
Copyright © NodeSource nodesource.com 1

Digital Transformation
with the Node.js
DevOps Stack
PayPal, Netflix, and Walmart show the way to do rapid digital transformation of legacy systems

http://nodesource.com

Copyright © NodeSource nodesource.com 2

Why Digital Transformation
Modernizing systems and processes has become a top priority for businesses across
all verticals. In simplest terms, digital transformation is “the use of technology to
radically improve performance or (business) reach.”1 For businesses from established,
traditional industries such as financial services, insurance, retail, and healthcare,
digital transformation requires adopting a whole new focus, learning to “win on the
basis of superior digital capabilities and to harmonize those capabilities with offline
operations.”2 But for digital-native businesses that have never needed to make that shift
— e-commerce, social media, web-based services — it involves a sharpening of that focus
combined with an ongoing evolution of process and infrastructure.

In either case, organizations are looking for the fastest and most effective route to
modernization; Node.js is emerging as the de facto choice for companies looking to
build the apps and other infrastructure needed to make such a move. While building
out services with Java will generally take anywhere from 8-24 months, Node.js teams
typically get the development work done in 2-8 months. That’s a massive cost and time
savings. Node.js enables organizations to leverage resources they already have to replace
monolithic solutions with more flexible, modular solutions.

As outlined below, Node.js facilitates a smooth and seamless implementation that
is transparent to the user. Using Node.js, your business can incrementally deploy
applications to replace the functions that make up the existing system—while introducing
new functionality—until a new system completely replaces the old. Node.js also supports
modern software development and delivery implementation methods that can transform
how a business operates.

Before You Start: Build a Core Team (Start Small)
Getting started with Node.js requires assembling a core team and choosing an initial
project scope. The core team will bring together frontend and backend talent, including
members with JavaScript expertise and members with server-side experience—as well as
legacy system subject matter experts (SMEs). It doesn’t matter if your server-side experts

 1 “Digital Transformation: A Road-Map for Billion-Dollar Organizations,” Capgemini Consulting: http://nsrc.io/2brZ726

2 “Digital Business Strategy,” Forrester: http://nsrc.io/2brZklY

Node.js is emerging as the de facto choice for
companies looking to build the apps to achieve
greater agility and drive Digital Transformation.

http://nodesource.com

Copyright © NodeSource nodesource.com 3

are experienced Node.js users, or if they have never seen Node.js in action. It’s the shared
perspective that matters; bringing them together provides a complete picture. DevOps
and Operations teams also need to be engaged on the core team from project inception.

When an Ops team member is not available to join the core team, a member of the core
team should be designated as an Ops specialist and liaison. Likewise, when there are no
legacy system SMEs available to serve on the core team, another member of the team will
need to get up to speed with each legacy system involved and assume that role.

The process of digital transformation must be coupled with modern DevOps practices
such as Continuous Integration and Continuous Deployment (CI/CD) to maximize
agility. Delaying end-to-end integration introduces barriers to iteration and feedback.
Implementing these processes after the project development lifecycle has begun
creates an unnecessary “waterfall” phase; development teams have nothing to do while
operations teams complete essential infrastructure tasks.

Like any tool, Node.js works better for solving some problems better than others. A good
gauge for how well Node.js will apply to a particular task is to determine whether that
task is CPU-bound or I/O-bound. As a rule, most service system tasks are I/O-bound or
directly impacted by I/O-bound activities. CPU-bound tasks can be performed in Node.js,
but the mixing of I/O-bound and CPU-bound tasks in the same process can lead to poor
performance.

Node.js was developed for building performant network applications and excels at
tasks tied to managing user interactions and other inputs/outputs. For example,
Node.js is well-suited to rendering a dynamic web page that supports multi-query,
asynchronous workflows. Node.js serves as the glue, making it easy to bring all the parts
together — session data, data from database, user data — to enable seamless querying
with a smooth and straightforward user experience.

C P U B O U N D T A S K S I / O B O U N D T A S K S

Time to complete a task determined by a CPU processing
speed

Time to complete a task determined by wait time for inputs
and outputs

E X A M P L E S

• Rendering

• Data Processing

• Natural Language Processing

E X A M P L E S

• Get a user session

• Query Database

• API Request

http://nodesource.com

Copyright © NodeSource nodesource.com 4

Netflix is a great example of how effective Node.js can be for this kind of challenge.
Traditionally an enterprise Java shop, Netflix transitioned all of its user interfaces to
Node.js. While retaining the core of the Netflix engine in Java, Node.js has enabled Netflix
to significantly cut build times and streamline the overall development process. Node.js
also makes it easy for Netflix to tune its delivery of the user interfaces in ways that were
just not possible with Java. In migrating from Java to Node.js, while simultaneously
moving from the data center to the cloud, Node.js has enabled Netflix to adopt service-
oriented architecture that matches their cloud-native deployment and enables teams to
rapidly iterate.3

Start with Proxy-First Development
An important early consideration is the question of modularizing the system. Node.js
is well-suited to modularization, which is often implemented through a microservices
architecture. If you can structure the digital transformation process such that you will
chip away piecemeal projects from another technology that is slow to change (Java, Perl,
etc.), then your path for modularization is pretty clear. On the other hand, if the project
calls for an initial proof of concept with an elastic scope, modularizing might not be the
best approach. Successful digital transformation most often occurs when companies
start with smaller slices of a legacy application, adopting new approaches quickly when
there is a clear benefit.4

The key to incrementally replacing the existing system via modular buildout of a new
system is proxy-first development. For each function that you want to replace, you build
a simple Node.js app that proxies a request from the outside to the existing service
that it will replace. Ryan Dahl, the creator of Node.js, has said that successful Node.js
architectures are “proxies all the way down.”5

If your project is a good fit for a modular approach, the best way to begin is by adapting
a single discrete task, even if it is relatively small. Using Node.js, you develop a proxy for
that task within the working solution, building a cross-functional experience with the
Node.js platform.

To implement the proxy, you’ll first need to establish an API gateway to serve as traffic
cop. This is also a proxy, but it does not necessarily have to be written in Node.js. With the
API gateway in place, your usual traffic management solution can govern the operation
of the proxy within the larger system’s framework. The initial versions of the proxy mirror
the existing data structure passing through the system. As new services are deployed,

3 Kiran "CK" Oliver, "How Node.js Powers the Many User Interfaces of Netflix," TheNewStack: http://nsrc.io/2bs06zx
(December 3, 2015).

4 “Digital Transformation Using Node.js,” Forrester: http://nsrc.io/2i7zjah

5 Dan Shaw, "The Engineering Case for Node," Github: http://nsrc.io/2b6WcXK (November 16, 2014).

http://nodesource.com
http://nsrc.io/2bs06zx
http://nsrc.io/2bs06zx
http://nsrc.io/2b6WcXK

Copyright © NodeSource nodesource.com 5

there is often an opportunity to optimize the structure of the data being sent compared to
the legacy system.

Three Types of Proxy to Support Digital Transformation with Node.js

A P I G A T E W A Y P R O X Y (S T A R T E R) P R O X Y
A P P L I C A T I O N D ATA T I E R P R O X Y

Determines what services
respond to a network request

Technically a reverse proxy, which
means it makes requests on behalf of
another app.

The service that abstracts away what
data at rest is, defines how you interact
with data rather how store the data.

The basic approach is to start small with a proxy app and modify it as you expand its
use. Build that proxy app using your Continuous Integration (CI) processes, and create
a container that is then deployed using your Continuous Deployment (CD) pipeline. This
replicates your production environment, enabling cross-functional engagement (and
collaboration) and establishes the toolset you need for rapid iteration. You’re ready to test
the solution.

This approach provides the advantage of achieving a quick win by putting part of the
solution directly into production, starting you on the path to digital transformation with
Node.js. When you go live it isn't just with the developers; you go live with Ops.

PayPal is a great example of major transformation within an inherently digital business.
PayPal started its Node.js implementation by focusing on a single task, carving off a single
discrete piece of functionality from the existing monolith. In this instance, the task was
the account overview page — one of the site’s most important and heavily used assets.
From the limited scope of that first project, the Node.js team within PayPal began to
iterate.

After implementing the accounts overview, they tackled the user login experience, and
then the main PayPal.com landing page. In all, they repeated the process of replacing
modular service components some 50 times, iterating and improving as the project
team’s Node.js expertise grew.

By taking this rapid and incremental approach,
PayPal replaced its massive legacy environment
with a modern, fully-modularized service-oriented
architecture.

http://nodesource.com

Copyright © NodeSource nodesource.com 6

By taking this rapid and incremental approach, PayPal replaced its massive legacy
environment with a modern, fully-modularized service-oriented architecture. Even
digital-native organizations like PayPal need to accelerate the pace of innovation. Node.js
has enabled the next generation of applications to evolve rapidly to respond to the needs
of an ever changing market.

Transform the Software Development Process
Node.js supports modern software development and delivery methods that better
address the challenges that businesses typically face today. Standard development
practices of the late 1990’s and early 2000’s produced applications deployed as
monolithic frameworks, most often built in Java and resting on a vast base of Java code.
Such environments lend themselves to a fairly slow development and implementation
cycle. In recent years, a revolution in software development has replaced that monolithic
approach with unintrusive, iterative methodologies that encompass relentless
incremental development via frequent releases. Designed for the modular approach,
Node.js supports simplifying and streamlining development processes to align with these
methodologies.

Walmart went through an interesting digital transformation journey while building
out mobile services on its legacy Service Oriented Architecture (SOA) environment.
Their existing, massive system was simply not architected for mobile. For example,
making calls to certain data warehouse services could take seconds or even minutes.
Additionally, many legacy SOA services returned XML, while modern mobile apps required
JSON. Overall, the legacy SOA architecture was completely unacceptable for mobile
applications. The constraints and requirements for these downstream data services need
to be be understood, measured, and in many cases, transformed.

Walmart found the perfect solution to these challenges in Node.js, which has enabled
support for “end-to-end Javascript.”6 With Node.js, Walmart can now deliver complex
functionality in an efficient and lightweight development loop. Node.js has also enabled
Walmart to implement a new, modern software delivery model to complement the new
architecture and apps. The development team provided a vivid demonstration of this
when they proceeded with a scheduled software release… on Black Friday. The biggest
shopping day of the year (and the busiest day, by far, for a company like Walmart) was no
hindrance. The team deployed the new release while 200,000 users were online.7

Accelerate the Transformation

After implementing your first task on Node.js, and kicking off the iterative process,
there are other important steps to take toward digital transformation. For example, it

6 J. O'Dell, "Why Walmart is using Node.js," VentureBeat: http://nsrc.io/2boBenz (January 24, 2012).

7 Cian Ó Maidín, "Why Node.js Is Becoming the Go-To Technology in the Enterprise," nearForm: http://nsrc.io/2b71baN
(March 10, 2014).

http://nodesource.com
http://nsrc.io/2boBenz
http://nsrc.io/2b71baN

Copyright © NodeSource nodesource.com 7

is important to establish a series of benchmarks between apps developed in Node.js
and the corresponding pieces of the old solution. Common data points to examine are
response times and cpu/memory load. Often teams discover the hardware requirements
are lower when utilizing Node.js compared to the legacy system.

Aside from measuring success, the next steps involve a build-out of the entire
environment — not just the apps that incrementally replace the existing solution, but the
entire stack that supports that solution. The presumptive stack, ideal for modernizing
operations, would likely include all of the following elements:

Taking That First Step
Digital transformation can be incredibly exciting, but also a little scary. And the biggest
challenge to overcome may be figuring out how to begin. Your organization must
first reach a consensus on where you are today and what you are hoping to achieve.
Building out Node.js initiatives for the enterprise requires taking a broader view than
organizations usually adopt when initiating a new development project. Successful
Node.js deployments engage much more than just the team writing the code. Sustainable
success comes from integrating people, process and technology — a perspective that
incorporates the whole business.

Those who are taking the first steps towards a modern architecture have, in some ways,
an easier path ahead than those whose businesses are inherently digital and who have
been using Java up to this point. Just as Node.js enables much faster revision of existing
environments, it enables much faster implementation of new environments. Additionally,
organizations are increasingly updating their definition of what “modernizing” means,
and what they expect to accomplish by pursuing modernization. Rather than seeing

Node.js DevOps Stack

R U N T I M E Node.js

Cross-platform JavaScript
runtime environment for
developing server-side Web
applications.

NodeSource N|Solid

Node.js runtime enhanced to address
the needs of the enterprise.

N|Solid adds a layer of security on top
of core Node.js and provides greater
visibility into resource usage.

O P E R A T I O N S Containers

Packaging applications into a standardized unit allows teams to leverage
immutable deployments and dynamic scaling based on demand.

O R C H E S T R A T I O N Kubernetes

Cluster management platform to support the deployment, scaling, and
operations of application containers across clusters of hosts.

http://nodesource.com

Copyright © NodeSource nodesource.com 8

modernizing operations as something you do once, companies are beginning to see it as an
ongoing evolutionary process.

NodeSource Assisted Transformations
Change is the new constant. Building a platform with Node.js and supporting tooling like
the Node.js DevOps Stack (Node.js, Containers, Kubernetes) enable teams to thrive in the
new digital landscape. At NodeSource, not only are we invested in supporting the open
source Node.js project, we also provide product and support offerings to assist companies
in their digital transformation.

NodeSource N|Solid is a drop-in replacement for Node.js that provides greater security and
performance insight into your Node.js applications. N|Solid helps you to identify modules
with known vulnerabilities in your deployed applications and provides visualization of
the resources your application is using. Node.js is a keystone of the digital transformation
story, and NodeSource enables the adoption and success of Node.js within organizations
of any size or sector.

Companies can also leverage N|Support, which provides access to the experts at
NodeSource for solving issues that may arise during Node.js development. Architecture
Evaluations are another offering where NodeSource can help guide your overall Node.js
policies and strategy. NodeSource also provides world-class Node.js training, which can be
customized to best serve your development team.

You can get more information on all of NodeSource’s offerings at https://nodesource.com.

"News Corp knows news. NodeSource knows Node. "

- Jonathan Barnett of News Corp

http://nodesource.com
http://nsrc.io/2jdY5KM
http://nsrc.io/2kbSkgf
http://nsrc.io/2k0URY0

