
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learning	AngularJS
Ken	Williamson

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learning	AngularJS

by	Ken	Williamson

Copyright	©	2015	Ken	Williamson.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Meg	Foley

Production	Editor:	Nicole	Shelby

Copyeditor:	Rachel	Head

Proofreader:	Rachel	Monaghan

Indexer:	WordCo.	Indexing	Services

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volckhausen

Illustrator:	Rebecca	Demarest

March	2015:	First	Edition

www.allitebooks.com

http://safaribooksonline.com
http://www.allitebooks.org

Revision	History	for	the	First	Edition
2015-03-10:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491916759	for	release	details.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-91675-9

[LSI]

www.allitebooks.com

http://oreilly.com/catalog/errata.csp?isbn=9781491916759
http://www.allitebooks.org

I	would	like	to	thank	my	son	Chris	for	all	his	help	and	for	being	a	sounding	board.
Thanks,	Chris.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

The	world	of	software	development	has	changed	drastically	over	the	last	few	decades.
Many	software	methodologies	and	concepts	that	were	considered	“cutting	edge”	20	or	so
years	ago	are	now	common	practice	in	the	field	of	software	development,	and	have	been
for	years.	One	example	is	the	World	Wide	Web	and	the	use	of	web	browsers	to	deliver
software	to	users.	In	1993,	the	concept	of	delivering	software	over	the	Internet	that	could
then	run	in	a	web	browser	on	any	machine	running	on	any	operating	system	was
considered	bleeding	edge.	But	as	any	computer	user	knows,	that	practice	has	been
commonplace	for	years	now.

When	JavaScript	client-side	web	application	frameworks	like	AngularJS,	Backbone.js,
and	Ember.js	first	appeared,	they	were	considered	too	cutting	edge	for	most	serious
software	projects.	As	they	matured,	however,	software	architects	and	developers	saw	great
potential	in	these	frameworks.	Applications	built	with	JavaScript	client-side	frameworks
exist	and	run	entirely	on	the	user’s	hardware,	much	like	conventional	thick-client
applications.	Applications	written	using	these	frameworks	are	much	faster	than
conventional	web	applications	and	provide	a	much	better	user	experience.

Over	the	last	couple	of	years,	JavaScript	client-side	frameworks	have	made	great	strides	in
functionality	and	reliability,	and	they	are	now	heavily	used	to	build	mobile	HTML5
applications.	But	mobile	applications	are	only	the	starting	point.	These	frameworks	now
have	the	potential	to	radically	change	the	way	we	build	modern	web	application	software.
Of	all	the	JavaScript	frameworks	available,	AngularJS,	backed	by	Google,	is	the	one	that
shines	the	brightest.

AngularJS	has	many	advantages	over	other	JavaScript	client-side	frameworks.	AngularJS
uses	the	MVC	design	pattern	and	embraces	that	pattern	completely.	The	model,	view,	and
controller	are	all	clearly	defined	in	AngularJS	and	serve	to	greatly	simplify	the
development	process.	With	AngularJS,	developers	can	build	applications	that	have	a	clear
separation	between	their	functional	layers.	

One	of	the	greatest	advantages	of	AngularJS	over	other	JavaScript	client-side	frameworks
is	the	unique	way	in	which	it	lets	developers	interact	with	RESTful	web	services.
AngularJS’s	resource	object	lets	developers	interact	with	REST	services	like	standard
objects.	The	complexity	of	REST	services	can	be	greatly	simplified	using	this	approach:
with	only	a	few	lines	of	code,	you	can	create	an	AngularJS	service	that	interacts	with
multiple	backend	REST	services.	Those	services	can	then	be	used	throughout	your
application,	reducing	the	total	number	of	lines	of	code.

In	fact,	one	of	the	biggest	advantages	of	AngularJS	over	other	client-side	frameworks	is	its
concept	of	services.	AngularJS	services	help	to	greatly	simplify	an	application	by
compartmentalizing	client-side	logic	into	single	units	of	code.	Those	single	units,	called

www.allitebooks.com

http://www.allitebooks.org

services,	can	then	be	used	repeatedly	throughout	an	application.	AngularJS	services	prove
especially	powerful	when	you’re	building	large	enterprise	applications	with	many	lines	of
code	and	much	complexity.	Complex	logic	can	be	written	only	once	inside	an	AngularJS
service	and	then	used	wherever	needed.	That	alone	makes	AngularJS	the	best	choice	for
your	next	JavaScript	project.

Thanks	to	this	use	of	services	and	its	all-inclusive	design,	AngularJS	helps	developers
write	less	code,	thereby	greatly	reducing	application	complexity.	The	simplicity	of
AngularJS	makes	it	easy	to	learn	and	easy	to	use.	Any	time	spent	learning	AngularJS	is
time	well	spent.	Any	time	spent	developing	AngularJS	applications	is	time	spent	turning	a
cutting-edge	technology	into	a	commonplace	technology.	In	this	book	I	strive	to	help	you
do	both,	encouraging	design	concepts	and	practices	that	will	help	you	build	better
AngularJS	applications.

www.allitebooks.com

http://www.allitebooks.org

Why	I	Wrote	This	Book
I	constantly	see	development	teams	avoid	using	AngularJS	because	of	its	perceived	steep
learning	curve.	Those	same	teams	often	choose	other	JavaScript	frameworks	because	they
initially	seem	easier	to	learn.	But	AngularJS	is	not	hard	to	learn	at	all.	It	is	actually	much
easier	to	learn	than	other	JavaScript	frameworks,	if	the	learning	process	is	approached
correctly.	Like	many	others,	I	struggled	to	learn	AngularJS	in	the	beginning.	This	book
was	written	to	help	developers	avoid	the	early	struggles	associated	with	learning
AngularJS	and	get	started	building	AngularJS	applications	and	websites	very	quickly.

What	This	Book	Covers
This	book	covers	everything	you	need	to	know	to	build	fully	functional	AngularJS
applications.	The	book	starts	off	with	the	basics	of	AngularJS.	You	will	learn	about
AngularJS	components	in	early	chapters.	As	chapters	progress,	you	will	get	hands-on
experience	building	working	AngularJS	projects.

Near	the	end	of	the	book,	you	will	write	the	AngularJS	part	of	a	working	MEAN	stack
blog	application	and	deploy	the	application	to	the	cloud.	MEAN	stands	for	MongoDB,
ExpressJS,	AngularJS,	and	Node.js.	Many	industry	experts	believe	the	MEAN	stack	will
be	a	dominant	web	development	platform	in	coming	years.

After	reading	this	book,	you	will	have	the	knowledge	to	start	building	high-quality
AngularJS	applications	and	websites.	You	will	also	gain	a	clear	understanding	of	the
design	concepts	associated	with	AngularJS	applications,	and	of	security	as	it	relates	to
AngularJS	applications.

Who	Should	Read	This	Book
This	book	is	intended	for	anyone	who	has	an	interest	in	learning	to	develop	AngularJS
applications	or	websites	quickly.	It	will	also	be	helpful	to	anyone	interested	in	learning
how	AngularJS	is	used	in	a	MEAN	stack	application.	The	reader	will	gain	not	only	a
conceptual	understanding	of	AngularJS,	but	hands-on	experience	as	well.	Anyone	reading
this	book	should	have	some	knowledge	of	JavaScript,	software	design	concepts,	and
software	design	patterns.	A	prior	knowledge	of	web	development	will	also	be	helpful.

The	Chapters	in	This	Book
This	book	starts	off	with	the	very	basics	of	AngularJS	and	assumes	the	reader	has	no	prior
knowledge	of	the	framework.	The	chapters	are	arranged	as	follows:	

Chapter	1,	Introduction	to	AngularJS,	starts	off	with	a	basic	introduction	to	AngularJS.
It	helps	the	reader	understand	how	AngularJS	differs	from	other	frameworks.	

Chapter	2,	The	IDE	and	AngularJS	Projects,	covers	setting	up	a	development
environment	and	building	AngularJS	projects.	It	also	covers	how	to	set	up	a	test
environment	for	AngularJS.

Chapter	3,	MVC	and	AngularJS,	compares	AngularJS	to	traditional	web	MVC
frameworks.	It	shows	why	AngularJS	is	a	better	framework	for	building	modern	web
applications	and	websites.

Chapter	4,	AngularJS	Controllers,	is	a	discussion	of	AngularJS	controllers.	The	reader
will	build	part	of	a	working	application	and	implement	controller	testing	near	the	end
of	the	chapter.

Chapter	5,	AngularJS	Views	and	Bootstrap,	covers	AngularJS	views	built	with	Twitter
Bootstrap.	The	reader	will	continue	working	on	a	functional	application	and	implement
testing.

Chapter	6,	AngularJS	and	REST	Services,	covers	AngularJS	services	as	they	relate	to
REST	services.	The	reader	will	continue	working	on	the	application	and	connect	it	to
public	REST	services	written	for	this	book.

Chapter	7,	AngularJS	Models,	covers	AngularJS	models	and	how	they	relate	to
controllers	and	views.	The	reader	will	continue	working	on	the	application	started
earlier.

Chapter	8,	Services	and	Business	Logic,	covers	non-REST	AngularJS	services.	In	this
chapter	the	reader	will	build	part	of	the	security	layer	used	later	in	the	book.

Chapter	9,	AngularJS	Directives,	covers	the	basics	of	building	and	testing	AngularJS
directives.

Chapter	10,	AngularJS	Security,	shows	the	reader	how	to	use	the	security	layer
introduced	in	Chapter	8	to	secure	the	AngularJS	application	started	earlier.

Chapter	11,	MEAN	Cloud	and	Mobile,	shows	the	reader	how	to	use	the	AngularJS
application	developed	in	previous	chapters	in	a	MEAN	stack	application	and	in	a
mobile	application.

Chapter	12,	AngularJS	and	SEO,	covers	search	engine	optimization	as	it	relates	to
AngularJS	applications	and	websites.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	signifies	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/KenWilliamson.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Learning	AngularJS	by	Ken	Williamson
(O’Reilly).	Copyright	2015	Ken	Williamson,	978-1-491-91675-9.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/KenWilliamson
mailto:permissions@oreilly.com

Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/learning-angularjs.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/learning-angularjs
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Introduction	to	AngularJS

Google’s	AngularJS	is	an	all-inclusive	JavaScript	model-view-controller	(MVC)
framework	that	makes	it	very	easy	to	quickly	build	applications	that	run	well	on	any
desktop	or	mobile	platform.	In	a	very	short	period	of	time,	AngularJS	has	moved	from
being	an	unknown	open	source	offering	to	one	of	the	best	known	and	most	widely	used
JavaScript	client-side	frameworks	offered.	AngularJS	1.3	and	greater	combined	with
jQuery	and	Twitter	Bootstrap	give	you	everything	you	need	to	rapidly	build	HTML5
JavaScript	application	frontends	that	use	REST	web	services	for	the	backend	processes.
This	book	will	show	you	how	to	use	all	three	frontend	components	to	harness	the	power	of
REST	services	on	the	backend	and	quickly	build	powerful	mobile	and	desktop
applications.

www.allitebooks.com

http://www.allitebooks.org

JavaScript	Client-Side	Frameworks
JavaScript	client-side	applications	run	on	the	user’s	device	or	PC,	and	therefore	shift	the
workload	to	the	user’s	hardware	and	away	from	the	server.	Until	fairly	recently,	server-
side	web	MVC	frameworks	like	Struts,	Spring	MVC,	and	ASP.NET	were	the	frameworks
of	choice	for	most	web-based	software	development	projects.	JavaScript	client-side
frameworks,	however,	are	sustainable	models	that	offer	many	advantages	over
conventional	web	frameworks,	such	as	simplicity,	rapid	development,	speed	of	operation,
testability,	and	the	ability	to	package	the	entire	application	and	deploy	it	to	all	mobile
devices	and	the	Web	with	relative	ease.	You	can	build	your	application	one	time	and
deploy	and	run	it	anywhere,	on	any	platform,	with	no	modifications.	That’s	powerful.

AngularJS	makes	that	process	even	faster	and	easier.	It	helps	you	build	frontend
applications	in	days	rather	than	months	and	has	complete	support	for	unit	testing	to	help
reduce	quality	assurance	(QA)	time.	AngularJS	has	a	rich	set	of	user	documentation	and
great	community	support	to	help	answer	questions	during	your	development	process.
Models	and	views	in	AngularJS	are	much	simpler	than	what	you	find	in	most	JavaScript
client-side	frameworks.	Controllers,	often	missing	in	other	JavaScript	client-side
frameworks,	are	key	functional	components	in	AngularJS.

Figure	1-1	shows	a	diagram	of	an	AngularJS	application	and	all	related	MVC
components.	Once	the	AngularJS	application	is	launched,	the	model,	view,	controller,	and
all	HTML	documents	are	loaded	on	the	user’s	mobile	or	desktop	device	and	run	entirely
on	the	user’s	hardware.	As	you	can	see,	calls	are	made	to	the	backend	REST	services,
where	all	business	logic	and	business	processes	are	located.	The	backend	REST	services
can	be	located	on	a	private	web	server	or	in	the	cloud	(which	is	most	often	the	case).
Cloud	REST	services	can	scale	from	a	handful	of	users	to	millions	of	users	with	relative
ease.

Figure	1-1.	Diagram	of	an	AngularJS	MVC	application

Single-Page	Applications
AngularJS	is	most	often	used	to	build	applications	that	conform	to	the	single-page
application	(SPA)	concept.	SPAs	are	applications	that	have	one	entry	point	HTML	page;
all	the	application	content	is	dynamically	added	to	and	removed	from	that	one	page.	You
can	see	the	entry	point	of	our	SPA	in	the	index.html	code	that	follows.	The	tag	<div	ng-
view></div>	is	where	all	dynamic	content	is	inserted	into	index.html:

<!--	chapter1/index.html	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="helloWorldApp">

<head>

<title>AngularJS	Hello	World</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

<script	src="js/services.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>

As	the	user	clicks	on	links	in	the	application,	existing	content	attached	to	the	tag	is
removed	and	new	dynamic	content	is	then	attached	to	the	same	tag.	Rather	than	the	user
waiting	for	a	new	page	to	load,	new	content	is	dynamically	displayed	in	a	fraction	of	the
time	that	it	would	take	to	load	a	new	HTML	web	page.

TIP
You	can	download	the	source	for	the	Chapter	1	“Hello,	World”	application	from	GitHub.

http://bit.ly/lajs-github

Bootstrapping	the	Application
Bootstrapping	AngularJS	is	the	process	of	loading	AngularJS	when	an	application	first
starts.	Loading	the	AngularJS	libraries	in	a	page	will	start	the	bootstrap	process.	The
index.html	file	is	analyzed,	and	the	parser	looks	for	the	ng-app	tag.	The	line	<html
lang="en"	ng-app="helloWorldApp"></html>	shows	how	ng-app	is	defined.	The
following	code	shows	the	JavaScript	that	is	fired	by	that	line	in	the	index.html	file.	As	you
can	see,	app.js	is	where	the	AngularJS	application	helloWorldApp	is	defined	as	an
AngularJS	module,	and	this	is	the	entry	point	into	the	application.	The	variable
helloWorldApp	in	this	file	could	be	named	anything.	I	will,	however,	call	it
helloWorldApp	for	the	sake	of	uniformity:

/*	chapter1/app.js	excerpt	*/

'use	strict';

/*	App	Module	*/

var	helloWorldApp	=	angular.module('helloWorldApp',	[

		'ngRoute',

		'helloWorldControllers'

]);

Dependency	Injection
Dependency	injection	(DI)	is	a	design	pattern	where	dependencies	are	defined	in	an
application	as	part	of	the	configuration.	Dependency	injection	helps	you	avoid	having	to
manually	create	application	dependencies.	AngularJS	uses	dependency	injection	to	load
module	dependencies	when	an	application	first	starts.	The	app.js	code	in	the	previous
section	shows	how	AngularJS	dependencies	are	defined.

As	you	can	see,	two	dependencies	are	defined	as	needed	by	the	helloWorldApp	application
at	startup.	The	dependencies	are	defined	in	an	array	in	the	module	definition.	The	first
dependency	is	the	AngularJS	ngRoute	module,	which	provides	routing	to	the	application.
The	second	dependency	is	our	controller	module,	helloWorldControllers.	We	will	cover
controllers	in	depth	later,	but	for	now	just	understand	that	controllers	are	needed	by	our
applications	at	startup	time.

Dependency	injection	is	not	a	new	concept.	It	was	introduced	over	10	years	ago	and	has
been	used	consistently	in	various	application	frameworks;	DI	was	at	the	core	of	the
popular	Spring	framework	written	in	Java.	One	of	its	main	advantages	is	that	it	reduces
the	need	for	boilerplate	code,	writing	of	which	would	normally	be	a	time-consuming
process	for	a	development	team.

Dependency	injection	also	helps	to	make	an	application	more	testable.	That	is	one	of	the
main	advantages	of	using	AngularJS	to	build	JavaScript	applications.	AngularJS
applications	are	much	easier	to	test	than	applications	written	with	most	JavaScript
frameworks.	In	fact,	there	is	a	test	framework	that	has	been	specifically	written	to	make
testing	AngularJS	applications	easy.	We	will	talk	more	about	testing	at	the	end	of	this
chapter.

AngularJS	Routes
AngularJS	routes	are	defined	through	the	$routeProvider	API.	Routes	are	dependent	on
the	ngRoute	module,	and	that’s	why	it	is	a	requirement	when	the	application	starts.	The
following	code	from	app.js	shows	how	we	define	routes	in	an	AngularJS	application.	Two
routes	are	defined	—	the	first	is	/	and	the	second	is	/show:

/*	chapter1/app.js	excerpt	*/

helloWorldApp.config(['$routeProvider',	'$locationProvider',	

function($routeProvider,	$locationProvider){	

	$routeProvider.	

			when('/',	{	

					templateUrl:	'partials/main.html',	

					controller:	'MainCtrl'	}).

			when('/show',	{	

					templateUrl:	'partials/show.html',	

					controller:	'ShowCtrl'	

});	

The	two	defined	routes	map	directly	to	URLs	defined	in	the	application.	If	a	user	clicks	on
a	link	in	the	application	specified	as	www.someDomainName/show,	the	/show	route	will	be
followed	and	the	content	associated	with	that	URL	will	be	displayed.	If	the	user	clicks	on
a	link	specified	as	www.someDomainName/,	the	/	route	will	be	followed	and	that	content
will	be	displayed.

HTML5	Mode
The	complete	app.js	file	is	shown	next.	The	last	line	in	app.js
($locationProvider.html5Mode(false).hashPrefix('!');)	uses	the
locationProvider	service.	This	line	of	code	turns	off	the	HTML5	mode	and	turns	on	the
hashbang	mode	of	AngularJS.	If	you	were	to	turn	on	HTML5	mode	instead	by	passing
true,	the	application	would	use	the	HTML5	History	API.	HTML5	mode	also	gives	the
application	pretty	URLs	like	/someAppName/blogPost/5	instead	of	the	standard	AngularJS
URLs	like	/someAppName/#!/blogPost/5	that	use	the	#!,	known	as	the	hashbang.

/*	chapter1/app.js	complete	file	*/

'use	strict';

/*	App	Module	*/

var	helloWorldApp	=	angular.module('helloWorldApp',	[

		'ngRoute',

		'helloWorldControllers'

]);

helloWorldApp.config(['$routeProvider',	'$locationProvider',

		function($routeProvider,	$locationProvider)	{

				$routeProvider.

						when('/',	{

									templateUrl:	'partials/main.html',

									controller:	'MainCtrl'

						}).when('/show',	{

									templateUrl:	'partials/show.html',

									controller:	'ShowCtrl'

});

$locationProvider.html5Mode(false).hashPrefix('!');

}]);

HTML5	mode	can	provide	pretty	URLs,	but	it	does	require	configuration	changes	on	the
web	server	in	most	cases.	The	changes	are	different	for	each	individual	web	server,	and
can	differ	for	different	server	installations	as	well.	HTML5	mode	also	handles	URL
changes	in	a	different	way,	by	using	the	HTML	History	API	for	navigation.

Using	HTML5	mode	is	just	a	configuration	change	in	AngularJS,	and	we	won’t	cover	the
needed	server	changes	in	this	book	as	our	focus	is	on	AngularJS.	The	AngularJS	site	has
documentation	on	the	changes	needed	for	all	modern	web	servers	when	HTML5	mode	is
enabled.	Using	this	mode	has	some	benefits,	but	we	will	stick	with	hashbang	mode	in	our
chapter	exercises.

Hashbang	mode	is	used	to	support	conventional	search	engines	that	don’t	have	the	ability
to	execute	JavaScript	on	Ajax	sites	like	those	built	with	AngularJS.	When	a	conventional
search	engine	searches	a	site	built	with	AngularJS	that	uses	hashbangs,	the	search	engine
replaces	the	#!	with	?_escaped_fragment_=.	Conventional	search	engines	expect	the
server	to	have	HTML	snapshots	at	the	location	where	_escaped_fragment_=	is	configured
to	point.	HTML	snapshots	are	merely	copies	of	the	HTML	rendered	version	of	the	website
or	application.

Modern	Search	Engines
Fortunately,	modern	search	engines	have	the	ability	to	execute	JavaScript,	as	announced
by	Google	in	a	news	release	on	May	23,	2014.	Hashbang	mode	also	allows	AngularJS
applications	to	store	Ajax	requested	pages	in	the	browser’s	history.	That	process	often
simplifies	browser	bookmarks.

http://bit.ly/1EWcX3P

AngularJS	Templates
AngularJS	partials,	also	called	templates,	are	code	sections	that	contain	HTML	code	that
are	bound	to	the	<div	ng-view></div></div>	tag	shown	in	the	index.html	file	earlier	in
this	chapter.	If	you	look	back	at	the	complete	app.js	file,	you	can	see	that	different
templateUrl	values	are	defined	for	each	route.

The	main.html	and	show.html	files	listed	next	show	the	two	defined	partials	(templates).
The	templates	contain	just	HTML	code,	with	nothing	special	at	this	time.	Later,	we	will
use	AngularJS’s	built-in	template	language	to	display	dynamic	data	in	our	templates:

<!--	chapter1/main.html	-->

<div>Hello	World</div>

<!--	chapter1/show.html	-->

<div>Show	The	World</div>

As	the	user	clicks	on	the	different	links,	the	value	assigned	to	<div	ng-view>	is	replaced
with	the	content	of	the	associated	template	files.	The	value	of	controller	defined	for	each
route	references	the	controller	component	(of	the	MVC	pattern)	that	is	defined	for	each
particular	route.

The	next	sections	provide	a	brief	overview	of	each	AngularJS	MVC	component	and	how
it	is	used,	to	give	you	a	better	understanding	of	how	AngularJS	works.	Unlike	most
JavaScript	client-side	frameworks,	AngularJS	provides	the	model,	view,	and	controller
components	for	use	in	all	applications.	That	often	helps	developers	familiar	with	design
patterns	to	quickly	grasp	AngularJS	concepts.

AngularJS	Views	(MVC)
Many	JavaScript	client-side	frameworks	require	you	to	actually	define	the	view	classes	in
JavaScript,	and	they	can	contain	anywhere	from	a	few	to	hundreds	of	lines	of	code.	Such
is	not	the	case	with	AngularJS.	AngularJS	pulls	in	all	the	templates	defined	for	an
application	and	builds	the	views	in	the	document	object	model	(DOM)	for	you.	Therefore,
the	only	work	you	need	to	do	to	build	the	views	is	to	create	the	templates.

Building	views	in	AngularJS	is	a	simple	process	that	uses	mostly	HTML	and	CSS.	The
simplicity	of	AngularJS	views	is	a	huge	time-saver	when	you’re	building	AngularJS
applications.	We	will	cover	creating	templates	in	more	detail	in	Chapter	5.

AngularJS	Models	(MVC)
Many	JavaScript	client-side	frameworks	also	require	you	to	create	JavaScript	model
classes.	That	is	also	not	the	case	with	AngularJS.	AngularJS	has	a	$scope	object	that	is
used	to	store	the	application	model.	Scopes	are	attached	to	the	DOM.	The	way	to	access
the	model	is	by	using	data	properties	assigned	to	the	$scope	object.

The	AngularJS	$scope	helps	to	simplify	JavaScript	applications	considerably.	Other
JavaScript	frameworks	often	encourage	placing	large	amounts	of	business	logic	inside	the
model	classes	for	the	particular	framework.	Unfortunately,	that	practice	often	leads	to
duplicated	business	logic.	In	a	large	project,	that	can	lead	to	thousands	of	lines	of	useless
code.	We	will	talk	more	about	models	in	Chapter	7.

www.allitebooks.com

http://www.allitebooks.org

AngularJS	Controllers	(MVC)
AngularJS	controllers	are	the	tape	that	holds	the	models	and	views	together.	The	controller
is	where	you	should	place	all	business	logic	specific	to	a	particular	view	when	it’s	not
possible	to	place	the	logic	inside	a	REST	service.	Business	logic	should	almost	always	be
placed	in	backend	REST	services	whenever	possible;	this	helps	to	simplify	AngularJS
applications.

When	business	logic	placed	inside	an	application	is	used	by	multiple	controllers,	it	should
be	placed	in	AngularJS	non-REST	services	instead.	Those	services	can	then	be	injected
into	any	controller	that	needs	access	to	the	logic.	We	will	cover	non-REST	services	in
Chapter	8	in	great	detail.

Controller	Business	Logic
The	following	code	shows	the	contents	of	the	controllers.js	file.	At	the	start	of	the	file	we
define	the	helloWorldController	module.	We	then	define	two	new	controllers,	MainCtrl
and	ShowCtrl,	and	attach	them	to	the	helloWorldController	module.	Business	logic
specific	to	the	MainCtrl	controller	is	defined	inside	that	controller.	Likewise,	business
logic	specific	to	the	ShowCtrl	controller	is	defined	inside	the	ShowCtrl	controller.	Notice
that	$scope	is	injected	into	both	controllers.	The	$scope	that	is	injected	into	each
controller	is	specific	to	that	controller	and	not	visible	to	other	controllers:

/*	chapter1/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	helloWorldControllers	=	

angular.module('helloWorldControllers',	[]);

helloWorldControllers.controller('MainCtrl',	['$scope',	

function	MainCtrl($scope)	{

		$scope.message	=	"Hello	World";

}]);

helloWorldControllers.controller('ShowCtrl',	['$scope',	

function	ShowCtrl($scope)	{

		$scope.message	=	"Show	The	World";

}]);

As	you	can	see,	we	are	now	using	the	model	to	populate	the	messages	that	get	displayed	in
the	templates.	The	following	code	shows	the	modified	templates	that	use	the	newly
created	model	values.	The	line	$scope.message	=	"Hello	World"	in	the	MainCtrl
controller	is	used	to	create	a	property	named	message	that	is	added	to	the	scope	(which
holds	the	model	attributes).	We	then	use	the	double	curly	braces	markup	({{}})	inside	the
main.html	template	to	gain	access	to	and	display	the	value	assigned	to	$scope.message:

<!--	chapter1/main.html	-->

<div>{{message}}</div>

Using	double	curly	braces	is	AngularJS’s	way	of	displaying	scope	properties	in	the	view.
The	double	curly	braces	syntax	is	actually	part	of	the	built-in	AngularJS	template
language.

Likewise,	we	use	the	value	assigned	to	the	message	property	with	the	line
$scope.message	=	"Show	The	World"	in	the	ShowCtrl	controller	to	populate	the
message	displayed	in	the	show.html	template.	We	use	the	double	curly	braces	markup
inside	the	show.html	template	as	before	to	gain	access	to	and	display	the	model	property:

<!--	chapter1/show.html	-->

<div>{{message}}</div>

Integrating	AngularJS	with	Other	Frameworks
AngularJS	can	be	integrated	into	existing	applications	that	use	other	frameworks.	Those
may	be	other	JavaScript	client-side	frameworks,	or	web	frameworks	like	Spring	MVC	or
CakePHP.	You	could	take	an	application	written	in	Java	and	add	some	new	client-side
functionality	very	easily	using	AngularJS,	cutting	development	time	considerably.

Adding	a	new	AngularJS	shopping	cart	to	an	existing	Java	application	would	be	a	good
example	to	consider.	The	existing	Java	application	could	be	written	with	the	Spring
framework	and	use	Spring	MVC	as	the	web	framework.	Adding	a	shopping	cart	built	with
Java	using	Spring	MVC	could	be	a	time-consuming	process.	That,	however,	would	not	be
the	case	with	AngularJS.

You	could	quickly	build	a	shopping	cart	with	AngularJS	and	be	up	and	running	in	a	few
hours,	easily	integrating	the	cart	into	the	existing	Java	application.	Not	only	would	you	be
able	to	build	the	cart	faster,	but	you	could	quickly	add	unit	testing	to	increase	coverage
and	reduce	the	application’s	defects.	AngularJS	was	designed	to	be	testable	from	the	very
beginning;	that	is	one	of	the	key	features	of	AngularJS	and	a	major	reason	for	selecting	it
over	other	JavaScript	client-side	frameworks.	We	will	talk	about	testing	AngularJS
applications	in	the	next	section.

Testing	AngularJS	Applications
In	recent	years	continuous	integration	(CI)	build	tools	such	as	Travis	CI,	Jenkins,	and
others	have	risen	in	popularity	and	usage.	CI	tools	have	the	ability	to	run	test	scripts
during	a	build	process	and	give	immediate	feedback	by	way	of	test	results.	CI	tools	help	to
automate	the	process	of	testing	software	and	can	often	alert	developers	of	software	defects
as	soon	as	they	occur.

There	are	two	types	of	AngularJS	tests	that	integrate	well	with	CI	tools.	The	first	type	of
testing	is	unit	testing.	Most	developers	are	familiar	with	unit	testing;	they	can	often
identify	software	defects	early	in	the	development	process	by	testing	small	units	of	code.
The	second	type	of	testing	is	end-to-end	(E2E)	testing.	E2E	testing	helps	to	identify
software	defects	by	testing	how	software	components	connect	and	interact.

There	are	many	testing	tools	used	for	unit	testing	AngularJS	applications.	Two	of	the	most
popular	are	Karma	and	JS	Test	Driver.	Karma,	however,	is	quickly	becoming	the	top
choice	for	AngularJS	development	teams.	The	most	popular	E2E	test	tool	for	end-to-end
testing	of	AngularJS	applications	is	a	new	tool	called	Protractor.	Both	tools	integrate	well
with	CI	build	tools.

Large	AngularJS	development	teams	will	find	testing	AngularJS	applications	with
continuous	integration	tools	to	be	a	huge	time-saver.	Often	a	failed	CI	test	is	the	first
indication	of	a	defect	for	large	teams.	Small	teams	will	also	see	many	advantages	to	CI-
based	testing.	AngularJS	developers	should	always	develop	both	unit	tests	and	end-to-end
tests	whenever	possible.

Throughout	this	book,	we	will	cover	both	unit	testing	and	end-to-end	testing.	We	will	use
both	Karma	and	JsTestDrive	for	unit	testing,	and	we	will	use	Protractor	for	E2E	testing.

Conclusion
We	will	cover	models,	views,	and	controllers	in	great	detail	in	later	chapters,	using	those
components	to	build	working	applications	that	show	the	power	of	AngularJS.	We	will
show	how	all	three	components	work	together	to	simplify	the	job	of	building	JavaScript
client-side	applications.	We	will	also	cover	building	both	unit	tests	and	end-to-end	tests	for
AngularJS	applications.

Chapter	2	will	focus	on	helping	you	set	up	a	development	environment	for	HTML5.	We
will	also	download	the	latest	versions	of	AngularJS,	jQuery,	and	Twitter	Bootstrap	and
add	those	to	our	sample	project.

Chapter	2.	The	IDE	and	AngularJS
Projects

Many	JavaScript	editors	are	used	by	AngularJS	developers.	Using	an	integrated
development	environment	(IDE)	with	a	good	JavaScript	editor	is	a	huge	time-saver	and
speeds	up	the	development	process	considerably.	IDEs	with	good	JavaScript	tools	usually
have	good	HTML5	and	CSS3	tools	as	well,	which	helps	to	increase	a	developer’s
productivity	substantially.	We	will	harness	the	power	of	an	IDE	in	this	book.

The	IDE
We	will	be	using	NetBeans	as	our	integrated	development	environment.	You	can,
however,	use	any	IDE	or	editor	that	you	prefer.	Most	of	this	chapter	will	be	generic	and
will	work	fine	with	any	modern	IDE.	To	get	started,	do	the	following:

1.	 Download	and	install	the	latest	version	of	NetBeans	from	the	NetBeans	website	(or
download	another	IDE	of	your	choice).

2.	 Download	the	latest	versions	of	the	following	AngularJS	files:
a.	 angular.min.js	(main	libs)

b.	 angular-route.min.js	(routing	libs)

c.	 angular-cookies.min.js	(cookie	libs)

d.	 angular-resource.min.js	(REST	service	libs)

3.	 Download	the	latest	version	of	jQuery.

4.	 Download	the	latest	version	of	Twitter	Bootstrap.

Start	NetBeans	and	create	a	new	HTML5	project,	as	shown	in	Figure	2-1.	Name	the
project	AngularJsHelloWorld_chapter2.

https://netbeans.org/downloads
https://angularjs.org
http://jquery.com/download
http://getbootstrap.com/getting-started/#download

Figure	2-1.	Creating	your	new	HTML5	project

Now	do	the	following:

1.	 Create	the	directory	structure	shown	in	Figure	2-2	under	Site	Root.

2.	 Copy	the	AngularJS,	jQuery,	and	Bootstrap	files	into	the	libs	folder.

3.	 Right-click	the	js	folder	and	create	the	following	.js	files:
a.	 app.js	(where	the	application	is	defined)

b.	 controllers.js	(where	controllers	are	defined)

c.	 services.js	(where	services	are	defined)

d.	 main.html	under	the	partials	folder

e.	 show.html	under	the	partials	folder

f.	 index.html	under	the	Site	Root	folder

Figure	2-2.	Creating	the	directory	structure

www.allitebooks.com

http://www.allitebooks.org

Editing	the	HTML	Code
Now	we	must	edit	the	index.html	file	to	create	bootstrapping	for	the	application	and	to	use
the	libraries	and	.js	files	just	added.	Edit	your	newly	created	index.html	file	to	match	the
code	that	follows.	These	are	all	the	changes	that	we	need	to	make	to	this	file	for	now.
Next,	we	will	edit	the	app.js	and	controllers.js	files:

<!--	chapter2/index.html	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="helloWorldApp">

<head>

<title>AngularJS	Hello	World</title>

<meta	name="viewport"	content="width=device-width,	

				initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

<script	src="js/services.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>	

Editing	the	JavaScript	Code
Update	your	newly	created	app.js	file	with	the	code	shown	here.	As	you	can	see,	it	is	the
same	code	we	covered	in	Chapter	1:

/*	chapter2/app.js	*/

'use	strict';

/*	App	Module	*/

var	helloWorldApp	=	angular.module('helloWorldApp',	[

		'ngRoute',

		'helloWorldControllers'

]);

helloWorldApp.config(['$routeProvider',	'$locationProvider',

function($routeProvider,	$locationProvider)	{

		$routeProvider.

				when('/',	{

				templateUrl:	'partials/main.html',

				controller:	'MainCtrl'

		}).when('/show',	{

				templateUrl:	'partials/show.html',

				controller:	'ShowCtrl'

});

$locationProvider.html5Mode(false).hashPrefix('!');

}]);	

Likewise,	update	your	newly	created	controllers.js	file	with	the	code	shown	next.	This	is
also	the	same	code	covered	in	Chapter	1	for	the	controller:

/*	chapter2/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	helloWorldControllers	=	

		angular.module('helloWorldControllers',	[]);

helloWorldControllers.controller('MainCtrl',	

		['$scope',	'$location',	'$http',

function	MainCtrl($scope,	$location,	$http)	{

		$scope.message	=	"Hello	World";

}]);

helloWorldControllers.controller('ShowCtrl',	

		['$scope',	'$location',	'$http',

function	ShowCtrl($scope,	$location,	$http)	{

		$scope.message	=	"Show	The	World";

}]);

Creating	the	Templates
Now	all	that	is	left	is	to	create	the	templates	(partials).	Do	the	following:

<!--	chapter2/main.html	-->

<div>{{message}}</div>

1.	 Edit	the	new	main.html	and	add	the	code	shown	here:

2.	 Edit	show.html	and	add	the	code	shown	here:

<!--	chapter2/show.html	-->

<div>{{message}}</div>

Running	the	Applications
That	concludes	the	code	changes	needed	in	the	Chapter	2	project	for	now.	Right-click	on
the	new	HTML5	project	and	select	“Run.”	At	the	URL
http://localhost:8383/AngularJsHelloWorld_chapter2/index.html#!/,	you	should	see	the
words	“Hello	World”	in	the	top-left	corner	of	the	browser.

Now	change	the	URL	to
http://localhost:8383/AngularJsHelloWorld_chapter2/index.html#!/show,	and	you	should
see	the	words	“Show	The	World”	in	the	top-left	corner	of	the	browser.	If	you	get	the
correct	results,	your	project	is	configured	correctly.	If	you	get	a	different	result,	go	back
through	this	chapter	and	verify	that	you	completed	all	the	steps.

If	you	continue	to	have	problems,	download	the	Chapter	2	source	from	GitHub	and	try	to
run	that	code.

http://bit.ly/lajs-github

Testing	AngularJS	Applications	in	the	IDE
As	I	mentioned	in	the	previous	chapter,	there	are	two	types	of	tests	that	are	used	for	testing
AngularJS	applications.	The	first	type	of	test	is	the	unit	test.	Unit	testing	is	usually	the	first
place	where	issues	with	the	code	are	found,	through	testing	small	units	of	code.	The
second	type	of	test	is	end-to-end	(E2E)	testing.	E2E	testing	helps	to	identify	software
defects	by	testing	how	components	connect	and	interact	together	as	a	whole.

NetBeans	can	easily	work	with	both	JsTestDriver	and	Karma	for	unit	testing	AngularJS
applications.	Karma	is	quickly	becoming	the	most	popular	choice	for	AngularJS
development	teams,	so	we	will	focus	more	on	Karma	in	later	chapters.	Protractor	is	the
most	popular	test	framework	for	E2E	testing	of	AngularJS	applications.	Currently,	most
development	environments	don’t	have	built-in	support	for	Protractor.	Protractor	is	a	new
testing	framework,	and	it	may	take	a	while	before	most	IDEs	and	editors	support	it.
NetBeans	currently	has	no	support	for	Protractor.

Both	Karma	and	Protractor	run	on	Node.js.	Node.js	is	an	open	source	cross-platform
framework	built	on	the	Google	V8	JavaScript	engine.	We	will	use	Node.js	later	in	this
book,	when	we	focus	on	building	MEAN	stack	applications.	Installing	Karma	and
Protractor	is	a	relatively	easy	process	that	uses	the	Node.js	package	manager	(npm)	for	the
installation	process.

Node.js-based	projects	use	a	JSON	file	named	package.json	as	the	project	configuration
file.	The	following	is	a	standard	package.json	file	used	in	a	NetBeans	project.	If	you	look
at	the	dependencies	section	of	the	file,	you	will	see	that	we	actually	define	Karma	as	a
dependency	of	the	application.	That	is	because	Karma	is	usually	installed	locally	at	the
project	level	for	each	individual	project:

{"chapter":	2,	"name":	"package.json"},

{

		"name"	:	"UlboraCmsMean",

		"version"	:	"2.0.0",

		"description"	:	"UlboraCms",

		"keywords"	:	["Ulbora	CMS",	"Node.js",	"Ken",	

				"Williamson",	"micbutton.com"],

		"author"	:	{

				"name"	:	"Ken	Williamson",

				"email"	:	"sales@drivensolutions.com",

				"url"	:	"http://www.drivensolutions.com/"

		},

		"homepage"	:	"http://www.ulboracms.org",

		"repository"	:	{

				"type"	:	"git",

				"url"	:	"https://github.com/Ulbora/ulboracms"

		},

		"engines"	:	{

				"node"	:	">=	0.6.0",

				"npm"	:	">=	1.0.0"

		},

		"dependencies"	:	{

				"express"	:	"~3.4.4",

				"mongoose"	:	"*",

				"atob":	"*",

				"btoa":	"*",

				"node-rest-client":	"*",

				"consolidate":	"*",

				"ejs":	"*",

				"handlebars":	"*",

				"nodemailer":	"*",

				"karma":	"*"

		},

		"bundleDependencies"	:	[],

		"private"	:	true,

		"main"	:	"./server.js",

		"bugs"	:	{

				"url"	:	"null"

		}

}

A	file	similar	to	this	one	will	be	used	later	in	the	book	when	we	build	the	MEAN	stack
blog	application.	NetBeans,	using	a	Node.js	plugin,	can	generate	the	package.json	file	for
you.	The	generated	file	will	need	to	be	modified	to	include	the	specifics	of	your	particular
project.

TIP
You	can	also	use	npm	init	to	generate	the	package.json	file.	After	typing	npm	init	at	the	command
prompt,	you	will	be	presented	with	a	few	questions.	Your	responses	will	then	be	used	to	create	a	default
package.json	file.

JsTestRunner
NetBeans	has	built-in	support	for	JsTestRunner.	The	JsTestRunner	configuration	file	can
be	generated	and	requires	few	changes	to	get	unit	testing	running	on	your	local
environment.

Unlike	Karma,	JsTestRunner	is	not	based	on	Node.js.	The	following	is	a	standard
JsTestRunner	configuration	file	created	by	NetBeans	for	an	AngularJS	project.	Notice	in
the	first	line	that	the	test	server	URL	and	port	are	specified:

/*	chapter2/jsTestDriver.conf	*/

server:	http://localhost:42442

load:

	-	test/lib/jasmine/jasmine.js

	-	test/lib/jasmine-jstd-adapter/JasmineAdapter.js	

		

	-	public_html/js/libs/angular.min.js

	-	public_html/js/libs/angular-mocks.js

	-	public_html/js/libs/angular-cookies.min.js

	-	public_html/js/libs/angular-resource.min.js

	-	public_html/js/libs/angular-route.min.js

	-	public_html/js/*.js

	

	-	test/unit/*.js

exclude:

The	locations	of	the	test	library	files	are	specified	under	load.	We	also	specify	the
locations	of	each	unit	test	script	that	should	be	run	by	JsTestDriver.	Test	filenames	usually
end	with	“Spec.”	The	following	code	shows	a	test	specification	file	used	to	test	AngularJS
controllers.	We	will	cover	test	specification	in	later	chapters,	when	we	run	our	first	unit
tests:

/*	chapter2/controllerSpec.js	*/

/*	Jasmine	specs	for	controllers	go	here	*/

describe('Hello	World',	function()	{

		beforeEach(module('helloWorldApp'));

		describe('MainCtrl',	function(){

				var	scope,	ctrl;

				beforeEach(inject(function($rootScope,	$controller)	{

						

						scope	=	$rootScope.$new();

						ctrl	=	$controller('MainCtrl',	{$scope:	scope});

				}));

				it('should	create	initialed	message',	function()	{	

						expect(scope.message).toEqual("Hello	World");						

				});

		});

		describe('ShowCtrl',	function(){

				var	scope,	ctrl;

				beforeEach(inject(function($rootScope,	$controller)	{

					scope	=	$rootScope.$new();

						ctrl	=	$controller('ShowCtrl',	{$scope:	scope});

				}));

				

				it('should	create	initialed	message',	function()	{	

						expect(scope.message).toEqual("Show	The	World");						

				});

		});

		

		describe('CustomerCtrl',	function(){

				var	scope,	ctrl;

				beforeEach(inject(function($rootScope,	$controller)	{

					scope	=	$rootScope.$new();							

						ctrl	=	$controller('CustomerCtrl',	{$scope:	scope});

				}));

				

				it('should	create	initialed	message',	function()	{	

						expect(scope.customerName).toEqual("Bob's	Burgers");						

				});

		});

});

Currently	one	of	the	big	disadvantages	of	testing	JavaScript	applications	is	the	lack	of
tools	that	generate	test	scripts	based	on	the	actual	source	files	that	need	to	be	tested.	Those
tools	have	existed	in	the	Java	world	for	years,	but	they	are	still	relatively	nonexistent	in
the	realm	of	JavaScript.	So,	a	file	like	this	one	needs	to	be	created	by	hand	to	unit	test	each
AngularJS	controller.

Karma	Test	Runner
As	I	mentioned	earlier,	Karma	is	a	test	runner	based	on	Node.js.	The	Karma	team
recommends	installing	Karma	locally	at	the	project	level.	So,	we	will	add	Karma	in	the
package.json	file	of	each	of	our	projects,	then	use	the	following	command	to	pull	down
and	install	Karma	on	a	per-project	basis:

npm	install

When	you	run	this	command,	npm	reads	the	package.json	file	and	installs	the	packages
defined	in	the	dependencies	section	of	the	file.	After	you	run	the	command,	Karma	will	be
located	under	the	node_modules	folder	within	your	project	folder.	Any	other	Node.js
dependencies	defined	in	the	package.json	file	will	also	be	located	under	the	node_modules
folder.

Karma	requires	a	configuration	file	named	karma.conf.js	that	specifies	how	it	should	run
unit	tests.	You	can	use	NetBeans	to	generate	the	karma.conf.js	file.	The	following	code
shows	a	Karma	configuration	file	generated	by	NetBeans.	You	can	see	there	are	sections
of	the	file	to	specify	the	locations	of	library	files,	test	scripts,	and	browser	plugins:

/*	chapter2/karma.conf.js		*/

/*	

	*	To	change	this	license	header,	choose	License	Headers	in	

	*	Project	Properties.

	*	To	change	this	template	file,	choose	Tools	->	Templates

	*	and	open	the	template	in	the	editor.

	*/

module.exports	=	function	(config)	{

				config.set({

								basePath:	'../',

								files:	[

],

								exclude:	[

],

								autoWatch:	true,

								frameworks:	[

],

								browsers:	[

],

								plugins:	[

]

				});

};

We	will	cover	Karma	in	more	detail	when	we	run	our	first	unit	test	using	Karma,	in
Chapter	4.

Protractor
Most	development	environments	do	not	yet	have	built-in	support	for	Protractor.	Protractor
is	a	Node.js-based	framework,	just	like	Karma.	The	installation	process	is	much	like	the
process	for	Karma.	Protractor	is	built	on	top	of	WebDriverJS.	The	Protractor	team
recommends	installing	Protractor	globally	on	your	system.

To	install	Protractor	on	your	development	machine,	issue	the	following	command.	Notice
the	-g	flag	in	the	command	line	—	that	tells	npm	to	install	Protractor	globally	for	all
projects	and	applications	to	use:

npm	install	-g	protractor

Since	Protractor	is	built	on	WebDriverJS,	we	must	also	configure	WebDriverJS	for	our
test	environment.	Run	this	command	to	update	WebDriverJS	with	all	the	latest	binaries:

webdriver-manager	update

Once	that	command	executes	successfully,	run	the	following	command	to	start	the
Selenium	Server	that	WebDriverJS	uses	to	run	Protractor	test	scripts:

webdriver-manager	start

Protractor	needs	a	configuration	file	that	tells	it	how	to	run	test	scripts.	Here	are	the
contents	of	the	conf.js	file	used	to	configure	Protractor:

/*	chapter2/conf.js	Protractor	configuration	file	*/

exports.config	=	{	

		seleniumAddress:	'http://localhost:4444/wd/hub',	

		specs:	['blog-spec.js']	

};

Once	Protractor	is	installed	and	configured	on	your	system,	all	that	is	left	is	to	create	the
test	scripts	(test	specifications)	and	run	the	scripts.	Here’s	a	sample	script	for	a	Protractor
test:

/*	chapter2/blog-spec.js	*/

describe('MEAN	Blog',	function()	{	

it('test	the	MEAN	Blog',	function()	{	

		browser.get('http://localhost:8080');	

		element(by.model('blogList')).

				sendKeys('this	is	a	blog	post');	

		element(by.css('[value="add"]')).click();	

		var	blogList	=	element.all(by.repeater('blog	in	blogs'));	

		expect(blogList.count()).toEqual(3);	

		expect(blogList.get(2).getText()).

www.allitebooks.com

http://www.allitebooks.org

				toEqual('this	is	a	blog	post');	

		});

});

To	run	Protractor,	issue	the	following	command.	Once	you	run	the	command,	the	browser
window	should	open	and	display	the	test	results:

protractor	conf.js

Both	Karma	and	Protractor	can	be	integrated	with	continuous	integration	(CI)	build
systems	like	Travis	CI	and	Jenkins,	as	I	mentioned	in	Chapter	1.	Many	open	source
projects	and	enterprise	development	teams	are	moving	toward	CI	build	systems.	Building
Karma	and	Protractor	testing	into	your	AngularJS	project	is	a	vital	part	of	the	software
development	process.	Time	spent	writing	test	scripts	will	ultimately	be	worth	the	effort	in
the	long	run.

We	will	cover	both	Karma	and	Protractor	testing	in	great	detail	in	later	chapters.	At	that
time	we	will	install	and	configure	both	Karma	and	Protractor.	Since	both	run	on	Node.js,
you	will	also	need	to	install	that	and	the	Node.js	package	manager	(npm)	on	your	system
to	power	the	test	platforms.

Conclusion
In	this	chapter,	we	covered	how	to	set	up	a	development	environment	for	AngularJS	and
built	and	ran	a	project	with	AngularJS.	We	also	covered	how	to	install	a	test	environment
with	both	JsTestDriver	and	Karma	for	unit	testing	our	AngularJS	projects.	Finally,	we
looked	at	how	to	install	and	configure	Protractor	for	doing	end-to-end	testing	of
AngularJS	projects.	With	the	knowledge	gained	from	this	chapter,	we	are	ready	to	start
working	with	more	complex	projects.

We	are	now	ready	to	move	on	to	Chapter	3,	where	we	will	cover	MVC	as	it	applies	to
AngularJS	in	more	detail.

Chapter	3.	MVC	and	AngularJS

AngularJS	presents	a	new	and	powerful	way	to	develop	web	applications	and	websites	—
it	has	the	power	and	functionality	of	conventional	web	frameworks,	but	with	many
advantages.	AngularJS	provides	a	way	to	build	web	apps	and	sites	without	the	overhead
normally	associated	with	web	frameworks.

Conventional	web	frameworks	often	tolerate	server-side	page	scripting	using	PHP,	Active
Server	Pages	(ASP),	and	Java	Server	Pages	(JSP).	While	server-side	page	scripting	works
sufficiently	well	on	the	server	side,	it	does	pose	many	maintenance	issues	for	developers.
But	that	is	not	the	biggest	issue	with	conventional	web	frameworks.	Conventional	web
frameworks	tend	to	run	slower	and	be	sluggish	on	mobile	devices.	And	mobile	users	have
a	much	lower	tolerance	for	system	delays	and	slow	page	loads	than	desktop	users.

We	must	compare	conventional	web	frameworks	to	AngularJS	to	understand	the
advantages	that	AngularJS	presents.	The	next	section	will	give	you	a	clear	understanding
of	the	advantages	of	AngularJS	over	frameworks	that	you	may	have	used	in	the	past.	With
that	understanding,	we	will	be	set	to	start	building	more	maintainable	applications	in	a
better	way.

The	Old	Way
Web	MVC	frameworks	such	as	Apache	Struts,	Spring	MVC,	and	the	Zend	Framework
dominated	the	web	development	framework	space	for	more	than	15	years.	Those	same
frameworks	still	dominate	the	space	even	today.	There	are	some	cases	where	web
frameworks	do	present	a	better	application	design	than	more	modern	client-side
frameworks,	but	those	cases	have	diminished	considerably	over	the	last	couple	of	years.

Web	MVC	frameworks	reside	entirely	on	the	server.	All	functions	such	as	database	access,
business	logic,	display	logic,	and	UI	activities	happen	on	the	server,	using	server	memory
and	resources.	Web	MVC	frameworks	often	use	various	page	scripting	techniques	such	as
ASP,	JSP,	and	PHP	to	control	presentation	logic,	and	in	some	cases	business	logic	is	also
placed	inside	the	pages.

Figure	3-1	shows	a	diagram	of	a	conventional	web	MVC	framework.	From	the	diagram,
you	can	see	that	the	application	or	website	runs	on	the	backend	server,	and	only	the	web
browser	runs	on	the	user’s	hardware.	Although	the	design	in	Figure	3-1	is	old	technology,
it	is	still	in	heavy	use	today.

Figure	3-1.	Conventional	web	MVC	framework

Web	applications	and	sites	built	with	Ruby	on	Rails,	the	Zend	Framework,	Spring	MVC,
CakePHP,	and	other	web	frameworks	are	based	on	this	design.	Although	the	design	works
well	in	many	situations,	it	does	have	several	flaws.

One	such	design	flaw	is	related	to	mobile	applications	and	mobile	websites.	While	web
pages	associated	with	web	frameworks	can	be	designed	with	HTML5	and	CSS3	and	be
made	responsive	and	look	good	on	mobile	devices,	the	application	or	website	is	dependent
on	the	web	server	to	make	the	different	pages	available	to	the	mobile	device.	In
addition,	the	web	pages	must	run	in	the	mobile	device’s	web	browser.

The	application	or	site	developer	has	very	little	control	over	the	mobile	device’s	web

browser.	A	user	must	find	the	site	or	application	and	enter	its	URL	into	the	browser’s
address	bar	in	order	to	view	the	web	page	or	to	run	the	application.	Mobile	users,
however,	often	find	that	process	too	time-consuming.

While	mobile	sites	and	applications	distributed	as	web-based	designs	have	the	advantage
of	saving	development	hours	and	money,	they	do	pose	a	problem	in	many	situations.
Often,	mobile	developers	need	to	build	custom	device	applications	and	have	those
applications	distributed	via	the	various	online	stores.	Not	only	does	a	custom	application
offer	a	higher	level	of	customer	service,	but	it	also	serves	as	a	marketing	tool.	As	the
number	of	mobile	devices	in	use	increases,	the	demand	for	custom	mobile	applications
will	also	increase.

Consider,	for	example,	a	doctor’s	office	that	needs	to	allow	patients	to	make	appointments
from	their	mobile	devices.	Such	an	application	would	need	to	be	fast	and	have	almost	no
delay	when	patients	are	navigating	from	page	to	page.	The	application	would	also	need	to
look	good	on	any	device.	A	user	with	a	small	smartphone	should	have	the	same	user
experience	as	a	user	with	a	10-inch	tablet.

An	application	developer	or	architect	attempting	a	mobile	design	based	on	the	system
design	shown	in	Figure	3-1	really	only	has	two	choices	to	consider.

Choice	One
The	first	option	is	to	build	a	custom	mobile	application	as	a	“wrapper”	around	the
conventional	site	shown	in	Figure	3-1.	Figure	3-2	shows	an	Android	application	designed
as	a	wrapper	application.	As	you	can	see,	the	Android	application	consists	solely	of	an
Android	WebView	component	that	is	configured	to	point	to	the	web	application	URL.

Figure	3-2.	An	Android	wrapper	around	a	traditional	web	application

The	WebView	component	serves	as	a	browser	control	inside	the	Android	application.	The
developer	can	custom-configure	the	WebView	component	for	the	needs	of	the	particular
mobile	application.	All	application	operations	still,	however,	run	on	the	backend	server
(the	web	server),	and	the	speed	and	responsiveness	of	the	Android	application	are	still
highly	dependent	on	that	server	and	the	quality	of	the	user’s	Internet	connection.

The	following	code	shows	a	segment	of	an	Android	main	Activity.	A	new	Android
WebView	object	is	first	instantiated.	JavaScript	is	then	enabled	for	the	new	instance.
Finally,	the	URL	of	the	website	is	loaded	into	the	new	instance	with	the	loadUrl	method:

/*	chapter3	excerpt	from	an	Android	WebView	shown	loading	a	

	conventional	website	*/

WebView	webview	=	new	WebView(this);	

webview.getSettings().setJavaScriptEnabled(true);	

final	Activity	activity	=	this;	

webview.setWebViewClient(new	WebViewClient()	{	

webview.loadUrl("http://www.google.com");

The	WebView	instance	shown	here	is	just	a	control	for	the	device’s	internal	web	browser.
The	Android	device’s	browser	is	completely	dependent	on	the	website	for	functionality.	If
the	website	that	is	linked	to	goes	down	or	the	network	connection	is	lost,	the	user’s
browser	will	hang	and	completely	stop	working.	That	functionality	is	very	frustrating	for
mobile	device	users.	It	is,	however,	a	common	configuration	for	mobile	applications.

Choice	Two
The	second	option	would	require	the	developer	to	write	a	native	or	HTML5	mobile
application	that	called	web	services	on	the	backend	for	business	functions.	This	approach
would	require	adding	REST	web	services	to	the	existing	web	application	to	make	use	of
existing	business	logic.	Option	two	is,	in	effect,	a	complete	rewrite	of	the	application.
Adding	REST	services	to	the	existing	web	application	would	not	be	a	trivial	matter.
Option	two	would,	however,	offer	the	best	application	design	and	would	provide	the	best
user	experience.

The	design	shown	in	Figure	3-1	isn’t	directly	transferable	to	mobile	devices.	Fifteen	years
ago,	when	mobile	devices	were	not	in	heavy	use,	that	design	was	a	common	choice	for
application	developers	and	architects,	and	posed	few	problems.	Mobile	device	sales
reached	an	all-time	high	in	2014,	however,	and	most	analysts	predict	that	trend	will	only
increase	in	the	coming	years.

Mobile	is	the	future	of	everything.	As	wireless	systems	improve	and	evolve,	mobile
devices	will	evolve	too	and	play	a	major	role	in	all	our	daily	activities.	A	mobile	device
will	alert	you	when	your	table	is	ready	at	your	favorite	restaurant.	That	same	device	will
replace	your	debit	card	or	credit	card	when	it’s	time	to	pay	the	bill	and	tip	the	server.

So,	developers	must	plan	for	the	future	now.	It’s	time	to	stop	building	software	based	on
an	old	and	outdated	technology.	That’s	where	JavaScript	client-side	frameworks	come	into
play,	and	that’s	where	AngularJS	shines	the	brightest	of	all	the	JavaScript	frameworks
available.	AngularJS	is	a	solid	foundation	for	building	scalable	applications	that	run	well
on	desktops	and	a	broad	array	of	mobile	devices,	with	few	if	any	modifications	needed	for
each	platform.

A	New	and	Better	Way
AngularJS	is	a	JavaScript	MVC	framework	that	cuts	development	time	for	both	web
applications	and	mobile	applications	that	run	on	multiple	device	platforms.	Figure	3-3
shows	a	diagram	of	an	AngularJS	application	that	uses	business	logic	that’s	exposed
through	REST	web	services.	The	REST	services	can	run	anywhere	and	be	written	in	any
programming	language.	Two	popular	frameworks	used	to	build	REST	services	are	the
Spring	framework,	written	in	Java,	and	ExpressJS	for	Node.js.

Figure	3-3.	AngularJS	application	design

If	you	look	closely	at	Figure	3-3,	you	can	see	that	the	entire	AngularJS	application	runs	on
the	user’s	hardware,	in	the	user’s	web	browser.	That	may	be	a	desktop	browser	or	the
browser	of	a	mobile	device.	With	this	design	we	shift	the	display	logic	from	the	server	to
the	user’s	hardware,	resulting	in	a	much	better	user	experience.	The	application	runs	faster
and	is	much	more	responsive	—	more	like	a	thick-client	or	native	application	than	a
browser-based	application.

AngularJS	applications	harness	the	power	of	the	user’s	hardware.	The	approach	that’s
taken	frees	the	server	or	servers	to	handle	nothing	but	business	logic	and	data	access.
Using	REST	services	that	send	and	receive	JSON	helps	to	greatly	simplify	AngularJS
applications:	JSON	is	a	data-interchange	format	for	REST	services	that	is	easy	to	read	and
understand.

Figure	3-4	shows	the	same	AngularJS	application	deployed	as	part	of	an	Android
application.	The	JavaScript,	CSS3,	and	HTML5	code	is	all	the	same	regardless	of	where
the	application	is	deployed.	If	the	application	was	designed	from	a	mobile-first
perspective,	it	should	look	great	and	run	well	on	any	platform.

www.allitebooks.com

http://www.allitebooks.org

Figure	3-4.	The	AngularJS	application	deployed	as	an	Android	app

Not	only	does	the	design	in	Figure	3-4	produce	a	better	user	experience,	but	it	also	cuts
development	time	significantly.	And	as	with	the	design	in	Figure	3-3,	the	application	runs
entirely	on	the	user’s	hardware,	shifting	the	load	from	the	server	to	the	user’s	device.

Testing	Considerations
We	covered	some	of	the	basics	of	testing	AngularJS	applications	back	in	Chapter	2.	The
ability	to	effectively	and	easily	test	AngularJS	applications	is	one	of	the	strongest
motivators	for	using	the	framework.	Not	only	are	AngularJS	applications	faster	to	write,
but	they	are	also	much	faster	and	easier	to	test	than	conventional	web	framework–based
applications.	Here	is	why.

Test	scripts	for	AngularJS,	known	as	test	specifications,	are	always	written	in	JavaScript.
There	are	no	complex	test	frameworks	to	install	like	you	find	with	traditional	web
frameworks.	One	more	thing:	JavaScript	tests	run	faster	than	tests	written	for	conventional
web	frameworks.	That	is	very	important	when	a	continuous	integration	system	is	used.

Test	execution	speeds	may	not	seem	like	a	serious	concern	at	first.	But	consider	the
continuous	integration	platforms	like	Travis	CI	and	Jenkins	that	we	discussed	back	in
Chapter	2.	If	you	had	a	small	shop	with	five	or	six	developers,	test	script	execution	speeds
wouldn’t	usually	be	a	concern.	If	you	had	a	large	enterprise	shop,	however,	with	a	few
hundred	developers	all	running	CI	builds	at	the	same	time,	then	concerns	would	change
quickly.

The	two	most	popular	test	frameworks	used	for	client-side	JavaScript	and	AngularJS,
Karma	and	Protractor,	run	on	the	Node.js	framework.	Applications	and	test	scripts	that	run
on	Node.js	run	extremely	fast.	That	is	one	of	the	major	advantages	of	using	Node.js.
Continuous	integration	systems	also	use	Node.js	for	JavaScript	builds	and	to	run	test
scripts.	It	is	easy	to	see,	then,	why	JavaScript	testing	is	faster	in	a	CI	environment.

Responsive	Design	Considerations
Another	consideration	when	you	are	comparing	traditional	web	frameworks	to	AngularJS
is	how	well	responsive	design	is	accomplished.	A	strong	responsive	design	looks	good
both	on	a	desktop	and	on	all	mobile	devices	that	use	the	software.	While	you	can	build
responsive	applications	with	traditional	web	frameworks,	it’s	not	often	done.
Unfortunately,	many	web	application	developers	often	target	desktops	and	maybe	tablets
and	ignore	the	various	smaller	devices	that	use	their	websites.

Take,	for	example,	the	CSS3	code	shown	next.	The	code	is	taken	from	a	server-side
application	written	with	CakePHP,	a	web	MVC	framework:

/*	chapter3	server-side	css3	*/

/*	not	built	for	mobile	*/

.page-container{

		float:	left;

		margin:	3%	0	0	0;

		padding:	0	0	0	0;

		width:	100%;

}

img	{

		max-width:	50%;

}

.partner-form{

		float:	left;

		width:	50%;

		margin:	0	0	0	25%;

		padding:	1%	5%	1%	5%;

		border-radius:7px;

		-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

		border:	#230fba	solid	1px;

}

.new-article-upload-wrapper{

		float:	left;

		width:	30%;

		margin:	0	0	0	35%;

		padding:	1%;

		border-radius:7px;

		-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

		border:	#230fba	solid	1px;

}

.login-title{

		float:	left;

		width:	100%;

		margin:	6%	0	1%	0;

		text-align:	center;

		font-size:	18pt;

		font-weight:	bold;						

}

.config-form-wrapper{

		float:	left;

		width:	60%;

		padding:	0	0	0	0;

		margin:	0	0	0	20%;

		border-radius:7px;

		-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

		border:	#230fba	solid	1px;

}

.comment-form-wrapper{

		float:	left;

		width:	60%;

		padding:	0	0	0	0;

		margin:	0	0	0	20%;

		border-radius:7px;

		-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

		border:	#230fba	solid	1px;

}

.summary-cell{				

		height:	300px;

}

.summary-cell-data{				

		height:	250px;	

		font-size:	12pt;

}

An	application	styled	with	this	code	would	look	fine	on	a	desktop,	and	maybe	a	tablet.
There	would	be	major	styling	issues	with	a	small	mobile	device,	however.	A	mobile
wrapper	application	like	the	one	I	mentioned	earlier	that	wrapped	a	website	that	used	this
code	would	be	at	a	great	disadvantage.	You	could	never	make	the	application	look	good
on	a	small	phone.

The	code	that	follows	is	taken	from	a	mobile	application	built	with	AngularJS.	Notice	the
media	query	lines	like	@media	screen	and	(min-width:	1200px)	that	wrap	parts	of	the
CSS3.	Media	queries	let	developers	style	AngularJS	applications	to	specific	screen	sizes:

/*	chapter3	mobile	css3	*/

/*	built	for	mobile	*/

@media	screen	and	(min-width:	1200px){

		.page-container{				

				margin:	3%	0	0	0;

				padding:	0	0	0	0;

				width:	100%;

		}

		img	{

				max-width:	50%;

		}

		.partner-form{				

				width:	50%;

				margin:	0	0	0	25%;

				padding:	1%	5%	1%	5%;

				border-radius:7px;

				-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/				

		}

		.new-article-upload-wrapper{				

				width:	30%;

				margin:	0	0	0	35%;

				padding:	1%;

				border-radius:7px;

				-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/			

		}

		.login-title{				

				width:	100%;

				margin:	6%	0	1%	0;				

				font-size:	18pt;									

		}

		.config-form-wrapper{				

				width:	60%;

				padding:	0	0	0	0;

				margin:	0	0	0	20%;

				border-radius:7px;

				-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

		}		

		.comment-form-wrapper{				

				width:	60%;

				padding:	0	0	0	0;

				margin:	0	0	0	20%;

				border-radius:7px;

				-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

		}

				.summary-cell{								

								height:	300px;

				}

				.summary-cell-data{								

								height:	250px;		

								font-size:	12pt;

				}

}

@media	screen	and	(max-width:	1200px){

				.page-container{								

								margin:	5%		0	0	0;

								padding:	0	0	0	0;

								width:	100%;

				}

				img	{	

								max-width:	60%;	

				}

				.nav-ds{

								margin:	0	0	0	0;								

				}

				.nav-ds	li{

								width:	11%;

				}

				.nav-ds	li	a{

								margin:	0	0	0	0;

								padding:	4%	0	4%	0;								

				}	

				.partner-form{							

								width:	50%;

								margin:	0	0	0	25%;

								padding:	1%	5%	1%	5%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/							

				}

				.new-article-upload-wrapper{								

								margin:	0	0	0	30%;

								padding:	1%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/								

				}

				.login-title{								

								width:	100%;

								margin:	6%	0	1%	0;								

								font-size:	18pt;															

				}

				.config-form-wrapper{								

								width:	60%;

								padding:	0	0	0	0;

								margin:	0	0	0	20%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/	

				}

				.comment-form-wrapper{

								width:	60%;

								padding:	0	0	0	0;

								margin:	0	0	0	20%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

				}

				.summary-cell{								

								height:	300px;

				}

				.summary-cell-data{								

								height:	250px;

								font-size:	12pt;

				}

}

@media	screen	and	(max-width:	800px){

				.page-container{								

								margin:	7%		0	0	0;

								padding:	0	0	0	0;

								width:	100%;

				}

				img	{	

								max-width:	70%;	

				}

				.nav-ds{

								margin:	0	0	0	0;								

				}

				.nav-ds	li{

								width:	11%;

				}

				.nav-ds	li	a{

								margin:	0	0	0	0;

								padding:	4%	0	4%	0;								

				}		

				.partner-form{								

								width:	60%;

								margin:	0	0	0	20%;

								padding:	1%	5%	1%	5%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

				}

				.new-article-upload-wrapper{								

								width:	50%;

								margin:	0	0	0	25%;

								padding:	1%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

				}

				.login-title{								

								width:	100%;

								margin:	6%	0	1%	0;								

								font-size:	16pt;														

				}

				.config-form-wrapper{								

								width:	80%;

								padding:	0	0	0	0;

								margin:	0	0	0	10%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/

				}

				.comment-form-wrapper{								

								width:	80%;

								padding:	0	0	0	0;

								margin:	0	0	0	10%;

								border-radius:7px;								

				}

				.summary-cell{								

								height:	300px;

				}

				.summary-cell-data{								

								height:	250px;	

								font-size:	10pt;

				}

}

@media	screen	and	(max-width:	450px){

				.page-container{								

								margin:	12%		0	0	0;

								padding:	0	0	0	0;

								width:	100%;

				}

				img	{	

								max-width:	100%;	

				}

				.nav-ds{

								margin:	0	0	0	0;								

				}

				.nav-ds	li{

								width:	15%;

				}

				.nav-ds	li	a{

								margin:	0	0	0	0;

								padding:	4%	0	4%	0;								

				}		

				.partner-form{								

								width:	100%;

								margin:	0	0	0	0%;

								padding:	1%	5%	1%	5%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/								

				}

				.new-article-upload-wrapper{								

								width:	100%;

								margin:	0	0	0	0%;

								padding:	1%;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/								

				}

				.login-title{								

								width:	100%;

								margin:	6%	0	1%	0;								

								font-size:	14pt;																

				}

				.config-form-wrapper{								

								width:	100%;

								padding:	0	0	0	0;

								margin:	0	0	0	0;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/		

				}

				.comment-form-wrapper{

								float:	left;

								width:	100%;

								padding:	0	0	0	0;

								margin:	0	0	0	0;

								border-radius:7px;

								-moz-border-radius:7px;	/*	Firefox	3.6	and	earlier	*/	

				}

				.summary-cell{								

								height:	150px;

				}

				.summary-cell-data{								

								height:	120px;			

								font-size:	6pt;

				}

}

If	the	web	application	shown	previously	had	been	written	with	AngularJS,	it	would	have
been	a	simple	task	to	convert	the	AngularJS	application	into	a	mobile	application.	The
development	team	could	then	have	fixed	the	CSS3	issues	and	been	done.	The	application
written	with	CakePHP	had	to	be	completely	rewritten,	however.

Conclusion
In	this	chapter	we	compared	AngularJS	applications	to	applications	built	with
conventional	server-side	web	frameworks.	We	identified	many	of	the	shortcomings	of
conventional	server-side	frameworks,	especially	as	they	relate	to	mobile	applications,	and
gained	an	understanding	of	the	serious	limitations	they	pose	on	how	developers	build
mobile	applications.

We	also	looked	at	the	many	advantages	of	building	applications	with	AngularJS,	such	as
shorter	development	times	and	increased	application	speed	and	testability.	We	saw	how
AngularJS	greatly	simplifies	the	process	of	building	responsive	mobile	applications,	then
looked	at	a	real-world	situation	where	a	simple	issue	like	poorly	written	CSS	posed	a
serious	problem	for	a	mobile	development	team	working	with	an	application	built	using	a
conventional	server-side	web	framework.

The	information	presented	in	this	chapter	is	a	great	foundation	for	the	material	covered	in
the	following	chapters.	We	will	now	take	our	understanding	of	the	advantages	of
AngularJS	to	the	next	level,	exploring	how	AngularJS	helps	to	simplify	the	process	of
interacting	with	backend	systems	using	REST	services.

Although	this	is	not	a	book	on	REST	services,	we	will	cover	the	basics	of	REST	services
in	Chapter	6,	looking	in	detail	at	how	AngularJS	connects	to	these	services	and	how	to
interface	with	JSON	payloads.	Chapter	7	will	provide	you	with	information	on	public
REST	service	endpoints	written	especially	for	this	book	that	you	can	use	to	complete	the
chapter	exercises.

The	REST	services	that	you	will	use	in	Chapter	7	are	built	with	ExpressJS,	run	on
Node.js,	and	use	JSON	as	the	data-interchange	format.	The	services	used	in	that	and	other
chapters	are	deployed	to	the	cloud	and	open	to	anyone	using	this	book	as	a	learning	tool.
Before	we	get	into	all	of	that,	however,	we’re	going	to	take	a	look	at	AngularJS
controllers.

Chapter	4.	AngularJS	Controllers

AngularJS	controllers	are	at	the	center	of	AngularJS	applications	and	are	probably	the
most	important	component	to	understand.	Controllers	are	not	always	clearly	defined	in
some	JavaScript	client-side	frameworks,	and	that	tends	to	confuse	developers	who	have
experience	with	MVC	frameworks.	That	is	not	the	case	with	AngularJS.	AngularJS	clearly
defines	controllers,	and	controllers	are	at	the	center	of	AngularJS	applications.

Almost	everything	that	happens	in	an	AngularJS	application	passes	through	a	controller	at
some	point.	Dependency	injection	is	used	to	add	the	needed	dependencies,	as	shown	in	the
following	example	file,	which	illustrates	how	to	create	a	new	controller:

/*	chapter4/controllers.js	-	a	new	controller	*/

var	addonsControllers	=	

		angular.module('addonsControllers',	[]);

addonsControllers.controller('AddonsCtrl',	

		['$scope',	'checkCreds',	'$location',	'AddonsList',	'$http',	'getToken',

				function	AddonsCtrl($scope,	checkCreds,	$location,	AddonsList,	

						$http,	getToken)	{

								if	(checkCreds()	!==	true)	{

												$location.path('/loginForm');

								}

								$http.defaults.headers.common['Authorization']	=	

										'Basic	'	+	getToken();

								AddonsList.getList({},

											function	success(response)	{	

														console.log("Success:"	+	

																					JSON.stringify(response));

																				$scope.addonsList	=	response;

											},

											function	error(errorResponse)	{

														console.log("Error:"	+	

																					JSON.stringify(errorResponse));																			

											}

);

								$scope.addonsActiveClass	=	"active";

}]);

In	this	code,	we	first	create	a	new	module	named	addonsController	by	making	a	call	to
the	module	method	of	angular.	On	the	second	line,	we	create	a	new	controller	named
AddonsCtrl	by	calling	the	controller	method	of	the	addonsControllers	module.	Doing
that	attaches	the	new	controller	to	that	module.	All	controllers	created	in	the	controllers.js
file	will	be	added	to	the	addonsControllers	module.

Also	notice	the	line	console.log("Success:"	+	JSON.stringify(response)).	Most
modern	browsers	have	accompanying	developer	tools	that	give	developers	easy	access	to
the	JavaScript	console.	This	line	uses	the	JSON.stringify	method	to	log	the	JSON	that’s
returned	from	the	web	service	to	the	JavaScript	console.	Developers	can	easily	use	the
JavaScript	console	to	troubleshoot	REST	service	issues	by	viewing	the	JSON	logged	in
the	success	callback	function,	or	in	the	error	callback	function	if	a	service	call	fails.

www.allitebooks.com

http://www.allitebooks.org

Most	developer	tools	and	some	IDEs,	like	NetBeans,	also	include	JavaScript	debuggers
that	allow	developers	to	place	breakpoints	in	both	the	success	and	error	callback
functions.	Doing	so	allows	the	developer	to	take	a	fine-grained	approach	to
troubleshooting	REST	services.	Quite	often,	the	developer	can	resolve	otherwise	complex
REST	service	issues	very	quickly	by	using	a	JavaScript	debugger.

The	following	code	is	an	excerpt	of	the	previous	file.	It	shows	how	we	use	dependency
injection	to	add	dependencies	to	the	new	controller.	This	code	shows	$scope,	checkCreds,
$location,	AddonsList,	$http,	and	getTokens	as	dependencies	for	the	new	controller.
We	have	already	covered	the	$scope	briefly.	For	now	it’s	not	important	what	the	other
dependencies	actually	represent;	you	only	need	to	understand	they	are	required	by	the	new
controller:

/*	chapter4/controllers.js	excerpt	*/

/*	using	dependency	injection	*/

['$scope',	'checkCreds',	'$location',	'AddonsList',	'$http',	'getToken',

		function	AddonsCtrl($scope,	checkCreds,	$location,	AddonsList,

				$http,	getToken)	{

}

This	controller	plays	a	major	role	in	the	application	in	which	it	was	defined.	Controllers
really	have	two	primary	responsibilities	in	an	application.	We	will	take	a	look	at	those
responsibilities	in	more	detail	in	the	next	section.

Initializing	the	Model	with	Controllers
AngularJS	controllers	have	two	primary	duties	in	an	application.	First,	controllers	should
be	used	to	initialize	the	model	scope	properties.	When	a	controller	is	created	and	attached
to	the	DOM,	a	child	scope	is	created.	The	child	scope	holds	a	model	used	specifically	for
the	controller	to	which	it	is	attached.	You	can	access	the	child	scope	by	using	the	$scope
object.

Create	a	copy	of	the	Chapter	2	project	and	name	it	AngularJsHelloWorld_chapter4.	We
will	use	this	new	project	for	the	rest	of	this	chapter.	You	can	also	download	the	project
from	the	GitHub	project	site.

Model	properties	can	be	added	to	the	scope,	and	once	added	they	are	available	inside	the
view	templates.	The	controller	code	shown	here	illustrates	how	to	add	two	properties	to
the	scope.	After	adding	the	customer	name	and	customer	number	to	the	scope,	both	are
available	to	the	view	and	can	be	accessed	with	double	curly	braces:

/*	chapter4/controllers.js	excerpt	*/

helloWorldControllers.controller('CustomerCtrl',	['$scope',	

function	CustomerCtrl($scope)	{	

				$scope.customerName	=	"Bob's	Burgers";	

				$scope.customerNumber	=	"44522";	

}]);	

Now	add	the	new	controller,	CustomerCtrl,	to	your	project’s	controllers.js	file.	We	will
make	several	additions	to	the	controllers.js	file	in	this	chapter.

The	following	view	template	code	shows	how	to	access	the	newly	added	model	properties
inside	the	view	template.	All	properties	that	need	to	be	accessed	from	the	view	should	be
added	to	the	$scope	object:

<!--	chapter4/partials/customer.html	-->

<div>Customer	Name:	{{customerName}}</div>

<div>Customer	Number:	{{customerNumber}}</div>	

Now	add	a	new	HTML	file	under	the	partials	folder	and	name	it	customer.html.	Replace
the	generated	code	with	the	code	just	shown.

https://github.com/KenWilliamson

Adding	Behavior	with	Controllers
The	second	primary	use	for	controllers	is	adding	behavior	to	the	$scope	object.	We	add
behavior	by	adding	methods	to	the	scope,	as	shown	in	the	following	controller	code.	Here,
we	attach	a	changeCustomer	method	to	$scope	so	that	it	can	be	invoked	from	inside	the
view.	By	doing	this,	we	are	adding	behavior	that	allows	us	to	change	the	customer	name
and	customer	number:

/*	chapter4/controllers.js	excerpt	*/

helloWorldControllers.controller('CustomerCtrl',	['$scope',

function	CustomerCtrl($scope)	{

				$scope.customerName	=	"Bob's	Burgers";

				$scope.customerNumber	=	44522;

				

				//	add	method	to	scope

				$scope.changeCustomer	=	function(){

						$scope.customerName	=	$scope.cName;

						$scope.customerNumber	=	$scope.cNumber;

				};

}]);

Add	the	changeCustomer	method	shown	here	to	the	CustomerCtrl	controller	defined	in
your	controllers.js	file.

The	following	code	shows	the	customer.html	file	and	the	changes	needed	in	the	view	to
make	use	of	the	new	behavior	that	was	just	added.	We	add	two	new	properties	to	the
model	by	using	ng-model="cName"	and	ng-model="cNumber".	We	use	ng-
click="changeCustomer();"	to	invoke	the	new	changeCustomer	method	that	is	attached
to	the	scope:

<!--	chapter4/partials/customer.html	-->

<div>Customer	Name:	{{customerName}}</div>

<div>Customer	Number:	{{customerNumber}}</div>

<form>

		<div>

				<input	type="text"	ng-model="cName"	required/>

		</div>

		<div>

				<input	type="number"	ng-model="cNumber"	required/>

		</div>

		<div>

				<button	ng-click="changeCustomer();"	>Change	Customer</button>

		</div>

</form>	

Modify	the	customer.html	file	to	include	the	new	form	defined	here.

Once	the	changeCustomer	method	is	invoked,	the	new	properties	are	attached	to	$scope
and	available	to	the	controller.	As	you	can	see,	we	simply	assign	the	two	new	properties

bound	to	the	model	back	to	the	original	two	properties,	customerName	and
customerNumber,	inside	the	changeCustomer	method.	Both	ng-model	and	ng-click	are
AngularJS	directives.	We	will	cover	directives	in	detail	in	Chapter	9.

Controller	Business	Logic
Controllers	are	used	as	just	demonstrated	to	add	business	logic	to	an	application.	Business
logic	added	in	the	controller,	however,	should	be	specific	to	the	view	associated	with	that
one	controller	and	used	to	support	some	display	logic	functionality	of	that	one	view.	Any
business	logic	that	can	be	pushed	off	the	client-side	application	should	be	implemented	as
a	REST	service	and	not	actually	inside	the	AngularJS	application.

There	is	one	caveat	to	this	concept,	however:	REST	services	must	have	a	response	time	of
two	(2)	seconds	or	less.	Long-running	services	will	only	cause	delays	in	the	UI	and	make
for	a	bad	user	experience.	Meeting	the	two-seconds-or-less	rule	requires	having	REST
services	that	are	properly	designed	and	running	on	a	backend	system	that	scales	well	to
load	demand	changes.	There	are	other	concerns	related	to	mobile	applications,	but	we	will
cover	those	in	Chapter	7	and	Chapter	8.

Business	logic	that	can’t	be	placed	in	REST	services	but	needs	to	be	available	to	multiple
controllers	should	not	be	placed	in	the	controller	but	should	instead	be	placed	in
AngularJS	non-REST	services.	In	Chapter	8,	we	will	cover	business	logic	services	in	more
detail.	Business	logic	that	is	placed	in	the	controller	should	be	simple	logic	that	relates
only	to	the	controller	in	which	it	is	defined.	Placing	too	much	business	logic	inside	an
AngularJS	application	would	be	a	bad	design	decision,	however.

Presentation	Logic	and	Formatting	Data
Presentation	logic	should	not	be	placed	inside	the	controller	but	instead	should	be	placed
in	the	view.	AngularJS	has	many	features	for	DOM	manipulation	that	help	you	avoid
placing	presentation	logic	in	the	controllers.	The	controller	is	also	not	the	place	where	you
should	format	data.	AngularJS	has	features	especially	designed	for	formatting	data,	and
that’s	where	data	formatting	should	take	place.	Some	of	those	features	will	be	covered	in
detail	in	the	next	chapter.

Form	Submission
Now	we	will	look	at	how	form	submissions	are	handled	in	AngularJS	using	controllers.
The	following	code	for	the	newCustomer.html	file	shows	the	view	for	a	new	form.	Create
a	new	HTML	file	under	the	partials	folder	and	replace	the	generated	code	with	the	code
listed	here:

<!--	chapter4/partials/newCustomer.html	-->

<form	ng-submit="submit()"	ng-controller="AddCustomerCtrl">

		<div>

				<input	type="text"	ng-model="cName"	required/>

		</div>

		<div>

				<input	type="text"	ng-model="cCity"	required/>

		</div>

		<div>

				<button	type="submit"	>Add	Customer</button>

		</div>

</form>

As	you	can	see,	we	use	standard	HTML	for	the	form	with	nothing	really	special	except	the
directives.	The	directive	ng-submit	binds	the	method	named	submit,	defined	in	the
AddCustomerCtrl	controller,	to	the	form	for	form	submission.	The	ng-model	directive
binds	the	two	input	elements	to	scope	properties.

Two	or	more	controllers	can	be	applied	to	the	same	element,	and	we	can	use	controller
as	to	identify	each	individual	controller.	The	following	code	shows	how	controller	as	is
used.	You	can	see	that	addCust	identifies	the	AddCustomerCtrl	controller.	We	use
addCust	to	access	the	properties	and	methods	of	the	controller,	as	shown:

<!--	chapter4/partials/newCustomer.html	(with	controller	as)	-->

<form	ng-submit="addCust.submit()"	

									ng-controller="AddCustomerCtrl	as	addCust">

		<div>

				<input	type="text"	ng-model="addCust.cName"	required/>

		</div>

		<div>

				<input	type="text"	ng-model="addCust.cCity"	required/>

		</div>

		<div>

				<button	id="f1"	type="submit"	>Add	Customer</button>

		</div>

</form>

The	following	code	shows	the	AddCustomerCtrl	controller	and	how	we	use	it	to	handle
the	submitted	form	data.	Here	we	use	the	path	method	on	the	AngularJS	service
$location	to	change	the	path	after	the	form	is	submitted.	The	new	path	is
http://localhost:8383/AngularJsHelloWorld_chapter4/index.html#!/addedCustomer/name/city

Add	this	code	to	the	controllers.js	file:

/*	chapter4/controllers.js	*/

helloWorldControllers.controller('AddCustomerCtrl',	

['$scope',	'$location',

		function	AddCustomerCtrl($scope,	$location)	{

			$scope.submit	=	function(){

				$location.path('/addedCustomer/'	+	$scope.cName	+	"/"	+	$scope.cCity);

		};

}]);	

That’s	all	that	is	needed	to	handle	the	form	substitution	process.	We	will	now	look	at	how
we	get	access	to	the	submitted	values	inside	another	controller.

Using	Submitted	Form	Data
The	app.js	file	shown	next	includes	the	new	route	definitions.	Modify	the	app.js	file	in	the
Chapter	3	project	and	add	the	new	routes.	Make	sure	your	file	looks	like	the	file	shown
here:

/*	chapter4/app.js	*/

/*	App	Module	*/

var	helloWorldApp	=	angular.module('helloWorldApp',	[

				'ngRoute',

				'helloWorldControllers'

]);

helloWorldApp.config(['$routeProvider',	'$locationProvider',

function($routeProvider,	$locationProvider)	{

		$routeProvider.

		when('/',	{

				templateUrl:	'partials/main.html',

				controller:	'MainCtrl'

		}).when('/show',	{

				templateUrl:	'partials/show.html',

				controller:	'ShowCtrl'

		}).when('/customer',	{

				templateUrl:	'partials/customer.html',

				controller:	'CustomerCtrl'

		}).when('/addCustomer',	{

				templateUrl:	'partials/newCustomer.html',

				controller:	'AddCustomerCtrl'

		}).when('/addedCustomer/:customer/:city',	{

				templateUrl:	'partials/addedCustomer.html',

				controller:	'AddedCustomerCtrl'

		});

		$locationProvider.html5Mode(false).hashPrefix('!');

}]);

You	can	see	there	are	two	path	parameters,	customer	and	city,	for	the	addedCustomer
route.	The	values	are	passed	as	arguments	to	a	new	controller,	AddedCustomerCtrl,	shown
in	the	following	excerpt.	We	use	the	$routeParams	service	in	the	new	controller	to	get
access	to	the	values	passed	as	path	parameter	arguments	in	the	URL.	By	using
$routeParams.customer	we	get	access	to	the	customer	name,	and	$routeParams.city
gets	us	access	to	the	city:

/*	chapter4/controllers.js	excerpt	*/

helloWorldControllers.controller('AddedCustomerCtrl',	

['$scope',	'$routeParams',

function	AddedCustomerCtrl($scope,	$routeParams)	{

		$scope.customerName	=	$routeParams.customer;

		$scope.customerCity	=	$routeParams.city;

}]);

Add	the	new	controller,	AddedCustomerCtrl,	to	your	controllers.js	file	now.

The	code	for	our	new	addedCustomer	template	is	shown	next.	Once	again,	we	use
AngularJS	double	curly	braces	to	get	access	to	and	display	both	the	customerName	and
customerCity	properties	in	the	view:

<!--	chapter4/addedCustomer.html	-->

<div>Customer	Name:		{{customerName}}</div>

<div>Customer	City:		{{customerCity}}</div>

To	add	the	template	to	the	project,	create	a	new	HTML	file	in	the	partials	folder	and	name
it	addedCustomer.html.	Replace	the	generated	code	with	the	code	just	shown.	Note	how
simple	it	is	to	submit	forms	with	AngularJS.	Simplicity	is	one	of	the	factors	that	makes
AngularJS	a	great	choice	for	any	JavaScript	client-side	application	project.

JS	Test	Driver
The	rest	of	this	chapter	will	cover	setting	up	a	test	environment	and	testing	AngularJS
controllers.	NetBeans	has	a	great	testing	environment	for	both	JS	Test	Driver	and	Karma.
We	will	focus	first	on	setting	up	JS	Test	Driver	for	unit	testing.	We	will	then	take	a	look	at
Karma	for	unit	testing.	To	begin,	do	the	following:

1.	 Download	the	JS	Test	Driver	JAR.

2.	 In	the	Services	tab,	right-click	“JS	Test	Driver”	and	click	“Configure”	(see	Figure	4-
1).

3.	 Select	the	location	of	the	JS	Test	Driver	JAR	just	downloaded	and	choose	the
browser	of	your	choice	(see	Figure	4-2).

4.	 Right-click	the	project	node,	then	click	“New”→“Other”→“Unit	Tests.”

5.	 Select	“jsTestDriver	Configuration	File”	and	click	“Next.”

6.	 Make	sure	the	file	is	placed	in	the	config	subfolder,	as	shown	in	Figure	4-3.

7.	 Make	sure	the	checkbox	for	“Download	and	setup	Jasmine”	is	checked.

8.	 Click	“Finish.”

9.	 Right-click	the	project	node,	click	Properties,	and	select	“JavaScript	Testing.”

10.	 Select	“jsTestDriver”	from	the	drop-down	box.

http://bit.ly/js-test-driver

Figure	4-1.	Right-click	“JS	Test	Driver”	in	the	Services	tab

Figure	4-2.	Select	your	browser(s)

Figure	4-3.	Make	sure	the	file	is	created	in	the	config	subfolder

The	following	code	shows	the	JS	Test	Driver	configuration	file.	Inside	the	file,	we	specify
the	server	URL	that	is	used	by	JS	Test	Driver.	We	also	specify	the	needed	library	files	in
the	load	section	of	the	file,	along	with	the	locations	of	our	JavaScript	files	and	test	scripts:

/*		chapter4/jsTestdriver.conf	*/

server:	http://localhost:42442

load:

-	test/lib/jasmine/jasmine.js

-	test/lib/jasmine-jstd-adapter/JasmineAdapter.js

-	public_html/js/libs/angular.min.js

-	public_html/js/libs/angular-mocks.js

-	public_html/js/libs/angular-cookies.min.js

-	public_html/js/libs/angular-resource.min.js

-	public_html/js/libs/angular-route.min.js

-	public_html/js/*.js

-	test/unit/*.js

exclude:

Notice	we’ve	added	angular-mocks.js	to	the	list	of	required	AngularJS	library	files.	That
file	is	needed	for	unit	testing	AngularJS	applications.	So,	before	continuing,	add	the
angular-mocks.js	file	to	the	js/libs	folder.

Creating	Test	Scripts
Next,	create	a	new	JavaScript	file	in	the	unit	subfolder	of	the	newly	created	Unit	Test
folder,	as	shown	in	Figure	4-4.	Name	the	new	file	controllerSpec.js.

Figure	4-4.	Create	the	controllerSpec.js	file	in	the	unit	subfolder

The	contents	of	the	controllerSpec.js	file	are	shown	next.	Our	test	script	filename	will	end
with	Spec.	The	file	specifies	a	standard	set	of	unit	tests	commonly	used	to	test	AngularJS
controllers.	Notice	that	we	have	a	test	for	each	of	our	controllers	defined	in	the
controllers.js	file:

/*	chapter4/controllerSpec.js	*/

/*	Jasmine	specs	for	controllers	go	here	*/

describe('Hello	World',	function()	{

		beforeEach(module('helloWorldApp'));

		describe('MainCtrl',	function(){

				var	scope,	ctrl;

				beforeEach(inject(function($rootScope,	$controller)	{

						scope	=	$rootScope.$new();

						ctrl	=	$controller('MainCtrl',	{$scope:	scope});

				}));

				it('should	create	initialed	message',	function()	{

						expect(scope.message).toEqual("Hello	World");

				});

		});

		describe('ShowCtrl',	function(){

				var	scope,	ctrl;

				beforeEach(inject(function($rootScope,	$controller)	{

						scope	=	$rootScope.$new();

						ctrl	=	$controller('ShowCtrl',	{$scope:	scope});

				}));

				it('should	create	initialed	message',	function()	{

						expect(scope.message).toEqual("Show	The	World");

				});

		});

		describe('CustomerCtrl',	function(){

				var	scope,	ctrl;

				beforeEach(inject(function($rootScope,	$controller)	{

						scope	=	$rootScope.$new();

						ctrl	=	$controller('CustomerCtrl',	{$scope:	scope});

				}));

				it('should	create	initialed	message',	function()	{

						expect(scope.customerName).toEqual("Bob's	Burgers");

				});

		});

});

This	test	script	uses	Jasmine	as	the	behavior-driven	development	framework	for	testing
our	code.	We	will	use	Jasmine	for	all	our	test	scripts	in	this	book.

Here	is	the	complete	controllers.js	file:

/*	chapter4/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	helloWorldControllers	=	

		angular.module('helloWorldControllers',	[]);

helloWorldControllers.controller('MainCtrl',	['$scope',

		function	MainCtrl($scope)	{

				$scope.message	=	"Hello	World";

}]);

helloWorldControllers.controller('ShowCtrl',	['$scope',

		function	ShowCtrl($scope)	{

				$scope.message	=	"Show	The	World";

}]);

helloWorldControllers.controller('CustomerCtrl',	['$scope',

		function	CustomerCtrl($scope)	{

				$scope.customerName	=	"Bob's	Burgers";

				$scope.customerNumber	=	44522;

				$scope.changeCustomer	=	function(){

				$scope.customerName	=	$scope.cName;

				$scope.customerNumber	=	$scope.cNumber;

		};

}]);

helloWorldControllers.controller('AddCustomerCtrl',	

['$scope',	'$location',

		function	AddCustomerCtrl($scope,	$location)	{

				$scope.submit	=	function(){

				$location.path('/addedCustomer/'	+	$scope.cName	+	"/"	+	$scope.cCity);

		};

}]);

helloWorldControllers.controller('AddedCustomerCtrl',	

['$scope',	'$routeParams',

		function	AddedCustomerCtrl($scope,	$routeParams)	{

				$scope.customerName	=	$routeParams.customer;

				$scope.customerCity	=	$routeParams.city;

}]);	

TIP
To	save	time,	you	can	download	the	Chapter	4	code	from	GitHub.	For	a	complete	guide	to	JavaScript
testing	in	NetBeans,	see	the	documentation	at	on	the	NetBeans	website.

http://bit.ly/lajs-github
http://bit.ly/nb-debug

Testing	with	JS	Test	Driver
Now	to	actually	test	the	controllers	we’ve	defined,	just	right-click	the	project	node	and
select	“Test”	from	the	menu.	If	your	project	is	configured	correctly,	you	should	see	a
success	message	for	all	three	controllers	that	were	tested.	If	you	have	any	issues	with	the
test	results,	go	back	over	the	configuration	files	and	validate	that	all	your	files	match	those
listed	in	this	chapter.	If	you	continue	to	have	problems,	download	and	run	the	source	code
from	the	project	site.

https://github.com/KenWilliamson

Testing	with	Karma
Karma	is	a	new	and	fun	way	to	unit	test	AngularJS	applications.	We	will	use	Karma	here
to	test	the	controllers	that	we	tested	earlier.

Installing	Karma
Karma	runs	on	Node.js,	as	mentioned	in	Chapter	2,	so	first	you	must	install	Node.js	if	it’s
not	already	installed.	Refer	to	nodejs.org	for	installation	details	for	your	particular
operating	system.	You’ll	also	need	to	install	the	Node.js	package	manager	(npm)	on	your
system.	npm	is	a	command-line	tool	used	to	add	the	needed	Node.js	modules	to	a	project.

Now,	in	the	root	of	the	Chapter	4	project,	create	a	JSON	file	named	package.json	and	add
the	following	content.	The	package.json	file	is	used	as	a	configuration	file	for	Node.js:

{

				"name":	"package.json",

				"devDependencies":	{

								"karma":	"*",

								"karma-chrome-launcher":	"*",

								"karma-firefox-launcher":	"*",

								"karma-jasmine":	"*",

								"karma-junit-reporter":	"*",

								"karma-coverage":	"*"

				}

}

Open	a	command-line	window	on	your	system,	and	navigate	to	the	root	of	the	Chapter	4
project.	You	should	see	the	package.json	file	when	you	list	out	the	files	in	the	folder.

Type	this	command	to	actually	install	the	Node.js	dependencies	defined	in	the
package.json	file:

npm	install

Now	install	the	Karma	command-line	interface	(karma-cli)	by	typing	the	following
command:

npm	install	-g	karma-cli

WARNING
Make	sure	to	record	the	location	where	karma-cli	was	installed.	You	will	need	the	location	later	in	this
chapter.

This	command	installs	the	command-line	tool	globally	on	your	system.	

All	the	Node.js	dependencies	specified	in	the	package.json	file	will	be	installed	under	the
node_modules	folder	inside	the	project	root	folder.	If	you	list	out	the	files	and	folders,	you
should	see	the	new	folder.	You	won’t	be	able	to	see	the	new	folder	inside	NetBeans,
however.

http://nodejs.org

Karma	Configuration
Next,	create	a	new	Karma	configuration	file	named	karma.conf.js	inside	the	project	test
folder.	Do	the	following:

1.	 Right-click	the	project	in	NetBeans.

2.	 Select	“New”→“Other”→“Unit	Tests.”

3.	 Create	a	new	Karma	configuration	file	inside	the	test	folder.

Edit	the	new	karma.conf.js	file	and	add	the	following	code:

/*	chapter4/karma.conf.js	*/

module.exports	=	function	(config)	{

				config.set({

								basePath:	'../',

								files:	[

												"public_html/js/libs/angular.min.js",

												"public_html/js/libs/angular-mocks.js",

												"public_html/js/libs/angular-route.min.js",

												"public_html/js/*.js",

												"test/**/*Spec.js"

],

								exclude:	[

],

								autoWatch:	true,

								frameworks:	[

												"jasmine"

],

								browsers:	[

												"Chrome",

												"Firefox"

],

								plugins:	[

												"karma-junit-reporter",

												"karma-chrome-launcher",

												"karma-firefox-launcher",

												"karma-jasmine"

]

				});

};

Now	do	the	following	to	set	Karma	as	the	test	framework:

1.	 Right-click	the	project.

2.	 Select	“Properties.”

3.	 Select	“JavaScript	Testing”	from	the	list	of	categories.

4.	 Select	“Karma”	as	the	testing	provider.

5.	 Select	the	location	of	the	karma-cli	tool	installed	earlier.

6.	 Select	the	location	of	the	karma.conf.js	file	just	created.

7.	 Select	“OK.”

Running	Karma	Unit	Tests
Now	to	actually	run	the	unit	tests	(using	the	test	specification	written	earlier)	under
Karma,	right-click	the	project	and	select	“Test”	from	the	menu.	Karma	will	start.	You
should	see	both	Chrome	and	Firefox	browser	windows	open.	The	NetBeans	test	results
window	should	open	and	display	three	passed	tests	for	Chrome	and	three	passed	tests	for
Firefox.

If	you	get	any	error	messages	or	failed	tests,	go	back	over	this	section	and	verify	that	you
completed	all	the	configurations	and	installations.	You	can	also	download	the	Chapter	4
code	from	the	GitHub	project	site.

https://github.com/KenWilliamson

End-to-End	Testing	with	Protractor
Protractor	is	a	new	test	framework	for	running	end-to-end	(E2E)	tests.	Protractor	lets	you
run	tests	that	exercise	the	application	as	a	user	would.	With	Protractor	E2E	testing,	you
can	test	various	pages,	navigate	through	each	page	from	within	the	test	script,	and	find	any
potential	defects.	Protractor	also	integrates	with	most	continuous	integration	build
systems.

Installing	Protractor
Like	Karma,	Protractor	is	a	Node.js-based	test	framework.	The	Protractor	team
recommends	installing	Protractor	globally.	To	do	so,	open	a	command-line	window	and
type	the	command:

npm	install	-g	protractor

Protractor	relies	on	WebDriverJS,	so	we	will	also	use	this	command	to	update
WebDriverJS	with	the	latest	libraries:

webdriver-manager	update

Configuring	Protractor
Next,	we	will	create	a	Protractor	configuration	file	for	our	project.	Create	a	new
JavaScript	file	named	conf.js	under	the	test	folder	of	the	Chapter	4	project.	Enter	the	code
shown	here	in	the	new	file:

/	*chapter4/conf.js	*/

exports.config	=	{	

		seleniumAddress:	'http://localhost:4444/wd/hub',	

		specs:	['e2e/Hw-spec.js']	

};

Creating	Protractor	Test	Specifications
Now	we	need	to	create	a	Protractor	test	specification.	Do	the	following:

1.	 Create	a	new	folder	under	the	test	folder	of	the	project	and	name	it	e2e.

2.	 Create	a	new	JavaScript	file	inside	the	new	e2e	folder	and	name	it	Hw-spec.js.

Now	copy	the	code	shown	here	into	the	new	Hw-spec.js	file:

/*	chapter4/Hw-spec.js	Protractor	test	specification	*/

describe("Hello	World	Test",	function(){

				it("should	test	the	main	page",	function(){

								browser.get(

									"http://localhost:8383/AngularJsHelloWorld_chapter4/");

								expect(browser.getTitle()).toEqual("AngularJS	Hello	World");

								

								var	msg	=	element(by.binding("message")).getText();

								expect(msg).toEqual("Hello	World");								

								

								browser.get(

					"http://localhost:8383/AngularJsHelloWorld_chapter4/#!/show");

								expect(browser.getTitle()).toEqual("AngularJS	Hello	World");

								

								var	msg	=	element(by.binding("message")).getText();

								expect(msg).toEqual("Show	The	World");								

								

								browser.get(

"http://localhost:8383/AngularJsHelloWorld_chapter4/#!/

addCustomer");															

								

								element(by.model("cName")).sendKeys("tester");

								element(by.model("cCity")).sendKeys("Atlanta");

								element(by.id("f1")).click();								

								

								browser.get(

"http://localhost:8383/

AngularJsHelloWorld_chapter4/#!/addedCustomer/tester/Atlanta");

								

								var	msg	=	element(by.binding("customerName")).getText();

								expect(msg).toEqual("Customer	Name:	tester");

								

								var	msg	=	element(by.binding("customerCity")).getText();

								expect(msg).toEqual("Customer	City:	Atlanta");

				});

});

Starting	the	Selenium	Server
WebDriverJS	runs	on	the	Selenium	Server.	To	start	the	Selenium	Server	that	runs
Protractor	tests	(using	the	webdriver-manager	tool),	open	a	new	command	window	and
enter	the	following	command:

webdriver-manager	start

Running	Protractor
Now	that	the	Selenium	Server	is	running,	we	can	run	our	Protractor	tests.	Open	a	new
command	window,	navigate	to	the	root	of	the	Chapter	4	project,	and	type	this	command:

protractor	test/conf.js

You	should	see	a	browser	window	open.	You	should	then	see	the	test	script	navigate
through	the	pages	of	the	Chapter	4	application.	If	you	watch	the	browser	window	closely,
you	will	see	the	script	enter	values	in	the	form	that	adds	a	new	customer.	When	the
Protractor	script	has	finished,	the	browser	window	will	close.

You	should	see	results	like	the	following	in	the	command	window	when	the	Protractor
script	completes.	The	number	of	seconds	that	it	takes	the	script	to	finish	will	vary
depending	on	your	particular	system:

Finished	in	3.368	seconds

1	test,	6	assertions,	0	failures

NOTE
For	more	information	on	testing	with	Protractor,	see	the	project	site	on	GitHub.	Protractor	has	a	complete
set	of	documentation	to	help	you	get	started.

http://angular.github.io/protractor

Conclusion
Unit	testing	AngularJS	controllers	allows	us	to	validate	the	basic	functionality	of	each
controller.	For	now,	our	tests	are	very	simple.	Testing	a	controller	that	retrieves	data	from
a	REST	service,	for	example,	would	be	a	more	complex	task.

End-to-end	testing	is	a	bit	more	involved,	and	can	be	designed	to	completely	exercise	the
entire	application.	For	now,	our	E2E	tests	are	also	simple.	E2E	tests	help	to	identify
software	defects	early	in	the	development	process	when	used	with	CI	build	systems.

We’ll	be	doing	more	testing	in	the	next	chapter,	where	we	focus	on	AngularJS	views.

Chapter	5.	AngularJS	Views	and
Bootstrap

We	will	now	start	a	new	AngularJS	blog	project	that	uses	public	REST	services	created
especially	for	this	book.	We	will	work	on	the	blog	project	for	the	rest	of	this	book.	You
can	also	download	the	project	code	from	GitHub.	We	will	start	off	by	building	the	views
and	the	controllers	for	those	views.

Twitter	Bootstrap	is	a	free	collection	of	HTML	and	CSS	templates.	We	will	build	the
AngularJS	views	with	the	help	of	Twitter	Bootstrap	to	help	cut	development	time.	Once
we	have	the	views	and	controllers	in	place	and	understand	their	operation,	we	will	focus
on	the	model	and	REST	services	(in	the	next	two	chapters).

http://bit.ly/lajs-github

AngularJS	Templates
AngularJS	views	are	defined	by	building	templates	(partials).	Views	in	AngularJS	are
composed	of	HTML	code	with	directives	added,	such	as	the	ng-model	directive	shown
previously.	AngularJS	builds	the	views	dynamically	at	runtime	by	merging	the	templates
with	the	properties	passed	to	the	templates	in	the	$scope	object.	The	end	result	is	pure
HTML	code	bound	to	the	ng-view	directive,	as	explained	back	in	Chapter	1.	We	will
cover	the	ng-view	directive	again	in	this	chapter	as	a	review.

Creating	the	Blog	Project
Start	a	new	HTML5	project	in	NetBeans	and	call	it	AngularJsBlog.	Set	up	the	folder
structure	as	shown	in	Figure	5-1.	Move	the	downloaded	AngularJS,	jQuery,	and	Bootstrap
library	files	to	the	js/libs	folder,	as	shown.

Figure	5-1.	Blog	project	folder	structure

We’ll	begin	with	the	code	for	the	index.html	file.	As	you	can	see,	we	load	the	needed
library	files	with	the	<script>	tag	in	the	<head>	section	of	the	page.	The	tag	<div	ng-
view></div>	is	where	all	dynamic	content	is	inserted.	As	the	user	clicks	on	links	in	the
application,	existing	content	attached	to	the	tag	is	removed	and	new	dynamic	content	is
then	attached	to	that	same	tag:

<!--	chapter5/index.html	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="blogApp">

<head>

<title>AngularJS	Blog</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>	

Adding	a	New	Blog	Controller
Next	we	will	set	up	the	controllers	for	our	new	blog	application.	The	following	code
defines	the	blogControllers	module	and	the	BlogCtrl	controller	for	that	module.	We
will	define	more	controllers	on	the	blogControllers	module	as	we	work	on	the	blog
application.	For	now,	the	controllers.js	file	is	relatively	small:

/*	chapter5/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	blogControllers	=	

		angular.module('blogControllers',	[]);

blogControllers.controller('BlogCtrl',	['$scope',

function	BlogCtrl($scope)	{

		$scope.blogArticle	=	

				"This	is	a	blog	post	about	AngularJS.	

				We	will	cover	how	to	build	a	blog	and	how	to	add	

				comments	to	the	blog	post.";

}]);

Next	is	the	code	for	the	app.js	file	that	starts	the	booting	process	for	the	blog	application.
This	is	where	we	define	the	route	for	the	main	page	of	the	blog.	As	you	can	see,	we	define
ngRoute	and	blogControllers	as	dependencies	of	the	application	at	startup	time,	using
inline	array	annotations.	The	two	dependencies	are	injected	into	the	application	using	DI
and	are	available	throughout	the	application	when	we	need	them.	Any	controllers	attached
to	the	blogControllers	module	are	accessible	to	the	blogApp	module	(the	AngularJS
application):

/*	chapter5/app.js	*/

'use	strict';

/*	App	Module	*/

var	blogApp	=	angular.module('blogApp',	[

		'ngRoute',

		'blogControllers'

]);

blogApp.config(['$routeProvider',	'$locationProvider',

		function($routeProvider,	$locationProvider)	{

				$routeProvider.

						when('/',	{

								templateUrl:	'partials/main.html',

								controller:	'BlogCtrl'

		});

		$locationProvider.html5Mode(false).hashPrefix('!');

		}]);

The	routes	are	defined	in	the	application	configuration	block.	For	now,	we	will	only	define
the	main	page	of	the	blog.	We	define	BlogCtrl	as	the	controller	and
'partials/main.html'	as	the	template	used	for	the	main	route.	We	will	add	more	routes
as	we	need	them.

Adding	a	New	Blog	Template
Now	we	will	add	a	simple	template	file	and	test	run	the	application	before	adding	code	to
the	template.	Right-click	the	NetBeans	project	folder	and	add	a	new	HTML	page	named
main.html	in	the	partials	folder.	Replace	the	generated	HTML	code	with	the	code	shown
here:

<!--	chapter5/main.html	-->

{{blogArticle}}

Right-click	the	project	folder	and	select	“Run”	from	the	menu.	If	you	set	up	the	project
correctly,	the	browser	should	open	with	the	following	text	displayed:	“This	is	a	blog	post
about	AngularJS.	We	will	cover	how	to	build	a	blog	and	how	to	add	comments	to	the	blog
post.”	This	tells	us	our	application	is	properly	configured.	Now	we	will	use	Twitter
Bootstrap	and	HTML	to	build	a	menu	and	main	page	for	our	blog.

Twitter	Bootstrap
You	should	have	already	added	bootstrap.min.js	to	the	project.	If	you	run	into	JavaScript
errors	related	to	Twitter	Bootstrap,	you	can	easily	replace	the	bootstrap.min.js	file	with	the
nonminified	bootstrap.js	file	distributed	by	Twitter.	Using	the	nonminified	version	of	the
file	allows	the	developer	to	place	breakpoints	in	the	Bootstrap	JavaScript	file	and	debug
any	related	issues.	We	will	only	cover	the	basics	of	Twitter	Bootstrap	here.	For	more
documentation	and	tutorials	on	Bootstrap,	see	the	project	site.

First,	we	need	to	add	three	more	folders	and	some	additional	Twitter	Bootstrap	files	to	the
project.	We	will	add	all	the	Bootstrap	files	here,	although	much	of	Bootstrap	is	not
actually	used	in	this	project.	Do	the	following:

1.	 Add	a	subfolder	named	css	under	the	Site	Root	folder.

2.	 Add	a	subfolder	named	fonts	under	the	Site	Root	folder.

3.	 Add	a	subfolder	named	lib-css	under	the	Site	Root	folder.

4.	 Copy	the	bootstrap-theme.min.css	and	bootstrap.min.css	files	into	the	lib-css	folder.

5.	 Copy	the	following	files	to	the	fonts	folder:
a.	 glyphicons-halflings-regular.eot

b.	 glyphicons-halflings-regular.svg

c.	 glyphicons-halflings-regular.ttf

d.	 glyphicons-halflings-regular.woff

6.	 Add	the	two	lines	of	code	shown	next	to	the	index.html	file.	These	two	lines	are	all
that	we	need	to	make	use	of	Twitter	Bootstrap:

<!--	chapter5/index.html	excerpt	-->

<link	rel="stylesheet"	href="lib-css/bootstrap.min.css"	media="screen"/>	

<script	src="js/libs/bootstrap.min.js"></script>

Here	is	the	completed	index.html	file:

<!--	chapter5/index.html	complete	file	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="blogApp">

<head>

<title>Blog</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<link	rel="stylesheet"	href="lib-css/bootstrap.min.css"	media="screen"/>

<script	src="js/libs/bootstrap.min.js"></script>

http://getbootstrap.com/getting-started

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>	

Figure	5-2	shows	the	project	file	structure.	Make	sure	your	project	is	set	up	as	shown.	The
added	CSS	files	and	fonts	will	give	us	access	to	many	time-saving	features	of	Twitter
Bootstrap.	We	will	now	add	a	Bootstrap	menu	to	our	project.

Figure	5-2.	The	completed	file	structure	for	the	blog	project

Adding	a	Bootstrap	Menu
The	following	are	the	contents	of	the	menu.html	file.	Most	of	the	code	shown	is	clearly
explained	on	the	Bootstrap	project	site.	The	styles	added	to	the	menu	here	are	defined	in
the	bootstrap.min.css	file	added	in	the	previous	section.	If	you	have	questions	on
Bootstrap	menus,	please	refer	to	the	Bootstrap	project	documentation	for	a	fuller
explanation.	Your	menu.html	file	should	look	like	this:

<!--	chapter5/menu.html	-->

<nav	class="navbar	navbar-inverse	navbar-fixed-top"	role="navigation">

<!--	Brand	and	toggle	get	grouped	for	better	mobile	display	-->

<div	class="container">

<div	class="navbar-header">

<button	type="button"	class="navbar-toggle"	data-toggle="collapse"	

		data-target=".navbar-collapse">

Toggle	navigation

</button>

Angular	Blog

</div>

<!--	Collect	the	nav	links,	forms,	and	other	content	for	toggling	-->

<div	class="collapse	navbar-collapse">

<ul	class="nav	navbar-nav">

<li	class="{{aboutActiveClass}}">About

<li	class="">

Download	Project	Code

</div><!--	/.navbar-collapse	-->

</div>

</nav>

Here’s	how	to	add	the	menu.html	file	inside	the	main.html	file:

<!--	chapter5/main.html	-->

<div	ng-include	src="'partials/menu.html'"></div>

{{blogArticle}}	

The	first	line	shows	the	needed	addition	to	main.html.	As	you	see,	we	use	the	ng-include
directive	to	include	the	menu	template	inside	the	main	template.	This	approach	allows	us
to	keep	the	menu	completely	separate	from	the	other	templates.	Using	this	approach
makes	the	code	base	easy	to	maintain	and	understand.	We	will	now	focus	on	using	other
Bootstrap	styles	to	enhance	our	blog.

http://getbootstrap.com/getting-started/

Adding	Mock	Blog	Data
We	will	modify	the	BlogCtrl	controller	and	set	a	list	of	blog	posts	as	a	scope	property
named	blogList.	The	modified	controllers.js	code	is	shown	here.	The	JSON	list
represents	the	data	that	will	eventually	be	retrieved	from	a	REST	service.	For	now,
however,	we	will	just	hardcode	the	JSON	into	the	controller	as	mock	data.	There	are	more
advanced	ways	to	add	mock	data	to	an	AngularJS	application,	but	that	is	beyond	the	scope
of	this	book.	Let’s	take	a	look	at	the	controllers	file:

/*	chapter5/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	blogControllers	=	

		angular.module('blogControllers',	[]);

blogControllers.controller('BlogCtrl',	['$scope',

		function	BlogCtrl($scope)	{

				$scope.blogList	=	[

						{

								"_id":	1,

								"date":	1400623623107,

								"introText":	"This	is	a	blog	post	about	AngularJS.	

										We	will	cover	how	to	build",

								"blogText":	"This	is	a	blog	post	about	AngularJS.	

										We	will	cover	how	to	build	a	blog	and	how	to	add	

										comments	to	the	blog	post."

					},

					{

							"_id":	2,

							"date":	1400267723107,

							"introText":	"In	this	blog	post	we	will	learn	how	to	

									build	applications	based	on	REST",

							"blogText":	"In	this	blog	post	we	will	learn	how	to	

									build	applications	based	on	REST	web	services	that	

									contain	most	of	the	business	logic	needed	for	the	

									application."

					}

];

}]);

As	you	can	see,	there	is	no	presentation	logic	in	this	code,	and	no	data	formatting	is	done
in	the	controller.	The	date,	for	instance,	is	sent	to	the	view	as	a	long	value	that	is	a
standard	representation	of	a	date	in	most	programming	languages.	Trying	to	format	the
date	in	the	controller	would	be	an	incorrect	design	that	shouldn’t	be	used.	AngularJS	has
many	features	that	make	formatting	and	presenting	data	easy;	we’ll	look	at	some	of	these
next.

Using	CSS3	to	Style	the	Page
Now	we	will	add	some	CSS3	to	style	our	pages.	Do	the	following:

1.	 Right-click	the	project	node	and	create	a	new	CSS	file	named	style.css.

2.	 Place	the	following	code	into	the	new	CSS	file:

/*	chapter5/styles.css	*/

body{

		font-family:	arial;

		font-size:	12pt;

		color:	#2a6496;

}

.post-wrapper{

		float:	left;

		width:	100%;

		margin:	5%	0	0	0;

		padding:	0	0	0	0;

}

.blog-post-label{

		float:	left;

		width:	100%;

		margin:	10%	0	0	0;

		padding:	0	0	0	0;

		text-align:	center;

		font-weight:	bold;

		font-size:	16pt;

}

.blog-post-outer{

		float:	left;

		width:	60%;

		margin:	2%	0	2%	20%;

		padding:	1%;

		background:	#e0e0e0;

		border-radius:6px;

		-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

		border:	darkgreen	solid	1px;

}

.blog-intro-text{

		float:	left;

		width:	100%;

		margin:	0	0	0	0;

		padding:	0	0	0	0;

		text-align:	center;

}

.blog-read-more{

		float:	left;

		width:	100%;

		margin:	2%	0	0	0;

		padding:	0	0	0	0;

		text-align:	center;

}

Now	modify	the	index.html	file,	adding	the	line	shown	here	to	load	the	newly	created	CSS
file:

<!--	chapter5/index.html	excerpt	-->

<link	rel="stylesheet"	href="css/styles.css"	media="screen"/>

The	complete	index.html	file	is	shown	here.	Make	sure	your	version	of	the	file	matches
this	one:

<!--	chapter5/index.html	complete	file	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="blogApp">

<head>

<title>Blog</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<link	rel="stylesheet"	href="lib-css/bootstrap.min.css"	media="screen"/>

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/bootstrap.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<link	rel="stylesheet"	href="css/styles.css"	media="screen"/>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>	

Adding	Styles	and	Presentation	Logic
You	must	modify	the	main.html	template	to	make	use	of	the	new	styles	and	to	add	proper
presentation	logic	for	displaying	blog	posts	and	formatting	data.	Modify	your	main.html	to
match	the	code	shown	here.	The	second	line,	<div	id="container"
class="container">,	sets	up	a	Bootstrap	container	and	is	standard	practice	with	Twitter
Bootstrap:

<!--	chapter5/main.html	-->

<div	ng-include	src="'partials/menu.html'"></div>

<div	id="container"	class="container">

<div	class="blog-post-label">Blog	Posts</div>

<div	class="post-wrapper">

<div	ng-repeat="blogPost	in	blogList">

<div	class="blog-post-outer">

<div	class="blog-intro-text">

Posted:	{{blogPost.date	|	date:'MM/dd/yyyy	@	h:mma'}}

</div>

<div	class="blog-intro-text">

{{blogPost.introText}}

</div>

<div	class="blog-read-more">

Read	More

</div>

</div>

</div>

</div>

</div>	

The	Bootstrap	container	handles	much	of	the	page	styling	for	various	screen	sizes	to	make
the	page	responsive	for	any	screen	size	on	any	device.	Inside	the	container	we	use	the	CSS
that	was	added	in	the	styles.css	file.	We	won’t	focus	much	on	the	custom	CSS,	because	it
is	not	specific	to	AngularJS	and	is	covered	in	many	other	books	on	Cascading	Style
Sheets.

We	will,	however,	take	a	look	at	the	AngularJS	directives	that	allow	us	to	build	the
presentation	logic	in	the	view	and	handle	formatting.	The	line		<div	ng-
repeat="blogPost	in	blogList">	is	very	important	to	understanding	AngularJS	views.
The	directive	ng-repeat	works	like	a	for	loop,	iterating	over	the	list	of	blog	posts	in	the
scope	property	blogList.

Each	iteration	through	the	list	gives	access	to	each	item	in	the	list	through	the	variable
blogPost.	We	use	the	line	{{blogPost.introText}}	to	display	the	intro	text	(the	value	of
the	introText	property	of	the	blogPost	variable).

Another	line	that	is	very	important	is	the	HTML	template	binding	{{blogPost.date	|
date:'MM/dd/yyyy	@	h:mma'}},	which	allows	us	to	format	the	date	in	the	view,	where	it
should	be	formatted.	As	I	stated	previously,	there	are	many	features	of	AngularJS	for
formatting	data,	and	this	is	just	one.	As	you	can	see,	the	template	code	is	simple	and	easy

to	understand.

We	will	now	add	a	controller,	route,	and	view	to	display	the	individual	blog	post	when	a
user	clicks	on	the	“View	More”	link.	If	you	look	closely,	you	can	see	that	the	link	passes
blogPost.id	as	a	path	parameter	argument	to	a	new	route,	/blogPost.	We	will	now	add	the
needed	code	to	view	a	blog	post.

Viewing	the	Blog	Post
To	add	the	extra	functionality,	first	append	this	CSS	code	to	the	end	of	the	styles.css	file:

/*	chapter5/styles.css	excerpt	*/

.blog-entry-wrapper{

		float:	left;

		width:	100%;

		margin:	1%	0	0	0;

		padding:	0	0	0	0;

}

.blog-entry-outer{

		float:	left;

		width:	60%;

		margin:	2%	0	2%	20%;

		padding:	1%;

		background:	#e0e0e0;

		border-radius:6px;

		-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

		border:	darkgreen	solid	1px;

}

.blog-comment-wrapper{

		float:	left;

		width:	50%;an	HTML5	project

		margin:	2%	0	2%	25%;

		padding:	1%;

		border-radius:6px;

		-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

		border:	darkgreen	solid	1px;

}

.blog-entry-comments{

		float:	left;

		width:	96%;

		margin:	2%	0	2%	2%;

		padding:	1%;

		background:	#f5e79e;

		border-radius:6px;

		-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

		border:	darkgreen	solid	1px;

}

.blog-comment-label{

		float:	left;

		width:	100%;

		margin:	1%	0	0	0;

		padding:	0	0	0	0;

		text-align:	center;

		font-weight:	bold;

		font-size:	16pt;

}

Then	add	this	code	to	the	bottom	of	the	controllers.js	file:

/*	chapter5/controllers.js	excerpt	*/

blogControllers.controller('BlogViewCtrl',	

		['$scope',	'$routeParams',

				function	BlogViewCtrl($scope,	$routeParams)	{

						var	blogId	=	$routeParams.id;

						var	blog1	=	{

								"_id":	1,

								"date":	1400623623107,

								"introText":	"This	is	a	blog	post	about	AngularJS.	

										We	will	cover	how	to	build",

								"blogText":	"This	is	a	blog	post	about	AngularJS.	

										We	will	cover	how	to	build	a	blog	and	how	to	add	

										comments	to	the	blog	post.",

								"comments"	:[

										{

												"commentText"	:	"Very	good	post.	I	love	it."

										},

										{

												"commentText"	:	"When	can	we	learn	services."

										}

]

					};

		var	blog2	=	{

				"_id":	2,

				"date":	1400267723107,

				"introText":	"In	this	blog	post	we	will	learn	how	to	

						build	applications	based	on	REST",

				"blogText":	"In	this	blog	post	we	will	learn	how	to	

						build	applications	based	on	REST	web	services	that	

						contain	most	of	the	business	logic	needed	for	the	application.",

				"comments"	:[

						{

								"commentText"	:	"REST	is	great.	I	want	to	know	more."

						},

						{

								"commentText"	:	"Will	we	use	Node.js	for	REST	services?."

						}

]

		};

		if(blogId	===	'1'){

				$scope.blogEntry	=	blog1;

		}else	if(blogId	===	'2'){

				$scope.blogEntry	=	blog2;

		}

}]);

Next,	add	a	new	template	file	named	blogPost.html	in	the	partials	folder	and	replace	the
generated	code	with	the	code	shown	here:

<!--	chapter5/blogPost.html	-->

<div	ng-include	src="'partials/menu.html'"></div>

<div	id="container"	class="container">

<div	class="blog-post-label">Blog	Entry</div>

<div	class="blog-entry-wrapper">

<div	class="blog-intro-text">

Posted:	{{blogEntry.date|	date:'MM/dd/yyyy	@	h:mma'}}

</div>

<div	class="blog-entry-outer">

{{blogEntry.blogText}}

</div>

<div	class="blog-comment-wrapper">

<div	class="blog-comment-label">Blog	Comments</div>

<div	class="blog-entry-comments"	ng-repeat="comment	in	

blogEntry.comments">

{{comment.commentText}}

</div>

</div>

</div>

</div>

And	add	this	code	to	the	route	provider	section	of	app.js:

/*	chapter5/app.js	excerpt	*/

.when('/blogPost/:id',	{	

templateUrl:	'partials/blogPost.html',	

controller:	'BlogViewCtrl'

The	complete	route	definition	is	shown	here:

/*	chapter5/app.js	excerpt	-	complete	route	*/

blogApp.config(['$routeProvider',	'$locationProvider',

function($routeProvider,	$locationProvider)	{

	$routeProvider.

			when('/',	{

					templateUrl:	'partials/main.html',

					controller:	'BlogCtrl'

			}).when('/blogPost/:id',	{

					templateUrl:	'partials/blogPost.html',

					controller:	'BlogViewCtrl'

		});

	$locationProvider.html5Mode(false).hashPrefix('!');

}]);

As	you	can	see,	the	effort	required	to	add	a	new	page	was	minimal.	If	you	look	at	the	route
definition,	you’ll	see	the	id	passed	as	a	path	parameter	argument.	Look	at	the	new
controller	and	you	can	see	how	we	handle	the	id	parameter.	Since	we	do	not	yet	have
REST	services	in	place,	we	hardcoded	the	JSON	for	the	two	blog	posts	into	the	controller.

Once	we	retrieve	the	passed	id	from	$routeParams,	we	use	that	to	determine	which	blog
entry	to	set	as	a	scope	property.	Notice	that	we	never	actually	set	a	scope	property	until	we
know	which	blog	entry	gets	sent	to	the	view.	Notice	also	that	blog1	and	blog2	are	defined
as	local	variables.	Only	the	variables	needed	in	the	page	are	set	as	scope	properties.

WARNING
You	should	never	add	properties	to	the	scope	that	are	not	needed	in	the	view.

Running	the	Blog	Application
Now	let’s	run	the	project	to	test	our	work.	Right-click	the	project	node	and	select	“Run”
from	the	menu.	If	you	made	all	the	changes	correctly,	you	should	see	the	screen	shown	in
Figure	5-3.	If	you	get	a	different	result,	go	back	over	the	changes	in	this	chapter	and	verify
that	you	made	all	the	needed	modifications.

Figure	5-3.	Successful	result	from	running	the	project

If	you	have	problems	that	you	can’t	resolve,	download	the	project	code	from	GitHub	and
run	that	code.	Once	the	project	is	running,	click	the	“Read	More”	link	on	the	first	blog
post.	You	should	then	see	the	screen	shown	in	Figure	5-4.	Click	the	“Read	More”	link	on
the	second	blog	post,	and	you	should	see	a	similar	page.

http://bit.ly/lajs-github

Figure	5-4.	Viewing	the	comments	on	the	first	blog	post

Testing	with	Karma
We	will	use	Karma	now	to	test	our	view.	From	the	root	of	the	Chapter	5	project,	create	a
JSON	file	named	package.json	and	add	the	following	contents.	The	package.json	file	is
used	as	a	configuration	file	for	Node.js,	as	mentioned	in	Chapter	4:

{

				"name":	"package.json",

				"devDependencies":	{

								"karma":	"*",

								"karma-chrome-launcher":	"*",

								"karma-firefox-launcher":	"*",

								"karma-jasmine":	"*",

								"karma-junit-reporter":	"*",

								"karma-coverage":	"*"

				}

}

Open	a	command-line	window	on	your	system,	and	navigate	to	the	root	of	the	Chapter	5
project.	You	should	see	the	package.json	file	when	you	list	out	the	files	in	the	folder.	Now
type	the	following	command	to	install	the	Node.js	dependencies	defined	in	the
package.json	file.	This	is	the	same	process	described	in	Chapter	4:

npm	install

Karma	Configuration
Now	we	will	create	a	new	Karma	configuration	file	named	karma.conf.js	inside	the
project’s	test	folder,	as	we	did	in	Chapter	4.	Do	the	following:

1.	 Right-click	the	project	in	NetBeans.

2.	 Select	“New”→“Other”→“Unit	Tests.”

3.	 Create	a	new	Karma	configuration	file	inside	the	test	folder.

Edit	the	new	karma.conf.js	file	and	add	the	code	shown	here:

/*	chapter5/karma.conf.js	*/

module.exports	=	function	(config)	{

				config.set({

								basePath:	'../',

								files:	[

												"public_html/js/libs/angular.min.js",

												"public_html/js/libs/angular-mocks.js",

												"public_html/js/libs/angular-route.min.js",

												"public_html/js/*.js",

												"test/**/*Spec.js"

],

								exclude:	[

],

								autoWatch:	true,

								frameworks:	[

												"jasmine"

],

								browsers:	[

												"Chrome",

												"Firefox"

],

								plugins:	[

												"karma-junit-reporter",

												"karma-chrome-launcher",

												"karma-firefox-launcher",

												"karma-jasmine"

]

				});

};

Now	do	the	following	to	configure	Karma	as	the	test	framework:

1.	 Right-click	the	project.

2.	 Select	“Properties.”

3.	 Select	“JavaScript	Testing”	from	the	list	of	categories.

4.	 Select	“Karma”	as	the	testing	provider.

5.	 Select	the	location	of	the	karma-cli	tool	installed	in	Chapter	4.

6.	 Select	the	location	of	the	karma.conf.js	file	just	created,	and	select	“OK.”

Karma	Test	Specifications
Now	we	need	to	add	new	test	specifications	for	the	Chapter	5	project.	Do	the	following:

1.	 Create	a	new	folder	named	unit	under	the	test	folder	of	the	project.

2.	 Create	a	new	JavaScript	file	named	controllerSpec.js	under	the	unit	folder.

3.	 Enter	the	code	shown	here	in	the	new	file:

/*	chapter5/controllerSpec.js	*/

describe('AngularJS	Blog	Application',	function	()	{

				beforeEach(module('blogApp'));

				describe('BlogCtrl',	function	()	{

								var	scope,	ctrl;

								beforeEach(inject(function	($rootScope,	$controller)	{

												scope	=	$rootScope.$new();

												ctrl	=	$controller('BlogCtrl',	{$scope:	scope});

								}));

								it('should	create	show	blog	entry	count',	function	()	{

												console.log("blogList:"	+	scope.blogList.length);

												expect(scope.blogList.length).toEqual(2);

								});

				});

				describe('BlogViewCtrl',	function	()	{

								var	scope,	ctrl,	$httpBackend;

								beforeEach(inject(function	(_$httpBackend_,	

										$routeParams,	$rootScope,	$controller)	{

												$httpBackend	=		_$httpBackend_;

												$httpBackend.expectGET('blogPost').respond({_id:	'1'});

												$routeParams.id	=	'1';

												scope	=	$rootScope.$new();

												

												ctrl	=	$controller('BlogViewCtrl',	{$scope:	scope});

								}));

								it('should	show	blog	entry	id',	function	()	{												

												expect(scope.blogEntry._id).toEqual(1);

								});

				});

});

Karma	Testing
The	new	test	specification	will	unit	test	both	controllers.	Right-click	the	project	and	select
“Test”	from	the	menu.	Karma	will	start.	You	should	see	both	Chrome	and	Firefox	browser
windows	open.	The	NetBeans	test	results	window	should	open	and	display	two	passed
tests	for	Chrome	and	two	passed	tests	for	Firefox.

If	you	get	any	error	messages	or	failed	tests,	go	back	over	this	section	and	verify	that	you
completed	all	the	configurations	and	installations.	You	can	also	download	the	Chapter	5
code	from	the	GitHub	project	site.

https://github.com/KenWilliamson

End-to-End	Testing
Next,	we	need	to	create	a	Protractor	configuration	file	for	the	project.	Create	a	new
JavaScript	file	named	conf.js	under	the	test	folder	of	the	Chapter	5	project.	Enter	the	code
shown	here	in	the	new	file:

/*	chapter5/conf.js	Protractor	configuration	file	*/

exports.config	=	{	

		seleniumAddress:	'http://localhost:4444/wd/hub',	

		specs:	['e2e/blog-spec.js']	

};

Protractor	Test	Specification
Now	we	need	to	create	a	Protractor	test	specification.	Do	the	following:

1.	 Create	a	new	folder	under	the	test	folder	of	the	project	and	name	it	e2e.

2.	 Create	a	new	JavaScript	file	inside	the	new	e2e	folder	and	name	it	blog-spec.js.

Then	copy	the	code	shown	next	into	the	new	blog-spec.js	file.

WARNING
Make	sure	the	lines	browser.get("http://localhost:8383/AngularJsBlog/");	match	the	URL	that	you
use	on	your	system	to	call	the	blog	application.	The	URL	can	be	different	for	different	development
environments	and	can	depend	on	how	you	named	your	project.

/*	chapter5/blog-spec.js	*/

describe("Blog	Application	Test",	function(){

				it("should	test	the	main	blog	page",	function(){

								

								browser.get("http://localhost:8383/AngularJsBlog/");

								expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

								//gets	the	blog	list

								var	blogList	=	element.all(by.repeater('blogPost	in	blogList'));

								

								//tests	the	size	of	the	blogList

								expect(blogList.count()).toEqual(2);								

								browser.get(

							"http://localhost:8383/AngularJsBlog/#!/blogPost/1");

								expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

								//gets	the	comment	list

								var	commentList	=	element.all(

									by.repeater('comment	in	blogEntry.comments'));

								

								//checks	the	size	of	the	commentList

								expect(commentList.count()).toEqual(2);								

				});

});

Protractor	Testing
Start	a	new	command	window	and	enter	the	following	command	to	start	the	test	server:

webdriver-manager	start

Open	a	new	command	window	and	navigate	to	the	root	of	the	Chapter	5	project.	Type	the
command:

protractor	test/conf.js

You	should	see	a	browser	window	open.	You	should	then	see	the	test	script	navigate
through	the	pages	of	the	blog	application.	When	the	Protractor	script	has	finished,	the
browser	window	will	close.

You	should	see	results	like	the	following	in	the	command	window	when	the	Protractor
script	completes.	The	number	of	seconds	that	it	takes	the	script	to	finish	will	vary
depending	on	your	particular	system:

Finished	in	1.377	seconds

1	test,	4	assertions,	0	failures

Conclusion
In	this	chapter	we	built	our	view	using	Twitter	Bootstrap.	We	also	made	our	application
responsive	to	different	screen	sizes	using	CSS3.	We	configured	both	Karma	and	Protractor
for	our	blog	project,	and	ran	both	unit	and	end-to-end	tests.

We	will	now	cover	REST	services	and	how	they	are	used	in	AngularJS.	Then	we	will
move	on	to	the	model.

Chapter	6.	AngularJS	and	REST	Services

In	the	new	era	of	mobile	everywhere,	the	business	logic	for	AngularJS	applications	should
always	be	placed	in	REST	services	whenever	possible.	AngularJS	applications	should	be
kept	clean	and	simple.	Why?	As	AngularJS	evolves	over	the	next	few	years,	it	is	very
possible	that	most	AngularJS	applications	will	be	rewritten.

This	means	that	any	business	logic	placed	inside	an	AngularJS	application	will	need	to	be
rewritten	as	well	—	a	serious	consideration	for	applications	containing	large	amounts	of
business	logic.	REST	services,	on	the	other	hand,	may	be	around	for	years	to	come.	As
web	services	technologies	evolve,	many	REST	services	may	undergo	upgrades	and
modifications,	but	a	complete	service	rewrite	is	unlikely	in	most	cases.	The	best	place	for
business	logic	is	the	place	that	will	undergo	the	least	amount	of	change	and	be	available	to
all	types	of	applications,	now	and	in	the	future.

REST	Services
REST	(REpresentational	State	Transfer)	services	allow	for	a	“separation	of	concerns.”
REST	services	are	not	concerned	with	the	user	interface	or	user	state,	and	clients	that	use
REST	services	are	not	concerned	with	data	storage	or	business	logic.	Clients	can	be
developed	independently	of	the	REST	services,	as	we	have	shown	in	previous	chapters,
using	mock	data.	REST	services	can	likewise	be	developed	independently	of	the	client,
with	no	concern	for	client	specifics	or	even	the	types	of	clients	using	the	services.	REST
services	should	perform	in	the	same	way	for	all	clients.

REST	services	should	be	stateless.	A	REST	service	should	never	hold	data	in	a	session
variable.	All	information	needed	for	a	REST	service	call	should	be	contained	in	the
request	and	header	passed	from	the	client	to	the	service.	Any	state	should	be	held	in	the
client	and	not	in	the	service.	There	are	many	ways	to	hold	state	in	an	AngularJS
application,	including	local	storage,	cookies,	or	cache	storage.

A	REST	web	service	is	said	to	be	RESTful	when	it	adheres	to	the	following	constrants:

It’s	URL-based	(e.g.,	http://www.micbutton.com/rs/blogPost).

It	uses	an	Internet	media	type	such	as	JSON	for	data	interchange.

It	uses	standard	HTTP	methods	(GET,	PUT,	POST,	DELETE).

HTTP	methods	have	a	particular	purpose	when	used	with	REST	services.	The	following	is
the	standard	way	that	HTTP	methods	should	be	used	with	REST	services:

1.	 POST	should	be	used	to:
a.	 Create	a	new	resources.

b.	 Retrieve	a	list	of	resources	when	a	large	amount	of	request	data	is	required	to
be	passed	to	the	service.

2.	 PUT	should	be	used	to	update	a	resource.

3.	 GET	should	be	used	to	retrieve	a	resource	or	a	list	of	resources.

4.	 DELETE	should	be	used	to	delete	a	resource.

For	example,	the	following	would	be	the	proper	use	of	HTTP	methods:

1.	 POST:	http://www.micbutton.com/rs/blogPost	to	create	a	new	blog	post

2.	 PUT:	http://www.micbutton.com/rs/blogPost	to	update	a	blog	post

3.	 GET:	http://www.micbutton.com/rs/blogPost/50	to	get	the	blog	post	with	id
equal	to	50

4.	 DELETE:	http://www.micbutton.com/rs/blogPost/50	to	delete	the	blog	post	with

id	equal	to	50

AngularJS	and	REST	Services
AngularJS	REST	service	calls	are	asynchronous	Ajax	calls	based	on	the	$q	service’s
promise	and	deferred	APIs.	We	will	not	cover	promises,	deferred	objects,	or	Ajax	in	this
book.	If	you	do	not	understand	how	Ajax	is	used	to	make	asynchronous	calls,	now	would
be	a	good	time	to	research	these	topics.	Making	asynchronous	Ajax	REST	service	calls	is
not	specific	to	AngularJS	or	any	other	client-side	JavaScript	framework.	Many	libraries
provide	Ajax	functionality,	including	jQuery,	Dojo,	and	others.

Ways	to	Create	AngularJS	Services
There	are	three	ways	to	create	and	register	services	in	AngularJS.	They	are	as	follows:

Using	the	service	function

Using	the	provider	function

Using	the	factory	function

Here’s	how	to	create	a	service	with	the	service	function	(we	will	not	use	this	method	to
create	services	in	this	book):

/*	chapter6/	service	function	*/

var	blogServices	=	angular.module('blogServices',	['ngResource']);

blogServices.service('BlogPost',	[…]

You	can	also	create	services	with	the	provider	function,	as	shown	here:

/*	chapter6/	provider	function	*/

var	blogServices	=	angular.module('blogServices',	['ngResource']);

blogServices.provider('BlogPost',	[…]

The	third	way	to	create	services	in	AngularJS	is	with	the	factory	function.	This	is	the
most	commonly	used	method,	and	the	method	we	will	use	to	create	AngularJS	services
throughout	this	book:

/*	chapter6/	factory	function	*/

var	blogServices	=	angular.module('blogServices',	['ngResource']);

blogServices.factory('BlogPost',	[…]

We	will	now	look	at	how	to	connect	to	REST	services	in	AngularJS,	although	we	will	not
actually	implement	the	service	code	in	our	blog	application	until	Chapter	7.	We	need	to
get	a	good	theoretical	understanding	of	AngularJS	services	before	we	start	coding.	Once
we	have	that	understanding,	we	will	be	set	for	Chapter	7.

Ways	to	Communicate	with	REST	Services
There	are	currently	two	ways	to	communicate	with	REST	services	using	AngularJS:

The	$http	service

This	service	provides	low-level	interaction	with	REST	services	using	the	browser’s
XMLHttpRequest	object.

The	$resource	object

This	object	provides	a	high-level	approach	to	interacting	with	REST	services,
simplifying	the	process	considerably.

We	will	focus	mostly	on	using	the	$resource	object	for	communicating	with	REST
services	and	leave	the	$http	service	discussion	to	other	books	(although	we	will	use	the
$http	service	in	later	chapters	for	handling	Basic	Authentication	headers).	All	our	project
code	uses	the	$resource	object.

The	following	code	shows	how	to	define	an	AngularJS	service	that	can	be	used	to	interact
with	the	BlogPost	REST	service.	Notice	that	we	pass	the	REST	service	URL	to	the
$resource	object.	The	methods	defined	match	the	REST	services	that	are	defined	on	that
particular	URL.	Once	the	BlogPost	service	is	defined,	it	can	be	used	like	a	standard
JavaScript	object	to	access	the	different	REST	services	defined	on	this	URL:

/*	chapter6/services.js	*/

'use	strict';

/*	Services	*/

var	blogServices	=	

	angular.module('blogServices',	['ngResource']);

	

blogServices.factory('BlogPost',	['$resource',

function($resource)	{

return	$resource("http://www.micbutton.com/rs/blogPost",	{},	{

		get:	{method:	'GET',	cache:	false,	isArray:	false},

		save:	{method:	'POST',	cache:	false,	isArray:	false},

		update:	{method:	'PUT',	cache:	false,	isArray:	false},

		delete:	{method:	'DELETE',	cache:	false,	isArray:	false}

		});

}]);

Using	the	$resource	object	is	by	far	the	easiest	way	to	call	REST	services.	As	you	can	see
from	this	example,	the	AngularJS	service	code	is	straightforward	and	really	fairly
uncomplicated.	Even	when	many	services	are	defined,	the	services.js	file	is	relatively
simple.

The	AngularJS	$http	service	mentioned	earlier	is	another	way	to	call	REST	services.
However,	using	the	$http	service	would	require	many	more	lines	of	code	related	to	REST
service	calls	than	we	need	using	the	$resource	object.	We	do	use	the	$http	service	in
several	places	in	the	blog	application,	though,	such	as	to	send	a	Basic	Authentication

header	to	REST	services.	We	will	cover	that	in	later	chapters.

Updating	the	Project	for	REST
Before	we	can	use	our	service,	the	new	services.js	file	must	be	loaded	at	runtime	and	the
new	services	module,	blogServices,	must	be	specified	as	a	dependency	of	the	application
at	startup	time.	Here	is	the	line	that	should	be	added	to	the	index.html	file	to	load	the
services.js	file:

/*	chapter6/index.html	excerpt	*/

<script	src="js/services.js"></script>

And	here	is	the	complete	index.html	file,	with	this	addition:

<!--	chapter6/index.html	complete	file	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="blogApp">

<head>

<title>AngularJS	Blog</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<link	rel="stylesheet"	href="lib-css/bootstrap.min.css"	media="screen"/>

<link	rel="stylesheet"	href="css/styles.css"	media="screen"/>

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/bootstrap.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

<script	src="js/services.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>	

The	following	code	shows	how	we	use	inline	annotations	to	add	the	new	BlogServices
module	as	a	dependency	of	the	application	at	startup	time.	Once	the	new	module	is	added
here,	the	services	defined	on	the	module	can	be	used	by	any	controller	in	the	application:

/*	chapter6/app.js	*/

'use	strict';

/*	App	Module	*/

var	blogApp	=	angular.module('blogApp',	[

		'ngRoute',

		'blogControllers',

		'blogServices'

]);

blogApp.config(['$routeProvider',	'$locationProvider',

		function($routeProvider,	$locationProvider)	{

				$routeProvider.

						when('/',	{

						templateUrl:	'partials/main.html',

						controller:	'BlogCtrl'

				}).when('/blogPost/:id',	{

						templateUrl:	'partials/blogPost.html',

						controller:	'BlogViewCtrl'

		});

		$locationProvider.html5Mode(false).hashPrefix('!');

}]);

REST	Services	and	Controllers
Now	let’s	look	at	how	to	use	the	BlogPost	service	inside	the	BlogViewCtrl	controller.
First	we	must	define	the	service	as	a	requirement	of	the	controller,	as	shown	here.	We	then
make	a	call	to	the	get	method	and	pass	the	id	as	an	argument.	We	also	define	two
callback	functions,	success	and	error	(if	you	do	not	understand	JavaScript	callback
functions,	now	would	be	a	good	time	to	stop	and	research	how	they	work):

/*	chapter6/controllers.js	excerpt	*/

blogControllers.controller('BlogViewCtrl',	

		['$scope',	'$routeParams',	'BlogPost',

		function	BlogViewCtrl($scope,	$routeParams,	BlogPost)	{

				var	blogId	=	$routeParams.id;

		

				BlogPost.get({id:	blogId},

						function	success(response)	{

						console.log("Success:"	+	JSON.stringify(response));

						$scope.blogEntry	=	response;

				},

				function	error(errorResponse)	{

						console.log("Error:"	+	JSON.stringify(errorResponse));

				}

);

}]);

When	a	call	is	made	to	the	BlogViewCtrl	controller,	the	id	is	retrieved	from
$routeParams.	A	call	is	then	made	to	the	get	method	of	the	BlogPost	service,	passing	the
id	as	an	argument.	At	that	point,	the	call	to	the	controller	completes.

Theoretically	we	don’t	know	when	the	REST	service	call	will	return	results,	but	when	it
does,	either	the	success	callback	function	or	the	error	callback	function	will	be	called.	If
the	REST	service	call	fails,	the	code	inside	the	error	callback	function	should	handle	the
error	condition.	If	the	REST	service	call	is	successful,	the	code	inside	the	success
callback	function	handles	the	success	functionality.

The	JSON	Response
Now	let’s	take	a	look	at	the	JSON	response	object	returned	upon	success.	If	the	REST
service	call	is	successful,	we	set	the	JSON	returned	as	the	value	of	a	scope	property	named
blogEntry.	The	property	is	at	that	point	bound	to	the	view,	and	AngularJS	updates	the
view	with	the	new	values	that	were	retrieved	from	the	REST	service	call.	If	the	REST
service	call	fails,	the	screen	is	not	updated,	but	we	log	the	error	to	the	console	to	help
diagnose	the	failure.	The	JSON	response	object	returned	from	a	successful	call	looks	like
this:

{	"chapter:	6,"JSON":	"response"}

{

			"_id":1,

			"date":1400623623107,

			"introText":"This	is	a	blog	post	about	AngularJS.	

					We	will	cover	how	to	build",

			"blogText":"This	is	a	blog	post	about	AngularJS.	

					We	will	cover	how	to	build	a	blog	and	how	to	add	

					comments	to	the	blog	post.",

			"comments":[

						{

									"commentText":"Very	good	post.	I	love	it."

						},

						{

									"commentText":"When	can	we	learn	services."

						}

]

}

List	Services
If	we	wanted	a	list	of	blog	posts,	we	could	define	the	following	REST	service:	GET:
http://www.micbutton.com/rs/blogList.	Let’s	take	a	look	at	how	we	would	define	that
service	in	the	services.js	file.	Notice	that	we	specify	isArray:	true.	This	defines	the
service	as	returning	a	list	and	not	an	individual	resource:

/*	chapter6/services.js	excerpt	*/

blogServices.factory('BlogList',	['$resource',

function($resource)	{

		return	

$resource

("http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList",	

{},	{

				get:	{method:	'GET',	cache:	false,	isArray:	true}

		});

}]);

Following	is	the	controller	code	used	to	access	the	BlogList	service.	We	inject	the	service
into	the	controller	as	we	did	earlier,	and	like	before,	we	pass	success	and	error	callback
functions	to	the	service	call.	The	response	from	a	successful	service	call	is	assigned	to	the
blogList	property	of	the	scope	and	passed	to	the	view:

/*	chapter6/controllers.js	excerpt	*/

blogControllers.controller('BlogCtrl',	['$scope',	'BlogList',

		function	BlogCtrl($scope,	BlogList)	{

				BlogList.get({},

						function	success(response)	{

								console.log("Success:"	+	JSON.stringify(response));

								$scope.blogList	=	response;

				},

				function	error(errorResponse)	{

						console.log("Error:"	+	JSON.stringify(errorResponse));

				}

);

}]);

We	access	the	JSON	inside	the	view	by	using	the	blogList	scope	property,	as	shown	here.
This	is	the	same	technique	we	used	in	Chapter	5.	We	use	the	ng-repeat	directive	to	iterate
over	the	list	as	before:

<!--	chapter6/main.html	excerpt	-->

<div	ng-repeat="blogPost	in	blogList">	

<div	class="blog-post-outer">	

<div	class="blog-intro-text">	

Posted:	{{blogPost.date	|	date:'MM/dd/yyyy	@	h:mma'}}	</div>	

<div	class="blog-intro-text">	{{blogPost.introText}}	</div>	

<div	class="blog-read-more">	

Read	More	

</div>

Testing	Services	with	Karma
The	best	way	to	test	AngularJS	services	is	with	Karma.	We	used	Karma	as	one	of	our	test
frameworks	in	previous	chapters.	Unit	testing	a	service	lets	us	validate	that	the	unit	of
code	that	is	used	to	build	the	service	is	working	correctly.	Unit	testing	an	AngularJS
service	that	connects	to	a	REST	service	is	a	potential	cause	of	errors,	however.

REST	service	calls	are	asynchronous,	so	there	can	be	a	delay	before	the	service	call	results
are	available	to	the	part	of	the	application	that	initiated	the	REST	call.	Considering	that	a
REST	service	is	not	actually	part	of	the	unit	of	code	that	we	would	be	testing	with	a	unit
test,	we	shouldn’t	be	too	concerned	about	REST	calls	when	unit	testing.

Karma,	as	I	mentioned	before,	should	be	the	unit	test	framework	for	our	blog	application.
The	following	code	shows	how	we	modify	a	normal	Karma	configuration	file	to	allow	us
to	test	code	where	the	AngularJS	$resource	object	is	used.	Notice	the	line
"public_html/js/libs/angular-resource.min.js".	With	that	line,	we	tell	Karma	to	use
the	AngularJS	angular-resource.min.js	file.	That	file	is	needed	only	when	we’re	working
with	code	that	calls	REST	services:

/*	chapter6/karma.conf.js	*/

module.exports	=	function	(config)	{

				config.set({

								basePath:	'../',

								files:	[

												"public_html/js/libs/angular.min.js",

												"public_html/js/libs/angular-mocks.js",

												"public_html/js/libs/angular-route.min.js",

												"public_html/js/libs/angular-resource.min.js",												

												"public_html/js/*.js",

												"test/**/*Spec.js"

],

								exclude:	[

],

								autoWatch:	true,

								frameworks:	[

												"jasmine"

],

								browsers:	[

												"Chrome",

												"Firefox"

],

								plugins:	[

												"karma-junit-reporter",

												"karma-chrome-launcher",

												"karma-firefox-launcher",

												"karma-jasmine"

]

				});

};

Karma	Service	Specifications
In	order	to	test	AngularJS	services,	we	need	to	add	a	test	specification	specifically	for	the
blog	application	services.	The	following	code	shows	a	servicesSpec.js	file.	The	test
specification	has	unit	testing	for	two	services.	The	first	unit	test	is	for	the	BlogList
service,	and	the	second	test	is	for	the	BlogPost	service:

/*	chapter6/servicesSpec.js	*/

describe('AngularJS	Blog	Service	Testing',	function	()	{			

				describe('test	BlogList',	function	()	{							

								var	$rootScope;

								var	blogList;

								beforeEach(module('blogServices'));

								beforeEach(inject(function	($injector)	{											

												$rootScope	=	$injector.get('$rootScope');

												blogList	=	$injector.get('BlogList');

								}));

								it('should	test	BlogList	service',	function	()	{												

												expect(blogList).toBeDefined();

								});

				});

					describe('test	BlogPost',	function	()	{							

								var	$rootScope;

								var	blogPost;

								beforeEach(module('blogServices'));

								beforeEach(inject(function	($injector)	{											

												$rootScope	=	$injector.get('$rootScope');

												blogPost	=	$injector.get('BlogPost');

								}));

								it('should	test	BlogPost	service',	function	()	{												

												expect(blogPost).toBeDefined();

								});

				});

});

Notice	in	this	code	that	we	use	$injector	to	inject	the	two	services	directly	into	the	test
scripts.	As	I	mentioned	earlier,	we	are	not	testing	the	REST	services	themselves;	we	are
only	testing	the	AngularJS	services	that	connect	to	REST	services.	The	tests	should
succeed	even	if	the	REST	services	are	down	for	some	reason.

End-to-End	Testing
End-to-end	testing	done	with	Protractor	is	a	much	better	way	to	test	the	functionality	of
REST	services	and	the	applications	associated	with	them.	Most	modern	software
development	teams	use	some	type	of	continuous	integration	(CI)	build	system.	Most	CI
systems	can	be	configured	to	run	end-to-end	tests	using	Protractor.

Protractor	E2E	testing	can	even	be	configured	to	run	tests	against	production
environments.	More	often,	however,	E2E	testing	is	written	to	run	against	services	running
on	QA	servers.	E2E	testing	is	a	good	way	to	test	an	application	the	same	way	a	user	would
use	the	application.

Protractor	Configuration
The	following	is	a	configuration	file	for	Protractor.	A	specification	file	named	blog-spec.js
is	referenced	from	the	configuration	file:

/*	chapter6/conf.js	Protractor	configuration	file	*/

exports.config	=	{	

		seleniumAddress:	'http://localhost:4444/wd/hub',	

		specs:	['e2e/blog-spec.js']

};

Protractor	Test	Specification
Let’s	take	a	look	at	the	contents	of	the	blog-spec.js	file.	You	can	see	that	the
browser.get(URL)	call	can	be	made	against	any	accessible	URL.	The	URL	could	point	to
a	local	development	box,	a	QA	server,	or	a	production	server.	REST	services	can	be
thoroughly	tested	with	a	Protractor	test	script:

/*	chapter6/blog-spec.js	Protractor	test	specification	*/

describe("Blog	Application	Test",	function(){

				it("should	test	the	main	blog	page",	function(){

								

								browser.get(

										"http://localhost:8383/AngularJsBlogChapter6/");

								expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

								//gets	the	blog	list

								var	blogList	=	

											element.all(by.repeater('blogPost	in	blogList'));

								

								//tests	the	size	of	the	blogList

								expect(blogList.count()).toEqual(1);

								

								

								browser.get(

										"http://localhost:8383/AngularJsBlogChapter6

											/#!/blogPost/5394e59c4f50850000e6b7ea");

								expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

								//gets	the	comment	list

								var	commentList	=	

					element.all(by.repeater('comment	in	blogEntry.comments'));

								

								//checks	the	size	of	the	commentList

								expect(commentList.count()).toEqual(2);	

				});

})

Conclusion
This	concludes	our	discussion	of	REST	service	basics.	Throughout	the	rest	of	this	book
we’ll	be	working	with	live	REST	services.	As	we	proceed,	you	will	gain	a	better
understanding	of	REST	service	concepts.	We	will	now	start	working	with	actual	REST
services	created	especially	for	this	book.

Chapter	7.	AngularJS	Models

AngularJS	models	are	held	in	the	$scope	object.	In	AngularJS,	$scope	is	used	to	gain
access	to	the	model	related	to	a	particular	controller.	$rootScope	is	a	parent	scope	that	can
be	used	to	save	and	access	model	properties	that	span	multiple	controllers.	The	use	of
$rootScope	is	highly	discouraged	in	most	designs,	however.	There	is	only	one
$rootScope	in	an	application.	$scope	is	a	child	scope	of	$rootScope.

A	properly	designed	AngularJS	application	will	have	little	or	no	use	for	$rootScope	to
store	model	properties.	In	this	chapter	we	will	focus	only	on	$scope,	used	to	store	the
model	retrieved	from	REST	services.

Public	REST	Services
The	REST	services	used	for	this	chapter	are	available	at	http://nodeblog-
micbuttoncloud.rhcloud.com/NodeBlog.	The	services	are	open	to	the	public	and	written	in
JavaScript	using	Node.js,	ExpressJS,	and	MongoDB.	In	Chapter	11,	you	will	deploy	the
same	REST	services	with	your	AngularJS	blog	application	as	a	MEAN	stack	(MongoDB,
ExpressJS,	AngularJS,	and	Node.js)	application.	You	will	then	deploy	the	MEAN	stack	to
the	cloud	using	a	free	RedHat	OpenShift	account.

The	following	excerpt	shows	how	AngularJS	services	access	the	REST	services	used	for
this	chapter.	The	REST	services	return	the	same	JSON	that	was	previously	hardcoded	in
the	controllers:

/*	chapter7/services.js	excerpt	*/

$resource(

		"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blog/:id"	

		...

$resource(

		"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList"	

		...

The	complete	modified	services.js	file	is	shown	here:

/*	chapter7/services.js	complete	file	*/

'use	strict';

/*	Services	*/

var	blogServices	=	

		angular.module('blogServices',	['ngResource']);

blogServices.factory('BlogPost',	['$resource',

		function($resource)	{

				return	$resource(

						"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blog/:id",	

				{},	{

						get:	{method:	'GET',	cache:	false,	isArray:	false},

						save:	{method:	'POST',	cache:	false,	isArray:	false},

						update:	{method:	'PUT',	cache:	false,	isArray:	false},

						delete:	{method:	'DELETE',	cache:	false,	isArray:	false}

		});

}]);

blogServices.factory('BlogList',	['$resource',

		function($resource)	{

				return	$resource(

						"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList",	

				{},	{

						get:	{method:	'GET',	cache:	false,	isArray:	true}

		});

}]);

Changes	to	the	Controllers
Shown	next	is	the	controllers.js	file.	The	changes	made	here	greatly	simplify	the
controllers.	The	services	needed	for	each	individual	controller	are	injected	and	made
accessible	for	that	particular	controller	to	use.	The	blog	ID	is	passed	as	a	path	parameter
argument	to	the	BlogPost	service.	A	path	parameter	is	used	because	we	defined	/id:	at
the	end	of	the	BlogPost	service	URL	in	the	services.js	file.	If	we	removed	the	/:id	from
the	end	of	the	service	URL,	AngularJS	would	pass	the	value	as	a	query	parameter
argument	instead.	The	updated	file	looks	like	this:

/*	chapter7/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	blogControllers	=	

				angular.module('blogControllers',	[]);

blogControllers.controller('BlogCtrl',	

		['$scope',	'BlogList',

				function	BlogCtrl($scope,	BlogList)	{

								$scope.blogList	=	[];

								BlogList.get({},

																function	success(response)	{

																				console.log("Success:"	+	

																							JSON.stringify(response));

																				$scope.blogList	=	response;

																},

																function	error(errorResponse)	{

																				console.log("Error:"	+	

																						JSON.stringify(errorResponse));

																}

);

}]);

blogControllers.controller('BlogViewCtrl',	['$scope',	

		'$routeParams',	'BlogPost',

				function	BlogViewCtrl($scope,	$routeParams,	BlogPost)	{

								var	blogId	=	$routeParams.id;

								$scope.blg	=	1;

								BlogPost.get({id:	blogId},

																function	success(response)	{

																				console.log("Success:"	+	

																						JSON.stringify(response));

																				$scope.blogEntry	=	response;

																},

																function	error(errorResponse)	{

																				console.log("Error:"	+	

																						JSON.stringify(errorResponse));

																}

);

}]);

Model	Properties
Once	you’ve	added	the	JSON	returned	from	the	REST	service	to	the	model	by	assigning	it
to	a	scope	property,	that	JSON	is	made	available	to	the	view.	All	scope	properties	are
accessed	from	inside	the	view,	as	described	in	previous	chapters.	There	are	no	changes
that	need	to	be	made	in	the	view.

If	you	have	used	other	JavaScript	client-side	frameworks,	by	now	you	should	see	the
simplicity	of	AngularJS	models.	With	AngularJS,	there	are	no	model	classes	that	need	to
be	defined;	you	don’t	need	to	write	model	Ajax	code	or	create	model	objects	that	have	to
be	bound	to	the	views.	All	you	have	to	do	is	assign	model	properties	to	the	scope.	The
AngularJS	framework	handles	the	rest.

AngularJS	models	greatly	simplify	the	creation	of	JavaScript	applications.	You	can	cut
what	potentially	could	be	thousands	of	lines	of	model-related	code	down	to	only	a	few
lines.	By	cutting	lines	of	code	you	also	cut	valuable	development	time,	and	potentially	the
number	of	developers	needed	on	a	project.	The	simplicity	of	the	model	code	also	makes
applications	easier	to	maintain	or	enhance,	once	again	cutting	costs	by	cutting
development	time.

Blog	Application	Public	Services
Now	we	will	make	the	needed	changes	to	enable	our	blog	application	to	use	the	public
REST	services	discussed	in	the	previous	chapter.	First,	we	must	add	the	services.js	file	to
our	project.

Right-click	the	project	and	add	a	new	JavaScript	file	named	services.js	under	the	js	folder,
as	shown	in	Figure	7-1.

Figure	7-1.	Adding	the	services.js	file

Add	this	code	to	the	newly	created	file:

/*	chapter7/services.js	*/

'use	strict';

/*	Services	*/

var	blogServices	=	

		angular.module('blogServices',	['ngResource']);

blogServices.factory('BlogPost',	['$resource',

		function($resource)	{

				return	$resource(

						"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blog/:id",	

				{},	{

						get:	{method:	'GET',	cache:	false,	isArray:	false},

						save:	{method:	'POST',	cache:	false,	isArray:	false},

						update:	{method:	'PUT',	cache:	false,	isArray:	false},

						delete:	{method:	'DELETE',	cache:	false,	isArray:	false}

		});

}]);

blogServices.factory('BlogList',	['$resource',

		function($resource)	{

				return	$resource(

						"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList",	

				{},	{

				get:	{method:	'GET',	cache:	false,	isArray:	true}

		});

}]);

Now	add	the	new	services.js	file	to	the	index.html	file’s	<head>	section,	as	shown	here,	so
the	file	can	be	loaded	by	our	AngularJS	application:

<!--	chapter7/index.html	excerpt	-->

<script	src="js/services.js"></script>

Modifying	the	HTML
The	complete	index.html	file	is	shown	here	for	convenience:

<!--	chapter7/index.html	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="blogApp">

<head>

<title>AngularJS	Blog</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<link	rel="stylesheet"	href="lib-css/bootstrap.min.css"	media="screen"/>

<link	rel="stylesheet"	href="css/styles.css"	media="screen"/>

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/bootstrap.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

<script	src="js/services.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>	

Modifying	App.js
The	newly	created	services	module	must	be	added	to	the	application	before	it	can	be	used.
We	add	the	new	blogServices	module	as	a	dependency	of	the	application	at	startup	time
using	inline	array	annotations,	as	shown	here.	Now	the	new	services	can	be	injected	and
used	in	controllers	whenever	needed.	We	can	now	replace	the	hardcoded	JSON	used	as
mock	data	in	previous	chapters:

/*	chapter7/app.js	*/

'use	strict';

/*	App	Module	*/

var	blogApp	=	angular.module('blogApp',	[

		'ngRoute',

		'blogControllers',

		'blogServices'

]);

blogApp.config(['$routeProvider',	'$locationProvider',

		function($routeProvider,	$locationProvider)	{

				$routeProvider.

						when('/',	{

						templateUrl:	'partials/main.html',

						controller:	'BlogCtrl'

				}).when('/blogPost/:id',	{

						templateUrl:	'partials/blogPost.html',

						controller:	'BlogViewCtrl'

		});

		$locationProvider.html5Mode(false).hashPrefix('!');

}]);

Modifying	the	Controllers
Now	let’s	see	how	to	use	the	new	services	in	our	controllers.	Replace	the	previous	code	in
controllers.js	with	the	code	shown	next.	The	code	shows	how	we	inject	the	services	into
each	controller.	We	populate	the	scope	properties	inside	the	success	callback	function,	as
explained	in	previous	chapters.

As	explained	earlier,	the	success	callback	function	is	only	called	when	the	REST	service
call	returns	successfully.	At	that	point,	we	can	safely	populate	the	scope	properties.	The
scope	properties	are	then	bound	to	the	view	by	the	AngularJS	framework:

/*	chapter7/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	blogControllers	=	

		angular.module('blogControllers',	[]);

blogControllers.controller('BlogCtrl',	

		['$scope',	'BlogList',

				function	BlogCtrl($scope,	BlogList)	{

						BlogList.get({},

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										$scope.blogList	=	response;

						},

						function	error(errorResponse)	{

								console.log("Error:"	+	JSON.stringify(errorResponse));

						});

}]);

blogControllers.controller('BlogViewCtrl',	

		['$scope',	'$routeParams',	'BlogPost',

				function	BlogViewCtrl($scope,	$routeParams,	BlogPost)	{

						var	blogId	=	$routeParams.id;

						BlogPost.get({id:	blogId},

								function	success(response)	{

								console.log("Success:"	+	JSON.stringify(response));

								$scope.blogEntry	=	response;

						},

						function	error(errorResponse)	{

								console.log("Error:"	+	JSON.stringify(errorResponse));

						});

}]);

We	also	made	some	changes	to	the	controllers.js	file	to	make	testing	easier.	Testing
AngularJS	controllers	can	be	more	complex	when	REST	services	are	involved.	As
mentioned	previously,	we	don’t	know	when	REST	services	will	return	results,	because
they	are	asynchronous	calls.

Asynchronous	REST	service	calls	will	always	cause	controller	unit	tests	to	fail.	Unit	tests
of	controllers	that	depend	on	REST	services	will	finish	execution	before	the	REST
services	ever	return	results,	so	any	scope	properties	used	by	controller	unit	tests	will	be
missing	when	the	test	script	executes	if	those	properties	are	returned	from	a	REST	service
call.

There	are	ways	to	add	a	delay	and	make	unit	test	scripts	wait	on	the	REST	service	results,
but	they	add	an	unneeded	level	of	complexity	to	the	test	scripts.	Unit	testing,	after	all,

should	be	a	test	of	a	unit	of	code	and	not	an	end-to-end	test.	Protractor	E2E	tests	are	a
better	way	to	test	REST	services.

Look	at	the	code	that	follows.	The	BlogList	service	is	injected	into	the	BlogCtrl
controller.	We	make	an	asynchronous	call	to	the	get	method	of	the	BlogList	service	by
passing	two	callback	functions	to	the	call.	The	success	callback	function	returns	a
successful	service	response	object,	and	the	error	callback	function	returns	any	errors	if
the	service	call	fails:

/*	chapter7/controllers.js	excerpt	*/

blogControllers.controller('BlogCtrl',	['$scope',	'BlogList',

		function	BlogCtrl($scope,	BlogList)	{

				$scope.blogList	=	[];

						BlogList.get({},

								function	success(response)	{																				

										console.log("Success:"	+	JSON.stringify(response));

										$scope.blogList	=	response;

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								}

);

}]);

It	may	take	a	second	or	more	for	the	REST	service	to	return	results.	Once	the	REST
service	does	return	results,	the	success	callback	function	will	be	called.	Unfortunately,	the
unit	test	script	will	have	finished	execution	long	before.	We	remedy	this	issue	by	making	a
change	to	the	controller.

Notice	the	assignment	$scope.blogList	=	[];	in	the	preceding	code.	The	assignment
has	no	impact	on	the	functionality	of	the	controller,	but	it	has	a	major	impact	on	the	unit
test	script	associated	with	the	BlogCtrl	controller.	The	assignment	initializes	the	scope
blogList	property	with	an	empty	array.

The	following	code	shows	how	the	empty	array	is	used	to	test	the	blogCtrl	controller.
Notice	the	line	of	code	checks	that	the	array	length	is	equal	to	0:

/*	chapter7/controllerSpec.js	excerpt	*/

expect(scope.blogList.length).toEqual(0);

We	can	then	rest	assured	that	the	controller	is	working	successfully	from	a	“unit	of	code”
perspective.	You	will	see	later	how	to	make	sure	the	REST	service	worked	as	expected.

Running	the	Application
In	NetBeans,	right-click	and	run	your	AngularJS	blog	application.	You	should	see	the
same	data	displayed	on	the	screen	that	was	there	when	the	data	was	hardcoded.	If	you	are
using	Chrome	as	your	browser,	you	can	turn	on	“Developer	Tools”	and	click	the
“Network”	menu	button	to	see	the	REST	service	calls	that	are	made	as	you	click	various
links	in	the	application.	You	can	also	click	the	Headers,	Preview,	Response,	and	Timing
tabs	in	Developer	Tools	to	see	specific	information	about	each	service	call.

Using	Chrome	Developer	Tools	is	also	a	great	way	to	troubleshoot	issues	with	AngularJS
REST	service	calls	if	you	have	problems.	There’s	a	great	JavaScript	debugger	that	can	be
used	to	debug	REST	service	calls	and	other	JavaScript	issues.

If	you	are	not	familiar	with	Chrome	Developer	Tools,	see	the	Google	Chrome	site	for
more	information.	In	addition	to	the	Chrome	debugger,	NetBeans	also	has	a	debugger
built	in	for	debugging	JavaScript	applications.	For	more	information	on	debugging
JavaScript	in	NetBeans,	take	a	look	at	the	NetBeans	website.

https://developer.chrome.com/devtools

Testing	Services	with	Karma
The	best	way	to	test	AngularJS	services	is	with	Karma.	We	used	Karma	as	one	of	our	test
frameworks	in	previous	chapters.	You	should	have	already	created	the	package.json	file
for	the	blog	project	back	in	Chapter	5.	The	file	is	shown	again	here	for	reference:

/*	chapter7/package.json	*/

{

				"name":	"package.json",

				"devDependencies":	{

								"karma":	"*",

								"karma-chrome-launcher":	"*",

								"karma-firefox-launcher":	"*",

								"karma-jasmine":	"*",

								"karma-junit-reporter":	"*",

								"karma-coverage":	"*"

				}

}

We	also	created	the	Karma	configuration	file	for	the	blog	project	back	in	Chapter	5,	but
we	need	to	make	a	small	change	to	that:	we	need	to	add	the	AngularJS	angular-
resource.min.js	file	to	the	karma.conf.js	file	to	test	our	services.	The	angular-
resource.min.js	file	is	used	by	both	the	BlogList	and	BlogPost	services.	The	modified
karma.conf.js	file	looks	like	this:

/*	chapter7/karma.conf.js	*/

module.exports	=	function	(config)	{

				config.set({

								basePath:	'../',

								files:	[

												"public_html/js/libs/angular.min.js",

												"public_html/js/libs/angular-mocks.js",

												"public_html/js/libs/angular-route.min.js",

												"public_html/js/libs/angular-resource.min.js",												

												"public_html/js/*.js",

												"test/**/*Spec.js"

],

								exclude:	[

],

								autoWatch:	true,

								frameworks:	[

												"jasmine"

],

								browsers:	[

												"Chrome",

												"Firefox"

],

								plugins:	[

												"karma-junit-reporter",

												"karma-chrome-launcher",

												"karma-firefox-launcher",

												"karma-jasmine"

]

				});

};

Karma	Service	Specifications
Now	we	need	to	add	new	service	test	specifications	for	the	blog	project.	Do	the	following:

1.	 Create	a	new	JavaScript	file	named	servicesSpec.js	under	the	unit	folder.

2.	 Enter	the	following	code	in	the	new	file:

/*	chapter7/servicesSpec.js	*/

/*	Jasmine	specs	for	controllers	*/

describe('AngularJS	Blog	Service	Testing',	function	()	{	

		describe('test	BlogList',	function	()	{							

				var	$rootScope;

				var	blogList;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						blogList	=	$injector.get('BlogList');

				}));

				it('should	test	BlogList	service',	function	()	{												

						expect(blogList).toBeDefined();

				});

		});

		describe('test	BlogPost',	function	()	{							

				var	$rootScope;

				var	blogPost;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						blogPost	=	$injector.get('BlogPost');

				}));

				it('should	test	BlogPost	service',	function	()	{												

							expect(blogPost).toBeDefined();

				});

		});

});

It	is	important	to	point	out	here	that	our	test	specifications	for	the	blog	services	do	not
depend	on	the	presence	and	functionality	of	the	associated	REST	services	that	get	called
by	those	services.	Karma	unit	tests	should	test	that	the	AngularJS	services	can	be	injected.
If	the	tests	are	successful,	that	proves	that	the	services	are	constructed	properly.	Our	unit
testing	of	services	does	not,	however,	prove	that	the	REST	services	are	working.

As	I	mentioned	before,	Karma	unit	tests	often	run	inside	some	continuous	integration	(CI)
framework.	CI	systems	are	often	configured	to	trigger	the	running	of	unit	tests	every	time
a	change	is	pushed	to	the	source	repository.	The	existence	and	accessibility	of	REST
services	can’t	always	be	guaranteed	when	you’re	unit	testing	inside	a	CI.

Unit	tests	shouldn’t	depend	on	the	existence	of	REST	services	or	other	network-related
devices.	Unit	testing	should	test	the	individual	units	of	code	and	not	try	to	do	end-to-end
testing.	We	will	test	the	functionality	of	our	REST	services	when	we	do	E2E	testing	with
Protractor.	Any	problems	related	to	the	calling	of	REST	services	will	show	as	failures	in
Protractor.

Karma	Testing
The	new	test	specifications	will	unit	test	the	new	services.	The	controllers	will	also	be
tested	because	we	still	have	the	controllerSpec.js	file	in	our	system.	Our	Karma
configuration	file	looks	for	all	test	files	that	end	in	Spec.js.

Right-click	the	project	and	select	“Test”	from	the	menu.	Karma	will	start.	You	should	see
both	Chrome	and	Firefox	browser	windows	open.	The	NetBeans	test	results	window
should	open	and	display	four	passed	tests	for	Chrome	and	four	passed	tests	for	Firefox.

If	you	get	any	error	messages	or	failed	tests,	go	back	over	this	section	and	verify	that	you
completed	all	the	configurations	and	installations.	You	can	also	download	the	Chapter	7
code	from	the	GitHub	project	site.

https://github.com/KenWilliamson

End-to-End	Testing
We	already	created	a	Protractor	configuration	file	for	the	blog	application	in	Chapter	5.
The	Protractor	configuration	file	is	shown	here	for	reference:

/*	chapter7/conf.js	Protractor	configuration	file	*/

exports.config	=	{	

		seleniumAddress:	'http://localhost:4444/wd/hub',	

		specs:	['e2e/blog-spec.js']	

};

Protractor	Test	Specification
Now	we	need	to	change	the	Protractor	test	specifications	created	earlier.	The	new
Protractor	tests	need	to	interact	with	the	REST	services	that	we	use	in	this	chapter.

Copy	the	code	shown	here	into	the	blog-spec.js	file.	Make	sure	the	lines	like
browser.get("http://localhost:8383/AngularJsBlog/");	match	the	URL	that	you
use	on	your	system	to	call	the	blog	application.	The	URL	can	be	different	for	different
development	environments	and	can	depend	on	how	you	named	your	project:

/*	chapter7/blog-spec.js	Protractor	test	specification	*/

describe("Blog	Application	Test",	function(){

				it("should	test	the	main	blog	page",	function(){

								

								browser.get(

							"http://localhost:8383/AngularJsBlogChapter7/");

								expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

								//gets	the	blog	list

								var	blogList	=	

									element.all(by.repeater('blogPost	in	blogList'));

								

								//tests	the	size	of	the	blogList

								expect(blogList.count()).toEqual(1);								

								browser.get(

									"http://localhost:8383/AngularJsBlogChapter7

											/#!/blogPost/5394e59c4f50850000e6b7ea");

								expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

								//gets	the	comment	list

								var	commentList	=	

								element.all(by.repeater('comment	in	blogEntry.comments'));

								

								//checks	the	size	of	the	commentList

								expect(commentList.count()).toEqual(2);	

				});

});

Protractor	Testing
Start	a	new	command	window	and	enter	the	following	command	to	start	the	test	server:

webdriver-manager	start

Open	a	new	command	window	and	navigate	to	the	root	of	the	Chapter	5	project.	Type	the
command:

protractor	test/conf.js

You	should	see	a	browser	window	open.	You	should	then	see	the	test	script	navigate
through	the	pages	of	the	blog	application.	When	the	Protractor	script	has	finished,	the
browser	window	will	close.

You	should	see	results	like	the	following	in	the	command	window	when	the	Protractor
script	completes.	The	number	of	seconds	that	it	takes	the	script	to	finish	will	vary
depending	on	your	particular	system:

Finished	in	1.52	seconds

1	test,	4	assertions,	0	failures

Conclusion
This	concludes	our	discussion	of	AngularJS	models.	We	added	code	to	make	our	blog
application	work	with	REST	services	running	in	the	cloud,	and	we	wrote	unit	tests	to	test
the	new	services	that	we	added.	We	then	used	Protractor	to	do	end-to-end	testing	that
validated	the	functionality	of	our	REST	services	and	the	AngularJS	services	associated
with	those	REST	services.

We	will	talk	about	models	again	in	Chapter	11,	when	we	deploy	our	application	to	the
cloud	as	a	MEAN	stack	application.	Next,	we	will	add	some	non-REST	services	to	handle
business	logic	and	see	the	power	of	AngularJS	in	action.

Chapter	8.	Services	and	Business	Logic

Not	all	AngularJS	services	connect	to	REST	services.	Services	can	also	contain	business
logic	that	is	used	by	multiple	controllers.	As	I	mentioned	before,	if	the	business	logic	can
be	moved	to	a	REST	service,	that	is	where	it	should	be	defined.	Defining	business	logic	in
REST	services	assures	that	the	same	logic	will	be	readily	available	to	all	client-side
applications.

Often,	however,	it	is	not	possible	to	move	all	business	logic	to	REST	services.	Often	that
same	business	logic	is	needed	across	multiple	controllers.	That	is	where	AngularJS	non-
REST	services	come	in	handy	once	again.	In	this	chapter	we	will	look	at	several	examples
of	where	AngularJS	non-REST	services	are	useful.

Take,	for	example,	a	situation	where	a	user	needs	to	authenticate	across	multiple	REST
services.	One	way	to	do	that	is	by	using	Basic	Authentication,	where	the	user’s	username
and	password	are	passed	to	a	service	as	a	token	in	the	HTTPS	header	during	a	service	call.
The	token	is	in	the	form	of	“username:password”	and	encoded	with	base64.

As	we	know,	a	REST	service	shouldn’t	hold	state,	and	holding	a	user’s	credentials	in	a
session	variable	on	the	server	is	a	serious	security	concern.	Using	a	session	variable	to
hold	authentication	state	on	the	server	side	is	usually	not	acceptable	in	most	REST	service
designs.	AngularJS	services	are	great	for	handling	such	situations.

Handling	User	Authentication
First,	we	need	a	way	to	validate	a	user’s	credentials	over	HTTPS.	The	following	code
shows	a	REST	service	used	to	authenticate	a	user:

/*	chapter8/	login	REST	service	URL	from	services.js	*/

POST:	https://www.micbutton.com/user/login

Here	is	the	JSON	request	for	the	REST	service:

{

			"username":"ken",

			"password":"password"

}

And	here	is	the	JSON	response	for	the	REST	service:

{

			"authenticated":true

}

This	particular	service	call	would	normally	be	open	to	any	user	and	therefore	would	not
require	authentication.	Allowing	all	users	to	access	this	service	uninhibited	means	any
user	can	try	to	validate	against	the	service.	If	there	is	a	possibility	of	abuse,	the	service
could	be	secured	at	the	network	level,	or	a	challenge	and	response	system	could	be	used	to
discourage	unwanted	users.

Once	a	user	makes	a	call	to	the	login	service	and	the	user’s	credentials	are	validated,	it	is
the	job	of	the	AngularJS	application	to	temporarily	store	those	credentials.	It	is	also	the
job	of	the	AngularJS	application	to	direct	the	user	to	a	login	page	when	the	user	has	not
authenticated.	AngularJS	non-REST	services	play	a	major	role	in	this	process.

Using	Basic	Authentication
If	the	REST	services	are	designed	properly	to	require	authentication	on	all	services	that
contain	private	data,	the	AngularJS	application	user	will	never	have	access	to	private	data
without	providing	the	proper	credentials.	Once	the	user	provides	valid	user	credentials,	the
AngularJS	application	can	store	those	credentials	in	a	cookie	or	some	other	temporary
storage.	Cookies	are	a	good	place	to	store	user	credentials	because	all	modern	browsers
store	cookies	mapped	to	a	particular	web	domain.	Cookie	access	is	then	granted	only	to
the	application	that	actually	created	the	cookie	on	that	particular	domain.	Other	JavaScript
applications	running	in	the	browser	only	have	access	to	cookies	they	create,	which	are
associated	with	their	respective	domains.

Creating	AngularJS	Services
As	I	mentioned	in	Chapter	6,	there	are	three	ways	to	create	services	in	AngularJS.	A
service	can	be	created	with	the	service	function,	as	shown	here:

/*	chapter8/	service	function	*/

var	blogServices	=	angular.module('blogServices',	

['ngResource']);	blogServices.service('BlogPost',	[…]

or	with	the	provider	function:

/*	chapter8/	provider	function	*/

var	blogServices	=	angular.module('blogServices',

['ngResource']);	blogServices.provider('BlogPost',	[…]

The	third	way	to	create	services	in	AngularJS	is	with	the	factory	function.	This	is	the
method	we	will	use	to	create	AngularJS	services	in	this	chapter	and	throughout	this	book,
because	it	is	the	most	commonly	used	method.	The	following	code	shows	how	to	create	a
service	with	the	factory	function:

/*	chapter8/	factory	function	*/

var	blogServices	=	angular.module('blogServices',

['ngResource']);	blogServices.factory('BlogPost',	[…]

Holding	User	Credentials
Now	let’s	take	a	look	at	an	AngularJS	business	logic	service	designed	to	save	the	user’s
credentials	once	the	user	has	authenticated.	The	service	makes	use	of	AngularJS	cookies,
which	we	can	include	in	an	application	by	including	the	angular-cookies.min.js	library
file.	The	service	has	two	parameters	defined:	the	username	(un)	and	password	(pw).

The	two	values	assigned	to	the	service	are	used	to	build	the	token	that	is	sent	in	the
HTTPS	header	of	each	REST	service	call.	The	AngularJS	service	then	stores	the	token
and	the	username	as	cookies	for	use	later:

/*	chapter8/	non-REST	business	service	to	set	user	credentials	*/

	

blogBusinessServices.factory('setCreds',	

['$cookies',	function($cookies)	{

return	function(un,	pw)	{

		var	token	=	un.concat(":",	pw);

				$cookies.blogCreds	=	token;

				$cookies.blogUsername	=	un;

		};

}]);

Here’s	what	a	call	to	the	setCreds	business	logic	service	to	save	an	authenticated	user’s
credentials	looks	like:

/*	chapter8/controllers.js	excerpt	*/

setCreds($scope.username,	$scope.password);

Checking	User	Credentials
Now	let’s	look	at	a	business	logic	service	that	checks	the	status	of	a	user’s	credentials.	If
the	service	returns	false,	the	AngularJS	application	should	redirect	the	user	to	the	login
page.	It	is	also	important	to	remember	to	save	the	user’s	credentials	by	making	a	call	to
setCreds	any	time	the	user’s	password	is	changed:

/*	chapter8/	non-REST	business	logic	service	to	check	credentials	*/

blogBusinessServices.factory('checkCreds',	

['$cookies',	function($cookies)	{

		return	function()	{

				var	returnVal	=	false;

				var	blogCreds	=	$cookies.blogCreds;

				if	(blogCreds	!==	undefined	&&	blogCreds	!==	"")	{

						returnVal	=	true;

				}

				return	returnVal;

		};

}]);

The	service	simply	looks	for	the	existence	of	the	blogCreds	cookie	and	returns	true	if	the
cookie	exists.	If	a	subsequent	service	call	fails	with	the	saved	credentials	and	returns	an
HTTP	401	error	code,	it	is	the	job	of	the	AngularJS	application	to	delete	the	saved	cookies
and	redirect	the	user	to	the	login	page.	The	following	code	shows	a	call	to	the	checkCreds
service:

/*	chapter8/controllers.js	excerpt	*/

if	(checkCreds()){

//	do	something	to	continue

}

Deleting	User	Credentials
Our	next	service	deletes	the	user’s	credentials	once	the	user’s	session	has	ended,	or	when
the	user’s	credentials	failed	to	authenticate	during	a	REST	service	call.	Once	the
blogCreds	cookie	is	removed,	the	AngularJS	application	should	redirect	the	user	to	the
login	page:

/*	chapter8/	non-REST	business	logic	service	to	delete	credentials	*/

blogBusinessServices.factory('deleteCreds',	

		['$cookies',	function($cookies)	{

				return	function()	{

						$cookies.blogCreds	=	"";

						$cookies.blogUsername	=	"";

				};

}]);

Here’s	what	a	call	to	the	deleteCreds	service	looks	like:

/*	chapter8/controllers.js	excerpt	*/

deleteCreds();

Retrieving	User	Credentials
The	following	code	shows	a	business	logic	service	that	retrieves	the	user’s	token	from	the
blogCreds	cookie.	A	token	passed	to	a	REST	service	in	the	HTTPS	header	must	be
encoded	with	base64.	The	business	service	encodes	the	token	in	base64	and	then	returns
that	encoded	token:

/*	chapter8/	non-REST	business	logic	service	to	retrieve	credentials	*/

blogBusinessServices.factory('getToken',	

		['$cookies',	function($cookies)	{

				return	function()	{

						var	returnVal	=	"";

						var	blogCreds	=	$cookies.blogCreds;

						if	(blogCreds	!==	undefined	&&	blogCreds	!==	"")	{

								returnVal	=	btoa(blogCreds);

						}

						return	returnVal;

				};

}]);

The	following	code	shows	how	the	token	returned	from	the	service	is	used	to	build	the
Basic	Authentication	header	when	we’re	calling	a	REST	service.	This	line	should	be
defined	before	every	REST	service	call	that	requires	authentication.	The	call	makes	use	of
the	AngularJS	$http	service:

/*	chapter8/controllers.js	excerpt	*/

$http.defaults.headers.common['Authorization']	=	'Basic	'	+	getToken();

The	following	code	shows	how	to	use	the	getToken	service	to	authenticate	to	the	Blog
service	when	we	are	saving	a	blog	post:

/*	chapter8/controllers.js	excerpt	*/

blogControllers.controller('NewBlogCtrl',	

		['$scope',	'checkCreds',	'$location',	'$http',	'getToken',

				function	NewBlogCtrl($scope,	checkCreds,	$location,	$http,	getToken)	{

						$http.defaults.headers.common['Authorization']	=	'Basic	'	+	getToken();

								Blog.save({},

				function	success(response)	{

						console.log("Success:"	+	JSON.stringify(response));

						$scope.status	=	response;

				},

				function	error(errorResponse)	{

						console.log("Error:"	+	JSON.stringify(errorResponse));

				}

);

}]);

One	final	business	logic	service	that	would	be	useful	is	shown	next.	The	service	retrieves
the	user’s	username	from	the	blogUsername	cookie.	The	username	is	then	returned	for	use
in	multiple	places	throughout	the	application.	Using	the	getUsername	service	simplifies
storing	and	accessing	the	user’s	username:

/*	chapter8/	non-REST	business	logic	service	to	retrieve	username	*/

blogBusinessServices.factory('getUsername',	

		['$cookies',	function($cookies)	{

				return	function()	{

						var	returnVal	=	"";

						var	blogUsername	=	$cookies.blogUsername;

						if	(blogUsername	!==	undefined	&&	blogUsername	!==	"")	{

								returnVal	=	blogUsername;

						}

						return	returnVal;

				};

}]);

It	should	be	obvious	by	now	that	AngularJS	services	are	very	valuable	to	have	in	an
application.	Any	time	AngularJS	business	logic	needs	to	be	used	by	multiple	controllers,
that	logic	should	be	defined	in	services.

We	will	now	add	everything	that	we	have	covered	in	this	chapter	into	one	file,	called
businessServices.js,	and	add	the	services	in	that	file	to	our	blog	project.	In	Chapter	10	we
will	add	a	login	screen	and	security	to	our	blog	application.	With	security	in	place,	we	will
then	deploy	our	application	to	the	cloud	in	Chapter	11.	Before	we	deploy	our	blog
application	to	the	cloud,	however,	we	will	add	new	screens	in	Chapter	11	to	allow	a	user
to	submit	new	blog	posts	and	comments.

Blog	Application	Business	Logic
Now,	to	add	the	new	business	services,	right-click	the	project	node	and	add	a	new
JavaScript	file	named	businessServices.js	under	the	js	folder.	Here	is	the	code	that	should
be	placed	in	the	newly	created	services	file.	Notice	that	we	have	made	AngularJS	cookies
available	by	injecting	ngCookies.	AngularJS	cookies	are	provided	by	angular-
cookies.min.js,	which	we	already	added	to	the	project	earlier:

/*	chapter8/businessServices.js	*/

'use	strict';

/*	business	logic	services	only	*/

var	blogBusinessServices	=	

	angular.module('blogBusinessServices',	['ngCookies']);

blogBusinessServices.factory('checkCreds',	

		['$cookies',	function($cookies)	{

				return	function()	{

						var	returnVal	=	false;

						var	blogCreds	=	$cookies.blogCreds;

						if	(blogCreds	!==	undefined	&&	blogCreds	!==	"")	{

								returnVal	=	true;

						}

						return	returnVal;

				};

}]);

blogBusinessServices.factory('getToken',	

		['$cookies',	function($cookies)	{

				return	function()	{

						var	returnVal	=	"";

						var	blogCreds	=	$cookies.blogCreds;

						if	(blogCreds	!==	undefined	&&	blogCreds	!==	"")	{

								returnVal	=	btoa(blogCreds);

						}

						return	returnVal;

				};

}]);

blogBusinessServices.factory('getUsername',	

		['$cookies',	function($cookies)	{

				return	function()	{

						var	returnVal	=	"";

						var	blogUsername	=	$cookies.blogUsername;

						if	(blogUsername	!==	undefined	&&	blogUsername	!==	"")	{

								returnVal	=	blogUsername;

						}

						return	returnVal;

				};

}]);

blogBusinessServices.factory('setCreds',	

		['$cookies',	function($cookies)	{

				return	function(un,	pw)	{

						var	token	=	un.concat(":",	pw);

						$cookies.blogCreds	=	token;

						$cookies.blogUsername	=	un;

				};

}]);

blogBusinessServices.factory('deleteCreds',	

		['$cookies',	function($cookies)	{

				return	function()	{

						$cookies.blogCreds	=	"";

						$cookies.blogUsername	=	"";

				};

}]);

Using	the	Business	Logic
Now	to	load	the	new	business	logic	services,	we	must	add	the	businessServices.js	file	to
the	<head>	section	of	index.html,	as	shown	here:

<!--	chapter8/index.html	excerpt	-->

<script	src="js/businessServices.js"></script>

The	complete	index.html	file	is	shown	here	for	convenience:

<!--	chapter8/index.html	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="blogApp">

<head>

<title>AngularJS	Blog</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<link	rel="stylesheet"	href="lib-css/bootstrap.min.css"	media="screen"/>

<link	rel="stylesheet"	href="css/styles.css"	media="screen"/>

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/bootstrap.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

<script	src="js/services.js"></script>

<script	src="js/businessServices.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>	

We	must	also	add	the	new	blogBusinessServices	module	as	a	dependency	of	the
application	at	startup	time.	We	do	this	using	inline	array	annotations:

/*	chapter8/app.js	*/

'use	strict';

/*	App	Module	*/

var	blogApp	=	angular.module('blogApp',	[

		'ngRoute',

		'blogControllers',

		'blogServices',

		'blogBusinessServices'

]);

blogApp.config(['$routeProvider',	'$locationProvider',

		function($routeProvider,	$locationProvider)	{

				$routeProvider.

						when('/',	{

								templateUrl:	'partials/main.html',

								controller:	'BlogCtrl'

						}).when('/blogPost/:id',	{

								templateUrl:	'partials/blogPost.html',

								controller:	'BlogViewCtrl'

		});

		$locationProvider.html5Mode(false).hashPrefix('!');

}]);

Testing	Services	with	Karma
Unit	testing	services	is	how	we	find	defects	early	in	the	development	process.	In	fact,	unit
tests	for	each	individual	service	should	be	written	when	the	service	is	written.	Although
our	services	in	this	chapter	are	not	overly	complicated,	unit	testing	is	still	very	important.
We	will	continue	to	use	Karma	for	unit	testing	in	this	chapter.

Karma	Configuration
We	already	have	a	Karma	configuration	file	for	our	blog	project,	but	we	need	to	make	a
modification	to	the	file	to	accommodate	AngularJS	cookies	in	our	Karma	unit	test	scripts.
Since	the	services	in	this	chapter	rely	on	AngularJS	cookies,	we	need	to	make	the
karma.conf.js	file	aware	of	the	angular-cookies.min.js	file	in	our	project.

The	line	in	the	karma.conf.js	file	that	makes	Karma	aware	of	AngularJS	cookies	is	shown
here:

/*	chapter8/karma.conf.js	excerpt	*/

files:	[

				...

				"public_html/js/libs/angular-cookies.min.js",

				...

],

The	complete	karma.conf.js	file	is	shown	here.	Make	the	needed	change	to	the
karma.conf.js	file	in	your	blog	project,	and	then	we	will	look	at	how	we	test	our	new
business	services:

/*	chapter8/karma.conf.js	complete	file	*/

module.exports	=	function	(config)	{

				config.set({

								basePath:	'../',

								files:	[

												"public_html/js/libs/angular.min.js",

												"public_html/js/libs/angular-mocks.js",

												"public_html/js/libs/angular-route.min.js",

												"public_html/js/libs/angular-resource.min.js",		

												"public_html/js/libs/angular-cookies.min.js",	

												"public_html/js/*.js",

												"test/**/*Spec.js"

],

								exclude:	[

],

								autoWatch:	true,

								frameworks:	[

												"jasmine"

],

								browsers:	[

												"Chrome",

												"Firefox"

],

								plugins:	[

												"karma-junit-reporter",

												"karma-chrome-launcher",

												"karma-firefox-launcher",

												"karma-jasmine"

]

				});

};

Karma	Test	Specifications
Now	we	need	to	add	unit	test	specifications	for	each	of	the	five	business	logic	services
that	we	added	earlier	in	the	chapter.	We	will	talk	briefly	about	each	individual	unit	test	to
gain	a	full	understanding	of	the	test	specifications.

First	we	will	take	a	look	at	the	unit	test	for	the	setCreds	service.	If	you	remember,	the
setCreds	service	takes	two	parameters,	the	username	and	password.	We	will	test	the
operation	of	the	service	thoroughly	in	the	unit	tests	that	follow,	but	for	now	our	unit	test
will	only	check	that	the	setCreds	service	can	be	injected:

/*	chapter8/businessServicesSpec.js	excerpt	-	setCreds	service	*/

describe('test	setCreds',	function	()	{								

		var	$rootScope;

		var	setCreds;

		beforeEach(module('blogBusinessServices'));

		beforeEach(inject(function	($injector)	{											

				$rootScope	=	$injector.get('$rootScope');

				setCreds	=	$injector.get('setCreds');

				setCreds("test",	"test");

		}));

		it('should	test	setCreds	service	exist',	function	()	{		

					expect(setCreds).toBeDefined();

		});

});

Next	we	will	look	at	the	unit	test	for	the	checkCreds	service.	The	unit	test	script	uses	both
the	setCreds	service	and	the	checkCreds	service.	Recall	that	the	checkCreds	service	uses
AngularJS	cookies.	When	cookies	are	created	from	a	unit	test	script,	the	cookies	created
exist	only	for	the	duration	of	the	test	script.	When	the	unit	test	script	ends,	so	do	the
cookies.	Our	checkCreds	unit	test	looks	like	this:

/*	chapter8/businessServicesSpec.js	excerpt	-	checkCreds	service	*/

describe('test	checkCreds',	function	()	{							

		var	$rootScope;

		var	checkCreds;

		var	setCreds;

		beforeEach(module('blogBusinessServices'));

		beforeEach(inject(function	($injector)	{											

				$rootScope	=	$injector.get('$rootScope');

				checkCreds	=	$injector.get('checkCreds');

				setCreds	=	$injector.get('setCreds');

				setCreds("test",	"test");

		}));

		it('should	test	setCreds	service	exist',	function	()	{		

				expect(checkCreds()).toEqual(true);

		});

});

The	test	script	first	makes	a	call	to	the	setCreds	service,	passing	a	username	of	“test”	and
a	password	of	“test”	as	parameters.	Those	values	are	stored	in	a	cookie	valid	only	for	this
test	script	run.	We	then	validate	that	the	checkCreds	service	returns	true,	indicating	that
both	the	setCreds	and	checkCreds	service	calls	were	successful.	We	can	now	rest	assured

that	both	services	are	working	as	expected.

Now	we	will	take	a	look	at	the	unit	test	for	the	getToken	service.	Just	as	before,	we	make
a	call	to	the	setCreds	service	and	pass	a	username	of	“test”	and	a	password	of	“test”	to
the	service.	We	then	make	a	call	to	the	getToken	service.	The	returned	value	from	the
service	is	a	base64-encoded	string	that	is	composed	of	the	username	and	the	password.	We
will	only	validate	that	a	value	is	returned,	with	the	toBeDefined	method:

/*	chapter8/businessServicesSpec.js	excerpt	-	getToken	service	*/

describe('test	getToken',	function	()	{							

		var	$rootScope;

		var	getToken;

		var	setCreds;

		beforeEach(module('blogBusinessServices'));

		beforeEach(inject(function	($injector)	{											

				$rootScope	=	$injector.get('$rootScope');

				getToken	=	$injector.get('getToken');

				setCreds	=	$injector.get('setCreds');

				setCreds("test",	"test");

		}));

		it('should	test	setCreds	service	exist',	function	()	{		

					expect(getToken()).toBeDefined();

		});

});

When	we	test	the	getUsername	service,	we	can	actually	validate	the	value	set	for	the
username.	The	following	code	shows	the	unit	test	for	the	getUsername	service.	Just	as
before,	we	make	a	call	to	the	setCreds	service	and	pass	a	username	of	“test”	and	a
password	of	“test.”	We	then	make	a	call	to	the	getUsername	service	and	validate	that	it
returns	“test”	as	the	username:

/*	chapter8/businessServicesSpec.js	excerpt	-	getUsername	service	*/

describe('test	getUsername',	function	()	{							

		var	$rootScope;

		var	getUsername;

		var	setCreds;

		beforeEach(module('blogBusinessServices'));

		beforeEach(inject(function	($injector)	{											

				$rootScope	=	$injector.get('$rootScope');

				getUsername	=	$injector.get('getUsername');

				setCreds	=	$injector.get('setCreds');

				setCreds("test",	"test");

		}));

		it('should	test	setCreds	service	exist',	function	()	{		

				expect(getUsername()).toEqual("test");

		});

});

The	last	unit	test	is	shown	next.	It	is	a	test	of	the	deleteCreds	service.	In	this	test	script
we	make	a	call	to	the	setCreds	service,	then	we	call	the	deleteCreds	service	to	remove
the	credentials	that	we	just	added.	We	then	call	the	checkCreds	service	to	validate	that	no
credentials	are	stored	by	checking	for	a	returned	value	of	false:

/*	chapter8/businessServicesSpec.js	excerpt	-	deleteCreds	service	*/

describe('test	deleteCreds',	function	()	{							

		var	$rootScope;

		var	deleteCreds;

		var	setCreds;

		var	checkCreds;

		beforeEach(module('blogBusinessServices'));

		beforeEach(inject(function	($injector)	{											

				$rootScope	=	$injector.get('$rootScope');

				deleteCreds	=	$injector.get('deleteCreds');

				setCreds	=	$injector.get('setCreds');

				checkCreds	=	$injector.get('checkCreds');

				setCreds("test",	"test");

				deleteCreds();

		}));

		it('should	test	setCreds	service	exist',	function	()	{	

				expect(checkCreds()).toEqual(false);

		});

});

Following	is	the	complete	businessServicesSpec.js	file.	Right-click	the	unit	folder	under
the	test	folder,	create	a	new	JavaScript	file	named	businessServicesSpec.js,	and	enter	the
code	shown	here:

/*	chapter8/businessServicesSpec.js	complete	file	*/

describe('AngularJS	Blog	Business	Service	Testing',	function	()	{

		describe('test	setCreds',	function	()	{							

				var	$rootScope;

				var	setCreds;

				beforeEach(module('blogBusinessServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						setCreds	=	$injector.get('setCreds');

						setCreds("test",	"test");

				}));

				it('should	test	setCreds	service	exist',	function	()	{	

						expect(setCreds).toBeDefined();

				});

		});

				

		describe('test	checkCreds',	function	()	{							

				var	$rootScope;

				var	checkCreds;

				var	setCreds;

				beforeEach(module('blogBusinessServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						checkCreds	=	$injector.get('checkCreds');

						setCreds	=	$injector.get('setCreds');

						setCreds("test",	"test");

				}));

				it('should	test	setCreds	service	exist',	function	()

						expect(checkCreds()).toEqual(true);

				});

		});

				

		describe('test	getToken',	function	()	{							

				var	$rootScope;

				var	getToken;

				var	setCreds;

				beforeEach(module('blogBusinessServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						getToken	=	$injector.get('getToken');

						setCreds	=	$injector.get('setCreds');

						setCreds("test",	"test");

				}));

				it('should	test	setCreds	service	exist',	function	()

						expect(getToken()).toBeDefined();

				});

		});			

	

		describe('test	getUsername',	function	()	{							

				var	$rootScope;

				var	getUsername;

				var	setCreds;

				beforeEach(module('blogBusinessServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						getUsername	=	$injector.get('getUsername');

						setCreds	=	$injector.get('setCreds');

						setCreds("test",	"test");

				}));

				it('should	test	setCreds	service	exist',	function	()	{

						expect(getUsername()).toEqual("test");

				});

		});

				

		describe('test	deleteCreds',	function	()	{							

				var	$rootScope;

				var	deleteCreds;

				var	setCreds;

				var	checkCreds;

				beforeEach(module('blogBusinessServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						deleteCreds	=	$injector.get('deleteCreds');

						setCreds	=	$injector.get('setCreds');

						checkCreds	=	$injector.get('checkCreds');

						setCreds("test",	"test");

						deleteCreds();

				}));

				it('should	test	setCreds	service	exist',	function	()	{

						expect(checkCreds()).toEqual(false);

				});

		});	

});

Karma	Testing
The	preceding	test	specifications	will	test	all	the	new	business	logic	services	added	in	this
chapter.	The	controller	test	specification	and	the	REST	service	test	specification	unit	tests
will	also	run	when	Karma	starts.

Right-click	the	project	and	select	“Test”	from	the	menu.	Karma	will	start.	You	should	see
both	Chrome	and	Firefox	browser	windows	open.	The	NetBeans	test	results	window
should	open	and	display	nine	passed	tests	for	Chrome	and	nine	passed	tests	for	Firefox.

If	you	get	any	error	messages	or	failed	tests,	go	back	over	this	section	and	verify	that	you
completed	all	the	configurations	and	installations.	You	can	also	download	the	Chapter	8
code	from	the	GitHub	project	site.

https://github.com/KenWilliamson

End-to-End	Testing
We	haven’t	yet	added	the	business	logic	services	created	in	this	chapter	to	our	controllers,
so	we	should	see	no	change	in	the	end-to-end	testing.	We	will	validate	that	no	adverse
issues	were	introduced	in	this	chapter	with	Protractor.

Protractor	Configuration

We	already	created	a	Protractor	configuration	file	for	the	blog	application	in	Chapter	5.
The	Protractor	configuration	file	is	shown	here	for	reference:

/*	chapter8/conf.js	Protractor	configuration	file	*/

exports.config	=	{	

	seleniumAddress:	'http://localhost:4444/wd/hub',	

			specs:	['e2e/blog-spec.js']	

};

Protractor	Test	Specification

No	changes	are	required	to	the	Protractor	test	specification,	shown	here	for	reference:

/*	chapter8/blog-spec.js	Protractor	test	specification	*/

describe("Blog	Application	Test",	function(){

		it("should	test	the	main	blog	page",	function(){								

				browser.get(

						"http://localhost:8383/AngularJsBlog/");

				expect(browser.getTitle()).toEqual("AngularJS	Blog");								

				//gets	the	blog	list

				var	blogList	=	

						element.all(by.repeater('blogPost	in	blogList'));								

				//tests	the	size	of	the	blogList

				expect(blogList.count()).toEqual(1);							

								

				browser.get(

						"http://localhost:8383/AngularJsBlog/

								#!/blogPost/5394e59c4f50850000e6b7ea");

						expect(browser.getTitle()).toEqual("AngularJS	Blog");								

						//gets	the	comment	list

						var	commentList	=	

								element.all(by.repeater('comment	in	blogEntry.comments'));								

						//checks	the	size	of	the	commentList

						expect(commentList.count()).toEqual(2);	

				});

});

Protractor	Testing

Start	a	new	command	window	and	enter	this	command	to	start	the	test	server:

webdriver-manager	start

Open	a	new	command	window	and	navigate	to	the	root	of	the	Chapter	5	project.	Type	the
command:

protractor	test/conf.js

You	should	see	a	browser	window	open.	You	should	then	see	the	test	script	navigate
through	the	pages	of	the	blog	application.	When	the	Protractor	script	has	finished,	the
browser	window	will	close.

You	should	see	results	like	the	following	in	the	command	window	when	the	Protractor
script	completes.	The	number	of	seconds	that	it	takes	the	script	to	finish	will	vary
depending	on	your	particular	system:

Finished	in	1.768	seconds

1	test,	4	assertions,	0	failures

Conclusion
The	changes	to	our	blog	application	made	in	this	chapter	give	us	everything	we	need	to
enable	us	to	work	with	REST	service	authentication.	As	mentioned	before,	our	AngularJS
application	doesn’t	actually	handle	authentication,	but	instead	holds	the	status	of
authentication.

The	business	logic	services	that	we	added	in	this	chapter	greatly	simplify	the	process	of
tracking	authentication	across	multiple	controllers.	We	will	talk	more	about	security	in
Chapter	10.	We	will	now	move	on	to	AngularJS	directives.

Chapter	9.	AngularJS	Directives

From	a	user’s	perspective,	directives	are	nothing	more	than	custom	HTML	tags	that	are
added	to	application	templates.	Directives	can	be	simple,	or	they	can	be	very	complex.
Directives	are	used	by	the	AngularJS	HTML	compiler	to	enhance	the	functionality	of	the
associated	template.	Some	examples	of	AngularJS	directives	are	ngModel,	ngView,	and
ngRepeat.

The	HTML	Compiler
Let’s	talk	briefly	about	the	AngularJS	HTML	compiler.	The	use	of	the	word	compiler	in
relation	to	AngularJS	is	often	confusing	for	experienced	developers	new	to	the	framework.
Experienced	developers	don’t	normally	associate	compilers	with	HTML.	The	word
compiler,	however,	takes	on	a	whole	new	meaning	in	the	context	of	AngularJS.

Compiling	HTML	in	AngularJS	is	simply	the	process	of	searching	through	the	DOM	tree
to	identify	HTML	elements	associated	with	directives.	The	compiler	then	builds	the
template	and	assigns	events	to	the	associated	elements	in	the	template.	This,	however,	is	a
greatly	simplified	description	of	the	AngularJS	HTML	compiler	and	the	compiler
processes.	If	you	would	like	to	know	more	about	the	compiler,	take	a	look	at	the
AngularJS	website	documentation,	which	covers	the	HTML	compiler	in	great	detail.

What	Are	Directives?
Directives	are	very	valuable	in	AngularJS	and	are	what	sets	AngularJS	apart	from	most
JavaScript	client-side	frameworks.	Thanks	to	directives,	we	can	avoid	creating	model
classes	with	hundreds	of	lines	of	code.	Thanks	to	directives,	we	have	a	simplified	model
and	view	in	AngularJS	that	allows	developers	to	quickly	create	powerful	JavaScript
applications.

Although	building	custom	directives	in	AngularJS	is	a	bit	more	complex	to	learn	than
other	areas	of	the	framework,	I	will	try	to	simplify	the	learning	process	by	showing	you
how	to	create	a	fairly	simple	directive.	There	are	complete	books	that	cover	the	AngularJS
directive	design	process,	so	if	you	have	a	desire	to	learn	about	AngularJS	directives	in
great	detail,	a	book	that	covers	only	directives	would	be	a	good	starting	point	after	you
finish	this	chapter.

Building	Custom	Directives
If	you	remember	back	in	Chapter	5,	we	built	a	menu	for	our	blog	application	and	used
<div	ng-include	src="'partials/menu.html'"></div>	to	include	that	menu	into	each
template.	The	menu	was	defined	in	the	menu.html	file	as	HTML.	While	that	approach
works	well	and	is	a	common	way	to	add	an	application	menu,	there	is	another	way	to	add
a	menu	that	is	a	bit	more	elegant.

Our	new	menu	approach	will	involve	building	a	custom	directive	to	handle	the	inclusion
of	a	menu	into	our	templates.	First	we	must	add	a	new	directives	file	to	our	blog	project.
We	then	define	the	new	directive	and	inject	the	directive	into	our	application.	Once	that	is
done,	we	can	replace	<div	ng-include	src="'partials/menu.html'"></div>	with	a	tag
that	uses	our	custom	directive.

Open	your	editor,	right-click	the	application	node,	and	create	a	new	JavaScript	file	named
directives.js	under	the	js	folder.	The	code	to	place	in	the	file	is	shown	next.	We	will	walk
through	the	code,	and	I’ll	explain	how	the	directive	actually	works.	We	will	then	configure
our	blog	application	to	use	the	new	directive	and	see	it	in	action:

/*	chapter9/directives.js	*/

'use	strict';

/*	Directives	*/

var	blogDirectives	=	

		angular.module('blogDirectives',	[]);

		

		blogDirectives.directive('blgMenu',	function	()	{

				return	{

						restrict:	'A',

						templateUrl:	'partials/menu.html',

						link:	function	(scope,	el,	attrs)	{

						scope.label	=	attrs.menuTitle;

				}

		};

});

First	we	must	create	a	new	module	named	blogDirectives.	We	will	then	create	a	new
directive	on	that	module.	We	pass	both	the	directive	name	and	a	callback	function	to	the
directives	call	on	the	blogDirectives	module.

Naming	Conventions	for	Directives
Take	notice	of	the	camel	case	directive	name	blgMenu.	Since	HTML	is	case-insensitive,
we	refer	to	the	new	directive	inside	an	HTML	template	file	as	blg-menu.	The	AngularJS
HTML	compiler	then	normalizes	the	directive	name	into	its	camel	case	equivalent,
blgMenu.

Also	take	notice	of	the	blg	prefix	on	the	new	directive	name.	All	directive	names	used	in
templates	must	be	unique.	Directive	names	cannot	match	any	existing	HTML	tag	name,	or
any	future	HTML	tag	name.	Custom	directives	also	cannot	use	the	ng	prefix	already	used
by	AngularJS	directives.

So,	we	must	use	a	unique	directive	name	that	won’t	conflict	with	current	or	future	HTML
names	or	with	AngularJS	directive	names.	The	best	way	to	do	that	is	to	use	a	unique	name
prefix	for	custom	directives.	We	will	use	blg	for	our	prefix	because	it	is	unlikely	to	cause
a	problem	now	or	in	the	future.

The	Restrict	Option
Also	take	notice	of	the	line	restrict:	'A'	in	our	directive.	That	is	known	as	the	restrict
option.	The	restrict	option	is	how	AngularJS	triggers	the	directive	inside	a	template.	The
value	of	"A"	causes	the	directive	to	be	triggered	on	the	attribute	name.	The	following	table
shows	all	the	possible	values	for	the	restrict	option.	The	default	value	for	the	restrict
option	is	'A'.

Table	9-1.	Restrict	option

Value Usage	in	AngularJS

'A' Only	match	the	attribute	name	(<div	blg-menu></div>)	(default)

'E' Only	match	the	element	name	(<blg-menu></blg-menu>)

'C' Only	match	the	class	name	(<div	class="blg-menu"></div>)

'M' Only	match	the	comment	name	(<!--	directive:	blg-menu	-->)

The	Template	URL
Also	notice	the	attribute	assignment	templateUrl:	'partials/menu.html'.	The
templateUrl	attribute	tells	the	AngularJS	HTML	compiler	to	replace	the	directive	blg-
menu	inside	a	template	with	HTML	content	located	inside	a	separate	file.	The	blg-menu
attribute	will	be	replaced	with	the	content	of	our	original	menu	template	file
(partials/menu.html).

There	is	one	small	change	that	needs	to	be	made	in	the	menu	template	file	to	allow	us	to
pass	the	site	title	to	the	directive	as	an	argument.	I	will	show	that	change	shortly.	Passing
the	title	as	an	argument	is	not	required	or	even	needed,	but	I	show	it	here	to	help	explain
how	directives	work.

Template	Attributes
The	following	code	shows	how	we	pass	menu-title	as	an	argument	to	our	new	directive.
All	values	are	passed	to	the	method	named	link	as	a	parameter	named	attrs.	We	gain
access	to	the	title	value	by	assigning	the	value	of	attrs.menuTitle	to	a	scope	property:

/*	chapter9/directives.js	excerpt	*/

link:	function	(scope,	el,	attrs)	{

		scope.label	=	attrs.menuTitle;

}

The	scope	is	passed	as	an	argument	to	the	link	method	and	is	accessible	inside	the
method,	as	seen	by	the	assignment	of	the	menuTitle	attribute.	Directives	are	used	inside	a
template	as	shown	next,	in	the	main.html	template.	blg-menu	is	the	name	of	the	directive,
and	menu-title	is	the	name	passed	to	the	directive	as	the	title	attribute	of	the	new
directive.	The	AngularJS	HTML	compiler	also	normalizes	the	attribute	name	into	its
camel	case	form,	so	it	becomes	menuTitle	inside	the	template	(as	shown	before	in	the
template	code	from	directives.js):

<!--	chapter9/main.html	excerpt	-->

<div	blg-menu	menu-title="AngularJS	Blog"></div>

Adding	the	Custom	Directive
Now	we	must	configure	our	blog	application	to	use	the	newly	created	custom	directive.	To
load	the	new	directives	file,	we	need	to	add	one	line	in	the	index.html	file:

<!--	chapter9/index.html	excerpt	-->

<script	src="js/directives.js"></script>

The	complete	index.html	file	is	shown	here	for	convenience:

<!--	chapter9/index.html	-->

<!DOCTYPE	html>

<html	lang="en"	ng-app="blogApp">

<head>

<title>AngularJS	Blog</title>

<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

<link	rel="stylesheet"	href="lib-css/bootstrap.min.css"	media="screen"/>

<link	rel="stylesheet"	href="css/styles.css"	media="screen"/>

<script	src="js/libs/jquery-1.10.2.min.js"></script>

<script	src="js/libs/bootstrap.min.js"></script>

<script	src="js/libs/angular.min.js"></script>

<script	src="js/libs/angular-route.min.js"></script>

<script	src="js/libs/angular-resource.min.js"></script>

<script	src="js/libs/angular-cookies.min.js"></script>

<script	src="js/app.js"></script>

<script	src="js/controllers.js"></script>

<script	src="js/services.js"></script>

<script	src="js/businessServices.js"></script>

<script	src="js/directives.js"></script>

</head>

<body>

<div	ng-view></div>

</body>

</html>

We	also	need	to	make	a	change	to	the	app.js	file.	We	add	the	new	blogDirectives
module	as	a	dependency	of	the	application	at	startup	time,	using	inline	array	annotations:

/*	chapter9/app.js	*/

'use	strict';

/*	App	Module	*/

var	blogApp	=	angular.module('blogApp',	[

		'ngRoute',

		'blogControllers',

		'blogServices',

		'blogBusinessServices',

		'blogDirectives'

]);

blogApp.config(['$routeProvider',	'$locationProvider',

		function($routeProvider,	$locationProvider)	{

				$routeProvider.

						when('/',	{

								templateUrl:	'partials/main.html',

								controller:	'BlogCtrl'

						}).when('/blogPost/:id',	{

								templateUrl:	'partials/blogPost.html',

								controller:	'BlogViewCtrl'

						});

		$locationProvider.html5Mode(false).hashPrefix('!');

}]);

Now	we	must	modify	our	template	files	to	use	the	newly	created	custom	directive.	In	the
main.html	template	file,	we	replace	the	line	<div	ng-include
src="'partials/menu.html'">	</div>	with	the	line	shown	here:

<!--	chapter9/main.html	excerpt	-->

<div	blg-menu	menu-title="AngularJS	Blog"></div>

The	complete	main.html	file	is	shown	here	for	convenience:

<!--	chapter9/main.html	-->

<div	blg-menu	menu-title="AngularJS	Blog"></div>

<div	id="container"	class="container">

<div	class="blog-post-label">Blog	Posts</div>

<div	class="post-wrapper">

<div	ng-repeat="blogPost	in	blogList">

<div	class="blog-post-outer">

<div	class="blog-intro-text">

Posted:	{{blogPost.date	|	date:'MM/dd/yyyy	@	h:mma'}}

</div>

<div	class="blog-intro-text">

{{blogPost.introText}}

</div>

<div	class="blog-read-more">

Read	More

</div>

</div>

</div>

</div>

</div>

We	make	the	same	change	to	the	blogPost.html	template,	as	shown	here:

<!--	chapter9/blogPost.html	-->

<div	blg-menu	menu-title="AngularJS	Blog"></div>

<div	id="container"	class="container">

<div	class="blog-post-label">Blog	Entry</div>

<div	class="blog-entry-wrapper">

<div	class="blog-intro-text">

Posted:	{{blogEntry.date|	date:'MM/dd/yyyy	@	h:mma'}}

</div>

<div	class="blog-entry-outer">

{{blogEntry.blogText}}

</div>

<div	class="blog-comment-wrapper">

<div	class="blog-comment-label">Blog	Comments</div>

<div	class="blog-entry-comments"	ng-repeat="comment	in	blogEntry.comments">

{{comment.commentText}}

</div>

</div>

</div>

</div>

Passing	the	Title	Attribute
Finally,	we	must	make	one	last	change	to	the	menu.html	template	file	to	make	use	of	the
title	value	passed	to	the	directive	in	the	menu-title	attribute.	Replace	the	hardcoded	title
with	{{label}},	as	shown	here:

<!--	chapter9/menu.html	-->

<nav	class="navbar	navbar-inverse	navbar-fixed-top"	role="navigation">

<!--	Brand	and	toggle	get	grouped	for	better	mobile	display	-->

<div	class="container">

<div	class="navbar-header">

<button	type="button"	

class="navbar-toggle"	data-

toggle="collapse"	

		data-target=".navbar-collapse">

Toggle	navigation

</button>

{{label}}

</div>

<!--Collect	the	nav	links,	forms,	and	other	content	for	toggling	-->

<div	class="collapse	navbar-collapse">

<ul	class="nav	navbar-nav">

<li	class="{{aboutActiveClass}}">About

<li	class="">

Download	Project	Code

</div><!--	/.navbar-collapse	-->

</div>

</nav>

With	this	change	made,	we	can	run	the	application	and	test	our	new	menu.

Running	the	Blog	Application
Now	we	will	run	our	blog	project	to	check	that	all	changes	were	made	successfully.	Save
all	your	changes	and	right-click	the	project	node.	Select	“Run”	from	the	menu,	and	the
application	should	launch.	If	all	changes	were	made	correctly,	you	should	see	the	menu
bar	across	the	top	of	the	page	just	as	before.

Turn	on	developer	tools	for	your	browser	and	check	for	any	errors.	If	you	have	any
problems,	go	over	what	we	covered	and	validate	that	all	the	changes	were	made	correctly.
If	you	have	issues	that	can’t	be	resolved,	download	the	code	for	Chapter	9	from	the	project
site.	Run	the	downloaded	project	to	see	the	changes	made	in	this	chapter,	and	compare	it
to	your	code	to	find	and	fix	any	issues.

https://github.com/KenWilliamson

Testing	Directives	with	Karma
Writing	a	test	specification	for	a	directive	that	uses	an	external	HTML	template	file	is	a	bit
more	complicated	than	writing	most	test	specifications.	The	test	script	will	fail	when	it
tries	to	load	the	template	file	using	HTTP	from	the	server.	If	you	were	to	use	hardcoded
HTML	for	the	menu	inside	the	directive,	everything	would	work	fine.	Not	so	with	external
HTML	templates,	however.

One	way	around	the	problem	is	to	use	a	preprocessor	that	converts	our	HTML	template
file	into	a	JavaScript	string	and	then	generates	an	AngularJS	module	from	that	string.	The
preprocessed	module	is	then	loaded	into	the	$templateCache	and	made	available	to
Karma.	That	way	we	can	use	the	cached	version	of	our	template	file	and	our	directive
works	as	expected.

One	way	to	handle	the	preprocessing	is	to	use	the	karma-ng-html2js-preprocessor
Karma	plugin.	Although	the	plugin	is	a	bit	tricky	to	configure	properly,	it	quickly	solves
the	external	template	problem.	Pay	particular	attention	to	the	way	the	plugin	is	configured.
If	you	are	using	an	IDE	other	than	NetBeans,	you	may	need	to	look	for	documentation
specific	to	your	IDE.

Karma	Configuration
First,	we	need	to	edit	the	package.json	file	used	to	configure	Node.js	dependencies.	Here
is	the	needed	change:

/*	chapter9/package.json	excerpt	*/

"karma-ng-html2js-preprocessor":	"~0.1"

The	complete	package.json	file	is	shown	next.	The	added	line	makes	the	karma-ng-
html2js-preprocessor	plugin	a	Node.js	dependency.	The	module	is	then	accessible	to
Karma.	Edit	the	existing	blog	project	package.json	file	and	add	the	required	line	as	shown:

{

				"name":	"package.json",

				"devDependencies":	{

								"karma":	"*",

								"karma-chrome-launcher":	"*",

								"karma-firefox-launcher":	"*",

								"karma-jasmine":	"*",

								"karma-junit-reporter":	"*",

								"karma-coverage":	"*",

								"karma-ng-html2js-preprocessor":	"~0.1"

				}

}

After	we	change	the	package.json	file,	we	need	to	use	npm	to	install	the	plugin.

Open	a	new	command	window	and	navigate	to	the	root	of	the	Chapter	9	project.	You
should	see	the	package.json	file	when	you	list	out	the	files	in	the	folder.

Now	type	the	following	command	to	install	the	karma-ng-html2js-preprocessor	plugin
defined	in	the	package.json	file:

npm	install

We	need	to	make	several	changes	to	the	karma.conf.js	file	that	we	created	earlier.	The
changes	are	configuration	changes	for	the	new	plugin	just	installed;	they	are	subtle	but
important.

First,	notice	in	the	following	code	that	we’ve	added	a	new	line	in	the	files	section.	The
new	line,	'public_html/partials/*.html',	tells	the	plugin	where	to	find	the	template
file	used	in	our	directive:

/*	chapter9/karma.conf.js	excerpt	*/

files:	[

		"public_html/js/libs/angular.min.js",

		"public_html/js/libs/angular-mocks.js",

		"public_html/js/libs/angular-route.min.js",

		"public_html/js/libs/angular-resource.min.js",

		"public_html/js/libs/angular-cookies.min.js",

		"public_html/js/*.js",

		"public_html/partials/*.html",

		"test/**/*Spec.js"												

]

We	must	also	add	a	preprocessors	section	to	the	file.	The	entry	in	this	section	maps	the
location	of	the	template	files	to	the	new	Karma	plugin:

/*	chapter9/karma.conf.js	excerpt	*/

preprocessors:	{

		'public_html/partials/*.html':	['ng-html2js']

}

Next,	we	need	to	add	the	new	plugin	to	the	list	of	Karma	plugins,	as	shown	here	—	the
last	line	tells	Karma	that	this	plugin	will	be	used:

/*	chapter9/karma.conf.js	excerpt	*/

plugins:	[

		"karma-junit-reporter",

		"karma-chrome-launcher",

		"karma-firefox-launcher",

		"karma-jasmine",

		"karma-ng-html2js-preprocessor"

]

There	is	one	more	change	that	we	need	to	make	to	the	karma.conf.js	file.	We	need	to	tell
the	new	plugin	to	strip	"public_html/"	from	the	path	to	the	template	files:

/*	chapter9/karma.conf.js	excerpt	*/

ngHtml2JsPreprocessor:	{												

		stripPrefix:	'public_html/'

}

Following	is	the	complete	modified	karma.conf.js	file.	Open	the	karma.conf.js	file	in	the
blog	project	and	make	the	needed	changes:

/*	chapter9/karma.conf.js	complete	file	*/

module.exports	=	function	(config)	{

		config.set({

				basePath:	'../',

						files:	[

								"public_html/js/libs/angular.min.js",

								"public_html/js/libs/angular-mocks.js",

								"public_html/js/libs/angular-route.min.js",

								"public_html/js/libs/angular-resource.min.js",

								"public_html/js/libs/angular-cookies.min.js",

								"public_html/js/*.js",

								"public_html/partials/*.html",

								"test/**/*Spec.js"

],

						preprocessors:	{

								'public_html/partials/*.html':	['ng-html2js']

						},

						exclude:	[

],

						autoWatch:	true,

						frameworks:	[

								"jasmine"

],

						browsers:	[

								"Chrome",

								"Firefox"

],

						plugins:	[

								"karma-junit-reporter",

								"karma-chrome-launcher",

								"karma-firefox-launcher",

								"karma-jasmine",

								"karma-ng-html2js-preprocessor"

],								

						ngHtml2JsPreprocessor:	{												

								stripPrefix:	'public_html/'

						}								

		});

};

Karma	Test	Specification
Now	we	need	to	add	a	new	test	specification	to	the	blog	project.	Do	the	following:

1.	 Right-click	the	unit	folder	under	the	test	folder	and	add	a	new	JavaScript	file	named
directivesSpec.js	to	the	project.

2.	 Copy	this	code	into	the	new	directivesSpec.js	file:

/*	chapter9/directivesSpec.js	*/

describe('AngularJS	Blog	Application',	function	()	{

				beforeEach(module('blogDirectives'));				

				describe('Unit	test	of	Menu	Directive',	function	()	{

								var	rootScope,	compile;

								

									//	The	external	template	file	referenced	by	templateUrl

								beforeEach(module('partials/menu.html'));

								beforeEach(inject(function	(_$compile_,	_$rootScope_)	{	

												compile	=	_$compile_;

												rootScope	=	_$rootScope_;											

								}));

							it('Replaces	the	menu	attribute	with	the	menu',	function	()	{

												var	elm	=	angular.element(

									"<div	blg-menu	menu-title=\"AngularJS	Blog\"></div>");

												var	menu	=	compile(elm)(rootScope);												

												

												rootScope.$digest();		

												

											expect(menu.html()).toContain("AngularJS	Blog");

								});

				});

});

This	code	differs	a	bit	from	the	test	specifications	that	we	have	seen	so	far.	Remember	that
directives	need	to	be	compiled	by	the	HTML	compiler.	The	test	specification	accounts	for
that	need.

First,	notice	in	the	line	shown	here	that	we	load	the	AngularJS	module	that	represents	the
template	HTML	file	that	is	needed	by	the	directive.	Remember	that	the	template	HTML
file	was	converted	to	a	JavaScript	string,	and	then	that	string	was	used	by	the	Karma
preprocessor	plugin	to	generate	an	AngularJS	module:

/*	chapter9/directivesSpec.js	excerpt	*/

//	The	external	template	file	referenced	by	templateUrl	

beforeEach(module('partials/menu.html'));

Also	notice	that	we	now	inject	the	HTML	compiler	with	_$compile_.	We	also	inject	the
rootScope	with	_$rootScope_:

/*	chapter9/directivesSpec.js	excerpt	*/

beforeEach(inject(function	(_$compile_,	_$rootScope_)	{

			compile	=	_$compile_;													

			rootScope	=	_$rootScope_;																				

}));

Recall	that	when	we	included	our	new	directive	inside	the	main.html	template,	we	used
the	line	<div	blg-menu	menu-title="AngularJS	Blog"\></div>	to	include	the	new
directive-based	menu	into	the	page.	The	following	code	shows	that	same	line	getting
passed	to	the	angular.element	method:

/*	chapter9/directivesSpec.js	excerpt	*/

var	elm	=	angular.

element("<div	blg-menu	menu-title=\"AngularJS	Blog\"></div>");

var	menu	=	compile(elm)(rootScope);		

rootScope.$digest();

The	resulting	elm	variable	is	then	passed	to	the	compiler	along	with	the	root	scope
reference,	as	shown	here.	Then	we	call	$digest,	and	that	tells	AngularJS	to	update
bindings	and	fire	any	watches.

Finally,	we	evaluate	the	HTML	by	calling	the	menu.html	method	and	looking	for	the	title
that	we	passed	to	the	directive	with	menu-title="AngularJS	Blog".

Karma	Testing
Now,	with	all	the	changes	made	to	the	blog	project,	we	are	ready	to	test	our	new	directive.

Right-click	the	project	and	select	“Test”	from	the	menu.	Karma	will	start.	You	should	see
both	Chrome	and	Firefox	browser	windows	open.	The	NetBeans	test	results	window
should	open	and	display	10	passed	tests	for	Chrome	and	10	passed	tests	for	Firefox.

If	you	get	any	error	messages	or	failed	tests,	go	back	over	this	section	and	verify	that	you
completed	all	the	configurations	and	installations.	You	can	also	download	the	Chapter	9
code	from	the	GitHub	project	site.

https://github.com/KenWilliamson

End-to-End	Testing
We	will	make	one	small	change	to	allow	us	to	test	the	new	directive-based	menu	during
end-to-end	testing.	The	modification	will	involve	our	Protractor	test	script	clicking	the
main	menu	link	after	navigating	to	a	blog	entry.

Protractor	Configuration
We	already	created	a	Protractor	configuration	file	for	the	blog	application	in	Chapter	5.
The	Protractor	configuration	file	is	shown	here	for	reference:

/*	chapter9/conf.js	Protractor	configuration	file	*/

exports.config	=	{

		seleniumAddress:	'http://localhost:4444/wd/hub',

		specs:	['e2e/blog-spec.js']

};

Protractor	Test	Specification
We	will	make	a	small	change	to	the	test	specification,	shown	next.	Notice	the	last	line	in
the	file.	The	line	uses	the	navbar-brand	CSS	class	to	look	up	the	link	to	the	main	page.
The	script	then	clicks	the	link	and	navigates	back	to	the	main	page.	The	test	validates	that
the	new	menu	is	working	correctly:

/*	chapter9/blog-spec.js	*/

describe("Blog	Application	Test",	function(){

		it("should	test	the	main	blog	page",	function(){								

					browser.get("http://localhost:8383/AngularJsBlogChapter9/");

					expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

					//gets	the	blog	list

					var	blogList	=	element.all(by.repeater('blogPost	in	blogList'));

								

					//tests	the	size	of	the	blogList

					expect(blogList.count()).toEqual(1);								

								

					browser.get(

							"http://localhost:8383/AngularJsBlogChapter9/

							#!/blogPost/5394e59c4f50850000e6b7ea");

					expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

					//gets	the	comment	list

					var	commentList	=	

							element.all(by.repeater('comment	in	blogEntry.comments'));

								

					//checks	the	size	of	the	commentList

					expect(commentList.count()).toEqual(2);								

					element(by.css('.navbar-brand')).click();	

				});

});

Protractor	Testing
With	those	changes	made,	we	are	ready	to	start	the	end-to-end	testing.

Start	a	new	command	window	and	enter	this	command	to	start	the	test	server:

webdriver-manager	start

Open	a	new	command	window	and	navigate	to	the	root	of	the	Chapter	9	project.	Type	the
command:

protractor	test/conf.js

You	should	see	a	browser	window	open.	You	should	then	see	the	test	script	navigate
through	the	pages	of	the	blog	application.	When	the	Protractor	script	has	finished,	the
browser	window	will	close.

You	should	see	results	like	the	following	in	the	command	window	when	the	Protractor
script	completes.	The	number	of	seconds	that	it	takes	the	script	to	finish	will	vary
depending	on	your	particular	system:

Finished	in	1.91	seconds

1	test,	4	assertions,	0	failures

Conclusion
In	this	chapter	you	learned	how	to	create	a	custom	AngularJS	directive.	You	also	learned
how	to	write	test	specifications	for	AngularJS	directives.	We	made	all	the	needed	changes
to	our	blog	application	to	add	a	new	directive-based	menu	to	our	blog.

Once	your	blog	application	is	running	correctly,	we	can	move	on.	This	concludes	our
discussion	of	directives;	we’ll	start	adding	security	features	to	our	blog	application	in	the
next	chapter.

Chapter	10.	AngularJS	Security

You	might	wonder	why	we	are	covering	security	in	a	book	on	AngularJS.	Well,	quite
simply,	security	is	one	of	the	most	important	and	most	challenging	tasks	faced	by	an
AngularJS	developer.	It’s	not	that	the	developer	is	actually	responsible	for	implementing
the	security	layer	—	that	is	not	the	case	at	all	—	but	it	is	very	important	for	an	AngularJS
developer	to	understand	the	role	that	AngularJS	plays	in	the	overall	security	model	of	an
application	or	website.

You	should	never	attempt	to	implement	an	independent	client-side	security	layer	in	an
AngularJS	application,	or	any	other	JavaScript	application	for	that	matter.	Security	should
always	be	implemented	on	the	backend	services	where	the	data	resides.	That	is	the	only
safe	place	to	implement	a	security	layer.

Remember	the	user	has	full	access	to	the	JavaScript	running	in	the	browser.	As	I	said
before,	our	AngularJS	application	runs	in	the	user’s	browser	on	the	user’s	hardware.	The
user	can	save	the	JavaScript	locally	and	easily	make	modifications	circumventing	any
security	layer	implemented	by	an	unsuspecting	JavaScript	developer.

With	that	in	mind,	there	are	several	rules	that	AngularJS	developers	and	backend
developers	need	to	remember.	Although	actually	implementing	the	security	layer	is	not
usually	the	job	of	an	AngularJS	developer,	it	is	often	a	collaborative	effort	for	all
developers	involved	in	a	project.	The	following	rules	should	always	be	considered:

1.	 Always	use	SSL	to	communicate	with	REST	services	that	contain	private	data
(HTTPS).

2.	 Always	use	some	type	of	authentication	on	each	REST	service	call	that	contains
private	data	(Basic	Authentication,	for	example).

3.	 Never	hold	REST	service	authentication	status	in	a	session	variable	on	the	server.
Doing	that	opens	your	server-side	application	up	to	cross-origin	attacks	and	other
serious	security	concerns.

4.	 Never	implement	a	Cross-Origin	Resource	Sharing	(CORS)	layer	that	returns	*	as
the	list	of	allowed	domains.	For	example,	(Access-Control-Allow-Origin:	*)
would	allow	all	domains	to	make	cross-origin	calls	to	the	REST	services	on	the	site.
Doing	that	circumvents	the	browser’s	CORS	security	implementation	completely.

5.	 Always	make	sure	that	any	JavaScript	that	may	get	injected	inside	a	JSON	property
does	not	get	executed	on	the	server	side.	This	design	flaw	is	at	the	core	of	the
NoSQL	injection	attack,	where	JavaScript	functions	are	injected	in	the	JSON	request
of	a	service	and	unknowingly	executed	by	the	server,	in	order	to	breach	the	security
of	a	NoSQL	database.

Always	remember	that	any	security-related	JavaScript	code	can	be	viewed	and	modified
by	the	user.	While	most	modern	browsers	do	offer	built-in	security,	JavaScript	developers
should	never	rely	on	the	browser	for	security.	The	responsibility	for	security	rests	entirely
on	the	shoulders	of	the	backend	service	developers.	With	that	said,	I	will	show	some
techniques	for	developing	AngularJS	applications	that	work	well	with	a	security	layer
implemented	properly	in	the	backend	services.

Authentication
We	will	start	our	discussion	of	security	by	building	a	login	screen	and	the	associated
controller	and	service	for	our	blog	application.	We	will	send	the	user’s	credentials	to	a
login	REST	service	for	validation.	We	will	also	make	use	of	the	business	logic	services
that	we	developed	back	in	Chapter	8.

We	don’t	actually	use	HTTPS	for	our	blog	application	because	it’s	not	a	production
application.	But	in	a	production	environment,	SSL	should	always	be	used	to	protect
private	data	and	the	user’s	credentials	when	calling	a	login	REST	service.	Additional
security	steps	could	even	be	taken	in	the	REST	services	to	limit	access	to	a	particular
machine	or	a	particular	IP	address.	We	will	not,	however,	be	concerned	with	that	level	of
security	in	this	book.

Adding	a	Login	Service
We	will	start	off	by	adding	an	AngularJS	login	service.	Open	your	editor	and	add	the
following	code	to	the	bottom	of	your	project’s	services.js	file.	The	new	AngularJS	login
service	maps	to	a	login	REST	service	on	our	backend	server.	The	code	is	much	like	that	of
the	other	AngularJS	services	we’ve	set	up	so	far.	It	has	one	method,	login,	that	maps	to	a
POST	method	on	the	REST	service:

/*	chapter10/services.js	excerpt	*/

blogServices.factory('Login',	['$resource',

	function($resource)	{

			return	

				$resource(

						"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/login",	

								{},	{

				login:	{method:	'POST',	cache:	false,	isArray:	false}

		});

}]);

Adding	a	Login	Controller
Now	we	need	to	add	a	login	controller.	Open	your	editor	and	add	the	code	shown	next	to
the	bottom	of	the	controllers.js	file.	Notice	that	we	inject	the	new	Login	service	and	the
setCreds	business	logic	service	that	we	developed	back	in	Chapter	8.	We	also	inject	the
$location	service	to	allow	us	to	redirect	the	user	once	authenticated.	The	new	controller
has	a	submit	method	that	is	attached	to	the	scope.	Attaching	the	method	to	the	scope
allows	us	to	call	the	method	from	inside	the	login	template.	We	build	the	JSON	request
that	gets	passed	to	the	service	in	the	variable	named	postData,	using	the	scope	properties
submitted	by	the	form:

/*	chapter10/controllers.js	excerpt	*/

blogControllers.controller('LoginCtrl',	

		['$scope',	'$location',	'Login',	'setCreds',

				function	LoginCtrl($scope,	$location,	Login,	setCreds)	{

						$scope.submit	=	function(){

						$scope.sub	=	true;

						var	postData	=	{

								"username"	:	$scope.username,

								"password"	:	$scope.password

						};

				Login.login({},	postData,

						function	success(response)	{

								console.log("Success:"	+	JSON.stringify(response));

								if(response.authenticated){

										setCreds($scope.username,	$scope.password)

										$location.path('/');

								}else{

										$scope.error	=	"Login	Failed"

								}

						},

						function	error(errorResponse)	{

								console.log("Error:"	+	JSON.stringify(errorResponse));

						}

);

		};

}]);

We	also	add	a	scope	property	named	error.	This	property	is	populated	any	time	the	user
fails	to	authenticate,	displaying	a	“Login	Failed”	message.	We	will	see	how	the	error	is
presented	later	in	the	chapter.	Once	the	user	authenticates,	we	make	a	call	to	the
AngularJS	business	logic	service	setCreds	and	pass	the	user’s	username	and	password	to
be	saved	in	a	cookie.	We	then	redirect	the	user	to	the	main	application	link.

Security	Modifications	to	Other	Controllers
We	must	also	make	minor	modifications	to	the	other	two	controllers	in	our	blog	project.
Open	your	editor	and	replace	the	two	controllers	added	earlier	with	the	code	shown	next.
Notice	we	now	inject	the	$location	service	and	the	checkCreds	business	service	that	we
added	back	in	Chapter	8.	The	checkCreds	service	works	by	checking	the	user’s
credentials	at	the	top	of	the	controller.	If	the	user	has	not	authenticated,	a	call	is	made	to
the	path	method	on	the	$location	service	to	redirect	the	user	to	the	login	page	(we	will
cover	the	new	login	path	shortly):

/*	chapter10/controllers.js	excerpt	*/

blogControllers.controller('BlogCtrl',	

		['$scope',	'BlogList',	'$location',	'checkCreds',

				function	BlogCtrl($scope,	BlogList,	$location,	checkCreds)	{

						if(!checkCreds()){

								$location.path('/login');

						}

						BlogList.get({},

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										$scope.blogList	=	response;

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								}

);

}]);

blogControllers.controller('BlogViewCtrl',	

		['$scope',	'$routeParams',	'BlogPost',	'$location',	'checkCreds',

				function	BlogViewCtrl($scope,	$routeParams,	BlogPost,	

						$location,	checkCreds)	{

						if(!checkCreds()){

								$location.path('/login');

						}

						var	blogId	=	$routeParams.id;

						BlogPost.get({id:	blogId},

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										$scope.blogEntry	=	response;

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								}

);

}]);

Adding	a	Logout	Controller
We	have	one	more	change	to	make	to	the	controllers.js	file:	we	need	to	add	a	new
controller	to	log	the	user	out	of	the	system	and	reset	his	credentials.	Add	the	code	shown
here	to	the	bottom	of	the	controllers.js	file.	Once	again,	we	make	use	of	the	AngularJS
business	logic	services	written	back	in	Chapter	8	by	adding	a	call	to	the	deleteCreds
service.	The	service	call	removes	the	user’s	credentials,	and	then	we	redirect	the	user	to
the	login	page:

/*	chapter10/controllers.js	excerpt	*/

blogControllers.controller('LogoutCtrl',	

['$location',	'deleteCreds',

function	LogoutCtrl($location,	deleteCreds)	{

		deleteCreds();

		$location.path('/login');

}]);

The	entire	controllers.js	file	is	shown	here	to	help	make	the	changes	clearer:

/*	chapter10/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	blogControllers	=	

		angular.module('blogControllers',	[]);

blogControllers.controller('BlogCtrl',	

		['$scope',	'BlogList',	'$location',	'checkCreds',

				function	BlogCtrl($scope,	BlogList,	$location,	checkCreds)	{

						if(!checkCreds()){

								$location.path('/login');

						}

						BlogList.get({},

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										$scope.blogList	=	response;

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								});

}]);

blogControllers.controller('BlogViewCtrl',	

		['$scope',	'$routeParams',	'BlogPost',	'$location',	'checkCreds',

				function	BlogViewCtrl($scope,	$routeParams,	BlogPost,	

						$location,	checkCreds)	{

								if(!checkCreds()){

										$location.path('/login');

								}

								var	blogId	=	$routeParams.id;

								BlogPost.get({id:	blogId},

										function	success(response)	{

												console.log("Success:"	+	JSON.stringify(response));

												$scope.blogEntry	=	response;

										},

										function	error(errorResponse)	{

												console.log("Error:"	+	JSON.stringify(errorResponse));

										});

}]);

blogControllers.controller('LoginCtrl',	

		['$scope',	'$location','Login',	'setCreds',

				function	LoginCtrl($scope,	$location,	Login,	setCreds)	{

						$scope.submit	=	function(){

						$scope.sub	=	true;

						var	postData	=	{

								"username"	:	$scope.username,

								"password"	:	$scope.password

						};

						Login.login({},	postData,

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										if(response.authenticated){

												setCreds($scope.username,	$scope.password)

												$location.path('/');

										}else{

												$scope.error	=	"Login	Failed"

										}

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								});

						};

}]);

blogControllers.controller('LogoutCtrl',	

		['$location',	'deleteCreds',

				function	LogoutCtrl($location,	deleteCreds)	{

						deleteCreds();

						$location.path('/login');

}]);

Next,	we	will	added	a	new	login	template	and	the	associated	CSS.	We	will	then	add	two
new	paths	to	the	$routeProvider	section	of	the	app.js	file.

Adding	a	Login	Template
Right-click	the	project	node	and	add	a	new	HTML	file	to	the	partials	folder.	Name	the
new	file	login.html.	Replace	the	content	of	the	newly	created	file	with	the	code	shown
here.	Notice	that	we	use	the	ng-submit	directive	to	connect	the	submit	method	in	our
LoginCtrl	to	the	form	for	form	submission:

<!--	chapter10/login.html	-->

<div	class="blog-login-wrapper">

<form	class=""	ng-submit="submit()"	ng-controller="LoginCtrl">

<div	class="blog-login-error">{{error}}</div>

<div	class="blog-login-label">

<label	for="username">Username:</label></div>

<div	class="blog-login-element">

<input	type="text"	ng-model="username"	name="username"	

		placeholder="username"	required/></div>

<div	class="blog-login-label">

<label	for="password">Password:</label></div>

<div	class="blog-login-element">

<input	type="password"	ng-model="password"	name="password"	

		placeholder="password"	required/></div>

<div	class="blog-login-button">

<button	type="submit"	class="form-button">Sign	in</button></div>

</form>

</div>

Now	open	the	CSS	file	styles.css	in	your	editor	and	add	the	following	code	to	the	bottom
of	the	file.	Notice	that	we	use	CSS3	media	queries	like	@media	screen	and	(min-width:
1200px)	to	make	our	login	template	be	responsive	and	look	good	on	any	mobile	or
desktop	platform:

/*	chapter10/styles.css	*/

.blog-login-wrapper{

		float:	left;

		background:	#e0e0e0;

		border-radius:6px;

		-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

		border:	darkgreen	solid	1px;

}

@media	screen	and	(min-width:	1200px){

		.blog-login-wrapper{

				width:	40%;

				margin:	10%	0	0	30%;

				padding:	1%;

				background:	#e0e0e0;

				border-radius:6px;

				-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

				border:	darkgreen	solid	1px;

		}

}

@media	screen	and	(max-width:	1200px){

		.blog-login-wrapper{

				width:	40%;

				margin:	10%	0	0	30%;

				padding:	1%;

				background:	#e0e0e0;

				border-radius:6px;

				-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

				border:	darkgreen	solid	1px;

		}

}

@media	screen	and	(max-width:	600px){

		.blog-login-wrapper{

				width:	80%;

				margin:	10%	0	0	10%;

				padding:	1%;

				background:	#e0e0e0;

				border-radius:6px;

				-moz-border-radius:6px;	/*	Firefox	3.6	and	earlier	*/

				border:	darkgreen	solid	1px;

		}

}

.blog-login-label{

		float:	left;

		width:	70%;

		margin:	0	0	0	15%;

		padding:	1%	0	0	0;

		text-align:	center;

}

.blog-login-element{

		float:	left;

		width:	70%;

		margin:	0	0	0	15%;

		padding:	1%	0	0	0;

		text-align:	center;

}

.blog-login-button{

		float:	left;

		width:	100%;

		margin:	0	0	0	0;

		padding:	5%	0	0	0;

		text-align:	center;

}

.blog-login-error{

		float:	left;

		width:	100%;

		margin:	0	0	0	0;

		padding:	0	0	0	0;

		text-align:	center;

		color:	red;

}

Adding	New	Routes
Now	we	need	to	add	the	two	new	routes	to	our	route	provider	in	the	app.js	file.	The
following	code	shows	the	changes	needed	for	this	file.	As	you	can	see,	the	two	new	routes
make	use	of	the	two	new	controllers	and	the	new	template	file:

/*	chapter10/app.js	*/

'use	strict';

/*	App	Module	*/

var	blogApp	=	angular.module('blogApp',	[

		'ngRoute',

		'blogControllers',

		'blogServices',

		'blogBusinessServices',

		'blogDirectives'

]);

blogApp.config(['$routeProvider',	'$locationProvider',

function($routeProvider,	$locationProvider)	{

		$routeProvider.

				when('/',	{

						templateUrl:	'partials/main.html',

						controller:	'BlogCtrl'

				}).when('/blogPost/:id',	{

						templateUrl:	'partials/blogPost.html',

						controller:	'BlogViewCtrl'

				}).when('/login',	{

						templateUrl:	'partials/login.html',

						controller:	'LoginCtrl'

				}).when('/logOut',	{

						templateUrl:	'partials/login.html',

						controller:	'LogoutCtrl'

				});

		$locationProvider.html5Mode(false).hashPrefix('!');

}]);

Adding	a	Logout	Link
Finally,	we	need	to	make	one	more	change	to	our	blog	application:	we	need	to	modify	the
menu.html	file	and	add	the	new	“Logout”	menu	link.	Here	is	the	line	you’ll	need	to	add	to
the	menu.html	file.	The	new	logout	link	maps	to	the	logout	route	that	we	just	added:

<!--	chapter10/menu.html	excerpt	-->

Logout

The	complete	menu.html	file	is	shown	here	for	convenience:

<!--	chapter10/menu.html	complete	file	-->

<nav	class="navbar	navbar-inverse	navbar-fixed-top"	role="navigation">

<!--	Brand	and	toggle	get	grouped	for	better	mobile	display	-->

<div	class="container">

<div	class="navbar-header">

<button	type="button"	class="navbar-toggle"	data-toggle="collapse"	

		data-target=".navbar-collapse">

Toggle	navigation

</button>

{{label}}

</div>

<!--Collect	the	nav	links,	forms,	and	other	content	for	toggling	-->

<div	class="collapse	navbar-collapse">

<ul	class="nav	navbar-nav">

<li	class="{{aboutActiveClass}}">About

<li	class="">

Download	Project	Code

Logout

</div><!--	/.navbar-collapse	-->

</div>

</nav>

Once	you	have	made	all	the	changes	outlined	in	this	chapter,	your	blog	application	should
have	all	the	needed	security	additions	that	were	specified.	To	test	the	changes	that	were
made,	we	will	run	the	project	and	check	for	errors.

Running	the	Blog	Application
Right-click	the	project	node	and	select	“Run”	from	the	menu.	Your	project	should	run	and
you	should	see	the	screen	in	Figure	10-1.	If	you	do	not	see	the	login	screen,	check	that	all
the	changes	outlined	in	this	chapter	were	performed	correctly.	Turn	on	developer	tools	for
your	browser	and	look	for	errors,	as	described	in	previous	chapters.

Figure	10-1.	The	login	screen

Logging	In
Once	your	project	is	running,	do	the	following:

1.	 Enter	“node”	as	the	username.

2.	 Enter	“password”	as	the	password.

3.	 Click	the	“Sign	in”	button.

You	should	now	see	the	same	blog	screens	that	you	built	in	the	previous	chapters.	The
application	should	function	just	as	before	with	no	changes.	Navigate	through	the
application	to	validate	that	everything	works	correctly.

If	you	were	to	enter	incorrect	user	credentials,	you	would	see	the	error	message	described
earlier	(“Login	Failed”)	displayed	in	red.	Notice	the	new	menu	item	“Logout”	at	the	right
end	of	the	menu	bar.	Click	“Logout”	and	your	session	should	end.	You	should	then	be
taken	back	to	the	login	screen.	If	the	login	and	logout	process	work	correctly,	your
security	changes	were	implemented	successfully.

Testing	with	Karma
We’ve	added	a	new	AngularJS	service	and	two	new	controllers	to	our	blog	application.
We	now	need	to	test	the	application	to	make	certain	there	are	no	defects	in	our	code.	We
also	need	to	validate	that	all	previous	unit	tests	are	still	passing.

We	will	start	off	by	writing	a	test	specification	for	the	new	service.	We	will	then	write	two
new	test	specifications	for	the	two	new	controllers.	Once	our	unit	testing	is	complete,	we
will	make	changes	to	our	end-to-end	testing.

Karma	Configuration
We	already	have	an	up-to-date	Karma	configuration	file	for	our	blog	project.	There	should
be	no	changes	to	the	file	at	this	point.	The	complete	karma.conf.js	file	is	shown	here	for
reference:

/*	chapter10/karma.conf.js	*/

module.exports	=	function	(config)	{

				config.set({

								basePath:	'../',

								files:	[

												"public_html/js/libs/angular.min.js",

												"public_html/js/libs/angular-mocks.js",

												"public_html/js/libs/angular-route.min.js",

												"public_html/js/libs/angular-resource.min.js",

												"public_html/js/libs/angular-cookies.min.js",

												"public_html/js/*.js",

												"public_html/partials/*.html",

												"test/**/*Spec.js"	

],

								preprocessors:	{

												'public_html/partials/*.html':	['ng-html2js']

								},

								exclude:	[

],

								autoWatch:	true,

								frameworks:	[

												"jasmine"

],

								browsers:	[

												"Chrome",

												"Firefox"

],

								plugins:	[

												"karma-junit-reporter",

												"karma-chrome-launcher",

												"karma-firefox-launcher",

												"karma-jasmine",

												"karma-ng-html2js-preprocessor"

],								

								ngHtml2JsPreprocessor:	{												

												stripPrefix:	'public_html/'

				});

};

Karma	Test	Specifications
We	need	to	add	unit	test	specifications	for	the	new	Login	service	and	the	two	new
controllers.	The	following	code	shows	the	new	test	specification	for	the	Login	service.
The	service	relies	on	a	REST	service,	so	we	will	only	test	to	make	sure	we	can	inject	the
service.	We	will	actually	test	the	service	interaction	with	the	REST	service	during	end-to-
end	testing.	If	there	are	any	issues,	we	will	find	them	there.	Add	this	test	specification	to
the	project’s	servicesSpec.js	file:

/*	chapter10/servicesSpec.js	excerpt	*/

describe('test	Login',	function	()	{							

		var	$rootScope;

		var	login;

		beforeEach(module('blogServices'));

		beforeEach(inject(function	($injector)	{											

				$rootScope	=	$injector.get('$rootScope');

				login	=	$injector.get('Login');

		}));

		it('should	test	Login	service',	function	()	{												

				expect(login).toBeDefined();

		});

});

The	complete	servicesSpec.js	file	is	shown	here:

/*	chapter10/servicesSpec.js	complete	file	*/

describe('AngularJS	Blog	Service	Testing',	function	()	{	

		describe('test	BlogList',	function	()	{							

				var	$rootScope;

				var	blogList;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

							blogList	=	$injector.get('BlogList');

				}));

				it('should	test	BlogList	service',	function	()	{												

						expect(blogList).toBeDefined();

				});

		});

		describe('test	BlogPost',	function	()	{							

				var	$rootScope;

				var	blogPost;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						blogPost	=	$injector.get('BlogPost');

				}));

				it('should	test	BlogPost	service',	function	()	{												

						expect(blogPost).toBeDefined();

				});

		});

				

		describe('test	Login',	function	()	{							

				var	$rootScope;

					var	login;

					beforeEach(module('blogServices'));

					beforeEach(inject(function	($injector)	{											

							$rootScope	=	$injector.get('$rootScope');

							login	=	$injector.get('Login');

					}));

					it('should	test	Login	service',	function	()	{												

							expect(login).toBeDefined();

					});

			});

});

Now	we	need	test	specifications	for	the	two	new	controllers.	First	we	show	the	test
specification	for	the	LoginCtrl	controller.	We	first	get	a	reference	to	the	controller	and
then	call	the	submit	method	attached	to	the	scope.	We	use	a	scope	property	to	validate	that
the	method	call	was	successful:

/*	chapter10/controllerSpec.js	excerpt	*/

				describe('LoginCtrl',	function	()	{

								var	scope,	ctrl;

								beforeEach(inject(function	($rootScope,	$controller)	{

												scope	=	$rootScope.$new();

												ctrl	=	$controller('LoginCtrl',	{$scope:	scope});

												scope.submit();

								}));

								it('should	show	submit	success',	function	()	{

												console.log("LoginCtrl:"	+	scope.sub);

												expect(scope.sub).toEqual(true);												

								});

				});

Next	is	the	test	specification	for	the	LogoutCtrl	controller.	In	this	case,	we	just	validate
that	we	can	get	a	reference	to	the	controller.	We	will	validate	that	the	controller	actually
handles	logout	correctly	when	we	do	end-to-end	testing:

/*	chapter10/controllerSpec.js	excerpt	*/

describe('LogoutCtrl',	function	()	{

								var	scope,	ctrl;

								beforeEach(inject(function	($rootScope,	$controller)	{

												scope	=	$rootScope.$new();

												ctrl	=	$controller('LogoutCtrl',	{$scope:	scope});

								}));

								it('should	create	LogoutCtrl	controller',	function	()	{

												console.log("LogoutCtrl:"	+	ctrl);

												expect(ctrl).toBeDefined();

												//expect(scope.blogList).toBeUndefined();

								});

				});

The	complete	controllerSpec.js	file	is	shown	next.	Make	the	changes	to	your	file	in	the
blog	application	and	validate	that	it	matches	the	version	shown	here:

/*	chapter10/controllerSpec.js	complete	file	*/

describe('AngularJS	Blog	Application',	function	()	{

		beforeEach(module('blogApp'));

		//beforeEach(module('blogServices'));

		describe('BlogCtrl',	function	()	{

				var	scope,	ctrl;

				beforeEach(inject(function	($rootScope,	$controller)	{

						scope	=	$rootScope.$new();

						ctrl	=	$controller('BlogCtrl',	{$scope:	scope});

				}));

				it('should	create	show	blog	entry	count',	function	()	{

						console.log("blogList:"	+	scope.blogList);

						expect(scope.blogList.length).toEqual(0);

						//expect(scope.blogList).toBeUndefined();

				});

		});

		describe('BlogViewCtrl',	function	()	{

				var	scope,	ctrl,	$httpBackend;

				beforeEach(inject(function	(_$httpBackend_,	$routeParams,	

						$rootScope,	$controller)	{

						$httpBackend	=		_$httpBackend_;

						$httpBackend.expectGET('blogPost').respond({_id:	'1'});

						$routeParams.id	=	'1';

						scope	=	$rootScope.$new();												

						ctrl	=	$controller('BlogViewCtrl',	{$scope:	scope});

				}));

				it('should	show	blog	entry	id',	function	()	{												

						//expect(scope.blogEntry._id).toEqual(1);

						//expect(scope.blogList).toBeUndefined();

						expect(scope.blg).toEqual(1);

				});

		});				

				

		describe('LoginCtrl',	function	()	{

				var	scope,	ctrl;

				beforeEach(inject(function	($rootScope,	$controller)	{

						scope	=	$rootScope.$new();

						ctrl	=	$controller('LoginCtrl',	{$scope:	scope});

						scope.submit();

				}));

				it('should	show	submit	success',	function	()	{

						console.log("LoginCtrl:"	+	scope.sub);

						expect(scope.sub).toEqual(true);

						//expect(scope.blogList).toBeUndefined();

				});

		});

				

		describe('LogoutCtrl',	function	()	{

				var	scope,	ctrl;

				beforeEach(inject(function	($rootScope,	$controller)	{

						scope	=	$rootScope.$new();

						ctrl	=	$controller('LogoutCtrl',	{$scope:	scope});

				}));

				it('should	create	LogoutCtrl	controller',	function	()	{

						console.log("LogoutCtrl:"	+	ctrl);

						expect(ctrl).toBeDefined();

						//expect(scope.blogList).toBeUndefined();

				});

		});

});

Karma	Testing
The	test	specifications	just	added	will	test	the	new	service	and	the	two	new	controllers.	We
will	also	test	all	the	existing	controllers,	the	existing	services,	and	the	existing	directive
when	Karma	runs.

Right-click	the	project	and	select	“Test”	from	the	menu.	Karma	will	start.	You	should	see
both	Chrome	and	Firefox	browser	windows	open.	The	NetBeans	test	results	window
should	open	and	display	a	total	of	26	passed	test	cases.

If	you	get	any	error	messages	or	failed	tests,	go	back	over	this	section	and	verify	that	you
completed	all	the	configurations	and	installations.	You	can	also	download	the	Chapter	10
code	from	the	GitHub	project	site.

https://github.com/KenWilliamson

End-to-End	Testing
We	will	make	several	changes	to	the	end-to-end	test	specifications	for	our	blog	application
here.	We	will	need	to	log	into	the	blog	application	with	the	script.	Then,	once	logged	in,
we	will	navigate	through	the	blog	as	before	to	verify	that	all	previous	E2E	functionality
still	works.	We	will	then	need	to	log	out	with	the	test	script	to	test	the	logout	functionality.

Protractor	Configuration
We	already	created	a	Protractor	configuration	file	for	the	blog	application	in	Chapter	5.
The	Protractor	configuration	file	is	shown	here	for	reference:

/*	chapter10/conf.js	Protractor	configuration	file	*/

exports.config	=	{	

		seleniumAddress:	'http://localhost:4444/wd/hub',	

		specs:	['e2e/blog-spec.js']	

};

Protractor	Test	Specification
The	blog-spec.js	file	shown	here	contains	several	changes.	First	notice	that	the	script
needs	to	complete	the	login	form	by	populating	the	username	and	password	fields.	Then	it
looks	up	the	login	form	button	by	the	CSS	class	name,	and	clicks	the	button:

/*	chapter10/blog-spec.js	Protractor	test	specification	*/

describe("Blog	Application	Test",	function(){

		it("should	test	the	main	blog	page",	function(){								

				browser.get("http://localhost:8383/AngularJsBlog/");

				//logs	into	the	blog	application

				element(by.model("username")).sendKeys("node");

				element(by.model("password")).sendKeys("password");

				element(by.css('.form-button')).click();	

				expect(browser.getTitle()).toEqual("AngularJS	Blog");								

				//gets	the	blog	list

				var	blogList	=	

						element.all(by.repeater('blogPost	in	blogList'));								

				//tests	the	size	of	the	blogList

				expect(blogList.count()).toEqual(1);							

								

				browser.get(

						"http://localhost:8383/AngularJsBlog/#!/

						blogPost/5394e59c4f50850000e6b7ea");

				expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

				//gets	the	comment	list

				var	commentList	=	

						element.all(by.repeater('comment	in	blogEntry.comments'));								

						//checks	the	size	of	the	commentList

						expect(commentList.count()).toEqual(2);								

						element(by.css('.navbar-brand')).click();								

						//logs	out	of	the	blog	application

						element(by.id('lo')).click();								

						expect(browser.getTitle()).toEqual("AngularJS	Blog");

				});

});

Once	the	script	has	successfully	logged	into	the	application,	it	navigates	through	the
application	as	before.	Then,	at	the	end	of	the	test	script,	it	looks	up	the	logout	link	by	id.	It
then	clicks	the	link,	logging	out	of	the	application.

The	end-to-end	test	specification	validates	that	the	login	process	works.	It	also	validates
all	the	previous	functionality	tested	in	Chapter	9.	Then	it	validates	that	the	logout	process
works	correctly.

Protractor	Testing
Now,	with	those	changes	added,	we	are	ready	to	start	the	end-to-end	testing.

Start	a	new	command	window	and	enter	the	following	command	to	start	the	test	server:

webdriver-manager	start

Open	a	new	command	window	and	navigate	to	the	root	of	the	Chapter	10	project.	Type	the
command:

protractor	test/conf.js

You	should	see	a	browser	window	open.	You	should	then	see	the	test	script	log	into	the
blog	application	and	navigate	through	the	pages	of	the	application,	and	finally	log	out	of
the	application.	When	the	Protractor	script	has	finished,	the	browser	window	will	close.

You	should	see	results	like	the	following	in	the	command	window	when	the	Protractor
script	completes.	The	number	of	seconds	that	it	takes	the	script	to	finish	will	vary
depending	on	your	particular	system:

Finished	in	3.285	seconds

1	test,	5	assertions,	0	failures

One	Last	Point	on	Security
I	want	to	emphasize	one	last	thing	about	implementing	security	in	a	JavaScript
application.	Any	security	that	you	implement	in	JavaScript	can	be	circumvented	by	the
user,	as	I	explained	at	the	start	of	the	chapter.	The	login	screen	and	security	that	we
implemented	in	this	chapter	are	completely	dependent	on	the	login	REST	service.

The	login	screen	is	used	just	as	a	way	to	gather	and	store	the	user’s	credentials	in	a	safe
place	temporarily	and	to	control	the	authentication	process	for	each	REST	service	that
contains	private	data.	The	user’s	credentials	are	removed	after	each	session	and	have	to	be
entered	again	at	each	login,	unless	the	user	chooses	to	save	their	credentials.

Conclusion
In	the	next	chapter	you	will	see	how	the	user’s	credentials	are	used	to	gain	access	to
private	REST	services	that	add	new	blog	posts	and	comments.	You	will	first	deploy	the
REST	services	and	the	AngularJS	application	together	in	a	MEAN	stack	deployment	to
your	local	machine	to	see	the	whole	process	in	action.	Once	the	application	is	up	and
running	on	your	local	machine,	you	will	be	able	to	use	the	developer	tools	in	Chrome	to
view	the	REST	service	logs	at	runtime:	you’ll	be	able	to	view	the	URL,	request,	and
response	of	each	service	call.

You	will	also	see	any	errors	that	occur.	Once	you	have	tested	the	MEAN	stack	on	your
local	machine,	you	will	deploy	the	project	to	the	cloud	using	Git,	which	is	a	distributed
version	control	and	source	code	management	(SCM)	system	initially	developed	by	Linus
Torvalds.

Chapter	11.	MEAN	Cloud	and	Mobile

This	chapter	will	cover	both	the	cloud	deployment	of	our	blog	application	and	a	short
discussion	on	building	a	mobile	HTML5	version	of	our	application.	The	cloud	deployment
will	be	to	a	free	account	on	RedHat’s	OpenShift	platform.	The	mobile	discussion	will
cover	the	steps	needed	to	build	a	mobile	version	of	the	blog	application	that	will	run	on
any	mobile	device	and	can	be	distributed	through	the	respective	mobile	application	stores.
The	mobile	version	will	use	the	same	REST	services	that	we	use	for	the	cloud	version	of
our	blog	application.

Local	Deployment
Before	we	deploy	our	blog	application	to	the	cloud,	we	will	set	up	a	local	project	in
NetBeans	that	we	will	later	use	to	deploy	our	blog	to	OpenShift.	We	can	also	run	and	test
our	blog	application	locally	before	pushing	it	to	the	cloud.	All	the	code	for	this	chapter	has
already	been	written	and	can	be	downloaded	from	GitHub.	We	will	walk	through	the	code
and	discuss	the	changes	that	have	been	made	to	our	AngularJS	application	to	allow	for	a
deployment	to	the	cloud.

Our	cloud	deployment	uses	Node.js	as	the	server	platform,	ExpressJS	as	the	web
application	framework,	and	MongoDB	as	the	database.	We	will	discuss	how	AngularJS
integrates	with	all	three	of	these	to	form	a	MEAN	(MongoDB,	ExpressJS,	AngularJS,	and
Node.js)	stack	deployment.	We	will	primarily	focus	on	the	role	that	AngularJS	plays	in	a
MEAN	stack	application.

We	will	not	cover	the	Node.js	code	in	great	detail.	Although	the	Node.js	server-side	code
is	JavaScript,	it	can	often	be	quite	complex.	If	you	have	server-side	experience,	feel	free	to
experiment	with	the	server	code.	Books	written	specifically	on	the	MEAN	stack	will	cover
the	Node.js	and	ExpressJS	code	of	MEAN	stack	applications	in	much	greater	depth	than
we	will	here.

http://bit.ly/lajs-github

Installing	Node.js,	npm,	and	MongoDB
Before	you	can	run	the	new	MEAN	blog	application	locally,	you	must	install	Node.js,
MongoDB,	and	npm	(the	Node.js	package	manager)	on	your	local	system.	The
installations	are	different	for	each	operating	system,	but	you	can	find	more	information
about	Node.js	at	nodejs.org	and	you	can	find	information	about	MongoDB	at
http://www.mongodb.org.	If	you	are	using	one	of	the	Linux	distributions,	you	can	usually
install	and	configure	both	Node.js	and	MongoDB	through	the	OS	package	management
system.	Before	we	continue,	install	and	configure	Node.js,	npm,	and	MongoDB	if	you
haven’t	done	so	already.

http://nodejs.org/
http://www.mongodb.org/

Installing	the	NetBeans	Node.js	Plugin
Now	we	will	install	a	Node.js	plugin	for	NetBeans	to	simplify	our	interaction	with
Node.js.	Do	the	following:

1.	 Follow	the	directions	on	Tim	Boudreau’s	blog.

2.	 Download	and	install	the	plugin.

3.	 Configure	the	plugin	as	specified.

Once	you	have	the	Node.js	plugin	for	NetBeans	installed	and	configured,	download	the
source	for	this	chapter	from	GitHub.	Unzip	the	file	somewhere	on	your	local	drive.	In
NetBeans,	click	“File”	and	select	“Open	Project”	from	the	menu,	then	navigate	to	the
project	source	that	you	just	downloaded	and	open	the	Node.js	project.	You	should	see	the
NodeBlog	project,	as	shown	in	Figure	11-1.

Figure	11-1.	The	NodeBlog	project	in	NetBeans

http://bit.ly/tb-nodejs
http://bit.ly/nodemeanblog

The	MEAN	Application
We’ll	use	MongoDB	as	our	server-side	database.	MongoDB	is	a	NoSQL	database	that	is
fast	and	easy	to	use.	With	MongoDB,	there	is	no	concern	about	writing	SQL	queries;	we
just	use	the	MongoDB	API	to	interact	with	the	database.	We’ll	actually	simplify	our
interaction	with	MongoDB	even	more	by	using	Mongoose.js,	an	object	data	modeling
(ODM)	library	that	allows	us	to	interact	with	MongoDB	using	JSON	via	a	greatly
simplified	API	interface.

Our	MEAN	stack	uses	REST	services	built	with	ExpressJS.	ExpressJS	is	a	web
framework	that	is	lightweight	and	easy	to	use.	REST	services	built	on	ExpressJS	can	be
used	exclusively	in	our	application	or	exposed	to	the	outside	world	for	use	by	external
applications.

MEAN	stack	applications	run	on	Node.js,	which	runs	on	Google’s	V8	JavaScript	engine.
Node.js	is	a	very	powerful	platform	for	developing	server-side	software	applications	in
JavaScript.	AngularJS	sits	on	top	of	the	other	three	pieces	of	the	MEAN	stack	and	is	used
to	build	JavaScript	applications	that	interact	directly	with	the	REST	services	built	with
ExpressJS.

http://mongoosejs.com/
http://expressjs.com/

Node.js	Public	Folder
You	will	notice	our	AngularJS	blog	code	is	now	located	under	the	public	folder	in	the
MEAN	project.	Placing	the	AngularJS	code	in	the	public	folder	is	common	practice	when
you’re	building	MEAN	applications.	Open	the	public	folder	and	you	should	see	the	same
code	that	we	developed	in	the	previous	chapters.

MEAN	Services
Several	changes	were	needed	to	our	services.js	file,	as	shown	in	the	following	code.
Notice	that	we	changed	the	URL	for	each	service	from	http://nodeblog-
micbuttoncloud.rhcloud.com/NodeBlog/	to	./NodeBlog/.	That	small	change	makes	our
application	transportable	to	any	cloud	platform.	Without	making	that	change,	we	would
need	to	configure	the	service	URLs	every	time	we	moved	the	application	to	a	new	cloud
platform:

/*	chapter11/services.js	*/

'use	strict';

/*	Services	*/

var	blogServices	=	

angular.module('blogServices',	['ngResource']);

blogServices.factory('BlogPost',	['$resource',

		function($resource)	{

				return	$resource("./NodeBlog/blog/:id",	{},	{

						get:	{method:	'GET',	cache:	false,	isArray:	false},

						save:	{method:	'POST',	cache:	false,	isArray:	false},

						update:	{method:	'PUT',	cache:	false,	isArray:	false},

						delete:	{method:	'DELETE',	cache:	false,	isArray:	false}

				});

}]);

blogServices.factory('BlogList',	['$resource',

		function($resource)	{

				return	$resource("./NodeBlog/blogList",	{},	{

						get:	{method:	'GET',	cache:	false,	isArray:	true}

				});

}]);

blogServices.factory('Login',	['$resource',

		function($resource)	{

				return	$resource("./NodeBlog/login",	{},	{

						login:	{method:	'POST',	cache:	false,	isArray:	false}

				});

}]);

blogServices.factory('BlogPostComments',	['$resource',

		function($resource)	{

				return	$resource("./NodeBlog/comment/:id",	{},	{

						save:	{method:	'POST',	cache:	false,	isArray:	false}

				});

}]);

We	also	made	changes	to	the	application	to	allow	the	user	to	create	new	blog	posts	and	to
add	comments	to	posts.	One	of	those	changes	was	to	this	file	as	well:	notice	that	we	added
a	new	BlogPostComments	service	at	the	bottom	of	the	file.	There	were	also	changes	made
to	other	files	in	the	application.	We	will	first	discuss	the	changes	to	controllers.js.

MEAN	Blog	Controllers
Following	is	the	new	controllers.js	file,	which	we’ve	modified	to	give	us	the	ability	to	add
new	blog	posts	and	comments.	Notice	first	the	changes	that	were	made	to	the
BlogViewCtrl	controller.	We’ve	injected	several	new	services	into	the	controller,
including	the	BlogPostComments	service	just	shown.	We’ve	also	added	a	new	submit
method	to	the	controller	that	handles	the	process	of	adding	a	new	comment	to	a	blog	post.
The	new	submit	method	makes	a	call	to	the	save	method	on	the	BlogPostComments
service:

/*	chapter11/controllers.js	*/

'use	strict';

/*	Controllers	*/

var	blogControllers	=	

		angular.module('blogControllers',	[]);

blogControllers.controller('BlogCtrl',	

		['$scope',	'BlogList',	'$location',	'checkCreds',

				function	BlogCtrl($scope,	BlogList,	$location,	checkCreds)	{

						if	(!checkCreds())	{

								$location.path('/login');

						}

						$scope.brandColor	=	"color:	white;";

						$scope.blogList	=	[];

						BlogList.get({},

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										$scope.blogList	=	response;

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

						});

}]);

blogControllers.controller('BlogViewCtrl',	

		['$scope',	'$routeParams',	'BlogPost',	'BlogPostComments',	

				'$location',	'checkCreds',	'$http',	'getToken',	'$route',

				function	BlogViewCtrl($scope,	$routeParams,	BlogPost,	

						BlogPostComments,	$location,	checkCreds,	$http,	getToken,	

								$route)	{

						if	(!checkCreds())	{

								$location.path('/login');

						}

						var	blogId	=	$routeParams.id;

						$scope.blg	=	1;

						BlogPost.get({id:	blogId},

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										$scope.blogEntry	=	response;

										$scope.blogId	=	response._id;

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								}

);

				$scope.submit	=	function()	{

				$scope.sub	=	true;

				$http.defaults.headers.common['Authorization']	=	'Basic	'	+	

						getToken();

				var	postData	=	{

						"commentText":	$scope.commentText,

						"blog"	:	$scope.blogId

				};

				BlogPostComments.save({},	postData,

						function	success(response)	{

								console.log("Success:"	+	JSON.stringify(response));

								$location.path('/blogPost/'+$scope.blogId);

								$route.reload();

						},

						function	error(errorResponse)	{

								console.log("Error:"	+	JSON.stringify(errorResponse));

						});

				};

}]);

blogControllers.controller('LoginCtrl',	['$scope',	

		'$location',	'Login',	'setCreds',

				function	LoginCtrl($scope,	$location,	Login,	setCreds)	{

						$scope.submit	=	function()	{

						$scope.sub	=	true;

						var	postData	=	{

								"username":	$scope.username,

								"password":	$scope.password

						};

						Login.login({},	postData,

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										if	(response.authenticated)	{

												setCreds($scope.username,	$scope.password)

												$location.path('/');

										}	else	{

												$scope.error	=	"Login	Failed"

										}

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								});

					};

}]);

blogControllers.controller('LogoutCtrl',	['$location',	'deleteCreds',

				function	LogoutCtrl($location,	deleteCreds)	{

						deleteCreds();

						$location.path('/login');

}]);

blogControllers.controller('NewBlogPostCtrl',	

		['$scope',	'BlogPost',	'$location',	'checkCreds',	'$http',	'getToken',

				function	NewBlogPostCtrl($scope,	BlogPost,	$location,	checkCreds,	

						$http,	getToken)	{

						if	(!checkCreds())	{

								$location.path('/login');

						}

						$scope.languageList	=	[

								{

										"id":	1,

										"name"	:	"English"

								},

								{

										"id":	2,

										"name"	:	"Spanish"

								}

];

						$scope.languageId	=	1;

						$scope.newActiveClass	=	"active";

						$scope.submit	=	function()	{

						$scope.sub	=	true;

						$http.defaults.headers.common['Authorization']	=	'Basic	'	+	

								getToken();

						var	postData	=	{

								"introText":	$scope.introText,

								"blogText"	:	$scope.blogText,

								"languageId":	$scope.languageId

						};

						BlogPost.save({},	postData,

								function	success(response)	{

										console.log("Success:"	+	JSON.stringify(response));

										$location.path('/');

								},

								function	error(errorResponse)	{

										console.log("Error:"	+	JSON.stringify(errorResponse));

								});

					};

}]);

blogControllers.controller('AboutBlogCtrl',	['$scope',	

		'$location',	'checkCreds',

				function	AboutBlogCtrl($scope,	$location,	checkCreds)	{

						if	(!checkCreds())	{

								$location.path('/login');

						}

						$scope.aboutActiveClass	=	"active";

}]);

The	REST	service	linked	to	the	BlogPostComments	service	requires	Basic	Authentication.
If	you	look	at	the	first	line	of	the	new	submit	method	added	to	the	BlogViewCtrl
controller	($http.defaults.headers.common['Authorization']	=	'Basic'	+
getToken();),	you	will	see	how	REST	service	Basic	Authentication	is	handled	in
AngularJS.	The	code	on	that	line	makes	use	of	the	$http	service	to	add	a	Basic
Authentication	header	to	the	REST	service	call.

We	use	the	getToken	AngularJS	business	logic	service	developed	in	Chapter	8	to	add	the
base64	token	to	the	header,	as	described	in	that	chapter.	Once	a	new	comment	is	added
successfully,	we	then	make	a	call	to	the	path	method	on	the	$location	service
($location.path('/blogPost/'+$scope.blogId);)	and	a	call	to	the	reload	method	on
the	$route	service	($route.reload();).	Making	those	two	calls	refreshes	the	blog	post
page	to	show	the	newly	added	comment.

We	also	added	a	new	controller	named	NewBlogPostCtrl.	The	new	controller	has	a
submit	method	that	makes	a	call	to	the	BlogPost	service	used	previously.	The	save
method	is	called	on	the	BlogPost	service,	and	the	REST	service	mapped	to	the	save
method	requires	Basic	Authentication,	as	described	previously.	The	implementation	for
authentication	is	the	same.

MEAN	Blog	Templates
The	new	controller	also	has	a	new	languageList	JSON	array	that	is	used	to	populate	a
new	HTML	<select>	element	in	the	template	used	for	new	blog	posts.	The	language	field
is	not	actually	used	by	our	blog	application	but	is	included	to	show	how	to	populate	a
<select>	element	in	an	AngularJS	view.	We	preselect	the	<select>	element	with
“English”	by	setting	the	languageId	scope	property	($scope.languageId	=	1;).

There	were	no	other	significant	changes	made	to	the	controllers.js	file.	We	will	now	talk
about	the	new	template	added	to	allow	users	to	add	new	blog	posts.	We	will	also	cover
changes	made	to	the	blog	post	template	needed	for	adding	comments	to	blog	entries.

Adding	Comments
The	following	code	shows	the	modifications	needed	to	the	existing	blog	post	template.
You	will	notice	that	we’ve	added	a	new	form	for	submitting	new	comments.	The	new
form	is	mapped	to	the	new	submit	method	of	the	BlogEntryCtrl	controller.	Also	notice
that	we	hold	the	blog	ID	in	a	hidden	element	and	pass	that	ID	back	to	the	controller	when
the	user	submits	the	form.	The	blog	ID	is	passed	to	the	REST	service	that	adds	new
comments:

<!--	chapter11/blogPost.html	-->

<div	blg-menu	menu-title="AngularJS	MEAN	Blog"></div>

<div	id="container"	class="container">

<div	class="blog-post-label">Blog	Entry</div>

<div	class="blog-entry-wrapper">

<div	class="blog-intro-text">

Posted:	{{blogEntry.date|	date:'MM/dd/yyyy	@	h:mma'}}

</div>

<div	class="blog-entry-outer">

{{blogEntry.blogText}}

</div>

<div	class="blog-comment-wrapper">

<div	class="blog-comment-label">Blog	Comments</div>

<div	class="blog-entry-comments"	ng-repeat="comment	in	blogEntry.comments">

{{comment.commentText}}

</div>

</div>

<div	class="blog-comment-entry-wrapper">

<form	class=""	ng-submit="submit()"	ng-controller="BlogViewCtrl">

<input	type="hidden"	ng-model="blogId"/>

<div	class="blog-post-entry-label">

<label	for="commentText">New	Comment:</label>

</div>

<div	class="blog-post-entry-element">

<textarea	class="blog-post-textarea"	type="text"	

ng-model="commentText"	name="commentText"	placeholder="Comment"	required/>

</div>

<div	class="blog-post-button">

<button	type="submit"	class="form-button">Submit</button>

</div>

</form>

</div>

</div>

</div>

Adding	Blog	Entries
The	following	code	shows	the	new	template	used	to	add	new	blog	posts.	The	template
maps	form	submission	to	the	submit	method	of	the	NewBlogPostCtrl	controller	using	the
ng-submit	directive,	as	before:

<!--	chapter11/newPost.html	-->

<div	blg-menu	menu-title="AngularJS	MEAN	Blog"></div>

<div	id="container"	class="container">

<div	class="blog-post-label">New	Blog	Posts</div>

<div	class="blog-post-wrapper">

<form	class=""	ng-submit="submit()"	ng-controller="NewBlogPostCtrl">

<div	class="blog-post-entry-label">

<label	for="introText">Intro	Text:</label></div>

<div	class="blog-post-entry-element">

<textarea	class="blog-post-textarea"	type="text"	

ng-model="introText"	name="introText"	placeholder="Intro	Text"		required/></div>

<div	class="blog-post-entry-label">

<label	for="blogText">Blog	Text:</label></div>

<div	class="blog-post-entry-element">

<textarea	class="blog-post-textarea"	type="text"	

ng-model="blogText"	name="blogText"	placeholder="Blog	Text"		required/></div>

<div	class="blog-post-entry-label">

<label	for="blogText">Language:</label></div>

<div	class="blog-post-entry-element">

<select	class="form-select-element-left"	ng-model="languageId"	

ng-options="lan.id	as	lan.name	for	lan	in	languageList"	

name="languageId"	required>

</select>

</div>

<div	class="blog-post-button"><button	type="submit"	

class="form-button">Submit</button></div>

</form>

</div>

</div>

The	following	code	shows	the	change	needed	to	the	menu.html	file:	we’ve	added	a	link	in
the	menu	to	the	new	blog	post	creation	view.	The	new	path	configuration	is	also	shown:

<!--	chapter11/menu.html	-->

<nav	class="navbar	navbar-inverse	navbar-fixed-top"	role="navigation">

<!--	Brand	and	toggle	get	grouped	for	better	mobile	display	-->

<div	class="container">

<div	class="navbar-header">

<button	type="button"	class="navbar-toggle"	data-toggle="collapse"	

		data-target=".navbar-collapse">

Toggle	navigation

</button>

{{label}}

</div>

<!--Collect	the	nav	links,	forms,	and	other	content	for	toggling	-->

<div	class="collapse	navbar-collapse">

<ul	class="nav	navbar-nav">

<li	class="{{aboutActiveClass}}">About

<li	class="{{newActiveClass}}">New

<li	class="">

Download	Project	Code

Logout

</div><!--	/.navbar-collapse	-->

</div>

</nav>

Adding	New	Routes
The	following	code	shows	the	changes	needed	for	the	app.js	file.	The	new	route	used	to
add	a	new	blog	post	is	shown.	The	route	was	added	to	the	$routeProvider	as	before:

/*	chapter11/app.js	excerpt	*/

.when('/newBlogPost',	{	

		templateUrl:	'partials/newPost.html',	

		controller:	'NewBlogPostCtrl'

})

The	complete	app.js	file	is	shown	here	for	convenience:

/*	chapter11/app.js	complete	file	*/

'use	strict';

/*	App	Module	*/

var	blogApp	=	angular.module('blogApp',	[

		'ngRoute',

		'blogControllers',

		'blogServices',

		'blogBusinessServices',

		'blogDirectives'

]);

blogApp.config(['$routeProvider',	'$locationProvider',

		function($routeProvider,	$locationProvider)	{

				$routeProvider.

				when('/',	{

						templateUrl:	'partials/main.html',

						controller:	'BlogCtrl'

				}).when('/blogPost/:id',	{

						templateUrl:	'partials/blogPost.html',

						controller:	'BlogViewCtrl'

				}).when('/newBlogPost',	{

						templateUrl:	'partials/newPost.html',

						controller:	'NewBlogPostCtrl'

				}).when('/about',	{

						templateUrl:	'partials/about.html',

						controller:	'AboutBlogCtrl'

				}).when('/login',	{

						templateUrl:	'partials/login.html',

						controller:	'LoginCtrl'

				}).when('/logOut',	{

						templateUrl:	'partials/login.html',

						controller:	'LogoutCtrl'

				});

				$locationProvider.html5Mode(false).hashPrefix('!');

}]);

Adding	Node.js	Dependencies
No	other	significant	changes	were	made	to	the	blog	application.	We	will	now	run	the
application	locally	before	deploying	to	the	cloud.

There	is	one	small	command-line	task	that	needs	to	be	performed	before	you	can	run	the
blog	application	locally.	This	is	standard	practice	when	working	with	Node.js.	Do	the
following:

1.	 Open	a	command	window	and	navigate	to	the	location	on	your	drive	where	you
unzipped	the	NodeBlog	project.

2.	 You	should	see	the	package.json	file	at	that	location.

3.	 In	the	command	window,	do	the	following:
a.	 Type	npm	install.

b.	 Press	Enter.

This	command	uses	npm	to	install	all	the	blog	application	dependencies.	If	the	installation
was	successful,	you	should	see	all	the	required	Node.js	packages	installed	in	the	current
directory	under	a	new	folder	named	node_modules.

When	you	run	the	npm	install	command,	npm	reads	the	package.json	file	and	installs	all
the	required	packages	that	are	defined	in	that	file.	If	there	were	errors	and	the	new	folder
didn’t	get	created,	there	is	a	problem	with	the	Node.js	installation	on	your	machine.	Once
you	have	the	required	Node.js	packages	installed	in	your	project,	you	are	ready	to	run	the
project.

Running	the	Blog	Application	Locally
Right-click	the	NodeBlog	project	and	select	“Run”	from	the	menu.	You	should	see	a	small
indicator	at	the	bottom	right	of	NetBeans,	as	shown	in	Figure	11-2.	If	you	see	“Running,”
your	project	and	Node.js	are	installed	correctly.	Open	a	browser	and	navigate	to
http://localhost:8080,	and	you	should	see	the	login	screen	as	before.

Figure	11-2.	Running	the	NodeBlog	project

Log	in	with	the	following	credentials:

username	=	“node”

password	=	“password”

The	application	should	perform	just	as	it	did	before.	If	you	have	any	issues	running	the
application	locally,	resolve	those	issues	before	you	continue.	Once	the	application	runs
locally	on	your	machine,	continue	on	to	the	next	section.

Testing	with	Karma
We’ve	added	a	new	BlogPostComments	service	to	the	services.js	file,	and	made	changes	to
the	controllers.js	file.	In	order	to	validate	that	everything	is	working	correctly,	we	need	to
update	the	test	specifications	as	well.	If	you	look	at	the	test	specifications	for	controllers
and	services	in	the	downloaded	code	for	this	chapter,	you	will	see	the	needed	changes	and
additions.

First	I	will	show	how	to	configure	Karma	in	a	MEAN	stack	environment.	Then	we	will
look	at	the	test	specification	for	the	new	BlogPostComments	service	and	the	changes	to	the
test	specifications	for	controllers.

Karma	Configuration
The	Karma	configuration	file	was	modified	from	the	file	we	used	in	Chapter	10.	Now	the
AngularJS	application	is	located	under	the	public	folder	of	the	MEAN	blog	application.	In
Chapter	10,	the	public_html	folder	was	used	instead.	The	Karma	configuration	file	was
modified	to	account	for	that	change.	The	full	Karma	configuration	file	is	shown	here:

/*	chapter11/karma.conf.js	Karma	configuration	file	*/

module.exports	=	function	(config)	{

		config.set({

				basePath:	'../',

						files:	[

								"public/js/libs/angular.min.js",

								"public/js/libs/angular-mocks.js",

								"public/js/libs/angular-route.min.js",

								"public/js/libs/angular-resource.min.js",

								"public/js/libs/angular-cookies.min.js",

								"public/js/*.js",

								"public/partials/*.html",

								"test/**/*Spec.js"												

],

				preprocessors:	{

						'public/partials/*.html':	['ng-html2js']

				},

				exclude:	[

],

				autoWatch:	true,

				frameworks:	[

						"jasmine"

],

				browsers:	[

						"Chrome",

						"Firefox"

],

				plugins:	[

						"karma-junit-reporter",

						"karma-chrome-launcher",

						"karma-firefox-launcher",

						"karma-jasmine",

						"karma-ng-html2js-preprocessor"

],								

				ngHtml2JsPreprocessor:	{												

						stripPrefix:	'public/'

				}								

		});

};

There	is	one	other	thing	to	note	if	you	are	using	NetBeans:	a	Node.js	project	in	NetBeans
does	not	have	built-in	support	for	Karma.	That	is	not	really	a	problem;	we	just	need	to
launch	Karma	from	the	command	line	instead.	We	will	cover	that	in	the	next	section.

Now,	before	we	start	unit	testing,	we	need	to	install	all	the	Node.js	dependencies	defined
in	the	project’s	package.json	file.	Do	the	following:

1.	 Navigate	to	the	location	where	you	unzipped	the	MEAN	blog	project.

2.	 Navigate	to	the	location	of	the	package.json	file.

3.	 Type	the	following	command	to	install	all	dependencies:

npm	install

The	install	process	will	run	for	several	minutes.	When	all	packages	are	installed,	you	will
be	ready	to	move	on	to	the	next	section.

Karma	Test	Specifications
The	test	specification	for	the	new	BlogPostComments	service	is	shown	next.	We	will	only
verify	that	we	can	inject	the	service	at	this	point.	We	will	completely	check	the	service
when	we	do	E2E	testing:

/*	chapter11/servicesSpec.js	excerpt	*/

describe('test	BlogPostComments',	function	()	{							

		var	$rootScope;

		var	comment;

		beforeEach(module('blogServices'));

		beforeEach(inject(function	($injector)	{											

				$rootScope	=	$injector.get('$rootScope');

				comment	=	$injector.get('BlogPostComments');

		}));

		it('should	test	BlogPostComments	service',	function	()	{

				expect(comment).toBeDefined();

		});

});

The	new	test	specification	for	the	NewBlogPostCtrl	controller	is	shown	next.	Notice	that
we	make	a	call	to	the	submit	method	that	is	attached	to	the	controller’s	scope.	We	then
validate	that	the	call	to	the	submit	method	was	successful:

/*	chapter11/controllerSpec.js	excerpt	*/

describe('NewBlogPostCtrl',	function	()	{

		var	scope,	ctrl;

		beforeEach(inject(function	($rootScope,	$controller)	{

				scope	=	$rootScope.$new();

				ctrl	=	$controller('NewBlogPostCtrl',	{$scope:	scope});

				scope.submit();

		}));

		it('should	show	submit	success	of	NewBlogPostCtrl',	

				function	()	{

						console.log("NewBlogPostCtrl:"	+	scope.sub);

						expect(scope.sub).toEqual(true);												

				});

		});

Next	up	is	the	test	specification	for	the	AboutBlogCtrl	controller.	We	validate	the
functionality	of	the	controller	by	checking	the	value	assigned	to	the	aboutActiveClass
variable:

/*	chapter11/controllerSpec.js	excerpt	*/

describe('AboutBlogCtrl',	function	()	{

		var	scope,	ctrl;

		beforeEach(inject(function	($rootScope,	$controller)	{

				scope	=	$rootScope.$new();

				ctrl	=	$controller('AboutBlogCtrl',	{$scope:	scope});

		}));

		it('should	create	AboutBlogCtrl	controller',	function	()	{

				console.log("AboutBlogCtrl:"	+	ctrl);

				expect(scope.aboutActiveClass).toEqual("active");											

		});

});

We	also	made	a	change	to	the	test	specification	for	the	BlogViewCtrl	controller,	as	shown
here.	We	now	need	to	validate	a	call	to	the	new	submit	method	attached	to	the	scope	of

that	controller:

/*	chapter11/controllerSpec.js		excerpt	*/

describe('BlogViewCtrl',	function	()	{

		var	scope,	ctrl,	$httpBackend;

		beforeEach(inject(function	(_$httpBackend_,	

				$routeParams,	$rootScope,	$controller)	{

						$httpBackend	=		_$httpBackend_;

						$httpBackend.expectGET('blogPost').respond({_id:	'1'});

						$routeParams.id	=	'1';

						scope	=	$rootScope.$new();												

						ctrl	=	$controller('BlogViewCtrl',	{$scope:	scope});

						scope.submit();

				}));

				it('should	show	blog	entry	id',	function	()	{

						expect(scope.blg).toEqual(1);

						expect(scope.sub).toEqual(true);

				});

});			

The	complete	servicesSpec.js	and	controllerSpec.js	files	are	shown	next	for	reference:

/*	chapter11/servicesSpec.js	complete	file	*/

describe('AngularJS	Blog	Service	Testing',	function	()	{

		describe('test	BlogList',	function	()	{							

				var	$rootScope;

				var	blogList;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

								$rootScope	=	$injector.get('$rootScope');

								blogList	=	$injector.get('BlogList');

				}));

				it('should	test	BlogList	service',	function	()	{												

							expect(blogList).toBeDefined();

				});

		});

		describe('test	BlogPost',	function	()	{							

				var	$rootScope;

				var	blogPost;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						blogPost	=	$injector.get('BlogPost');

				}));

				it('should	test	BlogPost	service',	function	()	{												

						expect(blogPost).toBeDefined();

				});

		});

				

		describe('test	Login',	function	()	{							

				var	$rootScope;

				var	login;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						login	=	$injector.get('Login');

				}));

				it('should	test	Login	service',	function	()	{												

						expect(login).toBeDefined();

				});

		});

				

		describe('test	BlogPostComments',	function	()	{							

				var	$rootScope;

				var	comment;

				beforeEach(module('blogServices'));

				beforeEach(inject(function	($injector)	{											

						$rootScope	=	$injector.get('$rootScope');

						comment	=	$injector.get('BlogPostComments');

				}));

				it('should	test	BlogPostComments	service',	function	()	{												

						expect(comment).toBeDefined();

				});

		});

});

/*	chapter11/controllerSpec.js	complete	file	*/

describe('AngularJS	Blog	Application',	function	()	{

				beforeEach(module('blogApp'));

				//beforeEach(module('blogServices'));

				describe('BlogCtrl',	function	()	{

						var	scope,	ctrl;

						beforeEach(inject(function	($rootScope,	$controller)	{

								scope	=	$rootScope.$new();

								ctrl	=	$controller('BlogCtrl',	{$scope:	scope});

						}));

						it('should	create	show	blog	entry	count',	function	()	{

								console.log("blogList:"	+	scope.blogList);

								expect(scope.blogList.length).toEqual(0);

								//expect(scope.blogList).toBeUndefined();

						});

				});

				describe('BlogViewCtrl',	function	()	{

						var	scope,	ctrl,	$httpBackend;

						beforeEach(inject(function	(_$httpBackend_,	$routeParams,	

						$rootScope,	$controller)	{

								$httpBackend	=		_$httpBackend_;

								$httpBackend.expectGET('blogPost').respond({_id:	'1'});

								$routeParams.id	=	'1';

								scope	=	$rootScope.$new();												

								ctrl	=	$controller('BlogViewCtrl',	{$scope:	scope});

								scope.submit();

						}));

						it('should	show	blog	entry	id',	function	()	{												

								//expect(scope.blogEntry._id).toEqual(1);

								//expect(scope.blogList).toBeUndefined();

								expect(scope.blg).toEqual(1);

								expect(scope.sub).toEqual(true);

						});

				});				

				

				describe('LoginCtrl',	function	()	{

						var	scope,	ctrl;

						beforeEach(inject(function	($rootScope,	$controller)	{

								scope	=	$rootScope.$new();

								ctrl	=	$controller('LoginCtrl',	{$scope:	scope});

								scope.submit();

						}));

						it('should	show	submit	success',	function	()	{

								console.log("LoginCtrl:"	+	scope.sub);

								expect(scope.sub).toEqual(true);

								//expect(scope.blogList).toBeUndefined();

						});

				});

				

				describe('LogoutCtrl',	function	()	{

						var	scope,	ctrl;

						beforeEach(inject(function	($rootScope,	$controller)	{

								scope	=	$rootScope.$new();

								ctrl	=	$controller('LogoutCtrl',	{$scope:	scope});

						}));

						it('should	create	LogoutCtrl	controller',	function	()	{

								console.log("LogoutCtrl:"	+	ctrl);

								expect(ctrl).toBeDefined();

								//expect(scope.blogList).toBeUndefined();

						});

				});

				describe('NewBlogPostCtrl',	function	()	{

						var	scope,	ctrl;

						beforeEach(inject(function	($rootScope,	$controller)	{

								scope	=	$rootScope.$new();

								ctrl	=	$controller('NewBlogPostCtrl',	{$scope:	scope});

								scope.submit();

						}));

						it('should	show	submit	success	of	NewBlogPostCtrl',	

								function	()	{

										console.log("NewBlogPostCtrl:"	+	scope.sub);

										expect(scope.sub).toEqual(true);

										//expect(scope.blogList).toBeUndefined();

								});

						});				

				

				describe('AboutBlogCtrl',	function	()	{

						var	scope,	ctrl;

						beforeEach(inject(function	($rootScope,	$controller)	{

								scope	=	$rootScope.$new();

								ctrl	=	$controller('AboutBlogCtrl',	{$scope:	scope});

						}));

						it('should	create	AboutBlogCtrl	controller',	function	()	{

								console.log("AboutBlogCtrl:"	+	ctrl);

								expect(scope.aboutActiveClass).toEqual("active");

								//expect(scope.blogList).toBeUndefined();

						});

				});

});

Karma	Testing
Now	we	need	to	launch	Karma	and	verify	that	all	tests	were	successful.	We	need	to	use	the
command	line	to	launch	Karma,	as	mentioned	earlier.	Do	the	following:

1.	 Open	a	command	window.

2.	 Navigate	to	the	location	of	the	MEAN	blog	project.

3.	 Navigate	inside	the	project	to	where	the	test	folder	and	the	package.json	file	are
located.

4.	 Type	this	command	to	launch	Karma:

karma	start	test/karma.conf.js

You	should	see	a	Chrome	and	a	Firefox	browser	window	open.	You	should	then	see	text
like	the	following	displayed	in	the	command	window,	indicating	success:

Chrome	38.0.2125	(Linux):	Executed	16	of	16	SUCCESS	(0.17	secs)

Firefox	33.0.0	(Ubuntu):	Executed	16	of	16	SUCCESS	(0.157	secs)

TOTAL:	32	SUCCESS

End-to-End	Testing
The	MEAN	blog	application	requires	a	change	to	the	URL	in	the	E2E	test	specifications.
As	in	Chapter	10,	the	script	will	need	to	log	into	the	blog	application.	Then,	once	logged
in,	it	will	navigate	through	the	blog	as	before	to	verify	that	all	previous	E2E	functionality
still	works.	It	will	then	need	to	log	out	to	test	the	logout	functionality	as	well.

Protractor	Configuration
We	already	created	a	Protractor	configuration	file	for	the	blog	application	in	Chapter	5,
and	we’ve	just	moved	that	file	into	the	MEAN	application.	The	Protractor	configuration
file	is	shown	here	for	reference:

/*	chapter11/	conf.js	Protractor	configuration	file	*/

exports.config	=	{	

		seleniumAddress:	'http://localhost:4444/wd/hub',	

		specs:	['e2e/blog-spec.js']	

};

Protractor	Test	Specification
The	modified	Protractor	test	specification	is	shown	next.	Notice	the	new	URL,	as
mentioned	previously:

/*	chapter11/blog-spec.js	Protractor	test	specification	*/

describe("Blog	Application	Test",	function(){

		it("should	test	the	main	blog	page",	function(){								

					browser.get("http://localhost:8080/#!/");

					//logs	into	the	blog	application

					element(by.model("username")).sendKeys("node");

					element(by.model("password")).sendKeys("password");

					element(by.css('.form-button')).click();							

					expect(browser.getTitle()).toEqual("AngularJS	Blog");								

					//gets	the	blog	list

					var	blogList	=	element.all(by.repeater('blogPost	in	blogList'));

								

					//test	the	size	of	the	blogList

					expect(blogList.count()).toEqual(3);

								

								

					browser.get("http://localhost:8080/#!/blogPost/5387bafe185e4e972996adff");

					expect(browser.getTitle()).toEqual("AngularJS	Blog");

								

					//gets	the	comment	list

					var	commentList	=	element.all(by.repeater('comment	in	blogEntry.comments'));

								

					//checks	the	size	of	the	commentList

					expect(commentList.count()).toEqual(2);

								

					element(by.css('.navbar-brand')).click();

								

					//log	out	of	the	blog	application

					element(by.id('lo')).click();								

					expect(browser.getTitle()).toEqual("AngularJS	Blog");	

	});

});

Protractor	Testing
We	are	now	ready	to	start	the	end-to-end	testing.	Start	a	new	command	window	and	enter
the	following	command	to	start	the	test	server:

webdriver-manager	start

Open	a	new	command	window	and	navigate	to	the	root	of	the	Chapter	11	project.	Type	the
command:

protractor	test/conf.js

You	should	see	a	browser	window	open.	You	should	then	see	the	test	script	log	into	the
blog	application	and	navigate	through	the	pages	of	the	application,	as	in	Chapter	10.	The
script	should	then	log	out	of	the	application.	When	the	Protractor	script	has	finished,	the
browser	window	will	close.

You	should	see	results	like	the	following	in	the	command	window	when	the	Protractor
script	completes.	The	number	of	seconds	that	it	takes	the	script	to	finish	will	vary
depending	on	your	particular	system:

Finished	in	2.644	seconds

1	test,	5	assertions,	0	failures

We	are	now	ready	to	continue	with	our	deployment	to	the	cloud.

MEAN	Deployment	to	the	Cloud
Now	we	will	deploy	our	blog	application	to	OpenShift	using	Git.	NetBeans	comes	with	a
built-in	version	of	Git	that	is	very	easy	to	configure	and	use	when	you’re	deploying	to
OpenShift.	First	you	must	open	a	free	OpenShift	account,	which	gives	you	three	free	gears
(cloud	server	instances)	that	can	run	Node.js.	Do	the	following:

1.	 Go	to	https://www.openshift.com/app/account/new	and	create	a	new	account.

2.	 Click	the	“Add	Application”	button	and	create	a	new	Node.js	0.10	application	(save
a	copy	of	the	page	for	reference	later).

3.	 Add	a	MongoDB	cartridge	to	the	application	(save	a	copy	of	the	page	for	reference
later).

4.	 Follow	the	OpenShift	documentation	and	set	up	Git	on	your	development
environment.	You’ll	need	a	public	SSH	key	to	use	Git	on	the	OpenShift	system.

5.	 Once	Git	is	configured,	clone	the	application	with	Git	to	a	location	on	your	drive
separate	from	the	location	where	you	unzipped	the	NodeBlog	download.

6.	 Open	the	new	OpenShift	project,	and	copy	the	following	files	from	the	NodeBlog
project	to	the	new	OpenShift	project,	replacing	the	existing	versions:
a.	 package.json

b.	 server.js

7.	 Copy	the	public	folder	from	the	NodeBlog	project	to	the	new	OpenShift	project.

8.	 Copy	the	db	folder	from	the	NodeBlog	project	to	the	new	OpenShift	project.

Now	we	need	to	test	the	cloud	version	of	the	application	locally.	Open	a	command
window	and	navigate	to	the	folder	where	you	placed	the	new	OpenShift	project.	Make
sure	you	see	the	package.json	file,	and	enter	npm	install	in	the	command	window	as	you
did	earlier.	Now	right-click	the	OpenShift	project	and	select	“Run”	from	the	menu.	If	you
see	the	running	indicator	as	shown	before,	the	application	is	working	properly.

Now,	using	the	Git	credentials	that	you	set	up	earlier	for	your	OpenShift	application,	do	a
Git	remote	push	in	NetBeans	and	the	application	will	be	deployed	to	OpenShift.	If	you	see
any	errors,	use	the	OpenShift	documentation	to	resolve	the	error	condition.	Most	problems
are	usually	related	to	credentials	and	can	be	resolved	easily.

https://www.openshift.com/app/account/new

Testing	the	Cloud	Blog
Once	the	application	is	deployed	to	the	cloud,	open	a	browser	and	navigate	to	the
OpenShift-supplied	link	for	your	application.	If	you	didn’t	keep	a	copy	of	the	application
page,	log	in	to	your	OpenShift	account	and	click	the	application	that	you	just	created.	The
link	to	the	application	will	be	shown	on	the	details	pages.

Once	you	navigate	to	the	link	for	your	application,	you	should	see	the	login	screen	as
before.	If	you	see	the	login	screen,	your	application	was	successfully	deployed	to	the
cloud.	Log	in	to	your	blog	application	and	add	a	new	blog	post.	Add	a	comment	to	the
post.	Your	blog	application	should	display	the	new	post	and	the	comment.	If	you	would
like	to	view	the	application	logfiles,	follow	the	OpenShift	documentation	related	to
viewing	logfiles	for	more	help.

This	concludes	our	discussion	on	cloud	deployment.	Next,	we’ll	take	a	brief	look	at	how
to	turn	your	blog	application	into	a	mobile	HTML5	application.

Mobile	Version
The	AngularJS	blog	application	has	all	that	we	need	to	build	a	mobile	version	for	any
mobile	platform.	Our	business	logic	is	in	the	REST	services,	and	all	modern	mobile
devices	can	access	REST	services.	We	used	a	responsive	design,	so	the	application	should
look	good	on	any	mobile	device.	All	modern	mobile	devices	also	have	web	browsers	and
native	browser	controls	such	as	the	Android	WebView	that	can	launch	internal	HTML
pages.

The	process	for	building	a	mobile	blog	application	is	straightforward	for	any	mobile
device.	The	process	involves	the	following	steps:

1.	 Create	a	new	mobile	project	for	the	particular	mobile	device	of	choice.

2.	 Follow	the	Cordova	documentation	and	add	Cordova	to	your	mobile	project.

3.	 Copy	the	entire	contents	of	the	Chapter	10	project	(AngularJsBlogChapter10)	to	the
folder	in	the	mobile	project	specified	by	Cordova	as	a	destination	for	HTML	files	for
your	particular	mobile	platform.

4.	 Follow	the	Cordova	documentation	and	configure	your	mobile	application	to	launch
the	index.html	file	copied	from	the	Chapter	10	project.

5.	 Once	the	mobile	project	is	configured	according	to	the	Cordova	specifications,	run
the	project	on	an	emulator	or	a	mobile	device.

The	application	should	run	and	look	the	same	as	the	web	version.	There	are	no	AngularJS-
specific	changes	that	we	need	to	make	to	the	project	code.	If	you	are	interested	in	building
AngularJS-based	mobile	applications,	feel	free	to	take	the	code	from	Chapter	10	and	build
a	Cordova-based	HTML5	mobile	application	for	your	platform	of	choice.	The	Cordova
website	has	documentation	for	all	modern	platforms	to	help	you	get	started	with	your
project.

http://cordova.apache.org/
http://cordova.apache.org/

Conclusion
In	this	chapter	we	made	a	few	modifications	and	deployed	our	blog	application	to	the
cloud.	We	ran	the	application	locally,	and	also	ran	the	cloud-deployed	application.	We	also
took	a	quick	look	at	how	easy	it	is	to	build	mobile	applications	with	AngularJS.	We	will
now	focus	on	how	to	get	your	application	found	by	search	engines.

Chapter	12.	AngularJS	and	SEO

You	might	wonder	why	we	are	covering	search	engine	optimization	(SEO)	in	an
AngularJS	book.	The	answer	is	simple.

Currently,	AngularJS	and	most	JavaScript	client-side	frameworks	are	used	mostly	for	web
applications.	Often,	SEO	is	really	not	that	important	where	web	applications	are
concerned.	As	AngularJS	gains	in	popularity,	however,	it	could	very	well	become	a	major
player	in	the	world	of	website	design.	AngularJS	could	potentially	replace	client-side	code
that	is	currently	written	in	Java,	PHP,	Ruby,	and	Python.

That	is	not	to	say	that	those	languages	will	be	completely	replaced	—	they	won’t.	Java,
PHP,	Ruby,	and	Python	will	continue	to	be	as	important	as	ever	in	the	world	of	software
development,	but	in	a	different	way.	Those	languages	and	their	associated	frameworks	will
take	on	the	role	of	providing	the	backend	REST	services	needed	for	AngularJS	and	other
JavaScript	client-side	frameworks.	When	you	consider	that	complete	websites	could	soon
be	written	with	AngularJS,	it’s	clear	that	SEO	should	then	become	a	major	concern	for
AngularJS	developers.	This	chapter	will	help	you	to	better	understand	AngularJS	and
SEO.

It	is	always	best	to	focus	more	on	building	a	great	web	application	or	website,	and	less	on
the	specifics	of	search	engines.	Good	design	and	performance	are	always	by	far	the	most
important	considerations	for	a	new	software	project.	Although	search	engine	optimization
is	important,	focusing	too	much	on	SEO	during	the	design	and	implementation	phase	of	a
project	can	ultimately	cost	you	valuable	development	hours.

Eventually,	however,	you	do	have	to	focus	on	getting	your	application	or	site	found	by	all
the	major	search	engines.	In	this	final	chapter	we	will	look	at	some	of	the	ways	to	get	your
new	AngularJS	software	found.	Many	of	the	practices	presented	here	are	recommended	by
Google.

Old	Versus	New	AngularJS	SEO
In	the	past,	users	of	websites	built	with	AngularJS	had	to	follow	a	rather	archaic	process	in
which	page	snapshots	were	made	for	an	entire	site,	and	the	website	could	then	forward
search	engines	to	the	snapshots	so	that	they	would	see	the	prerendered	version	of	the	site
rather	than	the	actual	JavaScript	version	of	the	site.	Since	conventional	search	engines
didn’t	have	the	ability	to	execute	JavaScript,	pages	built	with	AngularJS	were	rendered	to
older	search	engines	as	a	blank	white	page	with	no	content.

However,	in	a	news	release	on	May	23,	2014,	Google	confirmed	that	it	now	has	the
capability	to	index	JavaScript	websites	and	applications.	That	is,	the	Googlebot	has
undergone	upgrades	to	make	it	possible	to	index	sites	and	applications	that	use	Google’s
AngularJS	and	other	JavaScript	frameworks.	For	Google,	that	time-consuming	and	often
expensive	process	of	SEO	for	AngularJS	is	no	longer	necessary.	Although	the	state	of
other	search	engines	and	their	ability	to	execute	JavaScript	is	unknown	at	this	time,	they
will	undoubtedly	follow	Google’s	lead	very	quickly,	being	forced	to	follow	suit	or	get	left
behind.

There	are	also	several	companies	that	specialize	in	helping	clients	with	the	website
prerendering	process.	Even	though	search	engines	are	changing,	many	of	these	companies
will	doubtless	continue	offering	prerendering	services	for	several	years,	if	you	feel	the
need	for	those	services.

http://bit.ly/1EWcX3P

Getting	Found	by	Search	Engines
With	all	that	said,	there	are	still	some	ways	to	increase	your	chances	of	getting	a	better
ranking	with	Google	and	other	search	engines.	We	will	cover	the	SEO	tasks	that	are
absolutely	necessary:

1.	 Sign	up	for	a	Google	Webmaster	Tools	account,	add	your	site	to	the	account,	and
follow	Google’s	advice.

2.	 Build	a	sitemap.xml	file	for	your	site.

3.	 Add	microformat	tags	to	your	site.

4.	 Make	sure	your	JavaScript	is	clean	and	easy	for	search	engines	to	execute.

5.	 Avoid	calling	REST	services	that	take	longer	than	two	seconds	to	return	results.

Google	Webmaster	Tools
One	of	the	first	things	that	you	should	do	for	SEO	is	to	get	a	Google	Webmaster	Tools
account.	Once	you	add	your	site	and	start	to	follow	Google’s	advice,	you	will	see
immediate	improvements	in	your	ranking	and	the	number	of	pages	of	your	site	that	are
indexed	by	Google.	The	advice	given	by	Google	applies	to	other	search	engines	as	well.
Don’t	expect	to	see	SEO	improvements	drastically	increase	your	ranking,	however;	SEO
is	an	ongoing	and	time-consuming	process	that	can	take	months	or	even	years	to	render
significant	results.

Adding	a	Sitemap
According	to	Google,	a	sitemap	file	is	very	important	to	SEO.	Google’s	Webmaster	Tools
will	help	you	with	the	process	of	building	a	sitemap	and	uploading	it	to	Google.	Using	a
sitemap	speeds	up	the	process	of	getting	your	site	indexed	by	making	search	engines
aware	of	the	pages	and	links	on	your	site.	You	should	keep	the	sitemap	up-to-date,	with
any	new	pages	added.	Make	sure	to	remove	any	pages	from	the	sitemap	that	no	longer
exist	on	the	site.

Microformat	Tags
Another	thing	that	improves	SEO	is	the	use	of	microformat	tags	(tag-based	navigation).
The	use	of	tag-based	navigation	started	on	blog	sites	but	has	spread	considerably	over	the
last	few	years;	it	is	now	used	on	business	websites	as	well.

Tag-based	navigation	uses	the	format	shown	here	to	indicate	to	search	engines	that	the
page	content	contains	the	related	keywords.	As	you	can	see,	the	href	attribute	contains	a
link	to	a	page	on	the	site,	and	the	rel	attribute	tells	search	engines	that	the	page	contains
the	referenced	keywords:

<!--	chapter12/	tag-based	navigation	-->

<p>	Tags:	Ulbora	CMS,	

Java	CMS,	

REST	service,	

JSON	REST,	

<a	href="http://

www.ulboracms.org/#!/article/26"	rel="tag">REST	web	services</p>

Tag-based	navigation	is	supported	by	all	major	search	engines.

Building	Clean	Client	Code
One	of	the	best	ways	to	improve	SEO	is	to	create	a	clean	and	efficient	AngularJS
application.	Unnecessary	JavaScript	should	always	be	avoided.	JavaScript	methods	should
execute	quickly,	with	no	unnecessary	processes	running	in	the	background.

Search	engines	take	page	speed	into	consideration	when	ranking	sites.	Pages	that	contain
long-running	JavaScript	functions	may	get	dropped	by	Google	and	other	search	engines
and	not	get	indexed.	Once	a	page	gets	dropped	by	a	search	engine,	it	can	take	a	long	time
to	get	that	page	indexed	again.

Building	Fast	REST	Services
One	last	thing	that	can	directly	affect	page	speed	and	SEO	is	the	speed	of	the	REST	web
services	used	to	populate	page	content.	Pages	that	rely	on	slow	REST	services	can	suffer
as	a	result.	REST	services	should	return	results	in	two	seconds	or	less.

Services	that	return	results	in	under	a	second	are	best	for	SEO	and	site	performance.
Although	REST	service	design	is	beyond	the	scope	of	this	particular	book,	I	want	to
emphasize	how	important	web	service	design	is	to	SEO	when	web	pages	rely	on	those
services	for	content.	When	your	site	depends	on	REST	services,	always	make	sure	those
services	perform	well	and	add	no	unnecessary	delay	to	your	site	or	application.	Always
insist	on	peak-performing	services.

Conclusion
That	brings	us	to	the	end	of	this	chapter	and	the	end	of	the	book.	I’ve	done	my	best	to
present	AngularJS	in	a	way	that	will	make	it	easy	to	understand	for	both	beginners	and
experienced	developers	alike.	The	concept	of	using	JavaScript	client-side	frameworks	to
build	complete	frontend	applications	and	websites	is	relatively	new,	and	often	referred	to
as	“cutting	edge”	by	many.	The	recent	Google	announcement	related	to	JavaScript	and
SEO	mentioned	earlier	attests	to	that.

But	things	that	are	considered	cutting	edge	today	will	be	commonplace	in	a	few	years.	I
believe	AngularJS	will	be	at	the	forefront	of	application	development	in	coming	years,
and	is	well	worth	the	time	spent	learning	the	framework.	This	book	is	only	a	starting
point,	however.	Now	you	must	go	out	and	develop	great	applications	with	AngularJS,	and
have	fun	building	those	applications	too!	Remember,	the	best	AngularJS	application	is	a
well-designed	AngularJS	application.	Always	build	the	best	applications	that	you	possibly
can.	It’s	worth	the	effort	in	the	end.

References

AngularJS

Bootstrap

jQuery

Wikipedia	entry	for	MVC

Wikipedia	entry	for	REST

Wikipedia	entry	for	Web	service

Ulbora	CMS

Ulbora	CMS	at	SourceForge

Wikipedia	entry	for	SPA

Wikipedia	entry	for	RWD

https://angularjs.org/
http://getbootstrap.com/
http://jquery.com/
http://bit.ly/mvc-wiki
http://bit.ly/restful_web_services
http://bit.ly/wiki-web-service
http://www.ulboracms.org
http://bit.ly/dl-ulbora
http://bit.ly/dwc-spa
http://bit.ly/wiki-rwd

Index

Symbols

$location	service,	Adding	a	Login	Controller

$rootScope	object,	AngularJS	Models

$scope	object,	AngularJS	Models	(MVC)

adding	behavior	to,	Initializing	the	Model	with	Controllers

attaching	methods	to,	Adding	a	Login	Controller

models	in,	AngularJS	Models

<select>	element	(HTML),	MEAN	Blog	Templates

{{}}	(double	curly	braces),	Controller	Business	Logic

A

Active	Server	Pages	(ASP),	MVC	and	AngularJS

Ajax

REST	services	and,	AngularJS	and	REST	Services

sites,	HTML5	Mode

AngularJS

as	client-side	framework,	JavaScript	Client-Side	Frameworks

as	MVC	framework,	A	New	and	Better	Way

bootstrapping	with,	Bootstrapping	the	Application

business	logic	in,	Controller	Business	Logic

controllers,	AngularJS	Controllers	(MVC)

dependency	injection,	Dependency	Injection

directives,	AngularJS	Directives-Conclusion

downloading	files	for,	The	IDE

HTML	compiler,	The	HTML	Compiler

HTML5	and,	HTML5	Mode

integrating	with	other	frameworks,	Integrating	AngularJS	with	Other
Frameworks

model	classes,	AngularJS	Models	(MVC)

routes,	AngularJS	Routes

search	engines	and,	Modern	Search	Engines

SEO	for,	AngularJS	and	SEO-Conclusion

services,	non-REST,	Creating	AngularJS	Services

single-page	applications	in,	Single-Page	Applications

templates,	AngularJS	Templates

testing,	Testing	AngularJS	Applications

view	classes	in,	AngularJS	Views	(MVC)

Apache	Cordova,	Mobile	Version

applications

adding	service	modules	to,	Modifying	App.js

running	in	IDEs,	Running	the	Applications,	Running	the	Blog	Application

running	with	models,	Running	the	Application

testing	in	IDEs,	Testing	AngularJS	Applications	in	the	IDE-Protractor

transportable,	MEAN	Services

using	REST	services	in,	Blog	Application	Public	Services

ASP.NET	framework,	JavaScript	Client-Side	Frameworks

authentication,	Handling	User	Authentication-Retrieving	User	Credentials

B

Basic	Authentication,	Using	Basic	Authentication,	MEAN	Blog	Controllers

bootstrapping,	Bootstrapping	the	Application

HTML	code	and,	Editing	the	HTML	Code

business	logic,	Services	and	Business	Logic-Conclusion

adding	to	projects,	Blog	Application	Business	Logic-Testing	Services	with	Karma

controller,	Controller	Business	Logic

in	controllers,	Controller	Business	Logic

REST	services	and,	REST	Services

user	authentication,	Handling	User	Authentication-Retrieving	User	Credentials

using,	Using	the	Business	Logic

C

CakePHP	framework,	The	Old	Way

integrating	with	AngularJS,	Integrating	AngularJS	with	Other	Frameworks

callback	functions,	REST	Services	and	Controllers

cascading	style	sheets,	Adding	Styles	and	Presentation	Logic

Chrome	Developer	Tools,	Running	the	Application

client	code,	Building	Clean	Client	Code

client-side	frameworks,	JavaScript	Client-Side	Frameworks

integrating	AngularJS	with,	Integrating	AngularJS	with	Other	Frameworks

model	classes,	AngularJS	Models	(MVC)

view	classes	in,	AngularJS	Views	(MVC)

client-side	security,	AngularJS	Security

cloud	deployment,	MEAN	Deployment	to	the	Cloud

making	apps	transportable,	MEAN	Services

continuous	integration	(CI),	Testing	AngularJS	Applications

end-to-end	testing	and,	End-to-End	Testing

controller	as,	Form	Submission

controllers,	AngularJS	Controllers	(MVC),	AngularJS	Controllers-Conclusion

behavior,	adding	with,	Adding	Behavior	with	Controllers-Adding	Behavior	with
Controllers

business	logic	in,	Controller	Business	Logic,	Controller	Business	Logic

editing	JavaScript	code	for,	Editing	the	JavaScript	Code

end-to-end	testing	of,	End-to-End	Testing	with	Protractor-Running	Protractor

form	data,	using,	Using	Submitted	Form	Data

form	submissions	and,	Form	Submission-Form	Submission

initializing	models	with,	Initializing	the	Model	with	Controllers

JS	Test	Driver	and,	JS	Test	Driver-Testing	with	JS	Test	Driver

Karma,	testing	with,	Testing	with	Karma-Running	Karma	Unit	Tests

login,	adding,	Adding	a	Login	Service

logout,	Adding	a	Logout	Controller-Adding	a	Logout	Controller

MEAN,	MEAN	Blog	Controllers-MEAN	Blog	Controllers

models	and,	Changes	to	the	Controllers,	Modifying	the	Controllers-Modifying	the
Controllers

multiple,	for	single	elements,	Form	Submission

presentation	logic	and,	Presentation	Logic	and	Formatting	Data

projects,	adding	to,	Adding	a	New	Blog	Controller

Protractor,	testing	with,	End-to-End	Testing	with	Protractor-Running	Protractor

REST	services	and,	REST	Services	and	Controllers

security	modifications	for,	Security	Modifications	to	Other	Controllers

templates	and,	AngularJS	Templates

cookies,	Using	Basic	Authentication

checking,	Checking	User	Credentials

deleting,	Deleting	User	Credentials

holding	user	credentials	in,	Holding	User	Credentials

retrieving	information	from,	Retrieving	User	Credentials

Cross-Origin	Resource	Sharing	(CORS)	layer,	AngularJS	Security

CSS3

media	queries	in,	Adding	a	Login	Template

styling	pages	with,	Using	CSS3	to	Style	the	Page

D

data

formatting	with	controllers,	Presentation	Logic	and	Formatting	Data,	Adding
Mock	Blog	Data

mock,	adding	to	projects,	Adding	Mock	Blog	Data

storage,	REST	services	and,	REST	Services

dates,	formatting,	Adding	Mock	Blog	Data,	Adding	Styles	and	Presentation	Logic

dependency	injection	(DI),	Dependency	Injection

npm	install	command	and,	Adding	Node.js	Dependencies

OpenShift	and,	MEAN	Deployment	to	the	Cloud

services	module	and,	Updating	the	Project	for	REST

deployment,	MEAN	Cloud	and	Mobile-Conclusion

cloud,	MEAN	Deployment	to	the	Cloud

local,	Local	Deployment-Protractor	Testing

directives,	AngularJS	Directives-Conclusion

adding	to	projects,	Adding	the	Custom	Directive-Passing	the	Title	Attribute

building	presentation	logic	with,	Adding	Styles	and	Presentation	Logic

custom,	building,	Building	Custom	Directives

defined,	What	Are	Directives?

end-to-end	testing	of,	End-to-End	Testing

Karma	and,	Testing	Directives	with	Karma-Karma	Testing

naming	conventions	for,	Naming	Conventions	for	Directives

ng-click,	Adding	Behavior	with	Controllers,	Adding	Behavior	with	Controllers

ng-include,	Building	Custom	Directives

ng-model,	Adding	Behavior	with	Controllers,	Adding	Behavior	with	Controllers,
AngularJS	Templates

ng-repeat,	Adding	Styles	and	Presentation	Logic,	List	Services

ng-submit,	Form	Submission,	Adding	a	Login	Template,	Adding	Blog	Entries

ng-view,	AngularJS	Templates

passing	title	attribute,	Passing	the	Title	Attribute

Protractor	and,	End-to-End	Testing

restrict	option,	The	Restrict	Option

template	attributes	for,	Template	Attributes

templateUrl	attribute,	The	Template	URL

unit	testing	for,	Testing	Directives	with	Karma-Karma	Testing

views	and,	Adding	Styles	and	Presentation	Logic

E

end-to-end	testing	(E2E),	Testing	AngularJS	Applications,	Protractor

business	logic,	End-to-End	Testing

MEAN	stack	deployment,	End-to-End	Testing-Protractor	Testing

models,	End-to-End	Testing

non-REST	services,	End-to-End	Testing

of	directives,	End-to-End	Testing

of	security,	End-to-End	Testing

REST	services,	End-to-End	Testing

ExpressJS,	The	MEAN	Application

building	REST	services	with,	A	New	and	Better	Way

F

factory	function,	Ways	to	Create	AngularJS	Services,	Creating	AngularJS	Services

failed	REST	service	calls,	The	JSON	Response

Firefox,	Running	Karma	Unit	Tests

forms,	Form	Submission-Using	Submitted	Form	Data

data,	using,	Using	Submitted	Form	Data

submissions	from,	Form	Submission-Form	Submission

frameworks

ASP.NET,	JavaScript	Client-Side	Frameworks

CakePHP,	Integrating	AngularJS	with	Other	Frameworks,	The	Old	Way

client-side,	JavaScript	Client-Side	Frameworks,	AngularJS	Views	(MVC),
AngularJS	Models	(MVC)

Jasmine,	Creating	Test	Scripts

MVC,	AngularJS	Views	(MVC),	MVC	and	AngularJS-Conclusion

server-side	web	MVC,	JavaScript	Client-Side	Frameworks

Spring	MVC,	JavaScript	Client-Side	Frameworks,	Dependency	Injection,
Integrating	AngularJS	with	Other	Frameworks,	The	Old	Way,	A	New	and	Better
Way

Struts,	JavaScript	Client-Side	Frameworks,	The	Old	Way

web,	The	Old	Way-Choice	Two

web	MVC,	JavaScript	Client-Side	Frameworks

Zend,	The	Old	Way

G

Git,	Conclusion,	MEAN	Deployment	to	the	Cloud

Google,	Old	Versus	New	AngularJS	SEO

Google	Chrome,	Running	Karma	Unit	Tests

Google	Webmaster	Tools,	Google	Webmaster	Tools

H

hashbang	mode,	HTML5	Mode,	HTML5	Mode

HTML	compiler,	The	HTML	Compiler

HTML5,	HTML5	Mode

editing,	Editing	the	HTML	Code

History	API,	HTML5	Mode

mobile	applications	for,	Mobile	Version

mode,	turning	off,	HTML5	Mode

modifying	to	use	models,	Modifying	the	HTML

HTTP	methods,	REST	Services

HTTPS,	Authentication

I

IDE,	The	IDE	and	AngularJS	Projects-Conclusion

HTML,	editing,	Editing	the	HTML	Code

JavaScript,	editing,	Editing	the	JavaScript	Code

NetBeans,	The	IDE

running	applications	in,	Running	the	Applications

templates,	creating,	Creating	the	Templates

testing	applications	in,	Testing	AngularJS	Applications	in	the	IDE-Testing
AngularJS	Applications	in	the	IDE

input	elements	(from	forms),	Using	Submitted	Form	Data

J

Jasmine	framework,	Creating	Test	Scripts

Java,	AngularJS	and	SEO

Java	Server	Pages	(JSP),	MVC	and	AngularJS

JavaScript

console,	accessing,	AngularJS	Controllers

editing,	Editing	the	JavaScript	Code

Jenkins	CI	system,	Protractor

testing	and,	Testing	Considerations

JQuery,	Introduction	to	AngularJS

downloading,	The	IDE

JS	Test	Driver,	Testing	AngularJS	Applications,	JS	Test	Driver-Testing	with	JS	Test
Driver

test	scripts,	creating,	Creating	Test	Scripts

testing	with,	Testing	with	JS	Test	Driver

JSON,	REST	response	objects	as,	The	JSON	Response

JsTestRunner,	JsTestRunner

K

Karma,	Testing	AngularJS	Applications,	Karma	Test	Runner

business	logic	and,	Karma	Configuration-Karma	Testing

configuring,	Karma	Configuration,	Karma	Configuration

configuring	for	MEAN	stack	deployment,	Karma	Configuration

directives	and,	Testing	Directives	with	Karma-Karma	Testing

installing,	Installing	Karma

MEAN	stack	deployment,	testing,	Testing	with	Karma-Karma	Testing

models,	testing,	Testing	Services	with	Karma-Karma	Testing

non-REST	services	and,	Karma	Configuration-Karma	Testing

REST	services,	testing	with,	Testing	Services	with	Karma-Karma	Service
Specifications

security,	testing	with,	Testing	with	Karma-Karma	Testing

service	specifications	for,	Karma	Service	Specifications

testing	considerations	for,	Testing	Considerations

unit	tests,	running,	Running	Karma	Unit	Tests

karma-ng-html2js-preprocessor	Karma	plugin,	Testing	Directives	with	Karma

L

list	services,	List	Services

lists,	returning,	List	Services

locationProvider	service,	HTML5	Mode

login	services,	Adding	a	Login	Service

controllers	and,	Adding	a	Login	Service

login	controllers	and,	Adding	a	Login	Controller

non-REST,	Adding	a	Login	Service

security,	Adding	a	Login	Controller,	Adding	a	Login	Template

templates,	Adding	a	Login	Template

user	authentication,	Adding	a	Login	Service,	Adding	a	Login	Template

M

MEAN	(MongoDB,	ExpressJS,	AngularJS,	and	Node.js)	stack	deployment,	MEAN
Cloud	and	Mobile-Conclusion

changing	service	URL	for,	MEAN	Services

cloud	deployment,	MEAN	Deployment	to	the	Cloud

controllers,	MEAN	Blog	Controllers-MEAN	Blog	Controllers

end-to-end	testing	of,	End-to-End	Testing-Protractor	Testing

Karma	and,	Testing	with	Karma-Karma	Testing

mobile	apps,	Mobile	Version

Node.js	dependencies,	adding,	Adding	Node.js	Dependencies

Protractor	and,	End-to-End	Testing-Protractor	Testing

running	locally,	Running	the	Blog	Application	Locally

services,	MEAN	Services

templates,	MEAN	Blog	Templates

unit	testing,	Testing	with	Karma-Karma	Testing

microformat	tags,	Microformat	Tags

mobile	apps

as	wrapper	for	server-side	application,	Choice	One

converting	web	applications	to,	Choice	Two

devices,	designing	for,	Responsive	Design	Considerations-Responsive	Design
Considerations

MEAN	stack	deployments	for,	Mobile	Version

responsive	design	and,	Responsive	Design	Considerations-Responsive	Design
Considerations

web	MVC	frameworks	and,	The	Old	Way

models,	AngularJS	Models	(MVC),	AngularJS	Models-Conclusion

adding	to	app,	Modifying	App.js

controllers	and,	AngularJS	Controllers	(MVC),	Changes	to	the	Controllers,
Modifying	the	Controllers-Modifying	the	Controllers

end-to-end	testing,	End-to-End	Testing

initializing	with	controllers,	Initializing	the	Model	with	Controllers

Karma,	testing	with,	Testing	Services	with	Karma-Karma	Testing

properties	of,	Model	Properties

Protractor,	testing	with,	End-to-End	Testing

REST	services	as	source	of,	Public	REST	Services

scope	properties	and,	Model	Properties

unit	testing,	Testing	Services	with	Karma-Karma	Testing

MongoDB,	Installing	Node.js,	npm,	and	MongoDB

interacting	with,	The	MEAN	Application

Mongoose.js	ODM	library,	The	MEAN	Application

MVC	frameworks,	MVC	and	AngularJS-Conclusion

AngularJS	as,	A	New	and	Better	Way

controllers,	AngularJS	Controllers	(MVC)

model	classes,	AngularJS	Models	(MVC)

responsive	design	and,	Responsive	Design	Considerations-Responsive	Design
Considerations

testing	considerations	for,	Testing	Considerations

view	classes,	AngularJS	Views	(MVC)

web,	The	Old	Way-Choice	Two

N

NetBeans

configuring,	The	IDE

installing,	The	IDE

JS	Test	Driver,	JS	Test	Driver-Testing	with	JS	Test	Driver

JsTestRunner	support	in,	JsTestRunner

Karma	and,	Karma	Configuration

Node.js	plugin,	installing,	Installing	the	NetBeans	Node.js	Plugin

Protractor	and,	Testing	AngularJS	Applications	in	the	IDE

ng-app	tag,	Bootstrapping	the	Application

ng-click	directive,	Adding	Behavior	with	Controllers,	Adding	Behavior	with
Controllers

ng-include	directive,	Building	Custom	Directives

ng-model	directive,	Adding	Behavior	with	Controllers,	Adding	Behavior	with
Controllers,	AngularJS	Templates

ng-repeat	directive,	List	Services

ng-submit	directive,	Form	Submission,	Adding	Blog	Entries

user	authentication	and,	Adding	a	Login	Template

ng-view	directive,	AngularJS	Templates

dynamic	content	and,	Creating	the	Blog	Project

single-page	applications	in,	Single-Page	Applications,	AngularJS	Templates

ngRoute	module,	Dependency	Injection

Node.js,	Installing	Node.js,	npm,	and	MongoDB

dependencies,	adding,	Adding	Node.js	Dependencies

Karma	and,	Testing	AngularJS	Applications	in	the	IDE

Protractor	and,	Testing	AngularJS	Applications	in	the	IDE

NoSQL,	The	MEAN	Application

injection	attack,	AngularJS	Security

npm	(Node.js	package	manager),	Installing	Node.js,	npm,	and	MongoDB

npm	install	command,	Adding	Node.js	Dependencies

O

OpenShift,	MEAN	Deployment	to	the	Cloud

P

package.json	file,	Testing	AngularJS	Applications	in	the	IDE

performance	and	SEO,	Building	Clean	Client	Code

PHP,	MVC	and	AngularJS,	AngularJS	and	SEO

presentation	logic

adding	to	projects,	Adding	Styles	and	Presentation	Logic

controllers	and,	Presentation	Logic	and	Formatting	Data,	Adding	Mock	Blog	Data

directives	and,	Adding	Styles	and	Presentation	Logic

projects,	AngularJS	Views	and	Bootstrap-Conclusion

application,	running,	Running	the	Blog	Application

controllers,	adding,	Adding	a	New	Blog	Controller

creating,	Creating	the	Blog	Project

directives,	adding,	Adding	the	Custom	Directive-Passing	the	Title	Attribute

end-to-end	testing,	End-to-End	Testing

functionality,	adding,	Viewing	the	Blog	Post-Viewing	the	Blog	Post

Karma,	testing	with,	Testing	with	Karma-Protractor	Testing

menus,	adding,	Adding	a	Bootstrap	Menu

mock	data,	adding,	Adding	Mock	Blog	Data

non-REST	services,	adding,	Blog	Application	Business	Logic-Testing	Services	with
Karma

presentation	logic,	adding,	Adding	Styles	and	Presentation	Logic

Protractor,	testing	with,	End-to-End	Testing

REST	services,	updating	for,	Updating	the	Project	for	REST

service	modules,	adding,	Modifying	App.js

styles,	adding	to,	Adding	Styles	and	Presentation	Logic

styling	pages	in,	Using	CSS3	to	Style	the	Page

templates,	adding,	Adding	a	New	Blog	Template

testing,	Testing	with	Karma-Karma	Testing

Twitter	Bootstrap,	adding,	Twitter	Bootstrap

unit	testing,	Testing	with	Karma-Karma	Testing

Protractor,	Testing	AngularJS	Applications,	Protractor

business	logic	and,	End-to-End	Testing

configuring,	Configuring	Protractor

directives	and,	End-to-End	Testing

installing,	Installing	Protractor

MEAN	stack	deployment	and,	Testing	with	Karma-Karma	Testing

models,	testing	with,	End-to-End	Testing

non-REST	services	and,	End-to-End	Testing

REST	services,	testing	with,	End-to-End	Testing

running,	Running	Protractor

security	and,	End-to-End	Testing

Selenium	Server	and,	Starting	the	Selenium	Server

test	server,	starting,	Protractor	Testing

test	specifications,	creating,	Creating	Protractor	Test	Specifications,	Protractor
Test	Specification

testing	considerations	for,	Testing	Considerations

testing	with,	Protractor	Testing

provider	function,	Ways	to	Create	AngularJS	Services,	Creating	AngularJS	Services

public	SSH	keys,	MEAN	Deployment	to	the	Cloud

Python,	AngularJS	and	SEO

R

responsive	design,	Responsive	Design	Considerations-Responsive	Design
Considerations

HTML5	mobile	applications	and,	Mobile	Version

REST	services,	AngularJS	and	REST	Services-Conclusion

AngularJS	and,	AngularJS	and	REST	Services

as	objects,	Ways	to	Communicate	with	REST	Services

authenticating	across	multiple,	Services	and	Business	Logic

Chrome	Developer	Tools	and,	Running	the	Application

communicating	with,	Ways	to	Communicate	with	REST	Services

controllers	and,	REST	Services	and	Controllers

creating	AngularJS	services,	Ways	to	Create	AngularJS	Services

end-to-end	testing	of,	End-to-End	Testing

failed	calls,	The	JSON	Response

JavaScript	debuggers	and,	AngularJS	Controllers

Karma,	testing	with,	Testing	Services	with	Karma-Karma	Service	Specifications,
Karma	Service	Specifications

lists,	displaying	with,	List	Services

lists,	returning,	List	Services

Protractor,	testing	with,	End-to-End	Testing

response	objects	from,	The	JSON	Response

response	times	for,	Controller	Business	Logic,	Building	Fast	REST	Services

SEO	and,	Building	Fast	REST	Services

testing	specifications	for,	Karma	Service	Specifications

troubleshooting,	Running	the	Application

unit	tests	and,	Modifying	the	Controllers

restrict	option	(directives),	The	Restrict	Option

routes,	AngularJS	Routes

adding,	for	security,	Adding	New	Routes

templates	and,	AngularJS	Templates

Ruby,	AngularJS	and	SEO

Ruby	on	Rails,	The	Old	Way

S

scope	properties,	Model	Properties

displaying,	Controller	Business	Logic

error	handling	with,	Adding	a	Login	Controller

passing	values	to,	Template	Attributes

search	engine	optimization	(SEO),	AngularJS	and	SEO-Conclusion

client	code	and,	Building	Clean	Client	Code

Google	Webmaster	Tools,	Google	Webmaster	Tools

microformat	tags,	Microformat	Tags

performance	and,	Building	Clean	Client	Code

REST	services	and,	Building	Fast	REST	Services

sitemaps,	Adding	a	Sitemap

tag-based	navigation,	Microformat	Tags

search	engines,	Modern	Search	Engines

security,	AngularJS	Security-Conclusion

end-to-end	testing	for,	End-to-End	Testing

Karma,	testing	with,	Testing	with	Karma-Karma	Testing

login	controllers,	Adding	a	Login	Controller

login	template,	Adding	a	Login	Template

logout	controllers	and,	Adding	a	Logout	Controller-Adding	a	Logout	Controller

logout	link	and,	Adding	a	Logout	Link

modifications	of	controllers,	Security	Modifications	to	Other	Controllers

non-REST	services	and,	Services	and	Business	Logic

Protractor	and,	End-to-End	Testing

routes,	adding,	Adding	New	Routes

unit	testing,	Testing	with	Karma-Karma	Testing

user	authentication	and,	Authentication

Selenium	Server,	Starting	the	Selenium	Server

running,	Protractor

SEO	companies,	Old	Versus	New	AngularJS	SEO

server-side	web	MVC	frameworks,	JavaScript	Client-Side	Frameworks

service	function,	Ways	to	Create	AngularJS	Services,	Creating	AngularJS	Services

services	module,	Updating	the	Project	for	REST

modifying	to	make	apps	transportable,	MEAN	Services

services,	non-REST,	Services	and	Business	Logic-Conclusion

checking	data	with,	Checking	User	Credentials

cookies,	reading	with,	Retrieving	User	Credentials

creating,	Creating	AngularJS	Services

deleting	data	with,	Deleting	User	Credentials

holding	data	with,	Holding	User	Credentials

login,	Adding	a	Login	Service

MEAN,	MEAN	Services

user	authentication,	Handling	User	Authentication-Retrieving	User	Credentials

single-page	applications,	Single-Page	Applications

sitemaps,	Adding	a	Sitemap

Spring	MVC	framework,	JavaScript	Client-Side	Frameworks,	Dependency
Injection,	The	Old	Way

building	REST	services	with,	A	New	and	Better	Way

integrating	with	AngularJS,	Integrating	AngularJS	with	Other	Frameworks

SSL,	AngularJS	Security

Struts	framework,	JavaScript	Client-Side	Frameworks,	The	Old	Way

styles

adding	to	projects,	Adding	Styles	and	Presentation	Logic

Bootstrap	and,	Adding	Styles	and	Presentation	Logic

success	callback	function,	REST	Services	and	Controllers,	Modifying	the	Controllers

T

tag-based	navigation,	Microformat	Tags

templates,	AngularJS	Templates

creating,	Creating	the	Templates

login,	Adding	a	Login	Template

MEAN,	MEAN	Blog	Templates

projects,	adding	to,	Adding	a	New	Blog	Template

views	as,	AngularJS	Templates

templateUrl	attribute	(directives),	The	Template	URL

test	scripts,	creating,	Creating	Test	Scripts

test	specifications,	Testing	Considerations

testing,	Testing	AngularJS	Applications

cloud	deployments,	Testing	the	Cloud	Blog

considerations	for	MVC,	Testing	Considerations

end-to-end,	Protractor

in	IDE,	Testing	AngularJS	Applications	in	the	IDE-Protractor

Karma,	Karma	Test	Runner

library	files,	location	of,	JsTestRunner

Protractor,	Protractor

unit,	Karma	Test	Runner

with	JS	Test	Driver,	Testing	with	JS	Test	Driver

with	JsTestRunner,	JsTestRunner

Torvalds,	Linus,	Conclusion

Travis	CI	system,	Protractor

testing	and,	Testing	Considerations

Twitter	Bootstrap,	Introduction	to	AngularJS,	AngularJS	Views	and	Bootstrap,
Twitter	Bootstrap

downloading,	The	IDE

menus,	adding,	Adding	a	Bootstrap	Menu

U

unit	testing,	Testing	AngularJS	Applications,	Karma	Test	Runner

asynchronous	calls,	Modifying	the	Controllers

business	logic,	Karma	Configuration-Karma	Testing

directives,	Testing	Directives	with	Karma-Karma	Testing

MEAN	stack	deployment,	Testing	with	Karma-Karma	Testing

models,	Testing	Services	with	Karma-Karma	Testing

non-REST	services,	Karma	Configuration-Karma	Testing

REST	services,	Modifying	the	Controllers

security,	testing,	Testing	with	Karma-Karma	Testing

with	JS	Test	Driver,	JS	Test	Driver-Testing	with	JS	Test	Driver

user	authentication,	Handling	User	Authentication-Retrieving	User	Credentials

basic,	Using	Basic	Authentication

login	controllers,	Adding	a	Login	Controller

login	services,	Adding	a	Login	Service

login	template,	Adding	a	Login	Template

logout	controllers	and,	Adding	a	Logout	Controller-Adding	a	Logout	Controller

logout	link,	Adding	a	Logout	Link

security	and,	AngularJS	Security

testing	with	Karma,	Karma	Test	Specifications-Karma	Testing

unit	testing,	Karma	Test	Specifications-Karma	Testing

user	credentials

checking,	Checking	User	Credentials

deleting,	Deleting	User	Credentials

holding,	Holding	User	Credentials

retrieving,	Retrieving	User	Credentials

V

V8	JavaScript	engine	(Google),	The	MEAN	Application

views

as	templates,	AngularJS	Templates

controllers	and,	AngularJS	Controllers	(MVC)

directives	and,	Adding	Styles	and	Presentation	Logic

testing	with	Karma,	Testing	with	Karma-Karma	Testing

W

web	applications

converting	to	mobile,	Choice	Two

wrappers	for,	Choice	One

web	browsers,	security	and,	AngularJS	Security

web	frameworks,	The	Old	Way-Choice	Two

web	MVC	frameworks,	JavaScript	Client-Side	Frameworks

webdriver-manager	tool,	Starting	the	Selenium	Server

WebDriverJS,	Protractor

WebView	component	(Android),	Choice	One

Z

Zend	Framework,	The	Old	Way

About	the	Author

Ken	Williamson	is	a	software	engineer	and	architect	with	over	twenty	years	of	experience
in	the	technology	industry.	Ken’s	first	programming	language	was	Assembly	using	the
6502	chip.	He	moved	on	to	C	and	C++	and	eventually	to	Java	and	JavaScript.	Ken	has
designed	and	written	mobile,	desktop,	and	server	software	for	some	of	the	biggest
companies	in	the	world.

Ken	holds	a	BS	in	Computer	Science	from	Kennesaw	State	University.	He	is	the	founder
of	several	open	source	projects	including	Ulbora	CMS;	he	has	also	contributed	to	many
other	open	source	projects	over	the	years.	Ken	makes	his	home	in	Atlanta,	Georgia	with
his	wife,	Sherry.	You	can	find	Ken	at	www.ken-williamson.com.

http://www.ken-williamson.com

Colophon

The	animals	on	the	cover	of	Learning	AngularJS	are	Florida	cricket	frogs	(Acris	gryllus
dorsalis),	which	are	subspecies	of	the	Southern	cricket	frog.	They	can	be	found	all
throughout	Florida,	with	the	exception	of	the	extreme	northwestern	panhandle.

Cricket	frogs	prefer	a	freshwater	environment,	such	as	puddles,	lakes,	marshes,	and
streams.	They	are	easily	recognized	by	the	triangular	mark	on	their	heads	and	the	two	dark
stripes	on	their	rear.

Breeding	occurs	from	April	into	the	fall,	with	small	clusters	of	eggs	attached	to	submerged
plants.	Males	advertise	their	readiness	with	a	loud,	rapid	call	of	gick,	gick,	gick,	which	has
been	described	by	some	as	the	sound	of	marbles	clicking	together.

Adult	Florida	cricket	frogs	grow	to	be	about	1.25	inches	long,	and	vary	in	color	from	dark
brown	to	tan	or	green.	They	enjoy	healthy	population	growth	and	are	not	considered
threatened	in	any	way.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Lydekker’s	Royal	Natural	History.	The	cover	fonts	are	URW
Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is
Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
Why	I	Wrote	This	Book

What	This	Book	Covers

Who	Should	Read	This	Book

The	Chapters	in	This	Book

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

1.	Introduction	to	AngularJS
JavaScript	Client-Side	Frameworks

Single-Page	Applications

Bootstrapping	the	Application

Dependency	Injection

AngularJS	Routes

HTML5	Mode

Modern	Search	Engines

AngularJS	Templates

AngularJS	Views	(MVC)

AngularJS	Models	(MVC)

AngularJS	Controllers	(MVC)

Controller	Business	Logic

Integrating	AngularJS	with	Other	Frameworks

Testing	AngularJS	Applications

Conclusion

2.	The	IDE	and	AngularJS	Projects
The	IDE

Editing	the	HTML	Code

Editing	the	JavaScript	Code

Creating	the	Templates

Running	the	Applications

Testing	AngularJS	Applications	in	the	IDE

JsTestRunner

Karma	Test	Runner

Protractor

Conclusion

3.	MVC	and	AngularJS
The	Old	Way

Choice	One

Choice	Two

A	New	and	Better	Way

Testing	Considerations

Responsive	Design	Considerations

Conclusion

4.	AngularJS	Controllers
Initializing	the	Model	with	Controllers

Adding	Behavior	with	Controllers

Controller	Business	Logic

Presentation	Logic	and	Formatting	Data

Form	Submission

Using	Submitted	Form	Data

JS	Test	Driver
Creating	Test	Scripts

Testing	with	JS	Test	Driver

Testing	with	Karma
Installing	Karma

Karma	Configuration

Running	Karma	Unit	Tests

End-to-End	Testing	with	Protractor
Installing	Protractor

Configuring	Protractor

Creating	Protractor	Test	Specifications

Starting	the	Selenium	Server

Running	Protractor

Conclusion

5.	AngularJS	Views	and	Bootstrap
AngularJS	Templates

Creating	the	Blog	Project

Adding	a	New	Blog	Controller

Adding	a	New	Blog	Template

Twitter	Bootstrap

Adding	a	Bootstrap	Menu

Adding	Mock	Blog	Data

Using	CSS3	to	Style	the	Page

Adding	Styles	and	Presentation	Logic

Viewing	the	Blog	Post

Running	the	Blog	Application

Testing	with	Karma
Karma	Configuration

Karma	Test	Specifications

Karma	Testing

End-to-End	Testing
Protractor	Test	Specification

Protractor	Testing

Conclusion

6.	AngularJS	and	REST	Services
REST	Services

AngularJS	and	REST	Services

Ways	to	Create	AngularJS	Services

Ways	to	Communicate	with	REST	Services

Updating	the	Project	for	REST

REST	Services	and	Controllers

The	JSON	Response

List	Services

Testing	Services	with	Karma
Karma	Service	Specifications

End-to-End	Testing
Protractor	Configuration

Protractor	Test	Specification

Conclusion

7.	AngularJS	Models
Public	REST	Services

Changes	to	the	Controllers

Model	Properties

Blog	Application	Public	Services

Modifying	the	HTML

Modifying	App.js

Modifying	the	Controllers

Running	the	Application

Testing	Services	with	Karma
Karma	Service	Specifications

Karma	Testing

End-to-End	Testing
Protractor	Test	Specification

Protractor	Testing

Conclusion

8.	Services	and	Business	Logic
Handling	User	Authentication

Using	Basic	Authentication

Creating	AngularJS	Services

Holding	User	Credentials

Checking	User	Credentials

Deleting	User	Credentials

Retrieving	User	Credentials

Blog	Application	Business	Logic

Using	the	Business	Logic

Testing	Services	with	Karma
Karma	Configuration

Karma	Test	Specifications

Karma	Testing

End-to-End	Testing

Protractor	Configuration

Protractor	Test	Specification

Protractor	Testing

Conclusion

9.	AngularJS	Directives
The	HTML	Compiler

What	Are	Directives?

Building	Custom	Directives

Naming	Conventions	for	Directives

The	Restrict	Option

The	Template	URL

Template	Attributes

Adding	the	Custom	Directive

Passing	the	Title	Attribute

Running	the	Blog	Application

Testing	Directives	with	Karma
Karma	Configuration

Karma	Test	Specification

Karma	Testing

End-to-End	Testing
Protractor	Configuration

Protractor	Test	Specification

Protractor	Testing

Conclusion

10.	AngularJS	Security

Authentication

Adding	a	Login	Service

Adding	a	Login	Controller

Security	Modifications	to	Other	Controllers

Adding	a	Logout	Controller

Adding	a	Login	Template

Adding	New	Routes

Adding	a	Logout	Link

Running	the	Blog	Application
Logging	In

Testing	with	Karma
Karma	Configuration

Karma	Test	Specifications

Karma	Testing

End-to-End	Testing
Protractor	Configuration

Protractor	Test	Specification

Protractor	Testing

One	Last	Point	on	Security

Conclusion

11.	MEAN	Cloud	and	Mobile
Local	Deployment

Installing	Node.js,	npm,	and	MongoDB

Installing	the	NetBeans	Node.js	Plugin

The	MEAN	Application

Node.js	Public	Folder

MEAN	Services

MEAN	Blog	Controllers

MEAN	Blog	Templates

Adding	Comments

Adding	Blog	Entries

Adding	New	Routes

Adding	Node.js	Dependencies

Running	the	Blog	Application	Locally

Testing	with	Karma
Karma	Configuration

Karma	Test	Specifications

Karma	Testing

End-to-End	Testing
Protractor	Configuration

Protractor	Test	Specification

Protractor	Testing

MEAN	Deployment	to	the	Cloud

Testing	the	Cloud	Blog

Mobile	Version

Conclusion

12.	AngularJS	and	SEO
Old	Versus	New	AngularJS	SEO

Getting	Found	by	Search	Engines

Google	Webmaster	Tools

Adding	a	Sitemap

Microformat	Tags

Building	Clean	Client	Code

Building	Fast	REST	Services

Conclusion

References

Index

	Preface
	Why I Wrote This Book
	What This Book Covers
	Who Should Read This Book
	The Chapters in This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	1. Introduction to AngularJS
	JavaScript Client-Side Frameworks
	Single-Page Applications
	Bootstrapping the Application
	Dependency Injection
	AngularJS Routes
	HTML5 Mode
	Modern Search Engines
	AngularJS Templates
	AngularJS Views (MVC)
	AngularJS Models (MVC)
	AngularJS Controllers (MVC)
	Controller Business Logic
	Integrating AngularJS with Other Frameworks
	Testing AngularJS Applications
	Conclusion

	2. The IDE and AngularJS Projects
	The IDE
	Editing the HTML Code
	Editing the JavaScript Code
	Creating the Templates
	Running the Applications
	Testing AngularJS Applications in the IDE
	JsTestRunner
	Karma Test Runner
	Protractor
	Conclusion

	3. MVC and AngularJS
	The Old Way
	Choice One
	Choice Two

	A New and Better Way
	Testing Considerations
	Responsive Design Considerations
	Conclusion

	4. AngularJS Controllers
	Initializing the Model with Controllers
	Adding Behavior with Controllers
	Controller Business Logic
	Presentation Logic and Formatting Data
	Form Submission
	Using Submitted Form Data
	JS Test Driver
	Creating Test Scripts
	Testing with JS Test Driver

	Testing with Karma
	Installing Karma
	Karma Configuration
	Running Karma Unit Tests

	End-to-End Testing with Protractor
	Installing Protractor
	Configuring Protractor
	Creating Protractor Test Specifications
	Starting the Selenium Server
	Running Protractor

	Conclusion

	5. AngularJS Views and Bootstrap
	AngularJS Templates
	Creating the Blog Project
	Adding a New Blog Controller
	Adding a New Blog Template
	Twitter Bootstrap
	Adding a Bootstrap Menu
	Adding Mock Blog Data
	Using CSS3 to Style the Page
	Adding Styles and Presentation Logic
	Viewing the Blog Post
	Running the Blog Application
	Testing with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Test Specification
	Protractor Testing

	Conclusion

	6. AngularJS and REST Services
	REST Services
	AngularJS and REST Services
	Ways to Create AngularJS Services
	Ways to Communicate with REST Services
	Updating the Project for REST
	REST Services and Controllers
	The JSON Response
	List Services
	Testing Services with Karma
	Karma Service Specifications

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification

	Conclusion

	7. AngularJS Models
	Public REST Services
	Changes to the Controllers
	Model Properties
	Blog Application Public Services
	Modifying the HTML
	Modifying App.js
	Modifying the Controllers
	Running the Application
	Testing Services with Karma
	Karma Service Specifications
	Karma Testing

	End-to-End Testing
	Protractor Test Specification
	Protractor Testing

	Conclusion

	8. Services and Business Logic
	Handling User Authentication
	Using Basic Authentication
	Creating AngularJS Services
	Holding User Credentials
	Checking User Credentials
	Deleting User Credentials
	Retrieving User Credentials
	Blog Application Business Logic
	Using the Business Logic
	Testing Services with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing
	Conclusion

	9. AngularJS Directives
	The HTML Compiler
	What Are Directives?
	Building Custom Directives
	Naming Conventions for Directives
	The Restrict Option
	The Template URL
	Template Attributes
	Adding the Custom Directive
	Passing the Title Attribute
	Running the Blog Application
	Testing Directives with Karma
	Karma Configuration
	Karma Test Specification
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing

	Conclusion

	10. AngularJS Security
	Authentication
	Adding a Login Service
	Adding a Login Controller
	Security Modifications to Other Controllers
	Adding a Logout Controller
	Adding a Login Template
	Adding New Routes
	Adding a Logout Link
	Running the Blog Application
	Logging In

	Testing with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing

	One Last Point on Security
	Conclusion

	11. MEAN Cloud and Mobile
	Local Deployment
	Installing Node.js, npm, and MongoDB
	Installing the NetBeans Node.js Plugin
	The MEAN Application
	Node.js Public Folder
	MEAN Services
	MEAN Blog Controllers
	MEAN Blog Templates
	Adding Comments
	Adding Blog Entries
	Adding New Routes
	Adding Node.js Dependencies
	Running the Blog Application Locally
	Testing with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing

	MEAN Deployment to the Cloud
	Testing the Cloud Blog
	Mobile Version
	Conclusion

	12. AngularJS and SEO
	Old Versus New AngularJS SEO
	Getting Found by Search Engines
	Google Webmaster Tools
	Adding a Sitemap
	Microformat Tags
	Building Clean Client Code
	Building Fast REST Services
	Conclusion

	References
	Index

