
Shelve in
Databases/General

User level:
Beginning–Intermediate

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Hows
Membrey

Plugge

SOURCE CODE ONLINE

www.apress.com

MongoDB Basics
Need a quick and easy book to get up to speed with MongoDB and NoSQL
databases? MongoDB Basics, from The Definitive Guide to MongoDB, 2E,
shows you how a document-oriented database system differs from a
relational database, and how to install and get started using it. You’ll also learn
MongoDB design basics, including geospatial indexing, how to navigate,
view, and query your database, and how to use GridFS with a bit of Python.

In this book, you’ll learn:

• What sets MongoDB apart from other databases
• How to install MongoDB on all major platforms
• How to design a MongoDB database
• How to work with GridFS

9 781484 208960

51999
ISBN 978-1-4842-0896-0

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors�... xiii

About the Technical Reviewers�... xv

Acknowledgments�... xvii

Introduction�.. xix

Chapter 1: Introduction to MongoDB■ �.. 1

Chapter 2: Installing MongoDB■ �... 19

Chapter 3: The Data Model■ �... 37

Chapter 4: Working with Data■ �.. 55

Chapter 5: GridFS■ �... 101

Index�.. 117

1

CHAPTER 1

Introduction to MongoDB

Imagine a world where using a database is so simple that you soon forget you’re even
using it. Imagine a world where speed and scalability just work, and there’s no need for
complicated configuration or setup. Imagine being able to focus only on the task at hand,
get things done, and then—just for a change—leave work on time. That might sound a bit
fanciful, but MongoDB promises to help you accomplish all these things (and more).

MongoDB (derived from the word humongous) is a relatively new breed of database
that has no concept of tables, schemas, SQL, or rows. It doesn’t have transactions,
ACID compliance, joins, foreign keys, or many of the other features that tend to cause
headaches in the early hours of the morning. In short, MongoDB is a very different
database than you’re probably used to, especially if you’ve used a relational database
management system (RDBMS) in the past. In fact, you might even be shaking your head
in wonder at the lack of so-called “standard” features.

Fear not! In the following pages, you will learn about MongoDB’s background and
guiding principles, and why the MongoDB team made the design decisions that it did.
We’ll also take a whistle-stop tour of MongoDB’s feature list, providing just enough detail
to ensure that you’ll be completely hooked on this topic for the rest of the book.

We’ll start by looking at the philosophy and ideas behind the creation of MongoDB, as
well as some of the interesting and somewhat controversial design decisions. We’ll explore
the concept of document-oriented databases, how they fit together, and what their strengths
and weaknesses are. We’ll also explore JSON and examine how it applies to MongoDB.
To wrap things up, we’ll step through some of the notable features of MongoDB.

Reviewing the MongoDB Philosophy
Like all projects, MongoDB has a set of design philosophies that help guide its
development. In this section, we’ll review some of the database’s founding principles.

Using the Right Tool for the Right Job
The most important of the philosophies that underpin MongoDB is the notion that one
size does not fit all. For many years, traditional relational (SQL) databases (MongoDB is
a document-oriented database) have been used for storing content of all types. It didn’t
matter whether the data was a good fit for the relational model (which is used in all
RDBMS databases, such as MySQL, PostgresSQL, SQLite, Oracle, MS SQL Server, and

Chapter 1 ■ Introduction to MongoDB

7

cluster). And although Oracle can do this with its impressive Real Application Clusters
(RAC) architecture, you can expect to take out a mortgage if you want to use that
solution—implementing a RAC-based solution requires multiple servers, shared storage,
and several software licenses.

You might wonder why having an active/active cluster on two databases is so
difficult. When you query your database, the database has to find all the relevant data
and link it all together. RDBMS solutions feature many ingenious ways to improve
performance, but they all rely on having a complete picture of the data available. And
this is where you hit a wall: this approach simply doesn’t work when half the data is on
another server.

Of course, you might have a small database that simply gets lots of requests, so you
just need to share the workload. Unfortunately, here you hit another wall. You need
to ensure that data written to the first server is available to the second server. And you
face additional issues if updates are made on two separate masters simultaneously.
For example, you need to determine which update is the correct one. Another problem
you can encounter: someone might query the second server for information that has
just been written to the first server, but that information hasn’t been updated yet on the
second server. When you consider all these issues, it becomes easy to see why the Oracle
solution is so expensive—these problems are extremely hard to address.

MongoDB solves the active/active cluster problems in a very clever way—it avoids
them completely. Recall that MongoDB stores data in BSON documents, so the data
is self-contained. That is, although similar documents are stored together, individual
documents aren’t made up of relationships. This means that everything you need is all in
one place. Because queries in MongoDB look for specific keys and values in a document,
this information can be easily spread across as many servers as you have available. Each
server checks the content it has and returns the result. This effectively allows almost
linear scalability and performance. As an added bonus, it doesn’t even require that you
take out a new mortgage to pay for this functionality.

Admittedly, MongoDB does not offer master/master replication, in which two
separate servers can both accept write requests. However, it does have sharding, which
allows data to split across multiple machines, with each machine responsible for
updating different parts of the dataset. The benefit of this design is that, while some
solutions allow two master databases, MongoDB can potentially scale to hundreds of
machines as easily as it can run on two.

Opting for Performance vs. Features
Performance is important, but MongoDB also provides a large feature set. We’ve
already discussed some of the features MongoDB doesn’t implement, and you might
be somewhat skeptical of the claim that MongoDB achieves its impressive performance
partly by judiciously excising certain features common to other databases. However,
there are analogous database systems available that are extremely fast, but also extremely
limited, such as those that implement a key/value store.

A perfect example is memcached. This application was written to provide high-speed
data caching, and it is mind-numbingly fast. When used to cache website content, it can
speed up an application many times over. This application is used by extremely large
websites, such as Facebook and LiveJournal.

Chapter 1 ■ Introduction to MongoDB

8

The catch is that this application has two significant shortcomings. First, it is a
memory-only database. If the power goes out, then all the data is lost. Second, you can’t
actually search for data using memcached; you can only request specific keys.

These might sound like serious limitations; however, you must remember the
problems that memcached is designed to solve. First and foremost, memcached is a
data cache. That is, it’s not supposed to be a permanent data store, but only to provide
a caching layer for your existing database. When you build a dynamic web page, you
generally request very specific data (such as the current top ten articles). This means you
can specifically ask memcached for that data—there is no need to perform a search. If the
cache is out-of-date or empty, you would query your database as normal, build up the
data, and then store it in memcached for future use.

Once you accept these limitations, you can see how memcached offers superb
performance by implementing a very limited feature set. This performance, by the way,
is unmatched by that of a traditional database. That said, memcached certainly can’t
replace an RDBMS. The important thing to keep in mind is that it’s not supposed to.

Compared to memcached, MongoDB is itself feature-rich. To be useful, MongoDB
must offer a strong set of features, such as the ability to search for specific documents.
It must also be able to store those documents on disk, so that they can survive a reboot.
Fortunately, MongoDB provides enough features to be a strong contender for most web
applications and many other types of applications as well.

Like memcached, MongoDB is not a one-size-fits-all database. As is usually the case
in computing, tradeoffs must be made to achieve the intended goals of the application.

Running the Database Anywhere
MongoDB is written in C++, which makes it relatively easy to port and/or run the
application practically anywhere. Currently, binaries can be downloaded from the
MongoDB website for Linux, Mac OS, Windows, and Solaris. There are also various
official versions available for Fedora and CentOS, among other platforms. You can even
download the source code and build your own MongoDB, although it is recommended
that you use the provided binaries wherever possible. All the binaries are available in
both 32-bit and 64-bit versions.

Caution■■  T he 32-bit version of MongoDB is limited to databases of 2GB or less. This is
because MongoDB uses memory-mapped files internally to achieve high performance.
Anything larger than 2GB on a 32-bit system would require some fancy footwork that wouldn’t
be fast and would also complicate the application’s code. The official stance on this limitation
is that 64-bit environments are easily available; therefore, increasing code complexity is not a
good tradeoff. The 64-bit version for all intents and purposes has no such restriction.

MongoDB’s modest requirements allow it to run on high-powered servers or virtual
machines, and even to power cloud-based applications. By keeping things simple and
focusing on speed and efficiency, MongoDB provides solid performance wherever you
choose to deploy it.

Chapter 1 ■ Introduction to MongoDB

9

Fitting Everything Together
Before we look at MongoDB’s feature list, we need to review a few basic terms. MongoDB
doesn’t require much in the way of specialized knowledge to get started, and many of the
terms specific to MongoDB can be loosely translated to RDBMS equivalents that you are
probably already familiar with. Don’t worry, though; we’ll explain each term fully. Even
if you’re not familiar with standard database terminology, you will still be able to follow
along easily.

Generating or Creating a Key
A document represents the unit of storage in MongoDB. In an RDBMS, this would be called
a row. However, documents are much more than rows because they can store complex
information such as lists, dictionaries, and even lists of dictionaries. In contrast to a
traditional database where a row is fixed, a document in MongoDB can be made up of any
number of keys and values (you’ll learn more about this in the next section). Ultimately,
a key is nothing more than a label; it is roughly equivalent to the name you might give to a
column in an RDBMS. You use a key to reference pieces of data inside your document.

In a relational database, there should always be some way to uniquely identify a given
record; otherwise it becomes impossible to refer to a specific row. To that end, you are
supposed to include a field that holds a unique value (called a primary key) or a collection
of fields that can uniquely identify the given row (called a compound primary key).

MongoDB requires that each document have a unique identifier for much the same
reason; in MongoDB, this identifier is called _id. Unless you specify a value for this
field, MongoDB will generate a unique value for you. Even in the well-established world
of RDBMS databases, opinion is divided as to whether you should use a unique key
provided by the database or generate a unique key yourself. Recently, it has become more
popular to allow the database to create the key for you.

The reason for this is that human-created unique numbers such as car registration
numbers have a nasty habit of changing. For example, in 2001, the United Kingdom
implemented a new number plate scheme that was completely different from the
previous system. It happens that MongoDB can cope with this type of change perfectly
well; however, chances are that you would need to do some careful thinking if you used
the registration plate as your primary key. A similar scenario may have occurred when the
ISBN (International Standard Book Number) scheme was upgraded from 10 digits to 13.

Previously, most developers who used MongoDB seemed to prefer creating their
own unique keys, taking it upon themselves to ensure that the number would remain
unique. Today, though, general consensus seems to point at using the default ID value
that MongoDB creates for you. However, as is the case when working with RDBMS
databases, the approach you choose mostly comes down to personal preference. We prefer
to use a database-provided value because it means we can be sure the key is unique and
independent of anything else. Others, as noted, prefer to provide their own keys.

Ultimately, you must decide what works best for you. If you are confident that your
key is unique (and likely to remain unchanged), then you should probably feel free to use
it. If you’re unsure about your key’s uniqueness or you don’t want to worry about it, then
you can simply use the default key provided by MongoDB.

Chapter 1 ■ Introduction to MongoDB

10

Using Keys and Values
Documents are made up of keys and values. Let’s take another look at the example
discussed previously in this chapter:
 
{
 "firstname": "Peter",
 "lastname": "Membrey",
 "phone_numbers": [
 "+852 1234 5678",
 "+44 1234 565 555"
]
}
 

Keys and values always come in pairs. Unlike an RDBMS, where every field must
have a value, even if it’s NULL (somewhat paradoxically, this means unknown), MongoDB
doesn’t require that a document have a particular value. For example, if you don’t know
the phone number for a particular person on your list, you simply leave it out. A popular
analogy for this sort of thing is a business card. If you have a fax number, you usually put
it on your business card; however, if you don’t have one, you don’t write: “Fax number:
none.” Instead, you simply leave the information out. If the key/value pair isn’t included
in a MongoDB document, it is assumed not to exist.

Implementing Collections
Collections are somewhat analogous to tables, but they are far less rigid. A collection is a
lot like a box with a label on it. You might have a box at home labeled “DVDs” into which
you put, well, your DVDs. This makes sense, but there is nothing stopping you from
putting CDs or even tapes into this box if you wanted to. In an RDBMS, tables are strictly
defined, and you can only put designated items into the table. In MongoDB, a collection
is simply that: a collection of similar items. The items don’t have to be similar (MongoDB
is inherently flexible); however, once we start looking at indexing and more advanced
queries, you’ll soon see the benefits of placing similar items in a collection.

While you could mix various items together in a collection, there’s little need to do
so. Had the collection been called media, then all of the DVDs, CDs, and tapes would be
at home there. After all, these items all have things in common, such as an artist name,
a release date, and content. In other words, it really does depend on your application
whether certain documents should be stored in the same collection. Performance-wise,
having multiple collections is no slower than having only one collection. Remember:
MongoDB is about making your life easier, so you should do whatever feels right to you.

Last but not least, collections are effectively created on demand. Specifically, a
collection is created when you first attempt to save a document that references it. This
means that you could create collections on demand (not that you necessarily should).
Because MongoDB also lets you create indexes and perform other database-level
commands dynamically, you can leverage this behavior to build some very dynamic
applications.

Chapter 1 ■ Introduction to MongoDB

11

Understanding Databases
Perhaps the easiest way to think of a database in MongoDB is as a collection of
collections. Like collections, databases can be created on demand. This means that it’s
easy to create a database for each customer—your application code can even do it for
you. You can do this with databases other than MongoDB, as well; however, creating
databases in this manner with MongoDB is a very natural process. That said, just because
you can create a database in this manner doesn’t mean you have to or even that you
should. All the same, you have that power if you want to exercise it.

Reviewing the Feature List
Now that you understand what MongoDB is and what it offers, it’s time to run through its
feature list. You can find a complete list of MongoDB’s features on the database’s website
at www.mongodb.org/; be sure to visit this site for an up-to-date list of them. The feature
list in this chapter covers a fair bit of material that goes on behind the scenes, but you
don’t need to be familiar with every feature listed to use MongoDB itself. In other words,
if you feel your eyes beginning to close as you review this list, feel free to jump to the end
of the section!

Using Document-Oriented Storage (BSON)
We’ve already discussed MongoDB’s document-oriented design. We’ve also briefly
touched on BSON. As you learned, JSON makes it much easier to store and retrieve
documents in their real form, effectively removing the need for any sort of mapper or
special conversion code. The fact that this feature also makes it much easier for MongoDB
to scale up is icing on the cake.

BSON is an open standard; you can find its specification at http://bsonspec.org/.
When people hear that BSON is a binary form of JSON, they expect it to take up much less
room than text-based JSON. However, that isn’t necessarily the case; indeed, there are
many cases where the BSON version takes up more space than its JSON equivalent.

You might wonder why you should use BSON at all. After all, CouchDB (another
powerful document-oriented database) uses pure JSON, and it’s reasonable to wonder
whether it’s worth the trouble of converting documents back and forth between BSON
and JSON.

First, we must remember that MongoDB is designed to be fast, rather than space-
efficient. This doesn’t mean that MongoDB wastes space (it doesn’t); however, a small
bit of overhead in storing a document is perfectly acceptable if that makes it faster to
process the data (which it does). In short, BSON is much easier to traverse (that is, to look
through) and index very quickly. Although BSON requires slightly more disk space than
JSON, this extra space is unlikely to be a problem, because disks are cheap, and MongoDB
can scale across machines. The tradeoff in this case is quite reasonable: you exchange a
bit of extra disk space for better query and indexing performance.

http://www.mongodb.org/
http://bsonspec.org/

Chapter 1 ■ Introduction to MongoDB

12

The second key benefit to using BSON is that it is easy and quick to convert BSON
to a programming language’s native data format. If the data were stored in pure JSON, a
relatively high-level conversion would need to take place. There are MongoDB drivers for
a large number of programming languages (such as Python, Ruby, PHP, C, C++, and C#),
and each works slightly differently. Using a simple binary format, native data structures
can be quickly built for each language, without requiring that you first process JSON. This
makes the code simpler and faster, both of which are in keeping with MongoDB’s stated
goals.

BSON also provides some extensions to JSON. For example, it enables you to store
binary data and to incorporate a specific datatype. Thus, while BSON can store any JSON
document, a valid BSON document may not be valid JSON. This doesn’t matter, because
each language has its own driver that converts data to and from BSON without needing to
use JSON as an intermediary language.

At the end of the day, BSON is not likely to be a big factor in how you use MongoDB.
Like all great tools, MongoDB will quietly sit in the background and do what it needs to
do. Apart from possibly using a graphical tool to look at your data, you will generally work
in your native language and let the driver worry about persisting to MongoDB.

Supporting Dynamic Queries
MongoDB’s support for dynamic queries means that you can run a query without
planning for it in advance. This is similar to being able to run SQL queries against an
RDBMS. You might wonder why this is listed as a feature; surely it is something that every
database supports—right?

Actually, no. For example, CouchDB (which is generally considered MongoDB’s
biggest “competitor”) doesn’t support dynamic queries. This is because CouchDB has
come up with a completely new (and admittedly exciting) way of thinking about data. A
traditional RDBMS has static data and dynamic queries. This means that the structure
of the data is fixed in advance—tables must be defined, and each row has to fit into that
structure. Because the database knows in advance how the data is structured, it can make
certain assumptions and optimizations that enable fast dynamic queries.

CouchDB has turned this on its head. As a document-oriented database, CouchDB is
schemaless, so the data is dynamic. However, the new idea here is that queries are static.
That is, you define them in advance, before you can use them.

This isn’t as bad as it might sound, because many queries can be easily defined
in advance. For example, a system that lets you search for a book will probably let you
search by ISBN. In CouchDB, you would create an index that builds a list of all the ISBNs
for all the documents. When you punch in an ISBN, the query is very fast because it
doesn’t actually need to search for any data. Whenever new data is added to the system,
CouchDB will automatically update its index.

Technically, you can run a query against CouchDB without generating an index;
in that case, however, CouchDB will have to create the index itself before it can process
your query. This won’t be a problem if you only have a hundred books; however, it will
result in poor performance if you’re filing hundreds of thousands of books, because each
query will generate the index again (and again). For this reason, the CouchDB team does
not recommend dynamic queries—that is, queries that haven’t been predefined—in
production.

Chapter 1 ■ Introduction to MongoDB

13

CouchDB also lets you write your queries as map and reduce functions. If that sounds
like a lot of effort, then you’re in good company; CouchDB has a somewhat severe
learning curve. In fairness to CouchDB, an experienced programmer can probably pick it
up quite quickly; for most people, however, the learning curve is probably steep enough
that they won’t bother with the tool.

Fortunately for us mere mortals, MongoDB is much easier to use. We’ll cover how
to use MongoDB in more detail throughout the book, but here’s the short version: in
MongoDB, you simply provide the parts of the document you want to match against, and
MongoDB does the rest. MongoDB can do much more, however. For example, you won’t
find MongoDB lacking if you want to use map or reduce functions. At the same time, you can
ease into using MongoDB; you don’t have to know all of the tool’s advanced features up front.

Indexing Your Documents
MongoDB includes extensive support for indexing your documents, a feature that really
comes in handy when you’re dealing with tens of thousands of documents. Without an
index, MongoDB will have to look at each individual document in turn to see whether it
is something that you want to see. This is like asking a librarian for a particular book and
watching as he works his way around the library looking at each and every book. With an
indexing system (libraries tend to use the Dewey Decimal system), he can find the area
where the book you are looking for lives and very quickly determine if it is there.

Unlike a library book, all documents in MongoDB are automatically indexed on the
_id key. This key is considered a special case because you cannot delete it; the index is
what ensures that each value is unique. One of the benefits of this key is that you can be
assured that each document is uniquely identifiable, something that isn’t guaranteed by
an RDBMS.

When you create your own indexes, you can decide whether you want them to
enforce uniqueness. If you do decide to create a unique index, you can tell MongoDB
to drop all the duplicates. This may or may not be what you want, so you should think
carefully before using this option because you might accidentally delete half your data.
By default, an error will be returned if you try to create a unique index on a key that has
duplicate values.

There are many occasions where you will want to create an index that allows
duplicates. For example, if your application searches by lastname, it makes sense to build
an index on the lastname key. Of course, you cannot guarantee that each lastname will be
unique; and in any database of a reasonable size, duplicates are practically guaranteed.

MongoDB’s indexing abilities don’t end there, however. MongoDB can also create
indexes on embedded documents. For example, if you store numerous addresses in the
address key, you can create an index on the ZIP or postal code. This means that you can
easily pull back a document based on any postal code—and do so very quickly.

MongoDB takes this a step further by allowing composite indexes. In a composite
index, two or more keys are used to build a given index. For example, you might build
an index that combines both the lastname and firstname tags. A search for a full name
would be very quick because MongoDB can quickly isolate the lastname and then, just as
quickly, isolate the firstname.

We will look at indexing in more depth in Chapter 10, but suffice it to say that
MongoDB has you covered as far as indexing is concerned.

Chapter 1 ■ Introduction to MongoDB

14

Leveraging Geospatial Indexes
One form of indexing worthy of special mention is geospatial indexing. This new,
specialized indexing technique was introduced in MongoDB 1.4. You use this feature to
index location-based data, enabling you to answer queries such as how many items are
within a certain distance from a given set of coordinates.

As an increasing number of web applications start making use of location-based
data, this feature will play an increasingly prominent role in everyday development. For
now, though, geospatial indexing remains a somewhat niche feature; nevertheless, you
will be very glad it’s there if you ever find that you need it.

Profiling Queries
A built-in profiling tool lets you see how MongoDB works out which documents to return.
This is useful because, in many cases, a query can be easily improved simply by adding
an index. If you have a complicated query, and you’re not really sure why it’s running
so slowly, then the query profiler can provide you with extremely valuable information.
Again, you’ll learn more about the MongoDB Profiler in Chapter 10.

Updating Information In-Place
When a database updates a row (or in the case of MongoDB, a document), it has a couple
of choices about how to do it. Many databases choose the multi-version concurrency
control (MVCC) approach, which allows multiple users to see different versions of the
data. This approach is useful because it ensures that the data won’t be changed partway
through by another program during a given transaction.

The downside to this approach is that the database needs to track multiple copies of
the data. For example, CouchDB provides very strong versioning, but this comes at the
cost of writing the data out in its entirety. While this ensures that the data is stored in a
robust fashion, it also increases complexity and reduces performance.

MongoDB, on the other hand, updates information in-place. This means that (in contrast
to CouchDB) MongoDB can update the data wherever it happens to be. This typically means
that no extra space needs to be allocated, and the indexes can be left untouched.

Another benefit of this method is that MongoDB performs lazy writes. Writing to and
from memory is very fast, but writing to disk is thousands of times slower. This means
that you want to limit reading and writing from the disk as much as possible. This isn’t
possible in CouchDB, because that program ensures that each document is quickly
written to disk. While this approach guarantees that the data is written safely to disk, it
also impacts performance significantly.

MongoDB only writes to disk when it has to, which is usually once every second or
so. This means that if a value is being updated many times a second—a not uncommon
scenario if you’re using a value as a page counter or for live statistics—then the value will
only be written once, rather than the thousands of times that CouchDB would require.

This approach makes MongoDB much faster, but, again, it comes with a tradeoff.
CouchDB may be slower, but it does guarantee that data is stored safely on the disk.
MongoDB makes no such guarantee, and this is why a traditional RDBMS is probably a
better solution for managing critical data such as billing or accounts receivable.

Chapter 1 ■ Introduction to MongoDB

15

Storing Binary Data
GridFS is MongoDB’s solution to storing binary data in the database. BSON supports
saving up to 4MB of binary data in a document, and this may well be enough for your
needs. For example, if you want to store a profile picture or a sound clip, then 4MB
might be more space than you need. On the other hand, if you want to store movie clips,
high-quality audio clips, or even files that are several hundred megabytes in size, then
MongoDB has you covered here, too.

GridFS works by storing the information about the file (called metadata) in the files
collection. The data itself is broken down into pieces called chunks that are stored in the
chunks collection. This approach makes storing data both easy and scalable; it also makes
range operations (such as retrieving specific parts of a file) much easier to use.

Generally speaking, you would use GridFS through your programming language’s
MongoDB driver, so it’s unlikely you’d ever have to get your hands dirty at such a low
level. As with everything else in MongoDB, GridFS is designed for both speed and
scalability. This means you can be confident that MongoDB will be up to the task if you
want to work with large data files.

Replicating Data
When we talked about the guiding principles behind MongoDB, we mentioned that
RDBMS databases offer certain guarantees for data storage that are not available in
MongoDB. These guarantees weren’t implemented for a handful of reasons. First,
these features would slow the database down. Second, they would greatly increase the
complexity of the program. Third, it was felt that the most common failure on a server
would be hardware, which would render the data unusable anyway, even if the data were
safely saved to disk.

Of course, none of this means that data safety isn’t important. MongoDB wouldn’t
be of much use if you couldn’t count on being able to access the data when you need it.
Initially, MongoDB provided a safety net with a feature called master-slave replication,
in which only one database is active for writing at any given time, an approach that is
also fairly common in the RDBMS world. This feature has since been replaced with
replica sets, and basic master-slave replication has been deprecated and should no
longer be used.

Replica sets have one primary server (similar to a master), which handles all the
write requests from clients. Because there is only one primary server in a given set, it can
guarantee that all writes are handled properly. When a write occurs it is logged in the
primary’s ‘oplog’.

The oplog is replicated by the secondary servers (of which there can be many) and
used to bring themselves up to date with the master. Should the master fail at any given
time, one of the secondaries will become the primary and take over responsibility for
handling client write requests.

Chapter 1 ■ Introduction to MongoDB

16

Implementing Sharding
For those involved with large-scale deployments, auto-sharding will probably prove one
of MongoDB’s most significant and oft-used features.

In an auto-sharding scenario, MongoDB takes care of all the data splitting and
recombination for you. It makes sure the data goes to the right server and that queries are
run and combined in the most efficient manner possible. In fact, from a developer’s point
of view, there is no difference between talking to a MongoDB database with a hundred
shards and talking to a single MongoDB server. This feature is not yet production-ready;
when it is, however, it will push MongoDB’s scalability through the roof.

In the meantime, if you’re just starting out or you’re building your first MongoDB-
based website, then you’ll probably find that a single instance of MongoDB is sufficient
for your needs. If you end up building the next Facebook or Amazon, however, you will be
glad that you built your site on a technology that can scale so limitlessly. Sharding is the
topic of Chapter 12 of this book.

Using Map and Reduce Functions
For many people, hearing the term MapReduce sends shivers down their spines. At
the other extreme, many RDBMS advocates scoff at the complexity of map and reduce
functions. It’s scary for some because these functions require a completely different way
of thinking about finding and sorting your data, and many professional programmers
have trouble getting their heads around the concepts that underpin map and reduce
functions. That said, these functions provide an extremely powerful way to query data.
In fact, CouchDB supports only this approach, which is one reason it has such a high
learning curve.

MongoDB doesn’t require that you use map and reduce functions. In fact,
MongoDB relies on a simple querying syntax that is more akin to what you see in
MySQL. However, MongoDB does make these functions available for those who want
them. The map and reduce functions are written in JavaScript and run on the server.
The job of the map function is to find all the documents that meet a certain criteria.
These results are then passed to the reduce function, which processes the data. The
reduce function doesn’t usually return a collection of documents; rather, it returns a
new document that contains the information derived. As a general rule, if you would
normally use GROUP BY in SQL, then the map and reduce functions are probably the
right tools for the job in MongoDB.

Note■■   You should not think of MongoDB’s map and reduce functions as poor imitations
of the approach adopted by CouchDB. If you so desired, you could use MongoDB’s map and
reduce functions for everything in lieu of MongoDB’s innate query support.

Chapter 1 ■ Introduction to MongoDB

17

The MongoDB Aggregation Framework
MapReduce is a very powerful tool, but it has one major drawback; it’s not exactly easy to
use. Many database systems are used for reporting, and SQL databases in particular make
this very easy. If you want to group results or find the maximum and average, then it’s very
simple to express that idea and get the result you’re looking for. Unfortunately, it’s not
quite so simple to do that in MapReduce, and you effectively have to do all the wiring up
yourself. This can often mean that an otherwise simple task is unnecessary challenging.

In response to this, MongoDB Inc (previously 10gen) added the aggregation
framework. It is pipeline-based, similar to piping commands in Linux shells and allows
you to take individual pieces of a query and string them together in order to get the result
you’re looking for. This maintains the benefits of MongoDB’s document oriented design
while still providing high performance.

So if you need all the power of MapReduce, you still have it at your beck and call. If
you just want to do some basic statistics and number crunching, you’re going to love the
new aggregation framework. You'll learn more about the aggregation framework and its
commands in Chapters 4 and 6.

Getting Help
MongoDB has a great community, and the core developers are very active and easily
approachable, and they typically go to great lengths to help other members of the
community. MongoDB is easy to use and comes with great documentation; however, it’s
still nice to know that you’re not alone, and help is available, should you need it.

Visiting the Website
The first place to look for updated information or help is on the MongoDB website
(www://mongodb.org). This site is updated regularly and contains all the latest MongoDB
goodness. On this site, you can find drivers, tutorials, examples, frequently asked
questions, and much more.

Chatting with the MongoDB Developers
The MongoDB developers hang out on Internet Relay Chat (IRC) at #MongoDB on the
Freenode network (www.freenode.net). MongoDB’s developers are based in New York,
but they are often found chatting in this channel well into the night. Of course, the
developers do need to sleep at some point (coffee only works for so long!); fortunately,
there are also many knowledgeable MongoDB users from around the world who are
ready to help out. Many people who visit the #MongoDB channel aren’t experts; however,
the general atmosphere is so friendly that they stick around anyway. Please feel free to
join #MongoDB channel and chat with people there—you may find some great hints and
tips. If you’re really stuck, you’ll probably be able to quickly get back on track.

http://www.mongodb.org
http://www.freenode.net/

Chapter 1 ■ Introduction to MongoDB

18

Cutting and Pasting MongoDB Code
Pastie (http://pastie.org) is not strictly a MongoDB site; however, it is something you
will come across if you float about in #MongoDB for any length of time. The Pastie site
basically lets you cut and paste (hence the name) some output or program code, and then
put it online for others to view. In IRC, pasting multiple lines of text can be messy or hard
to read. If you need to post a fair bit of text (such as three lines or more), then you should
visit http://pastie.org, paste in your content, and then paste the link to your new page
into the channel.

Finding Solutions on Google Groups
MongoDB also has a Google group called mongodb-user (http://groups.google.com/
group/mongodb-user). This group is a great place to ask questions or search for answers.
You can also interact with the group via e-mail. Unlike IRC, which is very transient, the
Google group is a great long-term resource. If you really want to get involved with the
MongoDB community, joining the group is a great way to start.

Leveraging the JIRA Tracking System
MongoDB uses the JIRA issue-tracking system. You can view the tracking site at
http://jira.mongodb.org/, and you are actively encouraged to report any bugs or
problems that you come across to this site. Reporting such issues is viewed by the
community as a genuinely good thing to do. Of course, you can also search through
previous issues, and you can even view the roadmap and planned updates for the
next release.

If you haven’t posted to JIRA before, you might want to visit the IRC room first. You
will quickly find out whether you’ve found something new, and if so, you will be shown
how to go about reporting it.

Summary
This chapter has provided a whistle-stop tour of the benefits MongoDB brings to the
table. We’ve looked at the philosophies and guiding principles behind MongoDB’s
creation and development, as well as the tradeoffs MongoDB’s developers made
when implementing these ideals. We’ve also looked at some of the key terms used in
conjunction with MongoDB, how they fit together, and their rough SQL equivalents.

Next, we looked at some of the features MongoDB offers, including how and where
you might want to use them. Finally, we wrapped up the chapter with a quick overview of
the community and where you can go to get help, should you need it.

http://pastie.org/
http://pastie.org/
http://groups.google.com/group/mongodb-user
http://groups.google.com/group/mongodb-user
http://jira.mongodb.org/

19

Chapter 2

Installing MongoDB

In Chapter 1, you got a taste of what MongoDB can do for you. In this chapter, you will
learn how to install and expand MongoDB to do even more, enabling you to use it in
combination with your favorite programming language.

MongoDB is a cross-platform database, and you can find a significant list of available
packages to download from the MongoDB website (www.mongodb.org). The wealth of
available versions might make it difficult to decide which version is the right one for you.
The right choice for you probably depends on the operating system your server uses, the
kind of processor in your server, and whether you prefer a stable release or would like
to take a dive into a version that is still in development but offers exciting new features.
Perhaps you’d like to install both a stable and a forward-looking version of the database.
It’s also possible you’re not entirely sure which version you should choose yet. In any
case, read on!

Choosing Your Version
When you look at the Download section on the MongoDB website, you will see a rather
straightforward overview of the packages available for download. The first thing you need
to pay attention to is the operating system you are going to run the MongoDB software on.
Currently, there are precompiled packages available for Windows, various flavors of the
Linux operating system, Mac OS, and Solaris.

Note■■   An important thing to remember here is the difference between the 32-bit release
and the 64-bit release of the product. The 32-bit and 64-bit versions of the database
currently have the same functionality, with one exception: the 32-bit release is limited to
a total dataset size of approximately 2GB per server. The 64-bit version does not carry
this restriction, however, so it’s generally preferred over the 32-bit version for production
environments. Also, the differences between these versions are subject to change.

http://www.mongodb.org/

Chapter 2 ■ Installing MongoDB

20

You will also need to pay attention to the version of the MongoDB software itself: there
are production releases, previous releases, and development releases. The production
release indicates that it’s the most recent stable version available. When a newer and
generally improved or enhanced version is released, the prior most recent stable version
will be made available as a previous release. This designation means the release is stable
and reliable, but it usually has fewer features available in it. Finally, there’s the development
release. This release is generally referred to as the unstable version. This version is still
in development, and it will include many changes, including significant new features.
Although it has not been fully developed and tested yet, the developers of MongoDB have
made it available to the public to test or otherwise try out.

Understanding the Version Numbers
MongoDB uses the “odd-numbered versions for development releases” approach. In
other words, you can tell by looking at the second part of the version number (also called
the release number) whether a version is a development version or a stable version. If the
second number is even, then it’s a stable release. If the second number is odd, then it’s an
unstable, or development, release.

Let’s take a closer look at the three digits included in a version number’s three parts,
A, B, and C:

A, the first (or leftmost) number: Represents the major version •	
and only changes when there is a full version upgrade.

B, the second (or middle) number: Represents the release •	
number and indicates whether a version is a development version
or a stable version. If the number is even, the version is stable;
if the number is odd, the version is unstable and considered a
development release.

C, the third (or rightmost) number: Represents the revision •	
number; this is used for bugs and security issues.

For example, at the time of writing, the following versions were available from the
MongoDB website:

2.6.5 (Production release)•	

2.4.12 (Previous release)•	

2.7.8 (Development release)•	

Installing MongoDB on Your System
So far, you’ve learned which versions of MongoDB are available and—hopefully—were
able to select one. Now you’re ready to take a closer look at how to install MongoDB on
your particular system. The two main operating systems for servers at the moment are
based on Linux and Microsoft Windows, so this chapter will walk you through how to
install MongoDB on both of these operating systems, beginning with Linux.

Chapter 2 ■ Installing MongoDB

21

Installing MongoDB under Linux
The Unix-based operating systems are extremely popular choices at the moment for
hosting services, including web services, mail services, and, of course, database services.
In this chapter, we’ll walk you through how to get MongoDB running on a popular Linux
distribution: Ubuntu.

Depending on your needs, you have two ways of installing MongoDB under Ubuntu:
you can install the packages automatically through so-called repositories, or you can
install it manually. The next two sections will walk you through both options.

Installing MongoDB through the Repositories
Repositories are basically online directories filled with software. Every package contains
information about the version number, prerequisites, and possible incompatibilities.
This information is useful when you need to install a software package that requires
another piece of software to be installed first because the prerequisites can be installed
at the same time.

The default repositories available in Ubuntu (and other Debian-based distributions)
contain MongoDB, but they may be out-of-date versions of the software. Therefore,
let’s tell apt-get (the software you use to install software from repositories) to look at a
custom repository. To do this, you need to add the following line to your repository-list
(/etc/apt/sources.list):
 
deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen
 

Next, you need to import MongoDB Inc's public GPG key, used to sign the packages,
ensuring their consistency; you can do so by using the apt-key command:
 
$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10
 

When that is done, you need to tell apt-get that it contains new repositories; you can
do so using apt-get’s update command:
 
$ sudo apt-get update
 

This line made aptitude aware of your manually added repository. This means
you can now tell apt-get to install the software itself. You do this by typing the following
command in the shell:
 
$ sudo apt-get install mongodb-org
 

This line installs the current stable (production) version from MongoDB. If you
wish to install any other version from MongoDB instead, you need to specify the version
number. For example, to install the current unstable (development) version from
MongoDB, type in the following command instead:
 
$ sudo apt-get install mongodb-org=2.7.8
 

http://downloads-distro.mongodb.org/repo/ubuntu-upstart

Chapter 2 ■ Installing MongoDB

22

That’s all there is to it. At this point, MongoDB has been installed and is (almost)
ready to use!

Note■■  R unning apt-get update on a system running an older version of MongoDB
will upgrade the software to the latest stable version available. You can prevent this from
happening by running this command: 

echo "mongodb-org hold" | sudo dpkg --set-selections

Installing MongoDB Manually
Next, we’ll cover how to install MongoDB manually. Given how easy it is to install
MongoDB with aptitude automatically, you might wonder why you would want to
install the software manually. For starters, not all Linux distributions use apt-get.
Sure, many of them do (including primarily the ones that are based on Debian
Linux), but some don’t. Also, the packaging remains a work in progress, so it might
be the case that there are versions not yet available through the repositories. It’s also
possible that the version of MongoDB you want to use isn’t included in the repository.
Installing the software manually also gives you the ability to run multiple versions of
MongoDB at the same time.

You’ve decided which version of MongoDB you would like to use, and you’ve
downloaded it from their website, http://mongodb.org/downloads, to your Home
directory. Next, you need to extract the package with the following command:
 
$ tar xzf mongodb-linux-x86_64-latest.tgz
 

This command extracts the entire contents of the package to a new directory
called mongodb-linux-x86_64-xxxx-yy-zz; this directory is located under your current
directory. This directory will contain a number of subdirectories and files. The directory
that contains the executable files is called the bin directory. We will cover which
applications perform which tasks shortly.

However, you don’t need to do anything further to install the application. Indeed,
it doesn’t take much more time to install MongoDB manually—depending on what else
you need to install, it might even be faster. Manually installing MongoDB does have some
downsides, however. For example, the executables that you just extracted and found in
the bin directory can’t be executed from anywhere except the bin directory by default.
Thus, if you want to run the mongod service, you will need to do so directly from the
aforementioned bin directory. This downside highlights one of the benefits of installing
MongoDB through repositories.

http://mongodb.org/downloads

Chapter 2 ■ Installing MongoDB

23

Installing MongoDB under Windows
Microsoft’s Windows is also a popular choice for server software, including Internet-based
services.

Windows doesn’t come with a repository application like apt-get, so you’ll need
to download and extract the software from the MongoDB website to run it. Yes, the
preceding information is correct. You do not need to walk through any setup process;
installing the software is a simple matter of downloading the package, extracting it, and
running the application itself.

For example, assume you’ve decided to download the latest stable version of
MongoDB for your 64-bits Windows 2008 server. You begin by extracting the package
(mongodb-win32–x86_64-x.y.x.zip) to the root of your C:\ drive. At this point, all you
need to do is open a command prompt (Start ➤ Run ➤ cmd ➤ OK) and browse to the
directory you extracted the contents to:
 
> cd C:\mongodb-win32–x86_64-x.y.z\
> cd bin\
 

Doing this brings you to the directory that contains the MongoDB executables. That’s
all there is to it: as I noted previously, no installation is necessary.

Running MongoDB
At long last, you’re ready to get your hands dirty. You’ve learned where to get the
MongoDB version that best suits your needs and hardware, and you’ve also seen how to
install the software. Now it’s finally time to look at running and using MongoDB.

Prerequisites
Before you can start the MongoDB service, you need to create a data directory for
MongoDB to store its files in. By default, MongoDB stores the data in the /data/db
directory on Unix-based systems (such as Linux and OS X) and in the C:\data\db
directory on Windows.

Note■■   MongoDB does not create these data directories for you, so you need to create
them manually; otherwise, MongoDB will fail to run and throw an error message. Also, be
sure that you set the permissions correctly: MongoDB must have read, write, and directory
creation permissions to function properly.

If you wish to use a directory other than /data/db or C:\data\db, then you can tell
MongoDB to look at the desired directory by using the --dbpath flag when executing
the service.

Chapter 2 ■ Installing MongoDB

24

Once you create the required directory and assign the appropriate permissions,
you can start the MongoDB core database service by executing the mongod application.
You can do this from the command prompt or the shell in Windows and Linux, respectively.

Surveying the Installation Layout
After you install or extract MongoDB successfully, you will have the applications shown in
Table 2-1 available in the bin directory (in both Linux and Windows).

Table 2-1.  The Included MongoDB Applications

Application Function

-- bsondump Reads contents of BSON-formatted rollback files.

-- mongo The database shell.

-- mongod The core database server.

-- mongodump Database backup utility.

-- mongoexport Export utility (JSON, CSV, TSV), not reliable for backup.

-- mongofiles Manipulates files in GridFS objects.

-- mongoimport Import utility (JSON, CSV, TSV), not reliable for recoveries.

-- mongooplog Pulls oplog entries from another mongod instance.

-- mongoperf Check disk I/O performance.

--mongorestore Database backup restore utility.

--mongos Mongodb sharding routerprocess.

--mongosniff Sniff/traces MongoDB database activity in real time, Unix-like
systems only.

--mongostat Returns counters of database operation.

--mongotop Tracks/reports MongoDB read/write activities.

-- mongorestore Restore/import utility.

Note: All applications are within the --bin directory.

The installed software includes 15 applications (or 14, under Microsoft Windows)
that you will be using in conjunction with your MongoDB databases. The two “most
important” applications are the mongo and mongod applications. The mongo application
allows you to use the database shell; this shell enables you to accomplish practically
anything you’d want to do with MongoDB.

Chapter 2 ■ Installing MongoDB

25

The mongod application starts the service or daemon, as it’s also called. There are
also many flags you can set when launching the MongoDB applications. For example, the
service lets you specify the path where the database is located (--dbpath), show version
information (--version), and even print some diagnostic system information (with the
--sysinfo flag)! You can view the entire list of options by including the --help flag when
you launch the service. For now, you can just use the defaults and start the service by
typing mongod in your shell or command prompt.

Using the MongoDB Shell
Once you create the database directory and start the mongod database application
successfully, you’re ready to fire up the shell and take a sneak peak at the powers of MongoDB.

Fire up your shell (Unix) or your command prompt (Windows); when you do so,
make sure you are in the correct location, so that the mongo executable can be found.
You can start the shell by typing mongo at the command prompt and hitting the Return
key. You will be immediately presented with a blank window and a blinking cursor (see
Figure 2-1). Ladies and gentlemen, welcome to MongoDB!

Figure 2-1.  The MongoDB shell

If you start the MongoDB service with the default parameters, and start the shell with
the default settings, you will be connected to the default test database running on your
local host. This database is created automatically the moment you connect to it. This is
one of MongoDB’s most powerful features: if you attempt to connect to a database that
does not exist, MongoDB will automatically create it for you. This can be either good or
bad, depending on how well you handle your keyboard.

Tip■■   There’s an on-line demo shell available on the MongoDB website where you can try
out any of the commands listed. 

Before taking any further steps, such as implementing any additional drivers that will
enable you to work with your favorite programming language, you might find it helpful to
take a quick peek at some of the more useful commands available in the MongoDB shell
(see Table 2-2). 

Chapter 2 ■ Installing MongoDB

26

Tip■■   You can get a full list of commands by typing the help command in the MongoDB shell.

Installing Additional Drivers
You might think that you are ready to take on the world now that you have set up
MongoDB and know how to use its shell. That’s partially true; however, you probably
want to use your preferred programming language rather than the shell when querying
or otherwise manipulating the MongoDB database. 10gen offers multiple official drivers,
and many more are offered in the community that let you do precisely that. For example,
drivers for the following programming languages can be found on the MongoDB website:

C•	

C++•	

C#•	

Erlang•	

Go•	

Java•	

JavaScript•	

Node.js•	

Perl•	

PHP•	

Python•	

Ruby•	

Scala•	

In this section, you will learn how to implement MongoDB support for two of the
more popular programming languages in use today: PHP and Python.

Table 2-2.  Basic Commands within the MongoDB Shell

Command Function

show dbs Shows the names of the available databases.

show collections Shows the collections in the current database.

show users Shows the users in the current database.

use <db name> Sets the current database to <db name>.

Chapter 2 ■ Installing MongoDB

27

Tip■■   There are many community-driven MongoDB drivers available. A long list can be
found on the MongoDB website, www.mongodb.org.

Installing the PHP Driver
PHP is one of the most popular programming languages in existence today. This language
is specifically aimed at web development, and it can be incorporated into HTML easily.
This fact makes the language the perfect candidate for designing a web application, such
as a blog, a guestbook, or even a business-card database. The next few sections cover your
options for installing and using the MongoDB PHP driver.

Getting MongoDB for PHP
Like MongoDB, PHP is a cross-platform development tool, and the steps required to set
up MongoDB in PHP vary depending on the intended platform. Previously, this chapter
showed you how to install MongoDB on both Ubuntu and Windows; we’ll adopt the same
approach here, demonstrating how to install the driver for PHP on both Ubuntu and
Windows.

Begin by downloading the PHP driver for your operating system. Do this by firing
up your browser and navigating to www.mongodb.org. At the time of writing, the website
includes a separate menu option called Drivers. Click this option to bring up a list of
currently available language drivers (see Figure 2-2).

Figure 2-2.  A short list of currently available language drivers for MongoDB

http://www.mongodb.org/
http://www.mongodb.org/

Chapter 2 ■ Installing MongoDB

28

Next, select PHP from the list of languages and follow the links to download the
latest (stable) version of the driver. Different operating systems will require different
approaches for installing the MongoDB extension for PHP automatically. That’s right; just
as you were able to install MongoDB on Ubuntu automatically, you can do the same for
the PHP driver. And just as when installing MongoDB under Ubuntu, you can also choose
to install the PHP language driver manually. Let’s look at the two options available to you.

Installing the PHP Driver on Unix-Based Platforms Automatically
The developers of PHP came up with a great solution that allows you to expand your
PHP installation with other popular extensions: PECL. PECL is a repository solely
designed for PHP; it provides a directory of all known extensions that you can use to
download, install, and even develop PHP extensions. If you are already acquainted
with the package-management system called aptitude (which you used previously to
install MongoDB), then you will be pleased by how similar PECL’s interface is to the
one in aptitude.

Assuming that you have PECL installed on your system, open up a console and type
the following command to install the MongoDB extension:
 
$ sudo pecl install mongo
 

Entering this command causes PECL to download and install the MongoDB
extension for PHP automatically. In other words, PECL will download the extension for
your PHP version and place it in the PHP extensions directory. There’s just one catch:
PECL does not automatically add the extension to the list of loaded extensions; you will
need to do this step manually. To do so, open a text editor (vim, nano, or whichever text
editor you prefer) and alter the file called php.ini, which is the main configuration file
PHP uses to control its behavior, including the extensions it should load.

Next, open the php.ini file, scroll down to the extensions section, and add the
following line to tell PHP to load the MongoDB driver:
 
extension=mongo.so 

Note■■   The preceding step is mandatory; if you don’t do this, then the MongoDB
commands in PHP will not function. To find the php.ini file on your system, you can use
the grep command in your shell: php –i | grep Configuration.

The “Confirming That Your PHP Installation Works” section later in this chapter will
cover how to confirm that an extension has been loaded successfully.

That’s all, folks! You’ve just installed the MongoDB extension for your PHP
installation, and you are now ready to use it. Next, you will learn how to install the driver
manually.

Chapter 2 ■ Installing MongoDB

29

Installing the PHP Driver on Unix-Based Platforms Manually
If you would prefer to compile the driver yourself or for some reason are unable to use
the PECL application as described previously (your hosting provider might not support
this option, for instance), then you can also choose to download the source driver and
compile it manually.

To download the driver, go to the github website (http://github.com). This site
offers the latest source package for the PHP driver. Once you download it, you will need to
extract the package, and make the driver by running the following set of commands:
 
$ tar zxvf mongodb-mongdb-php-driver-<commit_id>.tar.gz
$ cd mongodb-mongodb-php-driver-<commit_id>
$ phpize
$./configure
$ sudo make install
 

This process can take a while, depending on the speed of your system. Once the
process completes, your MongoDB PHP driver is installed and ready to use! After you
execute the commands, you will be shown where the driver has been placed; typically,
the output looks something like this:
 
Installing '/ usr/lib/php/extensions/no-debug-zts-20060613/mongo.so'
 

You do need to confirm that this directory is the same directory where PHP stores its
extensions by default. You can use the following command to confirm where PHP stores
its extensions:
 
$ php -i | grep extension_dir
 

This line outputs the directory where all PHP extensions should be placed. If this
directory doesn’t match the one where the mongo.so driver was placed, then you must
move the mongo.so driver to the proper directory, so PHP knows where to find it.

As before, you will need to tell PHP that the newly created extension has been placed
in its extension directory, and that it should load this extension. You can specify this by
modifying the php.ini file’s extensions section; add the following line to that section:
 
extension=mongo.so
 

Finally, a restart of your web service is required. When using the Apache HTTPd
service, you can accomplish this using the following service command:
 
sudo /etc/init.d/apache2 restart
 

That’s it! This process is a little lengthier than using PECL’s automated method;
however, if you are unable to use PECL, or if you are a driver developer and interested in
bug fixes, then you would want to use the manual method instead.

http://github.com/

Chapter 2 ■ Installing MongoDB

30

Installing the PHP Driver on Windows
You have seen previously how to install MongoDB on your Windows operating system.
Now let’s look at how to implement the MongoDB driver for PHP on Windows.

For Windows, there are precompiled binaries available for each release of the PHP
driver for MongoDB. You can get these binaries from the previously mentioned github
website (http://github.com). The biggest challenge in this case is choosing the correct
package to install for your version of PHP (a wide variety of packages are available). If
you aren’t certain which package version you need, you can use the <? phpinfo(); ?>
command in a PHP page to learn exactly which one suits your specific environment. We’ll
take a closer look at the phpinfo() command in the next section.

After downloading the correct package and extracting its contents, all you need to
do is copy the driver file (called php_mongo.dll) to your PHP’s extension directory; this
enables PHP to pick it up.

Depending on your version of PHP, the extension directory may be called either Ext
or Extensions. If you aren’t certain which directory it should be, you can review the PHP
documentation that came with the version of PHP installed on your system.

Once you place the driver DLL into the PHP extensions directory, you still need to
tell PHP to load the driver. Do this by altering the php.ini file and adding the following
line in the extensions section:
 
extension=php_mongo.dll
 

When done, restart the HTTP service on your system, and you are now ready to use
the MongoDB driver in PHP. Before you start leveraging the magic of MongoDB with PHP,
however, you need to confirm that the extension is loaded correctly.

Confirming That Your PHP Installation Works
So far you’ve successfully installed both MongoDB and the MongoDB driver in PHP.
Now it’s time to do a quick check to confirm whether the driver is being loaded correctly
by PHP. PHP gives you a simple and straightforward method to accomplish this: the
phpinfo() command. This command shows you an extended overview of all the modules
loaded, including version numbers, compilation options, server information, OS
information, and so on.

To use the phpinfo() command, open a text or HTML editor and type the following:
 
<? phpinfo(); ?>
 

Next, save the document in your webserver’s www directory and call it whatever you
like. For example, you might call it test.php or phpinfo.php. Now open your browser and
go to your localhost or external server (that is, go to whatever server you are working on)
and look at the page you just created. You will see a good overview of all PHP components
and all sorts of other relevant information. The thing you need to focus on here is the
section that displays your MongoDB information. This section will list the version
number, port numbers, hostname, and so on (see Figure 2-3).

http://github.com/

Chapter 2 ■ Installing MongoDB

31

Once you confirm that the installation was successful and that the driver loaded
successfully, you’re ready to write some PHP code and walk through a MongoDB example
that leverages PHP.

Connecting to and Disconnecting from the PHP Driver
You’ve confirmed that the MongoDB PHP driver has been loaded correctly, so it’s time to
start writing some PHP code! Let’s take a look at two simple yet fundamental options for
working with MongoDB: initiating a connection between MongoDB and PHP, and then
severing that connection.

You use the Mongo class to initiate a connection between MongoDB and PHP;
this same class also lets you use the database server commands. A simple yet typical
connection command looks like this:
 
$connection = new Mongo();
 

If you use this command without providing any parameters, it will connect to
the MongoDB service on the default MongoDB port (27017) on your localhost. If your
MongoDB service is running somewhere else, then you simply specify the hostname of
the remote host you want to connect to:
 
$connection = new Mongo("example.com");
 

Figure 2-3.  Displaying your MongoDB information in PHP

Chapter 2 ■ Installing MongoDB

32

This line instantiates a fresh connection for your MongoDB service running on the
server and listening to the example.com domain name (note that it will still connect to
the default port: 27017). If you want to connect to a different port number, however (for
example, if you don’t want to use the default port, or you’re already running another
session of the MongoDB service on that port), you can do so by specifying the port
number and hostname:
 
$connection = new Mongo("example.com:12345");
 

This example creates a connection to the database service. Next, you will learn how
to disconnect from the service. Assuming you used the method just described to connect
to your database, you can call $connection again to pass the close() command to
terminate the connection, as in this example:
 
$connection->close();
 

The close doesn’t need to be called, except in unusual circumstances. The reason
for this is that the PHP driver closes the connection to the database once the Mongo object
goes out of scope. Nevertheless, it is recommended that you call close() at the end of
your PHP code; this helps you avoid keeping old connections from hanging around until
they eventually time out. It also helps you ensure that any existing connection is closed,
thereby enabling a new connection to happen, as in the following example:
 
$connection = new Mongo();
$connection->close();
$connection->connect();
 

The following snippet shows how this would look like in PHP:
 
<?php
 
// Establish the database connection
$connection = new Mongo()
 
// Close the database connection
$connection->close();
 
?>

Installing the Python Driver
Python is a general-purpose and easy-to-read programming language.

These qualities make Python a good language to start with when you are new to
programming and scripting. It’s also a great language to look into if you are familiar
with programming, and you’re looking for a multi-paradigm programming language
that permits several styles of programming (object-oriented programming, structured
programming, and so on). In the upcoming sections, you’ll learn how to install Python
and enable MongoDB support for the language.

Chapter 2 ■ Installing MongoDB

33

Installing PyMongo under Linux
Python offers a specific package for MongoDB support called PyMongo. This package
allows you to interact with the MongoDB database, but you will need to get this driver
up and running before you can use this powerful combination. As when installing
the PHP driver, there are two methods you can use to install PyMongo: an automated
approach that relies on setuptools or a manual approach where you download the
source code for the project. The following sections show you how to install PyMongo
using both approaches.

Installing PyMongo Automatically

The pip application that comes bundled with the python-pip package lets you automatically
download, build, install, and manage Python packages. This is incredibly convenient,
enabling you to extend your Python modules installation even as it does all the work for you.

Note■■   You must have setuptools installed before you can use the pip application.
This will be done automatically when installing the python-pip package.

To install pip, all you need to do is tell apt-get to download and install it, like so:
 
$ sudo apt-get install python-pip
 

When this line executes, pip will detect the currently running version of Python
and installs itself on the system. That’s all there is to it. Now you are ready to use the pip
command to download, make, and install the MongoDB module, as in this example:
 
$ sudo pip install pymongo
 

Again, that’s all there is to it! PyMongo is now installed and ready to use.

Tip■■   You can also install previous versions of the PyMongo module with pip using the
pip install pymongo=x.y.z command. Here, x.y.z denotes the version of the module.

Installing PyMongo Manually

You can also choose to install PyMongo manually. Begin by going to the download section
of the site that hosts the PyMongo plugin (http://pypi.python.org/pypi/pymongo). Next,
download the tarball and extract it. A typical download and extract procedure might look
like this in your console:
 
$ wget http://pypi.python.org/packages/source/p/pymongo/pymongo-2.5.1.tar.gz
$ tar xzf pymongo-2.5.1.tar.gz
 

http://pypi.python.org/pypi/pymongo
http://pypi.python.org/packages/source/p/pymongo/pymongo-2.5.1.tar.gz

Chapter 2 ■ Installing MongoDB

34

Once you successfully download and extract this file, make your way to the extracted
contents directory and invoke the installation of PyMongo by running the install.py
command with Python:
 
$ cd pymongo-2.5.1
$ sudo python setup.py install
 

The preceding snippet outputs the entire creation and installation process of the
PyMongo module. Eventually, this process brings you back to your prompt, at which time
you’re ready to start using PyMongo.

Installing PyMongo under Windows
Installing PyMongo under Windows is a straightforward process. As when installing
PyMongo under Linux, Easy Install can simplify installing PyMongo under Windows as
well. If you don’t have setuptools installed yet (this package includes the easy_install
command), then go to the Python Package Index website (http://pypi.python.org) to
locate the setuptools installer.

Caution■■   The version of setuptools you download must match the version of Python
installed on your system.

For example, assume you have Python version 2.7.5 installed on your system. You
will need to download the setuptools package for v2.7.x. The good news is that you don’t
need to compile any of this; rather, you can simply download the appropriate package
and double-click the executable to install setuptools on your system! It is that simple.

Caution■■   If you have previously installed an older version of setuptools, then you will
need to uninstall that version using your system’s Add/Remove Programs feature before
installing the newer version.

Once the installation is complete, you will find the easy_install.exe file in Python’s
Scripts subdirectory. At this point, you’re ready to install PyMongo on Windows.

Once you’ve successfully installed setuptools, you can open a command prompt and
cd your way to Python’s Scripts directory. By default, this is set to C:\Pythonxy\Scripts\,
where xy represents your version number. Once you navigate to this location, you can use
the same syntax shown previously for installing the Unix variant:
 
C:\Python27\Scripts> easy_install PyMongo
 

http://pypi.python.org/

Chapter 2 ■ Installing MongoDB

35

Unlike the output that you get when installing this program on a Linux machine,
the output here is rather brief, indicating only that the extension has been downloaded
and installed (see Figure 2-4). That said, this information is sufficient for your purposes
in this case.

Figure 2-4.  Installing PyMongo under Windows

Figure 2-5.  The Python shell

Confirming That Your PyMongo Installation Works
To confirm whether the PyMongo installation has completed successfully, you can open
up your Python shell. In Linux, you do this by opening a console and typing python.
In Windows, you do this by clicking Start ➤ Programs ➤ Python xy ➤ Python
(commandline). At this point, you will be welcomed to the world of Python
(see Figure 2-5).

You can use the import command to tell Python to start using the freshly installed
extension:
 
>>> import pymongo
>>>
 

Chapter 2 ■ Installing MongoDB

36

Note■■   You must use the import pymongo command each time you want to use PyMongo.

If all went well, you will not see a thing, and you can start firing off some fancy
MongoDB commands. If you received an error message, however, something went wrong,
and you might need to review the steps just taken to discover where the error occurred.

Summary
In this chapter, we examined how to obtain the MongoDB software, including how to
select the correct version you need for your environment. We also discussed the version
numbers, how to install and run MongoDB, and how to install and run its prerequisites.
Next, we covered how to establish a connection to a database through a combination of
the shell, PHP, and Python.

We also explored how to expand MongoDB so it will work with your favorite
programming languages, as well as how to confirm whether the language-specific drivers
have installed correctly.

In the next chapter, we will explore how to design and structure MongoDB
databases and data properly. Along the way, you’ll learn how to index information to
speed up queries, how to reference data, and how to leverage a fancy new feature called
geospatial indexing.

37

Chapter 3

The Data Model

In the previous chapter, you learned how to install MongoDB on two commonly used
platforms (Windows and Linux), as well as how to extend the database with some
additional drivers. In this chapter, you will shift your attention from the operating system
and instead examine the general design of a MongoDB database. Specifically, you’ll learn
what collections are, what documents look like, how indexes work and what they do, and
finally, when and where to reference data instead of embedding it. We touched on some
of these concepts briefly in Chapter 1, but in this chapter, we’ll explore them in more
detail. Throughout this chapter, you will see code examples designed to give you a good
feeling for the concepts being discussed. Do not worry too much about the commands
you’ll be looking at, however, because they will be discussed extensively in Chapter 4.

Designing the Database
As you learned in the first two chapters, a MongoDB database is nonrelational and
schemaless. This means that a MongoDB database isn’t bound to any predefined
columns or datatypes as relational databases are (such as MySQL). The biggest benefit
of this implementation is that working with data is extremely flexible because there is no
predefined structure required in your documents.

To put it more simply: you are perfectly capable of having one collection that
contains hundreds or even thousands of documents that all carry a different structure—
without breaking any of the MongoDB databases rules.

One of the benefits of this flexible schemaless design is that you won’t be restricted
when programming in a dynamically typed language such as Python or PHP. Indeed,
it would be a severe limitation if your extremely flexible and dynamically capable
programming language couldn’t be used to its full potential because of the innate
limitations of your database.

Let’s take another glance at what the data design of a document in MongoDB looks
like, paying particular attention to how flexible data in MongoDB is compared to data in
a relational database. In MongoDB, a document is an item that contains the actual data,

Chapter 3 ■ The Data Model

38

comparable to a row in SQL. In the following example, you will see how two completely
different types of documents can coexist in a single collection named Media (note that a
collection is roughly equivalent to a table in the world of SQL):
 
{
 "Type": "CD",
 "Artist": "Nirvana",
 "Title": "Nevermind",
 "Genre": "Grunge",
 "Releasedate": "1991.09.24",
 "Tracklist": [
 {
 "Track" : "1",
 "Title" : "Smells Like Teen Spirit",
 "Length" : "5:02"
 },
 {
 "Track" : "2",
 "Title" : "In Bloom",
 "Length" : "4:15"
 }
]
}
  
{
 "type": "Book",
 �"Title": "Definitive Guide to MongoDB: A complete guide to dealing with

Big Data using MongoDB 2nd , The",
 "ISBN": "987-1-4302-5821-6",
 "Publisher": "Apress",
 "Author": [
 "Hows, David"
 "Plugge, Eelco",
 "Membrey, Peter",
 "Hawkins, Tim]
}
 

As you might have noticed when looking at this pair of documents, most of the fields
aren’t closely related to one another. Yes, they both have fields called Title and Type; but
apart from that similarity, the documents are completely different. Nevertheless, these
two documents are contained in a single collection called Media.

MongoDB is called a schemaless database, but that doesn’t mean MongoDB’s data
structure is completely devoid of schema. For example, you do define collections and
indexes in MongoDB (you will learn more about this later in the chapter). Nevertheless,
you do not need to predefine a structure for any of the documents you will be adding, as is
the case when working with MySQL, for example.

Chapter 3 ■ The Data Model

39

Simply stated, MongoDB is an extraordinarily dynamic database; the preceding
example would never work in a relational database, unless you also added each possible
field to your table. Doing so would be a waste of both space and performance, not to
mention highly disorganized.

Drilling Down on Collections
As mentioned previously, collection is a commonly used term in MongoDB. You can think
of a collection as a container that stores your documents (that is, your data), as shown in
Figure 3-1.

Database

Collections

Documents

Figure 3-1.  The MongoDB database model

Now compare the MongoDB database model to a typical model for a relational
database (see Figure 3-2).

Chapter 3 ■ The Data Model

40

As you can see, the general structure is the same between the two types of databases;
nevertheless, you do not use them in even remotely similar manners. There are several
types of collections in MongoDB. The default collection type is expandable in size: the
more data you add to it, the larger it becomes. It’s also possible to define collections that
are capped. These capped collections can only contain a certain amount of data before
the oldest document is replaced by a newer document (you will learn more about these
collections in Chapter 4).

Every collection in MongoDB has a unique name. This name should begin with
a letter, or optionally, an underscore (_) when created using the createCollection
function. The name can contain numbers and letters; however, the $ symbol is reserved
by MongoDB. Similarly, using an empty string (“ ”) is not allowed; the null character
cannot be used in the name and it cannot start with the “system.” string. Generally, it’s
recommended that you keep the collection’s name simple and short (to around nine
characters or so); however, the maximum number of allowed characters in a collection
name is 118, minus the number of charaters in the database and the additional separating
period character. Obviously, there isn’t much practical reason to create such a long name.

The above mentioned combination of databasename “period” collection name is
called a namespace. A single database has a default limit of 24,000 namespaces. Each
collection accounts for at least two namespaces: one for the collection itself and one
more for the default _id index created in the collection. If you were to add more indexes
per collection, however, another namespace would be used. In theory, this means that
each database can have up to 12,000 collections by default, assuming each collection only
carries one index. However, this limit on the number of namespaces can be increased
by providing the nssize parameter when executing the MongoDB service application
(mongod).

Database

Tables

Rows

Figure 3-2.  A typical relational database model

Chapter 3 ■ The Data Model

41

Using Documents
Recall that a document consists of key-value pairs. For example, the pair "type" : "Book"
consists of a key named type, and its value, Book. Keys are written as strings, but the
values in them can vary tremendously. Values can be any of a rich set of datatypes,
such as arrays or even binary data. Remember: MongoDB stores its data in BSON format
(see Chapter 1 for more information on this topic).

Next, let’s look at all of the possible types of data you can add to a document, and
what you use them for:

•	 String: This commonly used datatype contains a string of text
(or any other kind of characters). This datatype is used mostly for
storing text values (for example, "Country" : "Japan"}.

•	 Integer (32b and 64b): This type is used to store a numerical value
(for example, { "Rank" : 1 }). Note that there are no quotes
placed before or after the integer.

•	 Boolean: This datatype can be set to either TRUE or FALSE.

•	 Double: This datatype is used to store floating-point values.

•	 Min / Max keys: This datatype is used to compare a value against
the lowest and highest BSON elements, respectively.

•	 Arrays: This datatype is used to store arrays (for example,
["Membrey, Peter","Plugge, Eelco","Hows, David"]).

•	 Timestamp: This datatype is used to store a timestamp. This can
be handy for recording when a document has been modified or
added.

•	 Object: This datatype is used for embedded documents.

•	 Null: This datatype is used for a Null value.

•	 Symbol: This datatype is used identically to a string; however, it’s
generally reserved for languages that use a specific symbol type.

•	 Date *: This datatype is used to store the current date or time in
Unix time format (POSIX time).

•	 Object ID *: This datatype is used to store the document’s ID.

•	 Binary data *: This datatype is used to store binary data.

•	 Regular expression *: This datatype is used for regular expressions.
All options are represented by specific characters provided in
alphabetical order. You will learn more about regular expressions
in Chapter 4.

•	 JavaScript Code *: This datatype is used for JavaScript code.

Chapter 3 ■ The Data Model

42

The asterisks mean that the last five datatypes (date, object ID, binary data, regex,
and JavaScript code) are non-JSON types; specifically, they are special datatypes that
BSON allows you to use. In Chapter 4, you will learn how to identify your datatypes by
using the $type operator.

In theory, this all probably sounds straightforward. However, you might wonder how
you go about actually designing the document, including what information to put in it.
Because a document can contain any type of data, you might think there is no need to
reference information from inside another document. In the next section, we’ll look at
the pros and cons of embedding information in a document compared to referencing that
information from another document.

Embedding vs. Referencing Information in Documents
You can choose either to embed information into a document or reference that
information from another document. Embedding information simply means that
you place a certain type of data (for example, an array containing more data) into the
document itself. Referencing information means that you create a reference to another
document that contains that specific data. Typically, you reference information when you
use a relational database. For example, assume you wanted to use a relational database
to keep track of your CDs, DVDs, and books. In this database, you might have one table
for your CD collection and another table that stores the track lists of your CDs. Thus, you
would probably need to query multiple tables to acquire a list of tracks from a specific CD.

With MongoDB (and other nonrelational databases), however, it would be much
easier to embed such information instead. After all, the documents are natively capable
of doing so. Adopting this approach keeps your database nice and tidy, ensures that all
related information is kept in one single document, and even works much faster because
the data is then co-located on the disk.

Now let’s look at the differences between embedding and referencing information by
looking at a real-world scenario: storing CD data in a database.

In the relational approach, your data structure might look something like this:
 
|_media
 |_cds
 |_id, artist, title, genre, releasedate
 |_ cd_tracklists
 |_cd_id, songtitle, length
 

In the nonrelational approach, your data structure might look something like this:
 
|_media
 |_items
 |_<document>
 

Chapter 3 ■ The Data Model

43

In the nonrelational approach, the document might look something like the following:
 
{
 "Type": "CD",
 "Artist": "Nirvana",
 "Title": "Nevermind",
 "Genre": "Grunge",
 "Releasedate": "1991.09.24",
 "Tracklist": [
 {
 "Track" : "1",
 "Title" : "Smells Like Teen Spirit",
 "Length" : "5:02"
 },
 {
 "Track" : "2",
 "Title" : "In Bloom",
 "Length" : "4:15"
 }
]
}
 

In this example, the track list information is embedded in the document itself. This
approach is both incredibly efficient and well organized. All the information that you
wish to store regarding this CD is added to a single document. In the relational version
of the CD database, this requires at least two tables; in the nonrelational database, it
requires only one collection and one document.

When information is retrieved for a given CD, that information only needs to be
loaded from one document into RAM, not from multiple documents. Remember that
every reference requires another query in the database.

Tip■■  T he rule of thumb when using MongoDB is to embed data whenever you can.
This approach is far more efficient and almost always viable.

At this point, you might be wondering about the use case in which an application has
multiple users. Generally speaking, a relational database version of the aforementioned
CD app would require that you have one table that contains all your users and two tables
for the items added. For a nonrelational database, it would be good practice to have
separate collections for the users and the items added. For these kinds of problems,
MongoDB allows you to create references in two ways: manually or automatically. In
the latter case, you use the DBRef specification, which provides more flexibility in case a
collection changes from one document to the next. You will learn more about these two
approaches in Chapter 4.

Chapter 3 ■ The Data Model

44

Creating the _id Field
Every object within the MongoDB database contains a unique identifier to distinguish
that object from every other object. This identifier is called the _id key, and it is added
automatically to every document you create in a collection.

The _id key is the first attribute added in each new document you create. This
remains true even if you do not tell MongoDB to create the key. For example, none of the
code in the preceding examples used the _id key. Nevertheless, MongoDB created an _id
key for you automatically in each document. It did so because _id key is a mandatory
element for each document in the collection.

If you do not specify the _id value manually, the type will be set to a special BSON
datatype that consists of a 12-byte binary value. Thanks to its design, this value has
a reasonably high probability of being unique. The 12-byte value consists of a 4-byte
timestamp (seconds since epoch, or January 1st, 1970), a 3-byte machine ID, a 2-byte
process ID, and a 3-byte counter. It’s good to know that the counter and timestamp fields
are stored in Big Endian format. This is because MongoDB wants to ensure that there is an
increasing order to these values, and a Big Endian approach suits this requirement best.

Note■■  T he terms Big Endian and Little Endian refer to how individual bytes/bits are
stored in a longer data word in the memory. Big Endian simply means that the most
significant value is saved first. Similarly, Little Endian means that the least significant value
is saved first.

Figure 3-3 shows how the value of the _id key is built up and where the values
come from.

0 1 2 3 4 5 6 7 8 9 10 11

Time machine Pid inc

Figure 3-3.  Creating the _id key in MongoDB

Every additional supported driver that you load when working with MongoDB
(such as the PHP driver or the Python driver) supports this special BSON datatype and
uses it whenever new data is created. You can also invoke ObjectId() from the MongoDB
shell to create a value for an _id key. Optionally, you can specify your own value by using
ObjectId(string), where string represents the specified hex string.

Chapter 3 ■ The Data Model

45

Building Indexes
As mentioned in Chapter 1, an index is nothing more than a data structure that collects
information about the values of specified fields in the documents of a collection. This
data structure is used by MongoDB’s query optimizer to quickly sort through and order
the documents in a collection.

Remember that indexing ensures a quick lookup from data in your documents.
Basically, you should view an index as a predefined query that was executed and had its
results stored. As you can imagine, this enhances query-performance dramatically. The
general rule of thumb in MongoDB is that you should create an index for the same sort of
scenarios where you would want to have an index in MySQL.

The biggest benefit of creating your own indexes is that querying for often-used
information will be incredibly fast because your query won’t need to go through your
entire database to collect this information.

Creating (or deleting) an index is relatively easy—once you get the hang of it, anyway.
You will learn how to do so in Chapter 4, which covers working with data. You will also
learn some more advanced techniques for taking advantage of indexing in Chapter 10,
which covers how to maximize performance.

Impacting Performance with Indexes
You might wonder why you would ever need to delete an index, rebuild your indexes, or
even delete all indexes within a collection. The simple answer is that doing so lets you
clean up some irregularities. For instance, sometimes the size of a database can increase
dramatically for no apparent reason. At other times, the space used by the indexes might
strike you as excessive.

Another good thing to keep in mind: you can have a maximum of 64 indexes per
collection. Generally speaking, this is far more than you should need, but you could
potentially hit this limit someday.

Note■■  A dding an index increases query speed, but it reduces insertion or deletion speed.
It’s best to consider only adding indexes for collections where the number of reads is higher
than the number of writes. When more writes occur than reads, indexes may even prove to
be counterproductive.

Finally, all index information is stored in the system.indexes collection in your
database. For example, you can run the db.system.indexes.find() command to take
a quick peek at the indexes that have been stored so far. To see the indexes created for a
specific collection, you can use the getIndexes command:
 
db.collection.getIndexes()

Chapter 3 ■ The Data Model

46

Implementing Geospatial Indexing
As Chapter 1briefly mentioned, MongoDB has implemented geospatial indexing since
version 1.4. This means that, in addition to normal indexes, MongoDB also supports
geospatial indexes that are designed to work in an optimal way with location-based
queries. For example, you can use this feature to find a number of closest known items
to the user’s current location. Or you might further refine your search to query for a
specified number of restaurants near the current location. This type of query can be
particularly helpful if you are designing an application where you want to find the closest
available branch office to a given customer’s ZIP code.

A document for which you want to add geospatial information must contain either a
subobject or an array whose first element specifies the object type, followed by the item’s
longitude and latitude, as in the following example:
 
> db.restaurants.insert({name: "Kimono", loc: { type: "Point",
coordinates: [52.370451, 5.217497] } })
 

Note that the type parameter can be used to specify the document’s object type,
which can be a Point, a LineString or a Polygon. As can be expected, the Point type is
used to specify that the item (in this case, a restaurant) is located at exactly the spot given,
thus requiring exactly two values, the longitute and latitude. The LineString type can be
used to specify that the item extends along a specific line (say, a street), and thus requires
a beginning and end point, as in the following example:
 
> db.streets.insert({name: "Westblaak", loc: { type: "LineString",
coordinates: [[52.36881, 4.890286],[52.368762, 4.890021]] } })
 

The Polygon type can be used to specify a (nondefault) shape (say, a shopping area).
When using this type, you need to ensure that the first and last points are identical, to
close the loop. Also, the point coordinates are to be provided as an array within an array,
as in the following example:
 
> db.stores.insert({name: "SuperMall", loc: { type: "Polygon", coordinates:
[[[52.146917, 5.374337], [52.146966, 5.375471], [52.146722, 5.375085],
[52.146744, 5.37437], [52.146917, 5.374337]]] } })
 

In most cases, the Point type will be appropriate.
Once this geospatial information is added to a document, you can create the index

(or even create the index beforehand, of course) and give the ensureIndex() function the
2dsphere parameter:
 
> db.restaurants.ensureIndex({ loc: "2dsphere" })
 

Chapter 3 ■ The Data Model

47

Note■■  T he ensureIndex() function is used to add a custom index. Don’t worry about
the syntax of this function yet—you will learn how to use ensureIndex() in depth in the
next chapter.

The 2dsphere parameter tells ensureIndex() that it’s indexing a coordinate or
some other form of two-dimensional information on an Earth-like sphere. By default,
ensureindex() assumes that a latitude/longitude key is given, and it uses a range of -180
to 180. However, you can overwrite these values using the min and max parameters:
 
> db.restaurants.ensureIndex({ loc: "2dsphere" }, { min : -500 , max : 500 })
 

You can also expand your geospatial indexes by using secondary key values
(also known as compound keys). This structure can be useful when you intend to query
on multiple values, such as a location (geospatial information) and a category
(sort ascending):
 
> db.restaurants.ensureIndex({ loc: "2dsphere", category: 1 }) 

Note■■  A t this time, the geospatial implementation is based on the idea that the world is
a perfect sphere. Thus, each degree of latitude and longitude is exactly 111km (69 miles) in
length. However, this is only true exactly at the equator; the further you move away from the
equator, the smaller each degree of longitude becomes, approaching zero at the poles.

Querying Geospatial Information
In this chapter, we are concerned primarily with two things: how to model the data and how
a database works in the background of an application. That said, manipulating geospatial
information is increasingly important in a wide variety of applications, so we’ll take a few
moments to explain how to leverage geospatial information in a MongoDB database.

Before getting started, a mild word of caution. If you are completely new to
MongoDB and haven’t had the opportunity to work with (geospatial) indexed data in the
past, this section may seem a little overwhelming at first. Not to worry, however; you can
safely skip it for now and come back to it later if you wish to. The examples given serve
to show you a practical example of how (and why) to use geospatial indexing, making it
easier to comprehend. With that out of the way, and if you are feeling brave, read on.

Once you’ve added data to your collection, and once the index has been created,
you can do a geospatial query. For example, let’s look at a few lines of simple yet powerful
code that demonstrate how to use geospatial indexing.

Chapter 3 ■ The Data Model

48

Begin by starting up your MongoDB shell and selecting a database with the use
function. In this case, the database is named restaurants:
 
> use restaurants
 

Once you’ve selected the database, you can define a few documents that contain
geospatial information, and then insert them into the places collection (remember: you
do not need to create the collection beforehand):
 
> db.restaurants.insert({ name: "Kimono", loc: { type: "Point",
coordinates: [52.370451, 5.217497] } })
 
> db.restaurants.insert({name: "Shabu Shabu", loc: { type: "Point",
coordinates: [51.915288, 4.472786] } })
 
> db.restaurants.insert({name: "Tokyo Cafe", loc: { type: "Point",
coordinates: [52.368736, 4.890530] } })
 

After you add the data, you need to tell the MongoDB shell to create an index based
on the location information that was specified in the loc key, as in this example:
 
> db.restaurants.ensureIndex ({ loc: "2dsphere" })
 

Once the index has been created, you can start searching for your documents. Begin
by searching on an exact value (so far this is a “normal” query; it has nothing to do with
the geospatial information at this point):
 
> db.restaurants.find({ loc : [52,5] })
>
 

The preceding search returns no results. This is because the query is too specific.
A better approach in this case would be to search for documents that contain information
near a given value. You can accomplish this using the $near operator. Note that this
requires the type operator to be specified, as in the following example:
 
> db.restaurants.find({ loc : { $geoNear : { $geometry : { type : "Point",
coordinates: [52.338433, 5.513629] } } } })
 

This produces the following output:
 
{
 "_id" : ObjectId("51ace0f380523d89efd199ac"),
 "name" : "Kimono",
 "loc" : {
 "type" : "Point",
 "coordinates" : [52.370451, 5.217497]
 }
}

Chapter 3 ■ The Data Model

49

{
 "_id" : ObjectId("51ace13380523d89efd199ae"),
 "name" : "Tokyo Cafe",
 "loc" : {
 "type" : "Point",
 "coordinates" : [52.368736, 4.89053]
 }
}
{
 "_id" : ObjectId("51ace11b80523d89efd199ad"),
 "name" : "Shabu Shabu",
 "loc" : {
 "type" : "Point",
 "coordinates" : [51.915288, 4.472786]
 }
}
 

Although this set of results certainly looks better, there’s still one problem: all of the
documents are returned! When used without any additional operators, $near returns the
first 100 entries and sorts them based on their distance from the given coordinates. Now,
while we can choose to limit our results to say, the first two items (or two hundred, if we
want) using the limit function, even better would be to limit the results to those within
a given range.

This can be achieved by appending the $maxDistance operator. Using this operator
you can tell MongoDB to return only those results falling within a maximum distance
(measured in meters) from the given point, as in the following example and its output:
 
> db.retaurants.find({ loc : { $geoNear : { $geometry : { type : "Point",
coordinates: [52.338433, 5.513629] }, $maxDistance : 40000 } } })
{
 "_id" : ObjectId("51ace0f380523d89efd199ac"),
 "name" : "Kimono",
 "loc" : {
 "type" : "Point",
 "coordinates" : [52.370451, 5.217497]
 }
}
 

As you can see, this returns only a single result: a restaurant located within 40 kilometers
(or, roughly 25 miles) from the starting point.

Note■■  T here is a direct correlation between the number of results returned and the time
a given query takes to execute.

Chapter 3 ■ The Data Model

50

In addition to the $geoNear operator, MongoDB also includes a $geoWithin operator.
You use this operator to find items in a particular shape. At this time, you can find items
located in a $box, $polygon, $center and $centerSphere shape, where $box represents
a rectangle, $polygon represents a specific shape of your choosing, $center represents a
circle, and $centerSphere defines a circle on a sphere. Let’s look at a couple of additional
examples that illustrate how to use these shapes.

Note■■   With version 2.4 of MongoDB the $within operator was deprecated and replaced
by $geoWithin. This operator does not strictly require a geospatial indexing. Also, unlike the
$near operator, $geoWithin does not sort the returned results, improving their performance.

To use the $box shape, you first need to specify the lower-left, followed by the
upper-right coordinates of the box, as in the following example:
 
> db.restaurants.find({ loc: { $geoWithin : { $box : [[52.368549,
4.890238], [52.368849, 4.89094]] } } })
 

Similarly, to find items within a specific polygon form, you need to specify the
coordinates of your points as a set of nested arrays. Again note that the first and last
coordinates must be identical to close the shape properly, as shown in the following
example:
 
> db.restaurants.find({ loc :
 { $geoWithin :
 { $geometry :
 { type : "Polygon" ,
 coordinates : [[
 [52.368739, 4.890203], [52.368872, 4.890477], [52.368726, 4.890793],
 [52.368608, 4.89049], [52.368739, 4.890203]
]]
 }
 }
 })
 

The code to find items in a basic $circle shape is quite simple. In this case, you
need to specify the center of the circle and its radius, measured in the units used by the
coordinate system, before executing the find() function:
 
> db.restaurants.find({ loc: { $geoWithin : { $center : [[52.370524,
5.217682], 10] } } })
 

Note that ever since MongoDB version 2.2.3, the $center operator can be used
without having a geospatial index in place. However, it is recommended to create one to
improve performance.

Chapter 3 ■ The Data Model

51

Finally, to find items located within a circular shape on a sphere (say, our planet) you
can use the $centerSphere operator. This operator is similar to $center, like so:
 
> db.restaurants.find({ loc: { $geoWithin : { $centerSphere : [[52.370524,
5.217682], 10] } } })
 

By default, the find() function is ideal for running queries. However, MongoDB also
provides the geoNear() function, which works like the find() function, but also displays
the distance from the specified point for each item in the results. The geoNear() function
also includes some additional diagnostics. The following example uses the geoNear()
function to find the two closest results to the specified position:
 
> db.runCommand({ geoNear : "restaurants", near : { type : "Point",
coordinates: [52.338433, 5.513629] }, spherical : true})
 

It returns the following results:
 
{
 "ns" : "stores.restaurants",
 "results" : [
 {
 "dis" : 33155.517810497055,
 "obj" : {
 "_id" : ObjectId("51ace0f380523d89efd199ac"),
 "name" : "Kimono",
 "loc" : {
 "type" : "Point",
 "coordinates" : [
 52.370451,
 5.217497
]
 }
 }
 },
 {
 "dis" : 69443.96264213261,
 "obj" : {
 "_id" : ObjectId("51ace13380523d89efd199ae"),
 "name" : "Tokyo Cafe",
 "loc" : {
 "type" : "Point",
 "coordinates" : [
 52.368736,
 4.89053
]
 }
 }
 },

Chapter 3 ■ The Data Model

52

 {
 "dis" : 125006.87383713324,
 "obj" : {
 "_id" : ObjectId("51ace11b80523d89efd199ad"),
 "name" : "Shabu Shabu",
 "loc" : {
 "type" : "Point",
 "coordinates" : [
 51.915288,
 4.472786
]
 }
 }
 }
],
 "stats" : {
 "time" : 6,
 "nscanned" : 3,
 "avgDistance" : 75868.7847632543,
 "maxDistance" : 125006.87383713324
 },
 "ok" : 1
}
 

That completes our introduction to geospatial information for now; however, you’ll
see a few more examples that show you how to leverage geospatial functions in this
book’s upcoming chapters.

Using MongoDB in the Real World
Now that you have MongoDB and its associated plug-ins installed, and you have gained
an understanding of the data model, it’s time to get to work. In the next five chapters
of the book, you will learn how to build, query, and otherwise manipulate a variety of
sample MongoDB databases (see Table 3-1 for a quick view of the topics to come). Each
chapter will stick primarily to using a single database that is unique to that chapter; we
took this approach to make it easier to read this book in a modular fashion.

Chapter 3 ■ The Data Model

53

Table 3-1.  MongoDB Sample Databases Covered in This Book

Chapter Database Name Topic

4 Library Working with data and indexes

5 Test GridFS

6 Contacts PHP and MongoDB

7 Inventory Python and MongoDB

8 Test Advanced Queries

Summary
In this chapter, we looked at what’s happening in the background of your database.
We also explored the primary concepts of collections and documents in more depth;
and we covered the datatypes supported in MongoDB, as well as how to embed and
reference data.

Next, we examined what indexes do, including when and why they should be
used (or not).

We also touched on the concepts of geospatial indexing. For example, we covered
how geospatial data can be stored; we also explained how you can search for such data
using either the regular find() function or the more geospatially based geoNear database
command.

In the next chapter, we’ll take a closer look at how the MongoDB shell works,
including which functions can be used to insert, find, update, or delete your data. We will
also explore how conditional operators can help you with all of these functions.

55

Chapter 4

Working with Data

In the previous chapter, you learned how the database works on the backend, what
indexes are, how to use a database to quickly find the data you are looking for, and what
the structure of a document looks like. You also saw a brief example that illustrated how
to add data and find it again using the MongoDB shell. In this chapter, we will focus more
on working with data from your shell.

We will use one database (named library) throughout this chapter, and we will
perform actions such as adding data, searching data, modifying data, deleting data,
and creating indexes. We’ll also look at how to navigate the database using various
commands, as well as what DBRef is and what it does. If you have followed the
instructions in the previous chapters to set up the MongoDB software, you can follow the
examples in this chapter to get used to the interface. Along the way, you will also attain a
solid understanding of which commands can be used for what kind of operations.

Navigating Your Databases
The first thing you need to know is how to navigate your databases and collections. With
traditional SQL databases, the first thing you would need to do is to create an actual
database; however, as you probably remember from the previous chapters, this is not
required with MongoDB because the program creates the database and underlying
collection for you automatically the moment you store data in it.

To switch to an existing database or create a new one, you can use the use function in
the shell, followed by the name of the database you would like to use, whether it exists or
not. This snippet shows how to use the library database:
 
> use library
Switched to db library
 

The mere act of invoking the use function, followed by the database’s name, sets
your db (database) global variable to library. Doing this means that all the commands
you pass down into the shell will automatically assume they need to be executed on the
library database until you reset this variable to another database.

Chapter 4 ■ Working with Data

56

Viewing Available Databases and Collections
MongoDB automatically assumes a database needs to be created the moment you save
data to it. It is also case-sensitive. For these reasons, it can be quite tricky to ensure that
you’re working in the correct database. Therefore, it’s best to view a list of all current
databases available to MongoDB prior to switching to one, in case you forgot the
database’s name or its exact spelling. You can do this using the show dbs function:
 
> show dbs
admin
local
 

Note that this function will only show a database that already exists. At this stage, the
database does not contain any data yet, so nothing else will be listed. If you want to view
all available collections for your current database, you can use the show collections
function:
 
> show collections
system.indexes
 

Note that the system.indexes collection is created automatically the moment data is
saved. This collection contains an index based on the _id key value from the document
just inserted; it also includes any custom-created indexes that you’ve defined.

Tip■■  T o view the database you are currently working in, simply type db into the
MongoDB shell.

Inserting Data into Collections
One of the most frequently used pieces of functionality you will want to learn about is
how to insert data into your collection. All data is stored in BSON format (which is both
compact and reasonably fast to scan), so you will need to insert the data in BSON format
as well. You can do this in several ways. For example, you can define it first, and then save
it in the collection using the insert function, or you can type the document while using
the insert function on the fly:
 
> document = ({ "Type" : "Book", "Title" : "Definitive Guide to MongoDB 2nd
ed.,
The", "ISBN" : "978-1-4302-5821-6", "Publisher" : "Apress", "Author": [
"Hows, David", "Plugge, Eelco", "Membrey, Peter", “Hawkins, Tim”] })
 

Chapter 4 ■ Working with Data

57

Note■■   When you define a variable in the shell (for example, document = ({ ... })),
the contents of the variable will be printed out immediately.

 
> db.media.insert(document)
 

Line breaks can also be used while typing in the shell. This can be convenient if you
are writing a rather lengthy document, as in this example:
 
> document = ({ "Type" : "Book",
..."Title" : "Definitive Guide to MongoDB 2nd ed., The",
..."ISBN" : "978-1-4302-5821-6",
..."Publisher" : "Apress",
..."Author" : ["Hows, David", Plugge, Eelco", "Membrey, Peter"," "Hawkins, Tim"]
...})
 
> db.media.insert(document)
 

As mentioned, the other option is to insert your data directly through the shell,
without defining the document first. You can do this by invoking the insert function
immediately, followed by the document’s contents:
 
> db.media.insert({ "Type" : "CD", "Artist" : "Nirvana", "Title" :
"Nevermind" })
 

Or you can insert the data while using line breaks, as before. For example, you can
expand the preceding example by adding an array of tracks to it. Pay close attention to
how the commas and brackets are used in the following example:
 
> db.media.insert({ "Type" : "CD",
..."Artist" : "Nirvana",
..."Title" : "Nevermind",
... "Tracklist" : [
... {
... "Track" : "1",
... "Title" : "Smells Like Teen Spirit",
... "Length" : "5:02"
... },
... {
... "Track" : "2",
... "Title" : "In Bloom",
... "Length" : "4:15"
... }
...]
...}
...)
 

Chapter 4 ■ Working with Data

58

As you can see, inserting data through the Mongo shell is straightforward.
The process of inserting data is extremely flexible, but you must adhere to some rules

when doing so. For example, the names of the keys while inserting documents have the
following limitations:

The •	 $ character must not be the first character in the key name.
Example: $tags

The period [•	 .] character must not appear anywhere in the key
name. Example: ta.gs

The name •	 _id is reserved for use as a primary key ID; although it
is not recommended, it can store anything unique as a value, such
as a string or an integer.

Similarly, some restrictions apply when creating a collection. For example, the name
of a collection must adhere to the following rules:

The collection’s name cannot exceed 128 characters.•	

An empty string (“ ”) cannot be used as a collection name.•	

The collection’s name must start with either a letter or an •	
underscore.

The collection name •	 system is reserved for MongoDB and cannot
be used.

The collection’s name cannot contain the “\0” null character.•	

Querying for Data
You’ve seen how to switch to your database and how to insert data; next, you will learn
how to query for data in your collection. Let’s build on the preceding example and look at
all the possible ways to get a good clear view of your data in a given collection.

Note■■   When querying your data, you have an extraordinary range of options, operators,
expressions, filters, and so on available to you. We will spend the next few sections
reviewing these options.

The find() function provides the easiest way to retrieve data from multiple
documents within one of your collections. This function is one that you will be
using often.

Chapter 4 ■ Working with Data

59

Let’s assume that you have inserted the preceding two examples into a collection
called media in the library database. If you were to use a simple find() function on this
collection, you would get all of the documents you’ve added so far printed out for you:
 
> db.media.find()
{ "_id" : "ObjectId("4c1a8a56c603000000007ecb"), "Type" : "Book", "Title" :
"Definitive Guide to MongoDB 2nd ed., The", "ISBN" : "978-1-4302-5821-6",
"Publisher" :
"Apress", "Author" : ["Hows, David ", "Plugge, Eelco", "Membrey, Peter",
“Hawkins, Tim”]}
 
{ "_id" : "ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
 {
 "Track" : "1",
 "Title" : "Smells Like Teen Spirit",
 "Length" : "5:02"
 },
 {
 "Track" : "2",
 "Title" : "In Bloom",
 "Length" : "4:15"
 }
] }
 

This is simple stuff, but typically you would not want to retrieve all the information
from all the documents in your collection. Instead, you probably want to retrieve a certain
type of document. For example, you might want to return all the CDs from Nirvana. If so,
you can specify that only the desired information is requested and returned:
 
> db.media.find ({ Artist : "Nirvana" })
{ "_id" : "ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
 "Nirvana", "Title" : "Nevermind", "Tracklist" : [
 {
 "Track" : "1",
 "Title" : "Smells Like Teen Spirit",
 "Length" : "5:02"
 },
 {
 "Track" : "2",
 "Title" : "In Bloom",
 "Length" : "4:15"
 }
] }
 

Chapter 4 ■ Working with Data

60

Okay, so this looks much better! You don’t have to see all the information from all
the other items you’ve added to your collection, only the information that interests you.
However, what if you’re still not satisfied with the results returned? For example, assume
you want to get a list back that shows only the titles of the CDs you have by Nirvana,
ignoring any other information, such as track lists. You can do this by inserting an
additional parameter into your query that specifies the name of the key that you want to
return, followed by a 1:
 
> db.media.find ({Artist : "Nirvana"}, {Title: 1})
{ "_id" : ObjectId("4c1a86bb2955000000004076"), "Title" : "Nevermind" }
 

Inserting the { Title : 1 } information specifies that only the information
from the title field should be returned. The results are sorted and presented to you in
ascending order.

Note■■  T he ascending order is based upon the insertion order of the document.

You can also accomplish the opposite: inserting { Type : 0 } retrieves a list of all
items you have stored from Nirvana, showing all information except for the Type field.

Note■■  T he _id field will by default remain visible, unless you explicitly ask it not to
show itself.

Take a moment to run the revised query with the { Title : 1 } insertion; no
unnecessary information is returned at all. This saves you time because you see only
the information you want. It also spares your database the time required to return
unnecessary information.

Using the Dot Notation
When you start working with more complex document structures such as documents
containing arrays or embedded objects, you can begin using other methods for querying
information from those objects as well. For example, assume you want to find all CDs that
contain a specific song you like. The following code executes a more detailed query:
 
> db.media.find({ "Tracklist.Title" : "In Bloom" })
{ "_id" : "ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
 {
 "Track" : "1",
 "Title" : "Smells Like Teen Spirit",
 "Length" : "5:02"
 },

Chapter 4 ■ Working with Data

61

 {
 "Track" : "2",
 "Title" : "In Bloom",
 "Length" : "4:15"
 }
] }
 

Using a period [.] after the key’s name tells your find function to look for
information embedded in your documents. Things are a little simpler when working with
arrays. For example, you can execute the following query if you want to find a list of books
written by Peter Membrey:
 
> db.media.find({ "Author" : "Membrey, Peter" })
{ "_id" : "ObjectId("4c1a8a56c603000000007ecb"), "Type" : "Book", "Title" :
"Definitive Guide to MongoDB 2nd ed., The", "ISBN" : "978-1-4302-5821-6",
"Publisher" :
"Apress", "Author" : ["Hows, David ", "Plugge, Eelco", "Membrey, Peter",
"Hawkins, Tim"] }
 

However, the following command will not match any documents, even though it
might appear identical to the earlier track list query:
 
> db.media.find ({ "Tracklist" : {"Track" : "1" }})
 

Subobjects must match exactly; therefore, the preceding query would only match a
document that contains no other information, such as Track.Title:
 
{"Type" : "CD",
"Artist" : "Nirvana"
"Title" : "Nevermind",
"Tracklist" : [
 {
 "Track" : "1",
 },
 {
 "Track" : "2",
 "Title" : "In Bloom",
 "Length" : "4:15"
 }
]
}

Chapter 4 ■ Working with Data

62

Using the Sort, Limit, and Skip Functions
MongoDB includes several functions that you can use for more precise control over your
queries. We’ll cover how to use the sort, limit, and skip functions in this section.

You can use the sort function to sort the results returned from a query. You can sort
the results in ascending or descending order using 1 or -1, respectively. The function
itself is analogous to the ORDER BY statement in SQL, and it uses the key’s name and
sorting method as criteria, as in this example:
 
> db.media.find().sort({ Title: 1 })
 

This example sorts the results based on the Title key’s value in ascending order.
This is the default sorting order when no parameters are specified. You would add
the -1 flag to sort in descending order.

Note■■  I f you specify a key for sorting that does not exist, the values will be returned in
their ascending insertion order.

You can use the limit() function to specify the maximum number of results
returned. This function requires only one parameter: the number of the desired results
returned. When you specify ‘0’, all results will be returned. The following example returns
only the first ten items in your media collection:
 
> db.media.find().limit(10)
 

Another thing you might want to do is skip the first n documents in a collection. The
following example skips the first twenty documents in your media collection:
 
> db.media.find().skip(20)
 

As you probably surmised, this command returns all documents within your
collection, except for the first twenty it finds. Remember: it finds documents in the order
they were inserted.

MongoDB wouldn’t be particularly powerful if it weren’t able to combine these
commands. However, practically any function can be combined and used in conjunction
with any other function. The following example limits the results by skipping a few and
then sorts the results in descending order:
 
> db.media.find().sort ({ Title : -1 }).limit (10).skip (20)
 

You might use this example if you want to implement paging in your application.
As you might have guessed, this command wouldn’t return any results in the media
collection created so far, because the collection contains fewer documents than were
skipped in this example.

Chapter 4 ■ Working with Data

63

Note■■   You can use the following shortcut in the find() function to skip and limit your
results: find ({}, {}, 10, 20). Here, you limit the results to 10 and skip the
first 20 documents.

Working with Capped Collections, Natural Order, and
$natural
There are some additional concepts and features you should be aware of when sorting
queries with MongoDB, including capped collections, natural order, and $natural. We’ll
explain what all of these terms mean and how you can leverage them in your sorts in
this section.

The natural order is the database’s native ordering method for objects within a
(normal) collection. So, when you query for items in a collection, the items are returned
by default in the forward natural order. This is usually identical to the order in which
items were inserted; however, that is not guaranteed to be the case, as data can move
when it no longer fits on its old location after being modified.

A capped collection is a collection in your database where the natural order is
guaranteed to be the order in which the documents were inserted. Guaranteeing that the
natural order will always match the insertion order can be particularly useful when you’re
querying data and need to be absolutely certain that the results returned are already
sorted based on their order of insertion.

Capped collections have another great benefit: they are a fixed size. Once a capped
collection is full, the oldest data will be purged, and newer data will be added at the end,
ensuring that the natural order follows the order in which the records were inserted. This
type of collection can be used for logging and auto-archiving data.

Unlike a standard collection, a capped collection must be created explicitly, using
the createCollection function. You must also supply parameters that specify the size
(in bytes) of the collection you want to add. For example, imagine you want to create a
capped collection named audit with a maximum size of 20480 bytes:
 
> db.createCollection("audit", {capped:true, size:20480})
{ "ok" : 1 }
 

Given that a capped collection guarantees that the natural order matches the
insertion order, you don’t need to include any special parameters or any other special
commands or functions when querying the data either, except of course when you
want to reverse the default results. This is where the $natural parameter comes in. For
example, assume you want to find the ten most recent entries from your capped collection
that lists failed login attempts. You could use the $natural parameter to find this
information:
 
> db.audit.find().sort({ $natural: -1 }).limit (10)
 

Chapter 4 ■ Working with Data

64

Note■■   Documents already added to a capped collection can be updated, but they must
not grow in size. The update will fail if they do. Deleting documents from a capped
collection is also not possible; instead, the entire collection must be dropped and re-created
if you want to do this. You will learn more about dropping a collection later in this chapter.

You can also limit the number of items added into a capped collection using the max:
parameter when you create the collection. However, you must take care to ensure that
there is enough space in the collection for the number of items you want to add. If the
collection becomes full before the number of items has been reached, the oldest item in
the collection will be removed. The MongoDB shell includes a utility that lets you see the
amount of space used by an existing collection, whether it’s capped or uncapped. You
invoke this utility using the validate() function. This can be particularly useful if you
want to estimate how large a collection might become.

As stated previously, you can use the max: parameter to cap the number of items that
can be inserted into a collection, as in this example:
 
> db.createCollection("audit100", { capped:true, size:20480, max: 100})
{ "ok" : 1 }
 

Next, use the validate() function to check the size of the collection:
 
> db.audit100.validate()
{
 "ns" : "media.audit100",
 "result" : "
 validate
 capped:1 max:100
 firstExtent:0:54000 ns:media.audit100
 lastExtent:0:54000 ns:media.audit100
 # extents:1
 datasize?:0 nrecords?:0 lastExtentSize:20736
 padding:1
 first extent:
 loc:0:54000 xnext:null xprev:null
 nsdiag:media.audit100
 size:20736 firstRecord:null lastRecord:null
 capped outOfOrder:0 (OK)
 0 objects found, nobj:0
 0 bytes data w/headers
 0 bytes data wout/headers
 deletedList: 1100000000000000000
 deleted: n: 2 size: 20560
 nIndexes:0

Chapter 4 ■ Working with Data

65

 ",
 "ok" : 1,
 "valid" : true,
 "lastExtentSize" : 20736
}
 

The resulting output shows that the table (named audit100) is a capped collection
with a maximum of 100 items to be added, and it currently contains zero items.

Retrieving a Single Document
So far we’ve only looked at examples that show how to retrieve multiple documents.
If you want to receive only one result, however, querying for all documents—which is
what you generally do when executing a find() function—would be a waste of CPU time
and memory. For this case, you can use the findOne() function to retrieve a single item
from your collection. Overall, the result is identical to what occurs when you append the
limit(1) function, but why make it harder on yourself than you should?

The syntax of the findOne() function is identical to the syntax of the find() function:
 
> db.media.findOne()
 

It’s generally advised to use the findOne() function if you expect only one result.

Using the Aggregation Commands
MongoDB comes with a nice set of aggregation commands. You might not see their
significance at first, but once you get the hang of them, you will see that the aggregation
commands form an extremely powerful set of tools. For instance, you might use them to
get an overview of some basic statistics about your database. In this section, we will take
a closer look at how to use three of the functions from the available aggregate commands:
count, distinct, and group.

In addition to these three basic aggregation commands, MongoDB also includes
an aggregation framework. This powerful feature will allow you to calculate aggregated
values without needing to use the—often overly complex—map/reduce framework. The
aggregation framework will be discussed in Chapter 5.

Returning the Number of Documents with count( )
The count() function returns the number of documents in the specified collection. So far
we’ve added a number of documents in the media collection. The count() function can
tell you exactly how many:
 
> db.media.count()
2
 

Chapter 4 ■ Working with Data

66

You can also perform additional filtering by combining count() with conditional
operators, as shown here:
 
> db.media.find({ Publisher : "Apress", Type: "Book" }).count()
1
 

This example returns only the number of documents added in the collection that
are published by Apress and of the type Book. Note that the count() function ignores a
skip() or limit() parameter by default. To ensure that your query doesn’t skip these
parameters and that your count results will match the limit and/or skip parameters, use
count(true):
 
> db.media.find({ Publisher: "Apress", Type: "Book" }).skip (2) .count
(true)
0

Retrieving Unique Values with distinct()
The preceding example shows a great way to retrieve the total number of documents from
a specific publisher. However, this approach is definitely not precise. After all, if you own
more than one book with the same title (for instance, the hardcopy and the e-book), then
you would technically have just one book. This is where distinct() can help you: it will
only return unique values.

For the sake of completeness, you can add an additional item to the collection. This
item carries the same title, but has a different ISBN number:
 
> document = ({ "Type" : "Book","Title" : "Definitive Guide to MongoDB 2nd
ed., The", ISBN:
"978-1-4302-5821-6", "Publisher" : "Apress", "Author" :
["Hows, David","Membrey, Peter","Plugge, Eelco","Hawkins, Tim"] })
> db.media.insert (document)
 

At this point, you should have two books in the database with identical titles. When
using the distinct() function on the titles in this collection, you will get a total of two
unique items. However, the titles of the two books are unique, so they will be grouped
into one item. The other result will be the title of the album “Nevermind”:
 
> db.media.distinct("Title")
["Definitive Guide to MongoDB, The", "Nevermind"]
 

Similarly, you will get two results if you query for a list of unique ISBN numbers:
 
> db.media.distinct ("ISBN")
["1-4302-3051-7", "987-4302-3051-9"]
 

Chapter 4 ■ Working with Data

67

The distinct() function also takes nested keys when querying; for instance, this
command will give you a list of unique titles of your CDs:
 
> db.media.distinct ("Tracklist.Title")
["In Bloom", "Smells Like Teen Spirit"]

Grouping Your Results
Last but not least, you can group your results. MongoDB’s group() function is similar
to SQL’s GROUP BY function, although the syntax is a little different. The purpose of the
command is to return an array of grouped items. The group() function takes three
parameters: key, initial, and reduce.

The key parameter specifies which results you want to group. For example, assume
you want to group results by Title. The initial parameter lets you provide a base for
each grouped result (that is, the base number of items to start off with). By default, you
want to leave this parameter at zero if you want an exact number returned. The reduce
parameter groups all similar items together. Reduce takes two arguments: the current
document being iterated over and the aggregation counter object. These arguments are
called items and prev in the example that follows. Essentially, the reduce parameter adds
a 1 to the sum of every item it encounters that matches a title it has already found.

The group() function is ideal when you’re looking for a tagcloud kind of function.
For example, assume you want to obtain a list of all unique titles of any type of item in
your collection. Additionally, assume you want to group them together if any doubles are
found, based on the title:
 
> db.media.group (
{
 key: {Title : true},
 initial: {Total : 0},
 reduce : function (items,prev)
 {
 prev.Total += 13
 }
}
)
 
[
 {
 "Title" : "Nevermind",
 "Total" : 1
 },
 {
 "Title" : "Definitive Guide to MongoDB, The",
 "Total" : 2
 }
]
 

 CONTENTS

x

Retrieving a Single Document�.. 65

Using the Aggregation Commands�... 65

Working with Conditional Operators�... 68

Leveraging Regular Expressions�.. 78

Updating Data�.. 78

Updating with update( )�... 78

Implementing an Upsert with the save( ) Command�... 79

Updating Information Automatically�... 80

Specifying the Position of a Matched Array�.. 85

Atomic Operations�.. 86

Modifying and Returning a Document Atomically�.. 88

Renaming a Collection�.. 89

Removing Data�.. 90

Referencing a Database�.. 91

Referencing Data Manually�.. 91

Referencing Data with DBRef�... 93

Implementing Index-Related Functions�.. 95

Surveying Index-Related Commands�... 97

Forcing a Speci�ed Index to Query Data�.. 97

Constraining Query Matches�.. 98

Summary�... 99

Chapter 5: GridFS■ �... 101

Filling in Some Background�.. 102

Working with GridFS�.. 103

Getting Started with the Command-Line Tools�.................................... 103

Using the _id Key�.. 104

Working with Filenames�... 105

Determining a File�s Length�.. 105

xiii

About the Authors

David Hows is an Honors graduate from the University
of Woolongong in NSW, Australia. He got his start in
computing trying to drive more performance out of
his family PC without spending a fortune. �is led to
a career in IT, where David has worked as a Systems
Administrator, Performance Engineer, Software
Developer, Solutions Architect, and Database Engineer.
David has tried in vain for many years to play soccer
well, and his co�ee mug reads “Grumble Bum.”

Peter Membrey is a Chartered IT Fellow with nearly
15 years of experience using Linux and open source
solutions to solve problems in the real world. An
RHCE since the age of 17, he has also had the honor of
working for Red Hat and writing several books covering
open source solutions. He holds a master’s degree
in IT (Information Security) from the University of
Liverpool and is currently an EngD candidate at the
Hong Kong Polytechnic University, where his research
interests include cloud computing, big data, science,
and security. He lives in Hong Kong with his wonderful
wife Sarah and son Kaydyn. His Cantonese continues to
regress, though his Esperanto is coming along nicely.

