
www.allitebooks.com

http://www.allitebooks.org

ng-book
The Complete Book on AngularJS

Ari Lerner

ISBN 978-0-9913446-0-4

©2013 Ari Lerner

www.allitebooks.com

http://www.allitebooks.org

Tweet This Book!
Please help Ari Lerner by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought #ngbook, the Complete Book on AngularJS! I’m ready to build advanced, modern
webapps!

The suggested hashtag for this book is #ngbook.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#ngbook

www.allitebooks.com

http://twitter.com
https://twitter.com/search?q=%23ngbook
https://twitter.com/search?q=%23ngbook
http://www.allitebooks.org

Contents

Introduction . 1
Foreword . 1
Acknowledgments . 2
About the Author . 2
About This Book . 2
Organization of This Book . 3
Additional Resources . 4
Conventions Used in This Book . 4
Development Environment . 5

The Basics of AngularJS . 6
How Web Pages Get to Your Browser . 6
What Is a Browser? . 7
What Is AngularJS . 8

Data Binding and Your First AngularJS Web Application 10
Introducing Data Binding in AngularJS . 11
Simple Data Binding . 12
Best Data Binding Practices . 16

Modules . 18
Properties . 19

Scopes . 20
The $scope View of the World . 20
It’s Just HTML . 21
What Can Scopes Do? . 22
$scope Lifecycle . 23
Directives and Scopes . 24

Controllers . 25
Controller Hierarchy (Scopes Within Scopes) . 27

Expressions . 31
Interpolating a String . 32

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Filters . 37
Making Our Own Filter . 44
Form Validation . 45

Introduction to Directives . 59
Directives: Custom HTML Elements and Attributes . 61
Passing Data into a Directive . 70

Built-In Directives . 79
Basic ng Attribute Directives . 79
Directives with Child Scope . 83

Directives Explained . 103
Directive Definition . 103
Directive Scope . 110
AngularJS Life Cycle . 122
ngModel . 127

Angular Module Loading . 132
Configuration . 132
Run Blocks . 134

Multiple Views and Routing . 136
Installation . 136
Layout Template . 137
Routes . 138
$location Service . 142
Routing Modes . 145
Other Advanced Routing Topics . 148

Dependency Injection . 149
Annotation by Inference . 151
Explicit Annotation . 151
Inline Annotation . 152
$inject API . 153
ngMin . 155

Services . 157
Registering a Service . 158
Using Services . 159
Options for Creating Services . 163

Communicating with the Outside World: XHR and Server-Side Communication 173
Using $http . 173
Configuration Object . 178

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Response Object . 180
Caching HTTP Requests . 180
Interceptors . 182
Configuring the $httpProvider . 184
Using $resource . 185
Installation . 186
Using $resource . 186
Custom $resource Methods . 191
$resource Configuration Object . 192
$resource Services . 194
Using Restangular . 196
The What and the Why . 197
Installation . 198
Intro to the Restangular Object . 199
Using Restangular . 200
Configuring Restangular . 204

XHR in Practice . 211
Cross-Origin and Same-Origin Policy . 211
JSONP . 211
Using CORS . 213
Server-Side Proxies . 216
Working with JSON . 217
Working with XML . 217
Authentication with AngularJS . 218
Talking to MongoDB . 226

Promises . 229
What’s a Promise? . 229
Why Promises? . 230
Promises in Angular . 231
Chaining Requests . 236

Server Communication . 238
Custom Server-Side . 238
Install NodeJS . 238
Install Express . 239
Calling APIs . 242
Server-less with Amazon AWS . 245
AWSJS + Angular . 247
Getting Started . 247
Introduction . 249
Installation . 250

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Running . 251
User Authorization/Authentication . 252
UserService . 256
All Aboard AWS . 258
AWSService . 261
Starting on Dynamo . 264
$cacheFactory . 264
Saving Our currentUser . 265
Uploading to S3 . 268
Handling File Uploads . 271
Querying Dynamo . 274
Showing the Listing in HTML . 275
Selling Our Work . 276
Using Stripe . 278
Server-less with Firebase . 282
Three-Way Data Binding With Firebase and Angular . 283
Getting Started With AngularFire . 284
Ordering in AngularFire . 288
Firebase Events . 289
Implicit Synchronization . 290
Authentication with AngularFire . 290
Authentication Events . 291
Beyond AngularFire . 294

Testing . 295
Why Test? . 295
Testing Strategies . 295
Getting Started Testing . 296
Types of AngularJS Tests . 296
Getting Started . 298
Initializing Karma Config File . 299
Configuration Options . 302
Using RequireJS . 309
Jasmine . 312
Expectations . 313
End-to-End Introduction . 320
Mocking and Test Helpers . 331
Mocking the $httpBackend . 332
Testing an App . 340
Testing Events . 363
Continuous Integration for Angular . 365
Protractor . 365
Configuration . 367

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Configuration Options . 367
Writing Tests . 370
Page Objects . 371

Events . 373
What are Events . 373
Event Propagation . 373
Listening . 375
Event Object . 376
Core Services Riding on Events . 376

Architecture . 379
Directory Structure . 379
Modules . 380
Controllers . 382
Directives . 384
Testing . 384

Angular Animation . 386
Installation . 386
How It Works . 387
Using CSS3 Transitions . 388
Using CSS3 Animations . 390
Staggering CSS Transitions / Animations . 392
Using JavaScript Animations . 394
Fine-tuning animations . 395
Animating Built-In Directives . 395
Building Custom Animations . 416
Integrating with Third-Party Libraries . 423

The Digest Loop and $apply . 426
$watch List . 427
Dirty Checking . 427
$watch . 428
$watchCollection . 430
The $digest Loop in a Page . 431
$evalAsync List . 432
$apply . 433
When to Use $apply() . 434

Demystifying Angular . 436
How the ViewWorks . 437

Essential AngularJS Extensions . 440

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

AngularUI . 440
Installation . 440
ui-router . 440
ui-utils . 453

Mobile Apps . 458
Responsive Web Apps . 458
Interaction . 458
Native Applications with Cordova . 465
Getting Started with Cordova . 466
Including Angular . 474
Building with Yeoman . 474

Localization . 482
angular-translate . 482
Installation . 482
Teaching Your App a New Language . 483
Multi-language Support . 485
Switching the Language at Run Time . 486
Loading Languages . 487
angular-gettext . 489
Installation . 489
Usage . 489
String Extraction . 491
Translating Our Strings . 493
Compiling Our New Language . 495
Changing Languages . 496

Caching . 498
What Is a Cache? . 498
Angular Caching . 498
Caching through $http . 500
Setting Default Cache for $http . 501

Security . 503
Strict Contextual Escaping: the $sce Service . 503
Whitelisting URLs . 506
Blacklisting URLs . 507
$sce API . 508
Configuring $sce . 510
Trusted Context Types . 510

AngularJS and Internet Explorer . 512
Ajax Caching . 514

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

SEO with AngularJS . 514
Getting Angular Apps Indexed . 515
Server Side . 515
Options for Handling SEO from the Server Side . 516
Taking Snapshots . 519
Using Zombie.js to Grab HTML Snapshots . 519
Using grunt-html-snapshot . 522
Prerender.io . 523
<noscript> Approach . 524

Building Angular Chrome Apps . 525
Understanding Chrome Apps . 525
Building our Chrome App . 526
Building the Skeleton . 527
manifest.json . 528
tab.html . 528
Loading the App in Chrome . 530
The Main Module . 530
Building the Home Page . 531
Sign Up for Wunderground’s Weather API . 533
A Settings Screen . 538
Implementing a User Service . 540
City Autofill/Autocomplete . 544
Sprinkling in Time Zone Support . 547

Optimizing Angular Apps . 551
What to Optimize . 551
Optimizing the $digest Loop . 551
Optimizing ng-repeat . 554
Optimizing the $digest Call . 554
Optimizing $watch Functions . 554
Optimizing Filters . 559
Tips for Optimizing Page Load . 561

Debugging AngularJS . 563
Debugging from the DOM . 563
Debugger . 565
Angular Batarang . 565

Next Steps . 569
jqLite and jQuery . 569
Essential Tools to Know About . 571
Grunt . 571
grunt-angular-templates . 575

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Lineman . 580
Bower . 582
Yeoman . 586
Configuring the Angular Generator . 592
Testing Our App . 592
Packaging Our App . 593
Packaging Our Templates . 594

CONTENTS i

Dedication

I dedicate this book to my parents, Lisa and Nelson Lerner for without their support and encourage-
ment none of this would have been possible.

Special thanks

To the lovely Q for the constant motivation and incredibly talented editing and my cofounder and
friend, Nate Murray.

Introduction
Foreword

I’ve become somewhat numb to all of the JavaScript libraries and frameworks being released on a
seemingly daily basis. While the ability to choose from a variety of libraries and frameworks is a
good thing, including too many scripts in an application can be a bad thing for maintenance – at
least in my opinion. I’ve always been concerned about the dependencies that are created as more
and more scripts are added into an application and often longed for a single script (or two) that could
provide the core functionality I wanted.

When I first heard about AngularJS it caught my attention immediately because it appeared to offer
a single framework that could be used to build a variety of dynamic, client-centric applications.
After researching it more, my initial impressions were confirmed, and I was hooked. AngularJS
includes a robust set of features and offers a way to break up code into modules, which is good for
reuse, maintenance, and testability. It provides key features, such as support for DOMmanipulation,
animations, templating, two-way data binding, routing, history, Ajax, testing, and much more.

While having a core framework to build on is great, it can also be intimidating and challenging to
learn. As I dove into AngularJS I became overwhelmed with different topics and quickly became a
little frustrated and wondered if it was the framework for me. What was a service, and how was it
different from a factory? How did scope fit into the overall picture? What was a directive, and why
would I use one? Putting the pieces together and seeing the big picture was the initial hurdle that I
had to get over. It definitely would’ve been nice to have a concise resource to consult that flattened
out the learning curve.

Fortunately, you have an excellent resource at your disposal in ng-book: The Complete Book on
AngularJS that will help make you productive right away. Ari Lerner has taken the knowledge
and expertise that he’s gained and laid it out in a way that is easy to follow and understand. If
you’re looking to learn more about data binding, how “live” templates work, the process for testing
AngularJS applications, the role of services and factories, how scope and controllers fit together, and
much more, then you’re in the right place. AngularJS is an extremely powerful and fun framework
to work with, and the examples shown throughout this book will help you get up to speed quickly
on the framework. Best of luck with your AngularJS development projects!

Dan Wahlin Wahlin Consulting http://weblogs.asp.net/dwahlin¹ http://twitter.com/DanWahlin²

¹http://weblogs.asp.net/dwahlin
²http://twitter.com/DanWahlin

http://weblogs.asp.net/dwahlin
http://twitter.com/DanWahlin
http://weblogs.asp.net/dwahlin
http://twitter.com/DanWahlin

Introduction 2

Acknowledgments

First, I want to thank everyone who has encouraged me along the way to write this book. Anyone
who says authoring a book is easy has not written one him- or herself.

I want to personally thank Q Kuhns for her tireless grammatical editing and support, Erik Trom for
his patience and attention to detail, and Nate Murray for his neverending optimism and clarity of
thought.

Big thanks go out to the entire Hack Reactor³ staff and the summer class of 2013 for giving me the
space to explore how to teach AngularJS in a formal setting.

I also want to thank my 30x500 alumni, Sean Iams, Michael Fairchild, Bradly Green, Misko Hevery,
and the AirPair team.

Lastly, I would very much like to thank all of the help with our public pre-release of the book. We’ve
received fantastic help and support from the community. We would like to send special thanks to:

• Philip Westwell
• Saurabh Agrawal
• Dougal MacPherson

About the Author

Ari Lerner is the co-founder of fullstack.io⁴, based in San Francisco, CA. He worked at AT&T’s
innovation center in Palo Alto, CA, for five years, building large-scale cloud infrastructure and
helping architect the bleeding-edge developer center, including designing publicly facing APIs and
developer toolsets.

He and his team were featured in the AT&T annual report for 2012 for their work in modernizing
the company workflow and internal processes.

He left his job at AT&T to pursue building fullstack.io, a full-stack software development product
and services company that specializes in the entire stack, from hardware to the browser.

He lives in San Francisco with his lovely girlfriend and adorable dog.

About This Book

ng-book: The Complete Book on AngularJS is packed with the solutions you need to be an AngularJS⁵
ninja. AngularJS is an advanced front-end framework released by the team at Google⁶. It enables
you to build a rich front-end experience, quickly and easily.

³http://www.hackreactor.com
⁴http://fullstack.io
⁵http://angularjs.org
⁶http://google.com

http://www.hackreactor.com
http://fullstack.io
http://angularjs.org
http://google.com
http://www.hackreactor.com
http://fullstack.io
http://angularjs.org
http://google.com

Introduction 3

ng-book: The Complete Guide to AngularJS gives you the cutting-edge tools you need to get up and
running on AngularJS and creating impressive web experiences in no time. It addresses challenges
and provides real-world techniques that you can use immediately in your web applications.

In this book, we will cover topics that enable you to build professional web apps that perform
perfectly. These topics include:

• Interacting with a RESTful web service
• Building custom reusable components
• Testing
• Asynchronous programming
• Building services
• Providing advanced visualizations
• And much more

The goal of this book is not only to give you a deep understanding of how AngularJS works, but also
to give you professional snippets of code so that you can build and modify your own applications.

With these tools and tests, you can dive into making your own dynamic web applications with
AngularJS while being confident that your applications will be scalable.

Audience

We have written this book for those who have never used AngularJS to build a web application and
are curious about how to get started with an awesome JavaScript framework. We assume that you
have a working knowledge of HTML and CSS and a familiarity with basic JavaScript (and possibly
other JavaScript frameworks).

Organization of This Book

This book covers the basics of getting started and aims to get you comfortable with writing dynamic
web applications with AngularJS right away.

Then we’ll take a look at how AngularJS works and what sets it apart from other popular JavaScript
web frameworks. We’ll dive deeply into detail about the underpinnings of the flow of an AngularJS
application.

Finally, we’ll take all of our knowledge and build a relatively large application.

Introduction 4

Additional Resources

We’ll refer to the official documentation on the AngularJS⁷ website. The official AngularJS docu-
mentation is a great resource, and we’ll be using it quite often.

We suggest that you take a look at the AngularJS API documentation, as it gives you direct access to
the recommended methods of writing AngularJS applications. Of course, it also gives you the most
up-to-date documentation available.

Conventions Used in This Book

Throughout this book, you will see the following typographical conventions that indicate different
types of information:

In-line code references will look like: <h1>Hello</h1>.

A block of code looks like so:

var App = angular.module('App', []);

function FirstController($scope) {

$scope.data = "Hello";

}

Any command at the command line will look like:

$ ls -la

Any command in the developer console in Chrome (the browser with which we will primarily be
developing) will look like:

> var obj = {message: "hello"};

Important words will be shown in bold.

Tips and tricks will be shown as:

Tip
Tip: This is a tip message

⁷http://angularjs.org

http://angularjs.org
http://angularjs.org

Introduction 5

Warnings and gotchas are shown with the warning sign, like so:

This is a warning
This is a warning message

We identify errors like so:

Error
This is an error message

Important callout information is noted as:

Info
Info box

Discussion topics are presented as:

Discussion
This is a discussion box

Development Environment

In order to write any applications using AngularJS, we first need to have a comfortable development
environment. Throughout this book, we’ll be spending most of our time in two places: our text editor
and our browser.

We’ll refer to the text editor as your editor throughout the book, while we’ll refer to the browser as
the browser. To use this book, we highly recommend you download the Google Chrome browser,
as it provides a great development environment using the developer tools.

We’ll only need to install a few libraries to get going. To run our tests, we’ll need the Karma library
and nodejs. It’s also a good idea to have git installed, although this is not a strict requirement.

This book won’t cover how to install NodeJS. Visit nodejs.org⁸ for more information.

While most of our work will be done in the browser, parts of this book will focus on building RESTful
APIs to service our front end with data endpoints.

⁸http://nodejs.org

http://nodejs.org
http://nodejs.org

The Basics of AngularJS
The goal of this chapter is to get you comfortable with the terminology and the technology and to
give you an understanding of how AngularJS works. We’ll start putting the pieces together to enable
you to build an AngularJS application, even if you’ve never written one before.

HowWeb Pages Get to Your Browser

Let’s think of the Internet as a post office. When you want to send a letter to your friend, you first
write your message on a piece of paper. Then you write your friend’s address on an envelope and
place the letter inside of it.

When you drop the letter off at the post office, the mail sorter looks at the postal code and address
and tries to find where your friend lives. If she lives in a giant apartment complex, the postal service
might deliver the mail to your friend’s front desk and let the building’s employees sort it out by
apartments.

The Internet works in a similar way. Instead of a bunch of houses and apartments connected by
streets, it is a bunch of computers connected by routers and wire. Every computer has a unique
address that tells the network how to reach it.

Similar to the apartment building analogy above, where we have many apartments that share the
same address, several computers can exist on the same network or router (as when you connect to
WiFi at a Starbucks). In this case, your computer shares the same IP address as the other computers.
Your computer can be reached individually, however, by its “internal IP address” (like the apartment
number in our analogy), about which the router is aware (as the apartment building employees in
our analogy are aware of your friend’s apartment number).

IP stands for Internet Protocol. An IP address is a numerical identifier assigned to each
device participating in a network. Computers, printers, and even cell phones have IP
addresses.

There are two main types of IP addresses: ipv4 and ipv6 addresses. The most common
addresses today are ipv4 addresses. These look like 192.168.0.199. Ipv6 addresses look
like 2001:0db8:0000:0000:0000:ff00:0042:8329.

When you open your web browser on your computer and type in http://google.com, your web
browser “asks” the internet (more precisely, it “asks” a DNS server) where google.com’s address
is. If the DNS server knows the IP address you’re looking for, it responds with the address. If not,
it passes the request along to other DNS servers until the IP address is found and served to your
computer. You can see the DNS server response by typing this code into a terminal:

The Basics of AngularJS 7

$ dig google.com

If you are on a Mac, you can open the terminal program called Terminal, usually
located in your /Applications/Utilities. If you are using Windows, you can find
your terminal by going to the Start Button and typing cmd in the Run option.

Once the DNS server responds with the IP address of the computer you’re trying to reach (i.e., once
it finds google.com), it also sends a message to the computer located at that IP address asking for
the web page you’re requesting.

Every path of a web page is written with its own HTML (with a few exceptions). For
example, when your browser requests http://google.com⁹, it receives different HTML
than if it were to request http://google.com/images¹⁰.

Now that your computer has the IP address it needs to get http://google.com, it asks the Google
server for the HTML it needs to display the page.

Once the remote server sends back that HTML, your web browser renders it (i.e., the browser works
to make the HTML look the way google.com is designed to look).

What Is a Browser?

Before we jump straight into our coverage of Angular, it’s important to know what your browser is
doing when it renders a web page.

There are many different web browsers; the most common browsers today include Chrome, Safari,
Mozilla Firefox, and Internet Explorer. At their core, they all basically do the same thing: fetch web
pages and display them to the user.

Your browser gets the HTML text of the page, parses it into a structure that is internally meaningful
to the browser, lays out the content of the page, and styles the content before displaying it to you.
All of this work happens behind the scenes.

Our goal as web developers is to build the structure and content of our web page so that the browser
will make it look great for our users.

With Angular, we’re not only building the structure, but we’re constructing the interaction between
the user and our app as a web application.

⁹http://google.com
¹⁰http://google.com/images

http://google.com
http://google.com/images
http://google.com
http://google.com/images

The Basics of AngularJS 8

What Is AngularJS

The official AngularJS introduction describes AngularJS as a:

client-side technology, written entirely in JavaScript. It works with the long-established
technologies of the web (HTML, CSS, and JavaScript) to make the development of web
apps easier and faster than ever before.

It is a framework that is primarily used to build single-page web applications. AngularJS makes it
easy to build interactive, modern web applications by increasing the level of abstraction between
the developer and common web app development tasks.

The AngularJS team describes it as a “structural framework for dynamic web apps.”

AngularJS makes it incredibly easy to build web applications; it also makes it easy to build complex
applications. AngularJS takes care of advanced features that users have become accustomed to in
modern web applications, such as:

• Separation of application logic, data models, and views
• Ajax services
• Dependency injection
• Browser history (makes bookmarking and back/forward buttons work like normal web apps)
• Testing
• And more

How Is It different?

In other JavaScript frameworks, we are forced to extend from custom JavaScript objects and
manipulate the DOM from the outside in. For instance, using jQuery¹¹, to add a button in the DOM,
we’ll have to know where we’re putting the element and insert it in the appropriate place:

var btn = $("<button>Hi</button>");

btn.on('click', function(evt) { console.log("Clicked button") });

$("#checkoutHolder").append(btn);

¹¹http://jquery.com/

www.allitebooks.com

http://jquery.com/
http://jquery.com/
http://www.allitebooks.org

The Basics of AngularJS 9

Although this process is not complex, it requires the developer to have knowledge of the entire DOM
and force our complex logic inside JavaScript code to manipulate a foreign DOM.

AngularJS, on the other hand, augments HTML to give it native Model-View-Controller (MVC)
capabilities. This choice, as it turns out, makes building impressive and expressive client-side
applications quick and enjoyable.

It enables you, the developer, to encapsulate a portion of your entire page as one application, rather
than forcing the entire page to be an AngularJS application. This distinction is particularly beneficial
if your workflow already includes another framework or if you want to make a portion of the page
dynamic while the rest operates as a static page or is controlled by another JavaScript framework.

Additionally, the AngularJS team has made it a point to keep the library small when compressed,
such that it does not impose heavy penalties for using it (the compressed, minified version weighs
in under 9KB at the time of this writing). This feature makes AngularJS particularly good for
prototyping new features.

License

The AngularJS source code is made freely available on Github¹² under the MIT license. That means
you can contribute to the source and help make AngularJS even better.

In order to contribute, the Angular team has made the process relatively straightforward. Any
major changes should be discussed on the Angular mailing list¹³, thus making the potential change
available for modification, allowing other developers to join in the discussion, and preventing
code/work duplication.

More information on contributing can be found at contribution¹⁴ section of the Angular website.

¹²http://github.com
¹³https://groups.google.com/forum/?hl=en#!forum/angular
¹⁴http://docs.angularjs.org/misc/contribute

http://github.com
https://groups.google.com/forum/?hl=en#!forum/angular
http://docs.angularjs.org/misc/contribute
http://github.com
https://groups.google.com/forum/?hl=en#!forum/angular
http://docs.angularjs.org/misc/contribute

Data Binding and Your First AngularJS
Web Application
Hello World

The quintessential place to start writing an AngularJS app is with a hello world application. To write
our hello world application, we’ll start with the simplest, most basic HTML we can possibly write.

We’ll take a more in-depth look into AngularJS as we dive into the framework. For now, let’s build
our hello world application.

<!DOCTYPE html>

<html ng-app>

<head>

<title>Simple app</title>

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.6/angular.js">

</script>

</head>

<body>

<input ng-model="name" type="text" placeholder="Your name">

<h1>Hello {{ name }}</h1>

</body>

</html>

Figure 1

Data Binding and Your First AngularJS Web Application 11

Although this demo isn’t incredibly interesting or exciting, it does show one of the most basic and
impressive features of AngularJS: data binding.

Note that in this chapter, we’re not using best practices for writing controllers yet, as we’re
introducing the first core concept. This is the only place in this book where we suggest to
use the code snippets as a learning tool, not as a suggestion for production usage.

Introducing Data Binding in AngularJS

In classic web frameworks, such as Rails, the controller combines data frommodels andmashes them
together with templates to deliver a view to the user. This combination produces a single-way view.
Without building any custom JavaScript components, the view will only reflect the data the model
exposes at the time of the view rendering. At the time of this writing, there are several JavaScript
frameworks that promise automatic data binding of the view and the model.

AngularJS takes a different approach. Instead of merging data into a template and replacing a
DOM element, AngularJS creates live templates as a view. Individual components of the views are
dynamically interpolated live. This feature is arguably one of the most important in AngularJS and
allows us to write the hello world app we just wrote in only 10 lines of code without a single line of
JavaScript.

This feature works by simply including angular.js in our HTML and explicitly setting the ng-app
attribute on an element in the DOM. The ng-app attribute declares that everything inside of it
belongs to this Angular app; that’s how we can nest an Angular app inside of a web app. The only
components that will be affected by Angular are the DOM elements that we declare inside of the
one with the ng-app attribute.

Views are interpolated when the view is evaluated with one or more variable substitutions;
the result is that the variables in our string are replaced with values.

For instance, if there is a variable named name and it is equal to “Ari”, string interpolation
on a view of "Hello {{ name }}" will return “Hello Ari”.

Automatic data binding gives us the ability to consider the view to be a projection of the model state.
Any time the model is changed in the client-side model, the view reflects these changes without
writing any custom code. It just works.

In theModel View Controller (orMVC) view of the world, the controller doesn’t have to worry about
being in the mix of rendering the view. This fact virtually eliminates the concern of separating view
and controller logic, and it has the corollary effect of making testing simple and enjoyable.

Data Binding and Your First AngularJS Web Application 12

MVC is a software architecture pattern that separates representation from user interaction.
Generally, the model consists of application data and functions that interact with it, while
the view presents this data to the user; the controller mediates between the two.

This separation presentation¹⁵ makes a clear division between objects in our web app so
that the view doesn’t need to know how to save an object – it just needs to know how to
display it. Meanwhile, the model doesn’t need to interact with the view – it just needs to
contain the data and methods to manipulate the view. The controller is where we’ll place
the logic to bind the two together.

Without getting into the source (available at AngularJS.org¹⁶), Angular simply remembers the value
that the model contains at any given time (in our example from hello world, the value of name).

When Angular thinks that the value could change, it will call $digest() on the value to check
whether the value is “dirty.” Hence, when the Angular runtime is running, it will look for potential
changes on the value.

This process is dirty checking. Dirty checking is a relatively efficient approach to checking for
changes on a model. Every time there could be a potential change, Angular will do a dirty check
inside its event loop (discussed in depth in the under the hood chapter) to ensure everything is
consistent.

When using frameworks like KnockoutJS, which attaches a function (known as a change listener) to
the change event, the process is significantly more complex and relatively more inefficient. Dealing
with change coalescence, dependency tracking, and the multitude of event firing is complex and
often causes problems in performance.

Although there are more efficient ways to do it, dirty checking always works in every
browser and is predictable. Additionally, a lot of software that needs speed and efficiency
uses the dirty checking approach.

AngularJS removes the need to build complex and novel features in JavaScript in order to build fake
automatic synchronization in views.

Simple Data Binding

To review the code we just wrote, what we did was bind the “name” attribute to the input field using
the ng-model directive on the containing model object ($scope).

All that means is that whatever value is placed in the input field will be reflected in the model object.

¹⁵http://martinfowler.com/eaaDev/uiArchs.html
¹⁶http://angularjs.org

http://martinfowler.com/eaaDev/uiArchs.html
http://angularjs.org
http://martinfowler.com/eaaDev/uiArchs.html
http://angularjs.org

Data Binding and Your First AngularJS Web Application 13

The model object that we are referring to is the $scope object. The $scope object is simply
a JavaScript object whose properties are all available to the view and with which the
controller can interact. Don’t worry if this concept doesn’t make sense quite yet: It’ll make
sense with a few examples.

Bi-directional in this context means that if the view changes the value, the model
observes the change through dirty checking, and if the model changes the value, the
view update with the change.

To set up this binding, we used the ng-model function on the input, like so:

<input ng-model="person.name" type="text" placeholder="Your name">

<h1>Hello {{ person.name }}</h1>

Now that we have a binding set up (yes, it’s that easy), we can see how the view changes the model.
When the value in the input field changes, the person.namewill be updated and the viewwill reflect
the change.

Now we can see that we’re setting up a bi-directional binding purely in the view. To illustrate the bi-
directional binding from the other way (back end to front end), we’ll have to dive into Controllers,
which we’ll cover shortly.

Just as ng-app declares that all elements inside of the DOM element upon which it is declared belong
to the Angular app, declaring the ng-controller attribute on a DOM element says that all of the
elements inside of it belong to the controller.

To declare our above example inside of a controller, we’ll change the HTML to look like:

<div ng-controller='MyController'>

<input ng-model="name" type="text" placeholder="Your name">

<h1>Hello {{ name }}</h1>

</div>

In this example, we’ll create a clock that will tick every second (as clocks usually do) and change the
data on the clock variable:

Data Binding and Your First AngularJS Web Application 14

function MyController($scope) {

var updateClock = function() {

$scope.clock = new Date();

};

setInterval(function() {

$scope.$apply(updateClock);

}, 1000);

updateClock();

};

The controller function takes one parameter, the $scope of the DOM element. This $scope
object is available on the element and the controller (as we can see), and it will be the
bridge by which we’ll communicate from the controller to the view.

In this example, as the timer fires, it will call the updateClock function, which will set the new
$scope.clock variable to the current time.

We can show the clock variable that’s attached on the $scope in the view simply by surrounding it
in {{ }}:

<div ng-controller="MyController">

<h5>{{ clock }}</h5>

</div>

At this point, our sample web app looks like:

<!doctype html>

<html ng-app>

<head>

<script src="https://ajax.googleapis.com/ajax/libs

/angularjs/1.2.0-rc.2/angular.js"></script>

</script>

</head>

<body>

<div ng-controller="MyController">

<h1>Hello {{ clock }}!</h1>

</div>

<script type="text/javascript">

function MyController($scope) {

$scope.clock = new Date();

var updateClock = function() {

Data Binding and Your First AngularJS Web Application 15

$scope.clock = new Date();

};

setInterval(function() {

$scope.$apply(updateClock);

}, 1000);

updateClock();

};

</script>

</body>

</html>

See it live here¹⁷.

Although the code as it is written above works in a single file, it will become tough to
collaborate on the web app with other people or separate out the functionality of the
different components. Instead of containing all of our code in the index.html file, it’s
usually a good idea to include JavaScript in a separate file.

The above code will change to:

<!doctype html>

<html ng-app>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/

angularjs/1.2.0-rc.2/angular.js">

</script>

</head>

<body>

<div ng-controller="MyController">

<h1>Hello {{ clock }}!</h1>

</div>

<script type="text/javascript" src="js/app.js"></script>

</body>

</html>

We will place the JavaScript from above in the js/app.js file instead of embedding it directly into
the HTML.

¹⁷http://jsbin.com/uHiVOZo/1/edit?html,output

http://jsbin.com/uHiVOZo/1/edit?html,output
http://jsbin.com/uHiVOZo/1/edit?html,output

Data Binding and Your First AngularJS Web Application 16

// In app.js

function MyController($scope) {

$scope.clock = new Date();

var updateClock = function() {

$scope.clock = new Date();

};

setInterval(function() {

$scope.$apply(updateClock);

}, 1000);

updateClock();

};

Best Data Binding Practices

Due to the nature of JavaScript itself and how it passes by value vs. reference, it’s considered a best-
practice in Angular to bind references in the views by an attribute on an object, rather than the raw
object itself.

If we were to apply best practices to the clock example above, we’d change the usage of the clock in
our view to:

<!doctype html>

<html ng-app>

<head>

<script src="https://ajax.googleapis.com/ajax/

libs/angularjs/1.2.5/angular.js"></script>

</head>

<body>

<div ng-controller="MyController">

<h1>Hello {{ clock.now }}!</h1>

</div>

<script type="text/javascript" src="js/app.js"></script>

</body>

</html>

In this case, rather than updating the $scope.clock every second, we can update the clock.now

property. With this optimization, we can then change our back end to reflect the change with:

Data Binding and Your First AngularJS Web Application 17

// In app.js

function MyController($scope) {

$scope.clock = {

now: new Date()

};

var updateClock = function() {

$scope.clock.now = new Date()

};

setInterval(function() {

$scope.$apply(updateClock);

}, 1000);

updateClock();

};

It’s a good idea to try to place all of our bindings in the view in this manner.

Modules
In JavaScript, placing functional code in the global namespace is rarely a good idea. It can cause
collisions that are tough to debug and cost us precious development time.

When looking at data binding in the previous chapter, we wrote our controllers in the global
namespace by defining a single function:

function MyController($scope) {

var updateClock = function() {

$scope.clock = new Date();

};

setInterval(function() {

$scope.$apply(updateClock);

}, 1000);

updateClock();

};

In this chapter, we’ll talk about how to write efficient, production-ready controllers by encapsulating
our functionality in a single core unit called a module.

In Angular, a module is the main way to define an AngularJS app. The module of an app is where
we’ll contain all of our application code. An app can contain several modules, each one containing
code that pertains to specific functionality.

Using modules gives us a lot of advantages, such as:

• Keeping our global namespace clean
• Making tests easier to write and keeping them clean so as to more easily target isolated
functionality

• Making it easy to share code between applications
• Allowing our app to load different parts of the code in any order

The Angular module API allows us to declare a module using the angular.module() API method.
When declaring a module, we need to pass two parameters to the method. The first is the name of
the module we are creating. The second is the list of dependencies, otherwise known as injectables.

angular.module('myApp', []);

www.allitebooks.com

http://www.allitebooks.org

Modules 19

This method is called the setter method for the Angular module; it’s how we define our
module.

We can always reference our module by using the same method with only one parameter. For
instance, we can reference the myApp module like so:

// this method fetches the app

angular.module('myApp')

This method is known as the getter method, whereby we can get the Angular module for
later reference.

From here, we can create our applications on top of the angular.module('myApp') variable.

Whenwriting large applications, we’ll create several different modules to contain our logic. Creating
a module for each piece of functionality gives us the advantage of isolation in which to write and
test large features. For more information on writing isolated modules per feature, check out the
architecture chapter.

Properties

Angular modules have properties that we can use to inspect the module.

name (string)

The name property on the modules gives us the name of the module as a string.

requires (array of strings)

The requires property contains a list of modules (as strings) that the injector loads before the
module itself is loaded.

Scopes
Scopes are a core fundamental of any Angular app. They are used all over the framework, so it’s
important to know them and how they work.

The scopes of the application refer to the application model. Scopes are the execution context for
expressions. The $scope object is where we define the business functinality of the application, the
methods in our controllers, and properties in the views.

Scopes serve as the glue between the controller and the view. Just before our app renders the view
to the user, the view template links to the scope, and the app sets up the DOM to notify Angular
for property changes. This feature makes it easy to account for promises, such as an XHR call, to be
fulfilled. See the promises chapter for more details.

Scopes are the source of truth for the application state. Because of this live binding, we can rely
on the $scope to update immediately when the view modifies it, and we can rely on the view to
update when the $scope changes.

$scopes in AngularJS are arranged in a hierarchical structure that mimics the DOM and thus are
nestable: We can reference properties on parent $scopes.

If you are familiar with JavaScript, then this hierarchical concept shouldn’t be foreign.
When we create a new execution context in JavaScript, we create a new function that
effectively creates a new “local” context. The Angular concept of $scopes is similar in
that as we create a new scope for child DOM elements, we are creating a new execution
context for the DOM to live in.

Scopes provide the ability to watch for model changes. They give the developer the ability to
propagate model changes throughout the application by using the apply mechanism available on
the scope. We define and execute expressions in the context of a scope; it is also from here that we
can propagate events to other controllers and parts of the application.

It is ideal to contain the application logic in a controller and the working data on the scope of the
controller.

The $scope View of the World

When Angular starts to run and generate the view, it will create a binding from the root ng-app
element to the $rootScope. This $rootScope is the eventual parent of all $scope objects.

Scopes 21

The $rootScope object is the closest object we have to the global context in an Angular
app. It’s a bad idea to attach too much logic to this global context, in the same way that
it’s not a good idea to dirty the JavaScript global scope.

This $scope object is a plain old JavaScript object. We can add and change properties on the $scope
object however we see fit.

This $scope object is the data model in Angular. Unlike traditional data models, which are the
gatekeepers of data and are responsible for handling and manipulating the data, the $scope object
is simply a connection between the view and the HTML. It’s the glue between the view and the
controller.

All properties found on the $scope object are automatically accessible to the view.

For instance, let’s say we have the HTML:

<div ng-app="myApp">

<h1>Hello {{ name }}</h1>

</div>

We can expect the {{ name }} variable to be a property of the containing $scope:

angular.module('myApp', [])

.run(function($rootScope) {

$rootScope.name = "World";

});

Simple $rootScope binding

It’s Just HTML

Our app renders our HTML and delivers it to the browser for presentation. This HTML contains all
standard HTML elements, both Angular-specific and non-Angular-specific. The elements that do
not contain Angular-specific declarations are left unmodified.

Scopes 22

<h2>Hello world</h2>

<h3>Hello {{ name }}</h3>

In the previous example, Angular won’t touch the <h2> element, while it will update the <h3> with
any scope modifications.

Through Angular, we can use different types of markup in a template. These types include the
following:

• Directives: the attributes or elements that augment the existing DOM element into a reusable
DOM component

• Value bindings: the template syntax {{ }} binds expressions to the view
• Filters: formatting functions that are available in the view
• Form controls: user input validation controls

What Can Scopes Do?

Scopes have the following basic functions:

• They provide observers to watch for model changes
• They provide the ability to propagate model changes through the application as well as outside
the system to other components

• They can be nested such that they can isolate functionality and model properties
• They provide an execution environment in which expressions are evaluated

The majority of the work we’ll do in developing our Angular app is building out the functionality
of a scope.

Scopes are objects that contain functionality and data to use when rendering the view.
It is the single source of truth for all views. You can think of scopes as view models.

In the previous example, we set a variable name on the $rootScope and reference it in a view, like
so:

angular.module('myApp', [])

.run(function($rootScope) {

$rootScope.name = "World";

});

And our view can now reference this name property to show to the user:

Scopes 23

<div ng-app="myApp">

<h1>Hello {{ name }}</h1>

</div>

Instead of placing variables on the $rootScope, we can explicitly create a child $scope object using
a controller. We can attach a controller object to a DOM element using the ng-controller directive
on a DOM element, like so:

<div ng-app="myApp">

<div ng-controller="MyController">

<h1>Hello {{ name }}</h1>

</div>

</div>

Now, instead of attaching the name variable on the $rootScope, we can create a controller that will
manage our variable:

angular.module("myApp", [])

.controller('MyController',

function($scope) {

$scope.name = "Ari";

});

The ng-controller directive creates a new $scope object for the DOM element and nests it in the
containing $rootScope.

$scope Lifecycle

When the browser receives a JavaScript callback that executes inside of the Angular execution
context (for more information on the Angular execution context, check out the digest loop chapter),
the $scope will be made aware of the model mutation.

If the callback executes outside of the Angular context, we can force the $scope to have
knowledge of the change using the $apply method.

After the scope expression is evaluated and the $digest loop runs, the $scope’s watch expressions
will run dirty checking (see the digest loop for more details on dirty checking).

We’ll dive deep into expressions in the Expressions chapter. The scope’s expression is
whatever we set the scope variable. When we set the scope name above, we’re setting
it to an expression: $scope.name = "Ari", even if it’s just a string.

Scopes 24

Creation

Whenwe create a controller or directive, Angular creates a new scope with the $injector and passes
this new scope for the controller or directive at runtime.

Linking

When the $scope is linked to the view, all directives that create $scopes will register their watches
on the parent scope. These watches watch for and propagate model changes from the view to the
directive.

Updating

During the $digest cycle, which executes on the $rootScope, all of the children scopes will perform
dirty digest checking. All of the watching expressions are checked for any changes, and the scope
calls the listener callback when they are changed.

Destruction

When a $scope is no longer needed, the child scope creator will need to call scope.$destroy() to
clean up the child scope.

Note that when a scope is destroyed, the $destroy event will be broadcasted.

Directives and Scopes

Directives, which are used all throughout our Angular apps, generally do not create their own
$scopes, but there are cases when they do. For instance, the ng-controller and ng-repeat directives
create their own child scopes and attach them to the DOM element.

But before we get too far, let’s take a look at what controllers are and how we can use them in our
applications.

Controllers
Controllers in AngularJS exist to augment the view of an AngularJS application. As we saw in our
Hello world example application, we did not use a controller, but only an implicit controller.

The controller in AngularJS is a function that adds additional functionality to the scope of the view.
We use it to set up an initial state and to add custom behavior to the scope object.

When we create a new controller on a page, Angular passes it a new $scope. This new $scope is
where we can set up the initial state of the scope on our controller. Since Angular takes care of
handling the controller for us, we only need to write the constructor function.

Setting up an initial controller looks like this:

function FirstController($scope) {

$scope.message = "hello";

}

It is considered a best-practice to name our controllers as [Name]Controller, rather than
[Name]Ctrl.

As we can see, Angular will call the controller method when it creates the scope.

The observant reader will notice we created this function in the global scope. Doing so is usually
poor form, as we don’t want to dirty the global namespace. To create it more properly, we’ll create
a module and then create the controller atop our module, like so:

var app = angular.module('app', []);

app.controller('FirstController', function($scope) {

$scope.message = "hello";

});

To create custom actions we can call in our views, we can simply create functions on the scope of
the controller. Luckily for us, AngularJS allows our views to call functions on the $scope, just as if
we were calling data.

To bind buttons or links (or any DOM element, really), we’ll use another built-in directive, ng-click.
The ng-click directive binds the mouseup browser click event to the method handler, which calls
the method specified on the DOM element (i.e., when the browser fires a click event on the DOM
element, the method is called). Similar to our previous example, the binding looks like:

Controllers 26

<div ng-controller="FirstController">

<h4>The simplest adding machine ever</h4>

<button ng-click="add(1)" class="button">Add</button>

<a ng-click="subtract(1)" class="button alert">Subtract

<h4>Current count: {{ counter }}</h4>

</div>

Both the button and the link are bound to an action on the containing $scope, so when they are
pressed (clicked), Angular calls the method. Note that when we tell Angular what method to call,
we’re putting it in a string with the parentheses (add(1)).

Now, let’s create an action on our FirstController.

app.controller('FirstController', function($scope) {

$scope.counter = 0;

$scope.add = function(amount) { $scope.counter += amount; };

$scope.subtract = function(amount) { $scope.counter -= amount; };

});

Setting our FirstController in this manner allows us to call add or subtract functions (as we’ve
seen above) that are defined on the FirstController scope or a containing parent $scope.

Using controllers allows us to contain the logic of a single view in a single container. It’s good
practice to keep slim controllers. One way that we as AngularJS developers can do so is by using the
dependency injection feature of AngularJS to access services.

One major distinction between AngularJS and other JavaScript frameworks is that the controller is
not the appropriate place to do any DOM manipulation or formatting, data manipulation, or state
maintenance beyond holding the model data. It is simply the glue between the view and the $scope
model.

AngularJS also makes it possible to set any types on the $scope, including objects and show the
object’s properties in the view.

For example, we will simply create a person object on the controller MyController that has a single
attribute of name:

app.controller('MyController', function($scope) {

$scope.person = {

name: "Ari Lerner"

};

});

We can access this person object in any child element of the divwhere ng-controller='MyController'
is written because it is on the $scope.

For instance, now we can simply reference person or person.name in our view.

Controllers 27

<div ng-app="myApp">

<div ng-controller="MyController">

<h1>{{ person }}</h1>

and their name:

<h2>{{ person.name }}</h2>

</div>

</div>

Controller object

As we can see, the $scope object is how we pass along information from the model to the view. It is
also how we set up watch events, interact with other parts of the application, and create application-
specific logic.

Angular uses scopes to isolate the functionality of the view, controllers, and directives (we’ll cover
these later in the book), which makes it very easy to write tests for a specific piece of functionality.

Controller Hierarchy (Scopes Within Scopes)

Every part of an AngularJS application has a parent scope (as we’ve seen, at the ng-app level, this
scope is called the $rootScope), regardless of the context within which it is rendered.

There is one exception: A scope created inside of a directive is called the isolate scope.

With the exception of isolate scopes, all scopes are created with prototypal inheritance, meaning
that they have access to their parent scopes. If we are familiar with object-oriented programming,
this behavior should look familiar.

By default, for any property that AngularJS cannot find on a local scope, AngularJS will crawl up
to the containing (parent) scope and look for the property or method there. If AngularJS can’t find
the property there, it will walk to that scope’s parent and so on and so forth until it reaches the

Controllers 28

$rootScope. If it doesn’t find it on the $rootScope, then it moves on and is unable to update the
view.

To see this behavior in action, let’s create a ParentController that contains the user object and a
ChildController that wants to reference that object:

app.controller('ParentController', function($scope) {

$scope.person = {greeted: false};

});

app.controller('ChildController', function($scope) {

$scope.sayHello = function() {

$scope.person.name = "Ari Lerner";

$scope.person.greeted = true;

}

});

If we bind the ChildController under the ParentController in our view, then the parent of
the ChildController’s $scope object will be the ParentController’s $scope object. Due to the
prototypal behavior, we can then reference data on the ParentController’s containing $scope on
the child scope.

For instance, we can reference the person object that is defined on the ParentController inside the
DOM element of the ChildController.

<div ng-controller="ParentController">

<div ng-controller="ChildController">

<a ng-click="sayHello()">Say hello

</div>

{{ person }}

</div>

Nested controllers

www.allitebooks.com

http://www.allitebooks.org

Controllers 29

This nested structure of controllers closely resembles the nested structure of the DOM itself.

As we can see, once we press the button, we can reference the ParentController’s $scope.person
value inside the ChildController just as though person was defined in the ChildController’s
$scope object.

It is a best practice to keep our controllers as slim as possible. It’s bad practice to allow any DOM
interaction or data manipulation inside the controller.

For instance, this example of a thick controller contains a lot of logic for controlling the view, and
it manipulates the DOM:

Thick controller

angular.module('MyController', function($scope) {

$scope.shouldShowLogin = true;

$scope.showLogin = function() {

$scope.shouldShowLogin = !$scope.shouldShowLogin;

}

$scope.clickButton = function() {

$("#btn span").html("Clicked");

}

$scope.onLogin = function(user) {

$http({

method: 'POST',

url: '/login',

data: {

user: user

}

}).success(function(data) {

// user

})

}

})

Abetter designed appwould allow directives and services to handle the dirty logic.We can transform
our controller using directives and services into a much thinner, more manageable one:

Controllers 30

Thin controller

angular.module('MyController', function($scope, UserSrv) {

// The content can be controlled by

// directives

$scope.onLogin = function(user) {

UserSrv.runLogin(user);

}

})

Expressions
Expressions are used all over AngularJS apps, so it’s important we get a solid understanding of what
expressions are and how AngularJS uses and evaluates them.

We’ve seen examples of Angular expressions already. The {{ }} notation for showing a variable
attached to a $scope is actually an expression: {{ expression }}. When setting up a $watch, we
use an expression (or a function) that Angular will evaluate.

Expressions are roughly similar to the result of an eval(javascript). Angular processes them;
therefore, they have these important, distinct properties:

• All expressions are executed in the context of the scope and have access to local $scope
variables.

• An expression doesn’t throw errors if it results in a TypeError or a ReferenceError.
• They do not allow for any control flow functions (conditionals; e.g., if/else).
• They can accept a filter and/or filter chains.

Expressions all operate on the containing scope within which they are called. This fact enables us
to call variables bound to the containing scope inside of an expression, which, in turn, enables us to
loop over variables (we’ll see this looping in action with ng-repeat), call a function, or use variables
for math expressions from the scope.

Parsing an Angular Expression

Although your Angular app will run parse for you automatically when running the $digest loop,
sometimes it’s useful to parse an Angular expression manually.

Angular evaluates expressions by an internal service (called the $parse service) that has knowledge
of the current scope. This setup gives us access to the raw JavaScript data and functions that are
defined on our $scope.

To manually parse an expression, we can inject the $parse service into a controller and call the
service to do the parsing for us. For instance, if we have an input box in our page that’s bound to
the expr variable, like so:

Expressions 32

<div ng-controller="MyController">

<input ng-model="expr"

type="text"

placeholder="Enter an expression" />

<h2>{{ parsedValue }}</h2>

</div>

In MyController, we can then set a $watch and parse the expression expr.

angular.module("myApp", [])

.controller('MyController',

function($scope, $parse) {

$scope.$watch('expr', function(newVal, oldVal, scope) {

if (newVal !== oldVal) {

// Let's set up our parseFun with the expression

var parseFun = $parse(newVal);

// Get the value of the parsed expression

$scope.parsedValue = parseFun(scope);

}

});

});

See it live here¹⁸.

Interpolating a String

Although it’s uncommon to need to manually interpolate a string template in Angular, we do have
the ability to manually run the template compilation. Interpolation allows us to live update a string
of text based upon conditions of a scope, for instance.

To run an interpolation on a string template, we need to inject the $interpolate service in our
object. In this example, we’ll inject it into a controller:

¹⁸http://jsbin.com/UWuLALOf/1/edit?html,js,output

http://jsbin.com/UWuLALOf/1/edit?html,js,output
http://jsbin.com/UWuLALOf/1/edit?html,js,output

Expressions 33

angular.module('myApp', [])

.controller('MyController',

function($scope, $interpolate) {

// We have access to both the $scope

// and the $interpolate services

});

The $interpolate service takes up to three parameters, with only one required function.

• text (string) - The text with markup to interpolate.
• mustHaveExpression (boolean) - If we set parameter to true, then the text will return null if
there is no expression.

• trustedContext (string) - Angular sends the result of the interpolation context through the
$sce.getTrusted() method, which provides strict contextual escaping.

See $sce for more details about the last parameter.

The $interpolate service returns an interpolation function that takes a context object against which
the expressions are evaluated.

With these parameters set up, we can now run an interpolation inside the controller. For instance,
let’s say we want to show live editing of the body of text in an email. We can run an interpolation
when the text changes to show the given output.

<div ng-controller="MyController">

<input ng-model="to"

type="email"

placeholder="Recipient" />

<textarea ng-model="emailBody"></textarea>

<pre>{{ previewText }}</pre>

</div>

In our controller, we set up a $watch to monitor changes on the email body and interpolate the
emailBody into our previewText property.

Expressions 34

angular.module('myApp', [])

.controller('MyController',

function($scope, $interpolate) {

// Set up a watch

$scope.$watch('emailBody', function(body) {

if (body) {

var template = $interpolate(body);

$scope.previewText =

template({to: $scope.to});

}

});

});

See this in action here¹⁹.

Now, inside of our {{ previewText }} body, we can use {{ to }} as a variable in the text and allow
it to be live-updated along with the rest of the text.

If it’s desirable to use different beginning and ending symbols in our text, we can modify
them by configuring the $interpolateProvider.

To modify the beginning string, we can set the starting symbol with the startSymbol() method.

The startSymbol() takes a single argument:

• value (string) - the value to set the starting symbol

To modify the ending symbol, we can use the endSymbol() function. This function takes a single
argument, as well:

• value (string) - the value to set the end symbol

To modify the starting symbol, we can create a new module and inject the $interpolateProvider
into the config() function.

We’ll also create a service, which we will cover in depth in the services chapter.

¹⁹http://jsbin.com/oDeFuCAW/1/edit?html,js,output

http://jsbin.com/oDeFuCAW/1/edit?html,js,output
http://jsbin.com/oDeFuCAW/1/edit?html,js,output

Expressions 35

angular.module('emailParser', [])

.config(['$interpolateProvider',

function($interpolateProvider) {

$interpolateProvider.startSymbol('__');

$interpolateProvider.endSymbol('__');

}])

.factory('EmailParser', ['$interpolate',

function($interpolate) {

// a service to handle parsing

return {

parse: function(text, context) {

var template = $interpolate(text);

return template(context);

}

}

}]);

Now that we have created this module, we can inject it into our app and run the email parser on the
text in our email body:

angular.module('myApp', ['emailParser'])

.controller('MyController',

['$scope', 'EmailParser',

function($scope, EmailParser) {

// Set up a watch

$scope.$watch('emailBody', function(body) {

if (body) {

$scope.previewText =

EmailParser.parse(body, {

to: $scope.to

});

}

});

}]);

Now, instead of requiring the text to use the default syntax with the {{ }} symbols, we can define
our symbols to use __ instead.

As we’re setting the symbols to __ on either side, we’ll need to change the HTML to use this syntax
instead of {{ }}:

Expressions 36

<div id="emailEditor">

<input ng-model="to"

type="email"

placeholder="Recipient" />

<textarea ng-model="emailBody"></textarea>

</div>

<div id="emailPreview">

<pre>__ previewText __</pre>

</div>

Interpolation

See it in action here²⁰.

²⁰http://jsbin.com/ivuJEXI/1/edit

http://jsbin.com/ivuJEXI/1/edit
http://jsbin.com/ivuJEXI/1/edit

Filters
In AngularJS, a filter provides a way to format the data we display to the user. Angular gives us
several built-in filters as well as an easy way to create our own.

We invoke filters in our HTML with the | (pipe) character inside the template binding characters {{
}}. For instance, let’s say we want to capitalize our string. We can either change all the characters
in a string to be capitalized, or we can use a filter.

{{ name | uppercase }}

We can also use filters from within JavaScript by using the $filter service. For instance, to use the
lowercase JavaScript filter:

app.controller('DemoController', ['$scope', '$filter',

function($scope, $filter) {

$scope.name = $filter('lowercase')('Ari');

}]);

To pass an argument to a filter in the HTML form, we pass it with a colon after the filter name (for
multiple arguments, we can simply append a colon after each argument). For example, the number
filter allows us to limit the number of decimal places a number can show. To pass the argument 2,
we’ll append :2 to the number filter:

<!-- Displays: 123.46 -->

{{ 123.456789 | number:2 }}

We can use multiple filters at the same time by using two or more pipes. We’ll see such an example
in a minute when we build a custom filter. Before we get to that, however, let’s look at the built-in
filters that come out of the box with AngularJS.

currency

The currency filter formats a number as currency. In other words, 123 as currency looks like: {{ 123
| currency }}.

Currency gives us the option of displaying a currency symbol or identifier. The default currency
option is that of the current locale; however, we can pass in a currency to display.

Filters 38

date

The date filter allows us to format a date based upon a requested format style. The date formatter
provides us several built-in options. If no date format is passed, then it defaults to showing
mediumDate (as you can see below).

Here are the built-in localizable formats:

{{ today | date:'medium' }} <!-- Aug 09, 2013 12:09:02 PM -->

{{ today | date:'short' }} <!-- 8/9/13 12:09 PM -->

{{ today | date:'fullDate' }} <!-- Thursday, August 09, 2013 -->

{{ today | date:'longDate' }} <!-- August 09, 2013 -->

{{ today | date:'mediumDate' }} <!-- Aug 09, 2013 -->

{{ today | date:'shortDate' }} <!-- 8/9/13 -->

{{ today | date:'mediumTime' }} <!-- 12:09:02 PM -->

{{ today | date:'shortTime' }} <!-- 12:09 PM -->

The date formatter also enables us to customize your date format to our own liking. We can combine
and chain together these format options to create one single date format, as well:

Year Formatting

Four-digit year: {{ today | date:'yyyy' }} <!-- 2013 -->

Two-digit padded year: {{ today | date:'yy' }} <!-- 13 -->

One-digit year: {{ today | date:'y' }} <!-- 2013 -->

Month Formatting

Month in year: {{ today | date:'MMMM' }} <!-- August -->

Short month in year: {{ today | date:'MMM' }} <!-- Aug -->

Padded month in year: {{ today | date:'MM' }} <!-- 08 -->

Month in year: {{ today | date:'M' }} <!-- 8 -->

Day Formatting

Padded day in month: {{ today | date:'dd' }} <!-- 09 -->

Day in month: {{ today | date:'d' }} <!-- 9 -->

Day in week: {{ today | date:'EEEE' }} <!-- Thursday -->

Short day in week: {{ today | date:'EEE' }} <!-- Thu -->

Hour Formatting

www.allitebooks.com

http://www.allitebooks.org

Filters 39

Padded hour in day: {{ today | date:'HH' }} <!-- 00 -->

Hour in day: {{ today | date:'H' }} <!-- 0 -->

Padded hour in am/pm: {{ today | date:'hh' }} <!-- 12 -->

Hour in am/pm: {{ today | date:'h' }} <!-- 12 -->

Minute Formatting

Padded minute in hour: {{ today | date:'mm' }} <!-- 09 -->

Minute in hour: {{ today | date:'m' }} <!-- 9 -->

Second Formatting

Padded second in minute: {{ today | date:'ss' }} <!-- 02 -->

Second in minute: {{ today | date:'s' }} <!-- 2 -->

Padded millisecond in second: {{ today | date:'.sss' }} <!-- .995 -->

String Formatting

am/pm character: {{ today | date:'a' }} <!-- AM -->

4-digit representation of time zone offset: {{ today | date:'Z' }} <!-- -0700 -->

Some examples of custom date formatting:

{{ today | date:'MMM d, y' }} <!-- Aug 09, 2013 -->

{{ today | date:'EEEE, d, M' }} <!-- Thursday, 9, 8 -->

{{ today | date:'hh:mm:ss.sss' }} <!-- 12:09:02.995 -->

filter

The filter filter selects a subset of items from an array of items and returns a new array. This
filter is generally used as a way to filter out items for display. For instance, when using client-side
searching, we can filter out items from an array immediately.

The filter method takes a string, object, or function that it will run to select or reject array elements.

If the first parameter passed in is a:

string

It will accept all elements that match against the string. If we want all the elements that do not
match the string, we can prepend a ! to the string.

Filters 40

object

It will compare objects that have a property name that matches, as with the simple substring match
if only a string is passed in. If we want to match against all properties, we can use the $ as the key.

function

It will run the function over each element of the array, and the results that return as non-falsy will
appear in the new array.

For instance, selecting all of the words that have the letter e in them, we could run our filter like so:

{{ ['Ari', 'Lerner', 'Likes', 'To', 'Eat', 'Pizza'] | filter:'e' }}

<!-- ["Lerner","Likes","Eat"] -->

If we want to filter on objects, we can use the the object filter notation as we discussed above. For
instance, if we have an array of people objects with a list of their favorite foods, we could filter them
like so:

{{ [{

'name': 'Ari',

'City': 'San Francisco',

'favorite food': 'Pizza'

}, {

'name': 'Nate',

'City': 'San Francisco',

'favorite food': 'indian food'

}] | filter:{'favorite food': 'Pizza'} }}

<!-- [{"name":"Ari","City":"San Francisco","favorite food":"Pizza"}] -->

We can also filter based on a function that we define (in this example, on the containing $scope

object):

{{ ['Ari', 'likes', 'to', 'travel'] | filter:isCapitalized }}

<!-- ["Ari"] -->

The isCapitalized function, which returns true if the first character is a capital letter and false if
it is not, is defined as:

Filters 41

$scope.isCapitalized =

function(str) { return str[0] == str[0].toUpperCase(); }

We can also pass a second parameter into the filter method that will be used to determine if the
expected value and the actual value should be considered a match.

If the second parameter passed in is:

true

It runs a strict comparison of the two using angular.equals(expected, actual).

false

It looks for a case-insensitive substring match.

function

It runs the function and accepts an element if the result of the function is truthy.

json

The json filter will take a JSON, or JavaScript object, and turn it into a string. This transformation
is very useful for debugging purposes:

{{ {'name': 'Ari', 'City': 'San Francisco'} | json }}

<!--

{

"name": "Ari",

"City": "San Francisco"

}

-->

limitTo

The limitTo filter creates a new array or string that contains only the specified number of elements,
either taken from the beginning or end, depending on whether the value is positive or negative.

If the limit exceeds the value of the string, then the entire array or stringwill be returned.

For instance, we can take the first three letters of a string:

Filters 42

{{ San Francisco is very cloudy | limitTo:3 }}

<!-- San -->

Or we can take the last 6 characters of a string:

{{ San Francisco is very cloudy | limitTo:-6 }}

<!-- cloudy -->

We can do the same with an array. Here we’ll return only the first element of the array:

{{ ['a', 'b', 'c', 'd', 'e', 'f'] | limitTo:1 }}

<!-- ["a"] -->

lowercase

The lowercase filter simply lowercases the entire string.

{{ "San Francisco is very cloudy" | lowercase }}

<!-- san francisco is very cloudy -->

number

The number filter formats a number as text. It can take a second parameter (optional) that will format
the number to the specified number of decimal places (rounded).

If a non-numeric character is given, it will return an empty string.

{{ 123456789 | number }}

<!-- 1,234,567,890 -->

{{ 1.234567 | number:2 }}

<!-- 1.23 -->

orderBy

The orderBy filter orders the specific array using an expression.

The orderBy function can take two parameters: The first one is required, while the second is optional.

The first parameter is the predicate used to determine the order of the sorted array.

If the first parameter passed in is a(n):

Filters 43

function

It will use the function as the getter function for the object.

string

It will parse the string and use the result as the key by which to order the elements of the array. We
can pass either a + or a - to force the sort in ascending or descending order.

array

It will use the elements as predicates in the sort expression. It will use the first predicate for every
element that is not strictly equal to the expression result.

The second parameter controls the sort order of the array (either reversed or not).

For instance, let’s sort an array of objects by their name. Say we have an array of people, we can
order the array of objects with the name value:

{{ [{

'name': 'Ari',

'status': 'awake'

}, {

'name': 'Q',

'status': 'sleeping'

}, {

'name': 'Nate',

'status': 'awake'

}] | orderBy: 'name' }}

<!--

[

{"name":"Ari","status":"awake"},

{"name":"Nate","status":"awake"},

{"name":"Q","status":"sleeping"}

]

-->

We can also reverse-sort the object. For instance, reverse-sorting the previous object, we simply add
the second parameter as true:

Filters 44

{{ [{

'name': 'Ari',

'status': 'awake'

}, {

'name': 'Q',

'status': 'sleeping'

}, {

'name': 'Nate',

'status': 'awake'

}] | orderBy:'name':true }}

<!--

[

{"name":"Q","status":"sleeping"},

{"name":"Nate","status":"awake"},

{"name":"Ari","status":"awake"}

]

-->

uppercase

The uppercase filter simply uppercases the entire string:

{{ "San Francisco is very cloudy" | uppercase }}

<!-- SAN FRANCISCO IS VERY CLOUDY -->

Making Our Own Filter

As we saw above, it’s really easy to create our own custom filter. To create a filter, we put it under
its own module. Let’s create one together: a filter that capitalizes the first character of a string.

First, we need to create it in a module that we’ll require in our app (this step is good practice):

angular.module('myApp.filters', [])

.filter('capitalize', function() {

return function(input) {}

});

Filters are just functions to which we pass input. In the function above, we simply take the input as
the string on which we are calling the filter. We can do some error checking inside the function:

Filters 45

angular.module('myApp.filters', [])

.filter('capitalize', function() {

return function(input) {

// input will be the string we pass in

if (input)

return input[0].toUpperCase() +

input.slice(1);

}

});

Now, if we want to capitalize the first letter of a sentence, we can first lowercase the entire string
and then capitalize the first letter with our filter:

<!-- Ginger loves dog treats -->

{{ 'ginger loves dog treats' | lowercase | capitalize }}

Form Validation

When taking input from our users, it’s important to show visual feedback on their input. In the
context of human relationships, form validation is just as much about giving feedback as well as
getting the “right” input.

Not only does it provide positive feedback for our user, it will also semi-protect our web app from
bad or invalid input. We can only protect our back end as much as is possible with our web front
end.

Out of the box, AngularJS supports form validation with a mix of the HTML5 form validation inputs
as well as with its own validation directives.

There are many form validation directives available in AngularJS. We’ll talk about a few of the core
validations, then we’ll get into how to build your own validations.

<form name="form" novalidate>

<label name="email">Your email</label>

<input type="email" name="email" ng-model="email" placeholder="Email Address" />

</form>

AngularJS makes it pretty easy for us to handle client-side form validations without adding a lot of
extra effort. Although we can’t depend on client-side validations to keep our web application secure,
they do provide instant feedback of the state of the form.

To use form validations, we first must ensure that the form has a name associated with it, like in the
above example.

Filters 46

All input fields can validate against some basic validations, like minimum length, maximum length,
etc. These are all available on the new HTML5 attributes of a form.

It is usually a great idea to use the novalidate flag on the form element, as it prevents the browser
from natively validating the form.

Let’s look at all the validation options we have that we can place on an input field:

Required

To validate that a form input has been filled out, we simply add the HTML5 tag, required, to the
input field:

<input type="text" required />

Minimum Length

To validate that a form input input is at least a certain {number} of characters, we add the AngularJS
directive ng-minlength="{number}" to the input field:

<input type="text" ng-minlength=5 />

Maximum Length

To validate that a form input is equal to or less than a number of characters, we can add theAngularJS
directive ng-maxlength="{number}":

<input type="text" ng-maxlength=20 />

Matches a Pattern

To ensure that an input matches a regex, we can use ng-pattern="/PATTERN/":

<input type="text" ng-pattern="/a-zA-Z/" />

Email

To validate an email address in an input field, we simply set the input type to email, like so:

Filters 47

<input type="email" name="email" ng-model="user.email" />

Number

To validate an input field has a number, we set the input type to number:

<input type="number" name="age" ng-model="user.age" />

URL

To validate that an input represents a URL, set the input type to url:

<input type="url" name="homepage" ng-model="user.facebook_url" />

Custom Validations

AngularJS makes it very easy to add our own validations, as well, by using directives. For instance,
let’s say that we want to validate that our username is available in the database. To do so, we’ll
implement a directive that fires an Ajax request whenever the form changes.

angular.module('validationExample', [])

.directive('ensureUnique', function($http) {

return {

require: 'ngModel',

link: function(scope, ele, attrs, c) {

scope.$watch(attrs.ngModel, function() {

$http({

method: 'POST',

url: '/api/check/' + attrs.ensureUnique,

data: {'field': attrs.ensureUnique}

}).success(function(data,status,headers,cfg) {

c.$setValidity('unique', data.isUnique);

}).error(function(data,status,headers,cfg) {

c.$setValidity('unique', false);

});

});

}

}

});

Filters 48

Control Variables in Forms

AngularJS makes properties available on the containing $scope object available to us as a result of
setting a form inside the DOM. These properties enable us to react to the form in real time (just like
everything else in AngularJS). The properties that are available to us are:

(Note that these properties are made available to us in the format:)

formName.inputFieldName.property

Unmodified Form

This property is a boolean that tells us whether the user has modified the form. It is true if the user
hasn’t touched the form, and false if they have:

formName.inputFieldName.$pristine;

Modified Form

This property is a boolean that tells us if and only if the user has actually modified the form. It is
set regardless of validations on the form:

formName.inputFieldName.$dirty

Valid Form

This property is a boolean that tells us whether or not the form is valid. If the form is currently valid,
then the following will be true:

formName.inputFieldName.$valid

Invalid Form

This property is a boolean that tells us whether or not the form is invalid. If the form is currently
invalid, then the following will be true:

formName.inputFieldName.$invalid

The last two properties are particularly useful for showing or hiding DOM elements. They are also
very useful when setting a class on a particular form.

Errors

This property is another useful one that AngularJS makes available to us: the $error object. This
object contains all of the validations on a particular form and a record of whether they are valid or
invalid. To get access to this property, use the following syntax:

www.allitebooks.com

http://www.allitebooks.org

Filters 49

formName.inputfieldName.$error

If a validation fails, then this property will be true; if it is false, then the value has passed the input
field.

A Little Style Never Hurts

When AngularJS is handling a form, it adds specific classes to the form based upon the current state
of the form (i.e. if it’s currently valid, unchanged, etc.). These classes are named similarly to the
properties that we can check, as well.

These classes are:

.ng-pristine {}

.ng-dirty {}

.ng-valid {}

.ng-invalid {}

They correspond to their counterpart on the particular input field.

When a field is invalid, the .ng-invalid class will be applied to the field. This particular site sets
the CSS class as:

input.ng-invalid {

border: 1px solid red;

}

input.ng-valid {

border: 1px solid green;

}

$parsers

When our user interacts with the controller and the $setViewValue() method has been called on
the ngModelController, the array of $parsers functions are called as a pipeline. The first $parser
is called and passes its value to the next, and so on and so forth.

These functions have the opportunity to convert the value and change the validity state of the control
by using the $setValidity() functions.

Using the $parsers array is one way we can create a custom validation. For instance, let’s say we
want to confirm a value is between two numbers. We’ll push a new function on the $parsers array
that is called in the validation chain.

The value that we return from this $parser function is the value that will be passed down the chain
to the next parser. We return undefined if we don’t want the model to update.

Filters 50

angular.module('myApp')

.directive('oneToTen', function() {

return {

require: '?ngModel',

link: function(scope, ele, attrs, ngModel) {

if (!ngModel) return;

ngModel.$parsers.unshift(

function(viewValue) {

var i = parseInt(viewValue);

if (i >= 0 && i < 10) {

ngModel.$setValidity('oneToTen', true);

return viewValue;

} else {

ngModel.$setValidity('oneToTen', false);

return undefined;

}

});

}

};

});

$formatters

When the bound ngModel value has changed and has been run through the $parsers array, then
the value will be passed through to the $formatters pipeline. These functions have the opportunity
to modify and format the value, as well as change the validity state of the control similar to the
$parsers array.

We use these functions primarily to handle visual changes in the view, rather than purely for
validation purposes. For instance, let’s say we want to call a formatter on a value. Using the
$formatters array, we can set a filter to run on the value:

angular.module('myApp')

.directive('oneToTen', function() {

return {

require: '?ngModel',

link: function(scope, ele, attrs, ngModel) {

if (!ngModel) return;

ngModel.$formatters.unshift(function(v) {

return $filter('number')(v);

});

Filters 51

}

};

});

Putting It All Together

Let’s build a signup form. This signup form will include person’s name, his or her email, and a
desired username.

Let’s start by looking at what the form will look like when it’s done:

Signup form

Play with it²¹

Let’s start by defining the form:

<form name="signup_form" novalidate ng-submit="signupForm()">

<fieldset>

<legend>Signup</legend>

<button type="submit" class="button radius">Submit</button>

</fieldset>

</form>

This form’s name is signup_form, andwe are going to call signupForm()when the form is submitted.

Now, let’s add the name of the user:

²¹http://jsbin.com/ePomUnI/5/edit

http://jsbin.com/ePomUnI/5/edit
http://jsbin.com/ePomUnI/5/edit

Filters 52

<div class="row">

<div class="large-12 columns">

<label>Your name</label>

<input type="text"

placeholder="Name"

name="name"

ng-model="signup.name"

ng-minlength=3

ng-maxlength=20 required />

</div>

</div>

We’ll discuss styling in a future chapter, but we’ll include styles in this chapter as an introduction.
We’re using the Foundation²² framework in this chapter for CSS layouts.

We’ve added a form that has an input field called name that is bound (by ng-model) to the object
signup.name on the $scope object.

Don’t forget to add a name to the input field. Adding a name to the input is important:
That is how we’ll reference the form input when showing validation messages to the user.

We’ve also set up a few validations. These validations say we have to have a minlength of three or
more characters in our name. We also impose a maximum limit of 20 characters (meaning the input
will be invalid at 21 characters and higher). Lastly, we’ve required that the name be filled out for
the form to be valid.

Let’s use the properties to show and/or hide a list of errors if the form is invalid. We’ll use the $dirty
attribute to make sure the errors don’t show up if the user hasn’t touched the field:

<div class="row">

<div class="large-12 columns">

<label>Your name</label>

<input type="text"

placeholder="Name"

name="name"

ng-model="signup.name"

ng-minlength=3

ng-maxlength=20 required />

<div class="error"

ng-show="signup_form.name.$dirty && signup_form.name.$invalid">

<small class="error"

²²http://foundation.zurb.com

http://foundation.zurb.com
http://foundation.zurb.com

Filters 53

ng-show="signup_form.name.$error.required">

Your name is required.

</small>

<small class="error"

ng-show="signup_form.name.$error.minlength">

Your name is required to be at least 3 characters

</small>

<small class="error"

ng-show="signup_form.name.$error.maxlength">

Your name cannot be longer than 20 characters

</small>

</div>

</div>

</div>

Breaking this down, we’re only going to show our errors if the form is invalid and changed, just as
before. This time, we’ll look through each of the valiations and only show a particular DOM element
if the particular validation property is invalid.

Let’s look at the next set of validations, the email validation:

<div class="row">

<div class="large-12 columns">

<label>Your email</label>

<input type="email"

placeholder="Email"

name="email"

ng-model="signup.email"

ng-minlength=3 ng-maxlength=20 required />

<div class="error"

ng-show="signup_form.email.$dirty && signup_form.email.$invalid">

<small class="error"

ng-show="signup_form.email.$error.required">

Your email is required.

</small>

<small class="error"

ng-show="signup_form.email.$error.minlength">

Your email is required to be at least 3 characters

</small>

<small class="error"

ng-show="signup_form.email.$error.email">

That is not a valid email. Please input a valid email.

</small>

Filters 54

<small class="error"

ng-show="signup_form.email.$error.maxlength">

Your email cannot be longer than 20 characters

</small>

</div>

</div>

</div>

This time (with the entire form included), we’re looking at the email field. Note that we set the type
of the input field to email and added a validation error on $error.email. This validation is based
off the AngularJS email validation (and the HTML5 attribute).

Finally, let’s look at our last input field, the username:

<div class="large-12 columns">

<label>Username</label>

<input type="text"

placeholder="Desired username"

name="username"

ng-model="signup.username"

ng-minlength=3

ng-maxlength=20

ensure-unique="username" required />

<div class="error"

ng-show="signup_form.username.$dirty && signup_form.username.$invalid">

<small class="error"

ng-show="signup_form.username.$error.required">

Please input a username

</small>

<small class="error"

ng-show="signup_form.username.$error.minlength">

Your username is required to be at least 3 characters

</small>

<small class="error"

ng-show="signup_form.username.$error.maxlength">

Your username cannot be longer than 20 characters

</small>

<small class="error"

ng-show="signup_form.username.$error.unique">

That username is taken, please try another

</small>

</div>

</div>

Filters 55

In our last field, we’re using all the same validations as previously except that we’ve added a custom
validation. This custom validation is defined using an AngularJS directive:

app.directive('ensureUnique', function($http) {

return {

require: 'ngModel',

link: function(scope, ele, attrs, c) {

scope.$watch(attrs.ngModel, function(n) {

if (!n) return;

$http({

method: 'POST',

url: '/api/check/'+attrs.ensureUnique,

data: {'field': attrs.ensureUnique}

}).success(function(data) {

c.$setValidity('unique', data.isUnique);

}).error(function(data) {

c.$setValidity('unique', false);

});

});

}

}

});

When the form input is valid, this will make a POST request check to the server at /api/check/username
to check if the username is available. Now, obviously since we’re only talking about front-end code
here, we don’t have a back end to test this on, although it could easily be written.

Lastly, putting our button together, we can use the Angular directive ng-disabled to disable and
re-enable the button depending on the validity of the form:

<button type="submit"

ng-disabled="signup_form.$invalid"

class="button radius">Submit</button>

Play with the example so far²³

As we said above, the form itself will have $invalid and valid attributes given to us for free.

Although live validation is great, it can be abrasive to the user when they see errors pop up while
they are typing, long before they have put in a valid value. You can be nicer to your users if you
show the validations either only after they have submitted the form or after they have moved off of
the input. Let’s look at both ways to do that.

²³http://jsbin.com/ePomUnI/5/edit

http://jsbin.com/ePomUnI/5/edit
http://jsbin.com/ePomUnI/5/edit

Filters 56

Show Validations after Submit

To show validations only after the user has attempted to submit the form, you can capture a
‘submitted’ value on the scope and check for that scope to show the error.

For instance, let’s take a look at the first example and only show the errors when our user has
submitted the form. On the ng-show directive on the form input, we can add a check to see if the
form has been submitted (which we will implement shortly):

<form name="signup_form" novalidate

ng-submit="signupForm()"

ng-controller="signupController">

<fieldset>

<legend>Signup</legend>

<div class="row">

<div class="large-12 columns">

<label>Your name</label>

<input type="text"

placeholder="Name"

name="name"

ng-model="signup.name"

ng-minlength=3

ng-maxlength=20 required />

<div class="error"

ng-show="signup_form.name.$dirty && signup_form.name.$invalid &&

signup_form.submitted">

<small class="error"

ng-show="signup_form.name.$error.required">

Your name is required.

</small>

<small class="error"

ng-show="signup_form.name.$error.minlength">

Your name is required to be at

least 3 characters

</small>

<small class="error"

ng-show="signup_form.name.$error.maxlength">

Your name cannot be longer than

20 characters

</small>

</div>

</div>

</div>

Filters 57

<button type="submit" >Submit</button>

</fieldset>

</form>

Now, the error div will only show up if the signup_form.submitted variable has been set to true.
We can implement this behavior in the signupForm action, like so:

app.controller('signupController',

function($scope) {

$scope.submitted = false; $scope.signupForm = function() { if ($scope.signup_form.$valid) { // Submit
as normal } else { $scope.signup_form.submitted = true; } }

});

If our users try to submit the form while there is an invalid element, we can now catch it and show
them the appropriate errors.

Try it out²⁴

Show Validations Only after Blur

If we want to retain the real-time nature of the error input, we can show our users the errors after
they have blurred off of the input form (i.e., when they are no longer in a given field). To do so, we
like to add a small directive that will attach a new variable to the form.

The directive we like to use is the ngFocus directive, and it looks like:

app.directive('ngFocus', [function() {

var FOCUS_CLASS = "ng-focused";

return {

restrict: 'A',

require: 'ngModel',

link: function(scope, element, attrs, ctrl) {

ctrl.$focused = false;

element.bind('focus', function(evt) {

element.addClass(FOCUS_CLASS);

scope.$apply(function() {

ctrl.$focused = true;

});

}).bind('blur', function(evt) {

²⁴http://jsbin.com/ePomUnI/6/edit

http://jsbin.com/ePomUnI/6/edit
http://jsbin.com/ePomUnI/6/edit

Filters 58

element.removeClass(FOCUS_CLASS);

scope.$apply(function() {

ctrl.$focused = false;

});

});

}

}

}]);

To implement the ngFocus directive, we can simply attach this directive to the input element, like
so:

<input ng-class="{

error: signup_form.name.$dirty &&

signup_form.name.$invalid}"

type="text"

placeholder="Name"

name="name"

ng-model="signup.name"

ng-minlength=3

ng-maxlength=20 required ng-focus />

The ngFocus directive simply attaches an action to the blur and focus events on the form input,
adds a class (ng-focused), and sets the form input field, $focused, as true. Then we can show our
individual error messages depending on whether or not the form is focused. For instance:

<div class="error"

ng-show="signup_form.name.$dirty &&

signup_form.name.$invalid &&

!signup_form.name.$focused">

Play with the full example²⁵

It’s possible to check to see if the input field is empty, as well, by using the $isEmpty() method on
the ngModel controller. The method will return true if the input is empty and false if it’s not.

²⁵http://jsbin.com/ePomUnI/7/edit

www.allitebooks.com

http://jsbin.com/ePomUnI/7/edit
http://jsbin.com/ePomUnI/7/edit
http://www.allitebooks.org

Introduction to Directives
As web developers, we’re all familiar with HTML. Let’s take a moment to review and synchronize
our terminology around this most fundamental of web technologies.

HTML Document

An HTML document is a plain text document that contains structure and may be styled through
CSS or manipulated with JavaScript.

HTML Node

An HTML node is an element or chunk of text nested inside another element. All elements are also
nodes; however, a text node is not an element.

HTML Element

An element comprises an opening tag and a closing tag.

HTML Tag

AnHTML tag is responsible for marking the beginning and end of an element. A tag itself is declared
using angle brackets.

An opening tag contains a name that becomes the name of the element. It can also contain attributes,
which decorate the element.

Attributes

To provide additional information about an element, HTML elements can contain attributes. These
attributes are always set in the opening tag. We can set them in a key-value pair, like key="value",
or as only a key.

Let’s take a look at the <a> hyperlink tag, which is used to create a link from one page to another:

Some tags, like the hyperlink tag, have special attributes that act much like arguments to the tag.
For example, the href attribute of a link tag enables the behavior of the link tag and also turns the
text node in between the opening and closing tags blue by default on all browsers.

Introduction to Directives 60

Click me to go to Google

The <a> tag defines a link between another page on our site or off our site, depending on the contents
of the href attribute, which defines the link’s destination.

It is noticeably different from the following HTML element, the button:

<button href="http://google.com"

type="submit">Click me</button>

The link tag is, by default, underlined and blue, while the button, by default, looks like a clickable
button in our browser.

The link tag knows that, when provided an href attribute that points to http://google.com, it
should change the URL in the address bar and load Google’s home page when a user clicks on the
link.

The button tag, on the other hand, is completely oblivious when provided an href attribute and does
not perform the same behavior (the attribute is ignored).

Thus, changing the URL in the address bar and bringing you to a new page is part of a link’s pre-
programmed behavior, but not part of a button’s pre-programmed behavior.

Finally, both tags perform the same behavior when provided a title attribute: They provide a tooltip
to the user upon hover.

<a href="http://google.com"

title="click me">

Click me to go to Google

<button type="submit"

title="click me">Click me</button>

In summary, the web browser renders our HTML elements’ style and behavior; this capability is one
of the fundamental strengths of the web.

Each vendor, whether it be Google or Microsoft, tries to adhere to the same HTML spec, therefore
making programming for the web consistent across devices and operating systems.

Past versions of Internet Explorer have not complied with the common HTML spec, so
we need to perform some tricks to get older versions of IE to work. See the Internet
Explorer chapter for more details.

Recently, new HTML tags have begun to emerge. These are a part of the HTML5 spec. For example,
the video tag, which specifies a video, movie clip, or streaming video:

Introduction to Directives 61

<video href="/goofy-video.mp4"></video>

These new HTML5 tags work on on newer browsers and are generally not supported by Internet
Explorer version 8 and lower.

Directives: Custom HTML Elements and Attributes

Givenwhat we know about HTML elements, directives are Angular’s method of creating newHTML
elements that have their own custom functionality. For instance, we can create our own custom
element that implements the video tag and works across all browsers:

<my-better-video my-href="/goofy-video.mp4">

Can even take text</my-better-video>

Notice that our custom element has custom open and closing tags, my-better-video, and a custom
attribute, my-href.

To make our tag more usable, we could just override the browser-provided video tag, which means
we could instead use:

<video my-href="/goofy-video.mp">

Can still take children nodes

</video>

As we can see, directives can be combined with other directives and attributes; this combination is
called composition.

To effectively understand how to compose a system from smaller parts, we must first understand the
primitive pieces. Facilitating that understanding will be the underlying goal of the next few chapters.
Let’s get started.

Bootstrapped HTML

When the browser loads our HTML page along with Angular, we only need one snippet of code to
boot our Angular application (we learned about it in the introductory chapter).

In our HTML we need to mark up the root of our app using the built in directive ng-app. This
directive is meant to be used as an attribute; thus, we could stick it anywhere, but let’s choose the
opening <html> tag, which is normative:

A built-in directive is one that ships out of the box with Angular. All built-in directives are
prefixed with the ng namespace. In order to avoid namespace collisions, do not prefix the
name of your own directives with ng.

Introduction to Directives 62

<html ng-app="myApp">

<!-- $rootScope of our application -->

</html>

Inside of our <html> element, we can now use any of the built-in or custom directives we want.
Furthermore, all of the directives we use within this root element will have access to $rootScope

as a result of the prototypical inheritance in our JavaScript code if the method of the directive has
access to scope. Access to scope, in this case, means that scope has been linked to the DOM, which
is done late in the directive lifecycle.

Because the life cycle of a directive is sufficiently complex, it warrants its own section. In that section,
we’ll also discuss which methods within a directive have access to scope and how scope is shared
between one directive and the next. See the directives explained chapter for more information.

Our First Directive

The quickest way to get our feet wet is to just dive right in. Let’s go ahead and create a very basic
custom directive. Consider the following HTML element, which we’ll define in a moment:

<my-directive></my-directive>

Provided we’ve created an HTML document and included Angular as well as the ng-app directive
in the DOM to mark the root of our app, when Angular compiles our HTML, it will invoke this
directive.

We’ll learnmore about the compile stage of the directive lifecycle in understanding compile.

Invoking a directive means to run the associated JavaScript that sits behind our directive, which we
define using a directive definition.

The myDirective directive definition looks like:

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'E',

template: '

Click me to go to Google'

}

});

Introduction to Directives 63

The above JavaScript is called a directive definition. We’ll see all the options for defining a
directive in directive definition.

Simple directive in action

With the .directive() method, provided by the Angular module API, we can register new
directives by providing a name as a string and function. The name of the directive should always be
pascalCased, and the function we provide should return an object.

Camel casing words is the practice of writing compound words or phrases without spaces
such that each word, usually with the exception of the first word, begins with a capital
letter, and the phrase becomes a single word. For instance: bumpy roads in camel case
notation would be bumpyRoads.

In our case, we declare the directive in HTML using my-directive, the directive definition
must be myDirective.

The object that we return from the .directive() method comprises methods and properties that
we use to define and configure our directive.

In an attempt to master the simplest directive possible, we’ve only defined our directive with two
options: restrict and template.

In directives explained, we’ll cover all of the available methods and properties we can use when
defining our own directives, but for the moment, let’s check out the input HTML as compared to
the output HTML by using Google Chrome and its developer tools.

First, open up your HTML document using Chrome. You’ll see a blue link that says “Click here”.
Take a look at the source code by going to View > Developer > View Source. You should see the
following picture:

Introduction to Directives 64

Chrome Developer tool

Notice it’s no different from the source code you entered into your text editor; however, notice also
that there is no link tag output to the screen yet. Clearly there’s supposed to be a link that says “Click
here”. What’s going on?

To investigate, right click on the link, and in the drop-down menu provided by Chrome, left click
on Inspect Element:

Inspecting element

Doing so will open up the Chrome developer tools and provide you with the generated source, which
Angular provides to Chrome after the page is loaded and after Angular has invoked our directive’s
definition. Let’s take a look:

Introduction to Directives 65

Unwrapping the directive

By default, Angular nests the HTML provided by our template string inside of our custom HTML
tag, <my-directive>, in the generated source code.

Let’s add one more option to our directive definition: We can remove our custom element
(<my-directive>) from the generated DOM completely and output only the link we’re providing to
the template option. To do so, set the replace option to true:

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'E',

replace: true,

template: 'Click me to go to Google'

}

})

Look at the generated source again. We can see that we no longer have the original call to the
directive, but only the source that we set as the template. This replace method replaces the custom
element instead of wrapping it in our directive call.

Introduction to Directives 66

Replacing existing element

From now on, we’ll refer to these custom elements we’ve created (using the .directive() method)
as directives, because, in fact, we do not need to make a new custom element to declare our directive.

Declaring a directive is the act of placing a function within our HTML as an element,
attribute, class, or comment.

The following are valid formats for declaring the directive we built above:

<my-directive></my-directive>

<div my-directive></div>

<div class="my-directive"></div>

<!-- directive: my-directive -->

In order to allow for Angular to invoke our directive, we’ll need to change the restrict option
inside our directive definition. This option tells Angular which declaration format(s) to look for
when compiling our HTML. We can specify one or many formats.

For example, in the directive we’re building, we can specify that we want our directive to be invoked
if it is an element (E), an attribute (A), a class (C), or a comment (M):

Introduction to Directives 67

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'EAC',

replace: true,

template: '

Click me to go to Google'

};

});

Regardless of how many ways we can declare a directive, we’ll stick to using an attribute (the way
that is compliant across the most browsers):

<div my-directive></div>

And to be more explicit about our intentions with this directive, we’ll set the restrict option to the
letter A (for attribute):

restrict: 'A'

When following this convention, however, we need to be aware of each browser’s built-in styles
and make a decision about whether to wrap or replace our directive’s template.

A Note on Internet Explorer

If you’ve got a copy of Internet Explorer handy, try opening this live example on jsbin²⁶. You’ll notice
that despite declaring your directive twice, only one link is showing up.

Technically, we can fix that by declaring new tags in the head of our document (see Angular with
IE), but doing so can cause us headaches in the future if we neglect to be consistent.

Thus, a good rule of thumb to follow is to always declare our directive as an attribute (as we’ve
done). It’ll save us some hassle later.

A noteworthy exception is when extending built-in HTML tags. For example, Angular overrides
<a>, <form>, and <input>. Such cases don’t cause browser compatibility issues because these tags
already have browser support.

Expressions

Given that a directive can (and usually should) be invoked as an attribute, we’re inclined to ask
about the value passed to that attribute:

²⁶http://jsbin.com/IJAzUJE/1/edit

http://jsbin.com/IJAzUJE/1/edit
http://jsbin.com/IJAzUJE/1/edit

Introduction to Directives 68

<h1 ng-init="greeting = 'Hello World'">

The greeting is: {{ greeting }}

</h1>

Live Example²⁷

Notice that we’ve passed the expression greeting = 'Hello World' to the built-in directive ng-init.
Inside the expression, we’ve set a property named greeting to the value Hello World. Then we’re
evaluating the expression greeting inside brackets: {{ greeting }}.

In both cases, we’re evaluating a normal JavaScript expression on the current scope. Depending upon
where the expression is placed, it can be the $rootScope, instantiated when Angular invokes ng-app
during application boot or a child object such as a controller.

Declaring Our Directive with an Expression

Given that we now know that we can declare a directive with or without an expression, let’s revisit
the valid ways of declaring an expression:

<my-directive="someExpression">

</my-directive>

<div my-directive="someExpression">

</div>

<div class="my-directive:someExpression">

</div>

<!-- directive: my-directive someExpression -->

A reasonable question at this point is within which environment the expression given to a directive
runs.We’ll find our answer by familiarizing ourselves a bit with the elusive, but extremely important,
concept of current scope, provided by the controller hierarchy of the surrounding DOM.

Current Scope Introduction

Let’s quickly familiarize ourselves with scope as provided by the DOM via the built-in directive
ng-controller. This directive exists for the purpose of creating a new child scope in the DOM:

²⁷http://jsbin.com/IdUYexO/2/edit

http://jsbin.com/IdUYexO/2/edit
http://jsbin.com/IdUYexO/2/edit

Introduction to Directives 69

<p>We can access: {{ rootProperty }}</p>

<div ng-controller="ParentController">

<p>We can access: {{ rootProperty }}

and {{ parentProperty }}</p>

<div ng-controller="ChildController">

<p>

We can access:

{{ rootProperty }} and

{{ parentProperty }} and

{{ childProperty }}

</p>

<p>{{ fullSentenceFromChild }}</p>

</div>

</div>

angular.module('myApp', [])

.run(function($rootScope) {

// use .run to access $rootScope

$rootScope.rootProperty = 'root scope';

})

.controller('ParentController', function($scope) {

// use .controller to access properties inside `ng-controller`

// in the DOM omit $scope, it is inferred based on the current controller

$scope.parentProperty = 'parent scope';

})

.controller('ChildController', function($scope) {

$scope.childProperty = 'child scope';

// just like in the DOM, we can access any of the properties in the

// prototype chain directly from the current $scope

$scope.fullSentenceFromChild

= 'Same $scope: We can access: ' +

$scope.rootProperty + ' and ' +

$scope.parentProperty + ' and ' +

$scope.childProperty

});

Live example, with colored scopes for learning purposes²⁸

More detailed information on ng-controller itself is available in the ng-controller section of the
built in directives chapter.

²⁸http://jsbin.com/URuyoG/1/edit

http://jsbin.com/URuyoG/1/edit
http://jsbin.com/URuyoG/1/edit

Introduction to Directives 70

Be aware that there are other built-in directives, like ng-include and ng-view, that also create a new
child scope, meaning they behave similar to ng-controller when invoked. We can even create a
new child scope when building a custom directive of our own.

Passing Data into a Directive

Let’s recall our directive definition:

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'A',

replace: true,

template: 'Click me to go to Google'

}

})

Notice that in our template we are hard coding the URL and the text of our link:

template: '

Click me to go to Google

'

With Angular, we aren’t limited to hard coding strings in the template of our directive.

We can provide a nicer experience for others using our directive if we specify the URL and link
text without messing with the internal guts of the directive. Our goal here is to pay attention to the
public interface of our directive, just as we would in any programming language. In essence, we’d
like to turn the above template string into one that takes two variables: one for the URL and one for
the link’s text:

template: '{{myLinkText}}'

Looking at our main HTML document, we can declare our directive with attributes that will become
the properties myUrl and mylinkText, set on the inner scope of our directive:

Introduction to Directives 71

<div my-directive

my-url="http://google.com"

my-link-text="Click me to go to Google">

</div>

Reload the page and notice that the div where we declared our directive has been replaced by its
template; however, the link’s href is empty, and there’s no text inside the brackets.

Updating template

To set properties on the inner scope of our directive, we have a few options. The simplest option is to
simply use the existing scope currently provided by the controller (ng-controller) inside of which
we’re nested.

While simple, however, sharing state leaves us vulnerable. If that controller is removed or if a
property with the name myUrl is later defined on its scope, we’ll be forced to change our code,
which is costly and frustrating.

To overcome this common issue, Angular provides the ability to create a new child scope or create
an isolate scope.

In contrast to inherited scope (child scope), discussed earlier (in current scope intro-
duction), an isolate scope is completely separate from the current scope of the DOM.
In order to set properties on this fresh object, we’ll need explicitly pass in data via
attributes, similar to the way we pass arguments into a method in JavaScript or Ruby.

When we set the scope of our directive to a clean object with its own properties,

Introduction to Directives 72

scope: {

someProperty: "needs to be set"

}

We’re creating what is referred to as an isolate scope. Essentially, that means the directive gets
its own $scope object, which we can only use inside other methods of the directive or inside the
directive’s template string:

template: '<div>\

we have access to {{ someProperty }}\

</div>',

controller: function($scope) {

// a directive can have its own controller,

// in which case we can do

//=> ERROR!!!

$scope.someProperty === "needs to be set"

}

ERROR?

Up until now we’ve omitted one minor detail. Inside the scope object, we can’t actually set
someProperty like we’ve done above.

scope: {

// this won't work

someProperty: "needs to be set"

}

Instead, the value is set in the DOM, via an attribute, which we mentioned acts similarly to how
passing an argument to a function works:

<div my-directive

some-property="someProperty with @ binding">

</div>

Now, inside of our fresh scope object, we set the value of someProperty to the binding strategy, @.
This binding strategy tells Angular to copy the value provided by the attribute some-property in
the DOM to the value of someProperty on our fresh scope object:

Introduction to Directives 73

scope: {

someProperty: '@'

}

Note that, by default, someProperty maps to the DOM attribute some-property. If we wanted to
explicitly specify the name of the attribute we wanted to bind to, we could do so:

scope: {

someProperty: '@someAttr'

}

In this case, the HTML attribute would be named some-attr instead of some-property:

<div my-directive

some-attr="someProperty with @ binding">

</div>

Now, when we try to access someProperty inside our directive, for example in the directive’s
template or controller (as we did above), we’ll receive the value copied from the DOM attribute:

template: '<div>\

we have access to {{ someProperty }}\

</div>',

controller: function($scope) {

// a directive can have its own controller,

// in which case we can fetch the

// $scope.someProperty to be

// "someProperty with @ binding"

}

Back to our main example: to copy data from the DOM into the isolate scope of our directive, we
use attributes:

<div my-directive

my-url="http://google.com"

my-link-text="Click me to go to Google"></div>

Introduction to Directives 74

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'A',

replace: true,

scope: {

myUrl: '@', // binding strategy

myLinkText: '@' // binding strategy

},

template: '' +

'{{myLinkText}}'

}

})

Live Example²⁹

The default convention (used above) is for the attribute name and the property name to be the same
(except that the property name is camel-cased).

As the name of the property on our scope is oftentimes private, it is possible (although unusual) to
specify the name of the attribute we want to link our internal property to:

scope: {

myUrl: '@someAttr',

myLinkText: '@'

}

The above isolate scope code says:

Set the value of our directive’s private $scope.myUrl property to the value provided by the attribute
some-attr. That value may be hard coded or it may be the result of evaluating an {{ expression

}} within the current scope, e.g., some-attr="{{ expression }}"

In our HTML, we would use some-attr instead of my-url:

²⁹http://jsbin.com/eloKoDI/1/edit

http://jsbin.com/eloKoDI/1/edit
http://jsbin.com/eloKoDI/1/edit

Introduction to Directives 75

<div my-directive

some-attr="http://google.com"

my-link-text="Click me to go to Google">

</div>

Furthermore, we could evaluate an expression within the scope of the DOM and pass the result to
our directive, where it would eventually be set as the value of our bound property:

<div my-directive

some-attr="{{ 'http://' + 'google.com' }}">

</div>

Taking this example one step further, let’s see what happens if we create a text field and bind the
input value to a property on the $scope of our isolate directive:

Note the use of the built-in directive ng-model on the input tag. Using the ng-model

directive binds the input text to the myUrl attribute on the $scope object.

<input type="text" ng-model="myUrl" />

<div my-directive

some-attr="{{ myUrl }}"

my-link-text="Click me to go to Google">

</div>

This code just works; however, but if we move our text field inside the scope of our directive and
try to make a binding in the other direction, it doesn’t work:

<div my-directive some-attr="{{ myUrl }}"

my-link-text="Click me to go to Google">

</div>

And here:

template: '<div>\

<input type="text" ng-model="myUrl" />\

{{myLinkText}}\

</div>'

Introduction to Directives 76

Observing the href within the Chrome developer tools suggests that we’re not binding our internal
$scope property myUrl to the external attribute some-attr in the opposite direction. The value was
copied onto our isolate scope via an attribute value, so shouldn’t it also set that same attribute’s
value?

Chrome Developer tool

This behavior occurs because the built-in directive, ng-model, is set up with a two-way binding
between its own isolate scope and the scope of the DOM (provided by a controller).

Let’s imitate that setup in an attempt to make our example work. Our goal is to understand two-way
bindings and the behavior of ng-model in the process.

Two-way bindings are perhaps the most important feature in Angular that we can’t get with, say,
jQuery out of the box. To understand the magic, however, we need to implement it ourselves.
Luckily, we’re only a few keystrokes away. Let’s finish our example by creating a two-way data
binding between our isolate $scope and the isolate $scope inside ng-model. We do that by binding
our internal $scope.myUrl property with a property named theirUrl on the $scope of the current
controller (or $rootScope) using scope lookup in the DOM.

In the process, let’s also add an additional text field so that each side of the binding has its own text
field. Having two fields will make it easy to see how scope is being linked via prototypal inheritance
in the DOM:

<label>Their URL field:</label>

<input type="text" ng-model="theirUrl">

<div my-directive

some-attr="theirUrl"

my-link-text="Click me to go to Google"></div>

Introduction to Directives 77

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'A',

replace: true,

scope: {

myUrl: '=someAttr', // MODIFIED

myLinkText: '@'

},

template: '\

<div>\

<label>My Url Field:</label>\

<input type="text"\

ng-model="myUrl" />\

{{myLinkText}}\

</div>\

'

}

})

Live Example³⁰

In the Chrome developer tools, inspect the value of the href while typing into either text field.
Awesome:

Chrome Developer tool

The only change we really made besides adding our original text field back to the main HTML
document is the use of the = binding strategy instead of @. (See binding strategies explained).

In summary, this example explains the magic of one of the fundamental selling points of Angular,
two-way data binding.

When working with built-in directives, it’s useful to know what’s going on so you can take into
account their behavior when connecting them with your own directives.

In the next chapter, we’ll take a closer look at more of the built-in directives that Angular provides
so that we’re familiar with how to use them and why they exist.

Once we’ve been introduced to those built-in directives, we’ll be ready to dive into all the advanced
options available when building a directive in directives explained.

³⁰http://jsbin.com/IteNita/1/edit

http://jsbin.com/IteNita/1/edit
http://jsbin.com/IteNita/1/edit

Introduction to Directives 78

Finally, we’ll build our own advanced directive and then learn how to think about architecture in
our application, a subject where custom and built-in directives play important roles.

Built-In Directives
Angular provides a suite of built-in directives. Some directives override built-in HTML elements,
such the the <form> and <a> tags. When we use tags in our HTML, it may not be immediately
obvious that we are, in fact, using a directive.

For example, the <form> tag is augmented with a great deal of functionality under the hood, such
as validation behavior that we normally don’t get with a standard HTML form.

Other built-in directives are clearly visible via their ng- namespace prefix. For example, ng-href,
which we’ll cover below, prevents a link from becoming active until the expression provided to
ng-href="someExpression" has been evaluated and returns a value.

Lastly, some built-in directives do not have an HTML counterpart, such as the ng-controller

directive, which can be used as an attribute on any tag, but is most often found on an element
that has many children that should share the same scope.

Note that all directives prefixed with the ng namespace are part of the built-in library of directives
that ship with Angular. For this reason, never prefix directives you make with this namespace.

Basic ng Attribute Directives

Our first set of directives has similarly named standard HTML tags and is easy to remember because
we simply add the ng prefix to each:

• ng-href

• ng-src

• ng-disabled

• ng-checked

• ng-readonly

• ng-selected

• ng-class

• ng-style

Boolean Attributes

The following Angular directives help make working with HTML boolean attributes easier.

Built-In Directives 80

As defined by the HTML specification³¹, a boolean attribute is an attribute that represents a true/false
value. When the attribute is present, then the attribute’s value is assumed to be true (regardless of
its actual value). If absent, the attribute is assumed to be false.

When working with dynamic data via data bindings in Angular, we cannot simply set the value of
the attribute to true or false, because by definition of the spec, the attribute is false if it is not present.
Thus Angular provides an ng-prefixed version of these attributes that will evaluate the expression
provided to insert or remove the corresponding boolean attribute on the decorated element.

ng-disabled

Use ng-disabled to bind the disabled attribute to form input fields:

• <input> (text, checkbox, radio, number, url, email, submit)
• <textarea>

• <select>

• <button>

When writing normal HTML input fields, the presence of the disabled attribute on an input field
makes the field disabled. To bind the presence (or not) of this attribute, use ng-disabled.

For example, let’s disable the following button until the user enters text into the text field:

<input type="text" ng-model="someProperty" placeholder="Type to Enable">

<button ng-model="button" ng-disabled="!someProperty">A Button</button>

In the next example, we’ll disable the text field for five seconds until the isDisabled property
becomes true inside the $timeout:

<textarea ng-disabled="isDisabled">Wait 5 seconds</textarea>

angular.module('myApp', [])

.run(function($rootScope, $timeout) {

$rootScope.isDisabled = true;

$timeout(function() {

$rootScope.isDisabled = false;

}, 5000);

});

Both Live Examples³²

³¹http://www.w3.org/html/wg/drafts/html/master/infrastructure.html#boolean-attribute
³²http://jsbin.com/iHiYItu/1/edit

http://www.w3.org/html/wg/drafts/html/master/infrastructure.html#boolean-attribute
http://jsbin.com/iHiYItu/1/edit
http://www.w3.org/html/wg/drafts/html/master/infrastructure.html#boolean-attribute
http://jsbin.com/iHiYItu/1/edit

Built-In Directives 81

ng-readonly

Similar to the other boolean attributes, the HTML spec only looks at the presence of the attribute
readonly, not its value.

To allow Angular to bind to an expression that returns a truthy or falsy value and, in turn, output
(or not) the readonly attribute, use ng-readonly:

Type here to make sibling readonly:

<input type="text" ng-model="someProperty">

<input type="text"

ng-readonly="someProperty"

value="Some text here"/>

Live Example³³

ng-checked

The standard checked HTML attribute is a boolean attribute, and as such, is not required to take a
value. In order for Angular to bind the presence of the checked attribute to the value of an expression,
use ng-checked.

In the following example, we set the value of someProperty to true using the ng-init directive.
Binding the value of someProperty to ng-checked then tells Angular to output the standard HTML
checked attribute, which will check the box by default.

<label>someProperty = {{someProperty}}</label>

<input type="checkbox"

ng-checked="someProperty"

ng-init="someProperty = true"

ng-model="someProperty">

In this example, we do the opposite:

<label>anotherProperty = {{anotherProperty}}</label>

<input type="checkbox"

ng-checked="anotherProperty"

ng-init="anotherProperty = false"

ng-model="anotherProperty">

Note that we also used ng-model to bind the value of someProperty and anotherProperty inside
their respective label tags, for the sake of demonstration.

Live Example³⁴

³³http://jsbin.com/etIviKI/1/edit
³⁴http://jsbin.com/IXOLIRA/1/edit

http://jsbin.com/etIviKI/1/edit
http://jsbin.com/IXOLIRA/1/edit
http://jsbin.com/etIviKI/1/edit
http://jsbin.com/IXOLIRA/1/edit

Built-In Directives 82

ng-selected

Use ng-selected to bind the presence (or not) of the selected attribute to the option tag:

<label>Select Two Fish:</label>

<input type="checkbox"

ng-model="isTwoFish">

<select>

<option>One Fish</option>

<option ng-selected="isTwoFish">Two Fish</option>

</select>

Live Example³⁵

Boolean-like Attributes

While not technically HTML, boolean attributes like the ng-href and ng-src act in a similar manner
and are therefore defined alongside the ng boolean attributes within the Angular source code and
presented here.

Both ng-href and ng-src are so likely to help improve refactoring and prevent errors when changing
code later in a project that it is recommended to use them in place of href and src, respectively.

ng-href

When dynamically creating a URL from a property on the current scope, always use ng-href instead
of href.

The issue here is that the user is able to click a link built with href before interpolation takes place,
which would bring them to the wrong page (often a 404).

On the other hand, by using ng-href, Angular waits for the interpolation to take place (in our
example, after two seconds), and then activates the link’s behavior:

<!-- Always use ng-href when href includes an {{ expression }} -->

<a ng-href="{{myHref}}">I'm feeling lucky, when I load

<!-- href may not load before user clicks -->

I'm feeling 404

Delay the interpolation of the string value for two seconds to see this behavior in action:

³⁵http://jsbin.com/oQazOQE/2/edit

http://jsbin.com/oQazOQE/2/edit
http://jsbin.com/oQazOQE/2/edit

Built-In Directives 83

angular.module('myApp', [])

.run(function($rootScope, $timeout) {

$timeout(function() {

$rootScope.myHref = 'http://google.com';

}, 2000);

});

Live Example³⁶

ng-src

Angular will tell the browser to NOT fetch the image via the given URL until all expressions provided
to ng-src have been interpolated:

<h1>Wrong Way</h1>

<h1>Right way</h1>

angular.module('myApp', [])

.run(function($rootScope, $timeout) {

$timeout(function() {

$rootScope.imgSrc = 'https://www.google.com/images/srpr/logo11w.png';

}, 2000);

});

Live Example³⁷

When viewing the live example, check out the network panel within the Chrome developer tools.
Notice that one request is red, indicating that there was an error. This error occurs when we use src
instead of ng-src under ‘Wrong Way’.

Directives with Child Scope

The following directives create a child scope that prototypically inherits from its parent. This
inheritance provides a layer of separation meant for storing methods and model objects that work
together to achieve a common goal.

³⁶http://jsbin.com/IgInopi/1/edit
³⁷http://jsbin.com/egucIqU/1/edit

http://jsbin.com/IgInopi/1/edit
http://jsbin.com/egucIqU/1/edit
http://jsbin.com/IgInopi/1/edit
http://jsbin.com/egucIqU/1/edit

Built-In Directives 84

ng-app and ng-controller are special directives, in that they modify the scope of directives nested
inside of them.

ng-app creates the $rootScope of an Angular application, while ng-controller creates a child scope
that prototypically inherits from either $rootScope or another ng-controller’s $scope.

ng-app

Placing ng-app on any DOM element marks that element as the beginning of the $rootScope.

$rootScope is the beginning of the scope chain, and all directives nested under the ng-app in your
HTML inherit from it.

In your JavaScript code you can access the $rootScope via the run method:

<html ng-app="myApp">

<body>

{{ someProperty }}

<button ng-click="someAction()"></button>

</body>

</html>

angular.module('myApp', [])

.run(function($rootScope) {

$rootScope.someProperty = 'hello computer';

$rootScope.someAction = function() {

$rootScope.someProperty = 'hello human';

};

});

Live Example³⁸

While useful for the purpose of demonstration, using $rootScope on a regular basis is like using
global scope – don’t do it.

We can only use ng-app once per document. If we want to place multiple apps in a page, we’ll need
to manually bootstrap our applications. We will talk more about manually bootstrapping apps in
the under the hood chapter.

ng-controller

Instead of defining actions and models on $rootScope, use ng-controller, which is a built-in
directive whose purpose is to provide a child scopes for the directives that are nested inside. We’ll
use this directive to place a controller on a DOM element.

ng-controller takes a single argument:

³⁸http://jsbin.com/ICOzeFI/2/edit

http://jsbin.com/ICOzeFI/2/edit
http://jsbin.com/ICOzeFI/2/edit

Built-In Directives 85

expression (required expression)

The expression is an Angular expression

A child $scope is simply a JavaScript object that prototypically inherits methods and properties from
its parent $scope(s), including the application’s $rootScope.

Directives that are nested within an ng-controller have access to this new child $scope, but be
mindful that the scoping rules for each directive do apply.

Recall that the $scope object within a controller should be responsible for the actions and models
shared by directives in the DOM.

An action refers to a traditional JavaScript method on the $scope object.

A model refers to a traditional JavaScript object {} where transient state should be stored.
Persistent state should be bound to a service, which is then responsible for dealing with
persisting that model.

It’s important to not to set a value object (string, boolean, or number) directly on the
$scope of a controller for a number of technological and architectural reasons. Data in the
DOM should always use a . (dot). Following this rule will keep you out of unexpected
trouble.

Controllers should be as simple as possible. Althoughwe can use the controller to prototype
our functionality, it’s a good idea to refactor the logic out using services and directives. See
application architecture for more information.

Using a controller, we can modify our previous example by placing our data and action on a child
scope:

<div ng-controller="SomeController">

{{ someModel.someProperty }}

<button ng-click="someAction()">Communicate</button>

</div>

Built-In Directives 86

angular.module('myApp', [])

.controller('SomeController', function($scope) {

// create a model

$scope.someModel = {

// with a property

someProperty: 'hello computer'

}

// set actions on $scope itself

$scope.someAction = function() {

$scope.someModel.someProperty = 'hello human';

};

});

Live Example³⁹

In this iteration of our example, notice two differences from the previous:

First, we’re using a child scope of $rootScope, which provides a clean object with which we can
work. Using this scope means that actions and models used on the scope will not be available
everywhere in the app; they’ll only be available to directives within this scope or child scopes.

Secondly, notice that we’re explicit about our data model, which, as we mentioned, is extremely
important. To see why it is important, let’s look at another iteration of this example that nests a
second controller inside of our existing controller and doesn’t set properties on a model object:

<div ng-controller="SomeController">

{{ someBareValue }}

<button ng-click="someAction()">Communicate to child</button>

<div ng-controller="ChildController">

{{ someBareValue }}

<button ng-click="childAction()">Communicate to parent</button>

</div>

</div>

³⁹http://jsbin.com/OYikipe/1/edit

http://jsbin.com/OYikipe/1/edit
http://jsbin.com/OYikipe/1/edit

Built-In Directives 87

angular.module('myApp', [])

.controller('SomeController', function($scope) {

// anti-pattern, bare value

$scope.someBareValue = 'hello computer';

// set actions on $scope itself, this is okay

$scope.someAction = function() {

// sets {{ someBareValue }} inside SomeController and ChildController

$scope.someBareValue = 'hello human, from parent';

};

})

.controller('ChildController', function($scope) {

$scope.childAction = function() {

// sets {{ someBareValue }} inside ChildController

$scope.someBareValue = 'hello human, from child';

};

});

Live Example⁴⁰

Because of the way prototypal inheritance works with value objects in JavaScript, changing
someBareValue via an action in the parent does change it in the child, but not vice versa.

To see this problem in action, try clicking on the child button first and then the parent button. Doing
so makes it clear that the child controller has copy, not a reference to someBareValue.

JavaScript objects are either copy by value or copy by reference. String, Number, and
Boolean are copy by value. Array, Object, and Function are copy by reference.

Hadwe set our string as a property on amodel object, it would have been shared via reference, which
means changing the property on the child will change it on the parent. The following example shows
the correct way:

<div ng-controller="SomeController">

{{ someModel.someValue }}

<button ng-click="someAction()">Communicate to child</button>

<div ng-controller="ChildController">

{{ someModel.someValue }}

<button ng-click="childAction()">Communicate to parent</button>

</div>

</div>

⁴⁰http://jsbin.com/UbIRIHa/1/

http://jsbin.com/UbIRIHa/1/
http://jsbin.com/UbIRIHa/1/

Built-In Directives 88

angular.module('myApp', [])

.controller('SomeController', function($scope) {

// best practice, always use a model

$scope.someModel = {

someValue: 'hello computer'

}

$scope.someAction = function() {

$scope.someModel.someValue = 'hello human, from parent';

};

})

.controller('ChildController', function($scope) {

$scope.childAction = function() {

$scope.someModel.someValue = 'hello human, from child';

};

});

Live Example⁴¹

Try clicking on either button. The value always remains in sync.

Note that while this behavior manifests itself most noticeably when using ng-controller, it will
also rear its ugly head when using any directive that creates a new child scope by setting the scope
property inside its directive definition to true. The following built-in directives do exactly that:

• ng-include
• ng-switch
• ng-repeat
• ng-view
• ng-controller
• ng-if

ng-include

Use ng-include to fetch, compile, and include an external HTML fragment into your current
application. The URL of the template is restricted to the same domain and protocol as the application
document unless whitelisted or wrapped as trusted values. Furthermore, you’ll need to account
for Cross-Origin Resource Sharing and Same Origin Policy to ensure your template loads on all
browsers. For example, it won’t work for cross-domain requests on all browsers and for file:// access
on some browsers.

While developing, you may run Chrome from the command line with chrome

--allow-file-access-from-files to disable the CORS error. Only go this route in an
emergency (e.g., your boss is standing behind you and everything just broke).

⁴¹http://jsbin.com/afIyeda/1/edit

http://jsbin.com/afIyeda/1/edit
http://jsbin.com/afIyeda/1/edit

Built-In Directives 89

Use the onload attribute within the same element to run an expression when the template is loaded.

Keep in mind that when using ng-include, Angular automatically creates a new child scope. If
you want to use a particular scope, for instance the scope of ControllerA, you must invoke the
ng-controller="ControllerA" directive on the same DOM element itself; it will not be inherited
from the surrounding scope like usual because a new scope is created when the template loads.

Let’s look at an example:

<div ng-include="/myTemplateName.html"

ng-controller="MyController"

ng-init="name = 'World'">

Hello {{ name }}

</div>

ng-switch

We use this directive in conjunction with ng-switch-when and on="propertyName" to switch which
directives render in our viewwhen the given propertyName changes. In the following example, when
person.name is ‘Ari’ the div below the text field will be shown and the person will have won:

<input type="text" ng-model="person.name" />

<div ng-switch on="person.name"></div>

<p ng-switch-default>And the winner is</p>

<h1 ng-switch-when="Ari">{{ person.name }}</h1>

Note that we used ng-switch-default to output the name of the person until the switch occured.

Live Example⁴²

ng-view

The ng-view directive sets the view location in the HTML where the router will manage and place
the view elements for different routes. We will cover this in depth in the routing chapter.

See the routing chapter for more information.

ng-if

Use ng-if to completely remove or recreate an element in the DOM based on an expression. If the
expression assigned to ng-if evaluates to a false value, then the element is removed from the DOM,
otherwise a clone of the element is reinserted into the DOM.

⁴²http://jsbin.com/AVihUdi/2/

http://jsbin.com/AVihUdi/2/
http://jsbin.com/AVihUdi/2/

Built-In Directives 90

ng-if differs from ng-show and ng-hide in that it actually removes and recreates DOM nodes, rather
than just showing and hiding them via CSS.

When an element is removed from the DOM using ng-if, its associated scope is destroyed.
Furthermore, when it comes back into being, a new scope is created and inherits from its parent
scope using prototypal inheritance.

It’s also important be aware that ngIf recreates elements using their compiled state. If code inside
of ng-if is loaded, is manipulated using jQuery (for example, using .addClass), then is removed
because the expression inside the ng-if becomes false, then when the expression later becomes true
again, the DOM element and its children will be reinserted into the DOM in their original state,
not the state they had when they left the DOM. That means that whatever class was added using
jQuery’s .addClass will no longer be present.

<div ng-if="2 + 2 === 5">

Won't see this DOM node, not even in the source code

</div>

<div ng-if="2 + 2 === 4">

Hi, I do exist

</div>

Live Example⁴³

ng-repeat

Use ng-repeat to iterate over a collection and instantiate a new template for each item in the
collection. Each item in the collection is given its own template and therefore its own scope.
Furthermore, there are a number of special properties exposed on the local scope of each template
instance:

• $index: iterator offset of the repeated element (0..length-1)
• $first: true if the repeated element is first in the iterator
• $middle: true if the repeated element is between the first and last in the iterator
• $last: true if the repeated element is last in the iterator
• $even: true if the iterator position $index is even (otherwise false)
• $odd: true if the iterator position $index is odd (otherwise false)

We’ll use $odd and $even in the following example to make a repeating list where even items are
red and odd item are blue. Remember that in JavaScript arrays are indexed starting at 0; thus, we
use !$even and !$odd to flip the boolean value given by $even and $odd.

⁴³http://jsbin.com/ezEcamo/1/

http://jsbin.com/ezEcamo/1/
http://jsbin.com/ezEcamo/1/

Built-In Directives 91

<ul ng-controller="PeopleController">

<li ng-repeat="person in people" ng-class="{even: !$even, odd: !$odd}">

{{person.name}} lives in {{person.city}}

.odd {

background-color: blue;

}

.even {

background-color: red;

}

angular.module('myApp', [])

.controller('PeopleController', function($scope) {

$scope.people = [

{name: "Ari", city: "San Francisco"},

{name: "Erik", city: "Seattle"}

];

})

Live Example⁴⁴

ng-init

Use ng-init to set up state inside the scope of a directive when that directive is invoked.

The most common use case for using ng-init is when creating small examples for educational
purposes, like the examples in this chapter.

For anything substantial, create a controller and set up state within a model object.

<div ng-init="greeting='Hello'; person='World'">

{{greeting}} {{person}}

</div>

Live Example⁴⁵

{{ }}

⁴⁴http://jsbin.com/akuYUkey/1/edit
⁴⁵http://jsbin.com/OZENuhO/1/

http://jsbin.com/akuYUkey/1/edit
http://jsbin.com/OZENuhO/1/
http://jsbin.com/akuYUkey/1/edit
http://jsbin.com/OZENuhO/1/

Built-In Directives 92

<div>{{ name }}</div>

The {{ }} syntax is a templating syntax that’s built into Angular. It creates a binding from the
containing $scope to the view. Any time that the $scope changes, the viewwill update automatically
on account of this binding.

Although it doesn’t look like a normal directive, it is, in fact, a shortcut for using ng-bind without
needing to create an element; therefore, it is most commonly used with inline text.

Be aware that using {{ }} within the visible viewport of the screen while the page loads may cause
a flash of unrendered content. To prevent this issue, use ng-bind instead.

<body ng-init="greeting = 'Hello World'">

{{ greeting }}

</body>

Live Example⁴⁶

ng-bind

Although we can use the {{ }} template syntax within our views (Angular interpolates these), we
can mimic this behavior with the ng-bind directive.

<body ng-init="greeting = 'Hello World'">

<p ng-bind="greeting"></p>

</body>

Live Example⁴⁷

When we use the {{ }} syntax, our HTML document loads the element and does not render it
immediately, causing a “flash of unrendered content” (FOUC, for short). We can prevent this FOUC
from being exposed by using ng-bind and binding our content to the element. The content will then
render as the child text node of the element on which ng-bind is declared.

ng-cloak

An alternative to using to using ng-bind to prevent a flash of unrendered content is to use ng-cloak
on the element containing {{ }}:

⁴⁶http://jsbin.com/ODUxeho/1/edit
⁴⁷http://jsbin.com/esihUJ/1/edit

http://jsbin.com/ODUxeho/1/edit
http://jsbin.com/esihUJ/1/edit
http://jsbin.com/ODUxeho/1/edit
http://jsbin.com/esihUJ/1/edit

Built-In Directives 93

<body ng-init="greeting = 'Hello World'">

<p ng-cloak>{{ greeting }}</p>

</body>

Live Example⁴⁸

ng-bind-template

Similar to the ng-bind directive, we can use the ng-bind-template directive if we want to bind
multiple expressions to the view.

<div

ng-bind-template="{{ message }} {{ name }}">

</div>

ng-model

The ng-model directive binds an input, select, textarea, or custom form control to a property on
the surrounding scope. It handles and provides validation, sets related CSS classes on the element
(ng-valid, ng-invalid, etc.), and registers the control with its parent form.

It binds to the property given by evaluating the expression on the current scope. If the property
doesn’t already exist on this scope, it will be created implicitly and added to the scope.

We should always use ngModel with a model property on the $scope, not as a raw property on the
scope itself. Setting ng-model as a property of the scope will help us avoid overloading properties
on the same scope or the inherited scope.

For example:

<input type="text"

ng-model="modelName.someProperty" />

The code above is the correct way to think about and practically use ngModel properly.

The bottom line is to always have a . in your ng-models. For in-depth discussion and an example
on this topic, see the ng-controller section earlier in this chapter.

⁴⁸http://jsbin.com/AJEboLO/1/edit

http://jsbin.com/AJEboLO/1/edit
http://jsbin.com/AJEboLO/1/edit

Built-In Directives 94

ng-show/ng-hide

ng-show and ng-hide show or hide the given HTML element based on the expression provided to
the attribute. When the expression provided to the ng-show attribute is false the element is hidden.
Similarly, when the expression given to ng-hide is true, the element is hidden.

The element is shown or hidden by removing the ng-hideCSS class from, or adding it to, the element.
The .ng-hide CSS class is predefined in AngularJS and sets the display style to none (using an
!important flag).

<div ng-show="2 + 2 == 5">

2 + 2 isn't 5, don't show

</div>

<div ng-show="2 + 2 == 4">

2 + 2 is 4, do show

</div>

<div ng-hide="2 + 2 == 5">

2 + 2 isn't 5, don't hide

</div>

<div ng-hide="2 + 2 == 4">

2 + 2 isn't 5, do hide

</div>

Live Example⁴⁹

ng-change

This directive evaluates the given expression when the input changes. As we’re dealing with input,
we must use this directive in conjunction with ngModel.

<div ng-controller="EquationController">

<input type="text"

ng-model="equation.x"

ng-change="change()" />

<code>{{ equation.output }}</code>

</div>

⁴⁹http://jsbin.com/ihOkagE/1/

http://jsbin.com/ihOkagE/1/
http://jsbin.com/ihOkagE/1/

Built-In Directives 95

angular.module('myApp', [])

.controller('EquationController', function($scope) {

$scope.equation = {};

$scope.change = function() {

$scope.equation.output

= Number($scope.equation.x) + 2;

};

});

Live Example⁵⁰

In the above example, we run the change() function whenever equation.x is changed by entering
text into the text field.

ng-form

We use ng-form when we need to nest a form within another form. The normal HTML <form> tag
doesn’t allow us to nest our forms, but ng-form will.

That means that the outer form is valid when all of the child forms are valid, as well. This fact is
especially useful when dynamically generating forms using ng-repeat.

Because we cannot dynamically generate the name attribute of input elements using interpolation,
we need to wrap each set of repeated inputs in an ng-form directive and nest these in an outer form
element.

The following CSS classes are set automatically, depending on the validity of the form:

• ng-valid when form is valid
• ng-invalid when form is invalid
• ng-pristine when form is pristine
• ng-dirty when form is dirty

Angular will not submit the form to the server unless the form has an action attribute specified.

To specify which JavaScript method should be called when a form is submitted, use one of the
following two directives:

• ng-submit on the form element
• ng-click on the first button or input field of type submit (input[type=submit])

⁵⁰http://jsbin.com/onUXuxO/1/edit

http://jsbin.com/onUXuxO/1/edit
http://jsbin.com/onUXuxO/1/edit

Built-In Directives 96

To prevent double execution of the handler, use only the ng-submit or ng-click directives.

In the following examples, we want to dynamically generate a form based on a JSON response
from the server. We’ll use ng-repeat to loop over the fields we get back from the server. Because
we cannot dynamically generate the name attribute, and because we need the name attribute to
perform validation, we’ll loop over the fields and create a new form for each one.

Because Angular forms that use ng-form instead of form can be nested, and because the parent form
is not valid until its child forms are valid, we can both dynamically generate a form with child forms
and use validation. Yes, we can have our cake and eat it too.

Let’s first view the JSON we’re hard coding, as though it came from the server:

angular.module('myApp', [])

.controller('FormController', function($scope) {

$scope.fields = [

{placeholder: 'Username', isRequired: true},

{placeholder: 'Password', isRequired: true},

{placeholder: 'Email (optional)', isRequired: false}

];

$scope.submitForm = function() {

alert("it works!");

};

});

Now, let’s take a look at using that data to generate a dynamic form with validation:

<form name="signup_form"

ng-controller="FormController"

ng-submit="submitForm()" novalidate>

<div ng-repeat="field in fields"

ng-form="signup_form_input">

<input type="text"

name="dynamic_input"

ng-required="field.isRequired"

ng-model="field.name"

placeholder="{{field.placeholder}}" />

<div

ng-show="signup_form_input.dynamic_input.$dirty &&

signup_form_input.dynamic_input.$invalid">

<span class="error"

ng-show="signup_form_input.dynamic_input.$error.required">

The field is required.

Built-In Directives 97

</div>

</div>

<button type="submit"

ng-disabled="signup_form.$invalid">

Submit All

</button>

</form>

input.ng-invalid {

border: 1px solid red;

}

input.ng-valid {

border: 1px solid green;

}

Live Example⁵¹

ng-click

Use ng-click to specify a method or expression to run on the containing scope when the element
is clicked.

<div ng-controller="CounterController">

<button ng-click="count = count + 1"

ng-init="count=0">

Increment

</button>

count: {{count}}

<button ng-click="decrement()">

Decrement

</button>

<div>

⁵¹http://jsbin.com/UduNeCA/1/edit

http://jsbin.com/UduNeCA/1/edit
http://jsbin.com/UduNeCA/1/edit

Built-In Directives 98

angular.module('myApp', [])

.controller('CounterController', function($scope) {

$scope.decrement = function() {

$scope.count = $scope.count - 1;

};

})

Live Example⁵²

ng-select

Use the ng-select directive to bind data to an HTML <select> element. This directive can be
used in conjunction with ng-model and ng-options to provide sophisticated and highly performant
dynamic forms.

ng-options takes a comprehension expression for its attribute value, which is just a fancy way of
saying it can take an array or an object and loop over its contents to provide the options available
when using the select tag. It comes in one of the following forms:

• for array data sources:
– label for value in array
– select as label for value in array
– label group by group for value in array
– select as label group by group for value in array track by trackexpr

• for object data sources:
– label for (key, value) in object
– select as label for (key, value) in object
– label group by group for (key, value) in object
– select as label group by group for (key, value) in object

Let’s look at an example of using ng-select:

<div ng-controller="CityController">

<select ng-model="city"

ng-options="city.name for city in cities">

<option value="">Choose City</option>

</select>

Best City: {{ city.name }}

</div>

⁵²http://jsbin.com/uGipUBU/2/edit

http://jsbin.com/uGipUBU/2/edit
http://jsbin.com/uGipUBU/2/edit

Built-In Directives 99

angular.module('myApp', [])

.controller('CityController', function($scope) {

$scope.cities = [

{name: 'Seattle'},

{name: 'San Francisco'},

{name: 'Chicago'},

{name: 'New York'},

{name: 'Boston'}

];

});

Live Example⁵³

ng-submit

We use ng-submit to bind an expression to an onsubmit event. This directive also prevents the
default action (sending the request and reloading the page), but only if the form does not contain an
action attribute.

<form ng-submit="submit()"

ng-controller="FormController">

Enter text and hit enter:

<input type="text"

ng-model="person.name"

name="person.name" />

<input type="submit"

name="person.name"

value="Submit" />

<code>people={{people}}</code>

<ul ng-repeat="(index, object) in people">

{{ object.name }}

</form>

⁵³http://jsbin.com/iQelOxi/1/edit

http://jsbin.com/iQelOxi/1/edit
http://jsbin.com/iQelOxi/1/edit

Built-In Directives 100

angular.module('myApp', [])

.controller('FormController', function($scope) {

$scope.person = {

name: null

};

$scope.people = [];

$scope.submit = function() {

if ($scope.person.name) {

$scope.people.push({name: $scope.person.name});

$scope.person.name = '';

}

};

});

Live Example⁵⁴

ng-class

Use ng-class to dynamically set the class of an element by binding an expression that represents all
classes to be added. Duplicate classes will not be added.When the expression changes, the previously
added classes are removed and only then are the new classes added.

Let’s use ng-class to add the class .red to a div whenever a random number drawn is above 5.

<div ng-controller="LotteryController">

<div ng-class="{red: x > 5}"

ng-if="x > 5">

You won!

</div>

<button ng-click="x = generateNumber()"

ng-init="x = 0">

Draw Number

</button>

<p>Number is: {{ x }}</p>

</div>

⁵⁴http://jsbin.com/ONIcAC/1/edit

http://jsbin.com/ONIcAC/1/edit
http://jsbin.com/ONIcAC/1/edit

Built-In Directives 101

.red {

background-color: red;

}

angular.module('myApp', [])

.controller('LotteryController', function($scope) {

$scope.generateNumber = function() {

return Math.floor((Math.random()*10)+1);

}

})

Check out the Live Example⁵⁵

ng-attr-(suffix)

When Angular compiles the DOM, it looks for expressions within {{ some expression }} brackets.
These expressions are automatically registered with the $watch service and update as part of the
normal $digest cycle:

<-- updated when `someExpression` on the $scope

is updated -->

<h1>Hello {{ someExpression }}</h1>

Sometimes, however, web browsers are picky about what attributes they allow. SVG is one such
instance:

<svg>

<circle cx="{{cx}}"></circle>

</svg>

Running the code above will throw an error, telling us we have an invalid attribute. To fix this
problem, we can use ng-attr-cx. Notice that the cx is named after the attribute we would like to
define. Within the string, we can write an expression with {{ }} and achieve the result we were
looking for above.

⁵⁵http://jsbin.com/IvEcUci/1/edit

http://jsbin.com/IvEcUci/1/edit
http://jsbin.com/IvEcUci/1/edit

Built-In Directives 102

<svg>

<circle ng-attr-cx="{{cx}}"><circle>

</svg>

Directives Explained
The goal of this chapter is to explicitly lay out all of the options and capabilities that directives have
to offer when building mature client-side applications.

Directive Definition

The simplest way to think about a directive is that it is simply a function that we run on a particular
DOM element. The function is expected to provide extra functionality on the element.

For instance, the ng-click directive gives an element the ability to listen for the click event and run
an Angular expression when it receives the event. Directives are what makes the Angular framework
so powerful, and, as we’ve seen, we can also create them.

A directive is defined using the .directive() method, one of the many methods available on our
application’s Angular module.

angular.module('myApp')

.directive('myDirective',

function($timeout, UserDefinedService) {

// directive definition goes here

})

The directive() method takes two arguments:

name (string)

The name of the directive as a string that we’ll refer to inside of our views.

factory_function (function)

The factory function returns an object that defines how the directive behaves. It is expected to return
an object providing options that tell the $compile service how the directive should behave when it
is invoked in the DOM.

Directives Explained 104

angular.application('myApp', [])

.directive('myDirective', function() {

// A directive definition object

return {

// directive definition is defined via options

// which we'll override here

};

});

We can also return a function instead of an object to handle this directive definition, but it is best
practice to return an object as we’ve done above. When a function is returned, it is often referred to
as the postLink function, which allows us to define the link function for the directive. Returning
a function instead of an object limits us to a narrow ability to customize our directive and, thus, is
good for only simple directives.

When Angular bootstraps our app, it will register the returned object by the name provided as a
string via the first argument. The Angular compiler parses the DOM of our main HTML document
looking for elements, attributes, comments, or class names using that name when looking for these
directives. When it finds one that it knows about, it uses the directive definition to place the DOM
element on the page.

<div my-directive></div>

To avoid collisionwith future HTML standards it’s best practice to prefix a custom directive
with a custom namespace. Angular itself has chosen the ng- prefix, so use something other
than that. In the examples that follow, we’ll use the my- prefix (e.g., my-directive).

The factory function we define for a directive is only invoked once, when the compiler matches the
directive the first time. Just like the .controller function, we invoke a directive’s factory function
using $injector.invoke.

When Angular encounters the named directive in the DOM, it will invoke the directive definition
we’ve registered, using the name to look up the object we’ve registered. At this point, the directive
lifecycle begins, starting with the $compile method and ending with the ‘link method. We’ll dive
into the specifics of this process later in this chapter.

Let’s look at all the available options we can provide to a directive definition.

A JavaScript object is made up of keys and values. When the value for a given key is set
to a string, boolean, number, array, or object, we call the key a property. When we set the
key to a function, we call it a method.

The possible options are shown below. The value of each key provides the signature of either the
method or the type we can set the property to:

Directives Explained 105

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: String,

priority: Number,

terminal: Boolean,

template: String or Template Function:

function(tElement, tAttrs) (...},

templateUrl: String,

replace: Boolean or String,

scope: Boolean or Object,

transclude: Boolean,

controller: String or

function(scope, element, attrs, transclude, otherInjectables) { ... },

controllerAs: String,

require: String,

link: function(scope, iElement, iAttrs) { ... },

compile: return an Object OR

function(tElement, tAttrs, transclude) {

return {

pre: function(scope, iElement, iAttrs, controller) { ... },

post: function(scope, iElement, iAttrs, controller) { ... }

}

// or

return function postLink(...) { ... }

}

};

});

Restrict (string)

restrict is an optional argument. It is responsible for telling Angular in which format our directive
will be declared in the DOM. By default, Angular expects that we will declare a custom directive as
an attribute, meaning the restrict option is set to A.

The available options are as follows:

• E (an element) {lang=”html”}
• A (an attribute, default) {lang=”html”} <div my-directive=”expression”></div>
• C (a class) {lang=”html”} <div class=”my-directive: expression;”></div>
• M (a comment) {lang=”html”} <– directive: my-directive expression –>

These options can be used alone or in combination:

Directives Explained 106

angular.module('myDirective', function() {

return {

restrict: 'EA' // either an element or an attribute

};

});

In this case, we can declare the directive as an attribute or an element:

<-- as an attribute -->

<div my-directive></div>

<-- or as an element -->

<my-directive></my-directive>

Attributes are the default and most common form of directive because they will work across all
browsers, including older versions of Internet Explorer, without having to register a new tag in the
head of the document. See the chapter on Internet Explorer for more information on this topic.

Avoid using comments to declare a directive. This format was originally introduced as a
way to create directives that span multiple elements. This approach was especially useful,
for example, when using ng-repeat inside a <table> element; however, as of Angular
1.2, ng-repeat provides ng-repeat-start and ng-repeat-end as a better solution to this
problem, minimizing the need for the comment form of a directive even more so. If you
are curious, however, take a look at the Chrome developer tools elements tab when using
ng-repeat to see comments being used under the hood.

Element or Attribute?

Use an element when creating something new on the page that will encapsulate a self-contained
piece of functionality. For example, if we’re creating a clock (and couldn’t care less about supporting
old versions of Internet Explorer) we’d make a clock directive and declare it in the DOM like so:

<my-clock></my-clock>

Doing so tells users of our directive that we’re specifying a whole piece of our application. Our clock
is not decorating or augmenting a pre-existing clock; instead, it’s declaring a whole unit. While we
could have used an attribute in this scenario (Angular doesn’t care), we’ve chosen to use an element
because it clarifies our intent.

Use an attribute when decorating an existing element with data or behavior. Using our clock
example, let’s pretend we’re interested in an an analog version of the clock:

Directives Explained 107

<my-clock clock-display="analog"></my-clock>

The choice usually comes down to whether the directive being defined provides the core behavior of
a component on the page or will decorate or augment a core directive with optional behavior, state,
or anything else one might find while programming in the wild (like analog output for a clock).

The guiding principle here is that the format of a directive tells a story about our applications and
reveals the intent of each piece, creating exemplary code that is easy to understand and share with
others.

The other distinction that is important to make for a given directive is whether it creates, inherits,
or isolates itself from the scope of its containing environment. This child-parent relationship plays
another key role in the composition and reusability of our directives, a topic we’ll spend more time
discussing when we talk about the scope of a directive.

Priority (number)

The priority option can be set to a number. Most directives omit this option, in which case it defaults
to 0; however, there are cases where setting a high priority is important and/or necessary. For
example, ngRepeat sets this option at 1000 so that it always gets invoked before other directives
on the same element.

If an element is decorated with two directives that have the same priority, then the first directive
declared on the element will be invoked first. If one of the directives has a higher priority than the
other, then it doesn’t matter which is declared first: The one with the higher priority will always
run first.

ngRepeat has the highest priority of any built-in directive. It is always invoked before other
directives on the same element. Performance is a key factor here. We’ll learn more about
performance when we discuss the compile option.

Terminal (boolean)

terminal is a boolean option; it can be set to true or false.

We use the terminal option to tell Angular to stop invoking any further directives on an element
that have a higher priority. All directives with the same priority will be executed, however.

As a result, don’t further decorate an element if it’s already been decorated with a directive that is
terminal and has equal or higher priority – it won’t be invoked.

Directives Explained 108

Template (string|function)

template is optional. If provided, it must be set to either:

• a string of HTML
• a function that takes two arguments – tElement and tAttrs – and returns a string value
representing the template. The t in tElement and tAttrs stands for template, as opposed to
instance. We’ll discuss the difference between a template element/attribute and an instance
element/attribute when we cover the link and compile options.

Angular treats the template string no differently than any other HTML. It has a scope that can be
accessed using double curly markup, like {{ expression }}.

When a template string contains more than one DOM element or only a single text node, it must be
wrapped in a parent element. In other words, a root DOM element must exist:

template: '\

<div> <-- single root element -->\

Click me\

<h1>When using two elements, wrap them in a parent element</h1>\

</div>\

'

Furthermore, note the use of backslashes, at the end of each line. We include these so that Angular
can parse multi-line strings correctly. In production code, it would be a better choice to use the
templateUrl option because multi-lines strings are a nightmare to look at and maintain.

One of the most important features to understand about a template string or templateURL is how
it gets its scope. In the beginning_directives chapter, we touched upon how scope is passed into a
directive.

templateUrl (string|function)

templateUrl is optional. If provided, it must be set to either:

• the path to an HTML file, as a string
• a function that takes two arguments: tElement and tAttrs. The function must return the path
to an HTML file as a string.

In either case, the template URL is passed through the built-in security layer that Angular
provides; specifically $getTrustedResourceUrl, which protects our templates from being fetched
from untrustworthy resources.

By default, the HTML file will be requested on demand via Ajax when the directive is invoked. We
should bear two important factors in mind:

Directives Explained 109

• When developing locally, we should run a server in the background to serve up the local HTML
templates from our file system. Failing to do so will raise a Cross Origin Request Script (CORS)
error.

• Template loading is asynchronous, which means that compilation and linking are suspended
until the template is loaded.

Having towait for a large number of templates to asynchronously load via Ajax can really slow down
a client-side application. To prevent such a delay, it’s possible to cache one or more HTML templates
prior to deploying an application. Caching is a better option in most cases because Angular will not
make an Ajax request, thus providing better performance by minimizing the number of requests
run. For more information about caching, check out the in-depth discussion on caching here.

After a template has been fetched, Angular caches it in the default $templateCache services. In
production, we can pre-cache these templates into a JavaScript file that defines our templates so
we don’t have to fetch the templates over XHR. For more information about how this adjustment
works, see the next steps chapter.

replace (boolean)

replace is optional. If provided, it must be set to true. It is set to false by default. That means that
the directive’s template will be appended as a child node within the element where the directive was
invoked:

<div some-directive></div>

.directive('someDirective' function() {

return {

template: '<div>some stuff here<div>'

}

})

The result when the directive is invoked will be (remember that this behavior is the default, when
replace is false):

<div some-directive>

<div>some stuff here<div>

</div>

If we set replace as true:

Directives Explained 110

.directive('someDirective' function() {

return {

replace: true // MODIFIED

template: '<div>some stuff here<div>'

}

})

then the result when the directive is invoked will be:

<div>some stuff here<div>

Directive Scope

In order to fully understand the rest of the options available inside a directive definition object, we’ll
need to have an understanding of how scope works.

A special object, known as the $rootScope, is initially created when we declare the ng-app directive
in the DOM:

<div ng-app="myApp"

ng-init="someProperty = 'some data'"></div>

<div ng-init="siblingProperty = 'more data'">

Inside Div Two

<div ng-init="aThirdProperty"></div>

</div>

In the code above, we set three properties on the root scope of our app: someProperty, siblingProperty,
and anotherSiblingProperty.

From here on out, every directive invoked within our DOM will:

• directly use the same object,
• create a new object that inherits from the object, or
• create an object that is isolated from the object

The example above shows the first case. The second div is a sibling element that has get and set

access to the $rootScope. Furthermore, inside this second div is another div that also has get and
set access to the exact same root scope.

Just because a directive is nested within another directive does not necessarily mean its scope has
been changed. By default, child directives are given access to the exact same scope as their parent
DOM nodes. The reason for that can be understood by learning about the scope directive option,
which is set to false by default.

Directives Explained 111

Scope Option (boolean|object)

scope is optional. It can be set to true or to an object, {}. By default, it is set to false.

When scope is set to true, a new scope object is created that prototypically inherits from its parent
scope.

If multiple directives on an element provide an isolate scope, only one new scope is applied. Root
elements within the template of a directive always get a new scope; thus, for those objects, scope is
set to true by default.

The built-in ng-controller directive exists for the sole purpose of creating a new child scope that
prototypically inherits from the surrounding scope. It creates a new scope that inherits from the
surrounding scope.

Let’s amend our last example, with this knowledge in hand:

<div ng-app="myApp"

ng-init="someProperty = 'some data'"></div>

<div ng-init="siblingProperty = 'more data'">

Inside Div Two: {{ aThirdProperty }}

<div ng-init="aThirdProperty = 'data for 3rd property'"

ng-controller="SomeController">

Inside Div Three: {{ aThirdProperty }}

<div ng-init="aFourthProperty">

Inside Div Four: {{ aThirdProperty }}

</div>

</div>

</div>

If we run the previous code by itself, it fails. This failure occurs because we haven’t defined an
associated controller in our JavaScript, so let’s do that:

angular.module('myApp', [])

.controller('SomeController', function($scope) {

// we can leave it empty, it just needs to be defined

})

If we reload the page, we can see that inside the second div, {{ aThirdProperty }} is undefined
and therefore outputs nothing. Inside the third div, however, the value we set inside our inherited
scope data for a 3rd property is shown.

Directives Explained 112

Directives

To further prove the point that this scope flows downwards during inheritance, and not upwards,
let’s make another child scope and check to see that {{ aThirdProperty }} inherits its value from
its parent.

<div ng-app="myApp"

ng-init="someProperty = 'some data'"></div>

<div ng-init="siblingProperty = 'more data'">

Inside Div Two: {{ aThirdProperty }}

<div ng-init="aThirdProperty = 'data for 3rd property'"

ng-controller="SomeController">

Inside Div Three: {{ aThirdProperty }}

<div ng-controller="SecondController">

Inside Div Four: {{ aThirdProperty }}

</div>

</div>

</div>

We’ll need to update our JavaScript so that SecondController is defined:

angular.module('myApp', [])

.controller('SomeController', function($scope) {

// we can leave it empty, it just needs to be defined

})

.controller('SecondController', function($scope) {

// also can be empty

})

To create our own directive whose scope prototypically inherits from the outside world, set the scope
property to true:

Directives Explained 113

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'A',

scope: true

}

})

Now let’s use our directive to alter the scope of the DOM:

<div ng-app="myApp"

ng-init="someProperty = 'some data'"></div>

<div ng-init="siblingProperty = 'more data'">

Inside Div Two: {{ aThirdProperty }}

<div ng-init="aThirdProperty = 'data for 3rd property'"

ng-controller="SomeController">

Inside Div Three: {{ aThirdProperty }}

<div ng-controller="SecondController">

Inside Div Four: {{ aThirdProperty }}

Outside myDirective: {{ myProperty }}

<div my-directive ng-init="myProperty = 'wow, this is cool'">

Inside myDirective: {{ myProperty }}

<div>

</div>

</div>

</div>

Live JS Bin⁵⁶

Now that we understand how surrounding scope and inherited scope work, there remains only one
piece to the scope puzzle: isolate scope.

Isolate Scope

Isolate scope is likely the most confusing of the three options available when setting the scope

property, but also the most powerful. Isolate scope is based on the ideology present in Object
Oriented Programming. Languages like Small Talk and design principles like SOLID have found
their way into Angular via directives that use isolate scope.

⁵⁶http://jsbin.com/ITEBAF/1/edit

http://jsbin.com/ITEBAF/1/edit
http://jsbin.com/ITEBAF/1/edit

Directives Explained 114

The main use case for such directives is reusable widgets that can be shared and used in unex-
pected contexts without polluting the scope around them or having their internal scope corrupted
inadvertently.

To create a directive with isolate scope we’ll need to set the scope property of the directive to an
empty object, {}. Once we’ve done that, no outer scope is available in the template of the directive:

<div ng-controller='MainController'>

Outside myDirective: {{ myProperty }}

<div my-directive ng-init="myProperty = 'wow, this is cool'">

Inside myDirective: {{ myProperty }}

<div>

</div>

angular.module('myApp', [])

.controller('MainController', function($scope) {})

.directive('myDirective', function() {

return {

restrict: 'A',

scope: {},

template: '<div>Inside myDirective {{ myProperty }}</div>'

};

})

Live JS Bin⁵⁷

A look at the JS Bin reveals that it seems almost identical to setting scope to true. We can see a
difference by making another directive with inherited scope and comparing the two:

<div ng-init="myProperty = 'wow, this is cool'"></div>

Surrounding scope: {{ myProperty }}

<div my-inherit-scope-directive="SomeController">

Inside an directive with inherited scope: {{ myProperty }}

</div>

<div my-directive>

Inside myDirective, isolate scope: {{ myProperty }}

<div>

The JavaScript code:

⁵⁷http://jsbin.com/eguDEpa/1/edit

http://jsbin.com/eguDEpa/1/edit
http://jsbin.com/eguDEpa/1/edit

Directives Explained 115

angular.module('myApp', [])

.directive('myDirective', function() {

return {

restrict: 'A',

scope: {}

};

})

.directive('myInheritScopeDirective', function() {

return {

restrict: 'A',

scope: true

};

})

Live JS Bin⁵⁸

With the most important scope-related concepts out of the way, we can bind properties on our
isolated scope with the outside world, allowing us to poke holes through the isolate scopes.

Two-Way Data Binding

Perhaps the most powerful feature in Angular, two-way data binding allows us to bind the value of
a property inside the private scope of our directive to the value of an attribute available within the
DOM. In the previous chapter on directives we looked at a good example of how ng-model provides
two-way data binding with the outside world and a custom directive we created; this example in
many ways mirrored the behavior that ng-bind, itself, provides. Review that chapter and practice
the example to gain a greater understanding of this important concept.

Transclude

transclude is optional. If provided, it must be set to true. It is set to false by default.

Transclusion is sometimes considered an advanced topic, but once it makes sense it’ll fit right in
with the rules we’ve just learned about scope. We’ll also see that it’s a very powerful addition to our
tool set, especially when building customizable chunks of HTML that can be shared with a team,
between projects, and with the rest of the Angular community.

Transclusion is most often used for creating reusable widgets. A great example is a modal box or a
navbar.

Transclude allows us to pass in an entire template, including its scope, to a directive. Doing so gives
us the opportunity to pass in arbitrary content and arbitrary scope to a directive. In order for scope

⁵⁸http://jsbin.com/OxAlek/1/edit

http://jsbin.com/OxAlek/1/edit
http://jsbin.com/OxAlek/1/edit

Directives Explained 116

to be passed in, the scope option must be isolated, {}, or set to true. If the scope option is not set,
then the scope available inside the directive will be applied to the template passed in.

Only use transclude: true when you want to create a directive that wraps arbitrary
content.

Transclusion makes it easy to allow users of our directive to customize all these aspects at once by
allowing them to provide their own HTML template that has its own state and behavior.

Let’s walk through a small example where we provide a reusable directive that others can customize.

Let’s create a resuable sidebar box, similar to the sidebars that are popular with WordPress blogs.
We want to keep our boxes’ styling consistent, but want to reduce the amount of HTML that we
have to write for each one.

For instance, let’s say we want to create a sidebar box that takes a title and some HTML content,
like so:

<div sidebox title="Links">

First link

Second link

</div>

We can create the sidebox directive fairly simply by creating a directive with the transclude option
set to true:

angular.module('myApp', [])

.directive('sidebox', function() {

return {

restrict: 'EA',

scope: {

title: '@'

},

transclude: true,

template: '<div class="sidebox">\

<div class="content">\

<h2 class="header">{{ title }}</h2>\

\

\

</div>\

</div>'

}

});

Directives Explained 117

This code tells the Angular compiler that where it finds the ng-transclude directive is where it
should place the content that it has captured from inside the DOM element.

We can reuse this directive with the transclusion to provide a secondary element without needing
to worry about the styles and the layout.

For instance, this code will yield us two boxes with consistent styles:

<div sidebox title="Links">

First link

Second link

</div>

<div sidebox title="TagCloud">

<div class="tagcloud">

Graphics

AngularJS

D3

Front-end

Startup

</div>

</div>

sidebox

If we use transclude, watching for model property changes from within the controller of a directive
will not work properly. That is why best practice always recommends using the $watch service from
within the link function.

Directives Explained 118

Controller (string|function)

The controller option takes a string or a function. When set to a string, the name of the string is
used to look up a controller constructor function registered elsewhere in our application:

angular.module('myApp', [])

.directive('myDirective', function() {

restrict: 'A', // always required

controller: 'SomeController'

})

// elsewhere in our application

// either in the same file or another

// one included by our index.html

angular.module('myApp')

.controller('SomeController', function($scope, $element, $attrs, $transclude) {

// controller logic goes here

})

A controller can be defined inline within a directive by setting the controller function as an
anonymous constructor function:

angular.module('myApp', [])

.directive('myDirective', function() {

restrict: 'A',

controller:

function($scope, $element, $attrs, $transclude) {

// controller logic goes here

}

})

As the above examples suggest, the arguments that we can pass into a controller are:

$scope

The current scope associated with the directive element.

$element

The current element directive element.

$attrs

The attributes object for the current element. For instance, the following element:

Directives Explained 119

<div id="aDiv" class="box"></div>

has the attribute object of:

{

id: "aDiv",

class: "box"

}

$transclude

A transclude linking function pre-bound to the correct transclusion scope.

This transclude linking function is the function that will run to actually create a clone of the element
and manipulate the DOM.

It goes against the Angular Way to manipulate the DOM inside of a controller, but it is
possible through the linking function. It is a best practice to only use this transcludeFn
inside the compile option.

For example, let’s be lazy and say that we just want to add a linktag through the use of a directive.
We can do that inside the controller using the $transclude function like so:

angular.module('myApp')

.directive('link', function() {

return {

restrict: 'EA',

transclude: true,

controller:

function($scope, $element, $transclude) {

$transclude(function(clone) {

var a = angular.element('<a>');

a.attr('href', clone.text());

a.text(clone.text());

$element.append(a);

});

}

}

});

A directive’s controller can often be interchanged with the directive’s link function. The main use
case for a controller is when we want to provide reusable behavior between directives. As the link
function is only available inside the current directive, any behavior defined within is not shareable.

Directives Explained 120

The link function provides isolation between directives, while the controller defines
shareable behavior.

Because a directive can require the controller of another directive, however, controllers are a great
place to place actions we may want to use in more than one directive.

The controller option attaches a controller to the template of the directive, acting just like
ngController would if it were the parent scope of the directive’s template.

Using the controller option is good when we want to expose an API to other directives; otherwise,
we can rely on link to provide us local functionality for the directive element. It’s better to use link
when we use scope.$watch() or when we’re doing any interaction with the live scope of the DOM.

Technically, the $scope passed into a controller is passed in before the DOM is actually rendered
to the screen. In certain situations, for example when working with transcludes, the scope inside a
controller may reflect a different scope than we might expect, and the $scope object in such cases
is not always guaranteed to update.

Use the scope argument passed into the link function when expecting to interact with the
instance of the scope on screen.

ControllerAs (string)

The controllerAs option enables us to set a controller alias, thus allowing us to publish our
controller under this name and giving the scope access to the controllerAs name. This step allows
us to reference the controller from inside the view and even allows us to not need to inject $scope.

For instance, we can create a MainController that never injects $scope, like so:

angular.module('myApp')

.controller('MainController', function() {

this.name = "Ari";

});

Now, in our HTML, we can simply use this MainController without needing to reference the scope
at all.

<div ng-app ng-controller="MainController as main">

<input type="text" ng-model="main.name" />

{{ main.name }}

</div>

Directives Explained 121

This option may seem trivial, but it gives us a lot of power in how we can use and create anonymous
controllers in our routes and directives. That power allows us to create dynamic objects as controllers
that are isolated and easy to test.

For instance, we can create an anonymous controller in a directive, like so:

angular.module('myApp')

.directive('myDirective', function() {

return {

restrict: 'A',

template: '<h4>{{ myController.msg }}</h4>',

controllerAs: 'myController',

controller: function() {

this.msg = "Hello World"

}

}

});

require (string|array)

The require option can be set to a string or an array of strings. The string(s) contain the name
of another directive. require is used to inject the controller of the required directive as the fourth
parameter of the current directive’s linking function.

The string or strings (if it is an array) provided are the names of directives that reside in the current
scope of the current directive.

The scope setting will affect what the surrounding scope refers to, be it an isolate scope, an
independent scope, or no scope at all. In all cases, the Angular compiler will consult the template of
the current directive when looking for child controllers.

Without using the ˆ prefix, the directive only looks for the controller on its own element.

// ...

restrict: 'EA',

require: 'ngModel'

// ...

This directive definition will only look for the ng-model="" definition in the local scope of the
directive.

Directives Explained 122

<!-- Our directive will find the ng-model on the local scope -->

<div my-directive ng-model="object"></div>

The string(s) provided to the require option may optionally be prefixed with the following options,
which change the behavior when looking up a controller:

?

If the required controller is not found on the directive provided, pass null to the 4th argument of
the link function.

ˆ

If we provide the prefix ˆ, then the directive will look upwards on its parent chain for the controller
in the require option.

?ˆ

Combine the behavior of the prior two options where we optionally require the directive and look
up the parent chain for the directive.

no prefix

If we pass no prefix, we tell the directive to locate the required controller on the named directive
provided and throw an error if no controller (or directive by that name) is found.

Technically, we need to have a controller associated with anything we put in the require option.

AngularJS Life Cycle

Before our Angular application boots, it sits in our text editor as raw HTML. Once we’ve booted the
app, and the compile and link stages have taken place, however, we’re left with a live data-bound
application that responds on the fly to changes made by the user on the scope to which our HTML
is bound. How does this magic take place, and what do we need to know in order to build effective
applications?

There are two main phases that take place.

Directives Explained 123

Compile Phase

The first is called the compile phase. During the compile phase, Angular slurps up our initial HTML
page and begins processing the directives we declared according to the directive definitions we’ve
defined within our application’s JavaScript.

Each directive can have a template thatmay contain directives, whichmay have their own templates.
When Angular invokes a directive in the root HTML document, it will traverse the template for that
directive, which itself may contain directives, each with its own template.

This tree of templates can go arbitrarily deep and wide, but there is one caveat. While
it’s true that an element can be backed or decorated (via attributes) with more than one
directive and that any directive can contain a template that itself may contain directives
with templates, only the template belonging to the higest-priority directive will be parsed
and added to the tree of templates. The practical advice here is to separate directives that
contain templates from those that add behavior. Never further decorate an element with
another directive if that element already has a directive that brings its own template. Only
the template of the directive with the highest priority will have its template compiled.

Once a directive and its child templates have been walked or compiled, a function is returned for
the compiled template known as the template function. Before the template function for a directive
is returned, however, we have the opportunity to modify the compiled DOM tree.

At this point the DOM tree is not data bound, meaningwe’ve got just plain HTMLwe canmanipulate
with little to no performance costs. During this phase, built-in directives, such as ng-repeat and
ng-transclude, take advantage of this fact and manipulate the DOM before it has been bound to
any scope data.

ng-repeat, for example, loops over the array or object it has been given, building out the full
representation of the DOM before passing the result off for data binding.

If we’re building an unordered list using ng-repeat, where each is decorated with the ng-click
directive, this process provides us with performance that is orders of magnitude faster than if we
had built the list manually, especially as our list approaches 100 elements.

The difference is that instead of cloning an , linking it with data, and then repeating that for
each item in the loop, we’re simply building out the unordered list first, then passing the new version
of the DOM (the compiled DOM) to the linking phase, the next phase in the directive life cycle.

Once we have compiled a complete representation of a single directive, we momentarily have
access to it via the compile function, whose method signature includes access to the element where
the directive was declared (tElement) and other attributes provided to that element(tAttrs). This
compile function returns the template function (mentioned above), which includes the entire parsed
tree.

The main takeaway here is that because each directive may have its own template and its own
compile function, each directive returns its own template function. The top-level directive that

Directives Explained 124

started the chain returns the combined template function of all its children, but anywhere within
that tree, we have access to just that branch via the compile function.

Finally, the template function is passed to the link function, where scope, determined by the directive
definition rules of each directive in the compiled DOM tree, is applied all at once. This compile then
link process provides our applications with huge performance gains.

Compile (object|function)

The compile option can return an object or a function.

Understanding the compile vs link option is one of the more advanced topics we’ll run across in
Angular, and it provides us with considerable context about how Angular really works.

The compile option by itself is not explicitly used very often; however, the link function is used
very often. Under the hood, when we set the link option, we’re actually creating a function that will
define the post() link function so the compile() function can define the link function.

Oftentimes, when we set the compile function, we’re interested in manipulating the DOM before
we place the directive on it with live data. Here, it is safe to manipulate HTML, add and remove
elements, etc.

The compile option and the link option are mutually exclusive. If both are set, then the
compile option will be expected to return the link function, while the link option will
simply be ignored.

// ...

compile: function(tEle, tAttrs, transcludeFn) {

var tplEl = angular.element('<div>' +

'<h2></h2>' +

'</div>');

var h2 = tplEl.find('h2');

h2.attr('type', tAttrs.type);

h2.attr('ng-model', tAttrs.ngModel);

h2.val("hello");

tEle.replaceWith(tplEl);

return function(scope, ele, attrs) {

// The link function

}

}

// ...

The template instance and link instance may be different objects if the template has been cloned.
Thus, we can only do DOM transformations that are safe to do to all cloned DOM nodes within the
compile function. Don’t do DOM listener registration: That should be done in the linking function.

Directives Explained 125

The compile function deals with transforming the template DOM.

The link function deals with linking scope to the DOM. Before scope is linked to the DOM,
we may manually manipulate the DOM. In practice, this manipulation is rather rare when writing
custom directives, but there are a few built-in directives that take advantage of this functionality.
Understanding the process will help us understand how Angular actually works.

Link

We use the link option to create a directive that manipulates the DOM.

The link function is optional. If the compile function is defined, it returns the link function; therefore,
the compile function will overwrite the link function when both are defined. If our directive is simple
and doesn’t require setting any additional options, we may return a function from the factory
function (callback function) instead of an object. When doing so, this function will be the link
function.

These two definitions of the directive are functionally equal:

angular.module('myApp' [])

.directive('myDirective', function() {

return {

pre: function(tElement, tAttrs, transclude) {

// executed before child elements are linked

// NOT safe to do DOM transformations here b/c the `link` function

// called afterward will fail to locate the elements for linking

},

post: function(scope, iElement, iAttrs, controller) {

// executed after the child elements are linked

// IS safe to do DOM transformations here

// same as the link function, if the compile option here we're

// omitted

}

}

});

Directives Explained 126

angular.module('myApp' [])

.directive('myDirective', function() {

return {

link: function(scope, ele, attrs) {

return {

pre: function(tElement, tAttrs, transclude) {

// executed before child elements are linked

// NOT safe to DOM transformations here b/c the `link` function

// called afterward will fail to locate the elements for linking

},

post: function(scope, iElement, iAttrs, controller) {

// executed after the child elements are linked

// IS safe to do DOM transformations here

// same as the link function, if the compile option here we're

// omitted

}

}

}

});

When defining the compile function instead of the link function, the link function is the second
method we can provide to the object returned, known as the postLink function. In essence, this fact
describes precisely what the link function is responsible for. It is invoked after the compiled template
has been linked to the scope, and is therefore responsible for setting up event listeners, watching for
data changes, and manipulating the live DOM.

The link function has control over the live data-bound DOM, and, as such, performance con-
siderations should be taken into account. Review the section on the life cycle of a directive for
more information on performance concerns when choosing to implement something in the compile
function versus the link function.

The link function has the following signature:

link: function (scope, element, attrs) {

// manipulate the DOM in here

}

If the directive definition has been provided with the require option, the method signature will gain
a fourth argument representing the controller or controllers of the required directive:

Directives Explained 127

require 'SomeController',

link: function (scope, element, attrs, SomeController) {

// manipulate the DOM in here, with access to the controller of the

// required directive

}

If the require option was given an array of directives, the fourth argument will be an array
representing the controllers for each of the required directives.

Let’s go over each of the arguments available to the link function:

scope

The scope to be used by the directive for registering watches from within the directive.

iElement

The instance element is the element where the directive is to be used. We should only manipulate
children of this element in the postLink function, since the children have already been linked.

iAttrs

The instance attributes are a normalized (pascalCased) list of attributes declared on this element
and are shared between all directive linking functions. These are passed as JavaScript objects.

controller

The controller argument points to the controller that’s defined by the require option. If there is
no require option defined, then this controller argument is set as undefined.

The controller is shared among all directives, which allows the directives to use the controllers as
a communication channel (public API). If multiple requires are set, then this will be an array of
controller instances, rather than just a single controller.

ngModel

The ngModel usage is a special directive name, as it gives us a deeper API for handling data from
within a controller. When we use the ngModel attribute from within a directive, it will get access
to a special API that deals with data binding, validations, CSS updates, and other things that don’t
deal with the actual DOM.

The ngModel controller, which is injected along with ngModel when we use it in our directive,
contains several methods. In order to gain access to this ngModelController, we must use the
require option (as we see above):

Directives Explained 128

angular.module('myApp')

.directive('myDirective', function() {

return {

require: '?ngModel',

link: function(scope, ele, attrs, ngModel) {

if (!ngModel) return;

// Now we have a hold of the

// ngModelController instance

// inside of our directive

}

};

});

Without passing the require option, the ngModelController will not be passed into our
directive.

Notice that this directive does not have an isolated scope. If we do set the directive to have the
isolate scope, then the ngModel value will not update the outer ngModel value: Angular looks up this
value outside of the local scope.

In order to set the view value of a scope, we must call the API function ngModel.$setViewValue().

The $setViewValue() function takes a single argument:

value (string) The value is the actual value to which we want to set the ngModel instance. This
method updates the local $viewValue on the controller and then passes that value through each of
the $parser functions (including all validations).

After the value is parsed and the $parser pipeline has completed its function, the value is assigned
to the $modelValue property and handed to the expression provided by the ng-model attribute on
the directive.

Finally, once all of these steps have been completed, all of the listeners in the $viewChangeListeners
list are called.

Note that simply by calling $setViewValue() alone does not invoke a new digest cycle, so even after
we set the $viewValue, we need to trigger a digest when we want the directive to update.

Using the $setViewValue()method is a good idea when creating a custom directive that listens for
custom events (for instance, when using a jQuery plugin that has a callback). We’ll want to set the
$viewValue with the callback change and execute a digest cycle.

Directives Explained 129

angular.module('myApp')

.directive('myDirective', function() {

return {

require: '?ngModel',

link: function(scope, ele, attrs, ngModel) {

if (!ngModel) return;

$(function() {

ele.datepicker({

onSelect: function(date) {

// set the view and call apply

scope.$apply(function() {

ngModel.$setViewValue(date);

});

}

})

});

}

};

});

Custom Rendering

It’s possible to define how the view actually gets rendered by defining the $render method on the
controller. This method will be applied after the $parser pipeline has completed.

We should apply this method only sparingly, as it can be disruptive to the Angular Way:

angular.module('myApp')

.directive('myDirective', function() {

return {

require: '?ngModel',

link: function(scope, ele, attrs, ngModel) {

if (!ngModel) return;

ngModel.$render = function() {

element.html(

ngModel.$viewValue() || 'None'

);

}

}

};

});

Directives Explained 130

Properties

ngModelController has a few properties available that we can examine and even modify to change
our view.

$viewValue

The $viewValue property holds onto the actual string value that’s updated in the view.

$modelValue

The $modelValue is the value held by the model. The $modelValue and the $viewValue can be
different, depending upon the $parser pipeline.

$parsers

The $parsers value is an array of functions that get executed in a pipeline.When the ngModel control
reads the value from the DOM, this value will be passed into the first $parser function. When it’s
complete, the return value will be passed to the next $parser, and so on and so forth.

These are used to sanitize and modify the value. We have described how the validation pipeline
works, at a basic level. For more information about creating a $parser for validation, head over to
the validations chapter.

$formatters

The $formatters value is an array of functions that get executed as a pipeline when the model value
changes. It is called on the way out of the $parser pipeline and is used to format and convert values
to display within the bound control.

$viewChangeListeners

The $viewChangeListeners value is an array of functions to execute when the view value has
changed. Using $viewChangeListeners is a way to remove a $watch on a value yet retain similar
behavior. These functions do not need to return a value, as they are ignored.

$error

The $error value holds onto the object of errors where the key is the failed validation name and the
value is the actual error message.

$pristine

The $pristine value is a boolean that tells us whether or not the user has made any changes to the
control yet.

Directives Explained 131

$dirty

The $dirty attribute value is the inverse of the $pristine value that tells us whether or not the user
has interacted with the control.

$valid

The $valid value tells us if there is no error on the control. It will be true if there are no errors and
false if there are.

$invalid

The $invalid value tells us whether or not there is at least one error on the control and is the inverse
of the $valid value.

Angular Module Loading
Angular modules, themselves, have the opportunity to configure themselves before the module
actually bootstraps and starts to run. We can apply different sets of logic during the bootstrap phase
of the app.

Configuration

Angular executes blocks of configuration during the provider registration and configuration phases
in the bootstrapping of the module. This phase is the only part of the Angular flow that may be
modified before the app starts up.

angular.module('myApp', [])

.config(function($provide) {

});

Throughout this book, we use methods that are syntactic sugar around the .config() function and
get executed at configuration time. For instance, when we create a factory or a directive on top of
the module:

angular.module('myApp', [])

.factory('myFactory', function() {

var service = {};

return service;

})

.directive('myDirective', function() {

return {

template: '<button>Click me</button>'

}

})

Angular executes these helper functions at compile time. They are functionally equivalent to:

Angular Module Loading 133

angular.module('myApp', [])

.config(function($provide, $compileProvider) {

$provide.factory('myFactory', function() {

var service = {};

return service;

});

$compileProvider.directive('myDirective',

function() {

return {

template: '<button>Click me</button>'

}

})

});

In particular, it’s also important to note that Angular runs these functions in the order in which
they are written and registered. That is to say that we cannot inject a provider that has not yet been
defined.

The only exception to the rule of in-order definitions is the constant()method. We always
place these at the beginning of all configuration blocks.

When writing configuration for a module, it’s important to note that there are only a few types of
objects that we can inject into the .config() function: providers and constants. If we inject any old
service into a .config() function, then we might accidentally instantiate one before we actually
configure it.

The by-product of this strict requirement for configurable services is that we can only inject custom
services that are built with the provider() syntax and cannot inject other services.

For more information on how to build with the provider syntax, head over to the services chapter.

These .config() blocks are how we’ll custom configure our own services, such as setting API keys
and custom URLs.

We can also define multiple configuration blocks, which are executed in order and allow us to focus
our configuration in the different phases of the app.

Angular Module Loading 134

angular.module('myApp', [])

.config(function($routeProvider) {

$routeProvider.when('/', {

controller: 'WelcomeController',

template: 'views/welcome.html'

});

})

.config(function(ConnectionProvider) {

ConnectionProvider.setApiKey('SOME_API_KEY');

})

The config() function takes a single argument:

configFunction (function) The function that Angular executes on module load.

Run Blocks

Unlike the configuration blocks, run blocks are executed after the injector is created and are the first
methods that are executed in any Angular app.

Run blocks are the closest thing in Angular to the mainmethod. The run block is code that is typically
hard to unit test and is related to the general app.

Typically, these run blocks are places where we’ll set up event listeners that should happen at the
global scale of the app. For example, we’ll use the .run() block to set up listeners for routing events
or unauthenticated requests.

Let’s say that we want to run a function that validates that we have an authenticated user every
time that we change our route. The only logical place to set this functionality is in the run method:

angular.module('myApp', [])

.run(function($rootScope, AuthService) { $rootScope.$on('$routeChangeStart',

function(evt, next, current) {

// If the user is NOT logged in

if (!AuthService.userLoggedIn()) {

if (next.templateUrl === "login.html") {

// Already heading to the login route so no need to redirect

} else {

$location.path('/login');

}

}

});

});

The run() function takes a single argument:

Angular Module Loading 135

initializeFn (function) Angular executes this function after it creates the injector.

Multiple Views and Routing
In a single-page app, navigating from one page view to another is crucial. When apps grow more
and more complex, we need a way to manage the screens that a user will see as they navigate their
way through the app.

We can already support such management by including template code in line in the main HTML,
but not only will this in-line code grow large and unmanageable, it will also make it difficult to
allow other developers to join in development.

Rather than including multiple templates in the view (which we could do with the ng-include

directive), we can break out the view into a layout and template views and only show the view we
want to show based upon the URL the user is currently accessing.

We’ll break these partial templates into views to be composed inside of a layout template. AngularJS
allows us to do that by declaring routes on the $routeProvider, a provider of the $route service.

Using the $routeProvider, we can take advantage of the browser’s history navigation and enable
users to bookmark and share specific pages, as it uses the current URL location in the browser.

Installation

As of version 1.2.2, ngRoutes has been pulled out of the core of Angular into its own module. In
order to use routes in our Angular app, we need to install and reference it in our app.

We can download it from code.angularjs.org⁵⁹ and save it in a place that we can reference it from
our HTML, like js/vendor/angular-route.js.

We can also install it using Bower, which will place it in our usual Bower directory. For more
information about Bower, see the Bower chapter.

$ bower install --save angular-route

We need to reference angular-route in our HTML after we reference Angular itself.

<script src="js/vendor/angular.js"></script>

<script src="js/vendor/angular-route.js"></script>

Lastly, we need to reference the ngRoute module as a dependency in our app module:

⁵⁹http://code.angularjs.org/

http://code.angularjs.org/
http://code.angularjs.org/

Multiple Views and Routing 137

angular.module('myApp', ['ngRoute']);

Layout Template

To make a layout template, we need to change the HTML in order to tell AngularJS where to render
the template. Using the ng-view directive in combination with the router, we can specify exactly
where in the DOM we want to place the rendered template of the current route.

For instance, a layout template might look something like:

<header>

<h1>Header</h1>

</header>

<div class="content">

<div ng-view></div>

</div>

<footer>

<h5>Footer</h5>

</footer>

In this case, we are placing all of the rendered content in the <div class="content">, whereas we’re
leaving the <header> and <footer> elements intact on route changes.

The ng-view directive is a special directive that’s included with the ngRoute module. Its specific
responsibility is to stand as a placeholder for $route view content.

It creates its own scope and nests the template inside of it.

The ng-view directive is a terminal directive at a 1000 priority. Angular will not run
any directives on the element at a lower priority, which is most directives (i.e., all other
directives on the <div ng-view></div> element are meaningless).

The ngView directive follows these specific steps:

• Any time the $routeChangeSuccess event is fired, the view will update
• If there is a template associated with the current route:

– Create a new scope
– Remove the last view, which cleans up the last scope
– Link the new scope and the new template
– Link the controller to the scope, if specified in the routes
– Emits the $viewContentLoaded event
– Run the onload attribute function, if provided

Multiple Views and Routing 138

Routes

We use one of two methods to declare all application routes in AngularJS: the when method and the
otherwise method.

To create a route on a specific module or app, we use the config function.

angular.module('myApp', []).

config(['$routeProvider', function($routeProvider) {

}]);

We’re using special dependency injection syntax here. For more information on this
syntax, check out the dependency injection chapter.

Now, to add a specific route, we can use the when method. This method takes two parameters
(when(path, route)).

This block shows how can create a single route:

angular.module('myApp', []).

config(['$routeProvider', function($routeProvider) {

$routeProvider

.when('/', {

templateUrl: 'views/home.html',

controller: 'HomeController'

});

}]);

The first parameter is the route path, which is matched against the $location.path, the path of
the current URL. Trailing or double slashes will still work. We can store parameters in the URL
by starting off the name with a colon (for instance, :name). We’ll talk about how to retrieve these
parameters using the $routeParams.

The second parameter is the configuration object, which determines exactly what to do if the route
in the first parameter is matched. The configuration object properties that we can set are controller,
template, templateURL, resolve, redirectTo, and reloadOnSearch.

A more complex routing scenario requires multiple routes and a catch-all that redirects a route.

Multiple Views and Routing 139

angular.module('myApp', []).

config(['$routeProvider', function($routeProvider) {

$routeProvider

.when('/', {

templateUrl: 'views/home.html',

controller: 'HomeController'

})

.when('/login', {

templateUrl: 'views/login.html',

controller: 'LoginController'

})

.when('/dashboard', {

templateUrl: 'views/dashboard.html',

controller: 'DashboardController',

resolve: {

user: function(SessionService) {

return SessionService.getCurrentUser();

}

}

})

.otherwise({

redirectTo: '/'

});

}]);

controller

controller: 'MyController'

// or

controller: function($scope) {}

If we set the controller property on the configuration object, the controller given will be associated
with the new scope of the route. If we pass a string, it associates the registered controller on the
module with the new route. If we pass a function, this function will be associated with the template
as the controller for the DOM element.

template

template: '<div><h2>Route</h2></div>'

If we set the template property in the configuration object, Angular will render the HTML template
in the ng-view DOM element.

templateUrl

Multiple Views and Routing 140

templateUrl: 'views/template_name.html'

If the templateUrl property is set, then your app will attempt to fetch the view using XHR (utilizing
the $templateCache). If it finds the template and can load it, Angular will render the template’s
contents in the ng-view DOM element.

resolve

resolve: {

'data': ['$http', function($http) {

return $http.get('/api').then(

function success(resp) { return response.data; }

function error(reason) { return false; }

);

}]

}

If we have set the resolve property, Angular will inject the elements of the map into the controller.
If these dependencies are promises, they will be resolved and set as a value before the controller is
loaded and before the $routeChangeSuccess event is fired.

The map object can be a:

• key, where the key is the string name of a dependency that will be injected into the controller
• factory, where the factory can either be a string of the name of a service, a function whose
result is injected into the controller, or a promise that is to be resolved (whereupon the resulting
value is injected into the controller)

In the example above, resolve sends the $http request off and fills the value of ‘data’ as the result of
the request. The data key of the map above will be injected into our controller, so it can be retrieved
in the controller.

redirectTo

redirectTo: '/home'

// or

redirectTo: function(route, path, search)

If the redirectTo property is set with a string, then the value will change the path and trigger a
route change to the new path.

If the redirectTo property is set with a function, the result of the function will be set as the value
of the new path, triggering a route-change request.

If the redirectTo property is a function, Angular will call it with one of the following parameters:

1: The route parameters extracted from the current path 2: The current path 3: The current search

Multiple Views and Routing 141

reloadOnSearch

If the reloadOnSearch option is set to true (by default), then reload the routewhen $location.search()
is changed. If you set this option to false, then the page won’t reload the route if the search part of
the URL changes. This tip is useful for nested routing or in-place pagination, etc.

Now we can set up our routes using the when function.

In this example, we’re going to set up two routes: a home route and an inbox route. We’ll also set
the home route as the default route.

angular.module('MyApp', []).

config(['$routeProvider', function($routeProvider) {

$routeProvider

.when('/', {

controller: 'HomeController',

templateUrl: 'views/home.html'

})

.when('/inbox/:name', {

controller: 'InboxController',

templateUrl: 'views/inbox.html'

})

.otherwise({redirectTo: '/'});

}]);

Above, we’ve set up these three routes with the whenmethod. If no routematches, then the otherwise
method will be called. Using the otherwise method, we’ve set up a default route of ‘/’.

When the browser loads the Angular app, it will default to the URL set as the default route. Unless
we load the browser with a different URL, the default is the ‘/’ route.

$routeParams

As mentioned above, if we start a route param with a colon (:), AngularJS will parse it out and pass
it into the $routeParams. For instance, if we set up a route like so:

$routeProvider

.when('/inbox/:name', {

controller: 'InboxController',

templateUrl: 'views/inbox.html'

})

then Angular will populate the $routeParams with the key of :name, and the value of key will be
populated with the value of the loaded URL.

If the browser loads the URL /inbox/all, then the $routeParams object will look like:

Multiple Views and Routing 142

{ name: 'all' }

As a reminder, to get access to these variables in the controller, we need to inject the $routeProvider
in the controller:

app.controller('InboxController', function($scope, $routeParams) {

// We now have access to the $routeParams here

});

$location Service

AngularJS provides a service that parses the URL in the address bar and gives you access to the route
of the current path of your applications. It also gives you the ability to change paths and deal with
any sort of navigation.

The $location service provides a nicer interface to the window.location JavaScript
object and integrates directly with our AngularJS apps.

We’ll use the $location service whenever we need to provide a redirect internal to our app, such as
redirecting after a user signs up, changes settings, or logs in.

The $location service does not provide access to refreshing the entire page. If we need to refresh
the entire page, we need to use the $window.location object (an interface to window.location).

path()

To get the current path, we can run the path() method:

$location.path(); // returns the current path

To change the current path and redirect to another URL in the app:

$location.path('/'); // change the path to the '/' route

The path method interacts directly with the HTML5 history API, so the user will be able to press
the back button and be returned to the previous page.

replace()

If you want to redirect completely without giving the user the ability to return using the back button
(it’s useful for times when a redirect occurs after they are redirected, for instance a redirect after
login), then AngularJS provides the replace() method:

Multiple Views and Routing 143

$location.path('/home');

$location.replace();

// or

$location.path('/home').replace();

absUrl()

If you want to get full URL representation with all segments encoded, use the absUrl() method:

$location.absUrl()

hash()

To get the hash fragment in the URL, we can use the hash() method:

$location.hash(); // return the current hash fragment

To change the current hash fragment, we can pass a string parameter into the method. Doing so
returns the location object.

$location.hash('movies'); // returns $location

host()

We can get the host of the current URL by using the host() method:

$location.host(); // host of the current url

port()

The port of the current URL is available through the port() method:

$location.port(); // port of the current url

protocol()

The protocol of the current URL is available through the protocol() method:

$location.protocol(); // protocol of the current url

search()

To get the search part of the current URL, we can use the search() function:

Multiple Views and Routing 144

$location.search();

We can pass in new search parameters, thus modifying the search portion of the URL:

// Setting search with an object

$location.search({name: 'Ari', username: 'auser'});

// Setting search with a string

$location.search('name=Ari&username=auser');

The search() method takes two parameters:

• search (optional string or object)

The search parameter represents the new search params. A hash object might contain an array of
values as well.

• paramValue (optional string)

If the search is a string, then the paramValue will override a single search parameter. If the value is
null, then the parameter will be removed.

url()

To get the URL of the current page, we can use the url() method:

$location.url(); // String of the url

We can set and change the URL using the url()method with parameters. This change modifies the
path, search, and hash when called with parameters and returns $location.

// Set the new url

$location.url("/home?name=Ari#hashthing")

The url() can take two parameters:

• url (optional string)

This is the new URL without the base prefix.

• replace (optional string)

This parameter is the path that we’re going to change.

Multiple Views and Routing 145

Routing Modes

The routing mode refers specifically to the format of the URL in the browser address bar. The default
behavior of the $location service is to route using the hashbang mode.

The routing mode determines what the URL of your site will look like.

Hashbang Mode

Hashbang mode is a trick that AngularJS uses to provide deep-linking capabilities to your Angular
apps. In hashbang mode (the fallback for html5 mode), URL paths take a prepended # character.
They do not rewrite tags and do not require any server-side support. Hashbang
mode is the default mode that AngularJS uses if it’s not told otherwise.

A hashbang URL looks like:

http://yoursite.com/#!/inbox/all

To be explicit and configure hashbang mode, it needs to be configured in the config function on an
app module.

angular.module('myApp', ['ngRoute'])

.config(['$locationProvider', function($locationProvider) {

$locationProvider.html5Mode(false);

}]);

We can also configure the hashPrefix, which, in hashbangmode, is the ! prefix. This prefix is part of
the fallback mechanism that Angular uses for older browsers. We can also configure this character.
To configure the hashPrefix:

angular.module('myApp', ['ngRoute'])

.config(['$locationProvider', function($locationProvider) {

$locationProvider.html5Mode(false);

$locationProvider.hashPrefix('!');

}]);

HTML5 Mode

The other routing mode that AngularJS supports is html5Mode. This mode makes your URLs look
like regular URLs (except that in older browsers they will look like the hashbang URL). For instance,
the same route above in HTML5 mode would look like:

Multiple Views and Routing 146

http://yoursite.com/inbox/all

Inside AngularJS, the $location service uses HTML5’s history API, allowing for our app to use the
regular URL path. The $location service automatically falls back to using hashbang URLs if the
browser doesn’t support the HTML5 history API.

One interesting feature of the $location service is that if a modern browser that does support the
HTML5 history API loads a hashbang URL, it will rewrite the URL for our users.

In HTML5 mode, Angular takes care of rewriting links when specified in the tags.
That is to say that as Angular compiles your app, it rewrites the href="" portion, depending upon
the browser’s capabilities.

For example, with the tag: Person, a legacy browser’s URL
will be rewritten to the hashbang URL equivalent: /index.html#!/person/42?all=true. In a
modern browser, it will see the URL as it was intended.

The back-end server will have to support URL rewriting on the server side. To support HTML5mode,
the server will have to make sure to deliver the index.html page for all apps. That ensures that our
Angular app will handle the route.

When writing links inside of our Angular app in html5mode, we’ll never want to use relative links.
If you are serving your app using the root, it won’t be a problem; however, if you are serving in any
other base route, our Angular app won’t be able to handle it.

Alternatively, you can set the base URL of your app using the <base> tag in the HEAD section of
the HTML document:

<base href="/base/url" />

Routing Events

The $route service fires events at different stages of the routing flow. It’s possible to set up event
listeners for these different routing events and react.

This functionality is useful particularly when you want to manipulate events based upon routes and
is particularly useful for detecting when users are logged in and authenticated.

We need to set up an event listener to listen for routing events. To set it up, we use the $rootScope
to listen for the event.

$routeChangeStart

Angular broadcasts $routeChangeStart before the route changes. This step is where the route
services begin to resolve all of the dependencies necessary for the route change to happen and where
templates and the resolve keys are resolved.

Multiple Views and Routing 147

angular.module('myApp', [])

.run(['$rootScope', '$location', function($rootScope, $location) {

$rootScope.$on('$routeChangeStart',

function(evt, next, current) {

})

}])

The $routeChangeStart event fires with two parameters:

• The next URL to which we are attempting to navigate
• The URL that we are on before the route change

$routeChangeSuccess

Angular broadcasts the $routeChangeSuccess event after the route dependencies have been re-
solved.

angular.module('myApp', [])

.run(['$rootScope', '$location', function($rootScope, $location) {

$rootScope.$on('$routeChangeSuccess', function(evt, next, previous) {

})

}])

The $routeChangeSuccess event fires with three parameters:

• The raw Angular evt object
• The route where the user currently is
• The previous route (or undefined if the current route is the first route)

$routeChangeError

Angular broadcasts the $routeChangeError event if any of the promises are rejected or fail.

angular.module('myApp', [])

.run(['$rootScope', '$location', function($rootScope, $location) {

$rootScope.$on('$routeChangeError', function(current, previous, rejection) {

})

}])

The $routeChangeError event fires with three parameters:

• The current route information
• The previous route information
• The rejection promise error

Multiple Views and Routing 148

$routeUpdate

Angular broadcasts the $routeUpdate event if the reloadOnSearch property has been set to false
and we’re reusing the same instance of a controller.

Note About Indexing

Web crawlers traditionally have a hard time with fat client-side JavaScript apps. To support web
crawlers that run through the app, we need to add a meta tag in the head. This meta tag causes the
crawler to request links with an empty escaped fragment parameter so that the back end will serve
back snippets of HTML.

<meta name="fragment" content="!" />

Other Advanced Routing Topics

Page Reloading

The $location service does not reload the entire page; it simply changes the URL. If we need to
cause a full page reload, we have to set the location using the $window service:

$window.location.href = "/reload/page";

Async Location Changes

If we need to use the $location service outside of the scope life cycle, we have to use the $apply
function to propagate the changes throughout the app. That’s because the $location service uses
the $digest phase as the impetus to start the browser route change, which is how routing events
work.

Dependency Injection
In general, there are only three ways an object can get a hold of its dependencies:

1. We can create it internally to the dependent.
2. We can look it up or refer to it as a global variable.
3. We can pass it in where it’s needed.

With dependency injection, we’re tackling the third way (the other two present other difficult
challenges, such as dirtying the global scope and making isolation nearly impossible). Dependency
injection is a design pattern that allows for the removal of hard-coded dependencies, thus making
it possible to remove or change them at run time.

This ability to modify dependencies at run time allows us to create isolated environments that are
ideal for testing. We can replace real objects in production environments with mocked ones for
testing environments.

Functionally, the pattern injects depended-upon resources into the destinationwhen needed by auto-
matically looking up the dependency in advance and providing the destination for the dependency.

Aswewrite components dependent upon other objects or libraries, wewill describe its dependencies.
At run time, an injector will create instances of the dependencies and pass them along to the
dependent consumer.

// Great example from the Angular docs

function SomeClass(greeter) {

this.greeter = greeter;

}

SomeClass.prototype.greetName = function(name) {

this.greeter.greet(name)

}

NOTE: It is never a good idea to create a controller on the global scope like we’ve done in
the sample code above. We’re doing it only as an example for simplicity’s sake.

At runtime, the SomeClass doesn’t care how it gets the greeter dependency, so long as it gets it.
In order to get that greeter instance into SomeClass, the creator of SomeClass is responsible for
passing in the SomeClass dependencies when it’s created.

Dependency Injection 150

Angular uses the $injector for managing lookups and instantiation of dependencies for this reason.
In fact, the $injector is responsible for handling all instantiations of our Angular components,
including our app modules, directives, controllers, etc.

When any of our modules boot up at run time, the injector is responsible for actually instantiating
the instance of the object and passing in any of its required dependencies.

For instance, this simple app declares a single module and a single controller, like so:

angular.module('myApp', [])

.factory('greeter', function() {

return {

greet: function(msg) { alert(msg); }

}

})

.controller('MyController',

function($scope, greeter) {

$scope.sayHello = function() {

greeter.greet("Hello!");

};

});

At run time, when Angular instantiates the instance of our module, it looks up the greeter and simply
passes it in naturally:

<div ng-app="myApp">

<div ng-controller="MyController">

<button ng-click="sayHello()">Hello</button>

</div>

</div>

Behind the scenes, the Angular process looks like:

// Load the app with the injector

var injector = angular.injector(['ng', 'myApp']);

// Load the $controller service with the injector

var $controller = injector.get('$controller');

var scope = injector.get('$rootScope').$new();

// Load the controller, passing in a scope

// which is how angular does it at runtime

var MyController = $controller('MyController', {$scope: scope})

Dependency Injection 151

Nowhere in the above example did we describe how to find the greeter; it simply works, as the
injector takes care of finding and loading it for us.

AngularJS uses an annotate function to pull properties off of the passed-in array during instantia-
tion. You can view this function by typing the following in the Chrome developer tools:

> injector.annotate(function($q, greeter) {})

["$q", "greeter"]

In every Angular app, the $injector has been at work, whether we know it or not. When we write
a controller without the [] bracket notation or through explicitly setting them, the $injector will
infer the dependencies based on the name of the arguments.

Annotation by Inference

Angular assumes that the function parameter names are the names of the dependencies, if not
otherwise specified. Thus, it will call toString() on the function, parse and extract the function
arguments, and then use the $injector to inject these arguments into the instantiation of the object.

The injection process looks like:

injector.invoke(function($http, greeter) {});

Note that this process will only work with non-minified, non-obfuscated code, as Angular needs to
parse the arguments intact.

With this JavaScript inference, order is not important: Angular will figure it out for us and inject
the right properties in the “right” order.

JavaScript minifiers generally change function arguments to the minimum number of
characters (along with changing white spaces, removing new lines and comments, etc.) so
as to reduce the ultimate file size of the JavaScript files. If we do not explicitly describe the
arguments, Angular will not be able to infer the arguments and thus the required injectable.

Explicit Annotation

Angular provides a method for us to explicitly define the dependencies that a function needs upon
invocation. This method allows for minifiers to rename the function parameters and still be able to
inject the proper services into the function.

The injection process uses the $inject property to annotation the function. The $inject property
of a function is an array of service names to inject as dependencies.

To use the $inject property method, we set it on the function or name.

Dependency Injection 152

var aControllerFactory =

function aController($scope, greeter) {

console.log("LOADED controller", greeter);

// ... Controller

};

aControllerFactory.$inject = ['$scope', 'greeter'];

// Greeter service

var greeterService = function() {

console.log("greeter service");

}

// Our app controller

angular.module('myApp', [])

.controller('MyController', aControllerFactory)

.factory('greeter', greeterService);

// Grab the injector and create a new scope

var injector = angular.injector(['ng', 'myApp']),

controller = injector.get('$controller'),

rootScope = injector.get('$rootScope'),

newScope = rootScope.$new();

// Invoke the controller

controller('MyController', {$scope: newScope});

With this annotation style, order is important, as the $inject array must match the ordering of the
arguments to inject. This method of injection does work with minification, because the annotation
information will be packaged with the function.

Inline Annotation

The last method of annotation that Angular provides out of the box is the inline annotation. This
syntactic sugar works the same way as the $inject method of annotation from above, but allows
us to make the arguments inline in the function definition. Additionally it affords us the ability to
not use a temporary variable in the definition.

Inline annotation allows us to pass an array of arguments instead of a function when defining an
Angular object. The elements inside this array are the list of injectable dependencies as strings, the
last argument being the function definition of the object.

For instance:

Dependency Injection 153

angular.module('myApp')

.controller('MyController',

['$scope', 'greeter',

function($scope, greeter) {

}]);

The inline annotation methodworkswith minifiers, as we are passing a list of strings. We often refer
this method as the bracket or array notation [].

$inject API

Although it’s relatively rare that we’ll need to work directly with the $injector, knowing about the
API will give us some good insight into how exactly it works.

annotate()

The annotate() function returns an array of service names that are to be injected into the function
when instantiated. The annotate() function is used by the injector to determine which services will
be injected into the function at invocation time.

The annotate() function takes a single argument:

• fn (function or array)

The fn argument is either given a function or an array in the bracket notation of a function definition.

The annotate()method returns a single array of the names of services that will be injected into the
function at the time of invocation.

var injector = angular.injector(['ng', 'myApp']);

injector.annotate(function($q, greeter) {});

// ['$q', 'greeter']

Try it in your Chrome Debugger.

get()

The get() method returns an instance of the service and takes a single argument.

• name (string)

The name argument is the name of the instance we want to get.

get() returns an instance of the service by name.

Dependency Injection 154

has()

The has() method returns true if the injector knows that a service exists in its registry and false if
it does not. It takes a single argument:

• name (string)

The string is the name of the service we want to look up in the injector’s registry.

instantiate()

The instantiate()method creates a new instance of the JavaScript type. It takes a constructor and
invokes the new operator with all of the arguments specified. It takes two arguments:

• Type (function)

This function is the annotation constructor function to invoke.

• locals (object – optional)

This optional argument provides another way to pass argument names into the function when it is
invoked.

The instantiate() method returns a new instance of Type.

invoke()

The invoke() method invokes the method and adds the method arguments from the $injector.

This invoke() method takes three arguments:

• fn (function)

This function is the one to invoke. The arguments for the function are set with the function
annotation.

• self (object – optional)

The self argument allows for us to set the this argument for the invoke method.

• locals (object – optional)

This optional argument provides another way to pass argument names into the function when it is
invoked.

The invoke() method returns the value that the fn function returns.

Dependency Injection 155

ngMin

With the three methods of defining annotations from above, it’s important to note that these options
all exist when defining a function. In production, however, it is often less convenient to explicitly
concern ourselves with order of arguments and code bloat.

The ngMin tool allows us to alleviate the responsibility to define our dependencies explicitly. ngMin is
a pre-minifier for Angular apps. It walks through our Angular apps and sets up dependency injection
for us.

For instance, it will turn this code:

angular.module('myApp', [])

.directive('myDirective',

function($http) {

})

.controller('IndexController',

function($scope, $q) {

});

into the following:

angular.module('myApp', [])

.directive('myDirective', [

'$http',

function ($http) {

}

]).controller('IndexController', [

'$scope',

'$q',

function ($scope, $q) {

}

]);

ngMin saves us a lot of typing and cleans our source files significantly.

Installation

To install ngMin, we’ll use the npm package manager:

Dependency Injection 156

$ npm install -g ngmin

If we’re using Grunt, we can install the grunt-ngmin Grunt task. If we are using Rails, we
can use the Ruby gem ngmin-rails.

Using ngMin

We can use ngMin in standalone mode at the CLI by passing two arguments: the input.js and the
output.js files or via stdio/stdout, like so:

$ ngmin input.js output.js

or

$ ngmin < input.js > output.js

where input.js is our source file and output.js is the annotated output file.

How It Works

At its core, ngMin uses an Abstract Syntax Tree (AST) as it walks through the JavaScript source. With
the help of astral, an AST tooling framework, it rebuilds the source with the necessary annotations
and then dumps the updated source using escodegen.

ngmin expects our Angular source code to consist of logical declarations. If our code uses syntax
similar to the code used in this book, ngMin will be able to parse the source and pre-minify it.

Services
Up until now, we’ve only concerned ourselves with how the view is tied to $scope and how the
controller manages the data. For memory and performance purposes, controllers are instantiated
only when they are needed and discarded when they are not. That means that every time we switch
a route or reload a view, the current controller gets cleaned up by Angular.

Services provide a method for us to keep data around for the lifetime of the app and communicate
across controllers in a consistent manner.

Services are singleton objects that are instantiated only once per app (by the $injector) and lazy-
loaded (created only when necessary). They provide an interface to keep together those methods
that relate to a specific function.

$http, for instance, is an example of an AngularJS service. It provides low-level access to the
browser’s XMLHttpRequest object. Rather than needing to dirty the application with low-level calls
to the XMLHttpRequest object, we can simply interact with the $http API.

// Example service that holds on to the

// current_user for the lifetime of the app

angular.module('myApp', [])

.factory('UserService', function($http) {

var current_user;

return {

getCurrentUser: function() {

return current_user;

},

setCurrentUser: function(user) {

current_user = user;

}

}

});

Angular comes with several built-in services with which we’ll interact consistently. It will also be
useful to make our own services for any decently complex application.

AngularJS makes it very easy to create our own services: All we need to do is register the service.
Once a service is registered, the Angular compiler can reference it and load it as a dependency for
runtime use. The name registry makes it easy to isolate application dependencies for mocks and
stubbing in our tests.

Services 158

Registering a Service

There are several ways to create and register a service with the $injector; we’ll explore them later
in this chapter.

The most common and flexible way to create a service uses the angular.module API factory:

angular.module('myApp.services', [])

.factory('githubService', function() {

var serviceInstance = {};

// Our first service

return serviceInstance;

});

Although this githubService doesn’t do anything very interesting, it is now registered with the
AngularJS app using the name githubService as its name.

This service factory function is responsible for generating a single object or function that becomes
this service, which will exist for the lifetime of the app. When our Angular app loads the service, the
service will execute this function and hold on to the returned value as the singleton service object.

The service factory function can be either a function or an array, just like the way we create
controllers:

// Creating the factory through using the

// bracket notation

angular.module('myApp.services', [])

.factory('githubService', [function($http) {

}]);

For instance, this githubService requires access to the $http service, so we’ll list the $http service
as a dependency for Angular to inject into the function.

angular.module('myApp.services', [])

.factory('githubService', function($http) {

// Our serviceInstance now has access to

// the $http service in it's function definition

var serviceInstance = {};

return serviceInstance;

});

Services 159

Now, anywhere that we need to access the GitHub API, we no longer need to call it through $http;
we can call the githubService instead and let it handle the complexities of dealing with the remote
service.

The GitHub API exposes the activity stream for the user on GitHub (this stream is simply a list of
recent events that a user has logged on GitHub). In our service, we can create a method that accesses
this API and exposes the resulting set to our API.

To expose a method on our service, we can place it as an attribute on the service object.

angular.module('myApp.services', [])

.factory('githubService', function($http) {

var githubUrl = 'https://api.github.com';

var runUserRequest = function(username, path) {

// Return the promise from the $http service

// that calls the Github API using JSONP

return $http({

method: 'JSONP',

url: githubUrl + '/users/' +

username + '/' +

path + '?callback=JSON_CALLBACK'

});

}

// Return the service object with a single function

// events

return {

events: function(username) {

return runUserRequest(username, 'events');

}

};

});

The githubService contains a single method that the components in our application can call.

Using Services

To use a service, we need to identify it as a dependency for the component where we’re using it: a
controller, a directive, a filter, or another service. At run time, Angular will take care of instantiating
it and resolving dependencies like normal.

To inject the service in the controller, we pass the name as an argument to the controller function.
With the dependency listed in the controller, we can execute any of the methods we define on the
service object.

Services 160

angular.module('myApp', ['myApp.services'])

.controller('ServiceController',

function($scope, githubService) {

// We can call the events function

// on the object

$scope.events =

githubService.events('auser');

});

With the new githubService injected into our ServiceController, it is now available for use just
like any other service.

Let’s set up our example flow to call the GitHub API for a GitHub username that we define in our
view. Just as we saw in the data binding section, we’ll bind the username property to the view.

<div ng-controller="ServiceController">

<label for="username">

Type in a GitHub username

</label>

<input type="text"

ng-model="username"

placeholder="Enter a GitHub username" />

<li ng-repeat="event in events">

<!--

event.actor and event.repo are returned

by the github API. To view the raw

API, uncomment the next line:

-->

<!-- {{ event | json }} -->

{{ event.actor.login }} {{ event.repo.name }}

</div>

Nowwe canwatch for the $scope.username property to react to howwe’ve changed the view, based
on our bi-directional data binding.

Services 161

.controller('ServiceController',

function($scope, githubService) {

// Watch for changes on the username property.

// If there is a change, run the function

$scope.$watch('username', function(newUsername) {

// uses the $http service to call the

// GitHub API and returns the resulting promise

githubService.events(newUsername)

.success(function(data, status, headers) {

// the success function wraps

// the response in data

// so we need to call data.data to

// fetch the raw data

$scope.events = data.data;

})

});

});

Since we are returning the $http promise, we can call the .success method on the
return as though we are calling $http directly.

Using $watch in the controller as above is not recommended. We’re using this example
only for simplicity’s sake. In production, we would wrap this functionality into a
directive and set the $watch function there instead.

In this example, you’ll notice that there is a delay before the input field changes. If we don’t include
this delay, we’ll end up calling the GitHub API for every keystroke that is entered into the input,
which is obviously not what we want.

To introduce this delay, we’re using the built-in $timeout service. To use the $timeout service, we
inject it into our controller just like we injected the githubService into the controller:

app.controller('ServiceController',

function($scope, $timeout, githubService) {

});

It’s conventional to inject any Angular services before our own custom services.

Now we can use the $timeout service in the controller. The $timeout service, in this case, cancels
any network requests that would otherwise be running and gives us a 350millisecond delay between
changes in the input field. In other words, if there is a delay of 350 milliseconds between keyboard
strokes, we’ll assume the user is done typing and we can start the GitHub request:

Services 162

app.controller('ServiceController',

function($scope, $timeout, githubService) {

// The same example as above, plus

// the $timeout service

var timeout;

$scope.$watch('username', function(newUserName) {

if (newUserName) {

// If there is a timeout already

// in progress

if (timeout) $timeout.cancel(timeout);

timeout = $timeout(function() {

githubService.events(newUserName)

.success(function(data, status) {

$scope.events = data.data;

});

}, 350);

}

});

});

Since we began this app, we’ve only looked at how services can bundle similar functionality together.
Using services is also the canonical way to share data across several controllers.

For instance, if our application requires authentication from a back-end service, we might want to
create a SessionsService that handles user authentication and holds onto a token passed by the
back-end service. When any part of our application wants to make an authenticated request, it can
use the SessionsService to get the access token.

If our application has a settings page where we set the user’s GitHub username, we’ll want to share
the username with the other controllers in our application.

To share data across controllers, we need to add a method to our service that stores the username.
Remember, the service is a singleton service that lives for the lifetime of the app, so we can store the
username safely inside of it.

angular.module('myApp.services', [])

.factory('githubService', function($http) {

var githubUrl = 'https://api.github.com',

githubUsername;

var runUserRequest = function(path) {

// Return the promise from the $http service

// that calls the Github API using JSONP

return $http({

Services 163

method: 'JSONP',

url: githubUrl + '/users/' +

githubUsername + '/' +

path + '?callback=JSON_CALLBACK'

});

}

// Return the service object with two methods

// events

// and setUsername

return {

events: function() {

return runUserRequest('events');

},

setUsername: function(username) {

githubUsername = username;

}

};

});

Now, we have a setUsername method in our service that enables us to set the username for the
current GitHub user.

In any controller in our application, we can inject the githubService and call events() without
concerning ourselves with whether or not we have the right username on our scope object.

angular.module('myApp', ['myApp.services'])

.controller('ServiceController',

function($scope, githubService) {

$scope.setUsername =

githubService.setUsername;

});

Options for Creating Services

While the most common method for registering a service with our Angular app is through the
factory() method, there are some other APIs we can take advantage of in certain situations to
shorten our code.

The five different methods for creating services are:

• factory()
• service()

Services 164

• constant()
• value()
• provider()

factory()

As we’ve seen, the factory() method is a quick way to create and configure a service.

The factory() function takes two arguments:

• name (string)

This argument takes the name of the service we want to register.

• getFn (function)

This function runs when Angular creates the service.

angular.module('myApp')

.factory('myService', function() {

return {

'username': 'auser'

}

});

The getFn will be invoked once for the duration of the app lifecycle, as the service is a singleton
object. As with other Angular services, when we define our service, getFn can take an array or a
function that will take other injectable objects.

The getFn function can return anything from a primitive value to a function to an object (similar to
the value() function).

angular.module('myApp')

.factory('githubService', [

'$http', function($http) {

return {

getUserEvents: function(username) {

// ...

}

}

}]);

Services 165

service()

If we want to register an instance of a service using a constructor function, we can use service(),
which enables us to register a constructor function for our service object.

The service() method takes two arguments:

• name (string)

This argument takes the name of the service instance we want to register.

• constructor (function)

Here is the constructor function that we’ll call to instantiate the instance.

The service() function will instantiate the instance using the new keyword when creating the
instance.

var Person = function($http) {

this.getName = function() {

return $http({

method: 'GET',

url: '/api/user'

});

};

};

angular.service('personService', Person);

provider

These factories are all created through the $provide service, which is responsible for instantiating
these providers at run time.

A provider is an object with a $get()method. The $injector calls the $getmethod to create a new
instance of the service. The $provider exposes several different API methods for creating a service,
each with a different intended use.

At the root of all the methods for creating a service is the providermethod. The provider()method
is responsible for registering services in the $providerCache.

Technically, the factory() function is shorthand for creating a service through the provider()

method wherein we assume that the $get() function is the function passed in.

The two method calls are functionally equivalent and will create the same service.

Services 166

angular.module('myApp')

.factory('myService', function() {

return {

'username': 'auser'

}

})

// This is equivalent to the

// above use of factory

.provider('myService', {

$get: function() {

return {

'username': 'auser'

}

}

});

Why would we ever need to use the .provider() method when we can just use the .factory()

method?

The answer lies in whether we need the ability to externally configure a service returned by the
.provider() method using the Angular .config() function. Unlike the other methods of service
creation, we can inject a special attribute into the config() method.

Let’s say we want to configure our githubService with our URL in advance of the application
starting up:

// register the service using `.provider`

angular.module('myApp', [])

.provider('githubService', function($http) {

// default, private state

var githubUrl = 'https://github.com'

setGithubUrl: function(url) {

// change default via .config

if (url) { githubUrl = url }

}

method: JSONP, // override me, if you want

$get: function($http) {

self = this;

return $http({

method: self.method,

url: githubUrl +

Services 167

'/events'

});

}

});

The idea here is that, by using the .provider() method, we have more flexibility when using our
service in more than one app, when sharing our service across applications, or when sharing with
the community.

With the example above, the provider() method creates an additional provider with the string
‘Provider’ appended to it that can be injected into the config() function.

angular.module('myApp', [])

.config(function(githubServiceProvider) {

githubServiceProvider

.setGithubUrl("git@github.com");

})

If wewant to be able to configure the service in the config() function, wemust use provider()
to define our service.

The provider() method registers a provider for a service. It takes two arguments:

• name (string)

The name argument is a string that we use as the key in the providerCache. This argument makes
the name + Provider available as the provider for the service. The name will be used as the name of
an instance of the service.

For instance, if we define a service as githubService, then the provider will be available as
githubServiceProvider.

• aProvider (object/function/array)

The aProvider argument can take a few different forms:

If the aProvider argument is a function, then the function is called through dependency injection
and is responsible for returning an object with the $get method.

If the aProvider argument is an array, then it’s treated just like a function with inline dependency
injection annotation. It will expect the last argument to be a function that returns an object with the
$get method.

If the aProvider argument is an object, then it is expected to have a $get method.

The provider() function returns an object that is a registered provider instance.

The most raw method of creating a service is by using the provider() API directly:

Services 168

// Example of creating a provider directly on the

// module object.

angular.module('myApp', [])

.provider('UserService', {

favoriteColor: null,

setFavoriteColor: function(newColor) {

this.favoriteColor = newColor;

},

// the $get function can take injectables

$get: function($http) {

return {

'name': 'Ari',

getFavoriteColor: function() {

return this.favoriteColor || 'unknown';

}

}

}

});

Creating a service in this way, we must return an object that has the $get() function defined;
otherwise, it will result in an error.

We can instantiate the service with the injector (although it’s unlikely that we’ll ever instantiate
it directly, as Angular apps do it on their own – see under the hood):

// Get the injector

var injector = angular.module('myApp').injector();

// Invoke our service

injector.invoke(

['UserService', function(UserService) {

// UserService returns

// {

// 'name': 'Ari',

// getFavoriteColor: function() {}

// }

}]);

Using .provide() is very powerful and gives us the ability to use and share our services across our
applications.

It is also important for us to know about the constant() and value() methods when creating
services.

Services 169

constant()

It’s possible to register an existing value as a service that we can later inject into other parts of our
app as a service. For instance, let’s say we want to set an apiKey for a back-end service. We can store
that constant value using constant().

The constant() function takes two arguments:

• name (string)

This argument is the name with which to register the constant.

• value (constant value)

This argument gives the value to register as the constant.

The constant() method returns a registered service instance.

angular.module('myApp')

.constant('apiKey', '123123123')

We can now inject this value into a configuration function just like any other service:

angular.module('myApp')

.controller('MyController',

function($scope, apiKey) {

// We can use apiKey as a constant

// string as 123123123 set from above

$scope.apiKey = apiKey;

});

The constant is not interceptable by the decorator.

Services 170

value()

If the return value of the $get method in our service is a constant, we don’t need to define a full-
blown service with a more complex method. We can simply use the value() function to register the
service.

The value() method accepts two arguments:

• name (string)

Once again, this argument gives the name with which we want to register the value.

• value (value)

We’ll return this value as the injectable instance.

The value() method returns a registered service instance for the name given.

angular.module('myApp')

.value('apiKey', '123123123');

When to Use Value or Constant

Themajor difference between the value()method and the constant()method is that you can inject
a constant into a config function, whereas you cannot inject a value.

Conversely, with constants, we’re unable to register service objects or functions as the value.

Typically, a good rule of thumb is that we should use value() to register a service object or function,
while we should use constant() for configuration data.

angular.module('myApp', [])

.constant('apiKey', '123123123')

.config(function(apiKey) {

// The apiKey here will resolve to 123123123

// as we set above

})

.value('FBid', '231231231')

.config(function(FBid) {

// This will throw an error with

// Unknown provider: FBid

// because the value is not accessible by

});

Services 171

decorator()

The $provide service gives us a way to intercept the service instance creation. Decorating our
services enables us to extend services or replace them with something else entirely.

Decorators, themselves, are very powerful in that we can not only provide decorations for our own
services, but we can intercept, interrupt, and even replace functionality in the core Angular services.
In fact, a lot of the core Angular testing functionality is built using $provide.decorator().

Use-cases for decorating services might include extending a service to cache external data requests
to localStorage or wrapping a service in debugging or tracing wrappers for development purposes.

For instance, let’s say that wewant to provide logging calls to our previously defined githubService.
Rather than modifying the original service, we can decorate it using a decorator() function.

The decorator() function takes two arguments:

• name (string)

Here we pass the name of the service to decorate.

• decoratorFn (function)

We give the function that we’ll invoke at the time of service instantiation. The function is called
with injector.invoke, which allows us to inject services into it.

In order to decorate a service, we need to inject the $delegate, which is the original service instance
that we can decorate.

For instance, to add a decorator function to our above custom githubService to add a timestamp
to every call, we can add a decorator function like the following:

var githubDecorator = function($delegate, $log) {

var events = function(path) {

var startedAt = new Date();

var events = $delegate.events(path);

var result = $delegate.locate();

// Events is a promise

events.always(function() {

$log.info("Fetching events" +

" took " +

(new Date() - startedAt) + "ms");

});

return result;

}

Services 172

return {

events: events

};

};

angular.module('myApp')

.config(function($provide) {

$provide.decorator('githubService',

githubDecorator);

});

Communicating with the Outside
World: XHR and Server-Side
Communication
AngularJS web apps are entirely client-side applications. As we’ve seen, we can write AngularJS
applications without integrating with a back end at all and still have a dynamic, responsive web
app.

Without a back end, we are limited to only showing information that we have at load time. Angular
provides us several methods if we want to integrate our AngularJS app with information from a
remote server.

Using $http

We can directly call out using the built-in $http service. The $http service is simply a wrapper
around the browser’s raw XMLHttpRequest object.

The $http service is a function that takes a single argument: a configuration object that is used to
generate a HTTP request. The function returns a promise that has two helper methods: success and
error.

See the $http config object section in this chapter for details on the available options.

The most basic usage of the method looks like:

$http({

method: 'GET',

url: '/api/users.json'

}).success(function(data, status, headers, config) {

// This is called when the response is

// ready

}).error(function(data, status, headers, config) {

// This is called when the response

// comes back with an error status

});

Communicating with the Outside World: XHR and Server-Side Communication 174

Notice that the $http object looks like we are passing in a callback method to call when the response
comes back. This observation is not accurate: The method actually returns a promise.

When this promise is returned, we can return the result of the $httpmethod as a variable and chain
other promises atop it to resolve when the HTTP has resolved.

We’ll use this technique quite often when we build services so that they can return a promise instead
of requiring a callback.

var promise = $http({

method: 'GET',

url: '/api/users.json'

});

Since the $httpmethod returns a promise object, we can use the thenmethod to handle the callback
when the response is ready. If we use the then method, we’ll get a special argument that represents
the response object for both success and error. Then receives optionally 2 functions as a parameter.
Otherwise, we can use the success and error callbacks instead.

promise.then(function(resp) {

// resp is a response object

}, function(resp) {

// resp with error

});

// OR we can use the success/error methods

promise.success(function(data, status, headers, config) {

// Handle successful responses

});

// error handling

promise.error(function(data, status, headers, config) {

// Handle non-successful responses

});

If the response status code is between 200 and 299, the response is considered successful, and the
success callback will be called. Otherwise, the error callback will be invoked.

Note that if the response results in a redirect, the XMLHttpRequest will follow it, and the
error callback will not be called.

Note that we have the ability to use the then() method or the success() and error() methods
on the HttpPromise. The difference between using the then() method and the convenience helpers
is that the success() and error() functions contain a destructured representation of the response
object, which the then() method receives in whole.

Communicating with the Outside World: XHR and Server-Side Communication 175

Whenwe call the $httpmethod, it won’t actually execute until the next $digest loop runs. Although
most of the time we’ll be calling $http inside of an $apply block, we can also execute the method
outside of the Angular digest loop.

To execute an $http function outside of the $digest loop, we need to wrap it in an $apply block.
That will force the digest loop to run, and our promises will resolve as we expect them to.

$scope.$apply(function() {

$http({

method: 'GET',

url: '/api/users.json'

});

});

Shortcut Methods

The $http service also provides handy methods that allow us to shorten any method calls that don’t
require more customization than a URL and a method name (or data with POST or PUT requests).

These shortcut methods allow us to modify the above $http GET call to:

// Shortened GET request

$http.get('/api/users.json');

get()

This method is the shortcut for sending a GET request.

The get() function accepts two parameters:

• url (string)

A relative or absolute URL specifying the destination of the request.

• config (optional object)

This object is an optional configuration object.

The get() method returns a HttpPromise object.

Communicating with the Outside World: XHR and Server-Side Communication 176

delete()

This method is the shortcut for sending a DELETE request.

The delete() function accepts two parameters:

• url (string)

This parameter gives a relative or absolute URL specifying the destination of the request.

• config (optional object)

This object is an optional configuration object.

The delete() method returns a HttpPromise object.

head()

This method is the shortcut for sending a HEAD request.

The head() function accepts two parameters:

• url (string)

This string is a relative or absolute URL specifying the destination of the request.

• config (optional object)

This object is an optional configuration object.

The head() method returns a HttpPromise object.

jsonp()

This method is the shortcut for sending a JSONP request.

The jsonp() function accepts two parameters:

• url (string)

This string is a relative or absolute URL specifying the destination of the request. In order to send
the JSONP request, it must contain the string JSON_CALLBACK. For instance:

Communicating with the Outside World: XHR and Server-Side Communication 177

$http

.jsonp("/api/users.json?callback=JSON_CALLBACK");

• config (optional object)

This object is an optional configuration object.

The jsonp() method returns a HttpPromise object.

post()

This method is the shortcut for sending a POST request.

The post() function accepts three parameters:

• url (string)

This string is a relative or absolute URL specifying the destination of the request.

• data (object or string)

This object contains the request data content.

• config (optional object)

This object is an optional configuration object.

The post() method returns a HttpPromise object.

put()

This method is the shortcut for sending a PUT request.

The put() function accepts three parameters:

• url (string)

This string is a relative or absolute URL specifying the destination of the request.

• data (object or string)

This object contains the request data content.

• config (optional object)

This object is an optional configuration object.

The put() method returns a HttpPromise object.

Communicating with the Outside World: XHR and Server-Side Communication 178

Configuration Object

When we call the $http service as a method, we pass it a configuration object, which is used to
describe how to craft the XMLHttpRequest object.

It can contain the following keys:

method (string)

This key is the HTTP method we use to make the request. It should be one of the following: ‘GET’,
‘DELETE’, ‘HEAD’, ‘JSONP’, ‘POST’, ‘PUT’.

url (string)

This string is the absolute or relative URL of the resource that is being requested.

params (map of strings/objects)

This key is the map of strings or objects that will be turned into the query string after the URL. If
the value is not a string, it will be JSONified.

// Will params into ?name=ari

$http({

params: {"name": "ari"}

})

data (string/object)

This object contains the data that will be sent as the message data.

headers (object)

This object is the map of strings for functions that return strings representing HTTP headers to send
with the request. If the return value of the function is null, the header will not be sent.

xsrfHeaderName (string)

This string is the name of the HTTP header to populate with the XSRF token.

xsrfCookieName (string)

This string contains the name of the cookie that holds the XSRF token.

transformRequest (function/array of functions)

This function or array of functions takes the HTTP request body and headers and returns their
transformed versions. We generally use it to serialize data before it is sent to the server.

The function looks like:

Communicating with the Outside World: XHR and Server-Side Communication 179

function(data, headers)

transformResponse (function/array of functions)

This function or array of functions takes the HTTP response body and headers and returns their
transformed versions. We generally use it to deserialize data after it has received returned data.

The function looks like:

function(data, headers) {}

cache (boolean/Cache object)

If this boolean value is true, then the default $http cache will cache the GET request. If it is a cache
object built with $cacheFactory, then Angular will use this new cache to cache the response.

timeout (number/promise)

This key is a timeout in milliseconds or a promise that should abort the request when the promise
is resolved.

withCredentials (boolean)

If this boolean value is true, then the withCredentials flag on the XHR request object will be set.

By default, CORS requests will not set any cookies. The withCredentials flag sets a custom header
called Access-Control-Allow-Credentials, which makes the request with any cookies from the
remote domain in the request.

responseType (string)

The responseType option sets the XMLHttpRequestResponseType property on the request. It can be
set to one of the different types of available HTTP response types:

• ”” (string – default)
• “arraybuffer” (ArrayBuffer)
• “blob” (blob object)
• “document” (HTTP document)
• “json” (JSON object parsed from a JSON string)
• “text” (string)
• “moz-blob” (Firefox to receive progress events)
• “moz-chunked-text” (streaming text)
• “moz-chunked-arraybuffer” (streaming ArrayBuffer)

Communicating with the Outside World: XHR and Server-Side Communication 180

Response Object

The response object that Angular passes to the then() method contains four properties:

• data (string/object)

This data represents the transformed response body (if any transformations are defined).

• status (number)

This number is the HTTP status code of the response.

• headers (function)

This function is the header getter function that takes a single parameter to get the header value for
the header name. For instance, to get the header of X-Auth-ID, we can call the function, like so:

$http({

method: 'GET',

url: '/api/users.json'

}).then(resp) {

// Fetch the X-Auth-ID

resp.headers('X-Auth-ID');

}

• config (object)

This object is the full, generated configuration object that was used to generate the original request.

Caching HTTP Requests

By default, the $http service does not cache requests in a local cache. We can enable caching per
request by passing either a boolean or a cache instance in our $http requests.

$http.get('/api/users.json', { cache: true })

.success(function(data) {})

.error(function(data) {});

Communicating with the Outside World: XHR and Server-Side Communication 181

The first time that we send this $http request, the $http service will send a GET request to
/api/users.json. The next time that we send this GET request, instead of making the HTTP GET
request, it will pull the request out of the cache.

By passing true, for this particular request, Angularwill use the default cache using the $cacheFactory,
which Angular creates for us automatically at bootstrap time.

For more information on working directly with Angular caching, check out the caching
chapter.

For more custom control of the cache that Angular uses, we can pass a custom cache instead of true
in the request.

For instance, for a Least Recently Used (or LRU) cache, we pass the cache like so:

var lru = $cacheFactory('lru', {

capacity: 20

});

// $http request

$http.get('/api/users.json', { cache: lru })

.success(function(data) {})

.error(function(data) {});

Now, the latest 20 unique requests will be cached. The 21st most recent unique request will cause
the Least Recently Used request to be removed from the cache.

It gets a tad cumbersome to pass a custom cache every single time (even in a service). We can set a
default cache for all $http requests across our application in the .config() function of our app:

angular.module('myApp')

.config(function($httpProvider, $cacheFactory) {

$httpProvider.defaults.cache =

$cacheFactory('lru', {

capacity: 20

});

});

Every single request will now use our custom LRU cache.

Communicating with the Outside World: XHR and Server-Side Communication 182

Interceptors

Anytime that we want to provide global functionality on all of our requests, such as authentication,
error handling, etc., it’s useful to be able to provide the ability to intercept all requests before they
pass to the server and back from the server.

For instance, in authentication, if the server returns a response code with 401, we likely would want
to kick the user out to a login page.

Angular provides a way for us to handle responses at the global level using interceptors.

Interceptors, although the term sounds scary, are basically middleware for the $http service that
allow us to inject logic into the existing flow of the app.

At their core, interceptors are service factories (see services for more information about services)
that we register through the $httpProvider by adding them to the $httpProvider.interceptors
array.

There are four types of interceptors – two success interceptors and two rejection interceptors:

• request

Angular calls the request interceptor with the $http config object. It can modify the config object
or create a new one, and it is responsible for returning the updated config object or a promise that
resolves a new config object.

• response

Angular calls the response interceptor with the $http response object. The function can modify the
response or create a new one. It’s responsible for returning the response or a promise that resolves
a new response object.

• requestError

Angular calls this interceptor when the previous request interceptor throws an error or is resolved
with a rejection.

• responseError

We receive this error when the previous respone interceptor throws an error or is resolved with a
rejection.

To create an interceptor, we use the .factory() method on our module and add one or more of the
four methods to our service.

Communicating with the Outside World: XHR and Server-Side Communication 183

angular.module('myApp')

.factory('myInterceptor',

function($q) {

var interceptor = {

'request': function(config) {

// Successful request method

return config; // or $q.when(config);

},

'response': function(response) {

// successful response

return response; // or $q.when(config);

},

'requestError': function(rejection) {

// an error happened on the request

// if we can recover from the error

// we can return a new request

// or promise

return response; // or new promise

// Otherwise, we can reject the next

// by returning a rejection

// return $q.reject(rejection);

},

'responseError': function(rejection) {

// an error happened on the request

// if we can recover from the error

// we can return a new response

// or promise

return rejection; // or new promise

// Otherwise, we can reject the next

// by returning a rejection

// return $q.reject(rejection);

}

};

return interceptor;

});

We then need to register our interceptor with the $httpProvider in a .config() function:

Communicating with the Outside World: XHR and Server-Side Communication 184

angular.module('myApp')

.config(function($httpProvider) {

$httpProvider.interceptors.push('myInterceptor');

});

Configuring the $httpProvider

Using the .config() option, we can add certain HTTP headers to every request, which is useful
when we want to send authentication headers alongside every request or set a response type, etc.

The default headers sent for every single request live in the $httpProvider.defaults.headers.common
object. The common default headers are:

Accept: application/json, text/plain, * / *

We can change or augment these headers using our .config() function for every request, like so:

angular.module('myApp')

.config(function($httpProvider) {

$httpProvider.defaults.headers

.common['X-Requested-By'] = 'MyAngularApp';

});

We can also manipulate these defaults at run time using the defaults property of the $http object.
For instance, to add a property for dynamic headers, we can set the header property like so:

$http.defaults

.common['X-Auth'] = "RandomString";

This functionality can be achieved by either using a request transformer or, for a single
request, by setting the headers option in the $http request.

It’s also possible to manipulate the requests that are sent on only either POST or PUT requests.

The default headers that are sent for all POST requests are:

Content-Type: application/json

We can change or augment the POST headers in our config() function, like so:

Communicating with the Outside World: XHR and Server-Side Communication 185

angular.module('myApp')

.config(function($httpProvider) {

$httpProvider.defaults.headers

.post['X-Posted-By'] = 'MyAngularApp';

});

We can do the same for all PUT requests. The default headers sent for PUT requests are:

Content-Type: application/json

We can change or augment the PUT headers in our config() function, like so:

angular.module('myApp')

.config(function($httpProvider) {

$httpProvider.defaults.headers

.put['X-Posted-By'] = 'MyAngularApp';

});

Using $resource

Angular comes with another very handy optional service called the $resource service. This service
creates a resource object that allows us to intelligently work with RESTful server-side data sources;
it comes in handy when dealing with back ends that support the RESTful data model out of the box.

Representational state transfer, or REST for short, is a method of intelligently serving data
from a back-end web service. For more information about REST, check out the Wikipedia
article⁶⁰ on it.

The $resource service is incredibly useful and will abstract away a lot of complexities that come
with setting up a meaningful interaction with a back-end server, provided it supports the RESTful
data model.

The $resource service allows us to turn our $http requests into simple methods like save or update.
Rather than requiring us to be repetitive or to write tedious code, we can use the $resourcemethod
to handle it for us.

⁶⁰http://en.wikipedia.org/wiki/Representational_State_Transfer

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

Communicating with the Outside World: XHR and Server-Side Communication 186

Installation

The ngResource module is an optional Angular module that adds support for interacting with
RESTful back-end data sources. Since the ngResource module is not built into Angular by default,
we need to install it and reference it inside of our app.

We can download it from code.angularjs.org⁶¹ and save it in a place that we can reference it from
our HTML, like js/vendor/angular-resource.js.

We can also install it using Bower, which places it in our usual Bower directory. For more
information about Bower, see the bower chapter.

$ bower install --save angular-resouce

We need to reference this module in our HTML after we reference Angular itself.

<script src="js/vendor/angular.js"></script>

<script src="js/vendor/angular-resource.js"></script>

Lastly, we need to reference the ngResource module as a dependency in our app module:

angular.module('myApp', ['ngResource']);

Now we’re ready to use the $resource service.

Using $resource

The $resource service itself is a factory that creates a resource object. The returned $resource object
has methods that provide a high-level API to interact with back-end servers.

var User = $resource('/api/users/:userId.json',

{

userId: '@id'

}

);

$resource returns a resource class object with a few methods for default actions. We can think of
the User object as an interface to our RESTful back-end services.

This resource class object itself contains methods that allow us to interact indirectly with our back-
end services.

By default, this object generates five methods that allow us to interact with a collection of resources
or to generate an instance of a resource object. It creates two methods that are HTTP GET-based
methods and three that are non-GET methods.

⁶¹http://code.angularjs.org/

http://code.angularjs.org/
http://code.angularjs.org/

Communicating with the Outside World: XHR and Server-Side Communication 187

HTTP GET Methods

The two HTTP GET methods it creates expect the following three parameters:

• params (object)

These are the parameters that are sent with the request. They can be named parameters in the URL,
or they can be query parameters.

• successFn (function)

This function is the callback function that will be called upon a successful HTTP response.

• errorFn (function)

This callback function is called upon a non-successful HTTP response.

get(params, successFn, errorFn)

The get method sends a GET request to the URL and expects a JSON response.

Without specifying a named parameter, such as above, the get() request is generally used to get a
single resource.

// Issues a request to:

// GET /api/users

User.get(function(resp) {

// Handle successful response here

}, function(err) {

// Handle error here

});

If the named parameter is passed into the parameters (in our example, this parameter is id), then
the get() method will send a request to the URL with the id in the URL:

Communicating with the Outside World: XHR and Server-Side Communication 188

// Issues a request to:

// GET /api/users/123

User.get({

id: '123'

}, function(resp) {

// Handle successful response here

}, function(err) {

// Handle error here

});

query(params, successFn, errorFn)

The query method sends a GET request to the URL and expects a collection of resource objects as a
JSON response array.

// Issues a request to:

// GET /api/users

User.query(function(users) {

// The first user in the collection

var user = users[0];

});

The only major difference between the query() method and the get() method is that Angular
expects the query() method to return an array.

HTTP Non-GET Methods

The three HTTP non-GET methods it creates expect the following four parameters:

• params (object)

These are the parameters that are sent with the request. They can be named parameters in the URL,
or they can be query parameters.

• postData (object)

This object is the payload sent with the request.

• successFn (function)

This callback function is called upon a successful HTTP response.

• errorFn (function)

This callback function is called upon a non-successful HTTP response.

Communicating with the Outside World: XHR and Server-Side Communication 189

save(params, payload, successFn, errorFn)

The save method sends a POST request to the URL and uses the payload to generate the request
body. The save() method is used to create a new resource on the server.

// Issues a request to:

// POST /api/users

// with the body {name: 'Ari' }

User.save({}, {

name: 'Ari'

}, function(response) {

// Handle a successful response

}, function(response) {

// Handle a non-successful response

});

delete(params, payload, successFn, errorFn)

The delete method sends a DELETE request to the URL and can use the payload to generate the
request body. It is used to remove an instance from the server.

// Issues a request to:

// DELETE /api/users

User.delete({}, {

id: '123'

}, function(response) {

// Handle a successful delete response

}, function(response) {

// Handle a non-successful delete response

});

remove(params, payload, successFn, errorFn)

The removemethod is synonymous with the delete()method and primarily exists because delete
is a reserved word in JavaScript that can cause problems when we use in Internet Explorer.

Communicating with the Outside World: XHR and Server-Side Communication 190

// Issues a request to:

// DELETE /api/users

User.remove({}, {

id: '123'

}, function(response) {

// Handle a successful remove response

}, function(response) {

// Handle a non-successful remove response

});

$resource instances

When the methods above return data, they wrap the response in a prototype class that adds
convenience methods on the instances.

The three instance methods that are available on the instance objects are:

• $save()
• $remove()
• $delete()

These methods are the same as the resource counterpart except that they are called on a single
resource instead of on a collection.

These three methods can be called on the instances themselves. For instance:

// Using the $save() instance methods

User.get({id: '123'}, function(user) {

user.name = 'Ari';

user.$save(); // Save the user

});

// This is equivalent to the collection-level

// resource call

User.save({id: '123'}, {name: 'Ari'});

$resource Instances Are Asynchronous

With all these methods, it’s important to note that when they are invoked, the $resource object
immediately returns an empty reference to the data. This data is an empty reference, not the actual
data, as all these methods are executed asynchronously.

Therefore, a call to get an instance might look synchronous, but is actually not. In fact, it’s simply a
reference to data that Angular will fill in automatically when it arrives back from the server.

Communicating with the Outside World: XHR and Server-Side Communication 191

// $scope.user will be empty

$scope.user = User.get({id: '123'});

We can wait for the data to come back as expected using the callback method that the methods
provide:

User.get({id: '123'}, function(user) {

$scope.user = user;

});

Additional Properties

The $resource collections and instances have two special properties that enable us to interact with
the underlying resource definitions.

• $promise (promise)

The $promise property is the original promise that is created for the $resource. This property is
particularly useful when using it in conjunction with the $routeProvider.when() resolve property.

If the request is successful, the promise is resolved with the resource instance or collection object.
If the request is unsuccessful, then the promise is resolved with the HTTP response object, without
the resource property.

• $resolved (boolean)

The $resolved property is a boolean that turns true upon the first server interaction (regardless of
whether or not it’s successful).

Custom $resource Methods

Although the $resource service provides five methods, it is extensible enough for us to add our own
custom methods to the resource object.

To create a custom method on our $resource class object, we can pass a third argument to the
resource class that contains an object of a modified $http configuration object as methods.

In the object, the key is the name of the method and the value is the $http configuration object.

Communicating with the Outside World: XHR and Server-Side Communication 192

var User = $resource('/api/users/:userId.json',

{

userId: '@id'

},

{

sendEmail: {

method: 'POST'

},

allInboxes: {

method: 'JSONP',

isArray: true

}

}

);

With this User resource, the methods sendEmail() and update() are now available on the collection
(User resource object), as are the individual instances (as user.$sendEmail() and user.$update()).

$resource Configuration Object

The $resource configuration object is very similar to the $http configuration object (with a few
changes).

The value of the object, the action, is the name of the method on the resource object

It can contain the following keys:

method (string)

method refers to the HTTP method we want to use to make the request. It should be one of the
following: ‘GET’, ‘DELETE’, ‘JSONP’, ‘POST’, ‘PUT’.

url (string)

A url that overrides the configured url for the route specific to this method.

params (map of string/object)

This key contains the optional set of pre-bound parameters for this action. If any of the values are
functions, they will be executed every time we need to fetch a parameter value for a request.

isArray (boolean)

If this isArray key is set to true, then the returned object for this action will be returned as an array.

Communicating with the Outside World: XHR and Server-Side Communication 193

transformRequest (function/array of functions)

This function or array of functions is a transform function that takes the HTTP request body and
headers and returns their transformed versions. It is usually used for serialization.

var User = $resource('/api/users/:id', {

id: '@'

}, {

sendEmail: {

method: 'PUT',

transformRequest: function(data, headerFn) {

// Return modified data for the request

return JSON.stringify(data);

}

}

});

transformResponse (function/array of functions)

This function or array of functions is a transform function that takes the HTTP request body and
headers and returns their transformed versions. It is usually used for deserialization.

var User = $resource('/api/users/:id', {

id: '@'

}, {

sendEmail: {

method: 'PUT',

transformResponse: function(data, headerFn)

{

// Return modified data for the response

return JSON.parse(data);

}

}

});

cache (boolean/cache)

If the cache property is set to true, then Angular will use the default $http cache to cache GET
requests. If the cache property is set to an instance of a $cacheFactory object, then the cache object
will be used to cache GET requests.

If this property is set to false, then no caching will be applied to the $resource requests.

Communicating with the Outside World: XHR and Server-Side Communication 194

timeout (number/promise)

If timeout is set to a number, the timeout for this request will take that number of milliseconds. If
it’s set to a promise, then it will abort the request when the promise is resolved.

withCredentials (boolean)

If this boolean value is true, then the withCredentials flag on the XHR request object will be set.

By default, CORS requests do not set any cookies. The withCredentials flag sets the customer
header Access-Control-Allow-Credentials. This makes request send any cookies from the remote
domain in the request.

responseType (string)

The responseType option sets the XMLHttpRequestResponseType property on the request. We can
set it to one of these different types of available HTTP response types:

• ”” (string – default)
• “arraybuffer” (ArrayBuffer)
• “blob” (blob object)
• “document” (HTTP document)
• “json” (JSON object parsed from a JSON string)
• “text” (string)
• “moz-blob” (Firefox to receive progress events)
• “moz-chunked-text” (streaming text)
• “moz-chunked-arraybuffer” (streaming ArrayBuffer)

interceptor (object)

The interceptor property has two optional methods: either a response or a responseError. These
interceptors are called with the $http response object, just like normal $http interceptors.

$resource Services

We can use the $resource service as the base our own custom services. Building custom services
gives us greater overall customization of our app and the ability to abstract the responsibility of
communicating to remote services away from our controllers and views.

Finally, we highly recommend using $resource from inside a custom service object. Not only does it
enable us to abstract away the responsibility of fetching remote services into a single, controllable

Communicating with the Outside World: XHR and Server-Side Communication 195

Angular service, it also disconnects this logic from our controllers, enabling us to keep them clean.
Additionally, it allows us to not worry about how we are getting data in our controllers.

This disconnection from inside Angular objects also helps to make testing a breeze, as we can stub
and mock back-end calls without worrying about actually making the calls to our back end during
tests.

To create a service that wraps $resource, we need to inject the $resource service into our service
object and call the methods like normal.

For instance:

angular.module('myApp', ['ngResource'])

.factory('UserService', [

'$resource', function($resource) {

return $resource('/api/users/:id', {

id: '@'

}, {

update: {

method: 'PUT'

}

});

}]);

$resource API

The $resource service is available through the use of the $resource() method. The method itself
takes up to three parameters:

• url (string)

Here, we give the parametrized URL string template with all of the parameters that we need to use
to identify the resource (prefixed by the : character). For any parameters we pass in the URL, we
can send named arguments in as their values:

$resource('/api/users/:id.:format', {

format: 'json',

id: '123'

})

Note that if the parameter before the suffix is empty (:id in our example above), then the URL will
collapse into a single . character.

Communicating with the Outside World: XHR and Server-Side Communication 196

If we use a server that requires a port as part of the URL – for
instance: http://localhost:3000 – we must escape the URL pattern using
\\. The URL pattern for this back end server would look similar to:
$resource('http://localhost\\:3000/api/users/:id.json').

• paramDefaults (optional object)

The second parameter contains the default values for the URL parameters that will be sent with each
request. The keys in the object match up with the named parameters. If we pass a key that is not set
as a named parameter, then it is passed as a regular query parameter.

For instance, if the URL string passed has the signature of /api/users/:id and we set the default pa-
rameters to {id: '123', name: 'Ari' }, then the resultingURL becomes /api/users/123?name=Ari.

We can either pass a static value here, such as we’ve done above by hard coding it in the default
parameter, OR we can set it to pull a dynamic parameter out of the data object.

To set a dynamic parameter, we only need to prefix the value with a '@' character.

• actions (optional object)

The actions object is a hash with declarations of custom actions that can extend the default set of
resource actions.

In the object , the names of the custom actions as denoted by it’s keys, while the values the $http
configuration object will be substituted in the URL.

For instance, we can declare a new update action on our resource like so:

$resource('/api/users/:id.:format', {

format: 'json',

id: '123'

}, {

update: {

method: 'PUT'

}

})

Using Restangular

Although Angular on its own is powerful enough to build standalone applications where we pack
all important data inside the application, in doing so we would be missing out on one of the nicest
features of the framework: its ability to talk with the outside world.

In this section, we’re going to talk specifically about an incredibly well-developed and well-thought-
out library: Restangular.

Communicating with the Outside World: XHR and Server-Side Communication 197

The What and the Why

Restangular is an Angular service specifically designed simply to fetch data from the rest of the
world.

Why not use $http or $resource? Although $http and $resource are built into the framework, they
carry limitations with them. Restangular takes a completely different approach to XHR and makes
it a pleasant experience.

The complete list of benefits to using Restangular is available on the Restangular README⁶², but
we’ll cover a few benefits here:

Promises

Using promises makes Restangular feel more Angular-esque, as it uses and resolves on promises.
That enables us to chain together responses just as though we’re using the raw $http method.

Promise Unwrapping

You can also use Restangular as $resource works, working with Promises and Objects at the same
time in a very easy way.

Explicit

The Restangular library includes little to no magic. We don’t have to guess how it works or dig up
documentation on how to use it.

All HTTP Methods

All HTTP methods are supported.

Forget URLs

While $resource requires us to specify the URLs we want to fetch, Restangular doesn’t require us
to know the URLs in advance, nor do we have to specify them all upfront (other than the base URL).

Nested resources

If we want to use nested resources, there’s no need to create another instance of the Restangular
instance; Restangular will handle it for us.

⁶²https://github.com/mgonto/restangular

https://github.com/mgonto/restangular
https://github.com/mgonto/restangular

Communicating with the Outside World: XHR and Server-Side Communication 198

One resource, not many

Unlike $resource, we only ever need to create one instance of the Restangular resource object.

And there is much, much more.

Installation

Installing Restangular is easy – we have options. We can download the files manually (from
GitHub⁶³) and include the file locally. If we download the file to our js/vendor directory, then
we can include it in our HTML, like so:

<script type="test/javascript" src="js/vendor/restangular.min.js"></script>

We can include the JavaScript libraries hosted on jsDelivr⁶⁴ in our page:

<script type="text/javascript"

src="http://cdn.jsdelivr.net/restangular/latest/restangular.js"></script>

<script type="text/javascript"

src="http://cdn.jsdelivr.net/restangular/latest/restangular.min.js"></script>

Alternatively, we can use npm to install Restangular if we’re using npm in our project:

$ npm install restangular

If we’ve set up Bower for our project, we can also choose to use Bower to install Restangular.

$ bower install restangular

Note: Restangular depends on either Lo-Dash or Underscore, so in order to support Restangular, we
need to make sure we include one of the two.

If we use bower, Lodash will automatically be downloaded for us.

Otherwise, We can use jsDelivr⁶⁵ to include lodash:

⁶³https://raw.github.com/jimaek/jsdelivr/master/files/restangular/latest/restangular.min.js
⁶⁴http://www.jsdelivr.com/
⁶⁵http://www.jsdelivr.com/#!lodash

https://raw.github.com/jimaek/jsdelivr/master/files/restangular/latest/restangular.min.js
http://www.jsdelivr.com/
http://www.jsdelivr.com/#!lodash
https://raw.github.com/jimaek/jsdelivr/master/files/restangular/latest/restangular.min.js
http://www.jsdelivr.com/
http://www.jsdelivr.com/#!lodash

Communicating with the Outside World: XHR and Server-Side Communication 199

<script type="text/javascript"

src="//cdn.jsdelivr.net/lodash/2.1.0/lodash.compat.min.js">

</script>

Alternatively, we can download Lo-Dash here⁶⁶ or use Bower to install it.

bower install --save lodash

We also need to include it as a script on the page:

<script type="text/javascript"

src="/js/vendor/lodash/dist/lodash.min.js"></script>

Just like any other AngularJS library, we need to include the restangular resource as a dependency
for our app module object:

angular.module('myApp', ['restangular']);

Once we’ve done that, we’ll be able to inject the Restangular service into our Angular objects:

angular.module('myApp')

.factory('UserService',

['Restangular',

function(Restangular) {

// Now we have access to the Restangular

// service our service

}]);

Intro to the Restangular Object

To use Restangular, there are two ways we can create an object to fetch services. We can either set
the base route to fetch objects from:

var User = Restangular.all('users');

Doing so will set all HTTP requests that come from the Restangular service to pull from /users. For
instance, calling getList() on the above object will fetch from /users:

⁶⁶http://lodash.com/

http://lodash.com/
http://lodash.com/

Communicating with the Outside World: XHR and Server-Side Communication 200

var allUsers = User.getList(); // GET /users

It’s also possible to fetch nested requests for a single object. Instead of passing only a route, we can
pass a unique ID to pull from as well:

var oneUser = Restangular.one('users', 'abc123');

This code will generate the request /users/abc123 when calling get() on it.

oneUser.get().then(function(user) {

// GET /users/abc123/inboxes

user.getList('inboxes');

});

As you can see above, Restangular is smart enough to figure out how to construct URLs based
upon the methods that we are calling on the Restangular source object. Sometimes, however, it
is convenient to set the URL that we’re fetching, especially if our back end doesn’t support pure
RESTful APIs.

To set the URL for a specific request, we can pass a separate argument using the allUrl method:

// All URLs on searches will use

// `http://google.com/` as the baseUrl

var searches =

Restangular.allUrl('one', 'http://google.com/');

// Will send a request to GET http://google.com/

searches.getList();

Additionally, we can set the base URL for one particular request, rather than manipulating the entire
request using oneUrl:

var singleSearch =

Restangular.oneUrl('betaSearch', 'http://beta.google.com/1');

// Trigger a request to GET http://google.com/1

singleSearch.get();

Using Restangular

Now that we have a good handle on the Restangular object, we can get down to using it to make
requests.

Once Restangular returns an initial object, we can use several different methods to interact with our
back-end API.

Let’s say we’ve created a Restangular object that represents public discussions:

Communicating with the Outside World: XHR and Server-Side Communication 201

var messages = Restangular.all('messages');

With this object, we can get a list of all of the messages with the getList()method. This getList()
method returns a collection containing methods we can call to work with the specific collection.

// allMessages is a promise that will resolve

// into the list of all messages

var allMessages = messages.getList();

We can also use the Restangular object to create messages. To create an object, we’ll use the post()
method.

The post method requires a single object as a parameter and sends a (you guessed it) POST request
to the URL we’ve specified. We can also add queryParameters and headers to this request.

// POST to /messages

var newMessage = {

body: "Hello world"

};

messages.post(newMessage);

// OR we can call this on an element

// to create a nested resource

var message = Restangular.one('messages', 'abc123');

message.post('replies', newMessage);

Because Restangular returns promises, we can then call methods on the returned data on promises
so that we can run a function after the promise has completed.

Restangular returns enhanced promises, so besides being able to call then on them, we can call other
special methods like $object. $object returns an empty array (or object) right away, and after the
server returns information, that array is filled with new information. This is useful for instance if
after we update a collection, we want to refetch the collection on our scope:

// Calling then in the promise

messages.post(newMessage).then(function(newMsg) {

// Setting messages to an empty array first

// and then fill it once getList is completed

$scope.messages = messages.getList().$object;

}, function error(reason) {

// An error has occurred

});

We can also remove an object from the collection. Using the remove() method, we can send a
DELETE HTTP request to our back end. To send a delete request, we can call the remove() method
on an object inside the collection (an element).

Communicating with the Outside World: XHR and Server-Side Communication 202

var message = messages.get(123);

message.remove(); // Send a DELETE to /messages

Updating and saving objects is something we’ll do quite often. Traditionally, this operation is done
with the HTTP method PUT. Restangular supports this functionality out of the box with the method
put().

To update an object, we need to query the object, set our new attributes on the instance, and call
put() on the object to save the updated attributes in the back end.

Note that before modifying an object, it’s good practice to copy it and then mod-
ify the copied object before we save it. Restangular has its own version of copy
such that it won’t rebind this in the bundled functions. It’s good practice to use
Restangular.copy() when updating an object.

Now that we have experience working on instances of our collection, let’s dig into nested
components. Nested components are those that live underneath other components. For instance,
for all of the books written by a certain author.

Restangular supports nested resources by default. In fact, we can query a particular instance from
our collection for their nested resources.

var author = Restangular.one('authors', 'abc123');

// Builds a GET to /authors/abc123/books

var books = author.getList('books');

Another cool feature of Restangular is that we’re able to call all of this methods (post, put, getList,
get, etc.) not only from Restangular created objects with one and all, but also from objects returned
from the server. For instance, we can first fetch an author to display in one part of our code, and
then get the list of books from it:

Restangular.one('authors', 'abc123').then(function(author) {

$scope.author = author;

});

// Later in the code

// Builds a GET to /authors/abc123/authors

// using $scope.author which is real object returned from the server

$scope.author.getList('books')

But What About My HTTP Methods?

Restangular supports, out of the box, all HTTP methods. It can support calling GET, PUT, POST,
DELETE, HEAD, TRACE, OPTIONS, and PATCH.

Communicating with the Outside World: XHR and Server-Side Communication 203

author.get(); // GET /authors/abc123

author.getList('books'); // GET /authors/abc123/books

author.put(); // PUT /authors/abc123

author.post(); // POST /authors/abc123

author.remove(); // DELETE /authors/abc123

author.head(); // HEAD /authors/abc123

author.trace(); // TRACE /authors/abc123

author.options(); // OPTIONS /authors/abc123

author.patch(); // PATCH /author/abc123

Restangular also makes it possible to create custom HTTP methods for cases when our back-end
server maps resources differently than we expect.

For instance, if we want to get the author’s biography (not a RESTful resource), we can set the URL
through the customMETHOD() function (where METHOD is replaced by any of the following: GET,
GETLIST, DELETE, POST, PUT, HEAD, OPTIONS, PATCH, TRACE).

// Maps to GET /users/abc123/biography

author.customGET("biography");

// Or customPOST with a new bio object

// as {body: "Ari's bio"}

// The two empty fields in between are the

// params field and any custom headers

author.customPOST({body: "Ari's Bio"}, // post body

"biography", // route

{}, // custom params

{}); // custom headers

Custom Query Parameters and Headers

We can send custom query parameters or custom headers with each of these methods.

To add custom query parameters, we need to add a JavaScript object as the second parameter to
our method call. We can also add a second JavaScript object as a third parameter. Most all of the
individual methods that we can call on an element take these two parameters as optional parameters.

With custom query parameters, a post method might look something like:

var queryParamObj = { role: 'admin' },

headerObj = { 'x-user': 'admin' };

messages.getList('accounts', queryParamObj, headerObj);

Restangular is incredibly simple to use and gets out of the way so that we can focus on building our
app, rather than wrestling with the API.

Communicating with the Outside World: XHR and Server-Side Communication 204

Configuring Restangular

Restangular is highly configurable and expects us to configure it for our apps. It does come with
defaults for every single property, so we don’t have to configure it if we don’t need to do so.

There are a few different places where we can configure a Restangular service. We can configure it
globally or using a custom service.

To configure Restangular for all Restangular usages, regardless of the location it’s used in, we can
inject the RestangularProvider in a config() function or inject Restangular in a run() function.

A good rule of thumb to determine where we should configure our Restangular
instances: If we need to use any other service in configuring Restangular, thenwe should
configure it in the run() method, otherwise we’ll keep it in the config() method.

Setting the baseUrl

To set the baseUrl for all calls to our backendAPI, we can use the setBaseUrl()method. For instance,
if our API is located at /api/v1, rather than at the root of our server.

angular.module('myApp')

.config(function(RestangularProvider) {

RestangularProvider.setBaseUrl('/api/v1');

});

Adding Element Transformations

We can add any element transformations after Restangular has loaded an element.

Using these elementTransformers, we can add custom methods to our Restangular objects after
they are fetched.

This method will be called as a callback that will enable us to update or modify the element we
fetched after it’s been loaded, but before we use it in our Angular objects.

Communicating with the Outside World: XHR and Server-Side Communication 205

angular.module('myApp')

.config(function(RestangularProvider) {

// Three parameters:

// the route

// if it's a collection - boolean (true/false) or

// not sending it if you need it for both

// and the transformer

RestangularProvider.addElementTransformer('authors',

false, function(element) {

element.fetchedAt = new Date();

return element;

});

});

There’re shortcut methods for only extending a model or a collection. For instance, if we wanted to
update only elements that are authors, we can do the following:

angular.module('myApp')

.config(function(RestangularProvider) {

// Three parameters:

// the route

// if it's a collection - boolean (true/false) or

// not sending it if you need it for both

// and the transformer

RestangularProvider.extendModel('authors', function(element) {

element.getFullName = function() {

return element.name + ' ' + element.lastName;

}

return element;

});

});

Setting responseInterceptors

Restangular can set responseInterceptors. responseInterceptors are useful for when we want to
translate the response we get back from the server. For instance, if our server comes back with the
data tucked away in a nested object, we can use a responseInterceptor to dig it out.

**Note: ** It’s important that the getList method always returns an array, so if your response is an
object with some metadata and a nested array, we should use the responseInterceptor to get it
out.

This responseInterceptor is called after every response we get back from the back end. It is called
with the following parameters:

Communicating with the Outside World: XHR and Server-Side Communication 206

• data - data retrieved from the server
• operation - the HTTP method used
• what - the model that’s requested
• url - the relative URL that’s being requested
• response - the full server response, including headers
• deferred - the promise for the request

For instance, the following configuration would return an array for getList with the metadata, in
case this array is the value of the property with the same name as the route. For example a GET to
/customers would return an array like {customers: []}

angular.module('myApp')

.config(function(RestangularProvider) {

RestangularProvider.setResponseInterceptor(

function(data, operation, what) {

if (operation == 'getList') {

var list = data[what];

list.metadata = data.metadata;

return list;

}

return data;

});

});

Using requestInterceptors

Restangular supports the other side of the operation, as well: We can work with the data we are
going to send to the server before we ever actually send any data back to the server in the first place.

requestInterceptors are useful for times when we need to run manipulations on the object before
sending it to the server. For instance, we can’t call directly to MongoDB with an _id field, so we
have to remove it before it is sent to the back end if we’re in a PUT operation.

**Tip: ** We can use requestInterceptors and responseInterceptors together to make a page
wide loading. Start loading on every request and stop it each time a response is received.

To set a requestInterceptor, we can use the method setRequestInterceptor(). This method
(setRequestInterceptor()) is called with the following parameters:

• element - the element we’re sending to the server
• operation - the HTTP method used
• what - the model that’s being requested
• url - the relative URL that’s being requested

Communicating with the Outside World: XHR and Server-Side Communication 207

angular.module('myApp')

.config(function(RestangularProvider) {

RestangularProvider.setRequestInterceptor(

function(elem, operation, what) {

if (operation === 'put') {

elem._id = undefined;

return elem;

}

return elem;

});

});

Custom Fields

Restangular also supports setting custom Restangular fields, which is important for times when we
are connecting not to a back-end server, but to a back-end database, such as MongoDB, where the id
field doesn’t map to an id. When connecting to MongoDB, the id field actually maps to _id.$oid.

angular.module('myApp')

.config(function(RestangularProvider) {

RestangularProvider.setRestangularFields({

id: '_id.$oid'

});

});

});

Catching Errors with errorInterceptors

It’s also possible to set errorInterceptors for those times when we want to catch an error from within
Restangular. Using the errorInterceptor gives us the ability to halt the flow of the error down to
our app.

If we return false from the errorInterceptor, the flow of the promise ends, and our app will never
need to deal with handling errors.

It would be a good time to handle dealing with authentication failures at this point, for instance.
If any request comes back with a 401, we can use the errorInterceptor to catch it and handle
redirecting the user to the login page.

Communicating with the Outside World: XHR and Server-Side Communication 208

angular.module('myApp')

.config(function(RestangularProvider) {

RestangularProvider.setErrorInterceptor(

function(resp) {

displayError();

return false; // stop the promise chain

});

});

});

Setting Parentless

If we’re fetching a resource that is not nested underneath other nested resources, we can use the
setParentless configuration property field to tell Restangular not to build the nested URL structure.

angular.module('myApp')

.config(function(RestangularProvider) {

RestangularProvider.setParentless([

'cars'

]);

});

The setParentless() configuration function can take two different types of parameters:

boolean

If this parameter is set to true, all resources are considered ‘parentless’, and no URL is nested.

array

Only the resources identified by the string in this array will be considered parentless.

Working with Hypermedia

It’s a really good practice to only have one point of access to the Backend server (the main URL)
and then have each of your models point to its related resources via links.

Restangular supports this really useful practice with selfLink, oneUrl and allUrl.

The first thing we need to do is to configure the selfLink field. Really similar to how we configure
the ID, the idea of the selfLink is to set the path to the property in a model that has a link to itself.
This will allow us to know to which URL we need to do the PUT or GET if needed.

Communicating with the Outside World: XHR and Server-Side Communication 209

angular.module('myApp')

.config(function(RestangularProvider) {

RestangularProvider.setRestangularFields({

selfLink: 'link.href'

});

});

});

After configuring this, we can start using this really useful feature.

Let’s first fetch the list of all authors, which is the main route for our application.

$scope.authors = Restangular.all('authors').getList().$object;

Each of this authors has a link to itself in the path we specified before, and it also has a URL that
points to the list of books it has. We could use those properties like this:

var firstAuthor = authors[0];

firstAuthor.name = "John";

// Does a PUT to /authors/1988-author-1

// That's the url in firstAuthor.link.href

firstAuthor.put()

// GET to /books/for-author/1988-author-1

var books = Restangular.allUrl('books', firstAuthor.books.href).getList().$object;

Custom Restangular Services

Finally, we highly recommend using Restangular from inside a custom service object. Doing so is
particularly useful, as we can configure Restangular on a per-service level with a custom a service.
Writing a service will help disconnect the logic to talk to our back-end from within our angular
objects and enable our services to handle the load of talking to them directly.

This disconnection from inside Angular objects also helps with making testing a breeze as we can
stub and mock back-end calls without worrying about actually making the calls to our back end
during tests.

To create a service that wraps Restangular, we simply need to inject the Restangular service into our
factory and call the methods like normal. Inside this factory, we can create custom configurations
by using the withConfig() function.

For instance:

Communicating with the Outside World: XHR and Server-Side Communication 210

angular.module('myApp', ['restangular'])

.factory('MessageService', [

'Restangular', function(Restangular) {

var restAngular =

Restangular.withConfig(function(Configurer) {

Configurer.setBaseUrl('/api/v2/messages');

});

var _messageService = restAngular.all('messages');

return {

getMessages: function() {

return _messageService.getList();

}

}

}]);

XHR in Practice
Cross-Origin and Same-Origin Policy

Web browsers nearly universally prevent web pages from fetching and executing scripts on foreign
domains.

The same-origin policy specifically permits scripts to run on pages that originate from the same
site. Our browser identifies a page with the same origin by comparing the scheme, hostname, and
port number of both pages. There are heavy run restrictions on any other interactions with scripts
originating from off-site.

The Cross Origin Resource Sharing (or CORS, for short) is often a source of headaches for fetching
data over XHR and dealing with foreign sources.

Fortunately, there are several ways for us to get data that is exposed by external data sources into
our app. We’ll look at two of these methods and mention a third (that requires a bit more backend
support):

• JSONP
• CORS
• Server proxies

JSONP

JSONP is a way to get past the browser security issues that are present when we’re trying to request
data from a foreign domain. In order to work with JSONP, the server must be able to support the
method.

JSONP works by issuing a GET request using a <script> tag, instead of using XHR requests. The
JSONP technique creates a <script> tag and places it in the DOM. When it shows up in the DOM,
the browser takes over and requests the script referenced in the src tag.

When the server returns the request, it surrounds the response with a JavaScript function invocation
that corresponds to a request about which our JavaScript knows.

Angular provides a helper for JSONP requests using the $http service. The jsonpmethod of request
through the $http service looks like:

XHR in Practice 212

$http

.jsonp("https://api.github.com?callback=JSON_CALLBACK")

.success(function(data) {

// Data

});

When we make this call, Angular places a <script> tag on the DOM that might look something
like:

<script src="https://api.github.com?callback=angular.callbacks._0"

type="text/javascript"></script>

Notice that Angular has replaced the JSON_CALLBACK with a custom function that Angular
creates specifically for this request.

When the data comes back from the JSONP-enabled server, it is wrapped in the anonymous function
automatically generated by Angular angular.callbacks._0.

In this case, the GitHub server will return some JSON wrapped in the callback, and its response
might look like:

// shortened for brevity

angular.callbacks._0({

"meta": {

"X-RateLimit-Limit": "60",

"status": 200,

},

"data": {

"current_user_url": "https://api.github.com/user"

}

})

When Angular calls the special function, it resolves the $http promise.

When we write our own back-end servers to support JSONP, we need to ensure that, when
we respond, we wrap the data inside the function given by the request with callback.

When using JSONP, we need to be aware of the potential security risks. First, we’re opening up our
server to allow a back-end server to call any JavaScript in our app.

A foreign site that we do not control can change its script at any time (or a malicious cracker
could), exposing our site for vulnerabilities. The server or a middleman could potentially send extra
JavaScript logic back into our page that could expose private user data.

XHR in Practice 213

We can only use JSONP to send GET requests, since we’re setting a GET request in the <script>
tag. Additionally, it’s tough to manage errors on a script tag. We should use JSONP sparingly and
only with servers we trust and control.

Using CORS

In recent years, the W3C has created the CORS specification, or Cross Origin Resource Sharing
policy, to replace the JSONP hack in a standard way.

The CORS specification is simply an extension to the standard XMLHttpRequest object that allows
JavaScript to make cross-domain XHR calls. It does so by preflighting a request to the server to
effectively ask for permission to send the request.

This preflight gives the receiving server the ability to accept or reject any request from all servers,
a select server, or set of servers. That means that both the client app and the server app need to
coordinate to provide data to the client/server.

The W3C wrote the CORS specification with the intention of abstracting away many of the details
from the client-side developer so that it appears as though the request is made in the same way as
a same-origin request.

Configuration

To use CORS within Angular, we need to tell Angular that we’re using CORS. We use the .config()
method on our Angular app module to set two options.

First, we need to tell Angular to use the XDomain, and wemust remove the X-Requested-With header
from all of our requests.

The X-Requested-With header has been removed from the common header defaults, but
it’s a good idea to ensure it’s been removed anyway.

angular.module('myApp')

.config(function($httpProvider) {

$httpProvider.defaults.useXDomain = true;

delete $httpProvider.defaults.headers

.common['X-Requested-With'];

});

Now we’re ready to make CORS requests.

XHR in Practice 214

Server CORS Requirements

Although we will not dive into server-side CORS setup in this chapter (we do in the server
communication chapter), it’s important that the server we’re working with support CORS.

A server supporting CORS must respond to requests with several access control headers:

• Access-Control-Allow-Origin

The value of this header must either echo the origin request header or be a * to allow any and all
requests from any origin.

• Access-Control-Allow-Credentials (optional)

By default, CORS requests are not made with cookies. If the server includes this header, then we
can send cookies along with our request by setting the withCredentials option to true.

If we set the withCredentials option in our $http request to true, but the server does not respond
with this header, then the request will fail and vice versa.

The back-end server must also be able to handle OPTIONS request methods.

There are two types of CORS requests: simple and non-simple.

Simple Requests

Requests are simple if they match one of these HTTP methods:

• HEAD
• GET
• POST

and if they are made with one or many of the following HTTP headers, and no others:

• Accept
• Accept-Language
• Content-Language
• Last-Event-ID
• Content-Type

– application/x-www-form-urlencoded
– multipart/form-data
– text/plain

We categorize these as simple requests because the browser canmake these types of requests without
the use of CORS. Simple requests do NOT require any special type of communication between the
server and the client.

A simple CORS request using the $http service looks like any other request:

XHR in Practice 215

$http

.get("https://api.github.com")

.success(function(data) {

// Data

});

Non-Simple Requests

Non-simple requests are those that violate the requirements for the simple requests. If we want to
support PUT or DELETE methods, or if we want to set the specific type of content type in our
requests, then we’re going to call a non-simple request.

Although, as client-side developers, this request doesn’t look any different to us, the browser handles
the request differently.

The browser actually sends two requests: the preflight and the request. First, the browser issues
a preflight request wherein the server requests permission to make the request. If the permissions
have been granted, then the browser can make the actual request.

The browser takes care of handling the CORS request transparently.

Similar to the simple request, the browser will add the Origin header to both of the requests
(preflight and the actual request).

Preflight Request

The browser makes the preflight request as an OPTIONS request. It contains a few headers in the
request:

• Access-Control-Request-Method

This header is the HTTP method of the actual request. It is always included in the request.

• Access-Control-Request-Headers (optional)

This header is a comma-delimited list of non-simple headers that are included in the request.

The server should accept the request, then we must check if the HTTP method and the headers are
valid. If they are, the server should respond with the following headers:

• Access-Control-Allow-Origin

The value of this header must either echo the origin request header or be a * to allow any and all
requests from any origin.

XHR in Practice 216

• Access-Control-Allow-Methods

This list of allowed HTTP methods is helpful, as we can cache the request in the client, and we don’t
have to constantly ask for preflights in future requests.

• Access-Control-Allow-Headers

If the Access-Control-Request-Headers header is set, then the server should respond with this
header.

We expect the server to respond with a 200 response status code if the request is acceptable. If it is,
then the second request will be made.

CORS is not a security mechanism; it is simply a standard that modern browsers
implement. It’s still our responsibility to set up security in our app.

Non-simple requests look exactly like regular requests inside Angular:

$http

.delete("https://api.github.com/api/users/1")

.success(function(data) {

// Data

});

Server-Side Proxies

The simplest method for making requests to any server, however, is to simply use a back-end server
on the same domain (or on a remote server with CORS setup) as a proxy for remote resources.

Rather than making requests to foreign resources through our client-side app, we can simply use
our own local server to make and respond to requests for our client-side app.

In this way, we enable older browsers to make requests (only modern browsers implement CORS),
without requiring a second request for non-simple CORS requests, andwe can use standard browser-
level security as it was intended to be used.

In order to use a server-side proxy, we need to set up a local server to handle our requests, which
takes care of sending the actual requests.

For more information about setting up a server-side component, read the Server communication
chapter.

XHR in Practice 217

Working with JSON

JSON, or JavaScript Object Notation, is a data-interchange format that looks a lot like a JavaScript
object. In fact, it resolves to one when JavaScript loads it, and Angular will resolve any requests that
respond with a JavaScript object in JSON format to a corresponding object for our Angular app.

For instance, if our server returns the following JSON:

[

{"msg": "This is the first msg", state: 1},

{"msg": "This is the second msg", state: 2},

{"msg": "This is the third msg", state: 1},

{"msg": "This is the fourth msg", state: 3}

]

When our Angular app receives this data over $http, we can simply reference the data as a JavaScript
object:

$http.get('/v1/messages.json')

.success(function(data, status) {

$scope.first_msg = data[0].msg;

$scope.first_state = data[0].state;

});

Working with XML

Although Angular transparently handles JSON objects handed back from the server, we can handle
other data types as well.

For instance, if our server hands us back XML instead of JSON, we need to massage the data into a
JavaScript object.

Luckily, there are some great open-source libraries available, as well as some built-in browser parsers
that parse XML into JavaScript objects for us.

For the moment, we’ll use the X2JS library, a fantastic open-source library available here⁶⁷.

First, we need to make sure we install the X2JS library. Let’s use Bower to install the library for us:

$ bower install x2js

and then reference the library from the googlecode.com or from our Bower components:

⁶⁷https://code.google.com/p/x2js/

https://code.google.com/p/x2js/
https://code.google.com/p/x2js/

XHR in Practice 218

<script type="text/javascript"

src="https://x2js.googlecode.com/hg/xml2json.js"></script>

<!-- OR -->

<script type="text/javascript"

src="bower_components/xml2json/xml2json.js"></script>

Starting off with our lightweight XML parser, we create a factory that simply parses the XML in the
DOM for us.

angular.factory('xmlParser', function() {

var x2js = new X2JS();

return {

xml2json: x2js.xml2json,

json2xml: x2js.json2xml_str

}

});

With this lightweight parsing factory, we can create a transformResponse to parse our XML within
our $http requests, such as:

angular.factory('Data', [$http, 'xmlParser',

function($http, xmlParser) {

$http.get('/api/msgs.xml', {

transformResponse:

function(data) {

return xmlParser.xml2json(data);

}

})

});

Now, our response will come back as a JSON object, and we can use the response just as though the
server returned JSON.

Authentication with AngularJS

In most non-trivial web applications, there are usually protected resources that we want to keep
secret from the general public and to which we want to give access only to authenticated users
whom we know and trust. These resources can be anything from paid material to administration
ability.

Regardless of what we are protecting, the methods that we can use to protect our resources will be
similar.

XHR in Practice 219

Describing how to implement server-side authentication is out of scope of this section; instead, we’ll
focus on describing what our server-side back end needs to do to feature our front-end view.

Thenwe’ll dive right into discussing how to provide client-side authentication protection and discuss
potential edge cases for the process.

Server-Side Requirements

First and foremost, we must take the time to secure our server-side API. As we are dealing with
uncompiled code being sent by a potentially untrusted source, we cannot count on all of our users
to be genuine.

There are generally two ways we can handle securing our client-side app:

Server-Side Rendered Views

If we’re serving our site through a back-end server that controls all of the HTML, we can use
traditional authentication methods and only send the HTML that our client side needs and that
the server authenticates.

Pure Client-Side Authentication

We want to be able to build our client side and server side separately and allow the deployment of
these components to be naturally separated in production. We therefore need to secure our client-
side authentication using the server-side API, but not rely on its authentication.

We’re going to implement client-side authentication through token authentication. Our server needs
to be able to provide our client app with an auth token.

The token itself should be a random string of numbers and letters that the server side can associate
to a particular user session.

uuid libraries are generally good candidates for generating tokens.

That is, when a user logs into our site, instead of sending a user ID or using any identifiable
information, our server side generates a random token and creates an association between the user
session and this token.

We expect to send the token with every single client-side request so that we can look up the user by
this random string of characters on each one.

Our server side then needs to send the proper status codes for the particular events that we get back,
denoting whether or not they are valid, so that our client side can react.

For instance, for all unauthenticated requests, we want our server side to send back a 401 response
status code.

The following table is a short list of response status codes that we’ll deal with in this section:

XHR in Practice 220

Code Meaning

200 Everything is good

401 Unauthenticated request

403 Forbidden request

404 Page not found

500 Server error

When we encounter these status codes, our app reacts accordingly.

The data flow looks like:

1. Unauthenticated user visits our site.
2. The user tries to access a protected resource and is redirected to the login page. 2a. The user

visits the login page manually.
3. The user enters his or her login ID (username or email) and password, and our Angular app

makes a POST request to our server with the user’s data.
4. Our server looks at the login ID and password and determines whether they are a match.
5. If the login ID matches the password, the server generates a unique token and sends it back

alongside the request and a 200 response code. 5a. If the login ID does not match the password,
the server responds to the request with a status code of 401.

For an authenticated user (someone who passes along the 5a request path above):

1. The user requests a protected resource path (such as his or her own account page).
2. If the user has not yet logged in, our app redirects the user to the login page. 2a. If the user is

logged in, our app makes a request using the unique user token for the session.
3. The server validates this token and returns the appropriate data based on the request.

Client-Side Authentication

In the section above, we’ve outlined a few behaviors that our authentication scheme needs to handle:

• Redirect on unauthorized page requests
• Capture non-200 responses and act accordingly on any XHR request
• Keep track of the user throughout the page session

To handle redirection on unauthorized page requests, such as when an unauthorized user tries to
access a protected resource, we need to determine how to define a protected resource vs. a public
one.

There are several ways to handle defining routes as public vs. non-public.

XHR in Practice 221

Protected Resources from API

If we’re protecting routes that need to operate on protected API calls (i.e., making a protected
resource API call to which the server can respond with a 401 response code) in order to load the
page, then we can simply rely on $http interceptors to handle the work for us.

To create an $http interceptor that is responsible for responding to unauthenticated API requests,
we need to create one that handles responses.

Let’s set up our $http response interceptor inside of a .config() block inside our app where we
inject the $httpProvider:

angular.module('myApp', [])

.config(function($httpProvider) {

// Build our interceptor here

});

This interceptor handles both responses and responseErrors and will be called on all requests.

angular.module('myApp', [])

.config(function($httpProvider) {

// Build our interceptor here

var interceptor =

function($q, $rootScope, Auth) {

return {

'response': function(resp) {

if (resp.config.url == '/api/login') {

// Assuming our API server response

// with the following data:

// { token: "AUTH_TOKEN" }

Auth.setToken(resp.data.token);

}

},

'responseError': function(rejection) {

// Handle errors

switch(rejection.status) {

case 401:

if (rejection.config.url!=='api/login')

// If we're not on the login page

$rootScope

.$broadcast('auth:loginRequired');

break;

XHR in Practice 222

case 403:

$rootScope

.$broadcast('auth:forbidden');

break;

case 404:

$rootScope

.$broadcast('page:notFound');

break;

case 500:

$rootScope

.$broadcast('server:error');

break;

}

return $q.reject(rejection);

}

}

}

});

This auth interceptor handles a few of the server-side response codes that we can possibly receive
from our server on any given request. When the response interceptor takes a 401 response, it
$broadcasts an event down the app from the $rootScope so that any child scope (all scopes) can
handle the event.

Additionally, this interceptor saves the token for any successful 200 request to our /api/login login
route.

To actually implement this interceptor for our requests, we need to tell the $httpProvider to include
it in its interceptor chain:

angular.module('myApp', [])

.config(function($httpProvider) {

// Build our interceptor here

var interceptor =

function($q, $rootScope, Auth) {

// ...

}

// Integrate the interceptor in the

// request/response chain for $http

$httpProvider

XHR in Practice 223

.interceptors.push(interceptor);

});

For more information on $http interceptors, check out the $http interceptors section.

Protected Resources by Route Definition

If we want to always protect all of our paths and/or if we are not making API calls that will protect
the route, then we need to monitor our routes and ensure that we have a logged-in user for the
routes we are interested in protecting.

In order to monitor our routes, we must set up an event listener on the $routeChangeStart event.
This event fires when the route properties start to resolve, but before we’ve actually changed the
route.

Combined with the interceptors, this approach is more secure. If we don’t check for status
code, our users may still be able to make unprotected requests.

Let’s set our listener to focus on this event and check to see if the route itself is defined to be exposed
to the current user.

First, we must define some access roles for our application. We can do so by setting a constant in
our app such that we can check against these roles on each route.

angular.module('myApp', ['ngRoute'])

.constant('ACCESS_LEVELS', {

pub: 1,

user: 2

});

By setting the ACCESS_LEVELS as a constant, we can inject it into both .config() and .run() blocks
and can use it throughout our application.

Now, let’s use these constants to define access levels for each of our defined routes:

XHR in Practice 224

angular.module('myApp', ['ngRoute'])

.config(function($routeProvider, ACCESS_LEVELS) {

$routeProvider

.when('/', {

controller: 'MainController',

templateUrl: 'views/main.html',

access_level: ACCESS_LEVELS.pub

})

.when('/account', {

controller: 'AccountController',

templateUrl: 'views/account.html',

access_level: ACCESS_LEVELS.user

})

.otherwise({

redirectTo: '/'

})

});

Each of the routes above defines its own access_level, which we can check to confirm that the
current user is authorized (if necessary) and is of an appropriate user level to access the route.

At this point, there will be a user with one of two states:

• Unauthenticated anonymous user
• Authenticated known user

To authenticate a user, we need to create a service that holds onto the existing user level. We must
also let our service work with the local browser cookie store so we can expect that, when logged in,
our user will remain logged in while the session is still good.

This small service simply includes some helper functions on top of the user object:

angular.module('myApp.services', [])

.factory('Auth',

function($cookieStore, ACCESS_LEVELS) {

var _user = $cookieStore.get('user');

var setUser = function(user) {

if (!user.role || user.role < 0) {

user.role = ACCESS_LEVELS.pub;

}

_user = user;

$cookieStore.put('user', _user);

XHR in Practice 225

}

return {

isAuthorized: function(lvl) {

return _user.role >= lvl;

},

setUser: setUser,

isLoggedIn: function() {

return _user ? true : false;

},

getUser: function() {

return _user;

},

getId: function() {

return _user ? _user._id : null;

},

getToken: function() {

return _user ? _user.token : '';

},

logout: function() {

$cookieStore.remove('user');

_user = null;

}

}

});

Now, if our user is authenticated and logged in, we can check on our $routeChangeStart event.

angular.module('myApp')

.run(function($rootScope, $location, Auth) {

// Set a watch on the $routeChangeStart

$rootScope.$on('$routeChangeStart',

function(evt, next, curr) {

if (!Auth.isAuthorized(next.access_level)) {

if (Auth.isLoggedIn()) {

// The user is logged in, but does not

// have permissions to view the view

$location.path('/');

} else {

$location.path('/login');

}

XHR in Practice 226

}

})

});

Talking to MongoDB

If we don’t have a custom back end, it’s also possible to talk directly to a database that exposes a
RESTful interface.

Instead of having to build a back end, we can talk directly to Mongo.

In this example, we’re using MongoLab⁶⁸, a SAAS service that offers managed MongoDB
instances.

In order to talk to MongoDB, we need to set up a few custom configurations for our Restangular
objects.

Note that the following configuration will change the global Restangular objects. If we
want to nest this configuration for a single database, then we’ll need to create a factory to
nest our custom Restangular object.

First, let’s set our API key. Since this key won’t change across the entire app, we suggest creating it
as a constant.

angular.module('myApp', ['restangular'])

.constant('apiKey', 'YOUR_API_KEY');

We can now inject this API key into other parts of our application. We’ll set up our configuration
in the config() block on our module.

Using MongoLab, we’ll set our baseUrl to the API endpoint:

// ...

.config(function(RestangularProvider, apiKey) {

RestangularProvider

.setBaseUrl('https://api.mongolab.com/api/1/databases/YOURDB/collections');

});

Next, every single request we make to our back-end database will require our API key. Restangular
makes it easy to add it using the setDefaultRequestParams() method:

⁶⁸https://mongolab.com

https://mongolab.com
https://mongolab.com

XHR in Practice 227

// ...

.config(function(RestangularProvider, apiKey) {

// ...

RestangularProvider

.setDefaultRequestParams({

apiKey: apiKey

});

});

Next, we need to update the Restangular field to map the custom ID field, provided by MongoDB as
_id.$oid, to the Restangular id field. This update is simple if we use the setRestangularFields()
function:

// ...

.config(function(RestangularProvider, apiKey) {

// ...

RestangularProvider.setRestangularFields({

id: '_id.$oid'

});

});

Lastly, we need to overwrite the _id field, which is set by mongo when we are updating a record.
Mongo won’t let us ‘rewrite’ the _id field, so we can use Restangular to ‘fake’ setting the field. Since
Restangular will call the route to update the element, we don’t need to worry about the possibility
of the object not being rewritten.

// ...

.config(function(RestangularProvider, apiKey) {

// ...

RestangularProvider.setRestangularFields({

id: '_id.$oid'

});

});

For the sake of completeness, here is the entire config block:

XHR in Practice 228

angular.module('myApp', ['restangular'])

.constant('apiKey', 'API_KEY')

.config(function(RestangularProvider, apiKey) {

RestangularProvider.setBaseUrl(

'https://api.mongolab.com/api/1/databases/YOURDB/collections');

RestangularProvider.setDefaultRequestParams({

apiKey: apiKey

})

RestangularProvider.setRestangularFields({

id: '_id.$oid'

});

RestangularProvider.setRequestInterceptor(

function(elem, operation, what) {

if (operation === 'put') {

elem._id = undefined;

return elem;

}

return elem;

})

});

Promises
Angular’s event system (which we discuss in depth in the under the hood chapter) provides a lot of
power to our Angular apps. One of the most powerful features it gives us is the automatic resolution
of promises.

What’s a Promise?

A promise is a method of resolving a value (or not) in an asynchronous manner. Promises are objects
that represent the return value or thrown exception that a functionmay eventually provide. Promises
are incredibly useful in dealing with remote objects, and we can think of them as a proxy for our
remote objects.

Traditionally, JavaScript uses closures, or callbacks, to respond with meaningful data that is not
available synchronously, such as XHR requests after a page has loaded. Rather than depending
upon a callback to fire, we can interact with the data as though it has already returned.

Callbacks have worked for a long time, but the developer suffers when using them. Callbacks provide
no consistency and no guaranteed call, they steal code flow when depending upon other callbacks,
and they generally make debugging incredibly difficult. At every step of the way, we have to deal
with explicitly handling errors.

Instead of firing a function and hoping to get a callback run when executing asynchronous methods,
promises offer a different abstraction: They return a promise object.

For example, in traditional callback code, we might have a method that sends a message from one
user to one of the user’s friends.

// Sample callback code

User.get(fromId, {

success: function(err, user) {

if (err) return {error: err};

user.friends.find(toId, function(err, friend) {

if (err) return {error: err};

user.sendMessage(friend, message, callback);

});

},

failure: function(err) {

return {error: err}

}

});

Promises 230

This callback pyramid is already getting out of hand, and we haven’t included any robust error-
handling code, either. Additionally, we need to know the order in which the arguments are called
from within our callback.

The promised-based version of the previous code might look somewhat closer to:

User.get(fromId)

.then(function(user) {

return user.friends.find(toId);

}, function(err) {

// We couldn't find the user

})

.then(function(friend) {

return user.sendMessage(friend, message);

}, function(err) {

// The user's friend resulted in an error

})

.then(function(success) {

// user was sent the message

}, function(err) {

// An error occurred

});

Not only is this code more readable; it is also much easier to grok.We can guarantee that the callback
will resolve to a single value, rather than having to deal with the callback interface.

Notice that in the first example, we have to handle errors differently from howwe handle non-errors.
We need to make sure when using callbacks to handle errors, we check if an error is defined in the
tradition API response signature (usually with (err, data) being the usual method signature). All
of our API methods must implement this same structure.

In the second example, we handle the success and error in the same way. Our resultant object
will receive the error in the usual manner. The promise API is specific about resolving or rejecting
promises, so we also don’t have to worry about our methods implementing a different method
signature.

Why Promises?

Escaping from callback hell is just one by-product of using promises. The real point of promises is
to make asynchronous functions look more like synchronous ones. With synchronous functions, we
can capture both return values and exception values as expected.

We can capture errors at any point of the process and bypass future code that relies upon the error of
that process. We achieve all of these things without thinking about the benefits of this synchronous
code – it’s simply in the nature of the code.

Promises 231

Thus, the point of using promises is to regain the ability to do functional composition and error
bubbling while maintaining the ability of the code to run asynchronously.

Promises are first-class objects and carry with them a few guarantees:

• Only one resolve or reject will ever be called
– resolve is called with a single fulfillment value
– reject can be called with a single rejection reason

• If the promise has been resolved or rejected, any handlers depending upon them will still be
called

• Handlers will always be called asynchronously

Additionally, we can chain promises and allow the code to process as it would normally run.
Exceptions from one promise bubble up through the entire promise chain.

Promises are always executed asynchronously; we can use them without worry that they will block
the rest of the app.

Promises in Angular

Angular’s event loop gives Angular the unique ability to resolve promises in its $rootScope.$evalAsync
stage (see under the hood for more detail on the run loop). The promises will sit inert until the
$digest run loop finishes.

This fact allows for Angular to turn the results of a promise into the view without any extra work.
It also enables us to assign the result of an XHR call directly to a property on a $scope object and
think nothing of it.

Let’s build an example that will return a list of open pull requests for AngularJS from GitHub.

Play with it⁶⁹

<h1>Open Pull Requests for Angular JS</h1>

<ul ng-controller="DashboardController">

<li ng-repeat="pr in pullRequests">

{{ pr.title }}

If we have a service that returns a promise (covered in depth in the services chapter), we can simply
place the promise in the view and expect that Angular will resolve it for us:

⁶⁹http://jsbin.com/UfotanA/3/edit

http://jsbin.com/UfotanA/3/edit
http://jsbin.com/UfotanA/3/edit

Promises 232

angular.module('myApp', [])

.controller('DashboardController', [

'$scope', 'UserService',

function($scope, UserService) {

// UserService's getFriends() method

// returns a promise

User.getFriends(123)

.then(function(data) {

$scope.friends = data.data;

});

}]);

Note that the default setting in Angular is no longer automatically unwrapped promises. We can
re-enable this form if we really want to by setting the option to true in a .config() function:

.config(function($parseProvider) {

$parseProvider.unwrapPromises(true) ;

});

When the asynchronous call to getPullRequests returns, the $scope.pullRequests value will
automatically update the view.

How to Create a Promise

In order to create a promise in Angular, we can use the built-in $q service. The $q service provides
a few methods in its deferred API.

First, we need to inject the $q service into the object where we want to use it.

angular.module('myApp', [])

.factory('GithubService', ['$q', function($q) {

// Now we have access to the $q library

}]);

To create a deferred object, we call the method defer():

var deferred = $q.defer();

The deferred object exposes three methods and the single promise property that we can use to deal
with the promise.

• resolve(value)

The resolve function resolves the deferred promise with the value.

Promises 233

deferred.resolve({name: "Ari", username: "@auser"});

• reject(reason)

This method rejects the deferred promise with a reason. It is equivalent to resolving a promise with
a rejection.

deferred.reject("Can't update user");

// Equivalent to

deferred.resolve($q.reject("Can't update user"));

• notify(value)

This method responds with the status of a promises execution.

For example, if we want to return a status from the promise, we can use the notify() function to
deliver it.

Let’s say that we have several long-running requests that we want to make from a single promise.
We can call the notify function to send back a notification of progress:

.factory('GithubService', function($q, $http) {

// get events from repo

var getEventsFromRepo = function() {

// task

}

var service = {

makeMultipleRequests: function(repos) {

var d = $q.defer(),

percentComplete = 0,

output = [];

for (var i = 0; i < repos.length; i++) {

output.push(getEventsFromRepo(repos[i]));

percentComplete = (i+1)/repos.length * 100;

d.notify(percentComplete);

}

d.resolve(output);

return d.promise;

}

}

return service;

});

Promises 234

With this makeMultipleRequests() function on our GithubService object, we will receive a
progress notification every time a repo has been fetched and processed.

We can use this notification in our usage of the promise by adding a third function call to the promise
usage. For instance:

.controller('HomeController',

function($scope, GithubService) {

GithubService.makeMultipleRequests([

'auser/beehive', 'angular/angular.js'

])

.then(function(result) {

// Handle the result

}, function(err) {

// Error occurred

}, function(percentComplete) {

$scope.progress = percentComplete;

});

});

We can access the promise as a property on the deferred object:

deferred.promise

A full example of how to create a function that responds with a promise might look similar to the
following method on the GithubService, as mentioned above.

angular.module('myApp', [])

.factory('GithubService', [

'$q', '$http',

function($q, $http) {

var getPullRequests = function() {

var deferred = $q.defer();

// Get list of open angular js pull requests from github

$http.get('https://api.github.com/repos/angular/angular.js/pulls')

.success(function(data) {

deferred.resolve(data);

})

.error(function(reason) {

deferred.reject(reason);

})

return deferred.promise;

Promises 235

}

return { // return factory object

getPullRequests: getPullRequests

};

}]);

Now we can use the promise API to interact with the getPullRequests() promise.

View full example⁷⁰

In the case of the service above, we can interact with the promise in two different ways:

• then(successFn, errFn, notifyFn)

Regardless of the success or failure of the promise, then calls either the successFn or the errFn

asynchronously as soon as the result is available. The method always calls callbacks with a single
argument: the result or the rejection reason.

It may call the notifyFn callback zero or more times to provide a progress status indication before
the promise is resolved or rejected.

The then() method always returns a new promise, which is either resolved or rejected through the
return value of the successFn or the errFn. It also serves notifications through the notifyFn.

• catch(errFn)

This method is simply a helper function that allows for us to replace the err callback with
.catch(function(reason) {}):

$http.get('/user/' + id + '/friends')

.catch(function(reason) {

deferred.reject(reason);

});

• finally(callback)

The finallymethod allows us to observe the fulfillment or rejection of a promise without modifying
the resulting value. The method is useful for when we need to release a resource or run some clean-
up, regardless of the success or error of the promise.

We cannot call this method directly, as finally is a reserved word in IE JavaScript. To use finally,
we have to call it like so:

⁷⁰http://jsbin.com/UfotanA/3/edit

http://jsbin.com/UfotanA/3/edit
http://jsbin.com/UfotanA/3/edit

Promises 236

promise['finally'](function() {});

Angular’s $q deferred objects are chainable in that even then returns a promise. As soon as the
promise is resolved, the promise that then returns is resolved or rejected.

These promise chains are how Angular can support $http’s interceptors.

The $q service is similar to the original Kris Kowal’s Q library:

1. $q is integrated with the Angular $rootScope model, so resolutions and rejections happen
quickly inside of Angular.

2. $q promises are integrated with Angular’s templating engine, which means that any promises
found in the views will be resolved or rejected in the view.

3. $q is tiny and doesn’t contain the full functionality of the Q library.

Chaining Requests

The then method returns a new derived promise after the initial promise is resolved. This return
gives us the unique ability to attach yet another then on the result of the initial then method.

// A service that responds with a promise

GithubService.then(function(data) {

var events = [];

for (var i = 0; i < data.length; i++) {

events.push(data[i].events);

}

return events;

}).then(function(events) {

$scope.events = events;

});

In this example, we can create a chain of execution that allows us to interrupt the flow of the
application based upon more functionality, which we can attach to different results.

This interruption allows us to pause or defer resolutions of promises at any point during the chain
of execution.

This interruption is also how the $http service implements request and response intercep-
tors.

The $q library comes with several different useful methods:

Promises 237

all(promises)

If we have multiple promises that we want to combine into a single promise, we can use the
$q.all(promises) method to combine them all into a single promise. This single method takes
a single argument:

• promises (array or object of promises)

Promises as an array or hash of promises

The all()method returns a single promise that will resolve with an array or a hash of values. Each
value will correspond to the promises at the same index or key in the promises hash. If any of the
promises are resolved with a rejection, then the resulting promise will be rejected as well.

defer()

The defer()method creates a deferred object. It takes no parameters, and it returns a new instance
of a single deferred object.

reject(reason)

This method creates a promise that is resolved with a rejection for a specific reason. It is specifically
designed to give us access to forwarding rejection in a chain of promises, which is akin to throw in
JavaScript. In the same sense that we can catch an exception in JavaScript and we can forward the
rejection, we need to rethrow the error. We can do so with $q.reject(reason).

This method takes a single parameter:

• reason (constant, string, exception, object)

The reasons for the rejection

The reject() method returns a promise that has already been resolved with a rejection and the
reason for the rejection.

when(value)

The when() function wraps an object that might be a value then-able promise into a $q promise.
Doing that allows for us to deal with an object that may or may not be a promise.

The when() function takes a single parameter:

• value

The value or a promise

The when() function returns a promise that we can then use like any other promise.

Server Communication
One of the most powerful components of Angular is its ability to communicate with a server-side
back end. Regardless of the back end that we’re using, Angular can likely talk to it through an API.

In this chapter, we’re going to focus on two types of back ends: custom server-side back ends that
we’ll develop and server-less back ends using back ends as a service.

Custom Server-Side

In this section, we’re going to focus on the process of building a custom server-side application in
NodeJS. Although we’re going to focus on building this server app in Node, we can build our back
end in any server-side language that supports HTTP API routes.

If you’re a Ruby on Rails developer, we’ve written a book specifically on demonstrating
how to use Rails. Check out Riding Rails with AngularJS⁷¹.

To start our Node-backed app, we need to have NodeJS installed.

Install NodeJS

NodeJS is a server-side platform built on the Chrome JavaScript run time. It is an event-driven,
non-blocking, lightweight JavaScript run time that enables us to write JavaScript on the server.

To install NodeJS, we can head to nodejs.org⁷² and click on the big Install button. It will detect and
download the appropriate installer for our platform.

i> If for some reason it downloads the wrong package, no problem – we can click on the Downloads
button and manually select the appropriate package.

We can run the installer and let it run its course. Once it’s complete, we’ll have the two packages
available on the command line:

• node
• npm

node is the Node binary that we’ll call to run our Node app, while npm is the Node Package Manager,
which we’ll use to install Node libraries.

⁷¹http://www.fullstack.io/edu/angular/rails/
⁷²http://nodejs.org/

http://www.fullstack.io/edu/angular/rails/
http://nodejs.org/
http://www.fullstack.io/edu/angular/rails/
http://nodejs.org/

Server Communication 239

Install Express

We’re going to use a web application framework called expressjs that will give us some syntactic
sugar around dealing with HTTP. It allows us to only work with the functionality of our web app,
as opposed to needing to deal with the nitty gritty details of Node’s HTTP server.

Its features are extensive and include providing a clean routing syntax, dynamic middleware,
and tons of open-source packages built specifically for Express. Additionally, many well-known
companies use it in production.

To install Express, we’ll use the npm binary:

$ npm install -g express

i> We use the -g flag to install the package globally. We can omit it if we don’t want to install it
globally, whereupon it will be installed in the directory node_modules/within the current directory.
We recommend installing it globally, however.

Now, we can use the Express generator to generate our Express app.

$ express myApp

This line generates a very basic Express app with a set of requirements and a loosely opinionated
directory structure.

Running the Express generator

To run our app, we need to install our basic dependencies locally using npm again. This time, we’ll
use it to install the dependencies set in the package.json locally.

Server Communication 240

$ cd myApp && npm install -d

The -d flag tells npm to install the dependencies locally. This syntax is overly explicit: We
can leave the -d off, as it’s set to install dependencies locally by default.

Now, let’s run the app to make sure everything is working as we expect it should. We can do this
simply by running it with the node binary:

$ node app.js

Running Express

If we open the URL http://localhost:3000 in our web browser, the default page of our Express
app shows us that the app has been generated.

Every time we make a change to our app.js file, we need to stop that server and restart it. When
in development, this process can be cumbersome, so we suggest using the nodemon server instead of
node.js.

To install nodemon, we’ll use npm again:

$ npm install --save-dev nodemon

The --save-dev flag tells npm to save the package in the devDependencies section of
package.json. We recommend using this practice because it helps when introducing mul-
tiple developers to a team: We can ensure that the whole team has the right dependencies
for the codebase.

Instead of using node app.js to start the app, we can replace it with:

Server Communication 241

$ nodemon app.js

Every time that we make a change to the app.js file and save it, nodemon restarts our Node app
automatically.

The app starts out in app.js. There are two important components to notice in the app.js file: the
static path from which static files are served and the routes that are resolved (and how).

// ...

app.use(express.methodOverride());

app.use(app.router);

// Line 1

app.use(express.static(path.join(__dirname, 'public')));

// ...

app.get('/', routes.index);

app.get('/users', user.list);

// ...

The first line, with the express.static() call, tells Node to look in the public/ directory for any
files it may find that match the requested route. For instance, if the requested route is ‘/users’, it
would look for a file called ‘users’.

The second set of lines (app.get()) matches routes where static files are not found in the public/
directory.

To work with our Angular app, we need to make two modifications to the generated app.js:

First, we swap the lines of the express.static() and the app.router line, like so:

// ...

app.use(express.methodOverride());

// Moved this line above the next line

app.use(express.static(path.join(__dirname, 'public')));

app.use(app.router);

// ...

Although this swap is not strictly necessary, it will help support HTML5Mode later and will tell
Express to prefer the files in the public/ directory above those defined in our app.

Second, we remove the line pointing to the '/' route:

Server Communication 242

// ...

// app.get('/', routes.index); // remove this line

app.get('/users', users.list);

// ...

Now we can write our Angular app like normal inside of our public directory.

Calling APIs

Our local Node server now serves our app, so we can call our own APIs, which we’ll develop inside
of our Express server.

For instance, let’s develop an application that records the number of times a user hits a specific
button. We need to write two routes:

GET /hits This route returns our total list of hits to the button.

POST /hit This route records a new hit to the button and return us the latest total number of hits.

First, let’s build the basic view of our app’s index.html page.We’ll place this in the public/ directory
of our Node app so that if the route requested is either / or /index.html, Express will serve this file
as our route:

<!doctype html>

<html lang="en" ng-app="myApp">

<head>

<title>Node app</title>

<link rel="stylesheet" href="stylesheets/style.css">

<script src="bower_components/angular/angular.min.js"></script>

</head>

<body>

<div ng-controller="HomeController">

<h3>Button hits: {{ hits }}</h3>

<button ng-click="registerHit()">

HIT ME, if you dare

</button>

</div>

<script src="javascripts/services.js"></script>

<script src="javascripts/app.js"></script>

</body>

</html>

Inside of our public/javacscripts/app.js file, we’ll add a controller on top of our myApp Angular
module:

Server Communication 243

angular.module('myApp', [

'ngRoute',

'myApp.services'

])

.controller('HomeController', function($scope, HitService) {

HitService.count()

.then(function(data) {

$scope.hits = data;

});

$scope.registerHit = function() {

HitService.registerHit()

.then(function(data) {

$scope.hits = data;

});

}

});

We’ll build an Angular service that is responsible for calling these routes, as we can see in the
controller above:

angular.module('myApp.services', [])

.factory('HitService', function($q, $http) {

var service = {

count: function() {

var d = $q.defer();

$http.get('/hits')

.success(function(data, status) {

d.resolve(data.hits);

}).error(function(data, status) {

d.reject(data);

});

return d.promise;

},

registerHit: function() {

var d = $q.defer();

$http.post('/hit', {})

.success(function(data, status) {

d.resolve(data.hits);

}).error(function(data, status) {

d.reject(data);

});

Server Communication 244

return d.promise;

}

}

return service;

});

For more information on services, check out the services chapter.

This service exposes two methods that call the routes that we defined above:

• count
• registerHit

Inside our Node app’s app.js file, we need to register two new routes and create the functionality
that defines the routes for us.

These two new Node routes match the service routes that we’re calling above:

// ...

var hits = require('./routes/hits');

// ...

app.get('/hits', hits.count);

app.post('/hit', hits.registerNew);

// ...

The only component left is building the actual back-end, server-side logic that registers the hit count.

In NodeJS, each required module exposes methods through the method exports. To expose the two
methods count and registerNew (from above), we need to attach them to the exports object inside
the routes/hits.js file.

Inside of our routes/hits.js file, we create a hits store that stores the number of hits in memory,
so that if we restart the server, the number of hits will also reset.

/*

* HIT service

*/

var hits = 0;

exports.count = function(req, res){

res.send(200, {

hits: hits

});

}

Server Communication 245

exports.registerNew = function(req, res) {

hits += 1;

res.send(200, {

hits: hits

});

}

Now, if we start our Node app and head to the route at http://localhost:3000, we will see that
we have added the functionality for our Angular app as we expect.

First launch

And after the button has been hit:

After hitting the button

Server-less with Amazon AWS

One of the biggest benefits to building a single-page app (SPA) is the ability to host flat files rather
than needing to build and service a back-end infrastructure.

Server Communication 246

Most of the applications that we will build, however, need to be powered by a back-end server with
custom data. There are a growing number of options that enable developers to focus on building
only our front-end code and leave the back end alone.

Amazon recently released a new option that allows us to build server-less web applications from
right inside the browser: Amazon AWS JavaScript SDK⁷³.

Amazon’s browser-based (and server-side with NodeJS) SDK allows us to confidently host our
applications and interact with production-grade back-end services.

It’s now possible to host our application stack entirely on Amazon infrastructure, using S3 to host
our application and files, DynamoDB as a NoSQL store, and other web-scale services. We can even
securely accept payments from the client side and get all the benefits of the Amazon CDN.

With this release, the JavaScript SDK now allows us to interact with five of the dozens of Amazon
AWS services. These five services are:

DynamoDB

This fast, fully managed NoSQL database service allows us to scale to infinite size with automatic
triplicate replication with secure access controls.

Simple Notification Service (SNS)

This service is a fast, flexible, fullymanaged push notification service that allows us to pushmessages
to mobile devices as well as other services, such as email or even to Amazon’s own Simple Queue
Service (SQS).

Simple Queue Service (SQS)

This fast, reliable, fully managed queue service allows us to create huge queues in a well-managed
way. We can create large request objects so we can fully decouple our application’s components
from each other using a common queue.

Simple Storage Service (S3)

This well-known, web-scale, and fully managed data store allows us to store large objects (up to
five terabytes) with an unlimited number of objects. We can use S3 to securely store encrypted and
protected data all over the world. We’ll even use S3 to host our own Angular apps.

⁷³http://aws.amazon.com/

http://aws.amazon.com/
http://aws.amazon.com/

Server Communication 247

Security Token Service (STS)

This web service allows us to request temporary and limited privileged credentials for IAMusers.We
won’t cover STS in depth, but it does provide a nice interface for creating limited secure operations
on our data.

AWSJS + Angular

In this section, we intend to demonstrate how to get our applications up and running on the AWSJS
stack in minutes.

To do so, we’re going to create a miniature, bare-bones version of Gumroad⁷⁴ to which we will allow
our users to upload screenshots. We’ll let them sell their screenshots by integrating with the fantastic
Stripe⁷⁵ API.

We cannot recommend these two services enough; this mini-demo is not intended to
replace their services, only to demonstrate the power of Angular and the AWS API.

To create our product, we need to:

• Allow users to log into our service and store their unique emails
• Allow users to upload files that are associated with them
• Allow users to click on images, and present those users with an option to buy the uploaded
image

• Take credit card charges and accept money directly from a single-page Angular app

Getting Started

Let’s start with a standard structured index.html:

⁷⁴https://gumroad.com/
⁷⁵http://stripe.com

https://gumroad.com/
http://stripe.com
https://gumroad.com/
http://stripe.com

Server Communication 248

<!doctype html>

<html>

<head>

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.6/angular.min.js">\

</script>

<script

src="http://code.angularjs.org/1.2.6/angular-route.min.js"></script>

<link rel="stylesheet" href="styles/bootstrap.min.css">

</head>

<body>

<div ng-view></div>

<script src="scripts/app.js"></script>

<script src="scripts/controllers.js"></script>

<script src="scripts/services.js"></script>

<script src="scripts/directives.js"></script>

</body>

</html>

In this standard Angular template, we’re not loading anything crazy.We’re loading the base Angular
library, as well as ngRoute and our custom application code.

Our application code is also standard. Our scripts/app.js file simply defines an Angular module
with a single route /:

angular.module('myApp', [

'ngRoute',

'myApp.services',

'myApp.directives'])

.config(function($routeProvider) {

$routeProvider

.when('/', {

controller: 'MainController',

templateUrl: 'templates/main.html',

})

.otherwise({

redirectTo: '/'

});

});

Our scripts/controllers.js file creates controllers from the main module:

Server Communication 249

angular.module('myApp')

.controller('MainController', function($scope) {

});

And our scripts/services.js and scripts/directives.js files are simple, as well:

// scripts/services.js

angular.module('myApp.services', []);

// scripts/directives.js

angular.module('myApp.directives', [])

Angular Structure

Introduction

The AWS ecosystem is huge and used in production all over the world. The gross number of useful
services that Amazon runs makes it a fantastic platform on top of which to power our applications.

Historically, the APIs have not always been the easiest to use and understand, so we hope to address
some of that confusion here.

Traditionally, we’d use a signed request with our applications utilizing the client_id or secret access
key model. Since we’re operating in the browser, it’s not a good idea to embed our client_id and
our client_secret in the browser, where anyone can see it. (It’s not much of a secret anyway if it’s
embedded in clear text, right?)

Luckily, the AWS team has provided us with an alternative method of identifying and authenticating
our site to give access to the AWS resources.

Server Communication 250

The first step to creating an AWS-based Angular app is to set up this relatively complex authentica-
tion and authorization that we’ll use throughout the process.

Currently (at the time of this writing), the AWS JS library integrates cleanly with three authentica-
tion providers:

• Facebook
• Google Plus
• Amazon Login

In this section, we’ll be focusing on integrating with the Google+ API to host our login, but the
process is very similar for the other two authentication providers.

Installation

First things first, we need to install the files in our index.html. Inside of our index.html, we need
to include the AWS-SDK library and the Google API library.

We’ll modify our index.html to include these libraries:

<!doctype html>

<html>

<head>

<script

src="http://code.angularjs.org/1.2.6/angular.min.js"></script>

<script

src="http://code.angularjs.org/1.2.6/angular-route.min.js"></script>

<script

src="https://sdk.amazonaws.com/js/aws-sdk-2.0.0-rc4.min.js"></script>

<link rel="stylesheet" href="styles/bootstrap.min.css">

</head>

<body>

<div ng-view></div>

<script src="scripts/app.js"></script>

<script src="scripts/controllers.js"></script>

<script src="scripts/services.js"></script>

<script src="scripts/directives.js"></script>

<script type="text/javascript" src="https://js.stripe.com/v2/"></script>

<script type="text/javascript">

(function() {

var po = document.createElement('script');

po.type = 'text/javascript';

Server Communication 251

po.async = true;

po.src = 'https://apis.google.com/js/client:plusone.js?onload=onLoadCallba\

ck';

var s = document.getElementsByTagName('script')[0];

s.parentNode.insertBefore(po, s);

})();

</script>

</body>

</html>

Now, notice that we added an onload callback for the Google JavaScript library and we did not use
the ng-app to bootstrap our application. If we let Angular automatically bootstrap our application,
we’ll run into a race condition where the Google API may not be loaded when the application starts.

That non-deterministic nature of our application will make the experience unusable, so instead, we
will manually bootstrap our app in the onLoadCallback function.

To manually bootstrap the application, we add the onLoadCallback function to the window service.
Before we can call to bootstrap Angular, we need to be sure that the Google login client is loaded.

The Google API client, or gapi, is included at run time and is set by default to lazy-load its services.
By telling the gapi.client to load the oauth2 library in advance of starting our app, we avoid any
potential mishaps as a consequence of the oauth2 library being unavailable.

// in scripts/app.js

window.onLoadCallback = function() {

// When the document is ready

angular.element(document).ready(function() {

// Bootstrap the oauth2 library

gapi.client.load('oauth2', 'v2', function() {

// Finally, bootstrap our angular app

angular.bootstrap(document, ['myApp']);

});

});

}

With the necessary libraries available and our application ready to be bootstrapped, we can set up
the authorization part of our app.

Running

As we are using services that depend upon our URL to be an expected URL, we need to run a server,
rather than simply loading the HTML in our browser.

We recommend using the incredibly simple Python SimpleHTTPServer to serve a directory of files:

Server Communication 252

$ python -m SimpleHTTPServer 9000

Now we can load the URL http://localhost:9000/ in our browser.

User Authorization/Authentication

First, we need to get a client_id and a client_secret from Google so that we’ll be able to actually
interact with the Google Plus login system.

To get an app, head over to the Google APIs console⁷⁶ and create a project.

Create a Google Plus project

Open the project by clicking on the name, and click on the APIs & auth nav button. From here, we
need to enable the Google+ API. Find the APIs button and click on it. Find the Google+ API item
and click the OFF to ON slider.

Enable Google+ API

Once that’s set, we need to create and register an application and use its application ID to make
authenticated calls.

⁷⁶https://developers.google.com/console

https://developers.google.com/console
https://developers.google.com/console

Server Communication 253

Find the Registered apps option and click on it to create an app. Make sure to select the Web
Application option when it asks about the type of application.

Create a registered application

Once that is set, we reach the application details page. Select the OAuth 2.0 Client ID dropdown
and take note of the application’s Client ID. We’ll use this ID in a few minutes.

Lastly, add the localhost origin to the WEB ORIGIN of the application thus ensuring that we can
develop using the API locally:

Registered app details

Next, we need to create a Google+ login directive. This Angular directive will enable us to add a
customized login button to our app with a single file element.

For more information about directives, check out our directives chapter.

We’re going to have two pieces of functionality attached to our Google login: an element that we’ll
attach to the standard Google login button and a custom function that we’ll run after the button has
been rendered.

The final directive will look like the following in scripts/directives.js:

Server Communication 254

angular.module('myApp.directives', [])

.directive('googleSignin', function() {

return {

restrict: 'A',

template: '',

replace: true,

scope: {

afterSignin: '&'

},

link: function(scope, ele, attrs) {

// Set standard google class

attrs.$set('class', 'g-signin');

// Set the clientid

attrs.$set('data-clientid',

attrs.clientId+'.apps.googleusercontent.com');

// build scope urls

var scopes = attrs.scopes || [

'auth/plus.login',

'auth/userinfo.email'

];

var scopeUrls = [];

for (var i = 0; i < scopes.length; i++) {

scopeUrls.push('https://www.googleapis.com/'+scopes[i]);

};

// Create a custom callback method

var callbackId = "_googleSigninCallback",

directiveScope = scope;

window[callbackId] = function() {

var oauth = arguments[0];

directiveScope.afterSignin({oauth: oauth});

window[callbackId] = null;

};

// Set standard google signin button settings

attrs.$set('data-callback', callbackId);

attrs.$set('data-cookiepolicy', 'single_host_origin');

attrs.$set('data-requestvisibleactions', 'http://schemas.google.com/AddActi\

vity')

attrs.$set('data-scope', scopeUrls.join(' '));

// Finally, reload the client library to

Server Communication 255

// force the button to be painted in the browser

(function() {

var po = document.createElement('script'); po.type = 'text/javascript';

po.async = true;

po.src = 'https://apis.google.com/js/client:plusone.js';

var s = document.getElementsByTagName('script')[0];

s.parentNode.insertBefore(po, s);

})();

}

}

});

Although this directive is long, it’s fairly straightforward. We’re assigning the Google button class
g-signin, attaching the Client ID based on an attribute we pass in, building the scopes, etc.

One unique part of this directive is that we’re creating a custom callback on the window object.
Effectively, this object allows us to fake the callback method we need to call in JavaScript when we
make the function, allowing us to actually make the call to the local afterSignin action instead.

We then clean up the global object, because we’re allergic to global state in AngularJS.

With our directive primed and ready to go, we can include the directive in our view. We’re going to
call the directive in our view like so, replacing the client-id and the after-signin attributes on
the directive with our own:

Make sure to include the oauth parameter exactly as it’s spelled in the after-signup

attribute. We must call the parameter this way due to how Angular directives call
methods with parameters inside of directives.

<h2>Signin to ngroad</h2>

<div google-signin

client-id='CLIENT_ID'

after-signin="signedIn(oauth)"></div>

<pre>{{ user | json }}</pre>

The user data in the example is the returned access_token for our login (if we log in). It
is not saved on our servers, it is not sensitive data, and it will disappear when we leave
the page.

Finally, we need our button to actually cause an action, so we need to define the after-signin

method signedIn(oauth) in our controller.

This signedIn() method kills off the authenticated page for us in our real application. Note: This
method would be an ideal place to set a redirect to a new route (for instance, the /dashboard route
for authenticated users).

Server Communication 256

angular.module('myApp')

.controller('MainController',

function($scope) {

$scope.signedIn = function(oauth) {

$scope.user = oauth;

}

});

UserService

Before we dive a bit deeper into the AWS side of things, let’s create ourselves a UserService that is
responsible for holding on to our new user. This UserService will handle the bulk of the work for
interacting with the AWS back end and will keep a copy of the current user.

Although we’re not quite ready to attach a back end, we can start building it out to handle holding
on to a persistent copy of the user instance.

In our scripts/services.js, we create the beginnings of our UserService:

angular.module('myApp.services', [])

.factory('UserService', function($q, $http) {

var service = {

_user: null,

setCurrentUser: function(u) {

if (u && !u.error) {

service._user = u;

return service.currentUser();

} else {

var d = $q.defer();

d.reject(u.error);

return d.promise;

}

},

currentUser: function() {

var d = $q.defer();

d.resolve(service._user);

return d.promise;

}

};

return service;

});

Although this setup is a bit contrived for the time being, we want the functionality to set the
currentUser as a permanent fixture in the service.

Server Communication 257

Remember, services are singleton objects that live for the duration of the application
lifecycle.

Now, instead of simply setting our user in the return of the signedIn() function, we can set the user
to the UserService:

angular.module('myApp')

.controller('MainController',

function($scope) {

$scope.signedIn = function(oauth) {

UserService.setCurrentUser(oauth)

.then(function(user) {

$scope.user = user;

});

}

});

For our application to work, we need to hold onto actual user emails so we can provide a better
method of interacting with our users and hold onto some persistent, unique data per user.

We use the gapi.client.oauth2.userinfo.get() method to fetch the user’s email address rather
than holding onto the user’s access_token (and other various access details).

In our UserService, we need to update our currentUser() method to include this functionality:

// ...

},

currentUser: function() {

var d = $q.defer();

if (service._user) {

d.resolve(service._user);

} else {

gapi.client.oauth2.userinfo.get()

.execute(function(e) {

service._user = e;

})

}

return d.promise;

}

// ...

Server Communication 258

All Aboard AWS

Now, as we said when we first started this journey, we need to set up authorization with the AWS
services.

If you don’t have an AWS account, head over to aws.amazon.com⁷⁷ and grab an account.
It’s free and quick.

First things first: Let’s create an IAM role. IAM, or AWS’s Identity and Access Management service,
is one of the reasons why the AWS services are so powerful. With IAM, we can create fine-grain
access controls over our systems and data.

Unfortunately, the flexibility and power of IAM also make it a bit more complex, so we’ll walk
through creating it here and make it as clear as we can.

Let’s create the IAM role by heading to the IAM console⁷⁸ and clicking on the Roles navigation link.

We have to click the Create New Role button to give our new role a name. We’ll call ours the
google-web-role.

Create a new role

Next, we need to configure the IAM role to be a Web Identity Provider Access role type so we can
manage our new role’s access to our AWS services.

⁷⁷http://aws.amazon.com/
⁷⁸https://console.aws.amazon.com/iam/home?region=us-east-1#roles

http://aws.amazon.com/
https://console.aws.amazon.com/iam/home?region=us-east-1#roles
http://aws.amazon.com/
https://console.aws.amazon.com/iam/home?region=us-east-1#roles

Server Communication 259

Set the role type

Remember the CLIENT ID that we created above with Google? In the next screen, select Google
from the dropdown and paste the CLIENT ID into the Audience box.

This step unites our IAM role and our Google app so that our application can call out to AWS services
with an authenticated Google user.

Google auth

We then click through the Verify Trust (the next screen, which shows the raw configuration for AWS
services) and create the policy for our applications.

The Policy Generator is the easiest method of getting up and running quickly to build policies. At
this point, we must set what actions our users can and cannot take.

We’re going to make an effort to be very specific with regard to the actions that our users may take:

S3

On the specific bucket (ng-newsletter-example, in our example app), we’re going to allow our users
to take the following actions:

• GetObject
• ListBucket

Server Communication 260

• PutObject

The Amazon Resource Name (ARN) for our S3 bucket is:

arn:aws:s3:::ng-newsletter-example/*

DynamoDB

For two specific table resources, we’ll allow the following actions:

• GetItem
• PutItem
• Query

The Amazon Resource Name (ARN) for our DynamoDB tables are the following:

[

"arn:aws:dynamodb:us-east-1:<ACCOUNT_ID>:table/Users",

"arn:aws:dynamodb:us-east-1:<ACCOUNT_ID>:table/UsersItems"

]

Your

The final version of our policy can be found here⁷⁹.

Adding the IAM policy

⁷⁹http://d.pr/9Obg

http://d.pr/9Obg
http://d.pr/9Obg

Server Communication 261

For more information on the confusing ARN numbers, check out the relevant Amazon
documentation here⁸⁰.

One final piece of information that we need to hold onto is the Role ARN. We can find this Role ARN

on the summary tab of the IAM user in our IAM console.

Take note of this string – we’ll set it in a moment.

Role ARN

Now that we’re finally done with creating our IAM user, we can move on to integrating it inside of
our Angular app.

AWSService

Let’s move the root of our application for integrating with AWS into its own service, the AWSService,
and build it out.

Since we’re going to need to have the ability to custom configure our service at configure time, we
want to create it as a provider.

Remember, the only service type that we can inject into the .config() function is the
.provider() type.

First, we create the stub of our provider in scripts/services.js:

⁸⁰http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Server Communication 262

// ...

.provider('AWSService', function() {

var self = this;

self.arn = null;

self.setArn = function(arn) {

if (arn) self.arn = arn;

}

self.$get = function($q) {

return {}

}

});

We can already see that we’ll need to set the Role ARN for this service such that we can attach the
proper user to the correct services.

Setting up our AWSService as a provider as we’ve done above enables us to set the following in our
scripts/app.js file:

angular.module('myApp',

['ngRoute', 'myApp.services', 'myApp.directives']

)

.config(function(AWSServiceProvider) {

AWSServiceProvider

.setArn(

'arn:aws:iam::<ACCOUNT_ID>:role/google-web-role');

})

Now, we can carry on with the AWSService and not worry about overriding our Role ARN. Creating
the provider makes sharing amongst our different applications incredibly easy, rather than writing
custom glue code every time.

At this point, our AWSService doesn’t really do anything yet. The last thing we need to do is ensure
that we’re giving access to our actual users who log in.

This final step is where we need to tell the AWS library that we have an authenticated user that can
operate as our IAM role.

We create this credentials as a promise that will eventually resolve; that way, we can define the
different portions of our application without needing to bother checking if the credentials have been
loaded – we simply use the .then() method on promises.

Let’s modify the $get() method in our service by adding a method called setToken() that creates
a new set of WebIdentityCredentials:

Server Communication 263

// ...

self.$get = function($q) {

var credentialsDefer = $q.defer(),

credentialsPromise = credentialsDefer.promise;

return {

credentials: function() {

return credentialsPromise;

},

setToken: function(token, providerId) {

var config = {

RoleArn: self.arn,

WebIdentityToken: token,

RoleSessionName: 'web-id'

}

if (providerId) {

config['ProviderId'] = providerId;

}

self.config = config;

AWS.config.credentials =

new AWS.WebIdentityCredentials(config);

credentialsDefer

.resolve(AWS.config.credentials);

}

}

}

// ...

Now, when we get our oauth.access_token back from our login through Google, we just need to
pass in the id_token to this function, which will take care of the AWS config setup.

Let’s modify the UserService service such that we call the setToken() method:

// ...

.factory('UserService', function($q, $http) {

var service = {

_user: null,

setCurrentUser: function(u) {

if (u && !u.error) {

AWSService.setToken(u.id_token);

return service.currentUser();

} else {

var d = $q.defer();

d.reject(u.error);

Server Communication 264

return d.promise;

}

},

// ...

Starting on Dynamo

In our application, we want to associate any images that one user uploads to that unique user. To
create that association, we’ll create a Dynamo table that stores our users and another that stores the
association between the user and the user’s uploaded files.

To start interacting with Dynamo, we first need to instantiate a Dynamo object. We do so inside of
our AWSService service object, like so:

// ...

setToken: function(token, providerId) {

// ...

},

dynamo: function(params) {

var d = $q.defer();

credentialsPromise.then(function() {

var table = new AWS.DynamoDB(params);

d.resolve(table);

});

return d.promise;

},

// ...

As we discussed earlier, by using promises inside of our service objects, we only need to use the
promise .then() API method to ensure that our credentials are set when we start to use them.

Youmight ask whywe’re setting paramswith our dynamo function. Sometimes, we’ll want to interact
with our DynamoDB with different configurations and different setups. For that interaction, we
might need to recreate objects that we’ve already used once in our page.

Rather than having this duplication around our different AWS objects, we can cache these objects
using the built-in Angular $cacheFactory service.

$cacheFactory

The $cacheFactory service enables us to create an object if we need it or recycle and reuse an object
if we’ve already needed it in the past.

To start caching, we create a dynamoCache object where we’ll store our cached Dynamo objects:

Server Communication 265

// ...

self.$get = function($q, $cacheFactory) {

var dynamoCache = $cacheFactory('dynamo'),

credentialsDefer = $q.defer(),

credentialsPromise = credentialsDefer.promise;

return {

// ...

Back in our dynamo method, we can draw from the cache if the object exists inside of it, or we can
set it to create the object when necessary:

// ...

dynamo: function(params) {

var d = $q.defer();

credentialsPromise.then(function() {

var table =

dynamoCache.get(JSON.stringify(params));

if (!table) {

var table = new AWS.DynamoDB(params);

dynamoCache.put(JSON.stringify(params), table);

};

d.resolve(table);

});

return d.promise;

},

// ...

Saving Our currentUser

The point at which a user logs in and we fetch his or her email is a good place for us to add the user
to our user’s database.

To create a dynamo object, we need to use the promise API method .then() again, this time outside
of the service. We create an object that enables us to interact with the User’s table we’ll create in
the Dynamo API console.

We need to manually create these Dynamo tables the first time we run our app as it’s
insecure to give access to our web users the ability to create dynamo tables.

To create a Dynamo table, let’s head to the Dynamo console⁸¹ and find the Create Table button.

⁸¹https://console.aws.amazon.com/dynamodb/home

https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home

Server Communication 266

We want to create a table called Users with a primary key type of Hash. The Hash Attribute Name
will be the primary key that we’ll use to get and put objects on the table. For this demo, we’ll use
the string: User email.

Create the Users Dynamo table

As we click through the next two screens, we will set up a basic alarm by entering our email.
Although this step isn’t 100% necessary, it’s easy to forget that our tables are up; without being
reminded, we might just end up leaving them up forever.

Once we’ve clicked through the final review screen and click create, we’ll have a brand newDynamo
table where we will store our users.

While we are at the console, we need to create the join table. This table joins the user and the items
the users uploads.

We must go back and find the Create Table button again to create a table called UsersItems with
a primary key type of Hash and Range. For this table, The Hash Attribute Name will also be User
email and the Range Attribute Name will be ItemId.

Setting up our table in this way allows us to query for any users who have created items based on
email.

The rest of the options that are available on the next screens are optional, and we can click through
the rest.

At this point, we have two dynamo tables available.

Back to our UserService, we first query the table to see if the user is already saved in our database;
if not, we have to create an entry in our Dynamo database.

Server Communication 267

var service = {

_user: null,

UsersTable: "Users",

UserItemsTable: "UsersItems",

// ...

currentUser: function() {

var d = $q.defer();

if (service._user) {

d.resolve(service._user);

} else {

// After we've loaded the credentials

AWSService.credentials().then(function() {

gapi.client.oauth2.userinfo.get()

.execute(function(e) {

var email = e.email;

// Get the dynamo instance for the

// UsersTable

AWSService.dynamo({

params: {TableName: service.UsersTable}

})

.then(function(table) {

// find the user by email

table.getItem({

Key: {'User email': {S: email}}

}, function(err, data) {

if (Object.keys(data).length == 0) {

// User didn't previously exist

// so create an entry

var itemParams = {

Item: {

'User email': {S: email},

data: { S: JSON.stringify(e) }

}

};

table.putItem(itemParams,

function(err, data) {

service._user = e;

d.resolve(e);

});

} else {

// The user already exists

service._user =

Server Communication 268

JSON.parse(data.Item.data.S);

d.resolve(service._user);

}

});

});

});

});

}

return d.promise;

},

// ...

Although it looks like a lot of code, it simply does a find or create by username on our DynamoDB.

At this point, we can finally check out what’s happening back in our view.

In our templates/main.html file, let’s add a container that simply shows the login form if there is
no user and shows the user details if there is a user.

We do so with simple ng-show directives and our new google-signin directive.

<div class="container">

<h1>Home</h1>

<div ng-show="!user" class="row">

<div class="col-md-12">

<h2>Signup or login to ngroad</h2>

<div google-signin

client-id='395118764200'

after-signin="signedIn(oauth)"></div>

</div>

</div>

<div ng-show="user">

<pre>{{ user | json }}</pre>

</div>

</div>

Once our view is set up, we can work with logged-in users inside the second <div> (in production,
it’s a good idea to make it a separate route).

Uploading to S3

Now that we have our logged-in user stored in Dynamo, it’s time we build out our file upload
functionality, storing files directly on S3.

Server Communication 269

First and foremost, let’s take a shallow dive into CORS. CORS, or Cross-Origin Resource Sharing, is
a security feature supported by modern browsers that allow us to make requests to foreign domains
using a standard protocol.

Luckily, the AWS team has made supporting CORS incredibly simple. If we’re hosting our site on
S3, we don’t even need to set up CORS (other than for development purposes).

To enable CORS on a bucket, head to the S3 console⁸² and find the bucket that we’re going to use
for file uploads. For this demo, we’re using the ng-newsletter-example bucket.

Once we’ve located the bucket, let’s click on it, load the Properties tab, and pull open the Permissions
option. From there, we click on the Add CORS configuration button and pick the standard CORS
configuration.

Enable CORS on an S3 bucket

Wewant to create a simple file upload directive that kicks off a method using the HTML5 File API to
handle the file upload. That way, when the user selects a file, the file upload will start immediately.

To handle the file selection directive, we create a simple directive that binds to the change event and
calls a method after the file has been selected.

The directive is simple:

// ...

.directive('fileUpload', function() {

return {

restrict: 'A',

scope: { fileUpload: '&' },

template: '<input type="file" id="file" /> ',

replace: true,

link: function(scope, ele, attrs) {

ele.bind('change', function() {

var file = ele[0].files;

⁸²https://console.aws.amazon.com/s3/home

https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/home

Server Communication 270

if (file) scope.fileUpload({files: file});

})

}

}

})

We can use this directive in our view like so:

<!-- ... -->

<div class="row"

<div class="col-md-12">

<div file-upload="onFile(files)"></div>

</div>

</div>

Now, when the file selection has been made, it calls the method onFile(files) in our current scope.

Although we’re creating our own file directive here, we recommend checking out the
ngUpload⁸³ library for handling file uploads.

Inside the onFile(files)method, we want to handle the file upload to S3 and save the record to our
Dynamo database table. Instead of placing this functionality in the controller, we want to remember
to be nice Angular citizens and place it in our UserService service.

First, we need to make sure we have the ability to get an S3 JavaScript object just like how we made
the dynamo available.

// ...

var dynamoCache = $cacheFactory('dynamo'),

s3Cache = $cacheFactory('s3Cache');

// ...

return {

// ...

s3: function(params) {

var d = $q.defer();

credentialsPromise.then(function() {

var s3Obj = s3Cache.get(JSON.stringify(params));

if (!s3Obj) {

var s3Obj = new AWS.S3(params);

s3Cache.put(JSON.stringify(params), s3Obj);

⁸³https://github.com/twilson63/ngUpload

https://github.com/twilson63/ngUpload
https://github.com/twilson63/ngUpload

Server Communication 271

}

d.resolve(s3Obj);

});

return d.promise;

},

// ...

This method works in the same way that our Dynamo object creation works, giving us direct access
to the S3 instance object, as we’ll see shortly.

Handling File Uploads

To handle file uploads, we need to create a method called uploadItemForSale() in our UserService.
For the sake of planning, in terms of our functionality, we want to:

• Upload the file to S3
• Get a signedUrl for the file
• Save this information to our database

We’re going to be using our current user throughout this process, so we must start by ensuring that
we have our user and get an instance:

// in scripts/services.js

// ...

},

Bucket: 'ng-newsletter-example',

uploadItemForSale: function(items) {

var d = $q.defer();

service.currentUser().then(function(user) {

// Handle the upload

AWSService.s3({

params: {

Bucket: service.Bucket

}

}).then(function(s3) {

// We have a handle of our s3 bucket

// in the s3 object

});

});

return d.promise;

},

// ...

Server Communication 272

The handle of the S3 bucket gives us the ability to create a file to upload. AWS requires three
parameters when uploading to S3:

• Key - The key of the file object
• Body - The file blob itself
• ContentType - The type of file

Luckily for us, all of this information is available on the file object when we get it from the browser.

// ...

// Handle the upload

AWSService.s3({

params: {

Bucket: service.Bucket

}

}).then(function(s3) {

// We have a handle of our s3 bucket

// in the s3 object

var file = items[0]; // Get the first file

var params = {

Key: file.name,

Body: file,

ContentType: file.type

}

s3.putObject(params, function(err, data) {

// The file has been uploaded

// or an error has occurred during the upload

});

});

// ...

By default, S3 uploads files in a protected form. It prevents us from uploading and making the files
available to the public without some work. This feature ensures that anything we upload to S3 will
be protected, and it forces us to make conscious choices about what files are public and which are
not.

With that in mind, let’s create a temporary URL that expires after a given amount of time. In our
ngroad marketplace, this URL will provide a time expiry on each of the items that are available for
sale.

In any case, to create a temporary URL, we fetch a signedUrl and store that in our join table for
User’s Items:

Server Communication 273

// ...

s3.putObject(params, function(err, data) {

if (!err) {

var params = {

Bucket: service.Bucket,

Key: file.name,

Expires: 900*4 // 1 hour

};

s3.getSignedUrl('getObject', params,

function(err, url) {

// Now we have a url

});

}

});

});

// ...

Finally, we can save our User’s object along with the file they uploaded in our Join table:

// ...

s3.getSignedUrl('getObject', params,

function(err, url) {

// Now we have a url

AWSService.dynamo({

params: {TableName: service.UserItemsTable}

}).then(function(table) {

var itemParams = {

Item: {

'ItemId': {S: file.name},

'User email': {S: user.email},

data: {

S: JSON.stringify({

itemId: file.name,

itemSize: file.size,

itemUrl: url

})

}

}

};

table.putItem(itemParams, function(err, data) {

d.resolve(data);

});

Server Communication 274

});

});

// ...

This method is available in its entirety here⁸⁴.

We can use this new method inside of our controller’s onFile() method, which we can write to be
similar to:

$scope.onFile = function(files) {

UserService.uploadItemForSale(files)

.then(function(data) {

// Refresh the current items for sale

});

}

Querying Dynamo

Ideally, we want to be able to list all the products a certain user has available for purchase. In order
to set up a listing of the available items, we will use the query API.

The Dynamo query API is a tad esoteric and can be considerably confusing at first glance.

The Dynamo query documentation is available at docs.aws.amazon.com⁸⁵.

Basically, we’re going to match object schemes using a comparison operator, such as equal, lt (less
than), gt (greater than), or any of several more. Our join table’s key is the User email key, so we’re
going to match this key against the current user’s email as the query key.

As we did with our other APIs related to users, we create a method inside of our UserService to
handle this querying of the database:

⁸⁴https://gist.github.com/auser/7316267#file-services-js-L98
⁸⁵http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

https://gist.github.com/auser/7316267#file-services-js-L98
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html
https://gist.github.com/auser/7316267#file-services-js-L98
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

Server Communication 275

// ...

itemsForSale: function() {

var d = $q.defer();

service.currentUser().then(function(user) {

AWSService.dynamo({

params: {TableName: service.UserItemsTable}

}).then(function(table) {

table.query({

TableName: service.UserItemsTable,

KeyConditions: {

"User email": {

"ComparisonOperator": "EQ",

"AttributeValueList": [

{S: user.email}

]

}

}

}, function(err, data) {

var items = [];

if (data) {

angular.forEach(data.Items, function(item) {

items.push(JSON.parse(item.data.S));

});

d.resolve(items);

} else {

d.reject(err);

}

})

});

});

return d.promise;

},

// ...

In the above query, the KeyConditions and "User email" are required parameters.

Showing the Listing in HTML

To show our user’s images in HTML, we simply assign the result of our new itemsForSale()method
to a property of the controller’s scope:

Server Communication 276

var getItemsForSale = function() {

UserService.itemsForSale()

.then(function(images) {

$scope.images = images;

});

}

// Load the user's list initially

getItemsForSale();

Now we can easily iterate over the list of items using the ng-repeat directive:

<!-- ... -->

<div ng-show="images">

<div class="col-sm-6 col-md-4"

ng-repeat="image in images">

<div class="thumbnail">

<img ng-click="sellImage(image)"

data-ng-src="{{image.itemUrl}}" />

</div>

</div>

</div>

Image listing

Selling Our Work

The final component of our AWS-powered demo app that we need to create is the ability to create
sales from our single-page app.

Server Communication 277

To start handling and accepting payments, we’ll create a StripeService that handles creating
charges for us. Since we’ll want to support configuring Stripe in the .config() method in our
module, we’ll need to create a .provider().

The service itself is incredibly simple, as it leverages the Stripe.js library to do the heavy lifting.

// ...

.provider('StripeService', function() {

var self = this;

self.setPublishableKey = function(key) {

Stripe.setPublishableKey(key);

}

self.$get = function($q) {

return {

createCharge: function(obj) {

var d = $q.defer();

if (!obj.hasOwnProperty('number') ||

!obj.hasOwnProperty('cvc') ||

!obj.hasOwnProperty('exp_month') ||

!obj.hasOwnProperty('exp_year')

) {

d.reject("Bad input", obj);

} else {

Stripe.card.createToken(obj,

function(status, resp) {

if (status == 200) {

d.resolve(resp);

} else {

d.reject(status);

}

});

}

return d.promise;

}

}

}

});

Server Communication 278

If you do not have a Stripe account, get one at stripe.com⁸⁶. Stripe is an incredibly developer-friendly
payment processing gateway, which makes it ideal for our use in building our ngroad marketplace.

Once we have an account, we want to find our Account Settings page and locate the API Keys page.
Our first order of business is to find the publishable key (either the test one, which won’t actually
make charges, or the production version) and take note of it.

In our scripts/app.js file, we just add the following line and replace the ‘pk_test_YOUR_KEY’
publishable key with our own.

// ...

.config(function(StripeServiceProvider) {

StripeServiceProvider

.setPublishableKey('pk_test_YOUR_KEY');

})

Using Stripe

When a user clicks on an image he or she likes, we open a form in the browser that takes
credit card information. We want to set the form to submit to an action on our controller called
submitPayment().

Notice that above, where we have the thumbnail of the image, we include an action when the image
is clicked that calls the sellImage() action with the image.

Implementing the sellImage() function in the MainController looks like:

// ...

$scope.sellImage = function(image) {

$scope.showCC = true;

$scope.currentItem = image;

}

// ...

Now, when the image is clicked, the showCC property will be true and we can show the credit card
form. We’ve included an incredibly simple one here:

⁸⁶http://stripe.com

http://stripe.com
http://stripe.com

Server Communication 279

<div ng-show="showCC">

<form ng-submit="submitPayment()">

Card Number

<input type="text"

ng-minlength="16"

ng-maxlength="20"

size="20"

data-stripe="number"

ng-model="charge.number" />

CVC

<input type="text"

ng-minlength="3"

ng-maxlength="4"

data-stripe="cvc"

ng-model="charge.cvc" />

Expiration (MM/YYYY)

<input type="text"

ng-minlength="2"

ng-maxlength="2"

size="2"

data-stripe="exp_month"

ng-model="charge.exp_month" />

 /

<input type="text"

ng-minlength="4"

ng-maxlength="4"

size="4"

data-stripe="exp-year"

ng-model="charge.exp_year" />

<input type="hidden"

name="email"

value="user.email" />

<button type="submit">Submit Payment</button>

</form>

</div>

We’re binding the form almost entirely to the charge object on the scope, which we will use when
we make the charge.

The form itself submits to the function submitPayment() on the controller’s scope. The submitPayment()
function looks like:

Server Communication 280

// ...

$scope.submitPayment = function() {

UserService

.createPayment($scope.currentItem, $scope.charge)

.then(function(data) {

$scope.showCC = false;

});

}

// ...

The last thing that we’ll have to do to be able to accept charges is implement the createPayment()
method on the UserService.

Now, since we’re taking payment on the client side, we’re technically not going to be able to process
payments; we can only accept the stripeToken. We can set a background process to manage turning
the Stripe tokens into actual payments.

Inside of our createPayment() function, we need to call our StripeService to generate the
stripeToken. Then, we add the payment to an Amazon SQS queue so that our background process
can make the charge.

First, we use the AWSService to access our SQS queues.

Unlike our other services, the SQS service requires a bit more integration to make it work, as the
service requires us to have a URL to interact with them. In our AWSService service object, we need to
cache the URL that we’re working with and create a new object every time time using the generated
service object instead. The idea behind the workflow is the exact same, however.

// ...

self.$get = function($q, $cacheFactory) {

var dynamoCache = $cacheFactory('dynamo'),

s3Cache = $cacheFactory('s3Cache'),

sqsCache = $cacheFactory('sqs');

// ...

sqs: function(params) {

var d = $q.defer();

credentialsPromise.then(function() {

var url = sqsCache.get(JSON.stringify(params)),

queued = $q.defer();

if (!url) {

var sqs = new AWS.SQS();

sqs.createQueue(params,

function(err, data) {

if (data) {

url = data.QueueUrl;

Server Communication 281

sqsCache.put(JSON.stringify(params), url);

queued.resolve(url);

} else {

queued.reject(err);

}

});

} else {

queued.resolve(url);

}

queued.promise.then(function(url) {

var queue =

new AWS.SQS({params: {QueueUrl: url}});

d.resolve(queue);

});

})

return d.promise;

}

// ...

Now, we can use SQS inside of our createPayment() function. One caveat to the SQS service is that
it can only send simple messages, such as with strings and numbers. It cannot send objects, so we
need to call JSON.stringify on any objects we want to pass through the queue.

// ...

ChargeTable: "UserCharges",

// ...

createPayment: function(item, charge) {

var d = $q.defer();

StripeService.createCharge(charge)

.then(function(data) {

var stripeToken = data.id;

AWSService.sqs(

{QueueName: service.ChargeTable}

).then(function(queue) {

queue.sendMessage({

MessageBody: JSON.stringify({

item: item,

stripeToken: stripeToken

})

}, function(err, data) {

d.resolve(data);

})

Server Communication 282

})

}, function(err) {

d.reject(err);

});

return d.promise;

}

When we submit the form…

Payment handling

Our SQS queue grows, and we have a payment just waiting to be completed.

SQS queue

Server-less with Firebase

As a client-side framework, Angular alone is not enough to build a full back-end webapp. It’s often
difficult to know when to sync our data with the back end and how to handle the changes and
potential conflicts of data between versions of modified content.

Server Communication 283

Imagine that we have two instances of our application running at the same time. What if
both instances are trying to edit the same data? Without handling this case, we can get
into trouble, especially if we’re building the front end for a complex web application, like
a bank.

Using Firebase, we can easily add a back end to our Angular app. Featured on the Angular.js home
page, Firebase is quickly becoming the standard for Angular persistence.

Firebase is a real-time back end for building collaborative, modern applications. Instead of requiring
us to focus on building custom request-response models with a server-side component where we
manually worry about data synchronization, Firebase lets us get our app up and running in minutes.
We can build a data-backed web app entirely in Angular that can scale out of the box and update
all clients in real time.

Data that is stored in Firebase is standard schema-less JSON, which makes it incredibly easy to save
data models of any type into Firebase. If a device loses network connection, Firebase continues to
allow access to locally cached data and seamlessly synchronizes changes with the cloud when the
device comes back online.

The Firebase client libraries and REST API provide easy access to that data from any
platform. Although we’re focusing specifically on Angular, this fact means that native
apps or other server-side apps can reach the data that Angualr has saved.

Three-Way Data Binding With Firebase and Angular

With Angular, rendering content to the browser easy. Firebase is an excellent partner to Angular, as
it elegantly handles storing and retrieving data, which is the other major component to production-
level web apps.

Angular is great with its two-way data binding between models in JavaScript and the DOM. By
syncing our Angular model with Firebase, we synchronize our app’s data in the model in real time
across all clients. That means that when data changes in one client, these updates immediately persist
to Firebase and render across all connected devices.

Server Communication 284

When we update data in any of the three places (View, Model, or Firebase), the changes propagate
in real time to the other two across all clients.

Getting Started With AngularFire

It’s easy to create real-time web applications using Firebase and Angular thanks to the official
Angular library, AngularFire. The Firebase team built the AngularFire bindings specifically for
integration with Angular applications, as we’ll see.

There are only four steps to backing our Angular app on Firebase using AngularFire:

1. Sign up and Create a Firebase

Before we can actually save or retrieve any data from Firebase, we need an account. It’s free to create
one, so let’s sign up.

First, we’ll head to firebase.com⁸⁷ and click on the Sign up button (or login if you already have an
account):

⁸⁷http://firebase.com

http://firebase.com
http://firebase.com

Server Communication 285

Now that we have signed up for an account, we can create our first Firebase. The name we choose
will be part of the URL we’ll use to reference our Firebase data.

For example, when we create a Firebase with the name of ng-newsletter, our Firebase URL will be
available at https://ng-newsletter.firebaseio.com.

The AngularFire bindings let us associate a Firebase URL with a model or collection of models.
These models represent the data that AngularFire will transparently keep in sync across all clients
currently using our app.

Angular’s two-way data binding keeps the DOM synced to JavaScript variables in memory; Firebase
stores those changes and sends them to all listening clients in real time.

We get this data synchronization without changing how we build our Angular app.
Very cool!

2. Include the Firebase and AngularFire Libraries

Using AngularFire is as simple as including two JavaScript files in our HTML file: one for Firebase
and another for AngularFire.

We need to use Firebase’s CDN, so at the top of our index.html file we’ll add the following two lines:

Server Communication 286

<script

src="https://cdn.firebase.com/v0/firebase.js"></script>

<script

src="https://cdn.firebase.com/libs/angularfire/0.5.0-rc1/angularfire.js">

</script>

3. Add Firebase As a Dependency

As is usual with any application libraries, we need to set the Firebase library as a dependency for
our module. That tells the rest of our application that we can use the Firebase bindings in our app:

angular.module("myapp", ["firebase"]);

4. Bind a Model to a Firebase URL

By declaring Firebase as a dependency, we now have access to the $firebase service, which allows
us to inject it as a dependency into our controllers and services.

angular.module('myapp', ['firebase'])

.controller("MyController", ["$scope", "$firebase",

function($scope, $firebase) {

// Our controller definition goes here

}

]);

The $firebase service takes a single argument: a Firebase reference.

FirebaseRef (Firebase Reference)

The Firebase reference tells $firebase where the data is stored and how to connect. The $firebase
service handles synchronization with Angular and is where we’ll call methods to save our changes.

This object has several methods we’ll use to interact with our remote data. These methods, detailed
below, are all prefixed with the $ symbol (e.g., $add(), $save()) and are available on this object.

Note that no changes to the object result in changes made to the remote data.

To synchronize a local object model to the remote Firebase reference, we use the service method and
pass it an instance of the Firebase object. For example, to synchronize the $scope.items model to
our ng-newsletter items, we run the following method:

Server Communication 287

angular.module('myApp')

.controller("MyController", function($scope, $firebase) {

// Firebase URL

var URL = "https://ng-newsletter.firebase.com";

// Synchronizing the items on our $scope

$scope.items = $firebase(new Firebase(URL + '/items'));

});

Now, we can simply interact with the $scope.items object to synchronize our Angular models with
Firebase.

Data Synchronization

We can synchronize our data back to Firebase by using the following methods provided by the
$firebase object.

$add(value)

The $add method takes a single argument of any type. It appends this value as a member of a
chronologically ordered list. We can think of this like we’re calling .push(value) on to the Firebase
reference array.

Note that the Firebase reference object is not really an array, but we can act as though
it is.

For example, we can add the string “bar” to the Firebase reference located at the /foo endpoint:

$scope.items.$add({foo: "bar"});

$remove(key)

The $remove method removes remote child references from Firebase. It takes a single optional
argument:

key (optional string) If we provide a key argument (as a string), the $remove()methodwill remove
the child referenced by that key. If no key is provided, it will remove the entire remote object.

$scope.items.$remove("foo"); // Remove the child named "foo".

$scope.items.$remove(); // Remove the entire object.

Server Communication 288

$save(key)

The $save method synchronizes all changes to the local elements with the Firebase data store and
pushes them instantly to all listening clients. It takes a single argument:

key (optional string) If we provide the key argument (string), the $save() method saves changes
made to the child element referenced by the key to Firebase. If no key is provided to the $save()
method, then all local changes made to the object persist to Firebase.

The $save() method is most commonly used to save any local changes made to the
model.

$scope.items.foo = "baz";

$scope.items.$save("foo"); // new Firebase(URL + "/foo") now contains "baz".

$child(key)

The $child() method creates a new $firebase object for a child referenced by the provided key.
The method takes a single argument:

key (string) The key string is used to reference the newly created child.

var child = $scope.items.$child("foo");

child.$remove(); // Equivalent to calling $scope.items.$remove("foo");

$set(value)

The $set() method overwrites the remote value for this object to be the newValue. The $set()

method also updates local object version of the object to the value.

It takes a single argument:

value (string) The value argument is the new value of the local object. The value overwrites the
old value, and is subsequently updated to this new value.

$scope.items.$set({bar: "baz"}); // new Firebase(URL + "/foo") is now null.

Ordering in AngularFire

If we want to sort our remote objects, rather than simply sorting locally with Angular’s orderBy
filter, we can set the $priority field on a record before calling $save().

Server Communication 289

$scope.items.foo.$priority = 2;

$scope.items.$save("foo"); // new Firebase(URL + "foo")'s priority is now 2.

By default, the $firebase service returns a simple JavaScript object. We can convert this object into
an array that respects order simply by using the orderByPriority filter.

This filter turns the object returned by the $firebase service into an array and orders by the
priority definition defined by Firebase. AngularFire will will set an $id property on each object
defined on it which references the keyname of the object.

<ul ng-repeat="item in items | orderByPriority">

<input type="text" id="{{item.$id}}" ng-model="item.$priority"/>

{{item.name}}

Firebase Events

Firebase fires two types of events that we can use to handle custom logic from within our app. We
can use the $on() method to attach event handlers for these two event types:

loaded

Firebase fires the loaded event when initial data is received from Firebase, initiated by a connection.
It is fired once and only once.

$scope.items.$on('loaded', function() {

console.log("Items loaded");

});

change

Firebase fires the change event whenever there is a remote change in the data applied to the local
object. For instance, it fires if there is a new task added by another user to our task list.

$scope.items.$on('change', function() {

console.log("A change is afoot");

});

Server Communication 290

Implicit Synchronization

To add automatic, implicit synchronization with a $scope variable, we can call the $bind() method
on the object returned by the $firebase service.

The $bind() method automatically establishes a three-way binding so we don’t need to explicitly
save data to Firebase using the $add() or $save() methods.

$scope.items.$bind($scope, "remoteItems");

$scope.remoteItems.bar = "foo"; // new Firebase(URL + "/bar") is now "foo".

The $bind() method returns a promise that will resolve when the initial data from the server has
been received. The promise will be resolved with an unbind function, which will disassociate the
three-way binding when called.

$scope.items.$bind($scope, "remote")

.then(function(unbind) {

unbind();

$scope.remote.bar = "foo"; // No changes have been made to the remote data.

});

The $bindmethod returns a promise, which resolves when the initial data from the server has been
received by AngularFire. The promise will resolve with an unbind function, which disassociates the
three-way binding when called. This disassociation is useful for optimizing our site and removing
unnecessary watches.

Authentication with AngularFire

Firebase provides a simple, client-side authentication strategy out of the box.

Using Firebase’s Simple Login or Custom Login methods, we can easily add user authentication to
our application with AngularFire.

Custom Login is most appropriate to use if we have our own server where we want to control our
own authentication or if we want to integrate existing authentication with Firebase.

If we want to use Firebase to manage all of our authentication, we can use Simple Login, which
supports Facebook, Twitter, GitHub, Persona, and Email/Password authentication.

By defining Firebase as a dependency in our app’s module, we have access to the $firebaseAuth

service in our controllers and services.

Server Communication 291

angular.module('myApp')

.controller("MyAuthController", function($scope, $firebaseAuth) {

// Define our controller here

});

The $firebaseAuth service method takes two arguments: a Firebase reference and an optional object
with options. The object can contain the following properties to customize how the authentication
works with Firebase:

• path - This property is the path to which the user will be redirected if the authRequired

property is set to true in the $routeProvider and the user is not logged in.
• simple - $firebaseAuth requires inclusion of the firebase-simple-login.js file by default. If this
simple value is set to false, this requirement is waived, but only custom login functionality
will be enabled, and we cannot use simple auth.

• callback - Firebase calls this function when there is a change in authentication state. We can
use this callback as an alternative to events fired on $rootScope, which is the recommended
way to handle changes in auth state.

angular.module('myApp')

.controller("MyAuthController", function($scope, $firebaseAuth) {

var ref = new Firebase(URL);

$scope.auth = $firebaseAuth(ref);

// $scope.auth.user is null until the user logs in.

});

The object that $firebaseAuth() returns contains a single property called user. user is set to null if
the user is logged out and changes to an object containing the user’s details once he or she is logged
in. We cover detecting logins below.

The contents of the user’s detail object will vary depending upon the authentication
mechanism used, but at the very least, it will contain a user id and provider name.

Authentication Events

With AngularFire authentication, we have access to several methods for changing a user’s authen-
tication state; these methods are $login(), $logout(), and $createUser().

Authentication state in AngularFire is considered global, and each of the authentication methods
below will broadcast on the $rootScope. Since nearly all scopes inherit from $rootScope, we can
call $scope.on(...) from any controller.

Global authentication means that we cannot have multiple users logged into the same
instance of the application at the same time. For example, global authentication prevents
two users from being logged into Gmail at the same time in the same browser instance.

Server Communication 292

$firebaseAuth:login A user triggers this event when he or she successfully logs in. It fires with
two arguments: an event and user object.

$rootScope.$on("$firebaseAuth:login", function(evt, user) {

console.log("User " + user.id + " successfully logged in!");

});

$firebaseAuth:logout The user triggers the logout event when he or she logs out. The event fires
with an event argument.

$rootScope.$on("$firebaseAuth:logout", function(evt) {

console.log("User logged out!");

});

$firebaseAuth:error The error event is triggered when there is an error during either calling
$login() or $logout(). This event fires with a single argument: the error.

)

]$login(token, [options])

We use the $login() method to log in a user. We usually use it when a user clicks a login button,
like the following:

<a href="#"

ng-hide="auth.user"

ng-click="auth.$login('persona')">Login

The $login() function takes up to two arguments:

tokenOrProvider (string/JWT token) If we are using Firebase Simple Login, we can simply pass
in a provider name, such as ‘facebook’, or ‘persona’. If we want to use the Custom Login flow, then
we’ll need to pass in a valid JWT token instead.

options (object) We’ll only use the options argument with Simple Login, where the provided
options are passed without modification to the Simple Login method.

For a “password” provider, we’ll want to provide a username and password as an object.

For more information about the user object, read the Firebase documentation on
AngularFire.com⁸⁸.

⁸⁸http://angularfire.com/

http://angularfire.com/
http://angularfire.com/

Server Communication 293

$logout()

The $logout() method logs out the current user. It takes no arguments.

The $firebaseAuth:logout event will fire, setting the user property to null after the logout is
completed. We’ll typically attach this method to a logout button:

{{auth.user.name}} | Logout

$createUser()

The $createUser() method is useful when we are using the “password” provider with Firebase
Simple Login.

The $createUser() method takes three arguments:

email (string) The email with which we want to create the user

password (string) The password with which we want to create the user

callback (function) Firebase calls the callbackmethod after $createUser() has run. It takes two
arguments: error and user. If there was an error in the $createUser()method, the error will contain
the error message and user will be null. If the error is null, then the user will be defined.

auth.createUser(email, password, function(error, user) {

if (!error) {

console.log('User Id: ' + user.id + ', Email: ' + user.email);

}

});

Firebase makes it easy to wire up a back end to our Angular app without having to worry about
setting up a server or writing a single line of back-end code. AngularFire enables us to create
complex, real-time applications that synchronize immediately between our application’s model and
data stored in Firebase.

To learn more about AngularFire, the source code is available on GitHub⁸⁹.

To get an AngularFire app up and running in minutes, clone the angularFire-seed⁹⁰ repo.

⁸⁹https://github.com/firebase/angularFire
⁹⁰https://github.com/firebase/angularFire-seed

https://github.com/firebase/angularFire
https://github.com/firebase/angularFire-seed
https://github.com/firebase/angularFire
https://github.com/firebase/angularFire-seed

Server Communication 294

Beyond AngularFire

AngularFire is a great wrapper for interacting with Firebase, but you can certainly interact directly
with the Firebase SDK from Angular for more complex operations. Check out the Firebase tutorial⁹¹
to learn more about the advanced capabilities of this sophisticated real-time platform.

⁹¹https://www.firebase.com/tutorial/

https://www.firebase.com/tutorial/
https://www.firebase.com/tutorial/

Testing
The AngularJS framework encourages writing clean, solid, testable code. This feature is one of the
most useful that you get out of the box with Angular.

The Angular team’s emphasis on testing is so strong that they built a test runner to make the process
easier. In their words:

JavaScript is a dynamically typed language which comes with great power of expression,
but it also comes with almost no help from the compiler. For this reason we feel very
strongly that any code written in JavaScript needs to come with a strong set of tests. We
have built many features into Angular whichmakes testing your Angular applications easy.
So there is no excuse for not testing.

Why Test?

When building any non-trivial application for any business purpose beyond prototyping (and even
then), it’s important to be confident about our code. When we have tests backing up our codebase,
we can discretely know whether or not our code is working as intended.

Bugs in our code are inevitable, and without tests it’s difficult to know where they are; tests make
it easy to isolate and eliminate them. They make it easy to onboard other developers and provide
working documentation about the code.

Testing is essential if we are to understand what is happening in our app.

Testing Strategies

When building a testing suite to develop Angular apps, it’s always good to have a strategy for how
and what we are going to test in our app. If we end up not testing anything of substance and write
meaningless tests, we’ll have gained nothing to give us confidence our apps are functioning properly.
Conversely, if we test everything we can possibly think of, we’ll end up spending more time writing
tests and fixing minor bugs in our test code than we will on our app.

It’s important to be realistic about the value we’ll get out of the tests we do write and about what
we should be testing.

At the end of the day, our tests are both a tool for us to gauge the health of our app and a measuring
stick to tell us if we’ve broken our code when introducing new functionality.

Testing 296

Getting Started Testing

One of the major hurdles in getting started with testing is setting up a test runner that runs tests on
our code. JavaScript testing is also a bit more difficult, because it requires us to build automation
into browsers.

Building a development testing suite is difficult enough, but what about supporting continuous
integration so that new deployments can be automated and we can be confident about the quality
of the code before making a new one?

In software engineering, continuous integration is the practice of merging development
working copies of a shared mainline several times a day and running the test suite upon
update.

Karma⁹² is a testing tool that was built from the ground up to remove the burden of setting up testing
and allow us to focus on building our core application logic.

Karma spawns a browser instance (or multiple different browser instances) and runs the tests
against the different browser instances to see if the tests pass under different browser environments.
Karma communicates with the browsers through socket.io, which enables Karma to keep in constant
contact. Thus, Karma provides real-time feedback about what tests are running and gives us a
human-readable output that tells us which tests pass and which ones fail or time out.

Karma is capable of communicating with several different browsers natively and removes the need
for us to manually test our code in different browsers. For example, it can run the tests in Chrome,
IE, and Firefox and spit out the results to your console. We can even hook up to our own native
devices (yes, like an iPhone or iPad) to test our code.

Types of AngularJS Tests

There are several different ways to test our Angular apps, depending upon what level of granularity
we want to focus on and what features we want to target.

Unit Testing

We can focus on building our tests to isolate specific, isolated components of our code. This approach
is called “unit testing”, where we test specific units of code for all sorts of different input at different
stages and under different conditions.

Unit testing is specifically for testing small, individual units of code, single functions, or small and
contained function interactions. It is not about testing large feature sets.

The tricky part about unit testing is setting up the isolation of one piece of logic so that we can test
it. We’ll discuss strategies of accomplishing this isolation later in this chapter.

⁹²http://karma-runner.github.io/0.10/index.html

http://karma-runner.github.io/0.10/index.html
http://karma-runner.github.io/0.10/index.html

Testing 297

When Is Unit Testing the Right Choice?

When we’re writing our functional code, we’re going to create little components of functionality.
For instance, in building an application that handles live filtering elements in a list, we’re going to
build the filtering functionality.

The feature of this filter is a ‘unit’ of functionality that is an ideal case where we’ll want to test
with a unit test. To be confident that this filter functionality has been implemented and is working
as expected, we’ll need to isolate the component and test it for different inputs.

Imagine we’re building a rocket ship. We’ll want to test each individual part of the
ship (e.g., the thrusters, the joystick controls, the oxygen system) to verify the ship is
generally working how we expect it to work.

E2E Testing

On the other hand, we can black-box test (i.e., perform an end-to-end test on) our application. In an
end-to-end (or E2E) test, we test the application from the point of view where we are an end user
and know nothing about the underlying components of the system. This method is great for testing
large features of the application.

E2E testing works well for testing the user interaction with the page without forcing us to refresh
the page manually and test with the browser.

This kind of testing is nothing new, and there are great tools that enable us to set up automated
browser testing. We can use tools like PhantomJS or CasperJS for headless browser testing (i.e.,
without opening a browser) or tools like Karma that will open a real browser and perform all the
tests in an iframe.

When Is End-to-End Testing the Right Choice?

When we’re writing tests of use-case functionality, it’s always a good idea to write a test to walk
the path of our user. End-to-end testing is great because it maps out the real experiences our users
will have when using our application.

For instance, when building a user login flow, we test that the user is logged in and redirected to his
or her homepage. We don’t worry about how the user is logged in, just that they are logged in and
directed to the proper place.

Imagine you’re building a rocket ship. End-to-end testing doesn’t care about the engines
or the landing gear, it cares that the rocket takes off and flies your astronauts to space.

Both unit testing and E2E testing are supported out of the box with the Karma test runner.

Testing 298

Note that writing unit tests instead of E2E tests will allow our tests to run extremely quickly.
Setting up our tests to run synchronously and using mocking libraries will greatly speed
up our testing, as well.

Getting Started

In order to run our tests, we’ll need to install the Karma test runner. At this point in the book, you
likely already have NodeJS⁹³ and npm available to you; if you don’t, make sure you install them.
Once you do, we’ll use the npm command to install the Karma tool:

$ npm install -g karma

To install npm, we’ll save our dependencies in the package.json file that lists our
dependencies. To set up package.json with npm installed, simply run npm init and walk
through the wizard.

To start testing our application, we’ll need to set up a reasonable structure for both our application
code and our test code.

We recommend storing application files in the following format:

app/

index.html

js/

app.js

controllers.js

directives.js

services.js

filters.js

views/

home.html

dashboard.html

calendar.html

test/

karma-e2e.conf.js

karma.conf.js

lib/

angular-mocks.js

⁹³http://nodejs.org

http://nodejs.org
http://nodejs.org

Testing 299

helpers.js

unit/

e2e/

The app/ layout is standard, wherein we divide our application code. The test/ directory nests our
tests in the appropriate directories that reflect the type of test: unit/ or e2e/.

There are two different Karma configuration files in the test/ directory. Each of these files contains
the specific type of test that it will run. As we walk through each type of test, we’ll discuss how each
Karma configuration should look and how to customize it for our use.

Running a Karma test is simple: karma start path/to/karma.config.js. When the test runner
starts up, it will start the browsers listed in the Karma config file.

Running Karma with Chrome and Safari

By default, if not otherwise specified, Karmawill watch all the files listed in the Karma configuration.
Any time a file changes, Karma will run the appropriate tests.

Initializing Karma Config File

Karma gives us a generator to help us build configuration files. This generator will ask a few
questions about how we want to set up our configuration. Each question suggests a default value so
it is possible to simply accept all the default values, which we’ll do in a moment.

Testing 300

Karma init

The process of setting up testing with unit tests and E2E tests is largely the same. We’ll use the karma
init generator to create karma.conf.js configuration files.

Setting Up Unit Testing

First, let’s run the karma init command with the path of our test file. In this case, we’ll build our
Karma config in our tests directory:

$ karma init test/karma.conf.js

For unit testing, we all of the dependencies against which we’re running our tests to be available.
When building our unit tests with the Karma generator, it’s important that our unit tests contain
references to code for:

• a testing framework (choose one):
– Jasmine (default)
– Mocha
– QUnit

• custom test configuration (required w/ Mocha)
• any vendor-required code
• our app-specific code
• our test code
• angular-mocks.js library for mocking

Unit tests need references to all of the app code that we’ll be testing as well as all of the tests that
we’ll be writing.

For instance, a sample unit test Karma config file might look like the following (comments removed
for simplicity):

Testing 301

module.exports = function(config) {

config.set({

basePath: '..',

frameworks: ['jasmine'],

files: [

'lib/angular.js',

'lib/angular-route.js',

'test/lib/angular-mocks.js',

'js/**/*.js',

'test/unit/**/*.js'

],

exclude: [],

port: 8080,

logLevel: config.LOG_INFO,

autoWatch: true,

browsers: ['Safari'],

singleRun: false

});

};

This config file is similar to the one we’ll generate.

Once this file is set, we can run our unit tests like so:

$ karma run test/karma.conf.js

Alternatively, if we want the tests to run any time the code changes (if we set autoWatch to true):

$ karma start test/karma.conf.js

Setting Up E2E Testing

To set up end-to-end testing, we’ll run the Karma generator with the path of our E2E Karma config
file.

$ karma init test/karma-e2e.conf.js

The E2E tests will use the ng-scenario framework. Unlike unit tests, we do not need to reference
all of our library code: These E2E tests run against our server. The ng-scenario framework simply
needs to load all of the tests in the browser.

A sample Karma config for E2E tests might look like:

Testing 302

module.exports = function(config) {

config.set({

basePath: '..',

frameworks: ['ng-scenario'],

files: [

'test/e2e/**/*.js'

],

exclude: [],

port: 8080,

logLevel: config.LOG_INFO,

autoWatch: false,

browsers: ['Chrome'],

singleRun: false,

urlRoot: '/_karma_/',

proxies: {

'/': 'http://localhost:9000/'

}

});

};

Once we’ve set up this config, we can run our unit tests like so:

$ karma run test/karma-e2e.conf.js

Alternatively, if we want our tests to run any time the code changes (if we set autoWatch to true):

$ karma start test/karma-e2e.conf.js

Configuration Options

With Karma, we can choose between many configuration options and customize testing any way
we like.

Framework

The generator will ask us which testing framework we’d like to use for tests. Jasmine is the default
testing framework, but the generator also supports Mocha, QUnit, Jasmine, and others by default.

These testing frameworks all require the installation of an additional npm library. For instance, to
use the Jasmine framework, we’ll need to install the Jasmine plugin.

Testing 303

$ npm install --save-dev karma-jasmine

Using the --save-dev flag writes the dependency to the package.json file and places it
under devDependencies.

In the configuration file, this takes an array, which allows us to use multiple frameworks. Typically
we’ll only use one, so this option is usually going to be set as ['jasmine'] or ['mocha'].

For example:

frameworks: ['jasmine'],

RequireJS

If the project is using the RequireJS⁹⁴ library, then select ‘yes’ for the question asking to include
RequireJS. If the project does include it, then instead of listing all of the files in your Karma config
(which we’ll see momentarily), we’ll want to include our single test file, which will be responsible
for loading the specific modules.

RequireJS is a JavaScript file and module loader specifically designed for the browser. It enables
us to write JavaScript libraries that export a library and use the name of the module to set up a
dependency expectation that it will be available when our module loads.

Its main benefits are that:

• It sets up an import process
• It can load nested dependencies
• It enables easy packaging dependencies

In effect, RequireJS allows us to define JavaScript through modules and require those modules in
our JavaScript. For instance:

define(['jquery', 'underscopre'],

function($, _) {

// $ references jQuery

// _ references underscore

});

For more information on how to set up testing, see RequireJS.

⁹⁴http://requirejs.org/

http://requirejs.org/
http://requirejs.org/

Testing 304

Browser Captures

The Karma generator will ask which browsers you want to start automatically to capture their test
results. Upon termination of the test runner, Karma will shut down these browsers, as well. We
can also test any browser by opening the URL that Karma’s web server is listening to (defaults to
http://localhost:9876), which is something worth keeping in mind if you want to test Internet
Explorer from another machine (or VM) on your local network.

Each browser requires additional plugins to be installed to launch and run the browsers using Karma.
We can install these plugins using npm. For instance, to enable Karma to control Chrome, we’ll need
to install the Chrome launcher plugin:

$ npm install --save-dev karma-chrome-launcher

If we want to use Safari, we’ll need to install the Safari launcher; for Firefox, the firefox launcher;
and so on.

browsers: ['Chrome', 'Safari'],

Source and Test Files

The Karma generator will ask where your JavaScript source and test files are located. This array can
contain simple strings and/or objects.

Strings can be patterns (e.g., app/js/**/*.js), or file locations (e.g.,app/js/main.js). These files
and patterns are relative to the basePath.

We can also specify files using an object (instead of a string), which is useful when we want to
configure certain aspects of a given file path or pattern. In the following example, this object tells
Karma to watch the file public/js/watch-me.js for changes, but to not include the file on the page
or serve it to a URL:

{pattern: 'public/js/watch-me.js', watched: true, included: false, served: false}

Note that the reason for using an object is to provide fine-grained control over a file or file pattern;
thus, the pattern property is required. The other properties, such as included, have defaults and
therefore only need to be set when our pattern deviates from the norm.

Let’s discuss each option and its defaults in detail:

pattern The pattern is a regex that match test files, this option can be either a path to a single file
or a pattern of files in the same manner that strings are listed above.

Testing 305

watched If Karma is set to use autoWatch, this boolean specifies whether the file identified will be
watched. If it is listed as true, then Karma will run the tests when this file is changed. If it is set to
false, these tests will not run.

If watched is not listed as a property in the configuration object, then the files listed in this object
will be watched by default (true).

included This boolean tells Karma to load the file using the <script> tag in the browser. If this
option is set to true, the browser will load the files. If set to false, we are responsible for loading
them manually. We generally use this option in conjunction with RequireJS.

By default, files are set to be included with the <script> tag (true).

served This boolean tells Karma to serve the file through the Karma web server. If it is set to true,
the file will be accessible over the web server. If it’s set to false, it won’t be.

By default, this option is set to true and, thus, the files will be accessible over the webserver.

Ordering

The order in which files are listed matters, so we’ll list our libraries before we list our application
files as they need to be required. If a pattern is listed, the files are sorted in alphabetical order and
included.

Every file that is included is only included once, so if a file is matched more than once in a pattern
match, it is only included once.

A full example of the files property:

files: [

// simple strings

// we can target a single file

'js/app/vendor/angular/angular.js',

// or we can target a glob of files in a pattern

'js/app/*.js',

// objects

// when the index.html file changes, we won't

// run the tests

{pattern: 'public/index.html', watched: false},

// And we can set the file to not be included

// but still be watched

{pattern: 'public/index.html', included: false}

]

Testing 306

exclude

Karma can exclude any files that we don’t want included when loading our tests. The exclude option
allows us to set a list of files we don’t want included by default. This array is useful if you are using
RequireJS, for example.

exclude: [

'public/index.html'

]

basePath

We can set the root path location where we want relative paths defined in the files and exclude

properties by using the basePath option. If the basePath is a relative path, then it will be resolved
relative to where the Karma configuration file is (__dirname).

basePath: '..',

autoWatch

Setting autoWatch to true will trigger karma to execute the configured tests whenever the files in
files are changed. It is useful to set this to falsewhen using a continuous integration server where
watching file changes are unnecessary.

autoWatch: true,

captureTimeout

If the browser loads in more time than the captureTimeout (defaults to 60 seconds or 60000 ms),
Karma will kill the process and try again. If it fails after three attempts, Karma will give up trying
to launch the browser.

captureTimeout: 60000

colors

Karma’s default output will include color. If you do not want to include color output in your terminal,
you can disable it by setting the colors property to false:

colors: true,

hostname

The hostname is localhost by default, but if you want to change it, you can set the hostname

property.

Testing 307

hostname: '127.0.0.1',

logLevel

When something goes wrong or unexpectedly with Karma, it’s useful to look at more detailed
information from Karma. We can set the level of detailed output by setting the logLevel property.
When running a continuous integration server, we most likely want to disable logging output
entirely.

The possible log values are:

• config.LOG_DISABLE
• config.LOG_ERROR
• config.LOG_WARN
• config.LOG_INFO
• config.LOG_DEBUG

logLevel: config.LOG_INFO,

port

The default port for Karma’s webserver to launch and listen on is 9876. It’s possible to customize
the port by setting it in the config file.

port: 9875,

preprocessors

It’s possible to tell Karma to preprocess files before any tests are run. Preprocessing can be useful
when writing tests in a language like Coffeescript⁹⁵; it obviates the need to process these files
manually.

The coffeescript preprocessor is baked-in to Karma by default, but other preprocessors require
additional plugins to run via npm.

The preprocessors that are available for Karma that are included are:

• CoffeeScript
• html2js

Other plugins available as preprocessors that can be included via a plugin are:

⁹⁵http://coffeescript.org

http://coffeescript.org
http://coffeescript.org

Testing 308

• coverage
• ng-html2js
• ember

To include one or more of these, we install them with the npm command:

$ npm install karma-coverage --save-dev

To configure which preprocessors are to be used, we set them in the config file map. By default, the
file map is set to {'**/*coffee': 'coffee'}.

preprocessors: {

'**/*.coffee': ['coffee']

}

It’s possible to configure some of the preprocessors, as well. Configuration is dependent upon the
plugin we’re using. To configure CoffeeScript, for example:

coffeePreprocessor: {

options: { bare: true }

}

We can also customize the preprocessors using a customPreprocessor property:

customPreprocessor: {

mini_coffee: {

base: 'coffee',

options: { bare: true }

}

}

proxies

Karma will set up HTTP proxies for us so that when our tests fetch a route, they can fetch it off a
remote server. This is useful and required for e2e tests (that use a server).

This object will be a list of key-value pairs that point from a path to a remote server.

Testing 309

proxies: {

'/': 'http://localhost:9000'

}

reporters

Reporting from Karma is also customizable: We can set reporters to display all sorts of useful output
in the terminal about the state of the tests.

By default, this option is set to ['progress'], which will report the progress of the tests in human-
readable form. progress and dots are included by default as reporters for Karma.

We can include other reporters, such as growl and coverage, via npm plugins. We use npm to install
these plugins:

$ npm install karma-[plugin-name] --save-dev

singleRun

If this boolean is set to true, Karma will run the tests once for all the configured browsers; we’ll see
an exit code of 0 if they all pass and 1 if any tests fail.

This indicator is particularly useful when running our tests on a continuous integration server.

urlRoot

This URL is the base URL where Karma runs. We prefix any of the URLs Karma uses with the
urlRoot parameter. It’s a good idea to use this option when using a proxy so that calls from our tests
don’t collide with existing functions on the server.

Using RequireJS

To use RequireJS with Karma, we’ll need an additional file after our karma.conf.js config file: the
test-main.js file.

• karma.conf.js - responsible for configuring Karma (as we’ve seen)
• test-main.js - responsible for configuring Require.js for the tests

karma.conf.js

We’ll configure karma like normal with the Karma configuration file generator:

Testing 310

$ karma init test/karma.conf.js

When we are prompted to use Require.js, select yes.

When the generator asks which files you want to be loaded by default, we’ll need to select all of the
files that Require.js does not load. It’s safe to only include the test/test-main.js file, which we’ll
create shortly.

When we list the source and tests files, we’re choosing all of the files we want to load with
Require.js. We should list every file that we’re loading with Require.js. That includes all external
libraries, all of our code, and all of our test files.

We need to configure these files with the configuration object and set them so they are not included
by default.

At this point, our karma.conf.js should be:

module.exports = function(config) {

config.set({

basePath: '..',

frameworks: ['jasmine', 'requirejs'],

files: [

{pattern: 'app/lib/angular.js', included: false},

{pattern: 'app/lib/angular-route.js', included: false},

{pattern: 'app/lib/angular-mocks.js', included: false},

{pattern: 'app/js/**/*.js', included: false},

{pattern: 'test/**/*.js', included: false}

{pattern: 'test/lib/**/*.js', included: false},

'test/test-main.js'

],

exclude: [

'js/main.js'

],

reporters: ['progress'],

port: 9876,

colors: true,

logLevel: config.LOG_INFO,

autoWatch: true,

browsers: ['Chrome'],

captureTimeout: 60000,

singleRun: false

});

};

Testing 311

Notice that we’re excluding our main.js file, the application file that starts the application.

Since Karma serves files under the app/js directory, we’re configuring Karma’s file server with a
starting context for modules that load with a relative path. Since we want the baseUrl for our tests
to be in the same folder as our source files, we’ll need to set the basePath to the local directory (.).

test/test-main.js

Our test-main.js file will operate as a substitute for our main application file, providing us with
the ability to reference our test files without actually kicking off our app.

Karma will include all the files in the array window.__karma__.files, so we’ll find our test files
from here. After we’ve found our tests, we can configure our RequireJS like normal:

var tests = [];

for (var file in window.__karma__.files) {

if (window.__karma__.files.hasOwnProperty(file)) {

if (/Spec\.js$/.test(file)) {

tests.push(file);

}}}

requirejs.config({

baseUrl: 'app',

paths: {

'jquery': 'lib/jquery',

'angular': 'lib/angular',

'angularRoute': 'lib/angular-route',

'angularMocks': 'lib/angular-mocks',

},

shim: {

'underscore': {

exports: '_'

}

},

// ask Require.js to load these files (all our tests)

deps: tests,

// start test run, once Require.js is done

callback: window.__karma__.start

});

Our tests will look a bit different from those that do not use RequireJS by default. We can simply
use RequireJS like normal and wrap our tests in define(). For example:

Testing 312

define([

'app', 'jquery', 'angular',

'angular', 'angularRoute', 'angularMocks'

],

function() {

describe('UnitTest: App', function() {

// just like normal

it('is defined', function() {

expect(_.size([1,2,3])).toEqual(3);

});

});

});

Jasmine

We’re going to cover the Jasmine testing framework. Although Karma does support multiple testing
frameworks, the default option for Karma is Jasmine.

Jasmine is a behavior-driven development framework for testing JavaScript code. Since we’ll be
working closely with the Jasmine syntax, let’s run through an overview of how to write Jasmine-
based test suites.

Spec Suite

At the heart of a Jasmine suite is the describe function. This function is a global function defined
in the Jasmine suite, so we can call it directly from the test.

The describe() function takes two parameters, a string and a function. The string is a name or
description of the spec suite we’re setting up. The function encapsulates the test suite.

describe('Unit test: MainController', function() {

});

We can nest these describe() functions such that we can create a test tree that executes the different
conditions that we’ll set up throughout the tests:

Testing 313

describe('Unit test: MainController', function() {

describe('index method', function() {

// Specs go in here

});

});

It’s a good idea to group related specs together using the describe() function. When each
describe() block runs, the strings will be concatenated together along with the spec’s name. Thus,
the above example’s title would become “Unit test: MainController index method.”

These describe() block titles are then appended to the spec title. This step is specifically designed
to allow us to read our specs as full sentences, so it’s important that we name our tests in readable
English.

Defining a Spec

We define a spec by calling the it() function. This function is also a global function defined in the
Jasmine test suite, so we can call it directly from our tests.

The it() function takes two arguments: a string title or description of the spec and a function that
contains one or more expectations we’ll set to test the functionality of our code.

These expectations are functions that, when executed, evaluate to true or false. A test with all true
expectations is considered a passing spec, whereas a specwith one ormore expectations that evaluate
to false is considered a failing test.

A simple test might look like:

describe('A spec suite', function() {

it('contains a passing spec', function() {

expect(true).toBe(true);

});

});

This single spec’s title, as appended to the describe() title, becomes “A spec suite contains a passing
spec.”

Expectations

When testing our app, we’ll want to assert that conditions are how we expect them to be at different
stages of the app. The tests we’ll write will likely read like so: “If we click on this button, then we
expect this result.” For instance, “If we navigate to the home page, then we expect the welcome
message to be rendered.”

Testing 314

We set up expectations using the expect() function. The expect() function takes a single value
argument. This argument is called the actual value.

To set up an expectation, we chain a matcher function that takes a single value argument. This
argument is the expected value.

These matcher functions implement a boolean comparison between the actual value and the
expected value. We can create a negation of the test by calling not before calling the matcher.

describe('A spec suite', function() {

it('contains a passing spec', function() {

expect(true).toBe(true);

});

it('contains another passing spec', function() {

expect(false).not.toBe(true);

});

});

Jasmine comes with a large set of built-in matchers that we’ll use throughout testing our app. It is
also incredibly easy to write a custom matcher.

Included Matchers

toBe

The toBe() matcher compares values with the JavaScript operator: ===.

describe('A spec suite', function() {

it('contains passing specs', function() {

var value = 10,

another_value = value;

expect(value).toBe(another_value);

expect(value).not.toBe(null);

});

});

toEqual

The toEqual() matcher compares values and works for simple literals and variables:

Testing 315

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 10;

expect(value).toEqual(10);

});

});

toMatch

The toMatch() matcher matches strings with a regular expression:

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = "<h2>Header element: welcome</h2>";

expect(value).toMatch(/welcome/);

expect(value).toMatch('welcome');

expect(value).not.toMatch('goodbye');

});

});

toBeDefined

The toBeDefined() matcher compares values against undefined:

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 10,

undefined_value = undefined;

expect(value).toBeDefined();

expect(undefined_value).not.toBeDefined();

});

});

toBeUndefined

The toBeUndefined() matcher does the exact opposite as the toBeDefined() matcher:

Testing 316

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 10,

undefined_value = undefined;

expect(undefined_value).toBeUndefined();

expect(value).not.toBeUndefined();

});

});

toBeNull

The toBeNull() matcher compares values against the null value:

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = null,

not_null_value = 10;

expect(value).toBeNull();

expect(not_null_value).not.toBeNull();

});

});

toBeTruthy

The toBeTruthy() matcher compares values for boolean casting of a truthy value:

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 10,

undefined_value;

expect(value).toBeTruthy();

expect(undefined_value).not.toBeTruthy();

});

});

toBeFalsy

The toBeFalsy() matcher compares values for boolean casting testing of a falsy value:

Testing 317

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 10,

undefined_value;

expect(undefined_value).toBeFalsy();

expect(value).not.toBeFalsy();

});

});

toContain

The toContain() matcher looks for an item in an array:

describe('A spec suite', function() {

it('contains a passing spec', function() {

var arr = [1,2,3,4];

expect(arr).toContain(4);

expect(arr).not.toContain(12);

});

});

toBeLessThan

The toBeLessThan() matcher sets an expectation that compares a numerical value to be less than
the expected:

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 10;

expect(value).toBeLessThan(20);

expect(value).not.toBeLessThan(5);

});

});

toBeGreaterThan

The toBeGreaterThan() matcher sets an expectation that compares a numerical value to be more
than the expected:

Testing 318

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 30;

expect(value).toBeGreaterThan(40);

expect(value).not.toBeGreaterThan(20);

});

});

toBeCloseTo

The toBeCloseTo() matcher compares a value to be close to another value within a specified
precision level:

describe('A spec suite', function() {

it('contains a passing spec', function() {

var value = 30.02;

expect(value).toBeCloseTo(30, 0);

expect(value).not.toBeCloseTo(20, 2);

});

});

toThrow

The toThrow() matcher tests on whether or not a function throws an exception:

describe('A spec suite', function() {

it('contains a passing spec', function() {

expect(function() {

return a + 10;

}).toThrow();

expect(function() {

return 2 + 10;

}).not.toThrow();

});

});

Creating Custom Matchers

Jasmine makes it incredibly easy to create our own matchers for more complex situations in our
code. To create a matcher, we can call the addMatcher() function inside a Jasmine block with a
function that takes the value:

Testing 319

describe('A spec suite', function() {

this.addMatchers({

toBeLessThanOrEqual: function(expected) {

return this.actual <= expected;

}

});

});

We can then call this toBeLessThanOrEqual() matcher in any of tests that are defined in our test
suite.

Setup and Teardown

Rather than setting up our test conditions manually in every test, we can use the beforeEachmethod
to run a group of setup functions. The beforeEach() function takes a single argument: a function
that is called once before each spec is run. It can be used in a describe block, like so:

describe('A spec suite', function() {

var message;

beforeEach(function() {

message = "hello ";

});

it('should say hello world', function() {

expect(message + "world").toEqual("hello world");

});

it('should say hello ari', function() {

expect(message + "ari").toEqual("hello ari");

});

});

We can also reset conditions (e.g., clearing a database or flushing all requests from a mock using
the afterEach() function). Similarly to the beforeEach() function, it takes a single argument: a
function to be executed after each spec is run.

Testing 320

describe('A spec suite', function() {

var count;

afterEach(function() {

count = 0;

});

it('should add one to count', function() {

count += 1;

expect(count).toEqual(1);

});

it('should check for the reset value', function() {

expect(count).toEqual(0);

});

});

These beforeEach and afterEach methods are chained when inside nested describe blocks, so we
can set up complex test trees without duplicating our code.

End-to-End Introduction

When we are end-to-end testing, we are going to use the Angular scenario runner. The Angular
scenario runner simulates user interactions so that we can more accurately assess the status of the
application.

When we write scenario tests, we’ll describe how the application should behave from different
stages. Just like in unit testing, we’ll use Jasmine to set up our expectations and behavior.

We will work directly with the scenario runner API to control our browsers as they work through
the application tests. The API allows us to run the browser through many various actions, including
entering data into input fields, selecting elements, navigating the browser, controlling browser flow,
and more.

The core fundamental API method we’ll use is the browser()method. This method returns an object
to which we’ll be able to chain methods in order to control the browser.

The scenario runner works by opening a browser window with an iframe embedded in it. This
iframe is where Karma runs our app tests and tracks the success or failures of the scenario runner.

Navigating Pages

To load a URL into the test browser frame, we use the navigateTo function, which takes a single
argument: the URL to load.

Testing 321

browser().navigateTo(url)

We can also dynamically load a URL by calling a function to find the URL. This call is common for
cases when we don’t know the destination URL when we’re writing a test or checking the outcome
of a certain action, for instance.

browser().navigateTo(title, function() {

// return the dynamic url here;

return '/';

});

Reload the Page

We can refresh the currently loaded page in the test frame:

browser().reload()

Handling the Window Object

We can get the current href of the currently loaded page in the test frame:

browser().window().href()

To get the path of the currently loaded page in the test frame, we use the following:

browser().window().path()

To get the current search of the page loaded in the test frame, we execute:

browser().window().search()

We can get the latest hash of the currently loaded page in the test frame like so:

// The hash is returned without the #

browser().window().hash();

Location, Location, Location

To get the current $location.url() of the page loaded in the test frame, we use:

Testing 322

browser().location().url()

We can get the $location.path() of the currently loaded page in the test frame in this way:

browser().location().path()

It’s also easy to get the $location.search() of the current page like so:

browser().location().search()

Finally, we can get the hash of the current page, as well:

browser().location().hash()

Setting Expectations

To actually verify that our application does work the way we expect it to act, we’ll need to set up
expectations that assert a certain state. We can do this with a combination of the E2E and scenario
APIs.

Using expect(), we assert that the value of a given future object matches the matcher. Anything
given back by the scenario API is a future object that the scenario runner will resolve, and we’re
validating that the eventual value will result in what is expected.

expect(browser().location().path())

.toBe('/')

// Or negate the expectation with not()

expect(browser().location().path())

.not().toBe('/home')

Interacting with the Content

End-to-end testing is particularly powerful because we are actually loading the page our users will
see, so we can peek into the result that they see and verify that it looks right and works according
to our expectations.

We can select elements, enter values into input fields, click on buttons, verify content is where it
should be, run through repeaters, etc.

To select an element on a page, we use the element() API method. This API method takes two
parameters:

• selector - the jQuery HTML element selector
• label - a string of text used for output in the browser or terminal

Testing 323

element("form", "the signup form")

With this element selected, we can execute methods to query the state of the it on the page.

To check the number of elements that match a certain jQuery selector:

element("input", "input elements").count()

To click on an element (for instance, on a submit button), we can call:

element("button", "submit button").click()

We can run a function on a certain jQuery selector using the query() function.

// select all links on the page

element("a", "all links").query(

// all of the links will be passed to the

// function as elements

function(elements, done) {

// Do what we'd like with each element

angular.forEach(elements, function(ele) {

expect(ele.attr('ng-click'))

.toBeDefined();

});

done(); // Tell the scenario runner we are done

});

We can look at each element and set different expectations on the jQuery attributes.

We can fetch or set the value of an element:

element("button", "submit button").val()

// Or set

element("button", "submit button").val("Enter")

We can fetch or set the text:

Testing 324

// The text of a block of html

element("h1", "header").text()

// Or set

element("h1", "header").text("Header text")

We can get or fetch the HTML of an element:

// HTML of the html

element("h1", "header").html()

// Or set

element("h1", "header").html("<h2>New header</h2>")

To set or fetch the height:

// Height of an element

element("div", "signup box").height()

// To set

element("div", "signup box").height('200px')

To fetch or set the innerHeight:

// innerHeight of an element

element("div", "signup box").innerHeight()

// To set

element("div", "signup box").innerHeight('190px')

To set or fetch the outerHeight:

// outerHeight of an element

element("div", "signup box").outerHeight()

// To set

element("div", "signup box").outerHeight('210px')

To set or fetch the width:

// width of the element

element("div", "signup box").width()

// Setting

element("div", "signup box").width('300px')

To set or fetch the innerWidth:

Testing 325

// innerWidth of the element

element("div", "signup form").innerWidth()

// Setting

element("div", "signup form").innerWidth('200px')

To set or fetch the outerWidth:

// outerWidth of the element

element("div", "signup form").outerWidth()

// Setting

element("div", "signup form").outerWidth('305px')

To set or fetch the position of the element:

// The position of the element

element(".logo", "our logo").position()

// Or

element(".logo", "our logo").position("absolute")

To get or set the scrollLeft:

// The scrollLeft value of the element

element("#signup_form", "signup form").scrollLeft()

// Setting

element("#signup_form", "signup form").scrollLeft(0)

To get or set the scrollTop value, where you can force the browser to scroll to a specific element:

// The scrollTop value of the element

element("#signup_form", "signup form").scrollTop()

// Setting

element("#signup_form", "signup form").scrollTop(0)

To fetch or set the offset:

// The element's offset

element("#signup_form", "signup form").offset()

// Setting

element("#signup_form", "signup form").offset(0);

We can also query and/or change the value of an element in a jQuery selector.We can get an attribute
(with attr):

Testing 326

element("div", "signup box").attr('width')

// To set it

element("div", "signup box").attr('width', '100%')

We can fetch a property (with prop)

element("div", "signup box").prop('width')

// To set it

element("div", "signup box").prop('width', '100%')

And we can fetch CSS (with css):

element("div", "signup box").css('border-color')

// To set it

element("div", "signup box").css('border-color', 'red')

We can interact with the content in different ways than simply by fetching the element using
element(). Angular’s scenario runner includes a few different helper methods that enable us to
both query and interact with the rendered DOM.

We can investigate Angular’s understanding of different elements in which we’re interested. We
can select them, find bindings, interact with input elements, and query the page for testing native
Angular bindings.

Selecting Elements on the Page

One of the lowest-level helpers the scenario runner sets up for us is the using() function. The
using() method allows us to target specific elements using jQuery-style element selectors.

it('does not test anything yet', function() {

// Target a specific element

using('.input_email').binding('email');

});

The using() method takes up to two parameters:

jQuery selector We use this selector to choose the element on the page.

Label (string optional) This string is a label that the runner uses to identify the selector in the
output of our tests.

Testing 327

Interacting with the Angular Binding

The scenario runner includes a way for us to query into the bindings that Angular set up, which
enables us to query into our Angular bindings on the DOM and select the first binding for the
specific element.

For instance, if we have HTML where the property name on the $scope element is available on the
DOM:

<input type="text" ng-model="name" />

We can query for this specific binding in the scope by using the binding() method:

it('should update the name', function() {

using('.form').input('name').enter('Ari');

expect(

using('.form').binding('name')

).toBe('Ari');

});

The binding() method takes a single argument:

• name (string)

This string is the name of the binding for the DOM element we’re interested in querying.

Interacting with Input Elements

We can interact with input elements on our page, as well. If we want to enter text into a text box,
check a checkbox, or select a value for an option element, we can using the input() method.

The input() method itself returns an object that allows us to call methods to interact with the
element. It takes a single argument:

• name (string)

The name of the corresponding ng-model name.

The available methods that we can call on the input field are:

enter() The enter() method enters a value into an input field.

Given the HTML:

Testing 328

<input type="text" ng-model="name" />

We can enter ‘Ari’ into the input with:

input('name').enter('Ari');

check() The check() method checks a checkbox input field.

Given the HTML:

<input type="checkbox" ng-model="save" />

we can check the save checkbox by calling:

input('name').check();

select() The select() method selects a given value for a radio button.

Given the HTML:

<input type="radio" ng-model="color" value="red" />

<input type="radio" ng-model="color" value="blue" />

<input type="radio" ng-model="color" value="yellow" />

we can select the radio button with the following test:

input('color').select('red');

val() Lastly, we can get the current value of the input field simply by calling .val() on the input
element. We’ll use this to check the current value of the specific input element.

input('color').select('red');

input('color').val(); // This will be "red"

Option Inputs

It’s also easy to select a specific option value for a given option input field. We’ll use the select()
method to enable us select one option over another option in a selection tag.

Given the HTML: {lang=”html”}

Testing 329

select('color')

The select()method returns an object with a method that we can use to select a single option from
the select input. It also gives us the ability to select multiple inputs for multi-selects.

option() The option() method allows us to select a single value from the list.

select('color').option('red');

The option() method takes a single argument:

• value (string)

The value argument is a single string that selects the input with the given value.

options() The options() method allows us to select multiple values from a multi-select option.

select('color').options('Ghostbusters', 'Titanic');

The options() method takes any number of arguments to select the values from the option field as
necessary:

• values (list of strings)

These are the values to select from the multi-select.

Repeating Repeating Elements Elements

Angular makes it incredibly easy to build DOM elements for lists through the ng-repeat directive,
and the Angular scenario enables us to easily test these repeating directives.

The repeater() function itself returns an object with several methods we can use to query a list of
elements in our view. It accepts up to two arguments:

• selector (string)

The jQuery selector points to the selector of the elements in which we are interested.

• label (optional string)

The label is a string used in test outputs.

The available methods that we can call on the list of elements returned by the repeater are as listed
below. For each of these tests, we’ll use the following HTML as example HTML:

Testing 330

<table id="phonebook">

<tr ng-repeat="person in people">

<td>{{ person.name }}</td>

<td>{{ person.email }}</td>

</tr>

</table>

The methods are as follows:

count() The count() method returns the number of rows in the repeater that match the jQuery
selector in the DOM.

repeater('#phonebook tr').count();

The count method takes no arguments and simply returns a single integer.

column() The column() method returns an array containing the values in the column that have
the given binding in the repeater matching the jQuery selector in the DOM.

repeater('#phonebook tr')

.column('person.name');

The column() method takes a single argument:

• binding (string)

This binding is for the specific element of the repeater. It is the name of the binding that is rendered
in the element.

row() The row()method returns an array containing the values in the row that have the the given
bindings in the repeater matching the given jQuery selector in the DOM.

repeater("#phonebook tr").row(0);

The row() method takes a single argument:

• index (integer)

The index is the number of the row from which to return the given bindings.

Testing 331

Mocking and Test Helpers

Before we can start writing tests, we need to understand a core feature of testing:mocking. Mocking
in testing is an old concept that allows us to define simulated objects that mimic the behavior of real
objects under controlled circumstances.

AngularJS provides its ownmocking library called angular-mocks; it is available as the angular-mocks.js
file. Mocking objects are specifically designed to be used in unit testing.

To set up a mock object in a unit test, we need to make sure we’re including the angular-mocks.js
file in our Karma configuration.

We must ensure that our test/karma.conf.js file contains the angular-mocks.js in the files

array. Once the dependency is included, we can create a mock reference to the Angular module.

For example, in this common unit test setup, we’ll create a describe execution context wherein we
call angular.mock.module before every test runs in our describe context:

describe('myApp', function() {

// Mock our 'myApp' angular module

beforeEach(angular.mock.module('myApp'));

it('...')

});

Note that we can also just call module because the function angular.mock.module is
published on the window interface for global access.

After we have set up our mock Angular module, we can inject any of the services connected to that
module into our test code.

With the tests, we need to inject the dependencies just as Angular will at run time. In our unit tests,
this step is necessary because it’s important that we isolate the functionality we want to test.

To inject a dependency, we use the angular.mock.inject method in a beforeEach function call,
similarly to how we did so above.

Testing 332

describe('myApp', function() {

var scope;

// Mock our 'myApp' angular module

beforeEach(angular.mock.module('myApp'));

beforeEach(angular.mock.inject(function($rootScope) {

scope = $rootScope.$new();

});

it('...')

});

Similarly to the module function, the inject function is also available on the window

object for global access, so we can just call inject.

In this test, as in almost all of our unit tests, we’ll want to save a reference to an instance of the object
with which we’re working (in the above example, we’re saving scope). That way, we can work with
the reference of the object in all of our it() clauses.

Oftentimes, we’ll want to store the reference as the same name as we’re injecting into our test. For
example, if we are testing a service, we can inject the service and store a reference to it using a
slightly different naming scheme. We want to enclose the injected service in _ underscores to cause
the injector to ignore the name when it’s injected.

describe('myApp', function() {

var myService;

// Mock our 'myApp' angular module

beforeEach(module('myApp'));

beforeEach(inject(function(_myService_) {

myService = _myService_;

});

it('...')

});

Mocking the $httpBackend

Angular also comes with a built-in $httpBackendmocking library so that we can mock any external
XHR requests in our app and avoid making expensive $http requests in our tests.

The $httpBackend service is a Fake HTTP back-end implementation that allows us to isolate and
specify conditions that external servers might be in such that we can determine exactly how our
app behaves under different circumstances.

Testing 333

Using the $httpBackend, we can verify that a request is made, stub responses, stub calls, and set
assertions that verify how we expect our app to behave based on the response of the remote server.
We’ll use the $httpBackend solely in unit tests.

It is possible to use the $httpBackend service in end-to-end testing, but doing so will
generally not test the app fully, because we are no longer using our real server.

Testing with the $httpBackend works simply by hijacking the dependency injection chain: We
inject the mock $httpBackend instead of the real $httpBackend service that makes the actual HTTP
requests by the $http service. In this way, we don’t need to change our app at all to support testing
it.

Flushing HTTP Requests

When in production, the $httpBackend responds to requests asynchronously, which is fundamen-
tally difficult to set up in testing environments. Thus, we need to manually flush any pending
requests at the end of our tests so that we can clean the execution environment, yet still keep the
asynchronous behavior of the $httpBackend.

The $httpBackend contains two methods for setting up a mock back-end system to handle HTTP
responses; these two methods are expect and when, and they have different use cases.

Typically, in a unit test we’ll want to ensure that all of the requests we set up with expectations run
at the end of each test and throw an exception if they don’t. Additionally, we’ll want to ensure that
there are no outstanding requests pending at the end of each test.

We can take care of these two cases with two methods in an afterEach block:

// ...

afterEach(function() {

$httpBackend.verifyNoOutstandingExpectation();

$httpBackend.verifyNoOutstandingRequest();

});

There are cases when we want to reset all of the request expectations we’ve set. These cases occur
when we want to reuse the same instance of $httpBackend inside of a multiple-phase test.

We can reset them with the resetExpectations() method:

Testing 334

// ...

it('should be a multiple-phase test', function() {

// ...

$httpBackend.resetExpectations();

// ...

});

expect

The expect method sets up a request expectation and is used to both make assertions about the
requests the application makes and define responses for them. The test will fail if the expected
requests are not made or they are incorrectly made. These request expectations are used to set up
an assertion that a request has been made.

The expect method takes two required arguments and two additional optional arguments:

• method

The string HTTP method, like ‘GET’ or ‘POST’

• url

The HTTP URL where we’re expecting the call

• data (optional)

The HTTP request body or function that receives a data string and returns true if the data is expected
(or a JavaScript object to send the body in JSON format)

• headers (optional)

The HTTP headers or function that will receive the header object and return true if the headers
match the expectation

The expectmethod returns an object with a respondmethod that controls how the matched request
is handled inside the tests.

Testing 335

describe('Remote tests', function() {

var $httpBackend, $rootScope, myService;

beforeEach(inject(

function(

$httpBackend, _$rootScope_, _myService_) {

$httpBackend = _$httpBackend_;

$rootScope = _$rootScope_;

// myService is a service that makes HTTP

// calls for us

myService = _myService_;

}));

it('should make a request to the backend', function() {

// Set an expectation that myService will

// send a GET request to the route

// /v1/api/current_user

$httpBackend.expect('GET', '/v1/api/current_user')

.respond(200, {userId: 123});

myService.getCurrentUser();

// Important to flush requests

$httpBackend.flush();

});

});

The $httpBackend.expectmethod has several helper functions that allow us to be more descriptive
of the expectation we’re setting:

expectGET() creates a new request expectation for a GET method. expectGET() takes two argu-
ments:

• url - an HTTP URL
• headers - (optional) HTTP headers

// ...

$httpBackend.expectGET("/v1/api/current_user")

expectHEAD() creates a new request expectation for a HEAD method. It accepts two arguments:

• url - an HTTP URL
• headers - (optional) HTTP headers

Testing 336

// ...

$httpBackend.expectHEAD("/v1/api/current_user")

expectJSONP() creates a new request expectation for a JSONP request. It accepts a single argument:

• url - an HTTP URL

// ...

$httpBackend.expectJSONP("/v1/api/current_user")

expectPATCH() creates a new request expectation for PATCH requests. It accepts three arguments:

• url - an HTTP URL
• data - (optional) an HTTP request body or a function that receives the data string and returns
true if the data returned is as expected. Or it returns an object if the request body is in JSON
format

• headers - (optional) HTTP headers

// ...

$httpBackend.expectPATCH("/v1/api/current_user")

expectPOST() creates a new request expectation for POST requests. It accepts three arguments:

• url - an HTTP URL
• data - (optional) an HTTP request body or a function that receives the data string and returns
true if the data returned is as expected. Or it returns an object if the request body is in JSON
format

• headers - (optional) HTTP headers

// ...

$httpBackend.expectPOST("/v1/api/sign_up", {'userId': 1234});

expectPUT() creates a new request expectation for PUT requests. It takes three arguments:

• url - an HTTP URL
• data - (optional) an HTTP request body or a function that receives the data string and returns
true if the data returned is as expected. Or it returns an object if the request body is in JSON
format

• headers - (optional) HTTP headers

Testing 337

// ...

$httpBackend.expectPUT("/v1/api/user/1234", {'name': 'Ari'});

expectDELETE() creates a new request expectation for DELETE requests. It takes two arguments:

• url - an HTTP URL
• headers - (optional) HTTP headers

// ...

$httpBackend.expectDELETE("/v1/api/user/123")

requestHandler

Our expect() methods all return a requestHandler object that has a single function: respond. The
respond method gives us the ability to set up a response for the mocked HTTP request.

The requestHandler response function is a function that can take one of two forms:

The first form allows us to set a response code, response data, headers, or all three.

// ...

$httpBackend.expectGET("/v1/api/current_user")

// Respond with a 200 status code

// and the body "success"

.respond(200, 'Success');

// Or only return data

.respond("Fail");

// Or only headers

.respond({'X-RESPONSE', 'Failure'});

The second form enables us to set a request handler function that is executed upon the successful
execution of the request. Instead of returning data, we’ll return a function handler that can return
an array containing the response status code, response data, and response headers.

Testing 338

// ...

$httpBackend.expectGET("/v1/api/current_user")

// Respond with a 200 status code

// and the body "success"

.respond(function(method, url, data, headers) {

return [200, "DATA", {"header1": "Header1"}];

});

when

The $httpBackend also has the when method that differs from the expect method in that it doesn’t
create an expectation for a request at all. In fact, its purpose is primarily to create a fake back end
for an app and return fake data.

Unlike expectations, when using when(), every single request that matches the URL can be handled
by a single when definition. Additionally, a response is required when using when, whereas with
expect a response is not required.

The when() method is great for setting up back-end definitions that are common for all tests (e.g.,
when testing a controller that is using the resolve property that depends upon foreign data being
loaded).

The when() function takes two required arguments and two additional optional requirements:

• method

The string HTTP method, like ‘GET’ or ‘POST’

• url

The HTTP URL where we’re expecting the call

• data (optional)

The HTTP request body or function that receives a data string and returns true if the data is expected
(or a JavaScript object to send the body in JSON format)

• headers (optional)

The HTTP headers or function that will receive the header object and return true if the headers
match the expectation

Testing 339

// ...

$httpBackend.when('GET', "/v1/api/current_user")

// Respond with a 200 status code

// and the body "success"

.respond(200, 'success');

Similar to the expect method, we have the same helper methods that make the use of when more
descriptive:

whenGET() creates a new back-end definition for a GET method. whenGET() takes two arguments:

• url - an HTTP URL
• headers - (optional) HTTP headers

// ...

$httpBackend.whenGET("/v1/api/current_user")

.respond(200, {userId: 123});

whenHEAD() creates a new back-end definition for a HEAD method. It accepts two arguments:

• url - an HTTP URL
• headers - (optional) HTTP headers

// ...

$httpBackend.whenHEAD("/v1/api/current_user")

.respond(200);

whenJSONP() creates a new back-end definition for a JSONP request. It accepts a single argument:

• url - an HTTP URL

// ...

$httpBackend.whenJSONP("/v1/api/current_user")

.respond({userId: 123});

whenPOST() creates a new back-end definition for POST requests. It accepts three arguments:

• url - an HTTP URL
• data - (optional) an HTTP request body or a function that receives the data string and returns
true if the data returned is as expected. Or it returns an object if the request body is in JSON
format

• headers - (optional) HTTP headers

Testing 340

// ...

$httpBackend.whenPOST("/v1/api/sign_up",

{'userId': 1234})

.respond(200);

whenPUT() creates a new back-end definition for PUT requests. It takes three arguments:

• url - an HTTP URL
• data - (optional) an HTTP request body or a function that receives the data string and returns
true if the data returned is as expected. Or it returns an object if the request body is in JSON
format

• headers - (optional) HTTP headers

// ...

$httpBackend.whenPUT("/v1/api/user/1234", {'name': 'Ari'});

whenDELETE() creates a new back-end definition for DELETE requests. It takes two arguments:

• url - an HTTP URL
• headers - (optional) HTTP headers

// ...

$httpBackend.whenDELETE("/v1/api/user/123")

.respond(200);

Testing an App

With our testing harness set up, we can start testing the different components of our app. Any part
of our module that has logic that may change is a good candidate for testing. Does a route work the
way we expect? Does the page contain specific content? Does the controller code execute?

We’re going to focus on testing different components of our app, the most common places to test
our app, and tips and tricks for testing the various components.

We’ll cover testing the following components of our app:

• Routes
• Requests and page content
• Controllers

Testing 341

• Services and Factories
• Filters
• Templates and views
• Directives
• Resources
• Animations

For each component, we’ll look at our options for testing, and then we’ll run through how to test it
with the available methods.

For most of our tests, the base code that we’ll start with looks like:

describe('NAME', function() {

});

Testing Routes

When we test our routes, we want to set up a test to ensure that our app properly routes the request
to the route that we’re interested in. We need to check where the route works and whether it’s found
or a 404. We’ll check to make sure the routing events are fired and whether the template that we
expect is actually loaded.

We can use either unit testing or end-to-end testing to test routes. Since our routes will change page
locations (URL) and page content, we’ll need to check if the route has been loaded, if the page has
been found, and what’s in between.

To test these routes, let’s assume we have the following simple routing code set up:

angular.module('myApp', ['ngRoute'])

.config(function($routeProvider) {

$routeProvider

.when('/', {

templateUrl: 'views/main.html',

controller: 'HomeController'})

.when('/login', {

templateUrl: 'views/login.html',

controller: 'LoginController'})

.otherwise({redirectTo '/'});

})

Testing 342

Unit Testing Routes

In order to set up our unit tests so that they can test our routing code, we need to do a few things:

• Inject the $route, $location, and $rootScope services
• Set up a mock back end to handle XHR fetching template code
• Set a location and run a $digest lifecycle

We want to store a copy of the three services we’ll use in our tests (location, route, and rootScope)
so we can later reference these services in our tests.

describe('Routes test', function() {

// Mock our module in our tests

beforeEach(module('myApp'));

var location, route, rootScope;

beforeEach(

inject(_$location_, _$route_, _$rootScope_) {

location = _$location_;

route = _$route_;

rootScope = _$rootScope_;

});

// Our test code will go here

});

Now that we have our services injected into the controller, we set a mock back end to handle
fetching the templates from the templateUrl. We can use the $httpBackend to create an assertion
that determines a specific template will be fetched:

describe('Routes test', function() {

// Mock our module in our tests

beforeEach(module('myApp'));

var location, route, rootScope;

beforeEach(inject(

function(_$location_, _$route_, _$rootScope_) {

location = _$location_;

route = _$route_;

rootScope = _$rootScope_;

}));

describe('index route', function() {

Testing 343

beforeEach(inject(

function($httpBackend) {

$httpBackend.expectGET('views/home.html')

.respond(200, 'main HTML');

}));

// Our tests will code here

});

});

Our test code is all set up – now we can start writing our tests!

In order to test the router with unit tests, we need to mimic how the router works in production.
The router works with the digest lifecycle, wherein after the location is set, it takes a single digest
loop cycle to process the route, transform the page content, and finish the routing. Knowing that,
we need to account for the change in paths in our test.

Inside our test, we’re going to test two states of the application in the index route:

• When a user navigates to the index page, they are shown the index page with the proper
controller

• When a user navigates to an unknown route, they are taken to the index page as defined by
our otherwise function.

We can test the conditions by setting up our $location service to pass the paths. In order to trigger
the location request, we’ll run a digest cycle (on the $rootScope) and check that the controller is as
expected (in this case, the ‘HomeController’).

it('should load the index page on successful load of /',

function() {

location.path('/');

rootScope.$digest(); // call the digest loop

expect(route.current.controller)

.toBe('HomeController')

});

it('should redirect to the index path on non-existent

route', function() {

location.path('/definitely/not/a/_route');

rootScope.$digest();

expect(route.current.controller)

.toBe('HomeController')

});

To run these tests, we need to make sure we have our Grunt server running:

Testing 344

$ cd myApp

$ grunt server

If we run karma start karma.conf.js in our app file, we will see immediate output in our terminal.

Unit testing routes

We did a lot of work to set up our routes test, and we only tested one route location. Since we are
testing flow changes for our user features, we can shuffle this work off to the application and test it
more rigorously in end-to-end testing.

End-to-end Route Testing

With end-to-end testing, we don’t need to mock any part of Angular: We’re black-box testing the
app. In this way, we can just describe howwewant our app to behave andwrite our tests accordingly.

In writing our end-to-end tests, we need to think about how the user navigates around our
application. Our tests should be readable in that we’re sending our user to a particular page and
describing what they should experience in our app.

Our base test for all of our end-to-end tests will simply be:

describe('E2E: NAME', function() {

// Our tests will go here

});

That’s it. We’re going to use the browser() API function to modify the source of the iframe inside
our browser.

To test our index route, we’ll point our browser to the index route and ensure that the location is, in
fact, at the index page.

Testing 345

describe('E2E: Routes', function() {

it('should load the index page', function() {

browser().navigateTo('/#/');

expect(browser().location().path()).toBe('/');

});

});

To run this test, we need to make sure that our Grunt server is running:

$ cd myApp

$ grunt server

Now we’ll run Karma:

$ karma start karma-e2e.conf.js

Here, we’ll see immediate output in our terminal. If the test is successful, we’ll see that it passes all
of its tests. If not, it will report its failures to you.

End-to-end testing routes in our terminal

We can also use the browser to debug our end-to-end tests. When we started karma, a browser
opened in the background. Open the browser and click on the debug button in the top right corner.
Clicking this button opens a new page that shows us all of our tests, including a list of the ones that
pass and a list of the ones that fail. When we’re developing tests, it’s useful to use our browser as a
reference to debug our application and tests.

Testing 346

Visual representation of our tests in browser

Testing Page Content

When we’re testing, we want to ensure the page content is rendered correctly by our browser. We
will need to assert that certain content gets delivered in the browser and eventually to our users.

Unit testing content in the browser won’t give us much insight into the state of the application, as
we don’t have direct access to browser content in unit testing.

We can confirm that the controllers are executing the expected functions and set assertions that
confirm the content will load, which we will cover in depth.

End-to-end Testing Page Content

End-to-end testing, on the other hand, is ideal for setting up expectations for loaded HTML. With
end-to-end testing, every part of the application responsible for executing a successful browser
request will fire.

To set up end-to-end content testing, we set up our test like normal:

describe('E2E: Content', function() {

});

We’re going to set up two scenarios in this route test:

• That we have a link to the login route at our index page
• That we can click on the link, and it will bring us to the login page

In our first test, we’re simply testing that there IS a login button on our page. We’ll set an assertion
that we have a login button to click.

In our index.html, suppose we have the following content:

Testing 347

<div id="authorize">

Try it! Sign in

</div>

Inside of this first test, we’ll just confirm that we have the element that matches the text in the
button:

it('should have a sign up button', function() {

browser().navigateTo('/#/');

expect(

element("a#login").html()

).toEqual("Try it! Sign in");

});

Now, we want to ensure that clicking on this link brings our users to the login page. We’ll set up
another test that asserts that if we click on the link our new location is at the login route:

it('should show login when clicking sign in', function() {

browser().navigateTo('/#/');

element("a#login", "Sign in button").click();

expect(browser().location().path())

.toBe('/login');

});

Lastly, if we have a user to test against, we can set up our test to fill out our login form simply by
selecting the input elements and setting their value.

it('should be able to fill in the user info',

function() {

browser().navigateTo('/#/');

element("a#login", "Sign in button").click();

input("user.email").enter("ari@fullstack.io");

input("user.password").enter('123123');

element('form input[type="submit"]').click();

expect(browser().location().path())

.toBe('/dashboard');

});

Testing 348

Content loading tests

Testing Controllers

Our controllers contain the business logic of our application. The controller is where the $scope

marries the controller to the view. Since we’re going to do most of the work of updating the views
of our application in our controllers, we want to set up tests to ensure that their behavior executes
as expected.

Unit Testing Controllers

When we’re unit testing controllers, we need to set up our tests to mimic the behavior of Angular.

In setting up our unit tests, we need to make sure we:

• Set up our tests to mock the module
• Store an instance of the controller with an instance of a known scope
• Test our expectations against the scope

To instantiate a new controller instance, we need to create a new instance of a scope from the
$rootScope with the $new() method. This new instance will set up the scope inheritance that
Angular uses at run time.

With this scope, we can instantiate a new controller and pass the scope in as the $scope of the
controller.

Testing 349

describe('Unit controllers: ', function(){

// Mock the myApp module

beforeEach(module('myApp'));

describe('FrameController', function() {

// Local variables

var FrameController, scope;

beforeEach(inject(

function($controller, $rootScope) {

// Create a new child scope

scope = $rootScope.$new();

// Create a new instance of the FrameController

FrameController = $controller('FrameController',

{ $scope: scope });

}));

// Our tests go here

});

});

With our test set up, we have both an instance of our FrameController as well as the $scope for the
controller. Now we can use that scope to test the scope on the FrameController.

In our FrameController, we have a clock that ticks with the current time at the top of the app. We
also have access to a user and his or her time zone.

The relevant parts of the controller code look like:

angular.module('myApp.controllers', [])

.controller('FrameController',

function($scope, $timeout) {

$scope.time = {

today: new Date()

};

$scope.user = {

timezone: 'US/Pacific'

}

var updateClock = function() {

$scope.time.today = new Date();

};

var tick = function() {

$timeout(function() {

$scope.$apply(updateClock);

tick();

Testing 350

}, 1000);

}

tick();

});

Our FrameController is purposefully simplified for focus on the test. To see the entire test
suite for the sample app, take a look at the code that accompanies this book.

We’ll test two features of our controller:

• The time is defined
• The user is defined and has a time zone

// Testing the FrameController values

it('should have today set', function() {

expect(scope.time.today).toBeDefined();

});

it('should have a user set', function() {

expect(scope.user).toBeDefined();

});

End-to-End Testing Controllers

The result of end-to-end testing our controllers will look very similar to that of our tests where we
test that the page content renders as expected: We’re testing that all of the functions in the controller
actually fire.

To test whether or not a page has been rendered, we can load the page in question in the browser
and test if the content we expect has been rendered in the view.

The boilerplate for our end-to-end tests looks like:

describe('E2E controllers: ', function() {

// Our tests go here

});

With our test set up, we can add our specs. We’re going to test that the date (or at least a portion of
it) exists on the page, as well as the time zone.

Testing 351

beforeEach(function() {

browser().navigateTo('/#/');

});

it('should have the date in the browser', function() {

var d = new Date();

expect(

element("#time h1").html()

).toMatch(d.getFullYear());

});

it('should have the user timezone in the header', function() {

expect(

element('header').html()

).toMatch('US/Pacific');

});

It is convenient to know if our timeout function has been called inside our controller. We can confirm
that we are, in fact, setting the timeout to be called using the Jasmine helper createSpy.

If we modify our beforeEach() function (see above), we can include the $timeout service in our
controller.

var FrameController, scope, timeout;

beforeEach(inject(

function($controller, $rootScope) {

scope = $rootScope.$new();

timeout = jasmine.createSpy('timeout');

FrameController = $controller('FrameController', {

$scope: scope,

$timeout: timeout

});

}));

Now, in our tests, we can set an expectation that the service is, in fact, called:

it('should set the clock a foot', function() {

expect(timeout).toHaveBeenCalled();

});

Testing Services and Factories

Services are easy to test: They are isolated objects that offer localized functionality. Since they are
singleton objects, we can create these objects in isolation and test their behavior.

Testing 352

Unit Testing Services

Unit testing services is pretty easy, as we only need to inject our services into our tests.

Starting with the simple example, suppose we have the service that provides a version:

angular.module('myApp.services', [])

.value('version', '0.0.1');

In this case, our service provides a single string value. We can inject the version service into the
current test.

Our test boilerplate for this unit test looks like:

describe('Unit: services', function() {

beforeEach(module('myApp'));

});

Up until now, we’ve been implicitly calling the $injector service. This example shows
how to use it explicitly.

To isolate the test, we nest this test into a describe() block and inject our version service in a
beforeEach() block.

describe('version', function() {

var version;

beforeEach(inject(function($injector) {

// use the $injector to get the version service

version = $injector.get('version');

}));

it('should have the version as a service',

function() {

// set our expectation on the version service

expect(version).toEqual('0.0.1');

});

});

As we can see, testing services is really simple; however, our services are not always this simple. In
our sample app, we’re interacting with the googleApi; this service is a bit more complex.

Here is the full source for the googleServices.googleApi service:

Testing 353

// Our google services module

angular.module('googleServices', [])

.factory('googleApi',

function($window, $document, $q, $rootScope) {

// Create a defer to encapsulate the loading of

// our Google API service.

var d = $q.defer();

// After the script loads in the browser, we're going

// to call this function, which in turn will resolve

// our global defer which enables the

$window.bootGoogleApi = function(keys) {

// We need to set our API key

window.gapi.client.setApiKey(keys.apiKey);

$rootScope.$apply(function() {

d.resolve(keys);

});

};

// Load client in the browser

var scriptTag = $document[0].createElement('script');

scriptTag.type = 'text/javascript';

scriptTag.async = true;

scriptTag.src = 'https://apis.google.com/js/client:plusone.js?onload=onLoad\

Callback';

var s = $document[0].getElementsByTagName('body')[0];

s.appendChild(scriptTag);

// Return a singleton object that returns the

// promise

return {

gapi: function() { return d.promise; }

}

});

The service itself returns us an object containing a single function that returns a promise. The
promise will be resolved once the Google API has been loaded and is ready on the page.

To set out our expectations for this service, we need to use the Jasmine method spyOn to create a
spy on the method we’re calling and to set up an expectation that it is actually called.

We’ll set up our tests to run against the Google API in an isolated describe() block:

Testing 354

describe('googleServices', function() {

var googleApi, resolvedValue;

beforeEach(inject(function($injector) {

// Fetch the defined googleApi from our service

googleApi = $injector.get('googleApi');

// Create a spy for the gapi function

// that tells us it's been called, but doesn't

// prevent the actual function from being called

spyOn(googleApi, 'gapi')

.andCallThrough();

// Use the actual function's resolve to

// set the resolved value

googleApi.gapi().then(function(keys) {

resolvedValue = keys;

});

}));

describe('googleApi', function() {

// Our tests go here

});

});

We can also inject the googleApi service above by name, as the inject() function uses
the same syntax as the $injector. The above call would change to inject(function(googleApi))
instead.

Note: By using the andCallThrough() method, our test will wait for the gapi object to be present
on the window. We can stub these requests by using a different method, andCallFake().

var q;

beforeEach(inject(function($injector) {

// Fetch the defined googleApi from our service

googleApi = $injector.get('googleApi');

// Get the $q object

q = $injector.get('$q');

// Create a spy for the gapi function

// and mock the actual response

spyOn(googleApi, 'gapi')

.andCallFake(function() {

var d = q.defer(); // fake the deferred function

setTimeout(function() {

Testing 355

resolvedValue = {

clientId: '12345'

}

}, 100);

return d.promise;

});

// Use the actual function's resolve to

// set the resolved value

googleApi.gapi().then(function(keys) {

resolvedValue = keys;

});

}));

Now, we can use our spy to determine if the function has actually been called.

Our first test in this describe() block simply tests that the method exists and is a function. This test
is useful if we’re still working on the API and we change the method name or signature.

To set up tests for waiting for a promise to resolve, we use a Jasmine helper, waitsFor(). It takes a
single parameter: a function that provides a true or false response for when the method can continue.
We’ll set it up to wait a maximum of .5 seconds, at most:

describe('googleApi', function() {

beforeEach(function() {

// pause the spec for up to

// half a second while we are waiting for

// the resolvedValue to be resolved

waitsFor(function() {

return resolvedValue !== undefined;

}, 500);

});

it('should have a gapi function', function() {

expect(

typeof(googleApi.gapi)

).toEqual('function');

});

Now we can set expectations for the return values of the service and assert that they are equal to
our assumptions:

Testing 356

it('should call gapi', function() {

expect(googleApi.gapi.callCount)

.toEqual(1);

});

it('should resolve with the browser keys', function() {

expect(resolvedValue.clientId)

.toBeDefined();

});

End-to-End Testing Services

Since services interact with our front end through our controllers, it’s not effective to specifically
test services with end-to-end testing. We can, however, test that services resolve their promises and
that the results populate the view.

For instance, we can test that a service populates a list of events in the view. In an /events page,
where we are showing a list of events, we can assert that we actually are listing out the number of
events we expect with the details that we expect:

beforeEach(function() {

browser().navigateTo('/#/events');

});

it('should show 10 events', function() {

expect(

repeater('.event_listing li').count()

).toBe(10);

});

Testing Filters

Filters are also easy to test: They are isolated functionality. The filter’s job is specifically to limit or
manipulate output, so we’ll set assertions on the output of the filter functions.

Unit Testing Filters

It is simple to unit test filters. First, we need to get access to the filter, which we can do simply by
injecting the $filter service into our tests. That will give us access to looking up the filter in the
process:

Testing 357

describe('Unit: Filter tests', function() {

var filter;

// Mock our module in our tests

beforeEach(module('myApp'));

beforeEach(inject(function($filter) {

filter = $filter;

}));

});

With this access to the filter, it’s simply a matter of setting expectations on the output of the filter.

it('should give us two decimal points',

function() {

expect(filter('number')(123, 2)).toEqual('123.00');

});

End-to-End Testing Filters

We can also test the output of our filters in the view using end-to-end testing. End-to-end testing is
slightly different from using unit tests to test our code, as we’re focused on what the end user sees
rather than the output of our filter function specifically.

In order to set up a filter test, we’ll have our browser load the page(s) where we are testing our filter,
and we’ll interact with the filter itself.

For instance, given the case where we have a live search with an ng-repeat:

<input ng-model="search.$" type="text" placeholder="Search filter" />

<table id="emailTable">

<tbody>

<tr ng-repeat="email in emails | filter:search.$">

<td>{{ $index + 1 }}</td>

<td>{{ email.from }}</td>

<td>{{ email.subject | capitalize }}</td>

</tr>

</tbody>

</table>

where our emails data looks like:

Testing 358

[

{

from: 'ari@fullstack.io',

subject: 'ng-book and things'

},

{

from: 'ari@fullstack.io',

subject: 'Other things about ng-book and angular'

},

{

from: 'ted@google.com',

subject: 'Conference speaking gig'

}

];

Here, we’ll test two filters: the live search filter where we set an expectation against the ng-repeat
and on the subject line (to ensure it’s capitalized).

To ensure that the live search is working, we need to enter a value into the input field and ensure
that the field changes to what we expect.

it('should filter on the search', function() {

expect(repeater('#emailTable tbody tr')).count()

.toBe(3);

// things shows up in two of our emails

input('search.$').enter('things');

expect(repeater('#emailTable tbody tr')).count()

.toBe(2);

});

We can see that when we set a different input for the search.$ field, the ng-repeat changes from 3
to 2.

We can also test our own filter (the capitalize filter) to ensure it’s working as expected:

it('should capitalize the subject line', function() {

expect(

repeater('#emailTable tbody tr:first')

.column('email.subject')

).toEqual(["Ng-book and things"]);

});

Testing 359

Testing Templates

When we test templates, we’re looking to ensure that the proper content template is loaded and that
the correct data inside the template shows up in the view.

Unit Testing Templates

Since our templates are tied directly to the view, unit testing components inside the view doesn’t
make a lot of sense: We’re making assertions upon the completion of multiple components to build
the view.

We can make an assertion that the template is loaded properly. To make that, we need to set up our
test to expect a request to the home template and execute a view change to test that it is, in fact,
loaded.

describe('Unit: Templates', function() {

var $httpBackend,

location,

route,

rootScope;

beforeEach(module('myApp'));

beforeEach(inject(

function(_$rootScope_, _$route_, _$httpBackend_, _$location_){

location = _$location_;

rootScope = _$rootScope_;

route = _$route_;

$httpBackend = _$httpBackend_;

}));

afterEach(function() {

$httpBackend.verifyNoOutstandingExpectation();

$httpBackend.verifyNoOutstandingRequest();

});

// Our tests will go here

});

Now, we can set up our tests to reflect the expectation that our templates do load when we navigate
to different parts of the app.

Testing 360

it('loads the home template at /', function() {

$httpBackend.expectGET('templates/home.html')

.respond(200);

location.path('/');

rootScope.$digest(); // call the digest loop

$httpBackend.flush();

});

it('loads the dashboard template at /dashboard', function() {

$httpBackend.expectGET('templates/dashboard.html')

.respond(200);

location.path('/dashboard');

rootScope.$digest(); // call the digest loop

$httpBackend.flush();

});

Notice that we’re not actually returning a template into our tests (.respond(200) instead of
.respond(200, "<div></div>div>")). Since we’re only verifying that the template is being loaded
on our requests, we don’t need to worry about what shows up, just that it does.

End-to-end testing is where we’ll verify that the view looks how it’s supposed to look in end-to-end
tests.

End-to-End Testing Templates

When testing the view in end-to-end testing, we want to focus our attention on the actual data being
loaded in the view, rather than on whether the template simply loads up. These tests will give us a
better picture of what our users will actually see when the view loads.

We’ll test the content of the view when it’s in our user’s view.

To test our templates, we’ll test that the view contains our expected HTML and that it does not load
other parts of our app.

describe('E2E: Views', function() {

beforeEach(function() {

browser().navigateTo('#/');

});

it('should load the home template', function()

{

expect(

element('#emailTable').html()

).toContain('tbody');

Testing 361

});

it('should not load the dashboard template',

function() {

expect(

element('#dashboard').count()

).toBe(0);

});

});

Making assertions on view templates is very straightforward.

Testing Directives

Directives are the root of the Angular workflow. Since most of the interaction that we do within our
Angular apps is working on directives, testing directive functionality is one of the most important
components to test, especially when we build larger components.

When we’re testing our directives, we’ll want to test that the directive does actually get loaded into
the view and that it behaves as we expect it to behave on the $scope in the DOM.

In unit testing, we focus on testing the functionality of the directive, while in end-to-end testing,
we’re able to verify that we’re using the directive properly.

Unit Testing Directives

Unit testing directives requires that we set up a test to ensure that the directive renders as we expect
it. We’ll want to set expectations that bindings are set up properly, that errors are thrown when we
expect them to be thrown, and that the view shows the full directive as expected.

In this test, we’ll work with the following directive:

angular.module('myApp')

.directive('notification', function($timeout) {

var html = '<div class="notification">' +

'<div class="notification-content">' +

'<p>{{ message }}</p>' +

'</div>' +

'</div>';

return {

restrict: 'A',

scope: { message: '=' },

template: html,

Testing 362

replace: true,

link: function(scope, ele, attrs) {

scope.$watch('message', function(n, o) {

if (n)

$timeout(function() {

ele.addClass('ng-hide');

}, 2000);

});

}}});

In order to unit test our directives, we need to expose them to the view. Similar to how we test our
controllers, we need to manually place the directive in an element that we’ll create (in a manner
similar to how Angular places the directive in the first place).

describe('Unit: Directives', function() {

var ele, scope;

// Load our app

beforeEach(module('myApp'));

// Our tests will go here

});

Now, in order to load the directive into the view, we need to compile the HTML content and apply
the bindings that Angular automatically runs for us in the production.

describe('Unit: Directives', function() {

var ele, scope;

// Load our app

beforeEach(module('myApp'));

beforeEach(inject(function($compile, $rootScope) {

scope = $rootScope;

ele = angular.element(

'<div notification message="note"></div>'

);

$compile(ele)(scope);

scope.$apply();

}));

// Our tests will go here

});

Notice that we’re creating an element that calls the directive, just like when we place it into the
DOM. Then we need to compile the element and run the digest loop to effectively place the element
in our fake DOM.

Testing 363

All we have to do to test the directive is interact with it as though it is in our DOM. In order to make
any changes to any bindings in the directive, we need to force a digest loop to run.

In our directive, we’re attaching a binding to the message property of the scope, so when we change
it, we’ll need to do it within an $apply() call:

// ... test setup

it('should display the welcome text', function() {

scope.$apply(function() {

scope.note = "Notification message";

});

expect(

ele.html()

).toContain("Notification message");

});

End-to-End Testing Directives

When E2E testing directives, we’re not primarily concerned with the functionality of the directives
– we’re testing what the user sees and does in the overall view.

As we’re simply testing the view, end-to-end testing of directives looks similar to testing templates.

describe('E2E: directives', function() {

beforeEach(function() {

browser().navigateTo('/');

});

it('should have the welcome message', function() {

expect(

element('.notification', 'Notification').html()

).toContain('Notification message');

});

});

Testing Events

When we’re using events in our app, especially events that cause interaction to happen in the DOM,
we’ll want to set up tests that ensure the actual event is fired and that it gets the expected event data.

We’ll also want to set up tests that set expectations for what happens when an event is caught in the
browser. We want to see whether our reaction to the event is operating how we expect it to respond.

Testing 364

Unit Testing Events

When we’re unit testing that events are fired, we’re interested to know that they are actually called
and that the right events are actually called. Second, we’re mostly interested to know that the
handlers have the data they need.

Setting up event testing is incredibly easy using the spyOn() Jasmine helper.

Imagine that we’re testing a controller that is firing an $emit function. With this function, we can
set up an expectation that our event is fired and that it’s called with any arguments in which we’re
interested.

First, as usual, we need to set up our tests such that we’ll have access to the controller’s scope:

describe('myApp', function() {

var scope;

beforeEach(angular.mock.module('myApp'));

beforeEach(angular.mock.inject(function($rootScope) {

scope = $rootScope.$new();

});

});

With setup, we can simply set a spyOn() call on the scope for the $emit or $broadcast event.

// ...

});

it('should have emit called', function() {

spyOn(scope, "$emit");

scope.closePanel(); // for example

// or any event that

// causes the emit to

// be called

expect(scope.$emit)

.toHaveBeenCalledWith("panel:closed",

panel.id);

});

We can also test the events that are we set an $on() listener that the gets called after an event is
fired. To execute the $broadcast method, we can simply call $broadcast on the scope and set an
expectation for the changes in the scope that the event will cause.

Testing 365

// ...

it('should set the panel to closed state',

function() {

scope.$broadcast("panel:closed", 1);

expect(scope.panel.state).toEqual("closed");

});

End-to-End Testing Events

End-to-end testing events being called is fairly easy: We’ll simply test that the functionality the
event causes is firing as we expect.

Continuous Integration for Angular

Angular’s Karma works wonderfully with continuous integration services. Continuous integration
services, or CI for short, allows our app a gateway for deployment and allows us to be confident that
every check-in of our code is working as expected.

Continuous integration servers are used by developers and large and small companies all over the
world, and it’s a good idea to learn how to set them up. Both JenkinsCI⁹⁶ and TravisCI⁹⁷ easily
integrate with Karma, and we strongly encourage our readers to use them.

Protractor

The new end-to-end testing framework, called Protractor, will eventually replace the current
framework as the default framework.

Unlike the Angular scenario runner, Protractor is built on WebDriver⁹⁸, which is an API for
controlling browsers, written as extensions.

WebDriver has controller extensions for IE, Chrome, Safari, FireFox, and more to give us options
and a variety of browsers to test against. This has many benefits, including being more stable and
quicker.

Protractor, like the Angular scenario runner, implements Jasmine as its test scaffolding so we don’t
need to learn a completely new testing framework to use it.

Protractor itself can be installed as a standalone runner or it can be embedded into our tests as a
library.

Installation

We can install Protractor with npm:

⁹⁶http://jenkins-ci.org/
⁹⁷https://travis-ci.org/
⁹⁸https://code.google.com/p/selenium/wiki/WebDriverJs

http://jenkins-ci.org/
https://travis-ci.org/
https://code.google.com/p/selenium/wiki/WebDriverJs
http://jenkins-ci.org/
https://travis-ci.org/
https://code.google.com/p/selenium/wiki/WebDriverJs

Testing 366

$ npm install -g protractor

The -g tells npm to install protractor globally.

Unlike the Angular scenario runner, Protractor requires a separate standalone server to be running
at http://location:4444 (we can configure this location).

Luckily, Protractor itself comes with a tool that eases the installation of a Selenium server.

In order to access the script, we’ll need to install Protractor locally in the top-level directory of the
Angular app we want to test.

$ npm install protractor

Then we can run the Selenium installation script located in the local node_modules/ directory:

$./node_modules/protractor/bin/install_selenium_standalone

This script will download the files required to run Selenium itself and build a start script and a
directory with them.

Install Selenium

When this script is finished, we can start the standalone version of Seleniumwith the Chrome driver
by executing the start script:

$./selenium/start

Testing 367

Install Selenium

If you are having trouble running your Selenium installation, try updating the
ChromeDriver by downloading the latest version here⁹⁹.

Now we can use Protractor to connect to our Selenium server running in the background.

Configuration

Protractor, like Karma, requires a configuration script to run that tells the Protractor runner how to
connect to Selenium, which browser(s) to use, and where the test files are located.

The easiest way to create a configuration file is by copying the reference configuration file from the
Protractor install:

$ cp ./node_modules/protractor/referenceConf.js protractor_conf.js

This reference file includes all of the options available for running Protractor.

Configuration Options

Protractor includes several options that allow us to configure how we are running Protractor with
our spec files.

seleniumServerJar (string)

By setting the seleniumServerJar as the path to the standalone Selenium server, we can tell
Protractor to launch the Selenium server when we run the test.

This setting is useful when we’re running continuous integration (CI) tests, but the startup time of
Selenium is slow, so this is quite inefficient for development time.

⁹⁹http://chromedriver.storage.googleapis.com/index.html

http://chromedriver.storage.googleapis.com/index.html
http://chromedriver.storage.googleapis.com/index.html

Testing 368

seleniumPort (integer)

The port on which to start the Selenium server, if Protractor is to start the server.

chromeDriver (string)

The path of the ChromeDriver to start as the webdriver.chrome.driverwhen starting the Selenium
server. Protractor attempts to find the ChromeDriver using the PATH environment variable if this is
null.

seleniumArgs (array)

The strings in this array are additional arguments that we can manually pass to the Selenium server
on boot.

sauceUser / sauceKey (string)

If the sauceUser and sauceKey are set, then the Selenium server will not start, and the tests will run
remotely using SauceLabs¹⁰⁰, a cloud testing service.

seleniumAddress (string)

This string is the address of a running Selenium server if we’re running our own. For in-
stance, if we start the Selenium server using the included script, this string would be set to:
http://localhost:4444/wd/hub.

allScriptsTimeout (integer)

This integer is the timeout for each script to run in the browser. That is, if a script takes longer than
this time to complete, it will be killed and reported as a failure.

specs (array)

This array of strings is the location of the specs to run. These can be relative, absolute filepaths, or
patterns to match.

specs: [

'spec/*_spec.js',

],

capabilities (object)

This object contains the key-value pairs of capabilities to be passed to the webdriver instance.

¹⁰⁰https://saucelabs.com/

https://saucelabs.com/
https://saucelabs.com/

Testing 369

capabilities: {

'browserName': 'chrome'

}

baseUrl (string)

This string is the base URL for our application. If our tests use relative paths, these paths will be
appended to this string.

baseUrl: 'http://localhost:9000'

rootElement (string)

This string is the selector for the element that houses the Angular app. It defaults to body, but if we
include the Angular app as a descendant of the <body> element, then we need to include this option.

onPrepare (string/function)

This function runs after Protractor has been started and is ready to run, but before all of the specs
are executed. It can also be a file that contains code to be run before the specs are executed.

The onPrepare option is useful for setting up Jasmine or Protractor, for instance:

onPrepare: function() {

// For example, adding a Jasmine reporter:

jasmine.getEnv()

.addReporter(new jasmine.JUnitXmlReporter(

'outputdir/', true, true)

);

},

params (object)

The params object will be passed directly to the Protractor instance, and we can access this object
inside our tests. We can put any arbitrary values inside of this params object.

jasmineNodeOpts (object)

The jasmineNodeOpts specifies the options to be passed to the Jasmine Node instance. The full list
of options for jasmineNodeOpts can be found at https://github.com/juliemr/minijasminenode¹⁰¹.

¹⁰¹https://github.com/juliemr/minijasminenode

https://github.com/juliemr/minijasminenode
https://github.com/juliemr/minijasminenode

Testing 370

Writing Tests

Protractor uses Jasmine by default and, thus, the tests that we’ll write are very similar to those that
we can write with karma with a few key differences.

Protractor exposes a few global variables that we can use in our tests:

browser

This variable is a wrapper around the instance of the webdriver. We’ll use it for navigation and page
information.

element

The element function helps us find and interact with elements on the page that we’re testing.

Remember: The return value of element is not a DOM element; it’s an instance of ElementFinder,
which is an object that acts over webdriver. We can use this object to interact with our objects on
the page using methods such as sendKeys and click.

The full API is extensive; more documentation can be found at the documentation page that can be
found on Github:

https://github.com/angular/protractor/blob/master/docs/api.md¹⁰²

by

This option is the collection of element locater strategies. We can use it to find elements by CSS
selectors, IDs, or even attributes that are bound via ng-model.

by.binding This option allows us to search for elements that are bound either by ng-bind or by
the template notation {{ }}

by.model We can use by.model to search for input elements that are bound by ng-model.

by.repeater We can search for elements that contain the directive ng-repeat.

by.id by.id allows us to search for elements by their CSS ID.

by.css We can search for elements by their CSS selector using by.css.

Since we’ll select by CSS selectors often, Protractor binds the global variable of $ to the function
element.by.css as a convenience.

¹⁰²https://github.com/angular/protractor/blob/master/docs/api.md

https://github.com/angular/protractor/blob/master/docs/api.md
https://github.com/angular/protractor/blob/master/docs/api.md

Testing 371

protractor

This option is the Protractor namespace that wraps the webdriver namespace. It contains static
variables and classes.

Combining these global variables, we can write efficient end-to-end tests.

Note: Protractor assumes we are testing Angular apps and expects Angular to be present
on the page. If it’s not found, it will throw an error.

We can load non-Angular pages by dipping down into the lower-level webdriver instance using the
browser.driver object.

For instance, let’s say we want to test the basic example on the AngularJS homepage:

describe('angularjs homepage', function() {

it('should greet the named user', function() {

// Load the AngularJS homepage.

browser.get('http://www.angularjs.org');

element(by.model('yourName'))

.sendKeys('Julie');

var greeting =

element(by.binding('yourName'));

expect(greeting.getText())

.toEqual('Hello Julie!');

});

});

Page Objects

To make our tests more readable, we can use the webdriver concept of Page Objects. Page Objects
are basically classes that allow us to wrap specific page functionality into a clean interaction.

For instance, we can wrap a page like:

Testing 372

var AngularHomepage = function() {

this.nameInput = element(by.model('yourName'));

this.greeting = element(by.binding('yourName'));

this.get = function() {

browser.get('http://www.angularjs.org');

};

this.setName = function(name) {

this.nameInput.sendKeys(name);

};

};

Now we can clean up our tests like so:

describe('angularjs homepage', function() {

it('should greet the named user', function() {

var angularHomepage = new AngularHomepage();

angularHomepage.get();

angularHomepage.setName('Julie');

expect(angularHomepage.greeting.getText()).toEqual('Hello Julie!');

});

});

Events
In cases where the components of our web application are loosely connected, such as when
we require user authentication and handle authorization, it’s not always feasible to handle the
immediate communication without coupling our components together.

For example, if our back end responds to a request with a status code of 401 (indicative of an
unauthorized request), we expect that our web app won’t allow our user to stay connected to the
current view. In this case, we’d want our app to redirect the user to a login or signup page.

Given this logic, we cannot tell our controllers to set a new location from the outside. We also want
this specific functionality to space across multiple scopes so we can protect multiple scopes using
the same behavior.

We need another way to communicate between them.

Angular’s scopes are hierarchical in nature: They can naturally communicate back and forth through
parent-child relationships. Oftentimes, however, our scopes don’t share variables, and they often
perform completely different functions from each other, regardless of their place in the parent tree.

For these cases, we have the ability to communicate between our scopes by propagating events up
and down the chain.

What are Events

Just as the browser responds to browser-level events, such as a mouse click or a page scroll,
our Angular app can respond to Angular events. This fact gives us the advantage of being able
to communicate across our application inside nested components that are not built with other
components in mind.

Note that the Angular event system does not share the browser event system, meaning
that, by design, we can only listen for Angular events, not DOM events on scopes.

We can think of events as snippets of information propagated across an application that generally
(optionally) contain information about what’s happening inside of that application.

Event Propagation

Since scopes are hierarchical, we can pass events up or down the scope chain.

Events 374

A generally good rule of thumb for choosing the event passing method that we’ll use is to look at the
scope from which we’re firing the event. If we want to notify the entire event system (thus allowing
any scope to handle the event), we’ll want to broadcast downwards.

On the other hand, if we want to alert a global module (so to speak), we’ll end up needing to alert
our higher-level scopes ($rootScope, for instance), and we’ll need to pass an event upwards.

It’s a good idea to limit the number of notifications sent to the global level, particularly
because events, although very powerful, introduce complexity into our apps.

For example, when we’re routing, the ‘global’ app state needs to know at which page the app is
currently set, while, on the other hand, if we’re communicating between a tab directive to its child
pane directives, we’ll need to send the event downwards.

Bubbling an Event Up with $emit

To dispatch an event to travel up the scope chain (from child scopes to parent scopes), we’ll use the
$emit() function.

// Send an event that our user logged in

// with the current user

scope.$emit('user:logged_in', scope.user);

Within an $emit() event function call, the event bubbles up from the child scope to the parent scope.
All of the scopes above the scope that fires the event will receive notification about the event.

We use $emit() when we want to communicate changes of state from within our app to the rest
of the application. If we want to communicate with our $rootScope then we need to $emit() the
event.

The $emit() method takes two arguments:

name (string)

The name of the event to emit

args (set)

A set of arguments passed into the event listeners as objects

The $emit() method returns an event object (see event object for details on the event object).

Any exception that is emitted from any of the listeners passes into the $exceptionHandler service.

Sending an Event Down with $broadcast

To pass an event downwards (from parent scopes to child scopes), we use the $broadcast() function.

Events 375

// hold on, cart is checking out

// so all directives below should disable

// themselves while the cart is checking out

scope.$broadcast('cart:checking_out', scope.cart);

On the $broadcast() method, every single child scope that registers a listener will receive this
message. The event propagates to all directives and indirect scopes of the current scope and calls
every single listener all the way down.

We cannot cancel events sent using the $broadcast() method.

The $broadcast() method itself takes two parameters:

name (string)

The name of the event to emit

args (set)

A set of arguments passed into the event listeners as objects

The $broadcast() method returns an event object (see event object for details on the event object).

Any exception that is emitted from any of the listeners passes into the $exceptionHandler service.

Events

Listening

To listen for an event, we can use the $on() method. This method registers a listener for the event
bearing a particular name. The event name is simply the event type fired in Angular.

For instance, we can listen for the event that fires when a route change process is triggered:

scope.$on('$routeChangeStart',

function(evt, next, current) {

// A new route has been triggered

});

Whenever the event $routeChangeStart (which is broadcasted when the route is going to be
changed) fires, the listener (the function) is called.

Angular passes in the evt object as the first parameter to any event that we are listening for, be it
our own custom events or built-in Angular services.

Events 376

Event Object

The event object has the following attributes:

targetScope (scope object)

This attribute is the scope emitting or broadcasting the event.

currentScope (scope object)

This object contains the current scope that is handling the event.

name (string)

This string is the name of the event that was fired and that we are handling.

stopPropagation (function)

The stopPropagation() function cancels any further event propagation for events that are fired
through $emit.

preventDefault (function)

The preventDefault function sets the flag of defaultPrevented to true. Although we cannot stop
event propagation, we can tell our child scopes that we don’t need to handle the event (i.e., that we
can safely ignore them).

defaultPrevented (boolean)

Calling preventDefault() sets defaultPrevented to true.

The $on() function returns a de-registration function that we can call to cancel the listener.

Core Services Riding on Events

The Angular core framework sends events that we listen for and upon which we can act. We’ll use
these events to provide our custom Angular objects the ability to interact with our app at different
levels of global state.

There are several events that we call with $emit(), sending their events upward, and several more
that we call as $broadcast() events.

Core System $emitted Events

The following events are emitted from directives upward to scopes containing the directive
invocation. We can use $on() to listen to these methods in any scope above the chain:

Events 377

$scope.$on('$includeContentLoaded',

function(evt) {

});

$includeContentLoaded

The $includeContentLoaded event fires from the ngInclude directive when the ngInclude content
is reloaded.

$includeContentRequested

The $includeContentRequested event is emitted on the scope from which the ngInclude is called.
This is emitted every single time that the ngInclude content is requested.

$viewContentLoaded

The $viewContentLoaded event is emitted on the current ngView scope every single time that ngView
content is reloaded.

Core System $broadcasted Events

$locationChangeStart

The $locationChangeStart event is fired when Angular starts to update the browser’s location
based upon amutation set by the $location service (through $location.path(), $location.search(),
etc.).

$locationChangeSuccess

The $locationChangeSuccess event is broadcasted from the $rootScope if and only if we have not
prevented the $locationChangeStart event when the location of the browser changes successfully.

$routeChangeStart

The $routeChangeStart event kicks off from the $rootScope before a route change occurs. It is at
this point that the route services start to resolve all of the dependencies needed for the route change
to occur.

This process usually involves fetching view templates and any resolve dependencies on the route
property.

Events 378

$routeChangeSuccess

The $routeChangeSuccess event is broadcasted from the $rootScope after all of the route depen-
dencies are resolved following $routeChangeStart.

The ngView directive uses the $routeChangeSuccess event to knowwhen to instantiate the controller
and render the view.

$routeChangeError

The $routeChangeError event is fired if any of the resolve properties on the route object are rejected
(i.e., if they fail). This event is broadcasted from the $rootScope.

$routeUpdate

The $routeUpdate is broadcasted from the $rootScope if the reloadOnSearch property on the
$routeProvider has been set to false and the same instance of a controller is being used.

$destroy

The $destroy event is broadcasted on the scope before the scope is destroyed. This sequence gives
the children scopes a chance to clean themselves up before the parent scope is actually removed.

For instance, if we have a $timeout running in our controller, we don’t want this event to
continuously fire even if the containing controller no longer exists.

angular.module('myApp')

.controller('MainController', function($scope, $timeout) {

var timer;

var updateTime = function() {

$scope.date = new Date();

timer = $timeout(updateTime, 1000);

}

// Start updating time

timer = $timeout(updateTime, 1000);

// Clean up the timer before we kill this

// controller

$scope.$on('$destroy', function() {

if (timer) { $timeout.cancel(timer); }

});

});

Architecture
When learning Angular, one of the most confusing adjustments we need to make is learning how
to think about structuring the application. Although we cannot prescribe a structure, as it is the
developer’s prerogative to choose one, we can share what has worked for us.

Directory Structure

AngularJS is so packed with options that it can be difficult to determine how to structure our web
apps as they grow over time. Where is the most logical place to put our controllers? Should we
contain all of the logic of our services in a single file or should we break them out?

When building an Angular app of any size, we can usually best make our structuring choices by
considering the tools that we’re going to use when building the app and the current size of the
project. We should always build with the expectation that our project will grow.

We suggest creating the following directory structure for our applications, where we keep our
application files in the scripts/ directory, each separated out by its function type with a main
app.js file.

Recommended directory structure

We also suggest using a tool like Grunt to concatenate our files together in a single file for
production.

Architecture 380

Every Angular object should have its own file, named appropriately for its function. For instance,
the logical place for a MainController object would be in the scripts/controllers/main.js file.
A myFilter object belongs in the scripts/filters/myFilter.js.

Employing this structure is beneficial because each file is small and directed on its functionality and
because it enables multiple developers to efficiently work together on the app.

Additionally, we suggest mirroring the scripts directory in a test/ folder at the root directory when
we write tests for our application, like so:

Recommended test directory structure

We suggest this structure when building a single-module application. When building an app
composed of multiple modules, we’ll include a modules/ directory with a similar structure as the
top level structure.

Modules

A module is the kernel of functionality for Angular apps. Modules contain all of the code that we
write for our specific app and, thus, tend to grow huge in a monolithic way. Although this tendency
isn’t bad (modules are a great way to reduce global scope noise), we can divide our modules.

There are several differing opinions about when to create a module and when to nest functionality
in a global module. Both of the following methods are valid ways to break up our functionality by
modules:

Modularize on Functionality

The most obvious method for breaking up our app by modules is to divide the modules by type.

Architecture 381

We need to inject these modules as dependencies for our main app, which makes it incredibly easy
to set up tests for each module type and also isolates and subdivides the functionality that we’ll need
to account for when writing specs.

For instance, we can create a module for each Angular object type:

angular.module('myApp.directives', []);

angular.module('myApp.services', []);

angular.module('myApp.filters', []);

// Often time we'll want to use our services

// inside of our controllers, so we'll inject

// those into our 'myApp.controllers' module

angular.module('myApp.controllers', [

'myApp.services'

]);

angular.module('myApp', [

'myApp.directives',

'myApp.controllers',

'myApp.filters',

'myApp.services'

]);

One issue with this method is that it sometimes leaves us with a bunch of incredibly small modules.
This outcome won’t hurt performance, but it can be cumbersome to develop.

Modularize on Routes

Another method we can use to break up our app is to divide our modules by route. This breakdown
allows us to write isolated tests that focus on the functionality per route. Modularizing by route can
make more sense, depending upon the project; it allows us to divide our functionality efficiently
when we’re dealing with a lot of independent routes.

For instance:

angular.module('myApp.home', []);

angular.module('myApp.login', []);

angular.module('myApp.account', []);

angular.module('myApp', [

'myApp.home',

'myApp.login',

'myApp.account'

]);

This modularization makes sense specifically when we’re dealing with large numbers of routes
and/or when we don’t have too much cross-over between routes.

Architecture 382

Controllers

When naming a controller, it’s conventional to use the name of the controller – beginning with a
capital letter – and Controller. For example,

angular.module('myApp')

.controller('someController', function($scope) {

// This is NOT conventional

})

.controller('SomeController', function($scope) {

// This is the conventional way to

// write a controller

})

Scope creep can be one of the most confusing aspects of the Angular framework where we have a
lot of functionality defined on our $scope in our controllers. As we’re writing our web apps, we’ll
sometimes find that the size of of controllers is growingly wildly out of control.

We can reduce the size of our controllers by shifting the responsibility of handling the DOM and
methods away from them. Moving functionality into custom directives greatly reduces the need to
create functions that determine whether we need to expose a particular view or format a value.

Since we’re binding values on the $scope inside of the view, the controller doesn’t need to be
responsible for holding onto the value states we need for a particular DOM object.

For instance, we can remove the method in the controller that deals with showing values.

Let’s say we have a single login page that shows either a login form or a registration form depending
upon a state a user has chosen. We can call the page showLoginForm:

angular.module('myApp')

.controller('LoginController', function($scope) {

// Show login form if true and show

// registration form if false

$scope.showLoginForm = true;

$scope.sendLogin = function() {}

$scope.sendRegister = function() {}

});

In our HTML, we might set the functionality of the LoginController in the following format:

Architecture 383

<div ng-show="showLoginForm">

<form ng-submit="runLogin()"></form>

</div>

<div ng-show="!showLoginForm">

<form ng-submit="runRegister()"></form>

</div>

Although this example is particularly trivial (we only have one extra variable in our $scope), the
number of these values can grow exponentially large as our views grow increasingly complex.

We can remove the value by using a directive. For instance:

angular.module('myApp')

.directive('loginForm', function() {

return {

scope: {

onLogin: '&',

onRegister: '&'

},

templateUrl: '/templates/loginRegForms.html',

link: function(scope, ele, attrs) {

scope.showLoginForm = true;

scope.submitLogin = function() {

scope.onLogin({user: scope.loginUser});

}

scope.submitRegister = function() {

scope.onRegister({user: scope.newUser});

}

}

}

});

angular.module('myApp')

.controller('LoginController', function($scope) {

$scope.sendLogin = function() {}

$scope.sendRegister = function() {}

});

We can call this directive in our view as we would with any directive:

Architecture 384

<div login-form

on-login="sendLogin(user)"

on-register="sendRegister(user)"></div>

With our view variable safely tucked away in the directive, we no longer need to hold onto the view
conditional in our controller. It’s a best practice to keep our controllers thin; using directives allows
us to do so efficiently.

Additionally, isolating our login routes inside of a directive, as above, also makes it very easy to test
their functionality.

Sharing Data between Controllers

In Angular, we can share data between two controllers in a few different ways. We can nest our
controllers underneath the same parent controller and allow each controller to independentlymodify
the values of the parent controller’s $scope attribute, or we can share a value inside of a service.

It’s preferable to hold onto data inside of a service, but the more efficient method can depend upon
the situation. For instance, inside of a dialog box, it makes sense for us to hold onto the data that the
dialog box is showing inside of a parent controller.

Directives

Knowing when to write a directive is as important as to knowing when not to write one. More often
than not, it’s generally a good idea to write a directive.

It’s always better to err on the side of using directives over not using directives. As we’ve seen above,
they reduce the amount of clutter inside of our controller.

It’s also much simpler to test directives than to test controllers.

Directives do not always need to have a view template. Oftentimes, they can simply serve as a shim
to handle dealing with data underneath the view. The ngModelController is an example of when
this functionality comes in handy.

Testing

We always encourage testing inside of our apps. We constantly strive to write unit tests for any
piece of functionality that has any level of complexity. These tests allow us to feel confident about
our code, no matter how small. Focusing on unit tests also enables us to be efficient with time and
to focus on functionality.

Once we’re confident we have tested the API of our Angular apps with unit tests, we can start to
write end-to-end tests. End-to-end tests can be brittle and dependent upon the view, so we usually

Architecture 385

leave them until later in the development process. Not only that, but end-to-end tests generally run
much more slowly than unit tests, so writing unit tests first allow us to focus on functionality with
the same momentum as the development process.

We encourage writing tests for ALL parts of our apps. For more information about testing, check
out the extensive testing chapter.

Angular Animation
The Angular team created the ngAnimate module to give our Angular apps hooks into providing
CSS and JavaScript.

There are several ways to make animations in an Angular app:

• Using CSS3 Animations
• Using JavaScript animations
• Using CSS3 Transitions

In this chapter, we aim to discuss these threemethods of animating and provide a solid understanding
of how we can power our own custom animations.

Installation

As of 1.2.0.rc1, animations are no longer part of the core of Angular; they exist in their own module.
In order to include animations in our Angular app, we need to install and reference this module in
our app.

We can download it from code.angularjs.org¹⁰³ and save it in a place that we can reference it from
our HTML, like js/vendor/angular-animate.js.

We can also install it using Bower, which will place it in our usual Bower directory. For more
information about Bower, see the Bower chapter.

$ bower install --save angular-animate

We’ll need to reference this library in our HTML after we reference Angular itself.

<script src="js/vendor/angular.js"></script>

<script src="js/vendor/angular-animate.js"></script>

Lastly, we’ll need to reference the ngAnimate module as a dependency in our app module:

¹⁰³http://code.angularjs.org/

http://code.angularjs.org/
http://code.angularjs.org/

Angular Animation 387

angular.module('myApp', ['ngAnimate']);

Now we are ready to take on animations with AngularJS.

How It Works

The $animate service itself, by default, applies two CSS classes to the animated element for each
animation event (see below).

The $animate service supports several built-in Angular directives that automatically support
animation without the need for any extra configuration. It is also flexible enough to enable us to
build our own animations for our directives.

All of the pre-existing directives that support animation do so through monitoring events provided
on those directives. For instance, when a new ngView enters and brings new content into the browser,
this event is called the enter event for ngView. When ngHide is ready to show an element, the remove
event is fired.

The following is a list of directives and the events that each fires at different states. We will use these
events to define how our animations will work in each state.

Directive Events

ngRepeat enter, leave, move

ngView enter, leave

ngInclude enter, leave

ngSwitch enter, leave

ngIf enter, leave

ngClass or class=”…” add, remove

ngShow add, remove (.ng-class)

ngHide add, remove

The $animate service attaches specific classes based upon the events that the directive emits. For
structural animations (like enter, move and leave) the CSS classes that are applied are in the form of
ng-[EVENT] and ng-[EVENT]-active.

For class-based animations (like ngClass) the animation classes are in the form [CLASS]-add,
[CLASS]-add-active, [CLASS]-remove, [CLASS]-remove-active.

Finally for ngShow and ngHide only the .ng-hide class is added or removed and its form is the
same as for ngClass: .ng-hide-add, .ng-hide-add-active, .ng-hide-remove, .ng-hide-remove-active.

Angular Animation 388

Automatically Added Classes

The directives that fire the enter event receive a class of .ng-enter when the DOM is updated. An-
gular then adds the ng-enter-active class, which triggers the animation. ngAnimate automatically
detects the CSS code to determine when the animation is complete.

When the event is done, Angular removes both classes from the DOM element, enabling us to define
animatable properties to the DOM elements.

If the browser does not support CSS transitions or animations, then the animation will start and end
immediately, and the DOMwill end up at its final state with no CSS transitions or animation classes
applied.

The same convention applies for all of the supported structural animation events: enter, leave and
move. The class-based animation events have a slightly different form (as mentioned above).

Using CSS3 Transitions

Using CSS3 transitions is by far the easiest way to include animations in our app, and it works for
all browsers except IE9 and earlier versions.

Browsers that do not support CSS3 transitions gracefully fall back to the non-animated version of
the app.

To do any CSS animation, we need to make sure we include the classes we’ll be working with to the
DOM element we’re interested in animating.

For instance, in the following demo, we’ll look at animating this element:

<div class="fade-in"></div>

CSS3 transitions are fully class-based, which means that as long as we have classes that define the
animation in our HTML, the animation will be animated in the browser.

In order for us to achieve animations with classes, we need to following the Angular CSS naming
conventions to define our CSS transitions.

CSS transitions are effects that let an element gradually change from one style to another style. To
define an animation, we must specify the property we want to add an animation to as well as specify
the duration of effect.

For instance, this code adds a transition effect on the all of the properties on DOM elements with
the .fade-in class for a two-second duration.

Angular Animation 389

.fade-in {

transition: 2s linear all;

-webkit-transition: 2s linear all;

}

With this transition and timing set, we can define properties on different states of the DOM element.

.fade-in:hover {

width: 300px;

height: 300px;

}

With ngAnimate, Angular starts our directive animations by adding two classes to each animation
event: the initial ng-[EVENT] class and, shortly thereafter, the ng-[EVENT]-active class.

To automatically allow the DOM elements from above to transition with Angular animation, we
modify the initial .fade-in example from above to include the initial state class:

.fade-in.ng-enter {

opacity: 0;

}

.fade-in.ng-enter.ng-enter-active {

opacity: 1;

}

To actually run the animation, we need to include the CSS animation definition. In this
definition, we need to include both the duration and the element attributes that we’re
going to modify.

.fade-in.ng-enter { transition: 2s linear all; -webkit-transition: 2s linear all; }

We can also place the transition properties on the base CSS class (the “.fade-in” instead of specifying
it for each animation that will take place.

Angular Animation 390

.fade-in {

-webkit-transition: 2s linear all;

transition: 2s linear all;

}

.fade-in.ng-enter {

opacity: 0;

}

.fade-in.ng-enter.ng-enter-active {

opacity: 1;

}

.fade-in.ng-leave {

opacity: 1;

}

.fade-in.ng-leave.ng-leave-active {

opacity: 0;

}

Using CSS3 Animations

CSS3 animations are more extensive and more complex than CSS3 transitions. They are supported
by all major browsers except IE9 and earlier versions of IE. With CSS3 animations, we use the same
initial class ng-[EVENT], but we don’t need to define animation states in the ng-[EVENT]-active

state, because our CSS rules will handle the rest of the block.

We create the animation in the @keyframes rule. Within the CSS element where we define the
@keyframes rule, we define the CSS styles that we want to manipulate.

Whenwewant to animate the DOM element, we use the animation: property to bind the @keyframe
CSS property, which applies the animation to the CSS element.

When we bind the animation to the CSS element, we need to specify both the name of the
animation as well as the duration.

Remember to add the animation duration: If we forget to add the duration of the
animation, the duration will default to 0, and the animation will not run.

To create our @keyframes rule, we need to give our keyframe a name and set the time periods of the
where the properties should be throughout the animation.

Angular Animation 391

@keyframes firstAnimation {

0% {

color: yellow;

}

100% {

color: black;

}

}

/* For Chrome and Safari */

@-webkit-keyframes firstAnimation {

/* from is equivalent to 0% */

from {

color: yellow;

}

/* from is equivalent to 100% */

to {

color: black;

}

}

Using the keyword from is equivalent to setting the percentage to 0%. Using the keyword
to is equivalent to setting the percentage to 100%.

We are not limited to 0% and 100%: We can provide animations in steps, such as at 10%, 15%, etc.

To assign this @keyframe property to the classes we want to animate, we use the animation keyword,
which applies the animation to the elements targeted by that CSS selector.

.fade-in:hover {

-webkit-animation: 2s firstAnimation;

animation: 2s firstAnimation;

}

With ngAnimate, we bind the firstAnimation value to any elements that are targeted with the
.fade-in class. Angular applies and removes the .ng-enter class for us automatically, so we can
simply attach our event to the .fade-in.ng-enter class:

Angular Animation 392

.fade-in.ng-enter {

-webkit-animation: 2s firstAnimation;

animation: 2s firstAnimation;

}

Staggering CSS Transitions / Animations

The ngAnimate comes bundled up with an additional feature to space-out simultaneous animations
by a specified delay. This means that if 10 items are entered into a ngRepeat list then each item can
be inserted X milliseconds after the last one. The effect produced from this is known as a stagger
effect and ngAnimate handles this out of the box for CSS transitions and animations.

Staggering CSS transitions

Following the format of structuring CSS transition code for ng-enter and ng-enter-active an
additional CSS class can also be placed in to provide the stagger delay. With the CSS code below,
we can add a stagger effect to our .fade-in class using CSS transitions.

.fade-in.ng-enter-stagger {

-webkit-transition-delay:200ms;

transition-delay:200ms;

/* safeguard to prevent accidental CSS inheritance */

-webkit-transition-duration:0;

transition-duration:0;

}

The code below will perform a 200 millisecond pause between each successive item being animated
in. Notice, however, that there is another CSS property which specifies the duration and sets it to
zero. Why? This is here as a safeguard to prevent accidental CSS inheritance from the base CSS
class. Otherwise, without this safeguard in place the staggering effect could be silently ignored.

But what does this mean for our .fade-in class? Well let’s imagine that we’re using a ngRepeat
element that uses that exact .fade-in class.

<div ng-repeat="item in items" class="fade-in">

Item: #1 -- {{ item }}

</div>

Each time a series of items is inserted into the list then the stagger delay will kick in. Item #1 will
be inserted right away, #2 will go in 200ms after, #3 400ms after and so on.

Angular Animation 393

Staggering CSS animations

CSS animations are also supported and follow the exact same naming CSS convention as mentioned
above for staggering CSS transitions. The only difference is that instead of using transition-delay,
animation-delay is used instead (for obvious reasons). Here’s what the .fade-in class would look
like if CSS animations were used for the stagger effect.

.fade-in.ng-enter-stagger {

-webkit-animation-delay:200ms;

animation-delay:200ms;

/* css stagger animations also needs to be here */

-webkit-animation-duration:0;

animation-duration:0;

}

Since the CSS keyframe animation does not take place until a reflow occurs (when the browser
repaints the screen) there may be a slight flicker or the element itself may appear not to be animated
briefly until the stagger kicks in. This is because the from or 0% animation hasn’t started yet since
the keyframe animation hasn’t been triggered. To work around this, additional CSS styling can be
placed in the CSS class where the keyframe animation is assigned.

.fade-in.ng-enter {

/* pre-reflow styling */

opacity:0;

-webkit-animation: 2s firstAnimation;

animation: 2s firstAnimation;

}

.fade-in.ng-enter-stagger { ... }

@keyframes firstAnimation { ... }

@-webkit-keyframes firstAnimation { ... }

What directives support staggering animations?

Simple. All of them do, but they’re only available when two or more of the same animation event,
within the same parent container, are triggered at the same time. So when 10 items are inserted
into a ngRepeat list then a stagger effect occurs. This means that if ngClass is placed on a ngRepeat
element and the ngClass value changes for each item within the list then a stagger effect can be
rendered for the class-changing animation.

Angular Animation 394

Stagger animations can also be triggered inside of custom directives. Simply make a call using the
$animate service a few times in a row and a stagger animation will be up for grabs. Do ensure that
the parent element is the same for each animation as well as the className value for each element
being animated.

Using JavaScript Animations

JavaScript animation is different from the previous two Angular animation methods in that we set
properties on the DOM element directly using JavaScript.

All major browsers that enable JavaScript support JavaScript animation, so it’s a good choice if we
want to offer animations on browsers that don’t support CSS transitions and animations.

Here, instead of manipulating our CSS to animate elements, we update our JavaScript to handle
running animations for us.

The ngAnimate module adds the .animation method to the module API; this method presents an
interface on which we can build our animations.

The animation() method takes two parameters:

• classname (string)

This classname will match the class of the element to animate. For our examples thus far, the
animation should be named: .fade-in.

• animateFun (function)

The animate function is expected to return an object that includes functions for the different events
that the directive fires (where it’s used).

See the $animate API docs for detailed documentation on these functions.

angular.module('myApp', ['ngAnimate'])

.animation('.fade-in', function() {

return {

enter: function(element, done) {

// Run animation

// call done when the animation is complete

return function(cancelled) {

// close or cancellation callback

}

}

}

});

Angular Animation 395

The $angular service calls these functions for the element specified. Inside of these functions, we are
free to do what we will with the element. The only requirement is that we call the callback function
done() when we are done with the animation.

Inside of these functions, we can return an end function that will be called when the animation is
complete OR when the animation has been canceled.

When the animation is triggered, $animate looks for the matching animation function for the event.
If it finds a function that matches the event, it executes it, otherwise it will skip the animation
entirely.

Fine-tuning animations

Depending on how complex the application, ngAnimate and the underlying animation code may
need to be tweaked around.

Filtering out CSS classes

By default, ngAnimate will automatically attempt to animate every element that passes through the
$animate service. But don’t worry, only the elements that contain the CSS classes that are registered
with CSS or JavaScript animations will actually animate.

Despite this system working, having to check every possible CSS class may slow things down on
low-powered devices. Therefore, with the release angular.js version 1.2.6, ngAnimate provides a
configuration setting for the $animate provider to filter out any possible animation operations on
elements that do not contain any matching CSS classes against the given regular expression.

myModule.config(function($animateProvider) {

//a regular expression is the only valid parameter

$animateProvider.classNameFilter(/\banimate-/);

});

Now with the provided regular expression, /animated/, only CSS classes starting with animate will
be processed for animation. As a result, our .fade-in animation won’t work anymore and it will
need to be renamed to .animate-fade-in to actually animate.

Animating Built-In Directives

Animating ngRepeat

The ngRepeat directive fires the events:

Angular Animation 396

Action Event name

An item was inserted enter
to the list of items

An item was removed leave
to the list of items

An item was moved in move
the list of items

For these three examples, we work with the HTML as follows:

<div ng-controller="HomeController">

<li class="fade-in" ng-repeat="r in roommates">

{{ r }}

</div>

Let’s assume that the HomeController is defined as such:

angular.module('myApp', ['ngAnimate'])

.controller('HomeController', function($scope) {

$scope.roommates = [

'Ari', 'Q', 'Sean', 'Anand'

];

setTimeout(function() {

$scope.roommates.push('Ginger');

$scope.$apply(); // Trigger a digest

setTimeout(function() {

$scope.roommates.shift();

$scope.$apply(); // Trigger digest

}, 2000);

}, 1000);

});

In these examples, we have a list of roommates comprising four elements. After a second, we add a
fifth. Two seconds later, we remove the first element.

CSS3 Transitions

To animate items in the ngRepeat list, we need to make sure to add the CSS class that will present
the initial state of the element and the class that will define the final state for both states: enter and
edit.

Angular Animation 397

We can start by defining the animation properties on the initial class(es):

.fade-in.ng-enter,

.fade-in.ng-leave {

transition: 2s linear all;

-webkit-transition: 2s linear all;

}

Now, we can simply define the stages of the initial and final CSS properties in the animation. Here,
we fade the element inwith green text and turn the text black at the final stage of the enter animation.
In the leave (item removal) animation, we reverse the properties:

.fade-in.ng-enter {

opacity: 0;

color: green;

}

.fade-in.ng-enter.ng-enter-active {

opacity: 1;

color: black;

}

.fade-in.ng-leave {}

.fade-in.ng-leave.ng-leave-active {

opacity: 0;

}

CSS3 Keyframe Animation

When using keyframe animation, we don’t need to define start and end classes; instead, we define
only a single selector that includes the animation CSS key.

We can start by defining the animation properties for the keyframes:

@keyframes animateView-enter {

from {opacity:0;}

to {opacity:1;}

}

@-webkit-keyframes animateView-enter {

from {opacity:0;}

to {opacity:1;}

}

@keyframes animateView-leave {

from {opacity: 1;}

Angular Animation 398

to {opacity: 0;}

}

@-webkit-keyframes animateView-leave {

from {opacity: 1;}

to {opacity: 0;}

}

With the keyframe set, we can simply attach the animation to the CSS classes that ngAnimate has
added:

.fade-in.ng-enter {

-webkit-animation: 2s fade-in-enter-animation;

animation: 2s fade-in-enter-animation;

}

.fade-in.ng-leave {

-webkit-animation: 2s fade-in-leave-animation;

animation: 2s fade-in-leave-animation;

}

JavaScript Animation

When animatingwith JavaScript, we need to define the enter and leave properties on our animation
description object.

angular.module('myApp')

.animation('.fade-in', function() {

return {

enter: function(element, done) {

// Raw animation without jQuery

// This is much simpler with jQuery

var op = 0, timeout,

animateFn = function() {

op += 10;

element.css('opacity', op/100);

if (op >= 100) {

clearInterval(timeout);

done();

}

};

// Set initial opacity to 0

element.css('opacity', 0);

Angular Animation 399

timeout = setInterval(animateFn, 100);

},

leave: function(element, done) {

var op = 100,

timeout,

animateFn = function() {

op-=10;

element.css('opacity', op/100);

if (op <= 0) {

clearInterval(timeout);

done();

}

};

element.css('opacity', 100);

timeout = setInterval(animateFn, 100);

}

}

});

Animating ngView

The ngView directive fires the events:

Action Event name

New content is ready enter
for the view

Existing content is leave
ready to be hidden

For these three examples, we work with the HTML as follows:

Home

Second view

Third view

<div class="animateView" ng-view></div>

As we’re working with the ng-view directive, we’re working with routes inside of Angular. For
more information about routes, check out the routing chapter. The download for angular-routing is
here¹⁰⁴.

For the following examples, we can set our routes as:

¹⁰⁴http://code.angularjs.org/1.2.2/angular-route.js

http://code.angularjs.org/1.2.2/angular-route.js
http://code.angularjs.org/1.2.2/angular-route.js

Angular Animation 400

angular.module('myApp', ['ngAnimate', 'ngRoute'])

.config(function($routeProvider) {

$routeProvider.when('/', {

template: '<h2>One</h2>'

}).when('/two', {

template: '<h2>Two</h2>'

}).when('/three', {

template: '<h2>Three</h2>'

});

})

The three routes in these examples each show a different view.

CSS3 Transitions

To animate items in the ngView list, we need to add the CSS class that will define the initial state of
the element and the class that will define the final state for both states: enter and edit.

.animateView.ng-enter,

.animateView.ng-leave {

transition: 2s linear all;

-webkit-transition: 2s linear all;

}

Now, we can simply define the stages of the initial and final CSS properties in the animation. Here,
we fade the element inwith green text and turn the text black at the final stage of the enter animation.
In the leave (item removal) animation, we reverse the properties:

.animateView.ng-enter {

opacity: 0;

color: green;

}

.animateView.ng-enter.ng-enter-active {

opacity: 1;

color: black;

}

.animateView.ng-leave {}

.animateView.ng-leave.ng-leave-active {

opacity: 0;

}

CSS3 Keyframe Animation

Let’s start by adding the @keyframe animations that we define for the animation.

Angular Animation 401

@keyframes animateView-enter {

from {opacity:0;}

to {opacity:1;}

}

@-webkit-keyframes animateView-enter {

from {opacity:0;}

to {opacity:1;}

}

@keyframes animateView-leave {

from {opacity: 1;}

to {opacity: 0;}

}

@-webkit-keyframes animateView-leave {

from {opacity: 1;}

to {opacity: 0;}

}

All we need to do to apply the animation is include the animation CSS style on our class:

.animateView.ng-enter {

-webkit-animation: 2s animateView-enter;

animation: 2s animateView-enter;

}

.animateView.ng-leave {

-webkit-animation: 2s animateView-leave;

animation: 2s animateView-leave;

}

JavaScript Animation

First, we need to download¹⁰⁵ and include jQuery in the head of the document.

When animatingwith JavaScript, we need to define the enter and leave properties on our animation
description object.

¹⁰⁵http://jquery.com/download/

http://jquery.com/download/
http://jquery.com/download/

Angular Animation 402

angular.module('myApp')

.animation('.animateView', function() {

return {

enter: function(element, done) {

// Example to show how to animate

// with jQuery. Note, this requires

// jQuery to be included in the HTML

$(element).css({

opacity: 0

});

$(element).animate({

opacity: 1

}, done);

},

leave: function(element, done) {

done();

}

}

});

Animating ngInclude

The ngInclude directive fires these events:

Action Event name

New content is ready enter
for the view

Existing content is leave
ready to be hidden

For these three examples, we work with the HTML as follows:

<div ng-init="template.url='/home.html'"

ng-controller="HomeController">

<button ng-click="template.url='/home.html'">

Home

</button>

<button ng-click="template.url='/second.html'">

Second

</button>

<button ng-click="template.url='/third.html'">

Third

Angular Animation 403

</button>

<div class="animateInclude"

ng-include="template.url">

</div>

</div>

We also include the inline templates (for demo purposes) in our page. Alternatively, we could set
these views to be fetched from a remote server.

<script type="text/ng-template" id="/home.html">

Home Template

</script>

<script type="text/ng-template" id="/second.html">

Second Template

</script>

<script type="text/ng-template" id="/third.html">

Third Template

</script>

CSS3 Transitions

To animate items in ngInclude, we need to add the CSS class that will define the initial state of the
element and the class that will define the final state for both states: enter and edit.

.animateInclude.ng-enter,

.animateInclude.ng-leave {

transition: 2s linear all;

-webkit-transition: 2s linear all;

}

Now, we can simply define the stages of the initial and final CSS properties in the animation. Here,
we fade the element inwith green text and turn the text black at the final stage of the enter animation.
In the leave (item removal) animation, we reverse the properties:

Angular Animation 404

.animateInclude.ng-enter {

opacity: 0;

color: green;

}

.animateInclude.ng-enter.ng-enter-active {

opacity: 1;

color: black;

}

.animateInclude.ng-leave {}

.animateInclude.ng-leave.ng-leave-active {

opacity: 0;

}

CSS3 Animations

We start by defining the @keyframe animations that define the animation in CSS:

@keyframes animateInclude-enter {

from {opacity:0;}

to {opacity:1; color: green}

}

@-webkit-keyframes animateInclude-enter {

from {opacity:0;}

to {opacity:1; color: green}

}

@keyframes animateInclude-leave {

from {opacity: 1;}

to {opacity: 0; color: black}

}

@-webkit-keyframes animateInclude-leave {

from {opacity: 1;}

to {opacity: 0; color: black}

}

All we need to do to apply the animation is include the animation CSS style on our classes:

Angular Animation 405

.animateInclude.ng-enter {

-webkit-animation: 2s animateInclude-enter;

animation: 2s animateInclude-enter;

}

.animateInclude.ng-leave {

-webkit-animation: 2s animateInclude-leave;

animation: 2s animateInclude-leave;

}

JavaScript Animation

When animatingwith JavaScript, we need to define the enter and leave properties on our animation
description object.

angular.module('myApp')

.animation('.animateInclude', function() {

return {

enter: function(element, done) {

// Example to show how to animate

// with jQuery. Note, this requires

// jQuery to be included in the HTML

$(element).css({

opacity: 0

});

$(element).animate({

opacity: 1

}, done);

},

leave: function(element, done) {

done();

}

}

});

Animating ngSwitch

The ngSwitch directive fires the following events:

Action Event name

New content is ready enter
for the view

Existing content is leave
ready to be hidden

Angular Animation 406

The ngSwitch directive is similar to our previous examples. For these examples, we work with the
following HTML that uses the ng-switch directive:

CSS3 Transitions

To animate items in ngSwitch, we need to add the CSS class that will define the initial state of the
element and the class that will define the final state for both states: enter and edit.

.animateSwitch.ng-enter,

.animateSwitch.ng-leave {

transition: 2s linear all;

-webkit-transition: 2s linear all;

}

Now, we can simply define the stages of the initial and final CSS properties in the animation. Here,
we fade the element inwith green text and turn the text black at the final stage of the enter animation.
In the leave (item removal) animation, we reverse the properties:

.animateSwitch.ng-enter {

opacity: 0;

color: green;

}

.animateSwitch.ng-enter.ng-enter-active {

opacity: 1;

color: black;

}

.animateSwitch.ng-leave {}

.animateSwitch.ng-leave.ng-leave-active {

opacity: 0;

}

CSS3 Animations

Let’s start by adding the @keyframe animations that we’ll define for the animation.

Angular Animation 407

@keyframes animateSwitch-enter {

from {opacity:0;}

to {opacity:1; color: green}

}

@-webkit-keyframes animateSwitch-enter {

from {opacity:0;}

to {opacity:1; color: green}

}

@keyframes animateSwitch-leave {

from {opacity: 1;}

to {opacity: 0; color: black}

}

@-webkit-keyframes animateSwitch-leave {

from {opacity: 1;}

to {opacity: 0; color: black}

}

All we need to do to apply the animation is include the animation CSS style on our classes:

.animateSwitch.ng-enter {

-webkit-animation: 2s animateSwitch-enter;

animation: 2s animateSwitch-enter;

}

.animateSwitch.ng-leave {

-webkit-animation: 2s animateSwitch-leave;

animation: 2s animateSwitch-leave;

}

JavaScript Animation

When animatingwith JavaScript, we need to define the enter and leave properties on our animation
description object.

angular.module('myApp')

.animation('.animateSwitch', function() {

return {

enter: function(element, done) {

// Example to show how to animate

// with jQuery. Note, this requires

// jQuery to be included in the HTML

$(element).css({

opacity: 0

Angular Animation 408

});

$(element).animate({

opacity: 1

}, done);

},

leave: function(element, done) {

done();

}

}

});

Animating ngIf

The ngSwitch directive fires the following events:

Action Event name

Fired after ngIf contents enter
change and the new DOM
element is injected in

Fired just before the ngIf leave
contents are removed

For the following ngIf examples, we’re going to work with this HTML:

CSS3 Transitions

To animate items in ngIf, we need to add the CSS class that will define the initial state of the element
and the class that will define the final state for both states: enter and edit.

.animateNgIf.ng-enter,

.animateNgIf.ng-leave {

transition: 2s linear all;

-webkit-transition: 2s linear all;

}

Now, we can simply define the stages of the initial and final CSS properties in the animation. Here,
we fade the element inwith green text and turn the text black at the final stage of the enter animation.
In the leave (item removal) animation, we reverse the properties:

Angular Animation 409

.animateNgIf.ng-enter {

opacity: 0;

color: green;

}

.animateNgIf.ng-enter.ng-enter-active {

opacity: 1;

color: black;

}

.animateNgIf.ng-leave {}

.animateNgIf.ng-leave.ng-leave-active {

opacity: 0;

}

CSS3 Animations

Let’s start by adding the @keyframe animations that we’ll define for the animation.

@keyframes animateNgIf-enter {

from {opacity:0;}

to {opacity:1;}

}

@-webkit-keyframes animateNgIf-enter {

from {opacity:0;}

to {opacity:1;}

}

@keyframes animateNgIf-leave {

from {opacity: 1;}

to {opacity: 0;}

}

@-webkit-keyframes animateNgIf-leave {

from {opacity: 1;}

to {opacity: 0;}

}

All we need to do to apply the animation is include the animation CSS style on our classes:

Angular Animation 410

.animateNgIf.ng-enter {

-webkit-animation: 2s animateNgIf-enter;

animation: 2s animateNgIf-enter;

}

.animateNgIf.ng-leave {

-webkit-animation: 2s animateNgIf-leave;

animation: 2s animateNgIf-leave;

}

JavaScript Animation

When animatingwith JavaScript, we need to define the enter and leave properties on our animation
description object.

angular.module('myApp')

.animation('.animateNgIf', function() {

return {

enter: function(element, done) {

// Example to show how to animate

// with jQuery. Note, this requires

// jQuery to be included in the HTML

$(element).css({

opacity: 0

});

$(element).animate({

opacity: 1

}, done);

},

leave: function(element, done) {

done();

}

}

});

Animating ngClass

It’s possible to animate based upon behvavior that happens when classes are changed in the view.
When a CSS class changes (such as in the ngShow and ngHide directives), $animate notices and
triggers animations for both when the classes are added and when the old ones are removed.

Instead of using the naming convention for entering, we can use a new CSS convention for ngClass
whereby we postfix the new class as: [CLASSNAME]-add and [CLASSNAME]-remove‘.

Angular Animation 411

Similar to the enter events above, the [CLASSNAME]-add-active and the [CLASSNAME]-remove-active
will get added by ngAnimate at the appropriate times for the specific event.

When we are animating on these classes, the animation is fired first, and the final class is added
only when the animation is complete. When a class is removed, the class remains on the element
until the animation is complete.

The ngClass directive fires the following events:

Action Event name

After ngClass evaluates to add
a truthy value and before
the class has been added

Fired just before the class remove
is removed

For the following ngClass examples, we’re going to work with the HTML:

CSS3 Transitions

To animate items in ngClass, we need to add the CSS class that will define the initial state of the
element and the class that will define the final state for both states: enter and edit.

.animateMe.grown-add,

.animateMe.grown-remove {

transition: 2s linear all;

-webkit-transition: 2s linear all;

}

Now, we can simply define the stages of the initial and final CSS properties in the animation.

.grown {font-size: 50px;}

.animateMe.grown-add {

font-size: 16px;

}

.animateMe.grown-add.grown-add-active {

font-size: 50px;

}

.animateMe.grown-remove {}

.animateMe.grown-remove.grown-remove-active {

font-size: 16px;

}

Angular Animation 412

CSS3 Animations

Let’s start by adding the @keyframe animations that we’ll define for the animation. Here, we add a
background color to highlight the text. We also define the remove animation for pulling the highlight
from the text:

@keyframes animateMe-add {

from {font-size: 16px;}

to {font-size: 50px;}

}

@-webkit-keyframes animateMe-add {

from {font-size: 16px;}

to {font-size: 50px;}

}

@keyframes animateMe-remove {

to {font-size: 50px;}

from {font-size: 16px;}

}

@-webkit-keyframes animateMe-remove {

to {font-size: 50px;}

from {font-size: 16px;}

}

All we need to do to apply the animation is include the animation CSS style on our classes:

.animateMe.grown-add {

-webkit-animation: 2s animateMe-add;

animation: 2s animateMe-add;

}

.animateMe.grown-remove {

-webkit-animation: 2s animateMe-remove;

animation: 2s animateMe-remove;

}

JavaScript Animation

When animating with JavaScript, we need to define the addClass and removeClass properties on
our animation description object.

Angular Animation 413

angular.module('myApp')

.animation('.animateMe', function() {

return {

addClass: function(ele, clsName, done)

{

// Example to show how to animate

// with jQuery. Note, this requires

// jQuery to be included in the HTML

if (clsName === 'grown') {

$(ele).animate({

'font-size': '50px'

}, 2000, done);

} else { done(); }

},

removeClass: function(ele, clsName, done)

{

if (clsName === 'grown') {

$(ele).animate({

'font-size': '16'

}, 2000, done);

} else { done(); }

}

}

});

Animating ngShow/ngHide

The ngShow and ngHide directives use the .ng-hide class when showing or hiding elements. It’s
possible to add animations to the time between showing and hiding DOM elements.

When we are animating on these classes, the animation is fired first, and the final .ng-hide is added
to the DOM element only when the animation is complete.

Because the ng-hide directive is still applied to the DOM element when we’re removing the ng-hide
class, we never get see our animation until it’s complete. Thus, we need to tell the CSS to display
our class and not cascade.

The ngShow and ngHide directives fire the events:

Action Event name

After ngClass evaluates to add
a truthy value and before
the class has been added

Fired just before the class remove

Angular Animation 414

Action Event name

is removed

For the following ngHide examples, we’re going to work with this HTML:

CSS3 Transitions

To animate items in ngHide, we need to add the CSS class that will define the initial state of the
element and the class that will define the final state for both states: enter and edit.

.animateMe.ng-hide-add,

.animateMe.ng-hide-remove {

transition: 2s linear all;

-webkit-transition: 2s linear all;

display: block !important;

}

Notice the last line in this CSS block: It tells the CSS to render this class and no other fallback class
property for the display property. Without this line, the element won’t show.

Now, we can simply define the stages of the initial and final CSS properties in the animation.

.animateMe.ng-hide-add {

opacity: 1;

}

.animateMe.ng-hide-add.ng-hide-add-active

{

opacity: 0;

}

.animateMe.ng-hide-remove {

opacity: 0;

}

.animateMe.ng-hide-remove.ng-hide-remove-active {

opacity: 1;

}

CSS3 Animations

Let’s start by adding the @keyframe animations that we’ll define for the animation. Here, we add a
background color to highlight the text. We also define the remove animation for pulling the highlight
from the text:

Angular Animation 415

@keyframes animateMe-add {

from {opacity: 1;}

to {opacity: 0;}

}

@-webkit-keyframes animateMe-add {

from {opacity: 1;}

to {opacity: 0;}

}

@keyframes animateMe-remove {

from {opacity:0;}

to {opacity:1;}

}

@-webkit-keyframes animateMe-remove {

from {opacity:0;}

to {opacity:1;}

}

All we need to do to apply the animation is include the animation CSS style on our classes:

.animateMe.ng-hide-add {

-webkit-animation: 2s animateMe-add;

animation: 2s animateMe-add;

}

.animateMe.ng-hide-remove {

-webkit-animation: 2s animateMe-remove;

animation: 2s animateMe-remove;

display: block !important;

}

JavaScript Animation

When animating with JavaScript, we need to define the addClass and removeClass properties on
our animation description object.

Angular Animation 416

angular.module('myApp')

.animation('.animateMe', function() {

return {

addClass: function(ele, clsName, done)

{

// Example to show how to animate

// with jQuery. Note, this requires

// jQuery to be included in the HTML

if (clsName === 'ng-hide') {

$(ele).animate({

'opacity': 0

}, 2000, done);

} else { done(); }

},

removeClass: function(ele, clsName, done)

{

if (clsName === 'ng-hide') {

$(ele).css('opacity', 0);

// Force the removal of the ng-hide

// class so we can actually show the

// animation

$(ele).removeClass('ng-hide');

$(ele).animate({

'opacity': 1

}, 2000, done);

} else { done(); }

}

}

});

Building Custom Animations

The $animate service provides hooks for us to implement our own custom animation inside of our
directives. After injecting the $animate service into our own apps, we can use the exposed events
to trigger associated functions on the $animate object for each event.

To get started with animations in our own directives, we need to inject the $animate service in our
directives.

Angular Animation 417

angular.module('myApp', ['ngAnimate'])

.directive('myDirective', function($animate) {

return {

template: '<div class="myDirective"></div>',

link: function(scope, ele, attrs) {

// Add animations here

// for instance:

$animate['addClass'](element, 'ng-hide');

}

}

});

Now, we can bind events to the directive and start showing our animations.

With our directive set up, we can create an animation that corresponds with our directive calling
the $animate function.

angular.module('myApp')

.animation('.scrollerAnimation', function() {

return {

animateFun: function(element, done) {

// We are free to do what we want inside

// this function, but we must call

// done to let angular know we're done

// animating

}

}

});

The $animate service exposes several methods that provide hooks into the animation events for the
built-in directives. These events that are exposed as hooks in the $animate service are:

• enter
• leave
• move
• addClass
• removeClass

The $animate service provides these events as functions that give us control to work with custom
animations from within our own directives.

Angular Animation 418

addClass()

The addClass() method triggers a custom animation event based on the ‘className’ variable and
attaches the ‘className’ value to the element as a CSS class. When adding a class to a DOM element,
the $animate service adds a suffix to the className with -add to allow for us to set up animation.

Note: If there are noCSS transitions or keyframe animations defined on the CSS selector ([className]-add),
ngAnimate won’t trigger the animation, it will only add the class.

The addClass() method takes three parameters:

• element (jQuery/jqLite element)

The element that we’re animating

• className (string)

The CSS class that we’re animating and attaching to the element

• done (function)

The callback function called when the animation is complete

angular.module('myApp', ['ngAnimate'])

.directive('myDirective', function($animate) {

return {

template: '<div class="myDirective"></div>',

link: function(scope, ele, attrs) {

ele.bind('click', function() {

$animate.addClass(ele, 'greenlight');

});

}

}

});

Calling the addClass() method runs through the following steps:

1. Runs any JavaScript-defined animations on the element
2. The [className]-add class is added to the element
3. $animate scans the CSS styles for transition/animation duration and delay properties
4. The [className]-add-active class is added to the element’s classList (triggering the CSS

animation)

Angular Animation 419

5. $animate waits for the defined duration to complete
6. The animation ends, and $animate removes the two added classes [className]-add and

[className]-add-active

7. The className class is added to the element
8. The done() callback function is fired (if defined)

removeClass()

The removeClass()method triggers a custom animation event based on the className and removes
the CSS class provided by the CSS className value. When removing a class on a DOM element, the
$animate service adds a suffix to the className with -remove to allow us to set up animation.

Note: If there are no CSS transitions or keyframe animations defined on the CSS selector:
[className]-remove, then ngAnimate won’t trigger the animation, it will only add the class.

The removeClass() method takes three parameters:

• element (jQuery/jqLite element)

The element we’re animatin

• className (string)

The CSS class we’re animating and removing from the element

• done (function)

The callback function called when the animation is complete

angular.module('myApp', ['ngAnimate'])

.directive('myDirective', function($animate) {

return {

template: '<div class="myDirective"></div>',

link: function(scope, ele, attrs) {

ele.bind('click', function() {

$animate.addClass(ele, 'greenlight');

});

}

}

});

A call to the removeClass() animation function kicks off the following steps:

Angular Animation 420

1. Runs any JavaScript-defined animations on the element
2. The [className]-remove class is added to the element
3. $animate scans the CSS styles for transition/animation duration and delay properties
4. The [className]-remove-active class is added to the element’s classList (triggering the CSS

animation)
5. $animate waits for the defined duration to complete
6. The animation ends, and $animate removes the three classes [className], [className]-add

and [className]-add-active

7. The done() callback function is fired (if defined)

enter()

The enter()method appends the element to its parent element in the DOM and then runs the enter
animation. When the animation has started, the $animation service adds the classes ng-enter and
ng-enter-active, giving the directive a chance to set up the animation.

The enter() method can take up to four parameters:

• element (jQuery/jqLite element)

The element we’re animating.

• parent (jQuery/jqLite element)

The parent element of the element that is the focus of our enter animation.

• after (jQuery/jqLite element)

This is the sibling element of the element that will be the focus of the enter animation.

• done (function)

The callback function called when the animation is complete (if defined).

Angular Animation 421

angular.module('myApp', ['ngAnimate'])

.directive('myDirective', function($animate) {

return {

template: '<div class="myDirective">' +

'<h2>Hi</h2></div>',

link: function(scope, ele, attrs) {

ele.bind('click', function() {

$animate.enter(ele, ele.parent());

});

}

}

});

A call to the enter() animation function kicks off the following steps:

1. The element is inserted into the parent element or beside the after element
2. $animate runs any JavaScript-defined animations on the element
3. The .ng-enter class is added to the element’s classList
4. $animate scans the CSS styles for transition/animation duration and delay properties
5. The .ng-enter-active class is added to the element’s classList (triggers the animation)
6. $animate waits for the defined duration to complete
7. The animation ends, and $animate removes both of the classes .ng-enter and .ng-enter-active

from the element
8. The done() callback function is fired (if defined)

leave()

The leave()method runs the leave animation.When it’s done running, it removes the element from
the DOM. When the animation has started, it adds the .ng-leave and .ng-leave-active classes to
the element.

The leave() method takes two parameters:

• element (jQuery/jqLite element)

The element we’re animating

• done (function)

The callback function called when the animation is complete (if defined)

Angular Animation 422

angular.module('myApp', ['ngAnimate'])

.directive('myDirective', function($animate) {

return {

template: '<div class="myDirective">' +

'<h2>Hi</h2></div>',

link: function(scope, ele, attrs) {

ele.bind('click', function() {

$animate.leave(ele);

});

}

}

});

A call to the leave() animation function kicks off the following steps:

1. $animate runs any JavaScript-defined animations on the element
2. The .ng-leave class is added to the element’s classList
3. $animate scans the CSS styles for transition/animation duration and delay properties
4. The .ng-leave-active class is added to the element’s classList (triggers the animation)
5. $animate waits for the defined duration to complete
6. The animation ends, and $animate removes both of the classes .ng-leave and .ng-leave-active

from the element
7. The element is removed from the DOM
8. The done() callback function is fired (if defined)

move()

The move() function fires the move DOM animation. Before the animation starts, the $animate

service either appends the element into the parent container or adds the element directly after the
element, if present. Once the animation has started, .ng-move and .ng-move-active are added for
the duration of the animation.

The move() method takes four parameters:

• element (jQuery/jqLite element)

The element we’re animating

• parent (jQuery/jqLite element)

The parent element of the element that is the focus of the move animation

Angular Animation 423

• after (jQuery/jqLite element)

This is the sibling element of the element that will be the focus of the enter animation.

• done (function)

The callback function called when the animation is complete (if defined)

angular.module('myApp', ['ngAnimate'])

.directive('myDirective', function($animate) {

return {

template: '<div class="myDirective">' +

'<h2>Hi</h2></div>',

link: function(scope, ele, attrs) {

ele.bind('click', function() {

$animate.move(ele, ele.parent());

});

}

}

});

A call to the move() animation function kicks off the following steps:

1. The element is moved into the parent element or beside the after element
2. $animate runs any JavaScript-defined animations on the element
3. The .ng-move class is added to the element’s classList
4. $animate scans the CSS styles for transition/animation duration and delay properties
5. The .ng-move-active class is added to the element’s classList (triggers the animation)
6. $animate waits for the defined duration to complete
7. The animation ends, and $animate removes both of the classes .ng-move and .ng-move-active

from the element
8. The done() callback function is fired (if defined)

Integrating with Third-Party Libraries

Animate.css

The Animate.css library provides a bunch of cool, fun, cross-browser animations. It’s a great library
that gives us a lot of power without requiring us to do much work.

Angular Animation 424

Luckily, the Angular community has provided a slick method of including the Animate.css classes
into our Angular app. To use the Animate.css shim, download the animate.css and animate.js

files from https://github.com/yearofmoo/ngAnimate-animate.css¹⁰⁶. We just need to reference both
of them in our HTML, like so:

<!-- In the HEAD of our HTML -->

<link rel="stylesheet" type="text/css" href="css/animate.css">

<!-- In the BODY of our HTML -->

<script type="text/javascript" src="js/vendor/animate.js"></script>

Now, instead of requiring ngAnimate as a dependency for our app, we can simply include the file
ngAnimate-animate.css as a dependency. This substitutionworks because the ngAnimate-animate.css
module requires the ngAnimate module by default.

With this switch set, we can simply reference our animate classes with the ng-class directive. For
instance:

<div class="animateMe"

ng-class="{'dn-fade':dn_fade}">

</div>

For a list of every animation possibility, check out the README¹⁰⁷.

TweenMax/TweenLite

TweenLite and TweenMax are slick, fantastic libraries that were modeled after the ActionScript
animation properties. To use them, we need to make sure we download the Greensock library.

Download it fromGreensock¹⁰⁸, and store it in a place accessible to your index.html.We recommend
storing it in js/vendor/TweenMax.min.js. We then need to make sure to reference the TweetMax
library in our page:

<script type="text/javascript" src="js/vendor/TweetMax.min.js"></script>

With that set up, we’re all ready to go. To include the Greensock animations in our app, we need to
set up our animations to use JavaScript. In this way, there is little to no integration code necessary
beyond simply animating with JavaScript:

¹⁰⁶https://github.com/yearofmoo/ngAnimate-animate.css
¹⁰⁷https://github.com/yearofmoo/ngAnimate-animate.css/blob/master/README.md
¹⁰⁸http://www.greensock.com/

https://github.com/yearofmoo/ngAnimate-animate.css
https://github.com/yearofmoo/ngAnimate-animate.css/blob/master/README.md
http://www.greensock.com/
https://github.com/yearofmoo/ngAnimate-animate.css
https://github.com/yearofmoo/ngAnimate-animate.css/blob/master/README.md
http://www.greensock.com/

Angular Animation 425

angular.module('myApp', ['ngAnimate'])

.animation('scrollAside', function($window) {

return {

enter: function(element, done) {

TweenMax.set(element, {

position: 'relative'

});

TweenMax.to(element, 1, {

opacity: 0,

width: 0

});

$window.setTimeout(done, 2000);

}

}

});

The Digest Loop and $apply
Let’s take a peek at how Angular works underneath the hood. How do we get this magical data
binding to work in only a few lines of code? It’s important that we understand how the $digest

loop works and how to use the $apply() method.

In the normal browser flow, a browser executes callbacks that are registered with an event when
that event occurs (e.g., clicking on a link).

Events are fired when the page loads, when an $http request comes back, when the mouse moves
or a button is clicked, etc.

When an event is fired/triggered, JavaScript creates an event object and executes any functions
listening for the specific events with this event object. This callback method then runs inside the
JavaScript function, which returns to the browser, potentially updating the DOM.

No two events can run at the same time. The browser waits until one event handler finishes
before the next handler is called.

In non-Angular JavaScript, we can attach a function callback to the click event on a div. Any time
that a click event is found on an element, the function callback runs:

var div = document.findElementById("clickDiv");

div.addEventListener("click",

function(evt) {

console.log("evt", evt);

});

Open the Chrome developer tools, and copy and paste the previous code inside of any web
page and click around the page.

Any time the browser detects a click, the browser calls the function registeredwith the addEventListener
on the document.

When we mix Angular into the flow, it extends this normal browser flow to create an Angular
context. The Angular context refers specifically to code that runs inside the Angular event loop,
referred to as the $digest loop. To understand the Angular context, we need to look at exactly what
goes on inside of it. There are two major components of the $digest loop:

• The $watch list
• The $evalAsync list

The Digest Loop and $apply 427

$watch List

Every time we track an event in the view, we are registering a callback function that we expect to
be called when an event happens in the page. Recall our first example:

<!DOCTYPE html>

<html ng-app>

<head>

<title>Simple app</title>

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.6/angular.js">

</script>

</head>

<body>

<input ng-model="name" type="text" placeholder="Your name">

<h1>Hello {{ name }}</h1>

</body>

</html>

Any time a user updates the input field, {{ name }} changes in the UI. This change happens because
we bind the input field in the UI to the $scope.name property. In order to update the view, Angular
needs to track the change. It does so by adding a watch function to the $watch list.

Properties that are on the $scope object are only bound if they are used in the view. In the case
above, we’ve added a single function to the $watch list.

Remember: For all UI elements that are bound to a $scope object, a $watch is added to the $watch
list.

These $watch lists are resolved in the $digest loop through a process called dirty checking.

Dirty Checking

Dirty checking is a simple process that boils down to a very basic concept: It checks whether a value
has changed that hasn’t yet been synchronized across the app.

The dirty checking strategy is commonly used in plenty of different applications, beyond
Angular. Game engines, database engines, and Object RelationalMappers (ORMs) are some
examples of such systems.

Our Angular app keeps track of the values of the current watches (in the watch object, for those who
are curious). Angular walks down the $watch list, and, if the updated value has not changed from

The Digest Loop and $apply 428

the old value, it continues down the list. If the value has changed, the app records the new value
and continues down the $watch list.

Digest loop

Once Angular has run through the entire $watch list, if any value changed, the app will fall back
into the $watch loop until it detects that nothing has changed.

Why run the loop all over again? If we update a value in the $watch list that updates another value,
Angular won’t detect the update unless we rerun the loop.

If the loop runs ten times or more, our Angular app throws an exception, and the app dies. If Angular
doesn’t throw this exception, our app could launch into an infinite loop, with bad results.

Note: In future versions of Angular, the framework will use the native browser specification
Object.observe(), which will speed up the dirty checking process considerably.

$watch

The $watch method on the $scope object sets up a dirty check on every call to $digest inside
the Angular event loop. The Angular $digest loop always returns if it detects changes on the
expression.

The $watch function itself takes two required arguments and a third optional one:

• watchExpression

The watchExpression can either be a property of a scope object or a function. It runs on every call
to $digest in the $digest loop.

If the watchExpression is a string, Angular evaluates it in the context of the $scope. If it is a function,
then Angular expects it to return the value that should be watched.

• listener/callback

The Digest Loop and $apply 429

The callback listener function is only called when the current value of the watchExpression and the
previous value of the expression are not equal (except during initialization on the first run).

• objectEquality (optional)

The objectEquality parameter is a comparison boolean that tells Angular to check for strict
equality.

The $watch function returns a deregistration function for the listener that we can call to cancel
Angular’s watch on the value.

// ...

var unregisterWatch =

$scope.$watch('newUser.email',

function(newVal, oldVal) {

if (newVal === oldVal) return; // on init

});

// ...

// later, we can unregister this watcher

// by calling

unregisterWatch();

If we are done watching the newUser.email in this example, we can clean up our watcher by calling
the deregistration function it returns.

For instance, let’s say we want to parse an input field value from a full name to split on spaces and
find a simple first and last name. Given that our view looks like:

<input type="text" ng-model="full_name" placeholder="Enter your full name" />

Note: we should never use $watch in a controller: It makes it difficult to test the controller.
We’re making an allowance here for the sake of illustration, and we’ll move these watches
into services later.

We want to set up a $watch listener on the full_name property and detect any changes to the value.
We also want to set the $watch function on the full_name property.

The Digest Loop and $apply 430

angular.module("myApp")

.controller("MyController", ['$scope', function($scope) {

$scope.$watch('full_name', function(newVal, oldVal, scope) {

// the newVal of the full_name will be available here

// while the oldVal is the old value of full_name

});

}]);

In our example, we’re setting an AngularJS expression that tells our Angular app to “watch the
full_name property for any potential changes on it, and run the function if you detect any changes”.

The listener function is called once on initialization, so the first time around, the value of newVal
and oldVal will be undefined (and will be equal). That being the case, it’s generally good to check
inside the expression if we’re in the initialization phase or if there is an update to the previous value.
We can easily accomplish this check inside the function, like so:

$scope.$watch('full_name',

function(newVal, oldVal, scope) {

if (newVal === oldVal) {

// This will run only on the initialization of the watcher

} else {

// A change has occurred after initialization

}

});

The $scope.$watch() function sets up a watchExpression on the $scope for ‘full_name’.

$watchCollection

Angular also allows us to set shallow watches for object properties or elements of an array and fire
the listener callback whenever the properties change.

Using $watchCollection allows us to detect when there are changes on an object or array, which
gives us the ability to determine when items are added, removed, or moved in the object or array.
$watchCollection works just like the normal $watch works in the $digest loop, and we can treat
it as a normal $watch.

The $watchCollection() function takes two parameters:

• obj (string/function)

This object is the one to watch. If a string is passed in, it will be evaluated as an Angular expression.
If a function is passed in, it will be called with the current scope, and will be expected to return the
value to watch.

The Digest Loop and $apply 431

• listener (function)

This callback function will be fired when the collection changes. Similar to the $watch function, this
function will be called with the new collection fired from the $watch, the old collection (a copy of
the previous collection), and the scope within which it will be executed.

The $watchCollection() function returns a deregistration function that, when called, cancels our
$watch on the collection.

$scope.$watchCollection('names',

function(newNames, oldNames, scope) {

// Our names collection has changed

});

The $digest Loop in a Page

Let’s take a look at the $digest loop process inside of a web page. We’ll first assume that we have
a (very insecure) login page that features a single name field that lets us log in with a single form
validation.

We do not recommend this insecure form of authentication.

<h2>Sign in</h2>

<input

type="text"

placeholder="Your name"

ng-model="name"

ng-minlength='3' />

<input type="submit"

ng-click="login()"

value="Login" />

With the name bound in the view through the ng-model directive, Angular sets up an implicit
watcher to bind the value of the input field to the current $scope.

When the user enters a character into the form, the Angular context kicks in and begins iterating
through the $$watchers (the $watch list).

In this case, the $watch list consists of a single element: $scope.name. Since the user has changed the
input field by a single character, the watch function will execute on the $scope.name binding. This

The Digest Loop and $apply 432

action triggers the validations and formatters to run on the value (because of the ng-model binding)
before we exit the $digest loop.

Since a value has changed in the digest loop, Angular will need to rerun the loop to confirm that it
did not change any other values on the scope.

Why run the digest loop again? If we have a value called $scope.full_name that consists of
$scope.first_name + $scope.last_name, any change to either of these values will change
$scope.full_name, so the loop needs to run again to ensure that nothing else has changed.

Since changing the $scope.name attribute does not change any other attribute in the $scope, the
$digest loop exits, and the browser repaints the DOM which refreshes the view.

After the user has entered their name in the input field and click on the submit button. This will
cause a slightly different flow to happen.

ng-click binds the browser’s native click event to the DOM element. When that DOM element
receives the click event, the ng-click directive calls $scope.$apply(), and we enter the $digest

loop.

$evalAsync List

The $evalAsync() method is a way to schedule running expressions on the current scope at some
time in the future. The second operation that the $digest loop runs is executing the $$asyncQueue.
We can get access to this work queue with the $evalAsync() method.

Throughout the $digest loop, the queue empties between each loop through the dirty checking
lifecycle, which means two things for any function called with $evalAsync:

• The function will execute sometime after the function that called it.
• At least one $digest cycle will be performed after the expression is executed.

The $evalAsync() method takes a single argument:

• expression (string/function)

This expression is what we want to execute on the current scope. If a string is passed, it will $eval
the expression on the scope.

If a function is passed, it will execute the function with the scope that is passed in as it’s executed.

The Digest Loop and $apply 433

$scope.$evalAsync('attribute',

function(scope) {

scope.foo = "Executed"

});

Some particulars to consider when using $evalAsync:

• If a directive calls $evalAsync() directly, it will run after Angular has manipulated the DOM,
but before the browser renders.

• If a controller calls $evalAsync(), it will run before Angular has manipulated the DOM and
before the browser renders (we’ll never really want to apply this order of events).

We will want to use the $evalAsync() function any time that we want an action to execute outside
the execution context of another action in Angular.

We might use it instead of a setTimeout() function, where it might cause a flicker after the browser
re-renders the view.

$apply

The $apply() function executes an expression inside of the Angular context from outside of the
Angular framework. For instance, if we implement a setTimeout() or are using a third-party library
and we want the event to run inside the Angular context, we must use $apply().

The $apply() function takes one optional argument:

• expression (string/function)

The expression argument optionally takes a string or a function and executes it inside the current
scope.

If a string is passed, then $apply() will first call $eval() on the string, forcing Angular to $eval()

the string on the local scope context.

If a function is passed, the function will be executed on the scope passed into the function.

The $exceptionHandler service will catch and handle any exception that the $eval() method
throws. Lastly, the $apply() method directly calls the $digest loop.

The Digest Loop and $apply 434

// Ways to call apply

// with a string to be eval'd

$scope.$apply('message = "Hello World"');

// With a function that is passed a scope

$scope.$apply(function(scope) {

// Execute this function with the scope

scope.message = "Hello World";

});

// With a function that ignores the scope

$scope.$apply(function() {

$scope.message = "Hello World";

});

// Or just force the $digest loop to run

// by calling it at the end of our operation

$scope.$apply();

Simply said, using $scope.$apply() is a way to gain access to the Angular context from outside of
it.

If we call $apply() when an event is fired, we run it through the Angular event loop. If we don’t
call $apply(), we don’t execute the function in the event loop, and it runs outside of the Angular
context.

When to Use $apply()

We can generally count on any directive that Angular provides and that is available in the view to
call $apply() for us. Any of the ng-[event] directives (like ng-click, ng-keypress, etc) will call
$apply().

We can also depend on a lot of built-in Angular services to call $digest() for us, as well. The $http
service calls $apply() after the XHR request is done to trigger updating the return value (promise).

Any time that we are handling an event manually, using a third-party framework (e.g., jQuery, the
Facebook API), or calling setTimeout(), we want to use the $apply() function to tell Angular to
rerun the $digest loop.

We generally advise against using $apply() in a controller, because doing so makes it
difficult to test, and because if we have to use $apply() or $digest() in a controller,
we’re probably making things more difficult than they should be.

When integrating jQuery with Angular (an action generally considered dirty), we need to use
$apply(), because Angular is not aware of events that execute outside of the Angular context. For

The Digest Loop and $apply 435

instance, when using a jQuery plugin (e.g., the datepicker), we need to use $apply to transfer the
value from jQuery into our Angular app.

Here, we can build a simple directive (we’ll dive deep into building these in the directives chapter),
and use the datepicker jQuery plugin function on the element.

The datepicker plugin exposes an event onSelect that fires when the user picks a date. In order to
gain access to the date that the user picks inside of our Angular app, we need to run the datepicker
callback inside the $apply() function.

The ele.datepicker() function is a property functionmade available on the DOMelement
by the jQuery datepicker plugin. In order to make it work, we need to make sure we include
jQuery and the jQuery datepicker plugin on the page.

The ctrl.$setViewValue() function is made available to the directive when using
ng-model on a DOM element. For more information, read the controllers chapter.

app.directive('myDatepicker', function() {

return function(scope, ele, attrs, ctrl) {

$(function() {

// call datepicker on the element

ele.datepicker({

dateFormat: 'mm/dd/yy',

onSelect: function(date) {

scope.$apply(function() {

ctrl.$setViewValue(date);

});

}

})

});

}

});

Demystifying Angular
At their core, AngularJS web apps load in the browser the same way that non-AngularJS apps do;
however, they do run slightly differently. The browser loads the AngularJS library as it is building
the DOM (as it ordinarily loads any JavaScript libraries).

When the browser fires the DOMContentLoaded event, Angular goes to work. It starts by looking
for the ng-app directive (for more information on the ng-app directive, see the Directives explained
chapter).

AngularJS also starts initializing when the angular.js script is loaded if the
document.readyState is set to complete. This fact is useful if we want to dynamically
link the AngularJS script.

If the browser finds the ng-app directive in the DOM, the app is automatically bootstrapped for us.
If it doesn’t find the directive, Angular expects us to bootstrap the app manually.

To manually bootstrap an AngularJS app, we can use the Angular method bootstrap(). It makes
sense to manually bootstrap an application in some relatively rare cases. For instance, let’s say we
want to run an AngularJS app after some other library code runs or we are dynamically creating an
element on the fly.

To manually bootstrap an app, we can bootstrap it, like so:

var newElement = document.createElement("div");

angular.bootstrap(newElement, ['myApp']);

If there is no ng-app directive found in the DOM and we have not manually bootstrapped
our app, AngularJS does not run. Forgetting ng-app can definitely cause some serious
issues.

If there is no application specified in the ng-app attribute, Angular loads the app without a specific
module. If one is specified, Angular loads the module associated with the directive.

Using ng-app without specifying a module:

<html ng-app>

</html>

Using ng-app with a specified module:

Demystifying Angular 437

<html ng-app="moduleName">

</html>

Angular uses the value of the ng-app directive to configure the $injector service (we cover this
service in depth in the dependency injection chapter).

Once the application is loaded, the $injector creates the $compile service alongside the app’s
$rootScope.

Following the $rootScope’s creation, the $compile service takes over. It links the $rootScope with
the existing DOM and starts to compile the DOM beginning from where the ng-app directive is set
as the root.

How the ViewWorks

When the browser gets its HTML in the normal web flow, it receives the HTML and parses it into a
DOM tree. Each element in the DOM tree, called a DOM element, will build a bunch of nodes. The
browser is then responsible for laying the DOM tree structure out.

When the browser fetches scripts (from the <script> tag), it pauses the parsing and waits until the
script is retrieved (it’s possible to modify this behavior, but this behavior is the default).

When the angular.js script is retrieved, it is executed and it sets up an event listener to listen for
the DOMContentLoaded event.

The DOMContentLoaded event is fired when the HTML document has been completed
loaded and parsed.

When the event is detected, Angular looks for the ng-app directive and creates the several necessary
components it needs to run (i.e., the $injector, the $compile service, and the $rootScope), then it
starts parsing the DOM tree.

Compilation Phase

The $compile service traverses the DOM and collects all of the directives that it finds. It then
combines all of their linking functions into a single linking function.

This linking function is then used to link the compiled template to the $rootScope (the scope
attached to the ng-app DOM element).

It finds the directives in the DOM by looking through the attributes, comments, classes, and the
DOM element name.

Demystifying Angular 438

<my-directive></my-directive>

<!-- directive: my-directive -->

For more in-depth directive coverage, check out the directives chapter.

The $compile service walks the DOM tree looking for DOM elements with directives declared on
them.When it encounters a DOM element with one or more directives, it orders the directives (based
upon their priority), then uses the $injector service to find and collect the directive’s compile
function and execute it.

The compile function in directives is the appropriate time to do any DOM transformations or inline
templating, as it creates a clone of the template.

// Returns a linking function

var linkFunction = $compile(appElement);

// Calls the linking function, attaching

// the $rootScope to the domElement

linkFunction($rootScope);

After the compilemethod runs, per node, the $compile service calls the linking functions. The linking
functions set up watches on the directives that are bound to the enclosing scopes. This action creates
the live-view.

Finally, after the $compile service is complete, the AngularJS run time is ready to go.

Run time

In a normal browser flow, the event loop waits for events (like the mouse moving, clicking, a
keypress, etc). As these events occur, they are placed on the browser’s event queue. If any function
handlers are set to react to the event, they are are called with the event as a parameter.

ele.addEventListener('click', function(event) {});

The event loop is augmented a bit with Angular, as Angular provides its own event loop. Directives
themselves register event listeners so that when events are fired, the directive function is run in
AngularJS $digest loop.

The Angular event loop is called the $digest loop. The $digest loop is composed of two
small loops: the evalAsync loop and the $watch list.

Demystifying Angular 439

When the event is fired, it is called within the context of the directive, which is in the AngularJS
context. Functionally, AngularJS calls the directive within an $apply() method on the containing
scope. Angular kicks off this entire process when it starts its $digest cycle on the $rootScope,
propagating to all of the child scopes.

When Angular falls into the $digest loop, it waits for the $evalAsync queue to empty before it
hands the callback execution context back to the browser. The $evalAsync is used to schedule any
work that needs to be run outside of the current stack frame, but before the browser renders.

Additionally, the $digest loop waits for the for the $watch expression list, an array of potential
expressions that may change during the previous iteration. If a change is detected, then the $watch
function is called, and the $watch list is run over again to ensure that nothing has changed.

Note that for any changes detected in the $watch list, AngularJS runs through the list again
to ensure that nothing has changed.

Once the $digest loop settles down and no potential changes are detected, the execution leaves the
Angular context and passes normally back to the browser, where the DOM will be rendered.

This entire flow happens between every browser event, which is why Angular can be so powerful.
It is also possible to inject events from the browser into the AngularJS flow.

Essential AngularJS Extensions
One of the most popular and highly supported AngularJS plugins is the the AngularUI framework.

AngularUI

AngularJS itself is packed full of out-of-the-box features that we can use to build an expressive
AngularJS appwithout relying on separate libraries; however, the very activeAngularJS community
has built some great libraries that we can take advantage of to maximize the power of our apps.

In this section, we’re covering several different and most commonly used components of the
AngularUI¹⁰⁹ library.

The AngularUI library has been broken out into several modules so that, rather than including the
entire suite, we can pick and choose the components that we’re interested in using.

As we walk through the different components, we’ll need to ensure that we install each of the
different components with which we are going to work.

Installation

For each component, we can either download the individual JavaScript library and place it in our
application path or we can use Bower¹¹⁰ to complete our installation. We at ng-newsletter.com¹¹¹
recommend using Bower. For the purposes of this chapter, we’ll cover installing each module only
with Bower.

ui-router

One of the most useful libraries that the AngularUI library gives us is the ui-router. It’s a routing
framework that allows us to organize our interface by a state machine, rather than a simple URL
route.

¹⁰⁹http://angular-ui.github.io/
¹¹⁰http://bower.io/
¹¹¹http://ng-newsletter.com

http://angular-ui.github.io/
http://bower.io/
http://ng-newsletter.com
http://angular-ui.github.io/
http://bower.io/
http://ng-newsletter.com

Essential AngularJS Extensions 441

Installation

To install the ui-router library, we can either download the release¹¹² or use Bower to install the
library.

Make sure you have Bower installed globally:

$ npm install bower -g

Use Bower to install the angular-ui library:

$ bower install angular-ui-router --save

We’ll need to make sure we link the library to our view:

<script type="text/javascript"

src="app/bower_components/angular-ui-router/release/angular-ui-router.js">

</script>

And we’ll need to inject the ui.router as a dependency in our app:

angular.module('myApp', ['ui.router'])

Now, unlike the built-in ngRoute service, the ui-router can nest views as it works based off states,
rather than simply a url.

Instead of using the ng-view directive as we do with the ngRoute service, we’ll use the ui-view

directive with ngRoute.

When dealing with routes and states inside of ui-router, we’re mainly concerned with in which
state the application and at which route the web app currently stands.

<div ng-controller="DemoController">

<div ui-view></div>

</div>

Just like ngRoute, the templates we define at any given state are placed inside of the <div

ui-view></div> element. Each of these templates can include its own ui-view, as well. This fact
allows us to have nested views inside our routes.

To define a route, we use the .config method, just like normal, but instead of setting our routes on
$routeProvider, we set our states on the $stateProvider.

¹¹²http://angular-ui.github.io/ui-router/release/angular-ui-router.js

http://angular-ui.github.io/ui-router/release/angular-ui-router.js
http://angular-ui.github.io/ui-router/release/angular-ui-router.js

Essential AngularJS Extensions 442

.config(function($stateProvider, $urlRouterProvider) {

$stateProvider

.state('start', {

url: '/start',

templateUrl: 'partials/start.html'

})

});

This step assigns the state named start to the state configuration object. The state configuration
object, or the stateConfig, has similar options to the route configuration object, which gives us the
ability to configure the states of our application.

template, templateUrl, templateProvider

These are the three ways to set up templates on each of the views:

• template - a string of HTML content or a function that returns HTML
• templateUrl - a string URL path to a template or a function that returns a URL path string
• templateProvider - a function that returns an HTML content string

For instance:

$stateProvider.state('home', {

template: '<h1>Hello {{ name }}</h1>'

});

controller

Just like in ngRoute, we can either associate an already-registered controller with a URL (via a string)
or we can create a controller function that operates as the controller for the state.

If there is no template defined (in one of the previous options), the controller will not be created.

resolve

We can resolve a list of dependencies that we will inject into our controller using the resolve

functionality. In ngRoute, the resolve option allows us to resolve promises before the route is
actually rendered. Inside angular-route, we have a bit more freedom as to how we can use this
option.

The resolve option takes an object where the keys are the names of the dependencies to inject into
the controller and the values are the factories that are to be resolved.

If a string is passed, then angular-route tries to match an existing registered service. If a function
is passed, the function is injected, and the return value of the function is the dependency. If the
function returns a promise, it is resolved before the controller is instantiated and the value (just like
ngRoute) is injected into the controller.

Essential AngularJS Extensions 443

$stateProvider.state('home', {

resolve: {

// This will return immediately as the

// result is not a promise

person: function() {

return {

name: "Ari",

email: "ari@fullstack.io"

}

},

// This function returns a promise, therefore

// it will be resolved before the controller

// is instantiated

currentDetails: function($http) {

return $http({

method: 'JSONP',

url: '/current_details'

});

},

// We can use the resulting promise in another

// resolution

facebookId: function($http, currentDetails) {

$http({

method: 'GET',

url: 'http://facebook.com/api/current_user',

params: {

email: currentDetails.data.emails[0]

}

})

}

},

controller: function($scope, person,

currentDetails, facebookId) {

$scope.person = person;

}

})

url

The url option assigns a unique URL for the state of the application. The url options gives us the
same features of deep linking, while navigating around the app by state, rather than simply by URL.

This option is similar to the ngRoute URL, but can be considered a major upgrade, as we’ll see in a
moment.

Essential AngularJS Extensions 444

The basic route can be specified like so:

$stateProvider

.state('inbox', {

url: '/inbox',

template: '<h1>Welcome to your inbox</h1>'

});

When the user navigates to /inbox, the app transitions into the inbox state, and we fill the main
ui-view directive with the contents of the template (<h1>Welcome to your inbox</h1>).

The URL can take several different options and we can set the basic parameters in the url like in
ngRoute:

$stateProvider

.state('inbox', {

url: '/inbox/:inboxId',

template: '<h1>Welcome to your inbox</h1>',

controller: function($scope, $stateParams) {

$scope.inboxId = $stateParams.inboxId;

}

});

The app captures :inboxId as the second component in the URL. For instance, if the user transitions
to /inbox/1, $stateParams.inboxId becomes 1 (as $stateParams will be {inboxId: 1}).

We can also use a different syntax if you prefer:

url: '/inbox/{inboxId}'

The path must match the URL exactly. Unlike ngRoute, if the user navigates to /inbox/, the above
path will work; however, when navigating to /inbox the state will not be activated in the example
configuration above.

The path also enables us to use regex inside of parameters so we can set a rule to match against our
route. For instance:

Essential AngularJS Extensions 445

// Match only inbox IDs that contain

// 6 hexidecimal digits

url: '/inbox/{inboxId:[0-9a-fA-F]{6}}',

// Or

// match every URL at the end of `/inbox`

// to `inboxId` (a catch-all)

url: '/inbox/{inboxId:.*}'

Note, we cannot use regex capture groups inside the route: The route resolver will not
be able to resolve the route.

We can even specify query parameters in our route:

// will match a route such as

// /inbox?sort=ascending

url: '/inbox?sort'

Nested Routing

We can use the url parameter to use appended routes to provide for nested routes. This option
enables us to support having multiple ui-views inside our page and our templates. For instance, we
can nest individual routes inside of our /inbox route above.

$stateProvider

.state('inbox', {

url: '/inbox/:inboxId',

template: '<div><h1>Welcome to your inbox</h1>\

<a ui-sref="inbox.priority">Show priority\

<div ui-view></div>\

</div>',

controller: function($scope, $stateParams) {

$scope.inboxId = $stateParams.inboxId;

}

})

.state('inbox.priority', {

url: '/priority',

template: '<h2>Your priority inbox</h2>'

});

Our first route matches as we expect (see above). We now have a second route, a child route that
matches underneath the parent inbox route (because we specified it as a child using the . syntax).

Essential AngularJS Extensions 446

• /inbox/1 matches the first state
• /inbox/1/priority matches the second state.

With this syntax, we can support a nested URL inside of the parent route. The ui-view inside of the
parent view resolves to the priority inbox.

params

The params option is an array of parameter names or regexes. We cannot combine this option
with the url option. When the state becomes active, these parameters will be populated in the
$stateParams service.

views

Our ability to set multiple named views inside of a state is a particularly powerful feature of
ui-router. Inside of a single view, we can define multiple views that we reference inside of a single
template.

If we set the views parameter, then the state’s templateUrl, template, and templateProvider
are ignored. If we want to include a parent template in our routes, we need to create an
abstract template that contains an abstract template.

Let’s say we have a view that looks like:

We can now create named views that fill each of these individual templates. Each of the subviews
can contain its own templates, controllers, and resolve data using the resolve keyword.

$stateProvider

.state('inbox', {

views: {

'filters': {

template: '<h4>Filter inbox</h4>',

controller: function($scope) {}

},

'mailbox': {

templateUrl: 'partials/mailbox.html'

},

'priority': {

template: '<h4>Priority inbox</h4>',

resolve: {

facebook: function() {

return FB.messages();

Essential AngularJS Extensions 447

}

}

}

}

});

abstract

An abstract template can never be directly activated, but can set up descendants that are activated.

We can use an abstract template to provide a template wrapper around multiple named views, or to
pass $scope objects to descendant children. We can use them to pass around resolved dependencies
or custom data or simply to nest several routes under the same ‘url’ (e.g., have all routes under the
/admin URL).

Setting up an abstract template is just like setting up a regular state, except that we set the abstract
property:

$stateProvider

.state('admin', {

abstract: true,

url: '/admin',

template: '<div ui-view></div>'

})

.state('admin.index', {

url: '/index',

template: '<h3>Admin index</h3>'

})

.state('admin.users', {

url: '/users',

template: '...'

});

onEnter, onExit

Angular calls these callbacks when we are transitioning into or out of views (respectively). For both
options, we can set a function we want to call. These functions have access to the resolved data.

These callbacks give us the ability to trigger an action on a new view or before we head out to
another state. Using them is a good way to launch an “Are you sure?” modal view or request that a
user log in before he or she heads into this state.

Essential AngularJS Extensions 448

data

We can attach arbitrary data to our state configObject. This option is similar to the resolve

property, except that this data will not be injected into the controller, nor will promises be resolved.

This option can be particularly useful when passing data to child states from a parent state.

Events!

Like the ngRoute service, the angular-route service fires events at different times during the state
lifecycle.

We can attach functions to these events inside of our application by listening on the $scope. All
of the following events are fired on the $rootScope, so we can listen to these events on any of our
$scope objects.

State Change Events

We can listen to the events as follows:

$scope.$on('$stateChangeStart',

function(evt, toState, toParams, fromState, fromParams), {

// We can prevent this state from completing

evt.preventDefault();

});

The events that may be fired are as follows:

$stateChangeStart This event is fired when the transition from one state to another begins.

$stateChangeSuccess This event is fired when the transition from one state to the next is
completed.

$stateChangeError This event is fired when an error occurs during the transition. It is usually
caused by either a template that cannot be resolved or a resolve promise failing to resolve.

View Load Events

The ui-router provides events at the view loading stage.

$viewContentLoading This event is fired when the view begins loading and before the DOM is
rendered.

We can listen to this event like so:

Essential AngularJS Extensions 449

$scope.$on('$viewContentLoading',

function(event, viewConfig){

// Access to all the view config properties.

// and one special property 'targetView'

// viewConfig.targetView

});

$viewContentLoaded This event is fired after the view has been loaded and after the DOM is
rendered.

$stateParams

Above, we used the $stateParams to pick out the different params options from the URL parameters.
The service is how we’ll handle data from different components of our URL.

For instance, if we have a URL in our inbox state that looks like:

url: '/inbox/:inboxId/messages/{sorted}?from&to'

And our user finds their way to the route:

/inbox/123/messages/ascending?from=10&to=20

Then our $stateParams object results in:

{inboxId: '123', sorted: 'ascending', from: 10, to: 20}

$urlRouterProvider

Just like ngRoute, we have access to a route provider with which we can build rules around what
happens when a particular URL is activated.

The states that we create are responsible for handling activating themselves at different URLs, so
the $urlRouterProvider is not necessary to manage activating and loading states. It does come in
handy when we want to manage events that happen outside of the scope of our states, such as with
redirection or authentication.

We can use the $urlRouterProvider in our module’s config function.

when() The when function takes two parameters: the incoming path that we want to match and the
path that we want to redirect to (or a function that is invoked when the path is matched).

To set up redirection, we need to set the when method to take a string.

For instance, if we want to redirect an empty route to our /inbox route:

Essential AngularJS Extensions 450

.config(function($urlRouterProvider) {

$urlRouterProvider.when('', '/inbox');

});

If we pass a function, it will be invoked when the path has matched. The handler can return one of
three values:

• falsy - This value tells the $urlRouter that the rule didn’t match, and it should try finding a
different state that does match. It can be useful if we want to ensure a user has valid access to
a URL.

• a string - The $urlRouter will treat a string value as a redirect URL.
• truthy or undefined - This value lets the $urlRouter know that we’ve handled the URL.

otherwise() Just like the otherwise()method in ngRoute, the otherwise()method here redirects
a user if no other routes arematched. This method is a goodway to create a default URL, for instance.

The otherwise() method takes a single parameter: either a string or a function.

If we pass in a string, any invalid or unmatched routes will be redirected to the string as a specified
URL.

If we pass in a function, it will be invoked if no other route is matched, and we’ll be responsible for
handling the return.

.config(function($urlRouterProvider) {

$urlRouterProvider.otherwise('/');

// or

$urlRouterProvider.otherwise(

function($injector, $location) {

$location.path('/');

});

});

rule() If we want to bypass any of the URL matching or want to do some route manipulation
before other routes, we can use the rule() function.

We must return a valid path as a string when using the rule() function.

Essential AngularJS Extensions 451

.config(function($urlRouterProvider){

$urlRouterProvider.rule(

function($injector, $location) {

return '/index';

});

})

Create a Wizard

Why does it matter if we use a new, more powerful router than the built-in ngRoute provider?

One useful case in which we might want to use ui-router is when we want to create a signup
wizard for our users.

Using ui-router, we’ll create a quick signup service with a single controller to handle the signup.

First, we need to create a view for the app:

<div ng-controller="WizardSignupController">

<h2>Signup wizard</h2>

<div ui-view></div>

</div>

Inside of this view, we house our signup views. Next, in our signup wizard, we need three stages:

• start - At this stage, we take the user’s name and introduce him or her to our signup wizard.
• email - Here, we accept the user’s email.
• finish - At this point, the user completes our signup process, and we show them a complete
page.

In a real app, the finish stage would likely send the registration data back to a server
and handle real registration. Here, we have no back end, so we’ll just show the view.

Our signup process depends on the wizardapp.controllers module where we will write the
containing controller: WizardSignupController.

angular.module('wizardApp', [

'ui.router',

'wizardapp.controllers'

]);

Our WizardSignupController simply houses the $scope.user object, which we carry with us
through the signup process, as well as the signup action.

Essential AngularJS Extensions 452

angular.module('wizardapp.controllers', [])

.controller('WizardSignupController',

function($scope, $state) {

$scope.user = {};

$scope.signup = function() {}

});

The wizard process logic houses the majority of the work. We want to set up this logic in the
config() function of our app:

angular.module('wizardApp', [

'ui.router', 'wizardapp.controllers'

])

.config(function($stateProvider, $urlRouterProvider) {

$stateProvider

.state('start', {

url: '/step_1',

templateUrl: 'partials/wizard/step_1.html'

})

.state('email', {

url: '/step_2',

templateUrl: 'partials/wizard/step_2.html'

})

.state('finish', {

url: '/finish',

templateUrl: 'partials/wizard/step_3.html'

});

});

With these options set up, we have our basic flow all done. Now, if the user navigates to the route
/step_1, they’ll be directed to the beginning of the flow. Although it might make sense for our entire
flow to take place at the root URL (i.e., /step_1), we might want to house that in a sublocation
(/wizard/step_1, for instance).

To do so, we set up an abstract state that will house the rest of our steps.

Essential AngularJS Extensions 453

.config(function($stateProvider, $urlRouterProvider) {

$stateProvider

.state('wizard', {

abstract: true,

url: '/wizard',

template: '<div><div ui-view></div></div>'

})

.state('wizard.start', {

url: '/step_1',

templateUrl: 'partials/wizard/step_1.html'

})

.state('wizard.email', {

url: '/step_2',

templateUrl: 'partials/wizard/step_2.html'

})

.state('wizard.finish', {

url: '/finish',

templateUrl: 'partials/wizard/step_3.html'

});

});

Now, instead of having our routes at a top level, we can nest them safely inside our /wizard URL.

We also want to attach an action at the end of the signup process that calls the signup function
on our parent controller WizardSignupController. We’ll set a controller on the final step of the
wizard process that calls the function on the $scope. Because our entire wizard is encapsulated in
our WizardSignupController, we’ll be able to use the nested scope property of scopes like normal.

.state('wizard.finish', {

url: '/finish',

templateUrl: 'partials/wizard/step_3.html',

controller: function($scope) {

$scope.signup();

}

});

ui-utils

The UI Utils library is a powerful utility package that makes a lot of custom extensions available to
your project without needing to reinvent the wheel.

Below, we present a few notable features that the ui-utils library gives us:

Essential AngularJS Extensions 454

Installation

$ bower install --save angular-ui-utils

We need to ensure that we include the library in our HTML template. Each component of the
ui-utils library is built as an individual module, so we need to include each one independently.

mask

When we want to take a credit card or a phone number (or any other input that requires a specific
format), we can present a clean UI that tells our users they’re giving us clean input.

We need to ensure we include the mask.js library in our HTML:

<script type="text/javascript"

src="app/bower_components/angular-ui-utils/modules/mask/mask.js"></script>

and set the ui-mask as a dependency for our app:

angular.module('myApp', ['ui.mask'])

Now, we can specify input masks using the ui-mask directive. The ui-mask directive takes a single
format string that follows these formatting rules:

• A - any letter
• 9 - any number
• * - any alphanumeric character.

For instance, to format a credit card number in an input, we might set the ui-mask directive to look
like:

<input name="ccnum" ui-mask="9999 9999 9999 9999"

ng-model="user.cc" placeholder="Credit card number" />

The ui-mask is similar to how Angular input does not consider input valid until its
validations are all satisfied.

Note that this input only supports credit cards for which the input mask matches
9999-9999-9999-9999. With a bit more work, we can support other card types.

In the same sense, we can format an input field with characters or any alphanumeric character.

ui-event

Just like the other modules, we need to include the event.js library in our HTML:

Essential AngularJS Extensions 455

<script type="text/javascript"

src="app/bower_components/angular-ui-utils/modules/event/event.js"></script>

and we need to include the ui.event as a dependency for our app:

angular.module('myApp', ['ui.event'])

The ui-eventmodule is great to use when we want to handle events that are not natively supported
by AngularJS. For instance, if we want the user to double click on an element or handle a blur event,
we’d have to write a wrapper around the native browser event of double click. The ui-event

module is simply a wrapper around native events, so we can use it to respond to any event that is
fired by the browser on any element.

For instance, let’s say we want to reveal an image after the user double-clicks on another image. We
simply set the ui-event directive to a key-value pair populated with the event name and the action
to take when the element catches the event.

For instance, in our HTML, we can set a double-click dblclick event to call a showImage() function
on our controller:

<img src="/images/ui/ginger.png"

ui-event="{dblclick:'showImage()'}" />

and in our controller, we can write our method on the scope like normal:

.controller('DemoController', function($scope) {

$scope.showImage = function() {

$scope.shouldshowImage = !$scope.shouldshowImage;

}

});

Since the ui-event directive is simply a wrapper around native browser events, we can use it to
mimic any browser event on any element.

For instance, if we want to capture a blur or focus event on an element, we can use the ui-event
directive to capture it for us.

Let’s say we want to provide some helpful tips for filling out a form. We can set actions on the focus
event and the blur event to show and reveal these help tips.

For instance, if we have a form that includes name and email input fields, we can attach functions
to our blur and focus events to show help events on those input fields.

Essential AngularJS Extensions 456

<form name="form">

<input type="text" name="name" placeholder="Your name"

ui-event="{focus: 'showNameHelp=true',

blur: 'showNameHelp=false'}"

/>

<input type="email" name="email" placeholder="Your email"

ui-event="{focus: 'showEmailHelp=true',

blur: 'showEmailHelp=false'}"

/>

</form>

With these events set on the input fields, we can show our help fields depending on which field the
user is focused on (using ng-show and ng-hide).

ui-format

We need to ensure that we include the format.js library in our HTML:

<script type="text/javascript"

src="app/bower_components/angular-ui-utils/modules/format/format.js"></script>

and set ui.format as a dependency for our app:

angular.module('myApp', ['ui.format'])

The format library is a wrapper around different ways to handle working with string tokens. It
enables us to work directly with tokens we expect in our app that are variable.

We can use this token replacement with the format library either with an array or a key-
value/javascript object. For instance:

{{ "Hello $0" | format: 'Ari' }}

Alternatively, we can bind the name to a variable on our scope and use the format library to present
it in a clean format. Let’s say we have a controller that looks like:

Essential AngularJS Extensions 457

angular.module('myApp', ['ui.format'])

.controller('FormatController', function($scope) {

$scope.name = 'Ari';

});

We can format the input against that bound variable on the $scope:

Although this code isn’t particularly interesting (and this functionality comes out of the box with
Angular), it becomes more interesting when we want to manipulate text on a key-value basis.

For instance, we can format a string based on the keys of an object we have. Let’s say we have an
object with name and email attributes:

.controller('FormatController', function($scope) {

$scope.person = {

name: 'Ari',

email: 'ari@fullstack.io'

}

});

We can change our HTML to include object keys as tokenswhich allow us to transform our markup
to match against the keys as tokens:

{{ "Hello :name. Your email is :email" | format: person }}

The formatmodule is particularly useful when working with translations or i18n support (for more
on translations, check out our translations chapter).

Mobile Apps
Mobile apps are not the next frontier for software developers – they’re already here. There are
already 1.2 billion mobile web app users, and that number is growing rapidly (Wikipedia¹¹³). Soon,
the number of mobile devices will exceed the number of people on the planet. At the rate at which
the number of mobile devices is growing, it’s estimated that 5.1 billion people will be using mobile
phones by 2017.

For us as app developers, it’s important that we develop for mobile technology if we want to stay
relevant. With AngularJS, we have some great support for mobile, written by both the Angular team
and the community.

In this section, we’re going to work through these two different ways to give our users a mobile
experience for our app:

• Responsive web apps
• Native with Cordova

Responsive Web Apps

The easiest way to support mobile with Angular is by using the tools we already know and love –
HTML and CSS– to create a mobile-ready Angular app. Since Angular apps are already based on
HTML, making our designs and interaction responsive is only a matter of building the architecture
that will support different devices.

Interaction

For the desktop, the ability to create interactions is already available to us through the ng-click and
family directives.

Beginning with Angular version 1.2.2, we now have the ability to use touch events using the new
ngTouch module. Since ngTouch is not built into the core Angular library, we need to install it.

¹¹³http://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use

http://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use
http://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use

Mobile Apps 459

Installation

We can install ngTouch in any of several ways. The simplest way to install the ngTouch module is
by downloading the source from angularjs.org¹¹⁴.

Find the extras in the download section, then we can download and store the ng-touch.js file into
an accessible location in our app.

Alternatively, we can use Bower to install angular-touch:

$ bower install angular-touch --save

Either way, we need to reference the library in our index.html as a script:

<script src="/bower_components/angular-touch/angular-touch.js"></script>

Finally, we need to include ngTouch as a dependency in our app:

angular.module('myApp', ['ngTouch']);

Now we’re ready to take advantage of the ngTouch library.

ngTouch

Mobile browsers work slightly differently than desktop browsers when dealing with click events.
Mobile browsers detect a tap event then wait about 300 ms to detect any other taps (i.e., they wait
to find out if we’re double-tapping the device). After this delay, the browser fires a click event.

This delay can make our apps feel incredibly unresponsive. Instead of dealing with the click event,
we can detect touch events instead.

The ngTouch library seamlessly handles this functionality for us through the ng-click directive and
takes care of calling the correct click event for us. This so-called fast click event will be called.

After the fast click has been called, the browser’s delayed click is called secondarily,
causing a ‘double’ action. ngTouch takes care of removing this browser delay on
ng-click events.

Using the ngClick directive on mobile devices works the exact same way on mobile browsers as it
does on desktop browsers:

¹¹⁴http://angularjs.org/

http://angularjs.org/
http://angularjs.org/

Mobile Apps 460

<button ng-click="save()">Save</button>

ngTouch also introduces two new directives: swipe directives. These swipe directives allow us to
capture user swipes, either left or right across the screen. These are useful for situations where we
want the user to be able to swipe through a photo gallery photo or to a new portion of our app.

The ngSwipeLeft directive detects when an element is swiped from the right to the left, while the
ngSwipeRight directive detects when an element is swiped from the left to the right.

One of the nice features the ngSwipe* directives give us is that they work both with
touch-based devices as well as with mouse clicking and dragging.

Using the ngSwipe* directives is easy. For instance, let’s say we have a list of emails and we want to
reveal actions for each email, like the popular mobile email client MailboxApp.

We can easily implement that functionality using these swipe directives on our list of elements.
When we are showing our list of emails, we enable swiping in one direction to show the actions we
can take on that particular mail item.

When we are showing actions for the mail item, we enabled swiping in the other direction to hide
the actions we can take.

<li ng-repeat="mail in emails">

<div

ng-show="!mail.showActions"

ng-swipe-left="mail.showActions=true">

<div class="from">

From: {{ mail.from }}

</div>

<div class="body">

{{ mail.body }}

</div>

</div>

<div

ng-show="mail.showActions"

ng-swipe-right="mail.showActions=false">

<ul class="actions">

<button>Archive</button>

<button>Trash</button>

</div>

Mobile Apps 461

Swipe directives example

$swipe Service

For more custom touch-based animations, we can use the $swipe service directly. The $swipe service
is a service that abstracts the details of hold-and-drag swiping behavior.

The $swipe service has a single method called bind(). This bind() method takes an element to
which it binds the swipe actions as well as an object with four event handlers.

These event handlers are called with an object that contains the coordinates object, like so: { x:

200, y: 300 }.

The four events handlers handle the following events:

• start

The start event is fired on either a mousedown or a touchstart event. After this event, the $swipe
service sets up watches for touchmove and mousemove events. These events are only fired until the
total distance moved exceeds a small distance (to prevent accidental swipes).

Once this distance has been surpassed, one of two events happens:

• If the vertical delta is greater than the horizontal, the browser takes over as a scroll event.
• If the horizontal delta is greater than the vertical delta, the action is considered a swipe, and
our move and end events are set to follow the swipe.

• move

The move event is called on mousemove and touchmove events only after the $swipe service has
determined that a swipe is, in fact, in progress.

• end

Mobile Apps 462

The end event is fired when the touchend or a mouseup event has finished and after the move event
has been fired.

• cancel

The cancel event is called on either a touchcancel or when we begin scrolling after the start event
instead.

For instance, we can create a directive that enables swiping between slides that might control a
projector screen. To handle swiping on the mobile control, we use the $swipe service to handle our
custom logic for how to display the UI layer.

angular.module('myApp')

.directive('mySlideController', ['$swipe',

function($swipe) {

return {

restrict: 'EA',

link: function(scope, ele, attrs, ctrl) {

var startX, pointX;

$swipe.bind(ele, {

'start': function(coords) {

startX = coords.x;

pointX = coords.y;

},

'move': function(coords) {

var delta = coords.x - pointX;

// ...

},

'end': function(coords) {

// ...

},

'cancel': function(coords) {

// ...

}

});

}

}

}]);

Mobile Apps 463

angular-gestures and Multi-Touch Gestures

angular-gestures is an Angular module that gives us the ability to handle multi-touch actions in
our Angular apps. It is based on the very popular and well-tested Hammer.js¹¹⁵ library.

The Hammer.js library gives us a bunch of events common to touchscreen events:

• Tap
• DoubleTap
• Swipe
• Drag
• Pinch
• Rotate

The angular-gestures library enables us to use these events using Angular directives. For instance,
all of the following directives are available to us:

• hmDoubleTap : ‘doubletap’,
• hmDragStart : ‘dragstart’,
• hmDrag : ‘drag’,
• hmDragUp : ‘dragup’,
• hmDragDown : ‘dragdown’,
• hmDragLeft : ‘dragleft’,
• hmDragRight : ‘dragright’,
• hmDragEnd : ‘dragend’,
• hmHold : ‘hold’,
• hmPinch : ‘pinch’,
• hmPinchIn : ‘pinchin’,
• hmPinchOut : ‘pinchout’,
• hmRelease : ‘release’,
• hmRotate : ‘rotate’,
• hmSwipe : ‘swipe’,
• hmSwipeUp : ‘swipeup’,
• hmSwipeDown : ‘swipedown’,
• hmSwipeLeft : ‘swipeleft’,
• hmSwipeRight : ‘swiperight’,
• hmTap : ‘tap’,
• hmTouch : ‘touch’,
• hmTransformStart : ‘transformstart’,
• hmTransform : ‘transform’,
• hmTransformEnd : ‘transformend’

¹¹⁵http://eightmedia.github.io/hammer.js/

http://eightmedia.github.io/hammer.js/
http://eightmedia.github.io/hammer.js/

Mobile Apps 464

angular-gestures Installation

To install the angular-gestures library in our app, we need to include the gestures.js (or
gestures.min.js) library in our page.

We can either download the gestures.js files directly from the GitHub page¹¹⁶ or we can use Bower
to install it.

To install angular-gestures using Bower, we can install it with the following command:

$ bower install --save angular-gestures

Lastly, we need to set angular-gestures as a dependency for our Angular app:

angular.module('myApp', ['angular-gestures']);

Using angular-gestures

From here, Angular gestures are really easy to use. Gestures are just Angular directives, so we use
them the same way we use any other directives in our app.

Let’s say we want to allow users to rotate, pinch, and zoom photos in a photo gallery. We can use
the Hammer.js library to handle this functionality for us.

In this example, we’ll set a random translation on the element only for double taps. To do that, we
need to set up our HTML using the hm-tap directive.

<div id="photowrapper">

<div class="cardProps"

hm-tap="tapped($event)">

<div class="tradingcard">

Ari

</div>

<div class="tradingcard">

Nate

</div>

</div>

</div>

There is nothing incredibly special about this HTML other than the fact that we have a directive
called hm-tap. This angular-gestures directive handles what happens when someone taps the
image.

¹¹⁶https://github.com/wzr1337/angular-gestures

https://github.com/wzr1337/angular-gestures
https://github.com/wzr1337/angular-gestures

Mobile Apps 465

Hammer.js directives can take Angular expressions – so we can call functions on or run
actions inside of them (like ng-click, for example) – and Hammer.js options.

In the example above, we’re calling a function that we’ll define on our $scope as tapped(). We’ve
defined this function as:

$scope.tapped = function($event) {

var ele = $event.target;

var x = Math.floor(Math.random() * 200) + 1,

y = Math.floor(Math.random() * 100) + 1,

z = Math.floor(Math.random() * 6) + 1,

rot = Math.floor(Math.random()*360)+1;

$(ele).css({

'transform':

"translate3d("+x+"px,"+y+"px,"+z+"px)" +

"rotate("+rot+"deg)"

});

}

The angular-gestures library gives us access to the event through a special argument called $event.
We’ll use the event’s target ($event.target) to determine which element our user clicks on and then
we can go crazy and do all sorts of neat tricks with the element.

Native Applications with Cordova

Cordova is a free, open-source framework that allows us to create mobile apps using standard web
APIs instead of native code. It enables us to write mobile applications using HTML, JavaScript, CSS,
and AngularJS instead of needing to write Objective-C or Java (for iOS or Android, respectively).

Cordova

Mobile Apps 466

Cordova exposes native device access through JavaScript APIs that allow us to run device-specific
operations, such as getting the native location or using the camera. Cordova is designed natively
with plugin architecture, so we can take advantage of Cordova community-built plugins, such as
native audio access or barcode scanning plugins.

One of the benefits of using Cordova is that we can reuse our Angular app code to support the
mobile environment. Of course, there are a few issues that we’ll deal with, such as performance and
native component access.

Installation

Cordova itself is distributed as an npm package, so we can use npm to install it.

If you don’t yet have npm installed, first make sure you install node. For information
on installing NodeJS, read the Next Steps chapter.

$ npm install -g cordova

Installing Cordova

The Cordova package includes a generator that will create our app and make it Cordova-ready.

Getting Started with Cordova

Getting started with Cordova is simple. We use the generator to create the starting point of our
Cordova app. Let’s call the app GapApp.

The generator takes up to three parameters:

• project-directory (required)

Mobile Apps 467

The directory where we’ll create the app

• package-id

The ID of the project (the package name in reverse-domain style)

• name

The package name (name of the application)

$ cordova create gapapp io.fullstack.gapapp "GapApp"

This line sets up a directory called gapapp (identified by the first parameter) with a package ID
io.fullstack.gapapp and the project name GappApp.

Cordova file structure

The Cordova team has broken Cordova into plugins so that we don’t need to include any platforms
wewon’t be building for; this breakdownmakes it easier to develop support for other platforms. That
means that we need to add to our project any platforms for which we’re interested in developing.

For this project, we can assume the rest of these commands are run from inside the project directory:

$ cd gapapp/

We’ll be building for iOS (although the process is the same for other platforms). To add iOS as a
platform, simply add it to the project using the following Cordova command:

$ cordova platform add ios

For this command to work, we need to ensure that we have the iOS SDK installed using
XCode. Download the iOS SDK and XCode at developer.apple.com¹¹⁷.

Once you have that set, build the basic app:

¹¹⁷https://developer.apple.com/

https://developer.apple.com/
https://developer.apple.com/

Mobile Apps 468

$ cordova build ios

Now, due to some intricacies with Apple’s developer tools, we will have to build the app ourselves
to get it to run on our local iOS simulator.

Let’s navigate to our app directory, where we’ll find the platforms directory. Inside of it, we’ll find
the io/ directory that was created for us by the platform add command above.

Generated project

In XCode, open the project that we created with said command. Make sure the simulator is shown
in the platform identifier at the top of XCode.

Build in XCode

Click run.

Once you have done so, we should see the basic Cordova app start to run in our simulator.

Mobile Apps 469

Barebones Cordova app

Development Workflow with Cordova

Cordova powers the PhoneGap project, which has been accepted into the Apache Foundation. The
project itself includes a command-line tool that we’ll use to interact with our native app, from
creation to deployment.

Platforms

At this point, we’ve created our app and added a platform (in this case, iOS).

Available platforms for the Cordova app vary depending on which development
environment we’re using. On a Mac, the available platforms are:

• iOS
• Android
• Blackberry10
• Firefox OS

For a Windows machine, we can develop for the following platforms:

• Android
• Windows Phone 7
• Windows Phone 8
• Windows8
• Blackberry10
• Firefox OS

If we forget which platforms are available, we can run the platforms command to check which are
available and installed:

Mobile Apps 470

$ cordova platforms ls

To add a platform, we can use the platform add command (as we’ve done above):

$ cordova platform add android

To remove one, we can use the rm or remove command:

$ cordova platform rm blackberry10

Plugins

Cordova is built to be incredibly modular, with the expectation that we will install all of the non-
core components with the plugin system. To add a plugin to our project, we’ll use the plugin add

command:

$ cordova plugin add\

https://git-wip-us.apache.org/repos/asf/cordova-plugin-geolocation.git

We can list the current plugins that we have installed using the plugins ls command:

$ cordova plugins ls

['org.apache.cordova.geolocation']

Finally, we can remove a plugin using the plugin rm command:

$ cordova plugins rm org.apache.cordova.geolocation

Building

By default, Cordova creates a skeleton project that houses the web-view files in the www/ directory
in the project directory. When Cordova builds the project, it copies these files and places them in
their platform-specific directories.

To build the app, we use another Cordova command, the build command:

$ cordova build

Without specifying any platform to build for, this command will build for all of the platforms we’ve
listed in our project.

We can limit the scope by building only for specific platforms, such as:

Mobile Apps 471

$ cordova build ios

$ cordova build android

The build command ensures that the necessary platform-specific code is set so our app
can be compiled. In effect, we’re doing the same thing as calling cordova prepare &&

cordova compile.

Emulating and Running

Cordova also makes it possible to run an emulator to simulate running the app on a device. Doing
so is, of course, only possible if an emulator is installed and set up on our local development
environment.

Assuming our emulator is set up in our development environment, we can tell Cordova to launch
and install the app in our emulator:

$ cordova emulate ios

For iOS, we may have to build the project (as we did above) using XCode if the emulator
environment is not set up on our machine.

It’s also possible to run the application on a particular device by using the run command instead.
The run command launches the application on a device or on the emulator if no device is found and
available.

$ cordova run ios

In Development

It can be cumbersome to make a change to one part of our app and then recompile the app to see the
changes reflected therein. To help expedite the process of developing the web app side of the app,
we can use the serve command to serve a local version of our www/ folder to a web browser.

$ cordova serve ios

Static file server running at

=> http://0.0.0.0:8000/

CTRL + C to shutdown

Now, we can use our web browser and navigate to the URL:

http://localhost:8000/ios/www/index.html.

Our app’s www/ folder is being served through HTTP, so we can build it and watch it change as we
make changes to the app.

When we make changes, we need to make sure we rebuild the app:

Mobile Apps 472

$ cordova build ios

Building using Safari

Angular Cordova Service

When our Cordova app is ready, the device has connected, and everything is ready to go, Cordova
fires the browser event called deviceready.

With Angular, we can either bootstrap the app after this event has been fired or we can use promises
to handle our logic after the deviceready event has been fired.

To bootstrap the app after we’ve received the deviceready event, we need to set an event listener
for the event and then manually call bootstrap on our app:

angular.module('myApp', []);

var onDeviceReady = function() {

angular.bootstrap(document, ['myApp']);

}

document.addEventListener('deviceready',

onDeviceReady);

We prefer to use an alternative method of listening for the deviceready event that uses promises to
set up execution bindings for after the deviceready event has been fired.

We set up an Angular module that listens for the deviceready event. We can also use a service that
listens for the deviceready event and resolves our promises depending on whether the event has
been fired.

Mobile Apps 473

angular.module('fsCordova', [])

.service('CordovaService', ['$document', '$q',

function($document, $q) {

var d = $q.defer(),

resolved = false;

var self = this;

this.ready = d.promise;

document.addEventListener('deviceready', function() {

resolved = true;

d.resolve(window.cordova);

});

// Check to make sure we didn't miss the

// event (just in case)

setTimeout(function() {

if (!resolved) {

if (window.cordova) d.resolve(window.cordova);

}

}, 3000);

}]);

Now, we set the fsCordova as a dependency for our module:

angular.module('myApp', ['fsCordova'])

// ...

We can use the CordovaService to determine if Cordova is, in fact, ready, and we can set our logic
to depend upon the service being ready:

angular.module('myApp', ['fsCordova'])

.controller('MyController',

function($scope, CordovaService) {

CordovaService.ready.then(function() {

// Cordova is ready

});

});

Mobile Apps 474

Including Angular

With the bare Cordova app, we only have a bare JavaScript app that hides and displays the JavaScript
view in js/index.js.

We can introduce Angular into the workflow very simply. As we are building a native app, including
Angular from a CDN is not ideal; instead, we’ll include the necessary components directly into the
app.

We can use Bower for more complex setups, but for the time being, we’ll keep it simple.

To get our Angular app building, we need to download Angular from angularjs.org¹¹⁸ and store it
in a directory accessible by our index.html. We recommend www/js/vendor/angular.js.

Once that’s set, we can start building our Angular app. We need to include the JavaScript file in our
www/index.html.

<script type="text/javascript" src="js/vendor/angular.js"></script>

Now we can replace all of the contents of the js/index.js file with our Angular app and develop
our app like normal.

Development Workflow

When building our app, we’ll use the following workflow:

• Start our local server (Cordova serve [platform])
• Edit our app
• Rebuild our app (Cordova build [platform])

This flow, although somewhat cumbersome, is how we’ll edit our app.

If our app doesn’t rely on the Cordova platform, we can edit outside of the simulator and in our web
browser. In this case, we can work specifically with building our app, instead of needing to rebuild
and redeploy the app.

Building with Yeoman

We can use Yeoman¹¹⁹ to build a production-ready version of our app. Yeoman is a collection of
build scripts that is the officially supported build process for Angular apps. For more information
on Yeoman, check out the Yeoman section in the Next Steps chapter.

To install Yeoman, the Angular generator, and the Cordova generator:

¹¹⁸http://angularjs.org/
¹¹⁹http://yeoman.io

http://angularjs.org/
http://yeoman.io
http://angularjs.org/
http://yeoman.io

Mobile Apps 475

$ npm install -g yo

$ npm install -g generator-angular

$ npm install -g cordova

In order to get Yeoman working with Cordova, we’ll need to make a few adjustments to the flow
we describe above.

First, we want to create a Cordova app like normal.

$ cordova create gapapp io.fullstack.gapapp "GapApp"

This line creates the folder gapapp/ in our local directory like normal.

Generating our app

Next, let’s change into the directory and add our platform:

$ cd gapapp/

$ cordova platform add ios

This step creates a platform folder that we’ll work with in a minute to get the actual gapappworking
locally in both our emulator and our device.

The first thing that we need to do is set up our Yeoman app in our directory and make a few minor
changes to the default configuration:

$ yo angular

We’ll go through the normal Yeoman questions to let the process complete and build our directory
like normal.

When this process is done, we will have our Yeoman app in the app/ directory. This location is where
we’ll do all of our work when it comes to building our mobile app.

In our toolchain, we’ll use the following workflow to build our app:

Mobile Apps 476

• Write code
• Test our code (Angular testing)
• Run our code in the emulator (optional)
• Test our code on a running device (optional)

The Yeoman build tool takes care of the first two tasks. The second two are the tasks that we’ll build
now.

Cordova works by including the www/ directory into the compiled apps, so any modifications we
make to the files in the www/ directory will be wrapped into the compiled application after we build
it.

Modifying Yeoman to Work with Cordova

Yeoman assumes a different structure by default where it builds our application into a folder called
dist/. We’ll modify this build directory to build into the www/ directory.

First, we must save the www/config.xml file that the Cordova creat command built. We want to copy
or move this file from the www/ into the app/ directory:

$ cp www/config.xml app/

Now, we want to copy this config.xml file back over to our www/ directory when Yeoman builds it.

To change the default directory in which Yeoman builds our app, we find the Yeoman section in our
Gruntfile.js and change the dist: key from dist to www:

// ...

grunt.initConfig({

yeoman: {

app: require('./bower.json').appPath || 'app',

dist: 'www' // <~ Change this to www

},

watch: {

// ...

Next, we need to tell Yeoman to include the config.xml file in the list of files it copies over. Luckily,
this process is incredibly easy: We only need to add a single string to the list of paths in the copy
task.

Inside the copy:dist configuration, add the extension xml to the glob string that lists the files to
copy over:

Mobile Apps 477

// ...

},

copy: {

dist: {

files: [{

expand: true,

dot: true,

cwd: '<%= yeoman.app %>',

dest: '<%= yeoman.dist %>',

src: [

'*.{ico,png,txt,xml}', // <~ Add xml

'.htaccess',

// ...

With these two commands in place, we can now build our app with Yeoman, which will build our
application inside the app/ directory as well as the www/ directory.

$ grunt build

This command sets up our basic app to work with Yeoman, but not with any of the dev tools we
want to use to actually build our mobile app.

Fixing the Yeoman Build

Note that when we’re developing our applications, we cannot fetch remote resources from a CDN.
The default Yeoman build sets up our scripts to load from the Google CDN. Therefore, we must
modify the index.html template slightly so that we don’t load jquery and angular from the CDN
by surrounding the script tags inside a usemin build script, like so:

<!--

Add the following line and the endbuild line

after the script tags

-->

<!-- build:js scripts/library.js -->

<script src="bower_components/jquery/jquery.js"></script>

<script src="bower_components/angular/angular.js"></script>

<!-- endbuild -->

Mobile Apps 478

Building the Mobile Part

To build our mobile app with our Yeoman tools, we can add a few more task definitions to Grunt to
make the processes of building, testing, and deploying to our devices a breeze.

Cordova has two different binaries to build our app: a local builder inside the platforms/ directory
(to actually compile the native application) and a global binary (to build our application from the
root directory created by the Cordova create command).

To build our application normally, we can simply run the Cordova build command from the root
directory. Cordova will handle copying the www/ directory into the appropriate location for the
different platforms.

$ cordova build

We can create a task to do the same for us so we can simply use grunt like normal. To support
this, we need to install a Grunt library called grunt-shell. We can use npm to handle installing this
library for us:

$ npm install --save-dev grunt-shell

Next, we need to define our configuration for the shell commands. We’re going to create two
commands: one to emulate our app on our computer’s mobile device simulator and one to deploy
to our actual device.

uglify: {

// ...

},

shell: {

build: {

command: 'cordova build'

},

emulate: {

command: 'cordova build'

}

}

// ...

These commands are very similar right now, as in both commands we want to tell Cordova to
actually build the application first.

Next, we need to use the local Cordova command to emulate or run our application. The local
Cordova command can be found in our location platforms path for each type of platform.

Mobile Apps 479

For instance, we have a local emulate command in the iOS directory because we’ve added the
iOS platform in platforms/ios/cordova/emulate. If we add an Android platform, we’ll find the
Cordova command inside the Android platform directory at platforms/android/cordova/emulate.

We want to build a helper function to help us find these local Cordova commands. At the top of the
Gruntfile, let’s add the following command:

module.exports = function (grunt) {

var path = require('path'),

cordova = require('cordova');

var cordova_cmd = function(cmd) {

var target = grunt.option('target') || "ios";

return path.join(

__dirname, "platforms",

target, "cordova", cmd);

}

Now we can use the cordova_cmd() function to find these local Cordova commands. With these
local commands we can modify our shell tasks from above to include these custom tasks:

shell: {

build: {

command: 'cordova build && ' +

cordova_cmd('emulate')

},

run: {

command: 'cordova build &&' +

cordova_cmd("run")

}

}

We can use these commands simply by running them directly in the shell to test them out:

$ grunt shell:build

Depending upon the platform we’re developing with, we may need to install dependencies.
For instance, with ios, we need to make sure we have ios-sim installed. Check the official
Cordova docs¹²⁰ for information on dependencies for your platform.

¹²⁰http://docs.phonegap.com/en/3.1.0/index.html

http://docs.phonegap.com/en/3.1.0/index.html
http://docs.phonegap.com/en/3.1.0/index.html
http://docs.phonegap.com/en/3.1.0/index.html

Mobile Apps 480

These commands are semi-useless without being wrapped into another command that actually
builds the app from our app/ directory into the www/ directory.

Grunt makes this process easy: We can simply register a new task that runs of multiple Grunt tasks.
In this case, we can simply wrap our build and run commands into a new task that calls build first:

// task configuration above here

}

});

// ...

grunt.registerTask('devemulate', [

'build',

'shell:build',

]);

grunt.registerTask('devrun', [

'build',

'shell:run'

]);

grunt.registerTask('server', function (target) {

// ...

This codemakes the devemulate command available to us:We can use it to run our app in a simulator
environment and on our device. {lang=”shell”} $ grunt devemulate

Note, if the command is not working as expected, using the --verbose flag with gruntwill
often reveal issues, such as missing dependencies.

We can also use the devrun task to run the application on a mobile device that is set up to accept
development applications:

$ grunt devrun

Handling the Navigator

Lastly, the Cordova platform uses the deviceready event, fired on the DOM, to indicate that the
device itself is ready for action. We run into a timing issue between the time that the Cordova app is
ready to go and before our Angular app has bootstrapped. We can get around this issue by creating
a service that captures the deviceready event and resolves to a variable on the outset with which
we can work. The service is very simple:

Mobile Apps 481

angular.module('gapappApp.services')

.factory('Cordova', function($q) {

var d = $q.defer();

if (window.navigator) {

d.resolve(window.navigator);

} else {

document

.addEventListener('deviceready', function(evt) {

d.resolve(navigator);

});

}

return {

navigator: function() {

return d.promise;

}

}

})

Now, when we want to use Cordova’s navigator, we just use the following syntax, which will
resolve once the device is ready:

angular.module('gapappApp')

.controller('MainController',

function($scope, Cordova) {

Cordova.navigator().then(function(navigator) {

navigator.notification.vibrate();

});

});

Localization
As worldwide access to the web increases, we as developers are constantly pressed to make our apps
internationally and locally accessible. When a user visits our apps, he or she should be able to switch
languages on the fly at run time.

Given that we are building AngularJS client-side apps, we don’t particularly want the user to
have to refresh the page or visit an entirely different URL. Of course, AngularJS could easily
accommodate your international audience natively, perhaps by generating different templates for
different languages and serving those within the app.

This process can become cumbersome, however, and what happens when you want to change the
layout of the app? Every single template needs to be rebuilt and redeployed. This process should just
be easy.

angular-translate

Instead of creating new templates, we can use angular-translate, an AngularJS module that brings
i18n (internationalization) to your Angular app. angularjs-translate requires us to create a JSON
file that represents translation data per language. It lazy loads the language-specific translation data
from the server only when necessary.

The angular-translate library comes with built-in directives and filters that make it simple to
internationalize our apps. Let’s get started.

Installation

To use angular-translate, we need to load the library. We can install it in several different ways, but
we prefer using Bower.

Bower is a front-end package manager. It handles not only JavaScript libraries, but also HTML, CSS,
and image packages. A package is simply encapsulated, third-party code that is typically publicly
accessible in a repository.

• Using Bower

We install angular-translate using the normal Bower process:

Localization 483

$ bower install angular-translate

Alternatively, we can download the minified version of angular-translate from GitHub.

Once we’ve installed the latest stable version of angular-translate, we can simply embed it in our
HTMLdocument. Justmake sure it’s embedded after Angular itself, as it depends on the core angular
library.

<script src="path/to/angular.js"></script>

<script src="path/to/angular-translate.js"></script>

Last but not least, our app has to declare angular-translate as a load dependency:

var app = angular.module('myApp', ['pascalprecht.translate']);

Great! Now we’re ready to use angular-translate’s components to translate our app.

Teaching Your App a New Language

Our app depends upon angular-translate as installed, and our app declares it as a dependency, so we
can use it to translate our app’s contents.

First, we need to provide translation material so our app can actually speak a new language. This
step entails configuring the $translate service through our fresh $translateProvider service.

Training our app to use a new language is simple. Using the config function on our app, we provide
the different language translations for our app (i.e., English, German, Hebrew, etc.). First, we inject
our $translateProvider in the config function, like so:

angular.module('angularTranslateApp', ['pascalprecht.translate'])

.config(['$translateProvider', function($translateProvider) {

// Our translations will go in here

}]);

To add a language, we have to make $translateProvider aware of a translation table, which is a
JSON object containing our messages (keys) that we will translate into values. Using a translation
table enables us to write our translations as simple JSON for loading remotely or setting at compile
time, such as:

Localization 484

{

'MESSAGE': 'Hello world',

}

In a translation table, the key represents a translation ID, whereas the value represents the concrete
translation for a certain language. Now we add a translation table to your app. $translateProvider
provides a method called translations() to take care of that.

app.config(function ['$translateProvider', ($translateProvider) {

$translateProvider.translations({

HEADLINE: 'Hello there, This is my awesome app!',

INTRO_TEXT: 'And it has i18n support!'

});

}]);

With this translation table in place, our app is set to use angular-translate. Since we’re adding the
translation table at configuration time, angular-translate’s components are able to access it as soon
as they are instantiated.

Let’s switch over to our app template. Adding translations in the view layer is as simple as binding
our key to the view. Using the translate filter, we don’t even have to engage our controller or
services or worry about the view layer: We’re able to decouple the translate logic from any controller
or service and make our view replaceable without touching business logic code.

Basically, the translate filter works like so:

<h2>{{ 'TRANSLATION_ID' | translate }}</h2>

To update our example app, we make use of the translate filter:

<h2>{{ 'HEADLINE' | translate }}</h2>

<p>{{ 'INTRO_TEXT' | translate }}</p>

Great! We’re now able to translate our content within the view layer without polluting our
controllers’ logic with translation logic; however, we could achieve the same result without using
angular-translate at all, since our app only knows about one language.

Let’s see angular-translate’s real power and learn how to teach our app more than one language.

Localization 485

Multi-language Support

We’ve already added a translation table to the app via the translations() method.

The $translateProvider knows one language, as we set it with the translations()method. Now,
we can add an additional language in the same way by providing a second translation table.

When we set our first translation table, we can provide it a key (a language key) that specifies the
language we’re translating. We can simply add another translation key with another language key.

Let’s update our app to include a second language:

app.config(function ['$translateProvider', ($translateProvider) {

$translateProvider.translations('en_US', {

HEADLINE: 'Hello there, This is my awesome app!',

INTRO_TEXT: 'And it has i18n support!'

});

}]);

To add a second translation table for another language, let’s say German, we want to just do the
same with a different language key:

app.config(function ['$translateProvider', ($translateProvider) {

$translateProvider.translations('en', {

HEADLINE: 'Hello there, This is my awesome app!',

INTRO_TEXT: 'And it has i18n support!'

})

.translations('de', {

HEADLINE: 'Hey, das ist meine großartige App!',

INTRO_TEXT: 'Und sie untersützt mehrere Sprachen!'

});

}]);

Now our app knows about two different languages. We can add as many languages as needed –
there’s no limit; however, since there are now two languages available, how does our app know
which language to use? angular-translate doesn’t prefer any language until you tell it to do so.

To set a preferred language, we can use the method $translateProvider.preferredLanguage().
This method tells angular-translate which of the registered languages is the one that our app should
use by default. It expects an argument with the value of the language key, which points to a certain
translation table.

Now, let’s tell our app that it should use English as its default language:

Localization 486

app.config(function ['$translateProvider', ($translateProvider) {

$translateProvider.translations('en', {

HEADLINE: 'Hello there, This is my awesome app!',

INTRO_TEXT: 'And it has i18n support!'

})

.translations('de', {

HEADLINE: 'Hey, das ist meine großartige App!',

INTRO_TEXT: 'Und sie untersützt mehrere Sprachen!'

});

$translateProvider.preferredLanguage('en');

}]);

Switching the Language at Run Time

To switch to a new language at run time, we have to use angular-translate’s $translate service. It
has a method, uses(), that either returns the language key of the currently used language, or, when
passing a language key as argument, tells angular-translate to use the corresponding language.

To get a feeling for how this capability works in a real app, we can add two new translation IDs that
represent translations for buttons we’ll add later in our HTML template:

app.config(function ['$translateProvider', ($translateProvider) {

$translateProvider.translations('en', {

HEADLINE: 'Hello there, This is my awesome app!',

INTRO_TEXT: 'And it has i18n support!',

BUTTON_TEXT_EN: 'english',

BUTTON_TEXT_DE: 'german'

})

.translations('de', {

HEADLINE: 'Hey, das ist meine großartige App!',

INTRO_TEXT: 'Und sie untersützt mehrere Sprachen!'

BUTTON_TEXT_EN: 'englisch',

BUTTON_TEXT_DE: 'deutsch'

});

$translateProvider.preferredLanguage('en');

}]);

Next, we implement a function on a controller that uses the $translate service and its uses()

method to change the language at run time. To do that, we inject the $translate service in our
app’s controller and add a function on its $scope:

Localization 487

app.controller('TranslateController', function($translate, $scope) {

$scope.changeLanguage = function (langKey) {

$translate.uses(langKey);

};

});

Now, let’s reflect this change in the HTML template by adding a button for each language. We also
have to set up an ng-click directive on each button to call the function that changes the language
at run time:

<div ng-controller="TranslateController">

<button ng-click="changeLanguage('de')" translate="BUTTON_TEXT_DE"></button>

<button ng-click="changeLanguage('en')" translate="BUTTON_TEXT_EN"></button>

</div>

Et voilà! We now have an app with multi-language support!

Loading Languages

What fun would it be if we were going to set the languages statically? We can dynamically load
languages thanks to Angular’s $http service, through the $translateProvider’s registerLoader
function.

First, we need to install the angular-translate-loader-url extension by setting the loader-url service,
which expects that there is a back-end server to send back JSON by handling the lang parameter.
If you do have a back end that handles the route with the lang parameter, install the loader-url

service with Bower like so:

bower install angular-translate-loader-url

If you prefer to have a service that loads static files, we can use the static-files loader that loads
JSON files from a path with language files. Since this router is simpler, we’ll go ahead and install
this service through Bower:

bower install angular-translate-loader-static-files

Now, let’s make sure this file is loaded in our view through a script tag:

Localization 488

<script src="/js/angular-translate-loader-url.min.js"></script>

To configure our service to use the static-files loader, we need to tell our $translateProvider
to use the loader with a configuration object. The configuration object takes two parameters:

• prefix - specifies the file prefix (including file paths)
• suffix - specifies the file suffix (usually the extension)

The file loader attempts to fetch files at the following URL path: [prefix]/[langKey]/[suffix].
For instance, if we set our config object as:

$translateProvider.useStaticFilesLoader({

prefix: '/languages/',

suffix: '.json'

});

angular-translate attempts to load the en_US language from /languages/en_US.json. Using the
StaticFilesLoader like so gives us the additional benefit of lazy loading. $translate will only
pull down the language files it needs at run time.

Of course, using asynchronous loading will cause a flash of untranslated content as the app loads.
We can circumvent this side effect by setting a default language that is packaged with the app.

One last cool feature: We can use local storage to store our language files. angular-translate
provides us the ability to use local storage; we can enable this capability with one function:

$translateProvider.useLocalStorage();

We’ve covered how to use angular-translate to bring i18n support to your Angular app using
$translateProvider.translations() and the translate filter. We’ve also shown how to change
the language at run time using $translate service and its uses() method.

Try out angular-translate. It comes with a lot of really nice built-in features, such as handling
pluralization, using custom loaders, and setting translations through a service. The docs are fantastic;
we suggest you check them out here¹²¹.

There are a lot of examples that you can play with directly on the site! There’s also an API
Reference¹²² that shows all available components and the interfaces you can use to build awesome
apps with internationalization support.

¹²¹http://pascalprecht.github.io/angular-translate
¹²²http://pascalprecht.github.io/angular-translate/#/api

http://pascalprecht.github.io/angular-translate
http://pascalprecht.github.io/angular-translate/#/api
http://pascalprecht.github.io/angular-translate/#/api
http://pascalprecht.github.io/angular-translate
http://pascalprecht.github.io/angular-translate/#/api

Localization 489

angular-gettext

Similar to angular-translate, angular-gettext also provides translation in a completely different
method. Rather than relying on us to embed the strings wewant to translate into the app, we abstract
out the specific strings and let our library handle them.

Gettext is an internationalization and localization system that is sponsored by the GNU Project and
was first released in 1995. It’s a popular system for wrapping new language support because it wraps
strings that can later be translated to support new languages.

The angular-gettext library works in the same way, by providing string wrapping for strings we
want to translate later.

Installation

To use angular-gettext, we need to load the angular-gettext library. We can install it in several
different ways, but we prefer using Bower.

• Using Bower

We can install angular-gettext with Bower like so:

$ bower install --save angular-gettext

Alternatively, we can download the minified version of angular-gettext fromGitHub.

Once we’ve installed the latest stable version of angular-gettext, we can simply embed it in our
HTML document. We just need to make sure it’s embedded after Angular itself, as it depends on the
core angular library as well as jquery (as it’s a dependency of angular-gettext)

<script src="path/to/jquery.js"></script>

<script src="path/to/angular.js"></script>

<script src="path/to/angular-gettext.js"></script>

Last but not least, our app has to declare angular-gettext as a load dependency:

var app = angular.module('myApp', ['gettext']);

Now we’re ready to use angular-gettext’s components to translate our app!

Usage

The angular-gettext library includes the translate directive, which is simply a directive that
we place on any of the DOM elements where we want strings to be replaced by their translated
counterparts.

Localization 490

<h1 translate>Hello!</h1>

Our <h1> contents will automatically be translated using the translated strings we’ll define in a few
minutes.

The strings to be translated don’t need to be handled differently than regular strings, giving us the
power to have full interpolation support from within inside our app.

<h1 translate>Hello {{ name }}</h1>

We can support translating plural notation as well. For instance, let’s say we want to translate apple
into it’s plural form of apples.

<h1 translate>One apple</h1>

We can add two more directives to our <h1> element that signify the current count and the eventual
string to translate.

<h1 translate

translate-n="count"

translate-plural="{{ count }} apples">

One apple

</h1>

If the string translate-n expression results inmore than 1, then gettext uses the translate-plural
string; otherwise, it uses the value of the <h1> DOM element.

The extra translate-n directive accepts any Angular expression, including functions. For more
information on expressions, check out the expressions chapter.

The translate-plural is simply a string that replaces the inner value of the DOM element upon
which the directive is called.

Lastly, we can also use the translate filter inside of our app. Sometimes we can’t use a directive,
for instance:

<input type="text" placeholder="Username" />

We can use the translate filter to substitute the Username value in the placeholder:

Localization 491

<input type="text"

placeholder="{{'Username'|translate}}" />

String Extraction

Now, instead of providing the strings upfront that we’ll need to translate, we extract the strings from
our templates to build translations. We’ll be generating a .pot file, the standard gettext template.

The easiest method for extracting these strings to be translated is to use the grunt-angular-gettext
utility.

For more information about Grunt, check out the Grunt section in the next steps chapter.

In order to use the grunt-angular-gettext Grunt task, we need to install it with npm:

$ npm install grunt-angular-gettext --save-dev

Once our Grunt task is installed, we need to load it in our Gruntfile. Using the standard Grunt
method for referencing Grunt tasks, we enable it like so inside of our Gruntfile:

grunt.loadNpmTasks('grunt-angular-gettext');

Once that’s set, we need to extract the strings to be translated from our app. We can do this using
the nggettext_extract task.

To set up this task, we need to provide our configuration.

Effectively, the most important key that matters in our nggettext_extract task is the files key:

grunt.initConfig({

nggettext_extract: {

pot: {

files: {

'po/template.pot': ['src/views/*.html']

}

},

},

});

We can also include a few options in our task that set the start and end delimiters. If we’ve configured
Angular to use different delimiters, we can set those in our task as options:

Localization 492

grunt.initConfig({

nggettext_extract: {

pot: {

options: {

startDelim: '//',

endDelim: '//'

},

files: {

'po/template.pot': ['src/views/*.html']

}

},

},

})

Now, we can run this task using the Grunt, like so:

$ grunt nggettext_extract

Once we’re done running this task, we will have a po/template.pot file. For instance, for the
template:

<div ng-controller="HomeController">

<h1 translate>Hello {{ user.name }}</h1>

<h2 translate translate-n="count"

translate-plural="{{ count }} books">

{{ count }} books

</h2>

</div>

We get a po/template.pot file that looks like:

msgid ""

msgstr ""

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

#: app/index.html

msgid "Hello {{ user.name }}"

msgstr ""

#: app/index.html

Localization 493

msgid "{{ count }} books"

msgid_plural "{{ count }} books"

msgstr[0] ""

msgstr[1] ""

Translating Our Strings

Now that we have our .pot file ready to go, we can start translating it. One of the great reasons to
use open-source software is that there are many tools available for us to create translations.

We’re going to focus on using the Poedit tool, which is an open-source tool that enables us to edit
our .pot file.

First, we need to download the tool. We can get it from the Poedit site at www.poedit.net¹²³.

Once we have this tool installed, we can open the application and select File -> New Catalog from
POT File…:

New Catalog from Pot File…

From here, we find our file and select it. We need to make sure that we include the plural form
exactly as follows:

¹²³http://www.poedit.net/

http://www.poedit.net/
http://www.poedit.net/

Localization 494

Setting plural forms

Select “OK”, and we should be brought to a screen that shows the strings to be translated. We should
fill these strings out for a specific language.

For instance, if we want to translate our app into Spanish, we should use the es language. We’ll save
our file as es.po in the same directory as our templates.pot file as is conventional for gettext.

Translating our app

Once we’re done editing, we can save this file and continue on our way. Note: If we make changes
to our app, we can simply re-run Grunt and select “Update from POT File…” in Poedit. This step
updates our new strings, removes old ones, and makes suggestions for those that have changed.

Localization 495

Translating our app

Compiling Our New Language

Finally, we can use our new compiled language formats to generate our new translation.js file.

We’ll use Grunt one more time to compile our new .po files into the translations.js file that we’ll
use at run time.

We need to add a new task: the nggettext_compile task, which takes our .po files and wraps them
into the language that we can use in our app.

The basic configuration task looks like:

grunt.initConfig({

nggettext_compile: {

all: {

files: {

'app/scripts/translations.js': ['po/*.po']

}

},

},

})

This configuration generates the app/scripts/translations.js file out of all of the po/*.po files.

We can also specify a specific module that we want to our translations to be defined within, such
as:

grunt.initConfig({

nggettext_compile: {

all: {

options: {

module: 'myApp.translations'

},

files: {

'app/scripts/translations.js': ['po/*.po']

}

Localization 496

},

},

})

We suggest setting a Gruntfile task to call both of the nggettext_* functions, such as
grunt.registerTask('default', ['nggettext_extract', 'nggettext_compile']);.

Now, when we run our Grunt task, it generates our translations.js file for us. We only need to
include this file in our run-time .html file, and our app will be ready for translation.

Changing Languages

We’re ready to set our language and use our translations to support different languages.

The gettextmodule includes a service called gettextCatalog that we can inject into our app to set
the current language. To set the language, we can simply call:

angular.module('myApp')

.run(function (gettextCatalog) {

gettextCatalog.currentLanguage = 'es';

});

The code above loads the application’s current language as our Spanish language translations.

Note that we can the same thing on the fly, as we only need to inject the gettextCatalog into our
Angular object, like so:

.controller('HomeController',

function($scope, gettextCatalog) {

$scope.user = { name: "Ari" }

$scope.count = 1;

$scope.changeLanguage = function() {

gettextCatalog.currentLanguage = 'es';

}

})

In English:

Localization 497

English

In Spanish, after we change the language:

Spanish

Caching
In large, internet-scale web apps, the ability to limit API calls from the client side enables us to create
scalable web apps.

Not only does it make the front end appear quicker and more responsive, but it also protects our
back end by reducing the amount of work that our back end needs to perform. That way, our back
end can serve more client consumers on the front end.

What Is a Cache?

A Cache is a component that transparently stores data so that future requests can be served more
quickly. It is safe to cache data that doesn’t need to be recomputed often, whereas fetching new data
would result in duplicated data.

The more requests we can serve from cache, the more our overall system performance increases.

Traditionally, caching servers, such as Memcache, can be served on the same system that’s serving
the content to clients or on remote systems. Choosing between options comes down to server size
and traffic.

Depending upon the volatility of the content, we can focus our efforts on storing cached content in
long-term storage (e.g., storing it on disk or for the short term and only keeping it in memory).

Caching works like a big key-value store. There’s a key that points to a cached piece of content.
When the content is requested, if the key is found in the cache and is available (i.e., we get a cache
hit), then the related content will be served.

If the key is not (i.e., we get a cache miss), then the caching server will need to know how to fetch
the data, store it, and return it back to the original requester of the data.

In this section, we’ll discuss caching strategies within Angular, from how to set up memcache
(lightly) for server-side content to using Angular’s built-in caching mechanisms. There are good
libraries that will handle it for us.

Angular Caching

Angular offers caching as a feature out of the box for built-in services and gives us the ability to use
the same mechanisms to cache our own custom content.

Caching 499

Introducing the $cacheFactory

The $cacheFactory is the service that generates cache objects for all Angular services. Internally,
the $cacheFactory creates a default cache object, even if we don’t create one explicitly.

To create a cache object, we use the $cacheFactory and create a cache by ID:

var cache = $cacheFactory.

create('myCache');

Here, we’ve defined a cache with the ID myCache. The $cacheFactory function can take up to two
arguments:

cacheId (string) The cacheId is the name of ID of the cache that we’re creating. It can be referenced
by the get() method by the name of the cache.

options (object) The options specify how the cache will behave. Currently, the options object can
take a key:

• capacity (number)

The capacity describes the maximum number of cache key-value pairs the cache will store and keep
at any given time.

The $cacheFactory() method returns a cache object.

Cache Object

The cache object itself has the following methods that we can use to interact with the cache.

info() The info() method returns the ID, size, and options of the cache object.

put() The put() method allows us to put a key (string) of any JavaScript object value into the
cache.

cache.put("hello", "world");

The put() method returns the value of the cache that we put in.

get() The get() method gives us access to the cache value for a key. If the key is found, it returns
the value, whereas if it is not found, it returns undefined.

Caching 500

cache.get("hello");

remove() The remove() function removes a key-value pair from the cache, if it’s found. If it’s not
found, then it just returns undefined.

cache.remove("hello");

removeAll() The removeAll() function resets the cache and removes all cached values.

destroy() The destroy() method removes all references of this cache from the $cacheFactory

cache registry.

Caching through $http

Angular’s $http service creates a cache with the ID $http (surprise, right?). Enabling the $http

request to use this default cache object is simple: The $http method(s) allow us to pass a cache

parameter.

Default $http Cache

The default $http cache can be particularly useful when our data doesn’t change very often. We can
set it like so:

$http({

method: 'GET',

url: '/api/users.json',

cache: true

});

// Or, using the .get helper

$http.get('/api/users.json', {

cache: true

});

Now, every request that is made through $http to the URL /api/users.json will be stored in the
default $http cache. The key for this request in the $http cache is the full-path URL.

By passing the true parameter in the $http options, we’re telling the $http service to use the default
cache. It’s useful to use the default cache if we don’t want to mess with the cache all that often.

We can, however, manipulate the default $http cache if we need to (e.g., if another request we make
without caching notifies us of a delta change, we can clear the request in the default $http request).

To reference the $http default request, we simply fetch the cache through the $cacheFactory by ID:

Caching 501

var cache = $cacheFactory.get('$http');

With the cache in hand, we can do all the normal operations we need and want to do on it, such as
retrieve the cached responses, clear items from the cache, or blow away all cached references:

// Fetch the cache for the previous request

var usersCache =

cache.get('http://example.com/api/users.json');

// Delete the cache entry for the

// previous request

cache.remove('http://example.com/api/users.json');

// Start over and remove the entire cache

cache.removeAll();

Although we can reference the default cache, it is sometimes more useful to have more control over
the cache and create rules around how the cache behaves. We’ll need to create a new cache to use
with our requests.

Custom Cache

Telling our $http requests to make requests through our own custom cache is simple. Instead of
passing a boolean true with the request, we can pass the instance of the cache.

var myCache = $cacheFactory.get('myCache');

$http({

method: 'GET',

url: '/api/users.json',

cache: myCache

});

// Or, using the .get helper

$http.get('/api/users.json', {

cache: myCache

});

Now, instead of using the default cache, $http will use our custom cache.

Setting Default Cache for $http

Although it is easy, it’s not convenient to need to pass an instance of the cache every time we want
to make an $http request, especially if we’re using the same cache for every request.

We can set the cache object that $http uses by default through the $httpProvider in a .config()

method on our module.

Caching 502

angular.module('myApp')

.config(function($httpProvider) {

$httpProvider.defaults.cache =

$cacheFactory('myCache', {capacity: 20});

});

The $http service will no longer use the default cache it creates for us; it will use our own cache,
which is effectively now a Least Recently Used (LRU) cache.

An LRU cache keeps only the latest number of caches based upon the capacity of the
cache. That is, in our cache that has a capacity of 20, the first 20 requests will be cached,
but when the 21st comes in, the least recently requested item will be deleted from the
cache. The cache itself takes care of maintaining the details about what to maintain and
what to remove.

Security
With any client-side app, it’s always a good idea to think about security at build time. Additionally,
it’s relatively tough to deliver 100% protection in any situation, and even more difficult to do it when
the client can see the entire code.

In this chapter, we’re going to take a look at some techniques for keeping our application secure.
We’ll look at how to master the $sce service to secure our text input through wrapping authorized
requests with tokens (when talking to a protected back end).

Strict Contextual Escaping: the $sce Service

The strict contextual escaping mode (available by default in Angular version 1.2 and higher) tells
our app that it requires bindings in certain contexts to result in a value that is marked as safe for use
inside the context.

For instance, whenwewant to bind rawHTML to an element using ng-bind-html, we want Angular
to render the element with HTML, rather than escaped text.

<textarea ng-model="htmlBody"></textarea>

<div ng-bind-html="{{htmlBody}}"></div>

$sce is a fantastic service that allows us to write whitelisted, secure code by default and goes a long
way toward helping us prevent XSS and other vulnerabilities. Given this power, it’s important to
understand what it is that we’re doing so we can use it wisely.

In the above example, the <textarea> is bound to the htmlBodymodel. In this textarea, the user can
input whatever arbitrary code they would like to see rendered in the div. For instance, it might be a
live preview for writing a blog post or comments, etc.

If the user can input any arbitrary text into the text field, we have essentially opened ourselves up
to a giant security hole.

In order to protect ourselves against malicious users, it’s a good idea to run our unsafe text through
a sanitizer.

The $sce service does that for us, by default, on all interpolated expressions. No constant literals are
ever untrusted. For instance, this value is always a trusted one, as the value is a string.

Security 504

<div ng-html-bind-unsafe="'<h1>Trusted</h1>'"></div>

Basically, at the root of embedded directives starting in version 1.2 and on, $scope values are not
bound directly to the value of the binding, but to the result of the $sce.getTrusted() method.

Directives use the new $sce.parseAs() method instead of the $parse service to watch attribute
bindings. The $sce.parseAs() method calls $sce.getTrusted() on all non-constant literals.

In effect, the ng-bind-html directive calls $sce.parseAsHtml() behind the scenes and binds the
value to the DOM element. The ng-include directive runs this same behavior and any templateUrl
defined on a directive.

When enabled, all built-in directives call out to $sce automatically. We can use this same behavior
in our own directives and other custom components.

To set up $sce protection, we need to inject the $sce service.

angular.module('myApp', [])

.directive('myDirective', ['$sce',

function($sce) {

// We have access to the $sce service

}])

.controller('MyController', [

'$scope', '$sce',

function($scope, $sce) {

// We have access to the $sce service

}]);

Inside of our directive and our controller, we want to give Angular the ability to both allow trusted
content back into the view and take trusted interpolated input.

The $sce service has a simple API that gives us the ability to both set and get trusted content of
explicitly specific types.

For instance, let’s build an email previewer. This email client will allow users to write HTML in their
email; we want to give them a live preview of their text.

The HTML we can use might look something like:

<div ng-app="myApp">

<div ng-controller="MyController">

<textarea ng-model="email.rawHtml"></textarea>

<pre ng-bind-html="email.htmlBody"></pre>

Now, notice that we are taking a body of text in a <textarea></textarea> on a different property
of email: email.rawHtml vs. email.htmlBody. Inside of our controller, we parse this email.rawHtml
as HTML and output it to the browser.

Security 505

Inside our controller, we can set up a $watch to monitor changes on the email.rawHtml and run a
trusted parser on the HTML content any time it changes.

.controller('MyController', [

'$scope', '$sce',

function($scope, $sce) {

// set up a watch on the email.rawHtml

$scope.$watch('email.rawHtml', function(v) {

// so long as we are not in the

// $compile phase

if (v) {

// Render the htmlBody as trusted HTML

$scope.email.htmlBody =

$sce.trustAsHtml($scope.email.rawHtml);

}

})

}]);

Now, whenever the content of email.rawHtml changes, we’ll run a parser on the content and get
back suitable HTML contents. Note that the content will be rendered as sanitized HTML that’s safe
to source in the application.

Now, what if we want to support the user to write custom JavaScript to execute on the page? For
instance, if we want to enable the user to write an ecard that includes custom JavaScript, we’ll want
to enable specify they can run this custom JavaScript on the page.

The HTML invocation for this might look like:

<textarea ng-model="email.rawJs"></textarea>

<pre ng-bind="email.jsBody"></pre>

<button ng-click="runJs()">Run</button>

With this snippet, we’re running the same mechanism for parsing our raw text into safe text. This
time, we also add a third element, a button that calls runJs() on our scope.

As we saw with our HTML bindings, we’ll watch the JavaScript snippet:

Security 506

.controller('MyController', [

'$scope', '$sce',

function($scope, $sce) {

// set up a watch on email.rawJs

$scope.$watch('email.rawJs', function(v) {

if (v) {

$scope.email.jsBody =

$sce.trustAsJs($scope.email.rawJs);

}

});

}]);

Notice that this time we did not use trustAsHtml(), but used the trustAsJs()method. This method
tells Angular to parse the text as executable JavaScript code. At the end of this call, we’ll have a safe,
parsed JavaScript snippet we can eval() in the context of the application.

We can now enable the runJs()method to be set by the user and run the JavaScript snippet supplied
by email.rawJs.

// ...

$scope.runJs = function() {

eval($scope.email.jsBody.toString());

}

Note: There are more intelligent methods of running eval on JavaScript snippets. For
production use, we recommend against using eval.

We get built-in protection in Angular: It will only load templates from the same domain and
protocol as those within which the app is loaded. Angular enforces this protection by calling the
$sce.getTrustedResourceUrl on the templateUrl.

This protocol does not replace the browser’s Same Origin policies and Cross-Origin Resource
Sharing, or CORS. These policies will still be in effect to protect the browser.

We can override this value by whitelisting or blacklisting domains with the $sceDelegateProvider.

Whitelisting URLs

In the module’s config() function, we can set new whitelist and blacklists.

Security 507

angular.module('myApp', [])

.config(['$sceDelegateProvider',

function($sceDelegateProvider) {

// Set a new whitelist

$sceDelegateProvider.resourceUrlWhitelist(['self']);

}]);

To set a newwhitelist, we use the resourceUrlWhitelist()method. The function takes one optional
parameter.

• whitelist (array)

If a parameter is not passed, then this function serves as a getter and returns the currently set
whitelist array.

If the whitelist parameter is passed in, the array of replaces the resourceUrlWhitelist with the
new array.

Each element of the array must either be a regex or the string ‘self’. When set to ‘self’, Angular
ensures that all URLs match only URLs of the same domain as the app. When a regex is used,
Angular matches it against the absolute URL of the resource we’re testing.

If the array is empty, $sce blocks ALL URLs.

Using 'self' enables sourcing https resources from HTML documents.

To enable the every single URL, we whitelist every domain:

angular.module('myApp', [])

.config(['$sceDelegateProvider',

function($sceDelegateProvider) {

// Set a new whitelist

$sceDelegateProvider.resourceUrlWhitelist(['.*']);

}]);

By default, the whitelist is set to ['self'].

Blacklisting URLs

It’s also possible to blacklist URLs instead of whitelisting. It’s often much safer to depend on
whitelisting, but we can use them in combination. It’s useful to whitelist a trusted domain and
blacklist open redirects served by our domains.

To set a new blacklist, we use the resourceUrlBlacklist()method. This method takes one optional
parameter.

Security 508

• blacklist (array)

If a parameter is not passed in, the function returns the currently set blacklist array.

If the blacklist parameter is passed in, the new array replaces the blacklist.

Each element of the array must be either a regex or the string ‘self’, although in the case of the
blacklist, it’s not useful. When a regex is used, it is matched against the absolute URL of the resource
being tested.

The blacklist always has the final say in what is acceptable and what is not acceptable for trusted
content.

By default, the blacklist is set to an empty array, [].

$sce API

The $sce library holds two main functions that we’ll use, as well as several helper functions.

getTrusted

To get the trusted version of a value of a specific type, we can call the getTrusted() method.

The getTrusted() method takes two arguments:

• type (string)

This string is the type of context where the value will be used. See sce types for available types.

• maybeTrusted

This value is the return value from $sce.trustAs. If it is invalid, then it will throw an exception.

The $sce library has a few helper methods for the getTrusted() method.

The following method calls are functionally equivalent:

getTrustedCss(value) getTrusted($sce.CSS, value)
getTrustedHtml(value) getTrusted($sce.HTML, value)
getTrustedJs(value) getTrusted($sce.JS, value)
getTrustedResourceUrl(value) getTrusted($sce.RESOURCE_URL, value)
getTrustedUrl(value) getTrusted($sce.URL, value)

Security 509

parse

Similar to the $parse service, the parsemethod converts anAngular expression into a function. If the
expression is a literal constant, it calls the $parse service; otherwise, it calls the $sce.getTrusted()
service.

The parse() method takes two arguments:

• type (string)

The type of $sce context where we’re going to use the value. See sce types for available types.

• expression (string)

The Angular expression to compile

The parse() method returns a function of the form: function(context, locals) where:

• context (object)

The object where the expression should be evaluated against. Typically, this will be a $scope object.

• locals (object)

These are local variables, mostly useful for overriding values in the context.

The $sce library has a few helper methods for the parse() method.

The following method calls are functionally equivalent:

parseAsCss(expr) parseAs($sce.CSS, expr)
parseAsHtml(expr) parseAs($sce.HTML, expr)
parseAsJs(expr) parseAs($sce.JS, expr)
parseAsResourceUrl(expr) parseAs($sce.RESOURCE_URL, expr)
parseAsUrl(expr) parseAs($sce.URL, expr)

trustAs

The trustAs() method returns an object that Angular trusts for use in a specific strict contextual
escaping context. Bindings, such as ng-bind-html and ng-include, use the provided value.

The trustAs() method takes two arguments:

• type (string)

Security 510

The type of $sce context where the value is safe for us. See sce types for available types.

• value

The value that we can use to stand in for the provided value.

The trustAs() method returns a value that can be used where Angular expects a $sce.trustAs()
return value.

The $sce library has a few helper methods for the trustAs() method.

The following method calls are functionally equivalent:

trustAsHtml(value) trustAs($sce.HTML, value)
trustAsJs(value) trustAs($sce.JS, value)
trustAsResourceUrl(value) trustAs($sce.RESOURCE_URL, value)
trustAsUrl(value) trustAs($sce.URL, value)

isEnabled()

The isEnabled() method takes no parameters and returns a boolean that tells us if the sce

environment is enabled. If it is, then it returns true; otherwise, it returns false.

Configuring $sce

If we want to completely disable the sce subsystem from running our app (although we discourage
this move, as it provides security by default), we can disable it in the config() function of our app
like so:

angular.module('myApp', [])

.config(['$sceProvider',

function($sceProvider) {

// Turn off SCE

$sceProvider.enabled(false);

}]);

Trusted Context Types

The $sce library has five built-in context types that are supported by default. These context types
are what Angular uses to parse and determine what is safe in one context vs. another.

Security 511

Context Description

$sce.HTML Tells Angular this is safe HTML to source in the app
$sce.CSS Tells Angular that it’s safe to source this as CSS in the app
$sce.URL Tells Angular that the URL is safe to follow as a link
$sce.RESOURCE_URL Tells Angular that the URL is safe to follow as a link and

that the contents are safe to include in the app
$sce.JS Tells Angular that the contents are safe to execute in the

application

AngularJS and Internet Explorer
AngularJS works seamlessly with most modern browsers. Safari, Google Chrome, Google Chrome
Canary, and Firefox work great. The notorious Internet Explorer version 8 and earlier can cause us
problems.

For more information, read the AngularJS docs guide on IE¹²⁴.

If we are planning release our applications for Internet Explorer v8.0 or earlier, we need to pay some
extra attention to help support it.

Internet Explorer does not like element names that start with a prefix ng: because it considers
the prefix to be an XML namespace. IE will ignore these elements unless the elements have a
corresponding namespace declaration:

<html xmlns:my="ignored">

This xmlns:ng=”http://angularjs.org” makes IE feel more comfortable.

If we use non-standard HTML tags, we need to create the tags in the head of the document if we
want IE to recognize them. We can do so simply in the head element.

<!doctype html>

<html xmlns:ng="http://angularjs.org">

<head>

<!--[if lte IE 8]

<script>

document.createElement('ng-view');

// Other custom elements

</script>

<![endif]-->

</head>

<body>

<!-- ... -->

It is recommended that we use the attribute directive form, as we don’t need to create custom
elements to support IE:

¹²⁴http://docs.angularjs.org/guide/ie

http://docs.angularjs.org/guide/ie
http://docs.angularjs.org/guide/ie

AngularJS and Internet Explorer 513

<div data-ng-view></div>

To make AngularJS work with IE7 and earlier, we need to polyfill JSON.stringify. We can use the
JSON3¹²⁵ or JSON2¹²⁶ implementations.

In our browser, we need to conditionally include this file in the head. We must download the file,
store it in a location relative to the root of our application, and reference it in the head, like so:

<!doctype html>

<html xmlns:ng="http://angularjs.org">

<head>

<!--[if lte IE 8]

<script src="lib/json2.js"></script>

<![endif]-->

</head>

<body>

<!-- ... -->

To use the ng-app directive with IE support, we set the element id to ng-app, as well.

<body id="ng-app" ng-app="myApp">

<!-- ... -->

We can take advantage of the angular-ui-utils library’s ie-shiv module to help give us custom
elements in our DOM.

In order to use the ui-utils ie-shiv library, we need to ensure that we have the angular-ui library
installed. Installation is easy if we download the ui-utils library and include the module. We can
find the ui-utils library on GitHub here: https://github.com/angular-ui/ui-utils¹²⁷.

Let’s ensure that we’ve included the ui-utils module in an accessible location to your app and
include the file just like this:

¹²⁵http://bestiejs.github.io/json3/
¹²⁶https://github.com/douglascrockford/JSON-js
¹²⁷https://github.com/angular-ui/ui-utils

http://bestiejs.github.io/json3/
https://github.com/douglascrockford/JSON-js
https://github.com/angular-ui/ui-utils
http://bestiejs.github.io/json3/
https://github.com/douglascrockford/JSON-js
https://github.com/angular-ui/ui-utils

AngularJS and Internet Explorer 514

<!--[if lte IE 8]>

<script type="text/javascript">

// define our custom directives here

</script>

<script src="lib/angular-ui-ieshiv.js"></script>

<![endif]-->

With that in place, we only activate the ie-shiv on Internet Explorer versions 8 and earlier. The
shiv enables us to add our custom directives onto its global object, which, in turn, creates the proper
declarations for IE.

The shiv library looks for the window.myCustomTags object. If the window.myCustomTags is defined,
the library will include these tags at load time along with the rest of the Angular library directives:

<!--[if lte IE 8]>

<script type="text/javascript">

// define our custom directives here

window.myCustomTags = ['myDirective'];

</script>

<script src="lib/angular-ui-ieshiv.js"></script>

<![endif]-->

Ajax Caching

IE is the only major browser that caches XHR requests. An efficient way to avoid this poor behavior
is to set an HTTP response header of Cache-Control to be no-cache for every request.

This behavior is the default behavior for modern browsers and helps to provide a better experience
for IE users.

We can change the default headers for every single request like so:

.config(function($httpProvider) {

$httpProvider.defaults

.headers.common['Cache-Control'] = 'no-cache';

});

SEO with AngularJS

Search engines, such as Google and Bing, are engineered to crawl static web pages, not JavaScript-
heavy, client-side apps. Search engine robots are typically designed to be quick and efficient, so most
do not render JavaScript when crawling over a page.

That’s because our JavaScript-heavy apps need a JavaScript engine to run, like PhantomJS or v8, for
instance. Web crawlers typically load a web page without using a JavaScript interpreter.

AngularJS and Internet Explorer 515

It is for good reason that search engines do not include JS interpreters in their crawlers:
They don’t need to, and doing so slows them down and makes them more inefficient
for crawling the web.

Getting Angular Apps Indexed

There are several different ways that we can tell Google to handle indexing our app. The first, more
common approach is to use a back end to serve our Angular app. This method has the advantage of
being simple to implement without much duplication of code.

The second approach is to render all of the content delivered by our Angular app inside a <noscript>
tag in our JavaScript. We’ll cover this topic lightly, as implementing the <noscript> approach
depends heavily upon how we deliver our apps. For instance, we can use a <noscript> tag when
we’re rendering our pages on the server-side.

Server Side

Google and other advanced search engines support the hashbang URL format, which we use to
identify the current page that’s being accessed at a given URL. These search engines transform this
URL into a custom URL format that makes them accessible to the server.

The search engine visits the URL and expects to get the HTML (with the fully rendered HTML
content) that our browsers will receive. For instance, Google will turn the hashbang URL from:

http://www.ng-newsletter.com/#!/signup/page

into the URL:

http://www.ng-newsletter.com/?_escaped_fragment_=/signup/page

Within our Angular app, we need to tell Google to handle our site slightly differently depending
upon which style we handle.

Hashbang Syntax

Google’s Ajax crawling specification was written and originally intended for delivering URLs with
the hashbang syntax, which was an original method of creating permalinks for JS applications.

We need to configure our app to use the hashPrefix (default) in our routing:

AngularJS and Internet Explorer 516

angular.module('myApp', [])

.configure(['$location', function($location) {

$location.hashPrefix('!');

}]);

HTML5 Routing Mode

The new HTML5 pushState doesn’t work the same way: It modifies the browser’s URL and history.
To get Angular apps to “fool” the search bot, we can add a simple element to the header:

<meta name="fragment" content="!">

This element tells the Google spider to use the new crawling spec to crawl our site. When it
encounters this tag, instead of crawling our site like normal, it will revisit the site using the
?_escaped_fragment_= tag.

Assuming we’re using HTML5 mode with the $location service, we can set our page to use
html5Mode like so:

angular.module('myApp', [])

.configure(['$routeProvider',

function($routeProvider) {

$routeProvider.html5Mode(true);

}]);

With the _escaped_fragment_ in our query string, we can use our back-end server to serve static
HTML instead of our client-side app.

Now, our back end can detect if the request has the _escaped_fragment_ in the request, and, if so,
we can serve static HTML back instead of our pure Angular app.

We can achieve this result using a proxy, like Apache or Nginx, or our back-end service.
Setting these up is out of scope of this book; however, we’ll discuss how to set them up
with a NodeJS app.

Options for Handling SEO from the Server Side

We have a number of options available to us to make our site SEO-friendly. We’ll walk through three
different ways to deliver our apps from the server side:

• Using Node/Express middleware
• Using Apache to rewrite URLs
• Using Nginx to proxy URLs

AngularJS and Internet Explorer 517

Using Node/Express Middleware

Note: Although we are using NodeJS in this example, this implementation is simply one way to
serve static HTML snapshots to our back end. This technique works regardless of the back end
you’re using to deliver your HTML.

To deliver static HTML using NodeJS and Express (the web application framework for NodeJS), we
must add some middleware that looks for the _escaped_fragment_ in our query parameters:

// ideas shared by

// In our app.js configuration

app.use(function(req, res, next) {

var fragment = req.query._escaped_fragment_;

if (!fragment) return next();

// If the fragment is empty, serve the

// index page

if (fragment === "" || fragment === "/")

fragment = "/index.html";

// If fragment does not start with '/'

// prepend it to our fragment

if (fragment.charAt(0) !== "/")

fragment = '/' + fragment;

// If fragment does not end with '.html'

// append it to the fragment

if (fragment.indexOf('.html') == -1)

fragment += ".html";

// Serve the static html snapshot

try {

var file = __dirname + "/snapshots" + fragment;

res.sendfile(file);

} catch (err) {

res.send(404);

}

});

This middleware expects our snapshots to exist in a top-level directory called ‘/snapshots’ and serve
files based upon the request path.

AngularJS and Internet Explorer 518

For instance, it will serve a request to / as index.html, while it will serve a request to /about as
about.html in the snapshots directory.

Use Apache to Rewrite URLs

If we’re using the Apache server¹²⁸ to deliver our Angular app, we can add a few lines to our
configuration that will serve snapshots instead of our JavaScript app.

We can use the mod_rewritemod to detect if the route requested includes the _escaped_fragment_-
query parameter or not. If it does include it, then we’ll rewrite the request to point to the static
version in the /snapshots directory.

In order to set the rewrite in motion, we need to enable the appropriate modules:

$ a2enmod proxy

$ a2enmod proxy_http

Then we need to reload the Apache config:

$ sudo /etc/init.d/apache2 reload

We can set the rewrite rules either in the virtual host configuration for the site or the .htaccess file
that sits at the root of the server directory.

RewriteEngine On

Options +FollowSymLinks

RewriteCond %{REQUEST_URI} ^/$

RewriteCond %{QUERY_STRING} ^_escaped_fragment_=/?(.*)$

RewriteRule ^(.*)$ /snapshots/%1? [NC,L]

Use Nginx to Proxy URLs

If we’re using Nginx¹²⁹ to serve our Angular app, we can add some configuration to serve snapshots
of our app if there is an _escaped_fragment_ parameter in the query strings.

Unlike Apache, Nginx does not require us to enable a module, so we can simply update our
configuration to replace the path with the question file instead.

In our Nginx configuration file (e.g., /etc/nginx/nginx.conf), we need to ensure our configuration
looks like:

¹²⁸http://httpd.apache.org/
¹²⁹http://wiki.nginx.org/Main

http://httpd.apache.org/
http://wiki.nginx.org/Main
http://httpd.apache.org/
http://wiki.nginx.org/Main

AngularJS and Internet Explorer 519

server {

listen 80;

server_name example;

if ($args ~ "_escaped_fragment_=/?(.+)") {

set $path $1;

rewrite ^ /snapshots/$path last;

}

location / {

root /web/example/current/;

Comment out if using hash urls

if (!-e $request_filename) {

rewrite ^(.*)$ /index.html break;

}

index index.html;

}

}

Once this step is complete, we’re good to reload our configuration:

sudo /etc/init.d/nginx reload

Taking Snapshots

We can take snapshots of our HTML app to deliver our back-end app, using a tool like PhantomJS¹³⁰
or zombie.js¹³¹ to render our pages. When Google requests a page using the _escaped_fragment_-
query parameter, we can simply return and render this page.

We’ll discuss two methods to take snapshots: using Zombie.js and using a Grunt tool. We’re not
going to cover using the fantastic PhantomJS¹³² tool, as there are plenty of great resources that
demonstrate it.

Using Zombie.js to Grab HTML Snapshots

To set up Zombie.js¹³³, we need to install the npm package zombie:

¹³⁰http://phantomjs.org/
¹³¹http://zombie.labnotes.org/
¹³²http://phantomjs.org/
¹³³http://zombie.labnotes.org/

http://phantomjs.org/
http://zombie.labnotes.org/
http://phantomjs.org/
http://zombie.labnotes.org/
http://phantomjs.org/
http://zombie.labnotes.org/
http://phantomjs.org/
http://zombie.labnotes.org/

AngularJS and Internet Explorer 520

$ npm install zombie

Now, we can save our file with NodeJS by using zombie. First, a few helper methods we’ll use in the
process:

var Browser = require('zombie'),

url = require('url'),

fs = require('fs'),

saveDir = __dirname + '/snapshots';

var scriptTagRegex = /<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi;

var stripScriptTags = function(html) {

return html.replace(scriptTagRegex, '');

}

var browserOpts = {

waitFor: 2000,

loadCSS: false,

runScripts: true

}

var saveSnapshot = function(uri, body) {

var lastIdx = uri.lastIndexOf('#/');

if (lastIdx < 0) {

// If we're using html5mode

path = url.parse(uri).pathname;

} else {

// If we're using hashbang mode

path =

uri.substring(lastIdx + 1, uri.length);

}

if (path === '/') path = "/index.html";

if (path.indexOf('.html') == -1)

path += ".html";

var filename = saveDir + path;

fs.open(filename, 'w', function(e, fd) {

if (e) return;

AngularJS and Internet Explorer 521

fs.write(fd, body);

});

};

Now all we need to do is run through our pages, turn every link from a relative link into an absolute
link (so the crawler can follow them), and save the resulting HTML.

We’re setting a relatively high waitFor in the browser options above. This option will cover 90%
of the cases we care about. If we want to get more precise on how and when we take a snapshot,
instead of waiting the two seconds, we need to modify our Angular app to fire an event and listen
for the event in our Zombie browser.

Since we like to automate as much as possible and prefer not to muck with our Angular code, we
prefer to set our timeout relatively high to attempt to let the code settle down.

Our crawlPage() function:

var crawlPage = function(idx, arr) {

// location = window.location

if (idx < arr.length) {

var uri = arr[idx];

var browser = new Browser(browserOpts);

var promise = browser.visit(uri)

.then(function() {

// Turn links into absolute links

// and save them, if we need to

// and we haven't already crawled them

var links = browser.queryAll('a');

links.forEach(function(link) {

var href = link.getAttribute('href');

var absUrl = url.resolve(uri, href);

link.setAttribute('href', absUrl);

if (arr.indexOf(absUrl) < 0) {

arr.push(absUrl);

}

});

// Save

saveSnapshot(uri, browser.html());

// Call again on the next iteration

crawlPage(idx+1, arr);

});

}

}

AngularJS and Internet Explorer 522

Now we can simply call the method on our first page:

crawlPage(0, ["http://localhost:9000"]);

Using grunt-html-snapshot

Our preferred method of taking snapshots is by using the Grunt tool grunt-html-snapshot. Since
we use Yeoman¹³⁴, and Grunt is already in our build process, we set up this task to run after we
make a release of our apps.

To install grunt-html-snapshot, we can use npm like so:

npm install grunt-html-snapshot --save-dev

If we’re not using Yeoman¹³⁵, we need to include this task as a Grunt task in our Gruntfile.js:

grunt.loadNpmTasks('grunt-html-snapshot');

Once this task is set, we’ll set some configuration about our site. To set up configuration, we create
a new config block in our Gruntfile.js that looks like:

htmlSnapshot: {

debug: {

options: {}

},

prod: {

options: {}

}

}

Now we get to add our preferred options for the different stages:

¹³⁴http://yeoman.io
¹³⁵http://yeoman.io

http://yeoman.io
http://yeoman.io
http://yeoman.io
http://yeoman.io

AngularJS and Internet Explorer 523

htmlSnapshot: {

debug: {

options: {

snapshotPath: 'snapshots/',

sitePath: 'http://127.0.0.1:9000/',

msWaitForPages: 1000,

urls: [

'/',

'/about'

]

}

},

prod: {

options: {}

}

}

To see a list of all of the available configuration options, check out the documentation page at
https://github.com/cburgdorf/grunt-html-snapshot¹³⁶.

Prerender.io

Alternatively, we can use an open-source tool, such as Prerender.io¹³⁷, which includes a Node server
that renders our site on the fly, and an Express middleware that communicates with the back end
to prerender HTML on the fly.

Essentially, prerender.io takes a URL and returns the rendered HTML (with no script tags).
Essentially, the prerender server we deploy is called from our app like so:

GET http://our-prerenderserver.com/http://localhost:9000/#/about

This GET returns the rendered content of our #/about page.

Setting up a prerender cluster is actually pretty easy to do. We’ll show you how to integrate your
own prerender server into your Node app, as well. Prerender.io is also available for Ruby on Rails
through a gem called prerender_rails, but we won’t cover how to set it up.

Setting up our own server to run it is pretty easy. We simply run npm install to install the
dependencies and run the command through either Foreman or Node:

¹³⁶https://github.com/cburgdorf/grunt-html-snapshot
¹³⁷http://prerender.io/

https://github.com/cburgdorf/grunt-html-snapshot
http://prerender.io/
https://github.com/cburgdorf/grunt-html-snapshot
http://prerender.io/

AngularJS and Internet Explorer 524

$ npm install

$ node index.js

Or through foreman

$ foreman start

The prerender library is also convenient to run on heroku:

$ git clone https://github.com/collectiveip/prerender.git

$ heroku create

$ git push heroku master

We store our rendered HTML in S3, so we recommend you use the built-in s3 cache. Read the docs
how to set up this cache here¹³⁸.

After our server is running, we just need to integrate the fetching through our app. In Express, this
integration is very easy using the Node library prerender-node.

To install prerender-node, we use npm again:

$ npm install --save prerender-node

After we’ve installed this library, we can tell our Express app to use this middleware:

var prerender =

require('prerender-node')

.set('prerenderServiceUrl', 'http://our-prerenderserver.com/');

app.use(prerender);

And that is it! This last bit tells our Express app that if we see a crawler request (defined by having
the _escaped_fragment_ or the user agent string), it should make a GET request to our prerender
service at the appropriate URL and get the prerendered HTML for the page.

<noscript> Approach

We can also use the <noscript> tag to render our pages without needing to resort to using a server
back end. Unfortunately, this method is complex in that for all of our pages, we’d need to copy all
of the elements of the page from outside of the <noscript> tag into such a tag.

Doing so can become cumbersome and take a lot of work to keep the two in sync, so we don’t
recommend this approach without a build tool to assist.

¹³⁸https://github.com/collectiveip/prerender#s3-html-cache

https://github.com/collectiveip/prerender#s3-html-cache
https://github.com/collectiveip/prerender#s3-html-cache

Building Angular Chrome Apps
The Chrome¹³⁹ web browser is Google’s custom browser. Not only is it incredibly speedy and on the
bleeding edge of web development, it is at the forefront of delivering web experiences both on and
off the web.

Chrome Apps are embedded applications that run within the web browser, but are intended to
deliver a native app feel. Since they run within Chrome itself, they are written in HTML5, JavaScript,
and CSS3, and they have access to native-like capabilities that true web applications do not.

Chrome apps have access to the Chrome API and services and can provide an integrated desktop-like
experience to the user.

Onemore interesting difference between Chrome apps and web apps is that they always load locally,
so they showup immediately, rather thanwaiting for the network to fully download the components.
This feature greatly improves the apps’ performance and our user’s experience with running our
apps.

Understanding Chrome Apps

Let’s dive into looking at how Chrome apps actually work and how we can start building our own.

Every Chrome application has three core files:

manifest.json

This manifest.json file describes metadata about the application, such as the name, description,
version, and how to launch our application.

A Background Script

This background script sets up how our application responds to system-level events, such as a user
installing our app or launching it, etc.

A View

Most Chrome applications have a view. This component is optional, but is most generally used for
our applications.

¹³⁹https://www.google.com/intl/en/chrome/browser/

https://www.google.com/intl/en/chrome/browser/
https://www.google.com/intl/en/chrome/browser/

Building Angular Chrome Apps 526

Building our Chrome App

In this section, we’ll walk through creating an advanced Chrome application using Angular. We’re
going to create a clone of the fantastic Chrome web app Currently by the team at Rainfall¹⁴⁰.

Currently

We’ll be building a clone that we’ll call Presently.

Architecting Presently

When we’re building Presently, we’ll need to take into account the application architecture. Doing
so will give us insight into how we’ll build the app when we get to code.

Like Currently, Presently will be a “newtab” app, meaning that it will launch every time we open a
new tab.

Presently has two main screens:

• The home screen

This screen features the current time and the current weather. It also features several weather icons
beside the weather.

• The settings screen

This screen allows our users to change their location within the app.

In order to support the home screen, we need to be able to show a properly formatted date and time
as well as fetch weather from a remote API service.

To support the settings screen, wemust integrate with a remote API service to auto-suggest potential
locations for an input box.

Finally, we’ll use the basic local storage (session storage) to persist our settings across the app.

¹⁴⁰http://blog.rainfalldesign.com/

http://blog.rainfalldesign.com/
http://blog.rainfalldesign.com/

Building Angular Chrome Apps 527

Building the Skeleton

Building our app, we’ll set up a file structure like this one:

File structure

We’ll place our CSS files in css/, our custom fonts in fonts/, and our JavaScript files in js/. We’ll
set the main JavaScript file in the js/app.js file and the HTML for our app in tab.html at the root.

There are great tools to help bootstrap Chrome app extensions, such as Yeoman¹⁴¹.

Before we can start up our Chrome extension, we’ll need to grab a few dependencies.

We’ll grab the latest version of angular.min.js¹⁴² (1.2.6), as well as angular-route.min.js¹⁴³, from
angularjs.org¹⁴⁴ and save them to the js/vendor/ directory.

Lastly, we’ll use Twitter’s Bootstrap 3 framework to style our app, so we’ll need to get the
bootstrap.min.css and save it to css/ from getbootstrap.com¹⁴⁵.

In production, when working with multiple developers, it’s often more efficient to use a
tool like Bower¹⁴⁶ to manage dependencies. Since we’re building a newtab app, however,
it’s important that we keep our app lightweight so it launches quickly.

¹⁴¹http://yeoman.io
¹⁴²http://code.angularjs.org/1.2.6/angular.min.js
¹⁴³http://code.angularjs.org/1.2.6/angular-route.min.js
¹⁴⁴http://angularjs.org/
¹⁴⁵http://getbootstrap.com/
¹⁴⁶http://bower.io/

http://yeoman.io
http://code.angularjs.org/1.2.6/angular.min.js
http://code.angularjs.org/1.2.6/angular-route.min.js
http://angularjs.org/
http://getbootstrap.com/
http://bower.io/
http://yeoman.io
http://code.angularjs.org/1.2.6/angular.min.js
http://code.angularjs.org/1.2.6/angular-route.min.js
http://angularjs.org/
http://getbootstrap.com/
http://bower.io/

Building Angular Chrome Apps 528

manifest.json

With every Chrome app we write, we need to set up a manifest.json. This manifest tells Chrome
how the application should run, what files it should use, what permissions it has, etc.

Our manifest.json needs to describe our app as a newtab app and describe the content_security_-
policy (the policies that describe what our application can and cannot do) and the background script
that Chrome needs.

{

"manifest_version": 2,

"name": "Presently",

"description": "A currently clone",

"version": "0.1",

"permissions": [],

"background": {

"scripts": ["js/vendor/angular.min.js"]

},

"content_security_policy": "script-src 'self'; object-src 'self'",

"chrome_url_overrides" : {

"newtab": "tab.html"

}

}

The keys in the manifest.json are relatively straightforward and allows us to set the name, the
manifest_version, the version, etc. In order to tell Chrome to launch our app as a newtab app, we set
the app to override the newtab page.

tab.html

The main HTML file for our application is the tab.html file. This file loads when we open a new
tab in Chrome.

We’ll set up the basic Angular app inside of the tab.html file:

Building Angular Chrome Apps 529

<!doctype html>

<html data-ng-app="myApp" data-ng-csp="">

<head>

<meta charset="UTF-8">

<title>Presently</title>

<link rel="stylesheet" href="css/bootstrap.min.css">

<link rel="stylesheet" href="css/main.css">

</head>

<body>

<div class="container">

</div>

<script src="./js/vendor/angular.min.js"></script>

<script src="./js/vendor/angular-route.min.js"></script>

<script src="./js/app.js"></script>

</body>

</html>

This very basic structure of an Angular application looks almost identical to any Angular app, with
one exception: data-ng-csp="".

The ngCsp directive enables Content Security Policy (or CSP) support for our Angular app. Since
Chrome apps prevent the browser from using eval or function(string) generated functions, and
Angular uses the function(string) generated function for speed, ngCsp causes Angular to evaluate
all expressions.

This compatibility mode comes as a cost of performance, however, as it executes operations much
more slowly, but it won’t throw any security violations in the process.

CSP also forbids JavaScript files from inlining stylesheet rules, sowe need to include angular-csp.css
manually.

We can find the angular-csp.css file at http://code.angularjs.org/snapshot/angular-csp.css¹⁴⁷.

Lastly, we must place ngCsp alongside the root of our Angular apps:

<html ng-app ng-csp>

Without the ng-csp directive, our Chrome app will not run; it will throw a security
exception. If you see a security exception thrown, make sure you check the root element
for the directive.

¹⁴⁷http://code.angularjs.org/snapshot/angular-csp.css

http://code.angularjs.org/snapshot/angular-csp.css
http://code.angularjs.org/snapshot/angular-csp.css

Building Angular Chrome Apps 530

Loading the App in Chrome

With our app in progress, let’s load it into Chrome so we can follow our progress in the browser. To
load our app in Chrome, we should navigate to the URL chrome://extensions/.

Once there, we can click on the button “Load unpackged extension…” and find the root directory
(the directory that contains our manifest.json file from above).

Load unpacked extension

Once the application has been loaded into the Chrome browser, we open a new tab and should see
our empty app with one error (don’t worry, we’ll fix it shortly):

Load unpacked extension in browser

Whenever we update or modify our manifest.json file, we need to click on the Reload

link underneath our Chrome app in chrome://extensions.

The Main Module

We’ll build our entire Angular application in the js/app.js file. For production versions of our app,
we may want to split this functionality into multiple files or use a tool like Grunt¹⁴⁸ to compress and
concatenate them for us.

Our app is called myApp, so let’s create an Angular module with the same name:

¹⁴⁸http://gruntjs.com/

http://gruntjs.com/
http://gruntjs.com/

Building Angular Chrome Apps 531

angular.module('myApp', [])

With this step, our app runs in the browser without any issues.

Building the Home Page

We’ll start by building the home section in our app. In this section, we’ll work on putting together
components of our app that will make the application run. In the next section, we’ll set up the
multi-route application.

Building the Clock

Themain feature of Presently is the large clock that sits right at the top of the application and updates
every second. In Angular, we can set up this clock pretty simply.

We start by building a MainController that is responsible for managing the home screen. Inside this
MainController controller, we set up a timeout that ticks every second and updates a local scope
variable.

angular.module('myApp', [])

.controller('MainController', function($scope, $timeout) {

// Build the date object

$scope.date = {};

// Update function

var updateTime = function() {

$scope.date.raw = new Date();

$timeout(updateTime, 1000);

}

// Kick off the update function

updateTime();

});

Every second that our MainController is visible, the updateTime() function runs to update the
$scope.date.raw timestamp, and our view updates.

In order for us to see anything in the view load in our Chrome app, we need to bind this data to the
document. We can set up this binding using the normal {{ }} template syntax:

Building Angular Chrome Apps 532

<div class="container">

<div ng-controller="MainController">

{{ date.raw }}

</div>

</div>

When we go back to the browser and refresh, we should see an unformatted date object ticking in
the view.

As it currently stands, the date is very ugly in the browser. We can utilize Angular’s built-in filters
to format our date in a much more elegant manner.

Let’s format our date similarly to how Currently formats the date on its home screen. Updating the
view, we need to move our date into its own nested div and add formatting to display the date:

<div class="container">

<div ng-controller="MainController">

<div id="datetime">

<h1>{{ date.raw | date:'hh mm ss' }}</h1>

</div>

</div>

</div>

With a little CSS and help from Bootstrap, our dates will appear on the screen in a much more
human-friendly format.

First screen

We’re using CSS rules to align the date and times to the center of the screen and increasing the
font-size to be prominently displayed on screen.

Building Angular Chrome Apps 533

#datetime {

text-align: center;

}

#datetime h1 {

font-size: 6.1em;

}

We can add a second date in our view that simply shows our date with a human-friendly display.
Doing so is simply a matter of adding a second formatted date:

<!-- ... -->

<div id="datetime">

<h1>{{ date.raw | date:'hh mm ss' }}</h1>

<h2>{{ date.raw | date:'EEEE, MMMM yyyy' }}</h2>

</div>

<!-- ... -->

Our CSS for the #datetime h2 tag simply increases the size of the <h2> tag:

#datetime h2 {

font-size: 1.0em;

}

Full dates

Sign Up for Wunderground’s Weather API

Our app needs to reach out to foreign sources to fetch the current weather for the location in which
we’re interested. In this application, we’re using the Wunderground¹⁴⁹ API.

¹⁴⁹http://www.wunderground.com/

http://www.wunderground.com/
http://www.wunderground.com/

Building Angular Chrome Apps 534

In order to use the Wunderground APi, we need to get an access API key.

To get an access API key, we first need to sign up. Let’s head to the weather API Wunderground
page at http://www.wunderground.com/weather/api/¹⁵⁰ and click “Sign Up for Free!”.

Once we fill out the relevant details on the following page, we can click through until we reach the
detail page that shows our API key.

Once we’re set, we can locate the Wunderground API key and save it. We’ll be using it shortly.

Building the Angular Service

We won’t place our logic into the Controller to fetch the weather, as it is both inefficient (the
controller will be blown away when we navigate to another page, and we’ll need to re-call the
API every time the controller is loaded) and poor design to mix in business logic details with
implementation details.

Instead, we’ll use a service. A service persists across controllers for the duration of the application’s
lifetime and is the appropriate place for us to hide business logic away from the controller.

We need to configure our app when it boots up, so we need to create our service using the
.provider() method. This method is the only service creation method that we can inject into
.config() functions.

To build the service, we’ll use the .provider() API method that takes both a name of the service as
well as a function that defines the actual provider.

angular.module('myApp', [])

.provider('Weather', function() {

})

Inside of this method, we need to define a $get() function that returns the methods available to
the service. To configure this service, we need to allow a method for the API key to be set on
configuration. These methods live outside of the scope of the $get() function.

¹⁵⁰http://www.wunderground.com/weather/api/

http://www.wunderground.com/weather/api/
http://www.wunderground.com/weather/api/

Building Angular Chrome Apps 535

.provider('Weather', function() {

var apiKey = "";

this.setApiKey = function(key) {

if (key) this.apiKey = key;

};

this.$get = function($http) {

return {

// Service object

}

}

})

With this minimal amount of code, we can now inject the Weather service into our .config()

function and configure the service with our Wunderground API key.

When Angular encounters a provider created with the .provider() API method, it creates a
[Name]Provider injectable object. This object is what we’ll inject into our config function:

// .provider('Weather', function() {

// ...

// })

.config(function(WeatherProvider) {

WeatherProvider.setApiKey('YOUR_API_KEY');

})

// .controller('MainController', function($scope, $timeout) {

// ...

The Wunderground API requires that we pass the API key with our request in the URL. In order to
pass our API key in with every request, we need to create a function that will generate the URL.

var apiKey = "";

// ...

this.getUrl = function(type, ext) {

return "http://api.wunderground.com/api/" +

this.apiKey + "/" + type + "/q/" +

ext + '.json';

};

Now, we can create our API call for the Weather service to get us the latest forecast data from the
Wunderground API.

We’ll create our own promises that we can use to resolve in the view, because we’ll want to return
only the relevant results from our API call:

Building Angular Chrome Apps 536

this.$get = function($q, $http) {

var self = this;

return {

getWeatherForecast: function(city) {

var d = $q.defer();

$http({

method: 'GET',

url: self.getUrl("forecast", city),

cache: true

}).success(function(data) {

// The wunderground API returns the

// object that nests the forecasts inside

// the forecast.simpleforecast key

d.resolve(data.forecast.simpleforecast);

}).error(function(err) {

d.reject(err);

});

return d.promise;

}

}

}

Now, we can inject the Weather service into our controller and call the getWeatherForecast()

method and respond to the promise instead of dealing with the complexity of the API in our
controller.

Back to our MainController: We can now inject the Weather service and set the result on our scope:

.controller('MainController',

function($scope, $timeout, Weather) {

// ...

$scope.weather = {}

// Hardcode San_Francisco for now

Weather.getWeatherForecast("CA/San_Francisco")

.then(function(data) {

$scope.weather.forecast = data;

});

// ...

To view the result of the API call in our view, we need to update our tab.html. For debugging
purposes, we like to use the json filter inside a <pre> tag:

Building Angular Chrome Apps 537

<div id="forecast">

<pre>{{ weather.forecast | json }}</pre>

</div>

Weather API debugging call

We can see that the view is updated with the latest weather, and now we’re good to go to create a
more polished view.

The view itself iterates over the forecast.forecastday collection. For each element, we’re creating
a view that displays the weather icon given to us by the Wunderground API as well as the human-
readable date and high temperature.

<div id="forecast">

<ul class="row list-unstyled">

<li ng-repeat="day in weather.forecast.forecastday" class="col-md-3">

<div ng-class="{today: $index == 0}">

<h3>{{ day.high.fahrenheit }}</h3>

<h4 ng-if="$index == 0">Now</h4>

<h4 ng-if="$index != 0">{{ day.date.weekday }}</h4>

</div>

</div>

Building Angular Chrome Apps 538

Clean HTML weather view

The style we’ve set in the view is:

#forecast ul li {

font-size: 4.5em;

text-align: center;

}

#forecast ul li h3 {

font-size: 1.4em;

}

#forecast ul li .today h3 {

font-size: 1.8em;

}

A Settings Screen

Currently, our app only has one view, with a hard-coded city that we fetch for every browser.
Although this setup works for all of us here in San Francisco, it does notwork for anyone elsewhere.

In order to allow our users the ability to customize their experience with Presently, we need to add
a second screen: a setting screen.

To introduce a second screen (and multiple views), we need to add the ngRoute module as a
dependency of our app module.

angular.module('myApp', ['ngRoute'])

Now we can define our separate views and routes and pull our home screen view out of the main
tab.html view.

In defining our routes, note that we’ll need two: one for each of the two different screens of our app.

Building Angular Chrome Apps 539

// angular.module(...)

// ...

.config(function($routeProvider) {

$routeProvider

.when('/', {

templateUrl: 'templates/home.html',

controller: 'MainController'

})

.when('/settings', {

templateUrl: 'templates/settings.html',

controller: 'SettingsController'

})

.otherwise({redirectTo: '/'});

})

We can now take our entire tab.html HTML between the .container div, move it into the file
templates/home.html, and replace it with <div ng-view></div>.

<div class="container">

<div ng-view></div>

</div>

When we refresh the page, we can see that nothing appears to have changed, but our HTML is
loaded from the templates/home.html template instead of inside the tab.html.

Currently, we have no way of navigating between our two screens. We can add some footer-based
navigation that allows our users to navigate between the pages. We simply need to add two links at
the bottom of the page to navigate between pages, like so:

<div id="actionbar">

<ul class="list-inline">

</div>

In order to add them to the the bottom right-hand corner of the screen, we must apply a bit of CSS
to absolutely position them:

Building Angular Chrome Apps 540

#actionbar {

position: absolute;

bottom: 0.5em;

right: 1.0em;

}

#actionbar a {

font-size: 2.2rem;

color: #000;

}

Now, if we navigate to our settings page by clicking on the cog button, we see that nothing is
rendered. We need to define our SettingsController so we can start manipulating the view and
working with our user.

// ...

.controller('SettingsController',

function($scope) {

// Our controller will go here

})

The settings screen itself features a single form that will be responsible for allowing the user to
change the cities in which they are interested. The HTML itself will look similar to this block (with
a few features we have yet to implement):

<h2>Settings</h2>

<form ng-submit="save()">

<input type="text"

ng-model="user.location"

placeholder="Enter a location" />

<input class="btn btn-primary"

type="submit" value="Save" />

</form>

Implementing a User Service

For the same reasons that we are hiding away the complexity of the Wunderground API, we also
want to hide away our user API. Doing so enables us to use local storage as well as communicate
across our controllers about the user settings at any part of the app.

The UserService itself is straightforward and does not need to be configured in our app. Without
the use of local storage, our UserService will simply be:

Building Angular Chrome Apps 541

// ...

.factory('UserService', function() {

var defaults = {

location: 'autoip'

};

var service = {

user: defaults

};

return service;

})

This service holds onto our user object for the lifetime of the application. That is to say that while the
browser window is open, the settings of the application will remain constant to the user’s settings;
however, if our user opens a new tab in Chrome, these settings disappear, which is not ideal.

We can persist our settings across our app by using Chrome’s sessionStorage capabilities. Luckily,
this API is straightforward and simple.

We just add two functions to the UserService:

• save
• restore

Even with these capabilities, the UserService has not grown:

// ...

.factory('UserService', function() {

var defaults = {

location: 'autoip'

};

var service = {

user: {},

save: function() {

sessionStorage.presently =

angular.toJson(service.user);

},

restore: function() {

// Pull from sessionStorage

service.user =

angular.fromJson(sessionStorage.presently) || defaults

Building Angular Chrome Apps 542

return service.user;

}

};

// Immediately call restore from the session storage

// so we have our user data available immediately

service.restore();

return service;

})

// ...

We can inject this UserService across our Chrome app and have access to the same user data.
Heading back to our SettingsController, we can now set up a user object to define settings with
the new service:

.controller('SettingsController',

function($scope, UserService) {

$scope.user = UserService.user;

});

If we refresh the browser, we can see that we have a default set for the user as 'autoip', which is
the default we set up in the UserService definition.

We only need a way for our user to save their data into their session storage so we can use it across
the app. In our templates/settings.html, we defined the form as having a ng-submit="save()"

action; thus, when our user submits the form, the save() function is called.

Inside our SettingsController, we need to implement the save() function that will call save on
the UserService and persist the user’s data into their sessionStorage.

.controller('SettingsController',

function($scope, UserService) {

$scope.user = UserService.user;

$scope.save = function() {

UserService.save();

}

});

With the single input field bound to user.location, if we change the value and press save, our
user’s sessionStorage will update:

Building Angular Chrome Apps 543

sessionStorage

By using the UserService in our HomeController, we can now remove the hardcoded value of
‘“CA/San_Francisco”’ and replace it with our new UserService object’s location.

// ...

.controller('MainController',

function($scope, $timeout, Weather, UserService) {

// ...

$scope.user = UserService.user;

Weather.getWeatherForecast($scope.user.location)

.then(function(data) {

$scope.weather.forecast = data;

});

// ...

})

As we can see, if we flip back and forth from the settings view and input “NY/New_York”, for
instance, we can see the weather changing based upon the location we place in the settings page.

New York location

Building Angular Chrome Apps 544

City Autofill/Autocomplete

It’s pretty inconvenient to need to type a city that conforms to the Wunderground API formats
(lat/long, city and state, country codes, etc.). Luckily, the Wunderground APi also provides us an
autocomplete API¹⁵¹.

Instead of requiring our users to know the specific city format, we can provide a list of them for our
users to select.

For the sake of simplicity and flexibility, we’re only going to create a raw JavaScript-based
autocomplete rather than use plugin libraries, such as the typeahead.js or jQuery plugin
libraries.

To do that, we create a directive on the <input> element that will append a element with a list
of suggested places.

.directive('autoFill', function($timeout) {

return {

restrict: 'EA',

scope: {

autoFill: '&',

ngModel: '='

},

compile: function(tEle, tAttrs) {

// Our compile function

return function(scope, ele, attrs, ctrl) {

// Our link function

}

}

}

})

As we are creating a new element, we need to use the compile function rather than just the link
function and a template, since our element cannot be nested underneath an <input> element.

Without diving too deeply into how the compile function works, we’re going to create a new
element, and we’ll set up the bindings on it:

¹⁵¹http://www.wunderground.com/weather/api/d/docs?d=autocomplete-api

http://www.wunderground.com/weather/api/d/docs?d=autocomplete-api
http://www.wunderground.com/weather/api/d/docs?d=autocomplete-api

Building Angular Chrome Apps 545

// ...

compile: function(tEle, tAttrs) {

var tplEl = angular.element('<div class="typeahead">' +

'<input type="text" autocomplete="off" />' +

'<ul id="autolist" ng-show="reslist">' +

'<li ng-repeat="res in reslist" ' +

'>{{res.name}}' +

'' +

'</div>');

var input = tplEl.find('input');

input.attr('type', tAttrs.type);

input.attr('ng-model', tAttrs.ngModel);

tEle.replaceWith(tplEl);

return function(scope, ele, attrs, ctrl) {

// ...

Inside of our link function, we need to bind a function to the keyup event and check that we have
at least a minimum number of characters in our input field. Once we hit the minimum number of
characters, we run a function set by the use of the directive to fetch the auto-suggested values.

Autocomplete API

Let’s examine how we invoke this directive: We call it by passing a function to the auto-fill

directive call and bind the location to the user.location value:

<input type="text"

ng-model="user.location"

auto-fill="fetchCities"

autocomplete="off"

placeholder="Location" />

In our Weather service, we’ll create another function that specifically calls the autocomplete API
and resolves a promise with a list of suggested completions for a query term.

Building Angular Chrome Apps 546

getWeatherForecast: function(city) {

// ...

},

getCityDetails: function(query) {

var d = $q.defer();

$http({

method: 'GET',

url: "http://autocomplete.wunderground.com/' +

'aq?query=" +

query

}).success(function(data) {

d.resolve(data.RESULTS);

}).error(function(err) {

d.reject(err);

});

return d.promise;

}

Back in our SettingsController, we can simply reference this function as the one that retrieves
the list of suggested values. Remember, we need to inject the Weather service in the controller to
reference it.

.controller('SettingsController',

function($scope, UserService, Weather) {

// ...

$scope.fetchCities = Weather.getCityDetails;

});

In the directive, we can now call the function that references the action we want to fire upon
modification.

// ...

tEle.replaceWith(tplEl);

return function(scope, ele, attrs, ctrl) {

var minKeyCount = attrs.minKeyCount || 3,

timer,

input = ele.find('input');

input.bind('keyup', function(e) {

val = ele.val();

if (val.length < minKeyCount) {

if (timer) $timeout.cancel(timer);

Building Angular Chrome Apps 547

scope.reslist = null;

return;

} else {

if (timer) $timeout.cancel(timer);

timer = $timeout(function() {

scope.autoFill()(val)

.then(function(data) {

if (data && data.length > 0) {

scope.reslist = data;

scope.ngModel = data[0].zmw;

}

});

}, 300);

}

});

// Hide the reslist on blur

input.bind('blur', function(e) {

scope.reslist = null;

scope.$digest();

});

}

We’re using a timeout so that we only call the function once we are done typing. Using timeouts is a
simple way to prevent the function from being called repeatedly while we’re really only interested
in the first call to the suggestion API.

Autofill in the browser

Sprinkling in Time Zone Support

Finally, we also want our clock to update and reflect the new location that the user has chosen in
his or her settings. Updating the clock to include time zone support is easy: We’ve implemented the

Building Angular Chrome Apps 548

most difficult part already through the autocomplete API.

First, we must add one more attribute to our directive usage as timezone:

<input type="text"

ng-model="user.location"

timezone="user.timezone"

auto-fill="fetchCities"

autocomplete="off"

placeholder="Location" />

Next, we need to add the timezone attribute to our generated <input> field in our directive’s compile
function:

// ...

input.attr('type', tAttrs.type);

input.attr('ng-model', tAttrs.ngModel);

input.attr('timezone', tAttrs.timezone);

tEle.replaceWith(tplEl);

// ...

Last, but not least, we simply save the user’s time zone when we save the topmost value for the
user’s location in the autocomplete link function:

// ...

scope.reslist = data;

scope.ngModel = data[0].zmw;

scope.timezone = data[0].tz;

// ...

Back in the browser, when we type our city, we also save the time zone alongside the new value of
the city:

Time zone support

Building Angular Chrome Apps 549

We now need to update the time and date in our MainController to take into account the new time
zone.

Previously, matching time zone names to their GMT offsets was a difficult task. The Mozilla and
Chrome teams have implemented the toLocaleString with the new timeZone argument that enables
us to remap a date according to its timezone. Since we are writing a Chrome app, this function is
available for our use in our app.

Back in our MainController, we simply create a new date based on the saved time zone:

.controller('MainController',

function($scope, $timeout, Weather, UserService) {

$scope.date = {};

var updateTime = function() {

$scope.date.tz = new Date(new Date().toLocaleString(

"en-US", {timeZone: $scope.user.timezone}

));

$timeout(updateTime, 1000);

}

// ...

Now, instead of using the $scope.date.raw in our view,we switch over to using the $scope.date.tz.
The time changes with modifications to the time zone.

Chicago

Building Angular Chrome Apps 550

Hawaii

Optimizing Angular Apps
Angular is clearly great for optimizing development time, but how does it stack up in terms of
performance, and what can we do to get it to be as fast as possible?

For most web applications, the native speed of Angular is fast enough, and don’t need to pay
any special attention to optimizing its performance. When our applications get slow or show poor
performance, we can then attack optimizing our Angular apps.

What to Optimize

In order to knowwhere to focus on the optimizing our app, we need to understand what’s happening
under the Angular hood. As with any applications, we start by focusing on the cause of our issues.

Optimizing the $digest Loop

The obvious place to start looking for performance issues is in the $digest loop. In short, Angular
runs through a watch list that is responsible for keeping track of the live data bindings. Every single
piece of live data that can possibly change on the page has a watch applied to it.

The Under the Hood chapter discusses the $watch list and the $digest loop in detail.

Each of these watches causes the $digest loop to take more time to finish rendering, as Angular
needs to keep track of the the value and check if it’s changed on each loop.

Focusing on limiting the number of unnecessary watches will gain us the biggest performance
boosts. Additionally, keeping the bi-directional data comparisons simple will give us even more
performance boosts, because the browser can check these quickly.

In our apps, we should be mindful that the number of bi-directional data bindings should not exceed
more than 2000 data bindings on the page for each $digest loop.

Sometimes we don’t even want the full $digest loop to run on our app. For instance, imagine we
have a polling loop that checks our server several times a second. If we receive a websocket event
that fires a full digest loop with every message, we’ll have a pretty slow application.

We recommend using websockets, as they are more production-friendly and less prone
to errors.

Optimizing Angular Apps 552

app.factory('poller', function($rootScope, $http) {

var pollForEvent = function(timeout) {

$http.get('/events')

.success(function(data) {

var events = data.events;

for (var i = 0; i < events.length; i++) {

var event = events[i];

if (service.handlers[event])

for (handler in service.handlers[event])

$rootScope.$apply(function() {

handler.apply(event);

});

}

// Set the next timeout

setTimeout(pollForEvent, timeout);

});

};

// poll every half-second

setTimeout(function() { pollForEvents(500); });

var service = {

handlers: {},

on: function(evt, callback) {

if (!service.handlers[evt])

service.handlers[evt] = [];

service.handlers[evt].push(callback);

}

}

return service;

});

The major issue with this code is that we’ll end up running the $rootScope.$apply() method for
every single event that gets fired, which can add up to many $digest loops per second.

Limiting the number of $digest loops per second is a great way to start upgrading the performance
of our app. We can throttle the events to happen only at a maximum of times we want per second.

Optimizing Angular Apps 553

// throttle function

var throttle = function(fn, atMost, ctx) {

var ctx = ctx || this;

var atMost = atMost || 250; // milliseconds

var last, defer, result;

return function() {

var now = new Date(),

args = arguments;

if (last && now < last + atMost) {

// Execute this later

clearTimeout(defer);

defer = setTimeout(function() {

last = now;

fn.apply(ctx, args);

}, atMost);

} else {

result = fn.apply(ctx, args);

}

return result;

}

}

This relatively ugly throttle() function only triggers the function once, at most, per atMost cycle.

The Underscore.js¹⁵² library has a much better production-ready, battle-tested version of
this code.

To set our $digest loop to throttle using our throttle function, we can simply invoke it in the event
loop:

// ...

for (var i = 0; i < events.length; i++) {

var event = events[i];

if (service.handlers[event])

for (handler in service.handlers[event])

throttle(function() {

$rootScope.$apply(function() {

handler.apply(event);

});

}, 500);

}

¹⁵²http://underscorejs.org/

http://underscorejs.org/
http://underscorejs.org/

Optimizing Angular Apps 554

Optimizing ng-repeat

One of the biggest sources of delay in Angular is the ng-repeat directive. For every single element
that ng-repeat places, there will be at least one data binding per entry in the list, and this fact does
not even count any of the bindings that we create inside of the list elements.

Let’s take a look at the performance of the following repeating list generated by ng-repeat:

<li ng-repeat="email in emails">

<a ng-href="#/from/{{ email.sender }}">

{{ email.sender }}

<a ng-href="#/email/{{ email.id }}">

{{ email.subject }}

For every single email in our list, we’re going to have, at minimum, one watch generated by the
ngRepeat directive (this watch monitors the list for changes). Since Angular creates a $watch for
every single ng directive, the above list has 4 + 1 watches per email. For a list of 100 emails, the
usages above already creates 500 watches, and the above example list is not even a complex one for
the entire page.

With this relatively short list, it’s obvious to see how the performance of the app can be greatly
reduced with any significantly sized app. There are some relatively simple ways that we can speed
up our application.

Optimizing the $digest Call

We can often determine when and to which scope(s) running the $digest loop will affect when we
change a variable. When this is the case, we don’t need to invoke the entire $digest loop on the
$rootScope using $scope.$apply() (which causes every child $scope to run in the $digest loop).
Instead, we can directly call $scope.$digest().

Calling $scope.$digest() only runs the digest loop on the specific scope that called $digest() and
all of its children.

Optimizing $watch Functions

Since the $watch list expressions are executed every $digest loop, it’s important that we keep the
functionality tiny. The smaller and more focused the $watch expression, the more performant our
application will be.

Optimizing Angular Apps 555

Avoiding deep comparisons, complex logic, and any loops in our $watch() functions will help speed
up our applications.

For instance, we could set up a watch that watches an object. Imagine we have an Account object:

$scope.account = {

active: true,

userId: 123,

balance: 1000 // in cents

}

Presumably, we’d want to watch for any time the balance changes and set the account to not active
if the balance reaches zero. We can set up a $watch function that watches the account object and
updates the account whenever the balance object changes:

$scope.$watch('user', function(newAccount) {

if (newAccount.balance <= 0) {

$scope.account.active = false

}

}, true);

The third argument in the $watch() function tells Angular to watch the object using deep
comparison, checking every property with the angular.equals() function.

This choice will cause terrible performance. Not only is Angular making a copy of the object, but
it stores and saves it while it needs to walk through every property to check if any of them have
changed it.

A tip for building our $watch functions: Use them to keep track of variables that clearly affect the
view. Anything that does not affect the view does not need a $watch function.

Sometimes it makes sense for us to remove watchers, specifically when a $watch function becomes
irrelevant because the data is static and we just want to expose it in our view the first time.

We can easily remove custom watchers from our view: The $watch function itself returns a function
that enables us to remove the $watch function.

For instance, say we have a custom directive that is waiting for the resolution of a variable name:

<div data-my-directive name="customerName"></div>

Since the customerName isn’t likely to change once it’s set, we see we can optimize the use of this
directive by removing the $watch function we’ve set up:

Optimizing Angular Apps 556

.directive('myDirective', function($q) {

return {

// ...

scope: {

name: '='

},

link: function(scope, ele, attrs, ctrl) {

var unWatch =

scope.$watch(attrs.name, function(n, o) {

if (n != o) {

// Do something with the resolution of

// name and remove the watch

unWatch();

}

});

}

};

});

We can gain in performance by removing any and all of the unnecessary watches in our application.
This process can be particularly cumbersome when trying to remove every watch from our
application, especially when we’re trying to remove the default watchers that Angular sets up.

We can write our own directives to manage watchers instead of working with the built-in directives
that Angular provides. Luckily, we don’t have to write these directives for ourselves as they’ve
already been written for us in a library called bindonce.

Bindonce

Bindonce is a drop-in module we can use in our apps that contain directives that hang on to a watch
once and only once; it gives us the ability to pass in asynchronous data.

The library works by creating new directives that we attach to DOM elements where we don’t
require live updating. These directives watch for the value to be filled and validated. Once the data
is available, it renders its contents, as well as its children’s contents, and promptly removes the
watcher.

Using the bindonce directive creates a single temporary watcher that is is removed after the data
becomes available. If the data is already available on the scope, then the watcher is not created and
the children are rendered.

Recall our previous example. We’ll create the same example with zero permanent watchers, using
bindonce:

Optimizing Angular Apps 557

<li bindonce="email" ng-repeat="email in emails">

<a bo-href-i="#/from/{{ email.sender }}"

bo-text="email.sender">

<a bo-href-i="#/email/{{ email.id }}"

bo-text="email.subject">

To use bindonce, we first need to grab the source. We can either get it directly from GitHub at the
project page (https://github.com/pasvaz/bindonce¹⁵³) or through Bower by installing it like so:

bower install angular-bindonce

Once we have the source, we need to reference it in our main view:

<script src="scripts/vendor/bindonce.js"></script>

Lastly, we need to set it as a dependency for our application module:

angular.module('myApp', ['pasvaz.bindonce']);

Now, when we’re dealing with static data, we can be sure, with the help of the bo-* tags, that we’re
not using unnecessary watchers.

The bindonce library gives us many directives. As we can see above, we’re using two custom
directives.

Every time we use any bo-* tag, we need to ensure a part of it contains the bindonce

directive. All of the children bo-* directives will watch for the data in this directive to
resolve.

bo-if=”condition”

This directive is the same as calling ng-if, but without using extra watchers.

bo-show=”condition” / bo-hide=”condition”

This directive is the same as calling ng-show or ng-hide, but without using any extra watchers.

¹⁵³https://github.com/pasvaz/bindonce

https://github.com/pasvaz/bindonce
https://github.com/pasvaz/bindonce

Optimizing Angular Apps 558

bo-text=”text”

This directive evaluates the text and places it inside of the element. It’s similar to ng-bind.

bo-href=”url” / bo-href-i=”url”

Using bo-href does not allow the “url” to require interpolation, while bo-href-i enables the URL
to contain interpolation. These two calls are functionally equivalent:

// bo-href does not allow for any interpolation

<a bo-href="'/users/' + User.id">√

// bo-href-i does allow interpolation

<a bo-href-i="'/users/{{ User.id }}'">√

bo-src=”url” / bo-src-i=”url”

The bo-src doesn’t allow for interpolation inside the URL, while bo-src-i does.

These two calls are functionally equivalent:

// bo-href does not allow for any interpolation

// bo-href-i does allow interpolation

bo-alt=”text”

Similar to the bo-text, this directive renders text inside a DOM element and sets the text as the alt
attribute on the element.

bo-title=”title”

The bo-title directive renders text inside a DOM element and sets the text as the title attribute
on the element.

bo-id=”id”

This directive renders the “id” and sets it as the id attribute on the element.

bo-style=”style”

This directive renders the style as an expression with the same syntax as ng-style without using a
watcher.

Optimizing Angular Apps 559

bo-value=”value”

This directive renders the value and sets it as the value attribute of the element.

bo-attr bo-attr-foo=”hello”

This directive renders the text ‘foo’ as a custom attribute in the DOM.

Bindonce is a great place to start optimizing any pages that use ng-repeat for mostly static data.

Auto-optimization of $watch Functions

The latest version of Angular automatically removes $watch functions that it finds to be of a
constant value (e.g., if the expression resolves to a boolean or a static integer).

// These watchers will be automatically removed

// as $watches as Angular detects these as

// constant values

$scope.$watch('true', function() {});

$scope.$watch('2 + 2', function() {});

Optimizing Filters

Every filter that is placed in the view will be called a minimum of two times due to the nature of
filters. The more we can keep these functions lightweight and optimized, the faster our applications
will be.

Unchanging Data

For this reason, it’s often a good idea to analyze where and why we are using a filter in our view.
Generally, a good rule of thumb is that any filter that needs to be transformed for the view once can
be moved out of the view.

That is to say that, rather than using the currency filter in the view, we can transform the model
when we retrieve the data. That way, we don’t display it in the view where it will be run twice.

That is to say instead of using the filter in the view, like so:

<!-- Using a filter -->

<div>{{ receipt.total_cost | currency }}</div>

We can transform the receipt.total_cost in our controller (or service) instead by using the
$filter service:

Optimizing Angular Apps 560

.controller('ReceiptController', function($scope, $filter) {

$scope.receipt.total_sum = 12345;

$scope.receipt.total_cost =

$filter('currency')($scope.receipt.total_sum);

});

Filtered Data

We have other filters, such as live-search filters, that limit the data in collections that are repeated
using ng-repeat and through sorted orderBy filter uses. In these cases, the data doesn’t change, but
how they are presented on screen does.

Rather than calling these filters every single $digest loop, we can cache the sorted/filtered results so
that we only calculate the sort and order when necessary. This variable caching is calledmemoizing.

Memoization is an optimization technique used to speed up applications for function calls
that have been previously called and whose results are not expected to changed for a given
input.

In order to use memoization instead of a filter, we need to either implement our own memoize()

function or use one from a library, such as Underscore.js¹⁵⁴ or Lo-Dash¹⁵⁵, that includes its own.
Since the function itself is tiny, we’ve included the basic function definition from inside the Lo-
Dash library:

function memoize(fn, resolver) {

var memoized = {

var cache = memoized.cache,

key = resolver ? resolver.apply(this, arguments) :

+new Date() + '' + arguments[0];

return hasOwnProperty.call(cache, key) ?

cache[key] :

(cache[key] = fn.apply(this, arguments));

}

memoized.cache = {};

return memoized;

}

Essentially, the function itself takes two arguments: a function to cache and, optionally, a resolver
function that is called to determine the cache key for storing the result. The function returns a
memoized version of the function.

¹⁵⁴http://underscorejs.org/
¹⁵⁵http://lodash.com/

http://underscorejs.org/
http://lodash.com/
http://underscorejs.org/
http://lodash.com/

Optimizing Angular Apps 561

When we use it, we set the memoize function to be a function call on our scope object so we can
call it from the view.

angular.module('myApp', [])

.controller('MainController', function($scope, $filter) {

$scope.getNames = memoize(function() {

return $filter('orderBy')(

$scope.names,

$scope.orderBy, $scope.reverseList

);

},

function() {

// Resolver function returns a string that

// represents the cache key

return $scope.orderBy + '-' + $scope.reverseList;

});

});

When we call getNames() in the view, the orderBy $filter runs for the first time. The second time
the filter is called, it will not run as the cache will contain the sort key.

Sometimes, we may want to manually clear the cache (e.g.: adding or removing an update). Since
the cache itself is held on the function object, we can clear the cache simply by setting its value to
a new {} object.

$scope.getNames.cache = {};

Tips for Optimizing Page Load

We can also optimize the amount of time it takes the client-side browser to render our page. Of
course, there is no silver bullet for determining the best mechanisms to best load our pages for
clients, as a large portion of it depends upon server-side components, location, and hosting issues.

Minification

Minifying our code is the easiest method for optimizing perceived page load time.

Minification is the process of removing all unnecessary characters from the source code, reducing
the size of variables to as small as we can get them, stripping away comments and block delimiters,
and more.

This reduces the time it takes for our files to be transferred over the network, because it reduces the
size of the complete file.

Optimizing Angular Apps 562

We can minify our HTML, JavaScript, CSS, and even our images. The more compression we can get
without sacrificing functionality, the better experience our users will have.

There are many free tools available to help us with minification. We recommend using the uglify
tool, available through Grunt. For more information about Grunt, see the Grunt chapter.

Utilizing the $templateCache

When we deploy our app in production, we’ll want our app to load as quickly as possible and be as
responsive as possible. Requiring templates to load over XHR can lead to slow or sluggish-feeling
web apps. Instead of requiring our templates to be fetched via XHR, we can fake the template cache
loading by wrapping it into a JavaScript file and simply shipping our JavaScript file along with the
rest of the application.

For more information on how to efficiently wrap our templates, see the $templateCache tool grunt-
angular-templates.

Debugging AngularJS
When we’re building large Angular apps, it’s not uncommon to run into head-scratching issues that
are seemingly difficult to uncover and resolve.

Debugging from the DOM

Although not always necessary nor a first step, we can get access to the Angular properties that are
attached to any DOM element. We can use these properties to peek into how the data is flowing in
our application.

We should never rely on fetching element properties from a DOM element during the
lifecycle of an application. The techniques are presented as techniques for debugging
purposes.

To fetch these properties from the DOM,we need to find the DOMelement inwhichwe’re interested.
If we have the full jQuery library available, we can use the jQuery selector syntax: $("selector").

We don’t need to rely on jQuery, however, to target and fetch elements from the DOM. Instead, we
can use the document.querySelector() method.

Note that the document.querySelector() is not available on all browsers and is generally
good for non-complex element selections, whereas Sizzle¹⁵⁶ (the library jQuery uses) or
jQuery¹⁵⁷ support more complex selections.

We can retrieve the $rootScope from the DOM by selecting the element where the ngApp directive
is placed and wrapping it in an Angular element (using the angular.element() method).

With an Angular element, we can call various methods to inspect our Angular app from inside the
DOM. To do so, we need to select the element from the DOM. Using only JavaScript and Angular,
we can do so in this way:

var rootEle = document.querySelector("html");

var ele = angular.element(rootEle);

With this element, we can fetch various parts of our application.

¹⁵⁶http://sizzlejs.com/
¹⁵⁷http://jquery.com/

http://sizzlejs.com/
http://jquery.com/
http://sizzlejs.com/
http://jquery.com/

Debugging AngularJS 564

scope()

We can fetch the $scope from the element (or its parent) by using the scope() method on the
element:

var scope = ele.scope();

Using the element’s scope, we can inspect any scope properties, such as custom variables that we
set on the scope in our controllers. We can peek into the elements looking into its $id, its $parent
object, the $$watchers that are set on it and even manually walk up the scope chain.

controller()

We can fetch the current element’s controller (or its parent) by using the controller() method:

var ctrl = ele.controller();

// or

var ctrl = ele.controller('ngModel');

injector()

We can fetch the injector of the current element (or the containing element) by using the injector()
method on the selected element.

var injector = ele.injector();

With this injector, we can then then instantiate anyAngular object inside of our app, such as services,
other controllers, or any other object.

inheritedData()

We can fetch the data associated with an element’s $scope simply by using the inheritedData()

method on the element:

ele.inheritedData();

This inheritedData()method is how Angular finds data up the scope chain as it walks up the DOM
until it’s found a particular value or until the top-most parent has been reached.

If you’re using Chrome, we can use a shortcut with the developer tools. Simply find the
element you’re interested in, right click on it in the browser, and select inspect element.
The element itself is stored as the $0 variable, and we can fetch the Angular-ized element
by calling: angular.element($0).

Debugging AngularJS 565

Debugger

Google’s Chrome¹⁵⁸ has its own debugger tool to create a breakpoint in our code. The debugger

statement will cause the browser to freeze during execution, allowing us to examine the running
code from inside the actual application and at the point of execution inside the browser.

To use the debugger, we can simply add it inside the context of our application code:

angular.module('myApp')

.factory('SessionService', function($q, $http) {

var service = {

user_id: null,

getCurrentUser: function() {

debugger; // Set the debugger inside

// this function

return service.user_id;

}

}

return service;

});

Inside this service, we’ll call the debugger; method that effectively freezes our application.

As long as the Chrome development tools are open in our browser, we can use console.log() and
other JavaScript commands at the point where this application code executes.

When we’re done debugging the application code, we need to make sure we remove this line,
because it will freeze the browser, even in production.

Angular Batarang

Angular Batarang is a Chrome extension developed by the Angular team at Google that integrates
very nicely as a debugging tool for Angular apps.

¹⁵⁸https://www.google.com/chrome

https://www.google.com/chrome
https://www.google.com/chrome

Debugging AngularJS 566

Batarang chrome extension

Installing Batarang

To install Batarang, we simply need to download the application from the web store or from the
GitHub repo: https://github.com/angular/angularjs-batarang¹⁵⁹.

Once our installation is set, we can start up the extension by navigating to our developer tools and
clicking enable to enable Batarang to start collecting debugging information about our page.

Batarang allows us to look at scopes, performance, dependencies, and other key metrics in Angular
apps.

Inspecting the Models

After we’ve started up Batarang, the page will reload, and we’ll notice that we have a panel that
enables us to select different scopes in our page.

We can select a scope by clicking on the + button, finding the element we’re interested in and clicking
on it.

Once we select a scope using the inspector, we can look at all the different properties on our scope
element and their current values.

¹⁵⁹https://github.com/angular/angularjs-batarang

https://github.com/angular/angularjs-batarang
https://github.com/angular/angularjs-batarang

Debugging AngularJS 567

Model inspector

Inspecting Performance

We can also peek into the performance of our application by using the performance section of
Batarang.

In this panel, we get a peek into the watch list of the application at the different scopes as well as
the amount of time that each expression takes, both in absolute time and percentage of the overall
application time.

Performance inspector

Inspecting the Dependency Graph

One very nice feature of the Batarang tool is its ability to visualize the dependency graph inline. We
can look at the dependencies of our application and view the different libraries of our application to
see what they depend upon and track libraries that aren’t dependencies of the application at all.

Debugging AngularJS 568

Dependency graph

Visualizing the App

Batarang allows us to look deep into the application on the page itself. Using the Options panel, we
can look at:

Applications The different applications that are on a single page (the ngApp directive uses)

Bindings The bindings that are set in the view, where we use either ng-bind or {{ }} elements

Scopes The scopes in the view that we can target and inspect more deeply

The options panel also allows us view the Angular version of the app and what we’re using or not
using from a CDN.

Options

All in all, the Batarang tools gives us a lot of power when diving into how our Angular apps work
in real time.

Next Steps
Now that we’re familiar with AngularJS, let’s take a deep-dive into the professional tools available
to allows us to develop in a production environment.

jqLite and jQuery

Although Angular encourages breaking away from reliance on the jQuery¹⁶⁰ library, we can use it if
we need to within our app by ensuring that we load it before the DOMContentLoaded event has been
fired or we manually bootstrap our app.

Angular itself includes a compatible library called jqLite.

The angular.element()method that we’ve been using throughout this book returns a jqLite object,
which is a subset of the jQuery library that allows Angular to manipulate the DOM in a cross-browser
compatible way.

The jqLite library does not attempt to cover all of methods in the entire jQuery library, as it is meant
to be light and cover only those methods that Angular needs.

The library itself covers the following jQuery methods:

addClass() Adds the specified class(es) to the element

after() Inserts content after the element

append() Inserts content to the end of the element

attr() Gets or sets the value of the attribute for the element

bind() / on() Attaches an event handler function for one or more events of the selected element

children() Gets the children of the element

clone() Creates a deep copy of element

¹⁶⁰http://jquery.com/

http://jquery.com/
http://jquery.com/

Next Steps 570

contents() Gets the children of each element in the set including text and comment nodes

css() Gets or sets the value of a style property for the element

data() Stores or returns the value of arbitrary data associated with the element

eq() Gets the element at the specified index

find() Gets the descendants of the element filtered by tagname only

hasClass() Determines if the element itself is assigned a given class

html() Gets or sets the HTML contents of the element

next() Gets the immediately following sibling of the element

off() / unbind() Removes an event handler by name

parent() Gets the parent of the element

prepend() Inserts content to the beginning of the element

prop() Gets or sets the value of a property for the element

ready() Specifies a function to execute when the DOM is fully loaded

remove() Removes the element from the DOM

removeAttr() Removes an attribute from the element

removeClass() Removes a single, multiple, or all classes from the element

removeData() Removes the previously stored data from the element

replaceWith() Replaces the element with the provided new content

Next Steps 571

text() Gets or sets the combined text contents of the element

toggleClass() Adds or removes one or multiple classes from the element

triggerHandler() Executes all handlers attached to an element for an event

val() Gets or sets the current value of the element

wrap() Wraps an HTML structure around the element

Essential Tools to Know About

The AngularJS community is fantastic and has written some great tools to support AngularJS
development. We’ll range from discussing build tools and frameworks to live interaction tools.

Grunt

Grunt¹⁶¹ is a pure JavaScript task runner. It will save you tons of time in developing JavaScript
applications, both server side and client side. It makes repetitive tasks disappear and handles running
them for you automatically.

The JavaScript community has jumped all over the Grunt tool and created hundreds of plugins. If a
plugin you need or want has not been developed, the Grunt tool makes it very easy to create your
own.

Installation

First, we have to make sure you have NodeJS¹⁶² installed. NodeJS is a platform built on Chrome’s
JavaScript run time; it allows you to write JavaScript as a server-side language.

To install Grunt, we can use the built-in npm tool that comes with NodeJS:

$ npm install -g grunt-cli

Passing the -g flag makes the grunt command available in any directory on your computer.

¹⁶¹http://gruntjs.com/
¹⁶²http://nodejs.org/

http://gruntjs.com/
http://nodejs.org/
http://gruntjs.com/
http://nodejs.org/

Next Steps 572

With Grunt installed, we also need to have aGruntfile alongside our app to configure how and what
Grunt runs. In order to do anything useful with Grunt, let’s create a Gruntfile.js in our project.

First things first, we have to create a package.json file that tells Node what to install as dependen-
cies.

Just as AngularJS handles dependencies, NodeJS has a clever method of dependency
management. The package.json file will be your friend as you write more NodeJS apps.

To make the default package.json file, you can either run a generator or copy and paste from the
default package.json. Since the npm init command is built in, let’s use that:

$ npm init

This command asks us a series of questions, such as what is the name of our new app, what version,
and a few more. You can use all of the defaults it sets for you, but it’s probably a good idea to set
the name of our app.

Once this command completes, it’ll create a package.json file that looks something like:

{

"name": "myapp",

"version": "0.0.0",

"description": "Your myapp description",

"main": "index.js",

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

},

"author": "Your name",

"license": "MIT"

}

We can install the basic grunt command in our package.json file by using the npm command again:

$ npm install grunt --save-dev

The --save-dev flag saves the grunt as a dependency for development. If you want to save
a dependency for run time, you can use the --save flag.

A common use of Grunt is to minify our JavaScript files so that we can send the smallest file possible
to the browser. This process is particularly useful so that our app will load as quickly as possible,
especially on mobile devices.

We want install the Uglify plugin to handle this process for us.

Next Steps 573

$ npm install grunt-contrib-uglify --save-dev

Great! Now we can configure Grunt using the Gruntfile. To configure Grunt, we load our
Gruntfile.js in our text editor and add the following:

module.exports = function(grunt) {

// Configuration

grunt.initConfig({

pkg: grunt.file.readJSON('package.json')

});

// Load plugins

// Default task(s).

};

To set up a configuration, we need to tell Grunt to load the npm tasks of all the plugins we want to
use. Since we’re loading the uglify tasks, we need to tell Grunt to load our grunt-contrib-uglify
plugin tasks:

grunt.loadNpmTasks('grunt-contrib-uglify');

To configure Uglify, we can place a configure block inside of the initConfig object with the key of
uglify. In this case, we can make a minimal update to the configuration where we only set the src
and the dest locations.

grunt.initConfig({

pkg: grunt.file.readJSON('package.json'),

uglify: {

build: {

src: 'src/<%= pkg.name %>.js',

dest: 'build/<%= pkg.name %>.min.js'

}

}

});

All of the available options for the block of configuration code for the grunt-contrib-uglify

module can be found in the README for the project (available here¹⁶³).

Note that when using Grunt modules, the configuration documentation is most often
available in the project’s README file, or the README might otherwise point to the
available configuration options.

¹⁶³https://github.com/gruntjs/grunt-contrib-uglify

https://github.com/gruntjs/grunt-contrib-uglify
https://github.com/gruntjs/grunt-contrib-uglify

Next Steps 574

With that set, Grunt looks for the JavaScript file by whatever name we gave our package.json in
the src/ directory. It then runs the Uglify task on this file.

To actually tell Grunt to run the task, we can simply run the task uglify:

$ grunt uglify

We can also configure Grunt to run multiple tasks in one go by declaring a task with multiple
subtasks:

grunt.initConfig({

// config

});

grunt.registerTask('default', ['uglify']);

Now you can run grunt default, and all of the tasks we’ve defined in the array will run. The
default task has special meaning in Grunt. With the default task configured like so, we can just
run the grunt command, and all of those tasks will run.

You might be wondering why this functionality even matters. In this example, we’ve only set one
task to run, but if we’re using CoffeeScript, want to package all of our Angular templates into a
single file, package our less CSS files, etc., Grunt can handle it all for you.

Finally, one of the most useful features of Grunt is its ability to watch the filesystem for file changes
and execute commands on the file changes.

To set up a watch, we follow the same two steps as we did above.

First, we install the grunt-contrib-watch npm package:

$ npm install grunt-contrib-watch --save-dev

Next, we set up a config block in the initConfig object:

grunt.initConfig({

pkg: grunt.file.readJSON('package.json'),

//

watch: {

js: {

files: 'src/**/*.js',

tasks: ['uglify']

}

}

});

Now we can run grunt watch, and Grunt will start watching all of the JavaScript files in our src/
directory. When any of them change, it runs the uglify task.

Next Steps 575

grunt-angular-templates

By default, Angular fetches templates over XHRwhen it cannot find them locally in its $templateCache.
When the XHR request is slow or our template is large, it can seriously negatively impact our users’
experience of our app.

One way we can avoid this delay is by “faking” the $templateCache into thinking that it has already
been filled up, so Angular doesn’t have to load the templates from afar.We can do this trickmanually
in JavaScript like so:

angular.module('myApp', [])

.run(function($templateCache) {

$templateCache.put('home.html',

'This is the home template');

});

Now,whenAngular needs to fetch the template named ‘home.html’, it will find it in the $templateCache
and not need to fetch it from the server.

This step is quite cumbersome to do manually if we want to package our app for our servers. Luckily,
the grunt-angular-templates Grunt task does it for us.

Installation

First, we need to install the Grunt task. We can install it with npm as follows:

$ npm install --save-dev grunt-angular-templates

We use the --save-dev task to store the Grunt task in our package.json file, and it’s good
practice to do so. Saving the dependencies and their versions allows for easily creating new
development environments for our application. If we’re not using a package.json file, then
we can ignore this flag, but it won’t do any harm to keep it in. npm will simply output a
message warning us that we’re not using a package.json.

Next, we need to reference this new task in our Gruntfile.js file, like so:

grunt.loadTasks('grunt-angular-templates');

Now, we can safely use this task in our Grunt tasks.

Usage

The task itself compiles a JavaScript file that we need to load inside of our index.html. For instance,
if we tell the task to generate the templates.js file, we need to load it inside of our index.html:

Next Steps 576

<script src="template.js"></script>

First off, like any other Grunt task, we need to configure it. The configuration template key is
ngtemplates. Inside of this ngtemplates configuration block, we set a subtask that will become
the name of the Angular module we’re loading.

For example:

ngtemplates: {

myApp: {}

}

This code generates the output of our template.js file as:

angular.module('myApp')

.run(['$templateCache', function($templateCache) {

$templateCache.put('home.html', ...);

}])

The name of the subtask myApp is the same as theAngularmodulewhich is where the $templateCache
will place it’s templates.

We’ll set our options inside of this subtask.

Available Options

bootstrap

By default, angular-grunt-templates wraps the function($templateCache) {} inside of the
angular.module('myApp').run(['$templateCache', ___]); We can change this configuration if
we’re using CommonJS or RequireJS with the bootstrap option:

// ...

bootstrap: function(module, script) {

return 'module.exports[module]= ' + script + ';';

}

concat

concat is the name of the target in the concat definitions where we want to append our compiled
template path.

Next Steps 577

htmlmin

Just as we can minimize our CSS and JavaScript files, we can also minimize our HTML using a
tool called (unsurprisingly) htmlmin. grunt-angular-templates plays nicely with htmlmin and even
allows us to minimize the HTML inside of our templates, as well.

We can set options for htmlmin inside of our configuration, like so:

ngtemplates: {

myApp: {

options: {

htmlmin: {

collapseBooleanAttributes: true,

collapseWhitespace: true,

removeAttributeQuotes: true,

removeEmptyAttributes: true,

removeRedundantAttributes: true

removeScriptTypeAttributes: true,

removeStyleLinkTypeAttributes: true

}

}

}

}

module

The name of the angular.module with which the template cache will be registered is the name of
the module where the templates will be cached.

ngtemplates: {

myApp: {

options: {

module: 'myBestApp'

}

}

}

We will therefore see our templates set in the following way:

Next Steps 578

angular.module('myBestApp')

.run(['$templateCache',

function($templateCache) {

// ...

}

prefix

We can set a prefix for all of our template URLS. For instance, if we want to use absolute URLs where
our templates are accessed from an absolute location in a different directory, we’d set our prefix to
look like:

ngtemplates: {

app: {

options: {

prefix: '/public'

}

}

}

source

We can set the source option to a function to be called before the rest of the templates are compiled
and after the source has been minified so that we can customize the template source output. For
instance, we can add a standard header to our source files.

The function is called with these options:

• source - the minified template source
• path - the path to the template file
• options - the task options object

standalone

This boolean options flag tells the Grunt task whether the templates are part of an existing module,
such as myApp, or if they stand alone. Mostly, this option should be set to false (as it is by default).

url

Setting the url option overrides the template’s $templateCache URL. Mostly, this option is here for
special circumstances; we set the cwd and the src to make the templates available both through XHR
and through the $templateCache.

Next Steps 579

Usage

The authors of grunt-angular-templates have given us a lot of options for how we can use this
task.

concat

The easiest way to use the task is inside of the concat task. It places the responsibility of the location
of the task into the minified concat task.

concat: {

app: {

src: ['*.js','<%= ngtemplates.app.dest %>'],

dest: ['app.js']

}

}

Now our templates will be attached at the end of our app.js file.

usemin

Using grunt-usemin, which is a task thatminifies and combines JavaScript inline request files, we get
the ability to compress and concatenate our source files in production and list our non-compressed
dependencies in development. For instance:

<!-- build:js module.js -->

<script src="scripts/app.js"></script>

<script src="scripts/controllers.js"></script>

<!-- endbuild -->

The file to be minified is module.js. We can use this file as a target to attach our templates.

ngtemplates: {

app: {

src: 'templates/*.html',

dest: 'template.js',

options: {

concat: 'module.js'

}

}

}

dest

Lastly, we can normally generate the templates.js file by specifying a destination, rather than
appending it to another file by simply assigning a dest: key as a filepath.

Next Steps 580

ngtemplates: {

app: {

src: 'templates/*.html',

dest: 'template.js'

}

}

Lineman

The Lineman tool is a a build tool that allows us to focus on building fat-client (or client-side) web
apps. It mixes an incredible amount of functionality to make client-side webapp development fun
and easy.

Lineman is built and maintained by the community to keep front-end webapp development
productive in a maintainable, manageable manner.

We’ve been developing our client-side application in a single index.html file that we’ve been loading
through our browser for most of this book. Lineman takes a different approach and serves the
application through a local server.

By serving files through a local server, Lineman can offer unique functionality we can’t get with
static files. It:

• Compiles and serves CoffeeScript¹⁶⁴ files as JavaScript upon saving a file
• Runs Less¹⁶⁵ and Sass¹⁶⁶ preprocessors and serves the generated CSS
• Provides back-end stubbing tools so we can develop with or without a back-end server
• Pre-compiles our JavaScript templates
• Proxies XHR requests to our back-end server
• Makes testing incredibly easy and fun

Lineman explicitly does not deal with any back-end web server (although it does provide a way for
us to stub back-end calls, as we’ll see). Its focus is on building AngularJS apps that can be compiled,
minified, and deployed as a static web app.

To use Lineman, we need to make sure we have NodeJS¹⁶⁷ installed; it comes prepackaged with the
npm tool. To install lineman itself, we can install it with npm and install it globally.

$ npm install -g lineman

Although we’ll be using Lineman itself to run our project, we won’t use the packaged generator.
Instead, we’ll use the AngularJS template created by David Mosher.

¹⁶⁴http://coffeescript.org/
¹⁶⁵http://lesscss.org/
¹⁶⁶http://sass-lang.com/
¹⁶⁷http://nodejs.org

http://coffeescript.org/
http://lesscss.org/
http://sass-lang.com/
http://nodejs.org
http://coffeescript.org/
http://lesscss.org/
http://sass-lang.com/
http://nodejs.org

Next Steps 581

$ git clone https://github.com/davemo/lineman-angular-template my-app

Once we’ve cloned this template (using Git), we can use npm again to install the dependencies that
Lineman needs in order to operate:

$ cd my-app && npm install -d

After the dependencies have been installed, we can start working on our app. We’ll edit our app
while running the tests as well as the server.

To run the app, we need to start the Lineman tool in the my-app directory.

$ lineman run

Now, we have our app running in the browser at http://localhost:8000.

Running Lineman

As we can see, the Angular template has a few templates generated with by our app. We can also
see that the directory structure contains a bunch of directories:

• app - contains the app files
– css - our CSS files (Less or CSS files)
– img - our img files
– js - our Angular app
– pages - the HTML templates to be compiled
– templates - the Angular templates

• config - the Lineman-specific configuration files
• doc - a directory for documentation for the app
• dist - a generated directory where we build our production app
• generated - a generated directory for the lineman run app
• spec - all specs that are not end-to-end specs

Next Steps 582

• spec-e2e - our protractor specs live here
• tasks - any custom Lineman tasks should go here
• vendor - contains any vendor CSS, JavaScript, and image files
• Gruntfile.js - the Gruntfile that powers lineman
• package.json - the app customization, which defines dependencies and other metadata

Lineman provides an efficient structure for editing web apps quickly and confidently.

Bower

Bower is a package manager for front-end files on the web. Similar to how npm is a package manager
for Nodemodules, allowing developers towrite shareablemodules for the server, bower offers similar
functionality for web components.

It offers a solution to the dependency problem through a generic, unopinionated and easy-to-use
interface. It runs over Git and is package agnostic. It also supports any type of transport, like
requireJS, AMD, and others.

Installation

Installation is simple: we just use the npm package manager to install bower:

$ npm install -g bower

bower depends upon Git, Node, and npm.

From here, we can verify that it’s working by typing the help command:

$ bower help

If output is displayed to the screen, then we are good to go.

Next Steps 583

Bower help screen

Bower Overview

Although we’ll only cover a brief overview, we encourage more exploration at the Bower
homepage: bower.io¹⁶⁸.

With our web app, we’re likely going to want to share the source with other developers or deploy
to other development machines. Similar to the package.json file for npm, we can use a bower.json
file to store our front-end dependencies.

To get started with a bower.json, we can use the init command that Bower provides. We should
execute it in the root of our project directory:

$ bower init

This command launches a setup wizard that asks us a few questions about our new package. When
it’s done, it generates a new bower.json file in our current directory.

Configuring Bower

Bower comes with sane defaults, but it is highly configurable. We can configure what directory
packages are installed and which registry to use to install components.

Bower has great configuration documentation available here¹⁶⁹. We recommend you check
it out for more detailed configuration.

¹⁶⁸http://bower.io/
¹⁶⁹https://docs.google.com/document/d/1APq7oA9tNao1UYWyOm8dKqlRP2blVkROYLZ2fLIjtWc/edit#heading=h.4pzytc1f9j8k

http://bower.io/
https://docs.google.com/document/d/1APq7oA9tNao1UYWyOm8dKqlRP2blVkROYLZ2fLIjtWc/edit#heading=h.4pzytc1f9j8k
http://bower.io/
https://docs.google.com/document/d/1APq7oA9tNao1UYWyOm8dKqlRP2blVkROYLZ2fLIjtWc/edit#heading=h.4pzytc1f9j8k

Next Steps 584

Although in-depth bower configuration is outside of the scope of this chapter, we’ll look at the two
most commonly modified configuration items (based upon our own experience).

To configure Bower, we can edit the .bowerrc file, pass config arguments, or set environment
variables. We can place the .bowerrc file in several places:

• the current working directory of the project
• in any subfolder in the directory tree
• in the current user’s home folder
• in the global Bower folder

The .bowerrc file contains a JSON object for configuration. For example, to change the color
configuration, the .bowerrc file would contain:

{

"color": false

}

For the sake of simplicity, we like to keep the .bowerrc file in the root of the project directory. If it
doesn’t already exist, we recommend creating it in the root of the project directory:

$ echo "{}" > .bowerrc

cwd The cwd configuration variable is the directory from which Bower should run. All other paths
should relate directly to this directory.

{

"cwd": "app"

}

directory The directory configuration variable is the path in which installed components should
be saved. It defaults to bower_components. Depending on howwe are creating an app, we can change
this to suit a different directory structure:

{

"directory": "app/components"

}

Searching for Packages

To find a package for installation, Bower includes a search command to search through the index of
its registry:

Next Steps 585

Searching for bootstrap-sass

$ bower search bootstrap-sass

Installing Packages

Installing packages is equally easy. If we have an existing bower.json file, we can simply run the
install command. It pulls down and installs the front-end dependencies in the Bower directory.

$ bower install

We can install a package locally by explicitly calling install on the file. It’s possible to install a specific
version of the package and even set an alias for the package install.

Install a local or

default remote version of a package

$ bower install <package>

Install a specific version of a package

$ bower install <package>#<version>

Alias install a package

$ bower install name=<package>#<version>

For instance

$ bower install bootstrap=bootstrap-sass

The bower.json file stores several types of dependencies: either dependencies needed by the run
time (such as Angular or jQuery) or dependencies needed in the development process (like Karma
or Bootstrap-sass).

Install a run-time dependency

$ bower install angular-route --save

Install a dev dependency

$ bower install bootstrap-sass --save-dev

If we dump out the contents of our bower.json, we’ll see that it is updated with our new
dependencies:

Next Steps 586

$ cat bower.json

{

"name": "myApp",

"version": "0.0.1",

"authors": [

"Ari Lerner <ari@fullstack.io>"

],

"license": "MIT",

"dependencies": {

"angular-route": "~1.2.2"

},

"devDependencies": {

"bootstrap-sass": "~3.0.0"

}

}

Using Packages

Now that our packages are installed, we can include the packages just like any other script in our
local directory, by using a script tag in the HTML source.

<script

src="/bower_components/angular/angular.js">

</script>

Removing Packages

It’s also possible to remove packages through Bower. We can either manually delete the files in our
Bower directory, or we can run the uninstall command.

The uninstall command allows us to use the --save and --save-dev flags to reflect the changes
in the bower.json file.

Remove a dependency

$ bower uninstall --save-dev angular-route

Remove a devDependency

$ bower uninstall --save-dev bootstrap-sass

Yeoman

Yeoman¹⁷⁰ is a collection of the previous tools we’ve been discussing in this chapter:

¹⁷⁰http://yeoman.io/

http://yeoman.io/
http://yeoman.io/

Next Steps 587

• Yeoman
• Grunt
• Bower

Yeoman itself is a scaffolding tool that helps us build new applications by setting up our Grunt
configuration, building our application workspace, and managing our workflow, regardless of the
type of application we are building.

There are just under 300 community-written generators available, as of the time of this writing, that
set up many projects of all sorts of different types from Angular¹⁷¹ sites, to Backbone.js¹⁷², and even
Python flask¹⁷³ projects.

Grunt is set up as the build tool; Bower is set up for handling dependency management.

Installation

Installation for Yeoman is simple. First, we need to make sure we have Node.js¹⁷⁴ and Git¹⁷⁵ installed.
Some generators require Ruby¹⁷⁶ and Compass¹⁷⁷ to be installed, as well.

Once we have the dependencies, we can install Yeoman itself using npm:

$ npm install -g yo

Installing Yeoman installs Grunt and Bower automatically.

Next, in order to use it, we need to install a generator (Yeoman is useless without a generator).

Let’s install the Angular generator:

$ npm install -g generator-angular

To search all of the available community generators, we can check out the web interface
at http://yeoman.io/community-generators.html¹⁷⁸.

Usage

Using the Yeomanworkflow is also easy. First and foremost, we’ll want to create a directory in which
we can work. Yeoman does not create a working directory for us; rather, it assumes the directory
we’re working in is the directory that will house our app.

¹⁷¹https://github.com/yeoman/generator-angular
¹⁷²https://github.com/yeoman/generator-backbone
¹⁷³https://github.com/romainberger/yeoman-flask
¹⁷⁴http://nodejs.org
¹⁷⁵http://git-scm.com/
¹⁷⁶https://www.ruby-lang.org/
¹⁷⁷http://compass-style.org/
¹⁷⁸http://yeoman.io/community-generators.html

https://github.com/yeoman/generator-angular
https://github.com/yeoman/generator-backbone
https://github.com/romainberger/yeoman-flask
http://nodejs.org
http://git-scm.com/
https://www.ruby-lang.org/
http://compass-style.org/
http://yeoman.io/community-generators.html
https://github.com/yeoman/generator-angular
https://github.com/yeoman/generator-backbone
https://github.com/romainberger/yeoman-flask
http://nodejs.org
http://git-scm.com/
https://www.ruby-lang.org/
http://compass-style.org/
http://yeoman.io/community-generators.html

Next Steps 588

$ mkdir myapp && cd $_

Inside of this directory, we’ll run the Yeoman generator, which scaffolds our project. In this example,
we’re using the Angular generator generator-angular:

$ yo angular

Yeoman install

Yeoman will ask us a few questions, then create our application. In these steps, it will call npm
install and bower install for us to ensure we have all the dependencies we expect so we can get
developing immediately.

We’ll use the grunt command to kick off our development process.

$ grunt server

The grunt server command starts a local server that serves our app locally. It uses livereload¹⁷⁹ to
automatically reload the browser when we save a file in our workspace.

The directory built for us has an opinionated structure that enforces an easily extensible design for
our Angular apps.

¹⁷⁹http://livereload.com/

http://livereload.com/
http://livereload.com/

Next Steps 589

Yeoman-generated structure

Yeoman creates a directory structure that builds both app/ and test/ directories. Inside the app, we’ll
build our Angular app and house our views, our styles, and other various parts of our application.

When we want to create a controller, we need to add a file to the controllers directory with a
descriptive name. Then we need to ensure that we include it in our index.html as a file to load.

For instance, adding a dashboard controller, we’ll create app/scripts/controllers/dashboard.js
and our DashboardController definition:

'use strict';

// in app/scripts/controllers/dashboard.js

angular.module('myappApp')

.controller('DashboardController', function($scope) {

});

To include this controller we need to tell our application to load this file in our index.html. We want
to make sure we include it inside the build comments in our app so that our htmlmin task includes
it when it’s minifying our HTML.

<!-- build:js({.tmp,app}) scripts/scripts.js -->

<script src="scripts/app.js"></script>

<script src="scripts/controllers/main.js">

</script>

<script src="scripts/controllers/dashboard.js">

</script>

<!-- endbuild -->

Now we can use the controller in our app. This same process will work for any type of Angular
component that we’ll use in our app (e.g., services, filters, directives).

If we break our app into multiple components (highly recommended) as dependencies of our app,
we need to ensure we include those before our app.js file above. For instance, if we follow the
multiple-module pattern where we generate a new module for each component:

Next Steps 590

// in app/scripts/services/api.js

angular.module('myApp.services', [])

.factory('ApiService', function() {

return {};

});

and set these modules as dependencies for our app:

// in app.js

angular.module('myApp', ['myApp.services']);

we need to include these services before we include app.js in our HTML.

Alternatively, the Angular generator itself comes with a bunch of helpful generators that make the
process of building an Angular app a cinch.

Create a Route

To create a route that includes a controller and the corresponding test for the controller, includes
the <script> tag in the HTML, and creates a view for the route, we need to run the following in our
terminal:

$ yo angular:route home

Create a new route

Create a Controller

To create a simple controller and the corresponding test, we can use the generator in the terminal:

Next Steps 591

$ yo angular:controller user

Create a Custom Directive

To create a directive and the corresponding test, we can create a directive using the following
command:

$ yo angular:directive tabPanel

Create a Custom Filter

We can also create a custom filter in our app and the corresponding test. To do that, we can use the
following generator:

$ yo angular:filter capitalize

Create a View

To generate a simple view, we can use the Angular generator command:

$ yo angular:view dashboard

Create a Service

It’s possible to use the generator to create a service, as well. The following creates a service as well
as the corresponding tests in the different formats in which we are able to create a service.

$ yo angular:service api

$ yo angular:factory api

$ yo angular:provider api

$ yo angular:value api

$ yo angular:constant api

Create a Decorator

The Angular generator also gives us the ability to create a decorator over other services. We just
need to run this command in our terminal:

Next Steps 592

$ yo angular:decorator api

Configuring the Angular Generator

With any of the previous generators (including the main generator), we can pass options to configure
our scripts in a custom manner.

CoffeeScript

If we want to generate CoffeeScript files instead of JavaScript files, we can easily do so by passing
the --coffee option:

$ yo angular:controller user --coffee

Minification Safe

Although it is not strictly necessary (our Yeoman generator includes ngMin), we can tell the generator
to add dependency injection annotations in our generated file using the --minsafe flag:

$ yo angular:controller user --minsafe

Skipping Index

By default, all of the previous generators add the appropriate files to be loaded in the index.html.
We can tell the generator not to include the scripts in the index.html.

We may want to skip adding a file to the index page, as we may be building a third-party
plugin.

$ yo angular:factory session --skip-add

Testing Our App

One of the nicest features of the Yeoman Angular generator is its ability to allow us to seamlessly
test our application as we are developing it.

The generator comes packaged with a test command that runs whenever we save a file in our app.
This packaging makes the process of testing easily translatable into our workflow.

To run our tests without watching our files (i.e., to run it once), we can use the command:

Next Steps 593

$ grunt test

This command runs once and quits. We recommend making two changes to the workflow to
introduce automated testing in the app.

First, we open the Gruntfile.js at the root of the application and we find the Karma task. Then,
we want to change the option from singleRun: true to false:

// ...

]

},

karma: {

unit: {

configFile: 'karma.conf.js',

singleRun: false // CHANGE THIS TO FALSE

}

},

cdnify: {

// ...

Second, we open the karma.conf.js file and change the autoWatch option from false to true.

Now, when we run grunt test, rather than running once and quitting, the task will stay open and
watch our files. Once we change a file and save it, then the tests will re-run.

Packaging Our App

After we are done building our application, we’ll want to set up a distribution for our app. Creating
a distribution of our app includes minifying all of the JavaScripts and HTML, packaging the views,
preprocessing the CSS, etc.

To run the build task, we can simply run the Grunt build command:

$ grunt build

It will take a few minutes to run the entire generator. When it has completed, we’ll have a
dist/ folder in the root of our app. The folder will contain all of the files suitable for production
deployment.

We can upload this folder to our server as is or include it in deployment with our server and let our
application run to the masses.

Next Steps 594

Packaging Our Templates

One method that we can use to make our apps appear incredibly fast and not depend upon servers
to deliver our templates is to turn our template files into a JavaScript file.

Using the Angular templateCache, we’ll include our templates in a JavaScript file. For instance,
instead of telling Angular to fetch the HTML using XHR as HTML:

<div class="hero-unit">

<h1>'Allo, 'Allo!</h1>

<p>You now have</p>

<li ng-repeat="thing in awesomeThings">{{thing}}

<p>installed.</p>

<h3>Enjoy coding! - Yeoman</h3>

</div>

We can package them up into a JavaScript file and let the JavaScript stand alone, like so:

angular.module('myApp')

.run(['$templateCache', function($templateCache) {

$templateCache.put('views/main.html',

"<div class=\"hero-unit\">\n" +

" <h1>'Allo, 'Allo!</h1>\n" +

" <p>You now have</p>\n" +

" \n" +

" <li ng-repeat=\"thing in awesomeThings\">{{thing}}\n" +

" \n" +

" <p>installed.</p>\n" +

" <h3>Enjoy coding! - Yeoman</h3>\n" +

"</div>\n"

);

}]);

To set that up, we need to modify our Gruntfile.js to include a new task definition using a new
npm package grunt-angular-templates.

First, we install the package:

$ npm install --save-dev grunt-angular-templates

Next, we modify our Gruntfile.js to include the ngtemplates task.

Next Steps 595

// ...

}

},

ngtemplates: {

myappApp: {

cwd: '<%= yeoman.app %>',

src: 'views/**/*.html',

dest: '<%= yeoman.app %>/scripts/templates.js'

}

},

// Put files not handled in other tasks here

copy: {

// ...

This modification simply creates a new file in our app directory that will contain the template files
loaded as JavaScript.

We need to make sure that this task runs in the build process. Luckily, it’s easy to append tasks to
the build process. We simply find the line: grunt.registerTask('build', [and make sure we’ve
added ngTemplates into the array of tasks after the concat task:

grunt.registerTask('build', [

// ...

'concat',

// ...

'cssmin',

'ngtemplates',

'uglify',

'rev',

'usemin'

]);

Lastly, we need to ensure that we include the templates.js file in our app/index.html file after
we’ve included the scripts/app.js file:

<!-- build:js({.tmp,app}) scripts/scripts.js -->

<script src="scripts/app.js"></script>

<script src="scripts/controllers/main.js"></script>

<script src="scripts/templates.js"></script>

<!-- endbuild -->

Now,whenwe build our app, our templateswill come packaged alongwith the rest of the application.

Next Steps 596

Note that when we’re developing our application, if the template isn’t found in the cache, it loads
from the server automatically, so we can safely delete the app/scripts/template.js file if we need
to at some point during our development process.

If this file exists, then the views that it caches won’t be reloaded; it will think it has the template
available.

	Table of Contents
	Introduction
	Foreword
	Acknowledgments
	About the Author
	About This Book
	Organization of This Book
	Additional Resources
	Conventions Used in This Book
	Development Environment

	The Basics of AngularJS
	How Web Pages Get to Your Browser
	What Is a Browser?
	What Is AngularJS

	Data Binding and Your First AngularJS Web Application
	Introducing Data Binding in AngularJS
	Simple Data Binding
	Best Data Binding Practices

	Modules
	Properties

	Scopes
	The $scope View of the World
	It's Just HTML
	What Can Scopes Do?
	$scope Lifecycle
	Directives and Scopes

	Controllers
	Controller Hierarchy (Scopes Within Scopes)

	Expressions
	Interpolating a String

	Filters
	Making Our Own Filter
	Form Validation

	Introduction to Directives
	Directives: Custom HTML Elements and Attributes
	Passing Data into a Directive

	Built-In Directives
	Basic ng Attribute Directives
	Directives with Child Scope

	Directives Explained
	Directive Definition
	Directive Scope
	AngularJS Life Cycle
	ngModel

	Angular Module Loading
	Configuration
	Run Blocks

	Multiple Views and Routing
	Installation
	Layout Template
	Routes
	$location Service
	Routing Modes
	Other Advanced Routing Topics

	Dependency Injection
	Annotation by Inference
	Explicit Annotation
	Inline Annotation
	$inject API
	ngMin

	Services
	Registering a Service
	Using Services
	Options for Creating Services

	Communicating with the Outside World: XHR and Server-Side Communication
	Using $http
	Configuration Object
	Response Object
	Caching HTTP Requests
	Interceptors
	Configuring the $httpProvider
	Using $resource
	Installation
	Using $resource
	Custom $resource Methods
	$resource Configuration Object
	$resource Services
	Using Restangular
	The What and the Why
	Installation
	Intro to the Restangular Object
	Using Restangular
	Configuring Restangular

	XHR in Practice
	Cross-Origin and Same-Origin Policy
	JSONP
	Using CORS
	Server-Side Proxies
	Working with JSON
	Working with XML
	Authentication with AngularJS
	Talking to MongoDB

	Promises
	What's a Promise?
	Why Promises?
	Promises in Angular
	Chaining Requests

	Server Communication
	Custom Server-Side
	Install NodeJS
	Install Express
	Calling APIs
	Server-less with Amazon AWS
	AWSJS + Angular
	Getting Started
	Introduction
	Installation
	Running
	User Authorization/Authentication
	UserService
	All Aboard AWS
	AWSService
	Starting on Dynamo
	$cacheFactory
	Saving Our currentUser
	Uploading to S3
	Handling File Uploads
	Querying Dynamo
	Showing the Listing in HTML
	Selling Our Work
	Using Stripe
	Server-less with Firebase
	Three-Way Data Binding With Firebase and Angular
	Getting Started With AngularFire
	Ordering in AngularFire
	Firebase Events
	Implicit Synchronization
	Authentication with AngularFire
	Authentication Events
	Beyond AngularFire

	Testing
	Why Test?
	Testing Strategies
	Getting Started Testing
	Types of AngularJS Tests
	Getting Started
	Initializing Karma Config File
	Configuration Options
	Using RequireJS
	Jasmine
	Expectations
	End-to-End Introduction
	Mocking and Test Helpers
	Mocking the $httpBackend
	Testing an App
	Testing Events
	Continuous Integration for Angular
	Protractor
	Configuration
	Configuration Options
	Writing Tests
	Page Objects

	Events
	What are Events
	Event Propagation
	Listening
	Event Object
	Core Services Riding on Events

	Architecture
	Directory Structure
	Modules
	Controllers
	Directives
	Testing

	Angular Animation
	Installation
	How It Works
	Using CSS3 Transitions
	Using CSS3 Animations
	Staggering CSS Transitions / Animations
	Using JavaScript Animations
	Fine-tuning animations
	Animating Built-In Directives
	Building Custom Animations
	Integrating with Third-Party Libraries

	The Digest Loop and $apply
	$watch List
	Dirty Checking
	$watch
	$watchCollection
	The $digest Loop in a Page
	$evalAsync List
	$apply
	When to Use $apply()

	Demystifying Angular
	How the View Works

	Essential AngularJS Extensions
	AngularUI
	Installation
	ui-router
	ui-utils

	Mobile Apps
	Responsive Web Apps
	Interaction
	Native Applications with Cordova
	Getting Started with Cordova
	Including Angular
	Building with Yeoman

	Localization
	angular-translate
	Installation
	Teaching Your App a New Language
	Multi-language Support
	Switching the Language at Run Time
	Loading Languages
	angular-gettext
	Installation
	Usage
	String Extraction
	Translating Our Strings
	Compiling Our New Language
	Changing Languages

	Caching
	What Is a Cache?
	Angular Caching
	Caching through $http
	Setting Default Cache for $http

	Security
	Strict Contextual Escaping: the $sce Service
	Whitelisting URLs
	Blacklisting URLs
	$sce API
	Configuring $sce
	Trusted Context Types

	AngularJS and Internet Explorer
	Ajax Caching
	SEO with AngularJS
	Getting Angular Apps Indexed
	Server Side
	Options for Handling SEO from the Server Side
	Taking Snapshots
	Using Zombie.js to Grab HTML Snapshots
	Using grunt-html-snapshot
	Prerender.io
	<noscript> Approach

	Building Angular Chrome Apps
	Understanding Chrome Apps
	Building our Chrome App
	Building the Skeleton
	manifest.json
	tab.html
	Loading the App in Chrome
	The Main Module
	Building the Home Page
	Sign Up for Wunderground's Weather API
	A Settings Screen
	Implementing a User Service
	City Autofill/Autocomplete
	Sprinkling in Time Zone Support

	Optimizing Angular Apps
	What to Optimize
	Optimizing the $digest Loop
	Optimizing ng-repeat
	Optimizing the $digest Call
	Optimizing $watch Functions
	Optimizing Filters
	Tips for Optimizing Page Load

	Debugging AngularJS
	Debugging from the DOM
	Debugger
	Angular Batarang

	Next Steps
	jqLite and jQuery
	Essential Tools to Know About
	Grunt
	grunt-angular-templates
	Lineman
	Bower
	Yeoman
	Configuring the Angular Generator
	Testing Our App
	Packaging Our App
	Packaging Our Templates

