
M A N N I N G

Jeremy Wilken
FOREWORD BY Adam Bradley

Hybrid mobile apps with Ionic and AngularJS

www.allitebooks.com

http://www.allitebooks.org

Ionic in Action
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Ionic in Action
HYBRID MOBILE APPS WITH

IONIC AND ANGULARJS

JEREMY WILKEN

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Helen Sturgis
20 Baldwin Road Technical development editor: Gregor Zurowski
PO Box 761 Copyeditor: Jodie Allen
Shelter Island, NY 11964 Proofreader: Katie Tennant
 Technical proofreader: Matthew Merkes

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781633430082
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

brief contents
1 ■ Introducing Ionic and hybrid apps 1
2 ■ Setting up your computer to build apps 16
3 ■ What you need to know about AngularJS 35
4 ■ Ionic navigation and core components 64
5 ■ Tabs, advanced lists, and form components 94
6 ■ Weather app, using side menus, modals, action sheets,

and ionScroll 126
7 ■ Advanced techniques for professional apps 163
8 ■ Using Cordova plugins 186
9 ■ Previewing, debugging, and automated testing 206

10 ■ Building and publishing apps 231
v

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxii

1 Introducing Ionic and hybrid apps 1
1.1 What is Ionic? 2
1.2 Types of mobile experiences 3

Native mobile apps 3 ■ Mobile websites (web apps) 5
Hybrid apps 6

1.3 Understanding how the Ionic stack works 7
Ionic: user interface framework 8 ■ Angular: web application
framework 10 ■ Cordova: hybrid app framework 10

1.4 Why Ionic? 11
Why Ionic is good for developers 11 ■ Drawbacks of using
Ionic 12

1.5 Prerequisites for building apps with Ionic 13
Experience with HTML, CSS, and JavaScript 13 ■ Experience
with web applications and Angular 13 ■ Access to a mobile
device 13
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.6 Supported mobile devices and platforms 14
Apple iOS 14 ■ Google Android 15

1.7 Summary 15

2 Setting up your computer to build apps 16
2.1 Quick-start guide 17

Setting up your development environment 18 ■ Starting a new
project 20 ■ Project folder structure 21 ■ Previewing in a
browser 22

2.2 Setting up previewing environments 23
Installing platform tools 23 ■ Setting up emulators 25
Setting up a connected device 29 ■ Adding a platform to the
project 30 ■ Previewing in an emulator 31 ■ Previewing
on a mobile device 32

2.3 Summary 34

3 What you need to know about AngularJS 35
3.1 AngularJS at a glance 37

Views and templates: describing the content 38 ■ Controllers,
models, and scope: managing data and logic 39 ■ Services:
reusable objects with methods 41 ■ Two-way data binding:
sharing between controller and view 41

3.2 Setting up for the chapter project 41
Getting the project files 42 ■ Starting the development server 43

3.3 Basics for an Angular app 44
3.4 Controllers: for controlling data and business logic 45
3.5 Loading data: using the controller to load and display

data in the view 48
Filters: convert data to display in the view 51

3.6 Handling click events to select a note 51
3.7 Create a directive to parse a note with Markdown 54
3.8 Using models to manage content editing 56
3.9 Saving and deleting a note 59

Adding the save() method 60 ■ Using Angular forms for
validation 61 ■ Adding the remove method 61

3.10 Continuing with Angular 62
3.11 Chapter challenges 63
3.12 Summary 63
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4 Ionic navigation and core components 64
4.1 Set up chapter project 66

Create a new app and add code manually 66 ■ Clone the
finished app and follow along 66

4.2 Setting up the app navigation 66
Designing good app navigation 67 ■ Declaring the app
views with the state provider 69

4.3 Building the home view 72
Creating a content container 72 ■ Using CSS components
and adding a simple list of links 74 ■ Adding icons to the
list items 75

4.4 Using a controller and model for the reservation view 76
4.5 Loading data into the weather view 80

Adding the template for the weather view 81 ■ Create weather
controller to load external data 82 ■ Adding a loading indicator
to the weather view 84

4.6 Infinite scroll with cards for the restaurants view 86
4.7 Using the slidebox component for app intro tour 89
4.8 Chapter challenges 92
4.9 Summary 93

5 Tabs, advanced lists, and form components 94
5.1 Set up chapter project 96

Create a new app and add code manually 96 ■ Clone the
finished app and follow along 96

5.2 ionTabs: adding tabs and navigation 96
Adding tabs container and three tabs to the app 98

5.3 Adding ionNavView for each tab 98
5.4 Loading and displaying current Bitcoin rates 103
5.5 Display a currency’s details in the same tab view 107
5.6 Refresh the Bitcoin rates and display help 111

ionRefresher: pull-to-refresh the rates 112 ■ $ionicPopover:
showing help in a popover 113

5.7 Charting historical data 116
Setting up third-party libraries 116 ■ History tab template using
Highcharts and a select box to toggle currency 117 ■ History tab
controller loads data and sets up chart 118
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
5.8 Currencies tab with list reordering and toggles 121
ionReorderButton: adding reordering to a list 122 ■ ionToggle:
adding toggles to list items 123

5.9 Chapter challenges 124
5.10 Summary 124

6 Weather app, using side menus, modals, action sheets,
and ionScroll 126
6.1 Setting up the chapter project 128
6.2 Setting up the side menu and views 128
6.3 Searching for locations 131
6.4 Adding settings view and data services 133

Create services for locations and settings 133 ■ Show favorites
in side menu list 135 ■ Adding the settings template 136
Settings view controller 138

6.5 Setting up the weather view 139
Get a Forecast.io API key 140 ■ Using Ionic CLI proxies 140
Add the weather view controller and template 141

6.6 ionScroll: building custom scrolling content 142
Using ionScroll with paging 143 ■ Creating filters for forecast
data 148

6.7 Action sheet: displaying a list of options 150
6.8 ionModal: displaying the sunrise and sunset chart 153

Setting up a modal 154 ■ Collection repeat: making the sunrise
and sunset list fast 156

6.9 Popup: alert and confirm changes to favorites 159
6.10 Chapter challenges 161
6.11 Summary 162

7 Advanced techniques for professional apps 163
7.1 Set up chapter project 164

Get the code 164

7.2 Custom Ionic styling using Sass 164
Setting up Sass 164 ■ Customize Ionic with Sass variables 165
Using Sass for your own styling 167

7.3 How to support online and offline mode 167
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
7.4 Handling gesture events in Ionic 169
Listen for events with Ionic event directives 169 ■ Listen for events
with $ionicGesture service 171 ■ Available gesture events 174

7.5 Storing data for persistence 175
Using localStorage 175 ■ Using Web SQL, IndexedDB, and
SQLite 178 ■ Other options from Cordova plugins 179

7.6 Building one app for multiple platforms 179
One size doesn’t always fit all 179 ■ Adapt styling for a
platform or device type 180 ■ Adapt behavior for a platform
or device type 182

7.7 Modify default behaviors with $ionicConfigProvider 184
7.8 Summary 185

8 Using Cordova plugins 186
8.1 Cordova plugins 187

Considerations when using plugins 188 ■ Installing
plugins 188 ■ Using plugins 189 ■ Using plugins with
emulators 190 ■ Plugins and platform limitations 190
Angular and Cordova gotchas 191 ■ Solutions to common issues
with devices or emulators 192

8.2 ngCordova 194
Installing ngCordova 194

8.3 Using a camera and photos in the resort app 194
Setting up the camera project 195 ■ Adding the camera
plugin 196 ■ Creating the photo book view 196

8.4 Using geolocation in the weather app 198
Setting up the geolocation example 199 ■ Adding the geolocation
plugin and ngCordova 200 ■ Requesting a user’s location 200
Improving the weather app 202

8.5 Chapter challenges 204
8.6 Summary 204

9 Previewing, debugging, and automated testing 206
9.1 The differences among previewing, debugging,

and testing 207
Why testing is important 208

9.2 Setting up the chapter example 208
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
9.3 Additional ways to preview apps 209
Ionic Lab 209 ■ Ionic View 210

9.4 Debugging from a device 212
Debugging from an Android device 213 ■ Debugging from an
iOS device or emulator 213

9.5 Automated testing 218
Unit tests with Jasmine and Karma 219 ■ Integration tests
with Protractor and WebDriver 225

9.6 More test examples 229
9.7 Summary 230

10 Building and publishing apps 231
10.1 Building for production: an overview 232
10.2 Building icons and splash-screen assets 233

Creating the primary icons 234 ■ Creating the splash-screen
images 235

10.3 Preparing your app for production 236
10.4 Building Android apps and publishing to

Google Play 237
Setting up for signing your apps 237 ■ Build the release app
file 238 ■ Signing the APK file 238 ■ Optimize the APK 238
Building an updated version of your app 239 ■ Creating the app
listing and uploading the app to the Play Store 239 ■ Updating the
app listing or uploading a new version 240 ■ Using alternative
Android stores 241

10.5 Building iOS apps and publishing to the AppStore 241
Set up certificates and ID 242 ■ Set up an app ID identifier 242
Create listing in iTunes Connect 243 ■ Build and upload app
with Xcode 243 ■ Complete the iTunes Connect app listing 244
Updating the app 244

10.6 Summary 245

appendix Additional resources 247

 index 249
Licensed to Mark Watson <nordickan@gmail.com>

foreword
This book is the result of nine months of dedicated work by Jeremy Wilken, a top
Ionic developer with whom we’ve had the pleasure of collaborating since we built
Ionic and open sourced it in 2013. This book provides an excellent introduction to
the Ionic Open Source SDK, and it also offers plenty of rich information for experi-
enced Ionic developers.

 Jeremy built three Ionic apps for this book, using just about every Ionic component
in existence. Because of that, the book is a solid reference for using the components in
an integrated way. The first app, which a resort might use to provide value for guests,
incorporates our slidebox, lists, cards, content containers, and basic navigation. The
second, a Bitcoin market app, provides real-time currency rates for Bitcoin and uses
pull-to-refresh, popovers, tabs, charts, advanced lists, and nested views. The third, a
weather app, uses modals, a custom scroll area (paginated scrolling), externally loaded
data, side menus, and a search view.

 The apps are unique and robust. They are 80% developed for deployment to an
app store, with the obvious missing pieces listed at the end of the chapter to challenge
readers to complete them.

 For experienced developers, the book explains how to target a platform if, for
example, they want to use the action sheet in iOS and the popover in Android. The
book also provides background about the Ionic ecosystem, explaining how to leverage
Cordova and plugins; discussing Ionic’s platform services, such as Ionic View; and pro-
viding instruction about how to improve Ionic development with advanced techniques
and testing. Jeremy provides great examples and insight into how to set up and write
your own tests.
xiii

Licensed to Mark Watson <nordickan@gmail.com>

FOREWORDxiv
 Prior to creating Ionic with Max Lynch and Ben Sperry, I joined their company to
help develop their already successful products, including Codiqa, which was a jQuery
Mobile drag-and-drop interface builder. As we worked on Codiqa, we realized devices
and browsers were not being used to their full potential, and users were continually
asking for more from our tools. Eventually, we decided to create our toolkit for hybrid
applications, in order to push mobile devices to their limits. With the added power of
Angular, we’ve been able to bring hybrid mobile app development to a place where it
presents a viable challenge to native application development. Since we released the
alpha version of Ionic in 2013, I couldn’t be more proud of how quickly the develop-
ment community has embraced Ionic and helped to grow it even further. The part I’m
most excited about is that Ionic is only getting started, and we’ll continue to grow and
support it, so that developers can build high-performing apps quickly and easily.

 You’ll find this book to be both an informative introduction to Ionic and an in-
depth guide to building better apps, depending on your experience with Ionic and
your needs. Thank you for being part of the Ionic community.

 Enjoy!
ADAM BRADLEY

COCREATOR OF THE IONIC FRAMEWORK
Licensed to Mark Watson <nordickan@gmail.com>

preface
The importance of mobile may be clear today, but even just a few years ago it was
debatable if building mobile apps was worth the time and cost. As of 2015 the number
of mobile apps available in the Apple App and Google Play Stores is well over a mil-
lion. Over six times more phones are sold than desktop/laptop devices, and the num-
ber of tablets sold should exceed desktop/laptop devices in 2015. Mobile is here, and
here to stay.

 Back in 2013, the world of mobile app development was focused primarily on
building native apps. These native apps were written in Java or Objective C, and
required developers to learn those languages, platform tools, SDKs, and so forth. For a
web developer like myself, this presented a barrier to getting into mobile app develop-
ment. It seemed like the mobile web was focused on building responsive websites, not
mobile apps. The idea of a hybrid app (which is a native app built using web technolo-
gies) was usually given very little credit due to the quality of older devices and brows-
ers that made hybrid apps sluggish, and design practices that made the apps have a
visual disconnect from native apps.

 The founders of Ionic saw an opportunity. They realized that mobile devices were
improving, quite rapidly in fact, and that hybrid apps could be a serious contender
with native apps. They aimed to open the door for developers who want to build
native-feeling mobile apps, while using the same languages they already know from
web development. Ionic builds on the shoulders of other open source projects, Cor-
dova and Angular. Ionic leverages these projects into a more unified platform for
building hybrid mobile apps.
xv

Licensed to Mark Watson <nordickan@gmail.com>

PREFACExvi
 As of version 1.0, it’s clear that Ionic has come of age and empowers web develop-
ers to build mobile apps. The Ionic team has become fond of calling Ionic the “miss-
ing SDK” for hybrid apps. As I’ve finished this journey of writing Ionic in Action, I can
see the full vision of Ionic coming to life. The core of what makes Ionic so powerful is
the open source components explored in this book. In addition, a platform of services
is being built around it for features such as push notifications, analytics, beta testing,
and more. I hold open source projects with well-managed development and commu-
nity input in high regard, and Ionic is certainly in this category (in the top 40 starred
projects on GitHub, and it uses Angular, which is in the top 3 as of this writing). Hun-
dreds of thousands of apps have been created with Ionic, and several apps have even
been featured in the major app stores.

 Writing a book about Ionic was a logical extension of my desire to share my learn-
ing experience on how to become a mobile app developer. I started with writing the
core parts of this book around a learning pathway that talked about each feature of
Ionic and explored them each in isolation. I got up to six chapters done, but it felt like
the wrong approach. I like to see something working that I can interact with, and even
touch, as is possible in the case of mobile apps.

 So after writing the first draft of the three core chapters in the book, I threw them
aside and rewrote them from scratch using a very direct, build-the-app-as-you-go
approach. It feels much more like the kind of learning path I followed when I built my
first Ionic app, and I hope that you find the chapters approachable. In fact, I hope you
find that same care applied to all of the chapters in this book.

 I learned about Ionic through trial and error, since the documentation has always
been a good guide. When I had a project at work that required a mobile app, I was
able to put Ionic into service and build a prototype within a day. Working through the
early days of Ionic, I regularly updated my app to keep up with the changes and new
features, and I was often impressed with the attention to detail and rapid pace of inno-
vation. Over the months of beta releases, Ionic matured its API and design into the
polished and consistent form it is today.

 The future of Ionic is one that includes even more community-driven contribu-
tions and components, more platform services, and continued progress in perfor-
mance and quality. I can’t wait to see what you build, and I’m glad to be with you on
your own journey to become a mobile app developer with Ionic.
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
In this book I share many things that I’ve learned over the years, and I owe many for
providing training, guidance, and support along the way. While it is impossible to
track everyone who has had some impact on my growth that led to this book, I know
those who have made the biggest impact are people heavily involved in open source
communities. Those who write, maintain, or support open source projects and com-
munities have my highest respect and gratitude.

 Thank you, Manning, and the wonderful staff who have worked hard to make this
book a reality. They say it takes a village to raise a child, and so it is also with pub-
lishing a book. Robin de Jongh was instrumental in getting this book started, and for
stimulating my excitement to write. My sincere thanks goes to Helen Stergius for her
tireless editing, late-night brainstorming, and positive attitude and energy that pushed
me through the major writing phase. I thank the rest of the team who helped bring
the book to life through publishing and reviewing, particularly Gregor Zurowski,
Katie Tennant, Mary Piergies, Janet Vail, Matt Merkes, Candace Gillhoolley, Kevin
Sullivan, Donna Clements, and Jodie Allen.

 Many peer reviewers helped by poking holes in some of the weaker areas of early
drafts or inspired my confidence to make positive changes over time. Many thanks to
Andrea Prearo, Barbara Fusinska, Charlie Gaines, Cho S. Kim, Chris Graham, Gareth
van der Berg, Giuseppe de Marco, Jeff Cunningham, Ken Rimple, Kevin Liao, Lourens
Steyn, Patrick Dennis, Rabimba Karanjai, Satadru Roy, and Wendy Wise—you sug-
gested many improvements for me to chew on, and the manuscript would not be as
strong without your help. Many MEAP reviewers provided some great feedback on the
xvii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxviii
forum. It’s pretty neat that people are willing to buy a book and engage with the author
on how to make it better.

 If you ever have the chance to meet anyone from the Ionic team, you’ll find them
to be some of the most dedicated and genuine people in tech and open source. I owe
the Ionic team a great deal of thanks for making Ionic (and thus the opportunity to
write a book on it!), and for their great efforts in reviewing and answering questions
along the way. In particular, I’d like to thank Adam Bradley, Ben Sperry, Katie Ginder-
Vogel, and Mike Hartington for the many emails, Skype calls, or in-person chats we’ve
had. The Ionic community grows daily due to your tireless efforts and fantastic work.
And special thanks to Adam for penning the foreword to my book.

 Finally, there’s always the underlying support of my wife Linda. In the future, I
promise not to write a book when we have a newborn (without your permission of
course). It’s hard to imagine the amount of time and energy a book requires until you
do it, and you’ve been supportive and understanding when I needed to hide in my
office until a draft was done. I love you and our baby always.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
Ionic brings together several existing projects with its own set of tools so web develop-
ers can build mobile apps. Ionic has gained a strong following and is a top choice for
mobile app developers.

 Ionic in Action is a hands-on, example-driven guide to Ionic. During the course of
the book, you’ll build several nearly complete apps that showcase almost every feature
of Ionic. The documentation for Ionic is very good, but it doesn’t provide much direc-
tion on how to orchestrate a large app.

 When you build an app with Ionic, you actually use a combination of technologies
(primarily Angular and Cordova). To ensure you’re really capable of building mobile
apps with Ionic, the book provides chapters on those technologies. There’s much
more that could be said about Angular and Cordova, which is why entire books have
been written about them, but this book tries to do them justice and provides enough
foundational knowledge to get you started.

 Mobile apps often require access to external data. It’s helpful to understand how
APIs are able to provide data for web applications. Ionic in Action covers how to utilize
RESTful APIs through several of the examples.

Who should read this book
This book is intended for web developers who have a foundation in building web
applications.

 Knowledge of CSS, HTML, and JavaScript is expected. You should understand how
to write HTML to structure your content and how to use CSS to modify the styling.
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
JavaScript experience should include concepts such as asynchronous behavior,
objects, and primitives.

 No prior knowledge of Cordova or Angular is required. It’s helpful to have some
background in building web applications in a browser with JavaScript, but this experi-
ence can also be gained through careful study of the book examples.

 Access to a mobile device is necessary to properly build and test apps. For Ionic,
the device needs to be an iOS or Android device. Having one of each is very helpful!

How the book is organized
In the 10 chapters, I cover the entire process from setting up your environment to
publishing your finished app:

 Chapter 1 is a detailed overview of Ionic, the other technologies used together
to create hybrid apps, and why Ionic is a great choice.

 Chapter 2 gets you through the setup process for all of the tools used in the
book, and helps you create your first mobile app using one of the default starter
templates.

 Chapter 3 provides a primer for developers who aren’t familiar with Angular or
who’d like to brush up on their knowledge because Ionic is built with Angular.

 Chapter 4 walks you through creating a mobile app for a fictitious resort that
includes basic app navigation and uses a number of visual components such as
cards, a list with infinite scrolling, loading indicators to gracefully load data,
and a slidebox. You’ll learn about the basics of building an Ionic app using a
hands-on approach while building your first app.

 Chapter 5 takes you through building another mobile app for tracking Bitcoin
currency prices. The Bitcoin app uses tabs, a pull-to-refresh feature, several
form components, advanced lists with swipe options, and a chart for quotes
over time. The focus in this chapter is how to structure an app using tabs, and
how to leverage many more Ionic components.

 Chapter 6 helps you build a weather app. The chapter digs into using the side
menu for navigation, modals for presenting tangential information, action
sheets to display option buttons, and a custom scrolling behavior. This chapter
rounds out your understanding of the Ionic components and primary design
elements used in Ionic apps.

 Chapter 7 introduces you to some advanced techniques that are useful for
building hybrid apps. You’ll learn about how to persist user data, customize
Ionic components, work in online or offline mode, configure Ionic’s default
settings, adapt your apps to have platform-specific functionalities, and handle
gesture events.

 Chapter 8 looks at how to use Cordova to allow Ionic apps to support platform
features, such as sensor data. The chapter uses two of the apps you built in ear-
lier chapters to demonstrate how to add support for geolocation for the
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxi
weather app and camera support for the resort app. You’ll learn about ngCor-
dova and how to easily integrate with any Cordova plugin.

 Chapter 9 helps you set up testing for your Ionic app. The chapter introduces
two primary testing approaches: unit testing for testing your business logic, and
integration testing for testing the overall app functionality. You’ll also learn
about Ionic View and Ionic Lab to help you preview your apps.

 Chapter 10 walks you through the process of submitting your apps to the stores.
It covers tips and techniques for preparing your apps for production, adding
necessary graphics and assets, and ultimately how to properly build your apps
for both iOS and Android.

Code
All of the code for this book is found on GitHub at https://github.com/ionic-in-
action. The source code is open source, so you’re able to modify it for your own pur-
poses. I only ask that you don’t try to publish the example apps to the app stores.

 Most of the code is found in code listing blocks, except in cases where the code is
short and should already be familiar. The code is well annotated to provide context
and descriptions for individual lines. Sometimes code is in bold font to highlight code
that has changed from previous steps in the chapter, such as when a new feature adds
to an existing line of code.

Author Online
Purchase of Ionic in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/books/ionic-in-action.

 This page provides information on how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum.
Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/books/ionic-in-action
https://github.com/ionic-in-action
https://github.com/ionic-in-action

about the cover illustration
The figure on the cover of Ionic in Action is captioned “Summer Habit of a Moor of
Morocco 1695.” The illustration is taken from Thomas Jefferys’ A Collection of the
Dresses of Different Nations, Ancient and Modern (4 volumes), London, published
between 1757 and 1772. The title page states that these are hand-colored copperplate
engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called
“Geographer to King George III.” An English cartographer who was the leading map
supplier of his day, Jeffreys engraved and printed maps for government and other offi-
cial bodies and produced a wide range of commercial maps and atlases, especially of
North America. His work as a mapmaker sparked an interest in local dress customs of
the lands he surveyed and mapped. This diversity of dress is brilliantly displayed in
this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late eighteenth century, and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jeffreys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations 200 to 300 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It is now hard to tell the inhabitant of one continent apart from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of centuries ago, brought back to life by
Jeffreys’ pictures.
xxii

Licensed to Mark Watson <nordickan@gmail.com>

Introducing Ionic
and hybrid apps
Building mobile apps has become an essential skill for many developers, and with
Ionic you’ll be able to build hybrid mobile apps that look and feel just like native
mobile apps. A hybrid app is a type of mobile app that uses a browser window to dis-
play its interface. Ionic is a combination of tools and utilities that enables
developers to quickly build hybrid mobile apps using the same technologies used
to build websites and web applications, primarily HTML, CSS (Cascading Style
Sheets), and JavaScript. Ionic works by embedding a web application inside of a
native app by using Cordova. It’s designed to work together with Angular to create

This chapter covers
 Why you should choose Ionic and how it benefits you

 What Ionic is and how it uses Angular and Cordova

 Why hybrid apps are an ideal choice for mobile
development

 Introduction and requirements for Android and iOS
platforms
1

Licensed to Mark Watson <nordickan@gmail.com>

2 CHAPTER 1 Introducing Ionic and hybrid apps
a web application for the mobile environment, and includes support for mobile fea-
tures like user interface controls and responding to touch input.

 This book aims to give developers the skills necessary to build Ionic mobile apps.
I’ll teach you the basics of setting up your projects correctly and how to build rich
interfaces, and demonstrate with real-world style examples. I’ll help you set up your
build, testing, and deployment processes to get your app ready for production. But
before we get too far along, we should dig deeper into Ionic and why it’s a solid choice
for building hybrid mobile apps.

1.1 What is Ionic?
Ionic is a combination of technologies and utilities designed to make building hybrid
mobile apps fast, easy, and beautiful. Ionic is built on an ecosystem that includes
Angular as the web application framework and Cordova for building and packaging
the native app. We’ll dig into each in more detail later, but figure 1.1 shows you an
overview of these technologies and how they stack. Let’s take a moment to cover the
basics of how the technology stack works on a device.

 In figure 1.1, the stack begins with the user opening the app from the device.
Imagine this is an iPhone running iOS or a Nexus 10 running Android. Let’s break
down each of these pieces in more detail:

 Device—This loads the app. The device contains the operating system that
manages the installation of apps that are downloaded from the platform’s store.
The operating system also provides a set of APIs for apps to use to access various
features, such as the GPS location, contacts list, or camera.

 Cordova app wrapper—This is a native app that loads the web application code.
Cordova is a platform for building mobile apps that can run using HTML, CSS,
and JavaScript inside of a native app, which is known as a hybrid mobile app. It’s a
utility for creating a bridge between the platform and the application. It creates
a native mobile app that can be installed (called the app wrapper in figure 1.1),

Ionic stack mental model

Device Cordova Web application

User
opens
the app

Device loads
Cordova app

wrapper

Cordova app
wrapper

loads new
WebView

Cordova
app wrapper

WebView
loads

index.html
file

WebView with
JavaScript API

Angular
bootstraps

and determines
default view

Angular

Ionic
components
are rendered

for the UI

Ionic

Figure 1.1 The stack of technologies used with the Ionic framework, and how they fit together
Licensed to Mark Watson <nordickan@gmail.com>

3Types of mobile experiences
and it contains what’s called a WebView (essentially an isolated browser win-
dow) with a JavaScript API that the web application will run inside.

 Cordova JavaScript API—This is the bridge that communicates between the app
and the device. The app wrapper has access to both the web application and the
native platform through the JavaScript API. This is primarily handled behind
the scenes, and Cordova ultimately generates the native app for you.

 Angular—This is the web application that controls the app routing and func-
tion. The Angular web application runs inside of the WebView. Angular is a
very popular framework for building powerful web applications. Angular is pri-
marily used to manage the web application’s logic and data.

 Ionic—This provides the user interface components rendered in the app. Ionic
is built on top of Angular, and is primarily used to design the user interface and
experience. This includes the visual elements such as tabs, buttons, and naviga-
tion headers. These interface controls are the heart of Ionic, and provide a
near-native interface inside of a hybrid app. Ionic also includes a number of
additional utilities and features that help manage your app from creation to
previewing to deployment.

The combination of these technologies makes Ionic a very feature-rich platform
for building your mobile apps. Now that you have a bird’s-eye view of Ionic and the
technology, let’s look a little closer at three main types of mobile experiences and why
Ionic’s approach is beneficial.

1.2 Types of mobile experiences
It’s important to understand there are several ways to build applications for mobile
devices, and each has its strengths and weaknesses. There are three basic types: native
apps, mobile websites, and hybrid apps. We’ll look at each of these in detail to clarify
the differences.

 In figure 1.2, you can see how the three types compare in design and architecture.
The figure also shows how each app would access a database or web service API to load
data.

1.2.1 Native mobile apps

To create native apps, developers write code in the default language for the mobile
platform, which is Objective C or Swift for iOS and Java for Android. Developers com-
pile the app and install it on a device. Using the platform software development kit
(SDK), the app communicates with the platform APIs to access device data or load data
from an external server using HTTP requests.

 Both iOS and Android provide a set of tools to enable developers to leverage the
platform features in a controlled manner through predefined APIs. There are tools,
both official and unofficial, that can aid in the development of native apps. It’s com-
mon for developers to use frameworks in their native app to make development easier.
Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Introducing Ionic and hybrid apps
NATIVE APP ADVANTAGES

Native apps come with a number of benefits over hybrid apps and mobile websites.
The benefits revolve around being tightly integrated with the device platform:

 Native APIs—Native apps can use the native APIs directly in the app, making the
tightest connection to the platform.

 Performance—They can experience the highest levels of performance.
 Same environment—They’re written with native APIs, which is helpful for devel-

opers familiar with the languages used.

But there are also a number of disadvantages.

NATIVE APP DISADVANTAGES

The disadvantages of native apps are generally the level of difficulty in developing and
maintaining them:

 Language requirements—Native apps require developer proficiency in the plat-
form language (for example, Java) and knowledge of how to use platform-
specific APIs.

 Not cross-platform—They can only be developed for one platform at a time.

Native app Mobile website

Web service
(database)

Web server

HTTP
request

Hybrid app

Web service
(database)

This is
where the
app code
exists.

HTTP
request

HTTP
request

Native app

Platform

SDKs

Browser

Platform

WebView

Native app

Cordova

Platform

This is where the
app code exists.

This is
where the
app code
exists.

Figure 1.2 Native apps, mobile websites, and hybrid app architectures compared side by side
Licensed to Mark Watson <nordickan@gmail.com>

5Types of mobile experiences
 High level of effort—Typically, they require more work and overhead to build,
which increases costs.

Native apps may be best suited for developers who have a command of Java and Objec-
tive C, or for teams with extensive resources and a need for the benefits of native apps.

1.2.2 Mobile websites (web apps)

Mobile websites, or web apps, work well on a mobile device and are accessed through
a mobile browser. Web apps are websites viewed on a mobile device in a mobile
browser, designed specifically to fit a mobile device screen size. Figure 1.3 shows a cou-
ple of examples.

 Some website designers develop a second version specifically for use on a mobile
device. Perhaps you’ve used your mobile device to visit a website and were redirected
to a version with limited features, such as visiting eBay and ending up on the http://
m.ebay.com subdomain. On other websites, such as www.bostonglobe.com, you may

Responsive website:
Content adapts to the space
based on screen size

Mobile-specific website:
Design created specifically
for a mobile device

Figure 1.3 Mobile websites: a responsive site from the Boston Globe (left) and a mobile-
specific website from eBay (right)
Licensed to Mark Watson <nordickan@gmail.com>

http://www.bostonglobe.com
http://m.ebay.com
http://m.ebay.com

6 CHAPTER 1 Introducing Ionic and hybrid apps
find that the design adjusts to your device’s form factor and screen size. This is accom-
plished with a technique called responsive design. The website content will resize and
flow according to the browser window size, and some may even be hidden.

MOBILE WEBSITE ADVANTAGES

Mobile websites enjoy a number of benefits, primarily in the level of effort and com-
patibility on devices:

 Maintainability—Mobile websites are easy to update and maintain without the
need to go through an approval process or update installations on devices.

 No installation—Because they exist on the internet, they don’t require installa-
tion on mobile devices.

 Cross-platform—Any mobile device has a browser, allowing your application to be
accessible from any device.

As with native apps, there are also a number of disadvantages.

MOBILE WEBSITE DISADVANTAGES

Mobile websites run inside of a mobile browser, which is the major cause of limitations
and disadvantages:

 No native access—Because mobile websites are run in the browser, they have no
access to the native APIs or the platform, just the APIs provided by the browser.

 Require keyboard to load—Users have to type the address in a browser to find or
use a mobile website, which is more difficult than tapping an icon.

 Limited user interface—It’s difficult to create touch-friendly applications, espe-
cially if you have a responsive site that has to work well on desktops.

 Mobile browsing decline—The amount of time users browse the web on a mobile
device is declining, while app use is increasing.

Mobile websites can be important even if you have a mobile app, depending on your
product or service. Research shows users spend much more time using apps compared
to the mobile browser, so mobile websites tend to experience lower engagement.

1.2.3 Hybrid apps

A hybrid app is a mobile app that contains an isolated browser instance, often called a
WebView, to run a web application inside of a native app. It uses a native app wrapper
that can communicate with the native device platform and the WebView. This means
web applications can run on a mobile device and have access to the device, such as the
camera or GPS features.

 Tools that facilitate the communication between the WebView and the native plat-
form make hybrid apps possible. These tools aren’t part of the official iOS or Android
platforms, but are third-party tools such as Apache Cordova, which is used in this
book. When a hybrid app compiles, your web application transforms into a native app.
Licensed to Mark Watson <nordickan@gmail.com>

7Understanding how the Ionic stack works
HYBRID APP ADVANTAGES

Hybrid apps have a few advantages over mobile websites and native apps that make
hybrid apps a great platform for building apps:

 Cross-platform—You can build your app once and deploy it to multiple platforms
with minimal effort.

 Same skills as web development—They allow you to build mobile apps using the
same skills already used to develop websites and web applications.

 Access to device—Because the WebView is wrapped in a native app, your app has
access to all of the device features available to a native app.

 Ease of development—They’re easy and fast to develop, without the need to con-
stantly rebuild to preview. You also have access to the same development tools
used for building websites.

Hybrid apps provide a robust base for mobile app development, yet still allow you to
use the web platform. You can build the majority of your app as a website, but anytime
you need access to a native API, the hybrid app framework provides a bridge to access
that API with JavaScript. Your app can detect swipes, pinches, and other gestures just
like clicks or keyboard events. But there are a few disadvantages, as you might expect.

HYBRID APP DISADVANTAGES

Hybrid apps have a few disadvantages due to the restrictions that are placed on Web-
Views and limitations of native integrations:

 WebView limitations—The application can only run as well as the WebView
instance, which means performance is tied to the quality of the platform’s
browser.

 Access native features via plugins—Access to the native APIs you need may not be
currently available, and may require additional development to make a plugin
to support it.

 No native user interface controls—Without a tool like Ionic, developers would have
to create all of the user interface elements.

With Ionic, you can build hybrid apps so you can leverage the knowledge and skills
with which web developers are already familiar.

1.3 Understanding how the Ionic stack works
There are several technologies that can be used when building hybrid apps, but
with Ionic there are three primary ones: Ionic, Angular, and Cordova. Figure 1.4 out-
lines how these pieces can work in tandem to facilitate opening the camera from an
Ionic app.

 Let’s break down each of the steps in figure 1.4:

1 The user taps on a button (which is an Ionic component).
2 The button calls the Angular controller, which calls Cordova through the

JavaScript API.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Introducing Ionic and hybrid apps
3 Cordova communicates with the device using native SDKs and requests the
camera app.

4 The device opens the camera app (or prompts for permission if necessary), and
the user is able to take a picture.

5 When the user confirms the photo, the camera app closes and returns the
image data to Cordova.

6 Cordova passes the image data back to the Angular controller.
7 The visual display of the image is updated inside of Ionic components.

This quick outline of how the pieces communicate can demonstrate how an Ionic app
is really a stack of technologies that work in concert. Don’t worry if some of these
terms are unknown to you—we’ll cover them throughout this book. The key here is to
see how your app is able to leverage the power of the device. Let’s look at each one
more closely.

1.3.1 Ionic: user interface framework

Ionic’s primary feature is a set of user interface controls that are missing from HTML
but are common on mobile apps. Imagine a weather app that shows current condi-
tions based on the user’s location. Ionic provides a number of user interface compo-
nents such as a slidebox that allows a user to swipe between several boxes of
information like temperature, forecasts, and weather maps. These components are

Ionic stack mental model

Device Cordova Web application

User
opens
the app

Device loads
Cordova app

wrapper

Device opens
camera app

(may ask
permission

unless already
granted)

Camera app
closes and

returns photo

4

3 2 1

Cordova app
wrapper

loads new
WebView

Angular
bootstraps

and determines
default view

Ionic
components
are rendered

for the UI

Cordova
receives

and passes
on photo

Cordova
JavaScript
API passes

on photo

Angular
gets photo

and renders
the view

Ionic
components
are rendered

for the UI

Cordova
asks the

device to open
camera app

Cordova
JavaScript
API asks

Cordova for
camera

Angular
calls

Cordova
camera

JavaScript API

Ionic button
is pressed,

calls Angular

User
taps on
a button
to open
camera

5 6 7

Cordova
app wrapper

WebView
loads

index.html
file

WebView with
JavaScript API Angular Ionic

Figure 1.4 How Ionic, Angular, and Cordova work together for a hybrid app
Licensed to Mark Watson <nordickan@gmail.com>

9Understanding how the Ionic stack works
built with a combination of CSS, HTML, and JavaScript, and they behave like the native
controls you’re accustomed to using. Common examples include these:

 Side menus that slide in from the side
 Toggle buttons
 Mobile tabs

In figure 1.5 you can see a screenshot of one of the sample apps you’ll build later in
the book. It shows how many different Ionic components are used on the screen at
once to create a powerful user interface.

 Ionic is an open source project that’s primarily developed by the Ionic team. Its
popularity has grown very quickly since it was launched in November 2013; it has
become a primary choice for building hybrid apps. Over 20,000 apps are launched
with Ionic each month. Ionic is provided under the MIT license and is found at http://
ionicframework.com.

 Ionic also has a command-line interface (CLI) tool that provides some helpful devel-
oper tools. I’ll refer to it as the CLI tool. This tool can help generate starter projects, and

Ionic
navigation bar

Ionic footer bar

Ionic tabs

Ionic navigation
buttons

Ionic popover

Ionic list

Ionic icons

Figure 1.5 How parts of Ionic work
together to create a usable interface
Licensed to Mark Watson <nordickan@gmail.com>

http://ionicframework.com
http://ionicframework.com

10 CHAPTER 1 Introducing Ionic and hybrid apps
preview, build, and deploy your app. I’ll demonstrate most of the features of the CLI
tool as we go through the examples.

 Ionic also includes a font icon library that gives you access to a decent number of
useful and common icons for your application. It’s optional, but it’s provided by
default and we’ll use it regularly in the examples.

 Ionic also has a number of services that aid in mobile app development, such as a
visual drag-and-drop app creator and deployment tooling, user tracking and analytics,
and push notifications. You can learn more about the full Ionic platform at https://
ionic.io.

 These user interface controls are the primary features of Ionic, but the Ionic team
has worked hard to ensure Ionic’s tools and processes work well with Angular and Cor-
dova, which are discussed next.

1.3.2 Angular: web application framework

Angular (also known as AngularJS) is a Google open source project that has become
quite popular with web application developers. It provides web developers a good
application structure and the ability to write complete applications quickly. In the
weather app example in this book, you’ll use Angular to help manage the user’s data
and load information from the weather service.

 Miško Hevery and Adam Abrons started Angular in 2009. Eventually, Hevery
joined Google and brought Angular with him. The project is immensely popular
with developers today, and has been adopted by a number of large sites such as
www.stackoverflow.com and www.nasa.gov. Angular is licensed under the MIT license
and is available at http://angularjs.org.

 You no longer have to use a server-based language (that is, PHP, Ruby, or Java) to
build complex applications. Today, JavaScript web application frameworks like Angu-
lar allow you to build complex applications in the browser. Typically a server applica-
tion also exists to help manage private data and secure any business logic. This is an
obvious advantage for hybrid app developers because the browser is the platform you
use to create your apps. If you’re familiar with Angular (or other JavaScript applica-
tion frameworks such as Ember or Backbone), you’ll be able to easily apply your
knowledge to developing mobile apps with Ionic.

 In this book we’ll also use additional Angular modules that have been developed
by third-party developers. One notable example is a module called ui.router, which
is an open source Angular module that provides better application routing and navi-
gation than the default Angular routing module offers.

1.3.3 Cordova: hybrid app framework

In this book we’ll use Apache Cordova as the hybrid app framework. This is the layer
that takes care of managing the communication between the browser window and
native APIs. The weather-app example needs access to the device’s GPS information to
know what location to load data for, and Cordova is able to bridge the gap between
Angular and the device to retrieve that information.
Licensed to Mark Watson <nordickan@gmail.com>

https://ionic.io
https://ionic.io
http://www.stackoverflow.com
http://www.nasa.gov
http://angularjs.org

11Why Ionic?
 You may also have heard of PhoneGap. Adobe contributed PhoneGap to the
Apache Software Foundation under the name Cordova. Today, PhoneGap is a distri-
bution of Cordova, or, in other words, PhoneGap is essentially Cordova with support
for a few additional commercial features from Adobe. For the purposes of this book,
we’ll use Cordova, but you could use PhoneGap and its commercial features if you
desire.

 Cordova is an open source Apache project that has a large community around it.
Adobe continues to be a major developer of the framework. Cordova is licensed
under the Apache 2.0 license.

 The core of Cordova provides a lot of features; it also provides a plugin system for
developers to create new features such as native API integrations with the phone
camera. It’s actively maintained with regular releases of improvements and new fea-
tures. You can find out more about Cordova at http://cordova.apache.org.

 Ionic has also sponsored the creation of a project called ngCordova at http://
ngcordova.com. ngCordova is a collection of nicely integrated Cordova plugins
designed to work well with Angular. Chapter 8 covers more details about Cordova and
plugins, and you’ll see some examples from the ngCordova project.

1.4 Why Ionic?
Ionic brings a new and important set of improvements to hybrid apps that other tools
like jQuery Mobile haven’t been able to provide. Until recently, mobile devices were
still relatively sluggish and only a native app could deliver the performance and expe-
rience many developers wanted or needed. Mobile platform makers hadn’t made
browsers as fast as the native platforms. All of that has changed as devices have
become more powerful, platforms have improved, and new tools like Ionic have made
it possible to build amazing hybrid apps.

1.4.1 Why Ionic is good for developers

Ionic is able to provide an experience—built into the hybrid app—that looks, feels,
and performs like a native app. The long-standing argument that native apps are the
only way to get fast and richly featured apps has been proven wrong. People expect
their mobile apps to be fast, smooth, and intuitive, and Ionic apps can deliver:

 Build apps with the web platform—Using HTML, CSS, and JavaScript, you can make
hybrid apps that behave like native mobile apps.

 Built with Angular—For developers familiar with Angular (or even another
JavaScript framework like Ember), Ionic is a great choice. Because Ionic is built
with Angular, you have access to all of Angular’s features and third-party mod-
ules. Angular is designed to build major applications, and Ionic extends Angu-
lar for the mobile environment.

 Uses modern techniques—Ionic was designed to work with modern CSS3 features
like animations. Mobile browsers generally have better support for the latest
web platform specifications, which allows you to use those features as well.
Licensed to Mark Watson <nordickan@gmail.com>

http://cordova.apache.org
http://ngcordova.com
http://ngcordova.com

12 CHAPTER 1 Introducing Ionic and hybrid apps
 Engaged community and open source spirit—The Ionic community is very active on
forums, with code contributions, and in sharing tips and tricks about the plat-
form. The open source spirit is alive and well within the project.

 Powerful CLI tool—With the Ionic CLI tool, you can quickly manage develop-
ment tasks such as previewing the app in a browser, emulating the app, or
deploying an app to a connected device. It helps with setting up and starting a
project as well.

 Ionic services—Ionic also provides services that make development much easier.
The Ionic Creator service allows you to use a drag-and-drop interface to design
and export an app. The Ionic View service allows you to deploy an app beta
release to customers or test users. In short, Ionic is all about creating not just
the basic tools for making hybrid apps, but also the development tools that will
help you create them efficiently.

 Ionic has a dedicated team—Open source projects can be difficult to select
because you can’t be sure if they will be properly developed or supported. Ionic
has a dedicated team that has a vested interest in keeping the platform on the
leading edge.

 Native-like experience—With Ionic, you can create a look and feel that’s like the
native apps, making it easier for your customers to use the app.

 Performance—The performance with Ionic is comparable to a native app; the
better the app performs, the happier app users will be.

 Beautiful, flexible design—The user interface components have been carefully
designed to implement native style guidelines, but also allow for easy customiza-
tion of any visual aspect of the app.

With Ionic, you can craft feature-rich apps for your customers that take you far less
time and effort to create. This can provide great value for you, your team, and your
app users.

1.4.2 Drawbacks of using Ionic

Ionic isn’t always the right solution for your needs. It’s important to evaluate the
needs of each project to ensure Ionic is the right solution for you:

 Limited platforms—Ionic 1.0 only fully supports iOS and Android platforms.
Other platforms such as Windows Phone or Firefox OS may be fully supported
in the future but aren’t guaranteed. Apps may still function on other platforms,
but Ionic isn’t actively supporting them.

 Older platforms not supported—Ionic supports iOS 7+ and Android 4+ properly.
Older versions may work properly and aren’t actively tested. This can be a chal-
lenge if your app needs to run on old or low-spec devices.

 Not equal to native—The native device APIs are only available if Cordova sup-
ports them. If you need deep integration with the device, it may be more dif-
ficult to achieve.
Licensed to Mark Watson <nordickan@gmail.com>

13Prerequisites for building apps with Ionic
 Not geared for heavy graphics—This is a limitation of hybrid apps in general
because they run in the browser. If you have a game app or heavy graphic
requirements, the hybrid app environment has fewer abilities compared to a
native app environment.

There may be situations where your app requirements force you to choose something
other than Ionic, but even in those cases Ionic can be a very useful tool during the
early prototyping phase.

1.5 Prerequisites for building apps with Ionic
To build hybrid apps, you should have a few skills that aren’t covered in this book. You
don’t need to be an expert in any of the following areas, but you should be prepared
to use them all together.

1.5.1 Experience with HTML, CSS, and JavaScript

If you’ve built a website, you’ve used the web platform. The browser is like the operating
system that you’ll use to develop the sample mobile apps in this book. HTML, CSS, and
JavaScript are the key languages the browser understands. HTML gives structure to the
content, while CSS provides the design. JavaScript then provides the interaction and
logic necessary for the web application.

 You’ll need to be familiar with JavaScript syntax and concepts such as asynchro-
nous calls, events, prototypical inheritance, and variable scoping.

1.5.2 Experience with web applications and Angular

You should have a fundamental understanding of web applications, because we’ll
build them inside of the sample mobile apps. There are a number of technologies and
libraries that developers use to build web applications, and familiarity with the con-
cepts will help you greatly.

 In this book, web apps will be written in JavaScript using the Angular framework.
Ionic is built specifically to work with Angular, and developers who have experience
building applications with Angular will be able to apply their experience easily. You
might have experience with another framework, such as Ember or Backbone, that can
provide a foundation as you learn the Angular-specific approach.

 We’ll cover a bit about Angular in chapter 3 to get you up and running, but this isn’t
a book about Angular. You’ll want to refer to the books AngularJS in Action (http://
manning.com/bford) and AngularJS in Depth (http://manning.com/aden) to learn
everything you want about Angular beyond the scope of this book.

1.5.3 Access to a mobile device

Having a mobile device is extremely important when building a mobile app. I recom-
mend that you have at least one device for every platform to test on an actual device.
There are emulators that let you see what your apps should look like on a mobile
device, but they aren’t full substitutes for the real thing.
Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/bford
http://manning.com/bford
http://manning.com/aden

14 CHAPTER 1 Introducing Ionic and hybrid apps
 You’ll have to register these devices with your developer accounts as well, so it’s not
practical to borrow. If you need a device, you can check for a refurbished or used item
online and use it just for development testing. The more types of devices you can test
your app with, the better.

 These three prerequisites will help you be more successful at designing, testing,
and building mobile apps across multiple platforms. Let’s take a look at the mobile
platforms Ionic supports.

1.6 Supported mobile devices and platforms
A number of mobile platforms—OS, Android, Windows 8, Firefox OS, Tizen, Black-
berry, and more—are in use. With Ionic, you can build for both iOS and Android. Sup-
port for Windows 8 and Firefox OS is planned for the future, but isn’t currently
available.

 While it may be possible to develop an app by previewing only on a simulator,
devices can act differently in the real world. Let’s take a closer look at these two pri-
mary platforms and requirements.

1.6.1 Apple iOS

Apple makes the popular iPhone and iPad devices, and they share a common plat-
form called iOS. Apple has strong control over the entire experience from the devices
to the software to the apps, essentially making it a closed system. This has made iOS a
strong platform from the perspective of users and developers.

 Apple provides Xcode as the primary development program for iOS and OS X
development. Xcode is free and available in the App Store if you don’t already have it
downloaded. We’ll cover setting up for iOS development in the next chapter.

 Xcode comes with a set of simulators that allows you to simulate different versions
of iPhones and iPads. The simulators are fairly good at giving a realistic experience,
which is helpful when targeting multiple versions of iOS with the same app.

 Apple has one major requirement for building iOS mobile apps: you need a Mac
computer. Apple has only designed its development tools to work on Apple’s operat-
ing system, OS X, and it’s also recommended that you run the latest version.

 For those of you who aren’t using a Mac, it’s worth considering purchasing one if
you plan to do iOS development. If you just need to build mobile apps, you’ll be able
to take advantage of any of the Mac computers. Any new Mac will have enough pro-
cessing power to manage the simulation and build process. If you consider purchasing
a used machine, you should verify that it’s able run the latest version of OS X.

 If you don’t have a Mac, there are some options that can help build your apps.
Ionic is building a service that will allow you to build mobile apps for any supported
platform even if you don’t have a Mac.

 The Apple Developer Program has two types of membership: iOS and OS X devel-
opment. You’ll need to sign up at http://developer.apple.com and join the iOS pro-
gram. It costs US $99 per year, but you only need to sign up when you’re ready to sign
and deploy your app to the App Store. You can download Xcode and work through
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.apple.com

15Summary
this entire book without an account until the point when I show you how to deploy an
app to the App Store.

1.6.2 Google Android

Google created Android as an open source mobile platform, and has allowed mobile
device makers to integrate Android into their devices. Compared to Apple’s
approach, Android has a very diverse set of devices because Google doesn’t control
every device Android is installed on. Older devices may also have Android forks specif-
ically designed for a mobile carrier. This open system has encouraged adoption and
also has been the leading platform in emerging markets by allowing lower-cost devices
due to the absence of licensing fees for the operating system.

 Android provides a number of tools for developing that are freely available for
download from Android’s site, http://developer.android.com/. Google has also been
working on additional tools that are being built into Chrome, Google’s browser, to pro-
vide useful development support for hybrid app developers. We’ll cover how to set up
your computer for Android development in the next chapter. The Android SDK has a
simulator that can emulate the screen size and resolution of most Android devices.

 Android development is supported on Mac, Linux, and Windows computers. You
can review the exact requirements for Android developer tools at https://developer
.android.com/sdk/index.html.

 Google also has a Developer Program, which has a one-time fee of US $25. Just like
with iOS, you don’t have to sign up until you’re ready to publish your app into the
Play Store. You can register at https://play.google.com/apps/publish/signup/.

 There are a few other Android app stores, notably the Amazon Web Store, which
may also charge for a developer program. These aren’t covered in this book. But
you’ll be able to build and deploy apps for any Android-based device, even if the app
is distributed through a different store.

1.7 Summary
Throughout this chapter we’ve looked at details about how Ionic provides a powerful
set of tools for building hybrid apps. Let’s review the major topics covered in this
chapter:

 Ionic is a solid choice that benefits developers, managers, and users.
 Hybrid apps are an advantage for developers who are already familiar with the

web platform, and don’t require learning additional programming languages.
 Hybrid apps use a WebView inside of a native app to run web applications that

have access to native APIs.
 Ionic is designed to work with Angular for web application development and

Cordova for integration with the device platform.
 Android and iOS are supported and require developer subscriptions. iOS devel-

opment tools require a Mac.

In the next chapter, we’ll review how to set up your computer to develop Ionic apps
and set up a simple app to get started.
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.android.com/
https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html
https://play.google.com/apps/publish/signup/

Setting up your computer
to build apps
You’re probably ready to get started with some code and actually build a mobile
app. I’ll walk you through the steps to get all of the tools needed to set up Ionic and
then help you create a new sample project. By the end of the chapter, you’ll have a
sample app running on your computer that you can set up and preview on a con-
nected device or a simulator. The steps in this chapter will be applied to future
chapters, so you may find it a useful reference.

 This chapter has two parts for setting up your development environment. The
first part is a quickstart guide to getting the basics installed, running your sample
app, and previewing it in a browser. This is great for getting up and running and

This chapter covers
 Creating a working sample project to see how it all fits

together

 Previewing the sample app in a simulator on your
computer

 Building the sample app and load it onto a connected
device
16

Licensed to Mark Watson <nordickan@gmail.com>

17Quick-start guide
being able to develop quickly. Think of this as setting up the development environ-
ment. The second part is a guide to setting up ways to view your app on an emulator
or on a connected device like those shown in figure 2.1. This is like setting up the pre-
viewing environment. If you’re anxious to start building apps, feel free to skip the sec-
ond part of this chapter and come back later when you need it. The emulator and
connected devices aren’t necessary until you’re ready to test your app in a true mobile
environment or need to use mobile features like the camera or GPS.

 In this book the command line will be your friend. On Windows you’ll use the
command prompt, which can be found in the program list. On OS X you’ll use the
Terminal, which can be found in the Launchpad or by typing terminal in Spotlight. I
recommend adding a shortcut on your desktop for Windows or adding it to the dock
on OS X because it will get a lot of use. Linux users may find they need to install addi-
tional dependencies, and should consult the documentation for their flavor of Linux
to install any missing packages.

2.1 Quick-start guide
In this section you’ll get the essential development environment set up, set up your
first app, and preview the app in a browser. Because you’re building a hybrid app, the
browser is the easiest way to preview it.

 The majority of your development time will be spent using the browser for pre-
viewing and developing your app. As your app matures, you’ll likely begin to use an
emulator to simulate a real mobile device, or build the app on a connected mobile
device. Figure 2.2 shows a typical workflow during development, and this section
covers the browser preview, while the next section covers the other two options.

Figure 2.1 You’ll be able to preview a sample app in a browser, an emulator, and a connected device.
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 2 Setting up your computer to build apps
2.1.1 Setting up your development environment

To begin building mobile apps with Ionic, you need to ensure you have some required
software set up. I’ll walk you through how to install and set these up on your com-
puter. In table 2.1, you can see the list of software you need to have installed on your
machine to get started.

 Optionally, I recommend the use of Git for source code versioning to make it easier
to follow along with the source code. This isn’t required, but I’ll provide you with the

Table 2.1 Software required for your development environment

Software Homepage

Node.js http://nodejs.org

Ionic CLI http://ionicframework.com

Cordova http://cordova.apache.org

Code editor

<ion-nav-bar>
 <ion-back-button></ion-back-button>
</ion-nav-bar>
<ion-nav-view></ion-nav-view>

ionic serve
preview in
browser

ionic emulate
preview in

emulator on
computer

ionic run
preview on
connected

device

Ionic development workflow

• Instant preview
• Use browser to debug
• Not easy to test touch
 experience
• Not able to use native
 APIs with Cordova

• Can simulate many types
 of devices
• Slower to preview
• Debug abilities through
 emulator
• Can simulate touch
 experience

• Slowest preview
• Debug through platform
 tools
• Real touch experiences
• Full access to native
 APIs in Cordova

Figure 2.2 Typical workflow, and reasons why you would preview in a browser, emulator, or device
Licensed to Mark Watson <nordickan@gmail.com>

http://nodejs.org
http://ionicframework.com
http://cordova.apache.org

19Quick-start guide
Git commands along the way to follow along more easily. If you’re not familiar with Git
or if you don’t have it installed, you can find more details at http://git-scm.org.

 If you already have these installed, you can jump to the next section. Otherwise,
let’s review the installation instructions.

INSTALL NODE.JS
Node.js (often referred to as Node) is a platform that runs JavaScript outside of the
browser. It allows developers to create applications written in JavaScript that can then
execute anywhere. Ionic and Cordova are both written on top of Node, so it’s the first
installation requirement.

 Node can be installed on your machine by going to http://nodejs.org and down-
loading the package for your platform. If you already have Node installed, you should
go ahead and install the latest stable version.

 You can validate that Node installed correctly by opening a terminal in OS X or the
command prompt on Windows and executing the following to check the version of
Node:

$ node –v
v0.12.0

If you have any issues with installing Node, you can review the documentation on the
Node website. Now we’ll use Node’s package manager to install Ionic and Cordova.

INSTALL IONIC CLI AND CORDOVA

You can easily install Ionic and Cordova in a single command. This command uses the
Node package manager (npm) to install and set up your command-line interface
(CLI) tools. Make sure Git is already installed first:

$ npm install –g cordova ionic

This may take a few minutes, depending on the speed of your connection. On a Mac,
you may have trouble installing global modules without using sudo. In this case, I’d
recommend setting your file permissions correctly for npm so you don’t allow Node
modules to run as the root user. You can read about how to solve this permission prob-
lem at mng.bz/Z97k.

 Ionic and Cordova will be installed in such a way that they’re available from the
command line. Both of these tools execute using Node, but are aliased so you can run
them with just the cordova or ionic commands. You can test that they’re correctly
installed by running the following commands and ensuring they execute without
errors (in this book I’ve been using the following versions):

$ cordova –v
4.2.0
$ ionic –v
1.3.14

Setting up your development environment is important, so make sure each of these
are installed and up to date. You should keep Ionic updated, and it will alert you when
Licensed to Mark Watson <nordickan@gmail.com>

http://git-scm.org
http://nodejs.org
http://mng.bz/Z97k

20 CHAPTER 2 Setting up your computer to build apps
updates are available. Update Cordova when there are new features you need or bug
fixes. Sometimes updating Cordova may require updates to your project, so it should
be done only when necessary, and always review the Cordova documentation about
possible required changes. To update Ionic or Cordova, you can respectively run the
following commands (Ionic will inform you when an update is available):

$ npm update –g ionic
$ npm update –g cordova

At this point you have everything you need, so let’s start setting up your sample app.

2.1.2 Starting a new project

Ionic provides a simple start command that
allows you to set up a new project, shown in
figure 2.3, in seconds. Ionic provides a set of
starter templates that you can use to begin;
we’ll use the sidemenu template here. Run the
following commands to create a new project
and then to change into the new directory:

$ ionic start chapter2
$ cd chapter2

It may ask if you want to create an Ionic
account, which you can ignore for now. The
account helps you use their services, which we
won’t be using yet, and you can always create
an account later.

 Ionic will create a new folder called chapter2 that will be used to set up the new pro-
ject using the tabs template. Let’s take a moment to understand what each folder is for.

Figure 2.3 Using the ionic start command will generate a simple project scaffolding.

Ionic command-line utility
There are a number of com-
mands available with the Ionic
utility. To see the available
commands, you can look at the
help details by running ionic
–-help.

To see more details about
what the utility can do and
more documentation, you can
view the source code on
GitHub at https://github.com/
driftyco/ionic-cli.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/driftyco/ionic-cli
https://github.com/driftyco/ionic-cli

21Quick-start guide
2.1.3 Project folder structure

The project folder contains a number of files and directories, which of each have a
unique purpose. Here are the files and directories you should see in a new project:

 .bowerrc
 .gitignore
 bower.json
 config.xml
 gulpfile.js
 hooks
 ionic.project
 package.json
 plugins
 scss
 www

This is the generic structure of any Ionic app. The files and directories that are set up
and required by Cordova are config.xml, hooks, platforms, plugins, and www. The rest
are created by Ionic. Ionic uses both Bower and npm to load some of the dependen-
cies for the project.

The config.xml file is used by Cordova when generating platform files. It contains the
information about the author, global preferences, platform-specific preferences,
enabled plugins, and more. The default config.xml file generated will use Ionic as the
author and HelloWorld as the app name. You can read about all of the options at
https://cordova.apache.org/docs/en/edge/config_ref_index.md.html.

 The www directory contains all of the web application files that will be run inside of
the WebView. It’s assumed that there will be an index.html file inside; otherwise, you
could structure your files however you like. By default, Ionic sets up a basic AngularJS
application that you can build from.

Bower and npm
Both Bower and npm are package management tools that help to download addi-
tional files used by a web application. Bower is positioned to help you add additional
front-end files to your project, such as jQuery or Bootstrap, and npm is designed to
add packages for Node.js projects or Node applications.

With Ionic, the front-end Ionic code is loaded with Bower, and Gulp dependencies are
loaded with npm. Gulp is a popular build tool for JavaScript, and we’ll discuss Gulp
and its role later.

You can find information about Bower at http://bower.io and npm at https://
npmjs.org.
Licensed to Mark Watson <nordickan@gmail.com>

https://cordova.apache.org/docs/en/edge/config_ref_index.md.html
http://bower.io
https://npmjs.org
https://npmjs.org

22 CHAPTER 2 Setting up your computer to build apps
 We’ll cover these files and directories in more detail as they’re used. Now that you
have your files generated, you can preview your sample app.

2.1.4 Previewing in a browser

You can preview your app in the browser, which makes it very easy to debug and
develop without having to constantly build the project on a device or emulator. Typi-
cally you’ll develop your app using this technique, and then test in the emulator and
on a device when the app is more complete. The following command will start a sim-
ple server, open the browser, and even autorefresh the browser when you save a file
change:

$ ionic serve

It may prompt you to choose an address, and in most cases you should select local-
host. It will open the default browser on your computer on port 8100. You can visit
http://localhost:8100 in any browser, but it’s best to preview using a browser used by
the platform you’re targeting because that’s the browser the WebView uses.

 Because you’re viewing the app in a browser, you have access to the developer tools
you’d use for building websites. As you develop, you’ll want to have the developer
tools open to aid in development and debugging, as you see in figure 2.4.

Figure 2.4 Previewing an app in the browser gives you access to the browser’s developer tools.
Licensed to Mark Watson <nordickan@gmail.com>

23Setting up previewing environments
2.2 Setting up previewing environments
This section will guide you in setting up both emulators and connected devices for
previewing your mobile app. Both allow you to preview the app like it’s intended to be
used, not just in a browser but inside a mobile device. An emulator is a virtual device,
which actually runs the mobile platform (Android, for example) in a container and
can execute your app like a real physical device. A connected device is any physical
device that you connect directly to your computer with a USB cable, and you’re able to
install your app directly onto it.

 To get everything set up, you need to do the following:

 Install platform tools needed for building apps.
 Download and set up emulators for previewing.
 Set up a connected device for previewing.
 Set up the project for each supported platform and preview.

The following sections contain a lot of detail about getting started, particularly with
Android. Don’t get too worried about the apparent complexity, since much of this
is a one-time setup. Once you have the tools set up, you’ll be able to reuse them for
any future projects. You can build prototypes of your app using just the tools we’ve
covered so far in this chapter and come back to this section at a later time when you’re
ready to start testing on a device.

2.2.1 Installing platform tools

You need to install additional software to emulate and deploy to connected devices.
You only need to set up the software for the platforms you wish to support. Table 2.2
has the required software for Android and iOS development. Ionic version 1.0 only
supports Android and iOS fully; other platforms such as Windows Phone or Firefox
OS may be supported in future versions.

Does it matter what browser I use to preview?
While you’re free to use any browser for previewing your app, you should really con-
sider using Chrome or Safari. iOS uses Safari for the WebView and Android uses the
Android browser for its WebView. When possible, using the same browser on your
computer will simulate the mobile environment most effectively. The Android browser
isn’t the same as Chrome, but Chrome is the closest choice.

The browser on your mobile device, and used in the WebView, isn’t identical to the
browser on your computer. But they’re certainly related and tend to support the same
general features.

Safari for Windows shouldn’t be used for previewing, because it was discontinued by
Apple and is no longer supported.
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 2 Setting up your computer to build apps
OS X ONLY: INSTALL XCODE FOR IOS
Apple requires Xcode for the emulation and distribution of iOS apps. It’s only avail-
able for Macs, so if you plan to support iOS, then you need to have a Mac.

 You can download Xcode by opening the App Store and searching for “Xcode.”
It’s an official Apple app (figure 2.5), and it’s quite large (over 3 GB), so be sure to
have enough free space.

INSTALL ANDROID STUDIO

Android development can be done on any Windows, Mac, or Linux computer.
Android runs on Java, which is cross-platform as well. Android provides two options to
choose from: Android Studio or the Android stand-alone SDK Tools. Android Studio
is a full IDE with the SDK built in, versus just having the SDK itself. You can download
either tool from http://developer.android.com/sdk/index.html.

 You really only need the SDK. Android Studio is a great IDE for someone building
native Android apps, but we won’t use it in this book. I’d recommend only installing

Table 2.2 Android and iOS software for emulating and deploying to devices

Platform Software Where to find

iOS Xcode Search for “Xcode” in App Store on Mac

Android Android Studio http://developer.android.com/sdk/index.html

Figure 2.5 Xcode is free and available for download through the App Store on your Mac computer.
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
https://developer.android.com/tools/extras/oem-usb.html

25Setting up previewing environments
the stand-alone SDK Tools for your platform. Additional installation instructions can
be found at http://mng.bz/flIn.

 When you install the stand-alone SDK on Mac or Linux, make sure you add the
directory to your path so you can easily execute Android commands. To verify the
installation was successful, you can run the following command to see the Android
help:

android –help

Now you’re ready to set up emulators.

2.2.2 Setting up emulators

Emulators allow you to run a virtual device on your computer that simulates the actual
environment of a mobile device. The virtual device will run the platform inside of the
emulator—for example, inside of an Android emulator you can run the actual
Android operating system and install your app for development.

 You’ll want to use an emulator when you’re ready to test various types of devices
quickly or you need to test your app on a device you don’t have access to. It’s slower to
preview in an emulator compared with the browser, so you’ll likely emulate when your
app is already functional in the browser.

 Emulators require installation and some configuration, and can require some time
to download. Let’s go over how to set up both Android and iOS emulators.

SETTING UP AN IOS EMULATOR

Emulators are referred to as simulators in Xcode. To begin setting up your iOS simu-
lator, open Xcode and then Preferences. In the Downloads tab, you’ll see a list of
available optional packages, which include
documentation and iOS simulators, as shown
in figure 2.6.

 I suggest downloading only the most
recent simulator at this point. Later you can
install the emulators for all versions of iOS
that you plan to target for testing. The docu-
mentation also isn’t necessary because you
can find it all online should you need it.
Because these simulators and documentation
are very large, save yourself the time and disk
space and download only what you need.

 Once the download is complete, your iOS
simulator will be set up and ready to use. You
can reset the emulator if you ever need to by
having the simulator open and going to the
iOS Simulator in the top menu and choosing
Reset Content and Settings.

Which versions of Android
or iOS should I use?
Ionic provides support for iOS 7+
and Android 4+ (with limited
support for Android 2.3). Gener-
ally it’s a good idea to target
the lowest version possible to
increase the potential use base.
Setting a minimum version num-
ber in the native app project will
prevent devices running older ver-
sions from being able to install
your app.

But there may be reasons to limit
support to newer versions if your
app uses additional plugins or
features that aren’t available on
older versions.
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/flIn

26 CHAPTER 2 Setting up your computer to build apps
SETTING UP AN ANDROID EMULATOR

Android emulators are much more free-form than iOS emulators—they allow you to
build your own device by declaring the device specifications. Luckily there are some
presets that help guide you through this process, but due to the wide variety of
Android devices available, setup is a bit more complex than for iOS.

 You need to set up the SDK packages, so run android sdk in the command line.
The SDK Manager will appear. It allows you to download the platform files for any ver-
sion of Android, which is a bit more than you need. For the time being, I recommend
you download just the most recent release packages and core tools. You need to
choose the following items, as shown in figure 2.7:

 Tools:
– Android SDK Tools
– Android SDK Platform-tools
– Android SDK Build-tools (choose the most recent version)

 Android 4.4.2 (API 19, when paired with Cordova version 4.2):
– SDK Platform
– ARM EABI v7a System Image

Figure 2.6 In Xcode Preferences, use the Downloads tab to download and install iOS simulators.
Licensed to Mark Watson <nordickan@gmail.com>

27Setting up previewing environments
Cordova sets a default API level (here, API 19 with Cordova 4.2.0), but that may
change over time. You may get a notice later on to install a missing SDK platform for
another API level if support changes.

 Now you have to define emulator device specifications. This gives you control over
the exact device features such as RAM, screen size, and so on. Open the Android
Virtual Device (AVD) Manager by executing the following command, also shown in
figure 2.8:

android avd

Choose the Device Definitions tab so you can set up a device based on a known device
configuration, as shown in figure 2.9. I recommend using a Nexus 4 or Nexus 5
device, because they’re developed by Google and very popular.

Figure 2.7 Choose the SDK Tools, Platform-tools, and the most recent Build-tools
packages, as well as the most recent stable release of Android SDK Platform and the
ARM System Image.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Setting up your computer to build apps
Figure 2.8 Open the AVD Manager with the command android avd.

Figure 2.9 Choose a device definition that you want to base your configuration on and then
click Create AVD.
Licensed to Mark Watson <nordickan@gmail.com>

29Setting up previewing environments
Once you’ve selected the device from the list, click Create AVD and it will open a form
with additional details that you can specify about the device. Here you can decide
what version of the Android platform to run, the screen size and resolution, and
more. Choose the presets like those shown in figure 2.10.

 Once you’ve finished, click OK and it will save your device. You can create or delete
devices as needed, just make sure to always have one set up for emulating. The first
time it runs, it may be a bit slow because it will have to do some extra things to set up
and boot.

 Now that you’ve got an Android device setup, you can use it in your projects when
you want to emulate for Android. When you send an app to your new emulator device,
it will boot this device for you.

2.2.3 Setting up a connected device

If you have an Android or iOS device, you’ll want to be able to connect and deploy
your apps to it. You can set up any number of connected devices that you have access
to, in case you have both new and older devices that you want to be able to test. You’ll
want to test on devices when possible before you attempt to deploy to a store, and
whenever you need to verify the functionality behaves as you expect with a touch envi-
ronment and that any native plugins work as expected.

Figure 2.10 Create a new device based on Nexus 4 by Google. This device has the
same basic features as an actual phone, though the cameras are not enabled.
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 Setting up your computer to build apps
SETTING UP AN IOS DEVICE

To connect your iOS device and deploy your app, you have to have an Apple Devel-
oper account with iOS. You’ll connect your iOS device to your Mac and open Xcode.
Choose Window > Organizer from the top menu to open the Devices Manager.

 Apple requires security profiles to be set up so that your phone is verified to be
connected for deploying your apps. You must connect your account in Preferences >
Accounts, and it will help you set up certificates and provision profiles. Xcode should
guide you through the steps for your device because they may vary. For additional
assistance, refer to Apple’s documentation at https://developer.apple.com/library/
ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/. Once the pro-
files are set up, your device should be available to deploy.

SETTING UP AN ANDROID DEVICE

The first step is to enable developer settings on your Android device. By default,
Android devices aren’t able to connect to debugging tools unless directly selected by
the device owner.

 Start by enabling the developer mode on your device, as follows:

1 Open the Settings view and scroll to the last item, About Phone.
2 At the bottom of the About Phone view, there should be a Build Number

item—you must tap on it seven times to enable the developer mode. As you get
closer to seven taps, the device should notify you how many taps are left.

3 Once this is complete, you can go back to the Settings view and you’ll see a new
Developer Options item.

Then, to enable USB debugging, you need to do the following steps:

1 Choose the Developer Options item in the Settings view.
2 Scroll down until you see the USB debugging option.
3 Toggle it on—it may prompt you to confirm your choice—and then your device

should be ready for debugging when it’s connected to your computer.

Now your device is set up to debug, and when it’s connected to your computer, the sys-
tem can detect it for building and deploying to the device.

2.2.4 Adding a platform to the project

Before you can preview your app in an emulator or on a device, you need to set up the
project to support the platform(s) of choice. Again, you open the command line to
use the ionic tool. These two commands will create project files for iOS and Android,
respectively:

$ ionic platform add ios
$ ionic platform add android

You can add only one platform per command, so if you plan to support multiple plat-
forms, you’ll have to add them individually. You can see how each platform triggers a
different set of tasks that are required to set up the project for that platform.
Licensed to Mark Watson <nordickan@gmail.com>

https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/

31Setting up previewing environments
 Inside the platforms directory, there will now be a new folder for each platform
added with platform-specific files inside. Currently, they just generate the base app
files, but eventually you’ll modify these files and use them to generate the final app.

2.2.5 Previewing in an emulator

Now that at least one platform has been added to your app project, you can use one of
the platform’s emulators to preview your app. If you haven’t already set up an emula-
tor, you’ll need to do that first. Emulators are great for testing in a more real-world
environment, but are slower to use during development. Launching and previewing
in an emulator takes some processing time to set up and begin, especially the first
time. If you’re on a Mac and emulating on iOS, you’ll also need to install ios-sim:

$ npm install -g ios-sim

Now you can run the app in an emulator using the emulate command:

$ ionic emulate ios
$ ionic emulate android

The emulator should open after running a number of tasks. You’ll see a lot of output
in the command line as it builds and generates the necessary files, but as long as it
ends with a success message, the emulator will launch and load your app.

 When emulating Android, you can use –-target=NAME to run the app in a specific
device you created; otherwise, the default emulator is used. iOS lets you change the
hardware once the emulator has opened from the Hardware top menu.

 If you already have the emulator up and running, you can run the emulate com-
mand again without closing the emulator. This is faster than exiting the emulator and
relaunching it every time you change files, because the emulator doesn’t have to
reboot itself each time.

 Ionic has a very powerful feature that allows you to reload the app instantly using live
reload like you saw earlier in the browser. The feature is a huge timesaver, and also can
output the console logs to the Terminal so you can read them. See the blog post about
the feature at http://mng.bz/gKJ8.

 To emulate with live reload, run the commands with the extra flags –l and –c to
start live reload and console logging. This allows you to see the logs like you’d see in
the browser console in the Terminal, and allows the app to reload any time you make
a file change for faster previewing. For example:

$ ionic emulate ios -l –c
$ ionic emulate android –l –c

To preview on a specific emulator from the command line, you’ll have to add another
parameter to the command that declares the emulator to use. For Android, you use
--target=[emulator name] where you pass the name of the emulator from the AVD
Manager. In iOS, you can run ios-sim showdevicetypes to see a list of devices, and
then use --devicetypeid [device type] where you specify the device type from the
list ios-sim, printed in the console.
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/gKJ8

32 CHAPTER 2 Setting up your computer to build apps
2.2.6 Previewing on a mobile device

Nothing beats the real thing. If you have an Android or iOS device, you’ll most likely
want to deploy your app on it at some point. While that’s very useful, it’s also slow and
more difficult to debug. But Ionic also provides the same live reload feature found in
the previous section. The quick way to preview using the command line is as follows:

$ ionic run ios -l –c
$ ionic run android -l -c

If your device isn’t connected and paired yet, the commands will fail to run properly.

PREVIEW ON AN IOS DEVICE

In your project, make sure you’ve added iOS as a platform, navigate to the platforms/
ios directory, and open the file with the extension .xcodeproj. This opens the Xcode
project for your app, and you can then choose the device as an option to deploy, as
shown in figure 2.11.

Figure 2.11 You can choose the device or emulator that you wish to deploy from Xcode by opening the project.
Licensed to Mark Watson <nordickan@gmail.com>

33Setting up previewing environments
You can deploy that app to your phone as many times as you want. Each deploy will
override the existing version. You can also uninstall the app just like any other app by
pressing on it until the icon shakes, and tapping on the X in the corner.

DEPLOY TO AN ANDROID DEVICE

As long as you’ve already added Android to your project, you can deploy to a con-
nected Android device with a few steps. Ensure USB debugging is enabled, and if it
isn’t you can refer back to section 2.2.3 on how to do this.

 If you’re on Windows, download the appropriate USB driver for your device from
https://developer.android.com/tools/extras/oem-usb.html. If you’re on OS X, you
don’t need to do anything. If you’re on Linux, you should consult the steps at https://
developer.android.com/tools/device.html.

 To confirm the device is connected, run adb devices from the command line. You
should see a list of devices like that shown in figure 2.12, and if you’ve set up any emu-
lators, they should appear as well.

Now you have to build the Android project, which will generate a .apk file, and then
you’ll install it onto the device. You need to locate your app inside the platforms/
android/ant-build directory, and in it the filename that ends with –debug.apk:

ionic build android
adb –d install platforms/android/ant-build/HelloCordova-debug.apk

You’ll be able to find the app HelloWorld in the app pane. Opening it will display the
same app that ran in the emulator, as shown in figure 2.13.

Figure 2.12 Android devices listed by running adb devices from the command line.
Emulators are prefixed with emulator, while actual devices are a hash.
Licensed to Mark Watson <nordickan@gmail.com>

https://developer.android.com/tools/extras/oem-usb.html
https://developer.android.com/tools/device.html
https://developer.android.com/tools/device.html

34 CHAPTER 2 Setting up your computer to build apps
2.3 Summary
This chapter covered the steps to set up your development environment and build out
a sample app. While the app was very basic, the rest of the steps were important since
they’ll be used frequently as you begin to develop your own apps. Let’s review the
major topics covered in this chapter:

 Some software setup is required to begin developing hybrid apps.
 The command-line utility for Ionic provides many features such as tools to start

a project, build a project, and preview the app in a browser.
 Previewing apps in a browser is the primary environment for development and

debugging.
 Emulators are great for previewing your app, and we covered how to set them

up.
 You can preview the app on a connected mobile device with the proper setup.

In the next chapter, you’ll learn about Angular because it’s vital for developing apps
with Ionic.

Figure 2.13 Using the Ionic build and Android deployment tools, the app is built and installed
onto a connected Android device.
Licensed to Mark Watson <nordickan@gmail.com>

What you need to know
about AngularJS
AngularJS is a web application framework, and its popularity has made it one of the
most-used JavaScript tools available today. Ionic is built on top of Angular, so it’s
important to have a grasp of how it works. Instead of having to build an entire web
application framework for Ionic, it uses Angular and extends it with a large number
of interface components and other mobile-friendly features.

 This chapter will walk you through the core of what Angular is and cover most of
the fundamentals you need to know to be effective. If you’re already quite comfortable
with Angular, then you can skim the chapter or jump ahead. This chapter is for those
who are new to Angular or have minimal experience and need a good primer.

 We’ll look at controllers, which are aptly named because they’re designed to con-
trol your data. Then we’ll discuss scope and how it works as a glue between the

This chapter covers
 How AngularJS apps are built and structured

 The fundamentals of AngularJS that power many
Ionic features

 How to use controllers, filters, directives, scope,
and more
35

Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 3 What you need to know about AngularJS
controller and the user interface, which is called a view. By looking closer at views, you’ll
see how they’re built using templates and scope to create the interactive visual experi-
ence. Along the way, we’ll also look at some other features such as how to use filters to
transform data, how to build and use directives to enhance regular HTML elements, and
how to work with an external data source to load and save data for your applications.

 This chapter will teach you about Angular by building a basic web application, as
shown in figure 3.1. You can work through the examples or look at the complete
example available on GitHub at https://github.com/ionic-in-action/chapter3. To see
the end result, the application demo is also available at https://ionic-in-action-
chapter3.herokuapp.com/.

Figure 3.1 The chapter application will have a list of notes and a way to view and edit notes.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter3
https://ionic-in-action-chapter3.herokuapp.com/
https://ionic-in-action-chapter3.herokuapp.com/

37AngularJS at a glance
By the end of this chapter, you’ll have a general understanding of how Angular works.
There’s too much involved to properly cover everything Angular has to offer. Other
books and material can provide you deeper Angular training, but we’ll cover the pri-
mary features used in this book.

 Before we jump into the code, let’s take a moment to talk about Angular in general
and what problems it helps to solve when you’re building web applications.

3.1 AngularJS at a glance
Before you build an application with Angular, let’s take a look at the parts that make
up a typical application built with Angular, starting with the views and templates used
to display content and then looking at how data is loaded by controllers into the view.
Figure 3.2 illustrates the way these pieces create the list of notes in your application
and demonstrates how they’re connected.

Scope

Template

</>
HTML

Controller

$scope.notes = [...];

$scope.displayNote = function() {}

1. Controller loads a list of
 notes and stores it in scope.

2. View loads
 the template.

4. Clicking on a note in the
 list calls the controller.

3. View renders the template using
 scope, displays the list of notes.

Figure 3.2 How the list of notes is rendered from loading data in the controller to displaying in the view
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 3 What you need to know about AngularJS

.allow

cond
show
3.1.1 Views and templates: describing the content

Angular works very closely with HTML, and often you’ll be creating templates. A tem-
plate is a block of HTML that’s loaded into the application when needed. Angular
enhances the HTML with new features and abilities by extending HTML’s vocabulary.

 A view is the use of a template to display data. A view will always have a template
(which is the HTML markup) but also includes the data used. A view will transform the
template into the final visual experience for the user, which means it will modify the
template based on the data. A snippet of the template from the example in figure 3.2
is as follows:

<ul class="list-group">

 <li class="list-group-item"

 ng-repeat="note in notes"

 ng-click="displayNote($index)"

 ng-class="{active: note.id == content.id}">{{note.title}}

 <small>{{note.date | date:'short'}}</small>

This sample template shows just one element inside of a , but has several
attributes that are called Angular directives. A directive modifies the behavior of the ele-
ment it’s placed on. In this case, ngRepeat will loop over a JavaScript object or array
and create a element for each. ngClick is like the JavaScript onClick event
handler, and it will call a function called displayNote() when clicked. When this tem-
plate is rendered, it will create a new list item element for each note in the notes array.

 The double curly braces ({{}}) indicate that some data is to be displayed here.
This concept is called data binding, and the syntax is known as an expression. Anything
between the braces is the expression, which is evaluated by Angular against the cur-
rent model data. Therefore, the content of note.title will be injected into the
element where the double curly braces wrap it.

 The template is the HTML with any additional directives or expressions. The view
takes data and renders the template for final display based on the values in the data.
Assuming the notes array has five notes, the element will contain five list item
elements, like you see in the screenshot of the view in figure 3.2.

 Angular comes with many directives, and they all start with ng. Some help to modify
the display (ngShow, ngClass), while others are used with forms (ngModel, ngForm), and
yet others are useful for listening to events such as clicks (ngClick, ngMouseover). Angu-
lar also has some directives that sit on top of HTML elements, such as inputs, text areas,
and anchor tags, that provide additional features that HTML doesn’t have by default. For
example, Angular is able to enhance an <input type="text"> element by adding sup-
port for additional attributes that can do custom validation. We’ll use more directives in
the example later, but the full list is available in the Angular documentation.

ngRepeat lets you
create a for
each note in the
notes array.

ngClick calls the
displayNote() method
when is clicked

ngClass
s you to
itionally
 a class.

Display date and use filter to display it using
short date format (defined by Angular).
Licensed to Mark Watson <nordickan@gmail.com>

39AngularJS at a glance

Now let’s discuss how data is connected to the view and displayed.

3.1.2 Controllers, models, and scope: managing data and logic

Controllers are functions that are attached to a Document Object Model (DOM) node
and are used to drive the logic of your application. A controller is essentially a func-
tion object in JavaScript that can be used to communicate with the scope and respond
to events.

 The scope is like a shared context between the controller and view. Think of it as
the connection between what happens in the controller and in the interface, and
when the scope is updated in the controller it also updates in the view. You can see a
diagram of how these pieces work together in figure 3.2, where the arrows indicate
both the view and controller communicate using the scope as the hub.

 The scope has two key roles: to store data and give access to controller methods.
Data that’s stored on the scope is called the model. A model is any JavaScript value
(usually an array or object, but it can be simple like a number or string) that you store
on the scope, and it’s shared between the controller and views through the scope.

 Let’s take an isolated example of a controller that would pair with the view and
template from earlier:

angular.module('App')
.controller('Controller', function ($scope) {
 $scope.notes = [
 { id: 1, title: 'Note 1', date: new Date() },
 { id: 2, title: 'Note 2', date: new Date() }
];
 $scope.getNote = function (index) {
 $scope.content = $scope.notes[index];
 };
});

This controller sets the notes model with an array of items onto a special object called
the $scope. This is the object that Angular provides for each scope where you can store

What is the difference between ngApp and ng-app?
When people write about Angular, they can refer to directives as ngApp or ng-app. In
reality, they’re talking about the same thing, but there’s a reason why both exist.

When you see ngApp or ngClass, this is the JavaScript version of the name.
JavaScript syntax rules don’t allow a hyphen to be used in a variable name, so
instead the convention is to use camel case but start with a lowercase letter. The
documentation uses this style and it’s used in this book as well.

When you see ng-app or ng-class, this is the HTML version of the name. HTML is
case-insensitive and allows hyphens in tag or attribute names. The convention is to
use a hyphen to increase the readability of the directive in the markup and follow nor-
mal conventions in HTML attributes.

Declares controller
and uses $scope
service to access scope

Creates array of note
objects for notes model,
which ngRepeat will display

Adds a method to update the
content value, which is triggered by
an ngClick directive in the view
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 3 What you need to know about AngularJS
values to share between the controller and view (which become models). The view
would display the array of notes in the list using ngRepeat. The getNote() method is
available for you to declare which of the notes should be stored on the content model.
The view is able to call this function because it’s also attached on the scope.

 Everything in this controller is isolated from the rest of your application, except
for any child scopes. This is important because it limits the visibility of code and
variables. A common challenge for new Angular developers is accidentally putting
things into different scopes and having trouble accessing values in a different scope,
which isn’t possible by default.

 Angular scope is also hierarchical. Scopes can be nested, just like the DOM. In fact,
a scope is reflective of the DOM structure on the page. A scope can be attached so that
it’s only visible to an HTML element and its children, just like how a CSS class can be
used to target styles of the element it’s placed on or its children.

 Hierarchy becomes particularly important if you want to communicate between
scopes, because a child scope can look upward to its parents (just like how JavaScript
has prototypical inheritance, if you’re familiar with that concept). Some directives
in Angular create child scopes for you, which can cause some confusion about
which scope is where. If you look for a value on a child scope and it doesn’t exist, it
will actually check each parent scope for that value until it either finds the value or
runs out of parent scopes to check.

 The root scope (with the special $rootScope object to access it) is the first scope
created by an Angular application to which all other scopes are attached. This means
anything you put on the root scope is available to any scope, which might sound help-
ful but isn’t advised. You want to keep your scopes clean and focused instead of piling
everything onto the root scope. JavaScript in general has this type of a problem, where
often applications use the global scope to store variables. Imagine you have a value
called id; if you placed a value id in a child scope, it would conflict and cause you to
lose access to the root scope value. This becomes a problem as you incorporate more
code, because the more people who work on an application or the more external
tools you incorporate, the more difficult it is to be aware of all that happens in the
application to avoid these kinds of naming collisions.

Controllers aren’t for everything
There are a few things you shouldn’t do with a controller because they can make your
code hard to maintain and test later. The primary offense is doing document object
management (DOM) manipulation in a controller. Imagine you’re building a slide-
show. The controller shouldn’t handle the task of changing the DOM or styling for the
slideshow features because that would be best placed in a custom directive.

You should also avoid using the controller to format or filter data; instead use form
controls and filters.
Licensed to Mark Watson <nordickan@gmail.com>

41Setting up for the chapter project
3.1.3 Services: reusable objects with methods

Angular has a notion of a service that’s a JavaScript object that can be shared through
the entire application. Angular provides a number of services by default, and you can
create your own. If you’ve dabbled in Angular at all, you’ve certainly used some of the
built-in services.

 One very common service is $http, which is Angular’s service for handling HTTP
requests. It has a number of methods such as get(), post(), and other HTTP actions.
Services can be very complex (like $http), or they can be simple objects with data.
You’ll see some examples in this book of simple services that only are used to share
data between different parts of an application.

 Services are lazy-loaded by Angular, meaning they aren’t loaded into memory until
they’re used. They’re also singletons, meaning that if you change a value on a service
in one place, it will be reflected in another. You’ll see this in action in the examples
for chapters 5 and 6, where you’ll be able to make changes in one place and see them
reflected in another instantly.

 Ionic exposes a number of features as Angular services. We’ll work with some in
the next few chapters, but keep in mind that just about anything you include in your
controller is a service.

3.1.4 Two-way data binding: sharing between controller and view

One of the most powerful features about Angular is two-way data binding. You’ve seen
how a view binds data into the template, but it also works in the opposite direction.
The view can change values on the scope, which values are immediately updated in
the scope and reflected in the controller. This is particularly helpful with forms, such
as when a user types into a text input and the value of the scope changes as the user
types. You don’t have to do anything special to enable two-way data binding—it hap-
pens automatically for you.

 In the application in this book, you’ll see two-way data binding happening when
you set up the editor. As you type into the editor box, the contents will be previewed
on the right. You’ll also see this in action in most of the Ionic apps you build.

 That sums up the key concepts of Angular that help provide the basic background
you need to get started. Let’s see how these concepts really work in the chapter project.

3.2 Setting up for the chapter project
In this chapter, you’ll build an Angular app from a base HTML page. I’ve already done
some work by creating the design and markup for the foundation so we can focus just
on the features Angular builds.

 This application is a simple note-storing application, where you can load and modify
a list of simple notes. The features for the app include

 Store notes in JSON file
 View, create, edit, and delete notes
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 3 What you need to know about AngularJS
 Use Markdown formatting in notes
 Editor and preview of Markdown side by side

The application has been set up with the base HTML and CSS required. It also con-
tains a simple RESTful server written with Node to allow you to manage the list of
notes, and this is provided so we can focus on Angular and not the API. We’ll focus
solely on how to add Angular into this base and cover the major features of Angular
along the way.

3.2.1 Getting the project files

Throughout this chapter, you’ll be able to follow along using Git tags to check out
specific versions of the code. You can also follow along by writing the code yourself
from the book examples. Even if you aren’t familiar with Git, you can run the com-
mands to follow along, or use the second option and download the base application
files and code.

 Using Git, you can get started with this chapter base by cloning the chapter3
repository, and then checking out the step1 tag as follows:

$ git clone https://github.com/ionic-in-action/chapter3.git
$ cd chapter3
$ git checkout step1

If you don’t want to use Git, you can also download and extract the base application
files at https://github.com/ionic-in-action/chapter3/archive/step1.zip, as shown in
figure 3.3.

 You can use the same step to get the code for every step; just change the number of
the tag in step1 to the current number.

Figure 3.3 The base HTML template for the example application, which currently isn’t interactive
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter3/archive/step1.zip

43Setting up for the chapter project
3.2.2 Starting the development server

Now that you’ve got the project files downloaded onto your computer, you need to get
your development server set up. For the web application to work properly, you need to
have a server running like it would in a production environment. While I don’t want
to dig into the details around this server, you should know a few things if you haven’t
used Node for a development server before.

 In the server.js file that you see in the project is a simple RESTful server based on
the popular Express.js framework. The primary reason for this is that you want to have
a way to keep track of your notes over time, and the RESTful API allows the application
to read, create, edit, and delete notes in your list. The server also takes care of loading
files into the browser over HTTP, which is essentially what the ionic serve command
does for your Ionic apps.

 I’ve commented the server with some notes, and if you’re interested you can dig
into it more. I won’t cover it in detail here, but it’s important to know a few things
about it:

 The server runs on port 3000, which means you have to visit http://localhost
:3000 to view the web application.

 The server accepts incoming requests, and depending on the URL and HTTP
method used, it will modify the list of notes.

 The server uses a JSON file (data/notes.json) as a database to keep it simple. In
real-world applications, you’d use a more robust database solution.

The server won’t run until you’ve downloaded some Node packages that it requires.
This is easy to do by running the following command to use Node Package Manager
(npm) to install the required files. First navigate to the directory in the terminal, and
then run

$ npm install

This will take a few moments, as npm looks at the list of dependencies (found in
package.json) and downloads them from GitHub. It will log the progress of the down-
loads and inform you when they’re completed.

 Now you can start the server, and it must continue to run in the command line. It
will start the server and listen for requests on port 3000. At any point you can stop the
server by pressing Ctrl+S or just closing the command-line window as follows:

$ node server

At this point, you can visit http://localhost:3000 in your browser and you should see a
base template layout like you see in figure 3.3. You’ll be modifying the HTML and add-
ing JavaScript to bring this base layout to life as a note-taking application.

Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 3 What you need to know about AngularJS
3.3 Basics for an Angular app
The fundamentals of Angular start with creating an Angular application in your
JavaScript and then adding a reference to it in your HTML. Angular works closely
with the page DOM, so you actually restrict an Angular application to a DOM element
and its children. In this case this will be the <html> element, so that Angular has
access to the entire page. Ionic often uses this on the <body> element. In figure 3.4
you’ll see the same content in the browser as before, but it will have Angular installed
and ready to use.

 You can get the code for this step if you’ve cloned the repository from GitHub by
running the following in your command line:

$ git checkout -f step2

This will reset any changes you’ve made and set the code to the step2 tag.
 To create an Angular application, you use the ngApp directive on an element and

declare the name of the application. Open the index.html file and add the ngApp
directive as follows:

<html lang="en" ng-app="App">

Figure 3.4 When Angular is added to the page, it still appears the same. You have to tell Angular to do
some things before the content will change.
Licensed to Mark Watson <nordickan@gmail.com>

45Controllers: for controlling data and business logic
At this point, you’re attaching an Angular application called App to the root HTML
element. This gives the Angular app access to the entire DOM, but you also could
have attached it to the </body> tag. I recommend putting it on the <html> or <body>
element.

 You haven’t yet declared this app in JavaScript, so let’s do that now. Angular has a
module system, which is a mechanism to help encapsulate program code into indi-
vidual pieces. When you declare a new module, you provide a name and then an array
with a list of dependencies (this chapter has none). Ionic itself is an Angular module,
which you’ll declare as a dependency in other chapters. Angular modules are declared
in the following way. Create a new file in js/app.js and add the following line to it:

angular.module('App', []);

Lastly, you need to add a </script> tag to the index.html file to load the Angular
module. In the index.html file, right before the closing </body> tag, add a new
</script> tag as follows:

<script src="js/app.js"></script>

You need to make sure this is after the Angular library because JavaScript files are
loaded and executed in the order they’re declared on the page.

 You’ve just declared and attached the most basic of Angular applications to your
page. The angular.module() method creates the module and attaches it to the DOM
with ngApp. This is the most basic Angular application, and in fact it does nothing yet.
All Angular apps are declared in this basic way.

3.4 Controllers: for controlling data and business logic
Let’s get some of the business logic wired up into the application. Here you’ll add a
controller to manage business logic that controls the various parts of the application.
This step won’t change the way the application appears in the browser just yet,
because a controller is about managing data and not the visual aspect of the applica-
tion. But you need the controller in place before you can start to manage the visual
elements.

 The result of adding a controller will give the controller a particular region on the
page that it has access to, as you can see later in figure 3.5. For example, you need to
be able to manage how you load the data and attach it to the scope. You can reset the
project to step3 if you’re using Git:

$ git checkout -f step3

Listing 3.1 declares a basic controller. You first have to reference the App module and
then declare a controller with the controller method. It passes the name of the con-
troller and the function that contains the controller logic. Create a new file in js/
editor.js and add the code from the following listing.
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 3 What you need to know about AngularJS

C
model

and
it on $

angular.module('App')
.controller('EditorController', function ($scope) {
 $scope.state = {
 editing: false
 };
});

This is a very simple controller that currently only creates a simple model called
state. The $scope service is injected so that you can set the state property. Remem-
ber, values on $scope are called models and are also available for the view.

Now you need to add the file to the index.html file to include it in the application.
Add a </script> tag to the bottom of the HTML right before the closing <body>
element:

<script src="js/editor.js"></script>

The last step is to attach the controller to the DOM. This will create a new child scope
for this controller to use. This is done by using a special HTML attribute, called an
Angular directive, to declare where the controller should be attached. In this case,
you’ll want to attach it to the div with a class of container on line 25 of index.html:

<div class="container" ng-controller="EditorController">

Here you use the ngController directive and declare the name of the controller
you’ve created in the JavaScript file. This will attach the controller to the DOM and
make the controller able to manage anything inside of this element. You can see in
figure 3.5 where the controller’s scope is available, which is most of the page except
for the top title bar.

Listing 3.1 Editor controller (js/editor.js)

References App module
to attach controller to
this module

reates
 value
stores
scope

Declares controller with name
EditorController and passes a function

that has dependencies listed

Services starting with $
You’ll notice that Angular services start with a $ symbol, and the same holds true for
Ionic’s services. When you see a service beginning with $, it’s a convention to desig-
nate it as part of the core of Angular or Ionic.

Services that we create in the examples in this book are never prefixed, but I have
capitalized them. There’s no requirement for how you name services, but the core
follows the convention of prefixing with $.
Licensed to Mark Watson <nordickan@gmail.com>

47Controllers: for controlling data and business logic
The controller’s scope
is limited to anything
inside of the dashed line.

Figure 3.5 The controller’s scope can only
apply to markup inside of the dashed line. The
header is outside of the scope because of

More about the server in this project
The included server does two things: it serves the static files for your application and
has a RESTful API. The topic of building a RESTful API is beyond the scope of this
book, but I wanted to take a moment to go over the basics of this implementation.
This server runs using Node, which you’ve already installed. Node allows you to do
some pretty interesting things such as work with the computer’s file system and
respond to HTTP requests.

Node has modules that can be included in a program so you can reuse features. In
this case, I’ve used a very popular Node module called Express. Express has a lot of
the built-in features for building an HTTP server. I also used the file system module
to maintain a list of notes in a JSON file. These are things you can’t do with JavaScript
in a browser, but Node makes them possible.
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 3 What you need to know about AngularJS

3.5 Loading data: using the controller to load
and display data in the view
Let’s start loading the data and getting it to display in the application. On the left the
application will show a list of the notes that have already been created. I’ve seeded this
project with a few notes to get you started. Because you’ve already created your con-
troller, you can update the controller to load data into the app. To do this, you’ll use
the Angular $http service, which allows you to make HTTP requests to load data from
the Node server. Figure 3.6 shows where the application will display the list of notes.
You can reset your project to step4 if you’re using Git:

$ git checkout -f step4

(continued)
You can look at the server.js file inside of this project to see the server code. This is
a fully featured server, and it’s impressive how easy it is to create with Node. You
can learn more about Express at www.expressjs.com.

The list of notes
appears in the
left column.

Figure 3.6 The data will be loaded and then displayed in the list on the left, showing the five default
notes.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.expressjs.com

49Loading data: using the controller to load and display data in the view
Now you need to modify the controller to add the HTTP request to the notes service,
and assign the resulting data to the scope. Open the js/editor.js file and update it to
the following code.

angular.module('App')

.controller('EditorController', function ($scope, $http) {

 $scope.editing = true;

 $http.get('/notes').success(function (data) {

 $scope.notes = data;

 }).error(function (err) {

 $scope.error = 'Could not load notes';

 });

});

This now will make an HTTP request to http://localhost:3000/notes to load the
default list of notes from the data/notes.json file as soon as the controller loads. You
can inspect the network requests in your browser inspector tools to see that the
request returns the array of notes. Angular takes care of automatically parsing the
JSON into a JavaScript object if it can detect the response body as a valid JSON string.
This makes it easy to load JSON data without having to handle the parsing yourself.

 In your controller function, you can declare any number of parameters for the
function, and Angular will try to locate a service by that name and inject it into the
controller. For example, you’re able to inject the $http service into your controller B
and then use it to load data C. This is called dependency injection (DI), and it’s a power-
ful feature of Angular to be able to make services available for your controllers to use.
Angular services aren’t global and can’t be used without first being injected.

 Imagine you have a menu at a restaurant that represents all of the Angular services
available. Dependency injection is like a waiter who comes to your table and takes
your order for a particular item on the menu. He goes to the kitchen, has the item
prepared, and returns with it for you. Similarly, the DI system looks at your requested
services, does any work to set them up, and returns the services to your function for
you to use. You’re able to inject the default Angular services or any other services that
you create yourself.

 In the code there are two methods chained to the $http.get() method. The code
inside of the success() function will run when the data has loaded, while the code
inside of the error() function will run if there was a problem getting the data (for
example, the HTTP request failed because the server was down).

Listing 3.2 Editor controller loading notes from service (js/editor.js)

Injects $http
service into
controller

B

Uses $http.get to load
notes; on success,
handles data returned

C

Attaches returned data
from http to $scope

Handles
error,
stores
error
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 3 What you need to know about AngularJS

ngRepe
over ev

and
the n

You can’t yet see any of the data on your screen, so you need to update the template
file to show the list of notes in the left column. This will require template binding and
several Angular directives to manage the display of this data from the $scope. Open
the index.html file and look for the markup shown in the following listing, and add
the bold parts into the template.

<div class="col-sm-3">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title"><button class="btn btn-primary btn-xs pull-

right">New</button> My Notes</h3>
 </div>

 <div class="panel-body">
 <p ng-if="!notes.length">No notes</p>
 <ul class="list-group">
 <li class="list-group-item" ng-repeat="note in

notes">{{note.title}}

 <small>{{note.date |

date:'short'}}</small>

 </div>

 </div>
</div>

Listing 3.3 Notes list template (index.html)

Angular and asynchronous methods
JavaScript is single-threaded, which means it can only execute one task at a time.
Certain tasks, such as loading data from a server, can take a reasonably long time.
In synchronous programming this would block other tasks’ code from running until it
was finished, likely causing the interface to freeze during this time. Fortunately,
JavaScript doesn’t do this. JavaScript supports many asynchronous tasks, which
solves this problem.

When JavaScript runs an asynchronous task, it begins with the first part of the task,
and then sets it aside to continue running other tasks. When the asynchronous task
finishes, it alerts JavaScript, and the rest of the task is queued to execute. This frees
up JavaScript to continue processing tasks. HTTP requests in JavaScript (also called
AJAX or XHR requests) are one example of an asynchronous function because there’s
a lot of time spent waiting for the server to respond.

There are two primary ways to handle asynchronous functions: callbacks and prom-
ises. Angular uses promises for asynchronous method calls, but both may be used
depending on the structure of the application or modules you’re using.

To get more details about promises with Angular, I recommend looking at this blog
post from Xebia’s blog: http://blog.xebia.com/2014/02/23/promises-and-design-
patterns-in-angularjs/.

ngIf conditionally includes
or removes element
from DOM depending
on if there are notes.at loops

ery note
 displays
ote title.

Binding shows date, but
also formats date using
short format date filter.
Licensed to Mark Watson <nordickan@gmail.com>

http://blog.xebia.com/2014/02/23/promises-and-design-patterns-in-angularjs/
http://blog.xebia.com/2014/02/23/promises-and-design-patterns-in-angularjs/

51Handling click events to select a note
Here the template displays the list of notes once the controller has loaded them.
While the list is loading or if no notes are found, the ngRepeat list would be empty
and the ngIf would display the “No notes” message. The expression is evaluated every
time the notes model is updated, so as soon as the notes model has at least one item
in the array, the expression !notes.length will return false to hide the paragraph
element. This is a simple way to use Angular’s directives to modify the template based
on values attached to the $scope.

 ngRepeat will loop over every item in an array (or property of an object) and create
an element for each item. In this case, there will be a element for each note in the
array, and it will display the title and date the note was last saved.

 You can explore the large number of directives that Angular provides to see all of
the features. You’ll use a number of them in Ionic apps, but I’ll provide some detail
about any new ones as they’re used.

3.5.1 Filters: convert data to display in the view

The note.date data binding in the template is followed by | date:'short'. This is
called a filter, which will modify the display of the binding without changing the value
on the scope. For example, here we have a date object, and using the Angular date fil-
ter, the display formats it to a human-readable format while retaining the original date
object on the scope.

 Filters are used in expressions by adding the pipe character and then the filter. Fil-
ters can be chained together—in other words, you can add more than one filter. For
example, a filter could sort an array (using the orderBy filter) and then another filter
could reduce the array to 10 items (using the limitTo filter). The expression with the
filters would appear like this:

{{notes | orderBy:'title' | limitTo:10}}

Angular has a handful of filters by default, such as a currency filter to format a num-
ber as a currency value (like $100.00 for US dollars or €34 for Euros) based on browser
settings. Filters can also be used as a service, but that’s less common.

3.6 Handling click events to select a note
Now you need to be able to view these notes individually. You’ll want to click on a note
in the list on the left and have that note appear on the right. Figure 3.7 shows how the
click will select the note and then display it on the right. You can set your Git reposi-
tory to this step by checking out the step5 tag:

$ git checkout -f step5
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 3 What you need to know about AngularJS
You’ll use ngClick to handle when a user clicks on the item, and then assign the data
from the note to a new model for display. Look at the template again, and modify the
section with the list of notes to add the click handler, found in the bold portion of the
following listing.

<ul class="list-group">
 <li class="list-group-item" ng-repeat="note in notes" ng-

click="view($index)" ng-class="{active: note.id ==
content.id}">{{note.title}}

 <small>{{note.date | date:'short'}}</small>

Each note in the list can now be clicked, and on click, Angular will try to call the
$scope.view() function. The ngClass directive is a useful way to conditionally apply a
CSS class to the element. In this case the active class is used to highlight the item after
you’ve clicked on it to view the note.

 The $index value is passed to the view function, and it’s a special variable that
ngRepeat provides. It helps you know what the index of the array item is, and in this
case the index of the note that has been clicked.

Listing 3.4 Adding ngClick to note list (index.html)

Controller

$scope.view()

2. Calls $scope.view() function,
 which sets note data to
 $scope.content

1. Click on item in list 3. View updates with complete note content

Figure 3.7 Clicking on an item calls the controller and updates the view with the selected note.

ngClick and calls
view() passing
index; adds
ngClass to add
active class if
note is selected
Licensed to Mark Watson <nordickan@gmail.com>

53Handling click events to select a note

Bin
int
 You haven’t created the view function yet, so let’s address that now. Open the edi-
tor controller and add the view function found in the following listing into the con-
troller function.

$scope.view = function (index) {

 $scope.editing = false;

 $scope.content = $scope.notes[index];

};

Now the click event will fire the view() method in the controller when the note is
clicked. The view() method sets a new content model that contains the data from the
note that was clicked, using the index value that was passed. The method also sets the
editing model to false because any time you view an item, it should reset to the dis-
play mode and not the editing mode. The editing mode will be wired in a few more
steps.

 Next is handling the click event and setting the content model with the note data
that was selected. But you aren’t able to see the note yet in the view, so you need to
update the template to display the selected note properly.

 You’ve created a new content model that contains the note, but you have to
update the template to show the note. You can set your Git repository to this step by
checking out the step6 tag:

$ git checkout -f step6

Now you need to modify the right column of the application to display the two panels
properly. So far the right shows two panels, and you need to configure it so only one
of the panels appears at once. The first panel is intended for when you want to view a
note, and the second panel is for when you want to edit a note. You’ve already set a
$scope.editing property that you’ll use to determine which panel to show. Open the
index.html file again and modify the right column content by adding the bold por-
tions from the following listing. You can find this HTML inside of the first div with the
panel class.

<div class="panel panel-default" ng-hide="editing">
 <div class="panel-heading">
 <h3 class="panel-title">{{content.title}} <button class="btn btn-

primary btn-xs pull-right">Edit</button></h3>
 </div>

Listing 3.5 View function in the editor controller (js/editor.js)

Listing 3.6 Modify template to view a note (index.html)

Declares new $scope method
called view and accepts index
of clicked item

Sets editing state to
false because you want
to just view an item

Sets a new model for
content model to contain

note that was clicked

ngHide hides top panel if
condition is true, in this
case when editing is true

ds title
o panel
header
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 What you need to know about AngularJS

co

panel
 <div class="panel-body">{{content.content}}</div>
 <div class="panel-footer">{{content.date | date:'short'}}</div>
</div>
<form name="editor" class="panel panel-default" ng-show="editing">

When you run the application now, you’re able to click and view each note individu-
ally. The template will now react to the changes made in the view() method, which
set the content and editing models. When the editing model is true, the editing
panel will appear; otherwise, the note panel will display. The ngShow and ngHide
directives are useful to toggle the display of elements like those shown in listing 3.6.

 You’ve added the bindings for the note title, content, and date. The date has the
date filter applied just as you did earlier. Now you need to create a new directive that
will parse the note content to display it properly.

3.7 Create a directive to parse a note with Markdown
At this point you can view your existing notes, but the formatting isn’t quite right in
the notes. This application will support writing notes with Markdown, which is a sim-
ple way to write text that can be easily converted into HTML markup. You can learn
more about Markdown at http://daringfireball.net/projects/markdown/. Figure 3.8
shows the area that will be formatted using Markdown. You can set your Git workspace
to this step by checking out step7:

$ git checkout -f step7

Binds
ntent

into
 body

Binds note date and
passes it through date

filter to use short format
ngShow hides bottom
panel if condition is
false, in this case when
editing is false

Content converted from plain text
in Markdown format to HTML

Figure 3.8 Note content written in Markdown format will now be parsed and converted into HTML.
Licensed to Mark Watson <nordickan@gmail.com>

http://daringfireball.net/projects/markdown/

55Create a directive to parse a note with Markdown

n
You’ll create a simple Angular directive that can convert the plaintext with Markdown
syntax into HTML. To do this you’ll use the popular JavaScript Markdown library
called Showdown. It’s already included by default in the application file.

 To create the directive, open the app.js file. Directives aren’t part of a controller,
so organize the code so it’s stored in the main app file (in a larger app you’d want to
separate this into its own file). In the following listing you can see the directive you’ll
use to convert Markdown to HTML.

angular.module('App', [])

.directive('markdown', function () {

 var converter = new Showdown.converter();

 return {

 scope: {

 markdown: '@'

 },

 link: function (scope, element, attrs) {

 scope.$watch('markdown', function () {

 var content = converter.makeHtml(attrs.markdown);

 element.html(content);

 });

 }

 }

});

This directive will automatically convert the Markdown to HTML any time the content
changes, which will become helpful when you’re editing. The directive works by first
creating a new Showdown converter service. The directive is then defined, and in this
case the directive will have its own isolate scope nested inside of the controller scope.
I’ve defined Markdown as a property of the scope, and I’ll demonstrate how that value
gets populated in the next section.

 The link function is used by Angular as part of the rendering process. It will use the
$scope.$watch feature, which allows you to listen for when the Markdown content is
changed. When it detects a change, the plaintext content is passed to the Showdown
converter and then injected into the element as HTML. The source content in the scope
will remain the plaintext version, but it will always appear as the converted HTML.

 Let’s put the directive into action and see how to pass it the Markdown content. It
will take your note content, parse it using Showdown, and inject the resulting HTML
into the element. Open the index.html file and modify the existing content binding
as follows:

<div class="panel-body" markdown="{{content.content}}"></div>

Listing 3.7 Markdown-to-HTML directive (js/app.js)

Declares
directive and
names it
‘markdown’

Creates Showdow
converter
to use later

Directives
return an
object to

define
directive
settings

Declares custom scope that
expects a value to be assigned
to a Markdown attribute

Uses scope watcher to update
any time model changes

Declares link function that
actually manages conversion

from Markdown to HTML

Converts
Markdown

into content
variable

Injects converted HTML
content into element
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 What you need to know about AngularJS
Notice how this is an HTML attribute like the other directives you’ve used. You assign
the content.content model to the markdown attribute to pass the content of the
model to your directive’s isolated scope. This directive is used as an attribute on the
element that you want to inject the content into. The HTML is injected inside the div
element, and any time the content.content model is changed, your scope $watch
function will fire to reconvert the new content.

 Directives are a very complex topic, and we’ve only scratched the surface of what
you can do with them. There are also different ways this directive could have been
built, which makes the directive feature in Angular quite powerful, but also somewhat
difficult to grasp.

At this point, the viewing of existing notes is complete. Next we’ll focus on making the
editor work.

3.8 Using models to manage content editing
The editor will have two primary functions: to edit existing notes and to create new
notes. To begin you’ll set up the editor so it can create a new note when the applica-
tion first loads, or when a user clicks the New button. Figure 3.9 shows the changes
you’ll make in this section. You can set your Git repository to the code for this section
by checking out the step8 tag:

$ git checkout -f step8

Will I need to write my own directives?
You’re not required to write your own directives. Directives exist for any situation
where you want to modify an element in the DOM, but you can often manage the
same logic using a controller. But there are many good reasons why you’d want to
create custom directives.

Directives are easier to test when they’re written well. Directives encapsulate both
the functionality (they can include a controller or link function) and the template (they
can include template fragments). This makes them modular and isolated from other
aspects of your code, making the tests focused on just the directive.

They’re also reusable and reduce code that would otherwise have to be written in mul-
tiple places. Regardless of where in the application you want to reuse the directive,
it would have a consistent behavior. If you put that logic into a controller and want to
use it again in another controller, you’ll either have to write the same code twice or
work out how to share scopes.

You could build Angular and Ionic apps without your own directives. I recommend
beginners not focus on directives until they’re comfortable with Angular in general. If
you’re comfortable, then a few ways to identify when something should be a custom
directive is to look for cases where code is being duplicated or where the DOM is
being manipulated from the controller.
Licensed to Mark Watson <nordickan@gmail.com>

57Using models to manage content editing

del
To begin, you need to add some models to the form so you can use the form controls
to update the data. You also want to have the right side of the editor show a preview of
the content as you type, so you’ll add the Markdown directive here as well.

 Open the index.html file and modify the markup inside of the form to reflect the
bold portions from the following listing.

<div class="panel-heading">
 <h3 class="panel-title"><input type="text" class="form-control" ng-

model="content.title" placeholder="New Note" required /></h3>

Listing 3.8 Updating the editor with models (index.html)

Controller

$scope.view()2. The scope keeps
 track of the current
 content.

1. As user types in text
 area, the content is
 updated on scope.

3. The preview area updates
 any time the scope changes
 and converts markdown.

Figure 3.9 The model is modified by a user using the text area, and the preview area is instantly
updated with changes.

Attaches
title mo
to input
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 What you need to know about AngularJS

Att
co

mod
text

En
ed
st

set to
</div>
<div class="panel-body">
 <div class="row">
 <div class="col-sm-6">
 <h3>Editor</h3>
 <textarea class="form-control editor" rows="10" ng-

model="content.content" placeholder="Note Content" required></textarea>
 </div>
 <div class="col-sm-6">
 <h3>Preview</h3>
 <div class="preview" markdown="{{content.content}}"></div>
 </div>
 </div>
</div>

Here you use ngModel to link the model values to the input and text area, so any
changes a user types into those fields will instantly change the content model. Once
you have these changes, you can reload the page and start to type in the editor text
area. The preview field should update immediately with the content, and if you use
Markdown formatting, it will be converted in the preview area.

 You want to allow users to click the New button to create a new note, because right
now the editor only appears when the application first loads. To do this you need to
add a click event to the New button.

 You also want to allow notes to be edited, so you need another button that will start
editing a note after it’s opened. This will be done by simply changing the editing
model, which will show the editing panel and hide the note panel.

 In the index.html file, update the New button using the bold code as follows:

<h3 class="panel-title"><button class="btn btn-primary btn-xs pull-right" ng-
click="create()">New</button> My Notes</h3>

Then update the Edit button using the bold code as follows:

<h3 class="panel-title">{{content.title}} <button class="btn btn-primary btn-
xs pull-right" ng-click="editing = true">Edit</button>

The New button will try to call the create() method from the controller, which you’ll
define next. The Edit button doesn’t call a method, but will actually update the value
of the editing model to set it to true. You could also have written this as a function,
but because you can use expressions in your template, this does the trick.

 Now you need to define the create() method in your controller, so open the edi-
tor controller and add a new method, as shown in the following listing.

$scope.create = function () {
 $scope.editing = true;
 $scope.content = {
 title: '',
 content: ''
 };
};

Listing 3.9 Create note controller method (js/editor.js)

aches
ntent
el to
 area

Uses Markdown directive
to preview content

Creates method and
attaches to scope so
it can be called from
ngClick in template

sures
iting

ate is
 true

Resets content model
with blank values
Licensed to Mark Watson <nordickan@gmail.com>

59Saving and deleting a note
When the Edit button is clicked, the create() method will fire. It changes the editing
model to be true and then resets the content model for a blank note. This will cause the
editor to appear and a blank note to be displayed in the form, which is your new note.

3.9 Saving and deleting a note
Now you’re able to create and edit notes, but you aren’t able to save them yet. You need
to add a save() method to the controller and have the Save button call it. But you also
only want to save the item if the note is valid, which means it needs both a title and
some content. Figure 3.10 shows the Save and Delete buttons when you’re editing an
item, and how they call the controller methods to handle the click event. You can set
your Git repository to the code in this section by checking out the step9 tag:

$ git checkout -f step9

$scope.save = function () {...};

$scope.remove = function () {...};

Controller

1. Click Save when the title
 and content are filled in.

1. Click Delete when
 editing an existing note.

2. Call save method
 on the controller.

2. Call delete
 method on
 the controller.

Figure 3.10 The Save and Delete buttons call a method stored on the controller that handles the click
event.
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 What you need to know about AngularJS

Attac
sav

method
sco

e

Becau
is

no
it a

id ba
c

time
3.9.1 Adding the save() method

Saving a note requires using the $http service again to send the note to the service.
The service uses the POST method to create a new note and the PUT method to
update a note. $http.post() and $http.put() both accept a second parameter,
which is the data to be sent to the service. Otherwise, the syntax is the same as
$http.get().

 Before you can save a note, you have to determine if the note is new or already
exists. To do this, look for an id on the content. New notes aren’t given an id until
they’ve been saved, so if it exists you need to update it. Once you know if the note is
new or existing, you can call the correct service endpoint.

 Open the editor controller and add the save() method from the following listing.

$scope.save = function () {

 $scope.content.date = new Date();

 if ($scope.content.id) {

 $http.put('/notes/' + $scope.content.id, $scope.content).success(function

(data) {

 $scope.editing = false;

 });

 } else {

 $scope.content.id = Date.now();

 $http.post('/notes', $scope.content).success(function (data) {

 $scope.notes.push($scope.content);

 $scope.editing = false;

 });

 }

};

The save() method starts by updating the date value with the current timestamp
because you want to store the time it was last saved. It then sends either a PUT or POST
request, depending on if the note is new or existing, by checking if an id exists. When
the request has completed, both types of requests will disable the editing mode to view
the saved note. If the note is new, then it’s also given an id and then added to the
notes array in your controller. This is important to keep both the application and the
service layer in sync with one another; otherwise the new note would be stored into
the service layer but not shown on the left notes list.

Listing 3.10 Save controller method for saving notes to service (js/editor.js)

hes
e()
 to
pe

Sets date
value of last-
edited date
for this note

Checks if this not
has an id so you
can either update
an existing note
or create a note

Sends a PUT request to notes
API to update note and disable
edit mode when completed

se this
 a new

te, give
unique
sed on
urrent
stamp Sends a POST request to notes API to

create a new note and then adds note to
notes list before disabling edit mode
Licensed to Mark Watson <nordickan@gmail.com>

61Saving and deleting a note

 delete
st to
API
3.9.2 Using Angular forms for validation

Before you save an item, you’ll use Angular’s built-in form features to help validate the
form and disable the Save button if it’s invalid. Angular extends the default form fea-
tures you know about in HTML with a large set of features, and one particularly useful
feature is automatic validation.

 Notice on the form controls that you have the required attribute. Angular will
look for that and automatically set some values on your scope to track if the forms are
valid. In this case, a note requires both a title and content, so if either is blank the
entire form is invalid.

 Angular uses the normal HTML form element or the ngForm attribute to enhance
forms. In this case you’re using a normal form element and have given it a name of
editor. The form then adds a new property by the same name to the scope, and has a
number of values such as $valid, $invalid, $dirty, or $pristine. These values can
help you understand if an input is valid or has been modified.

 You’ll use the validation to disable the Save button until the form is valid, and add
a click event to the Save button. In the index.html file, locate the Save button and
add the following bold directives to the element:

<button class="btn btn-primary" ng-click="save()" ng-
disabled="editor.$invalid">Save</button>

ngClick should be familiar by now. It will call the save() method in the controller and
take care of saving the note. But it will not fire while editor.$invalid is true. The
ngDisabled directive looks at the form validation and disables it while both form con-
trols are empty. Angular is aware of validation attributes, such as required, and when
an ngModel is attached to a form field, the form can provide automatic validation.

3.9.3 Adding the remove method

The last feature to create is a way to delete a note. The Delete button shows only when
you’ve selected an existing note to edit. To get the changes in your Git repository for
this section, check out the step10 tag:

$ git checkout -f step10

First, you’ll add the remove() method, which will handle calling the service to delete
the note and then remove it from the application. Using the code in the following list-
ing, you can update the editor controller.

$scope.remove = function () {

 $http.delete('/notes/' + $scope.content.id).success(function (data) {

 var found = -1;

 angular.forEach($scope.notes, function (note, index) {

 if (note.id === $scope.content.id) {

 found = index;

 }

Listing 3.11 Method to delete a note (js/editor.js)

Declares remove() method Makes
reque
notes

Loops through
notes to find index
of deleted note
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 What you need to know about AngularJS
 });

 if (found >= 0) {

 $scope.notes.splice(found, 1);

 }

 $scope.content = {

 title: '',

 content: ''

 };

 });

};

The remove() method sends an HTTP delete request to the notes service based on
the id of the note, and then when it has returned it will remove the item from the
notes array in the controller. To delete the note from the notes model, it loops over
every note, looking to see if the deleted id matches a note, and only if found does it
splice (remove) that item from the array. It also resets the content model so it’s ready
for a new note.

 The last change is to add ngClick to the Delete button to call the remove() func-
tion. You’ll also use an ngIf to conditionally show the Delete button only when you’re
editing an existing note, because you shouldn’t be able to delete a new note that
hasn’t been saved. The following snippet shows the Angular directives used on the
Delete button in bold:

<button class="btn btn-danger pull-right" ng-click="remove()" ng-
if="content.id">Delete</button>

The button will now display only when editing an existing note, and when clicked it
will call the remove() method to delete the note from the model.

 This now completes your Angular notebook application. In a whirlwind tour of
Angular through building this application, we’ve scratched the surface of many of the
core pieces of Angular. As we move from just Angular to building Ionic apps, you’ll
continue to see these features used. There are more concepts we won’t cover, because
it takes far more pages than I can devote here.

3.10 Continuing with Angular
Learning Angular is important to building Ionic apps, so if this is your first look at
Angular, I want to encourage you to spend time with it. I believe the best way to learn
Angular is to interact and build with it.

 There are many opinions about how to best work with Angular. While there are
certainly some best practices that have been discovered, there are also many opinions.
Take care not to be overwhelmed by the vast number of posts online that discuss the
“right” way to build Angular applications. They likely have good points, but also may
have opinions that don’t fit your programming style or needs.

 You can continue learning about Angular with AngularJS in Action (http://
manning.com/bford/) or AngularJS in Depth (http://manning.com/aden/) from
Manning. The Angular website (https://angularjs.org or https://angular.io) is the pri-
mary resource for documentation, and also includes a good getting-started guide.

If note was found, removes it
from notes list in Angular app

Resets content model
for a new note
Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/bford/
http://manning.com/bford/
http://manning.com/aden/
https://angularjs.org
https://angular.io

63Summary
There are also many good recorded talks on YouTube that range from beginning with
Angular to very specific, advanced topics; see, for example, https://www.youtube
.com/user/angularjs.

 Even while you could create a fairly good Ionic app without knowing the inner
details of Angular, your ability to develop a great Ionic app increases as you learn and
expand your Angular skills.

3.11 Chapter challenges
Now that you’ve seen the fundamentals of Angular in action in this chapter, here are a
few challenges for you to dig into to improve your understanding:

 Show errors—Notice that you set the value of $scope.error in the $http.get()
method, but never did anything with it. Modify the template so that an error
message will show when the value of $scope.error is set.

 Handle other $http errors—The $http methods all can handle error situations,
and in the example in this chapter only the get() method is set up to do this.
Improve the example by adding error handling for the other methods as well.

 Use ngResource—Instead of $http, you could use the ngResource module,
which is an abstraction for interacting with a RESTful API that makes it easier to
create services based on $http. You’ll need to include the module by adding
the files to the application (you can use a browser or download from Angular’s
site) and work out how to include another module in your application.

3.12 Summary
In this chapter we’ve covered many aspects of Angular through the example notebook
application. Let’s review the major topics covered in this chapter:

 Angular extends HTML with additional features that are made available
through the many directives it provides or that you can create yourself.

 Templates are HTML and may contain Angular directives or expressions. These
templates are converted into a view that users interact with.

 Controllers are used to hold the business logic of your application. They’re
functions that can have any number of servers injected into them using Angu-
lar’s dependency injection system.

 Scope is the glue that holds the controller and views together, and powers the
two-way data binding in Angular. When data changes in the view or controller,
the data is automatically synced to the other.

 Filters are ways to transform data in a template without modifying the source
model stored in the scope.

 Directives are powerful, and you can create your own when you’re comfortable
with Angular. They aren’t required, but should be used when appropriate.

In chapter 4, you’ll build your first Ionic app from the ground up and learn about
many features that you’ll use in your apps.
Licensed to Mark Watson <nordickan@gmail.com>

https://www.youtube.com/user/angularjs
https://www.youtube.com/user/angularjs

Ionic navigation
and core components
In this chapter I’ll show you how to create a fully functional mobile app for a fic-
titious resort in Hawaii. The core feature of this app is managing user app naviga-
tion. I’ll also introduce you to some of the Ionic components throughout this
chapter, such as loaders, content containers, and a slideshow.

 This chapter is laid out to provide a walk-through of the process to build
the complete app. The complete example is available on GitHub if you’d like to
take a look at the whole app first. You can find it at https://github.com/ionic-in-
action/chapter4. You can also preview the app at http://ionic-in-action-chapter4
.herokuapp.com.

This chapter covers
 Managing the user state and navigation for the app

 Displaying icons, lists, and cards to cleanly organize
content

 Loading data from external sources and showing a
loading screen

 Using infinite scrolling to continuously load data

 Using a slideshow component as an app intro
64

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter4
https://github.com/ionic-in-action/chapter4
http://ionic-in-action-chapter4.herokuapp.com
http://ionic-in-action-chapter4.herokuapp.com

65
User opens the app
and goes to the tour

• Use slidebox
• Only show on first use
• Use button to skip

Intro view

• Link to other views
• Use list component
• No back button
• Use icons

Home view

• Customer’s
 reservation details
• Use list component
• Show back button
• Use icons

Reservation view
• List of local restaurants
• Show back button
• Use cards component
• Use infinite scroll

Restaurants view
• Current weather
• Use list component
• Show back button
• Use icons
• Load data from API

Weather view

 A vital part of any mobile app is managing the users’ ability to navigate through the
app. You’ll first set up the necessary foundation for the application navigation. Then
you’ll build from that foundation and add new views that introduce additional Ionic
user interface components. All of the components will work together to provide a
mobile app that shows the current weather details, a visitor’s reservation details, and
upcoming events at the resort. It will
also include an introductory tour of the
app using a simple slider, which you may
have seen in other mobile apps. At the
end of the chapter, I’ll provide a list of
several suggested challenges to improve
the app and practice what you’ve
learned.

 Figure 4.1 outlines the basic app
flow. This provides a general idea of
what users will be able to do and where
they can navigate. There are notes
about the basic features for each of the
views. Some type of wireframing like
you see in figure 4.1 is helpful in the
planning stages of any mobile app.

 Now let’s get you started with build-
ing this app!

Figure 4.1 Resort app
wireframe showing the
views and user flow
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 4 Ionic navigation and core components
4.1 Set up chapter project
For this chapter, you have the option to follow along by creating and writing all the
code for a new app, or cloning the app from GitHub and checking out the app at var-
ious points along the way. Either way, you’ll get to see and run the code for a particu-
lar step, so the choice is yours. The Git option is faster if you don’t want to copy all of
the code from the book into your project.

4.1.1 Create a new app and add code manually

To create a new project for the app using the Ionic command-line interface (CLI) util-
ity, open the command line and execute the following command (remember, you can
refer to chapter 2 if you need a refresh on how projects are set up):

$ ionic start chapter4 https://github.com/ionic-in-action/starter
$ cd chapter4
$ ionic serve

4.1.2 Clone the finished app and follow along

To check out the finished app and use Git to follow along for each step, use the fol-
lowing command to clone the repository and check out the first step:

$ git clone https://github.com/ionic-in-action/chapter4.git
$ cd chapter4
$ git checkout –f step1
$ ionic serve

4.2 Setting up the app navigation
Before you build the resort app, take a
look at figure 4.2. It shows the various
places in the app that a user will be able
to go. You’ll build out each piece indi-
vidually, but here you can see them all
together.

 Your first task is to get the app naviga-
tion set up, and then you’ll work on add-
ing the content into each view. Ionic is
built to work with a third-party routing
framework called ui-router, which is like
the central brain for navigation. In case
you’re not familiar with ui-router, I’ll
show you the key features you’ll need.
Ionic layers on top of ui-router in some
ways, so you don’t often have to worry
about the inner workings unless you
develop your own custom navigation
techniques.

Intro Home Reservation

Loading weather Weather Restaurants

Figure 4.2 All completed app views
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/starter
https://github.com/ionic-in-action/chapter4.git

67Setting up the app navigation
 I talk about navigation and routing, which are two different but related concepts. I
use the term navigation as the act of a user moving around inside of an app (a user tap-
ping a button to go to another place), and the term routing as the application’s inter-
nal process to decide what to do when a user navigates (the application deciding
where to go when a button has been tapped). In other words, navigation is the user
action and routing is the application logic that responds to user input.

In the wireframe in figure 4.1 and in the app overview in figure 4.2, you can see there
are really five potential places, or views, for a user to be:

 Intro
 Home
 Reservation
 Weather
 Restaurants

Traditional websites have pages, but in a mobile app there are no distinct pages. As a
user navigates inside of an app, it’s less obvious that the view changes, compared to a
website where you can watch the URL change in the address bar and see the page
reload. I like to think of a view as a well-defined visual experience, just as you see in
the preceding list with five very distinct places the user can see in the app. Before you
set up navigation in the app, let’s talk about how to design the app navigation for
users.

4.2.1 Designing good app navigation

Mobile app navigation is somewhat like traveling to a new city. Imagine you arrive by
train in this new city, and you walk out of the train station near downtown. You may
have some idea what you’d like to do or how to get around (such as visit some muse-
ums), but you first have to rely on the street signs to understand where you are in rela-
tion to your destination. Because you’re familiar with street signs and common city
rules, you’re able to find your way to your destination. In your app, you’re responsible
for providing the street signs for your users.

Why Ionic uses ui-router and not ngRoute
There’s an official router for Angular (ngRoute) that isn’t used by Ionic. The primary
reason is that ngRoute doesn’t support some important features that the ui-router
project supports, such as named views, nested views, and parallel views. An example
would be allowing a tabbed interface that’s actually multiple views. These features
are built into the core of Ionic, through the ionNavView directive. Ionic is built to work
only with ui-router, so attempting to use ngRoute will cause issues with your app.

There are a lot of aspects of ui-router that aren’t covered in this book, and it’s best
to refer to the website https://angular-ui.github.io/ui-router/ for more detailed infor-
mation about some interesting features that might be useful in advanced use cases.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

https://angular-ui.github.io/ui-router/
http://www.allitebooks.org

68 CHAPTER 4 Ionic navigation and core components
Even though you’re building a web application inside of your hybrid app, the user
experience isn’t the same as it is for a web application viewed in a browser. Users can’t
navigate in the same manner because hybrid apps don’t have the browser window and
features such as the address bar or back or reload buttons, as shown in figure 4.3. This
means it’s up to you, the app developer, to provide the ability to navigate the app.

 When you consider the navigation, you should consider the flow like in figure 4.1
to understand how a user moves from view to view. There may be multiple ways that a
user can get to a given view, but it should always be clear and intuitive for the user.
There are many ways to create a navigation flow for users, from custom interactions to
the more common features Ionic provides by default. It’s better to use common navi-
gation techniques, such as buttons, than to create experiences that a user will have to
learn how to use.

 I recommend you look at four or five of the apps you use on a regular basis and try
to understand the navigation flow they use, and what techniques they provide to the
user. Do they use buttons? Is there a side menu or tabs to help get to key parts of the
app? Do you ever get lost, and if so, can you see why? Thinking critically about these
items will help you while you design your apps.

Reload button

Address bar

Forward and
back buttons

No navigation
built in

Mobile browser Mobile app

Figure 4.3 Browsers have navigation aids like an address bar and reload and back buttons. Apps have
no buttons, so the developer must provide navigation options.
Licensed to Mark Watson <nordickan@gmail.com>

69Setting up the app navigation
4.2.2 Declaring the app views with the state provider

Now it’s time to dig into some code. Your
first task is to add the Ionic navigation
components into the app HTML markup.
Then you’ll declare one view to start with.
The result will look like figure 4.4, which
is mainly the content container with no
content and the navigation bar (navbar).
If you’re following along using Git, you
can check out the code for this step:

$ git checkout –f step2

ionNavView and ionNavBar are the foun-
dational Ionic components for the naviga-
tion. ionNavView acts like a placeholder
for different view content to be loaded
into the app, and ionNavBar shows a
header bar that will update as a user
moves from view to view. These two com-
ponents are designed to work together,
but you could use ionNavView without
using ionNavBar if you didn’t want a top
navbar.

 If you’re familiar with frames in HTML, ionNavView is similar in the sense that it
allows content to be loaded inside. But ionNavView isn’t an actual frame. If you want
to understand more about Angular and templates, refer back to chapter 3. Remember
that Angular has a way to take markup (that is, the template) and inject it into the
view (in this case, inside of ionNavView). Without ionNavView, the app wouldn’t know
where to load the content, so you’ll always need at least one ionNavView in your app if
you use navigation.

 ionNavBar will place a top bar in the app, which is found in many apps. It’s like a
title bar. Think of it like a place where you can put the current view’s title and also use
it to place buttons, such as a back button. You’ll use the ionNavBackButton compo-
nent in this app because the app users will need a way to go back. In figure 4.1 the
bottom-row views will all have a back button to return to the home view. The home
view will not show a back button, because it’s the top-level view and the back button
will not display.

 Take the index.html file in listing 4.1 and add in the navigation components.
These components can’t run without some JavaScript that you’ll add from listing 4.2,
but first focus on the components in the markup. This code shows only the contents
inside of the </body> tag of the page, but you’ll need to retain the rest of the markup
in the HTML file.

Navbar
(ionNavBar)

Blank view
(ionNavView)

Figure 4.4 A basic app with navigation and a
single view with no content
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 4 Ionic navigation and core components

<body ng-app="App">
 <ion-nav-bar class="bar-positive">
 <ion-nav-back-button class="button-clear">
 <i class="icon ion-ios-arrow-left"></i> Back
 </ion-nav-back-button>
 </ion-nav-bar>
 <ion-nav-view></ion-nav-view>
</body>

So far, you’re just declaring placeholders for content. You haven’t actually declared any
views, but when you do, these components will automatically know what to do with the
information. It’s likely that many apps you build will have markup similar to listing 4.1
as the foundation for the app navigation.

 You can see there are classes on some of the components, and this is common.
Ionic allows you to customize the display of many components by using CSS classes.
We’ll cover these options in more detail later.

 If you run this code, you’ll notice it doesn’t really do anything yet. That’s because
you haven’t declared any views. What you actually need to declare is a list of states for
the application. States are a concept given to you from the ui-router. A state is the cur-
rent representation of the application that’s visually represented in the view, which
would contain details such as the URL associated with the view, the name of the con-
troller for the view, and the template attached to the view. In this book, you’ll declare
states that are typically linked to a view (the home view in figure 4.1, for example, is a
state). For a more in-depth discussion about states, you can refer to the ui-router
details at https://github.com/angular-ui/ui-router/wiki.

 If you recall, we talked about how routing is the concept for declaring what paths
through the application a user can navigate. You could think of it like a folder tree,
where states can be organized as children of other states.

 Right now you’ve created the home state, but you haven’t yet declared any of the
other files inside of that directory to view. The states you declare include a way to
route the user to a particular place in the app, which can be done using URLs or using
the name of a state. In this book we’ll usually use the state name for navigation.

 Let’s have you add some states to the app, as shown in listing 4.2. You’ll add these
states into the app.js file, which contains the Angular app definition. You’ll use the
$stateProvider service to declare your states, and the $urlRouterProvider to help

Listing 4.1 App navigation components in markup (www/index.html)

Where Angular app
is attached to page

Declares ionNavBar;
also gives it a style
with bar-positive class

Uses arrow back
icon for back

button

Declares ionNavBackButton, which will
show and hide if there’s a way to go back

Declares ionNavView,
where each view

content will display
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angular-ui/ui-router/wiki

71Setting up the app navigation
provide a fallback in case an invalid request is made. The code in the following listing
will be added right after the first line (as shown).

angular.module('App', ['ionic'])
.config(function ($stateProvider, $urlRouterProvider) {
 $stateProvider.state('home', {
 url: '/home',
 templateUrl: 'views/home/home.html'
 });
 $urlRouterProvider.otherwise('/home');
})
.run(function($ionicPlatform) {

All right, you’ve got the first state declared, and it’s called home. It’s very simple—it will
only try to load a template from the URL provided in templateUrl. As you add more
states to the app in this chapter, you’ll see other configuration values that can be pro-
vided. You can always review the full set of options based on the ui-router documenta-
tion. The examples in this chapter will demonstrate the most common variations.

 The otherwise() method is important because it catches situations where
the application is unable to find the requested route, much like a 404 error page on
a website. If a user tries to request a state that doesn’t exist, the otherwise()
method will be used to display the home view. It’s always a good idea to declare an
otherwise() method in case your app has a routing problem, so it can always have
something to show instead of a blank page or error. You might consider making a spe-
cial error view that people can use to send you feedback.

 You might have noticed there’s a template declared, but you haven’t yet created
this file. It’s time to add this last file to make the first view work correctly and see how
the view gets loaded into the app. I prefer to organize all of my views into a folder
called views, so create a new file at www/views/home/home.html and put the con-
tents from the following listing inside.

Listing 4.2 Declaring app states (www/js/app.js)

Angular module
definition, already in file

Adds new config
method and injects
$stateProvider

Declares a fallback
URL to go to if app

can’t find
requested state

Tells state to load a template from
a given URL when view is active

Angular run method,
already in file

Declares first state
for home view

Gives state a URL that can be
used with anchor links
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 4 Ionic navigation and core components

<ion-view view-title="Aloha Resort" hide-back-button="true">
</ion-view>

Now you can run the code and see that it runs correctly. You should see the app run-
ning with a blue navbar and the title “Aloha Resort.” The rest of the view is blank, for
the moment. You’ll add that in next. It should look like you see in figure 4.4.

 Note the hide-back-button attribute. This attribute tells ionNavBar that this view
doesn’t want the back button to show. There are other ionView attributes that you
may use that you can find in the documentation.

 Now this isn’t terribly impressive just yet! Let’s move on to the next part where
you’ll get the home view set up. Along the way we’ll talk about the content area, how
to use icons, and lists.

4.3 Building the home view
The example so far has a blank view with a title, so now you need to add more content
into this view. The primary feature of this page is to provide a list of links that will take
users to the weather, restaurants, and reservation views. If you’re following along using
Git, you should check out the next step:

$ git checkout –f step3

In listing 4.3, there’s a very basic and very blank view. Inside of this view, you’ll put a
few things. You’ll add ionContent, which is a generic wrapper for content but has a lot
of features you might not notice immediately. Then you’ll create a list of navigational
links for each of the views. Lastly, you’ll add some icons to make them a little nicer on
the eyes. You can preview the result in figure 4.5.

4.3.1 Creating a content container

ionContent is the most commonly used content container. It provides a number of
features:

 Sizes content area to device—It will determine the appropriate height for your con-
tent container based on the device.

 Aware of header and footer bars—It knows if there are header or footer bars, and
will adjust its size and position accordingly.

 Manages scrolling—It has a number of configuration options to manage scroll-
ing. For example, you might want to lock scrolling to be one direction only
(horizontally), or no scrolling at all.

There are a lot of options with ionContent, but they’re primarily related to managing
the scrolling experience. In most cases you’ll not need any of those options, but you

Listing 4.3 Add template for home view (www/views/home/home.html)

Uses ionView to declare a view template; title is used in
navbar and hide-back-button will disable back button
Licensed to Mark Watson <nordickan@gmail.com>

73Building the home view
can see the various options in the documentation. Let’s add this tag to the home view.
Open the home view file again and add the code like you see in the following listing.

<ion-view title="Aloha Resort" hide-back-button="true">
 <ion-content>
 </ion-content>
</ion-view>

That’s it? Yes! In this case ionContent is pretty easy to use, and because you plan to use
the default features, you don’t have to make it any more complex than this. The con-
tent area will now resize and take the navbar into consideration when it calculates the
size and position of the content. Without ionContent, the content would start in the
top left corner behind the navbar, which is obviously not desirable.

Listing 4.4 Adding ionContent to home view (www/views/home/home.html)

Intro view

Home view

Reservation
view

Restaurants
view

Weather
view

List of links
(list component)

Content area
(ionContent)

Icons
(Ionicons)

Figure 4.5 The home view with icons and a list of links, and content is correctly placed below the navbar

ionView
declared earlierionContent that

will hold content
for view
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 4 Ionic navigation and core components

4.3.2 Using CSS components and adding a simple list of links

Now that you have a content container, you’ll want to add a list of links. Ionic comes
with a lot of components that are simply CSS classes applied to elements. If you’re
familiar with front-end interface frameworks like Bootstrap or Foundation, you’ll be
quite familiar with the method of adding classes to create visual components. Some of
the components are mobile-focused designs for several form elements like check-
boxes, a range slider, buttons, and more.

 Ionic has a list component, which is a pair of classes for a list and each list item.
The list component has a number of style configurations; you’ll start with the most
basic and then add icons.

 Let’s add a basic list of links to the app, as shown in listing 4.5. While you can use a
normal unordered list element, I’ll actually show you how to use a div to wrap a list of
anchor tags. This is important to note because the CSS styling applied is very complete
and will allow you to use the class on different elements.

<ion-view title="Aloha Resort" hide-back-button="true">
 <ion-content>
 <div class="list">

 See your reservation

 Current weather

 Nearby restaurants

 </div>
 </ion-content>
</ion-view>

Listing 4.5 Adding a list to the home view (www/views/home/home.html)

Is your content in the wrong place?
The vast majority of the time, you’ll use ionContent to wrap your content. If you
ever run into trouble where your content is misplaced on the screen, start by double-
checking that you have ionContent in the right place.

There are some situations where you don’t want to use ionContent; you’ll see one
example of this in chapter 5 where tabs shouldn’t be inside of ionContent. Some-
times you may have to add some CSS to make things display like you want if you
don’t use ionContent. For example, if you use ionHeaderBar without ionContent,
the content will be positioned under the ionHeaderBar. Ionic tries to make the
design and components work in most cases, but some nonstandard use cases
require extra CSS.

ionView and ionContent
declared from earlier

Adds list class to a
container element to
designate a list container

Adds item class to an element
to create a list item, in this
case a link to another view
Licensed to Mark Watson <nordickan@gmail.com>

75Building the home view
Using a CSS component normally means just following the component guideline and
giving elements the proper CSS classes. We’ll look at more-complex lists in the next
chapter, but for displaying a simple list of items, this suits our needs quite well. The
documentation also shows a number of different list item display types, such as having
dividers, thumbnails, or icons.

 The list has some links to different URLs that you haven’t yet defined. You’ll add
each view individually, and then the app will be able to navigate to that view. With the
item class on the anchor tag, it adopts the list item display. These three links are
related to the three views (refer to figure 4.1 to see the app flow).

4.3.3 Adding icons to the list items

The last thing you need to do for this view is add some icons. Ionic comes with a set of
icons, called Ionicons, that are bundled by default. Icons are used in many places, so
you’ll see them frequently. You can view the available icons at http://ionicons.com. The
icons are actually a font icon, which are custom fonts that replace standard characters
with icons and use CSS classes to display the icons. If you’d like to use another font icon
library (such as Font Awesome), you should be able to include that without conflicts.

 The list component has a special display mode that uses icons. Using an extra CSS
class and adding an icon element will generate the desired effect of having the icon
displayed to the left of the text in the list item. Let’s say you’d like the icon to be to the
left of the text. You can finish the home view as you see in the following listing by add-
ing some icons and updating the list item with a new class.

CSS and JavaScript components
In the Ionic documentation, you’ll see that the components are split into two distinct
categories: CSS and JavaScript. If you look closely, you’ll notice that some compo-
nents appear on both lists, such as header bars and lists. You might wonder why are
there two, and is one better than the other?

Some components are CSS-only (buttons), others are JavaScript-only (infinite scroll),
while some are both (tabs). CSS components provide a visual display to a component
but have no real configuration or interactivity. JavaScript components provide
more intelligent and interactive components, which may or may not build from a CSS
component.

Some component types are implemented as CSS and JavaScript, such as tabs. You
can consider using just the CSS features if you don’t need the features provided by
the JavaScript version. While Ionic is very fast, any time you can reduce the use of
JavaScript, it can help keep the overhead low.

Also when a component has both CSS and JavaScript versions, you can use the same
CSS classes on the JavaScript components to modify the appearance. For example,
in this chapter, ionNavBar is using the CSS class to adjust the color.
Licensed to Mark Watson <nordickan@gmail.com>

http://ionicons.com

76 CHAPTER 4 Ionic navigation and core components

ico
to

<ion-view title="Aloha Resort" hide-back-button="true">
 <ion-content>
 <div class="list">

 <i class="icon ion-document-text"></i> See your reservation

 <i class="icon ion-ios-partlysunny"></i> Current weather

 <i class="icon ion-fork"></i> Nearby restaurants

 </div>
 </ion-content>
</ion-view>

This is the most common way to include an icon, but because it’s inside of a list, you
need to use the special item-icon-left class to get the display you desire. You could
also use item-icon-right to have the icons float to the right side.

 Icons are often declared like this: <i class="icon ion-calendar"></i>. By
default the italics element is an inline element that would modify the text inside. But
you have no text inside, just two CSS classes. The first class, icon, gives the element the
base CSS styles for an icon, and the second class, ion-calendar, provides the specific
icon to display. Together, the inline element becomes an icon. You can see the icon
and the entire home view in figure 4.5.

 Now the home view is how you want it, so let’s move on to the reservation view, and
you’ll learn how to display information using a controller.

4.4 Using a controller and model for the reservation view
Very often you’ll need to add custom logic to your controller to handle loading data
or interactions. The home view has no custom logic because it just shows a static list of
links. But for the reservation view, you’ll want to be able to load a user’s specific data
and display it. Because this is just an example, you don’t have a real hotel database to
use for loading data, but you can still use a controller to contain your data. If you’re
new to Angular, it’s best to review the section in chapter 3 about controllers before
continuing with this chapter. If you’re following along using Git, you can check out
the code for step4:

$ git checkout –f step4

Declaring a controller with Ionic follows the same pattern as for any Angular control-
ler, like you saw in chapter 3. Remember, Ionic is built on top of Angular, so instead of
having to provide its own framework, it uses Angular. You’ll create this new controller,
and inside it will contain the model for the reservation view. The result of these
changes is shown in figure 4.6.

Listing 4.6 Add icons to home view (www/views/home/home.html)

Adds item-
n-left class
get desired

styling

Adds italics element using icon
class with icon designation to

transform it to icon
Licensed to Mark Watson <nordickan@gmail.com>

77Using a controller and model for the reservation view

le

You’ll recall from chapter 3 that to create a model in Angular, you attach a value onto
the $scope object. You’ll attach an object with the properties describing a user’s reser-
vation details, such as the dates of arrival and departure, room number, and so forth.
Take a look at the controller in the following listing. Add it to the views directory
under www/views/reservation/reservation.js.

angular.module('App')
.controller('ReservationController', function ($scope) {
 $scope.reservation = {
 checkin: new Date(),
 checkout: new Date(Date.now() + 1000 * 60 * 60 * 24 * 7),
 room: 156,
 rate: 121,
 wifi: 'resortwifi'
 };
});

Listing 4.7 Reservation controller (www/views/reservation/reservation.js)

Intro view

Home view

Reservation
view

Restaurants
view

Weather
view

Data binding
($scope.reservation)List with icons

(list component,
Ionicons)

Figure 4.6 The reservation view, using bindings and loading data from the controller

References App modu

Setting dates
for stay,

automatically
calculating today

to next week

Setting other
static values
for reservation

Attaching model
object called

reservation to $scope

Declares controller, providing
name and function; takes list
of items to inject like $scope
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 4 Ionic navigation and core components

Adds
wra

h

A li
filte

f

This controller doesn’t do a whole lot, but it does provide a place for you to hold your
data and use Angular’s binding features. You didn’t do this on the home view because
the list of items on the home view is very simple and unchanging. In this example, you
can see how this information would change from user to user, and would be loaded
here in the controller.

 This controller needs a template like the home.html file to display information.
The reservation view will have a list, similar to the home view, and include some icons
in the template.

 The major difference between this template and the home template is that you’ll
bind data from the controller into the template. The bindings will also use Angular fil-
ters, which is a very useful way to convert data from the model to a different display
format. You’ll also get to see a little bit of Angular expressions in action.

 Listing 4.8 has the reservation view for the controller you just built.

<ion-view view-title="Reservation">
 <ion-content>
 <div class="list">
 <div class="item item-icon-left">
 <i class="icon ion-key"></i> Room: {{reservation.room}}
 </div>

 <div class="item item-icon-left">
 <i class="icon ion-calendar"></i> Check In: {{reservation.checkin |

date:'mediumDate'}}
 </div>

 <div class="item item-icon-left">
 <i class="icon ion-calendar"></i> Check Out: {{reservation.checkout |

date:'mediumDate'}}
 </div>

Listing 4.8 Reservation view template (www/views/reservation/reservation.html)

Note about file organization
Now you may begin to see more clearly why I prefer to organize my files together by
views—it helps to keep related parts together. Many Angular tutorials lump the
JavaScript files in one place and the HTML templates in another, making it hard to
keep track of related items. Later you’ll also place CSS files in the folder for a view.
Keeping all the files related to a single view in one location has improved my workflow
greatly. I no longer spend precious time trying to find where the related code exists.

You’re not required to follow my conventions, but they’re my preferred conventions
based on my years of building applications with Angular, and they’re the conventions
used in this book.

Declares view with title Reservation

content
pper to
elp with
content
display

Wraps list with list component class

A list item with an icon; binds
room value into template

st item using a
r in binding, in

this case
ormatting date
Licensed to Mark Watson <nordickan@gmail.com>

79Using a controller and model for the reservation view

D
v

 <div class="item item-icon-left">
 <i class="icon ion-wifi"></i> Wifi Code: {{reservation.wifi}}
 </div>
 <div class="item item-icon-left">
 <i class="icon ion-pricetag"></i> Rate: {{reservation.rate |

currency}}/night
 </div>
 <div class="item item-icon-left">
 <i class="icon ion-pricetags"></i> Total: {{reservation.rate * 7 |

currency}}
 </div>
 </div>
 </ion-content>
</ion-view>

At first glance this may appear very similar to the home view, but you’ve used Angular
bindings to add data from your model in the controller ($scope.reservation) and
display it in the template. Binding is very common in Angular, and you’ll likely use
this frequently. Anything between the {{}} is evaluated as a special type of concept
called an Angular expression. Angular expressions allow you to bind data from the
$scope and even write math expressions that will be evaluated automatically. Refer to
chapter 3 for a deeper explanation of Angular expressions and data binding.

 Let’s take a closer look at the example {{reservation.rate * 7 | currency}}.
First there are two key parts, separated by the pipe character (|). On the left is the
expression, and on the right is a filter. In the expression, you’re able to do math by
multiplying the daily rate by 7 to get the weekly rate. When an expression has a vari-
able name, such as reservation.rate, it tries to resolve the value by looking at the
$scope for that property. If it doesn’t exist, the expression will fail and display noth-
ing. Using a filter is optional, but here you use the built-in Angular currency filter,
which takes a value and formats it for the local currency of the browser. It doesn’t
change the value of the reservation.rate property to include the currency sign; it
just transforms it for the display.

 While there are many other tricks and possibilities with expressions, the most com-
mon use is simply binding data to the view. You’ll see them again in action with the
weather view. Before we move to another view, you need to add this view to the appli-
cation’s state provider. At this point you have the files in place but haven’t told the
application about it. Open the app.js file again where you declared the first state, and
add a new state as shown in the following listing. This will be placed right after the
existing home view, and be sure that there’s no semicolon between them.

.state('reservation', {

 url: '/reservation',

 controller: 'ReservationController',

 templateUrl: 'views/reservation/reservation.html'

});

Listing 4.9 Declaring the reservation state (www/js/app.js)

A list item using a binding
with an expression and filter

Declares new state called reservation
Routes app using /reservation URL

Declares name of controller
used for this view

eclares
iew file
to load
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 4 Ionic navigation and core components
Great, now you have the view declared and everything should work, right? Not just
yet—one easy-to-forget step is left. You’re still building web applications, so you cre-
ated a new JavaScript file but haven’t yet added it to the index.html file to load. If you
see errors in the JavaScript console that say the ReservationController is undefined,
then either you haven’t included that file in the app or there’s a syntax error some-
where. Add this line to your index.html, right before the </head>:

<script src="views/reservation/reservation.js"></script>

Now you can run the app and tap on the reservation link to view the reservation
details. It should appear like in figure 4.6. You’ll notice the back button appears, and
as you navigate to child views the back button will automatically show and hide. You’ve
hidden it from the home view, so the child views like reservation will show the back
button. Just a note: If you refresh the app while still on the reservation view, the back
button will not appear. This is because it’s like your first visit to the app, and there’s no
place to go back to in the history. If you get stuck, you can change the URL in the
browser address bar to http://localhost:8100 to start over.

4.5 Loading data into the weather view
When you’re at a tropical resort, it’s good to know that the weather forecast is sunny
and warm. You came for the beach, so it had better be beach weather! In this next
view, you’ll load weather data from an external service. There are many services that
provide this data, but here you’ll use Open Weather Map, which has a free and open
API. Other services exist but may require an account or payment to load data. If you’re
following along using Git, check out step5 for this section:

$ git checkout –f step5

Like the reservation view, you’ll need an Angular controller. This controller will take
care of loading the data from Open Weather Map, and then store it on your model so
the view can bind data. You’ll use the $http service from Angular to handle the data
loading. I’ve also created an API that will proxy the request to Open Weather Map,
and in case Open Weather Map goes down, my API will still run for you.

 The view will be another list of items, such as current temperature and conditions,
today’s highs and lows, and wind speed and direction. I’ll show you how you can use
$scope methods in your template expressions to calculate information. In this case
you’ll take the wind direction that’s given to you in number of degrees and convert
that into a compass value such as North, East, South, and West.

 Loading data from an external website can take some time. So far a view is dis-
played immediately upon navigation to that view, but in this case you can’t show the
weather data until it has loaded. This may take under a second, or in some cases a few
seconds, depending on the speed of the connection, the server response speed, and
other variables (many out of your control). To provide a better experience, I’ll show
you how to use the $ionicLoading service to display a loading indicator while the
data loads.
Licensed to Mark Watson <nordickan@gmail.com>

81Loading data into the weather view
Figure 4.7 shows the result of the loading component in action and then a display of
the local weather details.

 You’ll start by adding the template file, then add the controller and data-loading
steps, and lastly implement the loading component.

4.5.1 Adding the template for the weather view

The template for the weather view is fairly simple—you just want to show a list of
weather conditions. You’ll create a list and bind the values for the data into it. This will
be mostly familiar except for one new type of Angular expression that we’ll cover.

 Create a new file for the weather view at www/views/weather/weather.html, and
add the code from the following listing.

<ion-view view-title="Current Weather">

 <ion-content>

 <div class="list">

Listing 4.10 Weather view template (www/views/weather/weather.html)

Intro view

Home view

Reservation
view

Restaurants
view

Weather
view

Data binding,
loaded from API
($scope.weather)

List of conditions
(list component)

Expression converts
degrees to direction
($scope.getDirection(deg))

Figure 4.7 Weather view: loading (left) and after loading (right)

Declares view and title for navbar
Wraps content in container
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 4 Ionic navigation and core components
 <div class="item">Current Conditions:

 {{weather.weather[0].main}}</div>

 <div class="item">Current Temperature: {{weather.main.temp}}°</div>

 <div class="item">Humidity: {{weather.main.humidity}}%</div>

 <div class="item">Today's High: {{weather.main.temp_max}}°</div>

 <div class="item">Today's Low: {{weather.main.temp_min}}°</div>

 <div class="item">Wind: {{weather.wind.speed}}mph,

{{getDirection(weather.wind.deg)}}</div>

 </div>

 </ion-content>

</ion-view>

Here you’ve created a new view and given it a title of “Current Weather,” and used the
content container to manage the position of the content area. The listing also uses the
list CSS classes again, just to keep it simple, as a way to list the weather details.

 This template has more complex bindings because the data returned by the Open
Weather Map is formatted as a JSON string that’s parsed into a JavaScript object by
Angular. You can view the standard output of the weather data by viewing the Open
Weather Map API in your browser at http://api.openweathermap.org/data/2.5/
weather?q=London,uk. You can replace the London,uk value with any city to load data
matching that query. If you review this output from the API, you can see the object and
array items that you have to navigate to access specific data values. My API for this
chapter is at https://ionic-in-action-api.herokuapp.com/weather and only returns
weather information for one location. (If you’re interested in how my API was built,
you can view the source file at https://github.com/ionic-in-action/apis.)

 I want to point out one more expression that’s a little different from the rest. If you
look at the last list item, you’ll see {{getDirection(weather.wind.deg)}}. This
expression will actually reference a method attached to the $scope in your controller.
You haven’t written this yet, but the method is called getDirection and takes a single
parameter, which is the wind direction in degrees. You can use methods like this in an
expression as part of your logic when necessary.

4.5.2 Create weather controller to load external data

Now you need to set up the controller and load some data. You’ll use the $http ser-
vice from Angular to load data from a URL. You’ll inject the $http service into the
controller, get a URL, and then handle the success or failure of the HTTP request.
Open a new file for the controller at www/views/weather/weather.js and put the con-
tents of the following listing inside.

Adds list items
that bind

to data
properties of

weather object

This item has two
bindings; second one calls
a method on the scope
Licensed to Mark Watson <nordickan@gmail.com>

http://api.openweathermap.org/data/2.5/weather?q=London,uk
http://api.openweathermap.org/data/2.5/weather?q=London,uk
https://ionic-in-action-api.herokuapp.com/weather
https://github.com/ionic-in-action/apis

83Loading data into the weather view

angular.module('App')
.controller('WeatherController', function ($scope, $http) {
 var directions = ['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW'];
 $http.get('https://ionic-in-action-api.herokuapp.com/weather')
.success(function (weather) {
 $scope.weather = weather;
}).error(function (err) {
 });

 $scope.getDirection = function (degree) {
 if (degree > 338) {
 degree = 360 – degree;
 }
 var index = Math.floor((degree + 22) / 45);
 return directions[index];
 };
});

This controller will now automatically load the weather data every time a user loads
the view. It’s loaded into the $scope.weather model, so your template can then bind
to that data. You can use the browser developer tools to inspect the response from the
API to see what’s been sent back. This is the most basic way to load data into your
application from a URL.

 We aren’t handling the error yet in case the API doesn’t send back data. This will
be added in the next section, but you should always have an error handler with $http.

 Then the getDirection method takes the number of degrees for the wind direc-
tion and returns one of the user-friendly values from the directions array. This
would be more appropriately done as an Angular filter, but for the purposes of this
example I used this approach.

 You need to add this new view to the list of states, and also include the </script>
tag for the new controller. Open the main app file and add another state to the end of
the state list, as shown in the following listing.

.state('weather',
{

 url: '/weather',
 controller: 'WeatherController',
 templateUrl: 'views/weather/weather.html'
});

Listing 4.11 Weather view controller (www/views/weather/weather.js)

Listing 4.12 Declare the weather view state (www/js/app.js)

References Angular
module for app

Declares
controller
and injects
$scope
and $http

Array with possible
directions for wind

Error
handling

will be
done here

later

Calculates
which

direction wind
is blowing Makes HTTP request to

load data at URL given

Handles successful
response and gets

weather object returned

Assigns weather data to
$scope.weather model

Method used to convert value of
degrees to cardinal direction

from directions array

Declares
weather
state;
adds it to
existing list

Adds URL, controller,
and template values
to define state
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 4 Ionic navigation and core components
Then also add the </script> tag to load the weather controller into the index.html
file, right before closing the </head> tag:

<script src="views/weather/weather.js"></script>

Now you can preview using ionic serve to view the app in its current state. Choose
the weather link and it will open the weather view. You’ll notice the view will load and
the bindings will be empty for a brief moment until the data has loaded. This isn’t very
pretty, and could confuse users. Adding a loading indicator is important for the user
experience, so let’s do that now.

4.5.3 Adding a loading indicator to the weather view

The loading screen prevents a user from using the app until the loading has finished,
so it’s important to consider when this is appropriate or when it might unnecessarily
stop the user from interacting with the app. If your app can’t continue until data is
loaded, then it’s likely this component will come in handy. For example, if you’re
loading account data when the app opens, the loading component can display
because the user can’t act on the data yet. You can see the default display in figure 4.8.

Intro view

Home view

Reservation
view

Restaurants
view

Weather
view

Data not yet loaded,
shows blank valueBackground

overlay prevents
interaction
while loading

Loading indicator
($ionicLoading service)

Figure 4.8 Weather view with loading indicator active while data is loaded from API
Licensed to Mark Watson <nordickan@gmail.com>

85Loading data into the weather view

nent
re

e
The loading component has two methods: show() and hide(). You’ll have to tell the
loading component when to use hide() because it will not automatically know when
loading is finished. You can view all of the configuration options in the documentation.

 In the example here, you’ll want to show the loading indicator while the HTTP
request is waiting to finish. You need to tell it to show right before you make the
request, and then tell it to hide when the response is returned. The loader won’t hide
automatically because it’s unable to determine when it’s the correct time to hide
automatically.

 The loading component is implemented in the controller using JavaScript only, so
open the weather controller again and update it as shown in the following listing
(you’ll only modify the relevant parts).

.controller('WeatherController', function ($scope, $http, $ionicLoading) {
 var directions = ['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW'];

 $ionicLoading.show();
 $http.get('https://ionic-in-action-

api.herokuapp.com/weather').success(function (weather) {
 $scope.weather = weather;
 $ionicLoading.hide();
 }).error(function (err) {
 $ionicLoading.show({
 template: 'Could not load weather. Please try again later.',
 duration: 3000
 });
 });

Take a look at the updated controller now, and you’ll notice how the loading compo-
nent is shown and hidden based on when you tell it. You have to first inject the load-
ing service ($ionicLoading) into your controller. Because Ionic’s services are built on
top of Angular, they’re injected just like any other Angular service (like $http).

 show() is used right before an asynchronous command is executed. HTTP requests
made by JavaScript are always asynchronous, and the success or error methods allow
you to choose what to do when the HTTP request has finished. Hopefully it will be suc-
cessful and you just hide() the loading component, but in case of an error, you recon-
figure the loading component to show an error message.

 The second show() method will automatically close after three seconds because
you’re using it here to display an error. It accepts an object containing configuration
values to modify the behavior, which you may wish to use to customize the loading
message, for example.

Listing 4.13 Add loading component to weather view (www/views/weather/weather.js)

Injects $ionicLoading
service into controller

Shows loading compo
and calls it right befo
HTTP request starts

When respons
is successful,
hides loading
component

If there’s an error, uses loader to display a
message and closes after three seconds
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 4 Ionic navigation and core components

Create
car

ngRepea
resta
 There’s only one loading component that can exist, so even though you call the
show method twice, it just updates the already visible component with a new configu-
ration. It doesn’t create two loading components. This is important in cases where you
have multiple asynchronous events happening; you’ll have to design logic to properly
choose when to hide the component. For example, if you’re displaying a chart that
has to load data from two separate HTTP requests, you’ll have to decide if both
requests have to finish before you hide the loading component, or if you want to hide
it as soon as the first request finishes so you can chart the data immediately and add
the second set of data when it finishes later.

 You should also consider using other components to give users feedback about
errors when they occur—we’ll cover some in the next few chapters. You may want to
do different things depending on the type of error; for example, if the weather API
sends back a message saying it’s temporarily down, you could try to reload the data
again after waiting a moment.

 Next up is the restaurants list view, and we’ll spend some time looking at using
cards and the infinite scrolling component.

4.6 Infinite scroll with cards for the restaurants view
In the restaurants view, you want to show a list of local restaurants that the resort
guests might enjoy. To achieve this, you’ll load a list of restaurants from an external
website, display the name and image of each restaurant using the cards component,
and use infinite scroll to allow more places to be loaded as a user reaches the bottom
of the list.

 Cards are really just a variation on lists, as you’ll see in listing 4.14. The card com-
ponent is used fairly often in many apps because it’s good at displaying each item in a
clean format with some nice visual depth. It’s best used for displaying a piece of data
with some visual separation from the rest of the content. If you’re following along
using Git, you can check out the step6 code:

$ git checkout –f step6

In this example you’ll load the data from an API made just for this book, which con-
tains actual restaurant data. You can see the view in figure 4.9, which has a list of cards,
and as you scroll to the bottom, the infinite scroll loading indicator will appear while
more items are loaded.

 Each restaurant will display inside of its own card, which gives a nice visual experi-
ence. You can review all of the ways you can style cards in the documentation, but here
you’ll use a title and image in the cards. Start this view by creating the template in
www/views/restaurants/restaurants.html as shown in the following listing.

<ion-view view-title="Local Restaurants">
 <ion-content>
 <div class="list card" ng-repeat="restaurant in restaurants">

Listing 4.14 Restaurants view template (www/views/restaurants/restaurants.html)

Declares view
s list of
ds and
ts over
urants
Licensed to Mark Watson <nordickan@gmail.com>

87Infinite scroll with cards for the restaurants view
 <div class="item">
 <h2>{{restaurant.name}}</h2>
 <p>{{restaurant.address}}, {{restaurant.city}}</p>
 </div>
 <div class="item item-image">

 </div>
 </div>
 <ion-infinite-scroll on-infinite="getRestaurants()" ng-if="total > page"

immediate-check="false"></ion-infinite-scroll>
 </ion-content>
</ion-view>

By adding the card class to the list item, you’re able to create the card display. Each
card is its own list, but you use ngRepeat to create a new card for each restaurant. The
major difference here is the inclusion of the ionInfiniteScroll component.

 Infinite scroll works by a fairly simple rule: If the component is within a certain dis-
tance of the view area (by default 1%), then it will call the method declared with the
on-infinite attribute. Because initially the view won’t have any restaurants, it will

Intro view

Home view

Reservation
view

Restaurants
view

Weather
view

More cards
as you scroll

Card text
area

Card
image

Figure 4.9 Restaurants view with cards with local eateries and infinite scroll

Card items show
name and location
of restaurant

Cards can use other
list styles like image

Infinite scroll element will call
getRestaurants() when within a certain

distance of bottom, until reaches end of list
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 4 Ionic navigation and core components

C
cont
and

se

Inc
pa

and m
HTTP

Up
pa

on

Broad
event tha

tell in
s

compo
everyth
show a loading indicator and make a call to the getRestaurants() method to load
the initial set. Once the request for data is complete, the infinite scroll component
will hide the loading indicator and be pushed down the view below the list of items.
Only when a user scrolls to the bottom will it be triggered again. Due to a quirky
behavior of infinite scroll, it can actually call the method twice on loading. To fix this,
disable infinite scroll from loading initially by setting the immediate-check attribute
to false, and you’ll have the controller load the data.

 The infinite scroll component will continue to request data as long as it returns
and any time it becomes visible. But when there are no more items to load, you want
to stop the component from loading anymore. The ngIf statement is how you’ll dis-
able infinite scroll when you reach the end of your available data from the service.
You’ll handle the logic in this controller, but the API is returning a value that indicates
how many pages of data are available so you can check that against how many have
already loaded.

 Now you need to add a controller for your view. This controller will need to handle
the loading of the restaurants data, and it will also inform the infinite scroll compo-
nent when new data is loaded so it can hide itself. The code in the following listing
shows the controller code you should put into www/views/restaurants/restaurants.js.

angular.module('App')
.controller('RestaurantsController', function ($scope, $http) {

 $scope.page = 0;
 $scope.total = 1;
 $scope.restaurants = [];

 $scope.getRestaurants = function () {
 $scope.page++;
 $http.get('https://ionic-in-action-api.herokuapp.com/

restaurants?age=' + $scope.page).success(function (response) {
 angular.forEach(response.restaurants, function (restaurant) {
 $scope.restaurants.push(restaurant);
 });

 $scope.total = response.totalPages;
 $scope.$broadcast('scroll.infiniteScrollComplete');
 }).error(function (err) {
 $scope.$broadcast('scroll.infiniteScrollComplete');
 console.log(err);
 });
 };

 $scope.getRestaurants();
});

Listing 4.15 Restaurants view controller (www/views/restaurants/restaurants.js)

reates
roller
 inject
rvices

Creates some scope
variables for view

B

Defines method that
will load restaurants

Crements
ge value
akes an

 request
for data

D

Takes list of
restaurants and adds
them to restaurants

array for ngRepeat E

dates total
ges based

 value sent
by API

F

casts
t will
finite
croll
nent

ing is
done G

Handles errors
by broadcasting
infinite
scroll and
logging errorH

Loads first page of
restaurants from API

on loadingI

Licensed to Mark Watson <nordickan@gmail.com>

89Using the slidebox component for app intro tour
Listing 4.15 started with three variables B : page, total, and restaurants. You use
the page variable to track the last page that was requested from the API, and total
stores the total number of pages available from the API (which you get after the first
API call). You also set a blank array for restaurants, which will be used by ngRepeat
to create the list of restaurants.

 Like the weather controller, you need to call your API to load data. It’s inside of a
scope method called getRestaurants() C because you’ll be calling it repeatedly.
Every time infinite scroll needs to load more data, it calls getRestaurants(). It first
increments the page value D and makes the HTTP request. Once the data is returned,
you push each of the results into the restaurants array E to add them to the end. It
also sets the total value F with the number of pages available.

 When infinite scroll is trigged and calls getRestaurants(), it doesn’t know when
the HTTP request has finished loading. You’re able to tell it everything is done by
using the $scope.$broadcast('scroll.infiniteScrollComplete') call G, which
sends a message to the component to complete. When this event is called, infinite
scroll will stop showing the loading animation; otherwise, if you fail to call it, the ani-
mation will continue to run. You also handle possible errors H by logging the error to
the console and also telling the component to complete. The last thing you do is kick
off the initial load of data I by calling getRestaurants().

 Before you can see this in action, you need to add your view to the states. Like
usual, the app.js file must be updated with a new state for the restaurants view:

.state('restaurants', {
 url: '/restaurants',
 controller: 'RestaurantsController',
 templateUrl: 'views/restaurants/restaurants.html'
});

Also, the new controller file needs to be loaded in the app index.html file:

<script src="views/restaurants/restaurants.js"></script>

Now you can run the app and view the list of restaurants displayed in a card list. The
last goal is to add an introduction to the app, which will include a set of slides that give
a brief introduction and tour of what the app is about. Let’s look at how to use a slide-
box component and build out this tour!

4.7 Using the slidebox component for app intro tour
The resort wants to make sure that the first time someone uses the app, the user is
able to see a quick tour of what the app can do. There are many ways to do this, but
here you’ll use the ionSlideBox component to show a simple slideshow of the three
primary features. If you’re following along using Git, you can check out the code for
step7 to complete the example:

$ git checkout –f step7
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 4 Ionic navigation and core components
Slideboxes are used in many places and many ways. They’re great for showing items in
a list that you can swipe between, such as a list of images for a product, or to have a
rotating view of suggested items. The slidebox is able to automatically run like a slide-
show or allow a user to swipe between items.

 The $ionSlideBoxDelegate service can be used to programmatically control the
slidebox. For example, you could have a button that could use the slidebox service to
force the slidebox to go to a particular slide. This service isn’t used here, but it’s help-
ful in cases where you need to add more control to how the slidebox operates. It’s also
possible that you might use the slidebox multiple ways on the same view, and in that
case you can control each way independently. The slidebox service is able to name
each slidebox instance and then target each individually.

 In this example, the tour will show three slides using the slidebox. You’ll apply a lit-
tle bit of extra CSS to make the display work as intended, because by default things will
only size to the default size of the content and you want the slides to be full-screen.
You can see the slidebox in action in figure 4.10.

Intro view

Home view

Reservation
view

Restaurants
view

Weather
view

Navbar button
to end tour

Slidebox
container,
showing 1
of 3 slides
(ionSlideBox)

Slide contents:
large icons and
text (Ionicons)

Slidebox pager

Figure 4.10 Slidebox component used in the tour view
Licensed to Mark Watson <nordickan@gmail.com>

91Using the slidebox component for app intro tour
Let’s take a look at how to add a slidebox, which in many cases uses just markup to dis-
play the component. The following listing shows the template for your view that you
should put into a new file at www/views/tour/tour.html.

<ion-view view-title="Welcome to Aloha Resort" id="tour-view">
 <ion-nav-buttons side="right">
 Start
 </ion-nav-buttons>

 <ion-slide-box show-pager="true">

 <ion-slide>

 <h3>See your reservation</h3>
 </ion-slide>
 <ion-slide>

 <h3>Find local restaurants</h3>
 </ion-slide>
 <ion-slide>

 <h3>Get the weather</h3>
 </ion-slide>
 </ion-slide-box>

</ion-view>

The names of the tags for the slidebox are very clear, which helps developers under-
stand what’s happening. The slidebox will have three slides, and each contains an icon
and a header tag with some information about the app. The slidebox will only be as
large as the content inside of it is calculated, and right now because the icon and
header tags are standard HTML elements, they’ll only make the slidebox as tall as the
text itself.

 You’ll want to enhance this with some CSS styling. In this example there’s an id
added to the ionView, which will be used next when you add some CSS. I find it help-
ful to prefix CSS by view so I can ensure that my styles won’t affect other areas of the
app. But you can write your CSS selectors however you prefer.

 Now it’s time to add that CSS to the app. You have three style blocks to add to give
the tour the design you want. Create the www/views/tour/tour.css file, and add the
contents of the following listing.

#tour-view .slider {
 height: 100%;
}

Listing 4.16 Tour view template (www/views/tour/tour.html)

Listing 4.17 CSS for tour view (www/views/tour/tour.css)

Declares
view and

gives ID so
you can

target CSS
Adds button to navbar
that allows user to go

to home viewionSlideBox
acts as

content
wrapper and

slidebox
container

using pager
Each ionSlide is

automatically
added as a new

slide to slidebox

Styles to make slider full height
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Ionic navigation and core components
#tour-view .slider-slide {
 padding-top: 100px;
 text-align: center;
}

#tour-view .icon-slide {
 font-size: 20em;
 display: inline-block;
}

Make sure you add a reference to it in the www/index.html file to load the styles, as
follows:

<link href="views/tour/tour.css" rel="stylesheet">

The CSS here makes the icons large and centers the content, as well as makes the
slidebox full height. This is helpful so a user can swipe on the whole screen (except
the header bar) to change the current slide; otherwise, the user would have to swipe
on only the content itself. You could improve or modify this styling to suit your own
needs, and depending on the content that you displayed it might change dramatically.

 The last step for the app is to update the state with the new tour view, and then you
want to change the default state to the tour for when the app is first opened. Open
again the app.js file and you’ll add a new state, and change the default otherwise
route as shown in the following listing.

.state('tour', {
 url: '/tour',
 templateUrl: 'views/tour/tour.html'
});

$urlRouterProvider.otherwise('/tour');

With that, the app is complete! If you launch the app from scratch, it will now first
take you to the tour, and then you can go to the home view. If you’ve been using the
live reload feature this entire time, you may not be redirected to the tour. If that’s the
case, clear the value after the pound symbol in the URL so it’s just /#/. This will reset
the route and take you to the tour.

4.8 Chapter challenges
Now that you’ve learned a lot about how to build a navigable interface for your mobile
app, here are a few challenges to improve the chapter example into a more compre-
hensive app:

 Add a new state—Try to add a new state to the app. For example, add another
state with a view containing directions to the resort.

 Improve the design—Get creative and improve the display of the weather view.
Look at weather apps for some inspiration.

Listing 4.18 Tour state and update default route (www/js/app.js)

Provides padding for top
of slide and center content

Makes icons large and
displays them as inline blocks

Adds tour state with
route and template

Changes the otherwise route
to go to the tour state
Licensed to Mark Watson <nordickan@gmail.com>

93Summary
 Implement the wind direction filter —In the weather view, replace getDirection()
in the scope with a filter that can take a degree number and return a string.

 Cache weather data—Instead of always requesting new weather data, find a way to
cache and only reload the weather if it’s more than 15 minutes old. Consider
using localStorage to store the data.

 Create a weather service —This demo uses $http in the controller to load data. Try
to build an Angular service for loading of weather data so the controller doesn’t
use $http directly.

4.9 Summary
In this chapter we covered the primary means for navigation inside Ionic apps and a
number of the components available. Let’s review the major topics covered in this
chapter:

 Ionic apps are built around the idea of states. States are declared in the config()
method using $stateProvider.

 Ionic loads your templates inside of the ionNavView component when the state
changes.

 The ionNavBar tag automatically can update the title of the navbar based on
the current view.

 The list and card components are mobile-friendly ways to display lists of content.
 You can load data using the $http service into your controller, and use the

$ionicLoading service to show a loading indicator while it loads.
 The ionSlideBox is a fully featured slideshow component for a mobile inter-

face, and you used it in this chapter as an app introductory tour.

In chapter 5 you’ll learn about using tabs for your app navigation, along with a num-
ber of other Ionic features, such as pull-to-refresh, advanced lists, and forms.
Licensed to Mark Watson <nordickan@gmail.com>

Tabs, advanced lists,
and form components
This chapter continues our look at many of Ionic’s features, and just like in chapter
4, you’ll build a complete app from start to finish. You’ll build a mobile app to show
current market and historical chart data for Bitcoin in many different currencies.
The interface will leverage the Ionic tabs component to have three tabs: to view cur-
rent market rates, to view a chart of historical rates, and for currency management.

 You’ll learn more about how to have a navigation window inside each tab. This
is important when you want to create rich experiences with tabs that maintain the
user interface state between tabs. Also when you load data from an external source,
the data is cached even if you change between tabs, improving speed and avoiding
unnecessary HTTP requests.

This chapter covers
 Using the tabs component with individual navigation

histories

 Displaying a list of items that can be toggled and
reordered

 Setting up pull-to-refresh to reload data

 Using several mobile form input controls
94

Licensed to Mark Watson <nordickan@gmail.com>

95

In figure 5.1 you see the app that you’ll create. You’ll show the current rates for Bit-
coin in several currencies, which will compare the price over the past 24 hours to indi-
cate if it’s trending positively or negatively. Then you’ll show the historical price,
averaged hourly, over the past month. You’ll use a third-party library to generate the
chart. Lastly, the currencies that are displayed in the app can be configured by tog-
gling them to show or hide them, as well as reordered so your favorite currencies are
at the top.

 The entire example is available on GitHub at https://github.com/ionic-in-action/
chapter5. The example is also live at https://ionic-in-action-chapter5.herokuapp.com.

What is Bitcoin?
Bitcoin is a popular digital cryptocurrency. It has a buy and sell price, much like a
stock or commodity, and is exchanged via digital marketplaces. For the purposes of
this chapter, you’re mostly interested in the current price of Bitcoin compared to tra-
ditional currencies (such as US dollars or Euros), and also in visualizing the price his-
tory over the past month.

You can read more about Bitcoin and the technology that powers it at https://
bitcoin.org.

• Show list of currencies
• Current rates and stats
• List component
• Pull-to-refresh

Current rates

• Display remaining stats
• List component
• Link to History Tab
• Same tab as parent

Currency detail

• List of currencies
• Toggle on or off
• List component
• Reorder currencies

Currencies
• Show chart for currency
• Use Highcharts
• Select box to change

Historical chart

Figure 5.1 Bitcoin app example, with
three tabs and four views
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter5
https://github.com/ionic-in-action/chapter5
https://ionic-in-action-chapter5.herokuapp.com
https://bitcoin.org
https://bitcoin.org

96 CHAPTER 5 Tabs, advanced lists, and form components

Adds ion
compone

gives it
5.1 Set up chapter project
You can follow along in this chapter either by creating a new Ionic app and adding the
code from the listings in this chapter, or by cloning the finished app from the Ionic in
Action GitHub repository and following along with each step. At the end, use ionic
serve to preview the app in a browser.

5.1.1 Create a new app and add code manually

To create a new project for the app using the Ionic command-line interface (CLI) util-
ity, open the command line and execute the following command (remember, you can
refer to chapter 2 if you need a refresher on how projects are set up):

$ ionic start chapter5 https://github.com/ionic-in-action/starter
$ cd chapter5
$ ionic serve

5.1.2 Clone the finished app and follow along

To check out the finished app and use Git, use the following command to clone the
repository and check out the first step:

$ git clone https://github.com/ionic-in-action/chapter5.git
$ cd chapter5
$ git checkout –f step1
$ ionic serve

5.2 ionTabs: adding tabs and navigation
Your first task is to add in the base navigational elements: the ionNavBar and
ionNavView components. ionNavBar will be useful to dynamically update the title bar
depending on the tab you’re using, and ionNavView will contain the tabs template.
You saw these two working in the chapter 4 app, so refer back if you need a refresher
on their purpose. If you’re following along using Git, you can check out the code for
this step:

$ git checkout –f step2

In this section you’ll implement the basic tabs and navigation, as you can see in figure 5.2.
 In the following listing, you’ll update the www/index.html file with the navigation

components.

<body ng-app="App">
 <ion-nav-bar class="bar-positive">
 <ion-nav-back-button class="button-clear">
 <i class="ion-chevron-left"></i> Back
 </ion-nav-back-button>
 </ion-nav-bar>
 <ion-nav-view></ion-nav-view>
</body>

Listing 5.1 Adding ionNavBar and ionNavView (www/index.html)

body element has ngApp attached to it
NavBar
nt and
 a style

Adds ionNavBackButton
to show or hide during
navigation

Adds ionNavView
component
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/starter
https://github.com/ionic-in-action/chapter5.git

97ionTabs: adding tabs and navigation
This places the components into your templates so they’ll be able to render your
routes. The ionNavBackButton component is in place for later when you have a view
that can navigate into child views. Now you have to declare a route and a template
before anything will appear.

 Open the www/js/app.js file so you can declare your first route. Modify the exist-
ing contents to add the config() method as in the following listing.

angular.module('App', ['ionic'])
.config(function ($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('tabs', {
 url: '/tabs',
 templateUrl: 'views/tabs/tabs.html'
 });
 $urlRouterProvider.otherwise('/tabs');
})

Now you have your route declared and a default route set when no other matches are
found. Before you can preview the app, you need to add the tabs template.

Listing 5.2 Add first route to app config() method (www/js/app.js)

Navbar
(ionNavBar)

Tabs container
(ionTabs)

Individual tabs
(ionTab)

Figure 5.2 App with tabs, base
navigation, and blank content

Declares App module and
includes ionic module

Declares config()
method and injects
services

Declares a single
state for tabs

Sets
default

route
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 5 Tabs, advanced lists, and form components
5.2.1 Adding tabs container and three tabs to the app

Tabs are very common in mobile apps, and Ionic provides a feature-rich component
for you to create them quickly. Tabs are commonly used to show a visual connection
between several views. There’s no actual limit on the number of tabs you could use,
but typically two to five tabs are used due to the limited space available. Tabs can be
used nearly anywhere in your app, except inside of an ionContent directive due to a
CSS collision that can occur when ionTabs is placed inside ionContent.

 Ionic provides two components for building your own tabs: ionTabs and ionTab.
Much like ionSlideBox, you declare ionTabs first, and inside you can have as many
ionTab components as you need. In this case, you’ll declare three tabs.

 The tabs can have an icon, a title, or both. You can modify the way the titles and
icons appear by applying different classes, and in this case, you’ll apply a class to have
the title show with an icon above it. Tabs also can have an active and inactive icon state
for which you’ll use different icons depending on if the tab is active or not.

 Now it’s time to add your template with the tabs to the app. Create a new file at
www/views/tabs/tabs.html and include the content from the following listing.

<ion-tabs class="tabs-icon-top tabs-positive">
 <ion-tab title="Rates" icon-on="ion-social-bitcoin" icon-off=

"ion-social-bitcoin-outline">
 </ion-tab>
 <ion-tab title="History" icon-on="ion-ios-analytics" icon-off=

"ion-ios-analytics-outline">
 </ion-tab>
 <ion-tab title="Currencies" icon-on="ion-ios-cog" icon-off=

"ion-ios-cog-outline">
 </ion-tab>
</ion-tabs>

Tabs are really pretty simple to declare, with title the only attribute you must declare
for each tab. Right now your tabs are empty, but if you preview the app in the browser
you’ll see the tabs along the bottom like in figure 5.2. You can click on each tab and
see the icon state change to indicate the active tab.

 Before you start to add content into your tabs, you need to set up each tab with its
own ionNavView.

5.3 Adding ionNavView for each tab
Your tabs are empty, and you want to use additional ionNavView components to load
your components. This will allow each of the tabs to maintain its own navigational
history. It allows you to use a back button that’s only for a given tab instead of the

Listing 5.3 tabs template (www/views/tabs/tabs.html)

Declares ionTabs component to
wrap all tabs and gives it a class
to modify title and icon display

Declares tabs with titles and icons
for active and inactive states
Licensed to Mark Watson <nordickan@gmail.com>

99Adding ionNavView for each tab
whole app. In figure 5.3 you can see how the user experience would flow with each tab
having its own navigational history. If you’re following along using Git, you can check
out the code for this step:

$ git checkout –f step3

Tab 1

View 1
1. Start on
 tab 1, view 1

2. Go to tab 1,
 view 2 3. Go to

 tab 2

4. Return to
 Tab 1, view 2

Tab 2 Tab 3

View 2

Figure 5.3 Flow through tabs with
individual navigational histories

Tabs don’t require individual views
Tabs can contain any content you wish to put inside. Essentially a tabbed interface
is really just one large view that has only one tab displayed at once, with the other
tabs in a hidden state. It would be similar to having several pages of paper stacked
on top of one another, and at any time you can move a lower page to the top so it’s
visible.

The technique of using the ionNavView element inside of each tab gives you one
major benefit. Each tab is able to have its own history. So instead of a stack of
papers, it’s now more like a stack of books where the topmost book is open to a par-
ticular page, and if you switched books you’d bookmark that page and return to the
exact same spot later.
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 5 Tabs, advanced lists, and form components

Adds u
to c

view o
sel
You’ll start by adding the ionNavView components into your tabs. You’ll have to give
each one a name so they can be identified later. You can only have one ionNavView
that’s not named in your Ionic app, and the unnamed ionNavView is always the
default view. Each tab will also be given a ui-sref attribute that will turn the tab icons
into buttons to navigate between tabs. This section won’t look drastically different
when you preview it, but as you see in figure 5.4, it will now show a title in the header
bar for the active tab.

 Open the www/views/tabs/tabs.html template file and update to what you see in
the following listing. Updates to this template are in bold.

<ion-tabs class="tabs-icon-top tabs-positive">
 <ion-tab title="Rates" icon-on="ion-social-bitcoin" icon-off=

"ion-social-bitcoin-outline" ui-sref="tabs.rates">
 <ion-nav-view name="rates-tab"></ion-nav-view>
 </ion-tab>

 <ion-tab title="History" icon-on="ion-ios-analytics" icon-off=
"ion-ios-analytics-outline" ui-sref="tabs.history">

 <ion-nav-view name="history-tab"></ion-nav-view>
 </ion-tab>
 <ion-tab title="Currencies" icon-on="ion-ios-cog" icon-off=

"ion-ios-cog-outline" ui-sref="tabs.currencies">
 <ion-nav-view name="currencies-tab"></ion-nav-view>
 </ion-tab>
</ion-tabs>

This adds three new ionNavView components with a different name. The ui-sref
attributes act like a normal href attribute to link to a particular state based on the

Listing 5.4 tabs template with individual views (www/views/tabs/tabs.html)

(continued)
Essentially it boils down to how you use the tabs. I’d classify two primary use cases:
tabs for providing navigation, and tabs for fitting more content in a single view.

When using tabs for navigation, adding individual views is useful. This chapter exam-
ple will demonstrate this use case.

Using tabs to fit more content into a single view wouldn’t benefit from individual
views. For example, you could use tabs in a weather app for displaying the current
conditions. Because the current condition information is likely loaded all at once from
an API, and the information is logically connected, you’d probably use tabs to sepa-
rate the information into simpler chunks. Imagine there were three tabs: current con-
ditions, weather map, and 10-day forecast.

My general recommendation is that if the content of the tabs could be logically placed
into one view and controller, then you probably don’t want to use individual ionNav-
View components.

i-sref
hange
n tab

ection

Defines and
names
ionNavView
for each tab
Licensed to Mark Watson <nordickan@gmail.com>

101Adding ionNavView for each tab
name, so instead of having a URL, you have a state name. Even though only one of
these three views will be visible, all three will be part of the same parent tabs view.

 Now you need to add routes to the config() that will support these new views. Ui-
router has a feature called nested states that allows you to declare states with a hierar-
chy. In this case, the tabs route that displays the tabs is like the root state, and each tab
is a child state underneath it. This is helpful when you need to logically organize states
and helps the Ionic navigation components understand your app’s navigational struc-
ture. You need to update the app config() with the new states and modify the tabs
state as well. The following listing has the updated states configuration with updates
bolded.

.config(function ($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('tabs', {
 url: '/tabs',
 abstract: true,
 templateUrl: 'views/tabs/tabs.html'
 })

 .state('tabs.rates', {
 url: '/rates',

Listing 5.5 App config() with tab child states (www/js/app.js)

Navbar
(ionNavBar)

Tabs container
(ionTabs)

Tab view
container
(ionView)

Individual tabs
(ionTab)

Each tab has its own ionNavView, and the tabs
container is the parent. Each tab can have its own
navigation history because it’s a unique ionNavView.

Hierarchy of ionNavView elements

Rates tab
(rates-tab)

History tab
(history-tab)Tabs container (abstract)

Currencies tab
(currencies-tab)

Figure 5.4 Tabs with individual views,
showing the title as you change tabs

Updates tabs state
to be abstract
because you always
want to use a child

B

Declares tabs.rates state using dot
notation for parent.child relationship

C

Declares URL for route; it’s a child route,
so it appends this to URL of parentD
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 5 Tabs, advanced lists, and form components
 views: {
 'rates-tab': {
 templateUrl: 'views/rates/rates.html'
 }
 }
 })
 .state('tabs.history', {
 url: '/history',
 views: {
 'history-tab': {
 templateUrl: 'views/history/history.html'
 }
 }
 })
 .state('tabs.currencies', {
 url: '/currencies',
 views: {
 'currencies-tab': {
 templateUrl: 'views/currencies/currencies.html'
 }
 }
 });
 $urlRouterProvider.otherwise('/tabs/rates');
})

There are a few things going on here that are new in the states configuration. The
tabs route B now has the abstract: true property set, which makes it possible to
declare it as a parent but doesn’t allow it to be an active state.

 The rates state has the name declared with tabs.rates C. This is to indicate the
parent and child relationship they have. The URL is also declared here D, but take
note that when you have a parent-child relationship, the URL is actually appended to
the end of the parent URL. The rates view URL is actually found at /tabs/rates and not
just /rates. Lastly, subviews of the state E are declared. The view must be named the
same as the name you gave to the ionNavView earlier, in this case rates-tab. The app
now knows that when the rates tab is active, it should inject the specified template into
that view. Later you’ll declare other view properties such as controllers.

 Lastly, the code updates the default route from /tabs to /tabs/rates F. This is
because in the tabs you always want to be on one of the tabs, so the tabs container state
is abstract. If you attempt to go to the tabs route (/tabs), it will now redirect you to the
default rates view.

 The last task in this section is to add the basic templates for each of the three tabs.
You’ve already declared them in your states using the templateUrl property in the
view. The next three listings contain simple templates with a view and title for each tab.

<ion-view view-title="Current Rates">
 <ion-content>
 </ion-content>
</ion-view>

Listing 5.6 Rates tab basic template (www/views/rates/rates.html)

Rates view targets view
with this name and
passes a template for
that view

E

History view
declaration

Currencies
view
declaration

Updates default
route to rates viewF
Licensed to Mark Watson <nordickan@gmail.com>

103Loading and displaying current Bitcoin rates
<ion-view view-title="Hourly Average Price">
 <ion-content>
 </ion-content>
</ion-view>

<ion-view view-title="Currencies">
 <ion-content>
 </ion-content>
</ion-view>

These templates are blank for the moment, but you’ll update each one individually
in the following sections. If you preview the app in your browser, you’ll be able to see
the title changing as you change tabs on the bottom. This finishes what you need to
do with tabs, so let’s get to work on creating the first tab and showing the current Bit-
coin rates.

5.4 Loading and displaying current Bitcoin rates
Your app is all about showing information about Bitcoin, and the first tab is about
showing the current market price for Bitcoin in different currencies. You’ll use a free
service from the BitcoinAverage API (https://bitcoinaverage.com) that provides near-
real-time rates and histori-
cal rates as well. It does this
by averaging current market
rates for Bitcoin across mul-
tiple exchanges, and the
exchanges vary by currency.
If you’re following along
using Git, you can check out
the code for this step:

$ git checkout –f step4

In this section you’ll wire up
the loading of the live data
and display it in your tab. In
figure 5.5 you can see the
result of your work from this
section. The date will appear
with the last updated time
for the results and the list of
currencies will display the
current prices and trend.

Listing 5.7 History tab basic template (www/views/history/history.html)

Listing 5.8 Currencies tab basic template (www/views/currencies/currencies.html)

Data loaded
from API and
stored in
Currencies

Custom price
CSS styling

List component
(ionList)

Figure 5.5 Rates tab with data loading for current Bitcoin prices
shown in a list component
Licensed to Mark Watson <nordickan@gmail.com>

https://bitcoinaverage.com

104 CHAPTER 5 Tabs, advanced lists, and form components

Registe
ser

u
Angul

fac
met
To help facilitate your list of currencies, you’ll first create a Currencies service. It’s
very simple—just an array of the supported currencies for your app—but because it
will be a service, you’ll be able to reuse it in multiple parts of your app.

 Open the www/js/app.js file and add the code from the following listing to the
end of the file. Watch for syntax errors if the line before has a semicolon.

.factory('Currencies', function () {
 return [
 { code: 'AUD', text: 'Australian Dollar', selected: true },
 { code: 'BRL', text: 'Brazilian Real', selected: false },
 { code: 'CAD', text: 'Canadian Dollar', selected: true },
 { code: 'CHF', text: 'Swiss Franc', selected: false },
 { code: 'CNY', text: 'Chinese Yuan', selected: true},
 { code: 'EUR', text: 'Euro', selected: true },
 { code: 'GBP', text: 'British Pound Sterling', selected: true },
 { code: 'IDR', text: 'Indonesian Rupiah', selected: false },
 { code: 'ILS', text: 'Israeli New Sheqel', selected: false },
 { code: 'MXN', text: 'Mexican Peso', selected: true },
 { code: 'NOK', text: 'Norwegian Krone', selected: false },
 { code: 'NZD', text: 'New Zealand Dollar', selected: false },
 { code: 'PLN', text: 'Polish Zloty', selected: false },
 { code: 'RON', text: 'Romanian Leu', selected: false },
 { code: 'RUB', text: 'Russian Ruble', selected: true },
 { code: 'SEK', text: 'Swedish Krona', selected: false },
 { code: 'SGD', text: 'Singapore Dollar', selected: false },
 { code: 'USD', text: 'United States Dollar', selected: true },
 { code: 'ZAR', text: 'South African Rand', selected: false }
];
});

This Currencies service is an array containing a list of objects containing information
about the currency. The code is the standard code for the currency, the text is the
name of the currency, and the selected property is used to determine if that currency
should be shown or not in the list. You’ll make that configurable later, but by default
some are set to false to disable them. Now that you’ve created and registered this ser-
vice, you’ll be able to use it anywhere in your app.

 The first place you’ll use the Currencies service is in a controller for the rates view.
This controller will take care of loading the current rates from the BitcoinAverage
API. Once it’s loaded, it will attach the data onto the Currencies service, and that data
will be made available on the scope. The following listing has the rates tab controller
for www/views/rates/rates.js.

Listing 5.9 Currencies data service (www/js/app.js)

rs a
vice
sing
ar’s
tory
hod

Creates array
of currencies
and sets
default
selected state
for each
Licensed to Mark Watson <nordickan@gmail.com>

http://www/js/app.js file

105Loading and displaying current Bitcoin rates

nd

angular.module('App')
.controller('RatesController', function ($scope, $http, Currencies) {

 $scope.currencies = Currencies;

 $scope.load = function () {
 $http.get('https://api.bitcoinaverage.com/ticker/all').success(

function (tickers) {
 angular.forEach($scope.currencies, function (currency) {
 currency.ticker = tickers[currency.code];
 currency.ticker.timestamp = new Date(currency.ticker.timestamp);
 });
 });
 };

 $scope.load();
});

This controller takes care of loading the data when the load() method is called, using
the $http service. The Currencies service is injected and stored on the scope, which
your view will use to display all of the data. You also store the current rates on the
Currencies service, which will come in handy later. This is a single data object that
you’ll pass around and use multiple times in other places. While you could use other
techniques for sharing data, this approach works well for this particular situation.

 All right, so you have the ability to load your data, but now you’d like to display it
on the screen. It’s time to update your template to loop over the currencies and dis-
play the data loaded by the controller. Open the www/views/rates/rates.html file and
update it as you see in the following listing.

<ion-view view-title="Current Rates">
 <ion-content>
 <ion-list>
 <ion-item ng-repeat="currency in currencies | filter:{selected:true}">
 {{currency.code}} - {{currency.text}}
 <span class="price" ng-if="currency.ticker.last ==

currency.ticker['24h_avg']">
 {{currency.ticker.last || '0.00'}}
0.00

Listing 5.10 Rates tab controller (www/views/rates/rates.js)

Listing 5.11 Rates tab template with currency data (www/views/rates/rates.html)

Makes HTTP request to
BitcoinAverage for current rates

Converts timestamp
from response to valid
JavaScript date object

Loops over list of currencies
and stores ticker data on

Currencies service
Triggers a load when
controller is first loaded

Immediately sets data from
Currencies service on scope

Declares RatesController and
injects services used

scope method to load data
that can be called on dema

B
ngRepeat to loop over currencies and
filter out any that aren’t active

Price box shown when current
price equal to 24-hour average C
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 5 Tabs, advanced lists, and form components

P
sho

curr
b

hour

sh
cur

abov
 <span class="price negative" ng-if="currency.ticker.last <
currency.ticker['24h_avg']">

 {{currency.ticker.last}}
<span class="icon ion-arrow-down-
b"> {{currency.ticker['24h_avg'] - currency.ticker.last |
number:2}}

currency.ticker['24h_avg']">
 {{currency.ticker.last}}
<span class="icon ion-arrow-up-

b"> {{currency.ticker.last - currency.ticker['24h_avg'] |
number:2}}

 </ion-item>
 </ion-list>
 </ion-content>
 <ion-footer-bar class="bar-dark">
 <h1 class="title">Updated {{currencies[0].ticker.timestamp |

date:'mediumTime'}}</h1>
 </ion-footer-bar>
</ion-view>

This template has quite a bit going on, so let’s start from the top. The list compo-
nent is used here, and then ngRepeat to create a list item for each currency B. But in
the ngRepeat there’s a filter, unfortunately named filter (don’t blame me, it’s part
of Angular), which removes any of the currencies that have the selected property set
to false. Later, you’ll make a configuration view that allows you to toggle currencies
on or off, so this property is already filtering by the default settings in the Currencies
service.

 Inside of each of the items you bind some text, and then there are three span ele-
ments with ngIf on them C, D, E. These are for displaying the current price and
the trend compared to the past 24-hour average. There are three possible situations:
the price is equal, higher, or lower than the 24-hour average. Only one of the three
span elements will display, based on the current price and average calculation.

 After the list, you can see the ionFooterBar F is placed after the end of
ionContent. The two components are aware of one another and aware of the tabs, so
the footer is positioned above the tabs automatically and the content area is also sized
based on the footer and tab bars at the bottom. This is important so the scrolling area
is the correct size, but it’s automatically handled for you by Ionic when you use these
directives together.

 You have to add some CSS to make your price boxes look correct, because Ionic
doesn’t have a component built for this exact purpose. Add the CSS from the fol-
lowing listing and place it in the www/css/styles.css file.

.item .price {
 font-weight: bold;
 font-size: 13px;
 color: #fff;

Listing 5.12 Price box styling (www/css/styles.css)

rice box
wn when
ent price
elow 24-
 average

D

Price box
own when
rent price
e 24-hour

average

E

ionFooterBar to keep a
footer bar with last

time data was loaded

F

CSS rules for
all price boxes
Licensed to Mark Watson <nordickan@gmail.com>

107Display a currency’s details in the same tab view
 position: absolute;
 background: #666;
 right: 15px;
 height: 42px;
 top: 5px;
 width: 80px;
 text-align: center;
 padding: 6px;
 line-height: 1.2em;
}
.item .price.positive {
 background: #66cc33;
}
.item .price.negative {
 background: #ef4e3a;
}

This CSS is modeled somewhat on the badges from Ionic, but the badges aren’t able to
handle multiple lines. This is all of the custom CSS you’ll use for this app, so I’ve left it
in the general styles.css file.

 Okay, you’re almost done, you just need to add the controller to your state declara-
tion and include the JavaScript file into the index.html file. Open the
www/index.html file and add the </script> tag for your controller before closing the
</head> tag after all other JavaScript files that are declared:

<script src="views/rates/rates.js"></script>

Lastly, you need to add the controller to your state, so open www/js/app.js and modify
the state, as you see in bold, to add the controller for the rates tab view:

.state('tabs.rates', {
 url: '/rates',
 views: {
 'rates-tab': {
 templateUrl: 'views/rates/rates.html',
 controller: 'RatesController'
 }
 }
})

Now if you reload the app in your browser, you should see the current rates loading
for the currencies in the list. We’ve covered a lot in this section, but you can still make
this experience better for users of your app. In the next section you’ll introduce a new
view to view the full details for a given currency instead of just the current price and
trend.

5.5 Display a currency’s details in the same tab view
The current rates are great, but markets have more information than what’s shown so
far. You want your app users to be able to see all of the available data, which includes
the current ask, bid, and trade volume values. You can do this by creating a new view
that the rates tab can navigate to, and use the Back button on that tab only to go back

CSS rules for
all price boxes

CSS to change background
color for positive change

CSS to change background
color for negative change
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 5 Tabs, advanced lists, and form components

Regis
contro

and inj
serv
to the main list. You can see the detail view in figure 5.6. If you’re following along
using Git, you can check out the code for this step:

$ git checkout –f step5

You can see the rates tab is still active even though you’ll introduce another view,
allowing this tab to have two levels of navigation with the Back button to take you back
to the main rates view. If you navigate to another tab and return, then the detail view
will still be active with the Back button to return to the rates. This allows users to
remember the current state of a tab, which provides a better user experience.

 You’ll start by creating the controller for the detail view. It doesn’t have to load any
data itself; it just uses the Currencies service to display data that was already loaded in
the rates view. The following listing has the controller that should go into
www/views/detail/detail.js.

angular.module('App')
.controller('DetailController', function ($scope, $stateParams, $state,

Currencies) {

 angular.forEach(Currencies, function (currency {
 if (currency.code === $stateParams.currency) {
 $scope.currency = currency;

Listing 5.13 Detail controller (www/views/detail/detail.js)

Data cached in
Currencies service

Badges

Footer
(ionFooterBar)

Back button
(ionNavBackButton)

Link to
History tab

Figure 5.6 Detail view with Back button shows details about a currency while
still on rates tab

ters
ller

ects
ices

Loops over each currency
to find requested currency
and stores it on scope
Licensed to Mark Watson <nordickan@gmail.com>

109Display a currency’s details in the same tab view

e

e
is
ist

ks
ate
 }
 });

 if (angular.isUndefined($scope.currency.ticker)) {
 $state.go('tabs.rates');
 }

});

When you declare this state, you’ll add a parameter called currency, and the control-
ler uses the $stateParams service to access the value of that parameter. You’ll see how
that’s passed to the state shortly. Once you know the currency, you loop over each of
the currencies until the code matches, and set the currency model on the $scope for
the template. Lastly, you check if the currency model is valid, and if not, you go back
to the rates view. Because this tab doesn’t load data itself, if you refreshed the browser
on the detail view it would have nothing to display, and this will redirect to the rates
view instead of showing a blank detail view.

 Now you need to get the template added for the detail view. The data needs to be
displayed, and you’ll use the list and badges to show the values. At the bottom there
will be a link to the historical data for that currency, which will link to another tab.
Create the new template and place it in www/views/detail/detail.html with the code
from the following listing.

<ion-view view-title="Detail for {{currency.code}}">
 <ion-content>
 <ion-list>
 <ion-item>Last <span class="badge badge-

stable">{{currency.ticker.last}}</ion-item>
 <ion-item>Ask <span class="badge badge-

balanced">{{currency.ticker.ask}}</ion-item>
 <ion-item>Bid <span class="badge badge-

assertive">{{currency.ticker.bid}}</ion-item>
 <ion-item>24h Average <span class="badge badge-

dark">{{currency.ticker['24h_avg']}}</ion-item>
 <ion-item>24h Volume <span class="badge badge-stable icon ion-social-

bitcoin"> {{currency.ticker.total_vol | number:2}}</ion-item>
 <ion-item ui-sref="tabs.history({currency: currency.code})"

class="item-icon-right">View History <span class="icon ion-arrow-right-
b"></ion-item>

 </ion-list>
 </ion-content>
 <ion-footer-bar class="bar-dark">
 <h1 class="title">Updated {{currency.ticker.timestamp |

date:'mediumTime'}}</h1>
 </ion-footer-bar>
</ion-view>

This template has a list of the values you want to display, and uses the badges. Badges
are used simply by adding an element with the badge class and a badge-[color]
preset class. The same color name guidelines apply, such as badge-assertive. You
bind the values and also add a small Bitcoin icon for the volume value.

Listing 5.14 Detail template (www/views/detail/detail.html)

Loops over each currency to find
requested currency and stores it on scop

If currency and ticker data isn’t
set, returns to rates view

Binds currency code
into view title

Displays each valu
in a badge, which
floated right in a l

Adds link to view
history, which lin
to tabs.history st
and passes a
currency code
parameter
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 5 Tabs, advanced lists, and form components

De
tem

con
 The last list item has the ui-sref attribute, just like on your tabs. But here you use
it like a function and pass an object, which is the way you can pass parameters to
another state. We’ll look at how the history tab uses this value in another section, but
for the moment it will link to the history tab.

 As usual, you need to include this new route in the state configuration and include
the controller script in the index.html file. Add the following line to the index.html
file after the other scripts:

<script src="views/detail/detail.js"></script>

Now open www/js/app.js and declare this new state. Add the following state definition
into your config() method from the following listing.

.state('tabs.detail', {
 url: '/detail/:currency',
 views: {
 'rates-tab': {
 templateUrl: 'views/detail/detail.html',
 controller: 'DetailController'
 }
 }
})

The state declaration here is similar to the rates state, and reuses the same view. The
:currency parameter will be set to a currency code, and passed to the state so it knows
which currency to use. This value is made available to the $stateParams in the detail
controller, which you already used in listing 5.13.

 The last step is to make the list of items in the rates view link to the detail view for
that currency. You need to update the rates template with two small changes, which
are bold in the following listing.

<ion-view view-title="Current Rates" hide-back-button="true">
 <ion-content>
 <ion-list>
 <ion-item ng-repeat="currency in currencies | filter:{selected:true}"

ui-sref="tabs.detail({currency: currency.code})">
 {{currency.code}} - {{currency.text}}

Here you tell the view it should never display the Back button. Because the current
rates list is like the top-level page, you don’t want users to be able to go back—they
should select an item from the list to view instead.

Listing 5.15 Detail state definition (www/js/app.js)

Listing 5.16 Rates template update to link to detail view (www/views/rates/rates.html)

:currency indicates a parameter
that will be currency code

Reuses same rates tab
view because this
state is designed to be
displayed there

clares
plate

and
troller

Adds hide-back-button
attribute so Back button
doesn’t appear on rates

Adds ui-sref and target
tabs.detail state, passing

currency code as a parameter
Licensed to Mark Watson <nordickan@gmail.com>

111Refresh the Bitcoin rates and display help
 Then you use the ui-sref attribute again and link to the tabs.detail state. You
pass the currency code as a parameter so the detail view knows which currency was
selected.

 You can now preview your app, and when you click or tap on a currency, it will take
you to the detail view. The Back button will be visible for you to go back to the rates
view. You’ll make one last improvement to the rates view, and then you’ll build out the
other two tabs.

5.6 Refresh the Bitcoin rates and display help
The rates are loading and you can view the detail, but currently there’s no way to
refresh the rates. Your app users will want to be able to get updated rates, and a com-
mon technique is to use the ionRefresher component that allows users to pull down
on the screen and release to trigger a refresh of the data.

 You also want to make sure that users have a quick help panel that explains the
information they’re looking at. You’ll use the ionPopoverView component to display
this help information. Figure 5.7 has both the ionRefresher and ionPopoverView
components’ active states for you to preview. If you’re following along using Git, you
can check out the code for this step:

$ git checkout –f step6

Button to
trigger popover

Popover
(ionPopoverView)

Refresher to
reload from API
(ionRefresher)

Figure 5.7 Popover and pull-to-refresh components in action
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 5 Tabs, advanced lists, and form components
5.6.1 ionRefresher: pull-to-refresh the rates

Ionic’s ionRefresher component allows any ionContent component to have a hidden
panel that’s displayed as a user pulls down on the content area, and if the user pulls
far enough and releases, it will call a function to reload data. When the reload has fin-
ished, the component will hide again.

 You have to update both the rates template and controller to support ionRefresher.
First you need to add the ionRefresher component into your template, and in the fol-
lowing listing you can add the new line that’s bold to the template in www/views/rates
/rates.html.

<ion-view view-title="Current Rates" hide-back-button="true">
 <ion-content>
 <ion-refresher on-refresh="load()" pulling-text="Pull to Refresh">

</ion-refresher>
 <ion-list>

This may seem deceptively simple, but this is all you have to do to add the component
to the template. It will inject the hidden ionRefresher component above the content,
and when the user pulls, the component will appear. It also shows an icon; you can
configure which icons are used, but here you use the default icon type. The pulling-
text attribute lets you add a message to inform users what this component will do.

 When the ionRefresher component is pulled far enough and released, the icon
will change to a spinner and call the load() method declared using on-refresh. You
already have a load() method in your controller that handles the loading of the data,
so the only thing you have left to do is tell the ionRefresher component when the
data has loaded. On its own, the component doesn’t know when the data is done load-
ing and will never hide, just like the infinite scroll component from chapter 4. You
have to update the load() method and broadcast an event that will tell the ion-
Refresher component to complete.

 Open the rates controller in www/views/rates/rates.js and update the load
method with the bold portion in the following listing.

$scope.load = function () {
 $http.get('https://api.bitcoinaverage.com/ticker/all').success(function

(tickers) {
 angular.forEach($scope.currencies, function (currency) {
 currency.ticker = tickers[currency.code];
 currency.ticker.timestamp = new Date(currency.ticker.timestamp);
 });

Listing 5.17 Adding ionRefresher to rates template (www/views/rates/rates.html)

Listing 5.18 Updating load method to close ionRefresher

ionRefresher component must be
first inside of ionContent and will
call load method
Licensed to Mark Watson <nordickan@gmail.com>

http://www/views/rates/rates.html
http://www/views/rates/rates.html

113Refresh the Bitcoin rates and display help

ionH
in
 }).finally(function () {
 $scope.$broadcast('scroll.refreshComplete');
 });
};

You use the finally() method, which is part of the Angular promises API (discussed
in chapter 3), to broadcast the scroll.refreshComplete event regardless of success
or failure of the HTTP request. You don’t want the refresher to continue showing even
if there was an error, so the finally() method is able to execute no matter what.
That’s all you need to do to support the pull-to-refresh feature in your view. Planning
ahead to make sure that you can reload data easily makes this component easy to
implement.

5.6.2 $ionicPopover: showing help in a popover

The $ionicPopover component is typically used by having a button in the header that
opens the popover. You aren’t limited to what you can put into an $ionicPopover
component, but the popover does take up only a portion of the screen. If you need to
use the full screen, then you’ll need another component. In this case, you’ll display
some basic content about what’s currently on the screen, and give credits to the
source of the data.

 Depending on what platform your app is running, the popover displays differently
to mimic the style of the platform styling. You’ll likely want to avoid trying to change
the styling of a popover container because it will need to be verified on all platforms.

 You’ll start by adding a new template file with the contents of your popover. I like
to think of the popover like a subview, where it loads a template into a container with-
out creating a completely new view. I also suggest putting the template file inside of
the view folder instead of in a new folder, so create a new file at www/views/rates
/help-popover.html and insert the contents of the following listing.

<ion-popover-view>
 <ion-header-bar>
 <h1 class="title">About Bitcoin</h1>
 </ion-header-bar>
 <ion-content>
 <div class="padding">This shows the last bitcoin transaction price for

a currency and compares it to the 24 hour rolling average rate.</div>
 <div class="padding">Data is available up to once a minute.</div>
 <div class="padding">The data for this application is from the

Bitcoin Average API.
</div>

 </ion-content>
</ion-popover-view>

Listing 5.19 Popover template (www/views/rates/help-popover.html)

Chains a finally() method that fires after HTTP request
has completed, regardless of success or failure

Broadcasts the scroll.refreshComplete
event so ionRefresher knows to close

Uses ionPopoverView to
wrap template; acts like
ionView for popovers

Uses
eaderBar
 popover

Uses ionContent and adds
HTML content for popover
Licensed to Mark Watson <nordickan@gmail.com>

http://www/views/rates/help-popover.html
http://www/views/rates/help-popover.html

114 CHAPTER 5 Tabs, advanced lists, and form components

$ionicPo
s

Res
contro

remains
s

This template is wrapped in an ionPopoverView instead of an ionView because this
is a specialized template just for popovers. Then you use the ionHeaderBar and
ionContent components to wrap your content, which is simple HTML with text.

 Now you need to register the popover so the view knows about it, and this is done
in the controller. Much like you declare a state in the app config(), you need to
declare the popover in your controller. Because a popover isn’t meant to be a globally
visible feature, you’re able to isolate it in one view to reduce overhead and complexity.
Open the rates controller in www/views/rates/rates.js again and update it with the fol-
lowing listing.

angular.module('App')
.controller('RatesController', function ($scope, $http, $ionicPopover,

Currencies) {

 $scope.currencies = Currencies;

 $ionicPopover.fromTemplateUrl('views/rates/help-popover.html', {
 scope: $scope,
 }).then(function (popover) {
 $scope.popover = popover;
 })

 $scope.openHelp = function($event) {
 $scope.popover.show($event);
 };

 $scope.$on('$destroy', function() {
 $scope.popover.remove();
 });
…

First you have to inject the $ionicPopover service. Then you use it to create a new
popover from a template URL. The popover does create its own scope, but you con-
nect the scopes by passing an object with {scope: $scope}. Often you’ll need this so
the popover can access the parent scope. The then() method executes when the tem-
plate has loaded and assigns a new popover to the $scope.popover property.

 Now the popover has been set up, and you’re able to use the $scope.popover
.show($event) method to show the popover. You’ll need to add an ngClick to a but-
ton to trigger it, and pass the $event variable as a parameter. The $event value is the
event object from the click event, which contains the information about which ele-
ment was clicked. The popover uses that information to calculate where on the page
to put the popover. There’s also a $scope.popover.hide() method that can program-
matically hide the popover, or the user can tap on the area outside of the popover to
close it.

Listing 5.20 Registering popover with controller (www/views/rates/rates.js)

Injects
pover
ervice

Declares a popover from template URL
and assigns parent scope as scope

When template has loaded,
assigns popover to scope

Scope method to open popover;
requires $event to be passed

Listens for $destroy event,
which is when view is destroyed,
and cleans up popover

t of
ller
 the
ame
Licensed to Mark Watson <nordickan@gmail.com>

115Refresh the Bitcoin rates and display help
 Lastly, you listen for the scope $destroy event, which fires when the current scope
is unloaded from memory. To prevent memory leaks, you remove the popover from
the application because you’re no longer using it.

Now it’s time to add the button that will trigger the popover. Open the rates template
at www/views/rates/rates.html one last time and add the bold code from the follow-
ing listing.

<ion-view view-title="Current Rates" hide-back-button="true">
 <ion-nav-buttons side="primary">
 <button class="button" ng-click="openHelp($event)">About</button>
 </ion-nav-buttons>
 <ion-content>
…

Now your new button will call the function to open the popover, and the popover will
position itself to be under the button. The $event value here is a special Angular fea-
ture available for ngClick and other event directives that passes the event object
along. The ionNavButton will appear on the primary side, which may vary from plat-
form to platform if that’s the right or left.

 That completes the rates view. You’ve added a popover for help information and a
pull-to-refresh feature for updating the rates in your list. Next you’ll tackle the history
tab that will load data and chart the historical price for the past month.

Listing 5.21 Adding button to trigger popover (www/views/rates/rates.html)

Why do some components need to be manually removed?
Most of the components in Ionic can be cleaned up automatically when they’re no
longer in use, which helps to free up memory and improve performance. Some com-
ponents, namely modals and popovers, require the app to remove the component
when the scope is destroyed.

The $destroy event fires when the current scope has been deleted from memory.
Anything that exists in that scope is removed at the same time, but popovers and
modals both create isolated scopes that persist. Because of this architecture, there
isn’t an automatic way to remove the modal or popover from memory.

If you forget to do this in your app, it probably won’t cause your app to become very
slow. How much of an impact it might have depends on the complexity and memory
use of the popover or modal. It might not have a noticeable impact on most apps if
it’s forgotten, but it’s best to remove them.

Rest of template
remains the same

Adds a button and uses ngClick to
call openHelp while passing $event

ionNavButtons allows you to
declare buttons in top navbar area
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 5 Tabs, advanced lists, and form components
5.7 Charting historical data
Your app users will want to be able to see
how the Bitcoin price has been tren-
ding over the past month for a given
currency. You’ll use the popular High-
charts charting library, along with an
Angular directive for Highcharts called
highcharts-ng. This isn’t meant to be a
primer on how to use Highcharts, but
you can view the documentation at
http://highcharts.com. If you’re follow-
ing along using Git, you can check out
the code for this step:

$ git checkout –f step7

You’ll load data again from the Bitcoin-
Average API, but this time the data will
come not as JSON but as CSV (comma-
separated value) data. This particular API
doesn’t send back JSON data (the CSV
format is more concise, so it takes fewer
bytes to send information), so you’ll have
to parse and format the data into a for-
mat that Highcharts can understand.

 You can see the result of this section
in figure 5.8. There’s the chart as well as a box above that has the name of the cur-
rency. This is a select box that allows you to change the currency for the chart.

5.7.1 Setting up third-party libraries

Your app is going to use some third-party libraries, so you need to download a copy of
them and set them up in your app. You’ll use the ionic add feature, which uses Bower
under the hood as a utility for downloading libraries into your project. If you don’t
have Bower installed, you can install it using npm:

$ npm install -g bower

Then you need to install two libraries: the Highcharts charting library and the Angu-
lar wrapper for Highcharts called highcharts-ng. You can have Ionic download and
put the recent copy into your project using the following command:

$ ionic add highcharts-release#4.0.4 highcharts-ng#0.0.7

With this command you’ve chosen to install a specific version of each library, just so
you can be sure the example in this book works as expected. They’re downloaded and
stored in the www/lib directory.

Select
component

Highchart
with history,
data from API

Figure 5.8 History tab showing a chart of
average prices over the past month, with a
box to change currency in the chart
Licensed to Mark Watson <nordickan@gmail.com>

http://highcharts.com

117Charting historical data

H

bu
on o

ox
 Now you need to include the necessary script tags in your index.html file. The first
two are for Highcharts and the third is the Highcharts Angular wrapper:

<script src="lib/highcharts-release/adapters/standalone-
framework.js"></script>

<script src="lib/highcharts-release/highcharts.js"></script>
<script src="lib/highcharts-ng/dist/highcharts-ng.js"></script>

The last step is to declare the highcharts-ng module as a project dependency so you
can use it. Open www/js/app.js and add it as a new dependency:

angular.module('App', ['ionic', 'highcharts-ng'])

Now you’re set up with the third-party scripts that you need, so let’s move on to build-
ing up your template for the history tab.

5.7.2 History tab template using Highcharts and a select box
to toggle currency

You created a blank template for the history tab before, so you need to update it to
include the select box component for your currency selector, and set up the High-
charts component. You’ll use an inset list with just one item to create the select box
container, as shown in the following listing.

<ion-view view-title="Hourly Average Price" hide-back-button="true">
 <ion-content>
 <div class="list list-inset">
 <label class="item item-input item-select">
 <div class="input-label">
 Currency
 </div>

 <select ng-change="changeCurrency()" ng-model="history.currency">
 <option ng-repeat="currency in currencies | filter:{selected:true}"

value="{{currency.code}}" ng-selected="history.currency ==
currency.code">{{currency.code}} - {{currency.text}}</option>

 </select>
 </label>
 </div>
 <highchart config="chart"></highchart>
 </ion-content>
</ion-view>

The select box component is based on the default HTML select box and is styled by
Ionic to give it a mobile-friendly appearance. When a select box is used on a mobile
device, the platform takes over and provides the experience. There’s little control

Listing 5.22 History template with chart (www/views/history/history.html)

ides
Back
tton
 this
view

Uses inset list t
contain select b

highchart component that
accepts a config attribute

with a chart object

Creates an option for
each active currency

Uses a normal HTML select box
with ngChange and ngModel to
track value changes
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 5 Tabs, advanced lists, and form components

Cr
cont

and i
se

Stor

curre
on

Funct
h

cha
state

curre
se
apps have over this, but in this case you’re happy to let the platform display the select
box in a way that feels most native for that platform.

 You’ll again use the Currencies service to display a list of the active currencies in
the select box. ngModel allows you to track the value of the select box. When the value
changes, ngChange triggers the changeCurrency() method, which will update the view
to display the chart for that currency.

 Lastly, the highchart directive used here takes a chart object, which you’ll declare
in your controller. Based on the values of your chart object, the directive will work
with Highcharts to render a chart based on the data you’ll load.

 This is all you need in your template, but your controller has to do a bit of work to
make everything behave properly.

5.7.3 History tab controller loads data and sets up chart

Your controller will need to handle setting up the chart, loading the chart data, and
formatting it so the chart can use it. You’ll again turn to the $http service to load the
data, and format the chart object according to the rules that Highcharts will under-
stand. Because the data you’re getting isn’t in the exact format Highcharts needs,
you’ll convert data before you display it. The controller also will handle changing the
currency and will load the list of currencies to use in the template.

 Create a new controller at www/views/history/history.js and add the code from
the following listing into it. We’ll break down the code carefully because there’s a lot
going on.

angular.module('App')
.controller('HistoryController', function ($scope, $http, $state,

$stateParams, Currencies) {

 $scope.history = {
 currency: $stateParams.currency || 'USD'
 };
 $scope.currencies = Currencies;

 $scope.changeCurrency = function () {
 $state.go('tabs.history', { currency: $scope.history.currency });
 };

 $scope.chart = {
 options: {
 chart: {
 type: 'line'
 },
 legend: {
 enabled: false
 }
 },

Listing 5.23 History controller (www/views/history/history.js)

eates
roller
njects
rvices

B

Defines history model set
on select box, defaulting to
US dollars

C

es list
of

ncies
scope

D

ion to
andle
nging
 after
a new
ncy is
lected E

Chart definition object
that Highcharts directive
turns into a chart

F

Licensed to Mark Watson <nordickan@gmail.com>

119Charting historical data

inf ts
es
ng
 an
y of
s of
es

o

ch

Sp
ro

s

Par
f

ti id,

t

 title: {
 text: null
 },
 yAxis: {
 title: null
 },
 xAxis: {
 type: 'datetime'
 },
 series: []
 };

 $http.get('https://api.bitcoinaverage.com/history/' +
$scope.history.currency +
'/per_hour_monthly_sliding_window.csv').success(function (prices) {

 prices = prices.split(/\n/);
 var series = {
 data: []
 };

 angular.forEach(prices, function (price, index) {
 price = price.split(',');
 var date = new Date(price[0].replace(' ', 'T')).getTime();
 var value = parseFloat(price[3]);
 if (date && value > 0) {
 series.data.push([date, value]);
 }
 });

 $scope.chart.series.push(series);
 });

 $scope.$on('$ionicView.enter', function() {
 $scope.history = {
 currency: $stateParams.currency || 'USD'
 };
 });
});

There seems to be a lot going on, but most of it’s just formatting data and setting up
the chart. Let’s start from the top. First you set the history model, and this contains the
currency value from $stateParams B. If no currency was provided, you then default to
US dollars C. Then you store the currencies onto the $scope for the template D.

 The changeCurrencies() E method takes the value of the select box and updates
the current state to use it. It calls the $state.go method, which is the programmatic
equivalent to ui-sref in the template.

 The rest of the controller is dedicated to the chart F. You start by making a chart
object that’s used by the highcharts-ng module and handles creating a chart for you.
You can review the documentation for highcharts-ng to get a full understanding of
the object at https://github.com/pablojim/highcharts-ng.

Chart definition object
that Highcharts directive
turns into a chart

F

Loads
history

ormation
based on
selected
currency

G
Spli
pric
stri
into
arra
row
pric

H

Creates a blank series t
store all of the data inI

Loops over ea
row of pricesJ

lits each
w from a
comma-

eparated
string to
an array

1)

ses and
ormats
me and

price
values 1!

If date and value are val
adds point to series1@

Adds completed series of data to char1#

Listens for $ionicView.enter
event to reset currency
model when cached
incorrectly

1$
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/pablojim/highcharts-ng

120 CHAPTER 5 Tabs, advanced lists, and form components
 The last part is loading and formatting the data. The $http service loads the price
data in a CSV format G because that’s all the API provides. This is problematic
because JavaScript doesn’t have a built-in way to handle CSV, but you can still parse it
yourself. The chart needs a series, which is a single set of data, so you create a blank
series. Using the split method, you break the CSV into JavaScript arrays that you can
work with H, I. The data also comes with some metadata that you don’t want, so you
filter it out and use only the data points J, 1), 1!. You can inspect the response in the
browser developer tools from the server to see how there may be extra lines in the
response that you don’t want. Then you add the data points to the series, and add the
series to the chart 1@, 1#. At this point, the line will appear with the price data.

 The last block is an event listener to listen for Ionic’s built-in navigation events.
Ionic has a nice feature that allows a state to be cached in memory, which makes it
faster to return to it later. By default, it will cache 10 states, and after that it will drop
the oldest state from memory based on a user’s history.

 In this case, you use the <select> element with an ngChange event to trigger the
app to navigate to another view. When a user changes the value of the select, that
value is stored on the model for that view and then the app navigates to another.
Imagine you started on the history view for US dollars, and changed the select to
Euros. The first state for US dollars would be cached with the select value pointing to
Euros, and if you returned to the US dollars view later, it would remain on Euros. To
solve this, you listen to the $ionicView.beforeEnter event 1$, and always reset the
value of the select to the correct value from the URL.

 This can become a problem when you expect your controller to execute every time
the state is loaded. When it becomes cached and later reused, it doesn’t have to be
reloaded. Any code in the controller that executes without being inside of a scope
method doesn’t rerun when the state is brought back from the cache. In this case,
that’s most of the code in your controller, and therefore you can’t expect the code
that sets the currency value for the select C to run again. By using the Ionic naviga-
tional events, you can execute logic every time the state is loaded, regardless if it was
cached or not.

 You need to finish this tab by adding the controller script in your index.html file,
and then updating the state definition to include the parameter and controller. In
index.html, add the </script> tag for the history controller at the end of the exist-
ing scripts:

<script src="views/history/history.js"></script>

Then open the www/js/app.js file and modify the history state with the bold code
shown in the following listing.

.state('tabs.history', {
 url: '/history?currency',
 views: {
 'history-tab': {

Listing 5.24 Updated state definition for history tab (www/js/app.js)

Adds currency parameter
for this state
Licensed to Mark Watson <nordickan@gmail.com>

121Currencies tab with list reordering and toggles
 templateUrl: 'views/history/history.html',
 controller: 'HistoryController'
 }
 }
})

Now you can preview the app and view the history tab. The chart will load and you can
change the selected currency to view another chart. You also already have support to
link to the history tab in the detail view of the rates tab. If you go back to the rates tab
and view the detail for a currency, choose the View History link and it will take you to
the history tab for that currency.

 Your final task is to set up the currencies tab, which will allow you to toggle and
reorder the currencies in the other tabs.

5.8 Currencies tab with list reordering and toggles
The last tab will let you change the list order of the currencies and toggle currencies
on or off for display. This is like a preferences screen so that users are able to decide
which currencies they care about and ignore the rest, or move their favorite curren-
cies up to the top. You can see the list of currencies with toggles and reordering in
action in figure 5.9. If you’re following along using Git, you can check out the code
for this step:

$ git checkout –f step8

Declares controller
for this view

Button
to trigger
reordering

Toggle currency
(ionToggle)

Dragging item
to reorder

Reordering
handle
(ionReorderButton)

Figure 5.9 Currencies tab with list of currencies to toggle on or off, and ability to reorder the list
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 Tabs, advanced lists, and form components

Adds
that

state.reo

De
con

and
se
5.8.1 ionReorderButton: adding reordering to a list

You’ll start by adding the template for the currencies tab, and add the reordering fea-
ture using the ionReorderButton. Reordering can only work with the ionList direc-
tive. It works by setting a reordering state to true or false, and based on that value
the reordering handles appear or hide. When they’re activated, you can drag the item
using the handle to a new position, and then your controller will handle updating the
model to reflect the new ordering. Open the currencies template at www/views/cur-
rencies/currencies.html and update it to reflect the following listing.

<ion-view view-title="Currencies">
 <ion-nav-buttons side="primary">
 <button class="button" ng-click="state.reordering =

!state.reordering">Reorder</button>
 </ion-nav-buttons>
 <ion-content>
 <ion-list show-reorder="state.reordering">
 <ion-item ng-repeat="currency in currencies">
 {{currency.code}} - {{currency.text}}
 <ion-reorder-button class="ion-navicon" on-reorder="move(currency,

$fromIndex, $toIndex)"></ion-reorder-button>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

You’ve created a list of currencies that are able to be reordered. The ionList compo-
nent uses the show-reorder attribute to evaluate if the ionReorderButton should be
shown or not. These two work together to create the reorder functionality. The button
in the navbar is used to toggle the state.reordering property, which will trigger the
reordering to show or hide.

 The on-reorder method allows you to write a method that handles what to do
when the reordering is complete. It provides two special parameters, $fromIndex and
$toIndex. This gives you the index values for the item in the array so you know the
position to move it from and to. You’ll add this method in your controller next. Create
a new file at www/views/currencies/currencies.js and insert the contents of the fol-
lowing listing.

angular.module('App')
.controller('CurrenciesController', function ($scope, Currencies) {
 $scope.currencies = Currencies;
 $scope.state = {
 reordering: false
 };

Listing 5.25 Currencies template (www/views/currencies/currencies.html)

Listing 5.26 Currencies controller (www/views/currencies/currencies.js)

 button
 toggles
rdering

value

Uses show-
reorder to
declare list can
be reordered,
and what
model to use
to activate

ionReorderButton must be
included and calls a method

after an item is moved

clares
troller
injects
rvices

Attaches
currencies
to scope

Declares default
reordering state value
Licensed to Mark Watson <nordickan@gmail.com>

123Currencies tab with list reordering and toggles

oggle

g

De
a

t

 $scope.$on('$stateChangeStart', function () {
 $scope.state.reordering = false;
 });

 $scope.move = function(currency, fromIndex, toIndex) {
 $scope.currencies.splice(fromIndex, 1);
 $scope.currencies.splice(toIndex, 0, currency);
 };
});

Your controller is fairly lean and starts by setting values on the scope. You listen for the
$stateChangeStart event because you want to disable reordering any time the curren-
cies tab loses focus, and this event will fire any time the tab changes. This is just a con-
venience for users; otherwise, if the reordering is active when they leave the tab, it will
still be active when they return. The move() method takes the item that’s being moved
along with the two index values for where it was and where it needs to go. Using
splice, you remove it first from the array and then re-insert it at the new location.

 At this point your list of currencies can be reordered, and once the items are reor-
dered, the other tabs will also reflect the new ordering. This is part of the power of
using a shared service like the Currencies service. Changes made in one place are
reflected across any state using the same service.

5.8.2 ionToggle: adding toggles to list items

You also want to be able to toggle currencies on or off so you only have to see the
items you care about. There’s an ionToggle component you can use, but here you’ll
use the CSS version of the toggle because the ionToggle component doesn’t work well
with the ionReorderButton. The ionToggle component is just a helpful abstraction of
the CSS version that you’ll be using, but it doesn’t provide any extra features.

 Open the currencies template once more, and you’ll add the ionToggle compo-
nent in for the final feature. In the following listing you’ll see the additions to make
inside the ionItem component to include the toggle.

<ion-item class="item-toggle" ng-repeat="currency in currencies">

 {{currency.code}} - {{currency.text}}

 <label class="toggle toggle-balanced">

 <input type="checkbox" ng-model="currency.selected">

 <div class="track">

 <div class="handle"></div>

 </div>

 </label>

 <ion-reorder-button class="ion-navicon" on-reorder="move(currency,

$fromIndex, $toIndex)"></ion-reorder-button>

</ion-item>

Listing 5.27 Adding toggler to currencies list (www/views/currencies/currencies.html)

Listens for state changes
and turns off reordering
when leaving tab

Handles moving an
item from one index
value to another by
splicing item in array

Adds item-t
class to get
toggle stylin

clares
 label
with

toggle
class

Uses a checkbox inpu
and gives it a model
for currency.selected

Adds elements needed for
CSS to style a toggle icon
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Tabs, advanced lists, and form components
This ionToggle component uses the checkbox input to keep track of the value for the
toggle. Checkboxes and togglers are both Boolean values, so the CSS styling of a tog-
gle overlays a traditional HTML checkbox. You use the model currency.selected for
each currency to filter out items that aren’t enabled in the other tabs. As you toggle
any item on or off, the other tabs are updated immediately to show or hide the cur-
rency. The power of the shared Currencies service is at work again.

 You can now preview the app and everything should be complete. The app allows
you to view the current rates for a currency and details about that currency, view a
chart of the rate’s monthly history, configure which of the currencies you wish to view,
and order them as you desire.

5.9 Chapter challenges
You now have a lot of components under your belt. To challenge yourself, further
improving your understanding and familiarity with these components, you can
attempt the following tasks:

 Autorefresh the rates—Work on a technique to automatically refresh the rates
once a minute. Angular has a useful $interval service that you might consider
using.

 Persist the currency settings—There are techniques such as using localStorage or
indexedDB that you can use to persist the currencies ordering and toggle states.
Work on adding logic to manage the loading of currency from a cache before
resetting the values to a default.

 Chart more data—The BitcoinAverage API provides more types of historical data,
such as prices since Bitcoin started. Add more configuration to the history tab
that allows a user to change to different types of chart data. Review the API
details on the BitcoinAverage API.

 Improve the detail view—The detail view is very basic and just lists information.
Try to make a more compelling visual experience using more of Ionic’s CSS
components or by creating your own.

5.10 Summary
In this chapter we’ve covered a lot about Ionic components and leveraging the High-
charts charting library with data from the BitcoinAverage API. Let’s review the major
topics we covered:

 Tabs are a great way to provide a navigational structure in your app. Sometimes
you need basic tabs, and sometimes you need tabs with individual navigational
histories like in the example app.

 Including third-party scripts and Angular modules is easy to do, but each mod-
ule has its own features that have to be learned individually.
Licensed to Mark Watson <nordickan@gmail.com>

125Summary
 Lists have the ability to be reordered, have support for badges, and are able to
include toggle components.

 Using a shared service like the Currencies service makes it possible to share
data between views.

Next, in chapter 6 you’ll learn about the remaining major components and features
of Ionic, such as side menus, modals, and scrolling components.
Licensed to Mark Watson <nordickan@gmail.com>

 Weather app,
using side menus, modals,

action sheets, and ionScroll
In this chapter you’ll build a weather app, and in the process you’ll showcase more
components that Ionic has to offer. The base of the application navigation will be
the side menu component. It will allow you to find and view weather conditions,
forecasts and favorite locations; display sunrise and sunset data inside of a modal
window; and use a paginated scrolling pane to view the weather information.

 Throughout the chapter we’ll look at a number of Ionic’s features and compo-
nents. The side menu will be the basis for your app navigation, and you’ll use just a

This chapter covers
 Using a side menu as the basis of your app for

navigation

 Displaying options to users with action sheets
and popups

 Using a modal to display related content over
another view

 Building more-advanced scrolling interactions
126

Licensed to Mark Watson <nordickan@gmail.com>

127
single left menu that can appear to navigate around the app. You’ll use the action
sheet component to provide users a list of options, such as to note a favorite location.
Using a modal, you’ll display the next year’s chart of sunrise and sunset values. To
make this chart perform better, you’ll use the collection repeat feature of the Ionic
lists, which reduces memory for large lists by rendering only the necessary items.

 You’ll use two different services for loading data in this app. Forecast.io is a popu-
lar weather API service that provides current conditions and forecast data for a given
geolocation based on latitude and longitude. To determine the locations, you’ll use
Google’s geolocation service to search for locations and their coordinates. Both are
free; however, you’ll need to register for an API key to use Forecast.io.

 In figure 6.1 you can see many of the different views of this app. You’ll build them
up piece by piece, but the bulk of the app will exist inside of the weather view.

 You can view the completed project at https://ionic-in-action-chapter6.herokuapp
.com and the source code at https://github.com/ionic-in-action/chapter6.

• Shows list of links
• List of favorites
• Shows and hides
• Access via button

Side menu

• Search for locations
• Use search box
• List component

Search
• App settings
• Radio component
• List component
• Range component
• Delete list items

Settings
• Custom scrolling
 experience
• Use vertical pages
• Modal to view
 sunrise chart
• Action sheet for
 options

Weather

Figure 6.1 The weather app example for this chapter. The side menu allows
you to navigate between views.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

https://ionic-in-action-chapter6.herokuapp.com
https://ionic-in-action-chapter6.herokuapp.com
https://github.com/ionic-in-action/chapter6
http://www.allitebooks.org

128 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
6.1 Setting up the chapter project
You can follow along in this chapter either by creating a new Ionic app and adding the
code from the listings in this chapter, or by cloning the finished app from the Ionic in
Action GitHub repository and following along with each step. Once you’ve finished set-
ting up the app, start to serve the project so you can preview the app in a browser with
the ionic serve command.

CREATE A NEW APP AND ADD CODE MANUALLY

To create a new project for your app using the Ionic command-line interface (CLI)
utility, open the command line and execute the following command (remember, you
can refer to chapter 2 if you need a refresh on how projects are set up):

$ ionic start chapter6 https://github.com/ionic-in-action/starter
$ cd chapter6
$ ionic serve

CLONE THE FINISHED APP AND FOLLOW ALONG

To check out the finished app and use Git to follow along for each step, use the fol-
lowing command to clone the repository and check out the first step:

$ git clone https://github.com/ionic-in-action/chapter6.git
$ cd chapter6
$ git checkout –f step1
$ ionic serve

6.2 Setting up the side menu and views
You’ve seen how to build navigation yourself and how to use tabs, so now you’ll use
side menus for primary navigation. Side menus are used frequently because they slide
in and out of view on demand, allowing you to provide quick access to primary links
without cluttering the main content. A side menu can be opened on the right or left
at once, and in this example you’ll use just the left side. If you’re following along using
Git, you can check out the code for this step:

$ git checkout –f step2

A side menu can be opened in three ways, depending on the implementation. By
default, Ionic supports opening side menus by swiping to the side to pull the side
menu open. You can also disable this in case you need to be able to use swipes for
another purpose. You can use a button to open the side menu, usually placed in the
top left corner of the screen, which will be demonstrated in this example. Lastly,
you’re able to toggle the menu programmatically using the sidebar delegate service.

 In the example for this chapter, you’ll use just one side menu, but you’re able to
use multiple side menus in a single app. There are many configuration options and
ways to make use of the side menu, but they all leverage the same basic structure you’ll
use here.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/starter
https://github.com/ionic-in-action/chapter6.git

129Setting up the side menu and views

tent

D
si
 In this section you’ll set up the base application and navigation using side menus.
This is done using the ionSideMenus components, and you’ll allow the side menu to
appear from swiping to the right, or by using the button option with a toggle icon in
the top left. You’ll also set up two blank routes that you’ll fill in later. You can see the
side menu in action in figure 6.2, the result of your work in this section.

To begin, you’ll modify the www/index.html file from the generated project for your
app to set up your side menu. The following listing contains the side menu and con-
tent area.

<body ng-app="App">
 <ion-side-menus>
 <ion-side-menu-content>
 <ion-nav-bar class="bar-positive">
 <ion-nav-buttons side="left">
 <button class="button button-clear" menu-toggle="left">

 </button>
 </ion-nav-buttons>
 </ion-nav-bar>
 <ion-nav-view></ion-nav-view>
 </ion-side-menu-content>
 <ion-side-menu side="left">

Listing 6.1 Side menu setup (www/index.html)

Side menu
and content
(ionSideMenu)

Side menu
toggle button
(menuToggle)

Figure 6.2 The side menu in action: the
left is the closed state and the right is
the opened state

Declares ionSideMenus
container to wrap side
menu and content areas

Uses
ionSideMenuCon
to hold the main
center content

Using navigation
components inside of

side menu content
area with toggle icon

eclares a
de menu,
assigning
it to left
Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
 <ion-header-bar class="bar-dark">
 <h1 class="title">My Weather</h1>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item class="item-icon-left" ui-sref="search" menu-close>

 Find a City</ion-item>

 <ion-item class="item-icon-left" ui-sref="settings"
menu-close>
 Settings</ion-item>

 </ion-list>
 </ion-content>
 </ion-side-menu>
 </ion-side-menus>
</body>

Side menus are easy to declare, because they only require using the ionSideMenus,
ionSideMenuContent, and ionSideMenu directives in the markup. No JavaScript is
required to set up the side menu. You first wrap the entire content area with ionSideMenus,
which takes care of setting up the functionality based on the other directives that are
declared. Without it, the side menu wouldn’t function. Inside of ionSideMenus, you
add two child elements, ionSideMenuContent and ionSideMenu. You declare the side
menu to be placed on the left by using the side attribute. You can only declare one
ionSideMenuContent element for each side menu, but you can declare up to two
ionSideMenu elements for the right and/or left.

 Inside of the content area, you declare the same navigational directives you’ve
used in the past. This way, your side menu acts like a global base that contains your
navigation view container. I think this structure makes the most sense because your
side menu typically is used for global navigation in your app.

 If you look at the ionNavButtons, you’ll see a single button with menu-toggle=
"left". The menuToggle directive is used to take care of toggling the side menu open
or closed when the button is activated. Likewise, in the side menu item list you see
menu-close on the navigation links. The menuClose directive will close any open side
menu when the item is activated. When you tap on “Find a City,” it will close the left
menu automatically; otherwise, the side menu would remain open even while the navi-
gation area updated with the new content.

 You should think of each ionSideMenu and ionSideMenuContent like their own
views. In the side menu, you’ve used a header bar and content area to wrap the naviga-
tion list; otherwise, the content area wouldn’t calculate the correct size and location of
elements.

 The side menu can contain any content you want, but a list of navigation links is
the most common use case for the side menu. You might also use a right side menu to
provide additional search filters or even secondary navigation.

Using a new header
for side menu

ionContent is used
with list of links for

navigation
Licensed to Mark Watson <nordickan@gmail.com>

131Searching for locations
 Everything is done for the side menu in listing 6.1. You can review the side menu
documentation to see some other features and get details about the features of the
delegate service in case you need to have programmatic control over the side menu.

 The links declared in the side menu currently won’t work until you declare those
routes, but you can toggle the side menu open and closed or swipe to pull it open.
You’ll start by setting up the search view, which will allow users to find locations and
their coordinates.

6.3 Searching for locations
When the app first starts, users will need to be able to configure the locations that they
would like to view. Using Google’s Geolocation API, you can search for locations by
any type of input text, such as a ZIP code, city name, and even more-specific locations
such as a particular address. You’ll create a new view that allows users to search and
view a list of results from this API. You can see the search in action in figure 6.3. If
you’re following along using Git, you can check out the code for this step:

$ git checkout –f step3

To accomplish this, you’ll need to register a new state with your state provider and
define the template and controller. Your template will contain a search field and a
button, while your controller will handle the API request to get the list of results. By

List search
component

List of results
from search
(ionList)

Button to open
side menu
(menuToggle)

Figure 6.3 Search view in action, with keyboard and results
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

Sea
wit
sea
but
now you should be familiar with declaring a new state, so let’s start with that inside of
your www/js/app.js file, as in the following listing.

angular.module('App', ['ionic'])
.config(function ($stateProvider, $urlRouterProvider) {

 $stateProvider
 .state('search', {
 url: '/search',
 controller: 'SearchController',
 templateUrl: 'views/search/search.html'
 });

 $urlRouterProvider.otherwise('/search');
})

Because this is the first state, you need to add the config() method and then inject
the $stateProvider and $urlRouterProvider services. You declare the search state
and set it to the default route. Now you need to add your template and controller.

 The template for the search view is in listing 6.3, and contains a search box and a
list component to display the list of results. Create a new file at www/views/
search/search.html and add the contents of the following listing.

<ion-view view-title="Find Locations">
 <ion-content>
 <div class="list">
 <div class="item item-input-inset">
 <label class="item-input-wrapper">
 <input type="search" ng-model="model.term" placeholder=

"Search for a location">
 </label>
 <button class="button button-small button-positive"

ng-click="search()">Submit</button>
 </div>
 <div class="item" ng-repeat="result in results" ui-sref="weather({city:

result.formatted_address, lat: result.geometry.location.lat, lng:
result.geometry.location.lng})">{{result.formatted_address}}</div>

 </div>
 </ion-content>
</ion-view>

Here you have a basic template with a list. The first list item is the search box, and
then if any results exist, they’ll be displayed below it. This box uses the inset input style
to give it a little different visual appearance, where the box is slightly grayed. The
input is also declared to be the search type, because it will modify the display of the
keyboard for searching on a device.

Listing 6.2 Declare the search state (www/js/app.js)

Listing 6.3 Template for search (www/views/search/search.html)

Adds config()
method for app

Declares search state

Uses search as
default view

rches list item
h ngModel for
rch box and a
ton

Repeats over list of results when
available to display address and

link to weather view
Licensed to Mark Watson <nordickan@gmail.com>

133Adding settings view and data services
 You haven’t declared the weather state yet, but you can see the link is added to the
state using ui-sref. In this case, you’ll pass the city, latitude, and longitude values
from the result.

 To power this template, you need the controller. Create a new file at
www/views/search/search.js and add the code from the following listing. Also add a
new </script> tag in your www/index.html file:

<script src="views/search/search.js"></script>

angular.module('App')
.controller('SearchController', function ($scope, $http) {
 $scope.model = {term: ''};

 $scope.search = function () {
 $http.get('https://maps.googleapis.com/maps/api/geocode/json',

{params: {address: $scope.model.term}}).success(function (response) {
 $scope.results = response.results;
 });
 };
});

In your controller you define the default model, which will be reset every time the
view is loaded. Then the search() method is called when the button is tapped, and it
makes the HTTP request to the Google Geocoding API. The response gets stored on
$scope.results, which will update the view with the list when it’s available.

 Your search view is now complete. Next you’ll build out the settings view and a few
custom services that you’ll use to store and share data.

6.4 Adding settings view and data services
Your app needs to have some configuration options, particularly to allow users to
select what type of units they wish to see (such as temperatures in Fahrenheit or Cel-
sius). It will then allow users to select how many days to view for the forecast. Lastly, it
will allow users to manage their list of favorite locations by deleting items in the list. If
you’re following along using Git, you can check out the code for this step:

$ git checkout –f step4

You’ll need to add a new state with a controller and template for your settings view.
Then, to manage your app, you’ll need two services that can be used to share data and
methods between views. Lastly, you’ll also update the side menu to include a list of the
favorite locations for quick access.

6.4.1 Create services for locations and settings

Your first step is to create two services, one to keep track of the favorite locations and
another for settings. You’ll create two services using Angular’s factory method that you

Listing 6.4 Search controller (www/views/search/search.js)

Defines search
term model

Method to handle searching
from Geocoding API using

term and storing on scope
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
can then inject into any controller. The Settings service will be just a simple
JavaScript object with properties, and the Locations service will contain some meth-
ods to help you manage the list of locations.

 You’ll add these two services into the main app JavaScript file to keep your exam-
ple more streamlined, but you could also add these as individual modules. Open
www/js/app.js and add the two new services from the following listing to your app.

.factory('Settings', function () {
 var Settings = {
 units: 'us',
 days: 8
 };
 return Settings;
})

.factory('Locations', function () {
 var Locations = {
 data: [{
 city: 'Chicago, IL, USA',
 lat: 41.8781136,
 lng: -87.6297982
 }],
 getIndex: function (item) {
 var index = -1;
 angular.forEach(Locations.data, function (location, i) {
 if (item.lat == location.lat && item.lng == location.lng) {
 index = i;
 }
 });
 return index;
 },
 toggle: function (item) {
 var index = Locations.getIndex(item);
 if (index >= 0) {
 Locations.data.splice(index, 1);
 } else {
 Locations.data.push(item);
 }
 },
 primary: function (item) {
 var index = Locations.getIndex(item);
 if (index >= 0) {
 Locations.data.splice(index, 1);
 Locations.data.splice(0, 0, item);
 } else {
 Locations.data.unshift(item);
 }
 }
 };

 return Locations;
});

Listing 6.5 Services for Locations and Settings (www/js/app.js)

Declares Settings
service as a factory

Creates and returns a
JavaScript object with
default settings

Declares Locations
service as a factory

Creates Locations
object and stores a
default value for
Chicago in data array

Method to
determine index

value of a location

toggle method adds
or removes an item
from Locations

primary method moves
item to top position or
adds it to top if new

Returns Locations object
with data and methods
Licensed to Mark Watson <nordickan@gmail.com>

135Adding settings view and data services

s

Here you use Angular services to help define a service that can be shared between dif-
ferent controllers. Later you’ll add each of these to different views, but any changes
made to these services will be immediately reflected in other views. If you recall from
chapter 5, you used the same technique for the list of currencies, where each currency
could be toggled on or off and the changes would be reflected instantly across the
app. You’ll use Locations.data as the array that stores the list of locations, which
should contain the city name, latitude, and longitude values. To start, I’ve preset Chi-
cago in the list because it’s one of my favorite cities.

 The Locations service has three methods. The getIndex() method gives you the
index value of an item from the Locations.data array, if the item exists. The toggle()
method will add or remove a location from the Locations.data array, after it checks if
the location is already in the Locations.data array or not. The primary() method is
used to either add a new item to the top of the list, or to move an existing item to the
top of the list.

6.4.2 Show favorites in side menu list

Now that you have your Locations service, you can display the list of favorite locations
in the side menu. To do this, you need to add a controller for your side menu so you
can inject the Locations service into the scope, and then add a new item to the navi-
gation list with ngRepeat to display all of the favorite locations.

 First, you’ll define the controller in your app JavaScript file where you just added
your services. Because this controller belongs in the side menu instead of an isolated
view, you can keep it together with the rest of the main app code. This very simple
controller is found in the following listing.

.controller('LeftMenuController', function ($scope, Locations) {
 $scope.locations = Locations.data;
})

This very simple controller just assigns the array of locations to the scope. You don’t
need to do anything more complex in the controller, but you do need to add this con-
troller to the side menu template. In the www/index.html file, update the ionSideMenu
and add the ngController directive to attach this new controller to the side menu:

<ion-side-menu side="left" ng-controller="LeftMenuController">

You haven’t used ngController in your Ionic apps, but you did use it in the chapter 3
primer on Angular. Normally, you declare the controllers for each view in your app
config() using the $stateProvider. In this case, the side menu isn’t its own state, so
you have to attach the controller yourself. With this controller, the side menu now will
have access to the list of locations, so you can update the list to loop over the favorites.

Listing 6.6 Side menu controller (www/js/app.js)

Creates a
controller and
injects service

Assigns locations data array to scope
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

Adds a
to
som

Us
to

d

 Keep www/index.html open, and add the two bold lines from the following listing
to the list.

<ion-list>
 <ion-item class="item-icon-left" ui-sref="search" menu-close><span

class="icon ion-search"> Find a City</ion-item>
 <ion-item class="item-icon-left" ui-sref="settings" menu-close><span

class="icon ion-ios-cog"> Settings</ion-item>
 <ion-item class="item-divider">Favorites</ion-item>
 <ion-item class="item-icon-left" ui-sref="weather({city: location.city,

lat: location.lat, lng: location.lng})" menu-close ng-repeat=
"location in locations">
 {{location.city}}</ion-item>

</ion-list>

The ngRepeat now loops over the array of locations, and will link to the weather state
(which you’ll define later). Now, when you open the side menu, the default Chicago
location should appear under favorites. Later, when more locations have been added
by users, they’ll also appear here. Now you need to build your settings view.

6.4.3 Adding the settings template

Your settings template will contain three primary areas: a radio list to choose between
imperial or metric units, a range input to configure the number of days to show in the
forecast, and a list of favorite locations with the ability to delete items. Let’s take a look
at the complete code in listing 6.8 and review the several components individually.
Create a new file at www/views/settings/settings.html. The resulting user interface
will look like figure 6.4.

<ion-view view-title="Settings">
 <ion-content>
 <ion-list>
 <ion-item class="item-divider">Units</ion-item>
 <ion-radio ng-model="settings.units" ng-value="'us'">Imperial

(Fahrenheit)</ion-radio>
 <ion-radio ng-model="settings.units" ng-value="'si'">Metric

(Celsius)</ion-radio>
 <div class="item item-divider">Days in forecast <span class=

"badge badge-dark">{{settings.days - 1}}</div>
 <div class="item range range-positive">
 2 <input type="range" name="days" ng-model="settings.days"

min="2" max="8" value="8"> 8
 </div>

Listing 6.7 Adding location items to navigation list (www/index.html)

Listing 6.8 Listing 6.8 Settings template (www/views/settings/settings.html)

divider
display
e text

Loops over list of locations, links
them to weather state, applies
menuClose, and displays city name

Uses ionRadio component to
toggle between unit types

es input range
set number of
ays to display
Licensed to Mark Watson <nordickan@gmail.com>

137Adding settings view and data services

ith
les

L

 <div class="item item-button-right">Favorites

<button class="button button-small" ng-click="canDelete =

!canDelete">{{canDelete ? 'Done' : 'Edit'}}</button></div>

 </ion-list>

 <ion-list show-delete="canDelete">

 <ion-item ng-repeat="location in locations">

 <ion-delete-button class="ion-minus-circled" ng-

click="remove($index)"></ion-delete-button>

 {{location.city}}

 </ion-item>

 </ion-list>

 <p class="padding">Weather data powered by Forecast.io and

geocoding powered by

Google.</p>

 </ion-content>

</ion-view>

Let’s start with the radio options. The ionRadio component is a wrapped-up radio
button designed for mobile devices. Instead of displaying the small circle like it would
normally do on a web page, it’s restyled as a list with a checkmark to indicate the

(Fahrenheit)

(Celsius)

(Fahrenheit)

(Celsius)

Range
component

List of
favorites

Button to
toggle delete
state

List items
can be deleted
(ionDeleteButton)

Radio list
component
(ionRadio)

Figure 6.4 Settings view with a list of radio options, a range input, and a list with entries that can be
deleted

Creates a divider w
a button that togg
canDelete state

Creates a list and
shows Delete
button based on
value of canDelete

oops over
list of

locations

Deletes button that
displays only when delete
state is active on list

Credits for
API sources
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

De
cont

and i
se
selected item. It also assumes it’s used inside of a list component, so it adopts the
same display as a list item. That’s why you don’t have to place it inside of a list item.
You assign the same ngModel value to both ionRadio inputs, and when a user selects
one, the other will disable, as you’d expect with a radio list.

 The next component is an input range slider. This is a newer HTML element to
which Ionic applies styling. You see it in figure 6.4 as the line with a circular handle,
which can be moved back and forth to set a value. In this case the options are values
2–8, because in your forecast data you’ll always show the first day, so the setting deter-
mines how many additional days to display. As you drag the range, the value automati-
cally updates.

 The last component is ionList with the option to delete items from the list. The
visual experience of showing the Delete button is built into the ionList component,
but the actual logic to handle the deletion of an item is left up to the developer to
implement. To use the delete feature, you use the show-delete="canDelete" attri-
bute. When the expression is true, the Delete button will appear; otherwise, it will
hide. You also have to declare an ionDeleteButton inside of each item, and give it a
class for the icon you want to use. The listing also uses ngClick to call a method on
the controller, which will take care of removing the item. There’s a button in the item
divider that toggles the canDelete value from true to false. The button also uses a
more complex expression, which is a ternary operator, and changes the text from
Edit to Done, depending on the value of canDelete.

 At the end, you credit the two sources of your data. Sometimes APIs allow you to
use their services for free, but ask for credit. To comply with that term, the credit is
shown in listing 6.8.

6.4.4 Settings view controller

To finish up your settings view, you need the controller. You’ll access the Locations
and Settings services you created earlier and add the logic to remove a location
when the Delete button is pressed.

 Create a new file at www/views/settings/settings.js and add the controller found in
the following listing.

angular.module('App')

.controller('SettingsController', function ($scope, Settings, Locations) {

 $scope.settings = Settings;

 $scope.locations = Locations.data;

 $scope.canDelete = false;

 $scope.remove = function (index) {

 Locations.toggle(Locations.data[index]);

 };

});

Listing 6.9 Settings controller

clares
roller
njects
rvices

Sets settings and
locations data on scope

Sets default state for deletion

Method to handle
removing an item
from list of locations
Licensed to Mark Watson <nordickan@gmail.com>

139Setting up the weather view
This controller is fairly simple because you essentially only do two things. First, you set
some values on the $scope, some of which come from the services you defined.
Remember, these are JavaScript objects you created earlier, and any changes made in
the settings view to those values will be reflected elsewhere. Second, the remove()
method takes the index value of the location, and then calls the Locations.toggle()
method with the item to remove. Because you abstracted the adding and removing of
locations into the Locations service, you don’t have to rewrite the logic here.

 Now you need to add a new state for settings and make sure you add the settings
controller to your application. Start by opening www/index.html and adding a new
</script> tag for your controller after the other </script> tags:

<script src="views/settings/settings.js"></script>

Then open www/js/app.js and declare the state for settings as you see in listing 6.10.
This is the final step before you can see the settings view in action. Add this into the
state provider declaration.

.state('settings', {
 url: '/settings',
 controller: 'SettingsController',
 templateUrl: 'views/settings/settings.html'
})

You’ve finished the settings view, which con-
tained two Ionic form components—radio
items and a range input—as well as a list
with the ability to delete items. Now it’s time
to set up the weather view.

6.5 Setting up the weather view
The last view you’ll set up is the weather view,
which is designed to display the current
weather and forecast for a location. In this
section you’ll create the base for the weather
view, and then add more complexity to it in
the remaining sections of this chapter. If
you’re following along using Git, you can
check out the code for this step:

$ git checkout –f step5

The result of this section can be seen in
figure 6.5. The view will be fairly simple at
this point, but you’ll add more design and
content as we go.

Listing 6.10 Settings view state declaration (www/js/app.js)

Bind weather
data to view

Figure 6.5 Weather view base loading from
Forecast.io and showing current temperature
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
6.5.1 Get a Forecast.io API key

The Forecast.io service requires an API key to make requests. It only requires you to
create an account with an email address and password, and—unless you want to use
their paid service—it doesn’t require a credit card or other personal information. Go
to https://developer.forecast.io/ and sign up for your free account to get your token.
You’ll need this token in a few moments.

6.5.2 Using Ionic CLI proxies

Forecast.io doesn’t support cross-origin resource sharing (CORS) as of this writing,
which means that by default you can’t load data from their API in a browser. This
means that your requests for data from Forecast.io in your JavaScript will fail.

The Ionic CLI utility provides a feature that allows you to bypass this limitation by
using a proxy. Essentially it allows you to create something like a shortcut or alias URL
that’s attached to the server that the ionic serve command sets up, and the CLI can
pass your original request through to the real API URL.

 In a production application, you still need to properly address the Forecast.io API’s
CORS limitations, but in another way. When your app runs on a device, it doesn’t have
the ionic CLI utility to proxy the API requests. Therefore, you must implement
another solution by either updating the API to support CORS or having a public CORS
proxy service built for your app.

 In your app, there’s an ionic.project file that you should open. This file contains a
JSON object for configuring the Ionic project, and here you can define a new property
to map a list of URLs to proxy. Keeping the JSON valid, add the bold part from the fol-
lowing listing to your ionic.project file. It may contain information other than what is
shown in this listing.

{
 "name": "chapter6",
 "app_id": "",
 "proxies": [

Listing 6.11 Declare proxy in ionic.project file (ionic.project)

CORS (cross-origin resource sharing)
CORS is a set of security rules that browsers implement so that your web applications
can load data from another domain. By default, browsers will block access to loading
data from another domain because you can’t trust what that external domain will
send you. But if you trust the source of data and the API supports CORS, you’re able
to load that data. You can read more about CORS at http://enable-cors.org or in the
book CORS in Action at http://manning.com/hossain.

The other RESTful APIs used in this book have all supported CORS and therefore
haven’t required any additional work on your end.

Adds a new proxies property,
which is an array of objects
Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/hossain
https://developer.forecast.io/
http://enable-cors.org

141Setting up the weather view
 {
 "path": "/api/forecast",
 "proxyUrl": "https://api.forecast.io/forecast/YOUR_KEY/"
 }
]
}

You’ve just declared a proxy, so in your app you can call /api/forecast and it will actu-
ally proxy through your local server and go to the proxyUrl defined in listing 6.11.
Now you can replace YOUR_KEY with the API key from Forecast.io.

 The next time the ionic serve command is run, the proxy will be set up. It will
also work if you’re using ionic emulate or ionic run with the live reload option
turned on. This will allow you to develop locally with the Forecast.io service, and you
can use the same technique for building apps locally with other services that don’t
support CORS.

6.5.3 Add the weather view controller and template

You’ll now get the weather view added to your application. You’ll just get the forecast
to load and display the current temperature. Later you’ll add a number of Ionic com-
ponents and content to this view.

 First, let’s tackle the template. This is very vanilla—it will display the name of the
location in the header bar and show the current temperature. In figure 6.5 you can
see it’s a chilly 18°F in Chicago. Create a new file at www/views/weather/weather.html
and use the code from the following listing.

<ion-view view-title="{{params.city}}">
 <ion-content>
 <h3>Current Conditions</h3>
 <p>{{forecast.currently.temperature | number:0}}°</p>
 </ion-content>
</ion-view>

There isn’t too much going on here—you just bind some data into the title and the
content areas. That data will be loaded in the controller next. You use the number fil-
ter on the temperature to round the value to a whole number because the value
returned by the service is more accurate for your needs. You assume that users will
expect the temperature value to be given in whole numbers.

 Now let’s add the controller. It also is fairly light at the moment, but you’ll expand
it slowly as you go along. The following listing contains the controller that you’ll need
to add into a new file at www/views/weather/weather.js.

Listing 6.12 Base weather view template (www/views/weather/weather.html)

Adds a path, which will be new
proxy URL to call in your app

Adds a proxyUrl property, which
is endpoint that will be called
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

con
and

s

angular.module('App')
.controller('WeatherController', function ($scope, $http, $stateParams,

Settings) {
 $scope.params = $stateParams;
 $scope.settings = Settings;

 $http.get('/api/forecast/' + $stateParams.lat + ',' + $stateParams.lng,
{params: {units: Settings.units}}).success(function (forecast) {

 $scope.forecast = forecast;
 });
});

When this controller executes, it will first store some values on the $scope. The
$stateParams are assigned to the $scope.params and used to get the location name
for the header bar. The settings are also set on the scope, for future use. Then it
makes an HTTP request to your proxy URL, adding the latitude, longitude, and units
type for the request. When it returns, it stores the forecast on the scope for the tem-
plate to use.

 Lastly, you need to add the new state to your state provider list, and add the con-
troller to the index.html file. Open the index.html file and add the following
</script> tag to include the controller after the other </script> tags:

<script src="views/weather/weather.js"></script>

Then open www/js/app.js and add the last state for weather from the following list-
ing. This will finish the weather view for the moment.

.state('weather', {
 url: '/weather/:city/:lat/:lng',
 controller: 'WeatherController',
 templateUrl: 'views/weather/weather.html'
});

In the next section, you’ll build out a paginated scrolling view for your forecast infor-
mation.

6.6 ionScroll: building custom scrolling content
This section focuses on providing a custom scrolling experience for the forecast data,
and adding the necessary markup and styling to give it a nice appearance. Because
there are so many weather apps available, it’s important to craft a good user experi-
ence. If you’re following along using Git, you can check out the code for this step:

$ git checkout –f step6

Listing 6.13 Weather controller (www/views/weather/weather.js)

Listing 6.14 Weather view state declaration (www/js/app.js)

Defines
troller

 injects
ervices

Attaches service data to scope

Makes HTTP request
to load forecast
Licensed to Mark Watson <nordickan@gmail.com>

143ionScroll: building custom scrolling content
You’ll use ionScroll to create a pagination vertical scroller. This means that as a user
swipes up or down, the scrolling will always continue until the next page. In some ways
this is like the ionSlideBox, but vertically and with a slightly different experience.
Then you’ll add the content and styling for each of the pages in the scroller. Lastly,
you’ll add a few filters to help format your data in a more meaningful way.

 At the end of the chapter, you’ll be able to scroll through a weather forecast like
you see in figure 6.6. The scrolling only stops when it reaches the next page.

6.6.1 Using ionScroll with paging

First you need to create the scrolling experience with ionScroll. Normally you would
use ionContent, with its default vertical scrolling ability and automatic filling of the
content. But ionScroll gives you a little more control over how the scrolling content
area functions, and in this case it provides the paging feature you desire.

 The ionScroll directive has to be given a width and height value. This is some-
thing ionContent does for you automatically, but ionScroll doesn’t. Because your
app can be loaded onto different devices with different screen sizes, you have to be
able to calculate the size of ionScroll based on the size of the screen.

Scroll area
fixed and
shows first
page of
content

Content
container
with three
pages stacked
sits inside
scroll area

Content
container
moved up to
view second
page

Figure 6.6 Using ionScroll with paging enabled for separated forecast content
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
ionScroll will work by creating an area three times the height of the device that will
scroll and stop at each page. With some calculations, you’ll generate this content area
and it will be able to scroll up or down between the pages. Look at figure 6.7 to see
how these layers work to create the scrolling experience.

 For your scrolling area, you’ll make ionScroll the same size as the viewable area,
and then create a div element inside of ionScroll with three times the height of ion-
Scroll. This div element inside will be able to slide up or down to provide the scroll-
ing effect you’re after. You’ll lock scrolling to vertical only, and with the paging feature
enabled, it will also scroll until it hits the next page. Imagine the ionScroll was 500
pixels tall; the div inside would be 1,500 pixels tall and have three pages (500 × 3 =
1,500). Because it’s 500 pixels tall, when paging is enabled scrolling will always stop on
a boundary that’s based on the ionScroll height, in this case 0 pixels (page 1), 500
pixels (page 2), or 1,000 pixels (page 3).

 Let’s start by looking at the template with ionScroll included. It uses some calcu-
lations that will be added to the controller soon, so it won’t function until you’ve
updated the controller.

The content area is one large
container that is the size of
all pages.

As user scrolls up or down,
the scroller will only stop
at the point between the pages.

The content area actually slides
below the visible space, like film
going through a projector that
shows a single frame at a time.

Pages are based on the height
and width of the space
visible on screen.

The entire content container
is the size of all three pages,
or 1,500 pixels if this were the
size of the screens.

Visible
on screen
300 x 500

Off screen
300 x 500

Page 1

Page 2

Page 3 Off screen
300 x 500

Figure 6.7 How ionScroll with paging
will allow you to scroll by page
Licensed to Mark Watson <nordickan@gmail.com>

145ionScroll: building custom scrolling content

ion
to p

io
p

s
ee

es

<ion-view view-title="{{params.city}}">
 <ion-content>
 <ion-scroll direction="y" paging="true" ng-style=

"{width: getWidth(), height: getHeight()}">
 <div ng-style="{height: getTotalHeight()}">
 <div class="scroll-page page1" ng-style=

"{width: getWidth(), height: getHeight()}">
 Page 1
 </div>
 <div class="scroll-page page2" ng-style=

"{width: getWidth(), height: getHeight()}">
 Page 2
 </div>
 <div class="scroll-page page3" ng-style=

"{width: getWidth(), height: getHeight()}">
 Page 3
 </div>
 </div>
 </ion-scroll>
 </ion-content>
</ion-view>

Here you use ionContent and then put ionScroll inside of it. ionContent will give
you a container that takes into account the size of the header bar. Inside of that,
ionScroll exists, and it gets the height and width from the controller calculations.
ionContent will not actually scroll, because ionScroll will be the exact size of the visi-
ble space.

 You have one div element inside of ionScroll, and it has the total height of all
three of the scroll pages. The scroll pages are inside, and are stacked on top of one
another, like you see in figure 6.7.

 Now you can add the controller methods used to calculate sizes so you can preview
how it scrolls. Open the controller at www/views/weather/weather.js and add the
code from the following listing inside the controller.

var barHeight = document.getElementsByTagName
('ion-header-bar')[0].clientHeight;

$scope.getWidth = function () {
 return window.innerWidth + 'px';
};

$scope.getTotalHeight = function () {
 return parseInt(parseInt($scope.getHeight()) * 3) + 'px';
};

$scope.getHeight = function () {
 return parseInt(window.innerHeight - barHeight) + 'px';
};

Listing 6.15 Weather template with ionScroll (www/views/weather/weather.html)

Listing 6.16 Controller methods to determine sizes (www/views/weather/weather.js)

Uses
Content
osition
nScroll
roperly

Uses ionScroll and locks
direction to vertical only
with paging; gives exact
height and width styling

Creates inner div and give
it a height equal to all thr
pages stacked

Pages each declared with
same width and height of
the ionScroll area

Gets first header
bar’s height

Gives items
width of app

Gets total height by
multiplying height of
space by number of pag

Gives items height
of app without
header bar
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

f
sh
o

You start off by getting the height of the header bar, because this may vary from plat-
form to platform. The getWidth(), getHeight(), and getTotalHeight() methods
use the size of the window itself to determine the amount of space available, minus the
bar height. This programmatic approach to determining the size is required only
because different devices have different screen sizes, and you want the pages to be the
same size as the screen. You can create a scrolling region with items of a fixed size to
scroll through them using the same logic but providing an explicit size.

 Now that you understand scrolling, you’re ready to add the content for each page
into the scrolling pages. The following listing has the updated template for
www/views/weather/weather.html.

<ion-view view-title="{{params.city}}">
 <ion-content>
 <ion-scroll direction="y" paging="true" ng-style="{width: getWidth(),

height: getHeight()}">
 <div ng-style="{height: getTotalHeight()}">
 <div class="scroll-page center" ng-style="{width: getWidth(), height:

getHeight()}">
 <div class="bar bar-dark">
 <h1 class="title">Current Conditions</h1>
 </div>

 <div class="has-header">
 <h2 class="primary">{{

forecast.currently.temperature | number:0}}°</h2>
 <h2 class="secondary icon" ng-class=

"forecast.currently.icon | icons"></h2>
 <p>{{forecast.currently.summary}}</p>
 <p>High: {{forecast.daily.data[0].temperatureMax |

number:0}}° Low: {{forecast.daily.data[0].temperatureMin |
number:0}}° Feels Like: {{forecast.currently.apparentTemperature |
number:0}}°</p>

 <p>Wind: {{forecast.currently.windSpeed | number:0}}
<span class="icon wind-icon ion-ios7-arrow-thin-up" ng-style=
"{transform: 'rotate(' + forecast.currently.windBearing +
'deg)'}"></p>

 </div>
 </div>

 <div class="scroll-page" ng-style="{width: getWidth(), height:
getHeight()}">

 <div class="bar bar-dark">
 <h1 class="title">Daily Forecast</h1>
 </div>
 <div class="has-header">
 <p class="padding">{{forecast.daily.summary}}</p>
 <div class="row" ng-repeat="day in forecast.daily.data |

limitTo:settings.days">
 <div class="col col-50">{{day.time + '000' |

date:'EEEE'}}</div>

Listing 6.17 Content for weather template (www/views/weather/weather.html)

Uses a header bar
like a subheader

Uses has-
header
class to
position
content of
this page

Uses icons
filter to

map to an
icon based

on
conditions

Uses wind direction given in
degrees to rotate an arrow
to point in that direction

Uses limitTo
ilter to only
ow number
f days from

settings

Uses date filter to convert a Unix

timestamp into day of the week

Licensed to Mark Watson <nordickan@gmail.com>

147ionScroll: building custom scrolling content

t
 <div class="col"><span class="icon" ng-class="day.icon |
icons">^{{{day.precipProbability | chance}}}</div>

 <div class="col">{{day.temperatureMax | number:0}}°</div>
 <div class="col">{{day.temperatureMin | number:0}}°</div>
 </div>
 </div>
 </div>
 <div class="scroll-page" ng-style="{width: getWidth(), height:

getHeight()}">
 <div class="bar bar-dark">
 <h1 class="title">Weather Stats</h1>
 </div>
 <div class="list has-header">
 <div class="item">

Sunrise: {{forecast.daily.data[0].sunriseTime |
timezone:forecast.timezone}}</div>

 <div class="item">
Sunset: {{forecast.daily.data[0].sunsetTime |
timezone:forecast.timezone}}</div>

 <div class="item">Visibility:
{{forecast.currently.visibility}}</div>

 <div class="item">Humidity: {{forecast.currently.humidity *
100}}%</div>

 </div>
 </div>
 </div>
 </ion-scroll>
 </ion-content>
</ion-view>

The template has a lot of content, but it’s mostly binding data into the view and ele-
ments used for styling and positioning. Each page has a bar element, which contains
the title for that page. Inside of the following element, you have different content for
each. Until you create the filters, the application won’t be able to correctly load.

 Inside of the second page, you use the Ionic grid features to help lay out your con-
tent. There’s a div element with the row class, and then several divs inside with the
col class. If you’re familiar with CSS frameworks like Bootstrap, you’ll recognize a CSS
grid system being used. In other words, the CSS grid is like an auto-adjusting layout
with rows and columns. It allows you to lay out your content visually like a table, but
without having to use the table element (which is intended to be used with tabular
data, not for layout purposes). In this case, you have four columns, and the first col-
umn is set to take 50% of the width. Ionic’s CSS grid component uses the CSS flexbox
feature to automatically adjust the layout of columns, so if you don’t specify a specific
column width, the columns are automatically equally sized with any remaining space.

 Right now it will look a little disorganized when you preview this view. You need to
add some CSS to get the design to look a little smoother. Open the www/css/styles.css
file and add the CSS rules from the following listing.

Uses
chance

 filter to
round

percentage
to a 10

value

Gets sunrise/sunse
time, which is
converted into
location timezone
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

.scroll-page .icon:before {
 padding-right: 5px;
}
.scroll-page .row + .row {
 margin-top: 0;
 padding-top: 5px;
}
.scroll-page .row:nth-of-type(odd) {
 background: #fafafa;
}
.scroll-page .row:nth-of-type(even) {
 background: #f3f3f3;
}
.scroll-page .wind-icon {
 display: inline-block;
}
.scroll-page.center {
 text-align: center;
}
.scroll-page .primary {
 margin: 0;
 font-size: 100px;
 font-weight: lighter;
 padding-left: 30px;
}
.scroll-page .secondary {
 margin: 0;
 font-size: 150px;
 font-weight: lighter;
}
.scroll-page .has-header {
 position: relative;
}

These CSS rules apply to the contents of the scrolling pages only, and are just used to
give some cleaner display to the elements. In your apps, you’ll likely write more CSS
than in these examples, but your focus is always on Ionic’s features.

6.6.2 Creating filters for forecast data

If you recall from chapter 3, filters are used to modify the display of data in the view.
You could put the filter logic into the controller, but then they aren’t very easy to
reuse. You get a lot of data from Forecast.io, but it isn’t always in the format you’d like.
For example, you get a timestamp for the sunrise and sunset values, but a timestamp
isn’t very human-friendly. You can build a filter that will convert a timestamp into a
more friendly value like “5:46 p.m.”

 First, you’d like to show an icon related to the weather forecast. For example, if it’s
raining, you’d like to use one of Ionic’s rainy icons. Because you’ve already used the
filters in your template, you now need to implement them. Then you’d like to modify

Listing 6.18 Styling for weather view (www/css/styles.css)
Licensed to Mark Watson <nordickan@gmail.com>

149ionScroll: building custom scrolling content
the chance of rain values to always round them to the nearest tenth value. Normally
the chance of rain is reported like 20%, not 17%.

 Lastly, you need to fix the sunrise and sunset timestamps. They’re currently shown
based on the user’s time zone. For example, if you lived in Chicago and viewed the
weather in London you’d see the local version of the time from Chicago. This is con-
fusing, because in that case the sunrise would be in the middle of the night. You’ll use
a JavaScript library called Moment.js to help you manage the time zones and display
the times according to the weather location’s time zone and not the user’s time zone.

 First, you’ll install the Moment.js library files using the ionic add feature. You can
install the files quickly using the following command from the root of your project. If
you’re following along using Git, this is already installed and you don’t need to run
this:

$ ionic add moment-timezone

It will take a moment to download and install Moment.js and Moment Timezone,
both of which you need to use to correctly manage time zones. Moment Timezone
declares Moment.js as a dependency, so you don’t have to install it separately. When
they’re downloaded, add them to your index.html file after the Ionic </script> tag
and before the </script> tags for your app files:

<script src="lib/moment/moment.js"></script>
<script src="lib/moment-timezone/builds/moment-timezone-with-

data.js"></script>

Now that you have the Moment.js library set up, you can create a new filter that will
handle converting the timestamp into the correct time zone of the weather location.
You’re lucky because the forecast data provides you with the time zone of the location,
so you don’t need to do anything special to find it.

 The following listing has the code for all three filters that you want to create. Open
www/js/app.js and add these three filters as part of your app.

.filter('timezone', function () {
 return function (input, timezone) {
 if (input && timezone) {
 var time = moment.tz(input * 1000, timezone);
 return time.format('LT');
 }
 return '';
 };
})

.filter('chance', function () {
 return function (chance) {
 if (chance) {
 var value = Math.round(chance * 10);

Listing 6.19 Filters for weather view

Creates timezone filter to convert
to weather location time zone

Only if timestamp and
time zone are provided
will it convert timestamp
based on time zone

Creates chance filter to convert to a
percentage chance for precipitation

If a value is given, rounds
percentage to a multiple of 10
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
 return value * 10;
 }
 return 0;
 };
})

.filter('icons', function () {
 var map = {
 'clear-day': 'ion-ios-sunny',
 'clear-night': 'ion-ios-moon',
 rain: 'ion-ios-rainy',
 snow: 'ion-ios-snowy',
 sleet: 'ion-ios-rainy',
 wind: 'ion-ios-flag',
 fog: 'ion-ios-cloud',
 cloudy: 'ion-ios-cloudy',
 'partly-cloudy-day': 'ion-ios-partlysunny',
 'partly-cloudy-night': 'ion-ios-cloudy-night'
 };
 return function (icon) {
 return map[icon] || '';
 }
})

The filters here are fairly straightforward. The timezone filter will convert a time-
stamp to display based on a specific time zone. The chance filter will take a percentage
value and round it to the nearest tens value. The icons filter will take the icon value
from the forecast data and map it to an icon.

 Now your app will be able to run and display the full weather forecast. With the
ionScroll component, you’re able to scroll up and down, but it will always stop at the
next page. This section may have been a bit complex, but looking at each individual
component should help clarify what it’s doing. Your next step is to create a new option
button that will open up an action sheet with a list of options for your users.

6.7 Action sheet: displaying a list of options
The action sheet component is another useful tool when you wish to display a list of
options to users. In this situation you’d like to display a list of options for users so they
can toggle the location as a favorite or they can set the location as the primary loca-
tion. If you’re following along using Git, you can check out the code for this step:

$ git checkout –f step7

To show a list of options, the action sheet is a list of buttons that slides up from the
bottom of the screen. Usually there’s a Cancel button, and sometimes there’s a special
button that indicates a destructive action such as deleting. Tapping on the area out-
side of the buttons will close the sheet, much like a modal or popover. You can see the
action sheet in figure 6.8.

The action sheet component is something iOS users will find familiar, but Android
doesn’t have an equivalent native component. You should consider the implications
of using this feature when you plan to also support Android and, while there’s no

If a value is given, rounds
percentage to a multiple of 10

Creates icons filter to convert a
condition type into an icon

Based on a map of
conditions to icons,
returns icon if found
Licensed to Mark Watson <nordickan@gmail.com>

151Action sheet: displaying a list of options

n

t

technical reason it won’t work on Android, it might not be the most intuitive for
Android users.

 There’s no template for the action sheet because it’s run entirely from the
$ionicActionSheet service. You’ll need to declare the list of buttons, and what should
happen when each button is selected. Start by adding a more button to your view that
will be able to trigger the action sheet, found in the following listing.

<ion-view view-title="{{params.city}}">
 <ion-nav-buttons side="left">
 <button class="button button-clear" menu-toggle=

"left"></button>
 </ion-nav-buttons>
 <ion-nav-buttons side="right">
 <button class="button button-icon" ng-click="showOptions()"><span

class="icon ion-more"></button>
 </ion-nav-buttons>
 <ion-content>

Listing 6.20 Action sheet more button (www/views/weather/weather.html)

Backdrop, click
to close sheet

Button to open
action sheet

Action sheet buttons
with Cancel set apart

Figure 6.8 Button that opens the action sheet with options

Redeclares sidebar
toggle left button

Adds
ew nav
button
o right

side

Adds a nav button to
call showOptions

Continues with
rest of template
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

o

but
This will add a new button to the right side of the title in the header bar that has the
more icon, which is three dots. It will call a method in the controller that you’ll write
next, and that method will handle the logic to open the action sheet. You also added
the same left button again; otherwise, it would be replaced because you declared a
new button for this view.

 You’ll need to update the controller in www/views/weather/weather.js. You’ll need
to also inject the $ionicActionSheet service into the controller, which isn’t shown
here. See the code for this method in the following listing.

$scope.showOptions = function () {
 var sheet = $ionicActionSheet.show({
 buttons: [
 {text: 'Toggle Favorite'},
 {text: 'Set as Primary'},
 {text: 'Sunrise Sunset Chart'}
],
 cancelText: 'Cancel',
 buttonClicked: function (index) {
 if (index === 0) {
 Locations.toggle($stateParams);
 }
 if (index === 1) {
 Locations.primary($stateParams);
 }
 if (index === 2) {
 $scope.showModal();
 }
 return true;
 }
 });
};

This controller method is called by your button, and the action sheet is immediately
told to show itself. You assign the value of $ionicActionSheet.show() to the sheet
variable, which returns a function that can close the sheet. At any point you could call
sheet() to close it. The show() method takes an object with various properties, and
here you’ve chosen to create three buttons in the buttons array, plus the Cancel but-
ton, which is defined separately. The Cancel button is a separate property because it’s
a special button. By default, the Cancel button will just close the sheet, which is the
behavior you’ve adopted here. You can optionally handle the Cancel (and destruc-
tive) button click events yourself with custom functions.

 The last property is the buttonClicked function. This is called when a button is
selected, and provides the index of the button from the first list. If the Cancel or
destructive buttons are selected, this function doesn’t execute because they have
their own versions, not shown here. Because you have three buttons, you have three

Listing 6.21 Action sheet in controller (www/views/weather/weather.js)

Uses show method to set up
and show an action sheet; must
have injected $ionicActionSheet

An array of objects for
buttons; object must
have a text property

Shows
ptional
Cancel

ton and
gives it

text

Method to handle button clicks;
index of selected button is provided

Uses Locations service to toggle
current location as favorite

Uses Locations service to set
current location as primary

You’ll add something here in
next section to open a modal

Returning true will close action sheet;
otherwise, it will remain open
Licensed to Mark Watson <nordickan@gmail.com>

153ionModal: displaying the sunrise and sunset chart
conditionals to check the value of the index and execute logic based on the button.
The first two buttons use the Locations service you created earlier, but the third
won’t do anything just yet. You’ll add that button in the next section.

 That’s all you need to have the action sheet component in your app. Now to
address that last button; you want it to open up a modal that will slide up from the bot-
tom to display more information.

6.8 ionModal: displaying the sunrise and sunset chart
Modals are used heavily in user interfaces today. A modal is a temporary view that’s
layered above the current view. On websites, modals are often used to prompt a user
to sign up for a newsletter or to force focus on a subset of content that darkens the
rest of the content. If you’re following along using Git, you can check out the code for
this step:

$ git checkout –f step8

On a mobile device, a modal may be used in slightly different contexts, but the princi-
ples remain the same. The main draw of the modal is the fact that it can open above
the current content, but be closed to return. Some example modal uses include show-
ing a preview of a search result item without leaving the search result page, opening a
modal with a list of additional search filters, or displaying an alert or notice for a
weather event. You can see a modal in action in figure 6.9.

Close button

Collection
repeat with
sunrise and
sunset times

Modal sliding
up into view
from bottom

Figure 6.9 The modal opens by sliding up from the bottom and overlaying the entire app.
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

If doesn’
modal t
assigns
Modals are designed to overlay the entire app when the app is running on a smaller
phone device. If the app runs on a larger tablet device, the modal will not actually fill
the entire app, but will float in the middle. You can modify the exact size with CSS, but
by default the size of the modal is a percentage of the size of the screen on tablets.
This is important because it means that without some custom styling, the modal win-
dow size will vary from device to device.

6.8.1 Setting up a modal

In the example here, the modal will show the sunrise and sunset chart for the loca-
tion. You’ll start by using the $ionicModal service to create a new modal instance, and
then update the third button in the action sheet to trigger opening the modal. Much
like the popover, you also have to clean up the modal when the scope is destroyed to
prevent memory leaks.

 To begin, open the controller in www/views/weather/weather.js and inject the
$ionicModal service into the controller, shown in the following listing.

$scope.showModal = function () {

 if ($scope.modal) {

 $scope.modal.show();

 } else {

 $ionicModal.fromTemplateUrl('views/weather/modal-chart.html', {

 scope: $scope

 }).then(function (modal) {

 $scope.modal = modal;

 $scope.modal.show();

 });

 }

 };

 $scope.hideModal = function () {

 $scope.modal.hide();

 };

 $scope.$on('$destroy', function() {

 $scope.modal.remove();

 });

This syntax is nearly identical to the ionPopover syntax you saw in chapter 5. Modals
are isolated views, meaning they need a new template. In this case, you load that tem-
plate from a URL, but you can also provide that template inline. I recommend using
this method to avoid writing HTML inside of JavaScript.

 You start by creating the showModal() method, which will immediately check if the
modal is already created or not. If it is, it will just show it again. Otherwise, it will cre-
ate the modal.

Listing 6.22 Modal in weather view (www/views/weather/weather.js)

Method to open a modal

If modal already exists,
shows it again

t exist, loads
emplate and
scope to use

When template loads, stores
modal instance on scope

Then shows modal

Method to hide modal

When current view is
destroyed, also removes
modal from memory
Licensed to Mark Watson <nordickan@gmail.com>

155ionModal: displaying the sunrise and sunset chart
 For modal creation the fromTemplateUrl() method takes two arguments: a string
for the template URL and an object. You can specify additional options, such as the
type of animation or if the hardware back button can close the modal (for some
Android devices). Modals create an isolated child scope, and the scope parameter
tells the modal which scope should be the parent for the modal. By default it’s the
root scope, and you want this modal to have access to your weather scope so you assign
it as the parent instead.

 Because loading a template is asynchronous, it returns a promise that you resolve
with then(). It gives you an instance of a modal controller object, which has proper-
ties like show and hide to control the modal.

 Listening for the scope $destroy event is something you must do with each modal
you create, or else it will always remain in memory. Most of the Ionic components are
able to clean up after themselves, but due to the way the modal is designed, this isn’t
possible.

To get the modal to actually appear, you need to create the template file for it. Create
a new file at www/views/weather/modal-chart.html and add the contents from the
following listing.

Potential memory leaks and performance
Ionic and Angular are both focused on performance and preventing situations where
the app can become sluggish. A memory leak is a problem in JavaScript where some-
thing that was loaded into the browser memory allocation isn’t properly handled and
removed when it’s no longer needed. JavaScript engines today have very good gar-
bage collection, which is the task of reclaiming memory that’s no longer needed.

Most of Ionic’s features can be easily reclaimed when they’re no longer in use. For
example, when a user navigates to another view, the memory allocated for the old
view can be destroyed. Ionic’s navigation also provides the ability to cache and keep
things in memory, which makes it faster to return to that view later.

Modals and popovers are two types of components that you must manually clean up
when you’re finished with them. They’re services that you use in the controller to cre-
ate a new view, and because you create them you must also remove them. Ionic
doesn’t know when they’re no longer in use, unlike the views that you declare in your
$stateProvider.

If you forget to clean up a modal or popover, it isn’t likely to crash your app. But if
you use a lot of modals or popovers without clearing them, every time you use one it
would remain in memory until the user closed the app. The best thing to do is always
clean up, as shown in listing 6.22.
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

ionMod
must
conte

tem

<ion-modal-view>
 <ion-header-bar class="bar-dark">
 <h1 class="title">Sunrise, Sunset Chart</h1>
 <button class="button button-clear" ng-click="hideModal()">

Close</button>
 </ion-header-bar>
 <ion-content>
 </ion-content>
</ion-modal-view>

ionModalView is a specialized version of ionView that you’ll use elsewhere, and is
required when making a modal template. Just make sure to wrap your modal template
in ionModalView to properly get the design and positioning for a modal window.

 Because it’s a blank view, you add a header bar and content area. The header bar
has a Close button that calls the hideModal() method, which is from the parent scope
(the weather scope). You want to have some content, so you can now add the content
for the sunrise and sunset times.

6.8.2 Collection repeat: making the sunrise and sunset list fast

You want to show the sunrise and sunset times for the entire year, which you can calcu-
late using the aid of a helpful library called SunCalc. Because the sunrise and sunset
cycle repeats yearly, you only need to show the chart for one year.

 You can use a normal list with ngRepeat to create the long list of items, but that
means you’d create 365 items when only a small number can actually appear on the
screen at once. If you create all 365 items in a list, they all still render and take up
memory regardless if they’re on- or offscreen. This will impact the performance of
your list, mostly from having to render too many Document Object Model (DOM) ele-
ments, and can cause it to be slow to display or have poor scrolling smoothness.

 To address this, you’ll use the collection repeat feature. Instead of creating 365
items, it will create just enough to display on the screen, as shown in figure 6.10.
When the user scrolls, it will destroy items that go out of view and create new items
and add them to the list. This will give you much better memory management, and
most importantly provide a smoother scrolling experience. Any large set of data that
you want to scroll through can benefit from using collection repeat.

 There are some caveats to using collection repeat, which may not always suit your
needs. For instance:

 It only works with arrays of items, which means you can’t have an object and use
collection repeat.

 Unless you define the exact height and width of each item in the list, it will
assume they’re all the same size as the first item. If all items are the same size,
then you shouldn’t declare the height and width, but if they vary you should.

 It will take up the entire size of its container.

Listing 6.23 Modal contents template (www/views/weather/modal-chart.html)

alView
 wrap
nts of
modal
plate

Adds a header
bar with a
Close button

Empties content
area for moment
Licensed to Mark Watson <nordickan@gmail.com>

157ionModal: displaying the sunrise and sunset chart
 Angular’s one-time binding shouldn’t be used. The way that items are created
and destroyed conflicts with the one-time binding feature.

 To make the styling work well, you should avoid doing anything that will show
or hide items in the list or change an item’s dimensions.

 Images with a collection repeat can cause performance issues, so when possible,
cache the images ahead of time or avoid using them.

Before you can use collection repeat, you need to create an array with the year’s sun-
rise and sunset times. First, you need to install the SunCalc library:

$ ionic add suncalc

Then you can include the library in your index.html file by adding the </script> tag
after the other library scripts:

<script src="lib/suncalc/suncalc.js"></script>

Figure 6.10 How the collection
repeat feature renders only the
items visible onscreen, plus
several items on the boundaries
offscreen, to increase performance

Any items before 24 are
not rendered until they get
closer to the scroll area.

Any items with index over 47
are not rendered until they
get closer to the scroll area.

Index of items
in the array

Visible
and
rendered

Offscreen
and
rendered

Offscreen
and
rendered

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll

Create
yo

Uses co
repe

ng
Lastly, you’ll create the chart when the modal is requested. You’ll update showModal()
in the weather controller to generate the list of times for the next year before the
modal appears. Open www/views/weather/weather.js and update the showModal()
method as shown in the following listing.

$scope.showModal = function () {
 if ($scope.modal) {
 $scope.modal.show();
 } else {
 $ionicModal.fromTemplateUrl('views/weather/modal-chart.html', {
 scope: $scope
 }).then(function (modal) {
 $scope.modal = modal;
 var days = [];
 var day = Date.now();
 for (var i = 0; i < 365; i++) {
 day += 1000 * 60 * 60 * 24;
 days.push(SunCalc.getTimes(day, $scope.params.lat,

$scope.params.lng));
 }
 $scope.chart = days;
 $scope.modal.show();
 });
 }
};

Here you create an array with the times for each day of the year, starting from tomor-
row for a whole year. SunCalc requires timestamp, latitude, and longitude values to be
able to calculate the sunrise and sunset values. Those values are pushed into the array,
and then stored on the scope, because the modal will need to access the chart array
for collection repeat.

 To implement collection repeat, you need to open your modal template again.
Edit the www/views/weather/modal-chart.html file and update the content with the
code shown in the following listing.

<ion-content>
 <div class="list">
 <div class="item" collection-repeat="day in chart">
 {{day.sunrise | date:'MMM d'}}: {{day.sunrise | date:'shortTime'}},

{{day.sunset | date:'shortTime'}}
 </div>
 </div>
</ion-content>

Listing 6.24 Generating chart (www/views/weather/weather.js)

Listing 6.25 Collection repeat in action (www/views/weather/modal-chart.html)

s variables for
ur calculations For each day, adds

another day to timestamp

Uses SunCalc to get
times based on
latitude, longitude,
and day

Assigns list of
days to scope

Uses a list to contain items

llection
at, like
Repeat

Binds date, sunrise, and
sunset times to list item
Licensed to Mark Watson <nordickan@gmail.com>

159Popup: alert and confirm changes to favorites
Collection repeat is implemented with the same syntax as ngRepeat—that is, item in
array—though it does support some other more complex expressions listed in the
documentation. You’ve used the list component to style your items, though this
doesn’t matter to collection repeat. It only cares that each item is the same size, unless
you explicitly declare the size of each item. Then you bind the data into the view using
the date filters.

 Collection repeat has far better performance on large data sets. It will only render
a few items that are off the screen in either direction instead of the entire list, which
saves memory and processing requirements to scroll. You could try ngRepeat in place
of collection repeat in listing 6.25, and you may see some of the performance differ-
ences when on a device. When your set of data is large enough to see some lag on
many devices, collection repeat can bring much-needed performance improvements.

 You’ll add one last feature: a popup to confirm or alert users when they change
their favorite locations.

6.9 Popup: alert and confirm changes to favorites
Right now when you select the Toggle Favorites button in the action sheet, it silently
updates the choice for you without telling you what happened. Users appreciate get-
ting visual feedback about their changes, and one way to do this is to use a popup. If
you’re following along using Git, you can check out the code for this step:

$ git checkout –f step9

Popups are familiar to web users because they appear with a message and a button or
two asking you questions like “Are you sure?” or alerting you saying “We are sorry an
error occurred.” Ionic provides three types of popup defaults—alert, confirm, and
prompt—or the choice to design your own. You can see the alert and confirm options
in figure 6.11. Each of the three defaults has a unique use case:

 Alerts are meant to simply convey information, such as a message about success
or failure to complete an action.

 Confirms ask you to verify you meant to do something, such as confirm that you
meant to delete an item.

 Prompts are designed to ask you for some information, such as a title for an
item you’re about to save.

There are many ways to design an interface to provide feedback to users, and popups
are best used when you want to be completely sure a user has read the message or
when you need to prompt for feedback before continuing. Popups should be used
with caution, however, because they’re interruptive to the user experience.

 To add the popup, you’ll add it into the Locations service toggle method. You’ll
confirm the user intends to remove the favorite, and alert the user when the favorite is
added. Right now, when the user toggles a favorite location, it’s done in the back-
ground and the user doesn’t get any feedback or confirmation that it was completed.
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
Open the www/js/app.js file and locate the Locations service. First you need to inject
the $ionicPopup service into the Locations service as follows:

.factory('Locations', function ($ionicPopup) {

Now replace the existing toggle() method with the code from the following listing,
which will add both an alert and a confirm popup during toggling.

toggle: function (item) {
 var index = Locations.getIndex(item);
 if (index >= 0) {
 $ionicPopup.confirm({
 title: 'Are you sure?',
 template: 'This will remove ' + Locations.data[index].city
 }).then(function (res) {
 if (res) {
 Locations.data.splice(index, 1);
 }
 });
 } else {
 Locations.data.push(item);
 $ionicPopup.alert({
 title: 'Location saved'
 });
 }
},

Listing 6.26 Using $ionicPopup to alert and confirm (www/js/app.js)

Alert popup
shows when
adding favorite

Confirm
popup shows
when removing
favorite

Figure 6.11 Popups with an alert (left) and a confirm (right) as used in the app

Creates a confirm popup and
passes object to define; by default
will have OK and Cancel buttons

Gives title
and content

of popup
When a button is selected,
function is called and res
will be true when OK is
selected to delete item

Creates an alert popup
with a title; by default will
have just OK button
Licensed to Mark Watson <nordickan@gmail.com>

161Chapter challenges
The confirm popup is used to verify that the user wishes to delete the item, and unless
you override the settings in the configuration object, it will have two buttons: OK and
Cancel. When a button is selected, the promise will resolve the function and pass the
value of res as Boolean. If the user chooses OK, res will be true and will then proceed
to handle deleting the item.

 The alert popup is fired after the item is already added, and just informs the user
the location was saved. The button will close the popup automatically.

 Popups have a lot of configuration options that aren’t used here, but you may find
it useful to read about them in the documentation. For example, you can change the
OK or Cancel button text, change the button color style, or even create a more com-
plex popup where you define all of the buttons and properties yourself.

 This concludes the features you’ll build into this app. Before we conclude, I’d like
to challenge you to improve this app with some of the knowledge you’ve gained from
earlier chapters.

6.10 Chapter challenges
This chapter covered the major remaining Ionic components. Now that you’ve seen
them in action, I challenge you to extend this weather app with additional features
from earlier chapters:

 Add a way to reload the forecast⎯The current conditions are only loaded when the
view is loaded. You can implement reloading of the forecast without leaving the
view using the ionRefresh component or another method of your own design.

 Implement the loading component⎯The weather view and search views load data
from an API, and while this is happening the user can still interact with the
screen. Implement a loading component to provide feedback that the user
interface is waiting for the data.

 Allow reordering of locations⎯You can delete locations in the settings view, but
you can also implement a way to handle reordering of the locations using the
ionList reordering feature.

 Use tabs instead of ionScroll⎯You could replace the ionScroll feature with
tabs for the three different views. Tip: Just try to use the tabs without declaring
each tab as a new state.

 Set default view to primary location⎯Right now, the default view is the search view,
but if there’s already a location stored, it might be nice to view it instead.

 Persist the favorites and settings⎯So far, every load of the app will reset the settings
and favorites. Look at how to implement persistence in chapter 7 and improve
the experience by remembering settings and favorites.
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 6 Weather app, using side menus, modals, action sheets, and ionScroll
6.11 Summary
Through the last three chapters, we’ve covered most of the Ionic components and fea-
tures available to you. In this chapter specifically, you learned how to do the following
things:

 Set up and use a side menu as a base for your navigation
 Create a custom scrolling page experience using ionScroll
 Use an action sheet to display options for the user contextual to the

current view
 Create a modal for showing related information without clearing the

current view
 Performance improvements and use for collection repeat over ngRepeat
 Add popups for giving your users feedback and confirming their actions

In the next chapter, you’ll learn about many advanced topics when building Ionic
apps, such as how to work with offline mode, storing data, and customizing Ionic
default settings and styles.
Licensed to Mark Watson <nordickan@gmail.com>

Advanced techniques
for professional apps
This chapter focuses on some advanced techniques that you could incorporate into
most apps. As Ionic developers dig deeper into the platform, they’ll likely discover
that the core components, while useful, can’t provide everything well-designed
apps need. There should be an element of uniqueness for every app. Just using
Ionic’s components out of the box without any customization or creativity isn’t the
best approach for quality apps.

 Using these various techniques, you’ll be able to design apps that take the
strengths of Ionic and extend it for a unique experience. You’ll be able to mold an
app to adapt its design and behavior for different platforms and improve the user
experience through events and using storage.

This chapter covers
 Customizing Ionic styles using Sass variables

 Handling gestures and events

 Storing and persisting data between app uses

 Modifying your app to adapt to different platforms

 Configuring Ionic default behaviors and settings
163

Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 7 Advanced techniques for professional apps
7.1 Set up chapter project
This chapter is a bit different from the previous chapters where you built a full-scale
app. Here the examples are minimized to focus on just the features we’re discussing at
the time. You can either download the chapter examples or use Git to check out a
copy for yourself.

 The examples are organized into folders for each section. I’ll let you know which
folder to look at when you’re working with it. For each folder, you should only have to
use ionic serve from that folder to preview the app in the browser. For some folders,
you might consider running it in an emulator or on a device.

7.1.1 Get the code

To get the latest copy of the chapter example, you can download the completed files
or check out the repository using GitHub. The following link will download the chap-
ter example as a zip file, which you can extract and then view: https://github
.com/ionic-in-action/chapter7/archive/master.zip. To check out the chapter exam-
ples, use the following command to clone the repository (this chapter uses the master
branch, and doesn’t have tags to check out each step):

$ git clone https://github.com/ionic-in-action/chapter7.git
$ cd chapter7

7.2 Custom Ionic styling using Sass
Ionic comes with a beautiful set of default colors and styles for every component. The
examples so far have used very little custom styling and have relied heavily on Ionic’s
defaults. This is great for learning and shows the power of Ionic, but typically you’ll
want to customize the design for your needs in some way.

 It’s best practice to customize the display of your app for your own needs. This is
particularly true regarding colors, because you want to give your app its own design
and branding. It usually takes some time to consider what works best for your app, and
boils down to your vision for the app branding and styling.

 I want to reiterate that you shouldn’t try to modify the default Ionic CSS file. This is
bad practice, and will cause problems when you want to update Ionic. Also, if you try to
add new rules to change Ionic styling, it might cause you stress in the long term to main-
tain the list, especially if you’re trying to change the default colors on every component.

 In this section you’ll use the example inside of the sass directory of your code pro-
ject. You can refer to it for a working example of how Sass is configured. Let’s use Sass
to customize Ionic’s styling for your own purposes.

7.2.1 Setting up Sass

Sass (Syntactically Awesome Stylesheets) is a CSS preprocessor. Sass is a superset of
CSS, which means you can write regular CSS, and Sass understands it. Sass compiles
down to CSS, so there’s nothing special that the browser needs. But Sass provides a
number of features that CSS doesn’t (such as variables, nesting, and inheritance) that
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter7/archive/master.zip
https://github.com/ionic-in-action/chapter7/archive/master.zip
https://github.com/ionic-in-action/chapter7.git

165Custom Ionic styling using Sass
are very useful for customizing styling. You can learn more about Sass at http://sass-
lang.com/.

 Ionic has written its styling using Sass, and has used variables extensively. These
variables can be declared once and used in multiple places. This makes it possible to
change the variable for a color once, and have the color update anywhere it was used.
There are hundreds of variables that control the primary color styles, fonts, padding,
borders, and more. You can override any of the variables, and then regenerate the CSS
with your new values.

 First you need to set up your app to be ready for Sass. You need to make sure
you’ve installed your Node dependencies for the project, and then run the ionic
setup command, which will update a few parts of your app:

$ npm install -g gulp
$ ionic setup sass

The first command will install Gulp, which is a build tool. Ionic uses Gulp to run tasks,
such as converting Sass files into CSS. Gulp uses the gulpfile.js file that Ionic created in
your project when you first began. The file is used to manage the Gulp tasks. You can
modify (or may have already) the Gulp file with additional tasks that you wish to run,
but by default Ionic only creates tasks related to building Sass.

 The second command handles setting up a few things required by Sass. It will
install any dependencies required to run using the Node package manager (npm),
and then check that your Gulp file has a Sass task. Assuming it finds one (it should
unless you deleted it sometime), it will run the task and build the CSS for the first
time. It will also add a few notes to the ionic.project file. Lastly, it updates the index
.html file with a reference to the new customized compiled CSS file (www/css/ionic
.app.css). You should verify the new file is correctly linked in the www/index.html file.

 It’s easiest to do this right away when you start a new project, instead of waiting to
do it later. Now let’s take a look at how to modify the default variables to customize
Ionic.

7.2.2 Customize Ionic with Sass variables

Ionic has hundreds of default variables for different parts of the Ionic styling. The
most obvious and useful to change are the nine default color options. The exact num-
ber of variables may change as Ionic updates, but you can find the complete list in the
www/lib/ionic/scss/_variables.scss file. But don’t change them in that file! Just use it
as a reference to find the variables you need to customize, and you’ll override them in
another location.

 To customize these variables, you’ll modify the sass/scss/ionic.app.scss file. Inside
there are some comments, but really there are two commands:

// The path to ionicons font files, relative to the built CSS in www/css
$ionicons-font-path: "../lib/ionic/fonts" !default;

// Include all of Ionic
@import "www/lib/ionic/scss/ionic";
Licensed to Mark Watson <nordickan@gmail.com>

http://sass-lang.com/
http://sass-lang.com/

166 CHAPTER 7 Advanced techniques for professional apps
The first is a variable that correctly links to the font icon directory because this file is
in a different place than the default files. The second is an @import command, which
will import the file found at www/lib/ionic/scss/ionic.scss, which then imports the
rest of the Sass files. Any variables that you set before the @import command will over-
ride the default variables, and this is where you’ll assign the new values. Any time you
add variables, you’ll need to rebuild the Sass files.

 Imagine you want to change the default Ionic color to be colors set forth by
Google’s material design standard. Add the variables before the @import command
with values to set a new default, as shown in the following listing.

$light: #FAFAFA;
$stable: #EEE;
$positive: #3F51B5;
$calm: #2196F3;
$balanced: #4CAF50;
$energized: #FFC107;
$assertive: #F44336;
$royal: #9C27B0;
$dark: #333;

// Include all of Ionic
@import "www/lib/ionic/scss/ionic";

@import "www/scss/app";

Anywhere you have used Ionic color classes will now default to the new color, such as
the bar-positive or tabs-positive color presets. You must regenerate the CSS first, and
you can do so by running the Gulp task:

$ gulp sass

The file should rebuild in less than a second, and update the www/css/ionic.app.css
file with the new color preset. This is pretty awesome, but it can get annoying to
remember to always rerun the Gulp task every time you change some styling. There’s
also a watch task that will automatically rebuild any time you save changes. It
has to run in its own command-line window, so it can be running continuously in the
background. Open a new command-line window or tab, and run the gulp watch
command:

$ gulp watch

Alternatively, when you use ionic serve and you set up Sass, the serve command will
automatically rebuild the CSS when you change the files and then refresh the CSS in
the browser without reloading, so you’ll get to see your changes instantly.

 Sometimes the gulp watch or ionic serve commands will hit an error and stop
running. Depending on your command line, the serve command might alert you, but
if you notice that changes don’t seem to be appearing as you make them, verify that

Listing 7.1 Sass variables (sass/scss/ionic.app.scss)

Sets default variables
according to your
requirements

Imports Ionic library Sass
files; your variables will
override existing Ionic ones

Imports a Sass file from app
Licensed to Mark Watson <nordickan@gmail.com>

167How to support online and offline mode
the serve command is still running correctly. Occasionally syntax errors in your code
can cause the serve command to fail.

7.2.3 Using Sass for your own styling

You can use Sass for your customizations beyond just changing Ionic variables. It’s a
good idea to write all of your custom styling using Sass as well. There are many fea-
tures you can use to help, but you can write CSS if that’s what you prefer. I personally
recommend it, even if you aren’t sure that you’ll need the extra features of Sass. At a
minimum, it will tell you about syntax errors as soon as you try to save the file.

 The easiest way to start is to create new files inside of the scss directory and write
your styles there. You’ll need to add import statements in the ionic.app.scss file to load
your scss files, just like it imports the Ionic styles. Note that you’ll want to do this after
importing the Ionic library. Here’s an example of the syntax to import:

@import "customizations"

You can leave off the file extension if the files are named with .scss. By default, the Gulp
task watches any Sass file in the scss directory, so it will start to automatically rebuild
when you make changes to any of your styling as long as the watcher is running.

 I like to keep my styles in the www directory. I’ve described before how I have my
JavaScript, CSS, and HTML for the same view located in the same folder. This isn’t a
problem, because you can still use the ionic.app.scss file as the main app file, and then
import the files from the www directory. By default, Ionic’s Gulp task assumes you’ll
put all of your Sass files in the scss directory, so the watcher task doesn’t look at the
www directory for changes. You can change this easily by updating gulpfile.js, where
you see the paths.sass property defined. This property takes an array of paths
(which can include wildcards or glob patterns to match), and this example will add
support to watch the www directory as well:

var paths = {
 sass: ['./scss/**/*.scss', './www/**/*.scss']
};

That’s a simple little improvement that allows you to keep your styles together with the
HTML and JavaScript for the view. You can organize your code however you like, but
it’s best to keep it consistent.

7.3 How to support online and offline mode
In all three examples from chapters 4 through 6, you assumed the device is online
with an internet connection so you could load data into the app. But in the mobile
world, internet connections can be spotty, or users might manually disable it (such as
airplane mode for flying). You can do some things to check for the online status of a
device and handle the situation when the device is offline:

 Use a Cordova plugin that can ask the device for the current connection status.
 Listen for online and offline events.
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 7 Advanced techniques for professional apps
Let’s demonstrate the second option. The Cordova plugin shouldn’t be necessary to
detect online or offline status. This section is only concerned about dealing with the
presence or absence of a connection. You can investigate the Cordova Network Con-
nection Plugin API to get more details about the type of connection (Wi-Fi verses cel-
lular data, for example) if your use case requires it.

 Browsers have support for determining if a browser has a connection or not to a
server. The basic code to determine if you’re online or offline is fairly simple. The
challenge is in designing the application to properly handle both situations in the best
way possible.

 The following listing adds two event listeners to the application and checks the
default status of the network connection to offline/www/js/app.js.

angular.module('App', ['ionic'])
.run(function($rootScope, $window) {

 alert($window.navigator.onLine);

 $window.addEventListener('offline', function() {
 alert('offline');
 $rootScope.$digest();
 });

 $window.addEventListener('online', function() {
 alert('online');
 $rootScope.$digest();
 });

})

The application example here is only to demonstrate how to create the event listener
and check the online status on load. The $window.navigator.onLine value B
returns either true or false, depending on if the browser has a network connection.
Then you add two event listeners to the window C, D that listen for online or offline
state changes. These will only fire when the status changes, but not on load. There’s a
$digest() call because changes that happen inside of a native event listener don’t get
registered with the Angular digest loop. If you changed something with your Angular
application in the event callback, you’d have to end it with a call to $digest() to prop-
agate those changes through the app.

 To test this, you also need to realize this only tells you if you have a network con-
nection, which may not always be what you want to check. For example, if you use
ionic serve with live reload, the browser recognizes the Ionic live reload server as a
network connection and therefore will not appear offline, even if you disconnect from
the primary computer’s network connection. The best way to test this is to emulate
this without the live reload option, and then disable your computer’s network connec-
tion to trigger the state change:

$ ionic platform add ios
$ ionic emulate ios

Listing 7.2 Listening for online and offline events (offline/www/js/app.js)

Shows alert with
online status on load

B

Listens for offline
event and shows alertC

Listens for online
event and shows alertD
Licensed to Mark Watson <nordickan@gmail.com>

169Handling gesture events in Ionic
Once the app has launched in the emulator, you can toggle the connection and you
should get an alert with the changed state. While this example is simplistic, it serves to
introduce the means to detect changes.

7.4 Handling gesture events in Ionic
Sometimes you’ll need to build your own component or interface and you’ll want to
handle user gestures and events such as swipes and drags. Ionic has several options for
you to use to build this support.

 Very few apps can be built without creating customized interface elements. Some
apps require very unique touch experiences to interact with the elements. I advise
against creating complex gestures or relying on users learning specific gestures,
because most users have a low threshold for learning an app. If your custom interface
doesn’t make sense or provide enough contextual information about how to use it,
then users are likely to abandon your app. Nobody likes to feel dumb or confused, so
be considerate in how you build these interactions by favoring simplicity.

 The two main ways Ionic provides support for gestures are with a set of directives to
listen for events, or by adding event listeners programmatically into your controllers.

7.4.1 Listen for events with Ionic event directives

The Ionic event directives are a collection that will listen for a particular event and call
an expression or function when the event fires. These events include hold, tap, drag,
and swipe. The exact timings for these events to fire are listed in the documentation.
This section uses the events directory of the project, and figure 7.1 shows the output.

Box has onTouch
and onRelease events.

When the box is touched,
the controller moves the
box based on the user’s
finger drag. On release, it
leaves the box in place.

Figure 7.1 Box that can be moved
on touch using event directives
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 7 Advanced techniques for professional apps
These event directives are the easiest way to listen for events. Let’s take a look at an
example of how to use them. Listing 7.3 shows a directive that has a combination of
events that lets users drag an icon around the screen, and it will also log to the console
the number of milliseconds from the time a user touched the item until it’s released.
The code in the following listing has the directive, which for simplicity is added into
the app.js file.

angular.module('App', ['ionic'])
.directive('box', function () {
 return {
 restrict: 'E',
 link: function (scope, element) {
 var time = 0, boxX = 0, boxY = 0;
 var leftBound = window.innerWidth - 50;
 var bottomBound = window.innerHeight - 50;
 scope.top = 0;
 scope.left = 0;

 scope.startTouch = function (event) {
 time = event.timeStamp;
 };

 scope.endTouch = function (event) {
 console.log('You held the box for ' +

(event.timeStamp - time) + 'ms');
 boxX = scope.left;
 boxY = scope.top;
 };

 scope.drag = function (event) {
 var left = boxX + Math.round(event.gesture.deltaX);
 var top = boxY + Math.round(event.gesture.deltaY);

 if (left > leftBound) {
 scope.left = leftBound;
 } else if (left < 0) {
 scope.left = 0;
 } else {
 scope.left = left;
 }
 if (top > bottomBound) {
 scope.top = bottomBound;
 } else if (top < 0) {
 scope.top = 0;
 } else {
 scope.top = top;
 }
 };
 },

 template: '<div id="box" class="icon ion-cube" on-
touch="startTouch($event)" on-release="endTouch($event)" on-

Listing 7.3 Box directive (events/www/js/app.js)

Links function for
box directive to
add listeners

Sets up some variables
to track positions

Touch event handler;
tracks start time of drag

Release event handler;
tracks total time of
drag and logs to
console

Drag event
handler; moves
position of box

based on drag and
limits boundaries

to edge
Licensed to Mark Watson <nordickan@gmail.com>

171Handling gesture events in Ionic
drag="drag($event)" ng-style="{top: top + \'px\', left: left +
\'px\'}"></div>'

 }
})

This example creates an icon that can be moved around the screen. It checks that the
icon doesn’t go outside of the window space; otherwise, it will go anywhere the user
drags it. The onTouch and onRelease event handlers are used to track the total time
the user touches the icon, and the onDrag event handler does the work to move it
around by changing scope variables for the top and left positions that ngStyle
updates.

 To use this, just add a box element to the app. Here you’ll add the single box to
the app and it will allow the user to begin dragging:

<body ng-app="App">
 <box></box>
</body>

There’s also some CSS required for the positioning to work. CSS rules allow you to
position an element absolutely by giving it top and left position values, which come
from the drag event:

#box {
 position: absolute;
 width: 50px;
 height: 50px;
 font-size: 50px;
 text-align: center;
}

There are many different ways you could accomplish similar tasks, but this example
highlights how event directives can be used to react to user gestures. I placed this
example into a directive because best practice is to use a directive when you need to
manipulate the DOM. But you could also have used the directives in a more standard
template and put the event handler methods on the controller.

7.4.2 Listen for events with $ionicGesture service

Another way to listen for events is to use the $ionicGesture service. This allows you to
listen for a wider range of events, but requires a more programmatic approach. The
example for this section is found in the gestures directory of the project.

 The $ionicGesture service needs to be injected into the controller, and then you
can declare which events to listen to. You also have to declare the element to which the
listener will attach itself. This makes it even more important to use the $ionicGesture
service inside of a directive when possible, so you have easy access to the element.

 You’ll use the service to build a simple card that can be swiped off the screen, like
you see in figure 7.2. While the user swipes the card to the right or left, it will animate
in that direction, and once the user releases, if the card is far enough it will be

Inline template; box is
an icon with events and
styles updated by drag
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 7 Advanced techniques for professional apps

Listens
a

ho
c

s it

If
mi

b
moving
removed from the screen, or it will reset to the center. This is shown in the following
listing and found in the chapter 7 project inside of the gestures directory.

angular.module('App', ['ionic'])
.directive('card', function () {
 return {
 scope: true,
 controller: function ($scope, $element, $ionicGesture, $interval) {
 $scope.left = 0;

 $ionicGesture.on('drag', function (event) {
 $scope.left = event.gesture.deltaX;
 $scope.$digest();
 }, $element);

 $ionicGesture.on('dragend', function (event) {
 if (Math.abs($scope.left) > (window.innerWidth / 3)) {
 $scope.left = ($scope.left < 0) ? -window.innerWidth :

window.innerWidth;
 $element.remove();
 } else {
 var interval = $interval(function () {
 if ($scope.left < 5 && $scope.left > -5) {
 $scope.left = 0;
 $interval.cancel(interval);

Listing 7.4 $ionicGesture service (gestures/www/js/app.js)

Each card has drag
gesture event listeners.

When the card is dragged
far enough in a direction
it will go off screen and clear.

If you move back to the center,
it will reset to the middle.

Swipe right
to move card.

Figure 7.2 Gesture event listeners to swipe cards off the screen

Injects $ionicGesture
service into controller

 for drag event
nd moves card

rizontally while
ard is dragging

Listens for
dragend event
and determines
if card should be
removed or reset

If card is over 33%
offscreen, remove

card is still near
ddle, animates it
ack to center by
 five pixels every
five milliseconds
Licensed to Mark Watson <nordickan@gmail.com>

173Handling gesture events in Ionic
 } else {
 $scope.left = ($scope.left < 0) ? $scope.left + 5 :

$scope.left - 5;
 }
 }, 5);
 }
 $scope.$digest();
 }, $element);
 },
 transclude: true,
 template: '<div class="list card" ng-style="{left: left + \'px\'}"><div

class="item" ng-transclude>Swipe Me</div></div>'
 }
})

This card directive attaches two event listeners for drag and dragend. Technically
you’re listening for the drag events here, because swipe events don’t fire until the
swipe has occurred. If you listened for the swipe event, the cards wouldn’t move until
after the user had already completed the swipe, so it would have a visual delay that
might confuse the user. The directive uses the controller to inject the service. When
you attach an event listener using the on method, you have to pass it at least three
things: one of the predefined event names, a callback function to fire when the event
is triggered, and the element it should attach to. Because you use a directive here, it
has access to the special $element service; otherwise, in a controller you’d have to use
angular.element() to locate the proper element to attach the listener.

 For this example to work, you just need to add one line of CSS to www/css/
styles.css:

.card { position: relative; left: 0; }

Then you can add any number of these card directives to your app, and each can be
individually swiped off the screen:

<body ng-app="App">
 <card>Card 1</card>
 <card>Card 2</card>
 <card>Card 3</card>
 <card>Card 4</card>
 <card>Card 5</card>
</body>

The contents of the card element are transcluded inside of the card, which is an
Angular feature available to directives. Transclude essentially copies all of the HTML
content inside of the directive tag, and places it into the directive template where
ngTransclude is declared.

 This approach is more flexible and is able to support more gesture events than the
event directives you looked at earlier. But gesture events require a little more work to
set up. In the end, both of them accomplish the same task, so the choice ultimately is
preference over style.

If card is still
near middle,
animates it back
to center by
moving five
pixels every five
milliseconds
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 7 Advanced techniques for professional apps
7.4.3 Available gesture events

There are a lot of gesture events that you can listen for. Table 7.1 gives a list of the pos-
sible gestures, the event name, the directive (if available), and notes about what trig-
gers the gesture event.

Table 7.1 Supported gestures, JavaScript event names, use notes, and possible directives
(if available)

Gesture Event Directive Notes

Hold hold on-hold Touch an element for at least
500 ms

Tap tap on-tap Touch an element for less
than 250 ms

Double tap doubletap Two touches on same place,
within 300 ms

Touch touch on-touch Fires when a touch is detected

Release release on-release Fires when a touch is released

Drag drag on-drag Long touch while moving in
any direction, generic

Drag start dragstart Fires when drag is first
detected

Drag end dragend Fires when drag is released

Drag up dragup on-drag-up Drag up on y axis

Drag down dragdown on-drag-down Drag down on y axis

Drag left dragleft on-drag-left Drag left on x axis

Drag right dragright on-drag-right Drag right on x axis

Swipe swipe on-swipe Quick touch and flick in any
direction, generic

Swipe up swipeup on-swipe-up Swipe up on y axis

Swipe down swipedown on-swipe-down Swipe down on y axis

Swipe left swipeleft on-swipe-left Swipe left on x axis

Swipe right swiperight on-swipe-right Swipe right on x axis

Transform transform Two fingers touch and move,
generic

Transform start transformstart Fires when a transform is first
detected

Transform end transformend Fires when a transform is
released
Licensed to Mark Watson <nordickan@gmail.com>

175Storing data for persistence
7.5 Storing data for persistence
In the examples from chapters 4 through 6, every time you loaded the app it would
reset any changes you had made and start as if it were the first time the app was used.
This is obviously annoying and a bad experience for users. For example, users expect
that if they mark an item as a favorite, it will stay a favorite. Wouldn’t it be great if the
app could remember things and pick up where a user left off? The good news is that
there are several ways to do this, and I’ll show you the primary way that doesn’t
require any additional plugins.

 Because Ionic apps are web applications, apps have the ability to use some of the
built-in storage features of the web platform. They have support for localStorage for
key-value pairs and either Web SQL, IndexedDB, or SQLite for a more robust database.

 The general approach for either option is that you’ll need to store data, and when
the app resumes, the first task will be to load the data from storage. Any app that has
the ability to log in will retain some kind of session and user information in storage to
properly communicate with a back-end service.

 Apps with persistent data should also be designed to handle the situation where
data is cleared from the cache. Never assume that stored data will remain indefinitely.

 When you store data on a device, you should take precautions against storing any-
thing that users shouldn’t be able to see. Anything on a device is potentially viewable
by the device owner using debugging tools, but it’s reasonable to store private data for
that user (such as an OAuth token). Anything that should never be shown to the user
should be stored in a server environment (such as a private API key for a web service).

7.5.1 Using localStorage

localStorage is a very simple storage option for your app that stores values in the
browser cache directory. It’s essentially a key-value-pair storage system, or you can
think of it like a JavaScript object with the ability to create only one level of properties,
which must always be strings. I turn to localStorage any time I can because it’s the
easiest way to store data. In a browser, users can clear the data from localStorage any
time, but in a hybrid app they aren’t able to clear the data unless they’re using debug-
ging tools.

Rotate rotate Two fingers rotating

Pinch pinch Two fingers pinch and slide
together or apart

Pinch in pinchin Two fingers pinch and slide
together

Pinch out pinchout Two fingers pinch and slide
apart

Table 7.1 Supported gestures, JavaScript event names, use notes, and possible directives
(if available) (continued)

Gesture Event Directive Notes
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 7 Advanced techniques for professional apps

Creates
me

handle
JSON stri
into local
 localStorage is very easy to use but has two major limitations. First, values are
stored as a string, regardless of what data type they were before. This means an integer
will be turned into a string during storage. This can cause problems if you try to com-
pare a string to a number using strict comparators (such as "1" === 1, which is false).
Second, there are size limits on the total data you can store, which isn’t standardized
between browsers. You should consult the documentation for the platforms to see what
the current capacity is (Android Browser 4.3 has 2 MB, Safari has 5 MB, and Chrome has
10 MB at time of writing), or visit http://mng.bz/7J3R for a good summary of many stor-
age type limitations. This is a lot of space, but if you exceed it you’ll get errors. It can
become difficult to manage over time if you’re working with a lot of data.

But if your storage needs are simple, localStorage is often the best solution. Figure 7.3
shows the updated weather app example from chapter 6 to store the locations list in
localStorage and load it back into the app when it’s reloaded. For this section you’ll
use the code inside of the storage directory. The only change from the chapter 6 exam-
ple is in the Locations service in the storage/www/js/app.js file, shown in the following
listing with changes in bold.

.factory('Locations', function ($ionicPopup) {
 function store () {
 localStorage.setItem('locations', angular.toJson(Locations.data));
 }

Listing 7.5 Save and load from localStorage (storage/www/js/app.js)

The favorites list
is stored in localStorage.

When the app loads,
it reloads it from localStorage
to remember the user’s locations.

Figure 7.3 localStorage stores
the location list and reloads it when
the app is opened.

 store()
thod to
 saving
ng data
Storage
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/7J3R

177Storing data for persistence
 var Locations = {
 data: [],
 getIndex: function (item) {
 var index = -1;
 angular.forEach(Locations.data, function (location, i) {
 if (item.lat == location.lat && item.lng == location.lng) {
 index = i;
 }
 });
 return index;
 },
 toggle: function (item) {
 var index = Locations.getIndex(item);
 if (index >= 0) {
 $ionicPopup.confirm({
 title: 'Are you sure?',
 template: 'This will remove ' + Locations.data[index].city
 }).then(function (res) {
 if (res) {
 Locations.data.splice(index, 1);
 }
 });
 } else {
 Locations.data.push(item);
 $ionicPopup.alert({
 title: 'Location saved'
 });
 }
 store();
 },
 primary: function (item) {
 var index = Locations.getIndex(item);
 if (index >= 0) {
 Locations.data.splice(index, 1);
 Locations.data.splice(0, 0, item);
 } else {
 Locations.data.unshift(item);
 }
 store();
 }
 };

 try {
 var items = angular.fromJson(localStorage.getItem('locations')) || [];
 Locations.data = items;
 } catch (e) {
 Locations.data = [];
 }

 return Locations;
})

You can see localStorage is available globally in JavaScript because it’s part of the pri-
mary JavaScript APIs. You create a store() function to abstract the logic because there
are multiple places you want to store the data into localStorage. When store() is

Calls store() method after
toggling a location from list

Calls store() method
after setting a new
primary location

When app starts, tries to
load data from localStorage
or else sets a blank array
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 7 Advanced techniques for professional apps
called, it takes the array of locations and stores them in localStorage, but first con-
verts the array into a JSON string (because localStorage only handles strings). Then
when the list of locations changes, the app calls the store() method to update the
cached data.

 In the try-catch statement, the app attempts to load the data from localStorage,
and then parse the JSON if it was set. If nothing is set in localStorage or if there’s an
error loading data from localStorage, then the location list is set to an empty array.

 Now the app will always try to load the list of stored locations and use that instead
of starting with a blank list. This is obviously a very good improvement for users, and
localStorage is very easy to implement.

 You can inspect the localStorage values inside of the browser developer tools and
should see an item with the list there. localStorage is app-specific, so the data you
store is safe from other apps. But localStorage can be inspected by developers,
meaning you can’t safely store anything that you absolutely cannot allow others to see.

7.5.2 Using Web SQL, IndexedDB, and SQLite

Web SQL, IndexedDB, and SQLite are different types of browser-based databases. Like
localStorage, the data is stored in the browser’s cache system. These options are best
for larger amounts of data, or data that you want to be able to directly query. But
they’re all more difficult to use, and support for them varies across platforms.

 Web SQL is similar to a full-featured database with the ability to use SQL to query
tables. It allows you to use SQL statements like SELECT, UPDATE, and so forth. The chal-
lenge is that the specification for Web SQL was abandoned back in 2010 when browser
vendors couldn’t come to agreement on the standard. At the time of writing, iOS and
Android both support Web SQL, but it’s possible that over time this support may be
removed.

 IndexedDB is an object store that’s somewhere between Web SQL and localStor-
age. It uses a key-value storage like localStorage, but items have fields with specific
data types and the ability to limit results by requesting certain fields with a given value.
At the time of writing, IndexedDB isn’t supported by iOS and Android.

 SQLite is similar to Web SQL with a SQL-like syntax for loading data in and out of
a local database. It also suffers from being abandoned by browsers and standardiza-
tion bodies for first-class support in browsers. Now most support for SQLite comes
through Cordova plugins.

 Like localStorage, the data from these databases can’t be viewed by other apps,
but can still be viewed by developers when they debug using their device.

 At the time of writing, Web SQL is the option that both iOS and Android support
fully with the help of Cordova, and IndexedDB isn’t properly supported. But Web
SQL has been deprecated since 2010 and likely will be removed in the future, so in
time support will likely shift to IndexedDB. But to be doubly sure of what’s supported
or not, you can check the Cordova storage documentation at http://mng.bz/1UYx.
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/1UYx

179Building one app for multiple platforms
Check that you’re looking at the same version of the documentation that fits the pro-
ject’s Cordova version—you can run cordova info to find the version. You can also
do a quick test yourself by running one of the following commands to tell you if it’s
supported or not on a given platform:

alert('WebSQL: ' + ((window.openDatabase) ? 'yes' : 'no'));
alert('IndexedDB: ' + ((window.indexedDB) ? 'yes' : 'no'));

You need to run these commands on an emulator or device to get the proper message.
Just add these lines at the start of your JavaScript to alert you of support for the two
options.

7.5.3 Other options from Cordova plugins

Cordova provides plugins to allow you to access additional features on a device. We’ll
look at some plugins in chapter 8 in depth, but you should know there are many
options in the Cordova plugin repository for storage.

 The options are varied and ever-changing. Some are able to bring IndexedDB or
Web SQL support to all devices, others support different storage systems like SQLite,
and others are designed to allow you to store entire files. You can discover storage plu-
gins at http://plugins.cordova.io/npm/index.html.

7.6 Building one app for multiple platforms
One of the best features of building apps with Ionic is the ability to target multiple
devices and platforms with one app. But sometimes you need to tweak behavior or
design for a particular device or platform.

 There are different situations where you need to think about different experiences
for different platforms. Ionic provides some of this built into its core. For example,
tabs on Android appear differently than they do on iOS. The reason is the Ionic devel-
opers wanted to be able to provide the same behavior (tabs) but make it look and feel
native to that platform (styling). The tabs do the same thing, just the appearance var-
ies slightly.

 There are two main ways to target a platform: change the appearance or change
the behavior. Before we look at them, let’s dig a bit more into why you should bother
building apps that adapt to different platforms.

7.6.1 One size doesn’t always fit all

As an app developer, you should consider what makes the app best for your users, not
what makes the app the easiest for you to build. Building apps with the exact same
behavior on Android and iOS may not always work out for your users, and you should
consider this carefully. This is especially true in cases where users are accustomed to
certain interactions.

 Android and iOS have many differences in their appearance and interaction
behaviors. Even different versions of iOS and Android can differ greatly, and over
time you can only assume that will continue. Ionic is committed to supporting the
Licensed to Mark Watson <nordickan@gmail.com>

http://plugins.cordova.io/npm/index.html

180 CHAPTER 7 Advanced techniques for professional apps
modern versions of these platforms, and as the mobile platforms continue to evolve,
Ionic will adapt.

 You must remember that Ionic is only able to do so much for app developers. Ulti-
mately you’re responsible for ensuring that the apps you build work and make sense
on different platforms. It’s worth spending time with the official native style guides for
iOS and Android to familiarize yourself with the differences. Then when you’re
designing your app, you’ll be able to consider the best design for each platform and if
you need to design anything specific to a platform. Here’s where you can find the offi-
cial style guides:

 Android style guide: http://developer.android.com/design/style/index.html
 iOS style guide: https://developer.apple.com/library/ios/documentation/

UserExperience/Conceptual/MobileHIG/

7.6.2 Adapt styling for a platform or device type

Ionic provides you a simple way to determine which platform or device you’re using so
you can adapt your app styling as necessary. Ionic determines what platform you’re
using, and adds a number of classes to the body element:

 platform-ios for iOS
 platform-android for Android
 platform-browser for browsers

These classes give you insight into what type of platform is used. You can also find
other classes based on the version number of the platform, for example, platform-
ios-ios7. In some cases you might need to target a specific version; the version class
can provide you that information.

 The two major reasons you’ll need to use this technique are for providing plat-
form-specific styling, and to address possible display bugs present only on a particular
platform. In general, you probably will want to limit the amount of platform-specific
design because it will add to the amount of testing you need to do.

 You’ll use the code from the adaptive-style directory for this section. This is a sim-
ple app that just shows the Ionic logo on a background, but depending on the plat-
form, a different background color will display, as shown in figure 7.4. The template
for the app is shown in the following listing and the CSS is shown in listing 7.7.

<body ng-app="App">
 <ion-pane>
 <ion-content>

 </ion-content>
 </ion-pane>
</body>

Listing 7.6 Adaptive styling template (adaptive-style/www/index.html)
Licensed to Mark Watson <nordickan@gmail.com>

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
http://developer.android.com/design/style/index.html

181Building one app for multiple platforms

or

nly
.scroll {
 text-align: center;
 padding-top: 50px;
}
.ion-ionic {
 font-size: 100px;
 color: #fff;
}
.pane {
 background: #333;
}
.platform-ios .pane {
 background: #C644FC;
 background: -webkit-linear-gradient(top, #C644FC 0%,#5856D6 100%);
 background: linear-gradient(to bottom, #C644FC 0%,#5856D6 100%);
}
.platform-android .pane {
 background: #C62828;
 background: -webkit-linear-gradient(top, #C62828 0%,#F44336 100%);
 background: linear-gradient(to bottom, #C62828 0%,#F44336 100%);
}

Listing 7.7 Adaptive styling CSS (adaptive-style/www/css/style.css)

Using body classes,
the app adapts the
background color
based on platform.

Android:
.platform-android

iOS:
.platform-ios

Figure 7.4 Platform-specific styling for Android (left) and iOS (right)

CSS selector to
target iOS only

CSS select
to target
Android o
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 7 Advanced techniques for professional apps
By prefixing your CSS rules with the platform body class, you can see the different col-
ors in the background by platform.

7.6.3 Adapt behavior for a platform or device type

You can also adapt the behaviors of the app for a particular platform. For example,
you may want to use an action sheet component on iOS but a popover on Android to
better fit in with the platform. Ionic can detect which platform is in use, and then
modify behaviors accordingly.

 The ionic.Platform service is available to provide you this information. It pro-
vides a list of methods such as isIOS() and isAndroid() to return a Boolean value if
the platform is active, and you can also use the platform() method to return the
name of the current platform.

 In a fairly simple example shown in figure 7.5, pressing the more button (the icon with
three dots) will behave differently depending on the platform. You’ll check if it’s iOS, and
show the action sheet; otherwise, show the popover for Android, as in listing 7.8.

Use platform
service to determine
the current platform
in your controller.

Use popover in Android,
and action sheet in iOS.

Android:
ionic.Platform.isAndroid()

iOS:
ionic.Platform.isIOS()

Figure 7.5 Based on the platform, you can change the behavior of the button in iOS or Android.
Licensed to Mark Watson <nordickan@gmail.com>

183Building one app for multiple platforms

d

r

angular.module('App', ['ionic'])
.controller('Controller', function ($scope, $ionicActionSheet,

$ionicPopover) {
 $scope.more = function (event) {

 if (ionic.Platform.isIOS()) {
 $ionicActionSheet.show({
 buttons: [
 {text: 'Just a button'}
],
 buttonClicked: function (index) {
 return true;
 }
 });

 } else {
 var popover = $ionicPopover.fromTemplate('<ion-popover-view>

<button class="button button-full">Just a button</button>
</ion-popover-view>');

 popover.show(event);
 }
 }
})

Here you create a controller with a single method that checks if the device is running
iOS or not. The ionic.Platform service isn’t an Angular service, so you don’t need to
inject it. There’s an $ionicPlatform service, but it’s intended for use with Cordova
plugins and doesn’t provide information about the current platform.

 Once the platform is determined, you choose to show the action sheet or popover.
The markup for this example is shown in the following listing.

<body ng-app="App">
 <ion-header-bar align-title="left" class="bar-positive" ng-

controller="Controller">
 <h1 class="title">Adaptive Behavior</h1>
 <div class="buttons">
 <button class="button" ng-click="more($event)"><span class="icon

ion-more"></button>
 </div>
 </ion-header-bar>
</body>

The ionic.Platform service is able to provide current information about the plat-
form. It also has a few methods to modify the app behavior, such as the ability to set
the app to full screen or exit the app programmatically.

Listing 7.8 Adapting behavior by platform (adaptive-behavior/www/js/app.js)

Listing 7.9 Adaptive behavior template (adaptive-behavior/www/index.html)

Creates
controller and
injects services

more() method
to be called by
ngClickUses ionic

.Platform
to

etermine
if iOS

If iOS, shows action
sheet with dummy
button

Otherwise,
shows popove
with dummy
button

Uses ngClick to call
more() method, and
passes event for popover
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 7 Advanced techniques for professional apps
7.7 Modify default behaviors with $ionicConfigProvider
Ionic has a way to modify a number of default behaviors. You were able to modify the
default styling using custom Sass variables, and this is the same idea, except you can
modify behaviors such as transition types or default navbar title alignment.

 The defaults for Ionic are designed to be focused on the correct platform. For
example, in a navbar the title will align to the left on Android and will center on iOS
to match the style guidelines. But you can force Ionic to render the titles the same
regardless of the platform.

 The complete list of configurable items is provided in the documentation. You’ll
build one example to modify the default tabs styling so that it’s always striped, and you
want the tabs on top. All of the configuration options can be modified in the same
manner as you see in this example. In figure 7.6 you can see the result of updated
defaults for the tabs.

The configuration defaults are set in the module config() method, in the same
method that the states are declared. The following listing has the default configura-
tion changes set for tabs.

Overriding the default
tabs display by using
$ionicConfigProvider.

Tabs are on bottom for all
platforms with striped style.

Figure 7.6 Overriding Ionic default values for tabs
Licensed to Mark Watson <nordickan@gmail.com>

185Summary

angular.module('App', ['ionic'])
.config(function($ionicConfigProvider) {
 $ionicConfigProvider.tabs.style('striped').position('bottom');
})

The $ionicConfigProvider is the special service provider for Ionic’s configuration,
and you’re able to update values by calling its methods and passing arguments. In this
example you also can chain the two tabs methods together, but if you were changing
the default for another aspect unrelated to tabs, chaining wouldn’t work. This code
will set tabs to be striped and on the bottom, which isn’t the default behavior for tabs.

 The configurations can still be overridden in the tabs implementation using
classes. It might not be necessary to change the default for some things like the tabs
display because you can still set the CSS classes on the tabs instance to modify its dis-
play. But some of the configurations can’t be changed elsewhere, particularly the
caching views information.

7.8 Summary
This chapter has given you additional tools and insights into how to build Ionic apps.
Let’s review the major topics we covered:

 How to build a custom version of the Ionic styles for your app using Sass, and
the build processes that Ionic uses with Gulp

 Support for events and gestures, using both event directives and the $ionic-
Gesture service

 localStorage for persisting data in the app, and other options such as Web
SQL and IndexedDB

 Modifying app behavior and display based on the current platform of the
device running the app to provide specialized experiences per platform

 Changing the default Ionic configuration to set global parameters for different
parts of Ionic

In the next chapter we’ll dig deeper into Cordova, and you’ll learn how to use the eco-
system of plugins with your Ionic apps.

Listing 7.10 Updating default configuration (config/www/js/app.js)

Injects
$ionicConfigProvider
into configuration

Calls tabs settings, and they can
be chained in some cases
Licensed to Mark Watson <nordickan@gmail.com>

Using Cordova plugins
The apps you’ve built so far in this book have been able to do quite a wide range of
interesting things, but you haven’t been able to take full advantage of a device’s fea-
tures. In this chapter we’ll focus on how you can use Cordova’s community of plu-
gins to enrich your apps through deeper integration with the device.

 You’ve been using Cordova for your apps the entire time, because Cordova is
the platform you use to wrap your web applications into a native web app. Cordova
comes with a core set of features and uses a plugin system to extend the feature set.
Plugins provide a way to use JavaScript to implement native features, such as the
camera, instead of using the native platform language.

This chapter covers
 Managing native features of a device with

Cordova plugins

 Using Cordova to more easily integrate with a
device

 Improving the resort app with a camera and
photo book

 Improving the weather app with geolocation
186

Licensed to Mark Watson <nordickan@gmail.com>

187Cordova plugins
 We’ll look at ngCordova, which is an Ionic community–driven project that makes it
easier to integrate many common Cordova plugins with Angular applications like
Ionic. When possible, you’ll want to use ngCordova instead of just the plugin itself.

 Then we’ll look at several examples of using Cordova plugins to extend the apps
you built earlier in the book with native features. Regardless if you did the examples in
the earlier chapters, you’ll need to set up the completed project before you begin.

 Cordova is a powerful platform with far more features than can be covered here. I
recommend also looking at Apache Cordova in Action (Raymond K. Camden, Manning
Publications, 2015) to dig deeper into Cordova.

8.1 Cordova plugins
For the most part, anything that works on a modern web browser will work in your
hybrid apps. But your apps often need to do more than what’s supported natively in
browsers.

 Devices come with a large variety of sensors and features, such as a camera or accel-
erometer. Because these aren’t typically part of the browser; these are implemented as
Cordova plugins.

 Cordova comes with a pluggable architecture, where plugins can add new features
that aren’t in the core of Cordova. Some plugins are officially part of the Cordova project,
and others are submitted and maintained by the community. For example, the Ionic
team has submitted a keyboard plugin for Cordova. The searchable registry with hun-
dreds of Cordova plugins can be found at http://plugins.cordova.io/npm/index.html.

 The officially supported plugins are likely to be well maintained to handle any
changes in Cordova itself, whereas the community plugins may be behind in support.
It’s always good to review the plugins before using them so you can verify they’ll work
with your version of Cordova.

 Plugins may not be carefully maintained, so while a plugin might work for you ini-
tially, you should keep an eye on its development to ensure it’s maintained. If you find
bugs, often the best solution is to open a ticket or issue in the source code project
(typically hosted on GitHub). Alternatively, if the owner of the plugin hasn’t main-
tained it in awhile, you could consider making your own fork of the codebase; but in
general it’s best to try and solve the problems at the source.

 You can even create your own Cordova plugins, but that would require you to
know how to work with the native platforms your plugins will support. So while you’re

Cordova is always evolving
All of the examples and code in this chapter are subject to regular updates. The Cor-
dova plugin ecosystem often evolves quickly as it tries to keep up with devices and
platforms, and the plugins in this chapter are written using the Cordova CLI 4.2.0 and
the plugin versions specified in the examples.
Licensed to Mark Watson <nordickan@gmail.com>

http://plugins.cordova.io/npm/index.html

188 CHAPTER 8 Using Cordova plugins
not limited to the plugins that already exist, you do need to the know the native plat-
form language, such as Java or Swift, to create a Cordova plugin.

8.1.1 Considerations when using plugins

In many cases you’ll want to use plugins, but there are a number of considerations you
should review before including a plugin.

PLUGINS AREN’T ALWAYS NECESSARY

Before selecting and using a plugin, you should consider if a plugin is even necessary.
Sometimes features are available in the browser without a plugin, such as basic net-
work connection details, so it’s unnecessary to add the connection plugin for Cor-
dova. Many plugins were created in the past to add features that were missing at the
time from browsers, but as platforms advance, more features may be native to a
browser.

PLUGINS MAY REQUIRE PERMISSIONS

Plugins may require permissions from a user to work; for example, geolocation
requires permission before the app can access the device location. Different platforms
implement permissions differently, so be sure to review how that particular feature is
implemented and what impact that has on users.

PLUGINS CAN HAVE LIMITATIONS

The best plugins are well documented, and outline how the plugins may have limita-
tions on different platforms. There are often good reasons. For example, iOS and
Android have slightly different ways of storing contact lists, so a plugin may not return
the same data for both platforms, depending on what’s actually available.

PLATFORM UPDATES MAY REQUIRE PLUGIN UPDATES

Inevitably, platforms will continue to evolve and change their underlying APIs.
Because Cordova plugins use these platform APIs, if Android or iOS updates there’s a
chance that the plugins may need to be updated to support the newest features. It’s
also possible they may break due to using APIs that have been removed or changed,
though platforms tend to do well with backward compatibility.

PLUGINS CAN BE BUGGY

I mentioned some plugins are part of the Cordova project, and these are likely to be
the best-supported plugins. But anyone is able to submit a plugin, and there are no
clear restrictions on minimum quality.

8.1.2 Installing plugins

Plugins are installed through the command line. You can search on the plugins site at
http://plugins.cordova.io or search for plugins from the command line. You can use
the command-line search to find notification plugins like this:

$ cordova plugin search notification
Licensed to Mark Watson <nordickan@gmail.com>

http://plugins.cordova.io

189Cordova plugins
This will return a list of any plugins that are related to notifications. It will provide the
plugin identifier and a short description, and you’ll use the plugin identifier when
you wish to install the plugin. Ionic includes several by default, such as
org.apache.cordova.device and com.ionic.keyboard. Here’s how you’d install the
official Cordova notification plugin:

$ cordova plugin add org.apache.cordova.dialogs

It will fetch the latest plugin and add it to your plugins folder. You only need to do this
once per plugin, per project. When you build the project (which happens before you
emulate or run it on any device), it will automatically pull in the installed plugins. You
can review the installed plugins by looking at your plugins folder.

8.1.3 Using plugins

Each plugin works a little bit differently, but they all expose a JavaScript service that
you can use to interact with the plugin. For example, the API to use the camera is
exposed through the navigator.camera object. Installing the plugin and running the
app on an emulator or device will automatically expose the API.

 You can’t use the plugin until the app and plugin are both ready. During the load-
ing of the app, a lot of things happen asynchronously, so Cordova provides the
deviceready event to listen for when plugins are ready to be used. Unlike normal
events that fire once and are done, when you add an event listener for the
deviceready event, even after the event fires it will still handle the callback. This
allows you to avoid the situation where you try to use a plugin feature before it’s
ready, causing some kind of error in the process. You should always wrap calls to Cor-
dova features inside of an event listener for deviceready. In the next two listings, the
two calls are identical, except one uses the native JavaScript addEventListener
method and the other uses the $ionicPlatform.ready method. This is an example
you see in the default Ionic projects to set up the keyboard plugin, implemented in
both ways.

 The following two listings each add an event listener for the deviceready event.

window.addEventListener('deviceready', function () {
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
});

Listing 8.1 Using a plugin in native JavaScript

Adds event listener for
deviceready event

Checks that Cordova and
plugin are available

Calls Keyboard plugin method
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 8 Using Cordova plugins
angular.module('App')
.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 });
});

Assuming Cordova and the keyboard plugin are set up, the app will execute a call to
the hideKeyboardAccessoryBar method. When building with Ionic, it’s recom-
mended to use the $ionicPlatform approach, which is used in the rest of the exam-
ples in this chapter.

8.1.4 Using plugins with emulators

We discussed in chapter 2 that emulators don’t provide the same experience as a real
device. When it comes to working with Cordova plugins, it’s especially important to
test your apps on a real device, but you can usually test them on an emulator as well.

 Most plugins will work just fine with an emulator. Depending on the feature, the
emulator might also allow you to simulate or modify the expected values. For exam-
ple, you can modify the geographic coordinates for the emulator to simulate different
locations without actually going there.

 Some features aren’t available in the emulator, or may behave slightly differently.
Because emulators are only virtual devices, some of the physical device abilities aren’t
easily reproduced virtually. For example, on iOS there’s no way to use the camera
plugin in the emulator.

 Some plugins won’t work in an emulator due to missing features. If a plugin keeps
failing, you should review the documentation to see if it works in an emulator. Error
reporting about this problem can be poor, so it’s one of the things to check when trou-
bleshooting. Using a connected device can help you avoid this problem, so I recom-
mend using a real device when possible.

8.1.5 Plugins and platform limitations

Some plugins are only designed to work with one type of device, and others may
change behaviors for different platforms. This is a side effect of abstracting a similar
feature in multiple platforms into a single plugin.

 For example, the local notifications plugin had to change for iOS 8 due to changes
in the way local notifications were implemented. In version 8, iOS began to require
permission from a user before notifications could be added, and so the plugin had to
adapt to this new requirement.

Listing 8.2 Using a plugin using Ionic

When Angular is ready but
before rest of app executes,

runs some logic

Uses
$ionicPlatform.ready
method to add an
event listener

Checks Cordova is ready and
calls Keyboard plugin method
Licensed to Mark Watson <nordickan@gmail.com>

191Cordova plugins
 If you want to use the Cordova plugin for the action sheet, it’s implemented using
the action sheet for iOS and an alert dialog for Android. These two are the closest way
to implement the ability to display a set of options, and so the plugin has to be flexible.

 The Touch ID plugin is for iOS only, because there’s no similar feature in Android.
Touch ID is for fingerprint verification that recent iPhone and iPad devices have on
the home button, but Android doesn’t have the same support.

8.1.6 Angular and Cordova gotchas

There are a few issues that newer Angular developers might run into when working
with Cordova plugins. In the next section we’ll talk about ngCordova, which addresses
these problems, but doesn’t support every plugin.

 Angular has what’s called a digest loop, as shown in figure 8.1. Angular is able to
track changes to values (which powers two-way data binding, for example) when
events happen inside of this digest loop. It’s a closed system, and JavaScript can exe-
cute independently of the digest loop, but then Angular isn’t aware of anything
changing. Anything that happens outside of Angular continues to work just fine, but
you might expect Angular to execute things that don’t get triggered. The digest cycle
has to be notified when things occur, or else Angular has no idea that there was a
change and doesn’t run a digest cycle.

 The most common challenge is getting Angular to know about code that executes
outside of Angular’s digest loop. Angular provides the ability to notify that changes
have occurred, and trigger a new digest loop to update Angular. For example, you
could request the device geolocation and expect it to update the position of the map
as the user moves. By default, the Cordova geolocation plugin will update the loca-
tion, but it won’t change until the next digest cycle, which would be up to you to trig-
ger, or the user may wait for something else to trigger it.

 When you’re using Cordova plugins, it’s also important to note that there aren’t
Angular services that you can inject into your controllers. This isn’t necessary because
the plugin services are made available globally and can just be used (this may vary by
plugin—the official plugins tend to use the global navigator object to add services).

Template

View

Digest cycle

Model

Changes to model
update view

Changes to view
update model

Compile

Figure 8.1 Angular
digest loop (reprinted
from AngularJS in Action)
Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/angularjs-in-action

192 CHAPTER 8 Using Cordova plugins
Let’s look at an example that uses the geolocation plugin to get the device location.
To update Angular after Cordova is finished with some task, use the $scope.$apply()
method as you see in the following listing.

angular.module('App')
.controller('Controller', function ($scope, $ionicPlatform) {
 $ionicPlatform.ready(function () {
 navigator.geolocation.getCurrentPosition(function (location) {
 $scope.location = location;
 $scope.$apply();
 });
 });
});

Here’s a simple controller that will get the geolocation for the device. You don’t need
to inject the navigator service because this is a global object outside of Angular’s DI
system. When the getCurrentPosition() method is called, the app passes a callback
that handles what to do when the location is returned. When the location is returned,
you assign it to the scope. But because the geolocation method isn’t an Angular ser-
vice, Angular doesn’t know when it’s completed and will not update the scope even
though you’ve updated the location. This is why you call the $scope.$apply()
method, which informs Angular the scope has changed and needs to be updated.

 In this example, if the geolocation request fails (perhaps due to the user disabling
location services for the app), it will continue to execute without setting the
$scope.location value. The app needs the ability to handle the situation where the
location isn’t returned.

 Lastly, Cordova plugins may implement different JavaScript APIs. There may be
multiple plugins for the same feature, but each can function differently. For example,
one plugin might use a callback, where another might use a promise to handle asyn-
chronous calls. You’ll need to review each plugin and understand its architecture to
properly interact with it.

8.1.7 Solutions to common issues with devices or emulators

Once in a while things seem to go awry, and this can happen from accidentally chang-
ing the wrong setting or from trouble building to a connected device. Here are a few
tips to try when you get stuck. Depending on your device and platform, different solu-
tions might have better success.

Listing 8.3 Using $apply to update Angular

Creates a controller, but doesn’t inject
navigator object because it’s global

Calls $scope.$apply() to
inform Angular to

trigger digest

Assigns location to
$scope, but won’t
automatically
trigger digest

Wraps call in $ionicPlatform.ready
to ensure plugin is ready

Calls Cordova
geolocation

plugin, which
accepts a callback
Licensed to Mark Watson <nordickan@gmail.com>

193Cordova plugins
DISCONNECT AND RECONNECT THE DEVICE

The device connection may not be communicating correctly, and sometimes just
reconnecting the device can sort it out.

RESTART THE DEVICE AND COMPUTER

An oldie but goodie, the reboot trick can do wonders. I suggest rebooting both the
device and the computer, and making sure the device isn’t connected until the com-
puter is ready again.

BUILD FROM XCODE/ANDROID STUDIO

If you’re working with iOS, try to build the project from Xcode, or use Android Studio
for Android. The command-line actions to run on a device may behave differently, so
running directly from Xcode/Android Studio often works even when the command
line fails.

RESET OR REBUILD THE EMULATOR

Emulators can be reset or rebuilt to be like new. This will make the emulator act like
it’s brand new, and any existing modifications will be gone. This is helpful to do when
you really want to be sure nothing is retained from before.

UNINSTALL THE APP FROM THE DEVICE AND REBUILD

Disconnect and delete the app from the device. Even if the app is already installed,
and running it normally doesn’t cause problems, it can help to rebuild and deploy a
fresh version.

REMOVE AND ADD THE PLUGINS

Just like with platforms, sometimes the plugins give errors. You can remove them with
the command cordova plugin remove [plugin] or by deleting the plugins folder.
You’ll need to add all of the plugins back in if you delete the folder.

REMOVE AND ADD THE PLATFORMS

When I get obscure errors about not being able to build to the device, I’ll typically
remove the platform and set it up again. This can be done with the command cordova
platform remove ios or by manually deleting the platforms folder in the project.

CREATE A NEW PROJECT

Typically a last resort, you can also just create a new project and copy over your
changes. You’ll want to copy over the files from the www directory, and then go about
adding in the plugins and platforms again.

CHECK THE VERSIONS OF CORDOVA AND IONIC
You may need to update Cordova and Ionic. Also, on iOS you’ll want to check that
ios-sim and ios-deploy are up to date. These are all Node packages, so run npm
update –g [program] to update them. If you update Cordova, you should update the
project as well by running cordova platform update [platform]. It’s good to back up
your project in case trying to update causes more problems to arise due to changes in
features.
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 8 Using Cordova plugins
8.2 ngCordova
Cordova plugins provide a lot of great features, but you can’t use their features like
you’ve used Angular’s services. The ngCordova project was started by the Ionic com-
munity to create Angular-ized versions of Cordova’s services. While ngCordova isn’t
only for Ionic, it was created with Ionic in mind. You can find the ngCordova site at
http://ngcordova.com.

 ngCordova supports dozens of Cordova plugins. The site can provide the most up-
to-date list because more plugins are added as the community needs them. The
ngCordova community welcomes contributions as well, if you’re able to add support
for another plugin not listed.

 The primary benefits of using ngCordova instead of the default Cordova API are as
follows:

 It implements each call to Cordova features as a promise to ensure a consistent
programming experience with Angular.

 It handles calling the digest loop when necessary automatically so you focus on
just writing your code.

 The Ionic community has already selected a good set of plugins for you to avoid
having to research them yourself.

 It has good documentation for each plugin, at least one example for each, and
links to the source documentation for any additional details.

 Every plugin comes with a mock service to use during unit testing.

8.2.1 Installing ngCordova

ngCordova is easily installed using the Ionic CLI and then needs to be included in the
index.html file as well. Use the ionic add command to add ngCordova:

$ ionic add ngCordova

This will add ngCordova to the www/lib directory. Then add a </script> tag to your
index.html file that will include the library:

<script src="lib/ngCordova/dist/ng-cordova.js"></script>

Now the last step is to include this new module into your application. Open the
www/js/app.js file and update the list of dependencies to include ngCordova:

angular.module('App', ['ionic', 'ngCordova'])

That’s all you need to do to install ngCordova into your app. Let’s move on to an
example so you can see it in action!

8.3 Using a camera and photos in the resort app
In the resort app from chapter 4, it might be a nice feature to allow users to create a
photo book from their trip, as shown in figure 8.2. To do this, you have to request
Licensed to Mark Watson <nordickan@gmail.com>

http://ngcordova.com

195Using a camera and photos in the resort app
access to a user’s camera and photo library to display their photos. You’ll keep the
interface pretty simple so you can focus on the interesting parts of using a plugin.

8.3.1 Setting up the camera project

Start by setting up a new project based on the finished app from chapter 4. Use Git to
check out the app; instead of using ionic start, you’ll set up an existing project.
Check out the last step from the chapter 4 example, and build on it with the following:

git clone https://github.com/ionic-in-action/chapter4.git chapter8-camera
cd chapter8-camera
git checkout step7
ionic plugin add org.apache.cordova.console
ionic plugin add org.apache.cordova.device
ionic plugin add com.ionic.keyboard
ionic platform add [ios/android]

Choose if you want to use iOS, Android, or both when you add the platform. Because
you’re using Git to clone the project, you need to manually add the plugins. Normally

1. Selecting Capture New
 opens the camera app.

2. Camera takes photo.

3. Photo is
 returned
 to the app.

Figure 8.2 Photo book view with photos displayed and ability to capture new photos from camera
app or add from library
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 8 Using Cordova plugins

Crea
new

with P
Book
when you use the ionic start command to set up a project, the plugins are set up
for you automatically. This ensures they get downloaded and set up in your project
because they aren’t stored in the repository.

 You must have a device for the camera, so make sure you have it connected to your
computer. Then you can build to the device by running the following command to
deploy from the CLI, selecting ios or android:

$ ionic run [ios|android]

Please note you can’t use the livereload command for this example, due to the way
images are loaded using the file protocol. If you use livereload, Ionic actually loads
over the HTTP protocol, and then images are blocked due to browser security settings.

 The app should run and any console output will display in the terminal.

8.3.2 Adding the camera plugin

You need to first add the camera plugin, and you’ll also use ngCordova again. Here
are the commands to install the plugin and ngCordova:

ionic plugin add org.apache.cordova.camera
ionic add ngCordova

Once the camera plugin and ngCordova have finished installing, add ngCordova to
the Angular application. Add the </script> tag to the index.html file after the Ionic
bundle file:

<script src="lib/ngCordova/dist/ng-cordova.js"></script>

Then add the ngCordova dependency to your app. Open the www/js/app.js file and
update the module definition with the new dependency:

angular.module('App', ['ionic', 'ngCordova'])

Now you can start to add the new view that will hold the photo book.

8.3.3 Creating the photo book view

First you need to create a new view for the photos. For this example you’ll use the
cards component to display photos. The view will have two buttons that allow users to
either capture a new photo using the camera, or include an existing photo from the
library. Add the new view template first; create a new file at www/views/photos/photos
.html and use the code from the following listing.

<ion-view view-title="Photo Book">
 <ion-header-bar class="bar-subheader">
 <button class="button button-positive button-clear"

ng-click="getPhoto('camera')">Capture New</button>
 <button class="button button-positive button-clear"

ng-click="getPhoto('photolibrary')">From Library</button>
 </ion-header-bar>

Listing 8.4 Photo book template (www/views/photos/photos.html)

tes a
 view
hoto
 title

Uses a
subheader with
two buttons for
adding photos
from camera
or library
Licensed to Mark Watson <nordickan@gmail.com>

197Using a camera and photos in the resort app

C
m

 <ion-content>
 <div class="card list" ng-repeat="photo in photos">
 <div class="item item-image">

 </div>
 </div>
 </ion-content>
</ion-view>

This template adds two buttons into a subheader for capturing a new photo or adding
one from the library. These both will call a method in the controller, which you’ll add
next. The content area has ngRepeat on the card component, so each image will be
displayed inside of the card.

 The img element has ngSrc, which will be set to the file URI for the image. The
camera plugin can also provide the Base64-encoded image data, but that can be
memory-intensive to maintain. You do this because your camera plugin will give you
the image content in this format, though there are other options that aren’t imple-
mented in this example.

 Now you need to add the controller. Create another file at www/views/photos/
photos.js and add the code from the following listing. This includes code for the cam-
era, which we’ll review in detail.

angular.module('App')
.controller('PhotosController', function ($scope,

$ionicPlatform, $cordovaCamera) {

 $scope.photos = [];

 $scope.getPhoto = function (type) {

 $ionicPlatform.ready(function () {

 $cordovaCamera.getPicture({

 destinationType: navigator.camera.DestinationType.FILE_URL,

 sourceType: navigator.camera.PictureSourceType[type.toUpperCase()]

 }).then(function(photo) {

 $scope.photos.unshift(photo);

 }, function (err) {

 console.log(err);

 });

 });

 };

});

This controller now has the ability to request images from the camera or existing
images from the library. First, create the controller and inject the $ionicPlatform and
$cordovaCamera services so the app can use the camera. $cordovaCamera is provided

Listing 8.5 Photo book controller with camera plugin (www/views/photos/photos.js)

Repeats over list of photos
using a card component

Uses data URI scheme
for adding photo to card

Creates controller and
injects services needed

reates
odel to

hold
photos

Method that handles calling
camera plugin and photo
library takes a type value

Checks if device is
ready before calling
camera plugin

Requests
to get a
picture

Parameter
to request

data URI
version

of image

Pushes returned
photo data into
model

Parameter
to request

either
camera or

photo
library

Handles errors,
currently just
logging them
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 8 Using Cordova plugins
by ngCordova to access the camera. After setting up an empty model for the photos,
the getPhoto() method takes care of calling the camera plugin. It first checks if the
device is ready, and then calls the camera getPicture() method.

 The getPicture() method takes a few options, which are listed in the camera plugin
documentation, such as declaring if the app should open the camera or photo library.
When the photo is returned in the then() method, you receive the image URI and add
it to the front of the photos array. If errors occur, they’re logged to the console.

 The last step is to finish wiring up this new view. Add the controller to the
index.html file:

<script src="views/photos/photos.js"></script>

Then open the www/js/app.js file and add one more state for the photo book:

.state('photos', {
 url: '/photos',
 controller: 'PhotosController',
 templateUrl: 'views/photos/photos.html'
})

Lastly, you want to make a link to the photo book from the home view. Add one more
list item to the home view in www/views/home/home.html:

 <i class="icon ion-images"></i> Photo book

Now you can run your app again on your device. You should see the new Photo Book
link on the home screen, and when you tap it you’ll see the new view. Choosing the
Capture New button will open the camera to take a new photo, and the From Library
button will open your existing photo library to select one.

 It’s important to note that you haven’t implemented any kind of persistent storage
for the images. If you leave the photos view and return later, any photos you stored will
be missing. In a real-world situation you’d likely upload the images to a server or store
a copy of the images using the file system of the device.

 This example shows how to use the camera plugin and photo library to access a
device’s hardware features. It’s relatively simple to do and pretty fast. Right now if a
user denies the app permission to the camera or photos, the app won’t crash but sim-
ply does nothing. It would be best to handle the error by showing the user a popup
informing the user the app doesn’t have permission to the camera, which can be
changed in the device’s settings.

8.4 Using geolocation in the weather app
In chapter 6, you built a weather app. It allows you to search for a location and get the
current forecast for it, as shown in figure 8.3. But it would be helpful to know a user’s
location instead of searching for it. With the Cordova geolocation plugin, you can use
the user’s location to get the latitude and longitude and display the forecast for that
location.
Licensed to Mark Watson <nordickan@gmail.com>

199Using geolocation in the weather app
8.4.1 Setting up the geolocation example

Let’s start by setting up a new project based on the completed chapter 6 example.
You’ll then add the geolocation plugin and ngCordova to your project, implement
the request to load the user’s location, and update the app to accommodate the new
features:

git clone https://github.com/ionic-in-action/chapter6.git chapter8-geolocation
cd chapter8-geolocation
ionic plugin add org.apache.cordova.console
ionic plugin add org.apache.cordova.device
ionic plugin add com.ionic.keyboard
ionic platform add [ios/android]

This will set up and emulate the finished version of the chapter 6 weather app, with the
default plugins already set up. Because you’re cloning the repository, you need to rein-
stall the core plugins (console, device, and keyboard). Normally the ionic start
command will handle that, but you skip that step here when you clone the repository.
For the platform and command, you’ll need to select iOS or Android. Now you can run
the app, so you should connect your device and then run the project on it:

ionic run [ios/android] -l -c -s

It should appear to be running the same app as you saw in the browser. Take a
moment to use the app in a touch environment instead of just using it in the browser.

Figure 8.3 The app requests permission
before being able to access the location on iOS.
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 8 Using Cordova plugins
8.4.2 Adding the geolocation plugin and ngCordova

Start by getting the plugin and ngCordova set up. This should be familiar by now, but
here are the steps again:

ionic plugin add org.apache.cordova.geolocation
ionic add ngCordova

This will download and install the geolocation plugin and then add ngCordova to the
project. The last thing you need to do is add ngCordova to your Angular application.
Add the </script> tag to the index.html file after the Ionic bundle file:

<script src="lib/ngCordova/dist/ng-cordova.js"></script>

Then add the ngCordova dependency to your app:

angular.module('App', ['ionic', 'ngCordova'])

This should set up everything to start using the plugin.

8.4.3 Requesting a user’s location

You’re interested in a user’s location, particularly the latitude and longitude values.
You may recall your weather API uses latitude and longitude, so this is perfect for this
case. Request the user’s location immediately upon first use, and then show the user
the weather for the current location, as shown in figure 8.4.

1

1 2

3

App asks Cordova for location

2 Cordova asks device for location

3 Device returns location

4 Cordova sends back location

5 App asks Google Geolocation
API for location info

6 API returns location info

7 App asks Forecast.io for weather
info for location

8 App receives weather info
and displays

Cordova

Geolocation API

Forecast.io API

4

5

6

7

8

Device

Figure 8.4 How the app requests for location and uses the coordinates to look up the weather
Licensed to Mark Watson <nordickan@gmail.com>

201Using geolocation in the weather app

E
et

ack
You’ll need to update the run() method inside of www/js/app.js with the geolocation
plugin request. If necessary, it will prompt the user to allow access to location informa-
tion. Assuming the user agrees, it will then return to you the geolocation of the user.
You’ll use Google’s Geolocation API to look up the address for that location, so you
have a friendly name for reference, and then send the user to the forecast that’s
loaded from Forecast.io’s API. The following listing has the code that you’ll add to the
app.js file, noted in bold.

.run(function($ionicPlatform, $cordovaGeolocation, $http, $state, Locations) {
 $ionicPlatform.ready(function() {
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
 StatusBar.styleDefault();
 }

 $cordovaGeolocation.getCurrentPosition().then(function (data) {
 $http.get('https://maps.googleapis.com/maps/api/geocode/json',

{params: {latlng: data.coords.latitude + ',' +
data.coords.longitude}}).success(function (response) {

 var location = {
 lat: data.coords.latitude,
 lng: data.coords.longitude,
 city: response.results[0].formatted_address,
 current: true
 };
 Locations.data.unshift(location);
 $state.go('weather', location);
 });
 });
 });
})

Calling getCurrentPosition() returns a promise, so you use then() to handle the
response. Here you provide only a success() function, but you could provide a sec-
ond function to handle the situation where permission is denied or another error
occurs. But in this situation you just ignore the error and don’t expose the current
location feature.

 Assuming you get the location data, use it to look up the address using Google’s Geo-
coding API. This is the same service you used in the search view, except here you provide
latitude and longitude coordinates. Then use the first result’s address for the user’s loca-
tion. Note this might provide a very specific address or a general area, depending on how
the Google Geolocation API responds, so there’s room to improve this.

Listing 8.6 Updated module run() method to access location (www/js/app.js)

Wraps call inside of $ionicPlatform.ready
to ensure plugins are ready to respond

Injects geolocation
and other services

xisting code
for other

plugins

Calls
geolocation
plugin to g
current
position; if
successful,
gets data b

Uses
reverse-
location

lookup to
get

address

Creates a new
location and
adds it to
locations
service

Uses $state.go to
navigate to location
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 8 Using Cordova plugins
 Lastly, add a new object to the Locations service, which contains a list of all of the
locations for a user. This is kind of a unique location, so mark it with a current flag so
you can distinguish it later on. Once the location is stored in the service, go to it
because you assume the user would like to view the weather for the current location by
default.

8.4.4 Improving the weather app

Because you’ve added the current location feature, there are a few additional tweaks
you need to make for the app to work a little more smoothly. For example, you’d like
to show the current location with a different icon, remove the default Chicago loca-
tion, and not allow the current location to be deleted.

 Open the www/js/app.js file again, and you’ll modify it in two places. I’ve added
ellipses to indicate areas where nothing has changed, so scroll to the two spots in the
file shown in the following listing and modify the bold sections.

…
.controller('LeftMenuController', function ($scope, Locations) {
 $scope.locations = Locations.data;

 $scope.getIcon = function (current) {
 if (current) {
 return 'ion-ios-navigate';
 }
 return 'ion-ios-location';
 };
})
…
 .factory('Locations', function ($ionicPopup) {
 var Locations = {
 data: [],
…

Here you add a new method for the left menu controller that can return the proper
class for the icon. If the location is the current location, use the navigate icon; if not,
use the location icon. This is just a simple visual improvement to help distinguish the
current location. Lastly, remove the default Chicago location, because now that the
app is using the current location, you don’t need it anymore.

 Now update the list of locations in the side menu located in the index.html file. The
list item will use ngClass to call the getIcon() method you just added to show the cor-
rect icon. The bold line is all that you need to change from the following listing.

Listing 8.7 Weather app improvements (www/js/app.js)

Code before LeftMenuCtrl

Adds new scope
method to get
proper icon for
location

More of file

Removes default
location stored in
Locations serviceRest of file
Licensed to Mark Watson <nordickan@gmail.com>

203Using geolocation in the weather app

…
<ion-list>
 <ion-item class="item-icon-left" ui-sref="search" menu-close><span

class="icon ion-search"> Find a City</ion-item>
 <ion-item class="item-icon-left" ui-sref="settings" menu-close><span

class="icon ion-ios-cog"> Settings</ion-item>
 <ion-item class="item-divider">Favorites</ion-item>
 <ion-item class="item-icon-left" ui-sref="weather({city: location.city,

lat: location.lat, lng: location.lng})" menu-close ng-repeat="location
in locations"><span class="icon" ng-class=
"getIcon(location.current)"> {{location.city}}</ion-item>

</ion-list>
…

Now when you run the app, you can see the current icon changes from any other
stored locations. These kinds of small, user interface features are important to help
provide context for users.

 The last thing you want to do is prevent the current location from being deleted.
You want the current location to be protected because it’s a special location, and not
one the user has favorited. Deleting the current location would disable the current
location feature for the user, so you want to avoid this edge case.

 There are many ways to approach this, but you’ll just exclude the current location
from the settings page. Open the settings template at www/views/settings/settings
.html and add the bold line from the following listing.

…
<ion-list show-delete="canDelete">
 <ion-item ng-repeat="location in locations" ng-if="!location.current">
 <ion-delete-button class="ion-minus-circled" ng-click=

"remove($index)"></ion-delete-button>
 {{location.city}}
 </ion-item>
</ion-list>
…

This change will prevent the current location from being displayed in the location
list, and therefore prevent it from being deleted. You’ve now completed the example,
and the ability to get the user’s location is fairly simple, but powerful. Merging the
user’s location data with other information is a very useful way to create some inter-
ested apps.

Listing 8.8 Side menu location icons (www/index.html)

Listing 8.9 Prevent current location deletion (www/views/settings/settings.html)

Template before side

Adds ngClass
to call getIconRest of file

Template code until location
list remains unchanged

Adds ng-if to exclude
current location

Continue with remainder of code
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 8 Using Cordova plugins
 What happens if the user denies permission for location? Well, the good news is
your app will still work without the location information. It’s important to consider
this in your app design and ensure that it can still be used without geolocation when
possible. The ability to access the location of a user can be disabled at any time, so
don’t assume it’s working. The same is true of other types of plugins that have permis-
sions, because any time permission is denied, your app still has to function in some
manner. It might not be possible to run without location permissions, in which case
you’d likely need to prompt the user with a friendly message. You can determine if the
app is able to access geolocation by trying to use it, and in the error handler check if
the response is a permission issue.

8.5 Chapter challenges
There are so many plugins and features that you could implement in your resort and
weather apps, but here are a few specific ones that would be good practice when using
Cordova plugins:

 Handle cases where a user is offline—We talked about how to handle offline situa-
tions in chapter 7, but see if you can apply that here. The app will fail now with-
out a connection, so it’s important to check how it works without a connection.
Consider also using Angular’s $http interceptors to handle errors.

 Use the file plugin to save photos—Right now, the photos in the resort app are
only available until the app has been closed, because you’re not saving the
images anywhere. In reality, you’d want to keep those, but photos quickly
become larger than the available localStorage space. Use the file plugin to
store the photos and retrieve them each time the app is loaded.

 Use the calendar plugin to add events—In the resort app, the events could option-
ally be added to a user’s calendar. Add a button that users can select to add the
upcoming events to their calendar.

 Prompt for app rating—In any of the examples, you could prompt users to rate
your app in the app store. This is best done when a user has been using the app
for a little while and can provide a quality review.

 Replace action sheet with plugin—In the weather app, you use the action sheet
component in Ionic. Try to replace the Ionic component with the action sheet
plugin.

8.6 Summary
We looked deeper at Cordova and plugins in this chapter. I hope you’re surprised at
how easy it was to get photos and a user’s location and use them in your app. This
shows the power of using Cordova plugins, especially with ngCordova. You have the
ability to access just about everything a mobile device can provide. Let’s review the
major topics covered in this chapter:
Licensed to Mark Watson <nordickan@gmail.com>

205Summary
 Installing Cordova plugins provides additional native features for your Ionic
apps.

 Common plugin problems and troubleshooting techniques.
 ngCordova makes it easier to work with Cordova plugins in your apps.
 Using the geolocation plugin to improve the weather app from chapter 6.
 Using the camera plugin to create a photo book for the resort app from

chapter 4.

In the next chapter, you’ll learn about writing tests for your app and about additional
debugging tools and techniques.
Licensed to Mark Watson <nordickan@gmail.com>

Previewing, debugging,
and automated testing
Get ready: we’re going to cover a lot of ground in this chapter about how to pre-
view, debug, and properly test your app. The purpose of this chapter is to help you
better manage quality in your app over time. You may recognize in projects you’ve
worked on in the past that code maintainability tends to suffer and applications
become more complex over time. It takes work and discipline by developers to
counteract these trends, and this chapter identifies some tools that will help you do
exactly that.

This chapter covers
 Previewing your app using Ionic View and Ionic

Lab

 Debugging from a device or emulator on iOS
and Android

 Setting up and writing automated tests for
your app
206

Licensed to Mark Watson <nordickan@gmail.com>

207The differences among previewing, debugging, and testing
9.1 The differences among previewing, debugging,
and testing
Let’s dissect these three terms—previewing, debugging, and testing—a little bit before
we jump into the chapter. The differences are highlighted in figure 9.1.

Previewing
Ionic view:

Easily share your app with others
without submitting to a store.

Debugging
Debug from a device:

By connecting a device over USB, you
can open browser developer tools on your

computer to see the same developer
tools you use for web pages.

Testing
Unit testing:

Automatically run a set of tests
that execute pieces of app code
in isolation, and verify each “unit”

runs as expected.

Integration testing:
Automatically run a set of tests
that execute the entire app in a

browser and simulate user actions
to verify it behaves as expected.

Ionic Lab:
Quickly preview your app’s appearance
in both iOS and Android in the browser.

Tool loads
tests and sends

to browser

Tool loads tests and
controls browser

{...}
Write tests

{...}
Write tests

App code

Karma

WebDriver

Browser runs tests

JS

Tests run in browserFigure 9.1 Key aspects of previewing, debugging,
and testing apps
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 9 Previewing, debugging, and automated testing
Previewing means viewing and interacting with the app on your device or emulator.
Previewing is usually the first technique developers use to visually verify how the app
looks and that it behaves as expected. Depending on previewing alone can cause a lot
of headaches, because the process relies on the developer to manually run and inter-
act with the entire app. As the app becomes larger and the number of platforms
increases, manually previewing becomes exponentially more difficult to rely on for
quality assurance. You’ll look at a few additional ways to preview your app that are
built into Ionic.

 Debugging is the art of dissecting and discovering the source of a bug. Recall from
chapter 1 the technologies and utilities that make up the Ionic stack. Debugging is the
act of determining where the error is occurring. It’s also possible that some bugs
aren’t related to your code, but rather something like a corrupt file. Many bugs are
resolved today by doing a search online for the error message and finding blog or
forum posts that address it. We’ll discuss a few techniques and tools that will assist you
in tracing your bugs back to their source.

 Automated testing is the practice of writing code that can verify the intended behavior
of other code. Computers are great at doing repetitive tasks, and testing tools can load
your app and execute code to verify it works as expected. Automated tests require that
you write a test, which is a way for the test tool to load some code and assert that it does
a particular task. Manual testing has a place as well, but automating tests is significantly
more practical for production apps.

9.1.1 Why testing is important

Imagine you have a medium-size app (whatever that means to you) that’s for sale on
the app stores. You’re getting a lot of feedback about a particular problem many peo-
ple are facing, which you thought you fixed in the past. You need to be able to quickly
verify that this bug is fixed before you release a new version of the app. Writing a test is
the best way to verify a bug is fixed, because you can run that test repeatedly without
having to manually check for the bug in every release.

 For web developers who haven’t built larger applications, testing may seem like
overkill or too much work to implement. Writing a professional, quality app should
include testing abilities to maintain quality. But all apps benefit from testing, and you
should strive to make this a high priority in your development. Testing has an initial
cost to set up, but in the long run it always pays off.

9.2 Setting up the chapter example
This chapter example is based on the chapter 6 weather app, and this version includes
the additional features for setting up and running automated tests. You can get this
chapter example using the following git clone command or by downloading it from
GitHub at https://github.com/ionic-in-action/chapter9/archive/master.zip:

git clone https://github.com/ionic-in-action/chapter9
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter9/archive/master.zip
https://github.com/ionic-in-action/chapter9

209Additional ways to preview apps
Once you’ve cloned or downloaded it (and unzipped it if using a download link), navi-
gate to the directory for the project and add the plugins and at least one platform.
Because you checked out the example instead of using the ionic start command-line
task, you have to manually add the plugins that are usually set up by ionic start:

ionic plugin add org.apache.cordova.console
ionic plugin add org.apache.cordova.device
ionic plugin add com.ionic.keyboard
ionic platform add [ios/android]

Now your project should be the same as the final version of chapter 6, plus the addi-
tional testing files that you’ll need through this chapter.

9.3 Additional ways to preview apps
There are some useful ways to preview your app that we haven’t covered yet, and each
is helpful for different types of situations. Ionic is continually creating features for its
developers, which is one of the biggest reasons they love it.

 You’ll look at two additional ways to preview your app besides using ionic serve,
ionic emulate, or ionic run. First, with Ionic Lab you can preview your app with both
Android and iOS side by side. Second, with Ionic View you can upload an app to the
Ionic platform, and others can download and preview your app using the Ionic View
app without going through an app store.

9.3.1 Ionic Lab

When you need to preview the display of your app on iOS and Android at the same
time, you can use the Ionic CLI’s Lab feature. This technique doesn’t require a Mac to
preview iOS; however, it’s not a real emulator and only provides a visual preview and
comparison. It’s part of the ionic serve command you already know, but when it
opens in the browser, you’ll see two versions of the app running. In figure 9.2 you can
see how one of the views from the chapter 5 example appears with Ionic Lab. This can
help you catch bugs related to how the interface appears on different devices.

 In figure 9.2 you can see how on the left, the iOS version, the tabs are displayed on
the bottom, and on the right the tabs are displayed at the top. This quickly shows how
the appearance of the app differs by platform. To use Ionic Lab, run the serve com-
mand with the --lab flag:

$ ionic serve --lab

This will automatically open a new browser window with the two versions side by side.
In chapter 7 we talked about how it’s important to design your app to consider the
platform’s style guides, and this is a great way to quickly preview how your app
appears. The same limitations of viewing your app in the browser still apply, so some
Cordova features may not work without being in an emulator or on a device.
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 9 Previewing, debugging, and automated testing
9.3.2 Ionic View

Ionic has a platform of additional features that Ionic developers can use to make their
lives easier. Ionic View (http://view.ionic.io/) is a mobile app that anyone can install
from the app stores to preview apps made with Ionic. That means you can have clients
or beta testers preview your app without actually publishing it to the app stores. For
example, you might use it to show your boss the app during your regular progress
meetings. Figure 9.3 shows two chapter examples uploaded to my Ionic View app.
This doesn’t provide you any direct help in developing your app, but it’s primarily a
way to show the app to others without having to submit it through a store first.

 To use Ionic View, you need to have an account with Ionic. You can get a free
account at https://apps.ionic.io/signup. Then log in from your command line:

$ ionic login

iOS Android

The tabs are
positioned
at the top.

The button goes
on the right.

The button goes
on the left.

The tabs are
positioned
at the bottom.

Figure 9.2 Ionic Lab allows you to preview your app with iOS and Android running side by side to view the
differences between the visual displays of each platform.
Licensed to Mark Watson <nordickan@gmail.com>

http://view.ionic.io/
https://apps.ionic.io/signup

211Additional ways to preview apps
Fill in your login details there. Once you’re
authenticated, you’ll be able to upload any of
your apps to the Ionic platform and share it over
Ionic View.

 In the command line, navigate to the project
directory that you’d like to upload. From there,
you can run the command to upload the app,
and Ionic will register and upload it to your
account:

$ ionic upload

This command will take any valid Ionic project
and send it to the Ionic platform servers. It
creates a unique ID for the app and attaches it to
your account so you can share it. You can view
and manage your uploaded apps at https://
apps.ionic.io/apps.

 After uploading, you can open the Ionic
View app on your device, and you should see a
list of the apps that you’ve uploaded. When you
tap any app, Ionic View will download and run
the app on your device without having to con-
nect the device and deploy it directly.

 Choose an app and tap it to download and view it. You’ll notice that it runs full-
screen, so to exit the app, use three fingers and swipe down.

IONIC VIEW LIMITATIONS

There are a few limitations to Ionic View. Due to the architecture of the platform,
Ionic View can only support a certain set of Cordova plugins. You can view the list of
supported plugins in the documentation at http://docs.ionic.io/docs/view-usage.
Some plugins may not be supported because of security concerns.

 Ionic View also doesn’t provide debugging information. Production apps are more
limited in their abilities to debug for security reasons. Debugging abilities require
communication between the app and a computer, which is why you don’t want an app
you didn’t create being able to access your computer directly. You’ll need to review
the Ionic View documentation to learn about any debugging abilities that might exist
should they add features.

Figure 9.3 Ionic View app with two
uploaded chapter example apps
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.ionic.io/docs/view-usage
https://apps.ionic.io/apps
https://apps.ionic.io/apps

212 CHAPTER 9 Previewing, debugging, and automated testing
9.4 Debugging from a device
So far you’ve been using the browser on your computer to do development and
debugging. But things may happen when you load the app on your device that you
need to be able to debug. Because you aren’t writing a native app, it would be great to
just use the same browser debugging tools that you’ve been using. The good news is
you can!

 Both Android and iOS allow you to use the browser developer tools to debug from
an emulator or a connected device. Essentially, Chrome or Safari (depending on the
platform) allows you to connect to the device and treats the WebView inside of the
app as a browser window where you can use developer tools, as you see in figure 9.4.

 In chapter 2 we talked about how you can emulate the app or run the app on a
device using the Ionic command-line interface (CLI) utility, which has an option to
output the console messages into the command line. The following command is for
iOS, or substitute ios with android to emulate Android:

$ ionic emulate ios -l -c

The problem with this is that you only get the JavaScript errors logged into the
browser console. This is fine if you need to check for JavaScript errors that you nor-
mally see in the browser console, but it provides no ability to inspect the DOM and
look at element styles. With the ability to have the complete set of developer tools, you
can inspect virtually any aspect of your app.

The browser recognizes a connected device
over USB. This allows you to open developer
tools for WebView on the device.

Figure 9.4 How browser
developer tools can help debug a
web view on a connected device
Licensed to Mark Watson <nordickan@gmail.com>

213Debugging from a device
 Debugging is only available for apps that you’ve built and deployed onto a device
yourself. Apps aren’t designed to be debugged when they’re installed from the store.

9.4.1 Debugging from an Android device

Android remote debugging is fairly easy to work with, but requires enabling the
debugging options on your device first. If you haven’t already done this, you can
review the steps in section 2.2. Then you can set up the best browser for debugging
and get the debugging tools started.

SETTING UP GOOGLE CHROME CANARY BROWSER

It’s suggested that you get the Google Chrome Canary browser for Android develop-
ment. Chrome Canary is the bleeding-edge version of Chrome, and it’s intended to
allow developers to test new features and changes in Chrome before they go into the
primary version most people use. Android development documentation says that for
best results when connecting and debugging your app, the browser on your computer
should be more advanced than the one installed on the device. Chrome Canary will
ensure that’s the case because it’s like a continuously updated beta version. You can
download it from https://www.google.com/intl/en/chrome/browser/canary.html.

 Once you have a connected device, open Chrome Canary and go to the
chrome://inspect address. You have to type this into the address bar, and then you’ll
see the screen in figure 9.5 shown on page 214. If no devices are found, the list will be
blank. Because your device is running, you can click the Inspect link to open the
Chrome developer tools for the app. You can modify the styles, see the JavaScript con-
sole logs, look at network calls such as your API requests, and anything else you can
normally do with the developer tools.

 Android emulators don’t allow you to debug with this technique. But there’s
another tool called Genymotion that runs like an emulator, but actually appears to the
computer as if it’s a connected device. You can download and use it for free on per-
sonal projects from https://www.genymotion.com, and it also requires VirtualBox:
https://www.virtualbox.org. When you want to deploy your app to Genymotion, you
just need to have Genymotion open and then use the ionic run android command. If
you try to emulate, it will not use Genymotion.

 That’s all you need to do to get access to the debugging tools for Android devices.

9.4.2 Debugging from an iOS device or emulator

Debugging on iOS is pretty similar to Android, except it uses Safari. Start by enabling
debugging through Safari on your device. This should be enabled by default for the
iOS emulators, but you can still check the settings to verify. On your device, go to the
Settings app. Open the settings for Safari, and then choose the Advanced option at
the bottom. Make sure the Web Inspector option is toggled on, which is used by Safari
to allow debugging of a web view. These steps are shown in figure 9.6, page 215.

Licensed to Mark Watson <nordickan@gmail.com>

https://www.google.com/intl/en/chrome/browser/canary.html
https://www.genymotion.com
https://www.virtualbox.org

214 CHAPTER 9 Previewing, debugging, and automated testing

Open chrome://inspect to see
connected devices. Devices must
already be on and connected.

Click on the Inspect link
by the device to open the
developer tools for the device.

Figure 9.5 How to open the developer tools for a connected Android device
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter9

215Debugging from a device
Now open Safari on your computer. If you don’t see a Develop menu in the top menu
bar, then you’ll need to turn on the developer settings for Safari. Open the Safari Pref-
erences panel (Safari > Preferences from the top menu) and choose the Advanced
tab. At the bottom of the Advanced tab is a box to check to show the Develop menu.
Choose it and close the preferences. You should now have the Develop menu showing
in the top menu. These steps are shown in figure 9.7.

 Now you can start to debug your app on iOS. First, you’ll need to get your app run-
ning on an emulator or device. I’ll run this chapter example in the emulator, so you
can see them in the screenshots side by side with the developer tools.

Open Settings and go to Safari. Select the Advanced option
near the bottom.

Toggle the Web Inspector option
on to enable debugging.

Figure 9.6 Enabling the Web Inspector option on mobile Safari
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 9 Previewing, debugging, and automated testing

Open Safari. If you don’t have a
Develop menu item, then open
the Preferences panel.

Select the Advanced tab, and
click on the Show Develop menu
checkbox at the bottom.

The Develop menu will now
be available in the menu.

Figure 9.7 Enabling the Develop menu in Safari to allow developer tools
Licensed to Mark Watson <nordickan@gmail.com>

217Debugging from a device
Once the app is running, go to the Develop menu. You should now see either the
device or the emulator listed in the menu, and you can choose the index.html option
for that item as shown in figure 9.8. This will open a new Web Inspector window, and
you should be able to then choose items in the DOM to inspect the styles and content.

Open Safari when a connected device or emulator
is running. Use the Develop menu to locate the
device, and select the app index.html.

It will open a new Web Inspector
window, where you can interact
with and inspect the app.

Figure 9.8 How to open the developer tools in Safari for an emulator or device
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 9 Previewing, debugging, and automated testing
The biggest problem I’ve run into with debugging on Safari like this is that you have
to open the app in the device or emulator before you can open the Web Inspector.
That means the Web Inspector can’t be opened until the app is already started. If you
have any bugs or errors happening at the moment the app loads, then the Web
Inspector will not yet be open to catch the information. You might have to use a hack
like an alert to send messages about JavaScript code on load.

 That’s all there is to setting up debugging for an iOS emulator or device. Now let’s
dig into setting up automated tests.

9.5 Automated testing
Testing means verifying apps behave as expected. So far, you’ve been building your app
using manual testing by just previewing it and tapping away at the screen. This only
works for so long before it becomes cumbersome to manually test every feature, for
every platform, for every release.

 In a development cycle, you’ll use automated testing to help you any time you
make a change to your app. You might be fixing a bug you found while debugging or
incorporating a new feature that was requested by your client, but you’ll want to use
automated tests to quickly validate that the app continues to function.

 What you want to learn about here is automated testing—code that can program-
matically verify if your app is working as expected or not. When done well, these tests
can execute in mere seconds, which can take a lot of load off the developer’s shoul-
ders. When you work in a team, it also allows others to run tests to verify they didn’t
break the code of another team member. There are so many good reasons to write
tests, so why do some projects not have them?

 Simply put, writing tests can be challenging at first. Tests themselves are code, so
you have to write code to test code. Developers also might think they can manually test
faster than it takes to learn and set up automated testing. But the long-term benefits of
automated testing are more considerable: stability in your app, easier development
without fear of breaking something, and helping teams avoid conflicts in code.

 You’ll look at two types of automated tests: unit tests and integration tests (also
called end-to-end). The testing tools you’ll use work with Angular because your app is
based on Angular.

 Unit tests are best for testing individual parts of your code, such as services and con-
trollers, because a unit test is designed to test each individual function (as its own
“unit”) to assert it returns the expected value.

 Integration tests are designed to test the app behavior as a whole by mimicking user
behavior, such as tapping on an item in a list to navigate to a detail view, to verify the
interface responds as expected. We’ll dig into the nuances of each, but most apps will
benefit from both types of tests.

 I’ll help you get started with the foundations of test writing. By the end of this sec-
tion, you’ll be able to start writing tests, and you’ll feel encouraged to dig deeper into
the world of testing.
Licensed to Mark Watson <nordickan@gmail.com>

219Automated testing
9.5.1 Unit tests with Jasmine and Karma

Unit tests are automated tests for verifying code executes as expected. The intention is
to test the smallest parts of the application, such as a scope method, and check that it
returns the correct result.

 For example, think about your favorite map app. It probably has a method that
takes a pair of latitude and longitude values and calculates the distance between the
two locations. It would be best to write a set of tests that checks that if you pass the
function different types of values (some might even be invalid values), the method
returns the expected result. Here are a few fictitious sample tests that might be written
to test this conceptual method:

var location1 = [91, 21];
var location2 = [82, 32];

expect(mapCalculate(location1, location2)).toEqual(123);
expect(mapCalculate(location1, undefined)).toEqual(0);

Unit tests are a great way of ensuring the smallest parts of your app work as intended.
If you have confidence that the unit tests are running and that your methods are all
working as expected, then it becomes easier to make changes in other parts of the
application without fear of breaking existing features. I’ve learned the hard way that
without tests it can become very difficult to maintain an app over time.

 You’ll use the Jasmine (http://jasmine.github.io/) testing framework to write unit
tests, and then use Karma (http://karma-runner.github.io/) as the tool that will run
them. Jasmine is a popular option for developers who are new to testing, and it’s also
the primary testing framework used by the Ionic and Angular projects. As shown in
figure 9.9, Karma connects a testing framework (in this case, Jasmine), loads all of the

Creates two latitude, longitude
values for test to use

Tests that mapCalculate() method
handles invalid input as expected

Tests that
mapCalculate()
method gives
expected value
with valid input

1

2

1 Start Karma.

2 Karma loads source and test files.

3 Karma sends to browser to run.

4 Karma gets results of tests.

Karma test runner

3 4

Karma test runner
{...}

Tests written
with Jasmine

Ionic app
source code

Browser

JS

$ karma start
> 3 TESTS PASS

$ karma start

Figure 9.9 How the unit
testing tools, Karma and
Jasmine, execute unit tests
Licensed to Mark Watson <nordickan@gmail.com>

http://jasmine.github.io/
http://karma-runner.github.io/

220 CHAPTER 9 Previewing, debugging, and automated testing

u

tests and application code into a browser, and then runs the tests in a browser (in this
case, Chrome). Because your JavaScript runs in the browser, the Jasmine tests are exe-
cuted in a browser.

 You’ll start by setting up Jasmine and Karma, and then you’ll write some unit tests
for the weather app from chapter 6.

SET UP KARMA AND JASMINE

You’ll start by installing Karma, which then helps set up Jasmine. Karma has a plugin
for Jasmine and Chrome, which you’ll install in addition to the core Karma tool.
Open the command line, navigate to the project directory you set up at the start of the
chapter, and run the following commands to install the tools:

$ npm install --save-dev karma karma-jasmine karma-chrome-launcher
$ npm install -g karma-cli

The first line adds Karma, the Jasmine plugin, and the Chrome plugin to the project,
and saves them as development dependencies. The second line adds Karma globally
so you can run it easily from the command line.

 Before Karma can run, you need to add a configuration file so it knows what to do.
Karma runs just the JavaScript files you specify instead of loading an HTML file and let-
ting the page load (you’ll do that in the next section). Make a new file in the project
root called karma.conf.js and add the code from the following listing.

module.exports = function(config) {
 config.set({
 frameworks: ['jasmine'],
 files: [
 'www/lib/ionic/js/ionic.bundle.js',
 'www/lib/moment/moment.js',
 'www/lib/moment-timezone/builds/moment-timezone-with-data.js',
 'www/lib/suncalc/suncalc.js',
 'www/lib/angular-mocks/angular-mocks.js',
 'www/js/**/*.js',
 'www/views/**/*.js',
 'test/unit/**/*.js'
],
 reporters: ['progress'],
 browsers: ['Chrome']
 });
};

This configuration is what you’ll use for your tests. You have to declare the framework
you wish to use (in this case, Jasmine) and tell Karma which files to include. Karma
will load these files into a browser (in this case, Chrome) and run all of the tests it
finds. The results are then reported back to the console, but could be configured to
output to a file (several file types are supported, such as HTML or XML). Now you can
write a test and execute it. Any files that your app needs to run should be included in
the file list, just as you’ve included libraries such as Moment.js.

Listing 9.1 Karma configuration file (karma.conf.js)

Declares you want
to use Jasmine

Tells Karma to
load files you

include in app

Adds
angular-

mocks file,
which is

sed to help
write tests

Uses glob patterns
to match app and
test files

Uses progress
reporter optionUses Chrome

for testing
Licensed to Mark Watson <nordickan@gmail.com>

221Automated testing

A

m
m

av

Filter

’

rts

e
WRITING A UNIT TEST FOR THE CHANCE FILTER

Jasmine is a behavior-driven development (BDD) framework. You may be familiar with
different agile development methodologies; the primary idea is to help reconcile the
difference between technical and management teams during the software develop-
ment process. When you write tests, you’ll describe the feature with a list of statements
about what it should do. I draw attention to the terms describe and it because they’re
used as part of the testing syntax.

I think the easiest way to get started is to dive in with some examples. The first test
you’ll write is for the chance filter, which takes a decimal value and turns it into a
rounded percentage value between 0 and 100, and rounded to the nearest tenth. For
example, you expect a value of 0.36 to be converted to 36 and then rounded to 40%.
You want to assert this to be true by writing a test that uses the filter and passing a few
sample values. The test can be found in the following listing, and should be created at
tests/unit/chance.filter.spec.js.

describe('Chance Filter', function() {

 beforeEach(module('App'));

 it('should round any decimal percentage to nearest 10 value',
inject(function(chanceFilter) {

 expect(chanceFilter(0.01)).toEqual(0);
 expect(chanceFilter(0.05)).toEqual(10);
 expect(chanceFilter(0.44)).toEqual(40);
 expect(chanceFilter(0.46)).toEqual(50);
 expect(chanceFilter(0.95)).toEqual(100);
 expect(chanceFilter(undefined)).toEqual(0);
 }));
});

Listing 9.2 Chance filter unit test (tests/unit/chance.filter.spec.js)

Jasmine versus other testing frameworks
Jasmine is a very powerful testing framework, but it’s not the only option. Several
other examples are Mocha, QUnit, and Unit.js. In the world of JavaScript, new frame-
works appear all the time, so you might be aware of some other new options.

In short, you should be able to use any testing framework that you desire. The more
popular it is, the more likely it’s well supported by the tools in this book. Jasmine is
the testing framework in use by the Angular project for the 1.x version, so it’s a good
choice for anyone who’s new to testing.

I personally enjoy Jasmine for the most part, but Mocha is another framework I’ve
used. Jasmine provides most everything you need for testing, whereas Mocha is
more piecemeal and requires you to add additional tools for certain things. Unless
Jasmine is unable to meet your needs or you have more experience with another
framework, I recommend it for use with Ionic and Angular apps.

Using
ngular
mocks

odule()
ethod,
makes

App
ailable C

Describes feature, in this case Chance B

Uses ‘it should…
style to declare
test, and then sta
test by injecting
chanceFilter

D

Uses assertion library to
expect filter to convert som
values to expected outputs

E

Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 9 Previewing, debugging, and automated testing
This test has a lot going on, so let’s break it down piece by piece. First, look at the
describe() method B. This is primarily an organizational tool for you to write a test
and place all relevant tests inside of this block. The next block is a beforeEach()
method C, which will run the function inside before every test. This is important
because the testing environment is reset between every test, so you can’t expect any-
thing to persist between tests. The beforeEach() method uses the module() method
to load your app into the test before it executes. The module() method is available
because you’re using the Angular mocks package, which was included in your configu-
ration file.

 The it statement D is where you declare the specific feature requirement. The
first argument is a string, typically written to read like “it should do something.” The
second argument is a function to execute, which will contain the assertions that it
actually does do something. Your function uses the inject function to insert the
chanceFilter. Normally, you use a filter in the binding expression, such as {{ 0.34 |
chance }}, but here you load it directly to call yourself.

 Finally, you have six expect statements E. These are the assertions talked about
earlier, because you basically say that you expect the chanceFilter, given a certain
value, to equal the value you specify. In this case, you test six different scenarios to
ensure your filter works. You could specify as many of these as you need, including the
last one that tests an invalid value to see how well your method handles it.

 One of the benefits of Jasmine and the BDD style of testing is the tests are written
with a declarative style, so even non-developers can read and understand them.
Because you describe a feature and declare what it should do, it’s possible to use tests
not just as a way to validate behavior but also as a tool to help plan and clarify features.

RUNNING THE UNIT TESTS

To run the tests, you’ll need to use the karma command-line tool. It will start a session
where it will watch your files as you edit, so it can automatically run the tests any time
you save a file. It will also launch a new Chrome window to run the tests inside of
Chrome. Run this command from the root of your project:

$ karma start

It will start the Karma server, which watches the files and handles running the tests in
the browser. It will also execute the tests immediately, and report the output of the
tests directly into the command line.

 Typically I keep this command-line window open and running my tests the entire
time I’m developing. It helps to remind me to write the tests, and helps me see imme-
diately when I might have broken code.

WRITING A UNIT TEST FOR THE SEARCH CONTROLLER

Now you’ll create another test for one of the controllers, as shown in listing 9.3. Most
of the structure is the same, but you have to do some different setup to test a control-
ler. You’ll test the search controller, which is fairly simple, but because it makes an
HTTP request, you’ll have to do some mocking to test it.
Licensed to Mark Watson <nordickan@gmail.com>

223Automated testing

B
eac

i
valu
describe('Search Controller', function () {
 var scope, httpBackend;

 beforeEach(module('App'));

 beforeEach(inject(function ($rootScope, $controller, $httpBackend, $http) {
 scope = $rootScope.$new();
 httpBackend = $httpBackend;
 httpBackend.when('GET',

'http://maps.googleapis.com/maps/api/geocode/json?address=london')
.respond({results: [{}, {}, {}]});

 httpBackend.when('GET', 'views/weather/weather.html').respond('');
 httpBackend.when('GET', 'views/settings/settings.html').respond('');
 httpBackend.when('GET', 'views/search/search.html').respond('');
 $controller('SearchCtrl', {
 $scope: scope,
 $http: $http
 });
 }));

Listing 9.3 Search controller test (test/unit/search-ctrl.spec.js)

What are mocks, and why do you need them?
During testing you want to isolate the number of conditions that might cause your
tests to fail. The problem is most code depends on other code to run—for example,
a controller may include the Angular $http service and your code depends on it.

Mocks are special objects that are designed to mimic the behavior of real objects.
You don’t want to actually make an HTTP request during your tests because this
takes time and Angular already tests the $http service before they release a version
of Angular, so you don’t need to test it again. Angular provides a mock version of
$http called $httpBackend, and it’s part of the Angular Mocks module included in
your tests. Another example would be local storage, where you can create a mock
localStorage service that behaves like the real thing. ngCordova also comes with
mock services that can be used to mock ngCordova features.

Anything that’s not part of your custom codebase should probably be mocked for unit
tests. You don’t really want your tests to call the real API. Imagine you want to test
the user registration for your app. Instead of using the real service, you mock it and
avoid the incidental registration. You also want to make sure your tests are fast
to increase the likelihood that you’ll use them, because you should be running them
frequently.

Describes search
controller feature

B

Declares some variables
to access values inside
of child scopes

C

Before each test runs, adds App moduleD

efore
h test
runs,

njects
es for
tests E

G

F
Injects values and

makes them available

Uses httpBackend.when() to
handle HTTP response for

weather API and templates

Instantiates controller with
scope and $http services usedH
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 9 Previewing, debugging, and automated testing
 it('should load with a blank model', function () {
 expect(scope.model.term).toEqual('');
 });

 it('should be able to search for locations', function () {
 scope.model.term = 'london';
 scope.search();
 httpBackend.flush();
 expect(scope.results.length).toEqual(3);
 });
})

This test is longer than the controller, and you might be a little concerned about this.
Much of what you do in this test is related to setting up the test environment. There’s
a lot going on here again, so let’s walk through it piece by piece.

 First, describe B the feature, in this case the search controller. Because the code
runs inside of a function, you want to declare some variables here that you’ll give values
to later C. Just like before, start by adding the App module D using the beforeEach()
method.

 The next beforeEach() method E includes a bit of logic needed to get the con-
troller working. Because you’re building isolated tests, you have to do some of the
work that Angular normally does behind the scenes. The Angular documentation has
more details about how to set up testing for different types of Angular features, such
as filters, directives, and controllers. This is often where people start to get anxious
about testing, but don’t be discouraged!

 Create a new scope and get the httpBackend service stored in the variables F.
You’ll need to use these variables in your specs, which is why you made them variables
outside of this closure. The first httpBackend.when() call G mocks out the request
for the location search. You have to declare the method of the HTTP request (in this
case GET) and the URL for the HTTP request, and then chain a response() method
and declare a value. You don’t have to worry about the response matching the real
thing; you just need to ensure the response returns the bare minimum, in this case an
array of objects.

 The next three uses of httpBackend.when() G all help you mock your templates
because those are loaded over HTTP. This is only necessary if you load templates
from a URL, which is configured in the states declaration of your app. The last step is
to use the $controller service H to register the controller and pass the expected
dependencies.

 Finally, you get to the two specs where you actually test the controller. The first
spec I simply checks that the scope model.term value is blank. It’s good to test the
default state for a controller. The second spec J changes the model.term value and
calls the search() method. This is where the httpBackend mock service takes over.

Creates spec for search method, changes term,
calls method, flushes requests, expects results

Creates spec to validate
the model.term value is
empty by default

J

I

Licensed to Mark Watson <nordickan@gmail.com>

225Automated testing
Instead of making a real HTTP request, it looks at your mock declarations from earlier
G and finds a matching request. When it finds a match, it will respond with the value
you declared, which is an array of three blank objects. Assert that the scope is updated
with the array of objects by checking the length of the array.

 If Karma is still running in the command line, then these tests will automatically be
added and executed. If you canceled the Karma process, start it again to see the tests
passing.

The most difficult aspect of testing is understanding how exactly to manually handle
many parts of the app that are normally managed by Angular. The Angular documen-
tation has a good set of examples for how to test different parts of the app when
you’re confused about how to properly organize your test. Writing tests can be a chal-
lenge, but the effort to learn and write tests is worth it. You can now modify the appli-
cation and run the tests anytime to verify that nothing has broken.

9.5.2 Integration tests with Protractor and WebDriver

Some parts of your app are best tested with an integration test that can simulate
user behaviors such as tapping or typing values into a form input. Protractor (www
.protractortest.org) is a testing framework built specifically for Angular (in fact, by
the Angular team), and therefore works for Ionic apps. Protractor is built on top of
an API called WebDriver (http://w3c.github.io/webdriver/webdriver-spec .html),
which allows you to programmatically interact with an application just like the user
would. WebDriver is really just the specification for how programs can programmati-
cally interact with a browser. Selenium (http://docs.seleniumhq.org/projects/ web-
driver/) was the project that inspired the WebDriver API spec. See figure 9.10 for an
example of how tests are executed using these APIs.

 Protractor extends the features of WebDriver and adds better support for Angular
apps. By default WebDriver runs as soon as the page is ready, but due to the Angular
digest loop, your tests need to run only after Angular is ready. Protractor aids your
tests by waiting for Angular to finish rendering the view before running the tests, as
well as providing a few unique API calls to target parts of an Angular template. You’ll
see a few of these in action in the sample test.

Learning more about Jasmine
Jasmine has a number of features we didn’t discuss here that might come in handy
in your tests. Jasmine has additional ways to express your tests, such as
expect(value).toBeDefined() or expect(value).not.toBeNull(). To get the
most out of your Jasmine tests, be sure to review the documentation at http://
jasmine.github.io/ for all possible vocabulary.

One of my favorite ways to understand Jasmine is to look at tests others have written
for Angular and Angular modules. You can find the tests on GitHub in the Angular
repository or in many of the third-party Angular modules repositories.
Licensed to Mark Watson <nordickan@gmail.com>

http://jasmine.github.io/
http://jasmine.github.io/
http://www.protractortest.org
http://www.protractortest.org
http://w3c.github.io/webdriver/webdriver-spec.html
http://docs.seleniumhq.org/projects/webdriver/
http://docs.seleniumhq.org/projects/webdriver/

226 CHAPTER 9 Previewing, debugging, and automated testing
During setup, you’ll use Selenium (which implements the WebDriver API) and plu-
gins for browsers (Chrome by default) to control the browser to mimic user behaviors.
You’ll have to have a Selenium server running in the background to run the tests, but
this is easily managed by Protractor.

 Protractor uses the Jasmine testing framework by default to run tests. Protractor
doesn’t require you to use Jasmine, so you can choose another testing framework if
you’d like such as Mocha or Cucumber.js. Because you used Jasmine earlier, you can
write your tests in the same style to make it a little easier.

SET UP AND RUN PROTRACTOR AND WEBDRIVER

First you need to do a one-time setup for Protractor and WebDriver. Start by installing
Protractor as a global Node module, just like you did when you installed Ionic and
Cordova:

$ npm install -g protractor

This command will download Protractor and also create a helper tool to easily man-
age WebDriver. You’ll use the tool to download all of the tools for WebDriver to run.
The tool will download the Selenium server and Chrome driver, and set them up:

$ webdriver-manager update

Check that everything is installed by checking Protractor’s version number and the
WebDriver status. You don’t need IEDriver, so you can safely ignore the message
about it missing:

$ protractor --version
Version 1.6.1
$ webdriver-manager status
selenium standalone is up to date
chromedriver is up to date
IEDriver is not present

1

2

1 Start Protractor and WebDriver.

2 Protractor loads tests from files and sends to browser.

3 WebDriver runs the tests, which mimic user behaviors.

4 Results are returned to Protractor.

Protractor and WebDriver

3 4

Protractor and WebDriver

{...}
Tests written
with Jasmine

Browser controlled
by WebDriver

$ webdriver-manager start
$ protractor start
> 3 TESTS PASS

$ webdriver-manager start
$ protractor start

Figure 9.10 How integration tests are executed using WebDriver/Selenium, Protractor, and Jasmine
Licensed to Mark Watson <nordickan@gmail.com>

227Automated testing
Any time you want to run your Protractor tests, you need to first make sure the Sele-
nium server (required by WebDriver) is running. To do this you need to have a
command-line window open and run the following command:

$ webdriver-manager start

This will show a lot of diagnostic information about starting the Selenium server. This
window must remain open and running any time you want to run your tests. You can
stop the server by typing Ctrl-C on your keyboard. You might get a warning about Java
not being installed or up to date. To fix this, download and install the latest version of
the Java development kit (select the JDK option for your platform, not the JRE option)
from http://mng.bz/83Ct.

CONFIGURE PROTRACTOR

Protractor requires a configuration file to run in your project, so you need to add this
before you start writing tests. There are many options that you don’t usually need, but
you can review all of them on the Protractor documentation site listed earlier. Create
a new file in the project root called protractor.conf.js:

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['test/e2e/**/*.spec.js']
};

This configuration gives Protractor the address to your local Selenium server (which is
set up by the webdriver-manager tool) and an array of file paths to look for test files
to run. Remember, in Jasmine tests are called specs, so in this case it’s looking in the
test/e2e directory for all files with the ending .spec.js.

WRITING TESTS FOR PROTRACTOR

Because you’re using Jasmine, your tests will be structured similarly to the unit tests.
The major difference is that you’ll be focused on writing tests that mimic the behavior
of the user through browser automation.

 Protractor and WebDriver provide you a set of methods that you’ll use to find an
element on the page and interact with it. This is very similar to finding an element on
the page in JavaScript using a method like document.getElementById(). But with
Protractor and WebDriver, you can search for an element on the page by Angular-
specific features, such as by the ngModel used on the element or the CSS class name.

 Start by creating a new spec for your search view. You want to validate that the
search page responds when you give it a term and press Search. Your unit tests can vali-
date each piece works, but here you’ll be validating that everything works together.

 Create a file at tests/e2e/search.spec.js and add the contents of the following list-
ing. These tests will use the same describe() and it() methods you saw in the unit
tests.
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/83Ct

228 CHAPTER 9 Previewing, debugging, and automated testing

describe('Search View', function() {
 browser.get('http://localhost:8100/');
 var term = element(by.model('model.term'));
 var button = element(by.className('button-search'));
 var results = element.all(by.repeater('result in results'));

 it('should open to the search view', function() {
 expect(term.getText()).toBe('');
 });

 it('should search for a term', function () {
 term.sendKeys('london, uk');
 button.click();
 expect(results.count()).toEqual(1);
 });

 it('should take you to the London, UK weather view', function () {
 results.first().click();
 var title = element(by.tagName('ion-side-menu-

content')).element(by.className('title'));
 expect(title.getText()).toEqual('London, UK');
 });
});

Let’s cover what will happen in this test before you run it. First you write a describe()
method B to create the test for your search view. Then you use the Protractor feature
browser.get() C to tell Protractor to load the app. This assumes you have ionic
serve running in the background to enable the localhost server on port 8100. Pro-
tractor is smart enough to load the page and wait for Angular to finish rendering
before it starts executing the next steps.

 You then create three variables that are references to elements on the page. One is
the search box D, which finds an element based on the value of ngModel. You had put
the ng-model="model.term" on the search input field, and you’re able to find that
element again using element(by.model('model.term')). Likewise, you’re able to set
a variable to the search button E, but this time you search by the class name of the
button. The third variable is the list of results F, and this time you find that element

Listing 9.4 Protractor test for search (tests/e2e/search.spec.js)

Uses describe() to declare
spec for search view

B
Starts by opening app
at initial loading page,
which is search view

C

First spec to test
default term element
should be blank

G

Second spec types value
into search box, clicks
search, and expects it to
have four results

H

Third spec clicks on first result
and expects weather view to

load for that location I

Creates variable that references input
element based on the specified ngModel valueD

E
Creates variable to reference button
based on class name given to button

Creates variable to results list
based on ngRepeat valueF
Licensed to Mark Watson <nordickan@gmail.com>

229More test examples
based on the value of the ngRepeat attribute. Now that you’ve assigned variables to the
parts of the page you want to test, you can set up the specs.

 The first spec G just wants to test that the default value for the search box is
empty. It’s good to test the default state, and this test is designed to tell you if anything
is causing the search box to have a value before it should.

 The second spec H actually emulates keyboard input to type the term 'london,
uk' into the search box. Then it will emulate a click on the search button, which trig-
gers the actual search to happen. Once that’s complete, you check the number of
returned items by counting the number of results. There should be four results for
the search term.

 The last spec I will click on the first result in the list. The item is linked to the
weather view, so here you test if the linking between views is correct. It will then check
the title of the weather view once the view has loaded, and expect it to match the value
of the first list item.

 Now that you have an idea of what the test will do, it’s time to run it. You’ll actually
need to have three command-line windows open to run the test. The first will
have ionic server running, so the website is available at http://localhost:8100. The
second will have the Selenium server running. The third will actually run the Protrac-
tor tests. Run the following commands in separate command-line windows:

$ ionic serve
$ webdriver-manager start
$ protractor protractor.conf.js

When you run the protractor command, you’ll notice that a Chrome browser will
open and load the app. It will type, click, and change views very quickly; however, you
should be able to actually see the interface in Chrome while the test is running.

9.6 More test examples
This chapter 9 project contains more tests than we talked about in this chapter. You
can use the rest of them as additional examples for how to write different types of
tests.

 I’ve added additional unit tests for each of the controllers, filters, and factory ser-
vices. These tests cover nearly every part of the Angular code you’ve written. Then I’ve
added a set of additional integration tests to test each of the views. This ensures that
the primary features are checked and that the services are returning data as expected.

 You can open questions on the GitHub project for this chapter and ask questions
or suggest additional tests. You can find the project at https://github.com/ionic-in-
action/chapter9.

 This brings our discussion on the two primary types of automated testing to a
close. The goal of this chapter was to get you started, so you can benefit from spend-
ing more time with the documentation sites for Jasmine, Karma, and Protractor.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ionic-in-action/chapter9
https://github.com/ionic-in-action/chapter9

230 CHAPTER 9 Previewing, debugging, and automated testing
9.7 Summary
Previewing, debugging, and testing are vital parts of the development process, and in
this chapter we covered a lot of ways to help you improve the quality of your apps
through using different tools and techniques. Let’s review the major topics we covered:

 Ionic View and Ionic Lab are two Ionic features that help you to preview your
app. Ionic View is great for sharing an app with others without sending it
through the app stores, and Ionic Lab is very useful when trying to build cross-
platform apps and for previewing the Android and iOS displays side by side.

 We looked at debugging hybrid apps. For iOS, you’ll use Safari’s Web Inspector
tool to connect to a device or emulator and inspect the web view inside of an
app. For Android, you’ll use Chrome Canary to connect to a device or emulator
and inspect the web view.

 Unit tests can be written with the Jasmine testing framework and executed with
the Karma test runner. It’s possible to test the individual units of code, such as a
filter or controller, and verify that the smallest piece works as expected.

 You wrote integration tests with Jasmine, Protractor, and WebDriver. These tests
are designed to verify the entire interface behaves as expected by programmati-
cally emulating user events such as clicks and keyboard typing.

In the next and final chapter, you’ll learn how to prepare and build your app for pro-
duction, and how to submit it to the app stores.
Licensed to Mark Watson <nordickan@gmail.com>

Building and
publishing apps
You’re in the home stretch! At this point you have the skills to build a mobile app,
but now to reach the finish you need to know how to submit it to the app stores.
This important step also includes coming up with icons and loading screen graph-
ics and descriptions of your app.

 The app stores are ecosystems that are tightly controlled by Apple and Google.
They set the rules when it comes to what’s acceptable or not, and those rules can
change often. Google is usually able to get new apps on the store in a matter of
hours or days. Apple typically takes several days to weeks to review and publish an
app as part of their approval process.

This chapter covers
 Generating icons and splash-screen images for

your app

 Preparing and building your app for production
release

 Publishing to Google Play—the submission
process

 Publishing to the Apple App Store—the
submission process
231

Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 10 Building and publishing apps
 In this chapter you’ll see screenshots from a submission I’ve made for an app I call
Know Your Brew. I’m an avid home brewer and beer judge, so I wanted to have an app
that gives me information in a pinch about the different types of beer. The general
process should be the same for your app. There’s no example code for this chapter.
You’ll only go through these steps when you’re ready to submit your app; so when
you’re ready to publish your app, this is your guide.

 There are some conditions or situations that aren’t covered in this chapter. For
example, if you’re selling your app or have in-app purchases, you’ll need to make sure
that your account with Apple and/or Google is set up properly to handle payments.
To keep this chapter concise and focused, I’ll demonstrate how to upload a free app
without any special conditions. For full details for iOS, visit http://mng.bz/z1VP, and
for Android visit http://mng.bz/Jzv1.

 Remember, the exact steps may change over time, so the screenshots are meant to
serve as a guide. Google and Apple change their tools often when releasing a new
major platform version, but the basic steps should remain in place.

10.1 Building for production: an overview
Before we dive into the steps, let’s take a high-level look at the development process
that has gotten you to this point and how it then diverges as you finish your app and
publish it to the stores. Figure 10.1 shows everything you’ve done plus the prepublish-
ing tasks you’ll learn about.

You’ll learn how to create icons and splash-screen images for your app, and some of
the things you should do to remove development code from your app before publish-
ing. Then you’ll learn about the steps to build and publish for Android and iOS, as
you see in figure 10.2.

 We’ll cover each step in detail, but this is the general flow to build and publish for
each platform. Both platforms have generally the same steps to build an app, but the
particulars differ.

 For Android you’ll use the command-line approach, and with iOS you’ll use the
Xcode IDE. This is my preferred method, though you can build for iOS from the com-
mand line, and likewise you could use the Android Studio IDE to build for Android.

Set up Develop Test and
debug

Preview in
emulator

Preview in
device

Preview in
browser

Create
splash-screens

Remove
dev code

Create
icons

Prepare for
publishing

Development process

Figure 10.1 Steps you’ve taken to build your app and prepare it for publishing
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/T7G4
http://mng.bz/Jzv1
http://mng.bz/z1VP

233Building icons and splash-screen assets
These are the general steps for both platforms:

 You need a mechanism to sign your app for both platforms. For Android this is done
with a keystore, and for iOS this is called a signing identity. But they both do the
same thing in the end: they add a signature to the build file that can later be
used to verify the author.

 Both platforms also require you to create a listing in their store. Let’s assume you’ve
already done work to create the marketing material (screenshot images for the
listing, description text, etc.), which will make it easier to create the listing. Hav-
ing good marketing and app descriptions is vital for users to be able to deter-
mine if the app is for them or not.

 You must build and optimize the build file on both platforms. For Android, you upload
the build file through the Google Play developer page, and for iOS, Xcode con-
nects and uploads the file to your account.

At this point, just realize the underlying steps involved are very similar for both plat-
forms, but the nuances about how they work varies and are covered in more detail for
each platform.

10.2 Building icons and splash-screen assets
As phones have improved over the years, the image quality of the graphics has needed
to improve as well. To accommodate this, both Android and iOS require apps to pro-
vide a number of different sizes for icons and the loading splash-screen graphic to fit
the many different screen sizes and resolutions.

 For example, the iPhone 6 has a larger screen than the iPhone 5, and apps should
provide a loading splash-screen image that fits both sizes of phones. Android devices
also have this problem, especially because Android devices have a much greater diver-
sity in size and resolution due to the different phone manufacturers’ designs. Crea-
ting images for these different situations can easily require dozens of images. You
should also consider if you need to make a version for portrait and landscape modes,
depending on the device’s orientation.

Set up
keystore

Build app
file

Sign app
file

Optimize
app file

Create listing
in Google Play

Upload
app file

Submit
for review

Building and publishing for Android

Set up
signing ID

Set up
app ID

Create listing
in iTunes Connect

Build and upload
app file

Building and publishing for iOS

Figure 10.2 Steps to build and publish an app for Android and iOS
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 10 Building and publishing apps
 Because it’s somewhat painful to create so many images manually, Ionic imple-
mented a feature that takes a single icon and a single splash-screen image and gener-
ates the various sizes that are needed for your app. It also will register the images with
the cordova.xml file, so when you build the app, the images are linked correctly.

 Ionic is able to convert the files by using its remote service, so your images will be
uploaded to the Ionic servers for processing. This means there are no other depen-
dencies you need besides the Ionic command-line interface. It supports PNG, PSD
(Photoshop), and AI (Illustrator) files.

10.2.1 Creating the primary icons

To begin, you need a single icon graphic that Ionic can use to generate the rest of the
sizes from. Ionic requires that you create an icon that’s at least 192 pixels square, with
no rounded edges. I recommend you make the icon at least 1,024 pixels square so the
quality of the icon remains high. Icons are also modified slightly different for each
platform; for example, iOS may round the edges of the icon. Ionic has a template for
Photoshop that you can use to design your icon at http://mng.bz/2ow0.

 There are some design considerations for the icon that you should be aware of.
Both Android and iOS have some great documentation details about designing qual-
ity icons. iOS guidelines are at http://mng.bz/B3DO, and Android guidelines are at
http://mng.bz/N957. Here are a few of the top considerations:

 Keep the icon simple. Icons aren’t very large, and they should be easy to see.
 Make it memorable. The icon should be something uniquely representative of

your app and brand.
 Make sure it looks good large and small. Don’t forget to zoom out and see if the

icon still looks clear when it’s small.
 Keep the colors simple. Avoid using lots of colors or colors that clash.

Once you have your icon created and in a supported format, you need to save it to one
of the following locations noted in table 10.1. If Ionic finds a platform-specific icon it
will use it; otherwise, it will use the default icon.

Any time you want to generate the icons, you just need to run the following Ionic CLI
command:

$ ionic resources –icon

Table 10.1 File locations to store icon source images

Target platform File location

Android resources/android/icon.png

iOS resources/ios/icon.png

Default resources/icon.png
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/B3DO
http://mng.bz/N957
http://mng.bz/2ow0

235Building icons and splash-screen assets
This may take a few moments because the files are uploaded to Ionic’s servers, con-
verted, and downloaded back into your project. Once it’s complete, you should review
the generated icons to confirm they appear as desired for all of the different sizes.

10.2.2 Creating the splash-screen images

The splash-screen works very similarly to the icon, except there’s a little bit more com-
plexity to the splash-screen design. The icons are just resized, but the splash-screen is
actually resized and cropped for different resolutions and orientations. You can see in
figure 10.3 how the different sizes are cropped from the source splash-screen. If you
have Photoshop, you can use the Ionic splash-screen template at http://mng.bz/2ow0
to help you design it to the correct dimensions.

 The splash-screen source needs to be at least 2,208 × 2,208 pixels. But you should
limit the custom design to a square in the center about 1,200 × 1,200 pixels. Typically
this inner square contains some kind of logo branding with a background color.
There aren’t clear guidelines for the use of splash-screens in iOS and Android, so you
should consider what will provide the best experience for your users.

Outlines of different
device screen sizes

Area shared by all
sizes of displays

Figure 10.3 How different resolutions are cropped from the source splash-screen image, based on
the various iOS and Android device sizes in portrait and landscape modes
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/2ow0

236 CHAPTER 10 Building and publishing apps
After creating the splash-screen graphic in a supported format, you need to save it to
one of the following locations noted in table 10.2. If Ionic finds a platform-specific
splash-screen image it will use it; otherwise, it will use the default option.

To generate the splash-screen images, run the following command:

$ ionic resources --splash

Like with the icons, it will upload to the Ionic servers to process the images, so you
don’t have to worry about having the necessary software on your machine.

 If you want to generate both icons and splash-screens at once, you can just run the
following command:

$ ionic resources

Now that your icons and splash-screen images are ready, it’s time to prepare the app
for production.

10.3 Preparing your app for production
There are a few things you should check to ensure your app has nothing unnecessary,
which can help improve speed and stability, and reduce the app file size. You could
run your automated tests to ensure that even when these steps are taken, the applica-
tion still behaves as expected.

 Here are some steps you should take before a release:

 Remove the Cordova Console plugin. This plugin is part of how Cordova allows you
to debug your apps, but in production you don’t want this. Remove it from your
app by running cordova plugin rm org.apache.cordova.console.

 Remove any unnecessary files. During app development you might install extra
third-party libraries or create extra views that you don’t end up using. Remove
them from the app so you save on file size.

 Remove unused library files. Ionic may have installed files in the www/lib directory
of your app using Bower, and sometimes those library files also include the
sources. You should delete any files that you’re not using.

 Compress your code. You can run your code through a JavaScript minification sys-
tem to help optimize the file execution and reduce file size.

 Compress your graphics. Images are often what can cause app file size to grow. Try
to compress your files and make sure they aren’t any larger than necessary.

Table 10.2 File locations to store splash-screen source images

Target platform File location

Android resources/android/splash.png

iOS resources/ios/splash.png

Default resources/splash.png
Licensed to Mark Watson <nordickan@gmail.com>

237Building Android apps and publishing to Google Play
The main idea here is to ensure everything is ready for widespread use. You wouldn’t
want debugging code to appear in your app, for example. The more diligent you are
about keeping your app clean while you develop, the easier this step is to complete.

10.4 Building Android apps and publishing to Google Play
Now that your app is ready to be built for production, you’ve got a few steps to run
through to build for Android. You’ll have to build the app using Cordova, sign the
app to verify the source, and optimize the built app. You’ll use the command line to
run all of the steps for Android, but you could also read about how to use Android
Studio at http://mng.bz/T7G4. You’ll use the command-line process, as outlined in
figure 10.4, because it’s simpler for Android.

The Google Play Store is the primary place to publish your apps for Android. You’ll
need to create or link an existing Google account with the Play Store Developer Con-
sole. Then you’ll be able to create a listing for your app that includes the title, descrip-
tion, images, and other details used to categorize and list the app. Once that’s done,
you’ll upload the built Android app APK file you generated and submit the app for
review.

10.4.1 Setting up for signing your apps

Start by setting up a keystore—a file that securely stores the security key that you’ll use
later to add a signature to your app. With the signature, the author of the app can be
verified over time. You can read more about signing at http://mng.bz/T7G4.

 To generate a new keystore, you’ll use a command-line utility keytool. This gen-
erates a keystore that’s valid for 10,000 days, which should be more than enough to
cover the lifetime of your app (and you shouldn’t make it shorter, or it might expire!).
You’ll replace know_your_brew with the name of your app (use underscores) in this
command:

$ keytool -genkey -v -keystore know_your_brew.keystore -alias know_your_brew
-keyalg RSA -keysize 2048 -validity 10000

This generates a new file called, in this case, know_your_brew.keystore, and you can
place it anywhere on your computer. Later you’ll need to know the location of the file,
so make sure you can access it.

 You’ll reuse the same keystore for the entire life of the app, so you need to keep it
for as long as you plan to support the app. You also need to keep it safe and private
because it could be used by others for malicious purposes. Every version of the app

Set up
keystore

Submit
for review

Building and publishing for Android

Build app
file

Sign app
file

Optimize
app file

Create listing
in Google Play

Upload
app file

Figure 10.4 Review of the Android build and publishing steps
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/T7G4
http://mng.bz/T7G4

238 CHAPTER 10 Building and publishing apps
must be signed with the same keystore or the updates will be rejected. If a team needed
to sign an app, the same keystore would need to be used regardless of who builds the
app. You should also generate a different keystore for every app you produce.

10.4.2 Build the release app file

Next you’ll build the app with Cordova. The following build command will build a
release-ready version of your app:

$ cordova build --release android

This will generate a new APK file, which is the Android app file type, inside of plat-
forms/android/ant-build/CordovaApp-release-unsigned.apk. The command line
should report the exact file path to the APK file. This is an unsigned, release-ready ver-
sion of your app.

10.4.3 Signing the APK file

Now you’re ready to use the keystore you created earlier to sign the unsigned version
of the APK you just generated. Android comes with a tool called jarsigner that will
help you with this task.

 You’ll need to know the file path to both the unsigned APK and the keystore from
the previous two steps. I recommend moving them into the same directory so the
command is easier to type. In the command you’ll replace know_your_brew with the
same values you used to generate the keystore for your app, and update the name of
the app if it’s something other than CordovaApp-release-unsigned.apk:

$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
know_your_brew.keystore CordovaApp-release-unsigned.apk know_your_brew

This takes just a moment, and it will prompt you for the password for the keystore and
key. It will modify the APK in place. You can test that the app is now signed properly
using jarsigner again, and replace the name with your app filename:

$ jarsigner -verify -verbose -certs CordovaApp-release-unsigned.apk

If you have any signing errors, you might want to rebuild the app using Cordova and
try again to ensure you don’t have a lingering problem.

10.4.4 Optimize the APK

The last step is to optimize the APK file so that it reduces the amount of space and
RAM required by the app on a device. The zipalign tool is the utility for the job: it will
take your signed APK file and create a new optimized APK version that you’ll want to
use for uploading. Under the hood, zipalign will optimize the bytes inside of the
package for optimal reading by the operating system processes. The technical details
can be found at http://mng.bz/vWfu.
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/vWfu

239Building Android apps and publishing to Google Play
 The zipalign tool just takes the name of the signed file (remember, you signed
the file in place and haven’t changed the filename in this example) and the name of
the file to generate. Change KnowYourBrew.apk to the name of your app:

$ zipalign -v 4 CordovaApp-release-unsigned.apk KnowYourBrew.apk

When the new file is generated, you now have a final version of your Android app that
you can use to submit to any Android store. You’ve finished with the initial build, but
let’s talk quickly about how to update your app.

10.4.5 Building an updated version of your app

Almost certainly you’ll eventually want to update your app with new features and bug
fixes. The process to build an update to an existing app is the same as building the
release, except you don’t need to create another keystore. A few details are worth
emphasizing:

 You must use the same keystore to sign the app for every update; otherwise, the
update will be rejected for not having the same signature and you’ll be required
to create a new app listing.

 You must update the version and build number in the project config.xml file
for the next release. If the numbers aren’t changed, then the app will not prop-
erly update on your users’ devices.

 If you build frequently, you might want to improve the steps by making the com-
mands into a shell script that can be automated.

10.4.6 Creating the app listing and uploading the app to the Play Store

The first step is to make sure you have access to the Developer Console for the Play
Store. It requires a Google account. It’s recommended that you create a separate
Google account for your apps from any personal accounts, so you avoid any situations

Build troubleshooting

A couple of problems can happen with a build, typically caused by some tools not
being in the system path. Here are a few tips to check or fix if you run into trouble:

Java and Ant must be installed and available in the system path. Android used Ant
for its internal building process until it adopted Gradle, but to support older versions
Cordova may use Ant.

The android, keystore, and jarsigner commands might not work if you haven’t
added the path of the SDK to your system path.

The zipalign tool might not work because some of the Android tool builds placed it
in the wrong directory. You should search your computer for the zipalign file, and
make sure it’s in your system path to fix this problem.
Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 10 Building and publishing apps
where your personal account (and perhaps your name) becomes tied to your apps. You
can create the Google account at https://play.google.com/apps/publish/ signup/.

 There’s a one-time US $25 fee to update your account to a developer account.
You’ll also have to agree to some terms and conditions as part of the registration pro-
cess. You should walk through the steps and complete the account registration and
payment before continuing.

 Once you’re logged in to your developer account, you can begin the process of
creating a listing. You’re able to start a listing and finish it later, which is handy when
you’re trying to track down all of the details for the app. You can review the most up-
to-date details about the Google Play publish process at http://mng.bz/6ZDC.

 In the process of creating the listing, you’ll need to provide the app name and
default language, description, title, screenshots, and other metadata. Google Play
requires several screenshots, an icon, and a feature graphic. You’ll need to use your
preferred image editing program to design and size these images accordingly.

 Once you’ve created the full listing, you can upload the app APK file. Google Play
has alpha, beta, and production versions that you can use with your app. The alpha
and beta versions allow you to push updates before they go into the public Play Store,
and get feedback. This can be a great way to roll out updates first to alpha, then beta,
and finally to production. Alpha and beta testing might not be very useful until you’ve
gotten a loyal following or have users willing to help you out. But you could be the
only member of the beta group so that you can test that your app updates correctly
from the Play Store before pushing to production. You can see more details at
http://mng.bz/s6s8.

 You can also upload an app APK file directly to production mode. This means your
app can go live in the Play Store, and anyone is able to find and download it without
having to opt-in to the alpha/beta process.

 After you have the listing filled in and APK file uploaded, your app should be ready
for publishing. Once you’ve submitted the app, it will be reviewed through both auto-
matic and some manual processes to verify the app doesn’t violate any store guide-
lines. This can take hours or days, but if the app is rejected for any reason, you’ll be
notified. If you violate any of the Google Play policies, you’ll be notified so you can
resolve them and resubmit your app.

10.4.7 Updating the app listing or uploading a new version

You can modify the app listing details, such as the description, without having to sub-
mit a new APK file. For example, you don’t have to update the app APK file if you find
a typo in your description.

 When you update your app APK file, you must update the app version code (which
is different from the version number) in the build itself. Cordova generates this value
when you create the Android platform files based on the version number in con-
fig.xml. This number is built from the version number using this formula (unless you
explicitly declare it): PATCH + MINOR * 100 + MAJOR * 10000. For example, version 2.3.6
Licensed to Mark Watson <nordickan@gmail.com>

https://play.google.com/apps/publish/signup/
http://mng.bz/6ZDC
http://mng.bz/s6s8

241Building iOS apps and publishing to the AppStore
(MAJOR.MINOR.PATCH) would be 6 + 3 * 100 + 2 * 10000 = 20306. Uploading a new APK
file with an updated version code to production will trigger an update for users. The
version number is just the value shown to users in the store. See http://mng.bz/0C05
for full details about versioning.

 Any changes from updating the app or metadata are usually available within a cou-
ple of hours on the Play Store. The status of the changes is shown in the Developer
Console, in case you need to verify if the update is still pending or has completed.

10.4.8 Using alternative Android stores

There are other Android stores, such as the Amazon App Store, and the build process
is the same regardless of which store you use. There may be different rules or guide-
lines that you need to adhere to for these stores.

 But other stores aren’t inherently trusted like the Google Play Store. There is a set-
ting on Android devices in Settings > Security > Unknown Sources that must be
enabled to allow apps to be installed from outside of the Google Play Store. This is a
major advantage that apps in the Google Play Store have over other stores.

10.5 Building iOS apps and publishing to the AppStore
To build for iOS using this process, you’ll need to use a Mac and Xcode, and have
your Apple developer account set up for iOS development.

Apple uses iTunes Connect as the way to create a listing in the AppStore and manage
the app. You’ll add your app listing to iTunes Connect, fill in a lot of details such as
screenshots and metadata, connect Xcode to build and upload your app, and submit
it for review, as shown in figure 10.5.

Want to build for iOS without a Mac?
Ionic and other services have features to build an app through their platform. This
would allow you to upload your project files to their server and get back the built files
ready for submission. As Ionic evolves this feature, you can find details at
https://ionic.io.

It’s not covered here, but you can leverage some of the CLI tools to build and sign
apps that also work on Unix-like environments. These tools run on Unix-based sys-
tems such as Linux and Mac. You can review more information about the tools on
Apple’s site at http://mng.bz/XpsA.

Set up
signing ID

Set up
app ID

Build and upload
app file

Building and publishing for iOS

Submit
for review

Create listing
in iTunes Connect

Figure 10.5 The steps for building and publishing for iOS
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/0C05
http://mng.bz/XpsA
https://ionic.io

242 CHAPTER 10 Building and publishing apps
If you haven’t set up your Apple developer account yet and registered for the iOS
Developer Program, you need to do that first. Go to https://developer.apple
.com/programs/ to sign up; it costs US $99/year to be part of the iOS Developer Pro-
gram. You can set up a new account for your apps if you have a personal account with
Apple already.

10.5.1 Set up certificates and ID

Once you have your account, open Xcode on your Mac and go to the preferences. If
you haven’t already added your account to Xcode on the Accounts tab, do so now.
This will sync Xcode with your account.

 Let’s start with getting a signing identity (also called distribution certificate). This is
used to sign an app and verify that the app was built and submitted by the account
owner. You can review the official documentation about managing certificates and IDs
at http://mng.bz/64k9. The basic steps are these:

1 Log into your Apple developer account in Xcode if you haven’t already.
2 In Preferences, manage your account and certificates.
3 Create a new signing identity specifically for distribution (not development).

Once the signing identity has been resolved, it should appear in the list as iOS Distri-
bution. You may already have an iOS Development identity as well from testing.

10.5.2 Set up an app ID identifier

Now you’ll set up the app ID identifier details through the Apple Developer Member
Center. Identifiers are used to allow an app to have access to certain app services, such
as Apple Pay or HealthKit. Multiple identifiers might be used in the same app for dif-
ferent services, but in this case you’ll use just one.

 Go to https://developer.apple.com/membercenter and log in with your Apple ID.
Then choose Certificates, Identifiers, and Profiles. You want to set up a new app ID for
your app, which is used to keep track of the app throughout the Apple ecosystem. See
official documentation about app IDs at http://mng.bz/8hj1. The basic steps are
these:

1 Start to register a new app ID.
2 Supply the name of your app, and use the Explicit App ID option. Provide the

bundle ID from your app, which is by default the ID in the <widget> tag you
specified in the Cordova config.xml file of your app (or if you modified the
bundle ID value in your Xcode project). It must match your app bundle ID.

3 Choose any of the services that need to be enabled. For example, if you use
HealthKit in your app, you need to choose that option. Apps often have no
additional services, so if you don’t think you need it, just leave them as default
values.

4 Submit to register the app ID.
Licensed to Mark Watson <nordickan@gmail.com>

https://developer.apple.com/programs/
https://developer.apple.com/programs/
http://mng.bz/64k9
https://developer.apple.com/membercenter
http://mng.bz/8hj1

243Building iOS apps and publishing to the AppStore
That will take care of the ID registration for your app, and it will be used by iTunes
Connect and Xcode in the following steps.

10.5.3 Create listing in iTunes Connect

You now need to make your listing in iTunes Connect, which is the portal that Apple
uses to manage app submissions. You’ll use your app ID that you generated to create a
new record. Log into iTunes Connect at https://itunesconnect.apple.com to get
started. Detailed documentation about iTunes Connect can be found at http://
mng.bz/92eZ. The general steps are these:

1 Add a new iOS app.
2 Fill in the app details, and choose the correct bundle ID (the name of the app

ID you made earlier) for the app.
3 Create the app listing. You’ll fill out more details later.

Now you’ve generated a new app listing that will eventually be ready to submit to the
AppStore. You’ve taken the app ID you created before and connected it to this app
listing. Before you fill out everything in the listing, you’ll build your app and get it
uploaded first using Xcode. Then you’ll come back to finish the listing.

10.5.4 Build and upload app with Xcode

Now that you have an app ID and iTunes Connect app listing started, Xcode can help
you build and upload the app. You first have to make sure that the Xcode project is up
to date with your Cordova project. Run the Cordova build task from the project root
in the command line:

$ cordova build ios --release

This will ensure the latest changes from your project are set up in the iOS project. Open
the platforms/ios/AppName.xcodeproj file in Xcode. It should allow you to see details
about your app in the general view, where you want to confirm things look correct:

 The bundle identifier should match the value you specified earlier in the app ID.
 The version and build numbers should reflect what you intend them to be.
 Team should be set to your Apple account.
 Deployment target and devices should reflect which versions and devices you

intend to support.

Xcode is good about prompting you to fix certain errors if you haven’t set up some-
thing correctly. Review any error messages, and in some cases Xcode can even resolve
them for you. You’ll also need to make sure you don’t have a device connected to the
computer.

 You can now build the app as an archive (which is the app bundled for uploading),
and then you’ll upload it. The full documentation is found at http://mng.bz/20m2.
The general steps are these:
Licensed to Mark Watson <nordickan@gmail.com>

https://itunesconnect.apple.com
http://mng.bz/92eZ
http://mng.bz/92eZ
http://mng.bz/20m2

244 CHAPTER 10 Building and publishing apps
1 Create a new archive of your app, which will make a build of your app that can
be later submitted.

2 Validate the archive you just created, which will ensure the archive can be
uploaded correctly and passes validation tests.

3 Submit the app, which will actually submit the file to iTunes Connect.

Now that you’ve got your app finished and uploaded, you just need to complete the
iTunes Connect listing and submit it for review!

10.5.5 Complete the iTunes Connect app listing

There are a lot of details to provide for the app listing, which are documented in the
app listing form for you. If you try to submit your app without providing some
required information, it will let you know what’s missing or needs to be fixed.

 When you uploaded your archived app, iTunes Connect determined which device
sizes it supported. You’ll need to upload at least one screenshot image for each of the
various app sizes iTunes Connect detected. The easiest way to generate these images is
to emulate the app in different versions of the iPhone simulator. The exact sizes and
rules can be found by choosing the help icon near the screenshots. You could also
upload a short video preview of the app.

 Much of the listing is information you’ll have to fill out based on your app, such as
the description, keywords, support URL, and icon. You can work through these details
and consider how to maximize clarity and marketing for your app.

 In the build section, you can view the uploaded build versions for your app
uploaded from Xcode, and if this is your first app and build, then you’d expect only
one. Choose the build from the list and save.

 Just like for Android, iOS has the ability to submit an alpha or beta version of your
app and release it to that select group. There’s a limit to how many users can test a
prerelease version, and you can invite them over email. See more details in the docu-
mentation at http://mng.bz/1Yp4.

 Once you’ve finished adding the rest of the details to the app listing, you can press
Save and then Submit for Review. If any errors are displayed, fix them and you can try
again.

 Apple has a manual review process, which means it can take several days for your
app changes to be fully reviewed and reflected in the App Store. You’ll be notified of
any issues or updates to your app status.

10.5.6 Updating the app

To update an app, start by updating the build and version numbers. This can be done
in the Xcode project file, or you can update the Cordova config.xml file and then
regenerate the iOS platform files with Cordova by removing the ios platform and
adding it again.
Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/1Yp4

245Summary
 With the new version and build numbers, you can then follow the same steps to
build and upload a new version to your account. If the numbers aren’t updated, then
the build will not upload.

 Once the new package has been uploaded, you’ll see a new number in the top bar
for the release. Make any changes to the app listing, such as new screenshots or chang-
ing other metadata, press Save, and then press Submit for Review. The changes will go
through the same review process, and the existing app will remain in place until the
review is complete.

 If you choose to release the version automatically, as soon as the review is com-
pleted successfully the app will go live. Otherwise, you must manually log in after the
review to release a new version. Manual release might be useful if you want to trigger
the release of a new version yourself at a certain time.

10.6 Summary
Uploading an app to the stores is the ultimate goal of app development, and this
chapter covered the steps to generate icons, build the app, and submit it. Let’s review
the major topics covered in this chapter:

 Both icons and splash-screens need to be provided in many sizes for different
device types.

 You built the app for Android, signed it with your key, and made it ready to be
published. You then created and uploaded the Android app to the Play Store
using the Developer Console.

 You set up an iOS app with the necessary app ID and iTunes Connect listing,
and then were able to build and upload from Xcode. You finished the app list-
ing in iTunes Connect and submitted your app for review.

After going through all of the steps, you’ll be able to optimize your app for produc-
tion and release it to the app stores. Congratulations on finishing your app, and be
sure to share what you’ve built in the author forum!
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

appendix A
Additional resources

This appendix contains a curated list of additional resources. Resources shared in
the chapters are also collected here as a reference.

A.1 Ionic
 http://ionicframework.com—The official Ionic website with documentation,

a forum, a blog, and more.
 https://apps.ionic.io/—The Ionic platform where you can manage your

apps with Ionic View, Ionic Creator, and other Ionic platform services.
 http://ionicons.com—A preview of all of the icons available in the Ionic icon

set, Ionicons.
 https://github.com/driftyco/ionic—The GitHub project to follow the develop-

ment of Ionic.
 https://github.com/ionic-in-action—The GitHub project for this book.
 http://codepen.io/ionic/public-list/—A list of useful demos for individual

features created by the Ionic team.
 http://mng.bz/A24v—The YouTube channel from Ionic containing demos,

tutorials, and episodes from the team.

A.2 Angular
 https://angularjs.org—The official documentation and site for Angular 1. It

contains links to starter guides, videos, mailing lists, and more.
 http://manning.com/bford—AngularJS in Action is a complete book for get-

ting started with Angular and learning the fundamentals.
 http://manning.com/aden—AngularJS in Depth is a complete book about

digging deeper into how Angular works, which is very useful for improving
your Ionic apps.

 http://angular.github.io/protractor—End-to-end testing for Angular is
made much easier with Protractor.

 http://karma-runner.github.io—Karma is the popular test runner for exe-
cuting unit tests built by the Angular team.
247

Licensed to Mark Watson <nordickan@gmail.com>

http://ionicframework.com
https://apps.ionic.io/
http://ionicons.com
https://github.com/driftyco/ionic
https://github.com/ionic-in-action
http://codepen.io/ionic/public-list/
http://mng.bz/A24v
https://angularjs.org
http://manning.com/bford
http://manning.com/aden
http://angular.github.io/protractor
http://karma-runner.github.io

248 Appendix Additional resources
 http://jasmine.github.io—Jasmine is the testing library used in this book and
by Angular.

A.3 Cordova
 http://cordova.apache.org—The official Cordova website with documentation,

news, and more.
 http://plugins.cordova.io/npm/index.html—Discover available plugins for

Cordova using the official plugin registry.
 http://ngcordova.com—The official ngCordova website with documentation

on how to use each of the supported Cordova plugins.
 http://manning.com/camden/—Apache Cordova in Action, a great book by Ray-

mond Camden that digs deep into the features of Cordova.

A.4 Blogs
 http://ionicinaction.com—The companion website and blog for this book.
 https://blog.nraboy.com—Nic Raboy has many good posts about building

mobile apps with Ionic.
 http://www.raymondcamden.com—Raymond Camden blogs regularly about

building mobile apps, using Cordova, and also about Ionic.
 http://mobilewebweekly.co—A great weekly email newsletter with carefully

curated links to the top posts on mobile development from around the web.
Licensed to Mark Watson <nordickan@gmail.com>

http://plugins.cordova.io/npm/index.html
http://jasmine.github.io
http://cordova.apache.org
http://manning.com/camden/
http://ngcordova.com
http://ionicinaction.com
https://blog.nraboy.com
http://www.raymondcamden.com
http://mobilewebweekly.co

 index

Symbols

$ symbol 46
{{ }} double curly braces 38

A

accelerometer 187
action sheet component

150–153
Amazon App Store 241
Android

debugging from device 213
emulators

previewing apps in 31
setting up 26–29

previewing apps on con-
nected device 33

publishing apps
building release version

238
building updated

versions 239
optimizing APK 238–239
process overview 237
setting up for signing of

apps 237–238
signing APK 238
updating app 240–241
uploading to Google Play

Store 239–240
using alternative Android

stores 241
recommended versions 25
supported devices 15

Android Studio 24–25

Android Virtual Device
Manager. See AVD
Manager

angular.module() method 45
AngularJS

chapter project setup 41–43
click events 51–54
controllers

loading data using 48–51
overview 39–40, 45–48

Cordova plugins and
191–192

defined 3
digest loop 191–192
directives 54–56
expressions 79
filters 51
form validation using 61
Ionic framework stack 10
models

managing content editing
using 56–59

overview 39–40
ngApp directive 44–45
online resources 247
overview 35–38
prerequisite experience 13
resources for 62–63
scope 39–40
services 41
templates 38–39
two-way data binding 41

APK files 238–239
Apple developer account 242
$apply() method 192
asynchronous tasks 50

automated testing
integration tests

overview 225–226
Protractor configuration

227
setting up 226–227
writing tests 227–229

unit tests
overview 219–220
running unit tests 222
setting up 220
writing unit tests 221–225

AVD (Android Virtual Device)
Manager 27

B

back-button component 97
Bitcoin app example

chapter project setup 96
charting data

controller for 118–121
creating template using

Highcharts
component 117–118

overview 116
setting up third-party

libraries 116–117
detail view 107–111
loading data service

content 103–107
refreshing app using

ionRefresher
111–113

reordering for lists 122–123
showing help in
249

Licensed to Mark Watson <nordickan@gmail.com>

250 INDEX
popover 113–115
Bitcoin app example (continued)

tabs
adding ionNavView for

each tab 103
adding tabs container and

tabs 98
setting up navigation

for 96–98
toggle options for lists

123–124
Bower 21
browser, previewing apps

in 22–23
building apps. See production

apps

C

camera
adding plugin to project 196
overview 194–196
using photo book view

196–198
Cascading Style Sheets. See CSS
Chrome 23
CLI (command-line interface)

9, 19–20
click events, AngularJS 51–54
collection repeat component

156–159
comma-separated value.

See CSV
Console plugin 236
content container 72–73
controllers

data binding using model
and 76–80

loading data using 48–51
loading external data 82–84
overview 39–40, 45–48

Cordova
Console plugin 236
defined 2
evolution of 187
installing 19–20
Ionic framework stack 10–11
ngCordova 194
online resources 248
persistent data storage using

plugins 179
plugins

Angular and 191–192
considerations for 188

installing 188–189
overview 187
platform limitations and

190–191
testing in emulators 190
troubleshooting 192–193
using in app 189–190

using camera
adding camera plugin 196
overview 194–196
photo book view 196–198

using geolocation
adding geolocation plugin

and ngCordova 200
overview 198–199
requesting user location

200–202
$cordovaCamera service 197
CORS (cross-origin resource

sharing) 140–141
CSS (Cascading Style Sheets)

components using 74–75
customizing components 70
Ionic components for 75
prerequisite experience 13
Sass

custom styling using 167
overview 164
setting up 164–165
using Sass variables in

Ionic 165
CSV (comma-separated

value) 116

D

debugging
from Android device 213
defined 207–208
from iOS device 213–218
overview 212–213

default behavior, overriding
184–185

dependency injection. See DI
$destroy event 115, 155
Developer Console 237, 239
development environment

Cordova 19–20
Ionic CLI 19–20
Node.js 19
overview 17–19
previewing environments

Android emulator 26–29
Android Studio 24–25

iOS emulator 25
previewing in emulator 31
previewing on Android

device 33
previewing on iOS device

32–33
setting up connected

devices 29–30
Xcode 24–25

projects
adding platforms to 30–31
creating 20
folder structure 21–22
previewing in browser

22–23
deviceready event 189
DI (dependency injection) 49
digest loop 191–192
directives, AngularJS

creating 54–56
overview 38, 56

distribution certificate 242
documentation 247–248
DOM (Document Object

Model) 40, 44, 156,
212

double curly braces {{ }} 38
doubletap event 174
drag events 174

E

emulate command 31
emulators

Android
previewing apps in 31
setting up 26–29

iOS
previewing apps in 31
setting up 25

testing Cordova plugins
in 190

events, listening for 169–171
Express.js 43, 47
expressions, AngularJS 79
external data, loading 82–84

F

filters 51, 106, 148–150
form validation 61
framework stack

Angular 10
Cordova 10–11
Licensed to Mark Watson <nordickan@gmail.com>

251INDEX
Ionic user interface
framework 8–10

overview 7–8
$fromIndex parameter 122
fromTemplateUrl()

method 155

G

garbage collection 155
Genymotion 213
geolocation

adding plugin to project 200
overview 198–199
requesting user location

200–202
searching using Google Geo-

location API 131–133
gesture events

listening for events with
event directives
169–171

listening for events with
$ionicGesture service
171–173

overview 169
supported gestures 174–175

Git 18
Google Chrome Canary

browser 213
Google Play Store 237, 239–240
Gulp 21, 165

H

- -help flag 20
Highcharts component

controller for 118–121
creating template for

117–118
overview 116
setting up third-party

libraries 116–117
hold event 174
HTML (Hypertext Markup

Language)
AngularJS templates 38
prerequisite experience 13

$http service 41, 49, 60, 82, 118
hybrid apps 6–7

I

icons 233–235

import command 166
$index value 52
IndexedDB 178–179
infinite scroll with cards 86–89
installation

Android Studio 24–25
Cordova 19–20
Cordova plugins 188–189
Ionic CLI 19–20
ngCordova 194
Node.js 19
Xcode 24–25

integration testing
overview 225–226
Protractor configuration 227
setting up 226–227
writing tests 227–229

ionContent component 72, 74
ionScroll and 143
refreshing 112
tabs and 98

ionDeleteButton component
138

ionFooterBar component 106
Ionic

advantages 11–12
disadvantages 12–13
framework stack

Angular 10
Cordova 10–11
Ionic user interface

framework 8–10
overview 7–8

online resources 247
overview 2–3
prerequisite experience

13–14
supported devices 14–15

Ionic Lab 209
Ionic View 210–211
ionic.Platform service 182–183
$ionicActionSheet service

151–152
$ionicConfigProvider service

184–185
$ionicGesture service 171–173
$ionicLoading service 80, 85
$ionicModal service 154
Ionicons 75–76
$ionicPlatform.ready method

189
$ionicPopover service 113–115
$ionicPopup service 160
$ionicView.beforeEnter event

120

ionInfiniteScroll component
87

ionItem component 123
ionList component 122, 138
ionModal component 153–156
ionModalView component 156
ionNavBackButton

component 69
ionNavBar component 69, 96
ionNavView component 69, 103
ionPopoverView component

114
ionRadio component 137
ionRefresher component

111–113
ionReorderButton component

122–123
ionScroll component

overview 142–143
paging with 143–148

ionSideMenus component
129–130

ionSlideBox component 89
$ionSlideBoxDelegate service

90
ionTabs component

adding ionNavView for each
tab 103

adding tabs container and
tabs 98

setting up navigation for
96–98

ionToggle component 123–124
iOS

debugging from device
213–218

emulators
previewing apps in 31
setting up 25

previewing apps on con-
nected device 32–33

publishing apps
creating listing in iTunes

Connect 243
process overview 241–242
setting up app ID 242–243
setting up for signing of

apps 242
updating app 244–245
uploading 243–244

recommended versions 25
supported devices 14–15

isAndroid() method 182
isIOS() method 182
iTunes Connect 241, 243
Licensed to Mark Watson <nordickan@gmail.com>

252 INDEX
J

jarsigner utility 238–239
Jasmine

online resources 225
overview 219–221
running unit tests 222
setting up 220
writing unit tests 221–225

JavaScript
Ionic components for 75
prerequisite experience 13

jQuery 21

K

Karma
overview 219–220
running unit tests 222
setting up 220
writing unit tests 221–225

keystore utility 239
keytool utility 237

L

lists
reordering 122–123
toggle options for 123–124

livereload command 196
loading indicator 84–86
localStorage 175–178
location, searching using

Google Geolocation
API 131–133

M

Markdown 54
memory leaks 155
menuClose directive 130
menuToggle directive 130
mobile experiences

hybrid apps 6–7
mobile websites (web apps)

5–6
native mobile apps 3–5

mocks 223
modals 153–156
models

AngularJS 39–40
data binding using controller

and 76–80

managing content editing
using 56–59

Moment Timezone 149

N

native mobile apps 3–5
navigation

chapter project setup 66
content container 72–73
CSS components 74–75
data binding using controller

and model 76–80
declaring app states 69–72
designing for app 67–68
infinite scroll with cards

86–89
loading external data using

controller 82–84
loading indicator for view

84–86
overview 66–67
routing vs. 67
setting up for tabs 96–98
slidebox component 89–92
templates for 81–82
using Ionicons 75–76

ngApp directive 44–45
ngChange directive 118, 120
ngClass directive 52
ngClick directive 52
ngController directive 46
ngCordova directive 11, 194
ngDisabled directive 61
ngForm directive 61
ngHide directive 54
ngIf directive 51, 88
ngModel directive 58, 118
ngRepeat directive 38, 51–52,

89, 106, 136
ngRoute directive 67
ngShow directive 54
Node.js 19
notification plugin 189
npm (Node Package Manager)

19, 21, 43, 165

O

online resources
Angular 247
blogs 248
Cordova 248
Ionic 247

online/offline modes 167–169
otherwise() method 71

P

performance
improving using collection

repeat 156–159
memory leaks and 155

persistent data storage
Cordova plugins for 179
overview 175
using localStorage 175–178
using Web SQL and

IndexedDB 178–179
PhoneGap 11
pinch events 175
platform() method 182
platforms

adding to projects 30–31
targeting multiple

adapting behavior
182–183

adapting styling 180–182
overview 179–180

plugins, Cordova
Angular and 191–192
camera

adding to project 196
overview 194–196
photo book view 196–198

considerations for 188
geolocation

adding to project 200
overview 198–199
requesting user location

200–202
installing 188–189
overview 187
platform limitations and

190–191
testing in emulators 190
troubleshooting 192–193
using in app 189–190

popovers 113–115
popups 159–161
previewing apps

in browser 22–23
in emulator 31
environment setup

Android emulator 26–29
Android Studio 24–25
connected devices 29–30
iOS emulator 25
Licensed to Mark Watson <nordickan@gmail.com>

253INDEX
Xcode 24–25
previewing apps (continued)

Ionic Lab 209
Ionic View 210–211
on mobile device

Android 33
iOS 32–33
overview 32

testing vs. 207–208
production apps

Android
building release version

238
building updated versions

239
optimizing APK 238–239
process overview 237
setting up for signing of

apps 237–238
signing APK 238
updating app 240–241
uploading to Google Play

Store 239–240
using alternative Android

stores 241
icons 233–235
iOS

creating listing in iTunes
Connect 243

process overview 241–242
setting up app ID 242–243
setting up for signing of

apps 242
updating app 244–245
uploading 243–244

overview 232–237
splash screen 233–236

projects
adding platforms to 30–31
creating 20
folder structure 21–22
previewing in browser 22–23

promises 50
Protractor

configuration 227
overview 225–226
setting up 226–227
writing tests 227–229

proxy service for CORS
limitation 140–141

publishing apps. See production
apps

R

refreshing app 111–113
release event 174
reordering for lists 122–123
required attribute 61
resort app example

home view
content container 72–73
CSS components 74–75
overview 72
using Ionicons 75–76

reservation view 76–80
restaurants view 86–89
slidebox component 89–92
using camera

adding camera plugin 196
overview 194–196
photo book view 196–198

weather view
adding loading indicator

to 84–86
controller for loading

external data 82–84
overview 80–81
template for 81–82

responsive design 6
RESTful APIs 47
$rootScope object 40
rotate event 175
routing 67

See also navigation

S

Safari 23
Sass (Syntactically Awesome

Style Sheets)
custom styling using 167
overview 164
setting up 164–165
using Sass variables in Ionic

165
$scope object 39, 77
scope, AngularJS 39–40
$scope.popover property 114
scrolling content

overview 142–143
using ionScroll with paging

143–148
SDK (software development

kit) 3, 24, 26
serve command 140, 166
services 41, 133–135
settings

controller for 138–139
creating service for 133–135
showing favorites 135–136
template for 136–138

Showdown library 55
show-reorder attribute 122
side menus 128–131
signing apps

Android apps 237–238
iOS apps 242

slidebox component 89–92
software development kit.

See SDK
splash screen 233–236
SQLite 178
$stateChangeStart event 123
$stateParams service 109
$stateProvider service 70, 132,

135
sudo command 19
swipe events 174
Syntactically Awesome Style

Sheets. See Sass

T

tabs
adding ionNavView for each

tab 103
adding tabs container and

tabs 98
setting up navigation for

96–98
tap event 174
--target flag 31
templates

AngularJS 38–39
for settings 136–138
for views 81–82

Terminal 17
testing

defined 207–208
importance of 208
integration tests

overview 225–226
Protractor configuration

227
setting up 226–227
writing tests 227–229

overview 218–219
unit tests

overview 219–220
running unit tests 222
setting up 220
Licensed to Mark Watson <nordickan@gmail.com>

254 INDEX
writing unit tests 221–225
timezone filter 150
toggle options for lists 123–124
$toIndex parameter 122
touch event 174
transform events 174
troubleshooting 192–193
two-way data binding 41

U

ui.router module 10
ui-router project 66–67
ui-sref attribute 100, 110–111,

133
unit testing

overview 219–220
running unit tests 222
setting up 220
writing unit tests 221–225

$urlRouterProvider service 70,
132

V

validation, form 61
versioning 240, 243
views

content container 72–73
CSS components 74–75
data binding using controller

and model 76–80
infinite scroll with cards

86–89
loading external data using

controller 82–84
loading indicator for 84–86

organizing files by 78
slidebox component 89–92
templates for 81–82
using Ionicons 75–76

Virtual Box 213

W

watch command 166
weather app example

action sheet component for
options 150–153

chapter project setup 128
collection repeat for large

data set performance
156–159

current conditions and
forecast view

controller for 141–142
custom filters 148–150
getting Forecast.io API

key 140
overview 139–140
proxy service for CORS

limitation 140–141
template for 141

current location in 202–204
custom scrolling content with

ionScroll
overview 142–143
using ionScroll with paging

143–148
modals 153–156
overview 126–128
popups 159–161
settings

controller for 138–139
creating service for

133–135
showing favorites 135–136
template for 136–138

side menu 128–131
using geolocation

adding geolocation plugin
and ngCordova 200

overview 198–199
requesting user

location 200–202
searching using Google

Geolocation API
131–133

web apps 5–6
Web SQL 178–179
WebDriver API

overview 225–226
setting up 226–227
writing tests 227–229

WebView
browser previews and 23
defined 3, 6

$window.navigator.onLine
value 168

wireframing 65

X

Xcode 14, 24–25, 241–243

Z

zipalign utility 238–239
Licensed to Mark Watson <nordickan@gmail.com>

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

AngularJS in Action
by Lukas Ruebbelke

ISBN: 9781617291333
192 pages
$44.99
July 2015

Getting MEAN with Mongo, Express,
Angular, and Node
by Simon Holmes

ISBN: 9781617292033
375 pages
$44.99
September 2015

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/angularjs-in-action
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node
https://www.manning.com/books/angularjs-in-action
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Apache Cordova in Action
by Raymond K. Camden

ISBN: 9781633430068
275 pages
$39.99
September 2015

Hello App Inventor!
by Paula Beer and Carl Simmons

ISBN: 9781617291432
360 pages
$39.99
October 2014

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/apache-cordova-in-action
https://www.manning.com/books/hello-app-inventor
https://www.manning.com/books/apache-cordova-in-action
https://www.manning.com/books/hello-app-inventor
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Single Page Web Applications
Javascript end-to-end
by Michael S. Mikowski and Josh C. Powell

ISBN: 9781617290756
432 pages
$44.99
September 2013

Node.js in Action
by Mike Cantelon, Marc Harter, T.J. Holo-

waychuk, and Nathan Rajlich

ISBN: 9781617290572
416 pages
$44.99
October 2013

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/single-page-web-applications
https://www.manning.com/books/node-js-in-action
https://www.manning.com/books/single-page-web-applications
https://www.manning.com/books/node-js-in-action
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Learn Git in a Month of Lunches
by Rick Umali

ISBN: 9781617292415
375 pages
$39.99
September 2015

jQuery in Action, Third Edition
by Bear Bibeault, Yehuda Katz, and Aurelio

De Rosa

ISBN: 9781617292071
504 pages
$44.99
August 2015

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/learn-git-in-a-month-of-lunches
https://www.manning.com/books/learn-git-in-a-month-of-lunches
https://www.manning.com/books/jquery-in-action-third-edition
https://www.manning.com/books/jquery-in-action-third-edition
http://www.manning.com

Jeremy Wilken

W
ouldn’t it be great if you could build mobile apps
using just your web development skills? With Ionic,
you can do just that: create hybrid mobile apps using

web technologies that you already know, like HTML, CSS,
and JavaScript, that will run on both iOS and Android.

Ionic in Action teaches web developers how to build mobile
apps using Ionic and AngularJS. Through carefully explained
examples, the book shows you how to create apps that use UI
components designed for mobile, leverage current location,
integrate with native device features like the camera, use touch
gestures, and integrate with external data sources. Learn to test
your apps to improve stability and catch errors as you develop.
Finally, you’ll discover the command-line utility, and how to
build and deploy to app stores.

What’s Inside
● Create mobile apps with HTML, JavaScript, and CSS
● Design complex interfaces with Ionic’s UI controls
● Build once and deploy for both iOS and Android
● Use native device hardware and device-specifi c features
● Covers the entire mobile development process

Readers should know HTML, CSS, and JavaScript. Familiarity
with AngularJS is helpful but not required.

Jeremy Wilken is a senior UX software developer who works
with Ionic, AngularJS, and Node.js. He lives in Austin, TX.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/ionic-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Ionic IN ACTION

MOBILE DEVELOPMENT

M A N N I N G

“An informative introduction
to Ionic and an in-depth guide

to building better apps.”
—From the Foreword by

Adam Bradley
Cocreator of the Ionic Framework

“A one-stop resource for
 the Ionic developer.”
—Andrea Prearo, ArcTouch

“A must-read for web
developers eager to quickly
extend the reach of their

web applications to
 mobile platforms.”

—Kevin Liao, Sotheby’s, Inc.

“A key resource that
contains everything you need
to quickly create and deploy

cross-platform apps from
 a single code base.”—C. H. Graham, Cognipacity

SEE INSERT

	Ionic in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How the book is organized
	Code
	Author Online

	about the cover illustration
	1 Introducing Ionic and hybrid apps
	1.1 What is Ionic?
	1.2 Types of mobile experiences
	1.2.1 Native mobile apps
	1.2.2 Mobile websites (web apps)
	1.2.3 Hybrid apps

	1.3 Understanding how the Ionic stack works
	1.3.1 Ionic: user interface framework
	1.3.2 Angular: web application framework
	1.3.3 Cordova: hybrid app framework

	1.4 Why Ionic?
	1.4.1 Why Ionic is good for developers
	1.4.2 Drawbacks of using Ionic

	1.5 Prerequisites for building apps with Ionic
	1.5.1 Experience with HTML, CSS, and JavaScript
	1.5.2 Experience with web applications and Angular
	1.5.3 Access to a mobile device

	1.6 Supported mobile devices and platforms
	1.6.1 Apple iOS
	1.6.2 Google Android

	1.7 Summary

	2 Setting up your computer to build apps
	2.1 Quick-start guide
	2.1.1 Setting up your development environment
	2.1.2 Starting a new project
	2.1.3 Project folder structure
	2.1.4 Previewing in a browser

	2.2 Setting up previewing environments
	2.2.1 Installing platform tools
	2.2.2 Setting up emulators
	2.2.3 Setting up a connected device
	2.2.4 Adding a platform to the project
	2.2.5 Previewing in an emulator
	2.2.6 Previewing on a mobile device

	2.3 Summary

	3 What you need to know about AngularJS
	3.1 AngularJS at a glance
	3.1.1 Views and templates: describing the content
	3.1.2 Controllers, models, and scope: managing data and logic
	3.1.3 Services: reusable objects with methods
	3.1.4 Two-way data binding: sharing between controller and view

	3.2 Setting up for the chapter project
	3.2.1 Getting the project files
	3.2.2 Starting the development server

	3.3 Basics for an Angular app
	3.4 Controllers: for controlling data and business logic
	3.5 Loading data: using the controller to load and display data in the view
	3.5.1 Filters: convert data to display in the view

	3.6 Handling click events to select a note
	3.7 Create a directive to parse a note with Markdown
	3.8 Using models to manage content editing
	3.9 Saving and deleting a note
	3.9.1 Adding the save() method
	3.9.2 Using Angular forms for validation
	3.9.3 Adding the remove method

	3.10 Continuing with Angular
	3.11 Chapter challenges
	3.12 Summary

	4 Ionic navigation and core components
	4.1 Set up chapter project
	4.1.1 Create a new app and add code manually
	4.1.2 Clone the finished app and follow along

	4.2 Setting up the app navigation
	4.2.1 Designing good app navigation
	4.2.2 Declaring the app views with the state provider

	4.3 Building the home view
	4.3.1 Creating a content container
	4.3.2 Using CSS components and adding a simple list of links
	4.3.3 Adding icons to the list items

	4.4 Using a controller and model for the reservation view
	4.5 Loading data into the weather view
	4.5.1 Adding the template for the weather view
	4.5.2 Create weather controller to load external data
	4.5.3 Adding a loading indicator to the weather view

	4.6 Infinite scroll with cards for the restaurants view
	4.7 Using the slidebox component for app intro tour
	4.8 Chapter challenges
	4.9 Summary

	5 Tabs, advanced lists, and form components
	5.1 Set up chapter project
	5.1.1 Create a new app and add code manually
	5.1.2 Clone the finished app and follow along

	5.2 ionTabs: adding tabs and navigation
	5.2.1 Adding tabs container and three tabs to the app

	5.3 Adding ionNavView for each tab
	5.4 Loading and displaying current Bitcoin rates
	5.5 Display a currency’s details in the same tab view
	5.6 Refresh the Bitcoin rates and display help
	5.6.1 ionRefresher: pull-to-refresh the rates
	5.6.2 $ionicPopover: showing help in a popover

	5.7 Charting historical data
	5.7.1 Setting up third-party libraries
	5.7.2 History tab template using Highcharts and a select box to toggle currency
	5.7.3 History tab controller loads data and sets up chart

	5.8 Currencies tab with list reordering and toggles
	5.8.1 ionReorderButton: adding reordering to a list
	5.8.2 ionToggle: adding toggles to list items

	5.9 Chapter challenges
	5.10 Summary

	6 Weather app, using side menus, modals, action sheets, and ionScroll
	6.1 Setting up the chapter project
	6.2 Setting up the side menu and views
	6.3 Searching for locations
	6.4 Adding settings view and data services
	6.4.1 Create services for locations and settings
	6.4.2 Show favorites in side menu list
	6.4.3 Adding the settings template
	6.4.4 Settings view controller

	6.5 Setting up the weather view
	6.5.1 Get a Forecast.io API key
	6.5.2 Using Ionic CLI proxies
	6.5.3 Add the weather view controller and template

	6.6 ionScroll: building custom scrolling content
	6.6.1 Using ionScroll with paging
	6.6.2 Creating filters for forecast data

	6.7 Action sheet: displaying a list of options
	6.8 ionModal: displaying the sunrise and sunset chart
	6.8.1 Setting up a modal
	6.8.2 Collection repeat: making the sunrise and sunset list fast

	6.9 Popup: alert and confirm changes to favorites
	6.10 Chapter challenges
	6.11 Summary

	7 Advanced techniques for professional apps
	7.1 Set up chapter project
	7.1.1 Get the code

	7.2 Custom Ionic styling using Sass
	7.2.1 Setting up Sass
	7.2.2 Customize Ionic with Sass variables
	7.2.3 Using Sass for your own styling

	7.3 How to support online and offline mode
	7.4 Handling gesture events in Ionic
	7.4.1 Listen for events with Ionic event directives
	7.4.2 Listen for events with $ionicGesture service
	7.4.3 Available gesture events

	7.5 Storing data for persistence
	7.5.1 Using localStorage
	7.5.2 Using Web SQL, IndexedDB, and SQLite
	7.5.3 Other options from Cordova plugins

	7.6 Building one app for multiple platforms
	7.6.1 One size doesn’t always fit all
	7.6.2 Adapt styling for a platform or device type
	7.6.3 Adapt behavior for a platform or device type

	7.7 Modify default behaviors with $ionicConfigProvider
	7.8 Summary

	8 Using Cordova plugins
	8.1 Cordova plugins
	8.1.1 Considerations when using plugins
	8.1.2 Installing plugins
	8.1.3 Using plugins
	8.1.4 Using plugins with emulators
	8.1.5 Plugins and platform limitations
	8.1.6 Angular and Cordova gotchas
	8.1.7 Solutions to common issues with devices or emulators

	8.2 ngCordova
	8.2.1 Installing ngCordova

	8.3 Using a camera and photos in the resort app
	8.3.1 Setting up the camera project
	8.3.2 Adding the camera plugin
	8.3.3 Creating the photo book view

	8.4 Using geolocation in the weather app
	8.4.1 Setting up the geolocation example
	8.4.2 Adding the geolocation plugin and ngCordova
	8.4.3 Requesting a user’s location
	8.4.4 Improving the weather app

	8.5 Chapter challenges
	8.6 Summary

	9 Previewing, debugging, and automated testing
	9.1 The differences among previewing, debugging, and testing
	9.1.1 Why testing is important

	9.2 Setting up the chapter example
	9.3 Additional ways to preview apps
	9.3.1 Ionic Lab
	9.3.2 Ionic View

	9.4 Debugging from a device
	9.4.1 Debugging from an Android device
	9.4.2 Debugging from an iOS device or emulator

	9.5 Automated testing
	9.5.1 Unit tests with Jasmine and Karma
	9.5.2 Integration tests with Protractor and WebDriver

	9.6 More test examples
	9.7 Summary

	10 Building and publishing apps
	10.1 Building for production: an overview
	10.2 Building icons and splash-screen assets
	10.2.1 Creating the primary icons
	10.2.2 Creating the splash-screen images

	10.3 Preparing your app for production
	10.4 Building Android apps and publishing to Google Play
	10.4.1 Setting up for signing your apps
	10.4.2 Build the release app file
	10.4.3 Signing the APK file
	10.4.4 Optimize the APK
	10.4.5 Building an updated version of your app
	10.4.6 Creating the app listing and uploading the app to the Play Store
	10.4.7 Updating the app listing or uploading a new version
	10.4.8 Using alternative Android stores

	10.5 Building iOS apps and publishing to the AppStore
	10.5.1 Set up certificates and ID
	10.5.2 Set up an app ID identifier
	10.5.3 Create listing in iTunes Connect
	10.5.4 Build and upload app with Xcode
	10.5.5 Complete the iTunes Connect app listing
	10.5.6 Updating the app

	10.6 Summary

	appendix Additional resources
	A.1 Ionic
	A.2 Angular
	A.3 Cordova
	A.4 Blogs

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

