

AngulardS

Brad Green and Shyam Seshadri

AngularJS
by Brad Green and Shyam Seshadri

Copyright 2013 Brad Green and Shyam Seshadri. All rights reserved.
Printed in the United States of America.
Published by O°Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O°Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titld#tip://my.safaribooksonline.cpriror more information, contact our corporate/
institutional sales department: 800-998-9938ayporate @oreilly.com

EditorSimon St. Laurent and Meghan Blanchette Indexedudith McConville

Production Editefanie Yarbrough Cover Desigrandy Comer
CopyeditBachel Leach Interior Desigbexid Futato
Proofreadditty Gagnon IllustratoRebecca Demarest
April 2013: First Edition

Revision History for the First Edition:
2013-04-05: First release

Seenttp://oreilly.com/catalog/errata.csp?isbn=978144934dB858ease details.

Nutshell Handbook, the Nutshell Handbook logo, and the O°Reilly logo are registered trademarks of O°Reilly
Media, IncAngularJSthe image of a thornback cowfish, and related trade dress are trademarks of O°Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O°Reilly Media, Inc., was aware of a tradep
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-34485-6
LSl

Preface

1. Introduction to AngularJS
Concepts
Client-Side Templates
Model View Controller (MVC)
Data Binding
Dependency Injection
Directives
An Example: Shopping Cart
Up Next

. Anatomy of an AngularJS Application
Invoking Angular
Loading the Script

Declaring Angular®s Boundaries with ng-app

Model View Controller
Templates and Data Binding
Displaying Text
Form Inputs
A Few Words on Unobtrusive JavaScript

Lists, Tables, and Other Repeated Elements

Hiding and Showing

CSS Classes and Styles

Considerations for src and href Attributes
Expressions

Separating Ul Responsibilities with Controllers

Publishing Model Data with Scopes
Observing Model Changes with $watch

Table of Contents

Performance Considerations in watch() 31

Organizing Dependencies with Modules 33
How Many Modules Do | Need? 36
Formatting Data with Filters 37
Changing Views with Routes and $location 38
index.html 39
list.html 39
detail.html 40
controllers.js 40
Talking to Servers 41
Changing the DOM with Directives 43
index.html 44
controllers.js 44
Validating User Input 45
Moving On 46
3. Developing in ANQuIardS.
Project Organization 47
Tools 5C
IDEs 50
Running Your Application 51
With Yeoman 51
Without Yeoman 51
Testing with AngularJS 52
Karma 52
Unit Tests 54
End-to-End/Integration Tests 55
Compilation 57
Other Awesome Tools 59
Debugging 59
Batarang 60
Yeoman: Optimizing Your Workflow 64
Installing Yeoman 65
Starting a Fresh AngularJS project 65
Running Your Server 65
Adding New Routes, Views, and Controllers 65
The Testing Story 66
Building Your Project 66
Integrating AngularJS with RequireJS 67

4. Analyzing an AngulardS App.o
The Application 77

iv | Table of Contents

Relationship Between Model, Controller, and Template 78

The Model 79
Controllers, Directives, and Services, Oh My! 80
Services 8C
Directives 84
Controllers 85
The Templates 89
The Tests 9~
Unit Tests 96
Scenario Tests 99

. Communicating with Servers. e

Communicating Over $http 101
Configuring Your Request Further 103
Setting HTTP Headers 104
Caching Responses 105
Transformations on Requests and Responses 106

Unit Testing 107

Working with RESTful Resources 108
The Declaration 111
Custom Methods 111
No Callbacks! (Unless You Really Want Them) 112
Simplified Server-Side Operations 112
Unit Test the ngResource 112

The $qg and the Promise 113

Response Interception 115

Security Considerations 115
JSON Vulnerability 116
XSRF 116

L DIFrECHIVES. . .

Directives and HTML Validation 119

API Overview 120
Naming Your Directive 121
The Directive Definition Object 122
Transclusion 126
Compile and Link Functions 126
Scopes 12¢
Manipulating DOM Elements 132
Controllers 133

Table of Contents | v

Moving On

. Other CoNCeINS.o e e e

$location
HTML5 Mode and Hashbang Mode
AngularJS Module Methods
Where®s the Main Method?
Loading and Dependencies
Convenience Methods
Communicating Between Scopes with $on, $emit, and $broadcast
Cookies
Internationalization and Localization
What Can | Do in AngularJS?
How Do | Get It All Working?
Common Gotchas
Sanitizing HTML & the Sanitize Module
Linky

. Cheatsheetand Recipes.

Wrapping a jQuery Datepicker
ng-model
Binding select
Calling select
The Rest of the Example
The Teams List App: Filtering and Controller Communication
The Search Box
The Combo Boxes
The Check Box
The Repeater
File Upload in AngularJS
Using Socket.lO
A Simple Pagination Service
Working with Servers and Login
Conclusion

vi

| Table of Contents

Preface

| can trace Angular®s beginnings to 2009, on a project called Google Feedback. We°d
gone through months of frustration with our development speed and ability to write
testable code. At around the six month mark, we had around 17,000 lines of front-end
code. At that point, one of the team members, Misko Hevery, made a bold statement
that he°d be able to rewrite the whole thing in two weeks using an open source library
that he°d created as a hobby.

| figured that a two week delay couldn®t hurt us that much and we®°d at least be entertained
by Misko scrambling to build something. Misko missed his time estimate. It took three
weeks. We were all astounded, but even more astounding was that the line count for
this new app had dropped from 17,000 to a mere 1,500. It seemed that Misko was onto
something worth pursuing.

Misko and | decided we°d built a team around the concepts he started with a simple
charter: to simplify the web developer®s experience. Shyam Seshadri, this book°®s co-
author, went on to lead the Google Feedback team in developing Angular®s first shipping
application.

Since then, we°ve developed Angular with guidance both from teams at Google and
from hundreds of open source contributors around the world. Thousands of developers
rely on Angular in their daily work and contribute to an amazing support network.

We°re excited to learn what you°ll teach us.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Vii

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deterp
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you°re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O°Reilly books does require permission. Answering a question by citing this book and
guoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require perp
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For exampkengularJSy Brad Green and Shyam Sep
shadri (O°Reilly). Copyright 2013 Brad Green and Shyam Seshadri, 978-1-449-34485-6 A

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us permissions@oreilly.com

vii | Preface

Safari Books Online

Safari Books Onliris an on-demand digital library that delivers exp
pertcontentin both book and video form from the world®s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and creap
tive professionals use Safari Books Online as their primary resource for research, probp
lem solving, learning, and certification training.

Safari Books Online offers a ranggafduct mixesand pricing programs fasrganip

zations government agencigandindividuals Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O°Reilly Media, Prentice Hall Professional, Addison-Wesley Prop
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technolu
ogy, and dozensore. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O°Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this paghettd://oreil.ly/angularJS

To comment or ask technical questions about this book, send enmfadlot@ues
tions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com

Find us on Facebookttp://facebook.com/oreilly
Follow us on Twitterhttp://twitter.com/oreillymedia

Watch us on YouTubétttp://www.youtube.com/oreillymedia

Preface | ix

Acknowledgments

Weed like to give special thanks to Misko Hevery, father of Angular, for having the
courage to think very differently about how we write web applications and to drive it
into reality; to Igor Minar for bringing stability and structure to the Angular project
and for building the roots of today°s awesome open source community; to Vojta Jina for
creating many parts of Angular, and for giving us the fastest test runner the world has
ever seen; to Naomi Black, John Lindquist, and Mathias Matias NiemelE for their expert
editing assistance. And finally, thank you to the Angular community for their contrip
butions, and for teaching us about making Angular great through feedback from buildpu
ing real applications.

X | Preface

CHAPTER 1
Introduction to AngularJdS

Our ability to create amazing web-based apps is incredible, but the complexity involved

in making these apps is similarly incredible. We on the Angular team wanted to relieve
the pain involved with developing AJAX applications. At Google, we°d worked through
the hard lessons of building large web applications like Gmail, Maps, Calendar, and
several others. We thought we might be able to use these experiences to benefit everyone.

We wanted writing web apps to feel more like the first time we wrote a few lines of code
and stood back in amazement at what we°d made happen. We wanted the coding process
to feel more like creating and less like trying to satisfy the strange inner workings of
web browsers.

At the same time, we wanted an environment that helped us make the design choices
that make apps easy to create and understand from the start, but that continue to be the
right choices to make our apps easy to test, extend, and maintain as they grow large.

We°ve tried to do this in the Angular framework. We°re very excited about the results
we°ve achieved. A lot of credit goes to the open source community around Angular who
do a fantastic job supporting each other and who have taught us many things. We hope
you°ll join our community and help us learn how Angular can be even better.

Some of the larger and more involved examples and code snippets are available on a
GitHub repository for you to look at, fork, and play wittoat GitHub page

Concepts

There are a few core ideas that you°ll use throughout an Angular app. As it turns out,
we didn°t invent any of these. Instead, we°ve borrowed heavily from successful idioms
in other development environments and implemented them in a way that embraces
HTML, browsers, and many other familiar web standards.

Client-Side Templates

Multi-page web applications create their HTML by assembling and joining it with data

on the server, and then shipping the finished pages up to the browser. Most single-page
applicationslalso known as AJAX appslido this as well, to some extent. Angular is
different in that the template and data get shipped to the browser to be assembled there.
The role of the server then becomes only to serve as static resources for the templates
and to properly serve the data required by those templates.

Let°s see an example of what assembling this data and template on the browser looks
like in Angular. We°ll take the obligatory Hello, World example, but instead of writing
¥Hello, WorldA as a single string, let°s structure the greeting ¥HelloA as data that we could
change later.

For it, we°ll create our templatehiallo.htmi

<html ng-app>

<head>

<script src="angular.js" ></script>
<script src="controllers.js" ></script>

</head>

<body>

<div ng-controller=HelloController >
<p>{{greeting.text}}, World </p>
</div>

</body>

</html>

And our logic incontrollers.js

function HelloController ($scopg {
$scope greeting = { text: Hello 1}

}
Loadinghello.htmlinto any browser will then produce what we sefigre 1-1

Figure 1-1. Hello, World

There are a few interesting things to note here in comparison with most methods in
widespread use today:
N There are no classes or IDs in the HTML to identify where to attach event listeners.

N WherHelloController set thegreeting.text to Hellg, we didn°t have to register
any event listeners or write any callbacks.

2 | Chapter 1: Introduction to AngularJS

N HelloController is a plain JavaScript class, and doesn°t inherit from anything that
Angular provides.

N HelloController ~ got the$scopeobiject that it needed without having to create it.

N We didn°t have to call thdelloController °s constructor ourselves, or figure out
when to call it.

We°ll look at more differences soon, but it should be clear already that Angular applip
cations are structured very differently than similar applications were in the past.

Why have we made these design choices and how does Angular work? Let’s look at some
good ideas Angular stole from elsewhere.

Model View Controller (MVC)

MVC application structure was introduced in the 1970s as part of Smalltalk. From its
start in Smalltalk, MVC became popular in nearly every desktop development envip
ronment where user interfaces were involved. Whether you were using C++, Java, or
Objective-C, there was some flavor of MVC available. Until recently, however, MVC
was all but foreign to web development.

The core idea behind MVC is that you have clear separation in your code between
managing its data (model), the application logic (controller), and presenting the data
to the user (view).

The view gets data from the model to display to the user. When a user interacts with the
application by clicking or typing, the controller responds by changing data in the model.
Finally, the model notifies the view that a change has occurred so that it can update what
it displays.

In Angular applications, the view is the Document Object Model (DOM), the controllers
are JavaScript classes, and the model data is stored in object properties.

We think MVC is neat for several reasons. First, it gives you a mental model for where
to put what, so you don°t have to invent it every time. Other folks collaborating on your

project will have an instant leg up on understanding what you®ve written, as they°ll know
you°re using MVC structure to organize your code. Perhaps most importantly, we°ll

claim that it delivers great benefits in making your app easier to extend, maintain, and
test.

Data Binding

Before AJAX single-page apps were common, platforms like Rails, PHP, or JSP helped
us create the user interface (Ul) by merging strings of HTML with data before sending
it to the users to display it.

Concepts | 3

Libraries like jQuery extended this model to the client and let us follow a similar style,
but with the ability to update, part of the DOM separately, rather than updating the
whole page. Here, we merge template HTML strings with data, then insert the result
where we want it in the DOM by settiimpperHtml on a placeholder element.

This all works pretty well, but when you want to insert fresher data into the Ul, or change
the data based on user input, you need to do quite a bit of non-trivial work to make sure
you get the data into the correct state, both in the Ul and in JavaScript properties.

But what if we could have all this work done for us without writing code? What if we
could just declare which parts of the Ul map to which JavaScript properties and have
them sync automatically? This style of programming is called data binding. We included
it in Angular because it works great with MVC to eliminate code when writing your
view and model. Most of the work in moving data from one to the other just happens
automatically.

To see this in action, let°s take the first example and make it dynamic. Asi&lothe
Controller sets the modegjreeting.text once and it never changes from then on. To
make itlive, let’s change the example by adding a text input that can change the value
of greeting.text as the user types.

Here°s the new template:

<html ng-app>

<head>

<script src="angular.js" ></script>
<script src="controllers.js" ></script>

</head>

<body>

<div ng-controller= HelloController >
<input ng-model=greeting.text >
<p>{{greeting.text}}, World </p>
</div>

</body>

</html>

The controllerHelloController , can stay exactly the same.

Loading it in a browser, we°d see the screen captuFeéglire 1-2

Figure 1-2. The default state of the greeting app

If we replacédellowith Hi in the input field, we°d see the screen capturEdjure 1-3

4 | Chapter 1: Introduction to AngularJS

Figure 1-3. The Greeting App with input changed

Without ever registering a change listener on the input field, we have a Ul that will
dynamically update. The same would be true for changes coming to and from the server.
In our controller, we could make a request to our server, get the response, and set
$scope.greeting.text to equal what it returns. Angular would automatically update
both the input and the text in the curly braces to that value.

Dependency Injection

We mentioned it before, but it bears repeating that there°s a lot going oiHeNith
Controller that we didn°t have to write. For example,&beppe object that does our

data binding is passed to us automatically; we didn°t have to create it by calling any
function. We justaskedor it by putting it inHelloController °s constructor.

As we°ll find out in later chaptefscopeisn°t the only thing we can ask for. If we want
to data bind to the location URL in the user®s browser, we can ask for an object that
manages this by puttirfjocation in our constructor, like so:

function HelloController ($scope $location) {
$scope greeting ={ text : Hello };
/I use $location for something good here...
}
We get this magical effect through Angular®s dependency injection system. Dependency
injection lets us follow a development style in which, instead of creating dependencies,
our classes just ask for what they need.

This follows a design pattern called tizev of Demeteralso known as the principle of
least knowledge. Since adelloController °s job is to set up the initial state for the
greeting model, this pattern would say that it shouldn®t worry about anything else, like
how $scopegets created, or where to find it.

This feature isn°t just for objects created by the Angular framework. You can write the
rest of this code as well.

Directives

One of the best parts of Angular is that you can write your templates as HTML. You can
do this because at the core of the framework we°ve included a powerful DOM transp
formation engine that lets you extend HTML’s syntax.

Concepts | 5

We°ve already seen several new attributes in our templates that aren°t part of the HTML
specification. Examples include the double-curly notation for data bindigg,
controller for specifying which controller oversees which part of the viewngnd

mode| which binds an input to part of the model. We call these HTML extension
directives.

Angular comes with many directives that help you define the view for your app. We°ll
see more of them soon. These directives can define what we commonly view as the
template. They can declaratively set up how your application works or be used to create
reusable components.

And you°re not limited to the directives that Angular comes with. You can write your
own to extend HTML’s template abilities to do anything you can dream of.

An Example: Shopping Cart

Let°s look at a slightly larger example that shows off a bit more of Angular. Let’s imagine
that we°re going to build a shopping app. Somewhere in the app we°ll need to show the
user®s shopping cart and let him edit it. Let°s skip straight to that part.

<html ng-app=myApp>
<head>
<title> Your Shopping Cart </title>
</head>
<body ng-controller= CartController >
<h1xour Order</h1>
<div ng-repeat= item initems >
<span3{item.title}}
<input ng-model=item.quantity >
<span3{item.price | currency}}

<span3{item.price * item.quantity | currency}}
<button ng-click= "remove($index)" >Remove/button>
</div>
<script src="angular.js" ></script>
<script>

function CartController ($scope {

$scope items = [

{titte : Paintpots , quantity : 8, price : 3.95},
{titte : Polkadots , quantity : 17, price: 12.95},
{title : Pebbles , quantity : 5, price: 6.95}
I

$scope remove = function (index) {
$scope items. splice (index, 1);
}
}
</script>
</body>
</html>

6 | Chapter 1: Introduction to AngularJS

The resulting Ul looks like the screenshoFigure 1-4

Figure 1-4. The Shopping Cart Ul

The following is a brief tour of what’s going on here. The rest of the book is dedicated
to a more in-depth explanation.

Let°s start at the top:
<html ng-app>

Theng-appattribute tells Angular which parts of the page it should manage. Since we°ve
placed it on thechtml> element, we°re telling Angular that we want it to manage the
whole page. This will often be what you want, but you might want to place<dorra

within the app if you°re integrating Angular with an existing app that uses other methods
to manage the page.

<body ng-controller= CartController >

In Angular, you manage areas of the page with JavaScript classes called controllers. By
including a controller in the body tag, I1°m declaring @atController will manage
everything betweexnbody>and</body>.

<div ng-repeat= item in items >

Theng-repeat says to copy the DOM inside tkidiv> once for every element in an

array calledtems On every copy of the div, it will also set a property nataeetto the

current element so we can use it in the template. As you can see, this results in three
<div>s each, containing the product title, quantity, unit price, total price, and a button

to remove the item entirely.

<span3{item.title}}

As we showed in the ¥%Hello, WorldA example, data bindiffg)vialets us insert the
value of a variable into part of the page and keep it in sync. The full expression
{{item.title}} retrieves the current item in the iteration and then inserts the contents
of that item®s title property into the DOM.

<input ng-model=item.quantity >

The ng-modeldefinition creates data binding between the input field and the value of
item.quantity

An Example: Shopping Cart | 7

The{{}} inthesets up a one-way relationship that says %zinsert a value here A
We want that effect, but the application also needs to know when the user changes the
guantity so it can change the total price.

We°ll keep changes in sync with our model by ugjrgodel Theng-modeldeclaration
inserts the value dkem.quantity into the text field, but it also automatically updates
item.quantity whenever the user types a new value.

<span3{item.price | currency}}

<span3{item.price * item.quantity | currency}}
We want the unit price and total price to be formatted as dollars. Angular comes with
a feature called filters that lets us transform text, and there®s a bundled filter called

currency that will do this dollar formatting for us. We°ll look at filters more in the next
chapter.

<button ng-click=" remove($index) >Remowve/button>

This allows users to remove items from their carts by clickReneovédoutton next to
the product. We°ve set it up so that clicking this button cadle@ve() function. We°ve
also passed ifiindex, which contains the iteration number of thg-repeat, so we
know which item to remove.

function CartController($scope) {

This CartController manages the logic of the shopping cart. We°ll tell Angular that
the controller needs something calfstopeby putting it here. Théscopeis what lets
us bind data to elements in the Ul.
$scope items = [

{tite : Paintpots , quantity : 8, price: 3.95},

{title : Polkadots , quantity : 17, price : 12.95},

{tite : Pebbles , quantity : 5, price: 6.95}
I
By defining$scope.items, I°ve created a dummy data hash to represent the collection
of items in the user®s shopping cart. We want to make them available to data bind with
the Ul, so we°ll add them $scope

Of course, a real version of this cant just work in memory, and will need to talk to a
server to properly persist the data. We°ll get to that in later chapters.

$scope remove = function (index) {

$scope items. splice (index, 1);

}
We want theemove() function available to bind in the Ul, so we°ve added tBisctipe
as well. For the in-memory version of the shopping cartgtiheve() function can just
delete items from the array. Because the listdaf>s created byg-repeat is data

8 | Chapter 1: Introduction to AngularJS

bound, the list automatically shrinks when items disappear. Remembegntlioize()
function gets called from the Ul whenever the user clicks on one of the Remove buttons.

Up Next

We°ve looked at just the most basic idioms in Angular and some very simple examples.
The rest of the book is dedicated to showing off what the framework has to offer.

UpNext | 9

CHAPTER 2
Anatomy of an AngularJS Applica

Unlike typical libraries where you pick and choose functions as you like, everything in
Angular is designed to be used as a collaborative suite. In this chapter we°ll cover all of
the basic building blocks in Angular so you can understand how they fit together. Many
of these blocks will be covered in more detail in later chapters.

Invoking Angular

Any application must do two things to start Angular:

1. Load theangular.jdibrary
2. Tell Angular which part of the DOM it should manage withrtpeapp directive

Loading the Script

Loading the library is straightforward and follows the same rules as any other JavaScript
library. You can load the script from Google°s content delivery network (CDN), like so:

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.4/angular.min.js" >

</script>
Using Google®s CDN is recommended. Google®s servers are fast, and the script is cachep
able across applications. That is, if your user has multiple apps that use Angular, she’ll
have to download only it once. Also, if the user has visited other sites that use the Google
CDN link for Angular, she won°t need to download it again when visiting your site.

If you prefer to host locally (or anywhere else), you can do that too. Just specify the
correct location in therc.

11

Declaring Angular°s Boundaries with ng-app

The ng-app directive lets you tell Angular which part of your page it should expect to
manage. If you°re building an all-Angular application, you should inclgepp as
part of the<html> tag, like so:

<html ng-app>

</htm|>
This tells Angular to manage all DOM elements in the page.

If you°ve got an existing app where some other technology expects to manage the DOM,
such as Java or Rails, you can tell Angular to manage only a part of the page by placing
it on some element like<aliv> within the page.

<html>

o

<div ng-app>

</div>

o

</html>

Model View Controller

In Chapter 1 we mentioned that Angular supports the Model View Controller style of
application design. Though you have a lot of flexibility in designing your Angular app,
you will always have some flavor of:

2

A model containing data that represents the current state of your application.

pral

Views that display this data.
N Controllers that manage the relationship between your model and your views.

You’ll create your model using object attributes, or even just primitive types containing
your data. There®s nothing special about model variables. If you want to display some
text to the user, you could have a string, like so:

var someText= You have started your journey. ;

You create your views by writing a template as an HTML page and merging it with data
from your model. As we°ve seen, you can insert a placeholder in the DOM and set its
text like this:

<p>{{someText}} </p>

We call this double-curly syntax interpolation, as it inserts new content into an existing
template.

12 | Chapter 2: Anatomy of an AngularJS Application

The controllers are classes or types you write to tell Angular which objects or primitives
make up your model by assigning them todibeopeobject passed into your controtler
function TextController ($scope {
$scope someText= someText

}
Bringing it all together, we have:

<html ng-app>
<body ng-controller="TextController" >
<p>{{someText}} </p>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.1/angular.min.js" >
</script>

<script>
function TextController ($scopg {
$scope someText= You have started your journey. ;

}

</script>
</body>
</html>

Loading this in a browser, you would see:
You have started your journey.

Though this primitive-style model works in simple cases, for most applications you°ll
want to create a model object to contain your data. We°ll create a messages model object
and use it to store osomeText So instead of:

var someText= You have started your journey. ;
you would write:

var messages= {};
messagessomeText= You have started your journey. ;
function TextController ($scope {

$scope messages= messages

}
and use it in your template as:

<px{{messages.someText}}</p>

As we’ll see later when we discuss$sicepe object, creating a model object like this
will prevent unexpected behavior that could be caused by the prototypal inheritance in
$scopeobjects.

While we°re discussing practices that will save you in the long run, in the previous
example, we°ve creatéektController in the globakcope While this is fine for exu
amples, the right way to define a controller is as part of something called a module,

Model View Controller | 13

which provides a namespace for related parts of your application. The updated code
would look like the following:
<html ng-app=myApp>

<body ng-controller= TextController >
<p>{{someText.message}}</p>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.1/angular.min.js" >
</script>

<script>
var myAppModule= angular. moduld myApp, [I);

myAppModuleontroller (TextController
function ($scopg {
var someText= {};
someTextmessage= You have started your journey.
$scope someText= someText

PR
</script>
</body>
</html>

In this version, we told ourg-app element about the name of our modug/App We
then called the Angular object to create a module nany#gppand pass our controller’s
function to a call to that module®s controller function.

We°ll get to all the whys and hows of modules in a bit. For now, just remember that
keeping things out of the global namespace is a good thing and that modules are the
mechanism we use to do so.

Templates and Data Binding

Templates in Angular applications are just HTML documents that we load from the
server or define in ascript> tag like any other static resource. You define your Ul in
the template, using standard HTML plus Angular directives where you need Ul comp
ponents.

Once in the web browser, Angular expands these templates into your full application
by merging your template with data. We saw an example of t@isapter lwhen we
displayed a list of items in the shopping cart:

<div ng-repeat="item in items" >
<span3{{item.title}}

</div>

Here, it stamps out a copy of the owtdiv>, and everything inside it, once for every
element in the items array.

14 | Chapter 2: Anatomy of an AngularJS Application

So where does this data come from? In our shopping cart example, we just defined it in
an array in our code. This works great for when you°re starting to build a Ul and just
want to test out how it will work. Most apps, however, will use some persistent data
source on the server. Your app in the browser connects to your server and requests
whatever it needs for the page the user is on, and Angular merges it with your template

The basic startup flow looks like this:

1. A user requests the first page of your application.

2. The user®s browser makes an HTTP connection to your server and loads the
dex.html page containing your template.

3. Angular loads into the page, waits for the page to be fully loaded, and then looks
for ng-app to define its template boundaries.

4. Angular traverses the template and looks for directives and bindings. This results
in registration of listeners and DOM manipulation, as well as fetching initial data
from the server. The end result of this work is that the app is bootstrapped and the
template is converted into view as a DOM.

5. You connect to your server to load additional data you need to show the user as
needed.

Steps 1 through 3 are standard for every Angular app. It°s in steps 4 and 5 that you have
choices. These steps can happen synchronously or asynchronously. For performance,
the data your app needs to display to the user on the first view can come down with the
HTML template to avoid multiple requests.

By structuring your application with Angular, your application®s templates are kept seppu
arate from the data that populates them. The result of this is that these templates are
now cacheable. Only new data need come down to the browser after the first load. Just
as with JavaScript, images, CSS, and other resources, caching these templates can give
your application even better performance.

Displaying Text

You can display and update text anywhere in your Ul usinggiiend directive. It has
two equivalent forms. One we°ve seen with double-curly braces:

<px{{greeting}} </p>
Then there®s an attribute-based directive caigebind :
<p ng-bind="greeting" ></p>

Both are equivalent in their output. If the model variable greeting is set to ¥%Hi there A
Angular will generate the HTML:

<p>Hi there </p>

Templates and Data Binding | 15

And the browser will display ¥Hi thereA

So why would you use one form over the other? We created the double-curly interpop
lation syntax to read more naturally and require less typing. While both forms produce
equivalent output, with the double-curly syntax, on the very first page load of your
application°tdex.htm] there®s a chance that your user will see the un-rendered template
before Angular has a chance to replace the curlies with your data. Subsequent views
won°t suffer from this.

The reason is that the browser loads the HTML page, renders it, and only then does
Angular get a chance to interpret it as you intended.

The good news is that you can still {{s¢ in the majority of your templates. For the
data binding you do in your index.html page, howevernggand instead. That way,
your users will see nothing until the data has loaded.

Form Inputs

Working with form elements in Angular is simple. As we°ve seen in several examples,
you can use theg-model attribute to bind elements to your model properties. This
works with all the standard form elements like text inputs, radio buttons, checkboxes,
and so on. We can bind a checkbox to a property like so:

<form ng-controller= "SomeController" >
<input type="checkbox" ng-model='youCheckedIt">
</form>

This means that:

1. When the user checks the box, a property caitedCheckedIt on theSomeCon
troller °s$scopewill become true. Unchecking the box maymsCheckedItfalse.

2. If you set$scope.youCheckedlt to true in SomeController, the box becomes
checked in the Ul. Setting it to false unchecks the box.

Now let°s say we actually want to take action when the user does something. For input
elements, you use thg-changeattribute to specify a controller method that should be
called whenever the user changes the input®s value. Let°s do a simple calculator to help
startup owners understand how much money they need to get going:

<form ng-controller= "StartUpController" >

Starting: <input ng-changezcomputeNeeded()"
ng-model=funding.startingEstimate" >

Recommendation: {{funding.needed}}

</form>

For our simplistic example, let°s just set the output to be ten times the user®s estimate.
We°ll also set a default value of zero to start:

16 | Chapter 2: Anatomy of an AngularJS Application

function StartUpController ($scope {
$scope funding = { startingEstimate : 0 };

$scope computeNeeded: function () {

$scope needed = $scope startingEstimate * 10;
h

}

There is, however, a potential problem with the strategy in the preceding code. The issue
is that we°re only recomputing the needed amount when users type in the input field.
This works fine if this input field is only ever updated when users type in this particular
input. But what if other inputs bind to this property in the model? What if it gets updated
when data comes in from the server?

To update the field no matter how it gets updated, we want to $smpefunction
calledswatch() . We°ll talk about watch in detail later in this chapter. The basics are that
you can calwatch() with an expression to observe and a callback that gets invoked
whenever that expression changes.

In this case, we want to watitimding.startingEstimate and caltomputeNeeded()
whenever it changes. We could then rewriteStatUpController to use this techp
nique:

function StartUpController ($scope {
$scope funding = { startingEstimate : O };

computeNeeded- function () {
$scope funding . needed = $scope funding . startingEstimate * 10;

2

$scope $watch(funding.startingEstimate , computeNeeded
}
Note that the expression to watch is in quotes. Yes, it is a string. This string is evaluated
as something called an Angular expression. Expressions can do simple operations and
have access to the properties ingbeopeobject. We°ll cover expressions more later in
this chapter.

You could also watch the return value of a function, but it won°t work to watch the
propertyfunding.startingEstimate as this evaluates to zero, its initial value, and that
zero never changes.

Then, because ofunding.needed will automatically update wheneviending.star
tingEstimate changes, we can write a simpler template, like so:

<form ng-controller= "StartUpController" >

Starting: <input ng-model=funding.startingEstimate” >
Recommendation: {{funding.needed}}

</form>

Templates and Data Binding | 17

There are some cases where you don°t want to take action on every change; instead, you
want to wait until the user tells you he®s ready. Examples might be completing a purchase
or sending a chat message.

If you have a form that groups inputs, you can usedk&ibmit directive on the form
itself to specify a function to call when the form submits. We can extend our previous
example to let the user request funding for her startup by clicking a button:

<form ng-submit="requestFunding()" ng-controller= "StartUpController" >
Starting: <input ng-change=computeNeeded()" ng-model=startingEstimate" >
Recommendation: {{needed}}

<button>Fund my startup! </button>
</form>

function StartUpController ($scope {
$scope computeNeeded- function () {
$scope needed = $scope startingEstimate * 10;

%

$scope requestFunding = function () {

window alert ("Sorry, please get more customers first.");
J5
}

Theng-submit directive also automatically prevents the browser from doing its default
POSTction when it tries to submit the form.

To handle other event cases, like when you want to provide interactions that don°t submit
a form, Angular provides event-handling directives that resemble the browser®s native
event attributes. Fasnclick , you°d usag-click . Forondblclick , useng-dblclick ,

and so on.

We can try this out by extending our startup calculator one last time with a reset button
that will reset the input value to zero:

<form ng-submit="requestFunding()" ng-controller= "StartUpController" >
Starting: <input ng-change=ZcomputeNeeded()" ng-model=startingEstimate" >
Recommendation: {{needed}}

<button>Fund my startup! </button>

<button ng-click= "reset()" >Reset</button>
</form>

function StartUpController ($scope {
$scope computeNeeded: function () {
$scope needed = $scope startingEstimate * 10;

3

$scope requestFunding = function () {
window alert ("Sorry, please get more customers first.");

b

$scope reset = function () {

18 | Chapter 2: Anatomy of an AngularJS Application

$scope startingEstimate = 0;
h
}

A Few Words on Unobtrusive JavaScript

At some point in your JavaScript development career, someone probably told you that
you should be writing ¥unobtrusive JavaScriptA and thatlisingmousedowrand
other such inline event handlers in your HTML was a bad idea. He was right.

The idea of unobtrusive JavaScript has been interpreted many ways, but the rationale
for this style of coding is something along the following lines:

1. Not everyone®s browser supports JavaScript. Let everyone see all of your content
and use your app without needing to execute code in the browser.

2. Some folks use browsers that work differently. Visually impaired folks who use
screen-readers and some mobile phone users can°t use sites with JavaScript.

3. Javascript works differently across different platforms. IE is usually the culprit here.
You need to put in different event-handling code depending on the browser.

4. These event handlers reference functions in the global namespace. It will cause you
headaches when you try to integrate other libraries with functions of the same
names.

5. These event handlers combine structure and behavior. This makes your code more
difficult to maintain, extend, and understand.

In most ways, life was better when you wrote JavaScript in this style. One thing that was
not better, however, was code complexity and readability. Instead of declaring your event
handler actions with the element they act on, you usually had to assign IDs to these
elements, get a reference to the element, and set up event handlers with callbacks. You
could invent a structure to only create these associations in well-known locations, but
most apps ended up with these handler setups littered all over.

In Angular, we decided to reexamine the problem.

The world has changed since these concepts were born. Point #1 is no longer true for
any interesting population. If you°re running a browser without JavaScript, you°re relep
gated to sites created in the 1990s. As for point #2, modern screen-readers have caught
up. With proper use of ARIA semantic tags, you can make very rich Uls easily accessible.
Mobile phones now run JavaScript on par with desktop machines.

So now the question is: could we solve #3 and #4 while regaining the readability and
simplicity of the inline technique?

As previously mentioned, for most inline event handlers, Angular has an equivalent in
the form ofng-eventhandler="expression" whereeventhandler would be replaced

Templates and Data Binding | 19

by click , mousedowrhange and so on. If you want to get notified when a user clicks
on an element, you simply use tigeclick directive like this:

<div ng-click="doSomething()">...</div>

Is your brain saying ¥%:No, no, no! Bad, bad, bad!A? The good news is that you can relax.
These directives differ from their event handler predecessors in that they:

N Behave the same in every browser. Angular takes care of the differences for you.

N Do not operate on the global namespace. The expressions you specify can only
access functions and data that is in the scope of the element°s controller.

This last point may sound a little cryptic, so let’s look at an example. In a typical app,
you would create a nav bar and a content area that changes as you select different menu
options from the nav. We could write the skeleton for it, like so:

<div class="navbar" ng-controller= "NavController" >

o

<li class="menu-item" ng-click= "doSomething()" >Something

o

</div>

<div class="contentArea" ng-controller= "ContentAreaController" >

o

<div ng-click= "doSomething()" >... </div>

o

</div>

Here both thecli> in the navbar and thediv> in the content area call a function called
doSomething() when a user clicks on them. As the developer, you set up the function
that these calls refer to in your controller code. They could be the same function or
different ones:

function NavController ($scopg {
$scope doSomething= doA

}

function ContentAreaController ($scopg {
$scope doSomething= doB

}
Here,doA() anddoB() functions can be the same or different, as you define them.

We°re now left with point #5, combining structure and behavior. This is a hand-wavy
argument, as you can°t point to any concrete negative outcomes, but it°s very similar to
a real problem we had in mind, combining responsibilities of the presentation and your
application logic. This certainly does have the negative side effects that folks talk about
when describing the issue labeled as structure/behavior.

20 | Chapter 2: Anatomy of an AngularJS Application

There®s a simple acid test we can use to figure out if our system suffers from this coupling:
can we create a unit test for our app logic that doesn°t require the DOM to be present?

In Angular, yes we can write controllers containing our business logic without having
references to the DOM.The problem was never in the event handlers, but rather in the
way we needed to write JavaScript previously. Notice that in all the controllers we°ve
written so far, here and elsewhere in this book, there are no references to the DOM or
DOM events anywhere. You can easily create these controllers without the DOM. Al
of the work of locating elements and handling events happens within Angular.

This matters first when writing unit tests. If you need the DOM, you have to create it

in your test setup, adding to your test complexity. There°s more maintenance because
when your page changes, you need to change the DOM for your tests. Finally, DOM
access is slow. Slow tests mean slow feedback and eventually slow releases. Angular
controller tests have none of these problems.

So there you go. You can happily use declarative event handlers with simplicity and
readability, without the guilt of violating best practices.

Lists, Tables, and Other Repeated Elements

Possibly the most useful Angular directivgrepeat creates a copy of a set of elements
once for every item in a collection. You should use it everywhere you want to create lists
of things.

Let°s say we°re writing a student roster application for teachers. We*d likely get the student
data from a server, but for this example let’s just define it as a model in JavaScript:

var students = [{ name Mary Contrary , id: 1 },
{name Jack Sprat , id: 2 },
{name Jill Hill , id: 3 3,

function StudentListController ($scopg {
$scope students = students;

}
To display this list of students, we can do something like the following:

<ul ng-controller= >
<li ng-repeat= studentin students >
{{student.name}}

Theng-repeat will make a copy of all of the HTML inside the tag, including the tag it°s
placed on. With this, we would see:

N Mary Contrary

N Jack Sprat

Templates and Data Binding | 21

N Jill Hill
Olinking to /student/view//student/view/2and/student/view/3respectively.

As we°ve seen before, changing the student®s array will automatically change the renpu
dered list. If we were to do something like inserting a new student into the list:

var students = [{ name Mary Contrary , id: 1 },
{name Jack Sprat , id: 2 },
{name Jill Hill ,id: 3 3,

function StudentListController ($scopg {
$scope students = students;

$scope insertTom = function () {

$scope students . splice (1, 0, {name Tom Thumb, id: 4 });
2

}

and adding a button to invoke it in the template:

<ul ng-controller= >
<li ng-repeat= student in students >
{{student.name}}

<button ng-click= "insertTom()" >Insert </button>

we nNow see:

pral

Mary Contrary
Tom Thumb
Jack Sprat

Jill Hill

20 20 2

Theng-repeat directive also gives you references to the index of the current element
via$index, and booleans that tell you if you°re on the first element, somewhere in the
middle, or the last element of the collection viitinst , $middle, and$last .

You might imagine using thigindex to label rows in a table. Given a template like this:

<table ng-controller= AlbumController >
<tr ng-repeat= track in album >
<td>{{$index + 1}} </td>
<td>{{track.name}} </td>
<td>{{track.duration}} </td>

<[tr>

</table>

and this controller:

22 | Chapter 2: Anatomy of an AngularJS Application

var album = [{ hame Southwest Serenade , duration : 2:34 },
{name Northern Light Waltz ~, duration : 3:21 },
{name Eastern Tango , duration : 17:45 }];

function AlbumController ($scopg {
$scope album = album

}
We get the following:

1 Southwest Serenade 2:34
2 Northern Light Waltz 3:21
3 Eastern Tango 17:45

Hiding and Showing

For menus, context-sensitive tools, and many other cases, showing and hiding elements
is a key feature. As with everything else in Angular, we drive Ul changes based on change
in a model, and reflect that change into the Ul through directives.

Here, it°ig-showandng-hide that do our work. They provide equivalent but inverse
functionality for showing and hiding based on the expression you pass to them. That
is,ng-showwill show its element when its expression is true and hide it when false. The
ng-hide hides when true and shows when false. You should use whichever makes more
sense to express your intention.

These directives work by setting the element styleisptay:block to show and
display:none to hide as appropriate. Let’s take a fictitious example where we°re building
the control panel for a Death Ray.

<div ng-controller=DeathrayMenuController >
<button ng-click= toggleMenu() >Toggle Menw/button>
<ul ng-show=menuState.show >
<li ng-click= stun() >Stun</Ii>
<li ng-click=disintegrate() >Disintegrate
<li ng-click= erase() >Erase from history </Ii>

<div/>

function DeathrayMenuController ($scopg {
$scope menuState show = false ;

$scope toggleMenu = function () {
$scope menuState show = ! $scope menuState show

2

/I death ray functions left as exercise to reader

}

Templates and Data Binding | 23

CSS Classes and Styles

It may be obvious by now that you can dynamically set classes and styles in your applip
cation just by data binding them using {é} interpolation notation. You can even
compose partial class name matches in your templates. If, for example, you want to
conditionally disable some menus, you might do something like the following to visually
indicate it to your user:

Given this CSS:

.menu-disabled-true {
color : gray;

}
you could show thetun function of yourDeathRayas disabled with this template:

<div ng-controller=DeathrayMenuController >

<li class= menu-disabled-{{isDisabled}} ng-click= stun() >Stun

.<./-ul>
<div/>
where you°d set tligDisabled property via your controller as appropriate:

function DeathrayMenuController ($scopg {
$scope isDisabled = false ;

$scope stun = function () {
/I stun the target, then disable menu to allow regeneration
$scope isDisabled = true
I3
}
The class on thstun menu item will be set tmenu-disabled- plus the value of
$scope.isDisabled . As this is initially false, the result willinenu-disabled-false .
As there®s no CSS rule that matches, there will be no effect. $Atugre.isDisa
bled is set to true, the CSS rule becomesu-disabled-true , which invokes the rule
to make the text gray.

This technique works equally well when combining inline styles with interpolation, such
as withstyle="{{some expression}}"

While kind of clever, this technique has the drawback of using a level of indirection in
composing your class names. While you can easily understand it in this small example,
it can quickly become unmanageable having to read both your template and JavaScript
to correctly create your CSS.

Because of this, Angular provides tigeclass andng-style directives. Each of them
takes an expression. The result of evaluating this expression can be one of the following

24 | Chapter 2: Anatomy of an AngularJS Application

pral

A string representing space-delimited class names

pral

An array of class names

pral

A map of class names to boolean values

Let’s imagine that you want to display errors and warnings to your users in a standard
location in the application°s header. Usingribelass directive, you could do somep
thing like this:

error {
background-color : red;

}

warning {
background-color : yellow ;

}

<div ng-controller=HeaderController >

<div ng-class= {error: isError, warning: isWarning} >{{messageText}} </div>
<button ng-click=" showError() >Simulate Error </button>
<button ng-click=showWarning() >Simulate Warning</button>

</div>

function HeaderController ($scopg {
$scope isError = false ;
$scope isWarning = false ;

$scope showError = function () {
$scope messageText= This is an error! ;
$scope isError = true ;
$scope isWarning = false ;

I3

$scope showWarning= function () {
$scope messageText= Just a warning. Please carry on. ;
$scope isWarning = true ;
$scope isError = false ;
h
}

You can even do nifty things like highlighting a selected row in a table. Let°s say we°re
building a restaurant directory and we want to highlight a row that the user clicks on.
In our CSS, we set up the style for a highlighted row:

.selected {
background-color : lightgreen ;

}

Templates and Data Binding | 25

In the template, we seg-class to{selected: $index==selectedRow} . This has the
effect of setting the selected class when our model propertyseddiete dRowmatches
the ng-repeat °s$index. We°ll also set up amy-click to notify our controller as to
which row the user clicks:

<table ng-controller= RestaurantTableController >
<tr ng-repeat= restaurant in directory ng-click=selectRestaurant($index)
ng-class= {selected: $index==selectedRow} >
<td>{{restaurant.name}} </td>
<td>{{restaurant.cuisine}} </td>
<ftr>
</table>

In our JavaScript, we just set up some dummy restaurants and cresgetiieow
function:

function RestaurantTableController ($scopg {
$scope directory = [{ name The Handsome Heifer , cuisine : BBQ},
{name Green s Green Greens, cuisine: Salads },
{name: Houseof Fine Fish , cuisine: Seafood }];

$scope selectRestaurant = function (row) {
$scope selectedRow = row;

I3
}

Considerations for src and href Attributes

When data binding to arimg>or <a>tag, the obvious path of using {{ }} in the src or

href attributes won°t work well. Because browsers are aggressive about loading images
parallel to other content, Angular doesn°t get a chance to intercept data binding requests.
While the obvious syntax for aimg>might be:

Instead, you should use thg-src attribute and write your template as:

Similarly, for the<a>tag, you should usey-href :

<a ng-href="/shop/category={{numberOfBalloons}}" >some text

Expressions

The goal behind the expressions that you use in templates is to let you be as clever as
you need to be to create hooks between your template, your application logic, and your
data, but at the same time prevent application logic from sneaking into the template.

Until this point, we°ve been mostly using references to data primitives as the expressions
passed to Angular directives. But these expressions can do much more. You can do

26 | Chapter 2: Anatomy of an AngularJS Application

simple math (+, -, /, *, %), make comparisons (==, |=, >, <\9=perform boolean
logic (&&, ||,) and bitwise operations (*, &, |). You can call functions you expose on
$scopein your controller and you can reference arrays and object notation ([], { }, .)-

All of these are valid examples of expressions:

<div ng-controller=" SomeController >
<div>{{recompute() / 10}} </div>
<ul ng-repeat= thing in things >
<li ng-class= {highlight: $index % 4 >= threshold($index)} >
{{otherFunction($index)}}

</div>

The first expression henmecompute() / 10 , while valid, is a good example of putting

logic in the template, and should be avoided. Keeping a separation of responsibilities
between your view and controllers ensures that they°re easy to reason and easy to test.

While you can do quite a lot with expressions, they are computed with a custom parser
that’s part of Angular. They are not evaluated using JavaSu@iffs, and are conp
siderably more restrictive.

Instead, they are evaluated using a custom parser that comes with Angular. In it, you
won°t find looping constructs (for, while, and so on), flow-of-control operators (if-else,
throw) or operators that modify data (++, --). When you need these types of operations,
do them in your controller or via a directive.

Though expressions are more restrictive than JavaScript in many ways, they are more
forgiving toundefined andnull . Instead of throwing BullPointerException error,
templates will simply render nothing. This allows you to safely use model values that
haven°t been set yet, and have them appear in the Ul as soon as they get populated.

Separating Ul Responsibilities with Controllers
Controllers have three responsibilities in your app:

2

Set up the initial state in your application°s model

pral

Expose model and functions to the view (Ul template) thrésigipe
N Watch other parts of the model for changes and take action

We°ve seen many examples of the first two in this chapter already. We°ll get to that last
one in a bit. The conceptual purpose of controllers, however, is to provide the code or
logic to execute the user®s wishes as they interact with the view.

To keep your controllers small and manageable, our recommendation is that you create
one controller per functional area in your view. That is, if you have a menu, create a

Templates and Data Binding | 27

MenuController. If you have a navigational breadcrumb, wrigreadcrumbControl
ler , and so on.

You°re probably starting to get the picture, but to be explicit, controllers are tied to a
specific piece of the DOM that they°re in charge of managing. The two main ways of
associating a controller with a DOM node are specifying it in the template by declaring
it in anng-controller attribute, and associating it with a dynamically loadable DOM
template fragment, calledvieew; through aroute

We°ll talk about views and routes later in this chapter.

If you have complex sections of your Ul, you can keep your code simple and maintainp
able, by creating nested controllers that can share model and functions through an
inheritance tree. Nesting controllers is simple; you do it by simply assigning a controller
to a DOM element that is inside another one, like so:

<div ng-controller= "ParentController" >

<div ng-controller= "ChildController" >... </div>

</div>
Though we express this as nested controllers, the actual nesting happens in scopes. The
$scopepassed to a nested controller prototypically inherits from its parent controller®s
$scope In this case, this means that #seopepassed tchildController will have
access to all the properties of #seopepassed t®arentController .

Publishing Model Data with Scopes

The$scopeobject passed to our controllers is the mechanism we use to expose model
data to views. You may have other data in your application, but Angular only considers
it part of the model when it can reach these properties through a scope. You can think
of scopes as a context that you use to make changes to your model observable.

We°ve seen many examples of setting up scopes explicith$saspa.count = 5 .
There are also some indirect ways to set up the model from the template itself. You can
do so in the following ways:

1. Through an expression. Since expressions execute in the context of the controller®s
scope associated with their element, setting properties in expressions is the same
as setting a property of the controller®s scope. That is, doing this:

<button ng-click= count=3 >Set count to three </button>
has the same effect as doing this:

<div ng-controller= CountController >
<button ng-click=setCount() >Set count to three </button>
</div>

with your CountController defined as:

28 | Chapter 2: Anatomy of an AngularJS Application

function CountController ($scopg {
$scope setCount = function () {
$scope count=3;
}
}

2. Usingng-modelon a form input. As with expressions, the model specified as the
argument foing-modelalso works within the scope of the enclosing controller. The
one addition is that this creates a bi-directional data binding between the form field
state and your specified model.

Observing Model Changes with $watch

Possibly the most used of all scope functiofie/&ch, which notifies you when parts

of your model change. You can watch individual object properties and computed results
(functions), really anything that could be accessed as a property or computed as a Javap
Script function. The function®s signature is:

$watch(watchFn watchAction, deepWatch
The details of each parameter are as follows:

watchFn

This parameter is a string with an Angular expression or a function that returns
the current value of the model that you want to watch. This expression will be
evaluated multiple times, so you need to make sure that it has no side effects. That
is, it can be called multiple times without changing state. For the same reason, watch
expressions should be computationally cheap. If you°ve passed in an Angular exu
pression in a string, it will be evaluated against objects available to the scope it°s
called on.

watchAction
This is the function or expression to be called whemtitehFnchanges. In the
function form, it receives the new and old valuesaithFnas well as a reference
to the scope. Its signaturefimction(newValue, oldValue, scope)

deepWatch
If set to true, this optional boolean parameter tells Angular to examine each propp
erty within the watched object for changes. You°d use this if you wanted to watch
individual elements in an array or properties in an object instead of just a simple
value. As Angular needs to walk the array or object, this can be computationally
expensive if the collection is large.

The $watchfunction returns a function that will de-register the listener when you no
longer want to receive change notifications.

If we wanted to watch a property and then later de-register it, we would use the following:

Templates and Data Binding | 29

var dereg = $scope $watch(someModel.someProperty, callbackOnChangg));

dereg();

Let®s revisit our shopping cart scenario fl@hapter Ifor a full example. Let°s say that
we want to apply a $10 discount when the customer adds more than $100 worth of
merchandise to her cart. For a template, we°ll use:

<div ng-controller="CartController" >
<div ng-repeat="item in items" >
<span3{item.title}}
<input ng-model=item.quantity” >
<span3{item.price | currency}}

<span{item.price * item.quantity | currency}}
</div>
<div>Total: {{totalCart() | currency}} </div>
<div>Discount: {{bill.discount | currency}} </div>
<div>Subtotal: {{subtotal() | currency}} </div>
</div>

With a CartController , it would look like the following:

function CartController ($scope {
$scope bill = {};

$scope items = [

{titte : Paintpots , quantity : 8, price: 3.95},
{title : Polkadots , quantity : 17, price : 12.95},
{titte : Pebbles , quantity : 5, price: 6.95}

I

$scope totalCart = function () {
var total = 0;
for (var i =0, len = $scope items.length; i <len; i+ {
total = total + $scopeitems[i]. price * $scope items[i]. quantity ;

}

return total ;

}

$scope subtotal = function () {
return $scope totalCart () - $scope discount ;

3

function calculateDiscount (newValug oldValue, scope) {
$scope bill . discount = newValue> 100 ? 10 : 0;

}

$scope $watch($scope totalCart , calculateDiscount);

30 | Chapter 2: Anatomy of an AngularJS Application

Notice that at the bottom dfartController , we°ve set up a watch on the value of
totalCart() which we use to sum up the total price for this purchase. Whenever this
value changes, the watch will calculateDiscount() , and we get to set the discount

to an appropriate value. If the total is $100, we°ll set the discount to $10. Otherwise, the
discount will be $0.

You can see how this example would look to a udeigimre 2-1

Figure 2-1. Shopping cart with discount

Performance Considerations in watch()

The preceding example executes correctly, but there is a potential problem with perp
formance. Though it isn°t obvious, if you put a debugger breakpdiotal@art()

you°d see that it gets called six times to render this page. Though you°d never notice it
in this application, in more complex apps, running it six times could be an issue.

Why six? Three of them we can trace pretty easily, as it runs one time each in:

pral

The template &gotalCart() | currency}}

pral

Thesubtotal() function
Thebwatch() function

pral

Then Angular runs all of these again, bringing us to six. Angular does this to verify that
transitive changes in your model have fully propagated and your modséttlesl
Angular does this checking by making a copy of all watched properties and comparing
them to the current value to see if they°ve changed. In fact, Angular may run this up to
ten times to ensure full propagation. If changes are still occurring after ten iterations,
Angular exits with an error. If that occurs, you probably have a dependency loop that
you°ll need to fix.

Though you currently need to worry about this, by the time you°ve finished this book
it may be a non-issue. While Angular has had to implement data binding in JavaScript,
we°ve been working with the TC39 folks on a low-level native implementation called
Object.observe() . With this in place, Angular will automatically u€bject.ob

serve() wherever present to give you native-speed data binding.

Templates and Data Binding | 31

As you°ll see in the next chapter, Angular has a nice Chrome debugging extension called
Batarang that will automatically highlight expensive data bindings for you.

Now that we know about this issue, there are a few ways we can solve it. One way would
be to create®watchon changes to the items array and just recalculate the total, discount,
and subtotal as properties on tbecope

To do this, we°d update the template to use these properties:

<div>Total: {{bill.total | currency}} </div>
<div>Discount: {{bill.discount | currency}} </div>
<div>Subtotal: {{bill.subtotal | currency}} </div>

Then, in JavaScript, we°d watch the items array, and call a function to calculate the totals
on any change to that array, like so:

function CartController ($scopg {
$scope bill = {};

$scope items = [

{titte : Paintpots , quantity : 8, price: 3.95},
{titte : Polkadots , quantity : 17, price : 12.95},
{titte : Pebbles , quantity : 5, price: 6.95}

I8

var calculateTotals = function () {
var total = 0
for (var i =0, len = $scopeitems.length; i <len; i++ {
total = total + $scopeitems[i]. price * $scopeitems[i]. quantity ;
}

$scope bill .totalCart = total ;
$scope bill .discount = total > 100 ? 10 : 0;
$scope bill . subtotal = total - $scope bill . discount;

h

$scope $watch(items , calculateTotals , true);
}
Notice here that th&watch specifiedtems as a string. This is possible because the
$watchfunction can take either a function (as we did previously) or a string. If a string
is passed to thwatchfunction, then it will be evaluated as an expression in the scope
of the$scopeit®s called on.

This strategy might work well for your app. However, since we°re watching the items
array, Angular will have to make a copy of it to compare it for us. For a large list of items,
it may perform better if we just recalculate the bill properties every time Angular evalu
uates the page. We can do this by creatBwagchwith only awatchFnthat will recalp
culate our properties like this:

$scope $watch(function () {
var total = 0;

32 | Chapter 2: Anatomy of an AngularJS Application

for (var i =0; i < $scopeitems.length; i+ {
total = total + $scopeitems[i]. price * $scope items[i]. quantity ;

$scope bill . totalCart = total ;
$scope bill .discount = total > 100? 10 : 0;
$scope bill . subtotal = total - $scope bill .discount;

bl

Watching multiple things

What if you want to watch multiple properties or objects and execute a function whenp
ever any of them change? You°d have two basic options:

N Put them into an array or object and pastapWatclas true.
N Watch a concatenated value of the properties.

In the first case, if you°ve got an object with two propextéasib in your scope, and
want to execute theallMe() function on change, you could watch both of them, like
so:

$scope $watch(things.a + things.b , callMe(...));

Of coursea andb could be on different objects, and you could make the list as long as
you like. If the list is long, you would likely write a function that returns the concatenated
value rather than relying on an expression for the logic.

In the second case, you might want to watch all the properties drirthe object. In
this case, you could do this:

$scope $watch(things , callMe(...), true);

Here, passing itrue as the third parameter asks Angular to walk the properties of
things and callcallMe() on a change to any of them. This works equally well on an
array as it does here on an object.

Organizing Dependencies with Modules

In any non-trivial application, figuring out how to organize the functionality of your
code into areas of responsibility is often a hard task. We°ve seen how controllers give us
a place to put the code that exposes the right data and functions to the view template.
But what about the rest of the code we need to support our applications? The most
obvious place to put this would be in functions on the controllers.

This works fine for small apps and the examples that we°ve seen so far, but it quickly
becomes unmanageable in real apps. The controllers would become a dumping ground
for everything and anything we need to do. They°d be hard to understand and likely
hard to change.

Organizing Dependencies with Modules | 33

Enter modules. They provide a way to group dependencies for a functional area within
your application, and a mechanism to automatically resolve dependencies (also known
as dependency injection). Generically, we call these dependencies services, as they prou
vide specific services to our application.

For example, if in our shopping website a controller needs to get a list of items for sale
from the server, we°d want some objectilet°s cdteihsito take care of getting the

items from the server. Thms object, in turn, needs some way to communicate with

the database on the server over XHR or WebSockets.

Doing this without modules looks something like this:

function ItemsViewController ($scope {
/I make request to server

/I parse response into Item objects

/I set Items array on $scope so the view can display it

}
While this would certainly work, it has a number of potential problems.

N If some other controller also needs to gehs from the server, we now have to
replicate this code. This makes maintenance a burden, as now if we make schema
or other changes, we have to update that code in several places.

N With other factors like server authentication, parsing complexity, and so on, it is
difficult to reason about the boundaries of responsibility for this controller object,
and reading the code is harder.

N To unit test this bit of code, we°d either need to actually have a server running, or
monkey patchiXMLHttpRequest to return mock data. Having to run the server will
make tests very slow, it°s a pain to set up, and it usually introduces flakiness into
tests. The monkey patching route solves the speed and flakiness problems, but it
means you have to remember to un-patch any patched objects between tests, and
it brings additional complexity and brittleness by forcing you to specify the exact
on-the-wire format for your data (and in having to update the tests whenever this
format changes).

With modules, and the dependency injection we get from them, we can write our conpl
troller much more simply, like this:

function ShoppingController ($scope Items) {
$scope items = Items. query();

}

34 | Chapter 2: Anatomy of an AngularJS Application

You°re probably now asking yourself, ¥%2Sure, that looks cool, but whétentdoesme
from?A The preceding code assumes that we°ve dedinedis a service.

Services are singleton (single-instance) objects that carry out the tasks necessary to
support your application®s functionality. Angular comes with many serviceiddee

tion , for interacting with the browser°s locati@mute , for switching views based on
location (URL) changes, astittp , for communicating with servers.

You can, and should, create your own services to do all of the tasks unique to your
application. Services can be shared across any controllers that need them. As such,
they°re a good mechanism to use when you need to communicate across controllers and
share state. Angular®s bundled services start wiihsa while you can name them
anything you like, its a good idea to avoid starting them with $ to avoid naming collip
sions.

You define services with the module object®s API. There are three functions for creating
generic services, with different levels of complexity and ability:

Function Defines

provider(name, Object A configurable service with complex creation logic. If you pass an Object, it should |
OR constructor()) function named $get that returns an instance of the service. Otherwise, Angular assu
passed a constructor that, when called, creates the instance.

factory(name, $get A non-configurable service with complex creation logic. You specify a function that,
Function()) called, returns the service instance. You coulddindieoh &) istaet:

$getFunction() })
service(name, con A non-configurable service with simple creation logic. Like the constructor option with
structor()) Angular calls it to create the service instance.

We°ll look at the configuration option fprovider() later, but let°s discuss an example
with factory() for our preceding ltems example. We can write the service like this:

/I Create a module to support our shopping views
var shoppingModule = angular.module(ShoppingModule , []);

/I Set up the service factory to create our Items interface to the
I server-side database
shoppingModule.factory(Items , function() {
var items = {};
items.query = function() {
/I In real apps, we d pull this data from the server...
return [
{title: Paint pots , description: Pots full of paint , price: 3.95},
{title: Polka dots , description: Dots with polka, price: 2.95},
{title: Pebbles , description: Just little rocks , price: 6.95}
I8
I _
return items;

D

Organizing Dependencies with Modules | 35

When Angular creates thghoppingController , it will pass infbscopeand the new

ltems service that we°ve just defined. This is done by parameter name matching. That
is, Angular looks at the function signature for @froppingController class, and
noticesthat it is asking for attems object. Since we°ve defifans as a service, it
knows where to get it.

The result of looking up these dependencies as strings means that the arguments of

injectable functions like controller constructors are order-independent. So instead of
this:

function ShoppingController ($scope Items) {...}
we can write this:
function ShoppingController (ltems, $scopg {...}
and it all still functions as we intended.
To get this to work with our template, we need to telhthh@pp directive the name of
our module, like the following:
<html ng-app= ShoppingModule >
To complete the example, we could implement the rest of the template as:

<body ng-controller="ShoppingController">
<h1>Shop!</h1>
<table>
<td>{{item.title}}</td>
<td>{{item.description}}</td>
<td>{{item.price | currency}}</td>
<[tr>
</table>
</div>

with a resulting app that looks likégure 2-2

Figure 2-2. Shop items

How Many Modules Do | Need?

As services themselves can have dependencies, the Module API lets you define depenp
dencies for your dependencies.

36 | Chapter 2: Anatomy of an AngularJS Application

In most applications, it will work well enough to create a single module for all the code
you create and put all of your dependencies in it. If you use services or directives from
third-party libraries, they°ll come with their own modules. As your app depends on
them, you°d refer to them as dependencies of your application°s module.

For instance, if you include the (fictitious) modules SnazzyUIWidgets and SuperDatap
Sync, your application®s module declaration would look like this:

var appMod= angular. modul€ app , [SnazzyUlWidgets, SuperDataSync];

Formatting Data with Filters

Filters allow you to declare how to transform data for display to the user within an
interpolation in your template. The syntax for using filters is:

{{ expression | filterName : parameterl : ...parameterN }}

where expression is any Angular expresditerName is the name of the filter you
want to use, and the parameters to the filter are separated by colons. The parameters
themselves can be any valid Angular expression.

Angular comes with several filters, like currency, which we°ve seen:
{{12.9 | currency}}

This bit of code will display the following:

$12.90

We put this declaration in the view (rather than in the controller or model) because the
dollar sign in front of the number is only important to humans, and not to the logic we
use to process the number.

Other filters that come with Angular include date, number, uppercase, and more.

Filters can also be chained with additional pipe symbols in the binding. For example,
we can format the previous example for no digits after the decimal by adding the number
filter, which takes the number of decimals to round to as a parameter. So:

{{12.9 | currency | number:0 }}
displays:
$13

You°re not limited to the bundled filters, and it is simple to write your own. If we wanted
to create a filter that title-cased strings for our headings, for example, we could do so as
follows:

var homeModule= angular. modulé HomeModulg []);
homeModuldilter (titteCase , function () {
var titleCaseFilter = function (input) {

Formatting Data with Filters | 37

var words = input .split ();

for (var i =0; i <wordslength; i++4 {
wordgi] = wordqi]. charAt(0). toUpperCas€) + wordqi]. slice (1);
}
return words join ();
h
return titleCaseFilter
Dk

With a template like this:

<body ng-app=HomeModule ng-controller= "HomeController" >
<hi1x{{pageHeading | titeCase}} </h1>
</body>

and inserting thepageHeadingas a model variable via a controller:

function HomeController($scope {
$scope pageHeading= behold the majesty of your page title

}
we would see something resemblifigure 2-3

Figure 2-3. Title case filter

Changing Views with Routes and $location

Though AJAX apps are technically single-page apps (in the sense that they only load an
HTML page on the first request, and then just update areas within the DOM thereafter),
we usually have multiple sub-page views that we show or hide from the user, as approu
priate.

We can use Angular$soute service to manage this scenario for us. Routes let you
specify that, for a given URL that the browser points to, Angular should load and display
a template, and instantiate a controller to provide context for the template.

You create routes in your application by calling functions ofiringeProvider service
as a configuration block. It goes something like this pseudo-code:

var someModule= angular. modul§ someModule, [... module dependencies..])
someModuleconfig (function ($routeProvider) {
$routeProvider .
wherf url , {controller :aController , templateUrl : /path/to/tempate }).
wher... other mappingsfor your app..).

otherwise (... what to do if nothing else matches..);

I%

38 | Chapter 2: Anatomy of an AngularJS Application

The preceding code says that when the browser°s URL changes to the specified URL,
Angular will load the template ifpath/to/template and associate the root element of
this template witlaController (as if we°d typeah-controller= aController).

Theotherwise() call in the last line tells the route where to go if nothing else matches.

Let°s put it to use. We°re building an email app that will easily win out over Gmail,
Hotmail, and all the others. We°ll call itOA-Mail. For now, let°s start simply. We°ll have

a first view that displays a list of email messages with a date, title, and the sender. When
you click a message, it should show you a new view with the body of that message.

Due to browser security restrictions, if you°re trying the code out yourp
self, you°ll need to serve it from a web server instead filjustf you

have python installed, you could serve it by execyiyttgon -m Sim
pleHTTPServer 8888from your working directory.

For the main template, we°ll do something a bit different. Instead of putting everything
in the first page loaded, we’ll just create a layout template that we°ll put our views into.
We°ll place everything that persists from view to view, like our menus, here. In this case,
we°lljust display a heading with the name of our app. We°ll then ngevibw directive

to tell Angular where we want our views to appear.

index.html

<html ng-app='AMail" >
<head>
<script src="src/angular.js" ></script>
<script src="src/controllers.js" ></script>
</head>
<body>
<h1>*A-Mail </h1>
<div ng-view></div>
</body>
</html>

As our view templates will be inserted into the shell we just created, we can write them

as partial HTML documents. For the email list, we°lhgsepeat to iterate through
a list of messages and render them into a table.

list.html

<table>
<tr>
<td>Sendek/strong></td>
<td>Subject </td>
<td>Date</td>

Changing Views with Routes and $location | 39

<[tr>
<tr ng-repeat= message in messages >
<td>{{message.sender}} </td>
<td>{{message.subject}} </td>
<td>{{message.date}} </td>
<ftr>
</table>

Notice here that we°re going to let the user navigate to a particular message by clicking
on the subject. We°ve data bound the URhdssage.id, so clicking on a message with
id=1 will take the user t#/view/1 We°ll use this navigation-by-url, also known as deep-

linking, in the message detail view®s controller, to make a particular message available
to the detail view.

To create this message detail view, we°ll create a template that displays properties from
a single message object.

detail.html

<div>Subject: {{message.subject}} </div>
<div>Sender: {{message.sender}} </div>
<div>Date: {{message.date}} </div>
<div>

To:

{{recipient}}
<div>{{message.message}k/div>
Back to message list

Now, to associate these templates with some controllers, we°ll configenaitbBro
vider with the URLSs that invoke our controllers and templates.

controllers.js

/I Create a module for our core AMail services
var aMailServices = angular. modulg AMail , []);

/I Set up our mappings between URLs, templates, and controllers
function emailRouteConfig($routeProvider) {
$routeProvider .

wherf / , {
controller : ListController ,
templateUrl : list.html

D

/I Notice that for the detail view, we specify a parameterized URL component
/I by placing a colon in front of the id
wherf view/:id , {
controller : DetailController
templateUrl : detail.html
.
otherwise ({
redirectTo : /

40 | Chapter 2: Anatomy of an AngularJS Application

»;
}

/I Set up our route so the AMail service can find it
aMailServices . config (emailRouteConfig);

/I Some fake emails
messages= [{
id: 0, sender. jean@somecompany.comsubject: Hithere, old friend ,
date: Dec7,2013 12:32:00 , recipients : [greg@somecompany.con
message Hey, we should get together for lunch sometime and catch up.
+ There are many things we should collaborate on this year.
oA
id: 1, sender. maria@somecompany.com
subject : Where did you leave my laptop?
date: Dec7,20138:15:12 , recipients : [greg@somecompany.com
message | thought you were going to put it in my desk drawer.
+ But it does not seem to be there.
oA
id: 2, sender. bill@somecompany.com subject: Lostpython
date: Dec 6, 2013 20:35:02 , recipients : [greg@somecompany.com
message "Nobody panic, but my pet python is missing from her cage.
+ She doesn t move too fast, so just call me if you see her."

oL

/I Publish our messages for the list template
function ListController ($scope {
$scope messages= messages

}

/I Get the message id from the route (parsed from the URL) and use it to
/I find the right message object.
function DetailController ($scope $routeParamg {

$scope message= messagef$routeParams id J;

}
We°ve created the basic structure for an app with many views. We switch views by
changing the URL. This means that the forward and back bytisheorkfor users.
Users are able to bookmark and email links to views within the app, even though there
is only one real HTML page.

Talking to Servers

Okay, enough messing around. Real apps generally talk to real servers. Mobile apps and
the emerging Chrome desktop apps may be exceptions, but for everything else, whether
you want persistence in the cloud or real-time interactions with other users, you probp
ably want your app to talk to a server.

For this, Angular provides a service cafietlp . It has an extensive list of abstractions
that make it easier to talk to servers. It supports vanilla HTTP, JSONP, and CORS. It

Talking to Servers | 41

includes security provisions to protect from both JSON vulnerabilities and XSRF. It lets
you easily transform the request and response data, and it even implements simple
caching.

Let°s say we want to retrieve products for our shopping site from a server instead of from
our silly in-memory mocks. Writing the server bits is beyond the scope of this book, so
let°s just imagine that we°ve created a service that will return a list of products as JSON
when you make a query foroducts

Given a response that looks like this:
[

{
"id" : 0,
"title" @ "Paint pots"
"description” : "Pots full of paint" ,
"price" : 3.95
h
{
"id" o1,
"title" : "Polka dots" ,
"description” : "Dots with that polka groove" ,
"price" : 12.95
h
{
"id" 2,
"title" : "Pebbles",
"description” : "Just little rocks, really" ,
"price" : 6.95
}
.. etc...

]
we could write the query like so:

function ShoppingController ($scope $http) {
$http . get(/products). success(function (data, status, headers, config) {
$scope items = data;
DX
}

and use it in a template like this:

<body ng-controller="ShoppingController" >
<h1>Shopk/hl>
<table>
<tr ng-repeat="item in items" >
<td>{{item.title}} </td>
<td>{{item.description}} </td>
<td>{{item.price | currency}} </td>
<ftr>
</table>

42 | Chapter 2: Anatomy of an AngularJS Application

</div>
</body>
As we learned previously, we would be better off in the long run by delegating the work
of talking to the server to a service that could be shared across controllers. We°ll take a
look at this structure and the full range$bktp functions inChapter 5

Changing the DOM with Directives

Directives extend HTML syntax, and are the way to associate behavior and DOM transp
formations with custom elements and attributes. Through them, you can create reusable
Ul components, configure your application, and do almost anything else you can imagu
ine wanting to do in your Ul template.

You can write apps with the built-in directives that come with Angular, but you°ll likely
run into situations where you want to write your own. You°ll know it°s time to break
into directives when you want to deal with browser events or modify the DOM in a way
that isn°t already supported by the built-in directives. This code of yours belongs in a
directive that you write, and not in a controller, service, or any other place in your app.

As with services, you define directives through the module object’s API by calling its
directive() function, wheredirectiveFunction is a factory function that defines
your directive®s features.

var appModule= angular. modulg appModule , [...]);
appModuledirective (directiveName , directiveFunction);

Writing the directive factory function is a deep area, and we°ve dedicated an entire
chapter to it in this book. To whet your appetite, though, let°s look at a simple example.

HTML5 has a great new attribute called autofocus that will place keyboard focus on an
input element. You°d use it to let the user start interacting with the element via his
keyboard without having to click on it first. This is great, as it lets you declaratively
specify what you want the browser to do without having to write any JavaScript. But
what if you wanted to place focus on some non-input element, like a link divahy

And what if you wanted it to work on non-HTML5 browsers as well? We could do it
with a directive.

var appModule= angular. moduld app , []);

appModuledirective (ngbkFocus , function () {
return {
link : function (scope element, attrs , controller) {
element] 0]. focus();
}
h
Pk

Changing the DOM with Directives | 43

Here, we°re returning the directive configuration object with its link function specified.
The link function gets a reference to the enclosing scope, the DOM element it lives on,
an array of any attributes passed to the directive, and the controller on the DOM element,
if it exists. Here, we only need to get at the element and ¢adliis§) method.

We can then use it in an example like so:

index.html

<html lang=en ng-app=app >
...include angular and other scripts...
<body ng-controller="SomeController" >
<button ng-click= "clickUnfocused()" >
Not focused
</button>
<button ngbk-focus ng-click= "clickFocused()" >
I m very focused!
</button>
<div>{{message.text}} </div>
</body>
</html>

controllers.js

function SomeController($scope {
$scope message= { text : nothing clicked yet %

$scope clickUnfocused = function () {
$scope messagetext = unfocused button clicked

%

$scope clickFocused = function {
$scope messagetext = focus button clicked

}
}

var appModule= angular. modulg app , [directives 1]);

When the page loads, the user will see the button labeled %l°m very focused!A with the
focus highlight. Hitting the spacebar or the enter key will cause a click and invoke the
ng-click , which will set the div text to Ofocus button clicked®. Opening this example in

a browser, we°d see something that looks$-ligere 2-4

Figure 2-4. Focus directive

44 | Chapter 2: Anatomy of an AngularJS Application

Validating User Input

Angular automatically augment$orm>elements with several nice features suitable for
single-page applications. One of these nice features is that Angular lets you declare valid
states for inputs within the form and allow submission only when the entire set of
elements is valid.

For example, if we°re creating a signup form where we require entering a name and
email, but have an optional age field, we can validate several user entries before they are
submitted to the server. Loading the example that follows into a browser will display
what is shown irfrigure 2-5

Figure 2-5. Form validation

We°d want to make sure the user had entered text in the name fields, that he had entered
a properly formed email address, and that if he entered an age, it was valid.

We can do this all in the template, using Angular®s extensiefria>and the various
input elements, like this:

<h1s8ign Up</h1>
<form name=addUserForm>
<div>First name: <input ng-model=user.first required ></div>
<div>Last name: <input ng-model=user.last required ></div>
<div>Email: <input type=email ng-model=user.email required ></div>
<div>Age: <input type= number
ng-model=user.age
ng-maxlength=3
ng-minlength= 1 ></div>
<div><button>Submit</button></div>
</form>

Notice that we°re using the required attribute and input types for email and number
from HTMLS5 to do our validation on some of the fields. This works great with Angular,
and in older non-HTML5 browsers, Angular will polyfill these with directives that perp
form the same jobs.

We can then add a controller to this to handle the submission by changing the form to
reference it.

Validating User Input | 45

<form name=addUserForm ng-controller= "AddUserController" >

Inside the controller, we can access the validation state of the form through a property
calledsvalid . Angular will set this to true when all the inputs in the form are valid. We
can use thi$valid property to do nifty things such as disabling the Submit button
when the form isn°t completed yet.

We can prevent form submission in an invalid state by addindisabled to the
Submit button:

<button ng-disabled= !addUserForm.$valid >Submit</button>

Finally, we might want the controller to tell the user she°s been successfully added. Our
final template would look like:

<h1>8ign Up</h1>
<form name=addUserForm ng-controller= "AddUserController" >
<div ng-show=message >{{message}}</div>
<div>First name: <input name<irstName ng-model=user.first required ></div>
<div>Last name: <input ng-model=user.last required ></div>
<div>Email: <input type=email ng-model=user.email required ></div>
<div>Age: <input type= number
ng-model=user.age
ng-maxlength=3
ng-min=1 ></div>
<div><button ng-click=addUser()
ng-disabled= !addUserForm.$valid >Submit</button>

</ng-form>
with controller:

function AddUserController ($scope {
$scope message=

$scope addUser = function () {
/I TODO for the reader: actually save user to database...
$scope message= Thanks, + $scope user.first + ,we added you! ;

2
}

Moving On

Inthe last two chapters, we looked at all the most commonly used features in the Angular
framework. For each feature discussed, there are many additional details we have yet to
cover. In the next chapter, we°ll get you going by examining a typical development
workflow.

46 | Chapter 2: Anatomy of an AngularJS Application

CHAPTER 3
Developing in AngulardS

By now we have delved a little bit into the cogs that make up AngularJS. We now know
how to get data from the user into our application, how to display text, and how to do
some funky stuff with validation, filtering, and even changing the DOM. But how do
we put it all together?

In this chapter, we will cover:

How to lay out your AngularJS app for rapid development

Starting your server to see your AngularJS app in action

Writing and running your unit and scenario tests using Karma

Compiling and minifying your AngularJS app for production deployment
Debugging your AngularJS app using Batarang

Simplifying your development workflow (from creating new files to running your
application and tests)

N Integrating your AngularJS project with RequireJS, a dependency management lipg
brary

20 20 2y Z2v Zv 2

This chapter aims to give you a 20,000-foot view of how to possibly lay out your Anp
gularJS app. We won°t go into the actual app itself. That@hémter 4 which dives
into a sample application that uses and shows off various AngularJS features.

Project Organization

We recommend seeding your project ustiegman which will create all the necessary
files to bootstrap your AngularJS application.

Yeoman is a robust tool comprised of multiple frameworks and client-side libraries. It
provides a rapid development environment by automating some routine tasks needed

47

to bootstrap and develop your application. We°ll go through a whole section on how to
install and use Yeoman this chapter, but until then, we will briefly touch upon Yeoman
commands as alternatives to manually performing those operations.

We will also detail the various pieces involved in case you decide not to use Yeoman
because Yeoman does have some issues on Windows computers, and getting it set up
can be slightly challenging.

For those not using Yeoman, we will take a look at a sample application structure (which
can be found in thehapter3/sample-agplder in our GitHub examples repository),
which follows the recommended structure, as well as the structure generated by Yeoman.
The files in the application can be broken into the following categories:

JS source files
Take a look at thepp/scriptgolder. This is where all your JS source code lives. One
main file @pp/scripts/app jsvill set up the the Angular module and the routes for
your application.

In addition, there is a separate foldexpp/scripts/controllérhich houses the
individual controllers. Controllers provide the action and publish data to the scope
which will then be displayed in the view. Usually, they correspond one to one with
the view.

Directives, filters, and services can also be found wapgescriptseither as comp
plete files (directives.js, filters.js, services.js), or individually, if they are nice and
complex.

HTML Angular template files
Now, every AngularJS partial template that Yeoman creates can be found in the
app/viewsolder. This will mirror ouapp/scripts/controlldolder for the most part.

There is one other important Angular template file, which is the raai/
index.html This is responsible for sourcing the AngularJS source files, as well as
any source files you create for your application.

If you end up creating a new JS file, ensure that you add ititeddehtm| and
also update the main module and the routes (Yeoman does this for you as well!).

JS library dependencies
Yeoman provides you ttamp/scripts/venddolder for all JS source dependencies.
Want to useUnderscoreor SocketlOin your application? No problemiadd the
dependency to the vendor folder (and youdex.html) and start referencing it in
your application.

Static resources
You are creating an HTML application in the end, and it is a given that you will
have CSS and image dependencies that you need served as part of your application.

48 | Chapter 3: Developing in AngularJS

Theapp/styleandapp/imgfolders are for this very purpose. Just add what you need
and start referring to them (with the correct relative paths, of course!) in your
application.

Yeoman does not create thgp/imgpath by default.

Unit tests
Testing is super important, and totally effortless when it comes to AngularJS. The
test/spedolder should mirror youmpp/scriptsn terms of tests. Each file should
have a mirror spec file which has its unit tests. The seed creates a stub for each
controller file, undetest/spec/controllersith the same name as the original conp
troller. These are Jasmine-style specs, which describe a specification for each exu
pected behavior of the controller.

Integration tests
AngularJS comes with end-to-end testing support built right into the library. All
your E2E tests, in the form of Jasmine specs, are saved under thie$tddeRe

Yeoman does not create the tests/folder by default.

While the E2E tests might look like Jasmine, they are not. They are
functions that are executed asynchronously, in the future, by the

Angular Scenario Runner. So don°t expect to be able to do stuff like
you would in a normal Jasmine test (like console.log on the value
of a repeater).

There is also a simple HTML file generated that can be opened by itself in a browser
to run the tests manually. Yeoman doesn°t generate the stubs for these yet, but they
follow a similar style to the unit tests.

Configuration files
There are two configuration files needed. The first kalena.conf.jsis generated
by Yeoman for you and is used to run the unit tests. The second one, which Yeoman
does not generate yet, is kegma.e2e.conf.jShis is used to run the scenario tests.
There is a sample file at the end of this chapter in the RequireJS integration section.
The config details the dependencies and the files to use when running the unit tests
using Karma. By default, it runs the Karma server at port 9876.

You might ask: how do | run my application? What about unit tests? How do | even
write these various pieces that you are talking about?

Project Organization | 49

Don°t worry, young grasshopper, all in due time. In this chapter, we will deal with setting
up your project and development environment so that things can move along at a rapid
pace once we do start churning out some awesome code. What code you write, and how
it hooks together to form your final awesome application, will come in the next few
chapters.

Tools

AngularJS is just one part of your toolkit that allows you to actually develop your web
pages. In this section, we will take a look at various tools that you would use to ensure
efficient and fast development, from IDEs to test runners to debuggers.

IDEs

Let®s start with how you actually edit your source code. There is a whole slew of JavaScript
editors out there, both free and paid. Things have come a long way from the days when
Emacs or Vi was the best option to develop in JS. Nowadays, IDEs come with syntax
highlighting, auto-completion, and so much more, and it might be worth your while to
give one a whirl. So which one should you use?

WebStorm. If you don°t mind shelling out a few bucks (though there is a free 30-day
trial!), thenWebStorm by JetBrairsffers one of the most comprehensive web develu
opment platforms in recent times. It has features that were only previously available for
typed languages, including code-completion (browser specific at that, as shown in
Figure 3-), code navigation, syntax, error highlighting, and out-of-the-box support for
multiple libraries and frameworks. In addition, there is some very nice integration for
debugging JavaScript right from the IDE while it is executing in Chrome.

Figure 3-1. Browser specific code completion in WebStorm

The biggest reason you should seriously consider WebStorm for AngularJS developp
ment is that it is one of the only IDEs that has an AngularJS plug-in. The plug-in gives
you auto-complete support for AngularJS HTML tags right in your HTML templates.

In addition, one of the coolest things it supports is the concept of live templates. These
are pre-formed templates for common code snippets that you would otherwise type
from scratch every time. So instead of typing the following:

directive ($directiveName$, function factory ($injectables$) {
var directiveDefinitionObject ={

50 | Chapter 3: Developing in AngularJS

$directiveAttrs$

compile: function compile(tElement, tAttrs , transclude) {
END
return function (scope element, attrs) {

}
}
h
return directiveDefinitionObject

bk
in WebStorm, you can just type:

ngdc

and press thiabkey to get the same thing. This is just one of the many code-completions
the plug-in provides.

Running Your Application

Now let°s talk about how we get to the payload of all that we doiseeing your application
live, in the browser. To really get a feel for how the application would work, we need to
have a web server serving our HTML and JavaScript code. | will explore two ways: one
very simple way of running your application with Yeoman, and another not so easy, but
just as good, method without Yeoman.

With Yeoman

Yeoman makes it simple for you to start a web server and serve all your static and
AngularJS-related files. Just execute the following command:

yeoman server

and it will start up a server and open your browser with the main page of your AngularJS
application. It will even refresh the browser whenever you make changes to your source
code. How cool is that?

Without Yeoman

Without Yeoman, you would need to configure a web server to serve all the files in your
main directory. If you don°t know an easy way to do that, or don°t want to waste time
creating your own web server, you can quickly write a simple web server using ExpressJS
(as simple aspm install -g express to get it) in Node. It might look something like

the following:

/I available at chapter3/sample-app/web-server.js

var express = require ("express"),
app express(),
port parselnt (process. env. PORT 10) || 808G

Running Your Application | 51

app. configure (function (){
app use(express. methodOverridg());
app. use(express. bodyParsen());
app use(express. static (__dirname + /));

app. use(app router);
bk

app listen (port);
console. log (Now serving the app at http://localhost: + port + /app);

Once you have the file, you can run the file using Node, by executing the following
command:
node web-server.js

and it will start up the server on port 8080 (or one of your own choosing).
Alternatively, with Python in the folder with your application you could run:

python -m SimpleHTTPServer

Whichever way you decide to proceed, once you have the server configured, up and
running, navigate to the following:

http://localhost:[port-number]/app/index.html

in your browser to see the application you have just created. Do note that you will have
to manually refresh your browser to see the changes, unlike with Yeoman.

Testing with AngularJS

We have said it before (even right in this chapter), and we will say it again: testing is
essential, and AngularJS makes it simple to write the right kind of unit and integration
tests. While AngularJS plays nicely with multiple test runners, we strongly believe that
Karmatrumps most of them providing the most robust, solid, and insanely fast test
runner for all your needs.

Karma

Karma°s main reason for existence is to make your test-driven development (TDD)
workflow simple, fast, and fun. It usdsdeJSandSocketlO(you don°t need to know
what they are, just assume that they are awesome, cool libraries) to allow running your

52 | Chapter 3: Developing in AngularJS

code, and tests in multiple browsers at insanely fast speeds. Go find out mipe/At
github.com/vojtajina/karma/

TDD: An Intro

Test-driven development, or TDD, is an AGILE methodology that flips the development
lifecycle by ensuring that tests are written first, before the code is implemented, and that
tests drive the development (and are not just used as a validation tool).

The tenets of TDD are simple:

pal

Code is written only when there is a failing test that requires the code to pass

pral

The bare minimum amount of code is written to ensure that the test passes

pral

Duplication is removed at every step
N Once all tests are passing, the next failing test is added for the next required funcp
tionality.

These simple rules ensure that:

N Your code develops organically, and that every line of code written is purposeful.

N Your code remains highly modular, cohesive, and reusable (as you need to| be able
to test it).

N You provide a comprehensive array of tests to prevent future breakages and bugs.

N The tests also act as specification, and thus documentation, for future needs and
changes.

We at AngularJS have found this to be true, and the entire AngularJS codebase has been
developed using TDD. For an uncompiled, dynamic language like JavaScript, we strongp
ly believe that having a good set of unit tests will reduce headaches in the future!

So how do we get this awesomeness that is Karma? Well, first ensitedihiis
installed on your machine. This comes with NPM (Node Package Manager), which
makes it easy to manage and install the thousands of libraries available for NodeJS.

Once you have NodeJS and NPM installed, installing Karma is as easy as running:

sudo npm install -g karma

There you go. You are ready to start Karmaing (I just made that up, please don°t go about
using it in real life) in three easy steps!

Testing with AngularJS | 53

Getting your config file up
If you used Yeoman to create your app skeleton, then you already have a ready-
made Karma config file waiting for you to use. If not, just go ahead and execute the
following command from the base folder of your application directory:

karma init

in your terminal console, and it will generate a dummy configkdenga.conf.js
for you to edit to your liking, with some pretty standard defaults. You can use that.

Starting the Karma server
Just run the following command:

karma start [optionalPathToConfigFile]

This will start the Karma server on port 9876 (the default, which you can change
by editing thekarma.conf.jsile from the previous step). While Karma should open

up a browser and capture it automatically, it will print all the instructions needed
to capture another browser in the console. If you are too lazy to do that, just go to
http://localhost:987® another browser or device, and you are good to start runp
ning tests in multiple browsers.

While Karma can capture the usual browsers automatically, on start
(Firefox, Chrome, IE, Opera, and even PhantomJS), it is not limited to
just those browsers. Any device on which you can browse to a URL can
possibly be a runner for Karma. So if you open up the browser of your
iPhone or Android device and browse hitip://machinename:9876
(provided it is accessible!), you could potentially run your tests on mou
bile devices as well.

Running the tests
Execute the following command:

karma run

That®s it. You should get your results printed right in the console where you ran the
command. Easy, isn°t it?

Unit Tests

AngularJS makes it easy to write your unit tests, and supports the Jasmine style of writing
tests by default (as does Karma). Jasmine is what we call a behavior-driven development
framework, which allows you to write specifications that denote how your code should
behave. A sample test in Jasmine might look something like this.

54 | Chapter 3: Developing in AngularJS

describe ("MyController:" , function () {

it ("to work correctly" , function () {
var a = 12
var b = g

expect(a). toBe(b);
expect(a). not. toBe(null);
i
Dk

As you can see, it lends itself to a very readable format, as most of the code that could
be read in plain English. It also provides a very diverse and powerful set of matchers
(like theexpect clauses), and of course has:thmit staples oéetUp andtearDowrs
(functions that are executed before and after each individual test case).

AngularJS provides some nice mockups, as well as testing functions, to allow you to
create services, controllers, and filters right in your unit tests, as well as mock out
HttpRequests and the like. We will cover this @hapter 5

Karma can be integrated with your development workflow to make it easier, as well as
to get faster feedback on the code you have written.

Integration with IDEs
Karma does not have plug-ins (yet!) for all the latest and greatest IDEs, but you
don°t really need any. All you need to do is add a shortcut command to execute
¥karma startA and ¥karma runA from within your IDE. This can usually be done by
adding a simple script to execute, or the actual shell command, depending on your
choice of editor. You should see the results every time it finishes running, of course.

Running tests on every change
This is utopia for many TDD developers: being able to run all their tests, every time
they press save, within a few milliseconds, and get results back quickly. And this
can be done with AngularJS + Karma pretty easily. Turns out, the Karma config file
(remember thekarma.conf.jdile from before?) has an innocuous-looking flag
named 3utoWatchA Setting it to true tells Karma to run your tests every time the
file it watches (which is your source and test code) changes. And if you do ¥%karma
startA from within your IDE, guess what? The results from the Karma run will be
available right within your IDE. You won°t even need to switch to console or terminal
to figure out what broke!

End-to-End/Integration Tests

As applications grow (and they tend to, really fast, before you even realize it), testing
whether they work as intended manually just doesn°t cut it anymore. After all, every
time you add a new feature, you have to not only verify that the new feature works, but
also that your old features still work, and that there are no bugs or regressions. If you

End-to-End/Integration Tests | 55

start adding multiple browsers, you can easily see how this can become a combinatorial
explosion!

AngularJS tries to ease that by providing a Scenario Runner that simulates user interp
actions with your application.

The Scenario Runner allows you to describe your application in a Jasmine-like syntax.
Just as with the unit tests before, we will have a sedesaibes (for the feature),

and individualit s (to describe each individual functionality of the feature). As always,
you can have some common actions, to be performed before and after each spec (as we
call a test).

A sample test that looks at an application that filters a list of results might look something
like the following:

describe (Search Results , function () {
beforeEach(function () {
browser(). navigateTo(http://localhost:8000/app/index.html);
D
it (should filter results , function () {
input (searchBox). enter (jacksparrow);
element(:button). click ();

expect(repeater (ul'li). count()). toEqual(10);

input (filterText). enter (Bees);

expect(repeater (ulli). count()). toEqual(1);
PR

hE

There are two ways of running these tests. Either way you run them, though, you must
have a web server started that serves your application (refer to previous section for more
information on how to do that). Once that is done, use one of the following methods:

1. Automated: Karma now supports running of Angular scenario tests. Create a Karu
ma config file with the following changes:

a. Add ANGULAR_SCENARIO & ANGULAR_SCENARIO_ADAPTER to the
files section of the config.

b. Add a proxies section that redirects requests to the server to the correct folder
where your test files are located, for example:

proxies = {/: http://localhost:8000/test/e2e/ };

c. Add a Karma root to ensure that Karma’s source files don°t interfere with your
tests, like so:

urlRoot = /_karma_/;

Then just remember to capture your Karma server by browsinggd/local
host:9876/_karma and you should be free to run your tests using Karma.

56 | Chapter 3: Developing in AngularJS

2. Manual: The manual method allows you to open a simple page from your web
server and run (and see) all the tests. To do so, you must:

a. Create a simplaunner.htmlfile, which sources ttangular-scenario.fde from
the Angular library.

b. Source all your JS files which hold the specifications that you have written as
part of your Scenario suite.

c. Start your web server, and browse tartimmer.htmifile.

Why should you use the Angular Scenario Runner over, say, an external third party
integration or end-to-end test runner? There are some amazing benefits that you get
from using the Scenario Runner, including:

AngularJS aware
The Angular Scenario Runner, as the name suggests, is made by and for Angular.
Thus, it is AngularJS aware, and knows and understands the various AngularJS
elements, like bindings. Need to input some text? Check the value of a binding?
Verify the state of a repeater? All can be done easily through the use of the scenario
runner.

No more random waits
The Angular awareness also means that Angular is aware of all XHRs being made
to the server, and thus can avoid waiting for random intervals of time for pages to
load. The Scenario Runner knows when a page has loaded, and thus is much more
deterministic than a Selenium test, for example, where tests can fail by timing out
while waiting for a page to load.

Debugging capabilities
Wouldn°t it be nice if you could look at your code, dig into the JavaScript, and pause
and resume the test when you wanted to, all while the Scenario tests were running?
With the Angular Scenario Runner, all this is possible, and much more.

Compilation

Compilation in the JavaScript world usually means minification of the code, though
there is some amount of actual compilation possible using the Google Closure Library.
But why would you want to convert all that glorious, well-written, and easily underp
standable code to almost pure gibberish?

One reason is the goal of making applications that are quick and responsive for the user.
That is a major reason why client-side applications took off like they did a few years ago.
And the sooner you can get your application up and running, the sooner it will be
responsive.

Compilation | 57

That responsiveness is the motivation of minification of JS code. The smaller the code,
the smaller the payload, and the faster the transmission of the file to the user°s browser.
This becomes especially important in mobile apps, where size becomes the bottleneck.

There are a few ways you can minify the AngularJS code that you have written for your
app, each with varying levels of effectiveness.

Basic and simple optimization
This involves minifying all the variables that you use in your code, but avoiding
minifying the properties. This is known as the Simple optimization pass in Closure
Compiler.

This will not give you a great reduction in file size, but you°ll still get a substantial
one, for minimal overhead.

The reason this works is that the compilélosureor UglifyJ$ avoids renaming
properties that are referenced from the templates. Thus, your templates continue
to work, and only local variables and parameters are renamed.

With Google Closure, this is as simple as calling:

java -jar closure_compiler.jar --compilation_level SIMPLE_OPTIMIZATIONS
--js path/toffile.js
Advanced optimization
Advanced optimization is a bit more tricky, as it tries to rename pretty much any
and every function possible. To get this level of optimization to work, you will need
to handhold the compiler a bit by telling it explicitly (through the use afxan
terns file) which functions, variables, and properties should not be renamed. These
are generally the functions and properties accessed by the templates.

The compiler will use thisxterns file and then rename everything else. If done
properly, this can result in a substantial reduction in the size of your JavaScript, but
it does require a significant amount of work, including updatingettierns file

every time your code changes.

One thing to keep in mind: you have to use the declared form of dependency inp
jection (specifying thginject property on the controller) when you want to minify
your code.

This will not work:

function MyController ($scope $resource) {
/I Stuff here

}
You will need to do one of the following instead:

function MyController ($scope $resource) {
/I Same stuff here

58 | Chapter 3: Developing in AngularJS

}

MyController . $inject = [p$scope¥; p$resource};
or use the module, like so:

myAppModuleontroller (pMyController % [p$scopes
p$resource¥;
function ($scope $resource) {
/I Same stuff here
)R
This is the only way AngularJS can figure out which service or variable you were
originally asking for once all the variables are obfuscated or compressed.

It is generally good practice to use the array-style injection all the time,
to avoid bugs later when you start compiling the code. Scratching your
head later and trying to figure out why the provider ofg§a@ariable

(the minified, obfuscated version of some service) is suddenly missing
is just not worth it.

Other Awesome Tools

In this section, we will take a look at some other tools that will help ease your developp
ment flow and make you that much more productive. These range from debugging with
Batarang to actual coding and development with Yeoman.

Debugging

When you work with JavaScript, debugging your code in the browser is going to become
second nature. The sooner you accept that, the better off you will be. Thankfully, things
have come a long way since the old days when there was no Firebug. Now, regardless
of the choice of browser, there is generally something you can use to step in to your
code, analyze your errors, and figure out the state of the application. Get to know the
Developer Tools in Chrome and Internet Explorer; Firebug works across Firefox and
Chrome.

A few further tips to help you out when debugging your application:

N Always, always switch to the non-minified version of all your source code and
dependencies when you want to debug. Not only will you get better variable names,
you°ll also get line numbers and actual useful information and debugging capabilu
ities.

N Try to keep your source code in individual JS files, not inlined in HTML.

Other Awesome Tools | 59

N Breakpoints are useful! They allow you to check the state of your application, its
models, and everything in between at a given point in time.

N ¥sPause on all exceptionsA is a very useful option that is built in to most developer
tools nowadays. The debugger will halt when an exception occurs, and highlight
the line causing it.

Batarang

And then, of course, we have Batarang. Batarang is a Chrome extension that adds Anp
gularJS knowledge to the built-in Developer Tools suite in Google Chrome. Once inu
stalled (you can get it frohitp://bit.ly/batarangjy it adds another tab to the Developer

Tools panel of Chrome called AngularJS.

Have you ever wondered what the current state of your AngularJS application is? What
each model, each scope, and each variable currently contains? How is the performance
of your application? if you haven°t yet, trust me, you willl And when you do, Batarang
is there for you!

There are four main useful additions in Batarang.

Model tab

Batarang allows you to dig into teeope, from the root downwards. You can then see
howscopes are nested and how models are attached to them (as sheigoria 3-2.

You can even change them in real time and see the changes reflected in your application.
How cool is that?

60 | Chapter 3: Developing in AngularJS

Figure 3-2. Model tree in Batarang

Performance tab

The performance tab must be enabled separately, as it injects some special JavaScript
juice into your application. Once you enable it, you can look at various scopes and
models, and evaluate the performance of all the watch expressions in each scope (as
shown inFigure 3-3. The performance also gets updated as you use the app, so it works

in real time as well!

Other Awesome Tools | 61

Figure 3-3. Performance tab in Batarang

Service dependencies

For a simple application, you won°t have more than one or two dependencies for your
controllers and services. But in a real, full-scale application, service dependency manp
agement can become nightmarish without the proper tool support. Batarang is there
for you, filling this very hole, as it gives you a clean, simple way of visualizing your
service dependency chart (as showRigure 3-4.

62 | Chapter 3: Developing in AngularJS

Figure 3-4. Charting dependencies in Batarang

Elements properties and console access

When you dig through the HTML template code of an AngularJS application, there is
now an additional AngularJS Properties section in the Properties pane of the Elements
tab. This allows you to inspect the models attached to a given elesogrd°dt also
exposes thecope of the element to the console, so that you can access it through the
$scopevariable in the console. This is showifrigure 3-5

Other Awesome Tools | 63

Figure 3-5. AngularJS properties within Batarang

Yeoman: Optimizing Your Workflow

There are quite a few tools that have sprung up to help optimize your workflow when
developing web applications. Yeoman, which we touched upon in previous sections, is
one such tool that boasts an impressive set of features, including:

2

Lightning-fast scaffolding

2

Built-in preview server

2

Integrated package management

pral

An awesome build process

pral

Unit testing using PhantomJS

It also integrates nicely and extensively with AngularJS, which is one of the foremost
reasons why we strongly recommend using it for any AngularJS project. Let°s walk
through the various ways that Yeoman makes your life easier:

64 | Chapter 3: Developing in AngularJS

Installing Yeoman

Installing Yeoman is quite an involved process, but there are scripts to help you through
it.

On a Mac/Linux machine, run the following command:

curl -L get.yeoman.io | bash

and just follow the instructions it prints to get Yeoman.

For Windows, or if you run into any issues, gttips://github.com/yeoman/yeoman/
wiki/Manual-Installand follow the instructions there to get you unblocked.

Starting a Fresh AngularJS project

As previously mentioned, even a simple AngularJS project has quite a bit of seeding that
needs to be done, from the templates, the basic controllers, and the library dependencies,
to everything else that needs to be structured. You could do it yourself manually, or use
Yeoman to do it for you.

Simply create a folder for your project (the name of the folder will be taken as the project
name by Yeoman), and then run:

yeoman init angular

This will create the entire structure detailed in the Project Organization part of this
chapter for you, including the skeletons for rendering your routes, your unit tests, and
more.

Running Your Server

If you don°t use Yeoman, you will have to create an HTTP server that serves your front-
end code. But with Yeoman, you get a built-in server that is pre-configured and has
some nice added benefits. You can start the server using:

yeoman server

This not only starts a web server that serves your code, but it also automatically opens
your web browser and refreshes your browser when you make changes to your applip
cation.

Adding New Routes, Views, and Controllers

Adding a new route to Angular involves multiple steps, including:

N Sourcing the New Controller JS file inititx.html
N Adding the correct route to the AngularJS module

Yeoman: Optimizing Your Workflow | 65

N Creating the template HTML
N Adding unit tests

All of this can be accomplished in a single step in Yeoman with the following command
yeoman init angular:route routeName

So if you ended up runningeoman init angular:route home , it would:

2

Create home.jcontroller skeleton in thapp/scripts/controllefslder

]

Create home.jgest spec skeleton in ttest/specs/controllefidder

pral

Add théhome.htmkemplate to thepp/viewdolder

pral

Hook up the home route in the main app modaf®(scripts/app.jile)

All of this from a single command!

The Testing Story

We°ve already seen how ridiculously easy it is to start and run tests using Karma. In the
end, just two commands were needed to run all your unit tests.

Yeoman makes it easier (if you can believe it). Anytime you generate a file using Yeoman,
it also creates a testing stub for you to fill out. Once you°ve installed Karma, running
tests with Yeoman is as simple as executing the following command:

yeoman test

Building Your Project

Building the production-ready version of your app can be a pain, or at least involve
many steps. Yeoman alleviates some of this by allowing you to:

pral

Concatenate all your JS Scripts into one file

2

Version your files

2

Optimize images

pral

Generate Application Cache manifests

All these benefits come from just one command:
yeoman build

Yeoman does not support minification yet, but it is coming soon, according to the
developers.

66 | Chapter 3: Developing in AngularJS

Integrating AngularJS with RequireJS

Getting your development environment just right is much easier if you get more done
early. Modifying your development environment at a later stage will require modificap
tions to a larger number of files. Dependency management and creating deployment
packages are top worries for any sizable project.

With JavaScript, setting up your development environment used to be quite difficult,

as it involved maintaining Ant builds, building scripts to concatenate your files, miniu
fying them, and more. Thankfully, in the recent past, tools like RequireJS have emerged,
which allow you to define and manage your JS dependencies, as well as hook them into
a simpler build process. With these asynchronous load-management tools, which enp
sure that all dependencies are loaded before the code is executed, focusing on developing
the actual features has never been easier.

Thankfully, AngularJS can and does play nice RébuireJSso you can have the best
of both worlds. For the purpose of this example, we will provide a sample setup that we
have found to work nicely, and in a systematic, easy-to-follow way.

Let us take a look at the project organization (similar to the skeletons previously dep
scribed, with minor changes):

1. app: This folder hosts all the app code that is displayed to the user. This includes
HTML, JS, CSS, images, and dependent libraries.

a. /styles Contains all the CSS/LESS files
b. /images Contains images for our project

c. /scripts: The main AngularJS codebase. This folder also includes our bootstrapp
ping code, and the main integration with RequireJS

i. /controllers: AngularJS controllers go here
ii. /directives AngularJS Directives go here
iii. ffilters: AngularJs filters go here
iv. /services AngularJS services go here
d. /vendor: The libraries we depend on (Bootstrap, RequireJS, jQuery)
e. /views The HTML partials for the views and the components used in our project
2. config: Contains Karma configs for unit and scenario tests
3. test Contains the unit and scenario (integration) tests for the app

a. /spec Contains the unit tests, mirroring the structure of the JS folder in the app
directory

b. /e2e Contains the end-to-end scenario specs

Integrating AngularJS with RequireJS | 67

The first thing we need is theain.jsfile (in the app folder) that RequireJS loads, which
then triggers loading of all the other dependencies. In this example, our JS project will
depend on jQuery and Twitter Bootstrap in addition to our code.

/I the app/scripts/main.js file, which defines our RequireJS config
require . config ({
paths: {
angular: vendor/angular.min
jquery : vendor/jquery
domReady vendor/require/domReady ,
twitter : vendor/bootstrap
angularResource: vendor/angular-resource.min
h
shim: {
twitter/js/bootstrap |
deps [jquery/jquery]

angular: {
deps [jquery/jquery
twitter/js/bootstrap 1s
exports: angular
h
angularResource: { deps[angular] }
}
b

require ([
app ,
/I Note this is not Twitter Bootstrap
// but our AngularJS bootstrap
bootstrap
controllers/mainControllers
services/searchServices
directives/ngbkFocus
/I Any individual controller, service, directive or filter file
/I that you add will need to be pulled in here.
/I This will have to be maintained by hand.
1,
function (angular, app {
use strict

app config ([$routeProvider
function ($routeProvider) {
/I Define your Routes here

D
}
)i
We then define aapp.jsfile. This defines our AngularJS app, and tells it that it depends
on all the controllers, services, filters, and directives we define. We°ll look at the files
that are mentioned in the RequireJS dependency list in just a bit.

68 | Chapter 3: Developing in AngularJS

You can think of the RequireJS dependency list as a blocking import statement for
JavaScript. That is, the function within the block will not execute until all the depenp
dencies listed are satisfied or loaded.

Also notice that we don°t individually tell RequireJS what directive, service, or filter to
pull in, because that is not how this project is structured. There is one module each for
controllers, services, filters, and directives, and thus it is sufficient to just define those
as our dependencies.

/I The app/scripts/app.js file, which defines our AngularJS app
define ([angular , angularResource , controllers/controllers

services/services , filters/filters ,
directives/directives], function (angular) {
return angular. moduld pMyAp#: [ngResource , controllers , services
filters , directives]);

hE

We also havelzootstrap.jsile, which waits for the DOM to be ready (using RequireJS°s
plug-in,domReadyand then tells AngularJS to go forth and be awesome.

/I The app/scripts/bootstrap.js file which tells AngularJS
/I to go ahead and bootstrap when the DOM is loaded
define ([angular , domReady], function (angular, domReady{
domReadyunction () {
angular . bootstrap (document [uMyApi);
b
»;

There is another advantage to splitting the bootstrap from the app, which is that we
could potentially replace ourainAppwith a fake or mockApfor the purpose of testing.

For example, if the servers you depend on are flaky, you could just ca&efepathat
replaces afshttp requests with fake data to allow you to develop in peace. That way,
you can just slip in takeBootstrap and afakeAppinto your application.

Now, your mainindex.html(which is in the app folder) could look something like:

<IDOCTYPE html|>
<html> <!-- Do not add ng-app here as we bootstrap AngularJS manually-->
<head>

<title> My AngularJS App</title>

<meta charset="utf-8" />

<link rel= "stylesheet" type="text/css"
href="styles/bootstrap.min.css" >

<link rel= "stylesheet" type="text/css"
href="styles/bootstrap-responsive.min.css" >

<link rel="stylesheet" type="text/css" href="styles/app.css" >

</head>
<body class="home-page" ng-controller= "RootController" >

Integrating AngularJS with RequireJS | 69

<div ng-view ></div>

<script data-main="scripts/main"”
src="lib/require/require.min.js" ></script>
</body>
</html>

Now, we’ll take a look at tjgécontrollers/controllersfige, which will look almost expu
actly the same g&/directives/directives js/filters/filters.jsandjs/services/services.js

define ([angular], function (angular) {
use strict
return angular. modulg controllers , []);

hE

Because of the way we have our RequireJS dependencies structured, all these are guarp
anteed to run only after the Angular dependency has been satisfied and loaded.

Each of these files defines an AngularJS module, which will then be used by the indiu
vidual controllers, directives, filters, and services to add on to the definition.

Let°s take a look at a directive definition (such agoous directive fromChapter 2:

/I File: ngbkFocus.js

define ([directives/directives], function (directives) {
directives . directive (ngbkFocus [$rootScope , function ($rootScope) {
return {
restrict : A,
scope true,

link : function (scope element, attrs) {
element] 0]. focus();
}
h
1)
Pk
The directive itself is quite trivial, but let us take a closer look at what°s happening. The
RequireJS shim around the file says thahghkFocus.jdepends on the module decp
laration filedirectives/directives.js then uses the injected directives module to add on
its own directive declaration. You could choose to have multiple directives, or a single
one per file. It is completely up to you.

One major note: if you have a controller that pulls in a service (saRgotControl
ler depends on youdserService, and gets the UserService injected in), then you have
to make sure that you define the file dependency to RequireJS as well, like so:

define ([controllers/controllers , services/userService],
function (controllers) {
controllers . controller (RootController , [$scope , UserService |,
function ($scope UserService) {
/I Do what s needed

70 | Chapter 3: Developing in AngularJS

L

H)B

bl

That is basically how your entire source folder structure is set up.

But how does this affect my tests, you ask? We°re glad you asked that question, because
you are going to get the answer now!

The good news is that Karma does support RequireJS. Just install the latest and greatest
version of Karma (usingpm install -g karma).

Once you have done that, the Karooafig for the unit tests also changes slightly. The
following is how we would set up the unit tests to run for the project structure we have
previously defined:

/I This file is config/karma.conf.js.

/I Base path, that will be used to resolve files
/I (in this case is the root of the project)
basePath = ./ ;

/I list files/patterns to load in the browser
files =1

I

JASMINE
JASMINE_ADAPTER
REQUIRE
REQUIRE_ADARTER

/"1 Put all libs in RequireJS paths config here (included: false).
/I All these files are files that are needed for the tests to run,

/I but Karma is being told explicitly to avoid loading them, as they
/I will be loaded by RequireJS when the main module is loaded.
{pattern : app/scripts/vendor/**/* js , included : false },

/I all the sources, tests // !! all src and test modules (included: false)

{pattern : app/scripts/**/*.js , included : false },
{pattern : app/scripts/*.js , included : false },
{pattern : test/spec/*.js , included : false },
{pattern : test/spec/**/*.js , included : false },

/I'! test main require module last
test/spec/main.js

/1 list of files to exclude
exclude =];

/I test results reporter to use
/I possible values: dots || progress
reporter = progress ;

/I web server port

Integrating AngularJS with RequireJS | 71

port = 8989

/I cli runner port
runnerPort = 989§

/I enable/disable colors in the output (reporters and logs)
colors = true;

/I level of logging
logLevel = LOG_INEO

/I enable/disable watching file and executing tests whenever any file changes
autoWatch = true ;

/I Start these browsers, currently available:
/I - Chrome

/I - ChromeCanary

/I - Firefox

/I - Opera

/I - Safari

/I - PhantomJS

/I - IE if you have a windows box

browsers = [Chrome];

/I Continuous Integration mode
/I if true, it captures browsers, runs tests, and exits
singleRun = false ;

We use a slightly different format to define our dependencieinfieed: false is
quite important). We also add the dependency on REQUIRE_JS and its adapter. The
final thing to get all this working meain.js which triggers our tests.

/I This file is test/spec/main.js

require . config ({

/It Karma serves files from /base

/I (in this case, it is the root of the project /your-project/appl/js)

baseUrl: /basel/app/scripts

paths: {

angular: vendor/angular/angular.min

jgquery : vendor/jquery
domReady vendor/require/domReady ,
twitter : vendor/bootstrap
angularMocks vendor/angular-mocks
angularResource: vendor/angular-resource.min
unitTest : ../../../baseltest/spec

h
/I example of using shim, to load non-AMD libraries
/I (such as Backbone, jQuery)
shim: {
angular: {
exports: angular

72 | Chapter 3: Developing in AngularJS

h
angularResource: { deps [angular]},
angularMocks { deps [angularResource]}
}
bl

/I Start karma once the dom is ready.

require ([
domReady,
/I Each individual test file will have to be added to this list to ensure
/ that it gets run. Again, this will have to be maintained manually.
unitTest/controllers/mainControllersSpec ,
unitTest/directives/ngbkFocusSpec ,
unitTest/services/userServiceSpec
], function (domReady {
domReadyunction () {

window __karma_. start ();

b

bk

So with this setup, we can run the following:
karma start config/lkarma.conf.js

Then we can run the tests.

Of course there is a slight change when it comes to writing your unit tests. They need
to be RequireJS-supported modules as well, so let’s take a look at a sample test:

/I This is test/spec/directives/ngbkFocus.js

define ([angularMocks , directives/directives , directives/ngbkFocus],
function () {

describe (ngbkFocus Directive , function () {
beforeEach(moduld directives));

/I These will be initialized before each spec (each it(), that is),
/[and reused
var elem
beforeEach(inject (function ($rootScope, $compile) {
elem = $compile(<input type=AtextA ngbk-focus>)($rootScope);

D)
it (should have focus immediately , function () {
expect(elem hasClass(focus)). toBeTruthy();
bk
Dk
Pk

Every test of ours will do the following:

1. Pull in angularMocks which gets uangular, angularResource, and of course,
angularMocks

Integrating AngularJS with RequireJS | 73

2. Pullin the high-level modulelitective s for directivessontroller s for controlu
lers, and so on), then the individual file it is actually testindd#tuéngIndicator).

3. If your test depends on some other service or controller, make sure you also define
the RequireJS dependency, in addition to telling AngularJS about it.

This kind of approach can be used with any test, and you should be good to go.

Thankfully, the RequireJS approach doesn°t affect our end-to-end tests at all, so they can
simply be done the way we have seen so far. A sample config follows, assuming that the
server that runs your app is running btip://localhost:8000

/I base path, that will be used to resolve files
/I (in this case is the root of the project
basePath= ../ ;

/I list of files / patterns to load in the browser
files =]
ANGULAR_SCENARIO
ANGULAR_SCENARIO_ADAPTER
test/e2e/*.js

I

/I list of files to exclude
exclude = T];

/I test results reporter to use
/I possible values: dots || progress
reporter = progress ;

/I web server port
port = 8989

/I cli runner port
runnerPort = 989§

/I enable / disable colors in the output (reporters and logs)
colors = true;

/I level of logging
logLevel = LOG_INEO

/I enable / disable watching file and executing tests whenever any file changes
autoWatch = true ;

urlRoot = / karma_/ ;
proxies = {

[: http://localhost:8000/
h

/I Start these browsers, currently available:

74 | Chapter 3: Developing in AngularJS

browsers = [Chrome];

/I Continuous Integration mode
/I 'if true, it capture browsers, run tests and exit
singleRun = false ;

Integrating AngularJS with RequireJS | 75

CHAPTER 4
Analyzing an AngularJS Ar

We talked about some of the commonly used features of AngulaCi@pier 2 and

then dived into how your development should be structuredhiapter 3 Rather than
continuing with similarly deep dives into individual featur@bapter 4will look at a

small, real-life application. We will get a feel for how all the pieces that we have been
talking about (with toy examples) actually come together to form a real, working app
plication.

Rather than putting the entire application front and center, we will introduce one poru
tion of it at a time, then talk about the interesting and relevant parts, slowly building up
to the entire application by the end of this chapter.

The Application

GutHub is a simple recipe management application, which we designed both to store
our super tasty recipes and to show off various pieces of an AngularJS application. The
application:

pral

has a two-column layout.

pral

has a navigation bar on the left.

pral

allows you to create a new recipe.

pral

allows you to browse the list of existing recipes.

The main view is on the right, which gets changedidepending on the URLIto either
the list of recipes, the details of a single recipe, or an editable form to add to or edit
existing recipes. We can see a screenshot of the applicaftiguia 4-1

77

Figure 4-1. GutHub: A simple recipe management application

This entire application is available on our GitHub repohapter4/guthub

Relationship Between Model, Controller, and Templ

Before we dive into the application, let us spend a paragraph or two talking about how
the three pieces of our application work together, and how to think about each of them.

Themodelis the truth. Just repeat that sentence a few times. Your entire application is
driven off the modellwhat views are displayed, what to display in the views, what gets
saved, everything! So spend some extra time thinking about your model, what the atu
tributes of your object are going to be, and how you are going to retrieve it from the
server and save it. The view will get updated automatically through the use of data
bindings, so the focus should always be on the model.

The controllerholds the business logic: how you retrieve your model, what kinds of
operations you perform on it, what kind of information your view needs from the model,
and how you transform the model to get what you want. The responsibility of validation,
making server calls, bootstrapping your view with the right data, and mostly everything
in between belongs on your controller.

Finally, theeemplaterepresents how your model will be displayed, and how the user will
interact with your application. It should mostly be restricted to the following:
N Displaying your model

N Defining the ways the user can interact with your application (clicks, input fields,
and so on)

78 | Chapter 4: Analyzing an AngularJS App

N Styling the app, and figuring out how and when some elements are displayed (show
or hide, hover, and so on)

N Filtering and formatting your data (both input and output)

Realize that the template in Angular is not necessarily the view part of the Model View
Controller design paradigm. Instead, the view is the compiled version of the template
that gets executed. It is a combination of the template and the model.

What should not go into the template is any kind of business logic or behavior; this
information should be restricted to the controller. Keeping the template simple allows

a proper separation of concerns, and also ensures that you can get the most code under
test using only unit tests. Templates will have to be tested with scenario tests.

But, you might ask, where does DOM manipulation go? DOM manipulation doesn°t
really go into the controllers or the template. It goes into AngularJS directives (but can
sometimes be used via services, which house DOM manipulation to avoid duplication
of code). We°ll cover an example of that in our GutHub example as well.

Without further ado, let°s dive right in.

The Model

We are going to keep the model dead simple for this application. There are recipes.
They°re about the only model object in this entire application. Everything else builds
off of it.

Each recipe has the following properties:

pral

An ID if it is persisted to our server

pral

A name

2

A short description

]

Cooking instructions

pral

Whether it is a featured recipe or not

pral

An array of ingredients, each with an amount, a unit, and a name

That’s it. Dead simple. Everything in the app is based around this simple model. Here®s
a sample recipe for you to devour (the same one referenEegline 4-):

{

“id" o1,

"title" : "Cookies",

"description" : "Delicious, crisp on the outside, chewy" +
" on the outside, oozing with chocolatey goodness " +
"cookies. The best kind"

"ingredients" : [

The Model | 79

{

"amount™ "1",
"amountUnits": "packet" ,
"ingredientName" : "Chips Ahoy"
}

I8

"instructions” : "1. Go buy a packet of Chips Ahoy\n" +
"2. Heat it up in an oven\n" +
"3. Enjoy warm cookies\n" +
"4. Learn how to bake cookies from somewhere else"

}

We will go on to see how more complicated Ul features can be built around this simple
model.

Controllers, Directives, and Services, Oh My!

Now we finally get to sink our teeth into the meat of this delicious application. First, we
will look at the directives and services code and talk a little bit about what it is doing,
then we’ll take a look at the multiple controllers needed for this application.

Services

/I This file is app/scripts/services/services.js
var services = angular. moduld guthub.services , [ngResource]);

services . factory (Recipe , [$resource ,
function ($resource) {
return $resource(/recipes/:id , {id: @id });
)

services . factory (MultiRecipeLoader , [Recipe , $q ,
function (Recipe, $q) {
return function () {
var delay = $q. defer ();
Recipe. query(function (recipes) {
delay. resolve (recipes);
}, function () {
delay. reject (Unable to fetch recipes);
i
return delay. promise;
h
1)

services . factory (RecipeLoader , [Recipe , $route
function (Recipe, $route, $0) {
return function () {
var delay = $q. defer ();
Recipe. get({ id: $route. current . paramsrecipeld }, function (recipe) {
delay. resolve (recipe);

, $q ,

80 | Chapter 4: Analyzing an AngularJS App

}, function () {
delay. reject (Unable to fetch recipe + $route. current . paramsrecipeld);

D

return delay. promise;
2
)

Let°s take a look at our services first. We touched upon sendt@sganizing Depenp
dencies with ModulesA on page B8re, we°ll dig a little bit deeper.

In this file, we instantiate three AngularJS services.

There is a recipe service, which returns what we call an Angular Resource. These are
RESTful resources, which point at a RESTful server. The Angular Resource encapsulates
the lower levebhttp service, so that you can just deal with objects in your code.

With just that single line of codedeturn $resource I(and of course, a dependency
on theguthub.services module), we can now pugcipe as an argument in any of
our controllers, and it will be injected into the controller. Furthermore, esape
object has the following methods built in:

N Recipe.get()

N Recipe.save()

N Recipe.query()
N Recipe.remove()
N Recipe.delete()

If you are going to usRecipe.delete , and want your application to
work in IE, you will have to call it like S®ecipe[delete]() . This is
becauseelete is a keyword in IE.

Of the the previous methods, all but query work with a single regipej() returns
an array of recipes by default.

The line of code that declares the resounalirn $resource lalso does a few more
nice things for us:

1. Notice theid in the URL specified for the RESTful resource. It basically says that
when you make any query (sBgcipe.get()), if you pass in an object with &h
field, then the value of that field will be added to the end of the URL.

That is, callindRecipe.get({id: 15}) will make a call térecipe/15

Controllers, Directives, and Services, Oh My! |

81

2. What about that second object? Tide @id? Well, as they say, a line of code is

worth a thousand explanations, so let°s take a simple example.

Say we haveracipe object, which has the necessary information already stored
within it, including anid .
Then, we can save it by simply doing the following:

/I Assuming existingRecipeObj has all the necessary fields,
/[including id (say 13)
var recipe = new Recipe(existingRecipeObj);
recipe . $save();
This will make a POST request/tecipe/13

The @idtells it to pick thed field from its object and use that as ithgparameter.
It°s an added convenience that can save a few lines of code.

There are two other servicesapps/scripts/services/serviceBgsh of them are Loadp

ers; one loads a single recipedipeLoade, and the other loads all recipd4u(tiRe
cipeLoader). These are used when we hook up our routes. At their cores, both of them
behave very similarly. The flow of both these services is as follows:

1.

Create &qdeferred object (these are AngularJS promises, used for chaining asynp
chronous functions).

. Make a call to the server.

3. Resolve the deferred object when the server returns the value.

Return the promise that will be used by the routing mechanism of AngularJS.

Promises in an AngularJS land

A promise is an interface that deals with objects that are returned or get filled in at a
future point in time (basically, asynchronous actions). At its core, a promise is an pbject
with athen() function.

To showcase the advantages, let us take an example where we need to fetch the current
profile of a user:

var currentProfile = null ;
var username= something ;

fetchServerConfig (function (serverConfig) {

fetchUserProfiles (serverConfig . USER_PROFILE&ername
function (profiles) {

currentProfile = profiles . currentProfile

82

| Chapter 4: Analyzing an AngularJS App

i
B

There are a few problems with this approach:

multiple calls.

unless you handle them manually at each step.

3. You have to encapsulate the logic of what you want to dewitmtProfile in
the innermost callback, either directly, or through a separate function.

Promises solve these issues. Before we go into the how, let°s take a look at t
problem implemented with promises:

var currentProfile =

fetchServerConfig (). then(function (serverConfig) {

return fetchUserProfiles (serverConfig . USER_PROFI| E&ernamg;
D). then(function (profiles) {

return profiles .currentProfile ;
}, function (error) {

/ Handle errors in either fetchServerConfig or

/I fetchUserProfiles here

D

Notice the advantages:

1. You can chain function calls, so you don°t get into an indentation nightmare

2. You are assured that the previous function call is finished before the next fur
in the chain is called.

3. Eachhen() call takes two arguments (both functions). The first one is the su
callback and the second one is the error handler.

4. In case of errors in the chain, the error will get propagated through to the r
the error handlers. So any error in any of the callbacks can be handled in th

What aboutresolve andreject , you ask? Welljeferred in AngularJS is a way Q
creating promises. Callingsolve on it fulfills the promise (calls the success handl
while callingreject on it calls the error handler of the promise.

1. The resultant code is an indentation nightmare, especially if you have to chain

2. Errors reported in between callbacks and functions have a tendency to be lost,

1ction

LCess

est of

f
=),

U

We°ll come back to this again when we hook up our routes.

Controllers, Directives, and Services, Oh My!

e end.

he same

83

Directives

We can now move to the directives we will be using in our application. There will be
two directives in the app:

butterbar
This directive will be shown and hidden when the routes change and while the page
is still loading information. It will hook into the route-changing mechanism and
automatically hide and show whatever is within its tag ,based on the state of the

page.

focus
Thefocus directive is used to ensure that specific input fields (or elements) have
the focus.

Let°s look at the code:

/I This file is app/scripts/directives/directives.js
var directives = angular. moduld guthub.directives , []);

directives . directive (butterbar , [$rootScope |,
function ($rootScope) {
return {
link : function (scope element, attrs) {
element. addClasq hide);

$rootScope. $on($routeChangeStart , function () {
element. removeClasg hide);

»:

$rootScope. $on($routeChangeSuccess, function () {
element. addClasq hide);
»;
}
h
i)

directives . directive (focus ,
function () {
return {
link : function (scope element, attrs) {
element] 0]. focus();
}
h
»;

The preceding directive returns an object with a single propity, We will dive
deeper into how you can create your own directivé&hiapter 6 but for now, all you
need to know is the following:

84 | Chapter 4: Analyzing an AngularJS App

1. Directives go through a two-step process. In the first step (the compile phase), all
directives attached to a DOM element are found, and then processed. Any DOM
manipulation also happens during the compile step. At the end of this phase, a
linking function is produced.

2. In the second step, the link phase (the phase we used previously), the preceding
DOM template produced is linked to tkeope. Also, any watchers or listeners are
added as needed, resulting in a live binding betweesctipe and the element.

Thus, anything related to tlseope happens in the linking phase.

So what®°s happening in our directive? Let°s take a look, shall we?

Thebutterbar directive can be used as follows:
<div butterbar >My loading text... </div>

It basically hides the element right up front, then adds two watches on theeapet
Every time a route change begins, it shows the element (by changing its class), and every
time the route has successfully finished changing, it hidésuttezbar again.

Another interesting thing to note is how we inject $neotScope into the directive.
All directives directly hook into the AngularJS dependency injection system, so you can
inject your services and whatever else you need into them.

The final thing of note is the API for working with the element. jQuery veterans will be
glad to know that it follows a jQuery-like syntaddClass removeClasg. AngularJS
implements a subset of the calls of jQuery so that jQuery is an optional dependency for
any AngularJS project. In case you do end up using the full jQuery library in your project,
you should know that AngularJS uses that instead of the jQlite implementation it has
built-in.

The second directivéocus) is much simpler. It just calls thecus() method on the
current element. You can call it by addingfdmus attribute on any input element, like
so:

<input type="text" focus></input>

When the page loads, that element immediately gets the focus.

Controllers

With directives and services covered, we can finally get into the controllers, of which
we have five. All these controllers are located in a singlagiéstripts/controllers/

controllers.]s but we°ll go over them one at a time. Let’s go over the first controller,
which is the List Controller, responsible for displaying the list of all recipes in the system.

app controller (ListCtrl , [$scope , recipes
function ($scope recipes) {

Controllers, Directives, and Services, Oh My! |

85

$scope recipes = recipes ;
)
Notice one very important thing with the List Controller: in the constructor, it does no
work of going to the server and fetching the recipes. Instead, it is handed a list of recipes
already fetched. You might wonder how that°s done. We°ll answer that in the routing
section of the chapter, but it has to do with hatiRecipeLoader service we saw
previously. Just keep that in the back of your mind.

With the List Controller under our belts, the other controllers are pretty similar in
nature, but we will still cover them one by one to point out the interesting aspects:

app controller (ViewCtrl , [$scope , $location , recipe
function ($scope $location , recipe) {
$scope recipe = recipe ;

$scope edit = function () {
$location . path(/edit/ + recipe . id);
h
1
The interesting aspect about the View Controller is the edit function it exposes on the
scope Instead of showing and hiding fields or something similar, this controller relies
on AngularJS to do the heavy lifting (as should you!)e@ihefunction simply changes
the URL to the edit equivalent for the recipe, and lo and behold, AngularJS does the
rest. AngularJS recognizes that the URL has changed and loads the corresponding view
(which is the same recipe in edit mode). Voila!

Next, let°s take a look at the Edit Controller:

app. controller (EditCtrl , [$scope , $location , recipe
function ($scope $location , recipe) {
$scope recipe = recipe ;

$scope save = function () {
$scope recipe . $save function (recipe) {
$location . path(/view/ + recipe .id);
i
h

$scope remove = function () {
delete $scope recipe ;
$location . path(/);
h
)
What°s new here are tbave andremovemethods that the Edit Controller exposes on
thescope

Thesave function on thescopedoes what you would expect it to. It saves the current
recipe, and once it is done saving, redirects the user to the view screen with the same

86 | Chapter 4: Analyzing an AngularJS App

recipe. Thecallback function is useful in these scenarios to execute or perform some
action once you are done.

There are two ways we could have saved the recipe here. One is to do it as shown in the

code, by executingscope.recipe.$save() . This is only possible becauseipe is a
resource object that was returned by ReeipeLoaderin the first place.

Otherwise, the way you would save the recipe would be:
Recipe.save(recipe);

The removefunction is also straightforward, in that it removes the recipe from the
scope, and redirects users to the main landing page. Note that it doesn°t actually remove
it from our server, though it shouldn°t be very hard to make that additional call.

Next, we have the New Controller;

app controller (NewCtrl , [$scope , $location , Recipe ,
function ($scopeg $location , Recipe) {
$scope recipe = new Recipe({
ingredients : [{}]

B

$scope save = function () {
$scope recipe . $save(function (recipe) {
$location . path(/view/ + recipe .id);
»
h
1
The New Controller is almost exactly the same as the Edit Controller. In fact, you could
look at combining the two into a single controller as an exercise. The only major difu
ference is that the New Controller creates a new recipe (which is a resource, so that it
has thesave function) as the first step. Everything else remains unchanged.

Finally, we have the Ingredients Controller. This is a special controller, but before we
get into why or how, let°s take a look:

app controller (IngredientsCitrl , [$scope , function ($scopg {
$scope addingredient = function () {
var ingredients = $scope recipe . ingredients ;
ingredients [ingredients .length] = {};
h
$scope removelngredient = function (index) {
$scope recipe . ingredients . splice (index, 1);
h
)3

All the other controllers that we saw so far are linked to particular views on the Ul. But
the Ingredients Controller is special. It°s a child controller that is used on the edit pages
to encapsulate certain functionality that is not needed at the higher level. The interesting

Controllers, Directives, and Services, Oh My! |

87

thing to note is that since it is a child controller, it inheritsstape from the parent
controller (the Edit/New controllers in this case). Thus, it has access to the
$scope.recipe from the parent.

The controller itself does nothing too interesting or unique. It just adds a new ingredient
to the array of ingredients present on the recipe, or removes a specific ingredient from
the list of ingredients on the recipe.

With that, we finish the last of the controllers. The only JavaScript piece that remains is
how the routing is set up:

/I This file is app/scripts/controllers/controllers.js

var app = angular. modulg guthub ,
[guthub.directives , guthub.services 1]);

app config ([$routeProvider , function ($routeProvider) {
$routeProvider .
wherf / , {
controller : ListCtrl
resolve : {
recipes : function (MultiRecipeLoader) {
return MultiRecipeLoader ();

}
h
templateUrl : /views/list.html
}. whert /edit/:recipeld s {
controller : EditCtrl
resolve : {

recipe : function (RecipeLoade) {
return RecipeLoadex);

}
h
templateUrl : /views/recipeForm.html
}). whert /view/:recipeld s {
controller : ViewCtrl ,
resolve : {

recipe : function (RecipeLoade) {
return RecipeLoade);
}
h
templateUrl : /views/viewRecipe.html
}. whert /new , {
controller : NewCitrl ,
templateUrl : /views/recipeForm.html
}). otherwise ({ redirectTo : / });

H)B

As promised, we finally reached the point whereréselve functions are used. The
previous piece of code sets up the Guthub AngularJS module, as well as the routes and
templates involved in the application.

88 | Chapter 4: Analyzing an AngularJS App

It hooks up the directives and the services that we created, and then specifies the various
routes we will have in our application.

For each route, we specify the URL, the controller that backs it up, the template to load,
and finally (optionally), aesolve object.

Thisresolve object tells AngularJS that each of these resolve keys needs to be satisfied
before the route can be displayed to the user. For us, we want to load all the recipes, or
an individual recipe, and make sure we have the server response before we display the
page. So we tell the route provider that we have recipes (or a recipe), and then tell it how
to fetch it.

This links back to the two services we defined in the first sectidviuttiRecipelLoad

er and theRecipeLoader If theresolve function returns an AngularJS promise, then
AngularJS is smart enough to wait for the promise to get resolved before it proceeds.
That means that it will wait until the server responds.

The results are then passed into the constructor as arguments (with the names of the
parameters being the object®s fields).

Finally, theotherwise function denotes the default URL redirect that needs to happen
when no routes are matched.

You might notice that both the Edit and the New controller routes lead
to the same template URUigws/recipeForm.htmiWhat®s happening
here? We reused the edit template. Depending on which controller is
associated, different elements are shown in the edit recipe template.

With this done, we can now move on to the templates, how these controllers hook up
to them, and manage what is shown to the end user.

The Templates

Let us start by taking a look at the outermost, main template, whichimlghehtml
This is the base of our single-page application, and all the other views are loaded within
the context of this template:

<IDOCTYPE html|>
<html lang="en" ng-app='guthub" >

<head>
<title> GutHub - Create and Share </title>
<script src="scripts/vendor/angular.min.js" ></script>
<script src="scripts/vendor/angular-resource.min.js" ></script>
<script src="scripts/directives/directives.js" ></script>
<script src="scripts/services/services.js" ></script>
<script src="scripts/controllers/controllers.js" ></script>

The Templates | 89

<link href="styles/bootstrap.css" rel= "stylesheet" >
<link href="styles/guthub.css" rel="stylesheet" >
</head>
<body>
<header>
<h1>GutHuk/h1>
</header>

<div butterbar >Loading... </div>

<div class="container-fluid" >
<div class="row-fluid" >
<div class="span2">
<!--Sidebar-->
<div id="focus" >New Recipe/a></div>
<div>Recipe List </div>

</div>
<div class="spanl0">
<div ng-view></div>
</div>
</div>
</div>
</body>
</html>

There are five interesting elements to note in the preceding template, most of which
you already encountered @hapter 2 Let°s go over them one by one:

ng-app
We set theng-app module to be GutHub. This is the same module name we gave

in our angular.module function. This is how AngularJS knows to hook the two
together.

script tag
This is where AngularJS is loaded for the application. It has to be done before all

your JS files that use AngularJS are loaded. Ideally, this should be done at the bottom
of the body.

Butterbar

Aha! Our first usage of a custom directive. When we definethdterbar dip

rective before, we wanted to use it on an element so that it would be shown when
the routes were changing, and hidden on success. The highlighted element’s text is
shown (a very boring %LoadingOA in this case) as needed.

Link href Values

Thehref s link to the various pages of our single-page application. Notice how they
use the # character to ensure that the page doesn°t reload, and are relative to the
current page. AngularJS watches the URL (as long as the page isn°t reloaded), and

90 | Chapter 4: Analyzing an AngularJS App

works it magic (or actually, the very boring route management we defined as part
of our routes) when needed.

ng-view
This is where the last piece of magic happens. In our controllers section, we defined
our routes. As part of that definition, we denoted the URL for each route, the conpu
troller associated with the route, and a template. When AngularJS detects a route
change, it loads the template, attaches the controller to it, and replaces the
view with the contents of the template.

One thing that is conspicuous in its absence isdghsntroller tag. Most applications

would have some sort oMainController associated with the outer template. Its most
common location would be on the body tag. In this case, we didn°t use it, because the
entire outer template has no AngularJS content that needs to refecdpea

Now let°s look at the individual templates associated with each controller, starting with
the ¥list of recipesA template:

<!-- File is chapter4/guthub/app/views/list.html| -->
<h3>Recipe List </h3>
<ul class="recipes" >
<li ng-repeat="recipe in recipes" >
<div>{{recipe.title}} </div>
</i>

Really, it°s a very boring template. There are only two points of interest here. The first
one is a very standard usage ofrtheepeat tag. It picks up all the recipes from the

scope, and repeats over them.

The second is the usage ofriigenref tag instead diref . This is purely to avoid having

a bad link during the time that AngularJS is loading up.nBAeref ensures that at no

time is a malformed link presented to the user. Always use this whenever your URLS
are dynamic instead of static.

Of course you might wonder: where is the controller? There isgraontroller

defined, and there really was no Main Controller defined. This is where route mapping
comes into play. If you remember (or peek back a few pages)diie redirected to

the list template and had the List Controller associated with it. Thus, when any references
are made to variables and the like, it is within the scope of the List Controller.

Now we move on to something with a little bit more meat: the view form.

<l-- file is chapter4/guthub/app/views/viewRecipe.html -->
<h2x{{recipe.title}} </h2>

<div>{{recipe.description}} </div>

<h33ngredients </h3>

The Templates | 91

<ul class="unstyled" >

<li ng-repeat="ingredient in recipe.ingredients" >
<spanX{ingredient.amount}}
<span3{ingredient.amountUnits}}
<spanX{ingredient.ingredientName}}

<h33nstructions </h3>
<div>{{recipe.instructions}} </div>

<form ng-submit="edit()" class="form-horizontal" >
<div class="form-actions" >
<button class="btn btn-primary" >Edit </button>
</div>
</form>
Another nice, small, contained template. We°ll draw your attention to three things,
though not necessarily in the order they are shown!

The firstis the pretty standang-repeat . The recipes are again in the scope of the View
Controller, which is loaded by thesolve function before this page is displayed to the
user. This ensures that the page is not in a broken, unloaded state when the user sees it.

The next interesting usage is thahgfshowandng-class to style the template. The
ng-showtag has been added to #ie tag, which is used to display a starred icon. Now,

the starred icon is shown only when the recipe is a featured recipe (as denoted by the
recipe.featured boolean value). Ideally, to ensure proper spacing, you would have
another empty spacer icon, with agrhide directive on it, with the exact same Angup
larJS expression as shown inbeshow That is a very common usage, to display one
thing and hide another on a given condition.

Theng-class is used to add a class to #@>tag (¥featuredA in this case) when the
recipe is a featured recipe. That adds some special highlighting to make the title stand
out even more.

The final thing to note is theg-submit directive on the form. The directive states that
the edit() function on thescope is called in case the form is submitted. The form
submission happens when any button without an explicit function attached (in this case,
the Edit button) is clicked. Again, AngularJS is smart enough to figure out the scope
that is being referred to (from the module, the route, and the controller) and call the
right method at the right time.

Now we can move on to our final template (and possibly the most complicated one yet),
the recipe form template.

<l-- file is chapter4/guthub/app/views/recipeForm.html -->
<h2>Edit Recipe </h2>
<form name=ecipeForm" ng-submit="save()" class="form-horizontal" >

92 | Chapter 4: Analyzing an AngularJS App

<div class="control-group" >

<label class="control-label" for="title" >Title: </label>
<div class="controls" >
<input ng-model=recipe.title" class="input-xlarge" id="title" focus>
</div>
</div>

<div class="control-group" >
<label class="control-label" for="description” >Description: </label>
<div class="controls" >
<textarea ng-model=recipe.description"”
class="input-xlarge"
id="description" ></textarea>
</div>
</div>

<div class="control-group" >
<label class="control-label" for="ingredients" >Ingredients: </label>
<div class="controls" >
<ul id="ingredients" class="unstyled" ng-controller= "IngredientsCtrl" >
<li ng-repeat="ingredient in recipe.ingredients" >
<input ng-model=ingredient.amount” class="input-mini" >
<input ng-model=ingredient.amountUnits" class="input-small" >
<input ng-model=ingredient.ingredientName" >
<button type="button"
class="btn btn-mini"
ng-click= "removelngredient($index)" >
<i class="icon-minus-sign" ></i> Delete </button>

<button type="button"
class="btn btn-mini"
ng-click= "addIngredient()" >
<i class="icon-plus-sign" ></i> Add </button>

</div>
</div>

<div class="control-group" >
<label class="control-label" for="instructions" >Instructions: </label>
<div class="controls" >
<textarea ng-model=recipe.instructions"
class="input-xxlarge"
id="instructions" ></textarea>
</div>
</div>

<div class="form-actions" >
<button class="btn btn-primary" >Save</button>
<button type="button"
ng-click="remove()"
ng-show=!recipe.id"
class="btn" >Delete </button>

The Templates

93

</div>
</form>
Don°t panic. It looks like a lot of code, and it is a lot of code, but if you actually dig into
it, it°s not very complicated. In fact, a lot of it is simple, repetitive boilerplate to show
editable input fields for editing recipes:

N Thefocus directive is added on the very first input field (tile input field).
This ensures that when the user navigates to this page, the title field has focus so
the user can immediately start typing in the title.

N Theng-submit directive is used very similarly to the previous example, so we won°t
dive into it much, other than to say that it saves the state of the recipe and signals
the end of the editing process. It hooks up tosthee() function in the Edit Conp
troller.

N The ng-model directive is used to bind the various input boxes and text areas on
the field to the model.

N One of the more interesting aspects on this page, and one we recommend you spend
some time trying to understand, is thg-controller tag on the ingredients list
portion. Let°s take a minute to understand what is happening here.

We see a list of ingredients being displayed, and the container tag is associated with
anng-controller . That means that the whatal> tag is scoped to the Ingredients
Controller. But what about the actual controller of this template, the Edit Controlu
ler? As it turns out, the Ingredients Controller is created as a child controller of the
Edit Controller, thereby inheriting the scope of Edit Controller. That is why it has
access to thecipe object from the Edit Controller.

In addition, it adds thaddIngredient() method, which is used by the highlighted
ng-click , which is accessible only within the scope okthie tag. Why would

you want to do this? This is the best way to separate your concerns. Why should
the Edit Controller have aaddIngredients() method, when 99% of the template
doesn°t care about it? Child and nested controllers are awesome for such precise,
contained tasks, and allow you to separate your business logic into more managep
able chunks.

N The other directive that we want to cover in some depth here is the form validation
controls. It is easy enough in the AngularJS world to set a particular form field ¥as
required A Simply add thequired tag to the input (as is the case in the preceding
code). But now what do you do with it?

For that, we jump down to the Save button. Noticentitelisabled directive on

it, which saysecipeForm.$invalid . TherecipeForm is the name of the form
which we have declared. AngularJS adds some special variabl@saiidit énd
$invalid being just two) that allow you to control the form elements. AngularJS

94 | Chapter 4: Analyzing an AngularJS App

looks at all the required elements and updates these special variables accordingly.
So if our Recipe Title is emptgcipeForm.$invalid gets set to true (artlal
id to false), and our Save button is instantly disabled.

We can also set the max and min length of an input, as well as a Regex pattern against
which an input field will be validated. Furthermore, there are advanced usages that can
be applied to show certain error messages only when specific conditions are met. Let
us diverge for a bit with a small example:

<form name*myForms
User name: <input type="text"
name=userName"
ng-model='user.name"
ng-minlength="3" >
<span class="error"
ng-show=myForm.userName.$error.minlength" >Too Short!
</form>
In the preceding example, we add a requirement that the username be at least three
characters (through the use of tigminlength directive). Now, the form gets popup
lated with each named input in its scopelwe have oaserNamen this examplel
each of which will have &error object (which will further include what kind of error
it has or doesn°t havequired , minlength , maxlength, or pattern) and a$valid tag
to signal whether the input itself is valid or not.

We can use this to selectively show error messages to the user, depending on the type
of input error he is making, as we do in the previous example.

Jumping back to our original templatétecipe form templatthere is another nice

usage of thag-showhighlighted within the ingredients repeatzope The Add Inpu
gredient button is shown only beside the last ingredient. This is accomplished by calling
an ng-showand using the specigllast variable that is accessible inside@eater
element scope.

Finally, we have the lasg-click , which is attached to the second button, used for
deleting the recipe. Notice how the button only shows if the recipe is not saved yet.
While usually it would make more sense to wigehide="recipe.id" , sometimes it
makes more semantic sense torggghow="Irecipe.id" . That is, show if the recipe
doesn°’t have an id, rather than hide if the recipe has an id.

The Tests

We have been holding off on showing you the tests that go along with the controller,
but you knew they were coming, didn°t you? In this section, we°ll go over what kinds of
tests you would write for which parts of the code, and how you would actually write
them.

The Tests | 95

Unit Tests

The first and most important kind of test is the unit test. This tests that the controllers
(and directives, and services) that you have developed are correctly structured and
written, and that they do what you would expect them to.

Before we dive into the individual unit tests, let us take a look at the test harness that
surrounds all of our controller unit tests:

describe (Controllers , function () {
var $scope ctrl ;
/lyou need to indicate your module in a test
beforeEach(moduld guthub));
beforeEach(function () {
this . addMatcherg{
toEqualData: function (expected) {
return angular. equals(this . actual , expected);

}
B
Ik

describe (ListCtrl , function () {....});
/I Other controller describes here as well

Dk
The harness (we are still using Jasmine to write these tests in a behavioral manner) does
a few things:

1. Creates a globally (at least for the purpose of this test spec) accessible scope and
controller, so we don°t worry about creating a new variable for each controller.

2. Initializes the module that our app uses (GutHub in this case).

3. Adds a special matcher that we eglialData. This basically allows us to perform
assertions on resource objects (like recipes) that are returned throughethe
source service oRESTfulcalls.

Remember to add the special matcher caltpdlData any time we
want to do assertions oigResourcereturned objects. This is because
ngResourcereturned objects have additional methods on them that will
fail normal expect equal calls.

With that harness in place, let°s take a look at the unit tests for the List Controller:

describe (ListCtrl , function () {
var mockBackend recipe ;
/I _$httpBackend_ is the same as $httpBackend. Only written this way to

96 | Chapter 4: Analyzing an AngularJS App

/I differentiate between injected variables and local variables
beforeEach(inject (function ($rootScope, $controller , _$httpBackend_, Recipe) {
recipe = Recipe;
mockBackend- _$httpBackend_;
$scope = $rootScope. $new));
ctrl = $controller (ListCtrl , {
$scope $scope
recipes: [1, 2, 3]
»;
)X

it (should have list of recipes , function () {
expect($scope recipes). toEqual([1, 2, 3]);
Dk
i

Remember that the List Controller is one of the simplest controllers we have. The conp
structor of the controller just takes in a list of recipes and saves it to the scope. You could
write a test for it, but it seems kind of silly (we still did it, because tests are awesome!).

Instead, the more interesting aspect isNhtiRecipeLoader service. This is responu
sible for fetching the list of recipes from the server and passing it in as an argument
(when hooked up correctly via tBeoute service):

describe (MultiRecipeLoader , function () {

var mockBackend recipe , loader;

/I _$httpBackend__is the same as $httpBackend. Only written this way to

/I differentiate between injected variables and local variables.

beforeEach(inject (function (_$httpBackend_, Recipe, MultiRecipeLoader) {
recipe = Recipe;
mockBackend= _$httpBackend ;
loader = MultiRecipeLoader;

)k

it (should load list of recipes , function () {
mockBackendexpectGET /recipes). respond([{ id: 1}, {id: 2}]);

var recipes ;

var promise = loader ();
promise. then(function (rec) {
recipes = rec;

»;
expect(recipes). toBeUndefined();
mockBackendlush ();

expect(recipes). toEqualData([{ id: 1}, {id: 2}]);
Dk
P&

/I Other controller describes here as well

The Tests | 97

We test the MultiRecipeLoader by hooking up a méttkBackendin our test. This
comes from theangular-mocks.jfile that is included when these tests are run. Just
injecting it into youmeforeEach method is enough for you to start setting expectations

on it. In our second, more meaningful test, we set an expectatioadorea GET call

to recipeswhich will return a simple array of objects. We then use our new custom
matcher to ensure that this is exactly what was returned. Note the fbagh{p on

the mock backend, which tells the mock backend to now return response from the
server. You can use this mechanism to test control flow and see how your application
handles before and after the server returns a response.

We will skip View Controller, as it is almost exactly like the List Controller except for
the addition of aredit() method on the scope. This is pretty simple to test, as you can
inject the$location into your test and check its value.

Let us now jump to the Edit Controller, which has two points of interest that we should
be unit testing. Theesolve function is similar to the one we saw before, and can be
tested the same way. Instead, we now want to see how we candagtthand the
remove() methods. Lets take a look at the tests for those (assuming our harnesses from
the previous example):

describe (EditController , function () {
var mockBackend location ;
beforeEach(inject (function ($rootScope,
$controller
$httpBackend,
$location ,
Recipe) {
mockBackend= _$httpBackend ;
location = $location ;
$scope = $rootScope. $newv));

ctrl = $controller (EditCtrl , {
$scope $scope
$location : $location
recipe : newRecipe({id: 1, title : Recipe })
i
n);

it (should save the recipe , function () {
mockBackendexpectPOS(/recipes/1
{id: 1, title : Recipe }). respond({id: 2});

/I Set it to something else to ensure it is changed during the test
location . path(test);

$scope save();
expect(location . path()). toEqual(/test);

mockBackendlush ();

98 | Chapter 4: Analyzing an AngularJS App

expect(location . path()). toEqual(/view/2),
i

it (should remove the recipe , function () {
expect($scope recipe). toBeTruthy();
location . path(test);

$scope remove);

expect($scope recipe). toBeUndefined();
expect(location . path()). toEqual(/);

i
Dk
In the first test, we test tleave() function. In particular, we ensure that saving first
makes a POST request to the server with our object, and then, once the server responds,
the location is changed to the newly persisted object’s view recipe page.

The second test is even simpler. We simply check to ensure thatreablavg() on the

scope removes the current recipe, then redirects the user to the main landing page. This
can be easily done by injecting #iecation service into our test, and working with

it.

The rest of the unit tests for the controllers follow very similar patterns, so we can skip
over them. At their base, such unit tests rely on a few things:

N Ensuring that the controller (or more likely, the scope) reaches the correct state at
the end of the initialization

N Confirming that the correct server calls are made, and that the right state is achieved
by the scope during the server call and after it is completed (by using our mocked
out backend in the unit tests)

N Leveraging the AngularJS dependency injection framework to get a handle on the
elements and objects that the controller works with to ensure that the controller is
getting set to the correct state

Scenario Tests

Once we are happy with our unit tests, we might be tempted to just lean back, smoke a
cigar, and call it a day. But the work of an AngularJS developer isn°t done until he has
run his scenario tests. While unit tests assure us that every small piece of JS code is
working as intended, we also want to ensure that the template loads, that it is hooked
up correctly to the controllers, and that clicking around in the template does the right
thing.

The Tests | 99

This is exactly what a scenario test in AngularJS does for you. It allows you to:

pral

Load your application

2

Browse to a certain page

el

Click around and enter text willy-nilly

pral

Ensure that the right things happen

So how would a scenario test for our ¥list of recipesA page work? Well, first of all, before
we get started on the actual test, we need to do some groundwork.

For the scenario test to work, we will need a working web server that is ready to accept
requests from the GutHub application, and will allow storing and getting a list of recipes
from it. Feel free to change the code to use an in-memory list of recipes (removing the
recipe$resource and changing it to just a JSON object dump), or to reuse and modify
the web server we showed you in the previous chapter, or to use Yeoman!

Once we have a server up and running, and serving our application, we can then write
and run the following test:

describe (GutHub App, function () {
it (should show a list of recipes , function () {
browser(). navigateTo(/index.html);
/I Our Default GutHub recipes list has two recipes
expect(repeater (.recipes li). count()). toEqual(2);
DX
Pk

100 | Chapter 4: Analyzing an AngularJS App

CHAPTER 5
Communicating with Server

Up to this point, we have mostly seen how your AngularJS application should be laid
out, how the different AngularJS pieces fit together and work, and a bit on how temp
plating in AngularJS works. Together, this allows you to build some sleek, sexy apps,
but they are restricted mostly to the client side. We saw a little bit of the server-side
communication with theShttp service back i€hapter 2 but in this chapter, we°ll dig

a little bit deeper into how you would use it in a real-world application.

In this chapter, we will talk about how AngularJS allows you to communicate with your
server, both at the lowest levels of abstraction and with the nice wrappers that it provides.
Furthermore, we will go into how AngularJS can help you speed up your application
with its built-in caching mechanism. If you want to develop a realtime application with
AngularJS usingocketlQ there is amxamplein Chapter 8of a possible way to wrap
SocketlO as a directive and use it, so we won°t cover that here.

Communicating Over $http

The traditional way of making a request to the server from AJAX applications (using
XMLHttpRequestsinvolves getting a handle on tkKBILHttpRequesbbject, making the
request, reading the response, checking the error codes, and finally processing the server
response. It goes something like this:

var xmlhttp = new XMLHttpRequeg);

xmlhttp . onreadystatechange = function () {
if (xmlhttp .readystate == 4 &&xmlhttp . status == 200) {
var response = xmlhttp . responseText
} else if (xmlhttp.status == 400 { // or really anything in the 4 series
/I Handle error gracefully
}
h

101

/I Setup connection
xmihttp . open(EGER Ehttp : /myserver/api®, true);

/I Make the request
xmihttp . send);

This is a lot of work for such a simple, common, and often repeated task. If you want
to do it repeatedly, you will likely end up creating wrappers or using a library.

The AngularJS XHR API follows what is commonly known as the Promise interface.
As XHRs are asynchronous method calls, the response from the server will come back
at an unknown future date and time (hopefully almost immediately!). The Promise
interface guarantees how such responses will be dealt with, and allows consumers of the
Promise to use them in a predictable manner.

Suppose we wanted to fetch a user®s information from our server. If the APl is available
at/api/user and accepts the as a URL parameter, then our XHR request using Anp
gular®s corghttp service would look something like the following:

$http . get(api/user , {params {id: 5 }

}). success(function (data, status, headers, config) {
/I Do something successful.

1. error (function (data, status, headers, config) {
// Handle the error

hE

If you are from the jQuery world, you should notice how similarly AngularJS and jQuery
interact with asynchronous requests.

Thes$http.get method we used in the preceding example is just one of the many conp
venience methods that the cddbttp AngularJS service provides. Similarly, if you
wanted to make a POST request using AngularJS with the same URL parameters and
some POST data, you would do so as follows:

var postData = {text : long blob of text }
/I The next line gets appended to the URL as params
/I so it would become a post request to /api/user?id=5
var config = {params {id: 5 }}
$http . post(api/user , postData, config

). success(function (data, status, headers, config) {
/I Do something successful

1. error (function (data, status, headers, config) {
/I Handle the error

b

102 | Chapter 5: Communicating with Servers

Similar convenience methods are provided for most of the common request types, inu
cluding:

pral

GET
HEAD
POST
DELETE
PUT
JSONP

2y 2y 2 2 2

Configuring Your Request Further

At times, the standard request options provided out of the box are not enough. This
could be because you want to:

]

Add some authorization headers for your request

2

Change how caching is handled for the request
N Transform the request going out, or the response coming in, in certain set ways

In such cases, you can configure your request further through the optional configuration
object passed to the requests. In the prior example, we usenfige object to specify
optional URL parameters. But even the GET and POST methods we showed there are
convenience methods. The barebones method call would look something like:

$http(config)
What follows is a basic pseudo-code template for calling this method:

$http ({

method string ,

url : string ,

params object ,

data: string or object,

headers: object ,

transformRequest: function transform (data, headersGetter) or
an array of functions ,

transformResponse function transform (data, headersGetter) or
an array of functions ,

cache boolean or Cacheobject,

timeout: number

withCredentials : boolean

b

Communicating Over $http | 103

The GET, POST, and other convenience methods set the method, so you don°t need to.
Theconfig object gets passed in as the last arguméhttimget , $http.post , so you
can still use it while using any of the convenience methods.

You can change the request being made by passingrtfi¢ object set with the folu
lowing keys:

method
A string representing the HTTP request type, like GET, or POST

url
A URL string representing the absolute or relative URL of the resource being rep
guested

params
An object (a map to be precise) of string-to strings, representing keys and values
that will be translated to URL parameters. For example:

[{keyl: valuel, key2: value2 }]
would be converted to:
?keyl=valuel&key2=value2

after the URL. If we use an object, instead of a string or a number, for the value, the
object will be converted to a JSON string.

data
A string or an object that will be sent as the request message data

timeout
The time in milliseconds to wait before the request is treated as timed out

There are a few more options that can be configured, which we will explore in more
depth in the following sections.

Setting HTTP Headers

AngularJS has default headers which it applies to all outgoing requests, which include
the following:

1. Accept: application/json, text/plain, /
2. X-Requested-With: XMLHttpRequest

If there are any special headers you want to set, there are two ways of doing so.

104 | Chapter 5: Communicating with Servers

The first way, if you think you are going to apply these headers to each and every outu
going request, is to make your special header part of the default headers for AngularJS.
These are set in ti$attpProvider.defaults.headers configuration object. This step

is usually done in theonfig part of setting up your app. So if you wanted to enable
%DO NOT TRACKA for all your GET requests, while removing the Requested-With
header for all your requests, you could simply do the following:

angular . modulg MyApp,[]).
config (function ($httpProvider) {
/I Remove the default AngularJS X-Request-With header
delete $httpProvider . default . headers. commdnX-Requested-With];
/I Set DO NOT TRACK for all Get requests
$httpProvider . default . headers. get[DNT] = 1 ;
b
If you want to set the headers for only certain requests, but not as a default, then you
can pass the header in as part ofcihvefig object to$http service. The same custom
header can be passed to a GET request as part of the second parameter, which also takes
your URL parameters:

$http . get(api/user , {
/I Set the Authorization header. In an actual app, you would get the auth
/I token from a service
headers: { Authorization : Basic Qzsda231231},
params {id: 5}
}. success(function () { // Handle success });
For a full-fledged example of how to handle authorization within your application, turn

to the Cheatsheets exampledhapter 8

Caching Responses

AngularJS provides a simple caching system for your HTTP GET requests out of the
box. It comes disabled for all requests by default, but to enable caching for your requests,
all you need to do is:

$http . get(http://server/myapi ,q
cache ftrue
}. success(function () { // Handle success });

This enables the cache, and AngularJS stores the response from the server. The next
time arequest is made for the same URL, AngularJS returns the response from the cache.
The cache is also smart, so even if you make multiple simultaneous requests for the

same URL, only one request is made to the server and the response is used to fulfill all
the requests.

However, this might be jarring from a usability standpoint, as a user would first see the
old results, then the new results would suddenly show up. For example, a user might be
about to click on an item, and it might change under him.

Communicating Over $http | 105

Note that the response (even if it is being served from the cache), is still asynchronous
in nature. In other words, expect your code to behave as it did when it first made the
request.

Transformations on Requests and Responses

AngularJS applies some basic transformations on all requests and responses made
through its$http service. These include:

Request transformations
If the data property of the requesterhfig object contains an object, serialize it
into JSON format.

Response transformations
If an XSRF prefix is detected, strip it. If a JSON response is detected, deserialize it
using a JSON parser.

If you don°t want some of the transformations, or want to add your own, then you can
pass in your functions as part of ttanfig . These functions get the HTTP request/
response body, as well as the headers, and respond with the serialized, modified version.
Set theseonfig functions using theansformRequest andtransformResponsekeys,

which are configured using tthttpProvider service in theonfig function of the

module.

When would we use these? Let us assume that we have a server which is more attuned
to the jQuery way of doing things. It would expect our POST data to come in the form
keyl=vall&key2=val2 (that is, a string), instead of the JSON fornfkef/1: vall,

key2: val2} . While we could make this change at every request, or taaltstbrm
Requestcall individually, for the purpose of this example, we are going to add a general
transformRequest, so that for all outgoing calls, this transformation from JSON form

to a string happens. Here®s how we would do this:

var module = angular. moduld myApp);

module config (function ($httpProvider) {
$httpProvider . defaults . transformRequest = function (data) {
/' We are using jQueryus param method to convert our
/I JSON data into the string form
return $. paranfdata);

hE

106 | Chapter 5: Communicating with Servers

Unit Testing

So far, we have seen how you can uskhttie service and configure it in all the possible
ways you might want to. But what about writing some unit tests to ensure that it actually
works?

As we have mentioned repeatedly, AngularJS was designed with testing in mind, so of
course it has a mocked backend that allows you to test whether the right requests are
being made, and even to control how and when the response is handled, right from your

unit test.

Let us explore how you would unit test a controller that makes a request to your server,
fetches some data from it, and sets it on the scope to be displayed by the view in some
particular format.

Our NamesListCtrl is a very simple controller that has one purpose for its existence:
to hit our names API, then store all the names on the scope.

function NamesListCtrl ($scope $http) {
$http . get(http://server/names , {params {filter : pnone}}).
success(function (data) {
$scope names= data;

B
}

How would we unit test this? In our unit test, we would like to ensure that:

N NamesListCtrl can find all its dependencies (and get them injected correctly).

N The controller makes the request to fetch the names from the server as soon as it
loads.

N The controller correctly saves the response tmthessariable on the scope.

While we could construct a controller in our test, and inject a scope and fake HTTP

service into it, let us instead construct the test the same way AngularJS would in its
production code. This is the recommended way, despite it looking a bit more complipt

cated. Let’s take a look:

describe (NamesListCtrl , function (){
var scope, ctrl , mockBackend

/I AngularJS is responsible for injecting these in tests

beforeEach(inject (function (_$httpBackend_, $rootScope, $controller) {
/I This is a fake backend, so that you can control the requests
/I and responses from the server
mockBackend= _$httpBackend_;

/' We set an expectation before creating our controller,

Unit Testing | 107

/I because this call will get triggered when the controller is created

mockBackendexpectGET http://server/names?filter=none).
respond(Brad , Shyam]);

scope = $rootScope. $new));

/I Create a controller the same way AngularJS would in production
ctrl = $controller (PhoneListCtrl , {$scope scopg});
n);

it (should fetch names from server on load , function () {
/I Initially, the request has not returned a response
expect(scope name} toBeUndefined();

/I Tell the fake backend to return responses to all current requests
/l that are in flight.
mockBackendlush ();

/I Now names should be set on the scope
expect(scope namey toEqual([Brad , Shyar);
i
bk

Working with RESTful Resources

The $http service provides a very low-level implementation that allows you to make
XHR requests, but still gives you a lot of control and flexibility. But in a majority of cases,
we deal with objects and object models that are encapsulated with certain properties
and methods, like a person object (with his details), or a credit card object.

In such cases, wouldn®t it be nice if we could create a JS object that understands and
represents this object model? If we could just edit the properties of this object, say save
or update, and the state would get persisted on the server?

The $resource allows for this very capability. AngularJS resources allow us to define
object models, and in a descriptive manner, to specify:

N The server-side URL for the resource
N The types of parameters that are commonly seen for such requests

N Some additional methods (you automatically gt save, query, remove and
delete for free) that encapsulate specific functionality and business logic for the
object model (likeharge() for a credit card)

N The expected types of responses (an array or an object)
N The headers

108 | Chapter 5: Communicating with Servers

When Can You Use Angular Resources?

You should only use Angular resources if your server side behaves in a RESTful manner.
For the case of a credit card, which we will be using as an example in this part of the
chapter that entails:

1. A GET request thuser/123/cardeturns a list of credit cards for User 123.
2. A GET request ttuser/123/card/1%eturns the credit card with ID 15 for User 123.

3. A POST request faser/123/cardvith credit card info in the POST data creates a
new credit card for User 123.
4. APOST request toser/123/card/1%ith credit card info in the POST data updates
the credit card for User 123 with ID 15.
5. A DELETE request tluser/123/card/18eletes the credit card with ID 15 for User
123.

In addition to providing objects that allow you to query the server as per your requirep
ments,$resource also allows you to work with the returned objects as if they were
persisted data models, make changes, and ask them to be persisted.

ThengResourceis a separate, optional module. To use it, you need to:

N Include thangular-resource.js your script files that are sourced.

N IncludengResourcen your module dependency declaration (suchmglar.mod
ule(umyModule¥s, [ungResource¥]).

N Usénject $resource where needed.

Before we look at how we would userihResourcemethod of creating a resource, let

us take a look at what it would take to create something similar using thghtipse
service. For our credit card resource, we want to be able to get, query, and save credit
cards, in addition to being able to ¥chargeA a credit card.

Here®s one possible implementation:

myAppModuléactory (CreditCard , [$http , function ($http) {
var baseUrl = /user/123/card ;
return {
get: function (cardld) {
return $http . get(baseUrl + / + cardld);
h
save: function (card) {
var url = card.id ? baseUrl + / + card.id : baseUrl;

return $http . post(url , card);

Working with RESTful Resources | 109

b
query: function () {
return $http . get(baseUrl);

h
charge: function (card) {
return $http . post(baseUrl + / + card.id, card, {params {charge: true}});

}
h
)R
Instead, you could easily create an Angular service that reflects your resource throughp
out the app as follows:
myAppModuléactory (CreditCard , [$resource , function ($resource) {
return $resource(/user/:userld/card/:cardld ,

{userld: 123 cardld: @id },
{charge: {method POST, params{charge:true}, isArray :false });

s

Now, whenever we ask fo€eeditCard from the AngularJS injector, we get an Angular
resource, which by default gives us a few methods to start offabth.5-llists what

the methods are, and how they behave, so you know how the server should be configu
ured.

Table 5-1. A credit card resource

Resource Function Method URL Exp¢
CreditCard.get({id: 11}) @Es€r/123/card/11 Single JSON
CreditCard.save({}, ccard) /ieB8TI23/card with post data Sireyld®JSON
CreditCard.save({id: 11}, ccardjuse@B23/card/11 with post d&@agiealFON

CreditCard.query() Gkiger/123/card JSON Array
CreditCard.remove({id: 11}) /IBEetEZ&/ card/11 Single JSON
CreditCard.delete({id: 11}) /D&drFPB/card/11 Single JSON

Let°s take the example of a credit card, which should make things clearer.

/I Let us assume that the CreditCard service is injected here

/' We can retrieve a collection from the server which makes the request
/l GET: /user/123/card
var cards = CreditCard . query();

/' We can get a single card, and work with it from the callback as well
CreditCard . get({ cardld : 456, function (card) {

[/l each item is an instance of CreditCard

expect(card instanceof CreditCard). toEqual(true);

card. name= "J. Smith" ;

/ non-GET methods are mapped onto the instances

card. $save();

110 | Chapter 5: Communicating with Servers

/I our custom method is mapped as well.
card. $charge({ amount 9.99});
I/l Makes a POST: /user/123/card/456?amount=9.99&charge=true
[/l with data {id:456, number: 1234 , name: J. Smith }
bk
A lot of things happen in the preceding example, so we°ll call out the important parts
one by one:

The Declaration

Declaring your owr$resource is as simple as calling the injecedsource function
(you know how to inject things by now, right?) with the right parameters.

The$resource function takes one required argumentithe URL at which the resource
is availableland two optional arguments: default parameters and additional actions
you want to configure on the resource.

Notice that the URL parameter is parametrized (tldenotes a parameter. Thser

Id states that theserld parameter will replace the text there, and:tlaedld will be
replaced by the value of thardld parameter). If the parameter is not passed, then it
will be replaced by an empty string.

The second parameter takes care of the default parameters to be passed along with each
request. In this case, we pass inuterld as a constant 123. Toardld parameter is

more interesting. We sayardld is '@idA This denotes that if | am using a returned
object from the server, and | call any method on it (suéka®), then thecardld field

is to be picked from thie property on the object.

The third argument is other methods we would like to expose on our custom resource.
We°ll cover this in depth in the following section.

Custom Methods

The third argument to th&resource call is optional additional methods you want to
€eXpose on your resource.

In this case, we specify a method charge. This can be configured by passing in an object,
with the key being the method name to be exposed. The configuration needs to specify
the method type of the request (GET, POST, and so on), the parameters that need to be
passed as part of that request (charge=true in this case), and if the returned result is an
array or not (not, in this case). Once that is done, you are free to start Cadiditg
Card.charge() whenever you want (as long as the user has charged in real life, of
coursel).

Working with RESTful Resources | 111

No Callbacks! (Unless You Really Want Them)

The third thing to notice is the return type of the resource call. Take a look at the
CreditCard.query() call again. You will see that instead of assigning the cards in a
callback, we are directly assigning them to the card®s variable. With an asynchronous
server request, will that code even work?

You would be correct to worry about whether the code will work, but the code is actually
correct and will work. What®s happening here is that AngularJS assigned a reference (an
object or an array, depending on the expected return type), which will get populated at
some point in the future when the server requests returns. In the meantime, the object
will remain empty.

Since the most common flow with AngularJS apps is to fetch data from the server, assign
it to a variable, and display it in the template, this shortcut is nice. In your controller
code, all you have to do is make the server-side call, assign the return value to the right
scope variable, and let the template worry about rendering it when it returns.

This approach will not work for you if you have some business logic you want executed
on the return value. In such a case, you will have to depend on the callback, which is
used in theCreditCard.get() call.

Simplified Server-Side Operations

Regardless of whether you use the shortcut return type or the callback, there are some
other points you should note about the returned object.

The return value is not a plain old JS object, but in fact a ¥resourceA type object. This
means that in addition to the value returned by the server, it has some additional bep
havior attached to it (thgsave() and$charge() in this case). This allows you to perp

form server-side operations with ease, for example by fetching data, making some
changes, and persisting the changes to the server (the most common behavior in any
CRUD app).

Unit Test the ngResource

ThengResourcds an encapsulation, and usesthigp core AngularJS at its base. Thus,
you already know how to unit test it. Nothing really changes from the unit testing
example we saw f@http . You only need to know the final request that is expected to
be made by the resource, tell the fetkitp service about it, and everything else should
be exactly the same. Let°s take a look at a test for our preceding code:

describe (Credit Card Resource , function (){
var scope, ctrl , mockBackend

beforeEach(inject (function (_$httpBackend_, $rootScope, $controller) {
mockBackend-= _$httpBackend_;

112 | Chapter 5: Communicating with Servers

scope = $rootScope. $new);

/I Assume that CreditCard resource is used by the controller

ctrl = $controller (CreditCardCtrl , {$scope scope});
n);

it (should fetched list of credit cards , function () {
/I Set expectation for CreditCard.query() call
mockBackendexpectGET /user/123/card).
respond([{ id: 234 , number 11112222 })]);

ctrl . fetchAllCards ();

/I Initially, the request has not returned a response
expect(scope cards). toBeUndefined();

/I Tell the fake backend to return responses to all current requests
/I that are in flight.
mockBackendlush ();

/I Now cards should be set on the scope
expect(scope cards). toEqualData([{ id: 234 , number 11112222}]);

i
bk
This test should look extremely similar to the sinf§iép unit test, except for one
minor difference. Notice how in our expectation, instead of using the simple ¥equalsA
method, we are using a spedtidiqualData call. This expectation is smart enough to
ignore the additional methods that thgResourceadds to an object.

The $g and the Promise

So far, we have seen how AngularJS implements its asynchronous, deferred API. The
Promise proposal is the basis for how AngularJS structures its API. At its base, the
Promise proposal dictates the following for asynchronous requests:

N Async requests return a promise instead of a return value.

N The Promise hasthen function, which takes two arguments, a function to handle
the %resolvedA or ¥successA event, and a function to handle the %arejectedA or the
YfailureA event. These functions are called with the result, or the reason for the
rejection.

N It is guaranteed that one of the two callbacks will be called, as soon as the result is
available.

While most deferred/Q implementations follow this kind of approach, AngularJS° imp
plementation is special for the following reasons:

The $q and the Promise | 113

N The$qis AngularJS aware, and thus is integrated with the scope model. This allows
for faster propagation of resolution and less flicker/updates in the Ul

N AngularJS templates also recognizefippromises, and thus they can be treated
as the resultant value themselves instead of a promise, which will be notified of the
result.

N A smaller footprint, as AngularJS implements only the basic, most important funcp
tionality needed for common async tasks.

You might ask the question: why would you want to do something so crazy? Let°s take
a look at a standard problem you might run into with asynchronous functions:

fetchUser (function (user) {
fetchUserPermissions (user, function (permissions) {
fetchUserListData (user, permissions, function (list) {
/I Do something with the list of data that you want to display
b
N
b
This is the dreaded pyramid of doom that people complain about when working with
JavaScript. The asynchronous nature of returns competes with the synchronous needs
of the program, leading to multiple nested functions, making it that much harder to
keep track of the current context.

In addition, there is also the matter of error handling. What is the best way to handle
errors? Do you do it in each step? That also gets messy.

To fix this, the Promise proposal offers the concegiteasf, which takes the functions

to execute in case of a success, on one hand, and error on the other, each of which can
also be chained. So the preceding example, with the Promise API (AngularJS° implep
mentation, at least), could be flattened to:

var deferred = $q. defer ();

var fetchUser = function () {
/I After async calls, call deferred.resolve with the response value
deferred . resolve (user);

/I In case of error, call
deferred . reject (pReasonfor failure 3);

/I Similarly, fetchUserPermissions and fetchUserListData are handled

deferred . promise. then(fetchUser)
.then(fetchUserPermissions)
.then(fetchUserListData)
.then(function (list) {
/I Do something with the list of data
}, function (errorReason) {

114 | Chapter 5: Communicating with Servers

/I Handle error in any of the steps here in a single stop
Dk
The whole pyramid is flattened nicely, and provides scope for chaining, as well as a
single point of error handling. You can use the same code in your application for hanp
dling asynchronous calls by including $gAngularJS service. This mechanism also
allows us to do something very cool: response interception!

Response Interception

We have covered making calls to the server, handling responses, wrapping the responses
nicely in abstractions, and dealing with asynchronous calls. But in any real world appu
plication, you would end up having to do some common operations for each server call
you made, tasks such as error handling, authentication, and other security considerap
tions like pruning the data.

With a solid understanding of tt#g API, we can now set about doing all of the above
using Response Interceptors. Response Interceptors allow you (as the name would
suggestto intercept responses before they make it to the application, and apply your
transformations, error handling, and everything else, including the kitchen sink.

Let us take an example which intercepts the responses and does some minor data transp
formation.

/ register the interceptor as a service
myModulefactory (mylnterceptor , function ($g, notifyService , errorLog) {
return function (promise) {
return promise. then(function (response) {
/I Do nothing
return response;
}, function (response) {
/I My notify service updates the Ul with the error message
notifyService (response);
/I Also log it in the console for debug purposes
errorLog (response);
return $q. reject (response);

/I Ensure that the interceptor we created is part of the interceptor chain
$httpProvider . responselnterceptors . push(myinterceptor);

Security Considerations

Now, when working with web applications, security is a huge concern and should be
kept at the top of one®°s mind. AngularJS does provide some assistance when it comes
to two common attack vectors, which we will cover in the following sections.

Response Interception | 115

JSON Vulnerability

There is a very subtle JSON vulnerability which is exposed when a GET request is made
to retrieve JSON information as an array (especially if the information is sensitive and
requires login credentials or authentication to access).

The vulnerability involves a malicious site which use3GRIPTtag to make a request
for the same information. Because you are still logged in, the malicious site uses your
credential to request the JSON information, and gets it.

You might wonder how, because that information is still on your client, and the server
cannot get a handle on that information. And usually, JSON objects returned as a result
of sourcing a script will cause an error, though arrays are an exception.

But here®s where the vulnerability kicks in: in JavaScript, it is possible to rewrite or re-
declare built-in objects. In this vulnerability, the array constructor gets redefined, and
in this redefinition, the malicious website can get a handle on the data, and send it to
its own server.

There are two ways to prevent this vulnerability: always ensure that sensitive informap
tion is sent by JSON as a response to POST requests only, and return an object, or an
invalid JSON expression as your result, then have some client-side logic to convert it
into the actual data.

AngularJS allows you to prevent this vulnerability in both of these ways. In your applip
cation, you can (and should!) choose to retrieve JSON information through POST rep
guests only.

Furthermore, you can configure your server to prefix:
I} \n”

before all your JSON responses. Thus, a normal response of:
[Hone¥s, putwo¥i]

would be returned as:
o

[one, two]

AngularJS will automatically strip this prefix and only then process the JSON.
XSRF
XSRF (Cross-Site Request Forgery) attacks usually have the following characteristics:

N They involve sites that rely on authentication or a user®s identity.

N They exploit the fact that the user remains logged in and authenticated to the site
with the vulnerability.

116 | Chapter 5: Communicating with Servers

N They make spurious HTTP/XHR requests that have (often harmful) side effects.

Consider the following example of an XSRF attack:

2

User A is logged into his bank accotttp(//www.examplebank.com

2

User B realizes this, and gets User A to visit User B°s home page
N The home page has a specially crafted image link which triggers the XSRF attack

If User A’s bank keeps the authentication information in a cookie, and it hasn°t expired,
then when User A opens User B°s website, it would trigger an unauthorized transfer
from User A to User B.

So how does AngularJS help prevent this? It provides a two-step mechanism to prevent
XSRF vulnerabilities.

On the client side, when performing XHR requests$kitip service reads a token from

a cookie called XSRF-TOKEN and sets it as an HTTP header X-XSRF-TOKEN. Since
only your requests from your domain could have read and set the token, you can be
assured that the XHR came from your domain.

This also requires a slight modification of your server code, so that it sets a readable
session cookie called XSRF-TOKEN on the first HTTP GET request. Subsequent rep
guests to the server can verify that the value in the HTTP header matches the XSRF
token set in the first request. Of course the token must be unique to every user, and
must be verifiable by the server (to prevent the JavaScript from making up its own
tokens).

Security Considerations | 117

CHAPTER 6
Directives

With directives, you can extend HTML to add declarative syntax to do whatever you
like. By doing so, you can replace genedig>s and<spans with elements and atp
tributes that actually mean something specific to your application. The ones that come
with Angular provide basic functionality, but you can create your own to do things
specific to your application.

First we°re going to go over the directives APl and how it fits within the Angular startup
and runtime lifecycles. From there, we’ll use this knowledge to create several classes of
directives. We°ll finish the chapter with how to write unit tests for directives and how

to make these run quickly.

But first, a few notes on the syntax for using directives.

Directives and HTML Validation

Throughout this book, we°ve used Angular®s built-in directives wittythective-
namesyntax. Examples incluag-repeat , ng-view, andng-controller . Here, theng

portion is the namespace for Angular, and the part after the dash is the name for the
directive.

While we prefer this syntax for ease of typing, it isn°t valid in many HTML validation
schemes. To support these, Angular lets you invoke any directive in several ways. The
following syntaxes, laid out ifeble 6-1 are all equivalent to allow for your preferred
validator to work properly:

119

Table 6-1. HTML Validation Schemes

Validator Format Example
none namespace-name nigerapeatems
XML namespace:name ngerepedems

HTML5 data-namespace-name dai@mgrefemas=
XHTML x-namespace-name XHegArapikenTs

Because you can use any of theseAttailar documentatiodists directives with a
camel-case format, instead of any of these options. For exaigypépeat is found
under the titlengRepeatAs you°ll see in a bit, you°ll use this naming format when
defining your own directives.

If you don°t use an HTML validator (most folks don°t), you°ll be just fine using the
namespace-directive syntax as you°ve seen in the examples so far.

APl Overview

A basic pseudo-code template for creating any directive follows:

var myModule= angular. modul€...);

myModuledirective (namespaceDirectiveName, function factory (injectables) {
var directiveDefinitionObject ={
restrict : string ,
priority : number
template: string ,
templateUrl : string ,
replace : bool,
transclude : bool,
scope bool or object,
controller : function controllerConstructor ($scope
$element,
$attrs
$transclude),
require : string ,

link : function postLink (scope iElement, iAttrs) { ... },
compile: function compile(tElement, tAttrs , transclude) {
return {
pre: function preLink (scope iElement, iAttrs , controller) { ... 1},
post: function postLink (scope iElement, iAttrs , controller) { ... }
}
}
I3
return directiveDefinitionObject ;
h

Some of the options are mutually exclusive, most of them are optional, and all of them
have details that are worth explaining.

120 | Chapter 6: Directives

Table 6-2provides an overview of when you°d use each of the options.

Table 6-2. Directive definition options

Property Purpose

restrict Declare how directive can be used in a template as an element, attribute, class, comment, or an
priority Set the order of execution in the template relative to other directives on the element.

template Specify an inline template as a string. Not used if you re specifying your template as a URL.
templateUrl Specify the template to be loaded by URL. This is not used if you ve specified an inline templat
replace If true, replace the current element. If false or unspecified, append this directive to the current el
transclude Lets you move the original children of a directive to a location inside the new template.

scope Create a new scope for this directive rather than inheriting the parent scope.

controller Create a controller which publishes an API for communicating across directives.

require Require that another directive be present for this directive to function correctly.

link Programmatically modify resulting DOM element instances, add event listeners, and set up data |

compile Programmatically modify the DOM template for features across copies of a directive, as when u
Your compile function can also return link functions to modify the resulting element instances.

Let°s dig into the details.

Naming Your Directive

You create a name for your directive with a module®s directive function, as in the folu
lowing:

myModule.directive(directiveName , function factory(injectables)

Though you can name your directives anything you like, the convention is to pick a
prefix namespace that identifies your directives and prevents them from colliding with
external directives that you might include in your project.

You certainly wouldn°t want to name them with an ng- prefix, as that might collide with
Angular®s bundled directives. If you work at SuperDuper MegaCorp, you could choose
super-, superduper-, or even superduper-megacorp-, though you might choose the first
option just for ease of typing.

As previously noted, Angular uses a normalized naming scheme for directives and will
make camel-cased directive names available in templates in the five different validator-
friendly varieties. For example, if you°ve picked your prefix as super- and you°re writing
a date-picker component, you might namsuperDatePicken templates, you could

then use it as super-date-picker, super:date-picker, data-super-date-picker, or another
variant.

AP| Overview | 121

The Directive Definition Object

As previously mentioned, most of the options in the directive definition are optional.
In fact, there are no hard requirements and you can construct useful directives out of
many subsets of the parameters. Let°s take a walk through what the options do.

restrict

Therestrict property lets you specify the declaration style for your directivelthat is,
whether it can be used as an element name, attribute, class, or comment. You can specify
one or more declaration styles using a character to represent each of them from the set
in Table 6-3

Table 6-3. Options for directive declaration usage

Character Declaration style Example

E element <my-menPtaldzetdmy-menu>

A attribute <div my-nReadeetdmy-menu>

C class <div clagsmenu:Progudis>

M comment <!-- directive: my-menu Products -->

If you wanted to use your directive as either an element or an attribute, youBd\pass
as theestrict string.

If you omit therestrict property, the default i&, and your directive can be used only
as an attribute.

If you plan to support IE8, attribute- and class-based directives are your best bet, as it
requires extra effort to make new elements work properly. Séaghear documenp
tation for full details on this.

Priorities
In cases where you have multiple directives on a single DOM element and where the

order in which they°re applied matters, you can usgritvty property to order their
application. Higher numbers run first. The default priority is O if you don°t specify one.

Needing to set priority will likely be a rare occurrence. One example of a directive that
needs to set priority is they-repeat . When repeating elements, we want Angular to
make copies of the template element before other directives get applied. Without this,
the other directives would get applied to the canonical template element rather than to
the repeated elements we want in our app.

Though it°s not in the documentation, you can searci\tiailar sourceor the few
other directives that ugwiority . Forng-repeat, we use a priority value of 1000, so
there®s plenty of room for other priorities beneath it.

122 | Chapter 6: Directives

Templates

When creating components, widgets, controls, and so on, Angular lets you replace or
wrap the contents of an element with a template that you provadeexample, if you

were to create a set of tabbed views in your Ul, you would render something like
Figure 6-1

Figure 6-1. Tabbed views

Instead of having a bunch efliv>, <Ili> , and<a>elements, you could create the
directives<tab-set> and<tab>, which declare the structure of each tab respectively.
Your HTML then does a much better job of expressing the intent of your template. The
end result could look like:

<tab-set >
<tab title= Home>
<p3Welcome home¥/p>
</tab>
<tab title= Preferences >
<l-- preferences Ul goes here -->
</tab>
</tabset>

You could also data bind the strings for title and the tab content via a controtiabon

or <tabset>. And it°s not limited to tabslyou can do menus, accordions, pop-ups,
dialog boxes, or anything else your app needs in this way.

You specify the replacement DOM elements either throughethplate or thetem

plateUrl properties. You°d usemplate to set the template content via a string, and
templateUrl to refer to the template to be loaded from a file on the server. As you°ll see
in the following example, you can pre-cache these templates to reduce the number of
GET requests, potentially improve performance.

Let°s write a dumb directive<bello> element that just replaces itself wittiv>Hi
there</div> . In it, we°ll setestrict to allow elements and semplate to what we

want to display. As the default behavior is to append content to elements, we°ll set
replace to true to replace the original template:

API Overview | 123

var appModule= angular. modulg app , []);
appModuledirective (hello , function () {
return {

restrict : E ,

template: <div>Hi there</div>
replace: true

h
b

We°ll use it in a page like so:
<html lang=en ng-app=app >

<body>
<hello></hello>
</body>

Loading it into a browser, we see ¥%Hi there A

If you were to view the page source, you°d still seehtiie></hello> on the page,
but if you inspected the generated source (in Chrome, right-cliek trereand select
Inspect Elemehtyou would see:

<body>

<div>Hi there </div>
</body>

The<hello></hello> was replaced by theliv> from the template.

If you were to remove theeplace: true from the directive definition, you°d see
<hello><div>Hi there</div></hello>

You°ll usually want to ugemplateUrl instead oftemplate, as typing HTML into
strings isn°t much fun. Themplate property is usually only useful for very small
templates. Writing aemplateUrl is useful, as these templates are cacheable by setting
the appropriate headers. We could rewrite loeifo directive example like so:

var appModule= angular. moduld app , []);
appModuledirective (hello , function () {
return {

restrict : E ,

templateUrl : helloTemplate.html
replace : true

J5
b

and inhelloTemplate.html , you would put:
<div>Hi there </div>

If you are using Chrome as your browser, the ¥%same origin policyA will prevent Chrome
from loading these templates frdiite://, and you°ll get an error that says something

124 | Chapter 6: Directives

like %Origin null is not allowed by Access-Control-Allow-Origin A You have two options
here:

N Load your app through a web server

N Set a flag on Chrome. You can do this by running Chrome from the command line
aschrome --allow-file-access-from-files

Loading these files througbémplateUrl will, however, make your user wait until they
load to see the directive. If you want to have the template load with the first page, you
can include it as part of the page iscept tag, like so:

<script type= text/ng-template id= helloTemplatelnline.html >
<div >Hi there </div>
</script>
Theid attribute here is important, as this is the URL key that Angular uses to store the
template. You°ll use this later in your directivetemplateUrl to specify which temp
plate to insert.

This version will load just fine without a server, aXhbHttpRequesis necessary to
fetch the content.

Finally, you could load the templates yourself @retp or another mechanism and
then set them directly in the object Angular uses callegitémeplateCache We want
this template available in the cache before the directives run, so we°ll calrinvia a
function on our module.

var appModule= angular. module app , [I);

appModulerun(function ($templateCachg {
$templateCache put(helloTemplateCached.html , <div>Hi there</div>);

bk

appModuledirective (hello , function () {
return {

restrict : E ,

templateUrl : helloTemplateCached.html ,
replace : true

h

Pk

You would likely want to do this in production only as a technique to reduce the number
of GET requests required. You°d run a script to concatenate all the templates into a single
file, and load it in a new module that you then reference from your main application
module.

API Overview | 125

Transclusion

In addition to replacing or appending the content, you can also move the original conp
tent within the new template through ti@nsclude property. When set to true, the
directive will delete the original content, but make it available for reinsertion within
your template through a directive callegttransclude .

We could change our example to use transclusion:

appModuledirective (hello , function () {

return {

template: <div>Hi there </div>
transclude : true
h
b

applying it as:
<div hello >Bobx</div>
We would see: ¥%Hi there BobA

Compile and Link Functions

While inserting templates is useful, the really interesting work of any directive happens
in its compile or itslink function.

Thecompile andlink functions are named after the two phases Angular uses to create
the live view for your application. Let’s take a high-level view of Angular®s initialization
process, in order:

Script loads
Angular loads and looks for tihg-app directive to find the application boundaries.

Compile phase
In this phase, Angular walks the DOM to identify all the registered directives in the
template. For each directive, it then transforms the DOM based on the directive®s
rules (emplate, replace , transclude , and so on), and calls tbempile function
if it exists. The result is a compilednplate function, which will invoke thénk
functions collected from all of the directives.

Link phase
To make the view dynamic, Angular then rurimk function for each directive.
Thelink functions typically creates listeners on the DOM or the model. These
listeners keep the view and the model in sync at all times.

So we°ve got the compile phase, which deals with transforming the template, and the
link phase, which deals with modifying the data in the view. Along these lines, the
primary difference between thempile andlink functions in directives is thabmpile

126 | Chapter 6: Directives

functions deal with transforming the template itself, Bmid functions deal with makp

ing a dynamic connection between model and view. Itis in this second phase that scopes
are attached to the compildéidk functions, and the directive beconie® through

data binding.

These two phases are separate for performance re@sangslefunctions execute only
once in the compile phase, whertials functions are executed many times, once for
each instance of the directive. For example, let°s say yog-tegeat over your dip
rective. You don°t want to calbmpile, which causes a DOM-walk on eaui
repeat iteration. Instead, you want to compile once, thek .

While you should certainly learn the differences betweampile andlink and the
capabilities of each, the majority of directives you°ll need to write will not need to transp
form the template; you°ll write mostigk functions.

Let°s take a look at the syntax for each of these again to compeombitar, we have:

compile: function compile(tElement, tAttrs , transclude) {

return {
pre: function preLink (scope iElement, iAttrs , controller) { ... 1},
post: function postLink (scope, iElement, iAttrs , controller) { ... }

}
}

And forlink , itis:
link : function postLink (scope iElement, iAttrs) { ... }

Notice that one difference here is that timk function gets access to a scope but
compile does not. This is because during the compile phase, the scope doesn°t exist yet.
You do, however, have the ability to retlink functions from thecompile function.
Thesdink functions do have access to the scope.

Notice also that bothompile andlink receive a reference to their DOM element and
the list of attributes for that element. The difference here is thabthpile function
receives théemplate element and attributes from the template, and thus gets the
prefix. Thelink function receives them from the view instances created from the temp
plate, and thus gets therefix.

This distinction only matters when the directive is within some other directive that
makes copies of the template. Hgerepeat directive is a good example.
<div ng-repeat= thing in things >
<mywidget config= thing ></my-widget>
</div>
Here, thecompile function will be called exactly once, but tink function will be
called once per copy ofy-widgetlequal to the number of elements ithings . So, if

AP| Overview | 127

my-widget needs to modify something in common to all copies (instances)y-of
widget, the right place to do this, for efficiency’s sake, isamgile function.

You will also notice that theompile function receives @tansclude function as a
property. Here, you have an opportunity to write a function that programmatically
transcludes content for situations where the simple template-based transclusion won°t
suffice.

Lastly,compile can return both greLink and apostLink function, wherea$ink
specifies only postLink function.preLink, as its name implies, runs after the compile
phase, but before directives on the child elements are linked. Simiatlynk runs

after all the child element directives are linked. This means that if you need to change
the DOM structure, you will do so postLink . Doing it in thepreLink will confuse

the attachment process and cause an error.

Scopes

You will often want to access a scope from your directive to watch model values and
make Ul updates when they change, and to notify Angular when external events cause
the model to change. This is most common when you°re wrapping some non-Angular
component from jQuery, Closure, or another library, or implementing simple DOM
events. Evaluate Angular expressions passed into your directive as attributes.

When you want a scope for one of these reasons, you have three options for the type of
scope you°ll get:

1. Theexisting scopgrom your directive’s DOM element.

2. Anew scopeou create that inherits from your enclosing controller®s scope. Here,
you°ll have the ability to read all the values in the scopes above this one in the tree.
This scope will be shared with any other directives on your DOM element that
request this kind of scope and can be used to communicate with them.

3. Anisolate scopehat inherits no model properties from its parent. You°ll want to
use this option when you need to isolate the operation of this directive from the
parent scope when creating reusable components.

You can create these scope configurations with the following syntax:

Scope Type Syntax
existing scogmpe: false (this is the default if unspecified)
new scope scope: true
isolate scopsrope: { /* attribute names and binding style */ }

128 | Chapter 6: Directives

When you create an isolate scope, you don°t have access to anything in the parent scope®s
model by default. You can, however, specify that you want specific attributes passed into
your directive. You can think of these attribute names as parameters to the function.

Note that while isolate scopes don°t inherit model properties, they are still children of
their parent scope. Like all other scopes, they hdiparant property that references
their parent.

You can pass specific attributes from the parent scope to the isolate scope by passing a
map of directive attribute names. There are three possible ways to pass data to and from
the parent scope. We call these different ways of passing data ¥binding strategies A You
can also, optionally, specify a local alias for the attribute name.

The syntax without aliases is in the following form:

scope { attributeNamel: BINDING_STRATEGY
attributeName2: BINDING_STRATEGY

}
With aliases, the form is:

scope { attributeAlias : BINDING_STRATEGH templateAttributeName

}
The binding strategies are defined by symbolabie 6-4

Table 6-4. Binding strategies

Symbol Meaning

@ Pass this attribute as a string. You can also data bind values from enclosing scopes by using interpc
attribute value.

= Data bind this property with a property in your directive s parent scope.
& Pass in a function from the parent scope to be called later.

These are fairly abstract concepts, so let°s look at some variations on a concrete example
to illustrate. Let°s say that we want to creaexpandedirective that shows a title bar
that expands to display extra content when clicked.

It would look likeFigure 6-2when closed.

Figure 6-2. Expander in closed state

It would look likeFigure 6-3when opened.

API Overview | 129

Figure 6-3. Expander in open state

We would write it as follows:

<div ng-controller=" SomeController >
<expander class= expander expander-title= title >

{{text}}

</expander>
</div>

The values for titleGlick me to expandand text i there folks®), come from the
enclosing scope. We could set this up with a controller like so:

function SomeController($scopg {

$scopetitle = Click me to expand
$scope text = Hithere folks, | am the content
+ that was hidden but is nowshown ;

}
We can then write this directive as:

angular. modulg expanderModule , [])
.directive (expander , function ()}
return {
restrict : EA,
replace: true,
transclude : true,
scope { title : =expanderTitle 1},
template: <div> +
<div class="title" ng-click="toggle()">{{title}}</div> +
<div class="body" ng-show="showMe" ng-transclude></div> +
</div>
link : function (scope, element, attrs) {
scope showMe= false ;

scope toggle = function toggle () {
scope showMe= ! scope showMe
}
}
}
B

And for styling, we°d do something like this:
.expander {

border: 1px solid black;
width: 250px

}

130 | Chapter 6: Directives

.expander > .title {
background-color : black;
color : white;
padding: .lem .3emn
cursor : pointer ;

}
.expander > .body {

padding: .lem .3emn
}

Let°s look at what each option in the directive is doing for Uajie 6-5

Table 6-5. Functions of elements

Function Name Description

restrict: EA Invoke this directive as either an element orexprander“Fhafeigpander>and
<div expander°>°</div> are equivalent.

replace: true Replace the original element with the template we provide.
transclude: true Move the original element s content to another location in the provided template.

scope: { title: Create a local scope profigety tadied data boumaditenascope property declared
=expanderJitle in thexpander-tite attribute. Here, we re emamdegTitle asitle for
convenience. We could haweperifterpanderTitle: = } and referred to it as
expanderTitle within our template instead. But in case other diitectiaésilalge,have a
it makes sense to disambiguate our title in the API and just rename it for local use. Also no
the naming uses the same camel-case expansion as the directive hames themselves do.

template: <°div°>Beclare the template to be inserted for this directive nhtateithandgrehasing

) to show/hide ourselngsgrandclude to declare where the original content will go. Also note
that transcluded content gets access to the parent scope, not the scope of the directive enc
link: Set up st®wMenodel to track the expander s open/closed statgendfdeéitierthe

to be called when users tiilgk odithe

If we think it would make more sense to define the expander title in the template rather
than in the model, we can use the string-style attribute passing denote@ynalool
in the scope declaration, like this:

scope { title : @expanderTitle },
In the template we can achieve the same effect with:

<expander class= expander expander-title= Click me to expand >

{{text}}
</expander>
Note that with this@strategy we could still data bind the title to our controller®s scope
by using interpolation :
<expander class = expander expandertitle = {{title}} >

{{ text }}

</expander>

AP| Overview | 131

Manipulating DOM Elements

TheiElement or tElement passed to the directivéfsk andcompile functions are
wrapped references to the native DOM element. If you have loaded the jQuery library,
these are jQuery elements you°re already used to working with.

If you°re not using jQuery, the elements are inside an Angular-native wrapper called
jgLite. This API has a subset of jQuery that we need to create everything in Angular.
For many applications, you can do everything you need with this API alone.

If you need direct access to the raw DOM element you can get it by accessing the first
element of the object witslement[0] .

You can see the full list of supported APIs in the Angular doesfuilar.element()

Ithe function you°d use to create jgLite-wrapped DOM elements yourself. It includes
functions likeaddClass() , bind() ,find() ,toggleClass() , and so on. Again, these are
all the most useful core functions from jQuery, but with a much smaller code footprint.

In addition to the jQuery APIs, elements also have Angular-specific functions. These
exist whether or not you°re using the full jQuery library.

Table 6-6. Angular specific functions on an element

Function Description

controller(name)

When you need to communicate directly with a controller, this function returns the controll
to the element. If none exists for this element, it walks up the DOM and finds the nearest pat
instead. The name parameter is optional and is used to specify the name of another direc
same element. If provided, it will return the controller from that directive. The name shoulc
camel-case format as with all directjMesielihatdaghgfmodel.

injector() Gets the injector for the current element or its parent. This allows you to ask for depender
for the modules in these elements.

scope() Returns the scope of the current element or its nearest parent.

inheritedData() As with the jQuery fiatefiorinheritedData() sets and gets data on an element in a

leak-proof way. In addition to getting data from the current element, it will also walk up the

find a value.

As an example, let°s re-implement the previous expander example without the help of
ng-showandng-click . It would look like the following:

angular . moduld expanderModule , [])
. directive (expander , function (){
return {
restrict : EA,
replace: ftrue,

transclude : true,
scope { title : =expanderTitle 1},
template: <div> +
<div class="title">{{title}}</div> +
<div class="body closed" ng-transclude></div> +

132 | Chapter 6: Directives

</div>
link : function (scope, element, attrs) {
var titleElement = angular. element(element. children (). eq(0));
var bodyElement= angular. element(element. children (). eq(1));

titteElement . bind(click , toggle);

function toggle () {
bodyElementtoggleClass (closed);

}
}
}

P&
We°ve removed theg-click andng-showdirectives from the template. Instead, to
perform the desired action when users click on the expander title, we°ll create a jgLite
element from the title element and bind the click event to it witlygle() function
as its callback. ltoggle() , we’ll calloggleClass() on the expander body element to
add or remove a class caltdoked, where we®°d set the elemendigplay: none with
a class like this:

.closed {
display : none
}
Controllers

When you have nested directives that need to communicate with each other, the way to
do this is through a controller. Amenu>may need to know about tkenenu-item>
elements inside it so it can show and hide them appropriately. The same would be true
for a<tab-set> knowing about its<tab> elements, or &grid-view> knowing about

its <grid-element> elements.

As previously shown, to create an API to communicate between directives, you can
declare a controller as part of a directive with the controller property syntax:

controller : function controllerConstructor ($scopg $element, $attrs , $transclude)

This controller function is dependency injected, so the parameters listed here, while
potentially useful, are all optionallthey can be listed in any order. They°re also only a
subset of the services available.

Other directives can have this controller passed to them withethure property
syntax. The full form afequire looks like:

require : "?directiveName

Explanations of theequire string can be found ifiable 6-7

API Overview | 133

Table 6-7. Options for required controllers

Option Usage

directiveName This camel-cased name specifies which directive the controller<shgutienome from. So if our
item> directive needs to find a controllexrap-itepgreetd write ihgslenu

A By default, Angular gets the controller from the named directive on the same element. Adding
~ symbol says to also walk up the DOM tree to fincthy-dieectxantetivee d need
to add this symbol; the final strivgwwdatdibe

? If the required controller is not found, Angular will throw an exception to tell you about the prok
a ? symbol to the string says that this controller is optional and that an exception shouldn t be
found. Though it sounds unlikely, if wemyamistlitddets be used withoay-a
menueontainer, we could add this for a final?@quinestning of

As an example, let°s rewrite our expander directive to be used in a set called ¥accordion A
which ensures that when you open one expander, the others in the set automatically
close. This looks something likegure 6-4

Figure 6-4. Accordion component in multiple states

First, let°s write the accordion directive that will do the coordination. We°ll add our
controller constructor here with methods to do the coordination:

appModuledirective (accordion , function () {
return {
restrict : EA,
replace : true,
transclude : true
template: <div ng-transclude></div>
controller : function () {
var expanders = [J;

134 | Chapter 6: Directives

this . gotOpened= function (selectedExpander) {
angular . forEach(expanders, function (expanden {
if (selectedExpander != expanden {
expander. showMe= false ;
}
Dk
}

this . addExpander= function (expanden {
expanders. push(expanden);
}
}
}
Dk

We°ve defined aaddExpander() function for expanders to call to register themselves.
We°ve also createdjatOpened() function for the expanders to call so the accordion®s
controller can know to close any other open expanders.

In the expander directive itself, we°ll extend it to require the accordion®s controller from
the parent element and calldExpander() andgotOpened() at appropriate times.

appModuledirective (expander , function (){
return {
restrict : EA,
replace: true,
transclude : true ,
require : “?accordion
scope { title : =expanderTitle 1},
template: <div> +
<div class="title" ng-click="toggle()">{{title}}</div> +
<div class="body" ng-show="showMe" ng-transclude></div> +
</div>
link : function (scope element, attrs , accordionController) {
scope showMe= false ;
accordionController .addExpandefscope);

scope toggle = function toggle () {
scope showMe= ! scope showMe
accordionController . gotOpenedscope);

}
}
Pk
Notice that the controller in the accordion directive creates an API through which the
expanders can all communicate.
We can then write a template to use these, which will produce the end rEgutea6-4

<body ng-controller= SomeController >
<accordion>
<expander class= expander

API Overview | 135

ng-repeat= expander in expanders
expander-title= expander.titte >
{{expander.text}}
</expander>
</accordion>
</body>

with an appropriate controller, of course:

function SomeController($scope {
$scope expanders = [
{titte : Click me to expand

text : Hithere folks, | am the content that was hidden but is now shown.

{title : Click this

text : | am even better text than you have seen previously h
{titte : No, click me!
text : | am text that should be seen before seeing other texts }

5
}

Moving On

As we°ve seen, directives let us extend HTML’s syntax and turn many application tasks
into a do-what-lI-mean declaration. Directives make reuse a breezelfrom configuring
your app, like withng-model and ng-controller , to doing template tasks likey-

repeat andng-view, to sky°s-the-limit reusable components such as data-grids, bubble-

charts, tool-tips, and tabs.

136 | Chapter 6: Directives

CHAPTER 7
Other Concerns

In this chapter, we will take a look at some other useful features that are present in
AngularJS, but weren°t covered at all or in depth in the chapters and examples so far.

$location

Up to now, you have seen quite a few examples 8fdtetion service in AngularJsS.

Most of them would have been fleeting glanceslan access here, set there. In this section,
we will dive into what exactly ti$#ocation service in AngularJS is for, and when you
should and shouldn®t use it.

The$location service is a wrapper around thimdow.location that is present in any
browser. So why would you want to use it instead of working directlymvittow.lo
cation ?

Goodbye global state
window.location is a prime example of global state (actually, both window and
document objects in the browser are prime examples). The minute you have global
state in your application, testing, maintaining and working with it becomes a hassle
(if not now, then definitely in the long run). TB&ocation service hides this nasp
tiness (what we call global state), and allows you to test the browser®s location details
by injecting mocks during your unit tests.

API
window.location gives you total access to the contents of the browser location.
That is,window.location gives you the string whilocation gives you nice,
jQuery-like setters and getters to work with it in a clean way.

137

AngularJS integration
If you use$location , you can use it however you want. But withdow.loca
tion , you would have to be responsible for notifying AngularJS of changes, and
listen to changes as well.

HTMLS5 integration
The$location service is smart enough to realize when HTML5 APIs are available
within a browser and use them. If they°re not available, it will fall back to the default
usage.

So when should you use thlecation service? Any time you want to react to a change

in the URL (that is not covered by tliesutes, which you should primarily use for
working with URL-based views), as well as effect a change in the current URL in the
browser.

Let°s consider a small example of how you would uskoitegion service in a real-
world application. Consider a case where we halaepicker , and when a date is
selected, the app navigates to a certain URL. Let us take a look at how that might look:

/I Assume that the datepicker calls $scope.dateSelected with the date
$scope dateSelected = function (dateTxt) {

$location . path(/filteredResults?startDate= + dateTxt);

/I'If this were being done in the callback for

/I an external library, like jQuery, then we would have to

$scope $apply();
h

To $apply, or Not to $apply?

There is confusion amongst AngularJS developers abou$sbawe. $apply() should
be called and when it shouldn°t. Recommendations and rumors on the Internet are
rampant. This section will make it crystal clear.

But first, let us try to pusapply in a simpler form.

Scope.$applyis like a lazy worker. It is told to do a lot of work, and it is responsible for
making sure that the bindings are updated and the view reflects all those changes. But
rather than doing this work all the time, it does it only when it feels it has enough|/work
to be done. In all other cases, it just nods, and notes the work for later. It only actually
does the work when you get its attention and tell it explicitly to work. AngularJS| does
this internally at regular intervals within its lifecycle, but if the call comes from outside
(say a jQuery Ul event3cope.$apply just takes note, but does nothing. That is why

we have to caficope.$apply to tell it, %Hey! You need to do this right now, and not
waitlA

Here are four quick tips about when (and how) to $abiply.

138 | Chapter 7: Other Concerns

N DO NOT call it all the time. Callingapply when AngularJS is happily ticking away

(inits$digest cycle, as we call it) will cause an exception. So ¥better safe thal
is not the approach you want to use.

N DO CALL it when controls outside of AngularJS (DOM events, external callb
such as jQuery Ul controls, and so on) are calling AngularJS functions. A
point, you want to tell AngularJS to update itself (the models, the views, and 3
and$apply does just that.

N Whenever possible, execute your code or function by passingaippty, rather
than executing the function and then callapply() . For example, execute th
following code:

$scope $apply(function () {
$scope variablel = some value ;
executeSomeActiorf);

Dk
instead of the following:

$scope variablel = some value ;
executeSomeActior);
$scope $apply();

While both of these will have the same effect, they differ in one significant way.

The first will capture any errors that happen wke´SomeActionis called, while

N sorryA

acks
t that
0 on),

the latter will quietly ignore any such errors. You will get error notifications from Anp

gularJS only when you do the first.
N Consider using something lis@feApply

$scope safeApply = function (fn) {
var phase = this . $root . $$phase
if (phase == $apply || phase== $digest) {
if (fn &&(typeof (fn) === function)) {
fn();
}
} else {
this . $apply(fn);
}
h

You can monkey patch this into the topmost scope or the rootscope, and then U

se the

$scope.$safeApply function everywhere. This has been under discussion, and hopep

fully in a future release, this will be the default behavior.

$location | 139

What are those other methods also available oplitication objectZable 7-Tontains
a quick summary for you to use in a bind.

Let us take a look at how the $location service would behave, if the URL in the browser
washttp://www.host.com/base/index.html#!/path?paraml=valuel#hashValue

Table 7-1. Functions on the $location service

Getter Function Getter Value Setter Function

absUrl() http://www.host.com/base/index.html#!/path?param1N&uel#hashValue

hash() hashValue hash(°newHash®)

host() www.host.com N/A

path() /path path(°/newPath®)

protocol() http N/A

search() {°a: ¥b°} search({°c : ¥%def°})

url() /path?paraml=valuel?hashValue url(°/newPath?p2=v2°)

The Setter Function column ifable 7-lhas some sample values that denote the type
of object the setter function expects.

Note that thesearch() setter has a few modes of operation:

N Calling search(searchObj) with anobject<string, string> basically denotes
all the parameters and their values

N Callingsearch(string) will set the URL params gsString directly in the URL

N Calling search(param, value) with a string and value sets (or calling with null
removes) a particular search parameter in the URL

Using any one of the setters does not mean that window.location will get changed inu
stantly! The$location service plays well with the Angular lifecycle, so all changes to
the location will accumulate and get applied together at the end of the cycle. So feel free
to make those changes, one after the other, without fear that the user will see a URL that
keeps flickering and changing underneath him.

HTML5 Mode and Hashbang Mode

The$location service can be configured using $ifecationProvider (which can be
injected, just like everything else in AngularJS). Of particular interest are two properties
on this provider, which are:

htmI5Mode
A boolean value which dictates whether $fezation service works in HTML5
mode or not

140 | Chapter 7: Other Concerns

hashPrefix
A string value (actually a single character) that is used as the prefix for Hashbang
URLs (in Hashbang mode or legacy browsers in HTML5 mode). By default it is
empty, so Angular®s hash is just O°. leitéPrefix is set to O!°, then Angular uses
what we call Hashbang URLs (! followed by the url).

You might ask, just what are these modes? Well, pretend that you have this super
awesome website wtvw.superawesomewebsite. doah uses AngularJS.

Let°s say you have a particular route (with some parameters and a hash)/ such as
foo?bar=123#baz

In normal Hashbang mode (with theshPrefix set to O!°), or in legacy browsers
without HTML5 mode support, your URL would look something like:

http://www.superawesomewebsite.com/#!/foo?bar=123#baz
While in HTML5 mode, the URL would simply look like this:
http://www.superawesomewebsite.com/foo?bar=123#baz

In both caseslpcation.path() would be /fooJlocation.search() would be
bar=123, andocation.hash() would be baz. So if that is the case, why wouldn°t
you want to use the HTML5 mode?

The Hashbang approach works seamlessly across all browsers, and requires the least
amount of configuration. You just need to sethlihshBangprefix (! by default) and
you are good to go.

The HTML5 mode, on the other hand, talks to the browser URL through the use
of HTML5 History API. The$location service is smart enough to figure out
whether HTML5 mode is supported or not, and fall back to the Hashbang approach
if necessary, so you don°t need to worry about additional work. But you do have to
take care of the following:

Server-side configuration
Because HTMLS5 links look like any other URL on your application, you need to
take care on the server side to route all links within your app to your main HTML
(most likely, thandex.htm). For example, if your app is the landing pagestor
perawesomewebsite.c@mnd you have a routemazing?who=mi@ your app, then
the URL that the browser would showhisp://www.superawesomewebsite.com/
amazing?who=me-+

When you browse through your app, this will be fine, as the HTML5 History API
kicks in and takes care of things. But if you try to browse directly to this URL, your
server will look at you as if you have gone crazy, as there is no such known resource
on its side. So you would have to ensure that all requéatadaingget redirected

to /index.html#!/amazing

$location | 141

AngularJS will kick in from that point onward and take care of things. It will detect
changes to the path and redirect to the correct AngularJS routes that were defined.

Link rewriting
You can easily specify URLs as follows:

link

Depending on whether you are using HTML5 mode or not, AngularJS will take
care to redirect tdsome?foo=baor index.html#!/some?foo=baespectively. No
additional steps are required on your part. Awesome, isn°t it?

But the following types of links will not be rewritten, and the browser will perform
a full reload on the page:
a. Links that contain &rget element such as the following:
link
b. Absolute links going to a different domain:
link

This is different because it is an absolute URL, while the previous example used
the existing base URL.

c. Links starting with a different base path when one is already defined:

link

Relative Links
Be sure to check all relative links, images, scripts, and so on. You must either specify
the URL base in the head of your main HTML fibase href="/my-base">), or
you must use absolute URLSs (starting with /) everywhere because relative URLs will
be resolved to absolute URLs using the initial absolute URL of the document, which
is often different from the root of the application.

Running Angular apps with the History API enabled from document root is
strongly encouraged, as it takes care of all relative link issues.

AngularJS Module Methods

The AngularJS Module is responsible for defining how your application is bootstrapped.
It also declaratively defines the pieces of your application. Let us take a look at how it
accomplishes this.

Where®s the Main Method?

Those of you coming from a programming language like Java or even Python might be
wondering, where is that main method in AngularJS? You know, the one that bootstraps

142 | Chapter 7: Other Concerns

everything, and is the first thing to get executed? The one that functions in JavaScript
and instantiates and wires everything together, then tells your application to go run?

AngularJS doesn°t have that. What it has instead is the concept of modules. Modules
allow us to declaratively specify our application°s dependencies, and how the wiring and
bootstrapping happens. The reason for this kind of approach is manifold:

1. ltisdeclarative That means it is written in a way that is easier to write and underp
stand. It reads like English!

2. It is modular. It forces you to think about how you define your components and
dependencies, and makes them explicit.

3. It allows foreasy testingln your unit tests, you can selectively pull in modules, and
avoid the untestable portions of your code. And in your scenario tests, you can load
additional modules, which can make working with some components easier.

Let us first take a look at how you would use a module that you have defined, then take
a look at how we would declare one.

Say we have a module, in fact, the module for our application, called ¥%:MyAwesomeApp A
In my HTML, | could just add the following to tkéatml> tag (or technically, any other
tag):

<html ng-app="MyAwesomeApp">

The ng-app directive tells AngularJS to bootstrap your application using the MyAwep
someApp module.

So how would that module be defined? Well, for one, we recommend that you have
separate modules for your services, directives, and filters. Your main module could then
just declare the other modules as a dependency (just like weChdyter 4with the
RequireJS example).

This makes it easier to manage your modules, as they are nice complete chunks of code.
Each module has one and only one responsibility. This also allows your tests to load
only the modules they care about, and thus reduces the amount of initialization that
needs to happen. The tests can be small and focused.

Loading and Dependencies

Module loading happens in two distinct phases, and the functions reflect them. These
are the Config and the Run blocks (or phases):

The Config block
AngularJS hooks up and registers all the providers in this phase. Because of this,
only providers and constants can be injected into Config blocks. Services that may
or may not have been initialized cannot be injected.

AngularJS Module Methods | 143

The Run block
Run blocks are used to kickstart your application, and start executing after the
injector is finished creating. To prevent further system configuration from happ

pening from this point onwards, only instances and constants can be injected into
Run blocks. The Run block is the closest you are going to find to a main method in
AngularJs.

Convenience Methods

What can you do with a module? We can instantiate controllers, directives, filters, and
services, but the module class allows you to do more, as you caficsge ifr2

Table 7-2. Module configuration methods

AP| Method Description

config(configFn)

constant(name, object)

controller(name, constructor)

directive(name, directiveFactory)

filter(name, filterFactory)

run(initializationFn)

value(name, object)

service(name, serviceFactory)

factory(name, factoryFn)

provider(name, providerFn)

Use this method to register work that needs to be done when the modu
loading.

This happens first, so you can declare all your constants app-wide, and
them available at all configuration (the first method in this list) and instar
methods (all methods from here on, like controller, service, and so on).

We have seen a lot of examples of this; it basically sets up a controller fc

As discuss€daptertbis allows you to create directives within your

app.

Allows you to create named AngularJsS filters, as discussed in previous
chapters.

Use this method when you want to perform work that needs to happen c
the injector is set up, right before your application is available to the us

Allows values to be injected across the application.
Covered in the next section.
Covered in the next section.
Covered in the next section.

You might realize that we are missing the details of three particular API callsiFactory,
Provider, and Servicelfrom the preceding table. There is a reason for that: it is quite
easy to confuse the usage between the three, so we will dive into a small example that
should better illustrate when (and how!) to use each one.

The Factory
The Factory API call is used whenever we have a class or object that needs some
amount of logic or parameters before it can be initialized. A Factory is a function
that is responsible for creating a certain value (or object). Let us take the example
of a greeter function that needs to be initialized with its salutation:

function Greeter(salutation) {

this . greet = function (namég {

144

Chapter 7: Other Concerns

return salutation + + name
8
}

The greeter factory would look something like:

myAppfactory (greeter , function (salut) {
return new Greeter(salut);

Pk
and it would be called as:
var myGreeter = greeter(Halo);

The Service

What about services? Well, the difference between a Factory and a Service is that
the Factory invokes the function passed to it and returns a result. The Service inu
vokes ¥newA on the constructor method passed to it and returns the result.

So the preceding greeter Factory could be replaced with a greeter Service as follows:
myApp.service(greeter , Greeter);

Every time | asked for a greeter, AngularJS would call thereeter() and return
that.

The Provider
This is the most complicated (and thus most configurable, obviously) of the lot.
The Provider combines both the Factory and the Service, and also throws in the
benefit of being able to configure the Provider function before the injection system
is fully in place (in the config blocks, that is).

Let°s see how a modified greeter Service using the Provider might look:

myAppprovider (greeter , function () {

var salutation = Hello

this . setSalutation = function (s) {
salutation =s;

}

function Greeter(a) {
this . greet = function () {
return salutation + + a;
}
}

this . $get = function (a) {
return new Greeter(a);
h

D

This allows us to set the salutation at runtime (for example, based on the language
of the user).

AngularJS Module Methods | 145

var myApp= angular. moduld myApp [J). config (function (greeterProvider) {
greeterProvider . setSalutation (Namaste);

bk
AngularJS would internally caibet whenever someone asked for an instance of the
greeter object.

Warning!

There is a slight, but significant difference between using:
angular.module(MyApp , [...])

and:

angular.module(MyApp)

The difference is that the first creates a new Angular module, pulling in the module
dependencies listed in the square brackets ([O]). The second uses the existing module
that has already been defined by the first call.

So you should make sure that you use the following code only once in your entire
application:

angular.module(MyApp, [...]) // Or MyModule, if you are modularizing your app
If you do not plan to save it to a variable and refer to it across your application, then
useangular.module(MyAppin the rest of the files to ensure you get a handle to the

correct AngularJS module. Everything on the module must be defined by accessing
the variable, or be added on the spot where the module has been defined.

Communicating Between Scopes with $on, $emit, a
$broadcast

AngularJS scopes have a very hierarchical and nested structure. There is one main
$rootScope (per Angular app ong-app, that is), which all other scopes either inherit,

or are nested under. Quite often, you will find that scopes don°t share variables or do
not prototypically inherit from one another.

In such a case, how do you communicate between scopes? One option is creating a
service that is a singleton in the scope of the app, and processing all inter-scope comp
munication through that service.

There is another option in AngularJS: communicating through events on the scope.
There are some restrictions; for example, you cannot generally broadcast an event to all
watching scopes. You have to be selective in whether you are communicating to your
parents or to your children.

But before we discuss that, how do you listen to these events? Here is an example where
our scope on any Star System is waiting and watching for an event we call ¥planetDesp
troyed A

146 | Chapter 7: Other Concerns

scope $on(planetDestroyed , function (event, galaxy, planet) {
/I Custom event, so what planet was destroyed
scope alertNearbyPlanets (galaxy, planet);
b
Where do these additional arguments to the event listener come from? Let°s take a look
at how an individual planet could communicate with its parent Star System.

scope $emit(planetDestroyed ¥ scope myGalaxy scope myPlanei);

The additional arguments g&emit are passed on as function parameters to the listener
functions. Also$emit communicates only upwards from its current scope, so the poor
denizens of the planet (if they had a scope to themselves) would not be notified if their
planet was being destroyed.

Similarly, if a Galaxy wanted to communicate downwards to its child, the Star System
scope, then it could communicate as follows:

scope $emit(selfDestructSystem , targetSystem);

Then all Star Systems listening for the event could look at the target system, and decide
if they should self-destruct, using these commands:

scope $on(selfDestructSystem , function (event, targetSystem) {
if (scope mySystem=== targetSystem) {
scope selfDestruct (); /I Go Ka-boom!!
}

b
Of course, as the event propagates all the way up (or down), it might become necessary
at a certain level or scope to say, %Enough! You shall not PASS!A or to prevent what the
event does by default. The event object passed to the listener has functions to handle all
of the above, and more, so let us take a quick look at what you can get up to with the
event object iMable 7-3

Table 7-3. Event object properties and methods

event.targetScope The scope which emitted or broadcasted the event originally
event.currentScope The scope currently handling the event
event.name The name of the event

event.stopPropagation() A function which will prevent further event propagation (this is available only for e
that wegemitted

event.preventDefault() This actually doesn t do anytiefaubBtesainted to true. It is up to the
implementer of the listeners tiefeluiCkemented before taking action

event.defaultPrevented true greventDefault was called

Communicating Between Scopes with $on, $emit, and $broadcast | 14

Cookies

Before long, you will encounter a situation in your application (provided it is sufficiently
large and complex) where you need to store some kind of state across users® sessions on
the client side. You might remember (or have nightmares) about working with plain-

text cookies through th@ocument.cooki@terface.

Thankfully, many years have passed since then, and HTML5 APIs are available in almost
all the modern browsers that are currently out there. Moreover, AngularJS provides you
with a nice$cookie and$cookieStore API to work with cookies. Both services play

nice withHTML5 cookiesin that they use HTML5 APIs when available, and default to
working with document.cookies when they are not. Either way, you get to use the same
API calls.

Let°s take a look at tleookies service firstcookies is simply an object. It has keys

and values. Adding a key and its corresponding value to the object adds the information
to the cookie, and removing it from the object deletes that particular cookie. It°s as simple
as that.

But most of the time, you would not want to work directly agtwokies level. Working
directly at thecookies level would mean doing string manipulation and parsing yourp
self, and converting data to and from objects. For those cases, we Haakies

tore , which provides a programmatic way of writing and removing cookies. So what
would a Search Controller that remembers the last five search results usiogothe
ieStore look like?

function SearchController ($scope $cookieStore) {
$scope search = function (text) {
/I Do the search here
/I Get the past results, or initialize an empty array if nothing found
var pastSearches = $cookieStore . get(myapp.past.searches) || [J;
if (pastSearches.length > 5) {
pastSearches = pastSearches. splice (0);
}
pastSearches. push(text);
$cookieStore . put(myapp.past.searches , pastSearches);
h
}

Internationalization and Localization

You might have heard people throw about both terms when it comes to supporting your
application in different languages. But there is a slight difference between the two. Conp
sider a simple application that is a portal into your bank balance. Every time you come
into the application, it displays one and only one thing:

148 | Chapter 7: Other Concerns

Greetings! The balance in your account as of 10/25/2012 is $XX,XXX.

Now, obviously, the preceding code is targeted at an American audience. But what if we
wanted this application to be available in the UK as well (just so that the language itself
doesn°t change)? Britain uses a different date format and currency symbol, but you don°t
want your code to undergo a change every time you need the application to support a
new locale (in this casen_USnden_UK This process of abstracting out the date/time
format, as well as the currency symbol, from your coding logic is knolmteasa
tionalization (or i18nithe 18 denoting the number of letters between i and n in the
word).

What if we wanted to support the application in Hindi? Or Russian? In addition to the
date format and the currency symbol (and formatting), even the strings used in the Ul
would have to change. This process of providing translations and localized strings for
the abstracted bits in various locales is knowroaalization(or L10niwith a capital

L to differentiate between i and I).

What Can | Do in AngularJS?

AngularJS supports i18n/L10n for the following filters out of the box:

pral

currency

pral

date/time

2

number

There is also pluralization support (for English as well as i18n/L10n) witiyEher
alize directive.

All of this pluralization support is handled and managed blbeale service, which
manages the locale-specific rule sets$ldwmle service works off of locale IDs, which
generally consist of two parts: the country code and the language code. For example,
en_USanden_UKdenote English used in the US and the UK, respectively. Specifying a
country code is optional, just specifying ¥nA is a valid locale code.

How Do | Get It All Working?

Getting L10n and i18n working in AngularJS is a three-step process:

Index.html changes
AngularJS requires you to have a sepanatex.htmlfor each supported locale.
Your server also needs to know whiictiex.htmlit has to provide, depending on
the user®s locale preferences (this could also be triggered from a client-side change,
when the user changes his locale).

Internationalization and Localization | 149

Creating localized rule sets
The next step is creating amngular.jsfile for each supported locale, like
(angular_en-US.jsand angular_zh-CN.)s This involves concatenating the
localizationrules for each particular language (the default files for the preceding
two locales would bengular-locale_en-USgsdangular-locale_zh-CN)jst the
end of theangular.jsor theangular.min.jsfile. So youangular_en-US.jaould
contain the contents adngular.jsfirst, followed by the contents of thegular-
locale_en-US.js

Sourcing the localized rule sets
The final step involves ensuring that your localindéx.htmirefers to the localized
rule set instead of the originahgular.jsfile. Soindex_en-US.htméhould use
angular-en_US.jand notangular.js

What about my Ul strings, you ask? AngularJS currently doesn°t have its own full-
fledged translation APIs yet, so you will have to come up with your own techniques and
scripts to get the Ul strings translated. This could be something that parses your HTML
for strings, and is then fed to a translator to churn out an HTML for each language, or
something much more complex and specific based on your need.

Common Gotchas

Translation Length
You design your Ul so that it shows June 24, 1988 in a div that has been painstakingly
sized to fit it just right. And then you open your Ul in Spanish. 24 de junio de 1988
just doesn°t fit in that same space anymoreO

When internationalizing your apps, keep in mind that the lengths of your strings
might change drastically from language to language. Design your CSS accordingly,
and do thorough testing across the various languages. (Don°t forget that right to left
languages also exist!)

Timezones
The AngularJS date/time filter picks up the timezone settings from the browser. So
depending on the timezone of the computer, different people might see different
information. Neither JS nor AngularJS have any built-in support to display time
with a timezone specified by the developer.

Sanitizing HTML & the Sanitize Module

AngularJS takes its security seriously, and tries to make all efforts to ensure that most
attack vectors are minimized. One of the attack vectors revolves around the injection
of unsafe HTML content into your webpage and using that to trigger a cross-site or
injection attack.

150 | Chapter 7: Other Concerns

Consider the example where we have a variable on the scopenyalleshfeHTMLCon
tent . OnMouseOvenodifies the contents of the element to %PWN3D!A if the HTML is
used as is:
$scope.myUnsafeHTMLContent =<p style= "color:blue” >an html| +
<emonmouseover#his.textContent = PWN3D! " >click here +
snippet </p>;
The default behavior in AngularJS, when you have some HTML content in a variable
and try to bind to it, would result in AngularJS escaping your content and printing it as
is. So the HTML content ends up getting treated as pure text.

Therefore:
<div ng-bind= myUnsafeHTMLContent ></div>
will result in:

<p style= "color:blue" >an html
<emonmouseover#his.textContent= PWN3D! " >click here
snippet </p>

getting rendered as text on your web page.

But what if you wanted to render the contentsngfUnsafeHTMLContengs HTML in
your AngularJS app? In such a case, AngularJS has additional directives (and a service,
$sanitize , to boot) to allow you to render the HTML in both a safe and unsafe manner.

Let us first take the example where you want to be safe (as you normally should be!),
and render the HTML, taking care to get rid of most possible attack vectors in the HTML.
You would use thag-bind-html directive in such a case.

The ng-bind-html , ng-bind-html-unsafe , andlinky filter all are in

the ngSanitize module. You will need to includengular-sanitize.js

(or .min.j9 in your script dependencies, and then add a module dep
pendency tongSanitize , before any of these work.

So what happens when we usertiéind-html directive on the sammayUnsafeHTML
Content, like so?

<div ng-bind-html="myUnsafeHTMLContent"></div>
The output in such a case would be the following:
an html _click here_ snippet

The important things to note are that the style tag (with color blue), anzhtheuse
over handler on th&emtag are both removed by AngularJS. They are deemed unsafe,
and thus dropped.

Sanitizing HTML & the Sanitize Module | 151

Finally, if you decide that you really want the contentayddnsafeHTMLContergnp
dered as is, either because you really trust the source of the content, or for some other
reason, then you can use tigebind-html-unsafe directive:

<div ng-bind-html-unsafe="myUnsafeHTMLContent"></div>
The output in such a case would be the following:
an html _click here_ snippet

The color of the text is blue (as per the style attached tégg, and the click here
does have aonmouseoveregistered on it. So the minute your mouse strays anywhere
near the click here text, the output would change to:

an html PWN3D! snippet

As you can see, this is quite unsafe in reality, so be absolutely certain that this is what
you want when you decide to use tigebind-html-unsafe directive. Someone could
just as easily read the user®s information and send it to his or her servers.

Linky

Thelinky filter is also present in thegSanitize module, and basically allows you to
add it to HTML content that is being rendered and convert links that are present in the
HTML to anchor tags. It is quite simple to use, so let us take a look at an example:

$scope contents = Text with links: http://angularjs.org/ & mailto:us@there.org
Now, if you use the following binding:

<div ng-bind-html="contents"></div>
this would result in the contents of the HTML getting printed as:

Text with links: http://angularjs.org/ & mailto:us@there.org
Now let°s take a look at what happens when we ufiekipefilter:

<div ng-bind-html="contents | linky"></div>

Thelinky filter goes through the text contents and acllstags to all URLs andailto
links it finds, thus providing HTML content that the user can interact with:

Text with links: http://angularjs.org/ & us@there.org

152 | Chapter 7: Other Concerns

CHAPTER 8
Cheatsheet and Recipe:

By now, we have covered pretty much all the different parts of the Angular, including
directives, services, controllers, resources, and so much more. But even we know that
sometimes just reading about it isn°t enough. And sometimes we don°t care about how
any of that works, we just want to know how to do that one thing with AngularJS?

In this chapter, we take a stab at giving complete coding samples (with little bits of info
and pointers to explain what is happening) for some common problems we tackle in

most web apps. They are in no particular order, so feel free to jump to whichever ones
you care about, or go through them in order. You are the boss!

The examples covered in this chapter include:

. Wrapping a jQuery Datepicker

. The Teams List App: Filtering and Controller Communication
. File Upload in AngularJS

. Using socket.lO

. A Simple Pagination Service

o 01~ WDN P

. Working with Servers

Wrapping a jQuery Datepicker
This example can be foundcéhapter8/datepickem our GitHub page.

Even before we jump into the code, we have to decide how our component is going to
look and work. Let’s say we want to define our datepicker in HTML as follows:

<input datepicker ng-model="currentDate" select="updateMyText(date)"></input>

153

That is, we want to modify the Input field by adding an attribute datepicker, and adding
some more functionality to it (like data binding with the model and the ability to be
notified when a date is selected). So how would we go about it?

We will re-use existing functionality, the jQuery Ul°s datepicker, instead of building a
datepicker from scratch. We just need to hook it up to AngularJS and latch onto the
hooks it provides:

angular. moduld myApp.directives , [])
.directive (datepicker , function () {

return {
/I Enforce the angularJS default of restricting the directive to
/I attributes only
restrict @ A,
/I Always use along with an ng-model
require : ?ngModel ,
scope {
/I This method needs to be defined and
/I passed in to the directive from the view controller
select : & /I Bind the select function we refer to the
/I right scope
h
link : function (scope element, attrs , ngMode) {
if (!'ngMode) return ;

var optionsObj = {};

optionsObj . dateFormat = mm/dd/yy ;
var updateModel = function (dateTxt) {
scope $apply(function () {
/I Call the internal AngularJS helper to
/I update the two-way binding
ngModel $setViewValue(dateTxt);
Dk
h

optionsObj . onSelect = function (dateTxt, picker) {
updateMode(dateTxt);
if (scope select) {
scope $apply(function () {
scope select ({ date: dateTxt});
N
}
h

ngModel $render = function () {
/I Use the AngularJS internal binding-specific variable
element. datepicker (setDate , ngModel $viewValue ||);
h

element. datepicker (optionsObj);

154

Chapter 8: Cheatsheet and Recipes

h
i
Most of the code is pretty straightforward, but let us walk through some of the more
important bits:

ng-model

We get amg-modelattribute passed into the linking function of the directive. ire
model(which is mandatory for the directive to function because otthére attribute
inside the directive definition) allows us to define how the attribute and object linked
to theng-modelbehave in the context of the directive. There are two things you need
to pay attention to:

ngModel.$setViewValue(dateTxt)
This is called when something external to AngularJS (in this case3blect of
the jQuery Ul datepicker) happens. This lets AngularJS know that it has to update
the model. This is usually called when a DOM event happens.

ngModel.$render
This is the other part to theg-model This tells Angular how to update the view
when the model changes. In our case, we just pass on to the jQuery Ul that the
datepicker value has changed.

Binding select

Instead of using the attribute value and evaluating it as a string against the scope (in
which case, nested functions and objects won°t be accessible), we use function binding
(the %&A scope binding). This creates a new function on the scopetattedvhich

takes one argumentlan object. Each key in this object must match an argument speciu
fied in the HTML where the directive is used. The value for that key will be the value
passed to the function as that argument. The added advantage is that this decouples the
controller implementation from having to know anything about the DOM or the diu
rective. Theallback function just performs its behavior given certain arguments, and
does not need to know about the binding or the updates.

Calling select

Notice that we pass in aptionsObj to the datepicker, with aonSelect function.

jQuery Ul is responsible for calling tbaSelect function, which will usually happen
outside of AngularJS° execution context. Of course, when functionsa$ikkect are

called, AngularJS has no clue. It is up to us to let AngularJS know that it needs to act on
stuff. How do we do that? By usisacppe.$apply .

Wrapping a jQuery Datepicker | 155

Now we could just as easily do #setViewValue and call thescope.select outside
scope.$apply, and then just cadlcope.$apply() . But then any exceptions that happen
in either of these two steps are silently dropped. If they happen wititiopa.$ap
ply function, then they are captured by AngularJS.

The Rest of the Example

To complete the example, let us take a look at our controller code, and then the HTML
to get it working:

var app = angular. moduld myApp, [myApp.directives 1]);

app. controller (MainCtrl , function ($scopg {
$scope myText = Not Selected ;
$scope currentDate =
$scope updateMyText= function (date) {
$scope myText= Selected ;
h
b

Pretty simple stuff. We declare a controller, set some scope variables, and then create a
scope methodupdateMyTex} that we will later use for binding to the-select event
of the datepicker. On to the HTML next:

<IDOCTYPE htmI>
<html ng-app="myApp*

<head lang="en" >

<meta charset="utf-8" >

<title> AngularJS Datepicker </title>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js" >

</script>

<script src="http://code.jquery.com/ui/1.9.2/jquery-ui.js" >

</script>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.3/
angular.min.js" >

</script>

<link rel= "stylesheet"
href="http://code.jgquery.com/ui/1.9.2/themes/base/jquery-ui.css" >
<script src="datepicker.js" ></script>
<script src="app.js" ></script>
</head>

<body ng-controller= "MainCtrl" >
<input id="dateField"
datepicker
ng-model=Z'$parent.currentDate"
select= "updateMyText(date)" >

156 | Chapter 8: Cheatsheet and Recipes

{{myText}} - {{currentDate}}
</body>
</html>

Notice how theselect attribute is specified. There is no value ¥.dateA on the scope. But
because of the way we have set up our function binding in the directive, AngularJS now

knows that the function will take an argument, whoseenill be ¥.date A This is what
we specified as an object whendh8&elect of the datepicker is called.

For theng-model, we specifgparent.currentDate instead ofurrentDate . Why? Because
our directive creates an isolated scope so that we can haslecth&inction bound.
This makes it so that therrentDate is no longer linked byg-modeleven if we set it.
So we have to explicitly tell AngularJS thattientDate it needs to refer to is not
in the isolated scope, but in its parent scope.

With this, when you load it up in your browser, you would see a text box that, when
clicked, exposes the jQuery Ul datepickers@lact , it updates the text on the screen

from ¥%Not SelectedA to ¥%Selected A and your date. The date in the input field is also
updated.

The Teams List App: Filtering and Controller
Communication

In this example, we tackle multiple things at the same time, but there are two major
takeaways:

1. How do you use filterslespecially in a clean, simple waylwith repeaters?

2. How do you communicate between controllers that do not share an inheritance
relation?

The app itself is quite simple. There is data, which is a list of teams from various sport,
such as basketball, football (the NFL kind, not the soccer kind), and hockey. For each
of these teams, we have the name, the city, the sport, and whether the team is featured
or not.

What we want to do is display this list, and also display filters on the left that immediately
update the list as you modify them. We are going to have two controllers: one for storing
the data, and the other to work with the filters. And we are going to use a service to
communicate the changes to the filter betweerList€trl and theFilterCtrl

Let us take a look at the service first, which is going to drive the application:

angular. modulg myApp.services , []).
factory (filterService , function () {

The Teams List App: Filtering and Controller Communication |

157

return {
activeFilters : {},
searchText:

h
i

Whoa. That®s it, you ask? Yes. What we are doing here is leveraging the fact that Angup
larJS services are singleton (that®s singleton with a small ¥sAlsingleton within the scope,
but not globally visible or accessible). When we declare the filterService, we are guaru
anteed to have only one instance offtlerService for the entirenyApp

We then end up using the filterService as a communication channel betwedn the
terCtrl and theListCtrl , as both can bind to it and access stuff as it is updated. Both
of these controllers are actually dead simple, as they do nothing but simple assignment:

var app = angular. modulg myApp, [myApp.services J);

app. controller (ListCtrl , function ($scope filterService) {
$scope filterService = filterService ;
$scope teamsList = [{

id: 1, name Dallas Mavericks , sport: Basketball ,
city : Dallas , featured : true

hoA
id: 2, name Dallas Cowboys , sport: Football
city : Dallas , featured : false

hoA
id: 3, name New York Knicks , sport: Basketball ,
city : New York , featured : false

hoA
id: 4, name Brooklyn Nets , sport: Basketball ,
city : New York , featured : false

hoA
id: 5 name New York Jets , sport: Football
city : New York , featured : false

hoA
id: 6, name New York Giants , sport: Football ,
city : New York , featured : true

hoA
id: 7, name Los Angeles Lakers , sport: Basketball
city : Los Angeles , featured : true

hoA
id: 8, name Los Angeles Clippers , sport: Basketball ,
city : Los Angeles , featured : false

oo
id: 9, name Dallas Stars , sport: Hockey ,
city : Dallas , featured : false

oo

id: 10, name Boston Bruins , sport: Hockey ,
city : Boston , featured : true

hE

158 | Chapter 8: Cheatsheet and Recipes

app. controller (FilterCtrl , function ($scope filterService) {
$scope filterService = filterService ;

hE

You might be wondering, where is the complexity? AngularJS does make it this easy. All

we have left to do is to pull this all together in the template:

<IDOCTYPE htmI>
<html ng-app='myApp>

<head lang="en" >
<meta charset="utf-8" >
<title> Teams List App</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js" >
</script>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.3/angular.min.js" >
</script>
<link rel= "stylesheet"
href="http://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/2.1.1/

css/bootstrap.min.css" >
<script
src="http://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/2.1.1/
bootstrap.min.js" >
</script>

<script src="services.js" ></script>
<script src="app.js" ></script>
</head>

<body>
<div class="row-fluid" >
<div class="span3" ng-controller= "FilterCtr|* >
<form class="form-horizontal" >

<div class="controls-row" >
<label for="searchTextBox" class="control-label" >Search:</label>
<div class="controls" >
<input type="text"
id="searchTextBox"
ng-model=filterService.searchText" >
</div>
</div>

<div class="controls-row" >
<label for="sportComboBox"class="control-label" >Sport: </label>
<div class="controls" >
<select id="sportComboBox"

ng-model=filterService.activeFilters.sport" >
<option ng-repeat="sport in [Basketball , Hockey , Football]" >
{{sport}}
</option>
</select>

The Teams List App: Filtering and Controller Communication

159

</div>
</div>

<div class="controls-row" >
<label for="cityComboBox" class="control-label" >City: </label>
<div class="controls" >
<select id="cityComboBox"

ng-model=filterService.activeFilters.city" >
<option ng-repeat="city in [Dallas, Los Angeles,
Boston, New York]" >

{{city}}

</option>

</select>
</div>
</div>

<div class="controls-row" >
<label class="control-label" >Featured: </label>
<div class="controls" >
<input type="checkbox"
ng-model=filterService.activeFilters.featured"

ng-false-value= " />
</div>
</div>
</form>
</div>
<div class="offsetl span8" ng-controller= "ListCtr]" >
<table>
<thead>
<tr>
<th>Name/th>
<th>Sport</th>
<th>City </th>
<th>Featured</th>
<[tr>
</thead>

<tbody id="teamListTable" >
<tr ng-repeat="team in teamsList | filter:filterService.activeFilters |
filter:filterService.searchText" >
<td>{{team.name}} </td>
<td>{{team.sport}} </td>
<td>{{team.city}} </td>
<td>{{team.featured}} </td>
<ftr>
</tbody>
</table>
</div>
</div>
</body>
</html>

160 | Chapter 8: Cheatsheet and Recipes

There are really only four items of interest in this entire HTML template. Everything

else you have seen a few dozen times by now (even these items have been there in some

form or another). Let us go over them one by one.

The Search Box

The search box just binds to tlieerService.searchText field using amg-model
In and of itself, it is nothing noteworthy, but the way this is later used in the filter makes
this step essential.

The Combo Boxes

There are two combo boxes, even though we have only highlighted the first. Both of
them work the same way. They are both boundfilterService.activeFil

ters.sports orcity (depending on the box), which basically sets the sports (or city)
property on the filters object in tHittersService

The Check Box

The check box binds filterService.activeFilters.featured . The thing to note
is that when featured is checked, we want to show only those teanfisatvited =
true . When it is unchecked, we want to show teams feétured = true andfea
tured = false . For this, we use theg-false-value="" directive to say that thiea
tured filter should be cleared when the checkbox is unchecked.

The Repeater
Let us take a look at ting-repeat statement one more time:

"team in teamsList | filter:filterService.activeFilters |

filter:filterService.searchText"
The first part is the same as always. It is the two new filters that make all the difference.
The first filter tells AngularJS to filter the list usfilgrService.activeFilters
This basically takes each property in the object filters and ensures that each item in the
repeater matches corresponding properties in the filter. &xiveFilters[city] =
Dallas then only those items in the repeater veitly = Dallas will be selected. If there
are multiple filters, then all of them would have to match.

The second filter is a textual match filter. It basically selects only those items that have
the value ofilterService.searchText present in any of their values. So it will do a
match across cities, team names, sports, and featured.

The Teams List App: Filtering and Controller Communication

161

File Upload in AngularJS

Another common use case we have seen is to support uploading of files from within an
AngularJS app. While it is possible to support this by building on the existing input type
¥.fileA that is present in HTML, for the purpose of this example, we are going to extend
existing solutions for file upload. A great onglissImp°s File Uploaevhich uses jQuery

and jQueryUl (or Bootstrap). Their API is dead simple, which also makes our directive
super easy.

So let us start with the directive declaration:

angular. modulg myApp.directives , [])
.directive (fileupload , function () {
return {
restrict : A,
scope {
done & ,
progress: &
h
link : function (scope element, attrs) {
var optionsObj = {
dataType json
b

if (scope dong ({
optionsObj . done = function () {
scope $apply(function () {
scope dong{ e: e, data: data});
»;
h
}

if (scope progress) {
optionsObj . progress = function (e, data) {
scope $apply(function () {
scope progress({ e e, data: data});
»;
}
}

/I the above could easily be done in a loop, to cover
/I all API s that Fileupload provides

element. fileupload (optionsObj);

bk

162 | Chapter 8: Cheatsheet and Recipes

This code allows us to define our directive in a very simple manner, as well as add hooks
for onDoneandonProgress. We use function binding so that AngularJS always calls the

right methods and uses the right scope.

This is done by the isolated scope declaration, which has two bindings: @ne for
gress and one fodone This creates a function which takes a single argument (an object)
on the scope. For instanseppe.donetakes an object as an argument. This object has
two keysge anddata. These are passed along as arguments to the original function,

which we will see in the next section.
Let°s take a look at our HTML to see how we would use this:

<IDOCTYPE html|>
<html ng-app="'myApp>

<head lang="en" >
<meta charset="utf-8" >
<title> File Upload with AngularJS </title>
<l-- Because we are loading jQuery before AngularJs,
Angular will use the jQuery library instead of
its own jQueryLite implementation -->

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js" >
</script>
<script
src="http://raw.github.com/blueimp/jQuery-File-Upload/master/js/vendor/
jquery.ui.widget.js" >
</script>
<script
src="http://raw.github.com/blueimp/jQuery-File-Upload/master/js/
jquery.iframe-transport.js" >
</script>
<script
src="http://raw.github.com/blueimp/jQuery-File-Upload/master/js/
jquery.fileupload.js" >
</script>
<script
src="//ajax.googleapis.com/ajax/libs/angularjs/1.0.3/angular.min.js" >
</script>
<script src="app.js" ></script>
</head>

<body ng-controller= "MainCtrl" >
File Upload:
<!-- We will define uploadFinished in MainCtrl and attach
it to the scope, so that it is available here -->
<input id="testUpload"

type="file"
fileupload
name=iles|]"

File Upload in AngularJS

| 163

data-url= "/server/uploadFile"

multiple

donezuploadFinished(e, data)" >
</body>

</html>
Ourinput tag just has the following additions:

fileupload
This marks thénput tag as a file upload element.

data-url
This is used by the FileUpload plug-in to decide where to upload the file to. In our
example, we assume there is a server API waitiisgraer/uploadFileo process
the data it sends.

multiple
Themultiple attribute tells the directive (and tfieeupload widget) to allow it
to select multiple files at once. We get this for free from the plug-in without needing
to write a single additional line of code. Again, this is a built-in plug-in bonus.

done
This is the AngularJS function to call when the plug-in finishes uploading the sep
lected file. We could add similar onesgargress if we wanted to. This also speciu
fies the two arguments that our directive calls.

So what does the controller backing this look like? Pretty much what you would expect
it to look like:

var app = angular. moduld myApp, [myApp.directives 1]);

app controller (MainCtrl , function ($scopg {

$scope uploadFinished = function (e, data) {

console. log (We just finished uploading this baby...);
J5
b

And with that, we have a simple, working, reusable file upload directive.

Using Socket.lO

A common requirement for the web nowadays is real-time web applications, which
need to be updated as soon as the data on the server is updated. Previously used techp
nigues such as polling have been found lacking, and sometimes we just want to open a
socket to our client and communicate.

Socket.lOis a brilliant library that allows you to do just that, and uses a dead simple,
event-based API to allow you to develop real-time web apps. We are going to develop

164 | Chapter 8: Cheatsheet and Recipes

a real-time, anonymous broadcast system (think Twitter, without usernames) that
allowsusers to broadcast a message to all Socket.lOs users and see all the messages.
Nothing will be stored, so all messages will only be alive for as long as a given user is
active, but that will be sufficient to demonstrate how nicely Socket.lO can integrate into
AngularJS.

Right off, we are going to wrap Socket.IO into a nice AngularJS service. By doing so, we
can ensure that:

N Socket.lO events are noticed and handled within the AngularJS lifecycle
N It becomes easy to test the integration later

var app = angular. moduld myApp, [I);

/I We define the socket service as a factory so that it
/ is instantiated only once, and thus acts as a singleton
/I for the scope of the application.
app. factory (socket , function ($rootScope) {
var socket = io.connect(http://localhost:8080);
return {
on: function (eventName callback) {
socket. on(eventName function () {
var args = arguments
$rootScope. $apply(function () {
callback . apply (socket, args);
bk
DX
h
emit: function (eventName data, callback) {
socket. emit(eventName data, function () {
var args = arguments
$rootScope. $apply(function () {
if (callback) {
callback . apply (socket, args);
}
bk
)
}
K
PR

We are just wrapping the two functions we care about, which amntbeent and

broadcast event methods of the Socket.|IO API. There are a bunch more, and they can
be wrapped in a similar manner.

We are going to have a simjahelex.htm] which shows a textbox with a send button
and a list of messages. In this example, we do not keep track of who sends the messages
or when they are sent.

Using Socket.lO | 165

<IDOCTYPE htmI>
<html ng-app='myApp*>

<head lang="en" >

<meta charset="utf-8" >
<title> Anonymous Broadcastex/title>

<script src="/socket.io/socket.io.js" >
</script>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.3/angular.min.js" >
</script>

<script src="app.js" ></script>

</head>
<body ng-controller= "MainCtrl" >

<input type="text" ng-model¥message’>
<button ng-click= "broadcast()" >Broadcast</button>

<li ng-repeat="msg in messages">{{msg}}

</body>
</html>

Let°s go to oulainCtrl (this is part opp.j3, which is where we pull this all together:

function MainCtrl ($scope socket) {

}

$scope message=
$scope messages= [];

/ When we see a new msg event from the server
socket. on(new:msg, function (messagg {
$scope messagespush(messagi

s

/I Tell the server there is a new message

$scope broadcast = function () {
socket. emit(broadcast:msg , {message $scope messagp;
$scope messagespush($scope messagg
$scope message= ;

3

The controller itself is quite simple. It listens for events on the socket connection, and
whenever the user presses the broadcast button, lets the server know that there is a new
message. It also adds it to the message list to display immediately to the user.

Then we have the final piece, the server. This is a NodeJS server that knows how to serve
the app code, and also simultaneously create a Socket.lO server.

var app = require (express)()

, server = require (http). createServer (app

166

| Chapter 8: Cheatsheet and Recipes

, i0o = require (socket.io). listen (server);
server . listen (8080);

app get(/ , function (req, res) {
res. sendfile (__dirname + /index.html);

bl

app get(/app.js , function (req, res) {
res. sendfile (__dirname + /app.js);

bl

io . sockets. on(connection , function (socket) {
socket. emit(new:msg, Welcome to AnonBoard);

socket. on(broadcast:msg , function (data) {
/I Tell all the other clients (except self) about the new message
socket. broadcast. emit(new:msg, data. messagg

i
b
You could easily expand this later to handle more messages and more intricate strucp
tures, but this example lays the foundation on which you can implement socket conp
nections between your client and server.

The app is very simple. It does not do any validation (whether the messages are empty),
but it does have the HTML sanitization that AngularJS provides by default. It does not
handle complex messages, but it does offer a fully working end-to-end Socket.|O imp
plementation integrated into AngularJS that you can now build your work off of.

A Simple Pagination Service

A very common use case for most web apps is to display a list of items. More often than
not, we have more data than can be reasonably displayed on a single page. In such a
case, we want to display the data in a paginated manner, with an ability to move to the
next and previous pages. Since this is a common requirement throughout the app, it
makes sense to extract this functionality into a common, reusable Paginator service.

Our Paginator service (a very simple implementation) is going to allow users of the
service to tell the service how to fetch the data, given an offset and limit, as well as the
page size. It will internally handle all the logic of figuring out which items to fetch, which
page is next, whether there is a next page, and so on.

This service could be extended further to cache items within the service, but that is left
as an exercise for the user. All our example will entail is storingutrentPagel
temsfield in a cache, retrieving it from there if it is available, and going fettie
Function otherwise.

A Simple Pagination Service | 167

Let’s take a look at the service implementation:

angular . moduld pservices ¥ []). factory (Paginator , function () {
/I Despite being a factory, the user of the service gets a new
/I Paginator every time he calls the service. This is because
/I we return a function that provides an object when executed

return function (fetchFunction , pageSize) {
var paginator = {
hasNextVar false ,
next: function () {
if (this . hasNextvap {
this . currentOffset += pageSize
this . _load();
}

h
_load: function () {
var self = this ;
fetchFunction (this . currentOffset , pageSize + 1, function (items) {
self . currentPageltems = items. slice (0, pageSize);
self . hasNextVar = items. length === pageSize + 1,
bk
h
hasNext function () {
return this . hasNextVar,
h
previous: function () {
if (this . hasPrevious()) {

this . currentOffset -= pageSize
this . _load();
}
h
hasPrevious: function () {
return this . currentOffset == 0;
h

currentPageltems:],
currentOffset : 0

h

/I Load the first page
paginator . _load();
return paginator ;
h
PR
The Paginator service expects two arguments when it is calich aunction, and
the size of each page. Teieh function expects the following signature:

fetchFunction(offset, limit, callback);

It will then be called with the correct offset and limit by the Paginator whenever it needs
to fetch and display a certain page. Internal to the function, it can either slice the data

168 | Chapter 8: Cheatsheet and Recipes

from a large array, or go to the server and make a call to fetch the data. When the data
is available, thietch function needs to call theallback function with it.

Let us take a look at the spec for this, to clarify how we could use it when we have a large
array with too many items returned to us. Note that this is a unit test. Because of the
way it is implemented, we can test the service independent of any controller or XHR
requests.

describe (Paginator Service , function () {
beforeEach(moduld services));
var paginator ;

var items =[1, 2, 3, 4, 5, 6]
var fetchFn = function (offset , limit , callback) {
callback (items. slice (offset , offset + limit));

%

beforeEach(inject (function (Paginator) {
paginator = Paginator (fetchFn, 3);
N

it (should show items on the first page , function () {
expect(paginator . currentPageltems). toEqual ([1, 2, 3]);
expect(paginator . hasNex{)). toBeTruthy();
expect(paginator . hasPrevious()). toBeFalsy();

hE

it (should go to the next page , function () {
paginator . next();
expect(paginator . currentPageltems). toEqual([4, 5, 6]);
expect(paginator . hasNex{)). toBeFalsy();
expect(paginator . hasPrevious()). toBeTruthy();

»

it (should go to previous page , function () {
paginator . next();
expect(paginator . currentPageltems). toEqual([4, 5, 6]);
paginator . previous ();
expect(paginator . currentPageltems). toEqual ([1, 2, 3]);
Pk

it (should not go next from last page , function () {
paginator . next();
expect(paginator . currentPageltems). toEqual([4, 5, 6]);
paginator . next();
expect(paginator . currentPageltems). toEqual([4, 5, 6]);

B

it (should not go back from first page , function () {
paginator . previous ();

A Simple Pagination Service | 169

expect(paginator . currentPageltems). toEqual([1, 2, 3]);
b
bk

The Paginator exposesrrentPageltems on itself, which can then be bound from the
templates on eepeater (or however else you want to display them). AdmNext()
andhasPrevious() can be used to figure out when to show the Next and Previous Page
links, and orxlick , it just needs to calkext() orprevious() , respectively.

How would you use this with something that needs to fetch data from the server for
each page? Here is what a possible controller that fetches search results from the server
one page at a time could look like:

var app = angular. moduld myApp, [myApp.services]);

app controller (MainCtrl , [$scope , $http , Paginator
function ($scope $http, Paginator) {
$scope query = Testing ;
var fetchFunction = function (offset , limit , callback) {
$http . get(/search
{params {query: $scope query, offset : offset , limit : limit }})
. success(callback);

h

$scope searchPaginator = Paginator (fetchFunction , 10);

i)
The HTML page could use the Pagination service as follows:

<IDOCTYPE htmI>
<html ng-app='myApp*>

<head lang="en" >
<meta charset="utf-8" >
<title> Pagination Service </title>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.3/angular.min.js" >
</script>
<script src="pagination.js" ></script>
<script src="app.js" ></script>
</head>

<body ng-controller= "MainCtrl" >
<input type="text" ng-model=Zquery" >

<li ng-repeat="item in searchPaginator.currentPageltems" >
{{item}}

<a href=""
ng-click= "searchPaginator.previous()"

170 | Chapter 8: Cheatsheet and Recipes

ng-showZsearchPaginator.hasPrevious()" ><< Prev
<a href=""
ng-click= "searchPaginator.next()"
ng-show=searchPaginator.hasNext()" >Next >>
</body>

</html>

Working with Servers and Login

One final example will actually cover a multitude of scenarios, most or all of them linked
with the$http resource. In our experience, ttetp service is one of the core services

in AngularJS. But it can be extended to do a lot of the common requirements of a web
app, including:

pral

Having a common error-handling point

pral

Handling authorization and login redirects

pral

Working with servers that don°t understand or speak JSON

pral

Talking with external services (outside the same origin) via JSONP

So in this (slightly contrived) example, we will have the skeleton of a full-fledged app
that will:

1. Show all unrecoverable errors (Non 401s)hbntéerbar directive that gets shown
on all screens only when an error exists.

2. Have arkrrorService which will be used for communicating between the direcp
tive, the view, and the controllers.

3. Fire an eventgvent:loginRequired) whenever the server responds with a 401.
This will then get handled by a root controller that oversees the entire application.

4. Handle requests that need to be made to the server with some authorization headers
that are specific to the current user.

We will not go over the entire application (the routes, the templates, and so on), as most
of those are fairly straightforward. We will highlight only the pieces that are relevant (so
you can copy and paste that into your codebase and get started right away). These will
be fully functional. If you want to revisit defining Services and Factories, jump to
Chapter 7 If you want to take a look at how to work with servers, you can refer to
Chapter 5

Let us first take a look at the Error service:

var servicesModule = angular. moduld myApp.services , []);

servicesModule. factory (errorService , function () {

Working with Servers and Login | 171

return {
errorMessage null ,
setError : function (msg {
this . errorMessage = msg
h
clear : function () {
this . errorMessage = null ;
}
2
Dk

Our error message directive, which is actually independent of the Error service, would

just look for an alert message attribute, and then bind to it. It would conditionally show
itself when the alert message is present.

/I USAGE: <div alert-bar alertMessage="myMessageVar"></div>
angular . modulg myApp.directives , []).
directive (alertBar , [$parse , function ($parse) {

return {

restrict : A,

template: <div class="alert alert-error alert-bar" +
ng-show="errorMessage"> +
<button type="button" class="close" ng-click="hideAlert()"> +

x</button> +
{{errorMessage}}</div>

link : function (scope elem attrs) {
var alertMessageAttr = attrs [alertmessage J;
scope errorMessage = null ;

scope $watch(alertMessageAttr , function (newVa) {
scope errorMessage = newVal
;
scope hideAlert = function () {
scope errorMessage = null ;
/I Also clear the error message on the bound variable.
/I Do this so that if the same error happens again
/I the alert bar will be shown again next time.
$parse(alertMessageAttr). assign(scope null);
h
}
h
)}

We would then add the alert bar to the HTML as follows:
<div alert-bar alertmessage="errorService.errorMessage"></div>

We need to ensure that tii@rorService is saved on the scope of the controller as
YerrorServiceA before we add the preceding HTML. Th&udstGontroller was the
controller responsible for having tiAdertBar , then:

172 | Chapter 8: Cheatsheet and Recipes

app controller (RootController
[$scope , ErrorService , function ($scope ErrorService) {
$scope errorService = ErrorService ;

hE

That gives us a decent framework to show and hide errors and alerts. Now let us see
how we can tackle the various status codes that the server can throw at us, through the
use of an interceptor:

servicesModule. config (function ($httpProvider) {
$httpProvider . responselnterceptors . push(errorHttpinterceptor);

b

/ register the interceptor as a service
/l'intercepts ALL angular ajax HTTP calls
servicesModule. factory (errorHttpinterceptor ,
function ($q, $location , ErrorService , $rootScope) {
return function (promise) {
return promise. then(function (response) {
return response;
}, function (response) {
if (response. status ===401) {
$rootScope. $broadcast(event:loginRequired);
} else if (response. status >= 400 &&response. status < 500) {

ErrorService . setError (Server was unable to find +
what you were looking for... Sorry!!);
}
return $q. reject (response);
Pk
h
bk

Now all that needs to happen is for some controller somewhere to listelogorRe
quired event, and redirect to the login page (or do something more complex, like display
a modal dialog with login options).

$scope $on(event:loginRequired , function () {

$location . path(/login);

b
That just leaves requests that will need authorization. Let us just say that all requests
that require authorization will need a headeri¥AuthorizationAlwhich will have a value
that is specific for the current user that is logged in. Since this will change every time,
we cannot use defautansformRequests, as those amonfig level changes. We will
instead wrap th&http service, and create our ownthHttp service.

We will also have an Authentication service that is responsible for storing the user°s auth
information (fetched however you want, normally as part of the login process). The
AuthHttp service will refer to this Authentication service and add the necessary headers
to authorize the requests.

Working with Servers and Login | 173

/I This factory is only evaluated once, and authHttp is memorized. That is,

/I future requests to authHttp service return the same instance of authHttp

servicesModule. factory (authHttp , function ($http, Authentication) {
var authHttp = {};

/I Append the right header to the request
var extendHeaders = function (config) {
config . headers = config . headers || {};
config . headers Authorization] = Authentication .getTokenTypg) +
+ Authentication . getAccessTokelrf);
2

/I Do this for each $http call
angular. forEach([get , delete , head , jsonp], function (namg {
authHttp [namg = function (url , config) {
config = config || {}
extendHeaderg config);
return $http [nam url , config);
h
DX

angular. forEach([post , put], function (namg {
authHttp [namg = function (url , data, config) {
config = config || {}
extendHeaderg config);
return $http [nam§ url , data, config);
h
DX

return authHttp ;
bk

Any request that requires authorization will be madeaviaHttp.get() instead of
$http.get() . As long as the Authentication service is set with the right information,
your calls will fly through with ease. We use a service for Authentication as well, so that
the information is available throughout the app, without having to refetch it every time
the route changes.

That pretty much covers all the pieces we would need for this application. You should
be able to just copy the code right out of here, paste into your application, and make it
work for you. Good luck!

Conclusion

While this brings us to the end of our book, we are nowhere near close to covering
everything about AngularJS. Our aim with this book was to provide a solid foundation
from which one can begin her explorations and become comfortable with developing
in AngularJS. To this extent, we covered all the basics (and some advanced topics), while
providing as many examples as we could along the way.

174 | Chapter 8: Cheatsheet and Recipes

Are we done? No. There is still a great amount to learn about how AngularJS operates
under the covers. We didn°t touch upon creating complex, interdependent directives,
for example. There is so much more out there, that three or even four books wouldn°t
be enough. But we hope that this book gives you the confidence to be able to tackle
much more complex requirements head on.

We had a great time writing this book, and hope to see some amazing applications
written in AngularJS out on the Internet.

Conclusion | 175

Symbols

$apply,138

$broadcast] 46

$emit,146

$first, 22

$http, 42

$hitp serviceg1, 1010106 1710174

$index,22

$last,22

$locale149

$location
best uses fot,38
changing views wittg811
HTML5 and Hashbang modek40
vs. window.locationl 37

$locationProvider140

$middle,22

$on,146

$parent propertyl 29

$q,113

$resource]l08 111

$rootScopel46

$route service38

$scope object,3

$scope.isDisabled4

$templateCaché,25

$valid property46

$watch() function17, 29,31

& (ampersand) symbaol,29

Index

404 errors26

<a> tags26

 tags26

= (equal) symboll 29
@ (at) symboll 29

A

Access-Control-Allow-Origin125

advanced optimizatior§8

Angular expressiong,”

Angular Resourc&1

angular.element() functiori,32

angular.module(MyApp, [O]) vs. angular.mody
ule(MyApp), 146

AngularJS
basic building blocks of 146
client-side templates i2, 57
data binding in3
dependency injection irg
directives inb
integration with $location].38
invoking, 11
Model View Controller (MVC) in3
vs. other app2

AngularJS plug-in50

API calls 144

application development 7074
Batarang extension fa@0
compilation,57

Wepd like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

177

debugging59

integration tests56
integration with RequireJ&7
project organizatiord7, 67
running your app51

solutions to common problem533174

testing,52, 66

tools for,50

unit tests54

workflow optimization,64
applications

analyzing770100

basic startup flowi5

cache ability ofl5
ARIA semantic tag4,9
array-style injectiorn59
asynchronous action82
asynchronous requestsl2 113
attack vectorsl51
attribute datepickerd,54
authentication servicé,73
autofocus attribute43
automated testingh6
autoWatch flagh5

B

back buttons41

banking attacksl16
basic optimization58
Batarang60
bi-directional data binding29
binding strategied,29
bitwise operation7
Bluelmp°®s File Upload62
bookmarks41

boolean logic27
bootstrap methodl143
bootstrap.js file69
boundaries, declaring2
bundled filters 37
business logi@8
butterbar directive90

C

cacheable applicationks
caching42 105125
callbacks112
camel-cased name21

check boxed,6, 161
child controller,88
child scopesl29
Chrome browser 25
Chrome desktop app4l
classe<, 24
click event handlef,9
click notification,20
client-side templateg, 57
Closure Compiler58
code minification57
code optimization58
combo boxesl 61
comparisons27
compilation,57
compile property12Q 126
computed result29
Config block.143
configuration files49
controller property120
controller unit tests96
(see also unit tests)
controllers
adding with YeomarG6
basics of12 13 78
communication betweerl,57
defining,14
file location of48
in Angular,3,7
nesting of28 133
separating Ul responsibilities with7
vs. modules33
working example oB5
convenience method$02 144
cookies117 148
CORS42
credit card object4,08
cross-browser compatibilit20, 45
CSS classes and styRep6
currency filter37, 149
custom error messages

D

data
formatting with filters 37
passing among scopég9
data binding
and templates1 4083
basics of3

178 | Index

native speed1
strategies fol29
date filter,37
date/time localization149
datepickers154
debugger breakpoint3.L
debugging59
declarations]111
declarative event handlegsl,
deepWatch29
default headerd4,04
dependency injection
basics o
management 062, 67
organizing with modules33 143
dependency loop81
deployment packages?
directive definition objectl 220125
directive factory functiord3
directives
API overview12@135
basics of5, 79, 84
creating custorm43, 90, 120
HTML validation and,119
discounts, automatic application &fl
display:block23
display:none23
do-what-I-mean declaratiorl,36
doA() function,20
doB() function,20
document.cookie interfac&48
DOM (Document Object Model)
changing with directived3
manipulation in Angular3, 5, 79,132
unit tests and21
domReady69
doSomething() function20
double-curly syntax interpolatiod2, 16, 24

E

Edit Controller,86
email app39
end-to-end testH6
errors
404 errors26
handling of,115
input error,95
login errors 171
NullPointerException erro27

Origin null is not allowed] 25
eval() function27
event handlersl8
event handlers vs. directiv@s),
event listener
event propertiesl47
expression6, 28
ExpressJ$l

F

Factory API call144
factory(),35
file upload, 162164
filters
basics ofg
creating 37
formatting data with37
using with repeaterd 57
Firebug 59
flow-of-control operators27
for loop,27
form elements
binding to model propertied,6
hiding/showing,23
form validation controls45, 94
forward buttons41, 41
full propagation31
function binding,155

G

generic service85

GET requestd,16 125

global namespac#4, 20

global state, drawbacks d87

Google Closur&8

Google’s content delivery network (CDI),
GutHub, 77

H

Hashbang mode,40

headers, settind04

Hello, World example2, 4
History API,142

href attribute 26

HTML Angular template fileg}8
HTML extensions directives,
HTML sanitization,150

Index |

179

HTML validation,119
HTML5, 43,119 138 140
HTML5 cookies148
HTTP headers, settinp4
HTTP protocol 42

i18n/L10n,149

IDs, 2,19, 125

IE (Internet Explorer)81, 122
if-else operatoR7

image tag26
index.html,149
indices 22

initialization processl26
inline event handlerd,9
inline styles24

input, validation of45, 94
integration tests49, 56
internationalization, 148
isDisabled property4
isolate scoped28

item property, in shopping cart exampfe,

J

Jasmine testd9, 54, 96
Javal2
JavaScript
eval() function27
main method 143
writing unobtrusive 19
jgLite wrapperl132
jQuery, 4,102 132
jQuery Datepickers] 53157
JS library dependenciekg
JS source file48
JSON/171
JSON vulnerabilityl 16
JSONP42 171
JSP3

K
Karma,52, 55, 56, 71
keyboard focu#}3

L

Law of Demeteb

library, loading of11
link href values91
link property,12Q 126
links
emailing,41
relative links 142
rewriting, 142
linky filter, 152
List Controller,86,91, 97
lists,21, 157
loading,143
localization, 148
logic
avoiding in template£6, 79
business logi@8
login errors, 171
looping constructs27

M

main method 143
malicious sites] 16
mandatory fields45
manual testing57
mathematics function®7
menus, conditional disabling &4
method calls102
minification, 57, 66
minimum/maximum field lengths95
mobile apps41, 58
mock dataj34
model data
observing changes with9
publishing with scope&8, 1282131
storage of3
model objects, creating3, 108
model properties, binding elements 16,
model variables],2
Model View Controller (MVC)
basics of3, 12
models
as basis for apps9
basics of12 78
model trees in Batarang
module classl44
modules
creation of14
module methods]420146
number needed36
organization of]143

180 | Index

organizing dependencies witd3
reasons for] 43
vs. controllers33
monkey patcheg4
mousedown event handldr9
multiple browser testingy2
multiple properties, watchin@3

N

names/naming
directives121
parameter name matching6
services35
namespaces
for Angular,119
providing,14
native-speed data bindingl
nav bars20
nested controller£8 133
New Controller87
ng-app
declaring boundaries with2, 15
function of,7, 143
working example oB0
ng-bind, 15
ng-classz4, 92
ng-click,18 20
ng-controller
DOM node association witf28
function of,6, 94
ng-dblclick,18
ng-directive-name syntag,19
ng-disabled46, 95
ng-eventhandlei20
ng-hide,23 92
ng-href,26,91
ng-model
bi-directional data binding29
binding elements withl.6
function of,6
in jQuery wrap155
in shopping cart examplé,
ng-repeat
for lists,21, 161
function of,7
priority property and;122
working example 001, 92, 94
ng-show?23, 92
ng-src,26

ng-style 24
ng-submit,18 92 94
ng-transcludel126
ng-view,91
ngPluralize 149
ngResourcel 12
number filter,37
number localization149

O

object properties29, 33 108
Object.observe(B1

onclick,18

ondbiclick,18

optimization,58

optional fields45
order-independent argument36
Origin nullO, 125

P

pagination servicd,670170
parameter name matching6
parameterization]11

parent scoped,29

parsing complexity34
password requirement, enforcir2h
person objectd,08

PHP,3

plain text cookiesl48
pluralization support149
POST requestd02 116
price, sum total31

principle of least knowledg®,
priority property,12Q 122
production-ready app$6
project organizatiord7, 67
Promise interfacel,02
Promise proposal,13
promisesg82

propagation, ascertaining fuil
prototypal inheritancel3
Provider API call145

R

radio buttons,16
Rails,3,12

realtime web app464

Index

181

recipe management applicatiofs,
Regex pattern95
relative links 142
replace property1 20
request transformation4,06
requests, configurind,03
require property12Q 133
Requirejsp 7074
reset buttons]8
response interceptioi,15
response transformations06
RESTful resource8], 1080113
RESTful servers]1
restrict property,12Q 122
rounding up/down 37
routes
adding with Yeomar66
alternatives to] 38
changing views witt3811
list template and91
rows, highlighting25
Run block 143

S

same origin policyl 25

sample application structuré8

sanitize module]l50

Save button95

Scenario Runneg6

scenario test99

scope propertyi 20

Scope.$apply,38

scopes
$scope object,3 24
accessing from directive28131
communicating betweerl 46
controller inheritance?28
examining with Bataran@0
publishing model data witt28

screen flicker26, 113

script library, loadingl1

script tag90

search boxed61

security issued,160117 1500152

selectedRow functio26

sensitive information]16

server authenticatiorg4

server-side communication010117
asynchronous requests ard,3

over $http, 1010106 1710174
response interceptiod,15
RESTful resourcep813
security issued,16117
unit testing,107
server-side configuratioi41
servers, communicating witd,1
Service API call45
service dependency managemég; 67
services34, 35,79, 80383
session cookieg17
shopping cart example
brief explanation6
discount application30
Simple optimization58
single-instance object35
single-page applications, Angular vs. other apps,
2

singleton object35

Smalltalk,3

Socket.I01640167

special header$p4

spurious HTTP/XHR request$16
src attribute 26

static resourced9

stylesp4

T

tabbed views] 23
tables21
TDD (Test-Driven Developmenth3
Teams List app examplE57
template property] 20
templates
and data bindingl4C83
basics of78
canonical vs. copy df22
client side2, 57
file location of48
for directives12Q 1230125
model setting from28
working examples 08§905
writing as HTML,5, 12
templateUrl property12Q 125
testing
scenario test99
unit tests 95, 107
with Yeoman66
text inputs,16

182 | Index

text, displaying/updating of,5
then() functions82
third-party libraries 37

throw operator27

time zones150

tokens, 117

transclude propertyi2Q 126
transformations106
transitive change81

U

Uls (User Interfaces)

creating dynamic}

separating responsibilities a7
unauthorized transferd,17
unit tests 9509

for $http servicel07

for app logic21

for ngResourcel,12

in Karma,71

Jasmine styl&4

Jasmine-stylel9

with monkey patche&4
uppercase filteB7
user input, validation o#5, 94
username requirement, enforcir@h

\%

validation tools53 119
(see also form validation controls)
variables, in data binding,
vendor folder48
View Controller,86
views
adding with Yeomart6

basics of]2 79

changing with routes and $locatid®g1
creation of12

exposing model data t28

working example oB1

wW

watchAction,29
watchFn29, 31
web development platformSQ
web servers
starting with ExpressJSl
starting with Yeomarg1
WebSocket34
WebStorm development platforra0
while loop,27
window.location vs. $location37
Windows OS, and Yeoma#8
workflow optimization,64

X

XHR, 34

XHTML naming format,119

XML naming format119

XSRF42

XSRF (Cross-Site Request Forgery) attddi6s,

Y

Yeoman 4
overview of47
starting web servers iB1

Index | 183

About the Authors

Brad Greenworks at Google as an engineering manager. In addition to the AngularJS
project, Brad also directs Accessibility and Support Engineering. Prior to Google, Brad
worked on the early mobile web at AvantGo, founded and sold startups, and spent a few
hard years toiling as a caterer. Brad®s first job out of school was as a lackey to Steve Jobs
at NeXT Computer, writing demo software and designing Jobs® slide presentations. Brad
lives in Mountain View, CA, with his wife and two children.

Shyam Seshadiis the owner and CEO &lundoo Solutionswhere he splits his time
between working on innovative and exciting new products for the Indian market, and
consulting about and running workshops on AngularJS. Prior to Fundoo Solutions,
Shyam completed his MBA from the prestigious Indian School of Business in Hyderap
bad. Shyam°s first job out of college was with Google, where he worked on multiple
projects, including Google Feedback (AngularJS°®s first customer!), and various internal
tools and projects. Shyam currently operates from his office in Navi Mumbai, India.

Colophon

The animal on the cover 8ihgularJSs a thornback cowfistQstraciidag This fish of

many nameslthornback, thornback cow, backspine cowfish, shortspined cowfish,
blue-spotted cowfishiis usually found on rocky reefs or sandy slopes in a tangle of
sponge and weeds in the Western Indo-Pacific region. They feed primarily on worms
and other invertebrates.

These boxfish can grow up to 15 centimeters long and anywhere between 3 to 50 meters
wide. Members of the boxfish family are recognizable by the hexagonal pattern on their
skin. Their bodies are shaped like a boxy triangle from which their fins, tail, eyes, and
mouth protrude, allowing them to swim with a rowing motion. As they age, their shapes
change from more rounded to more square-shaped, and their brighter colors dim.

The thornback cowfish protects itself by secreting cationic surfactants through their
skin, which is triggered by stress. The toxins, usually secreted in the form of a mucus,
dissolve into the environment and irritate fish in the surrounding area.

The cover image is frodohnsonpus Natural HistoMhe cover font is Adobe ITC Gau
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Conp
densed; and the code font is Dalton Maag®s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to AngularJS
	Concepts
	Client-Side Templates
	Model View Controller (MVC)
	Data Binding
	Dependency Injection
	Directives

	An Example: Shopping Cart
	Up Next

	Chapter 2. Anatomy of an AngularJS Application
	Invoking Angular
	Loading the Script
	Declaring Angular’s Boundaries with ng-app

	Model View Controller
	Templates and Data Binding
	Displaying Text
	Form Inputs
	A Few Words on Unobtrusive JavaScript
	Lists, Tables, and Other Repeated Elements
	Hiding and Showing
	CSS Classes and Styles
	Considerations for src and href Attributes
	Expressions
	Separating UI Responsibilities with Controllers
	Publishing Model Data with Scopes
	Observing Model Changes with $watch
	Performance Considerations in watch()

	Organizing Dependencies with Modules
	How Many Modules Do I Need?

	Formatting Data with Filters
	Changing Views with Routes and $location
	index.html
	list.html
	detail.html
	controllers.js

	Talking to Servers
	Changing the DOM with Directives
	index.html
	controllers.js

	Validating User Input
	Moving On

	Chapter 3. Developing in AngularJS
	Project Organization
	Tools
	IDEs

	Running Your Application
	With Yeoman
	Without Yeoman

	Testing with AngularJS
	Karma

	Unit Tests
	End-to-End/Integration Tests
	Compilation
	Other Awesome Tools
	Debugging
	Batarang

	Yeoman: Optimizing Your Workflow
	Installing Yeoman
	Starting a Fresh AngularJS project
	Running Your Server
	Adding New Routes, Views, and Controllers
	The Testing Story
	Building Your Project

	Integrating AngularJS with RequireJS

	Chapter 4. Analyzing an AngularJS App
	The Application
	Relationship Between Model, Controller, and Template
	The Model
	Controllers, Directives, and Services, Oh My!
	Services
	Directives
	Controllers

	The Templates
	The Tests
	Unit Tests
	Scenario Tests

	Chapter 5. Communicating with Servers
	Communicating Over $http
	Configuring Your Request Further
	Setting HTTP Headers
	Caching Responses
	Transformations on Requests and Responses

	Unit Testing
	Working with RESTful Resources
	The Declaration
	Custom Methods
	No Callbacks! (Unless You Really Want Them)
	Simplified Server-Side Operations
	Unit Test the ngResource

	The $q and the Promise
	Response Interception
	Security Considerations
	JSON Vulnerability
	XSRF

	Chapter 6. Directives
	Directives and HTML Validation
	API Overview
	Naming Your Directive
	The Directive Definition Object
	Transclusion
	Compile and Link Functions
	Scopes
	Manipulating DOM Elements
	Controllers

	Moving On

	Chapter 7. Other Concerns
	$location
	HTML5 Mode and Hashbang Mode

	AngularJS Module Methods
	Where’s the Main Method?
	Loading and Dependencies
	Convenience Methods

	Communicating Between Scopes with $on, $emit, and $broadcast
	Cookies
	Internationalization and Localization
	What Can I Do in AngularJS?
	How Do I Get It All Working?
	Common Gotchas

	Sanitizing HTML & the Sanitize Module
	Linky

	Chapter 8. Cheatsheet and Recipes
	Wrapping a jQuery Datepicker
	ng-model
	Binding select
	Calling select
	The Rest of the Example

	The Teams List App: Filtering and Controller Communication
	The Search Box
	The Combo Boxes
	The Check Box
	The Repeater

	File Upload in AngularJS
	Using Socket.IO
	A Simple Pagination Service
	Working with Servers and Login
	Conclusion

	Index

