. II[’I////////////W///A

Beginning

AngularJS

LEARN TO BUILD WEB APPLICATIONS
USING ANGULARJS, ONE OF THE

WEB’S MOST INNOVATIVE JAVASCRIPT
FRAMEWORKS

Andrew Grant

(LL777///

Apresse

Contents at a Glance

ADOUL TNE AULNOT .o e e e e Xiil....
About the TechniCal REVIEWETccoiiiiiii e X\.....
ACKNOWIEAGMENTS ...ttt e e e e e e et s e e e e e e e eaaaeeeeaananees XVil...
Chapter 1: JavaScript YOU Need t0 KNQW.........couiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee e 1.
Chapter 2: The Basics of ANQUIAIIS..........ouii i 35.
Chapter 3: INtroduction t0 MVC.........ouiiiiiiiii e e e e e e e e e e e eeaaaaaane s 47..
Chapter 4: Filters and MOGUIES...........uuiiiiiiiiiiiiiieceee e 51..
Chapter 5. DIrECHVEScuuuii i e e e 75...
Chapter 6: WOorking With FOIMS.........iiiiiii s 91.
Chapter 7: Services and Server CoOmmuniCatioN...........ccccuuuiiiiiiiiiiiiiiiieeeeeeeeee e 115
Chapter 8: Organizing VIBWS........ccuuuiiiiiiiiiiiiie e e e e e e eaa e e e aeens 131
Chapter 9: AngulardS ANIMAtIQIL..........cevvviiiiiiiiieee e e e e e e e e e eeees 149
Chapter 10: Deployment CONSIAerations..............eeeeeiveiiiiiieeeeeeeieee e 163
10 = TP PEPPR T PPPP 171...

CHAPTER 1

JavaScript You Need to Know)

If you want to learn AngularJS, then you will need to know JavaScript. However, you don’t have to be a JavaScript
expert. If you already know JavaScript fairly well, you can skip this chapter and use it as a handy reference, although
I will refer you back to here at certain points in the book.

Note Itisn't uncommon to hear people refer to the AngularJS framewovkragiEimpBeginning AngularJS
is the title of this book, | will refer toAihgslarJgiroughout.

There is only enough space in this book to cover the basics very briefly; although | will expand and reinforce
certain topics in relevant chapters as the book progresses.

JavaScript Primer

When compared to many other programming languages, such as C++ and Java, JavaScript is relatively easy to pick up
and use, and in the following sections, | will get you started by explaining how to include scripts on your web page;
how to use various control structures, statements, functions, and objects; and | will address a few other topics, such as
callbacks and JSON.

Including Scripts on a Page

This is where it all begins: we need some way to tell the web browser that it has to process our JavaScript. To do this,
we use thescript tag. Listing 1-1 uses thsrc attribute to point to the location of a JavaScript file.

Listing 1-1. Referencing an External Script

<IDOCTYPE html>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<l-- reference the myScript.js script file -->
<script src="scripts/myScript.js"></script>

</body>
</html>

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

In this case, the file is callethyScript.js , and it resides in a directory namedcripts . You can also write your
script directly in the HTML file itself. Listing 1-2 demonstrates this technique.

Listing 1-2. Using an Inline Script

<IDOCTYPE html>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>

<l-- aninline script -->
<script>console.log("Hello");</script>

</body>
</html>

Most of the time, it is better to use the first approach and reference a separate file containing your scripts. This
way, you can reuse the same scripts in multiple files. The second method, usually referred to as an inline script, is
most often used when reuse isn’t a requirement, or simply for convenience.

Assuming that the filescript.js contains the exact same code as the inline script, the browser output would be
as follows:

Hello

For the most part, | will include complete code listings in this chapter, so that you can load them into your
browser and experiment. You will learn a lot more by tinkering with code and viewing its output than by relying solely
on this drive-by introduction.

Statements

A JavaScript applicationis essentially a collection of expressions and statements. Without the aid of other constructs,
such as branching and looping statements, which | will discuss shortly, these are executed by the browser, one after
the other. Each usually exists on its own line and, optionally, ends with a semicolon (see Listing 1-3).

Listing 1-3. Statement Execution

<IDOCTYPE html>
<html>
<head >
<title>JavaScript Primer</title>
<script>
console.log("l am a statement");
console.log("l am also a statement");
</script>
</head>

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

<body>
<script>
console.log("Here is another statement");
console.log("Here is the last statement");
</script>
</body>
</html>

The preceding listing simply logs output to the console and produces the results shown in the output below. If
you are unfamiliar with the location of the browser’s JavaScript console, you can access it on Chrome, using Tools
JavaScript Console or, if you use Internet Explorer, by pressing F12 to bring up the Developer Tools and then clicking
the console icon. Of course, you can use your favorite search engine to find out where the JavaScript console is hiding
in your preferred browser. | will be using the handgonsole.log() approach quite extensively in this chapter, to
display the program output.

I hope the output shown below is as you would expect it to appear. Although | use two sepasai@pt tags here,
the output would have been the same even if | had put all of the statements into the fastipt tag in the exact same
order. The browser doesn't really care; it just deals with the scripts as it finds them.

| am a statement

| am also a statement
Here is another statement
Here is the last statement

You may have picked up on my comment earlier about semicolons being optional. This fact is often a source of
confusion. The easiest way to avoid any confusion or code mistakes is simply to use semicolons as though they are
required. Don't give yourself the option of omitting them. Nonetheless, here is the backstory.

Take a look at Listing 1-4. Neither of the two statements terminates in a semicolon. This is perfectly legitimate
from a syntactic perspective. As an analogy, consider reading a sentence in plain English. Even if the writer omits
the period at the end of a sentence, you can still infer that a sentence ended, because a new paragraph immediately
follows.

Listing 1-4. No Semicolons—All Good

<script>
console.log("Here is a statement")
console.log("Here is the last statement")
</script>

Listing 1-5 is a totally different story. Here we have two statements on the same line. This is not legitimate
JavaScript, and problems will occur when you run it. More specifically, you will geSgntaxError: Unexpected
identifier error message in most web browsers. Essentially, it is not clear to the JavaScript runtime where one
statement ends and another begins. Back to our analogy: it may well be clear when one paragraph begins and another
starts, but the same is not true of a sequence of sentences.

Listing 1-5. Both Statements on the Same Line—NOT Good

<script>
console.log("Here is a statement") console.log("Here is the last statement");
</script>

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-6 shows how you can restore order and overcome the problem in Listing 1-5. As both statements are on
the same line, a semicolon makes it clear where one starts and the other ends.

Listing 1-6. Both Statements on the Same Line—All Good

<script>
console.log("Here is a statement"); console.log("Here is the last statement");
</script>

As | said, the best way to handle this is to just sidestep it altogether. Use semicolons as a matter of habit and
best practice.

It isn’t always obvious what a statement or group of statements is supposed to do. With that in mind, it is a
good practice to add meaningful comments to your code. JavaScript gives you two ways to do just that: single-line
comments and multiline comments. Take a look at Listing 1-7.

Listing 1-7. Using Comments

<IDOCTYPE html|>
<html>
<head >
<title>JavaScript Primer</title>
<script>
/l The lines in this script block execute first
console.log("l am a statement");
console.log("l am also a statement");
</script>
</head>
<body>
<script>
[*The lines in this script block execute
after the lines in the script block above*/
console.log("Here is another statement");
console.log("Here is the last statement");
</script>
</body>
</html>

Listing 1-7 is functionally identical to Listing 1-3, but this version uses comments within each script block. The
first uses single-line comments, which are useful for short comments that need not span multiple lines. The second
uses the multiline approach. Ideally, you should make sure that your comments say something useful about the
purpose and context of your code, something that will help you or others understand why it is there.

Functions

Afunction is a block of JavaScript code that is defined once but may be executed, or invoked, any number of times.
Functions are easy to create: just type the keywdighction , choose a hame for your function, and put the function
code between a pair of curly braces. See Listing 1-8 for an example of a simple JavaScript function.

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-8. A Simple Function

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
<script>
function mySimpleFunction() {
console.log("Hello");

}

mySimpleFunction();
mySimpleFunction();

</script>
</head>

<body>
</body>
</html>

Here we define a function callednySimpleFunction We could have named this functiomysimplefunction (all
lowercase) or evermySIMPLefunCTiofa mixture of upper- and lowercase letters), but best practices dictate that we
use an uppercase character at the beginning of each new word (an approach known as camel casing). This makes it
much more readable.

With the function now in place, we want to make use of it. Using a function is as simple as typing the
function name, followed by parentheses, a process known emvoking, or calling, the function. Here we invoke
mySimpleFunctiontwo times. It isn’t a terribly useful function, but it does illustrate the idea that we only need to set
up a function once and then reuse it as often as we like. Here is the output:

Hello
Hello

Parameters and Return Values

Let’s look at a function that uses parameters and can return a value. We will namigifler , because it can triple any
number with which it is provided. Ourtripler function will define a single parameter, a number, and return a value
equal to this number multiplied by three (see Listing 1-9).

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-9. A Function with Arguments and a Return Value

<IDOCTYPE htmlI>

<html>

<head>
<title>JavaScript Primer<f/title>
<script>

function tripler(numberToTriple) {

return 3 * numberToTriple;

}

console.log(tripler(150));
console.log(tripler(300));

</script>
</head>
<body>
</body>
</html>

Listing 1-9 shows theripler function in action. First, we define the function. Still keeping things simple, within
the function body (the code between the opening and closing curly braces), we immediately return the result of the
computed value back to the caller. In this case, there are two callers: one that passes in a value of 150 and another that
passes in a value of 300.

Thereturn statement is crucial here. It takes care of exiting the function and passing the computed value back
to the caller. Equally important is thenumberToTriple parameter, as it contains the value that we are interested in
tripling.

Again, we use the console to show the output. Sure enough, we get the results of calling our function two times,
each time with a different argument passed in and a different result returned.

450
900

Tip | just used the teargumentvith regard to the value passed into our function. You may be wondering why
| didn't stick with the teparametéWell, | probably could have gotten away with doing that, but in reality, they are
subtly different things. Parameters are things defined by functions as variables, while arguments are the values the
passed in to be assigned to these variables.

Types and Variables

Variables are the containers that hold the data with which your application works. Essentially, they are named areas
of computer memory in which you can store and retrieve values with which you are working. Listing 1-10 shows you
how to declare a variable.

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-10. Declaring Multiple Variables at Once

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var color = "red";
console.log("The color is " + color);

</script>
</body>
</html>

In the preceding listing, we use thear keyword to declare a new variable and then immediately assign it a value
of "red" . The output below is then, perhaps, unsurprising.

The color is red

Listing 1-11 provides another example. This time we declare three variables at once and then assign values to
each of them afterward.

Listing 1-11. Declaring Multiple Variables at Once

<IDOCTYPE html>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

/I declare some variables
var color, size, shape;

// assign values to them
color = 'blue’;

size = 'large’;

shape = ‘circular’;

console.log("Your widget is the color " + color + " and its size is " + size + ". Itis " +
shape + " in shape.");

</script>
</body>
</html>

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

It is common to see multiple variables declared all on the one line, as | have done in Listing 1-11, but you will also
see this done with each variable on its own line, as the following code snippet shows:

/I declare some variables
var color,

size,

shape;

| prefer the first approach, but this is generally just a matter of taste. Listing 1-11 produces the output following.
Your widget is the color blue and its size is large. It is circular in shape.

You will notice that each value that we have used so far has been a string value, that is, a series of characters. This
is just one of the types that JavaScript supports. Now let's look at the others.

Primitive Types

JavaScript supports a number of primitive types. These types are known as primitive types, as they are the
fundamental built-in types that are readily available. Objects, which | discuss in the next section, are generally
composed of these primitive types.

Booleans

A Boolean valueis intended to represent just two possible states: true and false. Here is an example:

var isLoggedin = true;
var isMember = false;

Note that, in both cases, we do not put quotation marks around the values, that is, true and false are not the same
as ‘true ” and “false " The latter are string types, not Boolean types.

Interestingly, if you do happen to assign the stringdfse ” to a variable, in Boolean terms, that variable’s value
will be true. Consider the following examples:

isMember = "false";
isMember 1;
isMember = "Hello";

Each of these variables has an inherent Boolean value, that is, a quality that leads us to categorize themthg.
That is to say, each of these values represémnte . Conversely, each of the following is falsy.

isMember = ";
isMember = 0;
isMember = -0;

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Strings

A string stores a series of characters, such as “Hello JavaScript” You have two choices when creating strings: you can
use single quotation marks or double quotation marks. Both of the variables below are string types.

var firstName
var lastName

"Jane"; /Il enclosed by double quotation marks
'Doe'; Il enclosed by single quotation marks

It doesn’t really matter which variation you use, but consistency is good practice. One nice thing about this
flexibility is that you can use one within the other. That is, you can use single quotation marks within a string created
using double quotation marks, as | do in the following example:

/I a single quotation mark inside a double quoted string
var opinion = "It's alright";

This works both ways, as the following example demonstrates:

/I double quotation marks inside a single quoted string var sentence = 'Billy said,
"How are you today?", and smiled.";

You can also use the handy backslash to achieve the same thing, regardless of which way you create your strings.
/I using the backslash to escape single and double quotes
var sentence = "Billy said, \"How are you today?\", and smiled.";
var opinion = 'It\'s alright';

In case it is unclear why we have to handle strings in this way, consider the issue with the string following:

var bigProblem = "Billy said, "How are you today?", and smiled.";
console.log(bigProblem);

This produces the very unpleasant output that follows. As far as JavaScript is concerned, you declared a variable
containing the string"Billy said,” and then proceeded to type invalid JavaScript code!

Uncaught SyntaxError: Unexpected identifier

What you should not do is to use single and double quotation marks interchangeably, as | do in the following
example:

/I This is a bad idea!
var badldea = "This will not end well';

Here, | start the string with double quotation marks and end it with single quotation marks—a very bad idea
indeed, because this will cause a syntax error.

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Numbers

The number typeis used to represent numbers in JavaScript, both integers and floating-point numbers. JavaScript will
look at the value and treat it accordingly. Listing 1-12 uses a simple script to demonstrate this point.

Listing 1-12. Numbers in JavaScript

<IDOCTYPE htm|>
<html>
<head>
<title>JavaScript Primer</title> </head>
<body>
<script>

var vall = 22;
var val2 = 23;
console.log(vall + val2);

var val3= 22.5;
var val4 = 23.5;
console.log(val3 + val4);

var val5= 50;
var val6 = .6;
console.log(val5 + val6);

/I watch out!

var val7= 25;

var val8 = "25";
console.log(val7 + val8);

</script>
</body>
</html>

Looking at the output below, you can see that JavaScript is mostly doing just what you would expect; however,
you will see something that may appear unusual on the last line of output.

4
46
50.6
2525

If you look at Listing 1-12 again, you will see that the variahlal8 was actually declared as a string. JavaScript
inferred what you intended, and it coercedal7 into type string also. Consequently, you end up with two strings
concatenated together (which is how the operator acts when used on strings). | will talk a little more about
JavaScript type conversion shortly.

10

CHAPTER JAVASCRIPT YOU NEED TO KNOW
Undefined and Null
JavaScript has two subtly different types to represent the idea of missing values: undefined and null.

var myName;
console.log(myName);

Here we have a variable callechyNam® which we have assigned no value. When we print the value of this
variable to the console, we get the following result:

undefined

JavaScript uses undefined to represent a variable that has been declared but has not yet been assigned a value.
This is subtly different from the following situation:

var myName = null;
console.log(myName)

In this case, | specifically assigned the value of null. Consequently, the output is as follows:
null

From these examples, it is clear that undefined and null are two distinct types: undefined iype (undefined),
while null is anobject The concept of null and undefined can be rather tricky in JavaScript, but as a general rule of
thumb, you should favor using null whenever you have to declare a variable to which you are not ready to assign a
value.

JavaScript Operators

JavaScript supports all of the standard operators that you would expect to find in a programming language. Takle
lists some of the more commonly used operators.

Table 1-1. Commonly Used JavaScript Operators

Operator Description

++, -- Pre- or post-increment and decrement

+ -, %1, % Addition, subtraction, multiplication, division, remainder

<, <=, >, >= Less than, less than or equal to, more than, more than or equal to

=== Equality and inequality tests

===, == Identity and nonidentity tests

&&, || Logical AND and OR|(is used to coalesce null values)
= Assignment
+ String concatenation

11

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Some of these operators may make intuitive sense, others perhaps not. Let's write a simple program to look at
how they behave. There are a couple of cases in which we will look a bit closer at some of these operators, so | will
omit them in Listing 1-13 and deal with them shortly afterward.

Listing 1-13. Common Operators in Action

<IDOCTYPE htmlI>
<htmlI>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

console.log("Doing assignment");
var myName = "Catie";
console.log(myName);

console.log("Doing arithmetic");
console.log(5 +5); // 10
console.log(5-5); /10
console.log(5 *5); // 25
console.log(5/5); /1
console.log(5%5); //0
console.log(11 % 10); // 1

console.log("Doing comparisons");
console.log(11 > 10); // true
console.log(11 < 10); // false
console.log(10 >= 10); // true
console.log(11 <= 10); // false

console.log("Doing string concatenation");
console.log(myName + " Grant"); // "Catie Grant"

console.log("Doing boolean logic");
console.log(true && true); // true
console.log(true && false); // false
console.log(true || true); // true
console.log(true || false); // true

</script>
</body>
</html>

Listing 1-13 shows the output of some basic operations. I've put the output in comments next to each line of code,

to make it easier to reconcile. You can use TaHlel to clarify your understanding of how each produces its respective
output.

12

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Equality vs. ldentity

I mentioned previously that I'd like to cover some of these operators as special cases. The identiy(and equality
(=9 operators are one such special case. These operators look similar, and they can even appear to behave similarly,
but, in fact, they are significantly different.

When performing comparisons, the equality operator£=) will attempt to make the data types the same before
proceeding. On the other hand, the identity operator{=3 requires both data types to be the same, as a prerequisite.
This is one of those concepts best conveyed through code, as shown in Listing 1-14.

Listing 1-14. Converting Types and Then Comparing

<IDOCTYPE htm|>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var valueOne = 3;
var valueTwo = "3";
if (valueOne == valueTwo) {
console.log("ValueOne and ValueTwo are the same");
}else {
console.log("ValueOne and ValueTwo are NOT the same");

}

</script>
</body>
</html>

I’'m not sure what you expect to see in the output that follows, given that we are comparing the number 3 to the
string value"3" . You may or may not be surprised, but these values are considered to be the same.

ValueOne and ValueTwo are the same

The reason why the==operator reasons that3" and 3 are the same is because it actually coverts the operands
(the values either side of the=operator) to the same typdeforeit does the comparison. However, if we change the
operator to an identity operator, as shown here, we see quite different output:

if (valueOne === valueTwo)
ValueOne and ValueTwo are NOT the same

Since we used the==operator on this occasion, and because this operator does not do any type conversion, we
see that the string valué3" and the number 3 are not the same after all.

When in doubt, a relatively safe choice is simply to use the identity operater=8 as a matter of habit. Of course,
the safest choice is to familiarize yourself with the differences, so that you know what is actually happening under the
hood.

13

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

JavaScript is very flexible with types, and it allows you significant freedoms, but the tradeoff is that what is going
on behind the scenes is not always obvious. For example, you have already seen that thygerator performs double
duty: it can do addition and it can also do string concatenation. With that in mind, examine the following code
shippet. Can you predict its output?

/I Will this produce the number 2 or the string "11"?
console.log("1" + 1);

The output is:
11

From this, we can deduce that JavaScript must have converted the number value to a string value and performed
a concatenation operation, as opposed to an addition operation.

At times, as you might imagine, we want some control over types. Fortunately, JavaScript comes with the right
tools. Tablel-2 shows just a few of the tools you have at your disposal.

Table 1-2. A Few Built-in Type-Related Utilities

Function / Operator Description

typeof Allows you to ask the data type of its operand. It can provide the following values:
"number”
"string"
"boolean"
"object"
"undefined "
null
parseint Theparselnt() function parses a string and returns a number. If it cannot return a number,
it will return NaN (Not a Number).
toString Converts a value, such as a humber, to a string
isNaN TheisNaNfunction can tell you if a given value isot a number. For example,

isNaN('three") will return true; isNaN(3) will return false.

Listing 1-15 shows each of these in action.

Listing 1-15. Type Conversion Examples

<IDOCTYPE htmI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>

14

CHAPTER LJAVASCRIPT YOU NEED TO KNOW
<script>

/I create a string variable

var myStringType = "22";

/I use the handy typeof operator to
/I confirm the type is indeed string
console.log(typeof myStringType);

Il create a number variable

var myNumberType = 45;

Il use the handy typeof operator to

I/ confirm the type is indeed number
console.log(typeof myNumberType);

// Now let's convert myStringType to

/I a number type using the parselnt()

I/l method

var myStringType = parselnt(myStringType);
// confirm the type is indeed number
console.log(typeof myStringType);

/I finally, let's convert the myNumberType

// to a string

var myNumberType = myNumberType.toString();
/I confirm the type is indeed string
console.log(typeof myNumberType);

</script>
</body>
</html>

It's well worth exploring these built-in functions and others like them. JavaScript’s dynamic type system is often
a good thing, but it does mean that any serious JavaScript programmer has to become accustomed to how types are
being managed behind the scenes.

Pre- vs. Post-Increment

I will finish this section by looking at the last of the special cases: the pre- and post-increment operater§ @nd their
decrement (--) counterparts.

These operators are relatively easy to understand on the surface. Essentially, they are a more compact way of
performing operations, such as the following:

myNumber = myNumber + 1;
myNumber += myNumber;

Another way that you can achieve the same result as the preceding two techniques is as follows:

myNumber = ++myNumber;

15

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

In all cases, the value ahyNumbéncrements by 1. Take special note here that the preceding increment operator
appearsbeforethe variablemyNumbeim this case, we refer to it aspe-increment. A postincrement, as you might
expect, would look like this:

myNumber = myNumber++;

This seems straightforward enough, so why am | treating these operators as a special case? Because, potentially,
there is a serious mistake that can be made when using them. This is demonstrated in Listing 1-16.

Listing 1-16. Pre- vs. Post-Increment Behavior

<IDOCTYPE html>
<html>
<head >
<title>JavaScript Primer</title>
</head>
<body>
<script>

/I Pre-increment

var myNumber = 1;

myNumber = myNumber + 1;

myNumber = ++myNumber;
console.log("Pre-increment result is " + myNumber);

/I Post-increment

var myOtherNumber = 1;

myOtherNumber = myOtherNumber + 1;

myOtherNumber = myOtherNumber++;

console.log("Post increment result is " + myOtherNumber);

</script>
</body>
</html>

Read through Listing 1-15, and see if you can figure out why the output is as shown following. The answer lies in
the nature of how or, rather, when these operators perform their work.

Pre-increment result is 3
Post-increment result is 2

If you found it odd that the post-increment result was 2 instead of 3, here’s why: the post increment operation
happensafter the assignment operation. Let me clarify this by breaking it down a bit.

myNumber = ++myNumber;

Reading the preceding code snippet in plain English, you might say thi$ncrement the current value of
myNumbeand then store it into the variablenyNumbémHowever, if you look at the post-increment variation of this:

myNumber = myNumber++;

16

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

you now have to interpret this asStore the current value omyNumbento myNumbeand then increment the
value.” In this case, the net result is that the increment happens after the assignment operation, sortty®umber
variable never actually receives the updated (incremented) value. The same principle applies to the pre- and
post-decrement (--) operators.

Working with Objects

Objects are often used as containers for data, but they can be home to functions too. They are a particularly versatile
aspect of the JavaScript language, and it is very important to get a decent handle on this concept.

Creating Objects

Let’s start our brief look at objects by seeing how they are created. Listing 1-17 demonstrates the usual way to create
an object.

Listing 1-17. Creating Objects

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

/I Example 1

var myFirstObject = {};
myFirstObject.firstName = "Andrew";
myFirstObject.lastName = "Grant";
console.log(myFirstObject.firstName);

/I Example 2

var mySecondObject = {
firstName: "Andrew",
lastName: "Grant"

h

console.log(mySecondObject.firstName);

/l Example 3

var myThirdObject = new Object();
myThirdObject.firstName = "Andrew";
myThirdObject.lastName = "Grant";
console.log(myThirdObject.firstName);

</script>

</body>
</html>

17

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-17 shows a few different ways of creating objects. | tend not to use or come acrosaeieObject()
technique very much (commented withExample 3in the listing), and | think you will see the other two approaches
used a lot more. Examples 1, 2, and 3 all do the same thing: they create an object, add a couple of properties to it, and
assign some values to those properties. Each example logs to the console to produce the following output:

Andrew
Andrew
Andrew

Note You can think of properties as variables defined on objects. However, in the world of object-oriented
programming, which | don’t cover in this book, there are far better definitions.

Reading and Modifying an Object’s Properties

Changing the values of properties can be done in a couple of ways. Listing 1-18 demonstrates accessing and changing
object values.

Listing 1-18. Accessing and Changing Object Values

<IDOCTYPE htm|>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var myFirstObject = {};
myFirstObject.firstName = "Andrew";
console.log(myFirstObject.firstName);

myFirstObject.firstName = "Monica";
console.log(myFirstObject.firstName);

myFirstObject["firstName"] = "Catie";
console.log(myFirstObject["firstName"]);

</script>
</body>
</html>

As the following output demonstrates, we start off by setting a valueAfdrewon thefirstName property; shortly
thereafter, we change that value tMonica On both occasions, we use dot syntax, that is, the object name, followed
by a dot and then the property name. Shortly afterward, we change it yet again, but this time, we use associative array
syntax. This syntax requires us to use the object name and then to specify the property name within brackets.

18

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Andrew
Monica
Catie

Which approach you use can often be a matter of preference, but associative array syntax has some nifty benefits.
For example, you can use a variable name inside the brackets, which makes for some very handy dynamic behavior.
Listing 1-19 provides a quick example of this.

Listing 1-19. Associative Array

<IDOCTYPE html>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var myFirstObject = {};
myFirstObject["firstName"] = "Catie";

console.log(myFirstObject["firstName"]);

/I Here we use a variable to determine which
/l property we are accessing

var propertyName = "firstName";
myFirstObject[propertyName] = "Christopher";
console.log(myFirstObject["firstName"]);

</script>
</body>
</html>

The important part of Listing 1-18 is where we update tHegstName property using the previously declared
propertyNamevariable. Using dot syntax, you cannot do this. The output is as follows:

Catie
Christopher

Note Be careful when using associative array syntax. If you make a typo afitirstkitee'§ay,nstead of
['firstName"] , you will actually create on the object a new propefiysitdated

19

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Adding Methods to Objects

We looked at functions earlier, and now we are going to look at methods. Here’s the good news: methods and
functions are so similar, you are already most of the way there. Let’s look at the example shown in Listing 1-20.

Listing 1-20. An Object with a Method

<IDOCTYPE htm|>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var myCleverObject = {
firstName: "Andrew",
age: 21,
myInfo: function () {
console.log("My name is " + this.firstName +".);
console.log("My age is " + this.age + ".");
}
h

myCleverObject.mylnfo();

</script>
</body>
</html>

If you look through Listing 1-20, you will see that it isn’t really anything special, until you get to tingInfo
property. This property has a value just like any other property, but it just so happens to be a function. The last line
shows it being called through the object reference.

A function attached to an object in this manner is known asraethod. Why is that? The short and simple answer
is that, in reality, they are subtly different things, both in how JavaScript treats them and how you, as a developer, are
supposed to use them.

Did you notice that inside themylnfo method we refer tcnameasthis.name ? Using the speciahis keyword, you
get access to other properties of the same object. Essentialys is a reference to the current object. (Some of you
may be familiar with other languages in which something likéhis exists under the guise dfleor self .) Here is the
output:

My name is Andrew.
My age is 21.

| want to make a minor change to the preceding listing. Here is a snippet of the affected areaptlginfo method:

mylnfo: function () {
console.log("My name is " + firstName + ". ");
console.log("My age is " + age + ".");

}

20

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Everything is identical, except for the fact that | removed thhis keyword fromfirstName andage This is an
example ofwhat not to da As the following output shows, my browser didn't like it one bit.

Uncaught ReferenceError: firstName is not defined

The moral of the story is this (no pun intended): make sure that you access the current object’s properties via the
this keyword, if you want to avoid unpredictable results.

| cannot delve much into object-oriented programming techniques here, as this is a huge topic that would fill
many books in its own right. However, although | didn’t touch upon it much here, it is worth knowing that JavaScript
does support this paradigm quite well, should you wish to explore it further.

Enumerating Properties

You can use dor in loop to enumerate an object’s properties. This is an easy way to interrogate any object, and it has
many other uses as well. Listing 1-21 provides an example dbain loop.

Listing 1-21. Theforin Loop

<IDOCTYPE html>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var myObject = {
firstname: "Andrew",
surname:"Grant",
age: 21

k

for (var prop in myObiject) {
console.log(myObject[prop]);
}

</script>
</body>
</html>

Listing 1-21 uses #or in loop to print each property ofmyObjectto the console. It can be extremely handy at

times, though this example isn’t exactly awe-inspiring. All we do here is use the variaptep, which changes with
each pass through the loop, to print the property’s value to the console.

21

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Andrew
Grant
21

Remember the use of the associative array syntax that we discussed earligr@bject[prop] is a good example of
where this technique is needed.

Control Flow

Generally speaking, JavaScript is read by the browser line by line, unless you tell it otherwise, using, for example, a
loop or branch statement.Looping is the ability to repeat the execution of a block of code a number of times; whereas
branching is the ability to jump to one block of code or potentially some other block of code.

Loops

Let’s start off with loops. Arguably the most common loop structure in JavaScript is foe loop. Thefor loop can
seem complicated at first, but it’s not difficult to use, once you understand what it is composed of.
There are four key parts to for loop:

1. Counter variable This is something that is created and usually used only in tfer loop.
Its main task is to keep count of how many times the loop has been entered.

2. Conditional logic. This is where the decision is made on whether or not tler loop
should continue.

3. Counter variable This is usually incremented, or otherwise altered, after every loop.
4. Code blockThis is the actual block of code that is executed at each pass through the loop.

With these explanations in mind, let's examine Listing 1-22, which shows tfa loop in action. | hope you will
be able to read through this and relate each part back to the preceding points.

Listing 1-22. Thefor Loop in Action

<IDOCTYPE html>
<htmlI>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

console.log("Looping started");
Il set up the for loop here
for (i=0;i<5;i++) {
console.log("The current value of iis " + i+ ". We will loop again because " +i +"
is less than 5");

}

22

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

console.log("Looping finished");

</script>
</body>
</html>

The first thing we do is to prinL.ooping started to the console. Then we enter thior loop. We enter thefor
loop because of the conditional check, the bit that read<x 5 . Well,i (which is the counter) starts off at 0, S0< 5
evaluates totrue . Only wheni <5 evaluates tdfalse will the loop end and continue on to the next line of code, in
this case, the code that printkooping finished to the console.

So, why would the variablé ever change its original value of 0? This is because each time the loop executes, it
also carries out tha++ logic. So, the counter goes up at each pass and eventually the loop ends.

The results follow. We will see théor loop in action again when | cover JavaScript arrays shortly.

Looping started

The current value of i is 0. We will loop again because 0 is less than 5
The current value of i is 1. We will loop again because 1 is less than 5
The current value of i is 2. We will loop again because 2 is less than 5
The current value of i is 3. We will loop again because 3 is less than 5
The current value of i is 4. We will loop again because 4 is less than 5
Looping finished

Thewhile loop is a somewhat simpler version of thir loop. It doesn’t require as much setup, but it isn’t quite
as powerful (at least not without extra work). The basic structure ofadnile loop looks like this:

while(some value is true){
execture this block of code

}

The preceding isn't real code, of course, but Listing 1-23 provides a basic demo ofitiie loop.

Listing 1-23. Thewhile Loop in Action

<IDOCTYPE html|>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

vari=0;
while (i < 10) {
console.log("The value of i is " + i);
i++;
}
</script>
</body>
</html>

23

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

You might consider thewhile loop to be a less structured version of tifer loop. Indeed, you can happily
program in JavaScript, forever ignoring thevhile loop by exclusively using théor loop. However, you will come
across many situations in which using ahile loop can be very convenient and much more concise.

Conditional Statements

Conditional statementsallow you to implement “fork in the road” logic. That is, JavaScript can execute a statement, or
statements, if a specified condition is true. You can also execute a statement, or statements, if this condition is false.

Is this user logged in? Yes? Let him/her see this data. No? Then send him/her to the login page. Listing 1-24
demonstrates how to write this kind of logic in JavaScript.

Listing 1-24. JavaScripts if/else in Action

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var userlsLoggedin = false;

if(userlsLoggedIn){

console.log("Welcome back - sending you to some very private data");
telse{

console.log("Sorry - access denied");

}

</script>
</body>
</html>

By assigning false to thaserlsLoggedIn variable, we are setting up a pretend user that we can consider to be not
logged in, just so we have something with which to work. Next is tli@iserlsLoggedin) portion of the code. The
if statement expects whatever expression or variable is placed between these parentheses to evaluate to #itleer
or false . It will only execute the code in the associated code block if it finds a valudra& . Should it find a value of
false , it will execute theblock of code within the else statement

| hope the following results will make perfect sense.

Sorry - access denied

You do not have to provide amlse statement if your program doesn’t require it. Also, you can nei§t andif/
else statements inside of each other. Listing 1-25 demonstrates both of these ideas.

24

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-25. Nested Conditional Logic

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var userlsLoggedin = false;
var userIsVIP = true;

if(userlsLoggedIn){
console.log("Welcome back - showing you some very private data");

if(userlsVIP){

console.log("You are entitled to a 25% discount!");
lelsef

console.log("You are entitled to a 10% discount!");

}
}

</script>
</body>
</html>

This listing is similar to Listing 1-23, the difference being that there is mtse counterpart to theif statement. In
these cases, when the condition evaluates to false, no action is taken at all. Also, we use a ni¢fgisd statement.
So, if the user is logged in, we ask yet another question: is this user a VIP membet®&sVIP evaluates to true, we
give this member a much higher discount.

Welcome back - showing you to some very private data
You are entitled to a 25% discount!

Working with Arrays

JavaScript arrays are used to store multiple values in a single variable. JavaScript arrays are quite flexible in that you
can store variables of different types within them. (Some languages do not allow for this.) Arrays allow you to work,
based on the position of contained items, by using a numeric index. Listing 1-26 is a basic example of creating an
array and adding values to it.

25

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-26. Working with Arrays

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var myArray = [];
myArray[0] = "Andrew";
myArray[1] = "Monica";
myArray[2] = "Catie";
myArray[3] = "Jenna";
myArray[4] = "Christopher";

console.log("ltem at index 0: " + myArray[0]);
console.log("ltem at index 1: " + myArray[1]);
console.log("ltem at index 2: " + myArray[2]);
console.log("ltem at index 3: " + myArray[3]);
console.log("ltem at index 4: " + myArray[4]);

</script>
</body>
</html>

Here, we create an array callechyArrayand populate it with five string values. As arrays in JavaScript are zero-
based, we start off at zero and finish up at four, for a total of five items. The results follow:

Item at index 0: Andrew
Item at index 1: Monica
Item at index 2: Catie

Item at index 3: Jenna

Item at index 4: Christopher

It can be somewhat tricky trying to keep the index straight, that is, keeping track of which item is at which
position. JavaScript provides thérray.length property, so that you have something with which to work. Listing 1-27
provides an example using théength property.

Listing 1-27. Using the Length Property

var myArray = [];
myArray[myArray.length] = "Andrew";
myArray[myArray.length] = "Monica";
myArray[myArray.length] = "Catie";
myArray[myArray.length] = "Jenna";
myArray[myArray.length] = "Christopher";

26

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

/I Display the first item

console.log("The first item is: " + myArray[0]);

// Dislay the last item

console.log("The last item is: " + myArray[myArray.length - 1]);

Listing 1-27 is similar to Listing 1-26, but instead of hard-coding the index values, we useldrgth property to
calculate the current position. Note the need to cater to the zero-based nature of arrays. Accessing the last item in the
array requires us to subtract 1 from thiength property.

The first item is: Andrew
The last item is: Christopher

Array Literals

The manner in which we have gone about creating arrays so far might be considered the long way. | will show you an
alternative way, which is more concise and, arguably, more readable when you are creating an array and populating it
with values all in one go round. Instead of doing this:

var myArray = [J;
myArray[0] = "Andrew";
myArray[1] = "Monica";
myArray[2] = "Catie";
myArray[3] = "Jenna";
myArray[4] = "Christopher";

you can achieve the same result doing this:
var myArray = ["Andrew","Monica","Catie","Jenna","Christopher"];

This is certainly the style | prefer in most cases. | chose the first approach mainly because it was more
demonstrative of the index-based nature of arrays.

Enumerating and Modifying Array Values

The usual way of enumerating an array is to uséa loop, which | covered in the “Control Flow” section earlier in
this chapter. Listing 1-28 shows this approach in action.

Listing 1-28. Enumerating an Array
var myArray = ["Andrew","Monica","Catie","Jenna","Christopher"];
for(var i = 0; i < myArray.length; i++) {

console.log(myArrayl[i]);

}

27

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

The output of Listing 1-28 follows:

Andrew
Monica
Catie
Jenna
Christopher

As you can see, this approach hinges on the use of theay.length property, looping through from 0 to the very
last index in the array.

Modifying array values is the same as modifying the values of any other variable, with the exception that you
need to know its location within the array. Listing 1-29 shows how we can update the entire array by adding the family
surname to each item.

Listing 1-29. Modifying Array Values

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var myArray = ["Andrew","Monica","Catie","Jenna","Christopher"];
console.log("Before: ", myArray);
for(var i = 0; i < myArray.length; i++) {
myArray[i] = myArray[i] + " Grant";
console.log("After: ", myArray);
</script>
</body>
</html>
The most important part of this listing ianyArray[i] = myArray[i] + " Grant"; . All we do here is append the
family surname to the existing value at position at each pass through the loop. Notice that | also log the entire array

to the console both before and after | modify the array’s contents. Passing the arragdnsole.log() is a handy way
to dump the contents of the entire array for inspection. The output is as follows:

Before: ["Andrew", "Monica", "Catie", "Jenna", "Christopher"]
After: ["Andrew Grant", "Monica Grant", "Catie Grant", "Jenna Grant", "Christopher Grant"]

28

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Callbacks

Callbacks can be a bit confusing, both for new programmers and for seasoned professionals alike (at least for those
new to the functional programming style upon which callbacks are based). The key to enlightenment, | think, is first to
understand that functions are objects that can be passed around just like any other value in JavaScript.

Let’s step through this slowly. Listing 1-30 provides an example that shows how you can create a variable and
then store a function in that variable.

Listing 1-30. Storing a Function Reference in a Variable: Part 1

<IDOCTYPE html>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var myFunctionReference = function () {
console.log('callbacks part 1')

}

myFunctionReference();
myFunctionReference;
myFunctionReference();

</script>

</body>
</html>

Listing 1-30 is quite short, but a particularly important concept is illustrated within it. We start off by declaring a
variable calledmyFunctionReference in which we store a function or, rather, a reference to a function.

You might think that the function looks a little odd; it has no name. That's OK because it is stored in the variable
myFunctionReference so when we want to use this function, we can use the parentheses to call it.

Look closely at the last three lines. In two cases, | use the parentheses, but in one case, | do not. In the case in
which | do not, the function reference is not called (or invoked). It is the parentheses, also known asdak operator,
that cause the function to run. Here are the results:

callbacks part 1
callbacks part 1

This idea that functions are themselves values that can be assigned to variables is important. Listing 1-31 is done
in a way that may (or may not) seem more intuitive, if you have not used anonymous functions (functions without a
name) before.

29

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

Listing 1-31. Storing a Function Reference in a Variable: Part 2

<IDOCTYPE htmlI>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

function anotherFunctionReference() {
console.log(‘callbacks part 2";

}

var x = anotherFunctionReference;
x0;

anotherFunctionReference();

X0

anotherFunctionReference();

x();
</script>

</body>
</html>

Listing 1-31 defines a function and stores a reference to that function in two separate steps. This time around, the
function has a name. We can use both its name and the reference to call it. The following output confirms this.

callbacks part 2
callbacks part 2
callbacks part 2
callbacks part 2
callbacks part 2

Keeping in mind the idea of functions as values that can be assigned to variables, we now look at callbacks.
Callbacksare just functions that you pass to some other function, so that they can be called at some later point. The
reasons you might want to do this may vary, but it is generally due to some circumstance for which you must wait
some time before your function has enough context to execute meaningfully, such as with Ajax calls to a web server.

Note Ajax allows web pages to be updated asynchronously by exchanging small amounts of data with the serv
behind the scenes. This makes it possible to update parts of a web page without reloading the whole page. One of
ways AngularJS supports this is throgghptservice, which we will see more of in Chapter 7.

30

CHAPTER LJAVASCRIPT YOU NEED TO KNOW
Listing 1-32 is a little contrived, but it shows the general idea of how callbacks work.

Listing 1-32. A Simple Callback in Action

<IDOCTYPE html>
<html>
<head>
<title>JavaScript Primer</title>
</head>
<body>
<script>

var actionsToTakeWhenServerHasResponded = function () {
console.log(‘'The server just responded!’)

}

function communicateWithServer(callback) {

callback();
}

communicateWithServer(actionsToTakeWhenServerHasResponded);

</script>

</body>
</html>

Here we have a variable calledctionsToTakeWhenServerHasRespondd&this variable is a function reference.
On the next line down, we have a function calledommunicateWithServer The thing to take note of here is that this
function takes an argument, which we have namedallback , which it expects to be a function reference.

Finally, on the last line, we call theommunicateWithServerfunction and pass it the
actionsToTakeWhenServerHasRespondeariable. | hope that you can see that inside oaommunicateWithServer
function, our actionsToTakeWhenServerHasRespondiahction is executed through the callback reference. See the
following results:

The server just responded!

For the most part, this example represents the nature of callbacks. One thing it doesn’t do very well is
demonstrate time passing as theommunicateWithServerdoes some presumably lengthy task. This is really the point
of callbacks—your program can continue to execute as opposed to sitting idle waiting for some lengthy process to
finish. Here is a code snippet that shows how this might look in action:

console.log('1")

$http.post(/ http://someurl.com/someService ', data).success(function () {
console.log('2")

D

console.log('3")

31

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

The interesting part of this example is theuccess method. It takes a function as an argument. We didn’t bother
to store the function in a variable this time. It is created right there in the method call (a very common technique).
The $http.post() method has to call a server and wait for a response. At some later point, with all going well, the
success method will execute the callback function that we passed to it. This process takes, typically, at least a couple
of seconds or so. Have a look at how the output for such a scenario would look.

w

The key thing to observe here is that 3 comes before 2 in the output. This is because the callback function, which
contains theconsole.log('2") statement, takes place at some point in the future. Thanks to the power of callbacks,
your program doesn’t have to wait around; it continues executing as normal, happy in the knowledge that there will be
“call back” later.

JSON

JavaScript Objechotation, orJSON is a lightweight data-interchange format. Essentially, it is way of representing
data in a way that is much more compact than XML yet still relatively human and totally machine-readable. If you
need to send data from place to place, or even store it somewhere, JSON is often a good choice.

Because JSON is JavaScript (well, a subset of JavaScript, to be precise), it is easy to work with. Unlike XML, it is
considerably faster over the wire. | won't labor too much on JSON, but | will show you what it looks like. Listing 1-33
shows a sample of JSON data.

Listing 1-33. Sample JSON Data
{

"firstName": "John",
"lastName": "Smith",
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021
3
"phoneNumbers": |
"212 555-1234",
"646 555-4567"

| covered JavaScript objects earlier, so | hope this will look familiar. This is essentially a JavaScript object with a
bunch of properties representing contact data for a John SmitfirstName andlastNamehave simple string values.
The address property is itself represented as an object, and tiplhoneNumberproperty is an array.

32

CHAPTER LJAVASCRIPT YOU NEED TO KNOW

The same thing in XML is considerably more verbose, relatively difficult to manipulate in JavaScript, and more
memory- and storage-intensive. Listing 1-34 shows the JSON from Listing 1-33 represented as XML.

Listing 1-34. The JSON from Listing 1-32 Represented as XML

<?xml version="1.0" encoding="UTF-8" ?>
<contact>
<firstName>John</firstName>
<lastName>Smith</lastName>
<address>
<streetAddress>21 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCode>
</address>
<phoneNumbers>
<phoneNumber>212 555-1234</phoneNumber>
<phoneNumber>646 555-4567</phoneNumber>
</phoneNumbers>
</contact>

It's important to keep in mind that JSON is an alternative to XML, not a replacement. XML has its advantages
too: it is more self-descriptive and arguably more human-readable than JSON. That being said, when wearing
your JavaScript hat, you will very likely come across JSON much more often, as it is heavily used in many common
scenarios, such as communicating with back-end servers.

Summary

This whirlwind tour of JavaScript won't make you an expert, but | hope it has been a useful refresher or a quick
introduction. We looked at core language features, such as statements, functions, arrays, and objects. We will be
using these features throughout the rest of the book. Where it is helpful to do so, | will include some handy tips and
notes that elaborate on these topics and others. This should prove particularly useful for readers who are tackling the
JavaScript learning curve somewhat parallel to AngularJS.

33

CHAPTER 2

The Basics of AngularJdS

JavaScript is an important language for web developers—one that is nearly impossible to ignore. It’'s a language
that was created for the relatively simple purpose of adding basic interactivity to web pages. However, it has risen to
mainstream importance, and it is used today to build large and sophisticated web applications.

Why We Need Frameworks

You may develop some appreciation of why frameworks such as AngularJS exist, by considering that JavaScript was
not originally created with today’s much more complex requirements in mind. In fact, in many respects, JavaScript
was adapted to this purpose because it was there. It was already widely supported in web browsers, and many
developers knew how to use it.

JavaScript sometimes gets a bad rap; it isn't everyone’s favorite language. | personally enjoy using it and find that
| can work around the things that | perceive as shortcomings; nevertheless, | totally understand why some developers
don't feel the same way as | do, particularly those who have not had the chance to warm up to its strengths. | think it is
fair to say that JavaScript has many great features, but it is equally fair to say that it is missing a few features—ones that
developers feel are vital.

Given its humble beginnings and perceived shortcomings, is JavaScript really ideal for developing modern web
applications? It certainly is. As a relatively easy-to-learn language with almost ubiquitous support, it is extremely well
suited to the task.

Here’s a better question: Is JavaScript ideal for developing applications that require modularity, testability, and
developer productivity? The short and simple answer to a question such as this is no, not really. At least not “out of the
box.” The makers of JavaScript simply didn’t have these requirements in mind when it was conceived. However, today
we have a proliferation of frameworks and libraries designed to help us with such things. The general idea is that we
want to be more productive and that we want to write code, often in response to unreasonably tight deadlines, that we
can easily maintain and reuse. This is why we need frameworks.

Each framework achieves its (sometimes significantly different) objectives in a variety of ways and to varying
degrees. For example, the popular jQuery framework addresses direct Document Object Model (DOM) manipulation
extremely well, but it doesn't really help out much when it comes to keeping your code structured and organized.

To be fair, jQuery is more of a library than a full-fledged framework, so this really relates more to my point about
varying objectives and degrees.

With regard to front-end web development, AngularJS addresses many, if not all, of the issues developers face
when using JavaScript on its own, and it does so in a very elegant and comprehensive way.

There often isn't a right or wrong framework, by the way, because much of what constitutes right may depend
on the kind of project on which you are working, your current skills and experience, and your personal preferences.
That being said, | personally believe that AngularJS is a great all-around framework, which is definitely among the
best available.

35

CHAPTER ZTHE BASICS OF ANGULARJS

Note AngularJS comes bundled with a trimmed-down version of jQuery called jqLite. Generally speaking, howe
it is better to do things the “Angular Way.” You will learn a lot more about what that means as the book progresses.

What Is a Framework?

Before exploring AngularJS in depth, let us consider exactly what AngularJS is. What do we mean by a “framework;’
and why would we want to use one? Might it be a good idea not to use one? Might it even be a good idea to develop
our own instead?

The dictionary definition tells us that a framework is “an essential supporting structure.” That sums up AngularJS
very nicely, although AngularJS is much more than that. AngularJS is a large and helpful community, an ecosystem in
which you can find new tools and utilities, an ingenious way of solving common problems, and, for many, a new and
refreshing way of thinking about application structure and design.

We could, if we wanted to make life harder for ourselves, write our own framework. Realistically, however, for
most of us, this just isn’t viable. It almost goes without saying that you need the support of some kind of framework,
and that this framework almost certainly should be something other than your own undocumented (or less than well
understood) ideas and thoughts on how things should be done. A good framework, such as AngularJS, is already well
tested and well understood by others. Keep in mind that one day others may inherit your code, be on your team,
or otherwise need to benefit from the structure and support a framework provides.

The use of frameworks isn’t uncommon; many programmers from all walks of life rely on them. Business
application developers use frameworks, such as the Microsoft Entity Framework, to ease their pain and speed
up development when building database-related applications. For example, Java programmers use the LibGDX
framework to help them create games. (We all need a little help.)

I hope | have sold you on the need for a framework and, more specifically, the fact that AngularJS is a great
choice. Now, | will spend the rest of this book getting you up to speed as quickly as possible, while putting you on a
solid footing to go further than | can take you within its pages. AngularJS is not difficult to learn, and, if you are like
me, you will enjoy its unique approach and its knack for making the complex seem considerably less so.

Downloading and Installing AngularJS

Downloading and installing AngularJS is easy, takes very little time, and doesn’t require your credit card. It is
completely free of charge (under the MIT license).
To download AngularJS, head on over tatp://angularjs.org and follow these steps:

1. Create a folder on your computer called BeginningAngularJS. Inside this folder, create a
subfolder called js to contain your JavaScript files.

2. Onthe AngularJS home page, click the Download button. You will see a dialog box like the
one shown in Figure2-1.

36

CHAPTER ZTHE BASICS OF ANGULARJS

Figure 2-1. The AngularJS download options dialog

3. You want the 1.2. -minified version, so make sure that you choode2 x (legacy)for the
branch option and Minified for the build option.

4. Click the Download button to start the download process.

5. Once the download has completed, move the downloaded filangular.min.js , into the js
folder that you created earlier (assuming you did not save it there directly).

6. That's it! You just downloaded and installed AngularJS.

Throughout this book, | will assume that you have followed the preceding steps when | refer to file system
locations and folder names. If you are comfortable with the Content Delivery Network (CDN), and prefer to use it, feel
free to do so. Likewise, if your preference is to use the non-minified version of the AngularJS library, go right ahead.
This won't affect the output of any of the code listings (assuming that you have things set up correctly otherwise).

Note Content Delivery Networks are a great place to host JavaScript libraries, such as AngularJS. They prc
speed and performance benefits, and they can be much more bandwidth-friendly. Google, Microsoft, Yahoo, ar
large web organizations offer CDN services for free. You may have noticed that AngularJS provides an option
Google CDN as an alternative to downloading the script and hosting it yourself (see the URL in the field labele

Browser Support

All modern web browsers support AngularJS. This list includes Safari, Chrome, Firefox, Opera, IE9 and later versions,
and mobile browsers, including Android, Chrome Mobile, and iOS Safari. Generally speaking, browser support is not
an issue; AngularJS is very much here and now.

37

CHAPTER ZTHE BASICS OF ANGULARJS

Note The ninth and later versions of Internet Explorer are supported. At the time | write this, support for Internet
Explorer 8 is about to be dropped.

Of course, you should always know your target audience and test your applications across as broad a range of
devices and platforms as possible. Fortunately, the AngularJS community is large (and growing fast), so it's definitely
worth heading in that direction if you have questions. Of particular interest are the case studies that you can use to get
a sense of AngularJS in action (séép://builtwith.angularjs.org).

Your First AngularJS Application

Let’s start our journey toward AngularJS enlightenment by creating a very small and simple application, albeit one
that demonstrates little more than how to include AngularJS on a web page, and use it to display the traditional Hello
World greeting.

Save Listing 2-1 into your BeginningAngularJS folder.

Listing 2-1. Hello World

<IDOCTYPE htmlI>
<html ng-app>
<head>
<title>Listing 2-1</title>
<script src="js/angular.min.js"></script>
</head>
<body>
<p>Hello {{'Wor" + 'ld"}}</p>
</body>
</html>

While this is about as simple as it gets, there is actually quite a lot going on here. It's well worth dissecting this and
reviewing how each line works, as there are a few important concepts at play—concepts that are fundamental to the
way AngularJS works and, therefore, key to how to think in AngularJS.

Caution AngularJS isn't quite like other frameworks, and it may require you to think a little differently than you
are used to. | initially found that | was writing AngularJS code with my jQuery hat on, and this proved extremely
counterproductive! | will talk more about this shortly in the section “Declarative vs. Procedural Programming.”

In the first line of the program, we have the HTML5 doctype. Though this is not strictly necessary for AngularJS to
work, it is the doctype you should be using for today’s rich Internet applications.

The second line is where it becomes interesting. We have declaredreyAppdirective within the openingHTML
element. | will expand on this directive (and directives in general) a little bit later in this chapter and then much more
in Chapter 5. We us@gAppto let AngularJS know which element is to be considered the root of the application. As we
have declared it within theHTMElement, we are declaring that the whole document is to be “under the control”
of AngularJS.

Moving down to the fifth line, you can see that we have included the AngularJS library using the script element.
If we didn't include the AngularJs library, we wouldn’t see any AngularJS goodness.

38

CHAPTER ZTHE BASICS OF ANGULARJS

Now for something very exciting: if you move down to the eighth line, you will see an AngularJS expression,
as delimited by the opening and closing double curly braces{{- and}} . We keep things nice and simple here and
concatenate the two string literalsWor' and'ld’

AngularJS expressions are powerful, and you will see many of them in this book. Here we use one in a somewhat
contrived way, simply to illustrate how they are put into action. The interpolated value is, of course, the strifigrid.

When we place an expression between double curly braces like this, we create an expression binding. In a
nutshell, this means that the value of the expression is bound. Anytime it changes, the binding will update too.
Bindings and expressions will be second nature to you in no time, as these are at the core of how AngularJS works.

You can see the result of this in Figu 2.

Figure 2-2. The output of our Hello World listing

| said it was very exciting, didn’t I? Well, perhaps | exaggerated a little bit. Nonetheless, it is an AngularJS
application, and it gets you started on your journey. We will do something a little more interesting shortly, but let's
summarize the key steps we took in Listing 2-1.

u We used thengAppdirective to inform our page that it should consider itself under the control
of AngularJS.

u We then used a script element to include the AngularJsS library.

u Just to prove everything was hooked up correctly, we used a simple AngularJS expression
binding to do some basic string concatenation.

That wasn't difficult at all, but let's tinker with Listing 2-1 a bit, just to get a little bit more insight into how
AngularJs ticks. Listing 2-2 is a revised version.

Listing 2-2. Tinkering with the Hello World Listing

<IDOCTYPE html>
<html>
<head>
<title>Listing 2-2</title>
<script src="js/angular.min.js"></script>
</head>
<body>

39

CHAPTER ZTHE BASICS OF ANGULARJS

<p ng-app>Hello {{'Wor" + 'ld'}}</p>
<p>Hello {{'Wor" + 'ld'}}</p>
</body>
</html>

All that we have done here is to move thegAppdirective out of the openingHTMEelement and place it on the first
paragraph element. We also added another paragraph element, which is almost identical to the first. However this one
is without an ngAppdirective. Save Listing 2-2, and load it up in your browser.

Two interesting things happen:

1. The first interesting thing is that the expression binding in the first paragraph worked just
as it did before. Even though we relocated thegAppdirective, the expression binding is
still nested within its boundaries and, therefore, still under AngularJS control.

2. The second interesting thing is that the second paragraph uses an expression too.
However, this expression binding simply renders as is; it is not evaluated at all. AngularJS
simply isn’t interested in it, because it is not contained within the boundaries of argApp
directive. In fact, AngularJS has no knowledge of this particular paragraph element or
anything contained within it.

In this book, | will always declare thegAppdirective on theHTMElement. While it is handy to know that you
can tell AngularJS to manage only a specific portion of the DOM, | want you to see the effect of it being in the wrong
location, or missing altogether. Forgetting to add thegAppdirective is one of the most common mistakes that
beginners make.

Note It is technically possible, though not terribly common, to use mongAlpadi@utive per page. There are
a couple of limitations, however. First, they must not be nested within each other. Second, you have to write extra c
make AngularJS recognize all but the first one. It's a relatively advanced scenario that | will not be covering in this |

This sets us up nicely with some working AngularJS code, but it doesn’t really hint much at what makes AngularJS
such a powerful framework. Listing 2-3, while still small and simple, starts edging toward this.
Listing 2-3. Live Updates
<IDOCTYPE html>
<html ng-app>

<head>
<title>Listing 2-3</title>
<script src="js/angular.min.js"></script>
</head>

<body>

<label>City: </label><input ng-model="city" type="text" /></label>
<p>You entered: {{city}}</p>

</body>
</html>

40

CHAPTER ZTHE BASICS OF ANGULARJS

Here we have declared the expecteatyAppdirective and AngularJS script reference with which, it is hoped,
you are already comfortable. The two important lines are the two lines contained within the body element. The first
declares a standardd TMLext input, but with one very important addition—thengModeldirective, which we have
assigned the value ofity . The second line, via an expression binding, uses this value to reference the text that the
end user enters into the text field.

Save Listing 2-3 and load it up in your browser. This is where the magic starts to happen. Start typing into the text
field and watch as the text in the paragraph below the text field updates in real time. What makes it so magical is the
amount of code that it took to achieve this result—not very much code at all, no?

It’'s not really magic, of course. At least not in the Harry Potter sense. However, something very sophisticated is
clearly taking place. Already, we can see that AngularJS must be hard at work for us, monitoring the application for
data changes, updating the DOM to show these changes to the end user, and other things that we are yet to encounter.
Other frameworks require that you tackle some or all of this work yourself. AngularJS wants you to focus on your
primary concern—your application, not its plumbing.

Another interesting point is that we didn’t actually write any JavaScript code! You will find that AngularJS has
a strong lean toward a declarative, as opposed to a procedural, coding style. Obviously, you have to write JavaScript
at some point or other, but AngularJS encourages you to put this in the right parts of your application. As you might
expect, a good portion of this book will look at just what constitutes these “right parts”

Declarative vs. Procedural Programming

A classic example of a declarative programming language to which many developers can easily relate is SQL. When
you write an SQL query against a database such as MySQL, you don't really do the heavy lifting yourself. Instead, you
give rather high-level instructions to the database engine via a relatively simple select statement. You don’t worry
about how the database engine should pull the data together in the most efficient way, and you don’t worry about
things such as control flow and looping constructs—you just issue a select statement and expect the database to give
you back the data that you want. In a sense, ydeclarewhat you want, and it does the work for you.

Procedural programming, on the other hand, requires a more detailed and lower-level set of instructions. In
the extremely procedural C language, for example, you must take great care to reserve memory, detail the specific
instructions you want to be executed, and then worry about freeing up memory, making sure your algorithms perform
well and are thoroughly tested, and all sorts of other things.

Declarative programming is much more convenient than procedural programming, because it is often faster and
easier. You generally don’t have the same kind of granular control that you do with procedural programming, but you
often don’t need it. In fact, as you will see, AngularJS won't mind at all if you want to adopt a procedural approach
when it suits you.

Directives and Expressions

Let’s have a look at a few more AngularJS directives. Directives are a great example of the declarative programming
style that AngularJS encourages you to adopt. They are also at the heart of AngularJS, and they are a crucial part of
how you will deliver a great user experience.

What Is a Directive?

AngularJS uses directives to augment HTML with extra functionality. Essentialijrectivesare a convenient way to
declaratively call JavaScript functions. We will look at directives in much more detail in Chapter 5. For now, though,
following is a decent overview of directives.

Let’s try out the very handyngShowdirective. Check out Listing 2-4.

41

CHAPTER ZTHE BASICS OF ANGULARJS

Listing 2-4. A First Look angShow

<IDOCTYPE htmlI>
<html ng-app>
<head>
<title>Listing 2-4</title>
<script src="js/angular.min.js"></script>
</head>
<body>

<p ng-show="true">Paragraph 1, can you see me?</p>
<p ng-show="false">Paragraph 2, can you see me?</p>

<p ng-show="1 == 2">Paragraph 4, can you see me?</p>

</body>
</html>

Listing 2-4 shows four paragraph elements, each has been “augmented” by an AngularJS directive that goes by
the name ofngShow

Note The astute reader may have noticed that | have useddBad@mmy writing and the subtly
different termg-showin my code. Which is correct? AngularJS typically refers to directives in documentation by
their case-sensitive, CamelCase name (for exgghpldyut refers to directives in the DOM by using lowercase,
dash-delimited attributes (for exangpshpw).

What doesngShovdo? Much of the answer is in the name. ThyShowdirective will show, or hide, the element
on which it is declared, based on the expression provided to it. Load up Listing 2-4 in your browser, and you will see
that only the first and third paragraphs appear (as confirmed in Figu&3). They only appear because, in both cases,
their respective expressions evaluate to the Boolean value of true. The second and fourth paragraphs, however, do not
appear because their respectivagShovexpressions evaluate to the Boolean value of false.

Figure 2-3. ngShovin action

42

CHAPTER ZTHE BASICS OF ANGULARJS

Tip If amgShovwexpression evaluates to false, then a CSS classgibineeds dynamically added to the
element, causing it to become hidden. So, the element still exists in the DOM, but it is not displayed.

The ngShowdirective is very handy. You will use it often for hiding or showing regions of your user interface,
based on user input or other conditions.

Another common directive is thengClick directive. Just likengShowngClick expects an expression, but unlike
ngShowthis expression is only evaluated when the element it is declared upon is clicked.

Listing 2-5 showsngClick in action. Load it up in your browser and press the Increment button a few times.

Listing 2-5. Demonstrating ngClick

<!doctype html>
<html ng-app>
<head>
<title>Listing 2-5</title>
<script src="js/angular.min.js"></script>
</head>
<body>
<button ng-click="count = count + 1" ng-init="count = 0">
Increment
</button>
count: {{count}}
</body>
</html>

As you might have guessed, clicking the Increment button causes the value of count to increment. Each time the
button is clicked,ngClick evaluates the expression. As the count variable is used in an expression binding, we can see
its value updated in real time.

Here we have also used theglnit directive. You typically won't usenglnit very much, if at all, for reasons that
will make more sense when | discuss the MVC (Model View Controller) approach predominantly used in AngularJS
applications. However, here we use it to initialize the count variable to 0. You could just as easily have set this value to,
say, 10, in order to increment from a starting value of 10 instead of 0.

What Are Expressions?

You've seen a few expressions already, but what exactly are they? Essentially, they are JavaScript expressions, just like
the ones you already know and love. However, there are a few important differences.

u In AngularJS, expressions are not evaluated against the global window object; instead, they are
evaluated against a scope object.

u You don't get the usuaReferenceError or TypeError when trying to evaluate undefined
properties. AngularJS expressions are forgiving in that regard.

u You cannot use conditionals, loops, or exceptions. This is a good thing; you don’t want
complex logic inside expressions. (In Chapter 3, | will discuss where you do want them.)

u You can use AngularJS filters to format data before displaying it. (I cover Filters in Chapter 4.)

To get a sense of how expressions work and what you can do with them, take a look at Listing 2-6.

43

CHAPTER ZTHE BASICS OF ANGULARJS

Listing 2-6. A Quick Look at AngularJS Expressions

<IDOCTYPE htmlI>
<html ng-app>
<head>
<title>Listing 2-5</title>
<script src="js/angular.min.js"></script>
</head>
<body>

<h1>Expression Samples</h1>

<!I-- Basic arithmetic -->
<p>6 + 4 = {{6 + 4}}</p>

<l-- Using a JavaScript string method -->
<p>{{"Beginning AngularJS".toUpperCase()}}</p>

<!-- Searching for an occurence of 'D' -->
<p>{{"ABCDEFG".indexOf('D")}}</p>

<!l-- Ternary operation -->
<p>{{1==1? "Red" : "Blue"}}</p>

</body>
</html>

There is nothing complex going on here. It's all run-of-the-mill JavaScript code but now using AngularJS
expressions. Figure@-4 shows the results.

Figure 2-4. AngularJS expressions in action

There are definitely a few more things to know about expressions, and we will get to them as you learn more
about how we should be structuring and organizing our code. This is exactly what | will discuss in the next chapter.

44

CHAPTER ZTHE BASICS OF ANGULARJS

Summary

This chapter explored the concept of frameworks and why you would want to use one. At this stage, | hope that you
are feeling quite confident that AngularJS is the right one for you and that you are eager to learn much more in the
coming chapters.

You have downloaded and installed AngularJS, gained a sense of its “declarative-powered” directives, and
witnessed its very tidy use of expressions. You are in great shape already, and it's nearly time to get into the finer
details. Before we do that, however, | will take a slight detour in Chapter 3 and discuss some big picture topics,
including how to organize and structure AngularJS applications.

45

CHAPTER 3

Introduction to MVC

We have taken a quick look at AngularJS and how to get a simple Angular-based web page up and running, but the
reality is that you don’t need AngularJsS if all you want to do is build a very basic application.

One of the major strengths of AngularJS lies in its ability to help you properly organize and structure your
applications, and very small applications tend not to benefit much at all from this. Of course, smaller applications
should be properly structured too, but such applications are not as likely to require the rigid underpinnings and
formal structure of a medium- or large-sized application. The way you would approach pitching a tent is not the same
way you would approach building a log cabin.

With that in mind, in this chapter, we will look at what it means to organize and structure an application and how
the Model View Controller (MVC) pattern can help you to do both.

Design Patterns

Before we get into MVC, let’s talk about design patterns for a moment. After all, MVC is a design pattern, so it would
be good to know what design patterns are and why you should care about them. Essentialesign patternis a
documented solution to a recurring problem that programmers have identified—usually in a particular context.
Design patterns won't give you the code you need to solve a given problem, but they will propose a well-thought-out
and generally accepted approach that you might want to consider adopting yourself.

A good way to think of design patterns is that they are like recipes that have been created by programmers who
have spent a lot of time in the trenches. These programmers have found out, often through a combination of talent
and old-fashioned trial and error, a lot of really great ways to solve specific kinds of problems. Furthermore, these
programmers have decided to share these recipes with everyone else.

There isn’t really a formal standard that states how design pattern documentation should be written, but we will
examine something fairly typical. You will generally find something along the lines of what | have outlined in TaBl&
on design pattern documentation.

a7

CHAPTER AINTRODUCTION TO MVC

Table 3-1. Typical Design Pattern Documentation

Title Description

Pattern Name and A name that helps in referring to the pattern, often
Classification with a classification stating the type of pattern it is
Intent The goal of the pattern and the reason it exists
Motivation A scenario consisting of a problem and a context in

which this pattern can be used

Collaboration A description of how classes and objects used in the
pattern interact

Sample Code Actual code showing how the pattern can be used in a
programming language

Sometimes, you will find a lot more information about a design pattern than what | present here, but usually you
will find at least this much to help you understand its purpose and its intended uses.

Tip There is a school of thought that says that MVC is not a design pattern at all, rather it's an an architectural
pattern. There is no right or wrong answer, in my opinion, and the importanpatedrhere is

After reading through any given design pattern documentation and looking at any associated diagrams (which
are usually UML based; see the Tip here), you are typically in a much better position to determine if it is applicable to
the particular problem you are trying to solve. Patterns certainly are a tremendously useful resource, but there is one
really important thing to understand about them up front: they are not silver bullets. Think of them more like friends
that give good advice and not so much like divine intervention when you can't find an answer.

Tip The Unified Modeling Language (UML) is a general-purpose modeling language used in software developn
It provides a standard way to visualize the design of software systems.

Let’s study a very common and relatively straightforward design pattern called the Singleton pattern. This one
is well worth knowing as an AngularJS developer, though | have chosen it mainly because it is more digestible in this
introductory book than other, more involved design patterns. | don’t want to scare you off quite so early in the book!
Read through the sample Singleton pattern documentation in Tabl& 2.

48

CHAPTER 3INTRODUCTION TO MVC

Table 3-2. Singleton Design Pattern Documentation

Title Description

Pattern Name and Classification Singleton: an object creational pattern

Intent Ensures that a class has only one instance and provides a global point
of access to it

Motivation Sometimes it makes sense to control the creation of certain objects.
For example, rather than allow an application to create numerous
database connection objects, it may make more sense to allow for a
single connection object, which an application can access through a
gateway object, that provides access to a single instance.

Collaboration The Singleton collaborates with external objects.

Implementation Creates a class that can create a single instance of itself. This should be
the only way an instance can be created.

Sample Code Sample code is shown in Listing 3-1.

Let's work through a scenario. Assume that we found this design pattern documentation through an online
search after recognizing an issue within our application. Far too many objects of the same type were being created.
Let'’s further assume that these objects were quite expensive to create, with each object’s initialization causing
time-consuming and bandwidth-intensive connections to a remote system. We need to fix this.

Note One of the first and most well received books on design pesegndiatterns: Elements of Reusable
Object-Oriented Softwayd=rich Gamma et al. (Addison-Wesley Professional, 2015). It's well worth checking this
out, if you want to learn more about design patterns and how to use them.

So, we have read through the patterns documentation, and we want to figure out if and how this particular
pattern can be of any use. The Motivation section of Tab#e2 has got our attention—it certainly seems to fit the bill.
It's definitely worth further study to see if the code sample that came with it can shed any light on how we could put it
into practice.

Let’s look at the sample code in Listing 3-1. Don’t worry too much if you don't fully grasp what each and
every line is doing, as this listing uses some advanced JavaScript techniques that you may not be familiar with yet.
Nonetheless, do pay special attention to the comments.

Listing 3-1. A JavaScript Implementation of the Singleton Pattern

var Logger = (function() {

/[private variable to hold the only
/I instance of Logger that will exist
var loggerinstance;

/I Create the logger instance
var createLogger = function() {
var _logWarning = function(message) {
/I some complex work coud go here, but
/I let's just fake it

49

CHAPTER AINTRODUCTION TO MVC

return message.toUpperCase();

g

return {
logWarning: _logWarning
h

h
return {

/I Here is the crucial part. First we check
/ to see if an instance already exists. If
/I it does, we return it. If it does not, we
/I create it.

getinstance: function() {
if (loggerinstance) {
loggerinstance = createLogger();
}

return loggerinstance;

}

k
DIOE

/I Notice how we use getinstance() and we
// do not use direct object creation with the
/I new keyword

var myLogger = Logger.getinstance();
myLogger.logWarning("Memory use nearing maximum!");

This code sample represents a typical code snippet that you might find accompanying design pattern
documentation. It just so happens to be written in JavaScript, but it could just as easily have been written in C#, Java,
or any other language. (In fact, that is more likely to be the case.)

The essential aspect of Listing 3-1 is that it privately manages a single instancelofiger object. It isn’t possible
to create a newogger object directly. We have to use thgetinstance function to access the already-existintpgger
object (or, if it didn't exist already, the newly createtbgger object). This is the essence of the pattern, and it seems
to be a good solution for the problem we face in our own scenario: our applications issue of numerous objects of the
same type being needlessly created, over and over.

Along with a code sample such as this, you are likely to come across a UML diagram showing how objects used in
a pattern relate and interact with one another. | will stop short of getting into the nuances of UML, and in the case of
the Singleton pattern, by definition, there aren’t that many relations and interactions to show.

The usefulness of design patterns can be difficult to overstate. In our scenario, we had a serious problem within
our application, and the Singleton design pattern turned out to be a good way to solve it. This is a relatively simple
example of using design patterns to find solutions about which we can feel confident. Other programmers have used
this approach, and it is one that has come about through collaboration, testing, refinement, and lots of real-world use.
That has to be a good thing.

50

CHAPTER 3INTRODUCTION TO MVC

Design patterns are indeed a valuable resource, but you still have to put plenty of thought into how (and whether
or not) to use any given design pattern in a particular context. As specific as design patterns may seem in their
description and usage, they are still generalized solutions that may or may not apply to your needs. That being said,
a well-documented design pattern will help you make these decisions.

Tip Reading up on design patterns is actually a great way to improve your code. You may have solved a pr
a particular way, only to find that there is a design pattern dedicated to avoiding the approach you took! It migt
good for the ego, but it's a great way to learn.

With this short introduction to design patterns now complete, we can look at the specific pattern that we will use
throughout the rest of this book: the Model View Controller (MVC) pattern. You have to learn what MVC is, so that you
can apply it within AngularJS. However, we don’t actually have to write our own MVC solution, because AngularJS has
what you need baked right into the framework.

Model View Controller

| hope our quick discussion about design patterns has brought to the front of your mind that there are good ways and
not so good ways to design your applications and that there are helpful recipes out there that can help you design
better applications. Fortunately, the folks who created AngularJS have already put all of the pieces of the MVC pattern
into place for you. As the MVC pattern is an architectural pattern, which is realized through a number of other design
patterns, | won't include the rather extensive documentation for it here. Instead, we will focus on the AngularJS
implementation of it and consider what it does for us.

Let’s talk about the three major parts of the MVC pattern: the model, the view, and the controller. We're not
really speaking at a code level here; rather, we are talking at a higher level about how to organize and structure your
applications. MVC is often considered an architectural pattern, which is essentially a pattern that addresses some
aspect of an application’s overall organization and structure.

We will see how MVC comes together in code form later in this chapter, so don’t worry too much if it all seems a
little abstract as | am discussing it.

Tip Architectural patterns are often realized thmougtier of design patterns. As | said earksehtve
keyword here fgtternlit really depends on what level you happen to be speaking (and quite possibly to whom y
happen to be talking).

Model

The model represents the underlying, logical structure of data in a software application. It's a common mistake to
think of the model as the database behind your application, and it is much better to view the model as the body of
code that represents the data.

View

Aview is the body of code that represents the user interface (all of the things that the user can see and to which the
user can respond on the screen, such as buttons, dialog boxes, and so on). An application generally has multiple
views, and each view often represents some portion of your model.

51

CHAPTER AINTRODUCTION TO MVC

Controller

You can think of thecontroller as theintermediary for the view and the model. Examine Figurg-1. You can see that
the lines of communication correspond to this idea.

Figure 3-1. The MVC lines of communication

A Separation of Concerns

Great! We have some background on the three core components of MVC and how they relate to one another. Though,
at this stage, it may not be entirely clear why we should be using it. Now let’s take a look at the underlying purpose of
this pattern and what sort of problems it solves.

As is clear from the definitions above, the controller is actually keeping the model and the view separated—one
has no direct knowledge of the other. This is a fairly common design in software engineering, and the term used to
describe it isdecoupling

When you organize your applications in this manner, it promotes a principle known as Separation of Concerns.
Software that has been built around this principle tends to have distinct parts, each of which looks after a particular
concern. MVC is a great way of achieving this Separation of Concerns, and before | end this chapter, we will take a
quick first look at how AngularJS helps you build your applications in this manner.

I have talked a little bit about MVC and Separation of Concerns, but how do these ideas translate into benefits
for programmers and end users? Why should we take the extra time and effort it takes to build our applications in this
manner?

Why MVC Matters

A classic benefit of MVC is that you can, with relative ease, add a new format to your application. That is, you can
start off with a standard HTML-based set of views and then later add a new set of views supporting a totally different
format, such as Silverlight or a native mobile front end. Trying to achieve something like this when your application
has been poorly designed would be a nightmare. Take it from someone who has tried it both with and without an

MV C-style architecture—the difference in the effort required is huge!

The benefit stated previously exists because, through MVC, we apply the principle of Separation of Concerns. The
view is in no way exclusively tied to the model, so it is far easier to treat it as a distinct component that we can swap
out for another (or, as is quite common, compliment with another).

There are also benefits with regard to the methodologies and processes you (and your team) can use. For
example, Test-Driven Development (TDD) is very popular at present, and it leads to applications that are much
easier to test and continue to test as the application matures. Without achieving a solid Separation of Concerns, it can
become much trickier to set up good tests.

52

CHAPTER 3INTRODUCTION TO MVC

There really are many reasons to use MVC, and most of them are based around the commonsense idea that it
leads to a much more organized and well-structured application, one with distinct roles and responsibilities. This
might seem great from the point of view of the programmer who has to build and maintain the application—clearly
life is going to be much easier for this programmer if code has been carefully crafted and well-structured—but how is
this of any benefit to the end user of the application?

End users benefit from MVC because it leads to applications that are far less prone to bugs and much easier to
maintain. This is, of course, a huge benefit, and perhaps the single most important thing toward which we strive. An
end user who is provided with stable software, and who is given future releases and updates that don't break things, is
a happy end user!

MVC is a tried and tested way to build robust applications. Despite the extra up-front effort, it can save hours and
hours of time later on. As | said earlier, don’t worry if this all seems a little abstract at this stage, because once you see
it in action, it will all click into place. Before you know it, it will feel like second nature to you.

MVC the AngularJS Way

Let’s put the theory into practice—at least just a little bit, as this section will not be much more than a drive-by look at
the topics that | will cover in much more detail throughout the rest of this book.

AngularJS makes the creation of MVC-style applications relatively straightforward and, in my opinion, quite
enjoyable. | will point out at this stage, however, that there are a few more moving parts than you may be used to, and
a couple of new concepts that you will need to wrap your head around.

Let’s kick things off by looking at how the model, view, and controller manifest themselves in actual code, via a
very simple code example. | will use a partial code listing to represent each concern, and then | will pull it all together
into a complete code listing. This way, we can isolate the important parts first and then look at them working together
as a whole. The code shown in Listing 3-1 is what we will use to represent our model.

var employees = ['Christopher Grant', 'Monica Grant', 'Christopher Grant', 'Jennifer Grant'];

The employeesvariable is simply a hard-coded array of employee names. In the real world, this array would
usually be populated from a data store of some kind—an SQL database, for example. We don’t need to complicate the
listing with data-access code. (I will, however, discuss AngularJS support for accessing data later in the book.) The
important thing to understand about this line of code is that the array of employees is what represents our model.

It's worth making a clarification here, as there is often confusion around the termodel. Is the model all of the
objects that represent the entities in our data store, or is it just the one specific piece of information that we use in
a view (employees being an example of the latter)? The short and simple answer is that it depends on the context,
although it is quite common to refer to the former as thdomain model and the latter as theziew model

Let's turn our attention to the view. Here is a very simple example of what an AngularJS view looks like.

In AngularJS parlance, we would call this\daew template As was discussed earlier, the view is concerned with
presentation. More often than not, it represents the presentation of data from our model.

Number of Employees: {{ ourEmployees.length}}</h2>

This is basically just HTML and an AngularJS expression, and | will cover what’s happening here in a moment.
Right now, however, | want you to notice something interesting about Listing 3-2 and Listing 3-3. Neither has any
dependency on the other. This is good, and it is in line with our discussions around the desire to achieve a Separation
of Concerns. Though it does raise a very interesting question: How does the model data, that is, the employees array,
find its way into the view? Let's investigate this right now.

Listing 3-2 is where the really interesting stuff starts to happen, as the AngularJS MVC framework is starting to
emerge. The functionMyFirstCtrl is the controller. It is a common convention in AngularJS to use Pascal case when
naming the controller function (that is, to start with a capital letter and use a capital letter for each new word).

53

CHAPTER AINTRODUCTION TO MVC

Listing 3-2. MVC in Action
function MyFirstCtrl($scope) {

I/l populate the employees variable with some model data
var employees = ['Christopher Grant', 'Monica Grant', 'Christopher Grant', 'Jennifer
GrantT;

/I Now put this model data into the scope so it can be used in the view
$scope.ourEmployees = employees;

}

Review Listing 3-2. We assign the model data to therEmployeesproperty that we set on thi$scopeobject.
This is the answer: this is how the model data, the employees array, finds its way into the view.$8eepeobject was
supplied to our controller function by the AngularJS framework, and all that we needed to do was to populate it with
the data that we wanted to make available to the view.

Glance back at the view in Listing 3-2, and notice that the expression uses a referenaat&mployees You can
think of this expression{f{ourEmployees.length}} as effectively being the same thing §&scope.ourEmployees.
length}} . Don’t actually use a scope reference in this manner within an expression; it won’t work, as the use of the
current scope object is implicit.

Listing 3-3 pulls all of this together into a single MVC example. It's short and simple, but the essence of AngularJS
is on display here.

Listing 3-3. A Complete MVC Example

<IDOCTYPE html>
<html ng-app>

<head>
<script src="js/angular.min.js"></script>
<script>

function MyFirstCtrl($scope) {

var employees = ['Catherine Grant', 'Monica Grant',
'Christopher Grant', 'Jennifer Grant'

I

$scope.ourEmployees = employees;

}

</script>
</head>

<body ng-controller="MyFirstCtrl'>
<h2>Number of Employees: {{ ourEmployees.length}}</h2>

</body>
</html>

54

CHAPTER 3INTRODUCTION TO MVC

The output, as shown in Figur&-2, is simply a count of the number of employees, courtesy of theray.length
property.

Figure 3-2. Counting the number of employees (output of Listing 3-3)

Perhaps the most important aspect of Listing 3-3 is how we use a scope object, an instance of which, as we
discussed, was passed into our controller function by the framework. It really is quite fundamental to how AngularJS
does much of its work. We can already see it being used to decouple the model from the view, but it actually does
something a little bit more impressive than keep our code clean and modular. It is also a key player in the framework’s
ability to keep the model and the view in sync with each other. The changes made to the model were immediately
reflected in the view; we did not have to do any Document Object Model (DOM) manipulation.

Tip If you have been working with jQuery for a while, you might find the lack of DOM manipulation a bit pec
first. jQuery is all about DOM manipulation, and you might have to make an effort to shake off that way of think
you are working with AngularJS.

We are nearly at the end of this chapter, but before moving on, | want to show you one more code sample.
Listing 3-4 demonstrates another AngularJS approach toward code organization, to keep things clean and crisp.
Listing 3-4. Displaying the Employee Names
<IDOCTYPE html>
<html ng-app>

<head>
<script src="js/angular.min.js"></script>
<script>

function MyFirstCtrl($scope) {

var employees = ['Catherine Grant', 'Monica Grant',
'Christopher Grant', 'Jennifer Grant'

I

$scope.ourEmployees = employees;

}

</script>
</head>

55

CHAPTER AINTRODUCTION TO MVC

<body ng-controller="MyFirstCtrl'>

<h2>Number of Employees: {{ ourEmployees.length}}</h2>
<p ng-repeat="employee in ourEmployees">{{employee}}</p>

</body>
</html>

This listing isn’t terribly different from Listing 3-3—there is just one additional line of code. Instead of displaying
only the number of employees who work for us, we now use thgRepeatdirective to display the name of each
employee who works for us.

The ngRepeatdirective will repeat the instance of the element upon which it is declared (a paragraph element in
this case) for each item in a collection. As FiguBe3 shows, this results in a total of four paragraphs: one for each of
the employees in theourEmployeesarray. Consider this a teasengRepeatis quite powerful, and you will definitely be
seeing more of it in coming chapters.

Figure 3-3. Introducing ngDirective

Summary

I hope this chapter has started you thinking about the structure and organization of your applications. In the not-so-
distant past, a less formal approach to JavaScript development seemed to work well enough. Scripts were small and
played only a small role in application development, so it just didn’t matter to the extent that it does now.

| started off with a quick discussion about design patterns—just enough to put them on your radar and to let you
know that you are not alone. We then looked at the Model View Controller (MVC) pattern, the pattern predominantly
used when building AngularJS applications.

A quick look atngRepeatdemonstrated that AngularJS isn’t just helping us with the higher-level structural
aspects of our applications. The declarative approach taken with directives also helps us to keep our code clear and
concise.

JavaScript is used to build significant portions of web applications, so it is always important to consider
application design and structure.

56

CHAPTER 4

Filters and Modules

When working with data that has been retrieved from a database, you will spend a lot of time working with raw
unformatted data. It's not at all uncommon to come across dates that are formatted unusually, numbers that have far
too many digits after the decimal point, and people’s hames that are in all uppercase letters. Keep in mind that data
is not always stored in the best format for our own applications, and its original purpose might have been to service
a totally different kind of application. When presenting data to end users, however, we need a way to deal with such
things. Angular JS filters are often a very good way to do just that.

In this chapter, we will look at AngularJS filters, both the built-in variety and custom filters. We will also look at
AngularJS modules, which are important in their own right and are a prerequisite for creating custom filters.

Introduction to Filters

AngularJs filters format the value of an expression for display to the end user. They don’t actually change the
underlying data, but they do change how it is displayed in the particular case in which the filter is applied.

This is much easier to understand with the help of an example. First, let’s start off with some sample data
(see Listing 4-1) to which we can apply some filters.

Listing 4-1. Raw Sample Data

<script>
function MyFilterDemoCitrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT,
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan’

3
$scope.data = someData;

}

</script>

Data like this would typically come back from a request to a web service or a database, but we only want some
sample data, so that we can learn about AngularJS filters without the additional distraction of data access code. This
fictitious data, captured in a JavaScript object we have namedmeDatan Listing 4-1, represents some customer
details. We will use this data as the chapter progresses, starting now with a first look at the AngularJS filter syntax.

57

CHAPTER 4FILTERS AND MODULES

The first filter we will look at will address the issue of tHestName and surnameappearing in uppercase.
To improve this slightly, we will change it to lowercase. To achieve this, the main thing to know is that you use the
| (pipe) character, to invoke a filter. Later in this chapter, we will look at how to improve upon this even further, by
leaving the first character in uppercase and converting only the remaining characters to lowercase, a technique
known astitle casing

Listing 4-2 shows how this is done. ThiglyFilterDemoCtrl controller’s only task here is to make the data available
to the view. As you will recall from the last chapter, placing it in the scope does this.

Listing 4-2. Angular Filter Example

<IDOCTYPE html>
<html>
<head>
<title>Listing 4-2</title>
<script src="js/angular.min.js"></script>
<script>
function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT,
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan’

$scope.data = someData;

}

</script>

</head>
<body ng-app ng-controller="MyFilterDemoCtrl">

<p>
<l-- Unfiltered data -->
First Name: {{data.firstName}}

Surname: {{data.surname}}

</p>

<p>
<l-- Filtered data -->
First Name: {{data.firstName | lowercase }}

Surname: {{data.surname | lowercase }}

</p>

</body>
</html>

58

CHAPTER 4FILTERS AND MODULES

Listing 4-2 shows how easy it is to apply thewercase filter. We apply it by stating the value we want to filter,
followed by the| (pipe) character and then the name of the filter. The most important aspects of the code are shown
in bold. As Figure4-1 shows, the first paragraph displays the plain unfiltered data, and the second paragraph displays
the filtered data.

Figure 4-1. lowercase filte—before and after

You won't be very surprised to learn that there is a built-in filter namegppercase which, unsurprisingly,
converts characters to uppercase. AngularJS ships with a set of other handy filters, and we look at these in the next
section. However, before we get to them, let’s take a step back and consider why we might want to use filters. After all,
JavaScript already has what you need to perform these kinds of tasks. For example, we could just as easily have added
the code for lowercasing data values directly to the controller, instead of using filters. Listing 4-3 takes this approach,
and it produces the very same result as Listing 4-2.

Listing 4-3. Achieving Same Result Without Filter

<script>
function MyFilterDemoCtrl($scope) {

var someData = {
firstName: "JENNA',
surname: 'GRANT",
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan’

/I do the lowercaing here instead of using a filter
someData.firstName = someData.firstName. toLowerCase();
someData.surname = someData.surname. toLowerCase();
$scope.data = someData;

}

</script>

Using the approach taken in Listing 4-3, it is true that we bypass the need for filters, but there are a few things
to consider before you choose to adopt this approach. As | discussed in the last chapter, one very good reason to use
AngularJS is because you want to organize your code better and follow some common software development best
practices.

59

CHAPTER 4FILTERS AND MODULES

We have talked about the Separation of Concerns principle, so let us take a moment to consider whether or not
formatting tasks, such as changing the case of the text we present to our end users, logically belongs in a controller.
Doesn't this seem like a task for which the view should be responsible? In one sense, formatting data for presentation
is indeed a view-related concern. However, you could also argue that a controller should bear some responsibility for
making sure that data is ready for use in the view.

The developers of AngularJS take a stance on this and say that such concerns are better dealt with as the data
flows from the controller into the view. In fact, this is why a filter is called a filter; the data is “filtered” as it travels from
the controller into the view.

Some filters can be much more complex than simple case converters. In the lowercase scenario, we were able to
use a single JavaScript method call directly in the controller without things looking messy and out of place, but had
we wanted to implement title casing (whereby the first letter of each word is in uppercase and the remainder are in
lowercase), things would have gotten a lot more involved and required a much more modular solution. Obviously,
having to repeat such logic in each controller or application in which you might need it is not a very DRY approach.

Tip The DRY principle states'Ehagry piece of knowledge must have a single, unambiguous, and authoritative
representation within a systém.&asier way to say this is sifDply't Repeat Yourself.”

While it is true that the filter may be added to the view in multiple places, the underlying implementation of that
filter need only be written once.

Of course, it is up to you to decide how to approach any given situation. Filters are simply an option that you have
at your disposal. Nonetheless, filters are a great way to keep your code modular and clean, as they make for a good
unit of reuse across AngularJS projects. In fact, as there is a vibrant developer community both contributing to and
sharing AngularJs filters online. They make for a good unit of reuse for everyone.

Tip A great source of modules (filters, directives, and services) is awailabtecatules.org/

Built-in Filters

The empowering aspect of filters is, in my opinion, the ability to create your own filters and share them with the rest

of the team (or AngularJS community). That being said, AngularJS ships with a very handy set of filters. We will look at
these built-in filters now, starting with the number filter. We will look at how to craft a custom filter before the end of

this chapter.

The Number Filter

This filter will help us address another issue with our sample data: the overly precise value of the consumption
property (which represents the amount of data that the customer has used for this billing period). Let's make this
friendlier by rounding the number of places after the decimal point. Listing 4-4 shows how you can achieve this.

60

CHAPTER 4FILTERS AND MODULES

Listing 4-4. Rounding Up Values with the Number Filter

<IDOCTYPE htmlI>
<html>
<head>
<title>Listing 4-4</title>
<script src="js/angular.min.js"></script>
<script>
function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT',
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan’

$scope.data = someData;

}

</script>

</head>
<body ng-controller="MyFilterDemoCtrl">

<p>
Consumption: {{data.consumption }}

Consumption: {{data.consumption | number }}
</p>

</body>
</html>

Figure 4-2 shows both the unfiltered and filtered data generated within the paragraph element. This is a slight
improvement, as now we have just three digits after the decimal point, instead of six.

Figure 4-2. Rounding up numbers with the number filter

61

CHAPTER 4FILTERS AND MODULES

Of course, two digits would be far better and much more in line with end users’ expectations. As it happens,
the number filter takes a single parameter, which lets you tell it how many decimal places to round a number to.
This raises a question: How do you pass parameters to a filter? Fortunately, it is very easy. You use a colon and then
enter the parameter value, as shown in the code snippet below.

<p>Data used this quarter: {{ data.consumption | number:2}} gigabytes</p>

If you replace the paragraph in Listing 4-4 with the preceding snippet and load it into your browser, you will see
output identical to that in Figure4-3.

Figure 4-3. Using parameters to control the behavior of a filter

As you can see, the number filter, indeed all filters, are quite easy to use. You can very easily change the format
of data without actually changing the underlying data source and without cluttering up the view or controller with
presentation-related code.

If you are working with data in which pinpoint accuracy is required, you should be very careful when you are
performing rounding operations. Due to the way in which computers represent numbers internally, results are not
always totally accurate. A discussion of floating-point-number precision is a little out of scope here, but you can use
your favorite search engine to learn more, if this is something that might be important to you.

The Date Filter

The date filter is indispensable and extremely flexible. Consider tlimteJoined property of our sample data. It has
a value which, depending on the time when you view it, looks something like th010-03-22T13:00:00.000Z You
certainly don’t want to be showing it to end users in this format!

Tip Don't be fooled by the name. The date filter not only works with dates but also with times.

The date filter’s flexibility is due, in part, to the large number of format parameters you can pass to it and how
these can be combined to arrive at nearly unlimited ways of displaying dates and times (or portions of dates and
times). Table4-1 and Table4-2 show the available parameters. Look over these parameters, and then we will review a
code listing that shows some of the commonly used ones in action.

62

CHAPTER 4FILTERS AND MODULES

Table 4-1. Date Filter Parameters

Parameter Description

yyyy Four-digit representation of year (for exampleAD 1 => 0001, AD 2010 => 2010)
vy Two-digit representation of year, padded (00-99) (for examplaP 2001 => 01, AD 2010 => 10)
y One-digit representation of year (for exampleAD 1 => 1, AD 199 => 199)
MMMM Month in year (January-December

MMM Month in year (Jan-Deg

MM Month in year, padded 01-12)

M Month in year (1-12)

dd Day in month, padded Q1-31)

d Day in month (1-31)

EEEE Day in week Sunday-Saturday)

EEE Day in week Sun-Sat)

HH Hour in day, padded Q00-23)

H Hour in day (0-23)

hh Hour in AM/PM, padded (01-12)

h Hour in AM/PM, (1-12)

mm Minute in hour, padded (00-59)

m Minute in hour (0-59)

SS Second in minute, padded Q0-59)

S Second in minute 0-59)

.SSS or,sss Millisecond in second, padded Q00-999

a AM/PM marker

z Four-digit (+sign) representation of the time zone offset{200 — +1200)
ww ISO 8601 week of yeabQ-53)

w ISO 8601 week of yeab{53)

63

CHAPTER 4FILTERS AND MODULES

Table 4-2. Predefined Date Paramters

Parameter Description

medium equivalent to MMM d, y h:mm:ss afor en_US locale (for exampl&Sep 3, 2010 12:05:08 PM)
short equivalent to M/d/yy h:mm a' for en_US locale (for exampléd/3/10 12:05PM)

fullDate equivalent to EEEE, MMMM d; for en_US locale (for exampldsriday, September 3, 2010)
longDate equivalent to MMMM d, "Yfor en_US locale (for example&September 3, 2010)

mediumDate equivalent to MMM d, yfor en_US locale (for exampl&ep 3, 2010)

shortDate equivalent to M/d/yy' for en_US locale (for example€/3/10)

mediumTime

shortTime

equivalent to h:mm:ss a for en_US locale (for exampl€,2:05:08 PM)

equivalent to h:mm afor en_US locale (for exampl€,2:05 PM

The parameters in Tabled-1 certainly provide the ability to mix and match and create nearly any date and time
structure you need, but more often than not, you only need a typical date representation. For this, you can make use of
the predefined parameters described in Tabld-2.

I won’t cover all possible date parameter combinations—that would make for an extremely long code listing!
Listing 4-5, however, does show some typical date filter usage. The examples that are output in the first three
paragraph elements make use of the predefined parameters, and the example that is output in the last paragraph
element shows the “mix and match” approach.

Listing 4-5. The Date Filter in Action

<IDOCTYPE html>

<html|>
<head>

<title>Listing 4-5</title>
<script src="js/angular.min.js"></script>

<script>

function MyFilterDemoCitrl($scope) {

var someData = {
firstName: 'JENNA",
surname: 'GRANT,
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan’

kh

$scope.data = someData;

}

</script>

</head>

<body ng-app ng-controller="MyFilterDemoCtrl">

64

CHAPTER 4FILTERS AND MODULES

<p>medium: {{ data.dateJoined | date:'medium'}} </p>
<p>mediumDate: {{ data.dateJoined | date:'mediumDate'}} </p>
<p>shortDate: {{ data.dateJoined | date:'shortDate'}} </p>

<p>This customer joined in the month of {{ data.dateJoined | date:'MMMM'}} on a {{
data.dateJoined | date:'EEEE'}} at {{ data.dateJoined | date:'ha'}}</p>

</body>
</html>

In most cases, the predefined date parameters more than fit the bill; though the last paragraph shows that you
can also take a more granular approach. You can see the results in Figl#e

Figure 4-4. Date filter parameters in action

Notice that to produce the month and the day, we us&MM&hd 'EEEE respectively, which both appear in
Table4-1. You will not, however, seeha, as used to produce the time portion]2AMin Table4-1. You will see ant'
and an &, the former being the hour, and the latter being the AM/PM marker. It is perfectly acceptable, and often
necessary, to combine date parameters in this manner.

ThelimitTo Filter

We will finish up on the built-in filters with a look at thdimitTo filter. This handy filter lets you limit the amount of
information displayed from an array. It does this by creating a new array, which contains a subset of the items that are
contained in the original array. To showcase the usefulness of this filter, we will add a new property to our sample data
source. This new property will contain the customer’s historical data usage for the last 12 months. Listing 4-6 is the
controller, revised to show this new property.

65

CHAPTER 4FILTERS AND MODULES

Listing 4-6. Adding Historical Data to the Data Source

<script>
function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT’,
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan’,

/I Last 12 months of data usage
monthlyUsageHistory:
[123.659855,
89.645222,
97.235644,
129.555555,
188.699855,
65.652545,
123.659855,
89.645222,
97.235644,
129.555555,
188.699855,
65.652545]

h
$scope.data = someData;

}

</script>

We have 12 months of data in theonthlyUsageHistory array, but this could just as easily be, say, five years’
worth of data. Listing 4-7 uses thémitTo filter to display a summary view of the data (only the last three values).

Listing 4-7. Displaying a Subset of thenonthlyUsageHistory Data
<body ng-app ng-controller="MyFilterDemoCtrl">

<h2>Gigabytes used over the last 3 months</h2>

<li ng-repeat="gigabytes in data.monthlyUsageHistory | limitTo:5 ">
{{ gigabytes | number:2}}

</body>

66

CHAPTER 4FILTERS AND MODULES

UsingngRepeat we loop through themonthlyUsageHistory array and output each value (which itself is
formatted using thenumbeffilter). As Figured-5 shows, only the first five items are displayed. This is because we did
not, in fact, loop through themonthlyUsageHistory array. What we actually did was loop through a totally new array;
an array which was produced by thémitTo filter.

Figure 4-5. Using theimitTo filter to display a subset of data

Of course, if you wanted to show only the first three items, you could do so by udingtTo:3 . What if you
wanted to show only the last three items? Specifying a negative value can do this. If you replacé tredement in
Listing 4-7 so that it uses the following code snippet, you should see results like those shown in Figtée

<li ng-repeat="gb in data.monthlyUsageHistory | limitTo:-3 ">

Figure 4-6. UsinglimitTo to show items from the end of an array

Tip Filters do not change the underlying data upon which they operate.

There are other handy built-in filters that you can use, and you can find these in the APl documentation at
https://docs.angularjs.org/api/ng/filter . We will take a quick time-out from filters now and look at Angular
modules. An understanding of modules will put us in a much better position to tackle custom filters; which we will do
in the last section of this chapter.

67

CHAPTER 4FILTERS AND MODULES

AngularJS Modules

So far, we have not looked at AngularJS modules. Instead, we have placed all of our code within a controller
embedded within our HTML file, using the script tag. This approach has its place, but it is usually confined to very
small applications and demos (such as the code listings found in books like this). It isn't the recommended approach
to take for serious development.

What Is a Module?

A module is a collection of controllers, directives, filters, services, and other configuration information. The main
player in all this isangular.module, as it is the gateway into the Module API, the mechanism used to configure angular
modules. It is used to register, create, and retrieve previously created AngularJS modules.

This probably all sounds rather abstract, so let's look at a practical example by walking through the process of
setting up a default module for our application. The default module is the module that AngularJS will use as the entry
point into your application. (It may even be the only module you use.) Don’t worry if all this doesn’t make a lot of
sense at the moment, as we will look at a complete listing and talk more about what is happening when we build our
custom filter.

Add the following code to a new JavaScript file, which you can nammyAppModule.js

/I Create a new module
var myAppModule = angular.module('myAppModule’, []);

You just created a module. Wasn't that easy? Thdulemethod was used to create a module namedyAppModule
We also captured the returned object (a reference to the module just created) in a variable, also namgéppModule

You will notice that we also passed an empty array to the module method. This can be used to pass a list of
dependencies; that is, other modules that this module depends upon. We don’t have any dependencies, so we simply
pass an empty array instead.

We now have a module and a reference to this module, so now we can configure it with a custom filter, by adding
the following code below the previous line of code:

/I configure the module with a filter

myAppModule filter('stripDashes', function() {
return function(txt) {

/I filter code would go here

h

»;

Don't worry too much about the code within the filter method for now. This is something we will see more of
when we build a custom filter in the next section. The important part is that you attached a filter to the module. The
filter method lets you name your filter (we called this onstripDashes , because, as you will see in the next section, it
strips any dashes that might be contained within strings) via its first argument, and it lets you pass in a function as the
second argument. We will explore the purpose of this function shortly.

In a similar way, we can also add a controller to our module. In the preceding code, we usedfitter method
to configure a filter. In the following code, we use theontroller method to configure a controller.

/I configure the module with a controller
myAppModule.controller('MyFilterDemoCitrl', function ($scope) {
/I controller code would go here
}
);

68

CHAPTER 4FILTERS AND MODULES

Again, we get to provide a naméNlyFilterDemoCtrl') and pass in a function. This function is basically the same
function that we have been using as our controller within the script tags so far, only now it is attached to a module.

If controllers and other logic, such as filters, are created within an AngularJS module, how are they accessed and
used? This relates to the AngularJS bootstrapping process. Let's examine that now.

Bootstrapping AngularJS

We talked briefly about thengAppdirective earlier in the book, though we didn't really talk about the role it plays in
bootstrapping AngularJS. It might already have occurred to you that AngularJS is hard at work behind the scenes,
monitoring form fields, for example, so that it can respond to any changes and immediately update any bindings.

In fact, AngularJS is doing quite a lot behind the scenes, and it all starts to happen once the document is loaded,
because it found amgAppdirective. So far, we have usatjAppin its simplest form, as an attribute without any value.
However, you can specify an AngularJS default module, by providing a value. The following code snippet shaysp
with a value ofmyAppModule; which is the name of the module we have just created.

<html ng-app="myAppModule">

With the ngAppdirective in place, we can save our moduleayAppModule.jsinto thejs directory. Then we can
create a new pageandex.html , which will make use of this module. The next two code listings (Listings 4-8 and
Listing 4-9) will pull all of this together.

Listing 4-8. myAppModule.js

/I create a new module called ‘'myAppModule’ and save
/I a reference to it in a variable called myAppModule
var myAppModule = angular.module(" myAppModuld]);

/I use the myAppModule variable to
/I configure the module with a controller
myAppModule.controller('MyFilterDemoCitrl', function ($scope) {
/I controller code would go here
}
);

/I use the myAppModule variable to
/I configure the module with a filter
myAppModule filter('stripDashes', function() {
return function(txt) {
// filter code would go here
h
b;

Listing 4-8 is the module file in which we create a module and then configure a controller and a filter. Notice
that we named the JavaScript filenyAppModule.js'; we named the variable, which stores a reference to the module
'myAppModule; and we named the module itselimyAppModule! This is not an issue, and it does not always have to
be the case that naming follows this pattern. The key thing is to recognize that when we talk about the module, we
are talking about the object we created and named when we called thegular.module method. It is this name that
we can use to get a reference to the module whenever we need it. To clarify this, Listing 4-9 shows a slightly different
approach to setting up and configuring the module.

69

CHAPTER 4FILTERS AND MODULES

Listing 4-9. Referring to the Module by Name

/I Create a new module
angular.module(* myAppModuld]);

/I configure the module with a controller
angular.module(" myAppModulecontroller('MyFilterDemoCitrl', function ($scope) {
/I controller code would go here
}
);

/I configure the module with a filter
angular.module(* myAppModule filter('stripDashes’, function() {
return function(txt) {
Il filter code would go here
h
»;

This file does not use a variable to store a reference to the module. Instead, it uses the single argument version of
the angular.module method to retrieve a reference to it. This single argument is the name we gave the module when
we created it. It really doesn’t make much differese which approach you use, and both are commonly ed. | prefer
the approach in Listing 4-8, where we store a reference, as there is less repetition of the module name, so fewer chances
of typos creeping in. Sometimes, however, you might find you need to get a reference to a module, and the single
argument version of the module method might be the only way to get it. Now let's turn our attention to Listing 4-10
and the next step in the process.

Listing 4-10. Anindex.html File Set Up to UsenyAppModule

<IDOCTYPE html| >
<html ng-app="myAppModule"
<head lang="en">
<meta charset="UTF-8">
<title>Listing 4-10</title>
<script src="js/angular.min.js"></script>
<script src="js/myAppModule.js"></script>
</head>
<body ng-controller="MyFilterDemoCtrl">

</body>
</html>

With the default module created, all we have to do now is to associate it with dndex.html page. We usegApp
with the name of the module as its value to bootstrap the whole AngularJS process. Take note that we still have to
provide a script reference to thenyAppModule.jsfile, so that AngularJS can actually find the module we declared in
the ngAppdirective.

There is slightly more work in setting up a default module as opposed to lumping everything together in the
HTML file, but it's easy enough and soon becomes second nature. You should feel somewhat inspired by the clean
look of theindex.html page above. As you will see, having the JavaScript file separated from the HTML is well worth
the trouble. However, that is not all that we have achieved. We have also set up our application to use the AngularJS
module system, and this enables you to tap into all the benefits that go with it.

70

CHAPTER 4FILTERS AND MODULES

Creating a Custom Filter

At last, it's time to look at creating a custom filter. Modules are great, but, while important, they’re probably not the
most exciting topic! This is perhaps because they don’t directly produce any visual output. However, custom filters are
more exciting, and we are going to use one to solve another issue that we have with our sample data.

For some unknown reason, some values sent back to us are dash delimited. The back end team has told us that
this is the way that the data is stored in the database and that it cannot change it. Nonetheless, we aren’t very keen on
presenting it to our end users in this format. The plan property is an example of this; it has a valuesopér-basic-
plan" . We could easily deal with one case of this without a filter, but we will assume it is a common problem, and we
will use a filter to solve it across the whole application.

| find that the best way to go about writing a filter is first to forget about filters. | get the logic working as regular
JavaScript, and then | tie it into a filter once | am satisfied. The requirement here is relatively simple: we want to
remove any dashes and replace them with spaces. Listing 4-11 shows a basic script that does just what we need.

Listing 4-11. A Simple Replace Dashes Function

<script>

function stripDashes(txt) {
return txt.split(-").join(");

k

console.log(stripDashes("super-basic-plan™));
console.log(stripDashes("something-with-a-lot-more-dashes-plan"));
console.log(stripDashes("noDashesPlan"));

</script>

This function is relatively straightforward. It acepts a single argument—the dash delimited string—ahreturns the
modified string. We have used a few calls tmnsole.log for the purpose of verifying our expectation that it will strip out
all of the dashes and leave spaces in their place. The following output suggests this function is fit for this purpose:

super basic plan
something with a lot more dashes plan
noDashesPlan

Tip These days, it is increasingly common for JavaScript programmers to write formal unit tests, but we wo
explore that topic very much in this book. Realistically, a few catisole.itgg method do not constitute proper
testing. As you have chosen to read a book about a framework that fully supports unit testing, | strongly recom
you read up on the topic in the near future.

As the function is working as we expect it to, we are now ready to convert it to an AngularJS filter. The metleogser
to create an AngularJsS filter is named, unsurprisingly, filter. It accepts two arguments: a name for the filter afetry
function. We will name our filter'stripDashes' , and we will create a factory function that returns oustripDashes
function. That may have sounded a tad confusing, particularly the bit about factory functions. As usual, a code listing
should help clarify. Listing 4-12 is the filter method from Listing 4-9, revised to include the actual filter logic.

71

CHAPTER 4FILTERS AND MODULES

Listing 4-12. An Angular Filter Implementation

myAppModule filter('stripDashes’, function () {
/l the function we are in returns
/I the function below
return function(txt) {
return textToFilter.split(-").join(" *);

k
b

Of particular note here is the fact that théllter ~ function does not itself implement our logic; rather, it returns
a function that implements it. This is why that second argument supplied to the filter method is called a “factory
function”; its main purpose in life is to manufacture functions. This can seem a little strange at first, but it is a common
design pattern (generally known as théactory patterr), and it's certainly not difficult to implement. It might help if
you think about this from AngularJS’s point of view: we don’t want to use a function here and now, but we do want to
return a function to AngularJs, for it to utilize whenever we invoke the associated filter.

The argument we namedxt represents the expression value that is passed in to this filter function when it is
used, that is, it’s the value we are filtering. In Listing 4-13, which uses our new custom filter, you can seetthatvill
be the value ofdata.plan .

Listing 4-13. Trying Out thestripDashes Filter

<IDOCTYPE html>
<html>
<head>
<title>Filter Demo</title>
<script src="js/angular.min.js"></script>
<script src="js/myModules/myAppModule.js"></script>
</head>
<body ng-app="myAppModule" ng-controller="MyFilterDemoCtrl">
<p>Plan type: {{data.plan}}</p>
<p>Plan type: {{data.plan | stripDashes}}</p>
</body>
</html>

There you have it, a very handy filter that we can reuse across our application. As an additional example, let's
create another filter. As | mentioned earlier in the chapter, we can improve upon the way we handle tingtflame and
surnameby using a technique known asitle casing instead of simply converting them to lowercase. We can do this by
making sure the first character is in uppercase and all of the remaining characters are in lowercase. As before, let’s first
write the code that will accomplish this, before we create the filter itself. Have a look at Listing 4-14.

Listing 4-14. A Basic Title Casing Function

<script>

function toTitleCase(str)

{

return str.charAt(0).toUpperCase() + str.substr(1).toLowerCase();

}

72

CHAPTER 4FILTERS AND MODULES

console.log(toTitleCase("jennifer"));

console.log(toTitleCase("JENnIFEr));

console.log(toTitleCase("JENniFEr amanda Grant"));
</script>

Let's have a look at the output of Listing 4-14 and see if it meets our needs.

Jennifer
Jennifer
Jenni.amanda grant

It's a fairly simple function, and it does what we need it to do. That is to say, it will indeed convertfirgiName and
surnameto title case. It does so by using the string methodbarAt() method to access and convert the first character
to uppercase (as returned bgtr.charAt(0).toUpperCase()) and concatenating the resulting value to a lowercased
portion of the string that consists of all but the first character (as returned bir.substr(1).toLowerCase()).

However, | don't like the fact that this function works only on the very first word when it is given a multiple word
string as an argument. While we could perhaps get away with this for the cases in which we only want to work with a
single word, it is not a very forward-thinking approach. Let’s add the ability to handle multiple words (see Listing 4-15).

Listing 4-15. A Better Title Casing Function

<script>

function toTitleCase(str)

{
return str.replace(/\w\S*/g, function(txt){return txt.charAt(0).toUpperCase() + txt.

substr(1).toLowerCase();});
}

console.log(toTitleCase("jennifer"));
console.log(toTitleCase("JENnIFEr));
console.log(toTitleCase("JENniFEr amanda Grant"));

</script>

The following output shows that this is a better implementation. The last line now shows that each word has had
its first character converted to uppercase.

Jennifer
Jennifer
Jennifer Amanda Grant

73

CHAPTER 4FILTERS AND MODULES

Of course, the function is now a little more complicated. The trick to understanding it lies in the use of the string
object'sreplace() method. This method is very powerful, but it does require some knowledge of regular expressions
before you can truly master it. A regular expression is a sequence of symbols and characters expressing a pattern to
be searched for within a longer piece of text. The first argument to this method is a regular expression, which looks
like this: A\wAS*/g . More specifically, in this particular case, it is looking for each individual word. The anonymous
function, which is the second argument, is executed for each word that is found. This function uses the same logic
you saw in Listing 4-12; therefore, each word now has its first character converted to uppercase and all remaining
characters converted to lower case.

Now we will use this approach to create another filter in the module we created in Listing 4-9. We will name this
onetoTitleCase . This is shown in Listing 4-16.

Listing 4-16. An Angular Filter Implementation

myAppModule filter("toTitleCase", function () {
return function (str) {
return str.replace(/\w\S*/g, function(txt){ return txt.charAt(0).toUpperCase() + txt.
substr(1).toLowerCase();});
h
D

With the filter in place, we can now make use of it. Listing 4-17 shows it in action. In this example, we show
the filter working on individual words (firstName andsurnamg, and we also see it in action on a concatenation of
firstName andsurname

Listing 4-17. Using thetoTitleCase Filter

<IDOCTYPE htmlI>
<html>
<head>
<title>Filter Demo<i/title>
<script src="js/angular.min.js"></script>
<script src="js/myModules/myAppModule.js"></script>
</head>
<body ng-app="myAppModule" ng-controller="MyFilterDemoCtrl">
<l-- Display customer name in title case -->
<p>First Name: {{data.firstName | toTitleCase}}</p>
<p>Surname: {{data.surname | toTitleCase}}</p>
<p>Full Name: {{ data.firstName + data.surname | toTitleCase}}</p>
</body></html>

Summary

We looked at both filters and modules in this chapter, and you learned how they relate to each other. AngularJS ships
with some handy built-in filters, and you now know how to create your own. You can also benefit from filters that have
been made available online (such as those found http://ngmodules.org/).

Modules gave us something to “attach” our filter to, and you also learned that modules are AngularJS’s preferred
mechanism for packaging and organizing code. We will take the module approach for the rest of the book, so there is
still plenty of time to see them in action, should the topic still seem a little hazy.

74

CHAPTER 5

Directives

Most JavaScript frameworks have a “special something” that sets them apart. That special something in the case of
AngularJS is undoubtedly directives. The idea that we can use a declarative approach that lets us augment HTML with
new capabilities has great appeal. | suspect this has very much to do with clean looks and intuitive syntax, but it might
be because it is a fun and enjoyable way to approach client-side web development.

In this chapter, | will recap some of the things we have already been using, by looking at the built-in directives.
You will also have a first look at creating custom directives.

Directives, in Angular JS, are essentially JavaScript functions that are invoked when the Document Object Model
(DOM) is compiled by the Angular JS framework. | will touch on what is meant by the DOM being “compiled” when
we take a peek behind the scenes later in the chapter, but for now, it is enough to know that directives are “attached”
to their corresponding DOM elements when the document is loaded.

Tip Don't let the wocdmpilescare you off! It is simply AngularJS terminology for the internal mechanism tha
used to associate directives with HTML elements.

Due to this this powerful concept, Angular JS lets you create totally new directives that we can use to encapsulate
logic and simplify DOM manipulation—directives that can modify or even create totally new behavior in HTML.

What can we use directives for? As directives can modify or even create totally new behavior, we can use
directives for anything from simple reusable blocks of static content right through to sophisticated client-side user
interfaces with network and database connectivity—and everything else in between. The built-in directives provide
the general level of functionality that you would expect to find—the bread-and-butter directives, so to speak—though
custom directives let you push things much further. The only limit is your imagination. (Well, maybe your JavaScript
skills have some impact on this too!)

Of course, Angular JS is much more than directives; however, they do seem to be the main attraction. | hope, by
the end of this chapter, you will have gained an appreciation of why this is so.

75

CHAPTER 5DIRECTIVES

The Basics of Directives

What do directives look like? You are no doubt thinking that you have seen enough in use so far to know the answer
to that question. It may surprise you to learn that directives can take on a few different forms. Let’s pick on the
ngController directive as an example.

As you know, thengController directive looks like the following:

<div ng-controller="myFilterDemoCitrl|"></div>

This is a typical directive declaration, and it is by far the most common way to use directives: that is, as an
attribute. One potential issue with this approach is that the document that contains it will not validate as HTML5-
compliant. If this is a concern to you, or your organization, you can do the following instead:
<div data:ng-controller="myFilterDemoCtrl"></div>

This is very similar to the approach to which we are accustomed, though here we use the pedita: before our
directive name. Validators are happy with this, because it uses a standard approach to creating custom data attributes.

In both the preceding cases, we invoke the directive using an attribute, though this is not our only option. All of
the following methods are also technically possible:

As an attribute:

As an element:
<my-directive></my-directive>

As a class:

As a comment:
<!-- directive: my-directive expression -->

| say “technically possible,” because directives authors may or may not have enabled their directives to be used in
all possible forms. You will learn more about this when we build a custom directive later in this chapter. In reality, you
won’t use the last two options, as they exist mainly for use with much older browsers, and you will rarely see them in

use in the wild. Still, it's nice to have options, and at least you won't be caught unawares if you should stumble upon
any of these.

Using Directives

A directive is rarely an island unto itself. That is to say, directives often need to communicate and interact with the rest
of your application. This is usually done through a scope, as you have seen in previous chapters. Let’s start building a
small part of an application that shows this idea in action.

76

CHAPTER 5DIRECTIVES

Listing 5-1 showsproduct-detail.html . This is the HTML and CSS code for a product selection page. We will
focus our efforts on an exciting new fictitious product: the AngularJS socks. These amazing socks, created specifically
to warm the feet of AngularJS developers, come in a variety of colors. The requirement here is to hide the list of
available colors until the customer is ready to choose one. The directives we will use to achieve all of thisg@ick ,
ngHide andngController .

Note It is an established convention in the Angular world to refer to directives using CamelCase when writir
them. For example, we would mg@tentroller , as | do in the preceding paragraph. This can be a little confusing,
because to use a directive in code, you must use the dash-delimited form of its name. For example, we would
aforementioned directivagisontroller . You will see this convention in practice when you view the official Angul
documentation or read other books on the topic.

The bulk of this code is the CSS, which, for the most part, sets up the colors for the assocthteélements. You
will see that, due to theng-hide="isHidden" directive placed on each of thesdiv elements, the page defaults to a
state in which the color list is hidden.

Listing 5-1. product-detail.html , a Basic Product Detail Page

<IDOCTYPE html| >

<html ng-app="myAppModule">

<head>
<title></title>
<script src="js/angular.js"></script>
<script src="js/myAppModule.js"></script>
<style>

body {
font-family: "Lucida Grande", "Lucida Sans Unicode", Helvetica, Arial, sans-serif;

}

div {
margin: 20px;
padding: 20px;
font-size: 16px;
color:#fffff;

}

#red {
background-color: red,;

}

#green {
background-color: green;

}

#blue {
background-color: blue;

}

77

CHAPTER 5DIRECTIVES

#purple {
background-color: purple;

}

#aray {
background-color: gray;
}

#olive {
background-color: olive;

}

</style>
</head>
<body ng-controller="myProductDetailCtrl">

<h2>AngularJS Socks</h2>
<p>Keep warm this winter with our 100% wool, 100% cool, AngularJS socks!</p>

<button ng-click="showHideColors()" type="button">
{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}
</button>

<div id="red" ng-hide="isHidden">Red</div>

<div id="green" ng-hide="isHidden">Green</div>

<div id="blue" ng-hide="isHidden">Blue</div>

<div id="purple" ng-hide="isHidden">Purple</div>

<div id="gray" ng-hide="isHidden">Dark Slate Gray</div>
<div id="olive" ng-hide="isHidden">Olive</div>

</body>
</html>

Figure 5-1 shows how this page looks when it first loads. A product description and a button that will show or
hide the available colors when clicked are displayed.

Figure 5-1. The default view oproduct-detail.html >

78

CHAPTER 5DIRECTIVES

As available space on today’s screens can be quite limited, it is incredibly useful to be able to hide information
and to make it available on demand. FigurB-2 shows how it looks when the Show Available Colors button is clicked.

Figure 5-2. The Show Available Colors view pfoduct-detail.html

The interesting thing about this implementation is how the logic is assembled. It's intuitive, and it doesn’t leave a
trail of messy JavaScript code in its wake. In fact, theduct-detail.html file is primarily HTML and CSS code.
Ofcourse, there must be some JavaScript code somewhere. I'm hoping that, with last chapter’s coverage of modules
in mind (and the ng-app="myAppModuledirective on the second line), you already know where this JavaScript is. It is
tucked away in a module file. Let’s have a look at this module now (see Listing 5-2).

Listing 5-2. The myAppModule.jsApplication Module

/I Create the module
angular.module(‘'myAppModule’, []);

/I configure the module with a controller
angular.module('myAppModule’).controller('myProductDetailCtrl', function ($scope) {

// Hide colors by default
$scope.isHidden = true;

79

CHAPTER 5DIRECTIVES

/Il a function, placed into the scope, which

// can toggle the value of the isHidden variable

$scope.showHideColors = function () {
$scope.isHidden = !$scope.isHidden;

}

It's surprisingly short, mainly because we don’t actually do very much heavy lifting ourselves. Instead, we
concentrate on managing the state of thisHidden variable. ThengHide directive is taking care of how the underlying
task is actually implemented.

As you may have come to expect by now, we are utilizing the scope object. ConsequentlyistHalden variable
and theshowHideColors() function can be used in the directives expressions. These two actions constitute the wiring
up of our logic.

Take a look at the following excerpts from thgroduct-detail.html file from Listing 5-1. You can see where the
showHideColors() function that we assigned to the scope is used hgClick

<button ng-click="showHideColors()" type="button">
{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}
</button>

... and where thésHidden variable we assigned to the scope is used tyHide

<div id="red" ng-hide="isHidden" >Red</div>

Tip Just a reminder: There is no need to spessyotiedbject within these Angular expressions, as expressions
are implicitly associated with a scope. Attempting td%oppaysHidden" in the above expression would not
work.

Why are all of the colodiv s hidden by default? This is because the expressidstlidden, provided to thengHide
directive on each of thaliv s evaluates to true. What is really cool, due to the live updating that Angular JS performs,
is that anytime the value ofsHidden changesngHide will respond accordingly. Of course, we want it to change, and
that is why we use the Show Available Colors button along with thgClick directive.

The button uses thengClick directive, and the expression we pass to this directive is a call to our
showHideColors() function. It is this function call that will change the state of thesHiddenvariable, thereby causing
the ngHide directive’s expression now to evaluate to false. Consequently, the cadior s become visible.

An interesting requirement in the case of the button is that we want the text to adapt when the button is clicked.
We do this using a particularly helpful technique that can be used within Angular JS expressions. I'm referring to the
following line:

{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}

This expression uses the ternary conditional operator. It can look a little odd if you haven'’t seen it before, but it's
actually quite easy to use. The first portion, the bit before tfe(question mark), must evaluate to true or false. If it
evaluates to true, the statement before the(colon) is executed; otherwise, the one after it is executed. In our case, the
text appearing on the button will update itself, based on whether or not the coldiv s are currently hidden, because
we useisHidden to drive the outcome.

80

CHAPTER 5DIRECTIVES

For a relatively small amount of code, we get a fairly useful piece of functionality. This shows how directives can
be greater than the sum of their parts. It also shows, | hope, that directives can lead to well-encapsulated code that can
keep complexity out of sight. We can do even better still, but we will get to that when | cover custom directives in the
last section of this chapter.

Built-in Directives

In this section, we will take a look at a few very useful built-in directives. We can’t look at all of them here, as it would
take far too long. However, | would like to give you a sense of the directives that ship with the framework and some
examples of how they work. | won't pay much attention to HTML form-related directives, as these get their own
coverage in the next chapter.

ngBind

Much of the time, you don’t usengBind directly, because the double curly braces achieve the same thing. For
example, the following two code snippets are functionally equivalent:

{{2+2}}

Both ngBind and the expression syntax ask Angular JS to display the value of a given expression and update the
output accordingly when the value of that expression changes.

If we have expressions, why bother to usgBind? A benefit of using thegBind approach relates to the fact that,
if a document takes some time to load, your HTML page might temporarily show the raw expressions to your end
users. That is to say, they may literally see tf{@+2}} appear momentarily before Angular JS gets a chance to compile
it and show the desired values. UsinggBind does not have this unfortunate side effect.

You probably don’t want to give up using the curly brace syntax, so keep reading. fig€loakdirective is here to
save the day.

ngCloak

If your document is taking time to load, and you are noticing issues with the raw expressions that are appearing, you
don't have to use thengBind approach mentioned previously. You can usegCloakinstead. This directive is shown in
action following:

<p ng-cloak>{{ 2 + 2 }}</p>

Here we “cloak” the Angular expression simply by declaringgCloak (no value is required for this attribute). The
cloaking of the expression happens becausgCloakapplies a CSS rule that hides it, although it is only hidden until
Angular JS has determined that it can display the evaluated value.

It is tempting simply to add this directive to théody element, so that it applies to the whole document hierarchy,
but often this is not a good idea. This would prevent the browser’s natural desire to render the page progressively.
Instead, it is often better to apply it on individual elements. Better yet, if your document is not large enough to be
exhibiting this undesirable behavior, don't use it at all!

81

CHAPTER 5DIRECTIVES

nginclude

This handy directive lets you include the contents of another file within your document. Take, for example, the very
small file in Listing 5-3, which we have namethclude-me.html .

Listing 5-3. include-me.html

<p>Thanks for visiting our website!</p>
Now, let’s include this file’s output at the bottom oincludes-in-action.html (see Listing 5-4).

Listing 5-4. includes-in-action.html

<IDOCTYPE html>
<htmlI>
<head>
<title></title>
</head>
<body>
<h1>Includes in Action</h1>

<p> You should see the inluded files contents below</p>
<div ng-include="include-me.html"></div>

</body>

</html>

This directive is easy to use, but there is one potential pain point for the Angular JS beginner. Be aware that
nginclude expects to be supplied with an Angular JS expression. Remember, an Angular JS expression is a subset of
JavaScript, and it follows all the usual rules. A string must either be single-quoted or double-quoted. As the Angular
JS expression is itself double-quoted, the string you provide within it must be single-quoted. This is why we use
"include-me.html™ . Using"include-me.html" simply wouldn’t work.

Note Thenginclude directive has additional options, which we will examine further when | talk about animations,
in Chapter 9.

ngShow and ngHide

The ngShowdirective will show or hide the HTML element upon which it is defined. The element is shown or hidden
by adding or removing a predefined AngularJS class callad-hide . Thep element in the following example will be
shown only when$scope.correctAnswer istrue .

<p ng-show="correctAnswer">That answer is correct!</p>

If we assume thatbscope.correctAnswer isfalse ; looking at the source code of the HTML page would reveal
that the ngHide class has been added to theelement by the AngularJS framework.

<p ng-show="isCorrectAnswer" class="ng-hide" >That answer is correct!</p>

82

CHAPTER 5DIRECTIVES

Theng-hide class is very simple and nothing more than a single CSS rule, as follows.

.ng-hide{
display: none limportant;

}

As you might imagine, thengHide directive does the exact opposite. The following example achieves the same
result as the previous example, but by asking the question in a different way. Here, the text withingledement is
hidden when $scope.correctAnswer isnot true .

<p ng-hide="IcorrectAnswer">That answer is correct!</p>

ngRepeat

The ngRepeatdirective is definitely one of the most useful built-in directives. It is, essentially, a looping construct that
instantiates a template once for every item in a collection (for example, an array). It also has a number of useful built-
in variables, which are shown in Tabl&-1.

Table 5-1. ngRepeatBuilt-in Variables

Variable Name Type Description

$index Number Iterator offset of the repeated element (0..length-1)

$first Boolean True, if the repeated element is first in the iterator

$middle Boolean True, if the repeated element is between first and last in the iterator
$last Boolean True, if the repeated element is last in the iterator

$even Boolean True, if the iterator position$index is even (otherwise, false)

$odd Boolean True, if the iterator position$index is odd (otherwise, false)

Let's have a look at a code listing (Listing 5-5) that putgRepeatand some of these built-in variables to use.

Listing 5-5. UsingngRepeatwith Some of the Built-in Variables

<h2>My Favourite Cities</h2>
<div ng-repeat="city in ['Liverpool','Perth','Sydney','Dublin’,'Paris]">

{{Sindex}}. {{city}}
{{$first ? '(This is the first row)" : "}} {{$last ? '(This is the last row)' : "}}

</div>
The output can be seen in Figurg-3. The$index variable gives us the row numbers, and we u$érst and
$last to output conditionally, whether or not we are on the first or last row, respectively. The most important thing to

understand about thisngRepeatexample is the format of the expression with which we provide it.

“city in ['Liverpool’,'Perth','Sydney','Dublin’,'Paris’"

83

CHAPTER 5DIRECTIVES

This format follows thevariable in collectionpattern. | chose the name “city” for the variable, and the collection
is the array of cities. Another important thing to know aboutgRepeatis that it creates, at each pass through the loop,
a new scope object, each one quite distinct from the controller's ovscopeobject. In fact, this is why we can have
different values for variables, such adindex andcity .

Figure 5-3. Repeating withhgRepeat

Event-Handling Directives

We have seemgClick already, though Angular JS comes with similar directives for handling the usual browser events,
such asondbilclick , onblur, onfocus, andonsubmit. Each directive works pretty much as you would expect and is
named using the same format. So, for the list of events | just mentioned, we would have the corresponding Angular JS
versions:ngDblclick , ngBlur, ngFocus andngSubmit

You don't have to use these directives, as Angular JS in no way prevents you from using the regular JavaScript
event handlers. However, it is generally recommended that you do use them, especially if you want to stay within the
Angular JS framework. For example, a big difference between regular events and their Angular JS equivalents is that
the equivalents take Angular JS expressions. This means that you have access to the implicitly avafabtEpe object,
among other things.

Using the APl Documentation

There are far more directives than | can cover here, though all of them are well-documentedhtips://docs.
angularjs.org/api/ng/directive/ . This documentation is quite good, though it can be a little terse at times. It is
well worth familiarizing yourself with it. Following is a brief guide to how it is usually presented (see Tabl®).

84

CHAPTER 5DIRECTIVES

Table 5-2. Information Available Through the Online API Documentation

Directive Name and Overview The directive’s name, for examplengRepea

Directive Info Additional information, such as the priority level, which may impact
the behavior of the directive

Usage This corresponds to our discussion of how a directive can be used.
For example, some directives can be used only as an attribute.

Arguments This tells you if the argument(s) should be an Angular JS expression,
a string, or some other value.

Example A brief example of the directive in action

I wish | could say that all of the answers are to be found in the API documentation, but many of the problems that
| see posted in online forums are indeed readily available here. If you run into problems, or you just want to look up
some more directives, it should certainly be at the top of your list of places to go to find help.

Creating a Custom Directive

While there are plenty of built-in directives, you will occasionally need to build your own application-specific
directives. In this section, we will look at an example that should serve to get you up to speed on the basics of how to
do just that. Custom directives can seem a bit intimidating at first, mainly because there are a lot of moving parts.

My aim here is to get you up to speed with the basics and put you in good shape to tackle the more advanced
aspects as and when you need them. To achieve this, we will create a custom directive that we wilcokdtList . This
directive will encapsulate much of the code we looked at in Listing 5-1. To recap, this produced a color selection list,
which could be activated and deactivated using a button. Listing 5-6 shows how this directive can be used within the
product-detail.html file.

Listing 5-6. ThecolorList Directive in Use

<IDOCTYPE html >
<html ng-app="myAppModule">
<head>
<title>A Custom Directive</title>
<script src="js/angular.min.js"></script>
<script src="myAppModule.js"></script>
</head>
<body ng-controller="myDemoCtrl">
<h2>AngularJS Socks</h2>
<p>Keep warm this winter with our 100% wool, 100% cool, AngularJS socks!</p>

<div color-list colors="colorsArray"></div>

</body>
</html>

85

CHAPTER 5DIRECTIVES

As you can see, it's quite easy to use this directive. It looks and behaves in the same wapdsct-detail.
html. It houses a button that is used to show and hide the available colors, but rather than hard-code the colors using
manually crafteddiv elements, as we did earlier, we will make this directive much more reusable, by using
acolors attribute. This allows us to pass in an array of colors, so that we can determine which colors to use on a
case-by-case basis.

Like filters and controllers, directives are configured on a module. Let's examine how this works (see Listing 5-7).
It should look relatively familiar.

Listing 5-7. Configuring a Directive

myAppModule.directive('colorList’, function () {
return {

restrict: 'AE',
template:
"<button ng-click="showHideColors()' type="button'>"
+ "{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}"
+ "</button><div ng-hide='"isHidden' id="colorContainer>"
+ "</div>"

D

We'll build on this until our directive is fully implemented, but for now, let’s focus on what is achieved in
Listing 5-7. Using thedirective method on the module, we have registered a directive with the Angular JS framework.
We named this directive, via the first argumentolorList . The second argument is an anonymous function, which
returns adirective definition object This is a regular JavaScript object that we need to set up with various properties
that tell Angular JS all about our directive. So far, all that we have configured isrbsrict andtemplate options.
Let’s deal withrestrict ~ first.

The restrict Option

Therestrict option is used to specify how a directive can be invoked. As you saw earlier, there are four different ways
to invoke a directive. This corresponds to the four valid options foestrict

Table 5-3 provides an example of each valid option. As our directive uses the vald&;'this means that it can be
invoked as either an attribute or an element. As | mentioned earlier in this chapter, you won'’t use the last two options,
CandM as they exist mainly for use with much older browsers.

Table 5-3. Valid restrict Options

Option Example

A

E <color-list></color-list>

C
M <!-- directive: color-list -->

86

CHAPTER 5DIRECTIVES

When should you use an element and when should you use an attribute? You can use either, and the end
result will be the same. However, the Angular team recommends that you use an element when you are creating a
component that is in control of the template and an attribute when you are decorating an existing element with new
functionality.

The template Option

As the name suggests, thiemplate option lets you define a template. The template is appended to your directive
declaration by default (though there is aeplace option that allows you to replace the element on which the directive
occurs entirely). Let’s consider the HTML code that | have provided as the value to template option. | have shown
this again in Listing 5-8, but, this time, without the string quotations, so it is easier to read.

Listing 5-8. The Value of theemplate Option

<button ng-click="showHideColors()' type="button'>

{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}
</button>

<div ng-hide="isHidden' id="colorContainer'></div>

You will recognize the button and the expression within it. Théiv with the id ofcolorContainer is new. This
is because we will abandon the approach of hard-coding the coldiv s manually in favor of dynamically appending
them to thisdiv, based on array values. We will see this in action shortly.

Tip I've kept things together here for convenience, but there is an additional option for temyplatesiin the
option. This lets you move the source code for your template into a separate file. This is then loaded via Ajax. |
templates, this is usually better than usiegtiege option, as all you have to provide is the URL to this file.

Of particular note here is that the template contains Angular JS code, such asrigeclick directive and the
expression that renders the button text. Thus, your templates can be as simple or as complex as you need them to be.
With restrict andtemplate covered, we now require a way to tell Angular JS about our underlying logic. This
logic appeared in our controller function earlier, but now we need to encapsulate it within this custom directive. One

way to do this is to use thénk option.

The link Option

The function that you assign to théink option is where the main action takes place. This function has access to the
current scope (by default) and the element on which the directive was declared (tlv element, in this case). For
clarity, let’s list precisely what we want this directive to achieve. This will make it easier to follow the rationale behind
the implemented logic. The directive should perform the following:

1. Add a button to the page. This button will be a toggle for showing and hiding a list of
colors.

2. By default, the color list should be hidden.

3. The colors should be shown adiv elements that can display a color and color name,
based on an array of strings corresponding to that color.

4. The color list should be an array containing CSS color name values. This should be
available within the directive.

87

CHAPTER 5DIRECTIVES

We need dink function that achieves all but one of these requirements. The first requirement is already met,
because the button is defined in the HTML we assigned through tkemplate option. The second requirement is
partially met, but it still needs work. | sapartially met, because the template also has tleelorContainer div , which
will be the parent container for our color list. Thigliv makes use of thegHide directive.

Listing 5-9 shows outink function. This function completes the requirements we listed earlier. | will put this in
context with the rest of our custom directive shortly, but for now, see if you can pick out what is happening here.

Listing 5-9. Thelink Function

link: function ($scope, $element) {

/I set default state of hide/show

$scope.isHidden = true;

/l add function to manage hide/show state

$scope.showHideColors = function () {
$scope.isHidden = !$scope.isHidden;

}

// DOM manipulation
var colorContainer = $element.find('div');
angular.forEach($scope.$parent.colorsArray, function (color) {
var appendString = "<div style='background-color:" + color + "'>" + color + "</div>";
colorContainer.append(appendString); b;

The first thing to notice about thdink function is that we have access to the element on which the directive
is defined and a scope object (via thelement and $scopearguments accepted by the function). These are
automatically injected into our function by the framework.

The first batch of logic in this function simply sets the default state of the directive such that the color list is
hidden. Next, we attach the lsowHideColors() function to the scope. The next batch of logic, under the DOM
manipulation comment, is the real meat of the directive.

We want to adddiv elements dynamically to thecolorContainer div , so we create a variable called
colorContainer . To achieve this, we used the following statement:

var colorContainer = $element.find(‘'div');

If you have used jQuery before, this might look familiar. This is becauelementis a jQuery wrapped element
and, as such, can use jQuery methods, suchfagl() andappend().

Note By default, Angular JS uses jgLite. This is a trimmed-down version of jQuery containing only the most ess
features. If you add a script reference to the full version of jQuery, Angular will automatically use this version instes
using jqLite. If you are keen to learn what jgLite has to offer, you carhtigsgaidwarangularjs.org/api/
ng/function/angular.element

With the colorContainer reference in hand, we can now create the color list by attaching to dia for each color
in the array. We do this by looping through the colors array, using the handggular.forEach method and, at each
pass,appendto build the list of colors.

88

CHAPTER 5DIRECTIVES

Within the forEach loop, we do theappendoperation by creating aliv element as a string value that is
constructed using the current array item (the CSS color name). This is used as both the value of the background-color
CSS rule and as the literal text that displays within tiuy .

var appendString = "<div style='background-color:" + color + ">" + color + "</div>";
colorContainer.append(appendString);

Both the HTML page that uses the directive and the module that contains the directive and controller code are
shown in Listing 5-10 and Listing 5-11, respectively.

Listing 5-10. product-detail.ntml , Revised to Use a Custom Directive

<IDOCTYPE html| >
<html ng-app="myAppModule">
<head>
<title></title>
<script src=" https://ajax.googleapis.com/ajax/libs/angularjs/1.2.21/angular.min.js "></script >
<script src="/compass/src/js/myAppModule.js"></script>
<style>
#colorContainer div {
color: white;
text-transform: uppercase;
width: 200px;
padding: 10px;
margin:5px;
border-radius: 5px;
-moz-border-radius: 5px;
}

</style>

</head>

<body ng-controller="myDemoCtrl">

<h2>AngularJS Socks</h2>

<p>Keep warm this winter with our 100% wool, 100% cool, AngularJS socks!</p>
<div color-list colors="colorsArray"></div>

</body>

</html>

Listing 5-11. The Application Module Containing Our Directive Registration and Our Controller

/I declare a module
var myAppModule = angular.module('myAppModule’, []);

myAppModule.controller('myDemoCtrl', function ($scope) {
$scope.colorsArray = ['red’, 'green’, 'blue’, ‘purple’, ‘olive’]
}
);

myAppModule.directive(‘colorList', function ($compile) {

89

CHAPTER 5DIRECTIVES

return {

restrict: 'AE',

template: "<button ng-click="showHideColors()' type="button">"
+ "{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}"
+ "</button><div ng-hide='isHidden' id="colorContainer>"
+ "</div>",

link: function ($scope, $element) {

/I set default state of hide/show

$scope.isHidden = true;

/l add function to manage hide/show state

$scope.showHideColors = function () {
$scope.isHidden = !$scope.isHidden;

}

/[add colors divs to the document
var colorContainer = $element.find('div');
angular.forEach($scope.colorsArray , function (color) {
var appendString = "<div style="background-color:" + color + ">" + color + "</
div>";
colorContainer.append(appendString);

b

b

This is not bad for a first directive—though | think you will agree that there are quite a few steps involved! To keep
things manageable, | set up the background color using an inline style, but you might want to create a style sheet with
a class and use that class here instead. This is certainly much better practice in most cases. Custom directives are a
topic worthy of their own book. Nevertheless, even with this brief introduction, you can build all sorts of reusable logic
and user-interface components. | encourage you to explore this topic further, perhaps using some of the many online
tutorials or the excellent bookPro AngularJSbhy Adam Freeman (Apress, 2014).

Summary

Directives in AngularJS argery powerful, but it can take some time to understand all of the processes that lie behind
them completely—particularly when it comes to creating custom directives. In this chapter, you had a good first look
at many aspects of directives and, | hope, gained a solid footing on which to base further exploration.

In the next chapter, we will look at another area where AngularJS really shines: HTML forms. While HTML
forms are not an AngularJS feature as such, you will appreciate how much more enjoyable and productive
AngularJS makes them.

90

CHAPTER 6

Working with Forms

Since their introduction in the mid-90s, HTML forms have taken a largely static World Wide Web and turned it into a
place of business and a rich source of interactivity and entertainment. Initially, HTML forms were functionally limited
and clunky, but the specification evolved, and developers learned to work around the issues. Today, thanks in large
part to frameworks such as AngularJS, HTML forms are the underlying reason that web-based applications now rival
traditional desktop applications. To put all of this more concisely: HTML forms cannot be ignored!

In this chapter, we will look at how to use AngularJS with forms and how to perform tasks such as model binding
and data validation. Fortunately, AngularJS doesn'’t require that you learn about forms from scratch, as it simply
enhances the way forms already work, although these enhancements are not always obvious or intuitive. Before we
get into all that, however, let’s start with a brief recap of what standard forms offer us.

HTML Forms Overview

| could probably devote a couple of chapters to forms, but | won't do that, as our focus is, of course, AngularJS.
However, what | do provide here is a relatively brief recap of the basics. If you have already mastered forms, feel free
to skip ahead.

Note AngularJS relies upon some relatively new, though well supported, HTMLS5 features when working w
If you are concerned about older browsers, you should pay extra attention to how your forms behave when tes

Theform Element

Theform element itself is a good place to begin. This element defines the form as a whole, and it is a responsible
mechanism for telling the web browser what to do once the user presses thubmit button. For instance, where
should it send the data that was collected, and what method should it use to send this data? It does this véiisn
and methodattributes, respectively.

<form name="myForm" action="myserver/someaction" method="post">

</form>

91

CHAPTER SWORKING WITH FORMS

The form in the preceding code snippet is configured to use thpwst method and to submit its data tanyserver/
somescript.php . Besides thenethodandaction attributes that set these values, there isrsameattribute that we have
set to 'myForrh In AngularJS, it is quite likely that theamaeattribute will be far more important to you than the other
form element attributes. Why is this? In short, it is because developers tend to use Ajax to send data to the server, and
they often do not rely on theorm element’s attributes to determine how the Ajax operation is carried out. (I discuss
this further in the next chapter.) Setting a name on the form will give you access to some very worthwhile AngularJS
features, which we will examine shortly.

Tip Ajax is a group of technologies used in combination. However, JavaScript developers often use the term to
to the use of JavaScript for exchanging data asynchronously between a browser and server to avoid full-page relo

Of course, a form is no good withoubrm-related elements nested within it, so let's look at these next. We’'ll start
with the very versatilenput element.

Theinput Element

Theinput element is theform workhorse. You can use it to create text fields, check boxes, radio buttons, and more. It
all hinges on what you specify as the value of tigoe attribute. Its possible values include the following:

button
checkbox
file
hidden
image
password
radio
reset
submit
text

Following, we will look at the most frequently used of these attributes.

button

This is a simple clickable button that doesn’t actually do anything if left to its own devices. It is usually used along with
JavaScript to implement some sort of custom behavior. Here’s how you create one:

<input name="save-button" type="button" value="Click me"/>

submit

This is a button too. However, unlikdutton , this has built-in functionality associated with it. Thisubmit button

triggers the browser to gather up and submit all of the form’s data and send it along to its destination. The destination
is the value of the action attribute that was declared on tlierm element. An important point here is that only the data
within the form that the submit button resides in is sent along to the destination. This makes perfect sense when you
consider that you can have more than one form on your page. Here’s what it looks like:

<input type="submit" name="submit" value="Register"/>

92

CHAPTER SWORKING WITH FORMS

It is thevalue attribute that determines the text that appears on the button. Themeattribute can be used as a
reference. For example, you might use this in JavaScript code or in the server-side processing logic (such as a PHP script),
once the form is submitted. This attribute applies to all of thirm elements and serves the same purpose in each case.

text

By far the most commonly used input type, théext input creates a single-line box into which the user can enter text.
Here’s what it looks like:

<input placeholder="First Name" type="text" name="first-name" size="20"/>

In this example, | used theplaceholder attribute to create a hint as to the expected value of this field. Using
placeholder can be a very efficient way of exploiting available screen space, as it can be used in lieu of a label. The
size attribute dictates the width of the field. | rarely use this attribute, as | tend to use CSS instead, which gives much
more precision and control. Here’s an example using this approach:

<input placeholder="First Name" type="text" name="first-name" style="width: 220px;"/>
Here, | have used thestyle attribute to inline a CSS rule and set the width property to 220 pixels. Inlining the CSS

rule like this is good for demonstrations, but, of course, you could (and probably should) use a dedicated style sheet
for all of your CSS rules.

Caution | mentioned previously thaptdweholder attribute can be a very efficient way of exploiting available
screen space. However, it can create accessibility issueslabsinglémeent is generally a better approach. The
label element, covered later in this section, is also much better supported across browsers.

checkbox

If you want your users to respond with a yes or no, a true or false, or some other two state vatheskboxis the input
type that you need. The only possible actions are checking or unchecking the box. Here’s what the check box looks like:

<input type="checkbox" name="chknewsletter" value="opt-in-newsletter"/>

Thevalue attribute determines the value that is sent to the server. For example, you can set the value to
opt-in-newsletter , and this is the string value that will be sent to the server as the checked value.

Following is another, almost identical, example. In this case, we have added the checked attribute, so that the
check box will be in its checked state by default.

<input type="checkbox" name="chknewsletter" value="opt-in-newsletter" checked>

password

The passwordfield is very similar to the standard text input. It looks like this:
<input type="password" name="pin" id="pin">

The passwordinput differs in that the characters entered into it are masked in the browser, so that prying eyes
cannot read what is being entered.

93

CHAPTER SWORKING WITH FORMS

radio

Theradio button control is perhaps the trickiest input type. Named after the old-fashioned radio sets, which
used buttons instead of a dial (or a scan function such as we have on modern radios), tuning among stations was
accomplished by using a series of buttons that were pre-tuned to certain stations. Pressing down on one button
caused any other depressed button to pop back up. It is the same with radio buttons on the Web; that is, you can
“depress,” or choose, only one button at any given time.

For this system to work, though, eactadio button in the group from which you want your users to choose must
have the same name. In Listing 6-1, you can see that eaaHio button has been given a name dftation"

Listing 6-1. A Group ofradio Buttons

<div>
<input type="radio" name="station" id="rad1" value="triple-m"/> <label for="rad1">Triple M</label>
</div>

<div>
<input type="radio" name="station" id="rad2" value="today-fm"/> <label for="rad2">Today FM</label>
</div>

<div>
<input type="radio" name="station" id="rad3" value="abc-news"/> <label for="rad3">ABC News</label>
</div>

<div>
<input type="radio" name="station" id="rad4" value="triple-j"/> <label for="rad4">Triple J</label>
</div>

A very important thing to note is that, while thenameattribute has the same value in each case, thalue
attribute differs. As the user does not actually enter any text intoadio button (that’s clearly impossible), there must
be a way to assign a meaning to each.

Unlike the namaeattribute, theid attribute should be unique. Here, théabel element, through itsfor attribute,
relates itself to the input it is labeling. We will look at thiabel element again at the end of this section.

ThetextareaElement

Thetextarea element is similar to thetext input, but it allows the user to enter multiple lines of text, as opposed to a
single line of text. This makes it ideal for larger amounts of text. Unlike timput element, atextarea element has an
opening <textarea> and closing</textarea> tag in which only text content is allowed.

<textarea name="description"></textarea>

It's easy to change the size oftaxtarea element by making use of theols androws attributes, which, as you
might imagine, specify the number of horizontal input lines (rows) and the width of thiextarea in terms of columns.

<textarea name="description" rows="4" cols="50" ></textarea>

94

CHAPTER SWORKING WITH FORMS

The selectElement

Theselect element is a container for a series of option elements. These option elements display in the browser as a
drop-down list. Unless you use thenultiple attribute, this control will allow the user to pick just one item from the

list of options. Take a look at Listing 6-2, which shows twelect elements, one with themultiple attribute specified
and one without it specified.

Listing 6-2. Two Very Similarselect elements, Two Very Different Outcomes

<!-- this renders as a drop down Ist -->

<select name="favorite-food" id="favorite-food">
<option>Eggs</option>
<option>Fish</option>
<option>Bread</option>

</select>

<l-- this renders as a all-in-one list -->

<select name="favorite-food" id="favorite-food" multiple >
<option>Eggs</option>
<option>Fish</option>
<option>Bread</option>

</select>

These are close to identical. The only difference is that the secaselect element uses thanultiple attribute.
Figure 6-1 shows the rendered lists.

Figure 6-1. Lists with and without themultiple attribute

It is common to see theselect element set up such that its first option is the user’s prompt. For example, the
select element in Listing 6-3 uses its firgiption to display “Choose your favorite food.”

95

CHAPTER SWORKING WITH FORMS

Listing 6-3. Using the Firstoption Element As a Prompt

<select name="favorite-food" id="favorite-food">
<option value="">Choose your favorite food</option>
<option value="eggs">Il love Eggs!</option>
<option value="fish">Fish is my fave!</option>
<option value="bread">Bread rocks!</option>
</select>

An important point to observe about Listing 6-3 is that it uses thalue attribute. If the user were to select the
option “I love eggs!; the value submitted to the server would be “eggs.” Thgtion used as the prompt has an empty
string as its value. This is simply a way to signify the fact that this option isn’t really an actual choice; it's merely
serving as an instruction to the user.

There is certainly more to theselect element, and indeed forms in general, but | hope this section has given you
a brief introduction (or perhaps rehydrated some knowledge that was perilously close to drying up and disappearing
for good!).

Thelabel Element

Thelabel element defines a label for amput element. This element provides a usability improvement, because
it creates a connection to the input to which it refers. So, for example, screen readers can better distinguish that the
text you provide as a label is related to the input field. An additional benefit is that the label will also help users target
the input with which it is associated, so check boxes and radio buttons are much easier to click, as they can now be
activated by clicking the label itself.

In the example that follows, you can see that this connection is made by specifying a value orfheattribute
that matches the value of the input'sd attribute. In this casefirst-name is used in both cases.

<label for="first-name">Enter Your First Name</label>
<input type="text" name="first-name" id="first-name" size="20"/>

Here is another example, this time using a check box.

<label for="terms">| agree to the terms and conditions</label>
<input type="checkbox" name="terms" id="terms" value="agree">

Simply by clicking the text I agree to the terms and conditiohsan activate this check box. Had we not used a
label and instead opted to use some other element, such ap ar adiv, users would have to click the check box itself.

Model Binding

When we speak aboubinding, we are really just talking about connecting things in such a way that they remain

in sync with each other. Whathings are we talking about here? For example, we can bind a model property called
firstName to a text input. This binding would create a special relationship between each, causing the text input to
display the value of the model property, and the model property to store the value of the text input.

It's even more than that, however, because it works in both directions and in near real time. Should you change
the value in the text input, the model property will immediately update itself to reflect this new value. Should you
change the value of the model property, the value in the text input will immediately update itself to display this new
value. As this all happens in near real time, changes are visible in the user interface right away.

96

CHAPTER SWORKING WITH FORMS

Note AngularJS model binding happens inside a process digle=d khedn simple terms, the digest loop is
triggered whenever a change is detected in the values that AngularJS is watchingneasecthditamare,
because this process, despite how fast it is, is technically not in “real time.” There are advanced-use cases for
subtlety matters.

How do we set up a binding between a model property, such fisstName , and a text input? Well, it's surprisingly
easy, thanks to themgModeldirective.

<input type="text" name="firstName" ng-model="firstName" />

Here, we use thexgModeldirective on the input to define a two-way binding. Because we specifiitstName as
the value of thengModeldirective, we connected it to the model property of the same name. A very important aspect
of this process is the fact that it all happens against the current scope. In this particular (and common) scenario,
it would be the scope object used in your controller. WhefirstName was bound to the text input, it was actually
$scope.firstName that was bound. As discussed earlier in the book, the scope reference is implicit within AngularJS
expressions.

Let’s look at Listing 6-4 and see some model binding in action. Here is the controller code:

Listing 6-4. Setting Some Model Properties on the Scope

angular.module("myapp", [])
.controller("MyController", function ($scope) {

var person = {
firstName:"Jimmy",
age: 21,
address:{
street: '16 Somewhere Drive',
suburb: 'Port Kennedy',
state: 'Western Australia’

}
}

$scope.person = person;
D
Now let’s look at Listing 6-5, which shows a portion of HTML code that uses this controller and model.

Listing 6-5. ngModelin Action
<div ng-app="myapp">

<div ng-controller="MyController">

<form name="theForm">

<input type="text" name="firstName" ng-model=" person.firstName "/>

<input type="text" name="firstName" ng-model=" person.address.street "/>
</form>

97

CHAPTER SWORKING WITH FORMS

<p>
First name is: {{person.firstName}}

Street name is: {{person.address.street}}
</p>

</div>
</div>

Listing 6-4 and Listing 6-5 show the general principles of binding in action. Pay special attention to the fact that
we bound to a model property with a nested object (theerson object'saddress property, which is itself an object).
Both text inputs properly reflect this hierarchy, as shown in bold in the code listing.

More formally, what | have been discussing in this section is known &go-way binding. This distinction is made
because AngularJS also supports one-way binding. You have already used one-way binding, and it is used in Listing
6-5. Here is the portion of code in which the one-way binding appears:

First name is: {{person.firstName}}

Street name is: {{person.address.street}}

We have already seen this type of binding, though, at the time, we didn’t actually use the teme-way binding.
What exactly do | mean by one-way binding? An easy way to understand this is by considering that a user cannot
change a value that is output as plain text content. This is in stark contrast to values that are output to text inputs and
other editable form elements. AngularJS has less work to do with the plain text output, as it does not have to manage
the relationship in both directions. Consequently, this is called a one-way binding. AngularJS will not waste resources
monitoring static content for changes.

In fact, as an alternative to using the double curly brace syntax, you can instead usen#Rind directive. The
preceding code snippet, rewritten withngBind, would look like this:

First name is:

Street name is:

The double-curly-brace approach is more naturally readable, and it requires less typing than thgBind
approach. HoweverngBind can be useful, as it behaves like tmgCloak directive, discussed previously in the last
chapter, in that content is only visible once AngularJS has loaded.

Here's a good thing to know about how AngularJS treats bindings in the absence of an associated model property:
if you refer to a model property in amgModeldirective and it doesn’t actually exist, AngularJS will create it for you.
Review Listing 6-6 and Listing 6-7, and then we will have a quick discussion about what this reveals concerning the
binding process.

Listing 6-6. Implict Model Binding—HTML Code

<div ng-app="myapp" ng-controller="MyController">
<form name="theForm">
<div>
<input type="text" name="firstName" ng-model="firstName" >

<input type="button" value="Show first name" ng-click="showFirstName()"/>
</div>
</form>
</div>

98

CHAPTER 6WORKING WITH FORMS
Here is the associated controller code:

Listing 6-7. Implict Model Binding—Controller Code

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.showFirstName = function(){
alert("Name is: " + $scope.firstName);

}
b

Unlike in Listing 6-4 and Listing 6-5, the controller shown in Listing 6-7 does not create a model for our view
template to use. However, as you can see in Listing 6-6, we clearly refer to a model property cétigtilame in the
ngModeldirective. Furthermore, we also show its value to the user when t8aow first name button is pressed.

How and when is thefirstName model property created?

AngularJS created this model property for us when it came across tigModeldirective on the textinput
element. More accurately, it created it once it encountered a value to which it could bind. When the page first loads,
you can click theShow first name button, and you will get the result shown in Figuré-2.

Figure 6-2. An empty text input—nothing to bind to

Perhaps, as you might expect, the value fafstName is displayed asindefined. Currently, there is no such model
property, so this makes perfect sense. Now let's enter some text into the text input (see Figese

99

CHAPTER SWORKING WITH FORMS

Figure 6-3. Text has been entered into the text input

This time, the value ofirstName is “Jimmy.” As AngularJS is working in real time, once the text was input, it was
able to create the binding. It's good to be aware of this behavior. Nonetheless, the fact that it can result in values such
asundefined means that you should code defensively. This is demonstrated in Listing 6-8.

Listing 6-8. Coding Defensively

$scope.showFirstName = function(){
if(angular.isDefined($scope.firstName)) {
alert("Name is: " + $scope.firstName);
telse{
alert("Name is empty, please enter a value");

}

In Listing 6-8, we first test to see if the model property exists, and we only display it if it does. This listing uses
the handyangular.isDefined method. In this version of theshowFirstNamefunction, the result ofangular.
isDefined($scope.firstName) will be true, even if you were to backspace and remove all of the text from the First
name field. It will output an empty string as the value, although this is quite different from an undefined value.
AngularJS has previously found a value in this text input; consequently, the binding and associated variable has been
created and remains in play.

Tip angular.isDefined is just one of many handy utility methods that you can use. These methods can save you
time and offer a standard approach to certain tasks. | encourage you to look them up in the documentation, which
can find herattps://docs.angularjs.org/api/ng

With this knowledge of binding under our belts, let's now move on to using it to create forms. More specifically,
we will create a small but, | hope, enlightening user registration form.

100

CHAPTER SWORKING WITH FORMS

AngularJS Forms

With a discussion of standard forms and model binding behind us, we are in good shape to tackle AngularJS forms.
Of course, AngularJS forms are really just regular forms enhanced with AngularJS goodness.

In this section, we will build a user registration form from scratch and employ it to build up our AngularJS skills.
We will start off simple and enhance it along the way. Let's work with some very basic requirements for this form.
These requirements are shown in Tabl6é-1.

Table 6-1. User Registration Form Requirements

Field Name Data Type Notes
First name Text Required
Last name Text Required
E-mail address Text Required
Must be formatted as an e-mail
address
Where did you hear about us? Text Must match the set of questions
One choice from a set of options: Television,2sked by Marketing across the
Radio, Social Media, and Other various communication channels
Would you like to subscribe to Yes or no Must be unchecked by default
our quarterly newsletter?
Register Text The text that appears on theubmit
button

Tip The more information and detail you can get before coding even a simple form, the easier the testing al
guality-control process will be later!

It's fairly clear from these requirements, in genex terms, at least, what we will need to build, iterms of a
user interface. Let’s take a look at some first-dittHTML code (Listing 6-9) that reflects somethinglose to what
we are targeting.

Listing 6-9. First-Draft HTML Code for a User Registration Form

<div ng-app="myapp" ng-controller="MyController">
<form name="registrationForm">

<input type="text" placeholder="First Name" name="firstName" ng-model="person.firstName" required>

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName" required>

101

CHAPTER SWORKING WITH FORMS

<input type="email" placeholder="Email* name="email" ng-model="person.email" required>

<select name="channels" ng-model="person.channels"
<option value="">Where did you hear about us?</option>

</select>

<input ng-model="person.newsletterOptIin" type="checkbox" name="newsletterOptin"
id="newsletterOptIn" value="newsletterOptin"/>
<label for="newsletterOptin">Recieve monthly
newsletter</label>

<input type="submit" value="Register">

</form>
</div>

For the most part, this is straightforward HTML. The two most important things to note are the existence of the
ngModeldirective on each of thdorm elements and the fact that we have given the form a name. Giving the form a
name means that we can access some interesting AngularJS features, which | will discuss shortly. This form does not
yet meet the requirements, but we are well on the way. Figuse4 reveals how the form looks right now.

Figure 6-4. First-draft user registration form

It's far from perfect, but we are on the right track. Let's work our way through each of the fields, starting with the
First name and Last name fields (which are the same in terms of the requirements). Take note that both of these fields
make use of theequired attribute. This attribute, which is an HTML5 attribute, not an AngularJS construct, tells
browsers to make sure that a value is entered before allowing the form to be submitted. | will talk more about this in
the next section, which covers validation in more detail.

Let's move along to the&Email field. Thisinput element has a type dfemail” . This is very similar to a text input,
but it is specifically used for capturing e-mail addresses.

<input type="email" placeholder="Email" name="email" ng-model="person.email" required>

102

CHAPTER SWORKING WITH FORMS

This is not an AngularJS feature; it is part of the HTML5 specification. Compliant browsers will consider this field
invalid if it does not contain a properly formatted e-mail address. | will touch on this point again in the upcoming
validation section.

The Marketing team has asked us to include some research questions in our registration form. It wants to
know among which set of communication channels the user has found our company. So far, we have created the
appropriate form element, shown again in the code snippet that follows. However, we currently present just one
option: the prompt for the user.

<select name="channels" ng-model="person.channels">
<option value="">Where did you hear about us?</option>
</select>

This select element needs some AngularJS work, because gwect element itself is only half the story.
We have to turn to the controller, shown in Listing 6-10, whereby we can create some data for the list of options.

Listing 6-10. The Controller Code Driving theselect Element

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};

$scope.person.channels = [

{ value: "television", label: "Television" },

{ value: "radio", label: "Radio" },

{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

I
b

The controller, through thescope object, is making theperson object available to our view template. More
specifically, because ouselect element needs this data, it adds an array of objects to the model property we use
on theselect element'sngModeldirective: person.channels. Another step is required, because we want tiselect
element to be populated with a set adption elements, based on the model property we just added to the scope
above. For this step, we use thegOptions directive. Listing 6-11 shows the revisesklect element.

Listing 6-11. Using thengOptions Directive to Generate Options

<select name="channels" ng-model="person.channels"

ng-options="obj.value as obj.label for obj in person.channels" >
option value="">Where did you hear about us?</option>
</select>

The ngOptions directive expects a&omprehension expressiomhis expression can seem a little intimidating when
you first encounter it, but we can break it down. It is essentially a query that we use to tell AngularJS how to map our
model property, theperson.channels array, in this case, onto a set of HTML options. This array contains a set of
objects, and AngularJS would like to know which properties of this set should become the option element’s value and
which should become the content visible to our end user. Here is the expression again:

obj. value as obj. label for objin person.channels

103

CHAPTER SWORKING WITH FORMS

It isn’t a particularly intuitive syntax, but we can make out the key components. In plain English, this would read
something like the following:

Use the value property on the option elements value attribute, and use the label property as the text
displayed within the option element. Oh, and by the way, | am referring to the objects cordaine
within the person.channels array.

Tip In AngularJS terminology, this kind of expression is krnmmpeshansion expresdibis used to create
a data source for thgSelect directive from an object or an array. You aaut fimate in the online documentation
athttps://docs.angularjs.org/api/ng/directive/select

While we used thengOptions directive to generate the option elements, we added tWehere did you hear
about us? option manually. Of course, you could add an extra object to tiperson.channels array representing this
option too, but | prefer this approach, as it better reflects our ambitions about keeping things in the right place. This
option element is just an instruction to the user, and it exists only to serve as part of our user interface; it isn't actually
part of our model.

Next up, we have the “Would you like to subscribe to our quarterly newsletter?” question. As this requires a yes
or no response, thecheckboxelement is well-suited to our needs. The only requirement that we have to address here
is that the Marketing team wants this check box to be unchecked by default. We automatically meet this requirement,
because check boxes are unchecked by default. However, we will set this explicitly through the binding we have set up
on the check box. Here is the check box again:

<input ng-model="person.newsletterOptin" type="checkbox" name="newsletterOptin"
id="newsletterOptIn" value="newsletterOptin"/>

In our controller, we simply set theperson.newsletterOptin property tofalse . As this is used as a binding, the
check box, fully aware of the need to check and uncheck itself in responsérte andfalse values, automatically
takes on the correct value. Had we wanted the check box to appear checked, we could have set this vatuesto
instead, which would have caused the check box to appear checked. Of course, it is not a good practice to put the onus
on the user to opt out, so we won't do that. Listing 6-12 shows this in action.

Listing 6-12. The Controller Code Driving the Check Box

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};
$scope.person.newsletterOptin = false;

$scope.person.channels = [

{ value: "television", label: "Television" },

{ value: "radio", label: "Radio" },

{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

I;
b

104

CHAPTER SWORKING WITH FORMS

This approach is not quite as easy as adding theeckedattribute to the HTML code, but it's not too much extra
effort. | chose this approach because it better showcases bindings in action. However, it also has benefits in other

scenarios, such as when you have to populate forms with existing data (as with forms that users can come back and
update at a later time).

The lastform element is thesubmit button. The only thing we have done so far is to change its value to
“register ’; as opposed to leaving it with the defaultSubmit’ value. The Marketing team has yet to tell us how we
should handle this data with regard to what should happen when a user registers, but | suspect it will have filled us

in on this just in time for the next chapter. For now, though, we can attach a submit handler to our form, so that it is
ready to handle this pending requirement. Here is the revisddrm element:

<form name="registrationForm" ng-submit="person.register()" >

By using thengSubmitdirective, we have told the form to use a method on operson object (theregister()
method) when the user submits the form. The revised controller code is shown in Listing 6-13.

Listing 6-13. Adding the submit Handler

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};
$scope.person.newsletterOptin = false;

$scope.person.channels = [

{ value: "television", label: "Television" },

{ value: "radio", label: "Radio" },

{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

I

$scope.person.register = function () {
<l-- pending implementation -->

}
b

We are closer to fulfilling the requirements, but there is still work to be done. Before we move on to the topic of

validation, it's time for a checkpoint. Listing 6-14 shows the HTML code, and Listing 6-15 shows the slightly refactored
JavaScript code.

Listing 6-14. The Form Code
<div ng-app="myapp" ng-controller="MyController">
<form name="registrationForm" ng-submit="person.register()">

<input type="text" placeholder="First Name" name

="firstName" ng-model="person.firstName" required>

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName" required>

<input type="email" placeholder="Email" name="email" ng-model="person.email" required>

105

CHAPTER SWORKING WITH FORMS

<select name="level" ng-model="person.levels"
ng-options="obj.label as obj.value for obj in person.channels">
<option value="">Where did you hear about us?</option>
</select>

<input ng-model="person.newsletterOptIin" type="checkbox" name="newsletterOptin"
id="newsletterOptIn" value="newsletterOptin"/>
<label for="newsletterOptIn">Recieve monthly
newsletter</label>

<input type="submit" value="Register" ng-click="person.register()">

</form>
</div>

The only change in the JavaScript code in Listing 6-15 is that fherson object is constructed first and then
assigned to thebscopeas the last step. The end result is the same, but this is much more readable.

Listing 6-15. The AngularJS Code

angular.module("myapp”, [])
.controller("MyController", function ($scope) {

var person = {};

person.newsletterOptin = false;

person.channels = [

{ value: "television", label: "Television" },

{ value: "radio", label: "Radio" },

{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

I;

person.register = function () {
<l-- pending implementation -->

}
b

Validating Forms

We usually want to validate at least some of the data that users enter into our forms. While it is true that validation
can and should be done on the server, and that server-side processes are usually capable of handling much more
complex validation rules, we still have to perfornfirst-line-of-defensevalidation in the web browser. With JavaScript
validation, we can do a lot of the validation up front, before even considering sending it along to the server. This way,
we preserve bandwidth and reduce the load placed on our web servers. The fact that JavaScript validation provides
instant feedback is a big plus too.

Using AngularJs, it isn't difficult or terribly time-consuming to implement JavaScript validation. The first step
has already been taken with our registration form: when we gave the form a name, we enabled access to AngularJS
validation features.

106

CHAPTER SWORKING WITH FORMS

Before we look at validation as it applies to specific fields, let's look at what AngularJS does for us in regard to the
form as a whole. At thisorm-wide level, AngularJS will give us answers to some important questions: Has the user
started entering any data into the form yet? Is the form as a whole in a valid state? and so on.

Answers to questions such as these are useful in a lot of situations. You will see an example in our registration
form’s validation, as we will determine whether or not to allow the form to submit, based on whether or not the form
is completely valid. We can do such things because AngularJS exposes the answer to these questions via a set of
built-in form properties, as shown in Table5-2.

Table 6-2. Built-in Form-Level Properties

Property Name Description

$pristine True, if user has not yet interacted with the form

$dirty True, if user has already interacted with the form

$valid True, if all of the containing forms andorm elements are valid
$invalid True, if at least one containingorm element or form is invalid

We also have access to some very handy CSS stytekhoAs the form changes state, such as when it reevfrom
valid to invalid, AngularJS will dynamically add ad remove CSS classes to reflect the current stafeu can create your
own set of CSS rules for these classes, thereby styling the form as you see fit for each state. These classes are outlined in
Table 6-3. The style hooks and the built-in form properties will make more sense when we see them in action.

Table 6-3. Dynamically Managed Validation Classes

Class Description

ng-valid Set, if the form is valid
ng-invalid Set, if the form is invalid
ng-pristine Set if the form is pristine
ng-dirty Set, if the form is dirty
ng-submitted Set, if the form was submitted

If you have already worked with the HTML5 specification, you might be pleased to hear that AngularJS respects
attributes such agype andrequired . It also adds some directives of its own to support forms and form validation
further. Generally, one of the first steps you take when using AngularJS validation is the addition ofrtbrealidate
attribute on your form element, as shown here:

<form name="registrationForm" ng-submit="person.register()" novalidate >

Strange that we should use theovalidate attribute when we actually want to validate. Keep in mind that the
novalidate attribute is not an AngularJS directive; it is a standard HTML attribute that is used to prevent built-in
browser validation. The reason we use it is because we want AngularJS to validate our form. Taking the built-in
browser behavior out of the equation is the best way to remedy the problems that would otherwise occur. We still get
to use the same approach, only with AngularJS running the show instead of the browser.

107

CHAPTER SWORKING WITH FORMS

As we have given our form a name and we have added tiwvalidation attribute, it is now primed for
validation. Let’s look at validation for the First name and Last name fields. These won't be too challenging, as the rule
is simply that they are required. The two things that we must do are provide the validation itself and the feedback to
the user, if the validation fails. Examine Listing 6-16.

Listing 6-16. Validating Required Fields and Showing Feedback to the User

<input type="text" placeholder="First Name" name="firstName" ng-model="person.firstName" required >
Please enter a value for First name

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName" required >

Please enter a value for Last nhame

The validation is straightforward; we simply add sequired attribute to ourinput elements. With the addition of
this attribute, AngularJS will insist on a value in each of these fields before it will consider the form valid. However, it
insists rather quietly, so it is up to us to tell the user if things went wrong and how to fix them. The approach we apply
here is to usespanelements containing the validation error messages. We want to keep these hidden until we have to
show them. We achieve this through theagShowvdirective. Let’s focus on the span we added for the First name field.

Please enter a value for First name

As you may recall from our coverage oigShown the last chapter, it expects an expression that evaluates to
a Boolean value. Let’s turn to the controller codetggister method in Listing 6-17, as this will show us how the
firstNamelnvalid variable is manipulated to trigger the showing and hiding of the validation message.

Listing 6-17. The Registration Method with Some Validation in Place

$scope.register = function () {

$scope.firstNamelnvalid = false;
$scope.lastNamelnvalid = false;

if(!$scope.registrationForm.firstName.$valid){
$scope.firstNamelnvalid = true;

}

if(!$scope.registrationForm.lastName.$valid){
$scope.lastNamelnvalid = true;

}

if($scope.registrationForm.$valid){
<!-- pending implementation -->

}

When the document first loads, botHirstNamelnvalid andlastNamelnvalid evaluate tofalse . Consequently,
the ngShovdirectives will keep thespanelements, and therefore the validation messages, hidden. When the user
presses thesubmit button, we make use of the fact that AngularJS can tell us, on a field-by-field basis, whether or
not an input is valid. In the case of the First name field, which we namédstName , in the form which we named
registrationForm , we can usebscope.registrationForm.firstName.$valid to see if this field is currently valid.
As you might expect, thiscope.formName.fieldName.$property format applies to the Last name field too.

108

CHAPTER SWORKING WITH FORMS

Both of the conditional statements in theegister() method work the same way; they each check to see if these
fields arenot currently valid. If indeed they are not, then thérstNamelnvalid andlastNamelnvalid variables are
set totrue . This will cause thengShowdirective to show the validation error messages.

Moving along to the e-mail address input, the requirement is also that the field is required. In this case, it must
also be a value that is a properly formatted e-mail address. This is easy enough to achieve using the HTML5-based
approach. Study the followingnput element, which will achieve this:

<input type="email" placeholder="Email" name="email" ng-model="person.email" required >

Note As we did before, we again usedhieed attribute. In this case, we also make use of one of the HTML5-
based input types and speaiBjl as the input type. This means that only properly formatted e-mail
addresses will be considered valid. As you will see shortly, we can take exactly the same approach as we did \
First name and Last name fields and ugsStioedirective to show and hide the associated validation error
message. The same applies to the research guekiionsiement.

Caution | am often careful to Sarpperly formatted -mail address@pposed to sayimglid e-mail address.”
The two are quite different things. Thexgisrgxis formatted as an e-mail address, but it's not a valid e-mail ad-
dress!

Let's use two more form-level properties that we touched on in Tab&e2. While this is a slightly contrived
example, it does show off the uskpristine and$dirty .

At the top of our form, we will place twaliv elements; both of which use angShovdirective. The$dirty
property tells us if there has been some interaction with the form. Itisie if at least some data has been entered.
The $pristine property is the opposite. It tells us if there has been no interaction with the form. Only one of thdse
elements will be visible at any given time; that is, a form cannot possibly be in both states.

<div ng-show="registrationForm.$pristine">Form input has not yet started</div>
<div ng-show="registrationForm.$dirty">Form input has started</div>

Next, we will add adiv element underneath our form. Thidiv element contains the “Thank you” message that
we want users to see once they have successfully completed the form. It, too, usesg@howvdirective. In this case,
we rely on the value of theloShowariable, a variable that we set within theegister() method of our controller, to
determine whether or not to show the “Thank you” message.

<div ng-show="doShow">
Thank you for taking the time to register!
</div>

I will show the complete code listing soon. Just one more thing that we should address before we finish up. At the

moment, the form doesn’t look too good. As Figuré-4 shows, it's looking a little cramped and not very presentable.
We will turn it into something a little better, as shown in Figuré-5.

109

CHAPTER SWORKING WITH FORMS

Figure 6-5. Smartening up the form

Thanks to a small amount of CSS, this looks a lot tidier. Most of the CSS, which is shown in Listing 6-18, relates
to the look and feel of the form. However, | have also used a few of the AngularJS style hooks that | pointed out in
Table 6-3. Here is the CSS code with the AngularJS style hooks shown in bold.

Listing 6-18. The CSS, Including the AngularJS-Style Hooks Behind the Form

body {
font: normal 16px/1.4 Georgia;

}

input:not([type="checkbox']), select {
width: 250px;
}

select, input {
padding: 5px;
margin-top: 12px;
font-family: inherit;

}

input[type="submit’] {
width: 264px;

}

form span {
color: red,;

}

input[name="'email].ng-dirty.ng-invalid {
color: red;

}

110

CHAPTER SWORKING WITH FORMS

input[name="email].ng-dirty.ng-valid {
color: green;

}

It isn’t readily apparent what these last two CSS rules, the style hooks, accomplish, beyond the fact that they both
set the CSS color property, one to red and the other to green. Figtw® sheds some light on the matter. When the
user begins to type, the input text appears in red, indicating that the e-mail address is not yet valid. Once the e-mail
address is recognized as valid, the text becomes green. Figbt@ shows how this looks in both states.

Figure 6-6. E-mail input, with visual real-time validation feedback

What is particularly interesting about this feature is that it only requires the addition of some very basic CSS.
As indicated earlier, AngularJS will dynamically add CSS classes as the form changes from one state to another. In this
case, when the page first loads, the e-mailput element has a few classes set on it. One of them isrig&/alid class.
Here is how this particular input is enhanced by AngularJS upon page load:
<input type="email" placeholder="Email" name="email" ng-model="person.email" required=""
class=" ng-pristine ng-invalid ng-invalid-required ng-valid-email">

Pay special attention to the two bolded classesg-pristine andng-invalid . The former was added because
this input has not yet been touched; it is ipristine condition. The latter was added because the field is currently
invalid. Once the user starts typing his or her e-mail address, AngularJS will update this list of classes on the fly.
At the very first keystroke, the input is no longer pristine. As the following code snippet shows, it is ity .
<input type="email" placeholder="Email" name="email" ng-model="person.email" required=""
class=" ng-dirty ng-invalid ng-invalid-required ng-valid-email">

At this point, ourinput[name="'email'].ng-dirty.ng-invalid rule kicks in, and the text becomes red. It remains
red until such time as the e-mail address becomes valid. When it does become valid, the list of CSS classes is again
revised by AngularJS.

<input type="email" placeholder="Email" name="email" ng-model="person.email" required=""
class=" ng-dirty ng-valid-required ng-valid ng-valid-email">

111

CHAPTER SWORKING WITH FORMS

This revision means that ouinput[name="'email].ng-dirty.ng-valid rule kicks in. Consequently, the text
becomes green. This is quite a powerful technique, because once you know which classes AngularJS is adding
and when, you can use these classes as hooks for just about anything you like. Of course, just because you can
doesn’t mean that you should! There was a little bit of legwork involved in building the validation and validation
feedback code into our registration form, but it wasn't overly complicated. This has been a relatively long chapter,
and | recommend that you load up this code in your web browser and favorite IDE; it is well worth doing some
experimentation with it. The finished version can be found in Listing 6-19 and Listing 6-20. Admittedly, the validation
rules that we studied here were fairly basic, but the general approach we used can take you quite far.

Listing 6-19. Registration Form—the HTML Code

<div ng-app="myapp" ng-controller="MyController">

<div ng-show="registrationForm.$pristine">Form input has not yet started</div>
<div ng-show="registrationForm.$dirty">Form input has started</div>

<form name="registrationForm" ng-submit="register()" novalidate>

<input type="text" placeholder="First Name" name="firstName" ng-model="person.firstName" required />

Please enter a value for First name

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName" required />

Please enter a value for Last name

<input type="email" placeholder="Email* name="email" ng-model="person.email" required />

A valid email address is required

<select name="research" ng-model="person.levels"
ng-options="obj.label as obj.value for obj in person.channels" required>
<option value="">Where did you hear about us?</option>
</select>

Please tell us where you heard about us

<input ng-model="person.newsletterOptIn" type="checkbox" name="newsletterOptin"
id="newsletterOptIn" value="newsletterOptin"/>
<label for="newsletterOptin">Recieve monthly newsletter</label>

<input type="submit" value="Register"/>
</form>
<div ng-show="doShow">
Thank you for taking the time to register!

</div>

</div>

112

CHAPTER 6WORKING WITH FORMS
Here is the associated controller code:

Listing 6-20. Regsitration Form—the JavaScript Code

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};
$scope.person.newsletterOptin = false;
$scope.person.channels = [

{ value: "television", label: "Television" },

{ value: "radio", label: "Radio" },

{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

I
$scope.register = function () {

$scope.firstNamelnvalid = false;
$scope.lastNamelnvalid = false;
$scope.emaillnvalid = false;

if(!$scope.registrationForm.firstName.$valid){
$scope.firstNamelnvalid = true;

}

if(I$scope.registrationForm.lastName.$valid){
$scope.lastNamelnvalid = true;

}

if(!$scope.registrationForm.email.$valid){
$scope.emailinvalid = true;

}

if(!$scope.registrationForm.research.$valid){
$scope.researchinvalid = true;

}

if($scope.registrationForm.$valid){
<l-- pending implementation -->
$scope.doShow = true;

}

D

113

CHAPTER SWORKING WITH FORMS

Summary

In this chapter, | offered a brief introduction to HTML forms, and then we looked at how using JavaScript to enhance
HTML form elements is much easier with AngularJS. We also looked at validation techniques and some interesting
ways of providing validation feedback. By no means was this exhaustive coverage of working with forms in AngularJs,
but I hope that this has given you a good overview, making you hungry to learn more.

Although we didn’t actually do anything with the data captured by the form we created in this chapter, we will do
S0 in the next chapter.

114

CHAPTER 7

Services and Server Communicgtion

In the last chapter, we looked at HTML forms as a means of presenting a user interface for gathering a set of user
registration data. However, we didn’t look at the next step in the process, that is, sending that data along to a back-end
server for processing. In this chapter, we will achieve this by using Angular services. As Angular services are about
much more than sending data to servers, we will first look at them at a more general level.

The termserviceis rather overused in the development world, so what do we mean when we talk about Angular
services? A good way to think about an Angular service is as a set of tightly related functions, managed by the Angular
framework, which are made readily available for use across an application. For example, you might use something as
common as a company-wide data service, which enables any part of your application to send and retrieve data to and
from a corporate database. A marketing-and-communications-asset library, for example, which lets you locate and
retrieve images and image metadata, is much more specific. When speaking of Angular services, however, examples
such as these could fool anyone into thinking that services are all about server communication and data access, but
they are not. In Angular, getting a reference to the browser’s window object can also be achieved by using a service:
the built-in $windowservice. You can even create animations by using the built$animate service.

If we wanted to, we could create our own JavaScript object and give it a set of methods that performs a range of
related tasks. We could call upon this object whenever we needed it and, perhaps naively, describe itsas\ace.This
seems to fit closely the description | just gave you of an Angular service, but not quite. So, what is it about an Angular
service that makes it so special? While Angular ships with a set of very useful services, some of which we will look at
shortly, the answer to this question lies in the fact that it provides us with a framework within which services can be
easily managed. | sagasily managedbecause without this framework support, it wouldn't be a trivial task.

If you were to tackle a task like this on your own, and you were serious about it, you would (at a minimum) have
to ask and answer the following questions:

u When and where is the right place to instantiate my service?
u What is the best way to manage service dependencies across my application?

u What is the best approach for making sure that my services can be unit-tested and
configurable?

u How should I handle persisting and sharing services between my controllers?

Of course, the answer to questions such as these, and many more just like them, have already been addressed by
the Angular team. As a developer, you need only learn some implementation details, but you can otherwise relax in
the knowledge that you are using a solid and well-thought-out solution. That, to me anyway, makes Angular services
pretty special.

Now that we know a little bit about what Angular services are at a high level, let's dive in and have a look at a few
services that ship with Angular.

115

CHAPTER 7SERVICES AND SERVER COMMUNICATION

Using Services

As | mentioned before, Angular ships with a set of useful built-in services. We won't look at all of them in this chapter,
but we will look at a few; just enough to get a sense of what is offered and how to put them into action.

The $window Service

The $windowservice is essentially a reference to the browser’s window object. Access to the web browser’s window
object is globally available in JavaScript using the built-windowreference, but it is generally considered best practice
to avoid it when using Angular, because it can cause testability issues. If instead we refer to it througl$tiadow
service, we keep our options open. For example, if we want to test our service in a non-browser context in which the
browser’s window object does not exist, we can more easily switch the underlying service provider to one that uses an
alternate implementation, one which has all of the same properties and methods as the original.

Unfortunately, the use of service providers and advanced testing techniques is not covered in this book, but the
real takeaway here is that, by using a service, we are creating an abstraction that shields us from being intimately
tied to a specific implementation. The service simply does what we ask it to do, and users of the service don't have to
worry too much about how it does this or even if it changes how it does this.

If you look through Listing 7-1, you will see that we access theindowservice through the controller method’s
anonymous function. Here, we speciffsscopeas the first argument, as we have done on a number of occasions
before, and then weask forthe $windowservice by specifying it here too.

Listing 7-1. The $windowService

<IDOCTYPE html >

<html| ng-app="myapp">

<head>
<title>Angular Services</title>
<script src="js/angular.min.js"></script>
<script>

var module = angular.module('myapp’, [1);

module.controller("MyController”, function ($scope, $windowvy {
$scope.winWidth = $window.innerWidth;
N
</script>
</head>

<body ng-controller="MyController">
<p>Window width: {{winWidth}}px</p>

</body>

</html>

An important point here is that we didn’t actually instantiate this service ourselves. The Angular dependency
management sub-subsystem took care of that for us behind the scenes. This technique is an aspect of something
known asdependency injectiona relatively involved topic that is beyond the scope of this book. For now, though, it is
enough to know thatasking fora service in this way, as opposed to you declaring and instantiating it yourself within
your controller code, is a major benefit. That being said, you will get a little more insight into the mechanism at play
here when we create our own service in the next section.

116

CHAPTER 7SERVICES AND SERVER COMMUNICATIC

Note Like other core Angular identifiers, built-in services always statwitibdhe

The idea of the window object as a service might seem a little odd at first, but it makes perfect sense. It contains
a set of related functions and properties that we want to be readily available across our application. That's a service!
Additionally, because it is a service, we don’t have to be too concerned about how it goes about its work or how we
might work with it in other contexts. While it may be early days in your Angular career right now, professional-grade
testing is one such context you are likely to encounter in the future.

The $location Service

Based on thewindow.location object, the$location service parses the URL in the browser address bar and makes it
available to your application. If you make changes to the URL in the address bar, they are reflected ir$kbeation
service, and if you make changes to ttocation service, they are reflected in the browser address bar.

At first glance, it might seem like th&location service is merely a reference to the browsewvigndow.location
object, but it is a little more than this. It has tight integration with the Angular framework’s life-cycle events, and it also
has seamless support for the HTML5 history API (with automatic fallback support for older browsers). As a general
rule, whenever your application needs to respond to a change in the current URL, or you want to change the current
URL in the browser, this is the service to use.

Caution Theslocation service will not cause a full-page reload when the browser URL is changed. In order t
achieve this, you should uséwirelow.location.href property.

Listing 7-2 is a basic example of tiflocation service in action. Here, we use it to display the current URL and a
list of URL parts.

Listing 7-2. Using the$location Service

<IDOCTYPE html >
<html ng-app="myapp">
<head>
<titte>Angular Services</title>
<script src="js/angular.min.js"></script>
<script>
var module = angular.module('myapp’, []);
module.controller("MyController", function ($scope, $location) {
$scope.url = $location.absUrl();
$scope.protocol = $location.protocol();
$scope.host = $location.host();
$scope.port = $location.port();

s

</script>
</head>

117

CHAPTER 7SERVICES AND SERVER COMMUNICATION

<body ng-controller="MyController">
<p>The URL is: {{url}}</p>

{{protocol}}
{{host}}
{{port}}

</body>
</html>

As we did with the$windowservice, we simplyasked forthe $location service by adding it as a parameter to our
controller's anonymous function. In the next chapter, we look at how better to organize our HTML views, and you will
see how the$location service plays a very important role in this context.

The $documentService

We will finish up this section with a brief look at th&documentervice. This service is essentially a jgLite (or jQuery)
wrapper for the browser'swindow.documenbbject. Examine Listing 7-3.

Listing 7-3. Using the$documentService to Access the Page Title

<IDOCTYPE html >
<html ng-app="myapp">
<head>
<title>Angular Services</title>
<script src="js/angular.min.js"></script>
<script>
var module = angular.module('myapp’, []);

module.controller("MyController”, function ($scope, $documeni {
$scope.docTitle = $document[O].title
N
</script>
</head>

<body ng-controller="MyController">
<p>The page title is: {{docTitle}}</p>

</body>

</html>

Yet again, we ask for this service by specifying it as a parameter on our controller method’s anonymous function.
Next, we use it to get the value of the page’s title element, and we set a property oi$sltepe docTitle , on this value.

Angular generally discourages accessing the DOM directly, as it operates very much on the principle that a
declarative approach is much better. There are times when you need this direct access, however, so it is good to have
services such as this one available.

118

CHAPTER 7SERVICES AND SERVER COMMUNICATIC

Why Use Services?

One thing that might have struck you as you read through these examples is that these particular services don't really
add much in terms of functionality. The$windowservice, for example, doesn’t appear to add much above and beyond
what the regular JavaScriptvindowobject has to offer. While some Angular services, such as #ietp and $animation
services (which we will look at in later chapters), are very rich in functionality, what | want to convey in this section
is that services are a core aspect of Angular and, regardless of what functionality a given service may offer, the way in
which we access a service is consistent and offers important architectural benefits.

The $windowservice offers us the benefit of abstraction; we are not tied specifically to the browserttsdow
object. So, in more advanced scenarios, we can actually switch it to use some other implementation. $lbeation
service offers similar benefits, and it is also designed to work very well with the Angular routing framework (which we
will also be looking at in a later chapter).

Angular services are an important part of how Angular applications are built, because they are a well-architected
approach to managing dependencies, and they go a long way toward making applications much more robust.
It shouldn’t be too hard to start thinking in terms of services, because Angular uses them a lot. With a little time
and experience, you will start to appreciate and realize the benefits of services, and you will develop a deeper
understanding of where and when they should be used.

Creating Services

Angular services provide a mechanism for keeping data around for the lifetime of an application and for

communicating across controllers in a consistent manner. As services are implementedsaggletons which are

objects that are instantiated only once per application, you interact with the same instance of a service every time

you use it. Angular is also performance-conscious, so it will create a service only when you need it and not a moment

before. This is all great news, but it does mean that we must learn the ground rules when we create our own services.
We'll start off nice and easy with Listing 7-4. All that this service will do is to tell us the current date and the

current time, but it's just enough to get an idea of how the plumbing works.

Listing 7-4. A Basic Angular Service

<IDOCTYPE html| >
<html ng-app="myapp">
<head>
<title>Angular Services</title>
<script src="js/angular.min.js"></script>
<script>
var module = angular.module('myapp’, []);

module.factory(‘dateTimeService' , function () {

var dateTimeSvc = {};
dateTimeSvc.getDate = function () {
return new Date().toDateString();

}

dateTimeSvc.getTime = function () {
return new Date().toTimeString();

}

119

CHAPTER 7SERVICES AND SERVER COMMUNICATION

return dateTimeSvc;
}.controller("MyController", function ($scope, dateTimeService) {

$scope.theDate = dateTimeService.getDate();
$scope.theTime = dateTimeService.getTime();

D
</script>
</head>
<body ng-controller="MyController">

<p>{{theDate}}</p>
<p>{{theTime}}</p>

</body>
</html>

In Listing 7-4, you can see that we use tffiectory method on our module. This method takes two arguments, the
first of which is the name of our service. We named this servidateTimeService. The second argument is théactory
function, which returns an object. This object is known as theervice objectand it represents the service that you will
ultimately use in your application.

When the application first needs to use this service, the framework will call the factory function. In this example,
the service object that it creates and returns is callethteTimeSv¢ and it is this object that is used whenever the
service is needed again. In other words, this service object, once created, is common to the entire application. This is
a very important point, because it means that changes made to the state of this object remain in play throughout the
lifetime of the application. We will see the implications of this later in the chapter.

As the primary purpose of our factory function is to create an object with our service’s functionality, we busy
ourselves doing just that. We set up an emptiateTimeSvcobject, and then we attach to it the two service methods:
getDate() andgetTime() . We finish by specifyinglateTimeSvcas the return value.

With the service in place, it’s time to turn our attention to our controller, so that we can find out how to make use
of it. The main thing to note about the controller function is that its second argument, the anonymous function, asks
for the dateTimeService in exactly the same way that we have already seen when looking at the built-in services. As
we registered our service using the namaateTimeService, Angular has no problem resolving this dependency for us.

Figure 7-1 shows the output of Listing 7-4. The result is simply two paragraphs containing the return values of the
calls we made on our service.

Figure 7-1. ThedateTimeService in action

120

CHAPTER 7SERVICES AND SERVER COMMUNICATIC

It's a fairly bare-bones implementation of a service, but it does cover the basics of service creation. We will see
these same principles and steps applied again shortly, but first, we will take a brief detour to look at a related aspect of
our upcoming registration form submission task: the Promises API.

Promises

The JavaScript Promises APl is an emerging standard, which has been implemented in major browsers. It’s a relatively
deep topic, but fortunately we don’t have to dig very deep in order to start using it. Essentiallpr@miserepresents

a value that may not be available yet, but one that will be resolved at some point in future. This value is usually the
outcome of an asynchronous task such as an Ajax call to a remote server, for instance, the Ajax call we will use to
process our registration form data. Just like those we make to each other and to ourselves, a promise can exist in
different states. To start, a promise is in@ending state. That is to say, a promise has been made, but that’s about it.

At some future point, it will become either a promise that has been kept or a promise that has been broken. In the
Promises API, we refer to the former asfafilled promise and the latter as aejectedpromise.

Note A promise can only succeed or fail once. Furthermore, it cannot switch from fulfilled to rejected or vice

The general idea is that you create callback functions and attach them to the different possible states of a
promise. Figure7-2 represents the general concept.

Figure 7-2. The role of a promise

The unfinished work represents the back-end processing and network communication that will take place
once the user clicks our Register button. Both of these are processes that will take some time, but they will result in
an outcome of some kind eventually. In the meantime, we have the promise, an object that represents this as yet
unknown value. Furthermore, we have the ability to respond to the states of the promise, using callback functions.

121

CHAPTER 7SERVICES AND SERVER COMMUNICATION

The Promises API is very sophisticated, and it aims to improve on the way this kind of work was managed in the
past. One interesting aspect of the APl is the fact that you combine multiple promises into one larger promise. This is
conceptually like promising your children a trip to the zoo, a toy from the toy store, and then some ice cream on the
way home. With promises, you can write very clean and readable code that says, in essence, “When all of these things
have happened, do this other thing.” We won’t get quite as involved as that in this book, but | do encourage you to dig
deeper, if you plan to write a lot of potentially unwieldy asynchronous JavaScript code.

This is all a little abstract at the moment, but we are now ready to move on and look at server communication.
Soon, we will see how our code can use promises.

Server Communication

While we don't have to concern ourselves too much with the back-end process that manages the incoming data,
we do have to know how to transmit that data across the network. For this task, we are going to use the Angiotgr
service. This service allows you to communicate with a web server via the browsENLHttpRequesbbject. If you
have a jQuery background, this service is similar to the jQuery Ajax method.

Take a look at Listing 7-5, some of which may make sense already, given our coverage of promises in the
last section.

Listing 7-5. A First Look at thebhttp Service

var promise = $http({method: 'POST', url: 'memberservices/register', data: theData});

promise.success(function (data, status, headers, config, statusText) {
/I this callback will be called asynchronously
/I when the response is available

D

promise.error(function (data, status, headers, config, statusText) {
/I called asynchronously if an error occurs
/I or server returns response with an error status.

D

As Listing 7-5 shows, th&http service is a function that takes a single argument, a configuration object. While
the configuration object lets you configure many different options, we keep it fairly simple here. We provide an
HTTP endpoint via itsurl property, and we use the HTTP post method via tmeethodproperty. We also use thdata
property to pass in the data that we want to send along to the web server. In many cases, this is all th&htie
service needs in order to do its job. However, by using the configuration object, it is possible to configure a wide range
of HTTP options as and when you need to do so.

We capture the return value of th&http service, a promise object, in a variable namgatomise. As a promise
object is a representation of an event that can potentially have different outcomes, we useitscess and error
methods to cater to either possibility. Both of these methods accept callback functions as arguments, and each of
these functions has the same signature.

function(data, status, headers, config, statusText) { }

The callback function arguments are outlined in Tabl&-1. However, we will mainly be concerned with the first
two, data and status, both of which we will see in action shortly.

122

CHAPTER 7SERVICES AND SERVER COMMUNICATIC

Table 7-1. The Arguments Provided to the Success and Error Functions

Name Type Description

data string|Object The response body transformed with the transform functions
status number HTTP status code of the response

headers function([headerName]) Header getter function

config Object The configuration object that was used to generate the request
statusText string HTTP status text of the response

Let's take the$http service and use it within our own service, a service we will galémberDataStoreService
We will use this new service to handle our registration form data, but this service could go on to perform other
membership-related tasks, such as handling logins and the ability to change passwords. We will keep it simple here,
though, and focus only on the registration. Take a look at Listing 7-6.

Listing 7-6. The memberDataStoreServiceService

var module = angular.module('myapp’, []);
module.factory('memberDataStoreService', function ($http) {
var memberDataStore = {};

memberDataStore.doRegistration = function (theData) {
var promise = $http({method: 'POST", url: '‘memberse rvices/register', data: theData});
return promise;

}

return memberDataStore;

b

There are a few things to note about Listing 7-6. We register our service using the namamberDataStoreService
and we make sure that our factory function has access to thiettp service. Next, we creatermemberDataStorebject.
This is to be the return value of our factory funicin and the object to which we can attach all of aiservice methods.

As previously mentioned, we will limit it to just the one here, thdoRegistration() method.

The doRegistration() method has just one argument: the data required to perform a registration. This is
the data that is collected from the user via the registration form. Here’s the interesting part: this method returns
the promise object that was created by the call to ti#http service. We very much want our service to take care of
the connection to the web server and data transmission, but we very much dot want it poking its nose into our
user-interface concerns. Using a promise, as you will see next, we can manipulate the user interface from within our
controller code instead.

We are now ready to look at a more complete code listing. Listing 7-7 is a reworking of the registration form we
built in the last chapter. This time, it makes use of oumemberDataStoreService

123

CHAPTER 7SERVICES AND SERVER COMMUNICATION

Listing 7-7. Making Use of Our Custom Service

<IDOCTYPE htmlI>
<html ng-app="myapp">
<head lang="en">
<meta charset="UTF-8">
<title>Registration Form</title>
<script src="js/angular.min.js"></script>
<script>
var module = angular.module('myapp’, []);

module.factory('memberDataStoreService', function ($http) {
var memberDataStore = {};

memberDataStore.doRegistration = function (theData) {
var promise = $http({method: 'POST', url: 'memberservi ces/register', data: theData});
return promise;

}

return memberDataStore;
}).controller("MyController"”, function ($scope, memberDataStoreServicg{

$scope.person = {};
$scope.person.newsletterOptin = true;
$scope.person.channels = [

{ value: "television", label: "Television" },

{ value: "radio", label: "Radio" },

{ value: "social-media", label: "Social Media"},

{ value: "other", label: "Other"}

I
$scope.register = function () {

$scope.firstNamelnvalid = false;
$scope.lastNamelnvalid = false;
$scope.emailinvalid = false;
$scope.researchinvalid = false;

$scope.showSuccessMessage = false;
$scope.showErrorMessage = false;

if (I$scope.registrationForm.firstName.$valid) {
$scope.firstNamelnvalid = true;

}

if (I$scope.registrationForm.lastName.$valid) {
$scope.lastNamelnvalid = true;

}

124

CHAPTER 7SERVICES AND SERVER COMMUNICATIC

if (I$scope.registrationForm.email.$valid) {
$scope.emaillnvalid = true;

}

if (I$scope.registrationForm.research.$valid) {
$scope.researchinvalid = true;

}

/I If the registration form is valid, use the
/I memberDataStoreService to submit the form data
if ($scope.registrationForm.$valid) {

var promise = memberDataStoreService.doRegistration($scope.person);

promise.success(function (data, status) {
$scope.showSuccessMessage = true;

b

promise.error(function (data, status) {
$scope.showErrorMessage = true;

D;
$scope.doShow = true;
}
}
)
</script>
<style>

body, input, select {
font: normal 16px/1.4 Georgia;

}

input:not([type="checkbox']), select {
width: 250px;
}

input, select {
padding: 5px;
margin-top: 12px;
}

input[name="'email'].ng-dirty.ng-invalid-email {
color: red;

}

125

CHAPTER 7SERVICES AND SERVER COMMUNICATION

input[name="'email'].ng-dirty.ng-valid-email {
color: green;

}

form span, .error {
color: red;

}

</style>

</head>
<body>
<div>
<div ng-controller="MyController">

126

<form name="registrationForm" ng-submit="register()" novalidate>

<div ng-show="showSuccessMessage">
Thank you for taking the time to register!
</div>

<div class="error" ng-show="showErrorMessage">
There appears to have been a problem with your registration.

</div>

<input type="text" placeholder="First Name" name=" firstName" ng-model="person.firstName" required/>

Please enter a value for First name

<input type="text" placeholder="Last Name" name="| astName" ng-model="person.lastName" required/>

Please enter a value for Last name

<input type="email" placeholder="Email" name="email" ng-model="person.email" required/>

A valid email address is required

<select name="research" ng-model="person.levels"
ng-options="obj.label as obj.value for obj in person.channels" required>
<option value="">Where did you hear about us?</option>
</select>

Please tell us where you heard about us

<input ng-model="person.newsletterOptIn" type="checkbox" name="newsletterOptin"
id="newsletterOptIn" value="newsletterOptin"/>

<label for="newsletterOptin">Recieve monthly newsletter</label>

CHAPTER 7SERVICES AND SERVER COMMUNICATIC

<input type="submit" value="Register"/>
</form>

</div>
</div>
</body>
</html>

There is a fair bit going on here, much of which was covered in the previous chapter and some of it earlier
in this chapter. However, pay particular attention to the code shown in bold. You will see that we nask forthe
memberDataStoreservice when we set up our controller. Nearer to the end of the controller method, you will see the
actual call to our newmemberDataStoreServiceservice. Following (Listing 7-8) is that section of code again:

Listing 7-8. Using thememberDataStoreService

/I If the registration form is valid, use the
/I memberDataStoreService to submit the form data
if ($scope.registrationForm.$valid) {

var promise = memberDataStoreService.doRegistration($scope.person);

promise.success(function (data, status) {
$scope.showSuccessMessage = true;

s

promise.error(function (data, status) {
$scope.showErrorMessage = true;

hE

$scope.doShow = true;

There is no point submitting invalid data, so we first check to make sure that the user properly completed
all of the required fields. Assuming that the user did, we can now send the data on its way, using the
memberDataStoreService.doRegistration method. Note that the argument to this method i$scope.person.

This contains the validated data captured during the form entry process.

Of course, this isn't the end of the process, as we still have to await the outcome of our attempt to submit the
data. This attempt will either be successful or it will fail, and we cater to both possibilities, using the promise object’s
successanderror methods. Both of these methods refer to some additional HTML elements that we have placed at
the top of the HTML form. Following (Listing 7-9) is that section of code again:

Listing 7-9. Honing In on the Success and Error Messages

<div ng-show="showSuccessMessage">
Thank you for taking the time to register!
</div>

<div class="error" ng-show="showErrorMessage">

There appears to have been a problem with your registration.

</div>

127

CHAPTER 7SERVICES AND SERVER COMMUNICATION

Both of thesediv elements make use of thagShowdirective. Only one or the other will be displayed once the
promise is resolved. The success method will set tshowSuccessMessagdetrue or the error method will set
the showErrorMessageotrue .

What we have done so far is almost enough. However, we should enhance this to provide a slightly better user
experience. Let's add a visual cue, so that the user is aware that some work is in progress once he/she clicks the Register
button. The first thing we will do is to add a small loading animation next to our registration form’s Register button.

The other thing we will do is use thegDisabled directive on the Register button. ThagDisabled directive is
very useful. If the value of its expressiontgie , it will set thedisabled attribute on the element to which it is applied.
Here, we use it to prevent the user from attempting to click the button more than once.

You can see these revisions in Listing 7-10 and Listing 7-11. Take note that the animation in Listing 7-10,
a.gif image file, is inside apanwhose visibility is determined by amgShovdirective.

Listing 7-10. Adding a Loading Animation and Disabling the Register Button

<input ng-disabled="working" type="submit" value="Register"/>

Listing 7-11 shows the changes we have made to tegister() function.

Listing 7-11. Indicating That Work Is in Progress

/I If the registration form is valid, use the
/I memberDataStoreService to submit the form data
if ($scope.registrationForm.$valid) {

$scope.working = true;
var promise = memberDataStoreService.doRegistration($scope.person);

promise.success(function (data, status) {
$scope.showSuccessMessage = true;

s

promise.error(function (data, status) {
$scope.showErrorMessage = true;

hE

promise.finally(function () {
$scope.working = false;

D;
$scope.doShow = true;
The first thing we do is to sefscope.working totrue . So, thanks tamgShowas soon as the user hits the Register
button, the loading animation appears (see Figurg-3). Of course, when the work is done, we want it to go away again.

In order to achieve that, we simply se¥scope.working tofalse . This also takes care of enabling and disabling the
Register button.

128

CHAPTER 7SERVICES AND SERVER COMMUNICATIC

Figure 7-3. Clicking on the Register button

We can't place this code in thsuccess method, because, if an error occurs, our form will be trapped in its
working state. This would lead to a somewhat conflicted user interface. We could put the code in bothdhecess
and error methods, however. That would work, though a much better way is to use the promise objefitially
method. This is a cleaner way to handle this kind of task, the kind of task you want performed regardless of whether or
not the promise was rejected or fulfilled.

Tip No matter the outcome of a promidimahye method will always be called.

Handling Returned Data

It is common for asynchronous communications to be a little more involved than simply sending data on its way.
Some scenarios require us to process data with which the web server might respond. A username lookup service,

for example, might require us to inspect a returned value to see if a given username exists within the system. How
would we access this data? What about error handling? How do we find out if and what went wrong? We look at these
considerations next.

Accessing Returned Data

It might be a simple transaction identifier or a large data set containing some or all of a customer’s purchasing history;
it doesn’t really matter. Either way, this information, the server’s response, is represented by dia¢ga argument with
which we expect oursuccess method’s callback function to be supplied. Listing 7-12 shows how we might go about
displaying a transaction number to our user.

Listing 7-12. Handling Request Data

promise.success(function (data, status) {

$scope.successMessage = "Your transaction identifier is " + data.transactionID;
$scope.showSuccessMessage = true;

b

129

CHAPTER 7SERVICES AND SERVER COMMUNICATION

This example assumes that we received a JSON response from the server and that this response was structured
something like{"transactionID": "12587965"} . Of course, in your own projects, you will come across many
different structures and even different formats, such as XML.

Handling Errors

It's an unfortunate fact of life that things do not always go well. Our applications are going to produce errors for a wide
variety of reasons. Some might be network-related and quite possibly outside of our control. Others might be coding
errors or configuration issues—things well within our control. Regardless of the origin of an error, we should respond
appropriately. A good place to do so is in the promise objecgsror method (see Listing 7-13).

Listing 7-13. Handling Errors
promise.error(function (data, status) {
if (status ===0) {
$scope.errorMessage = "network or http level issue";

}else {
$scope.errorMessage = "response HTTP status is " + status ;

}
D

$scope.showErrorMessage = true;

This time, we make use of thetatus parameter. This will tell us how the server responded, by supplying us with
an HTTP status code. Status codes between 200 and 299 are considered successful, so you won'’t see any in this range
inside anerror callback. If the server didn't respond at all, due to some kind of network or HTTP-level issue, you will
get O as a result.

Listing 7-13 isn't a very sophisticated way to handle errors from a user perspective, but it is somewhat useful
for “at a glance” debugging purposes. Ideally, though, you would evaluate your particular scenario and determine
whether or not there is any way to recover from, or more gracefully handle, your own errors.

Summary

After looking at some of Angular’s built-in services, we went on to develop our own custom service, learning a little
bit about the $http service in the process. | hope you saw that while creating your own services may mean extra work,
they aren't terribly difficult to create and are well worth the effort.

While directives get most of the Angular glory, | think that services are in some ways the slightly unsung hero.
In this book, | really only scratched the surface of their possibilities and benefits, but, as you can see, they are a very
capable way of isolating potentially complex logic from your model and view logic, and they are the ideal place for
application-wide logic.

130

CHAPTER 8

Organizing Views

AngularJS excels when it comes to the creationsihgle-page applicationsor SPAs, as they are commonly called. This
kind of application has become increasingly common, given the advances in HTML5 and the availability of faster
Internet connections. With an SPA, we can provide a much more responsive user experience, decrease the load on
our web servers, and benefit from other advantages, such as the ability to cater better to users who might have to work
offline. However, there is a potential issue with a web site or web application that downloads a lot of its content during
a single-page request—organizing and managing that content.

With Angular, we can manage this situation neatly and easily, using the Angular routing system. As you will
see, this approach makes for a very flexible and powerful solution to the problem of managing applications that are
required to deliver large amounts of content (and functionality) in the context of a single-page application.

Ideally, we should be able to tell our application where our content resides, and, moreover, when users request
it, it should just find it and load it for them with a minimum of fuss and complexity. This is where the Angular routing
system comes into play.

By the end of this chapter, you should feel comfortable with the most important parts of the Angular system—the
$route service and its related provider and directives. Before we look at any of this, however, we have to download
and install thengRoutemodule.

Installing thegRoutéModule

As the Angular routing system is defined within an optional module callenigRoute we must download this module
before we can get started. To do this, golttp://angularjs.org , click Download, select the version you require

(the code listings in this chapter use the 1.2.5 version), and click the Browse additional modules link displayed next to
Extras, as shown in Figur8-1.

131

CHAPTER 80RGANIZING VIEWS

Figure 8-1. Downloading additional modules

A page listing various Angular modules appears. You want to download thegular-route.js file (or the
minified version, angular-route.min.js , if you prefer) into yourangularjs folder.

In Listing 8-1, you can see an example of how | added a script element for @ingular-route.js file within a new
HTML file.

Listing 8-1. Adding a Reference to thegRouteModule

<IDOCTYPE html>

<html ng-app="myApp">

<head>

<title></title>

<script src="angular.js"></script>
<script src="angular-route.js"></script>
</head>

<body>

<l-- body code here -->

</body>

</html>

That’s it—that's how you install the Angular routing system. Now let’s start looking at what you can do with it.

Note Why isgRoutedefined in an optional module? Not every developer will wayRdateiperhaps
preferring to use another route system or no route system at all. In such cases, there is no point forcing users to
downloadgRouteif it is not going to be used.

132

CHAPTER 80RGANIZING VIEWS

Using URL Routes

You'll learn about routes through a small web site that we will create as we proceed through the chapter. Though it’s a
small web site, it will be more than able to demonstrate the power of the routing system. It will consist of a home page,
an about page, and a contact page. In a traditional static HTML web site, we would structure this content as three
separate HTML files, no doubt using the same navigation elements and other common features across each of the
three pages. In this chapter, however, we are going to learn how to do something similar, but using the Angular routing
system toinject these pages into a single container, parent, view page.

Technically speaking, we could come up with a solution that does not require the use of the Angular routing
system or learning anything new at all. For example, we could usgShovand HTMLdiv elements to manage the
visibility of our content and rely on the use ofscopevariables in our controller(s) to switch various pages on and
off or perhaps load them on demand. There are other possibilities too, many of which revolve around the use of the
versatilenginclude directive. However, due to the added complexity and code required within controllers, these
techniques can become cumbersome and increasingly difficult to manage as web sites get larger. What we really want
is a clean and simple way to separate the task of selecting content from the controller, so that the application content
can be driven from any part of the application. This is what routes allow us to do.

Defining Routes

At the heart of the routing system is th§route service. This service allows you to create a set of mappings between
URLs and view file names. These mappings, usually known as URL routes or simply routes, work closely with the
value returned by the$location.path() method. When this value changes such that it matches one of the routes, the
corresponding view template (described by the route) will be loaded and displayed. Listing 8-2 shows a basic route.

Listing 8-2. A Simple Route

$routeProvider.when(‘/about’,
{
templateUrl: 'pages/about.html’,
controller: 'aboutController'

hE

Don’t worry too much if this code listing doesn’t make total sense. This is just a first glance at what a route looks
like. To begin, let's consider the purpose of the two arguments passed to $ieuteProvider.when() method. The
first is the path that we want the routing system to look for, and the second is an object that provides details of what it
should do if it comes across it. These details, the template to load and the controller to use, are all that this particular
route needs. Translating this code snippet into plain English, it might read something like this:

When the URL has the pathabout, load the view template/pages/about.html , using the
aboutController .

Let’s put some context around this with a more complete example. Listing 8-3 is the parent page of the small web
site that we will be creating. This filandex.hmtl , is the entry point into the web site. The view templatelspme.htm|,
about.html , andcontact.html , will be loaded into this page by the routing system as and when they are required.

We will also have another view templateputeNoteFound.html, and this will be explained shortly.

133

CHAPTER 80RGANIZING VIEWS

Listing 8-3. index.html , the Entry Page for Our Demo Web Site

<IDOCTYPE html>
<html ng-app="app">

<head>
<link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css"/>
<link rel="stylesheet" href="//netdna.bootstrapcdn .com/font-awesome/4.0.0/css/font-awesome.css"/>

<script src="angular.min.js"></script>

<script src="angular-route.js"></script>

<script>
var app = angular.module(‘app’, [‘ngRoute’]);
app.config(function ($routeProvider) {

/I configure the routes
$routeProvider

when('/', {

I/ route for the home page
templateUrl: ‘pages/home.html’,
controller: 'homeController'

D
.when(' pages/about', {

I/ route for the about page
templateUrl: ‘pages/about.html’,
controller: ‘aboutController'

D
.when('pages/contact/’, {

I/ route for the contact page
templateUrl: ‘pages/contact.html’,
controller: ‘contactController'

D
.otherwise({

/l when all else fails
templateUrl: 'pages/routeNotFound.html’,
controller: 'notFoundController'

b
)

app.controller(homeController', function ($scope) {
$scope.message = 'Welcome to my home page!’;

B

app.controller(‘aboutController', function ($scope) {
$scope.message = 'Find out more about me.";

s

app.controller(‘contactController’, function ($scope) {
$scope.message = 'Contact us!’;

s

app.controller('notFoundController’, function ($scope) {

134

CHAPTER 80RGANIZING VIEWS

$scope.message = 'There seems to be a problem finding the page you wanted’;
$scope.attemptedPath = $location.path();

B

</script>
</head>
<body ng-controller="homeController">

<header>
<nav class="navbar navbar-default">
<div class="container">
<div class="navbar-header">
My Website
</div>

<ul class="nav navbar-nav navbar-right">
<i class="fa fa-home"></i> Home
<i class="fa fa-shield"></i> About
<i class="fa fa-comment"></i> Contact

</div>
</nav>
</header>

<div id="main">
<l-- this is where content will be injected -->
<div ng-view></div>
</div>

</body>
</html>

We will come back to this code listing shortly, but for now, take note that we have made sure to add a script
reference to thengRoutemodule, and we have declared our dependency on it with the following line. Omitting either
of these will result in a non-starter.

var app = angular.module('app’, [‘ngRoute’]);

| used the Bootstrap framework to make this demo web site look presentable. Bootstrap is a popular front-end
framework that contains HTML- and CSS-based desigeamplates for typography, forms, buttons, navigatio, and other
interface components. Many web designers and developers find it indispensable, as it allows you to build great-looking
web sites quickly. It is very easy to get started with Bootstrap. You can find out moretigt//getbootstrap.com

Figure 8-2 shows the result of my efforts on this demo web site. Each part of the web site has essentially the same
look and feel, because the view templates, as you will soon see, ultimately become part of this single page. Factoring
out these aspects of the code, all we really have here is the JavaScript code, which we will get to shortly, and a header
containing some navigation links. What we don't see is any actual content. Near the end of the listing, however, we
encounter thengViewdirective. This directive is an important part of the routing system, and its job is to include the
rendered template of the current route into the main layout file, which, in this case,iildex.html . Every time the
current route changes, the included view will change, based on how we have configured our routes.

135

CHAPTER 80RGANIZING VIEWS

Figure 8-2. Demo web site home page

We have declaredhgViewas an attribute on aliv element; consequently, thigliv element is where our content
is going to be injected. Let's examine the four view templates that contain this content. These are shown in Listing 8-4,
Listing 8-5, Listing 8-6, and Listing 8-7.
Listing 8-4. The HomePagehome.html

<div class="jumbotron text-center">
<h1>Home Page</h1>

<p>{{ message }}</p>
<div>
</div>

</div>

Listing 8-5. The About Pageabout.html

<div class="jumbotron text-center">
<h1>About Page</h1>

<p>{{ message }}</p>
<div>

</div>
</div>

136

CHAPTER 80RGANIZING VIEWS

Listing 8-6. The Contact Pagecontact.html

<div class="jumbotron text-center">
<h1>Contact Page</h1>

<p>{{ message }}</p>

<div>
</div>
</div>

Listing 8-7. The Route Not Found View TemplateouteNotFound.html

<div class="jumbotron text-center">
<h1>This is not good</h1>

<p>{{message}}</p>
<pclass="has-error">{{attemptedPath}}</p>

</div>

Each of these view templates will look the same, differing only in the content displayed once they are brought
into the parent page via thengViewdirective. Note the use of th@imbotron andtext-center classes. These are
Bootstrap-defined classes that help us with the layout. In the case of tioeiteNotFound.html view template, | have
also used the Bootstrafhas-error class to color the attempted path red, to highlight the erroneous input.

As | mentioned, every time the current route changes, the included view (the injected content) will change, based
on how we have configured our routes. What would cause the current route to change? In our example, it would occur
anytime our user interacted with the navigation links in oumdex.html file. So that we can hone in on these, | have
repeated them again in Listing 8-8.

Listing 8-8. The Navigation Links in Our Entry Pagéndex.html

<ul class="nav navbar-nav navbar-right">

<i class="fa fa-home"></i> Home
<i class="fa fa-shield"></i> About
<i class="fa fa-comment"></i> Contact

You will notice that these links are declared using#character, just like those used in HTML when addressing
named anchors. By default, when specifying links for the routing system, you should use this style of link, because
only the portion after the first# character is considered during the matching process. With this matching process
in mind, let's have a look at some sample URLs and consider how tlecation service can break them down into
distinct components (see Table3-1).

137

CHAPTER 80RGANIZING VIEWS

Table 8-1. How the$location Service Works with URLs

http://localhost:63342/index.html#/

$location.path() /

$location.url() /

$location.absUrl() http://localhost:63342/index.html#/
http://localhost:63342/index.html#/about

$location.path() /about

$location.url() /about

$location.absUrl() http://localhost:63342/index.html#/about
http://localhost:63342/index.html#/contact?someParam=someValue
$location.path() /contact

$location.url() /contact?someParam=someValue
$location.absUrl() http://localhost:63342/index.html#/

http://localhost:63342/index.html#/contact?someParam=someValue

Table 8-1 shows a few of th&location services methods acting on various URLSs, though right now, we are
mainly concerned with thepath() method. It is this method that the routing system is using to determine whether or
not the routes we configure are a match. Let’s focus our attention back iodex.html , or, more specifically, the route
configuration we have in place. Listing 8-9 shows this portion of the file.

Listing 8-9. Theindex.html Route Configuration

var app = angular.module(‘app’, [ngRoute'));
app.config(function ($routeProvider) {

/I configure the routes
$routeProvider
.when(/', {
I route for the home page
templateUrl: 'pages/home.html’,
controller: 'homeController'
D
.when('/pages/about’, {
// route for the about page
templateUrl: 'pages/about.html’,
controller: ‘aboutController
D
.when(/pages/contact/", {
/I route for the contact page
templateUrl: 'pages/contact.html’,
controller: ‘contactController'

)

138

CHAPTER 80RGANIZING VIEWS

.otherwise({
/I when all else fails
templateUrl: /pages/routeNotFound.html’,
controller: 'notFoundController'
D
b

It is worth repeating the fact that we declared a dependency on thgRoutemodule when we created our
application module, because its absence is the source of many problems for Angular beginners. Next, we use our
application module’s config() method to set up our route configuration. While theonfig() method can be used for
other configuration purposes, here we use it solely to set up the routing system. We do this usindbtbeteProvider
parameter that we specified on its anonymous function argument. It is through tf&outeProvider that we tell the
routing system how we want it to behave.

Caution You may have noticed something unusual. We talk gbotet Hegvice, yet we us@uteProvider
within theonfig() methodProviderare objects that create instances of services and expose configuration APIs.
need to us&outeProvider within theonfig() method, as this method is somewhat special. It can only use provid
not services.

The route provider'swhen() method adds a new route definition. As we discussed, this is achieved through the
two arguments that we pass to it. In Listing 8-9, the finsthen() method is used to create a route for our home page.
When the routing system can make a match against the valulcédtion.path() and'/" it will inject the template
‘home.html" into the ngViewdirective and makehomeController its controller.

The next two route definitions usé/pages/about’ and'/pages/contact’ , and the same logic applies. Of
course, in these cases, the view templates and the controllers used are different. Pay special attention to the forward
slashes in these routes. For example, the following two routdpages/about’ and'pages/about’ , are not the same.
Note that the latter is missing the forward slash. Without the forward slash, you run the risk of creating a Not Found
error when navigating the web site. Keep in mind that the URL is evaluated relative to the value returned by the
$location.path() method.

Sometimes, a match cannot be made. This is where ththerwise() method comes in. If you were to type a
nonexistent URL into the browser’s address bar, you would cause tiberwise() method to execute and display the
‘routeNotFound.html' view template. Of course, only a single argument is required in this case, as a URL makes no
sense in this context.

We also specified a controller to use with each of our route definitions. Listing 8-10 shows this again. All but the
last one do nothing more than set a valugscope.messageso that we can distinguish one page from another.

Listing 8-10. The Controllers for Our View Templates

app.controllerhomeController’, function ($scope) {
$scope.message = 'Welcome to my home page!’;

b

app.controller(‘aboutController', function ($scope) {
$scope.message = 'Find out more about me.’;

D;

app.controller(‘contactController', function ($scope) {
$scope.message = 'Contact us!

D
139

CHAPTER 80RGANIZING VIEWS

app.controller('notFoundController', function ($scope) {
$scope.message = 'There seems to be a problem finding the page you wanted’;
$scope.attemptedPath = $location.path();

You may have correctly surmised that the last controller complements oatherwise() route definition. Using
$location.path() , this controller does something slightly more interesting; it sets a value fescope.attemptedPath,
so that we can display the invalid URL. This is the URL that could not be matched. Fifi#zshows how this looks.

Figure 8-3. The route not found screen

If you load and view thendex.html file at this stage, you will have a fully working, albeit minimal, web site. Take
some time to follow the links back and forth, observing the structure of the URLs and entering random URLSs to see
the otherwise() method in action. Once you are ready, we will move on and build up your knowledge of the routing
system further.

Route Parameters

The URLs we have used to define our routes so far have been relatively simple but somewhat inflexible. This is
because the match againsklocation.path() has had to be exact. This is perfectly fine in many cases, but not when
we want to add parameters to our URLs. Examine the following three route definitions.

$routeProvider.when("/product/123", { templateUrl: "product.html" });
$routeProvider.when("/product/789", { templateUrl: "product.html” });
$routeProvider.when("/product/926", { templateUrl: "product.html" });

All of these use a fictitious product catalog view templatproduct.html , but each has a slightly different URL.
They each have a different series of numbers representing a product id. If we have 50 more products, each also
represented by its own unique id, are we supposed to create 50 more route definitions? Of course not. Fortunately, we
can deal with this situation, and others like it, using route parameters.

140

CHAPTER 80RGANIZING VIEWS

Route parameters are much more flexible than the fixed, or static, routes that we have seen so far. To demonstrate
how they work, we are going to add a very simple contact form to our contact view template and use a roatarpeter
to help us determine the initial state of its subject field. Here (Listing 8-11) is the revised contact view template:

Listing 8-11. The Revised Contact View Template

<div class="jumbotron text-center">
<h1>Contact Page</h1>

<form style="width:25%;margin:auto;" role="form">
<div class="form-group">

<input ng-model="subject" type="text" class="form-c ontrol" id="subject" placeholder="Subject">
</div>
<div class="form-group">
<textarea class="form-control" id="message" placeholder="Message"></textarea>
</div>
<button type="submit" class="btn btn-default">Send Message</button>
</form>

</div>
</div>

There’s nothing too fancy going on here; it's just basic form with two fields. We aren’t really intested in submitting
this form, so we won't pay any attention to the usithings (such as field validation and submittingt to a server). The
important thing to take note of is the fact that we have a binding, namadbject , in place on the subject field. The object
of this exercise is to pre-populate the subject fiy based on how the user ended up at this view tgatate. This will make
more sense when you look at Listing 8-12. This is thbout.html file we saw earlier, but modified to support this feature.

Listing 8-12. The Revised About View Template

<div class="jumbotron text-center">
<h1>About Page</h1>

<p>If you want to learn more about us please let us know.</p>
<p>If you want a free quote give us a call or inquire through
our contact form.</p>
</div>

Again, there is nothing too fancy going on here, $tia couple of paragraphs of content containing aaple of links.
Take a close look at these links, though, as they contain our route parameters. Both of these links have two segments:
the first one has the segmentsontact andlearn , and the second one has the segmentsntact andquote. In both
cases, the second segment acts as the route parameter under the route definition we examine next (Listing 8-13).

Listing 8-13. Additional Route Definition for the Contact View Template

/ route for the contact page with subject param
.when('/contact/ :subject ', {
templateUrl: 'pages/contact.html’,
controller: ‘contactController'

s

141

CHAPTER 80RGANIZING VIEWS

The second segment in this route acts as a reference to whatever value is actually supplied as the second segment
of a matching URL. Tabl&-2 should shed some light on possible values for tlseibject route parameter, and it shows
a couple of non-starters.

Table 8-2. Possible Values for theibject Route Parameter

URL Match?

/contact/quote Yes. The route parameters value guote.
/contact/learn Yes. The route parameters value igarn .
/contact/ Too few segments, no match
/contact/learn/more Too many segments, no match

How can we do something useful with this? The first step is to extract the value of the route parameter. What we
will use it for here is a simple comparison that will help us determine the text with which we want to pre-populate the
subject text field. This is shown in Listing 8-14, which is a revision of tbentactController code.

Listing 8-14. The RevisedcontactController

app.controller('contactController', function ($scope, $routeParamg {

var subject = ";

if ($routeParams ['subject] =="learn") {
subject ="'l want to learn more about your services'’;
}elseif ($routeParams ['subject] == "quote") {

subject ="'l would like to get a free quote’;

}

$scope.subject = subject;

b

Extracting the value is easy, provided that we make tBeouteParamsservice available to the controller, as we
do here. We then create the variableubject , initializing it to an empty string. The conditional logic revolves around
the value of the route parameter, and here you can see this value being retrieved via its name @lbfect). Indexing
into the $routeParamsservice in this way tells us the value that was actually used in the URL. As to how it got into the
URL, let’s look at the changes | made to tldout.html view template (see Listing 8-15).

Listing 8-15. Creating URLs That Contain Route Parameter Values

<div class="jumbotron text-center">
<h1>About Page</h1>

<p>If you want to learn more about us please let us know.</p>
<p>If you want a free quote give us a call or inquire through
our contact form.</p>
</div>

Here you see the two links that will take us to the contact view template. Bétbntact/learn and/contact/
guote are a match forcontact/:subject . Of course, the route parametesubject is given a different value for each:
learn for the former andquote for the latter. Listing 8-16 shows the new routes configuration.

142

CHAPTER 80RGANIZING VIEWS

Listing 8-16. The Revised Routes Configuration

app.config(function ($routeProvider) {

/I configure the routes
$routeProvider

/ route for the home page
.when('/", {
templateUrl: 'pages/home.html’,
controller: ‘homeController'

)

/I route for the about page
.when('/about’, {
templateUrl: 'pages/about.html’,
controller: 'aboutController'

)

/I route for the contact page
.when(‘/contact’, {
templateUrl: 'pages/contact.html’,
controller: ‘contactController'

)

/ route for the contact page with subject param
.when('/contact/:subject’, {
templateUrl: 'pages/contact.html’,
controller: 'contactController'

)

/l when all else fails
.otherwise({
templateUrl: 'pages/routeNotFound.html’,
controller: 'notFoundController'
b
»:

You can see that the new route definition is in play now. You can also see that the original route remains in play
too. We still need this, so that we can continue to navigate to the contact view templaithout a route parameter. An
alternative is to remove it and simply make sure that we always use a route parameter. It all depends on what you want
to achieve. In this case, it made sense to leave it as a general purpose fallback.

Figure 8-4 and Figure8-5 show the updatedabout.html andcontact.html view templates. Figure8-5 is the
result of following the link in the second paragraph of thabout.html view template. You will see that its subject field
is pre-populated with the text‘l would like to get a free quote

143

CHAPTER 80RGANIZING VIEWS

Figure 8-4. The updatedabout.html view template

Figure 8-5. The updatedcontact.html view template

144

CHAPTER 80RGANIZING VIEWS

Eager vs. Conservative Routes

Routes such agcontact/:subject’ are known asconservative routesThat's really just a way of saying that the
route would match, say,/contact/howareyou’ but would not match'contact/how/are/lyou' , as the latter has far
too many URL segments. A conservative route is really quite strict about what it considers to be a match. To explain
how aneagerroute works, let’s start by considering a URL that contains segments that describe a product, more
specifically, a shirt that is available in various sizes, styles, and colors.

/product/123/medium/blue/loosefit
/product/698/large/green/snugfit

Knowing what we already know, this is not a problem for us; we can use a conservative route. Such a route would
look like this:

when(/product/:id/:size/:color/fit' A
templateUrl: 'pages/product.html’,
controller: 'productController’

B

Inside our controller, we can do just as we did earlier and u$eouteParamsto access each value.
$routeParams['color'] would give us the color, anérouteParams['size’l would give us the size, for example.
However, this is still a conservative route. To match, it needs a URL with all five segments. With an eager route, you
can do something like this:

when(/product/:id/:data*' A
templateUrl: 'pages/product.html’,
controller: 'productController’

b

Note that the use of the asterisk that suffixes the data parameter essentially says “match any path that has at least
three segments, of which the first segment is product” The second segment will be assigned to the route parancter
and the remaining segments will be assigned to the route parametata.

Tip An eager route parameter is denoted by a colon, followed by a name, and then finally an asterisk. The |
difference between an eager route parameter and a conservative route parameter is that the latter will match c
segment, and the former will match as many segments as possible.

| personally haven't had a need to use this kind of route parameter before, but they can be useful in certain
scenarios. For example, perhaps some shirts do not come with a slim-fit or loose-fit option, and perhaps some shirts
have even more options. An eager route is flexible in such cases, as fewer or more options are simply fewer or more
URL segments.

Route Configuration Options

We haven't looked at everything there is to know about the Angular routing system, though we’ve certainly reviewed
enough to get you off to a good start. Before | finish this chapter, I'd like to leave you with a reference to some
additional configuration options, as shown in Table8-3, if only to give you a sense of what else is available.

145

CHAPTER 80RGANIZING VIEWS

Table 8-3. Route Configuration Options

Name Description

controller Specifies the name of a controller to be associated with the view displayed by the route

controllerAs Specifies an alias to be used for the controller

template Specifies the content of the view. (This can be expressed as a literal HTML string or as a
function that returns the HTML.)

templateUrl Specifies the URL of the view file to display when the route matches. (This can be
expressed as a string or as a function that returns a string.)

resolve Specifies a set of dependencies for the controller

redirectTo Specifies a path to which the browser should be redirected when the route is matched.

(This can be expressed as a string or a function.)

reloadOnSearch Whentrue (the default value), the route will reload only when the values returned by
the $location search and hash methods change.

caselnsensitiveMatch Whentrue (the default value), routes are matched to URLs without considering case.

One particularly interesting alternative is thegemplate option (see Listing 8-17). It's similar to theemplateUrl
option, but it differs in that it allows you to create the template right there in the route configuration options (as
opposed to using a view template file). It's certainly not the way to do things in most cases, but it can be useful when
you don't want or need a dedicated view template.

Listing 8-17. The Template Option

.otherwise({
template: '<h1>0Oops</h1>' +
'<p>Sorry, page not found</p>'

B

Usingtemplate, Listing 8-17 shows this approach in action. As you can see, we do not specify a path; instead,
we use a string value consisting of some HTML. As | mentioned, you generally would not want to use this approach
unless you had a particular reason to apply it. The main reason | am presenting it here is to clarify the difference
betweentemplate andtemplateURL

As revealed in Table-3, besides accepting a string valuéemplate andtemplateUrl can both accept a function
as a value. This function must itself return a string. Both of the route definitions that follow are functionally equivalent.

when('/portfolio’, {

templateUrl: function () {return ‘contact.html’;} ,
controller: ‘contactController'
i
when('/portfolio’, {
templateUrl: ‘contact.html'
controller: ‘contactController'
)

146

CHAPTER 80RGANIZING VIEWS

Of course, there’s probably not much point in using the function-based alternative in this example. It's easier
and much clearer to use the string-based approach. The real strength of the function-based approach is that it
can be dynamic.

The example in Listing 8-18 does it much more justice. Here, we assume that we have ten portfolio pages, each
one featuring a different piece of work. Each piece of work has its own view template, namedfoliol.html
portfolio2.html , portfolio3.html , all the way through tgportfolio10.html

Listing 8-18. A DynamictemplateUrl Value

when('/portfolio’, {
templateUrl: function () {
Il create a number between 1 and 10
var num = Math.floor((Math.random() * 10) + 1);
// use this number to produce a path
I to one of the ten view templates
return '‘pages/portfolio’ + num + ".html’' ;
h
controller: ‘contactController'

D

The function assigned tdemplateUrl is now a bit more interesting. This function creates a random number
between 1 and 10, and it appends this number to the end of the file name. Each time the function runs, a different file
name is created. Consequently, a potentially different portfolio view template is displayed each time.

HTML5 Mode

I made the point earlier in the chapter that, by default, links are declared usingt@haracter. The# character is only
there because we don’t want the browser to fire off an actual HTTP request to the server. For example, if we removed
it, a URL like the one following would create a request to the server.

http://mydomain/index.html/about

However, if we keep thet character as we do in the following URL, the browser will not fire off an HTTP request
to the server, because th# character is telling it that we are seeking content on some part of the same page—the page
that is currently loaded.

http://mydomain/index.html#/about

In reality, this whole approach is really just a workaround for non-HTML5 browsers. It works well, and it is
perhaps the best approach to use if you are unsure who your target audience might be. However, a cleaner option
exists. You can enable HTML mode. In this mode, thecharacter is not needed. A couple of reasons to do this might
be that you want prettier URLs and much more SEO-friendly URLSs.

Enabling HTML5 mode is not terribly difficult, but it does require some web server configuration and a relatively
good understanding of how browsers and web servers handle links. | chose to remain in default mode, so as not
to muddy the waters in this introductory book, but you should be aware of this option, and | encourage you to
investigate further.

Tip Official coverage of HTML5 mode can be faynsd/ddcs.angularjs.org/guide/$location

147

CHAPTER 80RGANIZING VIEWS

Summary

Organizing your view templates isn’t too difficult, but it can require some planning and familiarity with routes. You
don’t have to use the routing system, but if you want a clean and simple way to separate the task of selecting content
from the controller so that the application content can be driven from any part of the application, it is a great option.

Of course, there are other factors to consider when organizing your view templates, such as how you name your
files and how you structure your file system. Thus, you should consider the routing system as just one more powerful
tool in your arsenal.

148

CHAPTER 9

AngularJS Animation

Animating your page element can be fun, but it can be easy to get carried away. Of course, you should only use
animation to support your applications in a useful way. Subtly fading in messages or views, as opposed to having them
appear abruptly, can be a useful and less jarring experience for the user, in some contexts. Perhaps you may wish to
include a small scaling or transform effect to bring the user’s attention to some event that has occurred—a file upload
completing, for example. In this chapter, we will look at how to achieve such things. Ultimately, however, it is up to
you whether to use your new powers for good or evil.

The $animate service is the one Angular uses to bring your applications to life, though, as you will soon see, you
don't interact with this service directly. Instead, Angular uses CSS and some naming conventions to make things
easier. Once you understand how this all works, you will be able to create a much richer user experience. However,
if you aren't careful, you may also create a more annoying one!

Before we get started, we first must download thrggAnimatemodule. This is a very similar process to the one we
followed to download thengRoutemodule in the last chapter.

Installing the@gAnimatélodule

Angular’s animating capabilities reside within an optional module callechgAnimate so we have to download this
before we can get started. Just as we did when we neededrthRoutemodule, go tohttp://angularjs.org , click
Download, and select the version you require. (The code listings in this chapter use the 1.2.5 version.) Then click the
Browse additional modules link displayed next to Extras, as shown in Figugel.

149

CHAPTER 9ANGULARJS ANIMATION

Figure 9-1. Downloading additional modules

A page listing various Angular modules appears. You want to download thegular-animate.js file (or the
minified version, angular-animate.min.js , if you prefer) into yourangularjs folder. Later in this chapter, in the
“Applying Animations” section, you will see how to declare a dependency on this module.

CSS Animation Overview

It is possible to use JavaScript to create animations in Angular, but CSS is the preferred approach most of the time.
Given the nature of the animations that are typically done in Angular applications, CSS is often the easier and more
natural choice. Also, due to optimizations within most web browsers, CSS animation will also perform much better
than JavaScript animation.

With this in mind, we will do a whirlwind tour of CSS3 animation capabilities before we look at how we can apply
these skills in an Angular context. If you are already well-versed in CSS3, feel free to skip this section or use it as a
brief recap.

CSS animation is a relatively large topic, and much of it resides in the newer CSS3 specification. A modern web
browser is required to view most new animation features—something to keep in mind if you have users with older
browsers. On the upside, animation tends to degrade gracefully in many situations. For example, an application that
fades in a message would simply show that message suddenly, as opposed to fading it in gradually—hardly the end of
the world. Obviously, if it's an issue for you, you should test your application, to be sure that it functions acceptably in
such scenarios.

Speaking broadly, there are three main parts to CSS3 animation: transforms, transitions, and the more advanced
Keyframe-based animation. They aren’t mutually exclusive, and you certainly don’t need to be an expert in all three to
make good use of animation. We will look at transforms and transitions here, as they are the easiest to start with, and
they will meet the majority of your needs when coding Angular apps. To begin, we will look at transforms.

150

CHAPTER YANGULARJS ANIMATION

Transforms

You can transform a web page element in several ways: you can rotate it, scale it, move it, or distort it along its
horizontal and vertical axes (a process called skewing). Using a transform, you could, for example, make an image
increase in size when a user mouses over it. You can even use multiple transformations at once, allowing you to, say,
rotate an element and increase its size.

The CSS property in charge of transforms is called, unsurprisingly, thansform property. It needs to know the
type of transformation you want and a value indicating how much to transform the element. For example, to rotate an
element, you would use the keywordotate , followed by the number of degrees to rotate it.

It's surprisingly easy to set up transforms. Listing 9-1 shows one in action.

Listing 9-1. A Basic Transform

<IDOCTYPE html>

<html>

<head>
<title>Basic Transform</title>
<style>

#square {
width: 150px;
height: 150px;
margin:4em;
border: solid 3px green;
background-color: red;

}

#square:hover {
transform: scale(1.3) rotate(20deg);

}

</style>
</head>
<body>
<div id="square"></div>
</body>
</html>

Here we have a singldiv element with an id ofsquare. In the CSS, we give it some basic styling, so that we can
see it as a red square with a green border when we load it into a browser. The part in which we are interested is the
transform property that we used within#square:hover. Here, we add two effects at once: a scale and a rotate effect.
Thescale function is given a number, a multiplication factor of 1.3, which causes it to scale up slightly larger than it
initially appeared. Therotate is given a number suffixed with the CSS urdeg which causes it to rotate 20 degrees.

Tip Some CSS units, tikg make intuitive sense. Others, likertin@dt used on the margin rule in the previous
CSS code listing, often do nemisrequal to the current font size. What this means is that, for example, if the font
of the document is 12 pt., 1 em is equal to 12 pt. Unlike pixels, which are an absolute measure, ems are scalal
means that 2 em would equal 24 pt., 0.5 em would equal 6 pt., and soriertiecbimeing increasingly popular in
web documents, due to this scalability and the mobile-device-friendly nature of this.

151

CHAPTER 9ANGULARJS ANIMATION

This effect is surprisingly easy to accomplish. FiguBe2 shows what it looks like in a web browser. On the left is
the starting state, and on the right is the transformed state.

Figure 9-2. A transform usingscale androtate , before and after

This is all well and good, and transforms, in general, have many practical uses, but this is really just a two-frame
animation. This is because the transform was applied as soon as the user hovered ovediheclement. One moment
it was not rotated, then it was. Often, a more desirable effect can be achieved by getting the web browser to create a
smooth transition from one state to the other. This is where CSS transitions come in.

One very important note about this and other code listings in this section is that | have omitted vendor prefixes.
| have done this solely to avoid clutter and repetition, but the reality is that you will need to use them in your own
projects. For example, the preceding transform property would generally look something like the following:

-webkit-transform: scale(1.3) rotate(20deg);
-moz-transform: scale(1.3) rotate(20deg);
-o-transform: scale(1.3) rotate(20deg);
-ms-transform: scale(1.3) rotate(20deg);
transform: scale(1.3) rotate(20deg);

Browser developers use CSS vendor prefixes to add new browser features that may not be part of a formal
specification and to implement features in a browser specification that have not been finalized. This makes for a less
than ideal situation in which you have to cover your bases so that the transform works across different browsers. If
you are a fan of CSS preprocessors, such as SASS and Stylus, you will be used to vendor prefixes being handled for you
automatically. If you aren’t a fan of such tools, or if you have not discovered them yet, | recommend that you look into
adopting one. These tools have a wide range of features that can make CSS much more intuitive and make you much
more productive.

152

CHAPTER YANGULARJS ANIMATION

Tip You can learn more about SA®§S:#dass-lang.com/ . Stylus is a good alternative to SASS, and you can
learn more about this onigtat/learnboost.github.io/stylus/ . There are other good CSS preprocessors out
there; these just happen to be two | have personally used and found to be very effective and well-supported.

Transitions

Transforms can be fun in their own right, but they become even more interesting when coupled with CSS3 transitions.
A transition is simply an animation from one set of CSS properties to another set of CSS properties, set to occur over
a specified period of time. A transition has four key responsibilities: it must control which properties to animate, the
duration of the animation, the type of animation, and (optionally) how long to wait before starting the animation.

A transition isn’t an island unto itself; we need a few things in place before we can produce one. They are as
follows:

u Twostyles One style is to represent the initial look of the element and another the end state of
the transition, for example, an element that starts off at normal size but transitions to become
two times larger.

u The transitionproperty: This is the special ingredient that makes the animation possible.
In general, you apply the transition property to the initial style of the element, the style that
dictates the look of the element prior to the animation starting.

u Atrigger The trigger is the action that causes the transition between the two styles. Within
CSS, you can use several pseudo-classes to trigger an animation: hover, active, focus, and so
forth. You can also use JavaScript to trigger animations. Keep in mind that you only need to
set a transition on an element once. The browser will take care of animating from one style to
another and back to the original style, when the trigger no longer applies.

Look at Listing 9-2. This is a very basic example, but it shows each of the preceding points in practice.

Listing 9-2. Transitions in Action

<IDOCTYPE html|>
<html>
<head>
<title>A basic Transition</title>
<style>
.navButton {
width: 100px;
text-align: center;
padding: .3em;
background-color: orange;
color: #000000;
/* Transition width, color and background-color
over half a second. */
transition: width .5s, color .5s, background-color .5s

153

CHAPTER 9ANGULARJS ANIMATION

.navButton:hover {
width: 110px;
background-color: green;
color: #ffffff;
}
</style>
</head>
<body>
<div class=" navButton"> Home </div>
<div class=" navButton"> About Us </div>
<div class=" navButton"> Contact Us </div>
</body>
</html>

As you can see, we have two classes: the first one sets up the transition, and the second one is the end state of
that transition. We have also explicitly stated which properties are to be transitioned and how long it should take for
the transitions to complete. We have set a value of .5s (half a second) for each transition duration, though it is actually
possible to give each CSS property a separate duration value (which can make for some very interesting effects).

The transition is triggered by users when they hover over one of tiavButton elements. You can use other
pseudo-classes as triggers for animations too, such as transitioning a form field to a new color when the user tabs
or clicks into it (using the:focus pseudo-class). You aren’t limited to using pseudo-classes; you can create triggers
yourself, using JavaScript to add and remove classes programmatically.

| can’t show a screenshot of an animation, of course, but Figu@e3 illustrates the start and end states. With the
mouse over the About Usliv, we can see that each of the properties we specified has indeed transitioned from one set
of values to the other.

Figure 9-3. Transitions

Things can get really interesting when you combine transforms with transitions, so | will finish up with an
example of how this is done. In fact, you already know how to do it, becadssnsform is a property just like any
other; therefore, it can be transitioned. Examine Listing 9-3.

Listing 9-3. Combining Transform and Transition

<IDOCTYPE html>

<htmI>

<head>
<title>Transform and Transition</title>
<style>

.navButton {
width: 100px;
text-align: center;

154

CHAPTER YANGULARJS ANIMATION

padding: .3em;
background-color: orange;
color: #000000;

transition: all .5s;

}

.navButton:hover {
width: 110px;
background-color: green;
color: #ffffff;
transform:rotate(-6deg);
}
</style>
</head>
<body>
<div class="navButton"> Home </div>
<div class="navButton"> About Us </div>
<div class="navButton"> Contact Us </div>
</body>
</html>

This is essentially the same as Listing 9-2, with the differences shown in bold. Note the more concise transition
declaration here. We've stated that all properties can be transitioned, and each of them should take half a second.
The main addition is thetransform property we see innavButton:hover . Here, we set an end state with a rotation
of -6 degrees, and we assume the default (O degrees) rotation that implicitly exists in the initial state. Fi@eeshows
the start and end states.

Figure 9-4. Transitions combined with a transform

An unusual aspect of transforms is that they don't really care what is going on around them. That is to say, they
will obscure other elements as opposed to pushing them out of the way. As Figé demonstrates, the About Usliv
has obscured the bottom right and the top left of thdiv s it originally sat neatly between. This isn’t a good or a bad
thing; it's just something to be aware of when you are planning how your effect or animation should work.

There is a whole lot more to CSS3 animation than the small glimpse offered here, but this should be just enough
to help you get started in applying animations within Angular. There is an abundance of tutorials available online, and
several good books available on the topic. | found the titRro CSS3 Animatiorby Dudley Storey (Apress, 2012) to be a
particularly focused and useful resource.

155

CHAPTER 9ANGULARJS ANIMATION

Applying Animations

You don’t work directly with the$animate service when applying animations in Angular. Instead, you use supported
directives and a special naming convention when writing your CSS. Essentially, you interact with $amimate service
through CSS hooks that allow Angular to trigger your animations at certain points in a directives life cycle. This will
make a lot more sense as we progress through this section.

We'll jump right in with a code listing. Listing 9-4 shows a fairly easy and common type of animation: a typical
fade-in effect. This one is used simply to fade in a small piece of content when the Toggle Content button is clicked.

Listing 9-4. A Basic Fade-in Animationanimate-one.html

<IDOCTYPE html>
<html ng-app="app">
<head>
<title>Applying animations</title>
<script src="js/angular.min.js"></script>
<script src="js/angular-animate.js"></script>
<script>
var app = angular.module(‘app’, ['ngAnimate’]);
app.controller("homeController', function ($scope) {
$scope.on = false;
N
</script>
<style>
[* starting */
.my-first-animation.ng-enter {
transition: .5s all;
opacity: 0;
}

/* ending */
.my-first-animation.ng-enter.ng-enter-active {
opacity: 1;
}

</style>

</head>
<body ng-controller="homeController">

<button ng-click="on=!on">Toggle Content</button>
<div class="my-first-animation" ng-if="on">

This content will fade in over half a second.
</div>
</body>
</html>

There are a couple of very important things to note in Listing 9-4. We use a script reference to make sure that we
pull in the ngAnimatemodule, and we declare a dependency on this module when we create our application module.
These steps appear in bold, and they are the first steps | would recommend that you check whenever you run into any
issues getting an animation to work.

156

CHAPTER YANGULARJS ANIMATION

The controller doesn’t do very much at all, aside from setting a simple Boolean variable nanmeed We will get
to its purpose shortly. It's interesting that there isn't more going on in the controller, given that we are performing an
animation, but that's mainly because of the CSS-based approach to interacting with thg@Animateservice. Let’s take a
look at that now.

We have two CSS classes: one sets up the start of the animation, including the transition we want to use, and the
second is the end state of the animation. We know that this is a fade-in effect, because we can see that the opacity
starts out at 0 and finishes at 1 and that the transitions is dictating that this should occur over half a second. At this
stage, we have set up the classes needed to perform the animation, but what we haven't done is tell Angular how and
when it should use these classes. What we need is some way to hook this intdsdmemate service. This is where the
naming conventions | mentioned earlier come into play.

The two CSS classes that we set up are used by Angular, but how and where did we tell Angular to use them?
Many Angular directives support and trigger animations whenever any major event occurs during their life cycle. So,
the trick to using the$animate service is to know which directives support animation and how to hook your CSS into
that directive. Table9-1 shows which animation events are triggered and what directive triggers them.

Table 9-1. Supported Directives and Their Related Animation Events

Directive Animations

ngRepeat enter, leave, and move

ngView enter and leave

nginclude enter and leave

ngSwitch enter and leave

nglf enter and leave

ngClass add and remove

ngShow & ngHide add and remove (thengHide class value)

We are using thenglf directive in our example, and we can see from Tak®el that theenter andleave events
are supported. The way we hooked into these events was by settingrhefirst-animation class on the directive,
which | have shown again following:

<div class="my-first-animation" ng-if="on">
This content will fade in over half a second.
</div>

This class name can be whatever you like, though you should take extra care to make sure that it won't clash
with anything else in your code or any other libraries that you might happen to be using. This class is effectively
the gateway into thebanimate service, and it becomes the base class upon which we attach the Angular-generated
classes. Thenter event uses the class nameg-enter andng-enter-active . Thus, in order to respond to these
events through our own CSS, we made sure to add them to our base, or hook, class. Following, I've shown the class
names again. These conform to the naming convention required, so that Angular can make use of them at the right
moments in the directives life cycle.

.my-first-animation.ng-enter
.my-first-animation.ng-enter.ng-enter-active

As demonstrated in our example, these classes correspond to the start and end states of our animation. Keep in
mind that we have combined both CSS classes for the end state class. This is simply to avoid any CSS specificity conflicts.

157

CHAPTER 9ANGULARJS ANIMATION

Note The supported directives will only make use of these clasgasiifitiemodule is present and you have
set up the associated dependency, as discussed earlier in this section.

These classes only become active when Angular or more specifically in this casentié directive, determines
that they are applicable. Of course, our ability to use this system relies on our knowing when these events take place.
With that in mind, look at Table9-2.

Table 9-2. When Events Occur

Event Description

enter When the new content is to be animated in

leave When the former content is to be animated out

move When a DOM element is moved from one position in the repeat list to another position
add When the new CSS class is to be animated in

remove When the old CSS class is to be animated out

Let’s examine a slightly more involved animation example. This time, we will create a slider effect, sliding some
content into view while sliding any existing content out of view. | hope that this will round off everything we have
discussed so far and leave you fully prepared to tackle some serious experimentation. Ultimately, this will be the best
way to come to grips with how the animation module works.

When you are reading through Listing 9-5, keep in mind that this time, we are animating for both #eter and
the leave events, new content arriving (entering) and the original content leaving.

Listing 9-5. Sliding Content Animation, animate-two.html .

<IDOCTYPE html>
<html ng-app="app">
<head>
<title>Applying animations</title>
<script src="js/angular.min.js"></script>
<script src="js/angular-animate.js"></script>
<script>
var app = angular.module(‘app’, ['ngAnimate");
app.controller(homeController’, ['$scope’, function ($scope) {
$scope.templates =
[
{ name: 'Catie Grant', url: ‘catie-grant.html'},
{ name: 'Tara Court', url: 'tara-court.html'}
I;
$scope.template = $scope.templates[0];

)5

</script>

</head>

158

CHAPTER YANGULARJS ANIMATION

<body>
<div ng-controller="homeController">
<select ng-model="template" ng-options="t.name for t in templates">
<option value=""> none</option>
</select>

<div class="my-slide-animation-container">
<div class="my-slide-animation" ng-include="template.url"></div>
</div>
</div>
</body>
</html>

Through the nginclude directive, Listing 9-5 also makes use of two included content files, which are shown in
Listing 9-6 and Listing 9-7.

Listing 9-6. First Set of Contentcatie-grant.html

<div>

<h2>Catie Grant</h2>

<p>Catie joined the company in 1998. She enjoys netball and hanging out with Tara.</p>
</div>

Listing 9-7. Second Set of Contentara-court.html

<div>

<h2>Tara Court</h2>

<p>Tara joined the company in 2004. She enjoys basketball and hanging out with Catie.</p>
</div>

Last, but by no means least, the CSS file that contains the animation classes is shown in Listing 9-8.

Listing 9-8. The CSS Animation Code

.my-slide-animation-container {
position: relative;
border: 1px solid black;
height: 120px;
overflow: hidden;

}

.my-slide-animation {
padding-left: 5px;
}

/* set up the transition and position rules for enter and leave events */
.my-slide-animation.ng-enter, .my-slide-animation.ng-leave {

transition: all ease-in 0.5s;

position: absolute;

top: O;

left: O;

right: 0;

bottom: 0O;

159

CHAPTER 9ANGULARJS ANIMATION

/* enter event - start class */

.my-slide-animation.ng-enter {
top: -50px;

}

[* enter event - end class, leave event - start class */

.my-slide-animation.ng-enter.ng-enter-active, .my-slide-animation.ng-leave {
top: O;

}

/* leave event - end class */

.my-slide-animation.ng-leave.ng-leave-active {
top: 100px;

}

Looking at the CSS in Listing 9-8, you can see that much of this is fairly standard, so | will only cover the bits that
are relevant to our animation effect. It's difficult to tell much from a screenshot, though Figu®e5 shows the initial
state of play.

Figure 9-5. The content slider

Here's how it works: using the drop-down list, you can select a person. Once selected, the current person content
will slide down and out of view, and the content for the currently selected person will slide up into view.

Crucial to understanding the CSS is the idea that we are creating hooks for bothéhter and theleave events.
Also, unlike our first example, we now have two animations running concurrently: the content being moved away
and the content being moved in. The comments in the CSS explain the purpose of each class, and you can see that
the start and end classes for both events all deal with the position of the content. It's either positioning it so that it
is visible or positioning it so that it is hidden. Of course, the reason it doesn’t just abruptly appear is because of the
transition that we have set up on botmy-slide-animation.ng-enter and my-slide-animation.ng-leave

Let’s turn our attention to Listing 9-5. You can see that we have taken care of the fundamental need to set up the
ngAnimatedependency on our application module. As for the controller, all we do here is set up an array of objects,
each of which is simply the name of a person and the location of a HTML file that contains content about that person
(Listings 9-6 and 9-7 show the content of these two files). We put this array into the current scope videhmplates
property. Also, note that we set a default template in the current scope, so that the view doesn't start out empty.

There are a couple of interesting things going on in the view portion of this code listing. We can see an HTML
select list that includes all of the template objects in thiemplates array and, importantly, which particular array item
is bound to thetemplate variable. This acts as the trigger that causes the animation to start.

160

CHAPTER YANGULARJS ANIMATION

This next line is the one that ties it all together. Note that tingInclude directive uses the expression
template.url . This will evaluate to the currently selected templates URL property.

<div class=" my-slide-animation " ng-include=" template.url "></div>

Let’s not forget the all-important step of hooking our CSS into thginclude directive, by setting the class name.

If you have re-created these files in your AngularJS folder, you should be able to open them and see the
animations in action. Remember, | haven't used vendor prefixes here, so you may have to add them, if you are using a
browser that requires them. As | mentioned, if you are deploying any CSS animations in your own projects, you should
be using the vendor prefixes. (I was using Chrome Version 37.0.2062.124 to run them as is.)

Summary

In this chapter, we studied how thenxgAnimatemodule works. We saw that it is slightly unusual in that we do not
directly interact with the $animate service, but we also saw that the hook system is quite easy to use, and it allows us
the freedom to power our animations using CSS.

Hands-on experimentation is the key to learning most new languages, frameworks, and libraries, but I've found
that this applies doubly in the case of learning to animate in Angular. It isn't difficult, but there are a few moving parts
that are well worth exploring and tinkering with.

We only scratched the surface of what’s possible with Angular animation, but it's quite likely that you won’t need
to dig too much deeper in order to do some productive work, particularly if you are already fairly handy with CSS and
know your way around CSS3 animation. In most cases, you don’t really want to get animation crazy. Usually, all you
want to do is subtly draw the user’s attention to the fact that something has changed.

161

CHAPTER 10

Deployment Considerations

Application deployment is an increasingly complex and multi-faceted topic. There is no quick answer as to how to
approach it, because every application is unique. However, there are a number of best practices, techniques, and
tools available that you should consider integrating into your workflow and build process. While the title of this

chapter is Deployment Considerations, much of what is covered is applicable at the outset of a project right through to
deployment and beyond.

In this chapter, we will take a brief look at some topics that are very likely to make their way onto your developer
radar, once you have been using AngularJS for a while; topics that we don't really have time or space to cover in much
detail in this book, but nonetheless they deserve a mention. You won't find much in-depth coverage here, as my aim
is merely to introduce you to a sampling of the activities and issues that AngularJS developers often factor into their
projects and workflows.

Configuration

We often want our AngularJS apps to run with different settings or configurations. For example, many web applications
need to connect to a service of some kind so that they can interact with data sourced from the back-end. It is quite
common to use one URL for the development server dranother URL for the production server. In a scena like
this, we need to find a way to provide for configation within our applications. Quite possibly the asiest way to use
configuration within AngularJS is to set a constant with an object, which is the approach we will look at next.

It isn't uncommon for developers to create a separate module specifically for configuration. The code in
Listing 10-1 below lives in a file namedpp.config.js

Listing 10-1. app.config.js : setting up a constant

angular.module(‘app.config',[])
.constant('myConfig’, {
‘apiUrl": 'http://localhost:8080',
‘adminEmail’: 'admin@mycompany.com'

hE

This module doesn’t do much more than set up a constant calledyConfig as declared through theonstant()
methods first argument. The key point to observe here is that the second argument to the constant method is an
object containing our configuration data; this object has two properties. We have one property containing the URL
that our app should be using to communicate with the back-end and another property containing an email address
the app can use to determine to whom to send support email.

163

CHAPTER 1LMDEPLOYMENT CONSIDERATIONS

This module isn’t going to be of much use to anyone unless it can be accessed. As it is declared in a separate file,
a script reference is needed. Also, we need to declare it as a dependency just as we would with any AngularJS module.

var app = angular.module(‘app’, [ngRoute', ‘'ngAnimate’, ‘app.config']);

Now it is just a matter of being able to access theyConfigconstant so that we can access the configuration
properties that it contains. Listing 10-2 shows an example of just that.

Listing 10-2. Using the configuration data in theapp.config module

module.factory('memberDataStoreService', function ($http, myConfig) {
var memberDataStore = {};

memberDataStore.doRegistration = function (theData) {
var promise = $http({method: 'POST", url: myConfig.apiUrl , data: theData});
return promise;

}

return memberDataStore;

)

Rather than hard code the value for the APl URL, you can see here that we instead usmi@onfig.apiUrl .

There are other, more sophisticated approaches to managing application configuration; your specific needs may vary
based on the kind of project on which you are working. We will look at a relatively common approach next.

A typical requirement is to have a set of configuration data for development and another set for production. Let's
suppose that we have a locally installed database server with which our locally run development code communicates.
Of course, once our code is deployed to our production server, we then want it to communicate with our production
database. In this scenario, we have two sets of valid configuration data with which we could supply our app.

One way that we could handle this is to have two separate configuration modules—one for development and one
for production. Listing 10-3 shows a module that we can use during development.

Listing 10-3. app.development.config..js: our development configuration

angular.module(‘app.development.config',[])
.constant('myConfig’, {
'database-host"; '127.0.0.1',
'database-name: 'local-database’

s

You will notice that themyConfigobject contains values specific to our locally installed database server.
Pay particular attention to the fact that the module is namedpp.development.config . Listing 10-4 shows its
counterpart: the production configuration module.

Listing 10-4. app.production.config.js: our development configuration

angular.module(‘app.production.config’,[])
.constant('myConfig’, {
'database-host": '168.63.165.103',
'database-name: ‘production-database’

b

164

CHAPTER 1MDEPLOYMENT CONSIDERATIONS

This time we named the moduleapp.production.config , and this time it contains production specific-
configuration data. All that we need to do now is to tell our app which set of configuration data, or which module,
we want it it to use. This can be achieved with a single change, as shown in the following example.

var app = angular.module(‘app’, ['ngRoute’, ‘'ngAnimate’, ‘app.development.config']);

In this particular case, we have provided our app with the development configuration data by specifying
app.development.config as a dependency. The code that we are deploying to the production server would use
app.production.config

Testing

Testing is a huge topic in modern software development, and one that we have not touched on very much in this
book. We barely have the time to do the topic justice, but | believe it is well worth singling out because AngularJS is
designed with testability in mind, and testing is so very important.

There are several schools of thought about how and when to test—all valid and all with their own pros and cons.
At a very high level the choices are generally one of the following:

u Behavior-Driven Development (BDD)This approach dictates that we should write our
tests first. In this scenario, we write tests to match the functionality that we will produce in
the future.

u Write-Behind Testing (WBT)This approach leaves testing until last, where we confirm the
functionality works as expected after we have produced the code that is responsible for it.

u Writing tests to black-box test the functionality of the overall system.

Two extremely popular approaches these days are Behavior-Driven Development (BDD) and its cousin
Test-Driven Development (TDD). Both are conceptually similar in that unit tests are written first and application code
is produced later that will, once correct, pass these tests. This approach requires discipline and learning at least one
unit-testing framework. A good unit-testing framework will make it easier to write and run your tests.

Note The main differences between TDD and BDD are subtle but significant, owing to variations in the unds
mindset of the developer. Many consider BDD to be an improved version of TDD. | don't think one is necessari
than the other, and both are valid options.

For the purposes of getting a general sense of what unit testing and Behavior-Driven Development is all about,
we will consider a simple set of tests that revolve around some identified requirements for a typical login process.
We will use Jasmine, a behavior-driven development framework for testing JavaScript code. Keep in mind, in this
scenario, we have not yet written any application code; we are instead going to write an initial set of unit tests that we
know we will need to run once we have produced the logic. In fact, in Listing 10-5, the Jasmine tests start out empty too.

Listing 10-5. An initial look at a set of tests

describe('user login form', function() {
it(ensures invalid email addresses are caught', function() {});
it(‘ensures valid email addresses pass validation', function() {});
it('ensures submitting form changes path’, function() { });

b
165

CHAPTER 1LMDEPLOYMENT CONSIDERATIONS

Starting off by writing a set of unit tests like this is a great way to get you thinking about what aspects of the code
will need to be tested. It's perfectly fine just to start writing these out as the project requirements and use cases for a
feature start to evolve.

This particular framework, called Jasmine, usesdescribe function that itself contains severait functions. The
describe function describes, through its first parameter, the purpose of the tests contained within; it’s really just a title
describing this particular set of unit tests. As these tests all pertain to the user login form, we named it user login form.
Its second parameter is a function, and it is this function that contains the individual unit tests; th® methods.

Theit() methods’ first parameter explains its purpose; this needs to be clear and descriptive. Its second
parameter is a function; that is, the test itself. So that we can get a basic sense of what a test looks like, | will add some
code to the “ensures valid email addresses pass validation test,” which is the test described in the se@@nd method
in Listing 10-6.

Listing 10-6. The “ensures valid email addresses pass validation test”

it('ensures valid email addresses pass validation', function() {
var validEmails = [

'test@test.com’,

‘test@test.co.uk’,

'test734ltylytkliytkryety9ef@jb-fe.com'

I

for (var i in validEmails) {
var valid = LoginService.isValidEmail(validEmails[i]);
expect(valid).toBeTruthy();

b

The test in Listing 10-6, as you can tell by its name, ensures valid email addresses pass validation. The most
important statement is the one that has been set in bold. Here we use thgect() method to set up an expectation.
This is chained to theoBeTruthy() matcher method. This statement will bring about the success or failure of the test.
Should any of the email addresses in thealidEmails array be invalid, this test will fail; otherwise, it will pass.

This pattern of having an expectation that is chained to a matcher is a very intuitive way to assert whether or
not any given test should be deemed a success or a failure. A few examples, shown in Listing 10-7, should show the
general pattern and a few of the expectations and matchers that come with the Jasmine unit test framework.

Listing 10-7. Sample expectations and matchers

Il We expect 1 + 1 to equal 2.
/I If it doesn't the test fails
expect(1 + 1).toEqual(2);

/I We expect myObject to be null.
/'If its not the test fails

var myObject = null;
expect(myObject).toBe(null);

/' We expect null to be null

/I If its not the test fails
expect(null).toBeNull();

166

CHAPTER 1MDEPLOYMENT CONSIDERATIONS

/I We expect the kids array to contain the string "Natalie"

/I If it doesn't the test fails

var kids = ["Jenna", "Christopher", "Natalie", "Andrew", "Catie"];
expect(kids).toContain("Natalie");

/' We expect 10 to be less than 15.
/[If it isn’t the test fails
expect(10).toBeLessThan(15);

Here we have five expectations, each with a corresponding matcher. Hopefully, you can see how expressive this
is. It's not as difficult as you might think either; it doesn’t take much work to write a test that will pass if, and only if,
one plus one equals two. It was also quite easy to fail a test if a specific value is missing from an array. That being said,
there is a lot more to know about unit testing and, even when you know it, doing it right can be quite an art form.

While we don't get chance to dive into testing fully in this book, | strongly encourage you to consider exploring
the topic further. For me, writing tests with a good testing framework, and writing them up front, is a great way to get a
sense that my application is watertight. When | change my application, | can run my tests again and make sure that it
is still in good shape (and fix it if it isn’t).

While | have focused on unit testing in this section, there are, of course, many other kinds of testing that you
should consider conducting. Black box or end-to-end testing has its place, as does Write Behind Testing. | encourage
you to make the time to dig deeper. Believe it or not, testing can actually be quite enjoyable and rewarding.

Tip To find out more about Jasmine, you canpvigitsmine.pivotallabs.com/ . Other unit test frameworks
include, but are certainly not limited tohgthifigunitjs.com/) and mochatip://visionmedia.github.io/mocha/).
Personally, | find it hard to pick a favorite from these, as they are all exceptionally good.

Error Handling

It can be tricky for developers who are new to JavaScript frameworks to figure out the best way to perform error handling;
far too often we see applications that really don’t have any strategy at all for doing so. As with most other topics in this
chapter, we don't really get to dive into a lot of detail, but a few pointers will hopefully prompt you to consider developing
some sort of error handling strategy. Fortunately, error handling is mostly about common sense and discipline.

First and foremost, you must have some kind of strategy in place. While it might be okay for debugging purposes,
it really isn’'t okay to deploy your application with code such as that shown in Listing 10-8.

Listing 10-8. Lazy error handling

if(user.paySuccess()){
/I The users payment was succesful
goToSuccessScreen();

}

else{
/I The users payment failed, pop up an alert
/[and log to the console.
alert("An error has occured');
console.log(‘An error has occured’);

}

167

CHAPTER 1LMDEPLOYMENT CONSIDERATIONS

One problem here is that we inform the user about the error, but we don'’t actually help them to do anything
about it. Another problem is that there is no communication back to us (or our support team) that this error occurred.
We can do a little bit better. As there is little to gain by logging to the browsers console as we do in Listing 10-9, let’s
create a function for logging errors to the server instead.

Listing 10-9. A basic server logging mechanism

function log(sev, msg) {

var img = new Image();

img.src = "log.php?sev="+
encodeURIComponent(sev) +
"&msg=" + encodeURIComponent(msg);

In Listing 10-9, we have a basic function that allows us to capture errors as they occur. This approach works by
making an http GETrequest for an image on our web server. The image itself won't be visible within your application;
it exists only as a way to pass the error information from the user’s browser to our applications back-end. Listing 10-10
shows this in action.

Listing 10-10. Using a logging service

var paymentService = null;
try
{

paymentService.payForltem();

}
catch(e){

/I alert user to the error

showSomeFriendlyFeedback();

[/l Trasmit the error to the server

log(1, "001: The user was unable to complete his purchase");

}

There are a few noteworthy things happening in Listing 10-10. We are now using JavaScript’s try/catch error
handling construct; this is a much more elegant and readable approach than the one we took in Listing 10-6. For
dramatic effect, we deliberately create an error within theey block by using thepayForltem() method on an object
that is null; this forces program execution into theatch block.

Now that we are within the catch block, we can discuss the two arguments that we provided to logx)
method. The first argument is a severity level; in this case, we set the severity to 1, which is deemed to be the highest
level of urgency. The next argument is a string that represents a description of the error. It is not uncommon to see
error messages with numeric prefixes such as the “001” we use here. These can be quoted to support staff over the
telephone and used to look for problem resolutions more effectively. They can also be used to locate information
programmatically in a knowledge management system, for example.

With the nuts of bolts in place to do the logging, the next thing to consider is what to log and when to log it. Every
application is different, but it goes without saying that anything you consider to be a severity level 1 should almost
certainly be logged. Less severe or purely information logging should perhaps not be done at all. The last thing you
want in very high traffic website is pointless logging requests that will only serve to place more strain on back-end
systems rather than to provide help to developers or end users.

168

CHAPTER 1MDEPLOYMENT CONSIDERATIONS

This is by no means the only way to do error handling, and you might want to consider an approach that will
work well for your particular project. In some scenarios, it might well be better to log to the end user’s device, though
this is simply food for thought. I think it is fair to say that any approach at all is always better than the all-too-common
no plan whatsoever.

Caution If you do choose to log information to the user’s device, you need to consider the fact that this com
some risk. The information is potentially accessible to other users, unless you put safeguards in place.

Hide Unprocessed Templates

Your AngularJS application needs to download your application scripts and the AngularJS scripts before it can go
about its work. As you know, one aspect of this work is template processing; a job that can be done only once all of
the required files are fully downloaded to the user’s device. It is possible, particularly if your files are taking some time
to download, that your end users will see the AngularJS interpolation expressions in their raw unprocessed form, as
shown in Figure10-1 This rather ugly looking, and potentially confusing, eyesore may only last for a split second or
so, but it might well be something that you want to avoid,

Figure 10-1. Unprocessed templates are an eyesore!

The ng-cloak directive lets you hide (through the use dfisplay: none) parts of the DOM tree until AngularJS
is ready to process the whole page and make it live. You can hide a specific portion of the DOM tree, as we do in
Listing 10-11.

Listing 10-11. Hiding a specific portion of the DOM tree

<h1 ng-cloak>Hello, {{name}}!</h1>
<p ng-cloak>It's great to see you again, you haven't logged in since {{lastLoggedin}}</p>

Alternatively, you can hide the entire page by usimgg-cloak at a higher level in the DOM tree. In Listing 10-12
we applyng-cloak on the controller element itself, thereby hiding everything in one fell swoop.

169

CHAPTER 1LMDEPLOYMENT CONSIDERATIONS

Listing 10-12. Hiding a larger portion of the DOM tree

<div ng-controller="HelloCtrl" ng-cloak>
<h1>Hello, {{name}}!</h1>
<p>It's great to see you again, you haven't logged in since {{lastLoggedIn}}</p>
<p>We hope you have a {{typeOfDay}} day!</p>

</div>

The approach you take is likely to depend on the way your application is structured. That is, if the first screen of
your application consists of parts which are mostly dynamic, you might want to hide the whole page by placing the
ng-cloak directive on the controller element, or even thebody>tag. Otherwise, you might want to use theg-cloak
directive on an element-by-element basis, so that users can view the static portions of the page while your application
scripts finish loading and are ready to bootstrap the application.

Essentially,ng-cloak is simply a way of temporarily applying the CSS codesplay: none ; to the element
upon which it is declared. However, it is not the only solution to this problem. Another option that you might want to
consider is to not use the double curly braces at all. Instead, you can usenlgebind directive.

Listing 10-13. The ngBind directive in action

<div ng-controller="HelloCtrl">
Hello, !
</div>

If you adopt the approach shown in Listing 10-13, you will not see anything other than empty space in the case
of lengthy script downloads. An empty span tag will appear momentarily. Perhaps this is a better approach than an
unpleasant looking unprocessed expression?

Minification and Bundling

Many AngularJS apps are made up of a number of potentially large files; each of which must be requested by the
user’s web browser and then transmitted across the network. A two-fold concern here could be how to trim the files
down to much smaller sizes and how to keep the number of network requests for such files to a minimum. A process
known asminification andbundling is typically applied in these situations.

Think about how well formatted your JavaScript source code is; it is (hopefully) well commented and has lots
of spaces and tabs that help to make easy to read. This is great from the point of view of a developer, as it makes life
simpler. At the end of the day though, the JavaScript interpreter doesn’t care about any of this. Consider the two code
listings that follow. You don’t need to understand the code, just consider the fact that Listing 10-14 and Listing 10-15
are functionally identical.

Listing 10-14. Typical unminified source code

function getElementsByClassName(className) {
var results = [J;
walkTheDOM(document.body, function (node) {
var array, I array of class names
ncn = node.className; // the node's classname

/I'If the node has a class name, then split it into a list of simple names.
/' If any of them match the requested name, then append the node to the list of results.

170

CHAPTER 1MDEPLOYMENT CONSIDERATIONS

if (ncn && nen.split(' *).indexOf(className) >= 0) {
results.push(node);
}
D
return results;

}

Listing 10-14 is the original source code. Listing 10-15 is a minified version of the same source code. It's not pretty
is it? However, it produces a much smaller file, and it will require far less time to make it from the server to the user’s
browser. Sure, the comments are gone, the spaces and tabs are gone, and even the variable names have been changed
to something less recognizable, but the JavaScript interpreter doesn’t care about any of this, and the end result is
exactly the same.

Listing 10-15. Minified source code

function getElementsByClassName(e){var t=[];walkTheDOM(document.body,function(n)
{var r,i=n.className;if(i&&i.split(" ").indexOf(e)>=0){t.push(n)}});return t}

If your source code files are large, minification can make a significant difference to the perceived performance
and actual load times of your applications. Converting source code files to minified versions is not complicated either,
because there are plenty of tools and websites that can do this conversion for you. A particularly good way to handle
this is by using UglifyJShitps://github.com/mishoo/UglifyJS2); which calls itself a JavaScript parser, minifier,
compressor, or beautifier toolkit.

Bundling is slightly different but often goes hand-in-hand with minification. The idea behindundling is that
you take a number of files and merge them all into just one file. For example, you might be using several AngularJS
files (the standard angular JavaScript file and, say, two more JavaScript files for routing and animation) and your own
applications files. As you would expect, each of these files causes a separate network request. Consolidating all of
these files into just one file means that there will be just one network request for the consolidated file; this can lead to
a decent performance boost. As with minification, you don’t need to do this yourself, as there are many tools available
that will do it for you.

If you decide to use these techniques, be sure to test your application in its minified and bundled form. Minifying,
in particular, can be problematic due to the way that AngularJS uses dependency injection; so it's usually just a case
of finding an approach that is AngularJS friendly. You might consider lookingrag-annotate , which at the time of
writing, can be found athttps://github.com/olov/ng-annotate

Managing the Build Process

From a front-end perspective, it seems like only yesterday that websites and applications were nowhere near complex
enough to need dedicated build tools and task runners. Those days are gone; today they are rich in features and
functionality. This additional complexity has brought about the rise of tools such as Grunt and Gulp, both of which are
often termed task runners or build tools.

As | have hinted at throughout this chapter, there are often a number of things that you might need to consider
before you deploy your website to a production server. You might need to minify and bundle your application source
files, you might want to run a set of tests to make sure that your application is still watertight and free of bugs, and
you might want to adjust your configuration to reflect the live environment instead of the development or staging
environment. That's a lot of work, and often there is much more to do.

Tools such as Grunt and Gulp can automate this work, and they have proven to be a huge advantage in both large
and small applications alike.

To illustrate what a task runner does, let’s take a quick look at Grunt. In the Grunt world, you create a JavaScript
file called Gruntfile.js and then you configure and load your tasks using JavaScript. Listing 10-16 shows an example
of what aGrunt.js file might look like.

171

CHAPTER 1LMDEPLOYMENT CONSIDERATIONS

Listing 10-16. A sample Gruntfile

module.exports = function (grunt) {
/I Part One
/I Configure the various tasks we want to run

grunt.initConfig({
watch: {
build: {
files: 'src/**/*.*,
tasks: ['uglify’, ‘copy’ 1,
options: {
livereload: true

}

}
h
uglify: {
options: {
mangle: true
h
my_target: {
files: {
'site/js/js.min.js": ['src/js/*.js']
}
}
h
copy: {
main: {
files: [
Il includes files within path and its sub-directories
£xpand: true, cwd: 'src/', src: [**, 'I**/assets-master/**', 'I**/css/**',
"I**[is/**"], dest: 'site/'}

]
}
}
s

/I Part Two

/I Load the tasks we have just configured
grunt.loadNpmTasks('grunt-contrib-watch');
grunt.loadNpmTasks('grunt-contrib-uglify");
grunt.loadNpmTasks(‘grunt-contrib-copy’);

/I The task we want to run by default when we start Grunt
grunt.registerTask('default’, ['watch']);

172

CHAPTER 1MDEPLOYMENT CONSIDERATIONS

There is a lot going on in this file and, if you haven’t used Grunt before, you will almost certainly need to follow
a decent tutorial to get at the finer details. However, the main things to observe are that in the first part of the script
(commented as Part One), a set of tasks is configured. In the second part (commented as Part Two), those tasks are
loaded and made ready for use on the command line. Now, assuming we have Grunt installed, we can start Grunt and
enter thegrunt command. Grunt will then proceed to perform a number of tasks on our behalf. It will:

u Start to monitor files and directories for changes (thgrunt-contrib-watch task).
u Minify and bundle our source code files when they change (ttgrunt-contrib-uglify task).

u Copy our source code files and any assets into a distribution folder ready for deployment
(the grunt-contrib-copy task).

In this particular script, it is thegrunt-contrib-watch task that is started when we launch Grunt, as we made
it the default task. Should this task observe any changes within the configured directories, it will in turn run the
grunt-contrib-minify ~ andgrunt-contrib-copy tasks. The end result is a batch of processed files that are placed in
an output directory ready for us to deploy. Though not used here, there are even Grunt tasks that can handle that step
for us too!

You could learn to use a task runner such as Grunt or Gulp in about half a day or so, perhaps even less. Tools
like this really can change your workflow in amazing ways. If you find that you have reached a point where you are
manually performing lots of tasks, you should seriously consider looking into adopting a task runner.

You can learn much more about Grunt atttp:/gruntjs.com/ . Gulp takes a slightly different approach, but it is
essentially the same kind of tool with a similar, perhaps lower, learning curve. You can find more information on Gulp
at http://gulpjs.com/

Deployment

Deployment isall of the activities that make a software system available for.use with most of the other things
we have touched upon in this chapter, the implementation details can vary wildly from project to project and
organization to organization.

For many developers, gone are the days where a simple FTP connection to a remote server was all that was
needed in order to transfer files from your local machine to a production environment. For small websites this is still a
valid approach in some cases. However, because web development projects are becoming increasingly more complex,
the teams that work on them need ways to manage this.

If you look at the diagram in Figurdl0-2 you will see a typical FTP approach to deploymerfETP, or File Transfer
Protocol, is a time tested and reliable means of moving files from one network location to another. The chances are
high that have used FTP before or have some basiwdgrstanding of what it is used for. Here the devagber has opened
an FTP connection (using an FTP client such as FileZilla or cuteFTP) and used it to transfer code and assets from her
machine to the remote server. At this point the website (or changes to an existing website) is available to the end users.

173

CHAPTER 1LMDEPLOYMENT CONSIDERATIONS

Figure 10-2. Simple FTP approach to moving files to a web server

This approach works well enough, but problems start to occur when projects become larger and more involved.

Tip The File Transfer Protocol (FTP) is a standard network protocol used to transfer computer files from one ho
another host over a TCP-based network, such as the Internet.

One added complexity in such cases is that multiple developers must be able to access and edit the source code,
and they must be aware of what other developers and stakeholders are up to. Certain question must be asked and
answered. How do we manage the source code? How do we test that it all works once changes have been made to it?
How do we move successfully tested code into the production environment without stumbling upon configuration
errors and other mistakes? How do we communicate the status of the project to other developers and stakeholders?

Such questions, and many others like them, are often addressed through a process known as Continuous
Integration. This topic could, and does, fill entire books, so we will only scratch the surface here.

Continuous Integration, often referred to as Cl, is essentially any system which allows a group of developers and
other stakeholders to frequently and easily update, build, test and deploy changes to software. More often than not,
much of this process is automated. A typical Cl process would address at least the following objectives.

1. Maintain a code repository

2. Automate the build

3. Test the code

4. Report the status of the system
5. Automate deployment

As a developer you are very likely to encounter the need to maintain a code repository (objective 1) as this will
require you to use a version control system of some form. For example, your team might have chosen to use GIT,
a popular distributed version control system, to pull code files from a remote source code repository so that you
can carry out tasks such as adding new features or fixing bugs. At some point later you would commit your changes
and then push your work back to the version control system. Tools such as GIT help you to identify and resolve any
conflicts that your changes (or the changes of other developers) may have introduced. They also make sure that your
changes can be seen and accessed by other developers on your team.

174

CHAPTER 1MDEPLOYMENT CONSIDERATIONS

Tip Gitis a very popular option for source control, though it can be confusing for beginners. You can find a
introductory, though very thorough, tutotipb@tvww.atlassian.com/git/tutorials/

One of the handy things about a good CI process is that it can be triggered when a developer places their changes
back into the remote code repository. Have a look at Figut®-3.

Figure 10-3. A high level look at Continous Integration

At a very high level this diagram depicts a typical Cl process. The developer has committed and pushed her code
changes to the version control system; now her changes are available to the rest of the team. Of particular note here is
that the act of pushing up these changes to the version control system has triggered a build of the code. The build can
be a very complicated affair and the CI process is often tailored to manage this complexity on your behalf. Fi$0r8
shows that after the code is successfully built we run tests; this is a crucial part of the whole process as it will prevent
broken software going into production. Another crucial aspect of the process is the reporting because developers and
other stakeholders need to be aware of what has occurred (this is often available as a report in the Cl system and sent
to the team via email).

175

CHAPTER 1LMDEPLOYMENT CONSIDERATIONS

Why do we call this process Continuous Integration? Primarily because this whole cycle can be run many times a
day (continuous) and it integrates many related aspects of the build and deployment process. Putting a sophisticated
Cl process in place is often a project in itself, but generally speaking, as a developer, your entry point into all this is
through the version control system. While you may not be exposed to the complexities of setting up a Cl process, it
is useful to see the contrast between the simple FTP approach we discussed above and the much more involved Cl
process we just touched upon.

Summary

At the beginning of this chapter, | asserted that application deployment is an increasingly complex and multi-faceted
topic. This is indeed true, but hopefully | have given you a sense that there are tools and techniques that you can use
to manage this. While we didn’t go into much detail, there are plenty of books and online resources that are dedicated
to these topics. It can seem overwhelming, even for seasoned pros, but you don’t have to use any of these techniques
if you simply don’t need them. The real trick is to keep your eye out for anything that can make your life simpler, and
learn more about it as and when you need it.

This chapter brings us to the end of this book, but it is, of course, only the start of the AngularJS learning
process. We had a brief look at JavaScript in the first chapter, and then we moved on to the more abstract topics of
MVC and high level application design. We also looked at key AngularJS topics, such as directives, filters, and the
routing system. Still, there is plenty more to learn and lots of fun to be had doing so. You will find no shortage of great
AngularJS resources online, including the very useful AngularJS developer guide on the main AngularJS website at
https://docs.AngularJS.org/guide , and my colleague Adam Freeman’s amazingly in-depfro Angular book
(Apress, 2014).

176

Index

A

AngularJS application
BeginningAngularJS folder38
browser support,37
declarative programming,41
de nition, 36
directive

ngClick, 43

nglnit, 43

ngShow,42
DOM, 35
download options, 37
expressions43
front-end web development,35
HTMLS5 doctype, 38
installation, 36
LibGDX framework,36
Microsoft Entity Framework,36
ngApp, 38,40
output, 39
procedural programming, 41
tinkering, 39
updation, 40

AngularJS codel06

AngularJS lters.SeeFilters

AngularJS forms
controller code

angularJS codel06
check box,104
form code, 105
select element, 103
submit Handler, 105
Email eld, 102
rst-draft, 101
ngOptions directive,103
user registration form,101
validation (seeValidation)
AngularJS module

controller method, 68

custom lter (seeCustom lter)
module de nition, 68
myAppModule.js, 69-70
ngApp directive,69

setup and con guration, 69

Angular service

$animate service 115
basic angular servicel19
dateTimeService 120
dateTimeSvc object120
$document service, 118
factory method, 120
$location service, 117
promises, 121
server communication (see
Server communication)
service object, 120
$window service,115-116

Animation

catie-grant.html, 159
content slider, 158,160
CSS classed4,57,159
directives, 157
events,158
fade-in e ect, 156
features,150
my- rst-animation class, 157
ngAnimate module, 149-150
nginclude directive, 161
tara-court.html, 159
transforms
SASS and Stylud52
scale and rotate function,151-152
set up,151
transitions
action, 153-154
property, 153
styles,153

177

INDEX

Animation (cont))
trigger, 153-154
vs transforms,154—-155
Application deployment
app.con g.js le, 163
app.development.con g, 164
app.production.con g, 165
build tools, 171-173
bundling, 171
error handling, 167
mini cation, 170-171
testing
BDD, 165
black-box test,165
expect() method,166-167
it() methods, 166
Jasmine tests165
toBeTruthy() matcher method,166-167
TDD, 165
WBD, 167
WBT, 165
unprocessed templates169

B

Basic title casing function,72
Behavior-Driven Development (BDD),165
Better title casing function,73

C

charAt(), 73
con g() method, 138-139
console.log() approach,3,28
Controller code
angularJS codel06
check box,104
form code, 105
select element, 103
submit Handler, 105
Custom lter
angular lter implementation, 72,74
factory function, 71
factory pattern,72
plan property, 71
Simple Replace Dashes functiori]1
stripDashes lter, 72
stripDashes function,71
title casing technique,72—73
toTitleCase lter, 74

D, E

Date lIter, 63—-64
Dependency injection, 116

178

Directives
API documentation, 84-85
custom directive
colorList call, 85
con guration, 86
link option, 87-90
object de nition, 86
restrict option, 86—-87
template option, 87
event-handling, 84
include-me.html, 82
methods, 76
ngBind, 81
ngCloak,81
ngController directive, 76
ngHide directive, 83
ngRepeat,83-84
ngShow,82
product-detail.html
default view, 78
myAppModule le, 79-80
product selection page;77-78
Show Available Colors view79
showHideColors() function, 80
Document Object Model (DOM),35,55.
See alsdirectives
$document service, 118
doRegistration() method,123
Double-curly-brace approach,98

F G

Filters
built-in Iters
date lter, 63-64
limitTo, 65
number Iter, 61-62
lowercase lter, 59
MyFilterDemoCirl, 58
Raw Sample Data57
uppercase lter, 59

H, |

HTML forms

form element, 91

input element
button, 92
checkbox,93
password,93
radio button, 94
submit, 92
text, 93

label element,96

model binding

coding defensive, 100
controller code, 99
rstName, 96
HTML code, 98
model properties, 97
ngModel, 97
one-way binding, 98
text input, 99
two-way binding, 98
select element95
textarea element94
$http.post() method, 32
$http service, 122

J, K

JavaScript Object Notation (JSONJ2
JavaScript primer

built-in functions, 14-15
console.log() approach3
equality operator,13
external script,1
functions, 4
identity operator, 13
inline script, 2
multiple variables, 7-8
operators,11
parameters and return valuesb
pre-vs. post-increment, 15
primitive types

Boolean value,8

number type, 10

strings, 9

unde ned and null, 11
semicolons,3
single-line and multiline comments, 4
statement execution,2
Unexpected identi er error message3—4

L

$location service, 117

M

memberDataStoreServicel23

Model View Controller (MVC)
advantagesp2
Array.length property,55
collaboration, 50
decoupling, 52
design pattern documentation,47
domain model, 53

DOM manipulation, 55
employees variable53
JavaScript implementation 49
lines of communication, 52
logger object,50
MyFirstCtrl function, 53
ourEmployees property,54
re nement, 50
Singleton pattern documentation,48—-49
TDD, 52
testing, 50
UML, 50
view model,53
myAppModule.js le, 69
MyFilterDemoCitrl, 58
MyFirstCtrl function, 53
mylInfo method, 20
mySimpleFunction, 5

N

new Obiject() technique,18
Number lter, 61-62

O

Objects

adding methods,20

arrays
$http.post() method, 32
AngularJS supports30
anonymous functions, 29
call operator,29
communicateWithServer function,31
enumerating array values27
JSON32
length property, 26-27
literals, 27
array value modi cation, 28
myFunctionReference variable29-30
numeric index, 25

control ow
conditional statements,24
for loop, 22
while loop, 23

creation, 17

for in loop, 21

properties, 18

Organizing views

ngRoute module,131-132

URL routes
About Page 136
Bootstrap,135

INDEX

179

INDEX

Organizing views ¢ont.)
con g() method, 138-139
con guration options, 145-147
Contact Page 137
eagervs conservative routes145
HomePage,136
HTML5 mode, 147
HTML les, 133
index.hmtl le, 133,135
$location.path() method, 133
$location service, 137-138
navigation links, 137
otherwise() method, 139
parameters EeeRoute parameters)
routeNotFound.html, 137
$routeProvider.when() method,133
$scope.messagel 39-140
when() method, 139

PQ

Primitive types
Boolean value 8
number type, 10
strings, 9
unde ned and null, 11
Promises API1121

R

Route parameters
about.html le, 141-142144
con guration, 142-143
contactController code, 142
contact.html le, 141,144
de nitions, 140
revised contact view141
subject, 142

180

S

Server communication
$http service,122
memberDataStoreServicel23
ngDisabled directive,128
Register button,128
register() function, 128
success and error message$27
Super-basic-plan,71

T

Test-Driven Development (TDD),52,165

Two-way binding, 98

U

Uni ed Modeling Language (UML), 48

V

Validation
built-in form properties, 107
class management107
CSS codel 10
feedback,108
novalidate attribute, 107
registration form
HTML code, 112
JavaScript codel13
registration method, 108
visual real-time, 111

W, X, Y, Z

$window service, 116
Write-Behind Testing (WBT),165

Beginning AngularJS

Andrew Grant

Apress-

Beginning AngularJS
Copyright © 2014 by Andrew Grant

is work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, speci cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on micro Ims or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speci cally for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0161-9
ISBN-13 (electronic): 978-1-4842-0160-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the bene t of the trademark owner, with no intention of infringement of the trademark.

e use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identi ed
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. e publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Louise Corrigan

Developmental Editor: Gary Schwartz

Technical Reviewer: Andrew Markham-Davies

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Je Olson, Je rey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts

Copy Editor: Michael Laraque

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, esrdails-ny@springer-sbm.com or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is

Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-maitights@apress.com, or visitwww.apress.com

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—eBook
Licensing web page atvww.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.comFor detailed information about how to locate your book’s source code, go to
www.apress.com/source-codel.

| would like to dedicate this book to my wonderful wife, Monica, and my amazing children,
Jennifer, Catie and Christopher.

Contents

ADOUL thE AULNOT .o XiiL....
About the TechniCal REVIEWEToceiiiiiiei e X\.....
ACKNOWIEAGIMENTS ...ttt e e e e e e e e e e e e e e e XVil...
Chapter 1: JavaScript YOU Need t0 KNQW.........couiiiiiiiiiiiiiiiiiiiireee e 1.
JAVASCIIPE PIIMET L.ttt e e e e e e e e e e Lo
INCIUAING SCHPLS ON 8 PAGE ...cci ittt e e st e e e s abbe e e e e s sbbeeeaeaes Lo,
Y E= =] 0 1T 0 OO PP P OO PPPPPPPPPR 2 i
[T g1t 1 o] o PP POP PP SRR
Parameters and REtUIN VAIUESoooiiiiiiiiiiii ettt e st e e ST
TYPES AN VANADIES ...t B..ovenee
PHIMITIVE TYPES ettt ettt e e e et bt e e e e e shbb et e e e s bbbt e e e s snbbeeeeeaabbaeeeeeanes B
N Y Lol (o] H O] o 1= = 1 (o] £ S PP PP PP PRPRPPPPPR 11,
EQUAIILY VS. TAENTILYeeeieiiiieeie ettt e st e e e eb e e e s s aaneee s 13
Pre- VS, POSE-INCIEMENT. ... e e e s 15,
WOrking With ODJECESccce e e e e e e e e e 17,
(1 =T\ i] 0o [O o] 1= P Y S
Reading and Modifying an ObjJECt'S PrOPErtiES........uuuiiiiieeeiiiiiiiiiiieie e e e e e e e e e e e e e s e 18............
PXo [0 [1aTo Y/ I=T1 g o o E N (o O o 11Tt P EEURR 20.............
ENUMETAtING PrOPEITIESviiiiiiiiee e e e ettt e e e e e s e e e et e e e e e e s s e ettt e e e e e eaeeeaesaannsnnrnanneeees 2L
CONLIOI FIOW. ...ttt s e s e e s bt e s bt e s nb e e be e e e snbe e e nnnees 22 i
WOTKING WItN ATTAYS ...t e s et a b e a e e eeaaaeeessssnnnsrnranneeeeaens 25,
CAIIDACKS ...t 29
1 O N PP PPTPPPPPPPPPRPTPRIN 32,
SUMIMABIY ...ttt e ettt e e e e ettt e e e e e ettt e e e e eeeeba e e e e eesta e eeeeensnn e eeeeennnnns 33.........

CONTENTS

Chapter 2: The Basics of ANQUIAIJS..........ooiiiiiiii e 35.
Why We Need FrameWorks ... 35,
WHhat [S @ FramMEWOIK? ...ttt ettt e e e e e e et e e e e e e e e e s snna e et eeeaeeeeeeesenannnnrernees b1 R
Downloading and Installing ANQUIArJS ..o CTC TR
BT (01T T O U o] 0[] o A PP C AT
Your First ANgulardS APPHCAtIONcooeeiiiiiiiii e 38,
Declarative vs. Procedural Programmingooeoiuureeeiiiieeeeesiiiiee e siiieee et eee s sinneeeesseneeee e A,
Directives and EXPreSSiONS.........cuviiiiiiiieieiiiiiece et ssiinee e s sineeeesssnneeesssnnnneee e A
SUMIMABIY ..ottt e e e e e e e e e et es et e e e e e s st e e e e e e s e e e e e e nnn e e e e e nnnnans A5
Chapter 3: INtroduction t0 MV C........uuiiiiieiiiieee e A1..
DTS o I =1 (=] OSSR 2y A
MOl VIEW CONLIOIETcoiiiiiiiiee ittt ettt e e ettt e e st e e e snate e e e s annneeeas oY
RVAY 1 A AV O 1V =1 = PRSP B2,
MVC the ANQUIAIIS WAY......oiiiiiiiiiie ittt e e ettt e e e e st e e e e s snbeeeeessbrneeeeans B3,
SUMIMAIY ...ttt ettt e e e e et et e e e et eest e e e e eeeea e e e eeesta e eeeeessnn e eeeennnnnns Q6.
Chapter 4: Filters and MOAUIES..........cccooiiiiii i s 51..
INErodUCHION T0 FIIEIS ... LY AT
BUIIE-IN FIIEEIS et e e e e e e e e e e e eeeeeennnnnnnd 60......cvvvnnens
THE NUMDEE FIEE .t e e e e e e e e s e s s e e e aeeeeeesesannrrnrnneeeeeeesd (10 SO
LI ST = 1 (= 1 (= U EEPRRR B2,
LI LT =T P PRSPURR B5. i,
ANGUIAIIS MOAUIESveiiiiee e e e e e e e e e e e e eaeeeeeeannnnnd 68...ceeviiiinns
WRAL IS @ MOAUIE? ...ttt e e ettt e e s sttt e e e s bbbt e e e s snbbeeeeesanbaeeaeeans B8,
Bootstrapping ANQUIAIISi e 69....ccnnnnn.
Creating @ CUSTOM FlteIui e 4
SUIMIMITY Lttt e e e e e e e et n e e e e e e e e e e e e et e e e et e e e eb e e e e anneeeaan s T4..oivinnns

viii

CONTENTS

Chapter 5: DIrECHVEScuvui i e e e as 75...
The BaSIiCS Of DIFECHIVEScoiiiiiiiieeeeee ettt e e e e e e e 76...........
(0 LS [To T BT =T o £V 78..........
BUIIE-IN DIFECHIVES ...t e e e e e e e e e e e e e ern e 8l..........
(070] 211 o EO PP PUPUPPUPPPPPPPPRN: 8l
(070 [0 = | TP TP OO PPPPPPTN 8l.........
(g7 | Tox 18 o L= TP PPPUP PP PPPPPPPPRN: 82
NGSHOW aNd NGHIAE ...t e e e e e e e e e e e e s aaees 82
NOREPEAL ...t e e e e e e e et et ettt et e eeaet b e b e b b e e e e e e e aaaaas 83,
Event-Handling DIFECLIVESooiiiiiiiiieiiee ettt e e e e e e e e e e e e eeaaaeeee e 84..ouvnnnn
UsiNg the AP DOCUMENTALIONooiiiiiiieiieee ettt e ettt e e e e e e e e e s s aiabbeaneeeeaaaeeee e s 84............
Creating @ CUSIOM DIFECHIVEciiiiiiiiiieee e e e 85...........
THE TESIICT OPTION ..ttt ettt e e sttt e s aab bt e e s abb e e e s aabbn e e e e s annnneeas 86............
THE tEMPIATE OPLION ...eeiiiiiiiiiie ettt e e s bbb e e s sbb e e e s aabbe e e e e s nnbeeee s 8l
B SN L1 1@ o] 1o o TSP 8l
SUIMIMITY Lttt e et e et e e ettt e e e e et e e e e st e e e et e e e et e e e eb e e e e annneeennnas aQ..........
Chapter 6: WOorking With FOIMIS........uuuuiiiii e 91.
HTML FOIrMS OVEIVIEW ...ttt e e e e e e e e e e e e e aeaeeeeeas al..........
THEFOMMEIEMENT ...t e e 9L,
B =]] UL = =T 3T o SRR 92............
THEtEXIArEEEIEMENT ... et e e e e e 9.,
THESEIECIEIEMENT ...t e s e e nne e nnee e 5.
ThelaDEIEIEMENT ... oo e 6.
1Y/ L= I =17 o {1 o RPN 96............
ANQGUIAIIS FOIMIS ..eiiieiie e e e e e e e et e e e e e e aa e e 101..........
Validating FOMMS ...oooiiiieie e 106..........
SUMIMITY Lttt e et e e e et e e et et e et e e e e e s e e e et e e e et e e e ea e e e e aanneeenans 114..........

CONTENTS

Chapter 7: Services and Server CommuniCatioN.............cevieriiiiiiineeeeeiiie e e eeennnnn 115
USING SBIVICES ...ttt ittt ettt e e e e e e e e e e e e ettt e e et e et e e e e e aaeeeaeeaeaaaaaanns 116..............
THEBWINAOWSEIVICE ..ottt et s e e et e e st e e et e e st e e e e sabeeeetaeeesabeeeans 116......c.......

Rl L= S (o Tor= a0 g ST A (o TR 117
ThEBAOCUMENBEIVICEvviiiiiee ettt ettt e ettt e e et e et e e e st e e e et e e e sabee e sabee e sataeeeanes 118
CreatiNg SEIVICES ...covveeeiiiiiiiiiii e e e e e e e ettt s e e e e e e e e e e e et e e e e et sar e e e aeaaaaaeeeees 119..............

[010 1 ET= PSSP 121
Server COMMUNICALIONooviiiiiiiiiiiee e e e e e e e e e e e s 122..............
HaNdliNg REUIMNEA DALAuuuiiiiiiiiiiii it e et e e e e e e e e e e s eeeeees 129 e
SUMIMAIY .ttt ettt e e e e ettt s e e e e et ba e e e e eeata e e e e eeaba e eeeeesbnaeeaaaenes 130.....ueneeee.
Chapter 8: OrganiziNg VIBWS........cuuuiiiiiiiiiiie e e e e e e e e e e eaaa e e eannes 131
Installing th@gROUIMOTUIE.oooiiiii e 131.........
USING URL ROULES ...ttt e e e e e e e e et s e e e e e e e e e e aaaeeennennnnns 133
DE NMING ROULES ...ttt e e e e e e e e e s st e e et e e e e e e saasan e ee e e eeeeeeeeeessasnsnstsnnnneeaaaeeesannn 133,
ROULE PAIAMETEIS ...ttt e et e e e e e e e et et e e e e e e e aennnnnrnn s 140,
Eager vS. CONSEIrVAtiVE ROULESccceiiiiiiiiiiieee ettt et e e e e e e s e s ae e e e e e e e e e s e s annnnnes 145l
Route Con guration OPtIONS.........coiceiiiiieiie e e e e e e e r e e e e e e e s s s s r e e e e aeeeesessnnraraanareeaaaeees 145...............
HTIMLS IMOOE ...ttt s s ee s (I A
SUMIMABIY ..ttt e ettt e e e e et e b e e e et e e tb e e e e eeesta e e e eeesbaaeeeeeennnnaaeaannes 148..............
Chapter 9: AngulardS ANIMALIQD...........uuuuureiiiieee e eeee e e e e e e e eeeeeeeeanne 149
Installing thegANIMAatOAUIE...........coooiiii e 149.........
CSS ANIMALION OVEIVIEW ...uveiiiee e e e eeeeeeeeeeeeeittiaee s s e e e e e e e e e e e e e e eeeeeaeannneaaaaeeeeeaaeees 150,
QLI 1153 {0 1. S PUSRRRRR 151,
1= U 1571 o] PRSP 153,
APPIYING ANIMALIONS ... e e e e e e ettt s e e e e e e aaaaeaeeeeennne 156,

SUMIMIATY ittt ittt e e e e et e e e e e e e e e e e e et e e e e s e e e et e e e et e e eas e e eaanneeeenns 161

CONTENTS

Chapter 10: Deployment Considerations...........ccovevvvieiiiiiieieiiiiiee e 163
(O] g o B] 7= 11 o] o HE TP PP PPPPPPPPPPPPPTPRN 163..........
=253 11 T O 165..........
o] g =TT |1 T USSP 167..........
Hide Unprocessed TEMPIALEScooooiiiiiiiiiiiii e 169..........
Mini cation and BUundliNgoooiriiiiiiiiii e 17Q..........
Managing the BUild PrOCESS.........cooeiiiiiiiiiiiiiie e eeeeeeeees 171..........
[D]=T 0] (0 0 1T o | TP PP T TR POTOPPPPPPRP 173
SUMMIAIY ..ttt ettt e e e ettt b s e e e et ebb e e e e eeata e e e e ee st e eeeeesbnneeaaaenes 176..........
00 [PP PP PP 171...

Xi

About the Author

/

Andrew Grant has been developing websites for fun and pro t for over 18 years. He is currently a full-time Web
Developer with a passion for technology and life on the cutting edge. Andrew holds various web development related
vendor certi cations and an Advanced Diploma in Software Development. He can be reached via his personal web
page athttp://andrewgrant.net.au

Xiii

About the Technical Reviewer

/

Andrew Markham-Davies is a software engineer from Yorkshire, England whas worked on software for the like of
Sky, BBC, ADT and DePuy Synthes. While he’s has worked extensively with C#, java and php in the past, his passion is
Javascript and front end development. A big fan of mv* style frameworks, Andrew found AngularJS the perfect tool for
building rich, well structured javascript heavy applications.

He is a keen advocate of refactoring and applying engineering principals to Javascript including automation,
tooling and testing best practices.

Andrew can be found on twitter ahttp://twitter.com/atmd83 and blogs athttp://atmd.co.uk

XV

Acknowledgments

I would like to thank my wonderful wife, Monica, for helping me write this book and do my day job at the
same time. | would also like to thank the amazing Apress editorial team, in particular my technical reviewer,
Andrew Markham-Davies, for his valuable feedback.

XVii

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer

