEach(function(d) {
 ...
 });

 var topValue = 1.5 * maxValue;
 var ticks = [];
 for(i = 0; i < 5;i += 1){
 ticks[i] = topValue * i / 5;
 }
 radius.domain([0,topValue]);
});

Now that you have all of the numerical values, we can embed some <svg> elements in order to design a radar grid
that will vary in shape and value depending on the data entered (see Listing 25-8).

Listing 25-8. ch25_01.html

d3.csv("data_11.csv", function(error, data) {
 ...
 radius.domain([0,topValue]);

 var circleAxes = svg.selectAll(".circle-ticks")
 .data(ticks)
 .enter().append("g")
 .attr("class", "circle-ticks");

CHAPTER 25 ■ RADAR CHARTS WITH D3

548

 circleAxes.append("svg:circle")
 .attr("r", function(d) {return radius(d);})
 .attr("class", "circle")
 .style("stroke", "#CCC")
 .style("fill", "none");

 circleAxes.append("svg:text")
 .attr("text-anchor", "middle")
 .attr("dy", function(d) {return radius(d)})
 .text(String);
});

You have created a structure of five <g> tags named circle-ticks, as you can see in Figure 25-2, each containing
a <circle> element (which draws the grid) and a <text> element (which shows the corresponding numeric value).

Figure 25-2. FireBug shows how the circle-ticks are structured

Figure 25-3. The circular grid of a radar chart

All of this code generates the circular grid shown in Figure 25-3.

CHAPTER 25 ■ RADAR CHARTS WITH D3

549

As you can see, the values reported on the tick will vary depending on the maximum value contained in the data.
Now is the time to draw the spokes, as many rays as there are lines in the data_11.csv file. Each of these lines

corresponds to a variable, the name of which is entered in the first column of the file (see Listing 25-9).

Listing 25-9. ch25_01.html

d3.csv("data_11.csv", function(error, data) {
 ...
 circleAxes.append("svg:text")
 .attr("text-anchor", "middle")
 .attr("dy", function(d) {return radius(d)})
 .text(String);

 lineAxes = svg.selectAll('.line-ticks')
 .data(data)
 .enter().append('svg:g')
 .attr("transform", function (d, i) {
 return "rotate(" + ((i / data.length * 360) - 90) +
 ")translate(" + radius(topValue) + ")";
 })
 .attr("class", "line-ticks");

 lineAxes.append('svg:line')
 .attr("x2", -1 * radius(topValue))
 .style("stroke", "#CCC")
 .style("fill", "none");

 lineAxes.append('svg:text')
 .text(function(d) { return d.section; })
 .attr("text-anchor", "middle")
 .attr("transform", function (d, i) {
 return "rotate("+(90 - (i * 360 / data.length)) + ")";
 });
});

You now have spokes represented in the chart, as shown in Figure 25-4.

CHAPTER 25 ■ RADAR CHARTS WITH D3

550

Adding Data to the Radar Chart
It is now time to consider the numeric columns in the file. Each column can be considered a series and each series
must be assigned a color. You can define the series by taking the headers from the file and removing the first column.
Then you can create the domain of colors according to the sequence of the series and then define the lines that draw
them (see Listing 25-10).

Listing 25-10. ch25_01.html

d3.csv("data_11.csv", function(error, data) {
 ...
 lineAxes.append('svg:text')
 .text(function(d) { return d.section; })
 .attr("text-anchor", "middle")
 .attr("transform", function (d, i) {
 return "rotate("+(90-(i*360/data.length))+")";
 });

 var series = d3.keys(data[0])
 .filter(function(key) { return key !== "section"; })
 .filter(function(key) { return key !== ""; });

 color.domain(series);

 var lines = color.domain().map(function(name){
 return (data.concat(data[0])).map(function(d){
 return +d[name];
 });
 });
});

Figure 25-4. The radial axes of a radar chart

CHAPTER 25 ■ RADAR CHARTS WITH D3

551

This is the content of the series arrays:

["set1", "set2"]

And this is the content of the lines arrays:

[[1,2,3,...],[6,7,8,...]]

These lines will help you create the corresponding path elements and enable you to draw the trend of the series
on the radar chart. Each series will pass through the values assumed in the various spokes (see Listing 25-11).

Listing 25-11. ch25_01.html

d3.csv("data_11.csv", function(error, data) {
 ...
 var lines = color.domain().map(function(name){
 return (data.concat(data[0])).map(function(d){
 return +d[name];
 });
});
 var sets = svg.selectAll(".series")
 .data(series)
 .enter().append("g")
 .attr("class", "series");

 sets.append('svg:path')
 .data(lines)
 .attr("class", "line")
 .attr("d", d3.svg.line.radial()
 .radius(function (d) {
 return radius(d);
 })
 .angle(function (d, i) {
 if (i == data.length) {
 i = 0;
 } //close the line
 return (i / data.length) * 2 * Math.PI;
 }))
 .data(series)
 .style("stroke-width", 3)
 .style("fill","none")
 .style("stroke", function(d,i){
 return color(i);
 });
});

You can also add a legend showing the names of the series (which are, actually, the headers of the columns) and
a title placed on top in the drawing area, as shown in Listing 25-12.

CHAPTER 25 ■ RADAR CHARTS WITH D3

552

Listing 25-12. ch25_01.html

d3.csv("data_11.csv", function(error, data) {
 ...
 .data(series)
 .style("stroke-width", 3)
 .style("fill","none")
 .style("stroke", function(d,i){
 return color(i);
 });

 var legend = svg.selectAll(".legend")
 .data(series)
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) {
 return "translate(0," + i * 20 + ")";
 });

 legend.append("rect")
 .attr("x", w/2 -18)
 .attr("y", h/2 - 60)
 .attr("width", 18)
 .attr("height", 18)
 .style("fill", function(d,i){ return color(i);});

 legend.append("text")
 .attr("x", w/2 -24)
 .attr("y", h/2 - 60)
 .attr("dy","1.2em")
 .style("text-anchor", "end")
 .text(function(d) { return d; });

});
var title = d3.select("svg").append("g")
 .attr("transform", "translate(" +margin.left+ "," +margin.top+ ")")
 .attr("class","title");

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("My Radar Chart");

CHAPTER 25 ■ RADAR CHARTS WITH D3

553

Last but not least, you can add a CSS style class to rule the text style, as shown in Listing 25-13.

Listing 25-13. ch25_01.html

<style>
body {
 font: 16px sans-serif;
}
</style>

Figure 25-5 shows the resulting radar chart.

Figure 25-5. A radar chart with two series

Improving Your Radar Chart
If you followed along in the previous example, you should not have any problem adding more columns and rows to
the radar chart. Open the last input data file, called data_11.csv, and add two more columns and rows. Save the file as
data_12.csv, as shown in Listing 25-14.

Listing 25-14. data_12.csv

section,set1,set2,set3,set4,
A,1,6,2,10,
B,2,7,2,14,
C,3,8,1,10,
D,4,9,4,1,
E,5,8,7,2,
F,4,7,11,1,
G,3,6,14,2,
H,2,5,2,1,
I,3,4,5,2,
L,1,5,1,2,

CHAPTER 25 ■ RADAR CHARTS WITH D3

554

You now have to replace the call to the data11.csv file with the data12.csv file in the d3.csv() function, as shown
in Listing 25-15.

Listing 25-15. ch25_02.html

d3.csv("data_12.csv", function(error, data) {
 ...});

Figure 25-6 shows the result.

Figure 25-6. A radar chart with four series

Wow, it works! Ready to add yet another feature? So far, you’ve traced a line that runs through the various spokes
to return circularly to the starting point; the trend now describes a specific area. You’ll often be more interested in
the areas of a radar chart that are delimited by the different lines than in the lines themselves. If you want to make
this small conversion to your radar chart in order to show the areas, you need to add just one more path, as shown in
Listing 25-16. This path is virtually identical to the one already present, only instead of drawing the line representing
the series, this new path colors the area enclosed inside. In this example, you’ll use the colors of the corresponding
lines, but adding a bit of transparency, so as not to cover the underlying series.

Listing 25-16. ch25_02.html

d3.csv("data_12.csv", function(error, data) {
 ...
 var sets = svg.selectAll(".series")
 .data(series)
 .enter().append("g")
 .attr("class", "series");

 sets.append('svg:path')
 .data(lines)
 .attr("class", "line")
 .attr("d", d3.svg.line.radial()

CHAPTER 25 ■ RADAR CHARTS WITH D3

555

 .radius(function (d) {
 return radius(d);
 })
 .angle(function (d, i) {
 if (i == data.length) {
 i = 0;
 }
 return (i / data.length) * 2 * Math.PI;
 }))
 .data(series)
 .style("stroke-width", 3)
 .style("opacity", 0.4)
 .style("fill",function(d,i){
 return color(i);
 })
 .style("stroke", function(d,i){
 return color(i);
 });

 sets.append('svg:path')
 .data(lines)
 .attr("class", "line")
 .attr("d", d3.svg.line.radial()
 ...
});

As you can see in Figure 25-7, you now have a radar chart with semi-transparent areas.

Figure 25-7. A radar chart with color filled areas

CHAPTER 25 ■ RADAR CHARTS WITH D3

556

Summary
This chapter explained how to implement radar charts. This type of chart is not feasible with jqPlot and so this
chapter was useful, in part to highlight the potential of the D3 library. It shows an example that helps you to
understand how you can develop other charts that differ from the most commonly encountered types.

The next and final chapter concludes the book by considering two different cases. These cases are intended to
propose, in a simplified way, the classic situations that developers have to face when they deal with real data. In the
first example, you’ll see how, using D3, it is possible to represent data that are generated or acquired in real time.
You’ll create a chart that’s constantly being updated, always showing the current situation. In the second example,
you’ll use the D3 library to read the data contained in a database.

557

CHAPTER 26

Handling Live Data with D3

You have seen how to handle real-time charts with jqPlot, and in this chapter, you will implement the same example,
using the D3 library. Indeed, you will create a line chart that displays the real-time values generated from a function
that simulates an external source of data. The data will be generated continuously, and therefore the line chart will
vary accordingly, always showing the latest situation.

In the second part of this chapter you will develop a chart that is slightly more complex. This time, you will be
using an example in which the data source is a real database. First, you will implement a line chart that will read the
data contained in an external file. Later, you will learn how to use the example to read the same data, but this time
from the table of a database.

Real-Time Charts
You have a data source that simulates a function that returns random variations on the performance of a variable.
These values are stored in an array that has the functions of a buffer, in which you want to contain only the ten most
recent values. For each input value that is generated or acquired, the oldest one is replaced with the new one. The data
contained in this array are displayed as a line chart that updates every 3 seconds. Everything is activated by clicking a
button.

Let us start setting the bases to represent a line chart (to review developing line charts with the D3 library,
see Chapter 20). First, you write the HTML structure on which you will build your chart, as shown in Listing 26-1.

Listing 26-1. ch26_01.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
 //add the CSS styles here
</style>
<body>
<script type="text/javascript">
 // add the JavaScript code here
</script>
</body>
</html>

http://d3js.org/d3.v3.js

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

558

Now, you start to define the variables that will help you during the writing of the code, beginning with the
management of the input data. As previously stated, the data that you are going to represent on the chart come from a
function that generates random variations, either positive or negative, from a starting value. You decide to start from 10.

So, starting from this value, you receive from the random function a sequence of values to be collected within an
array, which you will call data (see Listing 26-2). For now, you assign to it only inside the starting value (10). Given
this array, to receive the values in real time, you will need to set a maximum limit, which, in this example, is eleven
elements (0–10). Once filled, you will manage the array as a queue, in which the oldest item will be removed to make
room for the new one.

Listing 26-2. ch26_01.html

<script type="text/javascript">
var data = [10];
w = 400;
h = 300;
margin_x = 32;
margin_y = 20;
ymax = 20;
ymin = 0;
y = d3.scale.linear().domain([ymin, ymax]).range([0 + margin_y, h - margin_y]);
x = d3.scale.linear().domain([0, 10]).range([0 + margin_x, w - margin_x]);
</script>

The values contained within the data array will be represented along the y axis, so it is necessary to establish the
range of values that the tick labels will have to cover. Starting from the value of 10, you can decide, for example, that
this range covers the values from 0 to 20 (later, you will ensure that the ticks correspond to a range of multiples of 5,
i.e., 0, 5, 10, 15, and 20). Because the values to display are randomly generated, they will gradually assume values even
higher than 20, and, if so, you will see the disappearance of the line over the top edge of the chart. What to do?

Because the main goal is to create a chart that redraws itself after acquiring new data, you will ensure that even the
tick labels are adjusted according to the range covered by the values contained within the data array. To accomplish
this, you need to define the y range with the ymax and ymin variables, with the x range covering the static range [0–10].

The w and h variables (width and height) define the size of the drawing area on which you will draw the line chart,
whereas margin_x and margin_y allow you to adjust the margins.

Now, let us create the scalar vector graphics (SVG) elements that will represent the various parts of your chart.
You start by creating the <svg> root and then define the x and y axes, as shown in Listing 26-3.

Listing 26-3. ch26_01.html

<script type="text/javascript">
...
y = d3.scale.linear().domain([ymin, ymax]).range([0 + margin_y, h - margin_y]);
x = d3.scale.linear().domain([0, 10]).range([0 + margin_x, w - margin_x]);

var svg = d3.select("body")
 .append("svg:svg")
 .attr("width", w)
 .attr("height", h);

var g = svg.append("svg:g")
 .attr("transform", "translate(0," + h + ")");

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

559

// draw the x axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(w))
 .attr("y2", -y(0));

// draw the y axis
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(0))
 .attr("y2", -y(25));
</script>

Next, you add the ticks and the corresponding labels on both axes and then the grid. Finally, you draw the line on
the chart with the line() function (see Listing 26-4).

Listing 26-4. ch26_01.html

<script type="text/javascript">
...
g.append("svg:line")
 .attr("x1", x(0))
 .attr("y1", -y(0))
 .attr("x2", x(0))
 .attr("y2", -y(25));

//draw the xLabels
g.selectAll(".xLabel")
 .data(x.ticks(5))
 .enter().append("svg:text")
 .attr("class", "xLabel")
 .text(String)
 .attr("x", function(d) { return x(d) })
 .attr("y", 0)
 .attr("text-anchor", "middle");

// draw the yLabels
g.selectAll(".yLabel")
 .data(y.ticks(5))
 .enter().append("svg:text")
 .attr("class", "yLabel")
 .text(String)
 .attr("x", 25)
 .attr("y", function(d) { return -y(d) })
 .attr("text-anchor", "end");

//draw the x ticks
g.selectAll(".xTicks")
 .data(x.ticks(5))
 .enter().append("svg:line")

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

560

 .attr("class", "xTicks")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(0))
 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(0) - 5);

// draw the y ticks
g.selectAll(".yTicks")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yTicks")
 .attr("y1", function(d) { return -1 * y(d); })
 .attr("x1", x(0) + 5)
 .attr("y2", function(d) { return -1 * y(d); })
 .attr("x2", x(0))

//draw the x grid
g.selectAll(".xGrids")
 .data(x.ticks(5))
 .enter().append("svg:line")
 .attr("class", "xGrids")
 .attr("x1", function(d) { return x(d); })
 .attr("y1", -y(0))
 .attr("x2", function(d) { return x(d); })
 .attr("y2", -y(25));

// draw the y grid
g.selectAll(".yGrids")
 .data(y.ticks(5))
 .enter().append("svg:line")
 .attr("class", "yGrids")
 .attr("y1", function(d) { return -1 * y(d); })
 .attr("x1", x(w))
 .attr("y2", function(d) { return -y(d); })
 .attr("x2", x(0));

var line = d3.svg.line()
 .x(function(d,i) { return x(i); })
 .y(function(d) { return -y(d); })

</script>

To give a pleasing aspect to your chart, it is also necessary to define the Cascading Style Sheets (CSS) styles,
as demonstrated in Listing 26-5.

Listing 26-5. ch26_01.html

<style>
path {
 stroke: steelblue;
 stroke-width: 3;
 fill: none;
}

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

561

line {
 stroke: black;
}
.xGrids {
 stroke: lightgray;
}
.yGrids {
 stroke: lightgray;
}
text {
 font-family: Verdana;
 font-size: 9pt;
}
</style>

Now, you add a button above the chart, ensuring that the updateData() function is activated when a user clicks it,
as presented in Listing 26-6.

Listing 26-6. ch26_01.html

< body>
<div id="option">
 <input name="updateButton"
 type="button"
 value="Update"
 onclick="updateData()" />
</div>

Then, you implement the getRandomInt() function, which generates a random integer value between the
minimum and maximum values (see Listing 26-7).

Listing 26-7. ch26_01.html

function getRandomInt (min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
};

Listing 26-8 shows the updateData() function, in which the value generated by the getRandomInt() function is
added to the most recent value of the array to simulate variations on the trend. This new value is stored in the array,
while the oldest value is removed; thus, the size of the array always remains the same.

Listing 26-8. ch26_01.html

function updateData() {
 var last = data[data.length-1];
 if(data.length > 10){
 data.shift();
 }
 var newlast = last + getRandomInt(-3,3);
 if(newlast < 0)
 newlast = 0;
 data.push(newlast);
};

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

562

If the new value returned by the getRandomInt() function is greater or less than the range represented on the
y axis, you will see the line of data extending over the edges of the chart. To prevent this from occurring, you must
change the interval on the y axis by varying the ymin and ymax variables and updating the y range with these new
values, as shown in Listing 26-9.

Listing 26-9. ch26_01.html

function updateData() {
 ...
 if(newlast < 0)
 newlast = 0;
 data.push(newlast);

 if(newlast > ymax){
 ymin = ymin + (newlast - ymax);
 ymax = newlast;
 y = d3.scale.linear().domain([ymin, ymax])
 .range([0 + margin_y, h - margin_y]);
 }

 if(newlast < ymin){
 ymax = ymax - (ymin - newlast);
 ymin = newlast;
 y = d3.scale.linear().domain([ymin, ymax])
 .range([0 + margin_y, h - margin_y]);
 }
};

Because the new data acquired must then be redrawn, you will need to delete the invalid SVG elements and
replace them with new ones. Let us do both with the tick labels and with the line of data (see Listing 26-10). Finally,
it is necessary to repeat the refresh of the chart at a fixed time. Thus, using the requestAnimFrame() function, you can
repeat the execution of the content of the UpdateData() function.

Listing 26-10. ch26_01.html

function updateData() {
 ...
 if(newlast < ymin){
 ymax = ymax - (ymin - newlast);
 ymin = newlast;
 y = d3.scale.linear().domain([ymin, ymax]).range([0 + margin_y, h - margin_y]);
 }
 var svg = d3.select("body").transition();
 g.selectAll(".yLabel").remove();
 g.selectAll(".yLabel")
 .data(y.ticks(5))
 .enter().append("svg:text")
 .attr("class", "yLabel")
 .text(String)
 .attr("x", 25)
 .attr("y", function(d) { return -y(d) })
 .attr("text-anchor", "end");

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

563

 g.selectAll(".line").remove();
 g.append("svg:path")
 .attr("class","line")
 .attr("d", line(data));

 window.requestAnimFrame = (function(){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000);
 };
 })();

 requestAnimFrame(setTimeout(updateData,3000));
 render();
};

Now, when the Update button has been clicked, from left a line begins to draw the values acquired by the
function that generates random variations. Once the line reaches the right end of the chart, it will update every
acquisition, showing only the last ten values (see Figure 26-1).

Figure 26-1. A real-time chart with a start button

Using PHP to Extract Data from a MySQL Table
Finally, the time has come to use data contained in a database, a scenario that is more likely to correspond with your
daily needs. You choose MySQL as a database, and you use hypertext preprocessor (PHP) language to query the
database and obtain the data in JavaScript Object Notation (JSON) format for it to be readable by D3. You will see that
once a chart is built with D3, the transition to this stage is easy.

The following example is not intended to explain the use of PHP language or any other language, but to
illustrate a typical and real case. The example shows how simple it is to interface all that you have learned with other
programming languages. Often, languages such as Java and PHP provide an excellent interface for collecting and
preparing data from their sources (a database, in this instance).

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

564

Starting with a TSV File
To understand more clearly the transition between what you already know and interfacing with PHP and databases,
let us start with a case that should be familiar to you (see Listing 26-11). First, you write a tab-separated value (TSV)
file with these series of data and save them as data_13.tsv.

Listing 26-11. data_13.tsv

day income expense
2012-02-12 52 40
2012-02-27 56 35
2012-03-02 31 45
2012-03-14 33 44
2012-03-30 44 54
2012-04-07 50 34
2012-04-18 65 36
2012-05-02 56 40
2012-05-19 41 56
2012-05-28 45 32
2012-06-03 54 44
2012-06-18 43 46
2012-06-29 39 52

Note ■ Notice that the values in a TSV file are tab separated, so when you write or copy Listing 26-11, remember to

check that there is only a tab character between each value.

Actually, as hinted at, you have already seen these data, although in slightly different form; these are the same
data in the data_03.tsv file (see Listing 20-60 in Chapter 20). You changed the column date to day and modified the
format for dates. Now, you must add the JavaScript code in Listing 26-12, which will allow you to represent these data
as a multiseries line chart. (This code is very similar to that used in the section “Difference Line Chart” in Chapter 20;
see that section for explanations and details about the content of Listing 26-12.)

Listing 26-12. ch26_02.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>
body {
....font: 10px verdana;
}
.axis path,
.axis line {
 fill: none;
 stroke: #333;
}

http://d3js.org/d3.v3.js

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

565

.grid .tick {
 stroke: lightgrey;
 opacity: 0.7;
}
.grid path {
 stroke-width: 0;
}
.line {
 fill: none;
 stroke: darkgreen;
 stroke-width: 2.5px;
}
.line2 {
 fill: none;
 stroke: darkred;
 stroke-width: 2.5px;
}
</style>
</head>
<body>
<script type="text/javascript">

var margin = {top: 70, right: 20, bottom: 30, left: 50},
 w = 400 - margin.left - margin.right,
 h = 400 - margin.top - margin.bottom;

var parseDate = d3.time.format("%Y-%m-%d").parse;

var x = d3.time.scale().range([0, w]);
var y = d3.scale.linear().range([h, 0]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .ticks(5);

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .ticks(5);

var xGrid = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .ticks(5)
 .tickSize(-h, 0, 0)
 .tickFormat("");

var yGrid = d3.svg.axis()
 .scale(y)
 .orient("left")

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

566

 .ticks(5)
 .tickSize(-w, 0, 0)
 .tickFormat("");

var svg = d3.select("body").append("svg")
 .attr("width", w + margin.left + margin.right)
 .attr("height", h + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

var line = d3.svg.area()
 .interpolate("basis")
 .x(function(d) { return x(d.day); })
 .y(function(d) { return y(d["income"]); });

var line2 = d3.svg.area()
 .interpolate("basis")
 .x(function(d) { return x(d.day); })
 .y(function(d) { return y(d["expense"]); });

d3.tsv("data_13.tsv", function(error, data) {
 data.forEach(function(d) {
 d.day = parseDate(d.day);
 d.income = +d.income;
 d.expense = +d.expense;
 });

 x.domain(d3.extent(data, function(d) { return d.day; }));
 y.domain([
 d3.min(data, function(d) { return Math.min(d.income, d.expense); }),
 d3.max(data, function(d) { return Math.max(d.income, d.expense); })
]);

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + h + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis);

 svg.append("g")
 .attr("class", "grid")
 .attr("transform", "translate(0," + h + ")")
 .call(xGrid);

 svg.append("g")
 .attr("class", "grid")
 .call(yGrid);

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

567

 svg.datum(data);

 svg.append("path")
 .attr("class", "line")
 .attr("d", line);

 svg.append("path")
 .attr("class", "line2")
 .attr("d", line2);
});

var labels = svg.append("g")
 .attr("class","labels");

labels.append("text")
 .attr("transform", "translate(0," + h + ")")
 .attr("x", (w-margin.right))
 .attr("dx", "-1.0em")
 .attr("dy", "2.0em")
 .text("[Months]");

labels.append("text")
 .attr("transform", "rotate(-90)")
 .attr("y", -40)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Millions ($)");

var title = svg.append("g")
 .attr("class", "title")

title.append("text")
 .attr("x", (w / 2))
 .attr("y", -30)
 .attr("text-anchor", "middle")
 .style("font-size", "22px")
 .text("A Multiseries Line Chart");
</script>
</body>
</html>

With this code, you get the chart in Figure 26-2.

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

568

Moving On to the Real Case
Now, let us move on to the real case, in which you will be dealing with tables in the database. For the data source, you
choose a table called sales in a test database in MySQL.After you have created a table with this name, you can fill it
with data executing an SQL sequence (see Listing 26-13).

Listing 26-13. sales.sql

insert into sales
values ('2012-02-12', 52, 40);
insert into sales
values ('2012-02-27', 56, 35);
insert into sales
values ('2012-03-02', 31, 45);
insert into sales
values ('2012-03-14', 33, 44);
insert into sales
values ('2012-03-30', 44, 54);
insert into sales
values ('2012-04-07', 50, 34);
insert into sales
values ('2012-04-18', 65, 36);
insert into sales
values ('2012-05-02', 56, 40);
insert into sales
values ('2012-05-19', 41, 56);
insert into sales
values ('2012-05-28', 45, 32);
insert into sales
values ('2012-06-03', 54, 44);

Figure 26-2. A multiseries chart reading data from a TSV file

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

569

insert into sales
values ('2012-06-18', 43, 46);
insert into sales
values ('2012-06-29', 39, 52);

Preferably, you ought to write the PHP script in a separate file and save it as myPHP.php. The content of this file is
shown in Listing 26-14.

Listing 26-14. myPHP.php

<?php
 $username = "dbuser";
 $password = "dbuser";
 $host = "localhost";
 $database = "test";

 $server = mysql_connect($host, $username, $password);
 $connection = mysql_select_db($database, $server);
 $myquery = "SELECT * FROM sales";
 $query = mysql_query($myquery);

 if (! $myquery) {
 echo mysql_error();
 die;
 }

 $data = array();
 for ($x = 0; $x < mysql_num_rows($query); $x++) {
 $data[] = mysql_fetch_assoc($query);
 }
 echo json_encode($data);
 mysql_close($server);
?>

Generally, a PHP script is recognizable by its enclosure in special start and end processing instructions: <?php
and ?>. This short but powerful and versatile snippet of code is generally used whenever we need to connect to a
database. Let us go through it and look at what it does.

In this example, dbuser has been chosen as user, with dbuser as password, but these values will depend on the
database you want to connect to. The same applies to the database and hostname values. Thus, in order to connect to
a dabase, you must first define a set of identifying variables, as shown in Listing 26-15.

Listing 26-15. myPHP.php

$username = "homedbuser";
$password = "homedbuser";
$host = "localhost";
$database="homedb";

Once you have defined them, PHP provides a set of already implemented functions, in which you have only to
pass these variables as parameters to make a connection with a database. In this example, you need to call the
mysql_connect() and myqsl_select_db() functions to create a connection with a database without defining anything
else (see Listing 26-16).

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

570

Listing 26-16. myPHP.php

$server = mysql_connect($host, $username, $password);
$connection = mysql_select_db($database, $server);

Even for entering SQL queries, PHP proves to be a truly practical tool. Listing 26-17 is a very simple example of
how to make an SQL query for retrieving data from the database. If you are not familiar with SQL language, a query is
a declarative statement addressed to a particular database in order to obtain the desired data contained inside. You
can easily recognize a query, as it consists of a SELECT statement followed by a FROM statement and almost always a
WHERE statement at the end.

Note ■ If you have no experience in SQL language and want to do a bit of practicing without having to install the

database and everything else, I suggest visiting this web page from the w3schools web site: www.w3schools.com/sql.

In it, you’ll find complete documentation on the commands, with many examples and even the ability to query a database

on evidence provided by the site by embedding an SQL test query (see the section “Try It Yourself”).

In this simple example, the SELECT statement is followed by '*', which means that you want to receive the data in
all the columns contained in the table specified in the FROM statement (sales, in this instance).

Listing 26-17. myPHP.php

$myquery = "SELECT * FROM sales";
$query = mysql_query($myquery);

Once you have made a query, you need to check if it was successful and handle the error if one occurs
(see Listing 26-18).

Listing 26-18. myPHP.php

if (! $query) {
 echo mysql_error();
 die;
}

If the query is successful, then you need to handle the returned data from the query. You place these values in
an array you call $data, as illustrated in Listing 26-19. This part is very similar to the csv() and tsv() functions in D3,
only instead of reading line by line from a file, it is reading them from a table retrieved from a database. The mysql_
num_rows() function gives the number of rows in the table, similar to the length() function of JavaScript used in for()
loops. The mysql_fetch_assoc() function assigns the data retrieved from the query to the data array, line by line.

Listing 26-19. myPHP.php

$data = array();
for ($x = 0; $x < mysql_num_rows($query); $x++) {
 $data[] = mysql_fetch_assoc($query);
}
echo json_encode($data);

The key to the script is the call to the PHP json_encode() method, which converts the data format into JSON
and then, with echo, returns the data, which D3 will parse. Finally, you must close the connection to the server, as
demonstrated in Listing 26-20.

http://www.w3schools.com/sql

CHAPTER 26 ■ HANDLING LIVE DATA WITH D3

571

Listing 26-20. myPHP.php

mysql_close($server);

Now, you come back to the JavaScript code, changing only one row (yes, only one!) (see Listing 26-21). You replace
the tsv() function with the json() function, passing directly the PHP file as argument.

Listing 26-21. ch26_02b.html

d3.json("myPHP.php", function(error, data) {
//d3.tsv("data_03.tsv", function(error, data) {
 data.forEach(function(d) {
 d.day = parseDate(d.day);
 d.income = +d.income;
 d.expense = +d.expense;
});

In the end, you get the same chart (see Figure 26-3).

Figure 26-3. A multiseries chart obtaining data directly from a database

Summary
This final chapter concluded by considering two different cases. In the first example, you saw how to create a web
page in which it is possible to represent data you are generating or acquiring in real time. In the second example, you
learned how to use the D3 library to read the data contained in a database.

Conclusion
With this chapter, you have come to the end of this book. I must say that despite the large number of topics covered,
there are many others I would have liked to add. I hope that this book has made you better appreciate the world of data
visualization and charts in particular. I also hope that the book has provided you with a good, basic knowledge of data
visualization and that it proves to be a valuable aid for all the occasions in which you find yourself dealing with charts.

573

APPENDIX A

Guidelines for the Examples
in the Book

This appendix provides guidelines on how to use XAMPP and Aptana Studios together to create a development
environment on your PC that will allow you to develop, run, and fix the examples given in the book.

Installing a Web Server
Nowadays, on the Internet, you can easily find free software packages containing everything you need to set up a test
environment for all your examples and for everything related to the web world in general.

These packages minimize the number of programs that need to be installed.More important, they may be
acquired with a single installation. The packages generally consist of an Apache HTTP server; a MySQL database;
and interpreters for the programming languages PHP, Perl, and Python. The most complete package is XAMPP
(available for download at the Apache Friends web site [www.apachefriends.org/en/index.html]). XAMPP is
totally free, and its key feature is that it is a cross-platform package (Windows, Linux, Solaris, MacOS). Furthermore,
XAMPP also includes a Tomcat application server (for the programming language Java) and a FileZilla FTP server
(for file transfer). Other solutions are platform specific, as suggested by the initial letter of their name:

•฀ WAMP (Windows)

•฀ MAMP (MacOS)

•฀ LAMP (Linux)

•฀ SAMP (Solaris)

•฀ FAMP (FreeBSD)

In fact, XAMPP is an acronym; its letters stand for the following terms:

•฀ X, for the operating system

•฀ A, for Apache, the web server

•฀ M, for MySQL, the database management system

•฀ P, for PHP, Perl, or Python, the programming languages

Thus, choose the web server solution that best fits your platform, and install it on your PC.

http://www.apachefriends.org/en/index.html

APPENDIX A ■ GUIDELINES FOR THE EXAMPLES IN THE BOOK

574

Installing Aptana Studio IDE
Once the Web server has been installed, it is necessary to install an integrated development environment (IDE),
which you need to develop your JavaScript code. In this appendix, you will install Aptana Studio as your development
environment.

Visit the Aptana site (www.aptana.com), and click the Products tab for the Aptana Studio 3 software (at the time of
writing, the most recent version is 3.4.2). Download the stand-alone edition (with the Eclipse IDE already integrated):
Aptana_Studio_3_Setup_3.4.2.exe.

After the download is complete, launch the executable file to install the Aptana Studio IDE. At the end of the
installation, in launching the application, you should see the workbench opening, as shown in Figure A-1.

Figure A-1. The Aptana Studio IDE workbench

During the installation of Aptana Studio, the software detects the various browsers and the web server installed
and configures itself accordingly.

Setting the Aptana Studio Workspace
Before starting to develop the examples in the book, you must create a workspace. First, you should set the workspace
on Aptana Studio, where the Web server document root is.

These are typical paths with XAMPP:

Windows: •฀ C:\xampp\htdocs

Linux: •฀ /opt/lamp/htdocs

MacOS: •฀ /Applications/XAMPP/xamppfiles/htdocs

http://www.aptana.com/

APPENDIX A ■ GUIDELINES FOR THE EXAMPLES IN THE BOOK

575

Whereas with WAMP, this is the path:

•฀ C:\WAMP\www

Thus, select File ➤ Switch Workspace ➤฀Other . . . from the menu. Then, insert the path of the web server
document root in the field, as demonstrated in Figure A-2.

Figure A-2. Setting the workspace on the document root

Creating a Project
The next step in creating your workspace consists of creating a project in Aptana Studio:

 1. Select New ➤ Web Project from the menu.

 2. A window such as that shown in Figure A-3 appears. Select Default Project, and click Next.

APPENDIX A ■ GUIDELINES FOR THE EXAMPLES IN THE BOOK

576

 3. Insert “charts” as the name of the project. This will be the directory in the workspace in
which you will write all the example files described in the book, using Aptana Studio.

Completing the Workspace
Once you have set the Aptana Studio workspace and created a project, you complete the workspace.

Let us open the document root directory and create a new directory, named src. Now, the workspace on which
wyou will be working throughout the book is composed of two directories:

•฀ src

•฀ charts

The src directory should contain all the files related to libraries.
The charts directory should contain all HTML, images and Cascading Style Sheets (CSS) files related to the

examples in the book (which is in fact a project). Each example file should be created in this directory (if you prefer to
do things differently, that’s fine, but it is important to take note of the different path reference in HTML pages in order
to include the library files and images).

Note ■ The source code that accompanies this book (available from the Source Code/Download area of the Apress

web site [www.apress.com]) is practically already packaged in a workspace. With it, you will find two versions of the

charts project: content delivery network (CDN) and local. The charts_CDN directory contains all the examples referring to

libraries remotely distributed from CDN services. The charts_local directory offers all the examples referring to libraries

found within the src directory.

Figure A-3. Creating a default project

http://www.apress.com/

APPENDIX A ■ GUIDELINES FOR THE EXAMPLES IN THE BOOK

577

Filling the src Directory with the Libraries
If you have chosen to develop HTML pages by referring to libraries locally, it is necessary to download all their files.
These files will be collected in the src directory. This is a good approach, as you can develop several projects that will
make use of the same libraries without having to copy them for each project.

The versions listed in this appendix are those used to implement the examples in the book. If you install other
versions, there may be issues of incompatibility, or you may observe behavior different from that described.

jqPlot library version 1.0.8 (includes jQuery library version 1.9.1)

 1. Visit the jqPlot web site (https://bitbucket.org/cleonello/jqplot/downloads/),
and download the compressed file (.zip, .tar.gz or tar.bz2) for the library:
jquery.jqplot.1.0.8r1250.

 2. Extract all content. You should get a directory named dist, containing the following
subdirectories and files:

•฀ doc

•฀ examples

•฀ plugins

A series of files (•฀ jquery.min.js, jquery.jqplot.min.js, and so on)

 3. Copy the set of files and the plugins directory, and place in src.

jquery UI library version 1.10.3, with the smoothness theme

 1. Visit the JQuery user interface library (jQuery UI) site (http://jqueryui.com/themeroller/),
and download the library from ThemeRoller, with the smoothness theme:
jquery-ui-1.10.3.custom.zip.

 2. Extract all content. You should get a directory named jquery-ui-1.10.3.custom, with the
following directories inside:

•฀ css

•฀ js

•฀ development-bundle

 3. Copy the css and js directories, and place in src.

D3 library version 3

 1. Visit the D3 site (http://d3js.org), and download the library: d3.v3.zip.

 2. Extract all content directly, and place in the src directory. Now, you should have two new
files in the src directory:

•฀ d3.v3.js

•฀ d3.v3.min.js

Highcharts library version 3.0.5

 1. Visit the Highcharts site (www.highcharts.com), and download the library:
Highcharts-3.0.5.zip.

 2. Extract all content. You get a directory with several directories inside.

 3. Copy only the js directory, and place in src.

https://bitbucket.org/cleonello/jqplot/downloads/
http://jqueryui.com/themeroller/
http://d3js.org/
http://www.highcharts.com/

APPENDIX A ■ GUIDELINES FOR THE EXAMPLES IN THE BOOK

578

You have thus obtained the src directory, which should contain the subdirectories and files shown in Figure A-4.

Figure A-4. The files and subdirectories contained in the src directory

Figure A-5. The Run button from the toolbar

Note ■ By convention you are developing the examples in the charts directory. If you want to do otherwise, you need

to consider the new path when you will include the other files in a web page.

If you are developing the HTML page inside the charts directory, you need to use the following code:

<script type="text/javascript" src="../src/jquery.min.js"></script>

In contrast, if you prefer to develop it directly, in the document root, you use this:

<script type="text/javascript" src="src/jquery.min.js"></script>

In short, it is important to take the path of the file you are including into account, with respect to the page you are

implementing.

Running the Examples
Once you have created or copied an HTML file in the workspace, to run it in Aptana Studio IDE, select Run ➤ Run
from the menu, or click the Run button on the toolbar (see Figure A-5).

APPENDIX A ■ GUIDELINES FOR THE EXAMPLES IN THE BOOK

579

Immediately, your default browser will open, with the selected HTML page loaded.
Look at Run Configurations (see Figure A-6), selecting Run Configurations . . . from the context menu of the Run

icon. Let us set, for example, http://localhost/ as your base URL; to do so, you select the Append project name
option, as shown. Then, you click the Apply button to confirm your settings.

Figure A-6. The run configuration for each browser must be set correctly

Now, you have everything required to work easily on all the examples in the book.
Once you reach a certain familiarity with the Aptana IDE, you will find that it is an excellent environment for

developing many other projects, both in JavaScript and in other programming languages (e.g., PHP).
And, now, have fun!

Summary
This appendix provides guidelines on how to use XAMPP and Aptana Studios together to create a development
environment on your PC. The choice of using these applications is not mandatory, and many other solutions are
possible; there are many applications available on the Internet for performing similar operations. But, if you wish to
implement and quickly test the examples described in the book, this environment will prove a good choice.

http://localhost/

581

APPENDIX B

jqPlot Plug-ins

This appendix shows the complete list of available plug-ins in the jqPlot distibution (see Table B-1). Not all these
plug-ins have been treated in this book; for more information, please visit the jqPlot web site (www.jqplot.com).

Table B-1. Available Plug-ins in the jqPlot Distribution (version 1.0.8)

Name Type Description

$.jqplot.BarRenderer Renderer Draw a bar chart.

$.jqplot.BezierCurveRenderer Renderer Draw lines as stacked Bezier curves.

$.jqplot.BlockRenderer Renderer Draw an xy block chart. A block chart has data points displayed
as colored squares, with a text label inside.

$.jqplot.BubbleRenderer Renderer Draw a bubble chart. A bubble chart has data points displayed
as colored circles, with an optional text label inside.

$.jqplot.CanvasAxisLabelRenderer Renderer Draw axis labels, with a canvas element to support advanced
features, such as rotated text. This renderer uses a separate
rendering engine to draw the text on the canvas.

$.jqplot.CanvasAxisTickRenderer Renderer Draw axis ticks, with a canvas element to support advanced
features, such as rotated text. This renderer uses a separate
rendering engine to draw the text on the canvas.

$.jqplot.CanvasOverlay Plug-in Draw lines overlaying the chart.

$.jqplot.CanvasTextRenderer Renderer Modified version of the canvastext.js plug-in, written by Jim
Studt (http://jim.studt.net/canvastext/).

$.jqplot.CategoryAxisRenderer Renderer Render a category style axis, with equal pixel spacing between
y data values of a series.

$.jqplot.ciParser Plug-in A function to convert a custom JavaScript Object Notation
(JSON) data object into jqPlot data format.

$.jqplot.Cursor Plug-in A class representing the cursor, as displayed on the plot.

$.jqplot.DateAxisRenderer Renderer Render an axis as a series of date values.

$.jqplot.DonutRenderer Renderer Draw a donut chart; x values, if present, are used as slice labels,
and y values give slice size.

$.jqplot.Dragable Plug-in Make plotted points that the user can drag.

(continued)

http://www.jqplot.com/
http://jim.studt.net/canvastext/

APPENDIX B ■ JQPLOT PLUG-INS

582

Name Type Description

$.jqplot.EnhancedLegendRenderer Renderer Draw a legend with advanced features.

$.jqplot.FunnelRenderer Renderer Draw a funnel chart; x values, if present, are used as labels, and
y values give area size. Funnel charts draw a single series only.

$.jqplot.Highlighter Plug-in Highlight data points when they are moused over.

$.jqplot.Json2 Plug-in Create a JSON object containing two methods: stringify()
and parse().

$.jqplot.LogAxisRenderer Renderer Render a logarithmic axis.

$.jqplot.MekkoAxisRenderer Renderer Used along with the MekkoRenderer plug-in; displays the y axis
as a range from 0 to 1 (0 to 100 percent) and the x axis with a
tick for each series, scaled to the sum of all the y values.

$.jqplot.MekkoRenderer Renderer Draw a Mekko-style chart that shows three-dimensional data
on a two-dimensional graph.

$.jqplot.MeterGaugeRenderer Renderer Draw a meter gauge chart.

$.jqplot.Mobile Plug-in jQuery mobile virtual event support.

$.jqplot. OHLCRenderer Renderer Draw open-high-low-close, candlestick, and high-low-close
charts.

$.jqplot.PieRenderer Renderer Draw a pie chart; x values, if present, are used as slice labels,
and y values give slice size.

$.jqplot.PointLabels Plug-in Place labels at the data points.

$.jqplot.PyramidAxisRenderer Renderer Used along with the PyramidRenderer plug-in; displays the two
x axes at the bottom and the y axis at the center.

$.jqplot.PyramidGridRenderer Renderer Used along with the PyramidRenderer plug-in; creates a grid
on a canvas element.

$.jqplot.PyramidRenderer Renderer Draw a pyramid chart.

$.jqplot.Trendline Plug-in Automatically compute and draw trend lines for plotted data.

Table B-1. (continued)

A���������
accordion() function, 309
allowPointSelect property, 362
Animated multiseries line chart, 173–174
animateReplot property, 237–238
append() method, 381, 386
Area charts

combined chart, 208
multiple data arrays, 206
multiseries line chart, 206–207
seriesDefaults, 206

attr() operator, 379
Axes, line charts

empty space, 156
min and max properties, 157–158
pad properties, 156–157
ticks

axesDefaults object, 161
CanvasAxisTickRenderer, 161
chart without a grid, 162
directly deined ticks, 159–160
horizontal grid lines, 162–163
nonuniform, preixed ticks, 160–161
numberTicks property, 158–159
percentage values on y axis, 163–164

title addition and labels
CanvasAxisLabelRenderer

plug-in, 153–154
listing code, 155
properties, 154

B���������
Band charts, 208
Bar charts, 359. See also BarRenderer plug-in

creation, 82
data representation, 84

drawing
category10() function, 450
CDN service, 449
CSS class attributes, 454
d3.csv() function, 451
d3.svg.axis(), 450
data_04.csv, 449
domain for axes, 452
forEach() loop function, 452
function(error,data) function, 454
grid lines, 452–453
rangeRoundBands function, 450
simple bar chart, 455
size and dimensions, 450
SVG elements, 452
title element, 453–454
variables, 453

grouped
code snippets, 468–469
csv() function, 472
data_05.csv, 468
ilter() function, 470
legend addition, 474
new domains, 471
point labels, 473
title addition, 472
xo and x1 variables, 469–470

horizontal
Firebug, 477
margin addition, 475
maximum value, 475
positive and negative values, 475
<rect> element insertion, 477
scales with x axis and y axis, 476
style class attributes, 478
<svg> element creation, 476

HTML table, 81
jQuery css() function, 83

Index

583

row deletion, 82
stacked (see Stacked bar chart)
xDelta variable, 81

barMargin property, 224
BarRenderer plug-in

adding values, 225–226
animated plot, 237–238
barDirection property, 231
colors, 230
combination chart, 235–236
creation, 221
custom tool tips

bar chart, 255
jqplotDataUnhighlight event, 254
jqplot() function, 254–255
PNG ile, 253
qplotDataHighlight event, 254

handling legends
CSS class, 249
custom legend, 251–253
default legend, 249
deinition, 247
EnhancedLegendRenderer, 250
location attribute, 248
options, 247
stacked bar chart, 248

horizontal multiseries bar chart, 231
horizontal stacked chart, 234
jqlotDataClick event, 241–242, 245–247
jqPlotDataHighlight event, 244
jqplotDataMouseOver event, 243, 245
jqplotDataUnhighlight event, 244
jqplotRightClick event, 242–243
label property, 228
Marimekko chart, 238–240
multiseries bar chart, 229–230
negative values, 226–228
options, 229
space modiication, 224
tick label rotation, 223–224
ticks array, 228
vertical stacked chart, 232–233

bind() function, 313
Block chart, 279–281
Bubble chart

bandwidth variable, 541
bubbleAlpha property, 278
BubbleRenderer, 276
circle SVG element, 542
data_10.tsv, 541
data display, 276
data identiication, 276
jqplot() function, 278

label reporting, 276
options variable, 276–277
pay attention!, 276
rows of code, 277
selected state, foreground, 278
Sweden data, 277
title updation, 542
transparent efect, 279

C���������
Candlestick charts. See also Open-high-low-close

(OHLC) chart
application, 267
box representation, 271
OHLC chart

dateAxisRenderer object, 268
DateAxisRenderer plug-in, 267
Dukascopy, 268
euro–US dollar exchange value, 268
OHLCRenderer, 267
with lines, 269

real bodies and shadows, 270
renderer property, 271
ticks array, 270–271

Canvas
colors, 63
deinition, 61
document object model element, 62
JavaScript code, 62
rectangle, 64
translate() method, 63
two-dimensional drawing application

programming interface, 62
web page, 64

CanvasAxisLabelRenderer plug-in, 154
Cascading style sheets (CSS), 121, 124, 249, 291

chart controls, 291
chart-title, 78
create dynamic text, HTML, 66
CSV ile

axes and grid, 420
data drawing, 425

gradient generator, 47
grid background, 71
HTML, 46
input data addition, 404–405
jqPlot charts, 305
legend, 76
line chart (see Line charts, chart

appearance, CSS)
table, 61
ticks and labels, 70
UI widgets, 38–39

■฀INDEX

584

Bar charts, 359. See also BarRenderer plug-in (cont.)

Chart controls
check boxes, 287

“CheckAll/UncheckAll” feature, 299
custom legend, 301
EnhancedLegendRenderer plug-in, 301
jQuery methods, 299–300
list, 298
number of series, 298

command, 287
functionality, 287
radio button

accessing attributes, 292
CDN service, 289
change() function, 290
CSS style, 291
data selection, 291
irst series representation, 289
HTML page, 288
jQuery $(document).ready()

function, 289
multiseries line chart, 288

radio buttons, 287
sliders, 287

code section, 296
hexadecimal format, 296
jQuery Interface library, 294
numerical values, 295
RBG values, 297
RGB values, 294

Charting technology
canvas and SVG, 7
DevTools, 16–17
DOM, 9
elements

axis label, 2
legend, 4
point label and tooltip, 3
two-dimensional chart, 2

Firebug, 16
HTML5, 6
JavaScript

Aptana Studio, 10
arrays, 13
IDEs, 10
libraries, 11
objects, 15
online IDE jsFiddle, 11
running and debugging, 12
variable, 13

JSON, 18
types, 4

Chart-title, 78
closePath() function, 74
Combined charts, 367

Comma-separated value (CSV) ile, 418
axes and grid

CSS style, 420
d3.svg.axis() function, 419
grid variables, 421
horizontal grid lines, 422
SVG elements, 421–422
SVG elements addition, 420

data drawing
append() method, 425
axes labels, 424
CSS style settings, 425
d3.csv function, 423
d3.svg.line(), 424
data object, 423
domain, 423
main components, 425
path element, 425

data object, 350
data reading parsing

size and margins, 418
text editor, 419
time format control, 419

illed areas
area chart, 430
line object, 429
path element, 429–430

$.get() function, 345
marks

d3.csv() function, 426
.dot class, 426
jqPlot library, 427
shapes and colors, 427–429

Coniguration object, 332
console.log() method, 17
Content delivery network (CDN), 20, 221–222, 275, 283,

289, 312, 329, 449, 576
createDetail() function, 353
createMaster() function, 353–354
CSS Gradient Generator, 47
ctx.lineTo(x,y) function, 74
ctx.strokeStyle() function, 74

D���������
Data-driven documents (D3) library

append() method, 381, 386
axes range control

limit references, 414–415
variables, 414

axis arrow
CCS style, 416
with and without illing, 416
x and y axes, 415

■฀INDEX

585

bar charts (see Bar charts)
bind arbitrary data, 374
blank HTML page, 374
bubble chart (see Bubble chart)
Candlestick charts (see Open-high-low-close

(OHLC) chart)
CSV ile (see Comma-separated

value (CSV) ile)
data() operator, 387
diference line chart

clip paths, 445
code changes, 446
code writing, 441, 443
colors, 444
d3.min and d3.max, 443
data parsing, 443
data point interpolation, 444
generic function, 444
trend area, 445
TSV ile, 440

domains and ranges, 402–403
dynamic properties, 390
enter() operator, 388
FIREBUG, 373
irst bricks, 401
html() method, 380, 387
input data addition

attr() function, 406
axes, 405
CSS styles, 404–405
grid addition, 407
light gray grid, 408
max(date) function, 403
path element, 404
SVG elements, 403
text(String) function, 405
text style, 408
ticks addition, 406–407
transformation, 403
x and y values, 411–413

insert() method, 384, 386
JavaScript library, 374
multiseries line charts (see Multiseries

line charts)
operators, 377
PHP language

json() function, 571
multiseries chart, 571
myPHP.php, 569–570
sales.sql, 568
TSV ile, 563, 567

pie charts (see Pie charts)
radar chart (see Radar charts)

real-time charts (see Real-time charts)
scales, 402–403
Scatterplot (see Scatterplot)
selection, 375
SVG elements (see Scalable vector

graphics (SVG) elements)
title and axis labels, 417–418

d3.selectAll(“selector”), 376
d3.select(“selector”), 376
Data-driven documents (D3) library
DateAxisRenderer plug-in, 181–182
DEBUGGING D3 CODE, 373
delay() function, 398
Document object model (DOM)

element, 52, 62
Donuts charts

arc creation, 494–495
code writing, 493–494
data array, 261
data_06.csv, 494
data transition, 260
deinition, 257
external labels, 496
forEach() function, 495
multiseries, 261–263
path element, 495–496
pieRenderer object, 260
show property, 262
vs. single chart, 492
startAngle property, 260

duration() function, 398

E���������
each() method, 54
enhancedLegendRenderer

plug-in, 333
eq() method, 26

F���������
forEach() function, 14
Funnel chart

basic, 284
CDN service, 283
data format, 283
ill property, 286
FunnelRenderer, 283
legend and percentages, 285
lineWidth property, 286
sectionMargin property, 285
seriesDefaults object, 283
showDataLabel, 284
without spaces, 285

■฀INDEX

586

Data-driven documents (D3) library (cont.)

G���������
Gantt chart, 367

bar chart, 364
categories property, 364–365
columnrange object, 366
Date.UTC() function, 364
highcharts-more.js, 364
minPadding and maxPadding properties, 365

getJSON() method, 324
Grouped bar charts. See Bar charts

H���������
hide() function, 79
highcharts() function, 332, 347
.Highcharts library

bar charts, 359
combined charts (see Comma-separated

value (CSV) ile)
commercial and noncommerical licenses, 329
CSV ile (see CSV ile)
deinition, 329
export, 351
Gantt chart, 364
Highstock, 371
line charts

alternateGridColor property, 342
colors band component, 343
complete line chart, 334
grid, 338
input data, 336
legend, HTML, 341
marker points customize, 343
plotBands component, 341
themes, 344
tooltip component, HTML, 340

local method/content delivery
network service, 329

master detail chart, 352
modules, 330
MooTools/Prototype, 330
pie chart, 362
professional product, 329
similarities and diferences, 331
themes, 331

highcharts-more.js, 330
Highlighting, line charts

cursor highlighter
data point highlighting, 187–188
options object, 186
x and y values, 186

HTML format
data point highlighting, 188–189
formatString property, 188

High-low line charts, 208
Highstock, 371
Horizontal bar charts. See Bar charts
HTML table, 380, 387

blank page, 374
creation, 43

balloon lost, 43
color gradation, 51
CSS gradient generator, 48
CSS style, 46

dataGroups, 58
implementation, 59
jQuery library, 52
xLabels

array, 55
deinition, 54
extraction (see Label extraction)
log() function, 54

I���������
Input data handling

JSON format
arrays and objects, 320
$.getJSON() method, 323
jqPlot Data Renderer, 321
$.jqplot() function, 324
multiseries line chart, 324
value labels, 320

real-time charts
doUpdate() function, 326–327
streaming data, 325, 327

insert() method, 384, 386
Integrated development environment (IDE), 10, 574

J, K���������
JavaScript

Aptana Studio, 10–11
arrays, 13
IDEs, 10
libraries, 11
objects, 15
online IDE jsFiddle, 11
running and debugging, 12
variable, 13

JavaScript test driver (JSTD), 10
jqlotDataClick event, 245–247
jqPlot charts

accordion, 309
CSS style settings, 305
<div> elements, 307
draggable line charts

container types, 316
feature, 315

■฀INDEX

587

initial position and size
container, 315

layout container, 317
replot() function, 314

jQueryUI containers, 312
jQueryUI tabs() function, 306
resizable line chart

bind() function, 313
CDN service, 312
chart1, 313
result, 313

results, 307–308
tabs, 303
variables, 305

jqplotDataClick event, 241–242
jqPlotDataHighlight event, 244
jqplotDataMouseOver

event, 243, 245
jqplotDataUnhighlight event, 244
jqPlot framework. See Highcharts library
jqplot() functions, 254–255, 305
jqPlot library

basic iles, 131–132
CSS customization, 146
data series

array of data, 140
multiple series, 140
multiseries chart, 142
options object, 141
showMarker property, 141–142
single variable, 143

deinition, 131
handling options on axes, 138–139
inserting options

chart component, 136
chart structure, 136
chart title, 136
default line chart customization, 135
drawGridlines property, 138
grid lines hiding, 138
grid object, 137
jqPlot object, 136
options object, 137
properties, 135

modules
analysis, 147
ease of maintenance, 147
line chart, 147
myCss.css, 148
myJS.js, 148

new library creation, 131
plot basics

container addition, 133
creation, 133–134

plug-ins, 134–135
renderer

bar chart, 143–144
BarRenderer plugin, 145
CDN service, 143–144
deinition, 143
jqPlot distribution, 146
properties, 145

jqPlot Plug-ins, 581
jqplotRightClick event, 242–243
jQuery

DOM elements
new elements, 26
ready() method, 24
remove, hide, and replace

elements, 27
selections, 24

UI libraries
CDN method, 20
chaining methods, 23
graphic elements, 41
hide() method, 23
local method, 20
selection, 21
web server, 21

UI widgets
accordion widget, 29
animation attribute, 37
button, 32
combo box, 34
CSS style settings, 38–39
<div> element, 38
functionality, 29
Google Hosted library, 28
height and width attributes, 37
menu, 35
progress bar, 39
range attribute, 37
resizing and encapsulation, 29
tab widget, 31
value attributes, 38

jQuery css() function, 83
jQueryUI containers, 312
jQueryUI tabs() function, 306

L���������
Label extraction

legend array, 56
Math.max.apply() function, 56
tableData\: legend property, 55
tbody td selector, 56
yLabels array, 57

labelFormatter property, 341
Legend, 75

■฀INDEX

588

jqPlot charts (cont.)

Library creation
default values, 127, 129
features

barGroupMargin property, 117
data, 115
$(document).ready() function, 115–116
HTML table, 115
options, 115
options object, 117–118
target, 115
type property, 117

implementation
axis tick labels, 120, 124
canvas setting, 119–120
data drawing, 124, 126
legend component, 126

jQuery library, 114
myLibrary() function, 113–114
new library, 113

Limit lines
button addition, 191

button types, 191
horizontal limit line, 195
JavaScript functions, 195
jQuery UI widgets, 192–193
lineup() and linedown() function, 193
lower and upper thresholds, 194
vertical lines, 194

CanvasOverlay plug-in
horizontalLine and dashedHorizontalLine, 190
lineCap property, 190
lower and upper limits, 190

Line charts
area charts (see Area charts)
axes (see Axes, line charts)
band charts, 208, 213
canvas (see Canvas)
cartesian chart, 66
chart appearance, CSS

background color, 201
chart-container class, 202
<div> element, 202
ile extraction, 200
grid setting, 203, 205
multiseries line chart, 203
options object, 200
tick labels and title, 201

closePath() function, 74
ctx.lineTo(x,y) function, 74
ctx.strokeStyle() function, 74
dataGroups, 74
data point, 66
date values

DateAxisRenderer plug–in, 180, 182
day-by-day point values, 183

diferent x input value formats, 183
formatString property, 183

illBetween object, 213, 216
grid lines, 71
hide tables, 79
highlighting (see Highlighting,

line charts)
JavaScript code and CSS styles, 75
JavaScript data, 176

math functions, 176, 178
random data generation, 179

legend, 75
limit lines (see Limit lines)
lineWidth property, 73
Log scale

exponent, 165
renderer property, 165
semilog scale, 166
values, 165

multiseries (see Multiseries line chart)
tick labels

CSS style class, 70
Firebug menu, 67
 tags, 66
unordered lists, 70
x axis, 66
xLabels and yLabels arrays, 68

time values, 184
title, 77
trend lines, 217, 220
x, y values, 151

indexes of passed array, 151
linear plot, 152
nonuniformly distributed points, 152

zooming
cursor plug-in, 196
incoming data availability, 197
line chart extraction, 198
resetZoom() method, 198
zoom property, 197

lineWidth property, 73
log() function, 373
Log scale

exponent, 165
renderer property, 165
semilog scale, 166
values, 165

M, N���������
Marimekko chart, 238–240
Master detail chart

bottom and foreground chat, 358
createDetail() function, 353–354
createMaster() function, 353–354

■฀INDEX

589

detailOptions, 353
large amount data, 352
library iles and the dark green

theme, 353
masterOptions object, 354
min and max values, 356
options, 357
two charts, 352

Math.max.apply() function, 56
maxPadding property, 365
Mekko chart, 238–240
minPadding property, 365
Multiseries line chart, 166

animated charts, 173
D3 chart

code writing, 431, 434
color setting, 434
d3.keys() function, 435
data_02.tsv, 431
data map function, 435
double iteration, 436
legend addition, 437–438
line interpolation, 439–440
parseDate() function, 434
SVG element, 436

data array
customized color set, 168–169
multiple arrays, 166
transparency levels, 169

line and marker style
line pattern and width, 171–172
linePattern property, 172

more than one y axis, 174–175
smooth–line chart, 169–170

O���������
Object coniguration, 333
Open-high-low-close (OHLC) chart, 6

box representation, 511–512
creation

code writing, 504
CSS styles, 508
data_08.csv, 503
data parsing, 505
forEach() function, 506
jqPlot, 508
line element, 507
minimum and maximum

values, 506
SVG elements with axes

and labels, 506
data format, 509

P, Q���������
parseInt() function, 38
Pie charts, 362

canvas setting
code status, 85, 88
strokeRect(), 88

caption selection, 92
color sequence, 487–488
CSS attributes, 92–93
data array, 257
dataLabels property, 258
data representation, 1, 94
deinition, 257
drawing

arc.centroid() function, 485
arc element, 484
area and margins, 482
circular sector, 482
colors, 482
CSS class attributes, 486
d3.csv() function, 484
d3.layout.pie() function, 483
data_04.csv, 482
irebug, 485
outer and inner radius, 483
root element insertion, 483
simple pie chart, 486
title addition, 485

element addition, 92
gradient efect

black gradient and space divisions, 96
hide() function, 95
sliceGradientColor and borderstyle, 95–96
slices, 94–95

implementation
center point variables, 89
counter and fraction, 91
dataSum function, 89–90
distance variable, 91
HTML structure generation, 91
 tag, 91
pieMargin, 89
sliceMiddle variable, 91
slices, 90

lineWidth property, 260
mixing, 491–492
multilevel, 263–264
percentage report, 258
PieRenderer plug-in, 257
plug-in activation, 257
pulled out slice, 98–99

animation, 99, 104
code writing, 97–98

■฀INDEX

590

Master detail chart (cont.)

counter addition, 108
luctuating animation, 112
for() loop function, 104
handleChartClick() event, 105–106
handleChartClick() function, 111
new slice() function, 104
nextMove and k variables, 105
Out and ins variables, 107
pullout() function, 109
pushIn() function, 110
setInterval() functions, 109
slice extraction, 108
startAngle and endAngle slice, 97

sliceMargin property, 259
slices, 85
slices only with outlines, 490
sorting, 488–489
space addition, 489
SVG elements, 481

plotBands component, 341
plotOptions, 337
pointInterval, 337
Polar area diagrams

arcs, 499
code writing, 497–498
CSS style classes, 500
d3.csv() function, 498
data_07.csv, 497
legend, 500
radius and angle, 497
slices with labels, 499

Portable network graphics (PNG) ile, 253

R���������
Radar charts

auto scaling axes
area and margins, 546
circle-ticks, 548
circular grid, 548
d3.csv() function, 547
data_11.csv ile, 546–549
drawing area center, 546
linear scale, 546
radial axes, 549–550
root element <svg>, 546
<svg> elements, 547
ticks, 547

data addition
color domain addition, 550
CSS style class addition, 553
d3.csv() function, 554
data_12.csv, 553
data series, 551
legend addition, 551

path color, 554
semi-transparent areas, 555

web structure, 545
ready() method, 24
Real-time charts

CSS styles, 560
data array, 558
getRandomInt() function, 561–562
HTML structure, 557
line() function, 559–560
margin adjustment, 558
requestAnimFrame() function, 562
SVG elements, 558–559
updateData() function, 561

replaceWith() method, 28
replot() function, 309, 314
resizable() function, 313

S���������
Scalable vector graphics (SVG) elements, 7, 401

create, 391
transformations

rotation, 396
scale, 395
translate, 395

transitions, 397
Scatter chart

CDN service, 275
data collection, 274
default settings, 273–274
deinition, 273
trend line, 275
Trendline plug-in, 275

Scatterplot
axis label, 516
cluster analysis

algorithm implementation, 530
circle SVG elements, 536
code writing, 533
K-mean algorithm, 530-533
kmean() function, 535
myPoints, 535
representation, 536
selection and grouping criteria, 529

code writing, 514
colored markers, 517
customized markers

cell markers, 523
group markers, 523
set of markers, 523
SVG editor, 522
SVG element path, 523

d3.tsv() function, 516
data_09.tsv, 513–514

■฀INDEX

591

data distribution, 518
data points highlighting, 537–540
markers and symbols

CSS styles, 520
groupMarker object, 520
line replacement, 520
predeined symbols, 519
series representation, 521

nice() function, 516
SVG element, 517
trendlines

code writing, 524
data parsing, 527
least square method, 524
representation, 528
summations, 528
tsv() function, 527

select() method, 376
slicedOfset property, 362
Smooth-line chart, 169
Stacked bar chart

drawing
code writing, 456, 458
color domain, 458
data_05.csv, 456
data() function, 461
Firebug console, 459–460
forEach() function, 458
iterative function, 459
numeric values, 458
rect elements, 461
text element, 462
translate(x,0) function, 461
x and y domain, 460

normalized
code addition, 467
d3.csv() function, 465
data_05.csv ile, 464
legend, 466
new style class addition, 467
range of values, 464
rotate() function, 465
SVG elements, 468
title modiication, 465

strokeRect() function, 64
style() operator, 379

T���������
Tab-separated value

(TSV) ile, 564, 568
text() operator, 377
tickRenderer property, 223
transition() method, 398
translate() method, 63
Trend lines, 217, 220

U, V���������
useHTML property, 341

W���������
Web Graphics Library (WebGL), 7
World Wide Web Consortium (W3C), 9

X, Y, Z���������
XAMPP and Aptana Studios, 573

IDE installation, 574
project creation, 575
run coniguration, 579
src directory

D3 library version 3, 577
iles and subdirectories, 578
highcharts library version 3.0.5, 577
jqPlot library version 1.0.8, 577
jquery UI library version 1.10.3, 577

web server installation, 573
workspace

charts directory, 576
setting, 574–575
src directory, 576

xLabels
array, 55
deinition, 54
label extraction

legend array, 56
Math.max.apply() function, 56
tableData:legend property, 55
tbody td selector, 56
yLabels array, 57

log() function, 54
XY chart. See Scatter chart

■฀INDEX

592

Scatterplot (cont.)

Beginning JavaScript
Charts

With jqPlot, D3, and Highcharts

Fabio Nelli

Beginning JavaScript Charts

Copyright © 2013 by Fabio Nelli

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6289-3

ISBN-13 (electronic): 978-1-4302-6290-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clarke
Development Editors: James Markham and Chris Nelson
Technical Reviewer: Matthew Canning
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editors: Lisa Vecchione, Kezia Endsley, and Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781430262893. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781430262893
http://www.apress.com/source-code/

his book is dedicated to my grandfather Polo and my grandmother Franca,
for all the support they have given me in life

vii

Contents

About the Author ... xix

About the Technical Reviewer ... xxi

Acknowledgments ... xxiii

Introduction .. xxv

Chapter 1: Charting Technology Overview ■ ...1

Elements in a Chart ...1

Most Common Charts ..4

How to Realize Charts on the Web ...6

HTML5 ...6

Charting with SVG and CANVAS ...7

Canvas vs SVG ... 7

The DOM ..9

Developing in JavaScript ...10

Running and Debugging JavaScript .. 12

Data Types in JavaScript.. 13

Firebug and DevTools ..16

JSON..18

Summary ...18

Chapter 2: jQuery Basics ■ ...19

Including the jQuery Library ..20

Selections .. 21

Chaining Methods .. 23

The Wrapper Set .. 23

■ CONTENTS

viii

jQuery and the DOM ...24

The ready() Method .. 24

Traversing the DOM with Selections ... 24

Create and Insert New Elements ... 26

Remove, Hide, and Replace Elements .. 27

jQuery UI: Widgets ...28

Accordion ... 29

Tab ... 31

Button .. 32

Combo Box .. 34

Menu .. 35

Slider ... 37

Progress Bar .. 39

Concluding Thoughts on the jQuery Library ..41

Summary ...41

Chapter 3: Simple HTML Tables ■ ...43

Creating a Table for Your Data ...43

Your Example’s Goals .. 43

Applying CSS to Your Table .. 46

Adding Color Gradation to Your Table ... 47

Adding Color Gradation to Your Table, Using Files ... 51

Parsing the Table Data...52

Importing the jQuery Library .. 52

xLabels .. 53

dataGroups .. 58

Ready for Implementing Graphics ...59

Summary ...59

■ CONTENTS

ix

Chapter 4: Drawing a Line Chart ■ ..61

Defining the Canvas ..61

Setting the Canvas ..63

Drawing a Line Chart ...65

Drawing Axes, Tick Labels, and the Grid .. 66

Drawing Lines on the Chart ...73

Adding a Legend ...75

Adding a Title ...77

Hiding the Table ...79

Summary ...80

Chapter 5: Drawing a Bar Chart ■ ...81

Drawing a Bar Chart ..81

Summary ...84

Chapter 6: Drawing a Pie Chart ■ ...85

Drawing a Pie Chart ..85

Setting the Canvas ... 85

Implementing the Pie Chart ... 89

Completing the Pie Chart ... 92

Adding Effects ...94

Adding a Gradient Effect ... 94

Adding a Better Gradient Effect .. 96

Creating a Pie Chart with a Slice Pulled Out .. 97

Inserting an Animation to Pull Out the Slice .. 99

Clicking a Slice to Pull It Out.. 104

Clicking a Slice to Pull It Out with Animation ... 108

Other Effects .. 112

Summary ...112

■ CONTENTS

x

Chapter 7: Creating a Library for Simple Charts ■ ...113

Creating a Library ..113

Main Features: Target, Data, and Options ..114

Implementing the Library ..119

Setting the Canvas ... 119

Drawing the Axes, Tick Labels, and Grid .. 120

Drawing Data ... 124

Adding the Legend ... 126

Default Values ...127

Summary ...130

Chapter 8: Introducing jqPlot ■ ..131

The jqPlot library ...131

Including Basic Files ...131

Plot Basics ...133

Adding a Plot Container ... 133

Creating the Plot ... 133

Using jqPlot Plug-ins ..134

Understanding jqPlot Options ..135

Inserting Options .. 135

Handling Options on Axes ... 138

Inserting Series of Data ..140

Renderers and Plug-ins: A Further Clarification ..143

CSS Customization ...146

Thinking in Modules ..147

Summary ...149

■ CONTENTS

xi

Chapter 9: Line Charts with jqPlot ■ ...151

Using (x, y) Pairs as Input Data ..151

First Steps in the Development of a Line Chart: The Axes ...153

Add a Title and Axis Labels .. 153

Axis Properties ... 155

Axes Ticks .. 158

Using the Log Scale .. 164

The Multiseries Line Chart ..166

Multiple Series of Data .. 166

Smooth-Line Chart... 169

Line and Marker Style .. 171

Animated Charts .. 173

More Than One y Axis .. 174

Data with JavaScript ...176

Generating Data, Using Math Functions .. 176

Generating Random Data ... 179

Handling Date Values ..180

The DateAxisRenderer Plug-in ... 180

Handling Date Values in Different Formats .. 183

Handling Time Values .. 184

Highlighting ...185

Cursor Highlighter.. 186

Highlighting with HTML Format ... 188

Interacting with the Chart: Limit Lines and Zooming ..189

Drawing a Limit Line on the Chart ... 189

Adding Buttons to Your Charts ... 191

Zooming ... 196

■ CONTENTS

xii

Changing Chart Appearance ..199

Customizing Text, Using CSS .. 200

Changing the Background Color ... 201

Further Customization, Using CSS ... 202

Setting the Grid .. 203

Working with Areas on Line Charts ...205

Area Charts .. 206

Line and Area Charts ... 208

Band Charts ... 208

Filling Between Lines in a Line Chart .. 213

Trend Lines ..217

Summary ...220

Chapter 10: Bar Charts with jqPlot ■ ..221

Using the BarRenderer Plug-In to Create Bar Charts ..221

Rotate Axis Tick Labels ..223

Modify the Space Between the Bars ...224

Adding Values at the Top of Bars ...225

Bars with Negative Values ...226

Bar Charts with More Than One Set of Data ..228

Vertical and Horizontal Bar Charts ... 230

Vertical Stacked Bars .. 232

Horizontal Stacked Bars .. 234

Combination Charts: Lines in Bar Charts ...235

Animated Plot ..237

Marimekko Chart ...238

Bar Chart Events ..240

The jqplotDataClick Event .. 241

The jqplotRightClick Event ... 242

Other Bar Chart Events .. 243

Clicking the Bar to Show Information in Text ... 245

■ CONTENTS

xiii

Handling Legends ..247

Adding a Legend .. 247

The Enhanced Legend ... 250

Custom Legend Highlighting.. 251

Custom Tool Tip ...253

Summary ...256

Chapter 11: Pie Charts and Donut Charts with jqPlot ■ ..257

Pie Charts ..257

Donut Charts ..260

Multilevel Pie Charts ...263

Summary ...265

Chapter 12: Candlestick Charts with jqPlot ■ ...267

OHLC Charts ...267

Using Real Bodies and Shadows ...270

Comparing Candlesticks ..270

Summary ...272

Chapter 13: Scatter Charts and Bubble Charts with jqPlot ■ ...273

Scatter Chart (xy Chart) ...273

Bubble Chart ..276

Block Chart ..279

Summary ...281

Chapter 14: Funnel Charts with jqPlot ■ ...283

Creating a Funnel Chart ..283

Summary ...286

Chapter 15: Adding Controls to Charts ■ ..287

Adding Controls ...287

Using Radio Buttons ..288

Adding Radio Button Controls .. 288

Accessing Attributes after the Chart Has Already Been Drawn ... 292

■ CONTENTS

xiv

Using Sliders ...294

Using Check Boxes ..298

Summary ...301

Chapter 16: Embedding jqPlot Charts in jQuery Widgets ■ ..303

jqPlot Charts on Tabs ...303

jqPlot Charts on Accordions ..309

Resizable and Draggable Charts ...312

A Resizable Line Chart ... 312

Three Draggable Line Charts ... 314

Summary ...317

Chapter 17: Handling Input Data ■ ...319

Using the JSON Format ...319

The JSON Format ... 320

A Practical Case: The jqPlot Data Renderer ... 321

JSON and $.getJSON() .. 323

Real-Time Charts ...325

Summary ...328

Chapter 18: Moving from jqPlot to Highcharts ■ ..329

The Highcharts Distribution ...329

Similarities and Differences ..331

Line Charts with Highcharts ..333

Completing the Line Chart ... 334

Different Ways of Handling Input Data ... 336

The grid: Advanced Management .. 338

Customizing Tooltips with HTML .. 340

Customizing the Legend with HTML .. 341

Adding Bands .. 341

Customizing the Marker Points.. 343

The Themes of Highcharts ... 344

■ CONTENTS

xv

Reading Data from a File ..345

Reading a CSV File Using $.get() ... 345

Excluding CSV Columns from Your Data .. 350

Exporting the Chart ...351

The Master Detail Chart ..352

Bar and Pie Charts with Highcharts ..359

Bar Charts .. 359

Pie Charts .. 362

Gantt Charts ..364

Combined Charts ...367

Highstock Library ..371

Summary ...372

Chapter 19: Working with D3 ■ ..373

Introducing D3 ...374

Starting with a Blank HTML Page ..374

Using Selections and Operators ..375

Selections and Selectors ... 375

Operators ... 377

Creating New Elements ...380

The html() Method ... 380

The append() Method ... 381

The insert() Method ... 384

Inserting Data into Elements ...387

Applying Dynamic Properties ..390

Adding SVG Elements ..391

Creating an SVG Element ... 391

Transformations .. 393

Transitions ... 397

Summary ...399

■ CONTENTS

xvi

Chapter 20: Line Charts with D3 ■ ..401

Developing a Line Chart with D3 ...401

Starting with the First Bricks ... 401

Scales, Domains, and Ranges ... 402

Inside the Code .. 403

Using Data with (x, y) Values ... 411

Controlling the Axes’ Range ... 414

Adding the Axis Arrows .. 415

Adding a Title and Axis Labels ... 417

Drawing a Line Chart from Data in a CSV File ...418

Reading and Parsing Data ... 418

Implementing Axes and the Grid .. 419

Drawing Data with the csv() Function ... 423

Adding Marks to the Line ... 426

Line Charts with Filled Areas ... 429

Multiseries Line Charts..431

Working with Multiple Series of Data .. 431

Adding a Legend .. 437

Interpolating Lines ... 438

Difference Line Chart ..440

Summary ...448

Chapter 21: Bar Charts with D3 ■ ...449

Drawing a Bar Chart ..449

Drawing a Stacked Bar Chart ..455

A Normalized Stacked Bar Chart ...464

Drawing a Grouped Bar Chart..468

Horizontal Bar Chart with Negative Values ..475

Summary ...479

■ CONTENTS

xvii

Chapter 22: Pie Charts with D3 ■ ...481

The Basic Pie Charts ...481

Drawing a Basic Pie Chart ... 482

Some Variations on Pie Charts ... 487

Donut Charts ...492

Polar Area Diagrams ..497

Summary ...501

Chapter 23: Candlestick Charts with D3 ■ ..503

Creating an OHLC Chart ...503

Date Format...509

Box Representation in Candlestick Charts ..511

Summary ...512

Chapter 24: Scatterplot and Bubble Charts with D3 ■ ..513

Scatterplot ...513

Markers and Symbols ...519

Using Symbols as Markers .. 519

Using Customized Markers .. 521

Adding More Functionalities ..524

Trendlines .. 524

Clusters ... 529

Highlighting Data Points ..537

Bubble Chart ..541

Summary ...543

Chapter 25: Radar Charts with D3 ■ ...545

Radar Chart ...545

Building Auto Scaling Axes .. 546

Adding Data to the Radar Chart ... 550

Improving Your Radar Chart ..553

Summary ...556

■ CONTENTS

xviii

Chapter 26: Handling Live Data with D3 ■ ..557

Real-Time Charts ...557

Using PHP to Extract Data from a MySQL Table ..563

Starting with a TSV File ... 564

Moving On to the Real Case ... 568

Summary ...571

Conclusion ...571

Appendix A: Guidelines for the Examples in the Book ■ ...573

Installing a Web Server ...573

Installing Aptana Studio IDE ..574

Setting the Aptana Studio Workspace ...574

Creating a Project ..575

Completing the Workspace..576

Filling the src Directory with the Libraries ..577

Running the Examples ...578

Summary ...579

Appendix B: jqPlot Plug-ins ■ ...581

Index ...583

xix

About the Author

Fabio Nelli is an information technology scientiic application specialist at IRBM
Science Park, a private research center in Pomezia, Italy. He was a computer
consultant for many years at IBM, EDS, and Merck Sharp and Dohme, along with
several banks and insurance companies. He worked as well as a specialist in
information technology and automation systems at Beckman Coulter.

He holds a Master’s degree in Organic Chemistry from La Sapienza University
of Rome. He recently earned a Bachelor’s degree in Automation and Computer
Engineering from eCampus University of Novedrate.

Nelli is currently developing Java applications that interface Oracle databases,
using scientiic instrumentation to generate data, and web server applications that
provide analysis to researchers in real time.

Web site: www.meccanismocomplesso.org

http://www.meccanismocomplesso.org

xxi

About the Technical Reviewer

Matthew Canning is an author, speaker, and experienced technical leader who
has served in engineering and management roles at some of the world’s largest
companies. Aside from technology, he writes and presents on subjects such
as memory, mental calculation, and productivity. He currently lives outside
Philadelphia with his wife and daughter.

Twitter: @MatthewCanning
Web site: matthewcanning.com

@MatthewCanning
http://matthewcanning.com

xxiii

Acknowledgments

I would like to express my gratitude to all the people who played a part in developing this book. First, a special thanks
to Ben Renow-Clarke for giving me the opportunity to write the book. hanks to Jill Balzano and Mark Powers for
their guidance and direction. hanks also to everyone who took part in the review and editing of the book for their
professionalism and enthusiasm: Chris Nelson, Matthew Canning, James Markham, Lisa Vecchione, Kezia Endsley,
Brendan Frost, and Dhaneesh Kumar.

Finally, a thank-you to Victor Jacono for his invaluable help with the English text.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

