
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Rick Copeland

MongoDB Applied
Design Patterns

www.allitebooks.com

http://www.allitebooks.org

MongoDB Applied Design Patterns

by Rick Copeland

Copyright © 2013 Richard D. Copeland, Jr. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette

Production Editor: Kristen Borg

Copyeditor: Kiel Van Horn

Proofreader: Jasmine Kwityn

Indexer: Jill Edwards

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Kara Ebrahim

March 2013: First Edition

Revision History for the First Edition:

2013-03-01: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449340049 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. MongoDB Applied Design Patterns, the image of a thirteen-lined ground squirrel, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-34004-9

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449340049
http://www.allitebooks.org

Table of Contents

Preface. vii

Part I. Design Patterns

1. To Embed or Reference. 3
Relational Data Modeling and Normalization 3

What Is a Normal Form, Anyway? 4
So What’s the Problem? 6
Denormalizing for Performance 7

MongoDB: Who Needs Normalization, Anyway? 8
MongoDB Document Format 8
Embedding for Locality 9
Embedding for Atomicity and Isolation 9
Referencing for Flexibility 11
Referencing for Potentially High-Arity Relationships 12
Many-to-Many Relationships 13

Conclusion 14

2. Polymorphic Schemas. 17
Polymorphic Schemas to Support Object-Oriented Programming 17
Polymorphic Schemas Enable Schema Evolution 20

Storage (In-)Efficiency of BSON 21
Polymorphic Schemas Support Semi-Structured Domain Data 22
Conclusion 23

3. Mimicking Transactional Behavior. 25
The Relational Approach to Consistency 25
Compound Documents 26
Using Complex Updates 28

iii

www.allitebooks.com

http://www.allitebooks.org

Optimistic Update with Compensation 29
Conclusion 33

Part II. Use Cases

4. Operational Intelligence. 37
Storing Log Data 37

Solution Overview 37
Schema Design 38
Operations 39
Sharding Concerns 48
Managing Event Data Growth 50

Pre-Aggregated Reports 52
Solution Overview 52
Schema Design 53
Operations 59
Sharding Concerns 63

Hierarchical Aggregation 63
Solution Overview 64
Schema Design 65
MapReduce 65
Operations 67
Sharding Concerns 72

5. Ecommerce. 75
Product Catalog 75

Solution Overview 75
Operations 80
Sharding Concerns 83

Category Hierarchy 84
Solution Overview 84
Schema Design 85
Operations 86
Sharding Concerns 90

Inventory Management 91
Solution Overview 91
Schema 92
Operations 93
Sharding Concerns 100

6. Content Management Systems. 101

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Metadata and Asset Management 101
Solution Overview 101
Schema Design 102
Operations 104
Sharding Concerns 110

Storing Comments 111
Solution Overview 111
Approach: One Document per Comment 111
Approach: Embedding All Comments 114
Approach: Hybrid Schema Design 117
Sharding Concerns 119

7. Online Advertising Networks. 121
Solution Overview 121
Design 1: Basic Ad Serving 121

Schema Design 122
Operation: Choose an Ad to Serve 123
Operation: Make an Ad Campaign Inactive 123
Sharding Concerns 124

Design 2: Adding Frequency Capping 124
Schema Design 124
Operation: Choose an Ad to Serve 125
Sharding 126

Design 3: Keyword Targeting 126
Schema Design 127
Operation: Choose a Group of Ads to Serve 127

8. Social Networking. 129
Solution Overview 129
Schema Design 130

Independent Collections 130
Dependent Collections 132

Operations 133
Viewing a News Feed or Wall Posts 134
Commenting on a Post 135
Creating a New Post 136
Maintaining the Social Graph 138

Sharding 139

9. Online Gaming. 141
Solution Overview 141
Schema Design 142

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Character Schema 142
Item Schema 143
Location Schema 144

Operations 144
Load Character Data from MongoDB 145
Extract Armor and Weapon Data for Display 145
Extract Character Attributes, Inventory, and Room Information for Display 147
Pick Up an Item from a Room 147
Remove an Item from a Container 148
Move the Character to a Different Room 149
Buy an Item 150

Sharding 151

Afterword. 153

Index. 155

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Whether you’re building the newest and hottest social media website or developing an
internal-use-only enterprise business intelligence application, scaling your data model
has never been more important. Traditional relational databases, while familiar, present
significant challenges and complications when trying to scale up to such “big data”
needs. Into this world steps MongoDB, a leading NoSQL database, to address these
scaling challenges while also simplifying the process of development.

However, in all the hype surrounding big data, many sites have launched their business
on NoSQL databases without an understanding of the techniques necessary to effec‐
tively use the features of their chosen database. This book provides the much-needed
connection between the features of MongoDB and the business problems that it is suited
to solve. The book’s focus on the practical aspects of the MongoDB implementation
makes it an ideal purchase for developers charged with bringing MongoDB’s scalability
to bear on the particular problem you’ve been tasked to solve.

Audience
This book is intended for those who are interested in learning practical patterns for
solving problems and designing applications using MongoDB. Although most of the
features of MongoDB highlighted in this book have a basic description here, this is not
a beginning MongoDB book. For such an introduction, the reader would be well-served
to start with MongoDB: The Definitive Guide by Kristina Chodorow and Michael Dirolf
(O’Reilly) or, for a Python-specific introduction, MongoDB and Python by Niall O’Hig‐
gins (O’Reilly).

Assumptions This Book Makes
Most of the code examples used in this book are implemented using either the Python
or JavaScript programming languages, so a basic familiarity with their syntax is essential
to getting the most out of this book. Additionally, many of the examples and patterns

vii

www.allitebooks.com

http://shop.oreilly.com/product/0636920001096.do
http://shop.oreilly.com/product/0636920021513.do
http://www.allitebooks.org

are contrasted with approaches to solving the same problems using relational databases,
so basic familiarity with SQL and relational modeling is also helpful.

Contents of This Book
This book is divided into two parts, with Part I focusing on general MongoDB design
patterns and Part II applying those patterns to particular problem domains.

Part I: Design Patterns
Part I introduces the reader to some generally applicable design patterns in MongoDB.
These chapters include more introductory material than Part II, and tend to focus more
on MongoDB techniques and less on domain-specific problems. The techniques de‐
scribed here tend to make use of MongoDB distinctives, or generate a sense of “hey,
MongoDB can’t do that” as you learn that yes, indeed, it can.

Chapter 1: To Embed or Reference
This chapter describes what kinds of documents can be stored in MongoDB, and
illustrates the trade-offs between schemas that embed related documents within
related documents and schemas where documents simply reference one another by
ID. It will focus on the performance benefits of embedding, and when the com‐
plexity added by embedding outweighs the performance gains.

Chapter 2: Polymorphic Schemas
This chapter begins by illustrating that MongoDB collections are schemaless, with
the schema actually being stored in individual documents. It then goes on to show
how this feature, combined with document embedding, enables a flexible and ef‐
ficient polymorphism in MongoDB.

Chapter 3: Mimicking Transactional Behavior
This chapter is a kind of apologia for MongoDB’s lack of complex, multidocument
transactions. It illustrates how MongoDB’s modifiers, combined with document
embedding, can often accomplish in a single atomic document update what SQL
would require several distinct updates to achieve. It also explores a pattern for im‐
plementing an application-level, two-phase commit protocol to provide transac‐
tional guarantees in MongoDB when they are absolutely required.

Part II: Use Cases
In Part II, we turn to the “applied” part of Applied Design Patterns, showing several use
cases and the application of MongoDB patterns to solving domain-specific problems.
Each chapter here covers a particular problem domain and the techniques and patterns
used to address the problem.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

Chapter 4: Operational Intelligence
This chapter describes how MongoDB can be used for operational intelligence, or
“real-time analytics” of business data. It describes a simple event logging system,
extending that system through the use of periodic and incremental hierarchical
aggregation. It then concludes with a description of a true real-time incremental
aggregation system, the Mongo Monitoring Service (MMS), and the techniques and
trade-offs made there to achieve high performance on huge amounts of data over
hundreds of customers with a (relatively) small amount of hardware.

Chapter 5: Ecommerce
This chapter begins by describing how MongoDB can be used as a product catalog
master, focusing on the polymorphic schema techniques and methods of storing
hierarchy in MongoDB. It then describes an inventory management system that
uses optimistic updating and compensation to achieve eventual consistency even
without two-phase commit.

Chapter 6: Content Management Systems
This chapter describes how MongoDB can be used as a backend for a content man‐
agement system. In particular, it focuses on the use of polymorphic schemas for
storing content nodes, the use of GridFS and Binary fields to store binary assets,
and various approaches to storing discussions.

Chapter 7: Online Advertising Networks
This chapter describes the design of an online advertising network. The focus here
is on embedded documents and complex atomic updates, as well as making sure
that the storage engine (MongoDB) never becomes the bottleneck in the ad-serving
decision. It will cover techniques for frequency capping ad impressions, keyword
targeting, and keyword bidding.

Chapter 8: Social Networking
This chapter describes how MongoDB can be used to store a relatively complex
social graph, modeled after the Google+ product, with users in various circles, al‐
lowing fine-grained control over what is shared with whom. The focus here is on
maintaining the graph, as well as categorizing content into various timelines and
news feeds.

Chapter 9: Online Gaming
This chapter describes how MongoDB can be used to store data necessary for an
online, multiplayer role-playing game. We show how character and world data can
be stored in MongoDB, allowing for concurrent access to the same data structures
from multiple players.

Preface | ix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MongoDB Applied Design Patterns by Rick
Copeland (O’Reilly). Copyright 2013 Richard D. Copeland, Jr., 978-1-449-34004-9.”

x | Preface

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/mongodb-applied-design-
patterns.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Preface | xi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/mongodb-applied-design-patterns
http://oreil.ly/mongodb-applied-design-patterns
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many thanks go to O’Reilly’s Meghan Blanchette, who endured the frustrations of trying
to get a technical guy writing a book to come up with a workable schedule and stick to
it. Sincere thanks also go to my technical reviewers, Jesse Davis and Mike Dirolf, who
helped catch the errors in this book so the reader wouldn’t have to suffer through them.

Much additional appreciation goes to 10gen, the makers of MongoDB, and the won‐
derful employees who not only provide a great technical product but have also become
genuinely close friends over the past few years. In particular, my thanks go out to Jared
Rosoff, whose ideas for use cases and design patterns helped inspire (and subsidize!)
this book, and to Meghan Gill, for actually putting me back in touch with O’Reilly and
getting the process off the ground, as well as providing a wealth of opportunities to
attend and speak at various MongoDB conferences.

Thanks go to my children, Matthew and Anna, who’ve been exceedingly tolerant of a
Daddy who loves to play with them in our den but can sometimes only send a hug over
Skype.

Finally, and as always, my heartfelt gratitude goes out to my wonderful and beloved wife,
Nancy, for her support and confidence in me throughout the years and for inspiring me
to many greater things than I could have hoped to achieve alone. I couldn’t possibly
have done this without you.

xii | Preface

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Design Patterns

CHAPTER 1

To Embed or Reference

When building a new application, often one of the first things you’ll want to do is to
design its data model. In relational databases such as MySQL, this step is formalized in
the process of normalization, focused on removing redundancy from a set of tables.
MongoDB, unlike relational databases, stores its data in structured documents rather
than the fixed tables required in relational databases. For instance, relational tables
typically require each row-column intersection to contain a single, scalar value. Mon‐
goDB BSON documents allow for more complex structure by supporting arrays of val‐
ues (where each array itself may be composed of multiple subdocuments).

This chapter explores one of the options that MongoDB’s rich document model leaves
open to you: the question of whether you should embed related objects within one
another or reference them by ID. Here, you’ll learn how to weigh performance, flexibility,
and complexity against one another as you make this decision.

Relational Data Modeling and Normalization
Before jumping into MongoDB’s approach to the question of embedding documents or
linking documents, we’ll take a little detour into how you model certain types of rela‐
tionships in relational (SQL) databases. In relational databases, data modeling typically
progresses by modeling your data as a series of tables, consisting of rows and columns,
which collectively define the schema of your data. Relational database theory has defined
a number of ways of putting application data into tables, referred to as normal forms.
Although a detailed discussion of relational modeling goes beyond the scope of this text,
there are two forms that are of particular interest to us here: first normal form and third
normal form.

3

What Is a Normal Form, Anyway?
Schema normalization typically begins by putting your application data into the first
normal form (1NF). Although there are specific rules that define exactly what 1NF
means, that’s a little beyond what we want to cover here. For our purposes, we can
consider 1NF data to be any data that’s tabular (composed of rows and columns), with
each row-column intersection (“cell”) containing exactly one value. This requirement
that each cell contains exactly one value is, as we’ll see later, a requirement that MongoDB
does not impose, with the potential for some nice performance gains. Back in our re‐
lational case, let’s consider a phone book application. Your initial data might be of the
following form, shown in Table 1-1.

Table 1-1. Phone book v1

id name phone_number zip_code

1 Rick 555-111-1234 30062

2 Mike 555-222-2345 30062

3 Jenny 555-333-3456 01209

This data is actually already in first normal form. Suppose, however, that we wished to
allow for multiple phone numbers for each contact, as in Table 1-2.

Table 1-2. Phone book v2

id name phone_numbers zip_code

1 Rick 555-111-1234 30062

2 Mike 555-222-2345;555-212-2322 30062

3 Jenny 555-333-3456;555-334-3411 01209

Now we have a table that’s no longer in first normal form. If we were to actually store
data in this form in a relational database, we would have to decide whether to store

phone_numbers as an unstructured BLOB of text or as separate columns (i.e., phone_num

ber0, phone_number1). Suppose we decided to store phone_numbers as a text column,
as shown in Table 1-2. If we needed to implement something like caller ID, finding the
name for a given phone number, our SQL query would look something like the
following:

SELECT name FROM contacts WHERE phone_numbers LIKE '%555-222-2345%';

Unfortunately, using a LIKE clause that’s not a prefix means that this query requires a
full table scan to be satisfied.

Alternatively, we can use multiple columns, one for each phone number, as shown in
Table 1-3.

4 | Chapter 1: To Embed or Reference

Table 1-3. Phone book v2.1 (multiple columns)

id name phone_number0 phone_number1 zip_code

1 Rick 555-111-1234 NULL 30062

2 Mike 555-222-2345 555-212-2322 30062

3 Jenny 555-333-3456 555-334-3411 01209

In this case, our caller ID query becomes quite verbose:

SELECT name FROM contacts

 WHERE phone_number0='555-222-2345'

 OR phone_number1='555-222-2345';

Updates are also more complicated, particularly deleting a phone number, since we

either need to parse the phone_numbers field and rewrite it or find and nullify the
matching phone number field. First normal form addresses these issues by breaking up
multiple phone numbers into multiple rows, as in Table 1-4.

Table 1-4. Phone book v3

id name phone_number zip_code

1 Rick 555-111-1234 30062

2 Mike 555-222-2345 30062

2 Mike 555-212-2322 30062

2 Jenny 555-333-3456 01209

2 Jenny 555-334-3411 01209

Now we’re back to first normal form, but we had to introduce some redundancy into
our data model. The problem with redundancy, of course, is that it introduces the pos‐
sibility of inconsistency, where various copies of the same data have different values. To
remove this redundancy, we need to further normalize the data by splitting it into two
tables: Table 1-5 and Table 1-6. (And don’t worry, we’ll be getting back to MongoDB
and how it can solve your redundancy problems without normalization really soon
now.)

Table 1-5. Phone book v4 (contacts)

contact_id name zip_code

1 Rick 30062

2 Mike 30062

3 Jenny 01209

Relational Data Modeling and Normalization | 5

Table 1-6. Phone book v4 (numbers)

contact_id phone_number

1 555-111-1234

2 555-222-2345

2 555-212-2322

3 555-333-3456

3 555-334-3411

As part of this step, we must identify a key column which uniquely identifies each row
in the table so that we can create links between the tables. In the data model presented

in Table 1-5 and Table 1-6, the contact_id forms the key of the contacts table, and the

(contact_id, phone_number) pair forms the key of the numbers table. In this case, we
have a data model that is free of redundancy, allowing us to update a contact’s name, zip
code, or various phone numbers without having to worry about updating multiple
rows. In particular, we no longer need to worry about inconsistency in the data model.

So What’s the Problem?
As already mentioned, the nice thing about normalization is that it allows for easy
updating without any redundancy. Each fact about the application domain can be up‐
dated by changing just one value, at one row-column intersection. The problem arises
when you try to get the data back out. For instance, in our phone book application, we
may want to have a form that displays a contact along with all of his or her phone

numbers. In cases like these, the relational database programmer reaches for a JOIN:

SELECT name, phone_number

 FROM contacts LEFT JOIN numbers

 ON contacts.contact_id=numbers.contact_id

 WHERE contacts.contact_id=3;

The result of this query? A result set like that shown in Table 1-7.

Table 1-7. Result of JOIN query

name phone_number

Jenny 555-333-3456

Jenny 555-334-3411

Indeed, the database has given us all the data we need to satisfy our screen design. The
real problem is in what the database had to do to create this result set, particularly if the
database is backed by a spinning magnetic disk. To see why, we need to briefly look at
some of the physical characteristics of such devices.

Spinning disks have the property that it takes much longer to seek to a particular location
on the disk than it does, once there, to sequentially read data from the disk (see

6 | Chapter 1: To Embed or Reference

www.allitebooks.com

http://www.allitebooks.org

Figure 1-1). For instance, a modern disk might take 5 milliseconds to seek to the place
where it can begin reading. Once it is there, however, it can read data at a rate of 40–80
MBs per second. For an application like our phone book, then, assuming a generous
1,024 bytes per row, reading a row off the disk would take between 12 and 25 micro‐
seconds.

Figure 1-1. Disk seek versus sequential access

The end result of all this math? The seek takes well over 99% of the time spent reading
a row. When it comes to disk access, random seeks are the enemy. The reason why this

is so important in this context is because JOINs typically require random seeks. Given
our normalized data model, a likely plan for our query would be something similar to
the following Python code:

for number_row in find_by_contact_id(numbers, 3):

 yield (contact_row.name, number_row.number)

So there ends up being at least one disk seek for every contact in our database. Of course,

we’ve glossed over how find_by_contact_id works, assuming that all it needs to do is

a single disk seek. Typically, this is actually accomplished by reading an index on num

bers that is keyed by contact_id, potentially resulting in even more disk seeks.

Of course, modern database systems have evolved structures to mitigate some of this,
largely by caching frequently used objects (particularly indexes) in RAM. However, even
with such optimizations, joining tables is one of the most expensive operations that
relational databases do. Additionally, if you end up needing to scale your database to
multiple servers, you introduce the problem of generating a distributed join, a complex
and generally slow operation.

Denormalizing for Performance
The dirty little secret (which isn’t really so secret) about relational databases is that once
we have gone through the data modeling process to generate our nice nth normal form

data model, it’s often necessary to denormalize the model to reduce the number of JOIN
operations required for the queries we execute frequently.

Relational Data Modeling and Normalization | 7

In this case, we might just revert to storing the name and contact_id redundantly in
the row. Of course, doing this results in the redundancy we were trying to get away from,
and leads to greater application complexity, as we have to make sure to update data in
all its redundant locations.

MongoDB: Who Needs Normalization, Anyway?
Into this mix steps MongoDB with the notion that your data doesn’t always have to be
tabular, basically throwing most of traditional database normalization out, starting with
first normal form. In MongoDB, data is stored in documents. This means that where
the first normal form in relational databases required that each row-column intersection
contain exactly one value, MongoDB allows you to store an array of values if you so
desire.

Fortunately for us as application designers, that opens up some new possibilities in
schema design. Because MongoDB can natively encode such multivalued properties,
we can get many of the performance benefits of a denormalized form without the at‐
tendant difficulties in updating redundant data. Unfortunately for us, it also complicates
our schema design process. There is no longer a “garden path” of normalized database
design to go down, and the go-to answer when faced with general schema design prob‐
lems in MongoDB is “it depends.”

MongoDB Document Format
Before getting into detail about when and why to use MongoDB’s array types, let’s review
just what a MongoDB document is. Documents in MongoDB are modeled after the
JSON (JavaScript Object Notation) format, but are actually stored in BSON (Binary
JSON). Briefly, what this means is that a MongoDB document is a dictionary of key-
value pairs, where the value may be one of a number of types:

• Primitive JSON types (e.g., number, string, Boolean)

• Primitive BSON types (e.g., datetime, ObjectId, UUID, regex)

• Arrays of values

• Objects composed of key-value pairs

• Null

In our example phone book application, we might store Jenny’s contact information in
a document as follows:

{

 "_id": 3,

 "name": "Jenny",

 "zip_code": "01209",

8 | Chapter 1: To Embed or Reference

 "numbers": ["555-333-3456", "555-334-3411"]

}

As you can see, we’re now able to store contact information in the initial Table 1-2 format
without going through the process of normalization. Alternatively, we could “normalize”

our model to remove the array, referencing the contact document by its _id field:

// Contact document:

{

 "_id": 3,

 "name": "Jenny",

 "zip_code": "01209"

}

// Number documents:

{ "contact_id": 3, "number": "555-333-3456" }

{ "contact_id": 3, "number": "555-334-3411" }

The remainder of this chapter is devoted to helping you decide whether referencing or
embedding is the correct solution in various contexts.

Embedding for Locality
One reason you might want to embed your one-to-many relationships is data locality.
As discussed earlier, spinning disks are very good at sequential data transfer and very
bad at random seeking. And since MongoDB stores documents contiguously on disk,
putting all the data you need into one document means that you’re never more than one
seek away from everything you need.

MongoDB also has a limitation (driven by the desire for easy database partitioning) that

there are no JOIN operations available. For instance, if you used referencing in the phone
book application, your application might do something like the following:

contact_info = db.contacts.find_one({'_id': 3})

number_info = list(db.numbers.find({'contact_id': 3})

If we take this approach, however, we’re left with a problem that’s actually worse than a
relational ‘JOIN` operation. Not only does the database still have to do multiple seeks
to find our data, but we’ve also introduced additional latency into the lookup since it
now takes two round-trips to the database to retrieve our data. Thus, if your application
frequently accesses contacts’ information along with all their phone numbers, you’ll
almost certainly want to embed the numbers within the contact record.

Embedding for Atomicity and Isolation
Another concern that weighs in favor of embedding is the desire for atomicity and
isolation in writing data. When we update data in our database, we want to ensure that
our update either succeeds or fails entirely, never having a “partial success,” and that any
other database reader never sees an incomplete write operation. Relational databases

MongoDB: Who Needs Normalization, Anyway? | 9

achieve this by using multistatement transactions. For instance, if we want to DELETE
Jenny from our normalized database, we might execute code similar to the following:

BEGIN TRANSACTION;

DELETE FROM contacts WHERE contact_id=3;

DELETE FROM numbers WHERE contact_id=3;

COMMIT;

The problem with using this approach in MongoDB is that MongoDB is designed
without multidocument transactions. If we tried to delete Jenny from our “normalized”
MongoDB schema, we would need to execute the following code:

db.contacts.remove({'_id': 3})

db.numbers.remove({'contact_id': 3})

Why no transactions?
MongoDB was designed from the ground up to be easy to scale to mul‐
tiple distributed servers. Two of the biggest problems in distributed
database design are distributed join operations and distributed trans‐
actions. Both of these operations are complex to implement, and can
yield poor performance or even downtime in the event that a server
becomes unreachable. By “punting” on these problems and not sup‐
porting joins or multidocument transactions at all, MongoDB has been
able to implement an automatic sharding solution with much better
scaling and performance characteristics than you’d normally be stuck
with if you had to take relational joins and transactions into account.

Using this approach, we introduce the possibility that Jenny could be removed from the

contacts collection but have her numbers remain in the numbers collection. There’s
also the possibility that another process reads the database after Jenny’s been removed

from the contacts collection, but before her numbers have been removed. On the other
hand, if we use the embedded schema, we can remove Jenny from our database with a
single operation:

db.contacts.remove({'_id': 3})

One point of interest is that many relational database systems relax the
requirement that transactions be completely isolated from one another,
introducing various isolation levels. Thus, if you can structure your up‐
dates to be single-document updates only, you can get the effect of the
serialized (most conservative) isolation level without any of the perfor‐
mance hits in a relational database system.

10 | Chapter 1: To Embed or Reference

Referencing for Flexibility
In many cases, embedding is the approach that will provide the best performance and
data consistency guarantees. However, in some cases, a more normalized model works
better in MongoDB. One reason you might consider normalizing your data model into
multiple collections is the increased flexibility this gives you in performing queries.

For instance, suppose we have a blogging application that contains posts and comments.
One approach would be to use an embedded schema:

{

 "_id": "First Post",

 "author": "Rick",

 "text": "This is my first post",

 "comments": [

 { "author": "Stuart", "text": "Nice post!" },

 ...

]

}

Although this schema works well for creating and displaying comments and posts, sup‐
pose we wanted to add a feature that allows you to search for all the comments by a
particular user. The query (using this embedded schema) would be the following:

db.posts.find(

 {'comments.author': 'Stuart'},

 {'comments': 1})

The result of this query, then, would be documents of the following form:

{ "_id": "First Post",

 "comments": [

 { "author": "Stuart", "text": "Nice post!" },

 { "author": "Mark", "text": "Dislike!" }] },

{ "_id": "Second Post",

 "comments": [

 { "author": "Danielle", "text": "I am intrigued" },

 { "author": "Stuart", "text": "I would like to subscribe" }] }

The major drawback to this approach is that we get back much more data than we
actually need. In particular, we can’t ask for just Stuart’s comments; we have to ask for
posts that Stuart has commented on, which includes all the other comments on those
posts as well. Further filtering would then be required in our Python code:

def get_comments_by(author):

 for post in db.posts.find(

 {'comments.author': author },

 {'comments': 1 }):

 for comment in post['comments']:

 if comment['author'] == author:

 yield post['_id'], comment

MongoDB: Who Needs Normalization, Anyway? | 11

On the other hand, suppose we decided to use a normalized schema:

// db.posts schema

{

 "_id": "First Post",

 "author": "Rick",

 "text": "This is my first post"

}

// db.comments schema

{

 "_id": ObjectId(...),

 "post_id": "First Post",

 "author": "Stuart",

 "text": "Nice post!"

}

Our query to retrieve all of Stuart’s comments is now quite straightforward:

db.comments.find({"author": "Stuart"})

In general, if your application’s query pattern is well-known and data tends to be accessed
in only one way, an embedded approach works well. Alternatively, if your application
may query data in many different ways, or you are not able to anticipate the patterns in
which data may be queried, a more “normalized” approach may be better. For instance,
in our “linked” schema, we’re able to sort the comments we’re interested in, or restrict

the number of comments returned from a query using limit() and skip() operators,
whereas in the embedded case, we’re stuck retrieving all the comments in the same order
they are stored in the post.

Referencing for Potentially High-Arity Relationships
Another factor that may weigh in favor of a more normalized model using document
references is when you have one-to-many relationships with very high or unpredictable
arity. For instance, a popular blog with a large amount of reader engagement may have
hundreds or even thousands of comments for a given post. In this case, embedding
carries significant penalties with it:

• The larger a document is, the more RAM it uses.

• Growing documents must eventually be copied to larger spaces.

• MongoDB documents have a hard size limit of 16 MB.

The problem with taking up too much RAM is that RAM is usually the most critical
resource on a MongoDB server. In particular, a MongoDB database caches frequently
accessed documents in RAM, and the larger those documents are, the fewer that will
fit. The fewer documents in RAM, the more likely the server is to page fault to retrieve
documents, and ultimately page faults lead to random disk I/O.

12 | Chapter 1: To Embed or Reference

In the case of our blogging platform, we may only wish to display the first three com‐
ments by default when showing a blog entry. Storing all 500 comments along with the
entry, then, is simply wasting that RAM in most cases.

The second point, that growing documents need to be copied, has to do with update
performance. As you append to the embedded comments array, eventually MongoDB
is going to need to move the document to an area with more space available. This
movement, when it happens, significantly slows update performance.

The final point, about the size limit of MongoDB documents, means that if you have a
potentially unbounded arity in your relationship, it is possible to run out of space entirely,
preventing new comments from being posted on an entry. Although this is something
to be aware of, you will usually run into problems due to memory pressure and docu‐
ment copying well before you reach the 16 MB size limit.

Many-to-Many Relationships
One final factor that weighs in favor of using document references is the case of many-
to-many or M:N relationships. For instance, suppose we have an ecommerce system
storing products and categories. Each product may be in multiple categories, and each
category may contain multiple products. One approach we could use would be to mimic
a relational many-to-many schema and use a “join collection”:

// db.product schema

{ "_id": "My Product", ... }

// db.category schema

{ "_id": "My Category", ... }

// db.product_category schema

{ "_id": ObjectId(...),

 "product_id": "My Product",

 "category_id": "My Category" }

Although this approach gives us a nicely normalized model, our queries end up doing
a lot of application-level “joins”:

def get_product_with_categories(product_id):

 product = db.product.find_one({"_id": product_id})

 category_ids = [

 p_c['category_id']

 for p_c in db.product_category.find(

 { "product_id": product_id })]

 categories = db.category.find({

 "_id": { "$in": category_ids } })

 return product, categories

Retrieving a category with its products is similarly complex. Alternatively, we can store
the objects completely embedded in one another:

MongoDB: Who Needs Normalization, Anyway? | 13

// db.product schema

{ "_id": "My Product",

 "categories": [

 { "_id": "My Category", ... }

 ...] }

// db.category schema

{ "_id": "My Category",

 "products": [

 { "_id": "My Product", ... }

 ...] }

Our query is now much simpler:

def get_product_with_categories(product_id):

 return db.product.find_one({"_id": product_id})

Of course, if we want to update a product or a category, we must update it in its own
collection as well as every place where it has been embedded into another document:

def save_product(product):

 db.product.save(product)

 db.category.update(

 { 'products._id': product['_id'] },

 { '$set': { 'products.*': product } },

 multi=True)

For many-to-many joins, a compromise approach is often best, embedding a list of _id
values rather than the full document:

// db.product schema

{ "_id": "My Product",

 "category_ids": ["My Category", ...] }

// db.category schema

{ "_id": "My Category" }

Our query is now a bit more complex, but we no longer need to worry about updating
a product everywhere it’s included in a category:

def get_product_with_categories(product_id):

 product = db.product.find_one({"_id": product_id})

 categories = list(db.category.find({

 '_id': {'$in': product['category_ids']} }))

 return product, categories

Conclusion
Schema design in MongoDB tends to be more of an art than a science, and one of the
earlier decisions you need to make is whether to embed a one-to-many relationship as
an array of subdocuments or whether to follow a more relational approach and refer‐

ence documents by their _id value.

14 | Chapter 1: To Embed or Reference

The two largest benefits to embedding subdocuments are data locality within a docu‐
ment and the ability of MongoDB to make atomic updates to a document (but not
between two documents). Weighing against these benefits is a reduction in flexibility
when you embed, as you’ve “pre-joined” your documents, as well as a potential for
problems if you have a high-arity relationship.

Ultimately, the decision depends on the access patterns of your application, and there
are fewer hard-and-fast rules in MongoDB than there are in relational databases. Using
wisely the flexibility that MongoDB gives you in schema design will help you get the
most out of this powerful nonrelational database.

Conclusion | 15

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Polymorphic Schemas

MongoDB is sometimes referred to as a “schemaless” database, meaning that it does not
enforce a particular structure on documents in a collection. It is perfectly legal (though
of questionable utility) to store every object in your application in the same collection,
regardless of its structure. In a well-designed application, however, it is more frequently
the case that a collection will contain documents of identical, or closely related, structure.
When all the documents in a collection are similarly, but not identically, structured, we
call this a polymorphic schema.

In this chapter, we’ll explore the various reasons for using a polymorphic schema, the
types of data models that they can enable, and the methods of such modeling. You’ll
learn how to use polymorphic schemas to build powerful and flexible data models.

Polymorphic Schemas to Support Object-Oriented
Programming
In the world of object-oriented (OO) programming, developers have become accus‐
tomed to the ability to have different classes of objects that share data and behavior
through inheritance. In particular, OO languages allow functions to manipulate child
classes as though they were their parent classes, calling methods that are defined in the
parent but may have been overridden with different implementations in the child. This
feature of OO languages is referred to as polymorphism.

Relational databases, with their focus on tables with a fixed schema, don’t support this
feature all that well. It would be useful in such cases if our relational database manage‐
ment system (RDBMS) allowed us to define a related set of schemas for a table so that
we could store any object in our hierarchy in the same table (and retrieve it using the
same mechanism).

17

For instance, consider a content management system that needs to store wiki pages and
photos. Many of the fields stored for wiki pages and photos will be similar, including:

• The title of the object

• Some locator that locates the object in the URL space of the CMS

• Access controls for the object

Some of the fields, of course, will be distinct. The photo doesn’t need to have a long
markup field containing its text, and the wiki page doesn’t need to have a large binary
field containing the photo data. In a relational database, there are several options for
modeling such an inheritance hierarchy:

• We could create a single table containing a union of all the fields that any object in
the hierarchy might contain, but this is wasteful of space since no row will populate
all its fields.

• We could create a table for each concrete instance (in this case, photo and wiki
page), but this introduces redundancy in our schema (anything in common be‐
tween photos and wiki pages) as well as complicating any type of query where we
want to retrieve all content “nodes” (including photos and wiki pages).

• We could create a common table for a base content “node” class that we join with
an appropriate concrete table. This is referred to as polymorphic inheritance mod‐
eling, and removes the redundancy from the concrete-table approach without
wasting the space of the single-table approach.

If we assume the polymorphic approach, we might end up with a schema similar to that
shown in Table 2-1, Table 2-2, and Table 2-3.

Table 2-1. “Nodes” table

node_id title url type

1 Welcome / page

2 About /about page

3 Cool Photo /photo.jpg photo

Table 2-2. “Pages” table

node_id text

1 Welcome to my wonderful wiki.

2 This is text that is about the wiki.

18 | Chapter 2: Polymorphic Schemas

Table 2-3. “Photos” table

node_id content

3 … binary data …

In MongoDB, on the other hand, we can store all of our content node types in the same
collection, storing only relevant fields in each document:

// "Page" document (stored in "nodes" collection")

{

 _id: 1,

 title: "Welcome",

 url: "/",

 type: "page",

 text: "Welcome to my wonderful wiki."

}

...

// "Photo" document (also in "nodes" collection)

{

 _id: 3,

 title: "Cool Photo",

 url: "/photo.jpg",

 type: "photo",

 content: Binary(...)

}

If we use such a polymorphic schema in MongoDB, we can use the same collection to
perform queries on common fields shared by all content nodes, as well as queries for
only a particular node type. For instance, when deciding what to display for a given
URL, the CMS needs to look up the node by URL and then perform type-specific for‐
matting to display it. In a relational database, we might execute something like the
following:

SELECT nodes.node_id, nodes.title, nodes.type,

 pages.text, photos.content

 FROM nodes

 LEFT JOIN pages ON nodes.node_id=pages.node_id

 LEFT JOIN photos ON nodes.node_id=pages.node_id

 WHERE url=:url;

Notice in particular that we are performing a three-way join, which will slow down the
query substantially. Of course, we could have chosen the single-table model, in which
case our query is quite simple:

SELECT * FROM nodes WHERE url=:url;

In the single-table inheritance model, however, we still retain the drawback of large
amounts of wasted space in each row. If we had chosen the concrete-table inheritance
model, we would actually have to perform a query for each type of content node:

Polymorphic Schemas to Support Object-Oriented Programming | 19

SELECT * FROM pages WHERE url=:url;

SELECT * FROM photos WHERE url=:url;

In MongoDB, the query is as simple as the single-table model, with the efficiency of the
concrete-table model:

db.nodes.find_one({url:url})

Polymorphic Schemas Enable Schema Evolution
When developing a database-driven application, one concern that programmers must
take into account is schema evolution. Typically, this is taken care of using a set of
migration scripts that upgrade the database from one version of a schema to another.
Before an application is actually deployed with “live” data, the “migrations” may consist
of dropping the database and re-creating it with a new schema. Once your application
is live and populated with customer data, however, schema changes require complex
migration scripts to change the format of data while preserving its content.

Relational databases typically support migrations via the ALTER TABLE statement, which
allows the developer to add or remove columns from a table. For instance, suppose we

wanted to add a short description field to our nodes table from Table 2-1. The SQL
for this operation would be similar to the following:

ALTER TABLE nodes

 ADD COLUMN short_description varchar(255);

The main drawbacks to the ALTER TABLE statement is that it can be time consuming to
run on a table with a large number of rows, and may require that your application

experience some downtime while the migration executes, since the ALTER TABLE state‐
ment needs to hold a lock that your application requires to execute.

In MongoDB, we have the option of doing something similar by updating all documents
in a collection to reflect a new field:

db.nodes.update(

 {},

 {$set: { short_description: '' } },

 false, // upsert

 true // multi

);

This approach, however, has the same drawbacks as an ALTER TABLE statement: it can
be slow, and it can impact the performance of your application negatively.

Another option for MongoDB users is to update your application to account for the
absence of the new field. In Python, we might write the following code to handle re‐

trieving both “old style” documents (without a short_description field) as well as “new

style” documents (with a short_description field):

20 | Chapter 2: Polymorphic Schemas

def get_node_by_url(url):

 node = db.nodes.find_one({'url': url})

 node.setdefault('short_description', '')

 return node

Once we have the code in place to handle documents with or without the short_de

scription field, we might choose to gradually migrate the collection in the background,
while our application is running. For instance, we might migrate 100 documents at a
time:

def add_short_descriptions():

 node_ids_to_migrate = db.nodes.find(

 {'short_description': {'$exists':False}}).limit(100)

 db.nodes.update(

 { '_id': {'$in': node_ids_to_migrate } },

 { '$set': { 'short_description': '' } },

 multi=True)

Once the entire collection is migrated, we can replace our application code to load the
node by URL to omit the default:

def get_node_by_url(url):

 node = db.nodes.find_one({'url': url})

 return node

Storage (In-)Efficiency of BSON
There is one major drawback to MongoDB’s lack of schema enforcement, and that is
storage efficiency. In a RDBMS, since all the column names and types are defined at the
table level, this information does not need to be replicated in each row. MongoDB, by
contrast, doesn’t know, at the collection level, what fields are present in each document,
nor does it know their types, so this information must be stored on a per-document
basis. In particular, if you are storing small values (integers, datetimes, or short strings)
in your documents and are using long property names, then MongoDB will tend to use
a much larger amount of storage than an RDBMS would for the same data. One approach
to mitigating this in MongoDB is to use short field names in your documents, but this
approach can make it more difficult to inspect the database directly from the shell.

Object-Document Mappers

One approach that can help with storage efficiency and with migrations is the use of a
MongoDB object-document mapper (ODM). There are several ODMs available for
Python, including MongoEngine, MongoKit, and Ming. In Ming, for example, you
might create a “Photo” model as follows:

class Photo(Document):

 ...

 short_description = Field('sd', str, if_missing='')

 ...

Polymorphic Schemas Enable Schema Evolution | 21

Using such a schema, Ming will lazily migrate documents as they are loaded from the

database, as well as renaming the short_description field (in Python) to the sd prop‐
erty (in BSON).

Polymorphic Schemas Support Semi-Structured Domain
Data
In some applications, we may want to store semi-structured domain data. For instance,

we may have a product table in a database where products may have various attributes,
but not all products have all attributes. One approach to such modeling, of course, is to
define all the product classes we’re interested in storing and use the object-oriented
mapping approach just described. There are, however, some pitfalls to avoid when this
approach meets data in the real business world:

• Product hierarchies may change frequently as items are reclassified

• Many products, even within the same class, may have incomplete data

For instance, suppose we are storing a database of disk drives. Although all drives in
our inventory specify capacity, some may also specify the cache size, while others omit

it. In this case, we can use a generic properties subdocument containing the variable
fields:

{

 _id: ObjectId(...),

 price: 499.99,

 title: 'Big and Fast Disk Drive',

 gb_capacity: 1000,

 properties: {

 'Seek Time': '5ms',

 'Rotational Speed': '15k RPM',

 'Transfer Rate': '...'

 ... }

}

The drawback to storing semi-structured data in this way is that it’s difficult to perform
queries and indexing on fields that you wish your application to be ignorant of. Another
approach you might use is to keep an array of property-value pairs:

{

 _id: ObjectId(...),

 price: 499.99,

 title: 'Big and Fast Disk Drive',

 gb_capacity: 1000,

 properties: [

 ['Seek Time', '5ms'],

 ['Rotational Speed', '15k RPM'],

 ['Transfer Rate', '...'],

22 | Chapter 2: Polymorphic Schemas

 ...]

}

If we use the array of properties approach, we can instruct MongoDB to index the
properties field with the following command:

db.products.ensure_index('properties')

Once this field is indexed, our queries simply specify the property-value pairs we’re
interested in:

db.products.find({'properties': ['Seek Time': '5ms']})

Doing the equivalent operation in a relational database requires more cumbersome
approaches, such as entity-attribute-value schemas, covered in more detail in “Entity
attribute values” (page 77).

Conclusion
The flexibility that MongoDB offers by not enforcing a particular schema for all docu‐
ments in a collection provides several benefits to the application programmer over an
RDBMS solution:

• Better mapping of object-oriented inheritance and polymorphism

• Simpler migrations between schemas with less application downtime

• Better support for semi-structured domain data

Effectively using MongoDB requires recognizing when a polymorphic schema may
benefit your application and not over-normalizing your schema by replicating the same
data layout you might use for a relational database system.

Conclusion | 23

CHAPTER 3

Mimicking Transactional Behavior

Relational database schemas often rely on the existence of atomic multistatement trans‐
actions to ensure data consistency: either all of the statements in a group succeed, or all
of the statements fail, moving the database from one self-consistent state to another.
When trying to scale relational databases over multiple physical servers, however,
transactions must use a two-phase commit protocol, which significantly slows down
transactions that may span multiple servers. MongoDB, in not allowing multidocument
atomic transactions, effectively side-steps this problem and substitutes another one:
how to maintain consistency in the absence of transactions.

In this chapter, we’ll explore how MongoDB’s document model and its atomic update
operations enable an approach that maintains consistency where a relational database
would use a transaction. We’ll also look at how we can use an approach known as
compensation to mimic the transactional behavior of relational databases.

The Relational Approach to Consistency
One of the goals of relational database normalization is the ability to make atomic
changes to a single row, which maintains the domain-level consistency of your data
model. Although normalization goes a long way toward such consistency enforcement,
there are some types of consistency requirements that are difficult or impossible to
express in a single SQL statement:

• Deleting a row in a one-to-many relationship should also delete the many rows
joined to it. For instance, deleting an order from the system should delete its sub‐
ordinate rows.

• Adjusting the quantity of a line item on an order should update the order total cost
(assuming that cost is stored in the order row itself).

25

• In a bank account transfer, the debit from the sending account and the credit into
the receiving account should be an atomic operation where both succeed or both
fail. Additionally, other simultaneous transactions should not see the data in an
incomplete state where either the debit or credit has not yet completed.

To address situations such as these, relational databases use atomic multistatement

transactions, where a group of updates to a database either all succeed (via COMMIT) or

all fail (via ROLLBACK). The drawback to multistatement transactions is that they can be
quite slow if you are using a distributed database. However, it is possible to maintain
consistency across multiple servers in a distributed database using a two-phase commit
protocol, summarized as follows:

1. Each server prepares to execute the transaction. In this stage, all the updates are
computed and guaranteed not to cause consistency violations within the server.

2. Once all servers have executed the “prepare” step, each server then applies the up‐
dates that are part of the transaction.

The drawback to a two-phase commit is that it can significantly slow down your appli‐
cation. Since each server guarantees that the transaction can be completed at the end of
the prepare step, the server will typically maintain a set of locks on data to be modified.
These locks must then be held until all the other servers have completed their prepare
step, which may be a lengthy process.

MongoDB, designed from the beginning with an eye toward distributed operation,
“solves” this problem by giving up on the idea of multidocument transactions. In
MongoDB, each update to a document stands alone.

Compound Documents
MongoDB’s document model and its update operators combine to enable operations
that would require transactions in relational databases. For example, consider deleting
an order from a database where each order contains multiple line items. In a relational
database, we could use a transaction to ensure that the order “cleans up after itself ”:

BEGIN TRANSACTION;

DELETE FROM orders WHERE id='11223';

DELETE FROM order_items WHERE order_id='11223';

COMMIT;

Since this is such a common use case, many relational database systems provide cas‐
cading constraints in the table-creation logic that do this automatically. For instance,
we may have designed our tables using the following SQL:

CREATE TABLE `orders` (

 `id` CHAR(5) NOT NULL,

 ...

26 | Chapter 3: Mimicking Transactional Behavior

www.allitebooks.com

http://www.allitebooks.org

 PRIMARY KEY(`id`))

CREATE TABLE `order_items` (

 `order_id` CHAR(5) NOT NULL,

 `sku` CHAR(8) NOT NULL,

 ...

 PRIMARY KEY(`order_id`, `sku`),

 FOREIGN KEY(`order_id`) REFERENCES orders.id

 ON DELETE CASCADE)

In this case, we could execute a simpler SQL statement:

DELETE FROM orders WHERE id='11223';

However, despite the fact that we’re not explicitly calling BEGIN and COMMIT, the database
system is still doing the work of a full, multitable transaction.

A developer new to MongoDB may approach an order management system by designing
a relational-style schema:

// "orders" document

{

 _id: '11223',

 ...

}

// "order_items" document

{

 _id: ObjectId(...),

 order_id: '11223',

 sku: '...',

 ...

}

Deleting such an order, however, presents a problem. One approach is to use two non-
atomic updates:

db.orders.remove({'_id': '1123'})

db.order_items.remove({'order_id': '11223'})

Of course, this can leave dangling order_items documents around if an exception

occurs between the remove calls, and other processes can end up seeing orphaned

order_items documents if they happen to query that collection between our operations.
Alternatively, we could reverse the order:

db.order_items.remove({'order_id': '11223'})

db.orders.remove({'_id': '1123'})

Although this guarantees that we won’t have “garbage” items in our database, it also
introduces the problem of having partially deleted orders, where some or all of the line
items are deleted but the order itself remains. A better approach is to simply embed the
order items within the order document itself:

Compound Documents | 27

// "orders" document

{

 _id: '11223',

 ...

 items: [

 { sku: '...', ... },

 { sku: '...', ... },

 ...

]

}

Deleting the order, then, is as simple as the single statement:

db.orders.remove({'_id': '1123'})

Using Complex Updates
Although using document embedding in your MongoDB schema makes some “trans‐
actional” problems in relational databases easier to handle, there are other cases where
we need something more. For instance, consider our order management system again.
Suppose we wish to store the order total price as well as each line item’s price so that we
can easily display the order total without computing it each time. A document might
look like the following:

// "orders" document

{

 _id: '11223',

 total: 500.94,

 ...

 items: [

 { sku: '123', price: 55.11, qty: 2 },

 { sku: '...', ... },

 ...

]

}

Now suppose we want to update the quantity of item 123 to 3. A naive approach might
be to read the document from the database, update it in-memory, and then save it back.
Unfortunately, this approach introduces race conditions between the loading of the
order and saving it back. What we need is a way to atomically update the document
without doing it in client application code. We can use MongoDB’s atomic update oper‐
ators to perform the same operation in a single step. We might do so with the following
code:

def increase_qty(order_id, sku, price, qty):

 total_update = price * qty

 while True:

 db.orders.update(

 { '_id': order_id, 'items.sku': sku },

 { '$inc': {

28 | Chapter 3: Mimicking Transactional Behavior

 'total': total_update,

 'items.$.qty': qty } })

In this case, we still have a risk that another operation removed the line item we are
interested in updating (perhaps in another browser window). To account for this case,
we must detect whether our update actually succeeds by checking its return value. If the

update failed, someone must have removed that line item and we must try to $push it
onto the array with its new quantity:

def increase_qty(order_id, sku, price, qty):

 total_update = price * qty

 while True:

 result = db.orders.update(

 { '_id': order_id, 'items.sku': sku },

 { '$inc': {

 'total': total_update,

 'items.$.qty': qty } })

 if result['updatedExisting']: break

 result = db.orders.update(

 { '_id': order_id, 'items.sku': { '$ne': sku } },

 { '$inc': { 'total': 110.22 },

 '$push': { 'items': { 'sku': sku,

 'qty': qty,

 'price': price } } })

 if result['updatedExisting']: break

Optimistic Update with Compensation
There are some cases where it’s just not possible to do your operation with a single

update() statement in MongoDB. For instance, consider the account transfer problem
where we must debit one account and credit another. In these cases, we are stuck making
multiple updates, but we must ensure that our database is eventually consistent by ex‐
amining all the places where we could have an error. A naive approach would simply
store the account balance in each document and update them separately. Our documents
would be quite simple:

{ _id: 1, balance: 100 }

{ _id: 2, balance: 0 }

The code to update them is likewise simple:

def transfer(amt, source, destination):

 result = db.accounts.update(

 { '_id': source, 'balance': { '$gte': amt } },

 { '$inc': { 'balance': -amt } })

 if not result['updatedExisting']:

 raise InsufficientFundsError(source)

 db.accounts.update(

 { '_id': destination },

 { '$inc': { 'balance': amt } })

Optimistic Update with Compensation | 29

The problem with this approach is that, if an exception occurs between the source ac‐
count being debited and the destination account being credited, the funds are lost.

You should be exceedingly careful if you find yourself designing an
application-level, two-phase commit protocol. It’s easy to miss a par‐
ticular failure scenario, and there are many opportunities to miss a race
condition and introduce inconsistency into your data, by a small over‐
sight in design or a bug in implementation. As a rule of thumb, whenever
it’s possible to structure your schema such that all your atomic updates
occur within a document boundary, you should do so, but it’s nice to
know you can still fall back to two-phase commit if you absolutely
have to.

A better approach to this problem is to emulate transactions in the data model. Our
basic approach here will be to create a “transaction” collection containing documents
that store the state of all outstanding transfers:

• Any transaction in the “new” state may be rolled back if it times out.

• Any transaction in the “committed” state will always (eventually) be retired.

• Any transaction in the “rollback” state will always (eventually) be reversed.

Our transaction collection contains documents of the following format:

{

 _id: ObjectId(...),

 state: 'new',

 ts: ISODateTime(...),

 amt: 55.22,

 src: 1,

 dst: 2

}

Our account schema also changes just a bit to store the pending transaction IDs along
with each account:

{ _id: 1, balance: 100, txns: [] }

{ _id: 2, balance: 0, txns: [] }

The top-level transfer function transfers an amount from one account to another as
before, but we have added a maximum amount of time allowable for the transaction to
complete. If a transaction takes longer, it will eventually be rolled back by a periodic
process:

def transfer(amt, source, destination, max_txn_time):

 txn = prepare_transfer(amt, source, destination)

 commit_transfer(txn, max_txn_time)

30 | Chapter 3: Mimicking Transactional Behavior

Note that in the preceding code we now have a two-phase commit model of our transfer:
first the accounts are prepared, then the transaction is committed. The code to prepare
the transfer is as follows:

def prepare_transfer(amt, source, destination):

 # Create a transaction object

 now = datetime.utcnow()

 txnid = ObjectId()

 txn = {

 '_id': txnid,

 'state': 'new',

 'ts': datetime.utcnow(),

 'amt': amt,

 'src': source,

 'dst': destination }

 db.transactions.insert(txn)

 # "Prepare" the accounts

 result = db.accounts.update(

 { '_id': source, 'balance': { '$gte': amt } },

 { '$inc': { 'balance': -amt },

 '$push': { 'txns': txn['_id'] } })

 if not result['updatedExisting']:

 db.transaction.remove({'_id': txnid})

 raise InsufficientFundsError(source)

 db.accounts.update(

 { '_id': dest },

 { '$inc': { 'balance': amt },

 '$push': { 'txns': txn['_id'] } })

 return txn

There are two key insights applied here:

• The source and destination accounts store a list of pending transactions. This allows
us to track, in the account document, whether a particular transaction ID is pending.

• The transaction itself must complete during a certain time window. If it does not,
a periodic process will roll outstanding transactions back or commit them based
on the last state of the transaction. This handles cases where the application or
database crashes in the middle of a transaction.

Here’s our function to actually commit the transfer:

def commit_transfer(txn, max_txn_time):

 # Mark the transaction as committed

 now = datetime.utcnow()

 cutoff = now - max_txn_time

 result = db.transaction.update(

 { '_id': txnid, 'state': 'new', 'ts': { '$gt': cutoff } },

 { '$set': { 'state': 'commit' } })

 if not result['updatedExisting']:

 raise TransactionError(txn['_id'])

Optimistic Update with Compensation | 31

 else:

 retire_transaction(txn['_id'])

The main purpose of this function is to perform the atomic update of transaction state

from new to commit. If this update succeeds, the transaction will eventually be retired,
even if a crash occurs immediately after the update. To actually retire the transaction,
then, we use the following function:

def retire_transaction(txn_id):

 db.accounts.update(

 { '_id': txn['src'], 'txns._id': txn_id },

 { '$pull': { 'txns': txn_id } })

 db.accounts.update(

 { '_id': txn['dst'], 'txns._id': txn['_id'] },

 { '$pull': { 'txns': txn_id } })

 db.transaction.remove({'_id': txn_id})

Note that the retire_transaction is idempotent: it can be called any number of times

with the same txn_id with the same effect as calling it once. This means that if we have
a crash at any point before removing the transaction object, a subsequent cleanup pro‐

cess can still retire the transaction by simply calling retire_transaction again.

We now need to take care of transactions that have timed out, or where the commit or
rollback process has crashed in a periodic cleanup task:

def cleanup_transactions(txn, max_txn_time):

 # Find & commit partially-committed transactions

 for txn in db.transaction.find({ 'state': 'commit' }, {'_id': 1}):

 retire_transaction(txn['_id'])

 # Move expired transactions to 'rollback' status:

 cutoff = now - max_txn_time

 db.transaction.update(

 { '_id': txnid, 'state': 'new', 'ts': { '$lt': cutoff } },

 { '$set': { 'state': 'rollback' } })

 # Actually rollback transactions

 for txn in db.transaction.find({ 'state': 'rollback' }):

 rollback_transfer()

Finally, in the case where we want to roll back a transfer, we must update the transaction
object and undo the effects of the transfer:

def rollback_transfer(txn):

 db.accounts.update(

 { '_id': txn['src'], 'txns._id': txn['_id'] },

 { '$inc': { 'balance': txn['amt'] },

 '$pull': { 'txns': { '_id': txn['_id'] } } })

 db.accounts.update(

 { '_id': txn['dst'], 'txns._id': txn['_id'] },

 { '$inc': { 'balance': -txn['amt'] },

 '$pull': { 'txns': { '_id': txn['_id'] } } })

 db.transaction.remove({'_id': txn['_id']})

32 | Chapter 3: Mimicking Transactional Behavior

Note in particular that the preceding code will only undo a transaction in an account if

the transaction is still stored in that account’s txns array. This makes the rollback of the
transaction idempotent just like retiring a transaction via a commit.

Conclusion
The constraints of a toolset help to define patterns for solving problems. In the case of
MongoDB, one of those constraints is the lack of atomic multidocument update oper‐
ations. The patterns we use in MongoDB to mitigate the lack of atomic multidocument
update operations include document embedding and complex updates for basic oper‐
ations, with optimistic update with compensation available for when we really need a
two-phase commit protocol. When designing your application to use MongoDB, more
than in relational databases, you must keep in mind which updates you need to be atomic
and design your schema appropriately.

Conclusion | 33

PART II

Use Cases

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Operational Intelligence

The first use cases we’ll explore lie in the realm of operational intelligence, the techniques
of converting transactional data to actionable information in a business setting. Of
course, the starting point for any of these techniques is getting the raw transactional
data into your data store. Our first use case, “Storing Log Data” (page 37), deals with this
part of the puzzle.

Once you have the data, of course, the first priority is to generate actionable reports on
that data, ideally in real time with the data import itself. We address the generation of
these reports in real time in “Pre-Aggregated Reports” (page 52).

Finally, we’ll explore the use of more traditional batch aggregation in “Hierarchical
Aggregation” (page 63) to see how MongoDB can be used to generate reports at multiple
layers of your analytics hierarchy.

Storing Log Data
The starting point for any analytics system is the raw “transactional” data. To give a feel
for this type of problem, we’ll examine the particular use case of storing event data in
MongoDB that would traditionally be stored in plain-text logfiles. Although plain-text
logs are accessible and human-readable, they are difficult to use, reference, and analyze,
frequently being stored on a server’s local filesystem in an area that is generally inac‐
cessible to the business analysts who need these data.

Solution Overview
The solution described here assumes that each server generating events can access the
MongoDB instance and has read/write access to some database on that instance. Fur‐
thermore, we assume that the query rate for logging data is significantly lower than the
insert rate for log data.

37

This case assumes that you’re using a standard uncapped collection for
this event data, unless otherwise noted. See “Capped collections” (page
51) for another approach to aging out old data.

Schema Design
The schema for storing log data in MongoDB depends on the format of the event data
that you’re storing. For a simple example, you might consider standard request logs in
the combined format from the Apache HTTP Server. A line from these logs may re‐
semble the following:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" ...

The simplest approach to storing the log data would be putting the exact text of the log
record into a document:

{

 _id: ObjectId(...),

 line: '127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif ...

}

Although this solution does capture all data in a format that MongoDB can use, the data
is neither particularly useful nor efficient. For example, if you need to find events on
the same page, you would need to use a regular expression query, which would require
a full scan of the collection. A better approach is to extract the relevant information
from the log data into individual fields in a MongoDB document.

When designing the structure of that document, it’s important to pay attention to the
data types available for use in BSON, the MongoDB document format. Choosing your
data types wisely can have a significant impact on the performance and capability of the

logging system. For instance, consider the date field. In the previous example, [10/Oct/

2000:13:55:36 -0700] is 28 bytes long. If you store this with the UTC timestamp BSON
type, you can convey the same information in only 8 bytes.

Additionally, using proper types for your data also increases query flexibility. If you
store date as a timestamp, you can make date range queries, whereas it’s very difficult
to compare two strings that represent dates. The same issue holds for numeric fields;
storing numbers as strings requires more space and is more difficult to query.

Consider the following document that captures all data from the log entry:

{

 _id: ObjectId(...),

 host: "127.0.0.1",

 logname: null,

 user: 'frank',

 time: ISODate("2000-10-10T20:55:36Z"),

 request: "GET /apache_pb.gif HTTP/1.0",

38 | Chapter 4: Operational Intelligence

 status: 200,

 response_size: 2326,

 referrer: "[http://www.example.com/start.html](http://www.example.com/...",

 user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"

}

The is better, but it’s quite a large document. When extracting data from logs and de‐
signing a schema, you should also consider what information you can omit from your
log tracking system. In most cases, there’s no need to track all data from an event log.
To continue this example, here the most crucial information may be the host, time, path,
user agent, and referrer, as in the following example document:

{

 _id: ObjectId(...),

 host: "127.0.0.1",

 time: ISODate("2000-10-10T20:55:36Z"),

 path: "/apache_pb.gif",

 referer: "[http://www.example.com/start.html](http://www.example.com/...",

 user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"

}

Depending on your storage and memory requirements, you might even consider omit‐

ting explicit time fields, since the BSON ObjectId implicitly embeds its own creation
time:

 {

 _id: ObjectId('...'),

 host: "127.0.0.1",

 path: "/apache_pb.gif",

 referer: "[http://www.example.com/start.html](http://www.example.com/...",

 user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"

 }

Operations
In this section, we’ll describe the various operations you’ll need to perform on the log‐
ging system, paying particular attention to the appropriate use of indexes and
MongoDB-specific features.

Inserting a log record

The primary performance concerns for event-logging systems are:

• How many inserts per second it can support, which limits the event throughput

• How the system will manage the growth of event data, particularly in the case of a
growth in insert activity

In designing our system, we’ll primarily focus on optimizing insertion speed, while still
addressing how we manage event data growth. One decision that MongoDB allows you

Storing Log Data | 39

to make when performing updates (such as event data insertion) is whether you want
to trade off data safety guarantees for increased insertion speed. This section will explore
the various options we can tweak depending on our tolerance for event data loss.

Write concern
MongoDB has a configurable write concern. This capability allows you
to balance the importance of guaranteeing that all writes are fully re‐
corded in the database with the speed of the insert.

For example, if you issue writes to MongoDB and do not require that
the database issue any response, the write operations will return very
fast (since the application needs to wait for a response from the data‐
base) but you cannot be certain that all writes succeeded. Conversely,
if you require that MongoDB acknowledge every write operation, the
database will not return as quickly but you can be certain that every
item will be present in the database.

The proper write concern is often an application-specific decision, and
depends on the reporting requirements and uses of your analytics
application.

In the examples in this section, we will assume that the following code (or something
similar) has set up an event from the Apache Log. In a real system, of course, we would

need code to actually parse the log and create the Python dict shown here:

>>> import bson

>>> import pymongo

>>> from datetime import datetime

>>> conn = pymongo.Connection()

>>> db = conn.event_db

>>> event = {

... _id: bson.ObjectId(),

... host: "127.0.0.1",

... time: datetime(2000,10,10,20,55,36),

... path: "/apache_pb.gif",

... referer: "[http://www.example.com/start.html](http://www.example.com/...",

... user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"

...}

The following command will insert the event object into the events collection:

>>> db.events.insert(event, w=0)

By setting w=0, you do not require that MongoDB acknowledge receipt of the insert.
Although this is the fastest option available to us, it also carries with it the risk that you
might lose a large number of events before you notice.

40 | Chapter 4: Operational Intelligence

If you want to ensure that MongoDB acknowledges inserts, you can omit the w=0 ar‐

gument, or pass w=1 (the default) as follows:

>>> db.events.insert(event)

>>> # Alternatively, you can do this

>>> db.events.insert(event, w=1)

MongoDB also supports a more stringent level of write concern, if you have a lower
tolerance for data loss. MongoDB uses an on-disk journal file to persist data before
writing the updates back to the “regular” data files.

Since journal writes are significantly slower than in-memory updates (which are, in
turn, much slower than “regular” data file updates), MongoDB batches up journal writes
into “group commits” that occur every 100 ms unless overridden in your server settings.
What this means for the application developer is that, on average, any individual writes

with j=True will take around 50 ms to complete, which is generally even more time than
it would take to replicate the data to another server. If you want to ensure that MongoDB
not only acknowledges receipt of a write operation but also commits the write operation
to the on-disk journal before returning successfully to the application, you can use the

j=True option:

>>> db.events.insert(event, j=True)

It’s important to note that the journal does not protect against any failure in which the
disk itself might fail, since in that case the journal file itself can be corrupted. Replication,
however, does protect against single-server failures, and is the recommended way to
achieve real durability.

j=True requires acknowledgment from the server, so w=1 is implied

unless you explicitly set w=N with N greater than 1.

You can require that MongoDB replicate the data to multiple secondary replica set
members before returning:

>>> db.events.insert(event, w=2)

This will force your application to acknowledge that the data has replicated to two
members of the replica set. You can combine options as well:

>>> db.events.insert(event, j=True, w=2)

In this case, your application will wait for a successful journal commit and a replication
acknowledgment. This is the safest option presented in this section, but it is the slowest.
There is always a trade-off between safety and speed.

Storing Log Data | 41

Bulk inserts

If possible, you should use bulk inserts to insert event data. All write concern options

apply to bulk inserts, but you can pass multiple events to the insert() method at once.
Batch inserts allow MongoDB to distribute the performance penalty incurred by more
stringent write concern across a group of inserts.

If you’re doing a bulk insert and do get an error (either a network interruption or a
unique key violation), your application will need to handle the possibility of a partial
bulk insert. If your particular use case doesn’t care about missing a few inserts, you can

add the continue_on_error=True argument to insert, in which case the insert will insert
as many documents as possible, and report an error on the last insert that failed.

If you use continue_on_error=True and multiple inserts in your batch fail, your ap‐
plication will only receive information on the last insert to fail. The take-away? You can
sometimes amortize the overhead of safer writes by using bulk inserts, but this technique
brings with it another set of concerns as well.

Finding all events for a particular page

The value in maintaining a collection of event data derives from being able to query
that data to answer specific questions. You may have a number of simple queries that
you may use to analyze these data.

As an example, you may want to return all of the events associated with a specific value
of a field. Extending the Apache access log example, a common case would be to query

for all events with a specific value in the path field. This section contains a pattern for
returning data and optimizing this operation.

In this case, you’d use a query that resembles the following to return all documents with

the /apache_pb.gif value in the path field:

>>> q_events = db.events.find({'path': '/apache_pb.gif'})

Of course, if you want this query to perform well, you’ll need to add an index on the

path field:

>>> db.events.ensure_index('path')

Aside: managing index size

One thing you should keep in mind when you’re creating indexes is the size they take
up in RAM. When an index is accessed randomly, as in the case here with our index on

path, the entire index needs to be resident in RAM. In this particular case, the total
number of distinct paths is typically small in relation to the number of documents, which
will limit the space that the index requires.

42 | Chapter 4: Operational Intelligence

To actually see the size of an index, you can use the collstats database command:

>>> db.command('collstats', 'events')['indexSizes']

There is actually another type of index that doesn’t take up much RAM, and that’s a
right-aligned index. Right-aligned refers to the access pattern of a regular index, not a
special MongoDB index type: in this case, most of the queries that use the index focus
on the largest (or smallest) values in the index, so most of the index is never actually
used. This is often the case with time-oriented data, where you tend to query documents
from the recent past. In this case, only a very thin “sliver” of the index is ever resident
in RAM at a particular time, so index size is of much less concern.

Finding all the events for a particular date

Another operation we might wish to do is to query the event log for all events that
happened on a particular date, perhaps as part of a security audit of suspicious activity.
In this case, we’ll use a range query:

>>> q_events = db.events.find('time':

... { '$gte':datetime(2000,10,10),'$lt':datetime(2000,10,11)})

This query selects documents from the events collection where the value of the time

field represents a date that is on or after (i.e., $gte) 2000-10-10 but before (i.e., $lt)

2000-10-11. Here, an index on the time field would optimize performance:

>>> db.events.ensure_index('time')

Note that this is a right-aligned index so long as our queries tend to focus on the recent
history.

Finding all events for a particular host/date

Expanding on our “security audit” example, suppose we isolated the incident to a par‐
ticular server and wanted to look at the activity for only a single server on a particular
date. In this case, we’d use a query that resembles the following:

>>> q_events = db.events.find({

... 'host': '127.0.0.1',

... 'time': {'$gte':datetime(2000,10,10),'$lt':datetime(2000,10,11)}

... })

The indexes you use may have significant implications for the performance of these
kinds of queries. For instance, you can create a compound index on the time-host field
pair (noting that order matters), using the following command:

>>> db.events.ensure_index([('time', 1), ('host', 1)])

To analyze the performance for the above query using this index, MongoDB provides

the explain() method. In Python for instance, we can execute q_events.explain()
in a console. This will return something that resembles:

Storing Log Data | 43

{ ..

 u'cursor': u'BtreeCursor time_1_host_1',

 u'indexBounds': {u'host': [[u'127.0.0.1', u'127.0.0.1']],

 u'time': [

 [datetime.datetime(2000, 10, 10, 0, 0),

 datetime.datetime(2000, 10, 11, 0, 0)]]

 },

 ...

 u'millis': 4,

 u'n': 11,

 u'nscanned': 1296,

 u'nscannedObjects': 11,

 ... }

This query had to scan 1,296 items from the index to return 11 objects in 4 milliseconds.

Conversely, you can test a different compound index with the host field first, followed

by the time field. Create this index using the following operation:

>>> db.events.ensure_index([('host', 1), ('time', 1)])

Now, explain() tells us the following:

{ ...

 u'cursor': u'BtreeCursor host_1_time_1',

 u'indexBounds': {u'host': [[u'127.0.0.1', u'127.0.0.1']],

 u'time': [[datetime.datetime(2000, 10, 10, 0, 0),

 datetime.datetime(2000, 10, 11, 0, 0)]]},

 ...

 u'millis': 0,

 u'n': 11,

 ...

 u'nscanned': 11,

 u'nscannedObjects': 11,

 ...

}

Here, the query had to scan 11 items from the index before returning 11 objects in less
than a millisecond. Although the index order has an impact on query performance,
remember that index scans are much faster than collection scans, and depending on

your other queries, it may make more sense to use the { time: 1, host: 1 } index
depending on usage profile.

Rules of index design

MongoDB indexes are stored in a data structure known as a B-tree. The details are
beyond our scope here, but what you need to understand as a MongoDB user is that
each index is stored in sorted order on all the fields in the index. For an index to be
maximally efficient, the key should look just like the queries that use the index. Ideally,
MongoDB should be able to traverse the index to the first document that the query
returns and sequentially walk the index to find the rest.

44 | Chapter 4: Operational Intelligence

Because of this sorted B-tree structure, then, the following rules will lead to efficient
indexes:

• Any fields that will be queried by equality should occur first in the index definition.

• Fields used to sort should occur next in the index definition. If multiple fields are

being sorted (such as (last_name, first_name), then they should occur in the
same order in the index definition.

• Fields that are queried by range should occur last in the index definition.

This leads to some unfortunate circumstances where our index cannot be used
optimally:

• Whenever we have a range query on two or more properties, they cannot both be
used effectively in the index.

• Whenever we have a range query combined with a sort on a different property, the
index is somewhat less efficient than when doing a range and sort on the same
property set.

In such cases, the best approach is to test with representative data, making liberal use

of explain(). If you discover that the MongoDB query optimizer is making a bad choice
of index (perhaps choosing to reduce the number of entries scanned at the expense of

doing a large in-memory sort, for instance), you can also use the hint() method to tell
it which index to use.

Counting requests by day and page

Finding requests is all well and good, but more frequently we need to count requests, or
perform some other aggregate operation on them during analysis. Here, we’ll describe
how you can use MongoDB’s aggregation framework, introduced in version 2.1, to select,
process, and aggregate results from a large number of documents for powerful ad hoc
queries. In this case, we’ll count the number of requests per resource (i.e., page) per day
in the last month.

To use the aggregation framework, we need to set up a pipeline of operations. In this
case, our pipeline looks like Figure 4-1 and is implemented by the database command
shown here:

>>> result = db.command('aggregate', 'events', pipeline=[

... { '$match': {

... 'time': {

... '$gte': datetime(2000,10,1),

... '$lt': datetime(2000,11,1) } } },

... { '$project': {

... 'path': 1,

... 'date': {

Storing Log Data | 45

... 'y': { '$year': '$time' },

... 'm': { '$month': '$time' },

... 'd': { '$dayOfMonth': '$time' } } } },

... { '$group': {

... '_id': {

... 'p':'$path',

... 'y': '$date.y',

... 'm': '$date.m',

... 'd': '$date.d' },

... 'hits': { '$sum': 1 } } },

...])

This command aggregates documents from the events collection with a pipeline that:

Uses the $match operation to limit the documents that the aggregation framework

must process. $match is similar to a find() query. This operation selects all

documents where the value of the time field represents a date that is on or after

(i.e., $gte) 2000-10-10 but before (i.e., $lt) 2000-10-11.

Uses the $project operator to limit the data that continues through the pipeline.
This operator:

• Selects the path field.

• Creates a y field to hold the year, computed from the time field in the original
documents.

• Creates an m field to hold the month, computed from the time field in the
original documents.

• Creates a d field to hold the day, computed from the time field in the original
documents.

Uses the $group operator to create new computed documents. This step will
create a single new document for each unique path/date combination. The
documents take the following form:

• The _id field holds a subdocument with the content’s path field from the

original documents in the p field, with the date fields from the $project as
the remaining fields.

• The hits field uses the $sum statement to increment a counter for every
document in the group. In the aggregation output, this field holds the total
number of documents at the beginning of the aggregation pipeline with this
unique date and path.

46 | Chapter 4: Operational Intelligence

www.allitebooks.com

http://www.allitebooks.org

Figure 4-1. Aggregation pipeline

In sharded environments, the performance of aggregation operations depends on the

shard key. Ideally, all the items in a particular $group operation will reside on the same
server.

Although this distribution of documents would occur if you chose the time field as the

shard key, a field like path also has this property and is a typical choice for sharding.
See “Sharding Concerns” (page 48) for additional recommendations concerning
sharding.

SQL equivalents
To translate statements from the aggregation framework to SQL, you

can consider the $match equivalent to WHERE, $project to SELECT, and

$group to GROUP BY.

Storing Log Data | 47

In order to optimize the aggregation operation, you must ensure that the initial $match
query has an index. In this case, the command would be simple, and it’s an index we
already have:

>>> db.events.ensure_index('time')

If you have already created a compound index on the time and host (i.e., { time: 1,

host, 1 },) MongoDB will use this index for range queries on just the time field. In

situations like this, there’s no benefit to creating an additional index for just time.

Sharding Concerns
Eventually, your system’s events will exceed the capacity of a single event logging data‐
base instance. In these situations you will want to use a shard cluster, which takes ad‐
vantage of MongoDB’s automatic sharding functionality. In this section, we introduce
the unique sharding concerns for the event logging use case.

Limitations

In a sharded environment, the limitations on the maximum insertion rate are:

• The number of shards in the cluster

• The shard key you choose

Because MongoDB distributes data using chunks based on ranges of the shard key, the
choice of shard key can control how MongoDB distributes data and the resulting sys‐
tems’ capacity for writes and queries.

Ideally, your shard key should have two characteristics:

• Insertions are balanced between shards

• Most queries can be routed to a subset of the shards to be satisfied

Here are some initially appealing options for shard keys, which on closer examination,
fail to meet at least one of these criteria:

Timestamps

Shard keys based on the timestamp or the insertion time (i.e., the ObjectId) end
up all going in the “high” chunk, and therefore to a single shard. The inserts are not
balanced.

Hashes
If the shard key is random, as with a hash, then all queries must be broadcast to all
shards. The queries are not routeable.

We’ll now examine these options in more detail.

48 | Chapter 4: Operational Intelligence

Option 1: Shard by time

Although using the timestamp, or the ObjectId in the _id field, would distribute your
data evenly among shards, these keys lead to two problems:

• All inserts always flow to the same shard, which means that your shard cluster will
have the same write throughput as a standalone instance.

• Most reads will tend to cluster on the same shard, assuming you access recent data
more frequently.

Option 2: Shard by a semi-random key

To distribute data more evenly among the shards, you may consider using a more “ran‐

dom” piece of data, such as a hash of the _id field (i.e., the ObjectId as a shard key).

While this introduces some additional complexity into your application, to generate the
key, it will distribute writes among the shards. In these deployments, having five shards
will provide five times the write capacity as a single instance.

Using this shard key, or any hashed value as a key, presents the following downsides:

• The shard key, and the index on the key, will consume additional space in the
database.

• Queries, unless they include the shard key itself, must run in parallel on all shards,
which may lead to degraded performance.

This might be an acceptable trade-off in some situations. The workload of event logging
systems tends to be heavily skewed toward writing; read performance may not be as
critical as perfectly balanced write performance.

Option 3: Shard by an evenly distributed key in the data set

If a field in your documents has values that are evenly distributed among the documents,
you should strongly consider using this key as a shard key.

Continuing the previous example, you might consider using the path field. This has a
couple of advantages:

• Writes will tend to balance evenly among shards.

• Reads will tend to be selective and local to a single shard if the query selects on the

path field.

The biggest potential drawback to this approach is that all hits to a particular path must
go to the same chunk, and that chunk cannot be split by MongoDB, since all the docu‐
ments in it have the same shard key. This might not be a problem if you have fairly even

Storing Log Data | 49

load on your website, but if one page gets a disproportionate number of hits, you can
end up with a large chunk that is completely unsplittable that causes an unbalanced load
on one shard.

Test using your existing data to ensure that the distribution is truly even,
and that there is a sufficient quantity of distinct values for the shard key.

Option 4: Shard by combining a natural and synthetic key

MongoDB supports compound shard keys that combine the best aspects of options 2

and 3. In these situations, the shard key would resemble { path: 1 , ssk: 1 }, where

path is an often-used natural key or value from your data and ssk is a hash of the _id
field.

Using this type of shard key, data is largely distributed by the natural key, or path, which

makes most queries that access the path field local to a single shard or group of shards.

At the same time, if there is not sufficient distribution for specific values of path, the

ssk makes it possible for MongoDB to create chunks that distribute data across the
cluster.

In most situations, these kinds of keys provide the ideal balance between distributing
writes across the cluster and ensuring that most queries will only need to access a select
number of shards.

Test with your own data

Selecting shard keys is difficult because there are no definitive “best practices,” the de‐
cision has a large impact on performance, and it is difficult or impossible to change the
shard key after making the selection.

This section provides a good starting point for thinking about shard key selection. Nev‐
ertheless, the best way to select a shard key is to analyze the actual insertions and queries
from your own application.

Although the details are beyond our scope here, you may also consider pre-splitting
your chunks if your application has a very high and predictable insert pattern. In this
case, you create empty chunks and manually pre-distribute them among your shard
servers. Again, the best solution is to test with your own data.

Managing Event Data Growth
Without some strategy for managing the size of your database, an event logging system
will grow indefinitely. This is particularly important in the context of MongoDB since
MongoDB, as of the writing of this book, does not relinquish data to the filesystem, even

50 | Chapter 4: Operational Intelligence

when data gets removed from the database (i.e., the data files for your database will never
shrink on disk). This section describes a few strategies to consider when managing event
data growth.

Capped collections

Strategy: Depending on your data retention requirements as well as your reporting and
analytics needs, you may consider using a capped collection to store your events. Capped
collections have a fixed size, and drop old data automatically when inserting new data
after reaching cap.

In the current version, it is not possible to shard capped collections.

TTL collections

Strategy: If you want something like capped collections that can be sharded, you might
consider using a “time to live” (TTL) index on that collection. If you define a TTL index

on a collection, then periodically MongoDB will remove() old documents from the
collection. To create a TTL index that will remove documents more than one hour old,
for instance, you can use the following command:

>>> db.events.ensureIndex('time', expireAfterSeconds=3600)

Although TTL indexes are convenient, they do not possess the performance advantages

of capped collections. Since TTL remove() operations aren’t optimized beyond regular

remove() operations, they may still lead to data fragmentation (capped collections are
never fragmented) and still incur an index lookup on removal (capped collections don’t
require index lookups).

Multiple collections, single database

Strategy: Periodically rename your event collection so that your data collection rotates
in much the same way that you might rotate logfiles. When needed, you can drop the
oldest collection from the database.

This approach has several advantages over the single collection approach:

• Collection renames are fast and atomic.

• MongoDB does not bring any documents into memory to drop a collection.

• MongoDB can effectively reuse space freed by removing entire collections without
leading to data fragmentation.

Storing Log Data | 51

Nevertheless, this operation may increase some complexity for queries, if any of your
analyses depend on events that may reside in the current and previous collection. For
most real-time data-collection systems, this approach is ideal.

Multiple databases

Strategy: Rotate databases rather than collections, as was done in “Multiple collections,
single database” (page 51).

While this significantly increases application complexity for insertions and queries,
when you drop old databases MongoDB will return disk space to the filesystem. This
approach makes the most sense in scenarios where your event insertion rates and/or
your data retention rates were extremely variable.

For example, if you are performing a large backfill of event data and want to make sure
that the entire set of event data for 90 days is available during the backfill, and during
normal operations you only need 30 days of event data, you might consider using mul‐
tiple databases.

Pre-Aggregated Reports
Although getting the event and log data into MongoDB efficiently and querying these
log records is somewhat useful, higher-level aggregation is often much more useful in
turning raw data into actionable information. In this section, we’ll explore techniques
to calculate and store pre-aggregated (or pre-canned) reports in MongoDB using in‐
cremental updates.

Solution Overview
This section outlines the basic patterns and principles for using MongoDB as an engine
for collecting and processing events in real time for use in generating up-to-the-minute
or up-to-the-second reports. We make the following assumptions about real-time
analytics:

• You require up-to-the-minute data, or up-to-the-second if possible.

• The queries for ranges of data (by time) must be as fast as possible.

• Servers generating events that need to be aggregated have access to the MongoDB
instance.

In particular, the scenario we’ll explore here again uses data from a web server’s access
logs. Using this data, we’ll pre-calculate reports on the number of hits to a collection of
websites at various levels of granularity based on time (i.e., by minute, hour, day, week,
and month) as well as by the path of a resource.

52 | Chapter 4: Operational Intelligence

To achieve the required performance to support these tasks, we’ll use MongoDB’s up‐
sert and increment operations to calculate statistics, allowing simple range-based queries
to quickly return data to support time-series charts of aggregated data.

Schema Design
Schemas for real-time analytics systems must support simple and fast query and update
operations. In particular, we need to avoid the following performance killers:

Individual documents growing significantly after they are created
Document growth forces MongoDB to move the document on disk, slowing things
down.

Collection scans
The more documents that MongoDB has to examine to fulfill a query, the less
efficient that query will be.

Documents with a large number (hundreds) of keys
Due to the way MongoDB’s internal document storage BSON stores documents,
this can create wide variability in access time to particular values.

Intuitively, you may consider keeping “hit counts” in individual documents with one
document for every unit of time (minute, hour, day, etc.). However, any query would
then need to visit multiple documents for all nontrivial time-rage queries, which can
slow overall query performance.

A better solution is to store a number of aggregate values in a single document, reducing
the number of overall documents that the query engine must examine to return its
results. The remainder of this section explores several schema designs that you might
consider for this real-time analytics system, before finally settling on one that achieves
both good update performance as well as good query performance.

One document per page per day, flat documents

Consider the following example schema for a solution that stores all statistics for a single
day and page in a single document:

{

 _id: "20101010/site-1/apache_pb.gif",

 metadata: {

 date: ISODate("2000-10-10T00:00:00Z"),

 site: "site-1",

 page: "/apache_pb.gif" },

 daily: 5468426,

 hourly: {

 "0": 227850,

 "1": 210231,

 ...

 "23": 20457 },

Pre-Aggregated Reports | 53

 minute: {

 "0": 3612,

 "1": 3241,

 ...

 "1439": 2819 }

}

This approach has a couple of advantages:

• For every request on the website, you only need to update one document.

• Reports for time periods within the day, for a single page, require fetching a single
document.

If we use this schema, our real-time analytics system might record a hit with the fol‐
lowing code:

def record_hit(collection, id, metadata, hour, minute):

 collection.update(

 { '_id': id,

 'metadata': metadata },

 { '$inc': {

 'daily': 1,

 'hourly.%d' % hour: 1,

 'minute.%d' % minute: 1 } },

 upsert=True)

This approach has the advantage of simplicity, since we can use MongoDB’s “upsert”
functionality to have the documents spring into existence as the hits are recorded.

There are, however, significant problems with this approach. The most significant issue

is that as you add data into the hourly and monthly fields, the document grows. Al‐
though MongoDB will pad the space allocated to documents, it must still reallocate these
documents multiple times throughout the day, which degrades performance, as shown
in Figure 4-2.

The solution to this problem lies in pre-allocating documents with fields holding 0 values
before the documents are actually used. If the documents have all their fields fully
populated at pre-allocation time, the documents never grow and never need to be
moved. Another benefit is that MongoDB will not add as much padding to the docu‐
ments, leading to a more compact data representation and better memory and disk
utilization.

54 | Chapter 4: Operational Intelligence

Figure 4-2. Performance with growing documents

One problem with our approach here, however, is that as we get toward the end of the
day, the updates still become more expensive for MongoDB to perform, as shown in

Figure 4-3. This is because MongoDB’s internal representation of our minute property
is actually an array of key-value pairs that it must scan sequentially to find the minute
slot we’re actually updating. So for the final minute of the day, MongoDB needs to
examine 1,439 slots before actually finding the correct one to update. The solution to

this is to build hierarchy into the minute property.

Pre-Aggregated Reports | 55

Figure 4-3. Performance with pre-allocated documents

One document per page per day, hierarchical documents

To optimize update and insert operations, we’ll introduce some intra-document hier‐

archy. In particular, we’ll split the minute field into 24 hourly fields:

{

 _id: "20101010/site-1/apache_pb.gif",

 metadata: {

 date: ISODate("2000-10-10T00:00:00Z"),

 site: "site-1",

 page: "/apache_pb.gif" },

 daily: 5468426,

 hourly: {

 "0": 227850,

 "1": 210231,

 ...

 "23": 20457 },

 minute: {

 "0": {

 "0": 3612,

 "1": 3241,

 ...

 "59": 2130 },

 "1": {

 "60": ... ,

56 | Chapter 4: Operational Intelligence

www.allitebooks.com

http://www.allitebooks.org

 },

 ...

 "23": {

 ...

 "1439": 2819 }

 }

}

This allows MongoDB to “skip forward” throughout the day when updating the minute
data, which makes the update performance more uniform and faster later in the day, as
shown in Figure 4-4.

Figure 4-4. Performance with hierarchical documents

Separate documents by granularity level

Pre-allocation of documents helps our update speed significantly, but we still have a
problem when querying data for long, multiday periods like months or quarters. In such
cases, storing daily aggregates in a higher-level document can speed up these queries.

This introduces a second set of upsert operations to the data collection and aggregation
portion of your application, but the gains in reduction of disk seeks on the queries should
be worth the costs. Consider the example schema presented in Example 4-1 and
Example 4-2.

Pre-Aggregated Reports | 57

Example 4-1. Daily statistics

{

 _id: "20101010/site-1/apache_pb.gif",

 metadata: {

 date: ISODate("2000-10-10T00:00:00Z"),

 site: "site-1",

 page: "/apache_pb.gif" },

 hourly: {

 "0": 227850,

 "1": 210231,

 ...

 "23": 20457 },

 minute: {

 "0": {

 "0": 3612,

 "1": 3241,

 ...

 "59": 2130 },

 "1": {

 "0": ...,

 },

 ...

 "23": {

 "59": 2819 }

 }

}

Example 4-2. Monthly statistics

{

 _id: "201010/site-1/apache_pb.gif",

 metadata: {

 date: ISODate("2000-10-00T00:00:00Z"),

 site: "site-1",

 page: "/apache_pb.gif" },

 daily: {

 "1": 5445326,

 "2": 5214121,

 ... }

}

To support this operation, our event logging operation adds a second update operation,
which does slow down the operation, but the gains in query performance should be well
worth it.

58 | Chapter 4: Operational Intelligence

Operations
This section outlines a number of common operations for building and interacting with
real-time analytics-reporting systems. The major challenge is in balancing read and
write performance. All our examples here use the Python programming language and

the pymongo driver, but you can implement this system using any language you choose.

Log an event

Logging an event such as a page request (i.e., “hit”) is the main “write” activity for your

system. To maximize performance, you’ll be doing in-place updates with the up

sert=True to create documents if they haven’t been created yet. Consider the following
example:

from datetime import datetime, time

def log_hit(db, dt_utc, site, page):

 # Update daily stats doc

 id_daily = dt_utc.strftime('%Y%m%d/') + site + page

 hour = dt_utc.hour

 minute = dt_utc.minute

 # Get a datetime that only includes date info

 d = datetime.combine(dt_utc.date(), time.min)

 query = {

 '_id': id_daily,

 'metadata': { 'date': d, 'site': site, 'page': page } }

 update = { '$inc': {

 'hourly.%d' % (hour,): 1,

 'minute.%d.%d' % (hour,minute): 1 } }

 db.stats.daily.update(query, update, upsert=True)

 # Update monthly stats document

 id_monthly = dt_utc.strftime('%Y%m/') + site + page

 day_of_month = dt_utc.day

 query = {

 '_id': id_monthly,

 'metadata': {

 'date': d.replace(day=1),

 'site': site,

 'page': page } }

 update = { '$inc': {

 'daily.%d' % day_of_month: 1} }

 db.stats.monthly.update(query, update, upsert=True)

The upsert operation (i.e., upsert=True) performs an update if the document exists,
and an insert if the document does not exist.

Pre-Aggregated Reports | 59

If, for some reason, you need to determine whether an upsert was an insert
or an update, you can always check the result of the update operation:

>>> result = db.foo.update({'x': 15}, {'$set': {'y': 5} }, upsert=True)

>>> result['updatedExisting']

False

>>> result = db.foo.update({'x': 15}, {'$set': {'y': 6} }, upsert=True)

>>> result['updatedExisting']

True

Pre-allocate

To prevent document growth, we’ll pre-allocate new documents before the system needs

them. In pre-allocation, we set all values to 0 so that documents don’t need to grow to
accommodate updates. Consider the following function:

def preallocate(db, dt_utc, site, page):

 # Get id values

 id_daily = dt_utc.strftime('%Y%m%d/') + site + page

 id_monthly = dt_utc.strftime('%Y%m/') + site + page

 # Get daily metadata

 daily_metadata = {

 'date': datetime.combine(dt_utc.date(), time.min),

 'site': site,

 'page': page }

 # Get monthly metadata

 monthly_metadata = {

 'date': daily_m['d'].replace(day=1),

 'site': site,

 'page': page }

 # Initial zeros for statistics

 daily_zeros = [

 ('hourly.%d' % h, 0) for i in range(24)]

 daily_zeros += [

 ('minute.%d.%d' % (h,m), 0)

 for h in range(24)

 for m in range(60)]

 monthly_zeros = [

 ('daily.%d' % d, 0) for d in range(1,32)]

 # Perform upserts, setting metadata

 db.stats.daily.update(

 {

 '_id': id_daily,

 'metadata': daily_metadata

 },

 { '$inc': dict(daily_zeros) },

 upsert=True)

 db.stats.monthly.update(

60 | Chapter 4: Operational Intelligence

 {

 '_id': id_monthly,

 'daily': daily },

 { '$inc': dict(monthly_zeros) },

 upsert=True)

This function pre-allocates both the monthly and daily documents at the same time.
The performance benefits from separating these operations are negligible, so it’s rea‐
sonable to keep both operations in the same function.

The question now arises as to when to pre-allocate the documents. Obviously, for best

performance, they need to be pre-allocated before they are used (although the upsert
code will actually work correctly even if it executes against a document that already
exists). While we could pre-allocate the documents all at once, this leads to poor per‐
formance during the pre-allocation time. A better solution is to pre-allocate the docu‐
ments probabilistically each time we log a hit:

from random import random

from datetime import datetime, timedelta, time

Example probability based on 500k hits per day per page

prob_preallocate = 1.0 / 500000

def log_hit(db, dt_utc, site, page):

 if random.random() < prob_preallocate:

 preallocate(db, dt_utc + timedelta(days=1), site_page)

 # Update daily stats doc

 ...

Using this method, there will be a high probability that each document will already exist
before your application needs to issue update operations. You’ll also be able to prevent
a regular spike in activity for pre-allocation, and be able to eliminate document growth.

Retrieving data for a real-time chart

This example describes fetching the data from the above MongoDB system for use in
generating a chart that displays the number of hits to a particular resource over the last
hour.

We can use the following query in a find_one operation at the Python console to retrieve

the number of hits to a specific resource (i.e., /index.html) with minute-level
granularity:

>>> db.stats.daily.find_one(

... {'metadata': {'date':dt, 'site':'site-1', 'page':'/index.html'}},

... { 'minute': 1 })

Alternatively, we can use the following query to retrieve the number of hits to a resource
over the last day, with hour-level granularity:

Pre-Aggregated Reports | 61

code,sourceCode,pycon

>>> db.stats.daily.find_one(

... {'metadata': {'date':dt, 'site':'site-1', 'page':'/foo.gif'}},

... { 'hourly': 1 })

If we want a few days of hourly data, we can use a query in the following form:

>>> db.stats.daily.find(

... {

... 'metadata.date': { '$gte': dt1, '$lte': dt2 },

... 'metadata.site': 'site-1',

... 'metadata.page': '/index.html'},

... { 'metadata.date': 1, 'hourly': 1 } },

... sort=[('metadata.date', 1)])

To support these query operations, we need to create a compound index on the following

daily statistics fields: metadata.site, metadata.page, and metadata.date, in that or‐

der. This is because our queries have equality constraints on site and page, and a range

query on date. To create the appropriate index, we can execute the following code:

>>> db.stats.daily.ensure_index([

... ('metadata.site', 1),

... ('metadata.page', 1),

... ('metadata.date', 1)])

Get data for a historical chart

To retrieve daily data for a single month, we can use the following query:

>>> db.stats.monthly.find_one(

... {'metadata':

... {'date':dt,

... 'site': 'site-1',

... 'page':'/index.html'}},

... { 'daily': 1 })

To retrieve several months of daily data, we can use a variation of the preceding query:

>>> db.stats.monthly.find(

... {

... 'metadata.date': { '$gte': dt1, '$lte': dt2 },

... 'metadata.site': 'site-1',

... 'metadata.page': '/index.html'},

... { 'metadata.date': 1, 'hourly': 1 } },

... sort=[('metadata.date', 1)])

To execute these queries efficiently, we need an index on the monthly aggregate similar

to the one we used for the daily aggregate:

>>> db.stats.monthly.ensure_index([

... ('metadata.site', 1),

... ('metadata.page', 1),

... ('metadata.date', 1)])

62 | Chapter 4: Operational Intelligence

This field order will efficiently support range queries for a single page over several
months.

Sharding Concerns
Although the system as designed can support quite a large read and write load on a
single-master deployment, sharding can further improve your performance and scala‐
bility. Your choice of shard key may depend on the precise workload of your deployment,
but the choice of site-page is likely to perform well and lead to a well balanced cluster
for most deployments.

To enable sharding for the daily and statistics collections, we can execute the following
commands in the Python console:

>>> db.command('shardcollection', 'dbname.stats.daily', {

 ... key : { 'metadata.site': 1, 'metadata.page' : 1 } })

{ "collectionsharded" : "dbname.stats.daily", "ok" : 1 }

>>> db.command('shardcollection', 'dbname.stats.monthly', {

... key : { 'metadata.site': 1, 'metadata.page' : 1 } })

{ "collectionsharded" : "dbname.stats.monthly", "ok" : 1 }

One downside of the { metadata.site: 1, metadata.page: 1 } shard key is that if
one page dominates all your traffic, all updates to that page will go to a single shard.
This is basically unavoidable, since all updates for a single page are going to a single
document.

You may wish to include the date in addition to the site and page fields so that MongoDB
can split histories and serve different historical ranges with different shards. Note that
this still does not solve the problem; all updates to a page will still go to one chunk, but
historical queries will scale better.

To enable the three-part shard key, we just update our shardcollection with the new
key:

>>> db.command('shardcollection', 'dbname.stats.daily', {

 ... 'key':{'metadata.site':1,'metadata.page':1,'metadata.date':1}})

{ "collectionsharded" : "dbname.stats.daily", "ok" : 1 }

>>> db.command('shardcollection', 'dbname.stats.monthly', {

... 'key':{'metadata.site':1,'metadata.page':1,'metadata.date':1}})

{ "collectionsharded" : "dbname.stats.monthly", "ok" : 1 }

Hierarchical Aggregation
Although the techniques of “Pre-Aggregated Reports” (page 52) can satisfy many op‐
erational intelligence system needs, it’s often desirable to calculate statistics at multiple

levels of abstraction. This section describes how we can use MongoDB’s mapreduce
command to convert transactional data to statistics at multiple layers of abstraction.

Hierarchical Aggregation | 63

For clarity, this case study assumes that the incoming event data resides in a collection

named events. This fits in well with “Storing Log Data” (page 37), making these two
techniques work well together.

Solution Overview
The first step in the aggregation process is to aggregate event data into statistics at the
finest required granularity. Then we’ll use this aggregate data to generate the next least
specific level granularity and repeat this process until we’ve generated all required views.

This solution uses several collections: the raw data (i.e., events) collection as well as
collections for aggregated hourly, daily, weekly, monthly, and yearly statistics. All ag‐

gregations use the mapreduce database command in a hierarchical process. Figure 4-5
illustrates the input and output of each job.

Figure 4-5. Hierarchical aggregation

64 | Chapter 4: Operational Intelligence

Schema Design
When designing the schema for event storage, it’s important to track the events included
in the aggregation and events that are not yet included.

If you can batch your inserts into the events collection, you can use an autoincrement

primary key by using the find_and_modify command to generate the _id values, as
shown here:

>>> obj = db.my_sequence.find_and_modify(

... query={'_id':0},

... update={'$inc': {'inc': 50}}

... upsert=True,

... new=True)

>>> batch_of_ids = range(obj['inc']-50, obj['inc'])

However, in many cases you can simply include a timestamp with each event that you
can use to distinguish processed events from unprocessed events.

This example assumes that you are calculating average session length for logged-in users
on a website. The events will have the following form:

{

 "userid": "rick",

 "ts": ISODate('2010-10-10T14:17:22Z'),

 "length":95

}

The operations described here will calculate total and average session times for each
user at the hour, day, week, month, and year. For each aggregation, we’ll store the number
of sessions so that MongoDB can incrementally recompute the average session times.
The aggregate document will resemble the following:

{

 _id: { u: "rick", d: ISODate("2010-10-10T14:00:00Z") },

 value: {

 ts: ISODate('2010-10-10T15:01:00Z'),

 total: 254,

 count: 10,

 mean: 25.4 }

}

MapReduce
The MapReduce algorithm and its MongoDB implementation, the mapreduce com‐
mand, is a popular way to process large amounts of data in bulk. If you’re not familiar
with MapReduce, the basics are illustrated in the following pseudocode:

from collections import defaultdict

def map_reduce(input, output, query, mapf, reducef, finalizef):

 # Map phase

Hierarchical Aggregation | 65

 map_output = []

 for doc in input.find(output):

 map_output += mapf(doc)

 # Shuffle phase

 map_output.sort()

 docs_by_key = groupby_keys(map_output)

 # Reduce phase

 reduce_output = []

 for key, values in docs_by_key:

 reduce_output.append({

 '_id': key,

 'value': reducef(key, values) })

 # Finalize phase

 finalize_output = []

 for doc in reduce_output:

 key, value = doc['_id'], doc['value']

 reduce_output[key] = finalizef(key, value)

 output.remove()

 output.insert(finalize_output)

In MongoDB, mapf actually calls an emit function to generate zero or more

documents to feed into the next phase. The signature of the mapf function is also

modified to take no arguments, passing the document in the this JavaScript
keyword.

Sorting is not technically required; the purpose is to group documents with the
same key together. Sorting is just one way to do this.

Finalize is not required, but can be useful for computing things like mean values
given a count and sum computed by the other parts of MapReduce.

MongoDB provides several different options of how to store your output data.

In this code, we’re mimicking the output mode of replace.

The nice thing about this algorithm is that each of the phases can be run in parallel. In
MongoDB, this benefit is somewhat limited by the presence, as of version 2.2, of a global
JavaScript interpreter lock that forces all JavaScript in a single MongoDB process to run
serially. Sharding allows you to get back some of this performance, but the full benefits
of MapReduce still await the removal of the JavaScript lock from MongoDB.

66 | Chapter 4: Operational Intelligence

Operations
This section assumes that all events exist in the events collection and have a timestamp.

The operations are to aggregate from the events collection into the smallest aggregate
—hourly totals—and then aggregate from the hourly totals into coarser granularity

levels. In all cases, these operations will store aggregation time as a last_run variable.

Creating hourly views from event collections

To do our lowest-level aggregation, we need to first create a map function, as shown
here:

mapf_hour = bson.Code('''function() {

 var key = {

 u: this.userid,

 d: new Date(

 this.ts.getFullYear(),

 this.ts.getMonth(),

 this.ts.getDate(),

 this.ts.getHours(),

 0, 0, 0);

 emit(

 key,

 {

 total: this.length,

 count: 1,

 mean: 0,

 ts: null });

}''')

In this case, mapf_hour emits key-value pairs that contain the data you want to aggregate,

as you’d expect. The function also emits a ts value that makes it possible to cascade
aggregations to coarser-grained aggregations (hour to day, etc.).

Next, we define the following reduce function:

reducef = bson.Code('''function(key, values) {

 var r = { total: 0, count: 0, mean: 0, ts: null };

 values.forEach(function(v) {

 r.total += v.total;

 r.count += v.count;

 });

 return r;

}''')

The reduce function returns a document in the same format as the output of the map
function. This pattern for map and reduce functions makes MapReduce processes easier
to test and debug.

Hierarchical Aggregation | 67

While the reduce function ignores the mean and ts (timestamp) values, the finalize step,
as follows, computes these data:

finalizef = bson.Code('''function(key, value) {

 if(value.count > 0) {

 value.mean = value.total / value.count;

 }

 value.ts = new Date();

 return value;

}''')

With the preceding functions defined, our actual mapreduce call resembles the
following:

cutoff = datetime.utcnow() - timedelta(seconds=60)

query = { 'ts': { '$gt': last_run, '$lt': cutoff } }

db.events.map_reduce(

 map=mapf_hour,

 reduce=reducef,

 finalize=finalizef,

 query=query,

 out={ 'reduce': 'stats.hourly' })

last_run = cutoff

Output Modes

Here, we’re using the 'reduce' output mode. MongoDB’s mapreduce provides several
of these modes for different use cases:

replace
In this mode, MongoDB will drop any collection that currently exists with the out‐

put name before writing the mapreduce results into it.

merge
In this mode, MongoDB does not drop the output collection first, but will over‐

write any existing results with the same key with the results of the mapreduce results.

reduce
In this mode, MongoDB treats the output collection as additional input to the re‐
duce phase. This mode is most useful for incremental aggregation, where we wish
to refine existing results based on new data.

inline
In this mode, no output collection is written; the results are returned as the result

of the mapreduce command itself.

68 | Chapter 4: Operational Intelligence

The cutoff variable allows you to process all events that have occurred since the last
run but before one minute ago. This allows for some delay in logging events. You can

safely run this aggregation as often as you like, provided that you update the last_run
variable each time.

Since we’ll be repeatedly querying the events collection by date, it’s important to main‐
tain an index on this property:

>>> db.events.ensure_index('ts')

Deriving day-level data

To calculate daily statistics, we can use the hourly statistics as input. We’ll begin with
the following map function:

mapf_day = bson.Code('''function() {

 var key = {

 u: this._id.u,

 d: new Date(

 this._id.d.getFullYear(),

 this._id.d.getMonth(),

 this._id.d.getDate(),

 0, 0, 0, 0) };

 emit(

 key,

 {

 total: this.value.total,

 count: this.value.count,

 mean: 0,

 ts: null });

}''')

The map function for deriving day-level data differs from this initial aggregation in the
following ways:

• The aggregation key is the userid-date rather than userid-hour to support daily
aggregation.

• The keys and values emitted (i.e., emit()) are actually the total and count values
from the hourly aggregates, rather than properties from event documents.

This is the case for all the higher-level aggregation operations. Because the output of
this map function is the same as the previous map function, we can actually use the
same reduce and finalize functions. The actual code driving this level of aggregation is
as follows:

cutoff = datetime.utcnow() - timedelta(seconds=60)

query = { 'value.ts': { '$gt': last_run, '$lt': cutoff } }

db.stats.hourly.map_reduce(

 map=mapf_day,

Hierarchical Aggregation | 69

 reduce=reducef,

 finalize=finalizef,

 query=query,

 out={ 'reduce': 'stats.daily' })

last_run = cutoff

There are a couple of things to note here. First of all, the query is not on ts now, but

value.ts, the timestamp written during the finalization of the hourly aggregates. Also

note that we are, in fact, aggregating from the stats.hourly collection into the

stats.daily collection.

Because we’ll be running this query on a regular basis, and the query depends on the

value.ts field, we’ll want to create an index on value.ts:

>>> db.stats.hourly.ensure_index('value.ts')

Weekly and monthly aggregation

We can use the aggregated day-level data to generate weekly and monthly statistics. A
map function for generating weekly data follows:

mapf_week = bson.Code('''function() {

 var key = {

 u: this._id.u,

 d: new Date(

 this._id.d.valueOf()

 - dt.getDay()*24*60*60*1000) };

 emit(

 key,

 {

 total: this.value.total,

 count: this.value.count,

 mean: 0,

 ts: null });

}''')

Here, to get the group key, the function takes the current day and subtracts days until
you get the beginning of the week. In the monthly map function, we’ll use the first day
of the month as the group key, as follows:

mapf_month = bson.Code('''function() {

 d: new Date(

 this._id.d.getFullYear(),

 this._id.d.getMonth(),

 1, 0, 0, 0, 0) };

 emit(

 key,

 {

 total: this.value.total,

 count: this.value.count,

 mean: 0,

70 | Chapter 4: Operational Intelligence

 ts: null });

}''')

These map functions are identical to each other except for the date calculation.

To make our aggregation at these levels efficient, we need to create indexes on the

value.ts field in each collection that serves as input to an aggregation:

>>> db.stats.daily.ensure_index('value.ts')

>>> db.stats.monthly.ensure_index('value.ts')

Refactor map functions

Using Python’s string interpolation, we can refactor the map function definitions as
follows:

mapf_hierarchical = '''function() {

 var key = {

 u: this._id.u,

 d: %s };

 emit(

 key,

 {

 total: this.value.total,

 count: this.value.count,

 mean: 0,

 ts: null });

}'''

mapf_day = bson.Code(

 mapf_hierarchical % '''new Date(

 this._id.d.getFullYear(),

 this._id.d.getMonth(),

 this._id.d.getDate(),

 0, 0, 0, 0)''')

mapf_week = bson.Code(

 mapf_hierarchical % '''new Date(

 this._id.d.valueOf()

 - dt.getDay()*24*60*60*1000)''')

mapf_month = bson.Code(

 mapf_hierarchical % '''new Date(

 this._id.d.getFullYear(),

 this._id.d.getMonth(),

 1, 0, 0, 0, 0)''')

mapf_year = bson.Code(

 mapf_hierarchical % '''new Date(

 this._id.d.getFullYear(),

 1, 1, 0, 0, 0, 0)''')

Hierarchical Aggregation | 71

Now, we’ll create an h_aggregate function to wrap the map_reduce operation to reduce
code duplication:

def h_aggregate(icollection, ocollection, mapf, cutoff, last_run):

 query = { 'value.ts': { '$gt': last_run, '$lt': cutoff } }

 icollection.map_reduce(

 map=mapf,

 reduce=reducef,

 finalize=finalizef,

 query=query,

 out={ 'reduce': ocollection.name })

With h_aggregate defined, we can perform all aggregation operations as follows:

cutoff = datetime.utcnow() - timedelta(seconds=60)

First step is still special

query = { 'ts': { '$gt': last_run, '$lt': cutoff } }

db.events.map_reduce(

 map=mapf_hour, reduce=reducef,

 finalize=finalizef, query=query,

 out={ 'reduce': 'stats.hourly' })

But the other ones are not

h_aggregate(db.stats.hourly, db.stats.daily, mapf_day, cutoff, last_run)

h_aggregate(db.stats.daily, db.stats.weekly, mapf_week, cutoff, last_run)

h_aggregate(db.stats.daily, db.stats.monthly, mapf_month, cutoff, last_run)

h_aggregate(db.stats.monthly, db.stats.yearly, mapf_year, cutoff, last_run)

last_run = cutoff

As long as we save and restore the last_run variable between aggregations, we can run
these aggregations as often as we like, since each aggregation operation is incremental

(i.e., using output mode 'reduce').

Sharding Concerns
When sharding, we need to ensure that we don’t choose the incoming timestamp as a
shard key, but rather something that varies significantly in the most recent documents.

In the previous example, we might consider using the userid as the most significant
part of the shard key.

To prevent a single, active user from creating a large chunk that MongoDB cannot split,
we’ll use a compound shard key with username-timestamp on the events collection as
follows:

>>> db.command('shardcollection','dbname.events', {

... 'key' : { 'userid': 1, 'ts' : 1} })

{ "collectionsharded": "dbname.events", "ok" : 1 }

72 | Chapter 4: Operational Intelligence

To shard the aggregated collections, we must use the _id field to work well with mapre

duce, so we’ll issue the following group of shard operations in the shell:

>>> db.command('shardcollection', 'dbname.stats.daily', {

... 'key': { '_id': 1 } })

{ "collectionsharded": "dbname.stats.daily", "ok" : 1 }

>>> db.command('shardcollection', 'dbname.stats.weekly', {

... 'key': { '_id': 1 } })

{ "collectionsharded": "dbname.stats.weekly", "ok" : 1 }

>>> db.command('shardcollection', 'dbname.stats.monthly', {

... 'key': { '_id': 1 } })

{ "collectionsharded": "dbname.stats.monthly", "ok" : 1 }

>>> db.command('shardcollection', 'dbname.stats.yearly', {

... 'key': { '_id': 1 } })

{ "collectionsharded": "dbname.stats.yearly", "ok" : 1 }

We also need to update the h_aggregate MapReduce wrapper to support sharded out‐

put by adding 'sharded':True to the out argument. Our new h_aggregate now looks
like this:

def h_aggregate(icollection, ocollection, mapf, cutoff, last_run):

 query = { 'value.ts': { '$gt': last_run, '$lt': cutoff } }

 icollection.map_reduce(

 map=mapf,

 reduce=reducef,

 finalize=finalizef,

 query=query,

 out={ 'reduce': ocollection.name, 'sharded': True })

Hierarchical Aggregation | 73

CHAPTER 5

Ecommerce

In this chapter, we’ll look at how MongoDB fits into the world of retail, particularly in
two main areas: maintaining product catalog data and inventory management. Our first
use case, “Product Catalog” (page 75), deals with the storage of product catalog data.

Our next use case, “Category Hierarchy” (page 84), examines the problem of maintaining
a category hierarchy of product items in MongoDB.

The final use case in this chapter, “Inventory Management” (page 91), explores the use
of MongoDB in an area a bit outside its traditional domain: managing inventory and
checkout in an ecommerce system.

Product Catalog
In order to manage an ecommerce system, the first thing you need is a product catalog.
Product catalogs must have the capacity to store many different types of objects with
different sets of attributes. These kinds of data collections work quite well with
MongoDB’s flexible data model, making MongoDB a natural fit for this type of data.

Solution Overview
Before delving into the MongoDB solution, we’ll examine the ways in which relational
data models address the problem of storing products of various types. There have ac‐
tually been several different approaches that address this problem, each with a different
performance profile. This section examines some of the relational approaches and then
describes the preferred MongoDB solution.

75

Concrete-table inheritance

One approach in a relational model is to create a table for each product category. Con‐
sider the following example SQL statement for creating database tables:

CREATE TABLE `product_audio_album` (

 `sku` char(8) NOT NULL,

 ...

 `artist` varchar(255) DEFAULT NULL,

 `genre_0` varchar(255) DEFAULT NULL,

 `genre_1` varchar(255) DEFAULT NULL,

 ...,

 PRIMARY KEY(`sku`))

...

CREATE TABLE `product_film` (

 `sku` char(8) NOT NULL,

 ...

 `title` varchar(255) DEFAULT NULL,

 `rating` char(8) DEFAULT NULL,

 ...,

 PRIMARY KEY(`sku`))

...

This approach has limited flexibility for two key reasons:

• You must create a new table for every new category of products.

• You must explicitly tailor all queries for the exact type of product.

Single-table inheritance

Another relational data model uses a single table for all product categories and adds
new columns any time you need to store data regarding a new type of product. Consider
the following SQL statement:

CREATE TABLE `product` (

 `sku` char(8) NOT NULL,

 ...

 `artist` varchar(255) DEFAULT NULL,

 `genre_0` varchar(255) DEFAULT NULL,

 `genre_1` varchar(255) DEFAULT NULL,

 ...

 `title` varchar(255) DEFAULT NULL,

 `rating` char(8) DEFAULT NULL,

 ...,

 PRIMARY KEY(`sku`))

This approach is more flexible than concrete-table inheritance: it allows single queries
to span different product types, but at the expense of space. It also continues to suffer

76 | Chapter 5: Ecommerce

from a lack of flexibility in that adding new types of product requires a potentially

expensive ALTER TABLE operation.

Multiple-table inheritance

Another approach that’s been used in relational modeling is multiple-table inheritance
where you represent common attributes in a generic “product” table, with some varia‐
tions in individual category product tables. Consider the following SQL statement:

CREATE TABLE `product` (

 `sku` char(8) NOT NULL,

 `title` varchar(255) DEFAULT NULL,

 `description` varchar(255) DEFAULT NULL,

 `price`, ...

 PRIMARY KEY(`sku`))

CREATE TABLE `product_audio_album` (

 `sku` char(8) NOT NULL,

 ...

 `artist` varchar(255) DEFAULT NULL,

 `genre_0` varchar(255) DEFAULT NULL,

 `genre_1` varchar(255) DEFAULT NULL,

 ...,

 PRIMARY KEY(`sku`),

 FOREIGN KEY(`sku`) REFERENCES `product`(`sku`))

...

CREATE TABLE `product_film` (

 `sku` char(8) NOT NULL,

 ...

 `title` varchar(255) DEFAULT NULL,

 `rating` char(8) DEFAULT NULL,

 ...,

 PRIMARY KEY(`sku`),

 FOREIGN KEY(`sku`) REFERENCES `product`(`sku`))

...

Multiple-table inheritance is more space-efficient than single-table inheritance and
somewhat more flexible than concrete-table inheritance. However, this model does re‐

quire an expensive JOIN operation to obtain all attributes relevant to a product.

Entity attribute values

The final substantive pattern from relational modeling is the entity-attribute-value
(EAV) schema, where you would create a meta-model for product data. In this approach,

you maintain a table with three columns (e.g., entity_id, attribute_id, and value),
and these triples describe each product.

Consider the description of an audio recording. You may have a series of rows repre‐
senting the following relationships:

Product Catalog | 77

Entity Attribute Value

sku_00e8da9b type Audio Album

sku_00e8da9b title A Love Supreme

sku_00e8da9b … …

sku_00e8da9b artist John Coltrane

sku_00e8da9b genre Jazz

sku_00e8da9b genre General

… … …

This schema is completely flexible:

• Any entity can have any set of any attributes.

• New product categories do not require any changes to the data model in the data‐
base.

There are, however, some significant problems with the EAV schema. One major issue

is that all nontrivial queries require large numbers of JOIN operations. Consider re‐
trieving the title, artist, and two genres for each item in the table:

SELECT entity,

 t0.value AS title,

 t1.value AS artist,

 t2.value AS genre0,

 t3.value as genre1

FROM eav AS t0

 LEFT JOIN eav AS t1 ON t0.entity = t1.entity

 LEFT JOIN eav AS t2 ON t0.entity = t2.entity

 LEFT JOIN eav AS t3 ON t0.entity = t3.entity;

And that’s only bringing back four attributes! Another problem illustrated by this ex‐
ample is that the queries quickly become difficult to create and maintain.

Avoid modeling product data altogether

In addition to all the approaches just outlined, some ecommerce solutions with rela‐
tional database systems skip relational modeling altogether, choosing instead to serialize

all the product data into a BLOB column. Although the schema is simple, this approach

makes sorting and filtering on any data embedded in the BLOB practically impossible.

The MongoDB answer

Because MongoDB is a nonrelational database, the data model for your product catalog
can benefit from this additional flexibility. The best models use a single MongoDB
collection to store all the product data, similar to the single-table inheritance model in
“Single-table inheritance” (page 76).

78 | Chapter 5: Ecommerce

Unlike single-table inheritance, however, MongoDB’s dynamic schema means that the
individual documents need not conform to the same rigid schema. As a result, each
document contains only the properties appropriate to the particular class of product it
describes.

At the beginning of the document, a document-based schema should contain general
product information, to facilitate searches of the entire catalog. After the common fields,

we’ll add a details subdocument that contains fields that vary between product types.
Consider the following example document for an album product:

{

 sku: "00e8da9b",

 type: "Audio Album",

 title: "A Love Supreme",

 description: "by John Coltrane",

 asin: "B0000A118M",

 shipping: {

 weight: 6,

 dimensions: {

 width: 10,

 height: 10,

 depth: 1

 },

 },

 pricing: {

 list: 1200,

 retail: 1100,

 savings: 100,

 pct_savings: 8

 },

 details: {

 title: "A Love Supreme [Original Recording Reissued]",

 artist: "John Coltrane",

 genre: ["Jazz", "General"],

 ...

 tracks: [

 "A Love Supreme, Part I: Acknowledgement",

 "A Love Supreme, Part II: Resolution",

 "A Love Supreme, Part III: Pursuance",

 "A Love Supreme, Part IV: Psalm"

],

 },

}

A movie item would have the same fields for general product information, shipping,

and pricing, but different fields for the details subdocument. Consider the following:

Product Catalog | 79

{

 sku: "00e8da9d",

 type: "Film",

 ...,

 asin: "B000P0J0AQ",

 shipping: { ... },

 pricing: { ... },

 details: {

 title: "The Matrix",

 director: ["Andy Wachowski", "Larry Wachowski"],

 writer: ["Andy Wachowski", "Larry Wachowski"],

 ...,

 aspect_ratio: "1.66:1"

 },

}

Operations
For most deployments, the primary use of the product catalog is to perform search
operations. This section provides an overview of various types of queries that may be
useful for supporting an ecommerce site. Our examples use the Python programming
language, but of course you can implement this system using any language you choose.

Find products sorted by percentage discount descending

Most searches will be for a particular type of product (album, movie, etc.), but in some
situations you may want to return all products in a certain price range or discount
percentage.

For example, the following query returns all products with a discount greater than 25%,
sorted by descending percentage discount:

query = db.products.find({ 'pricing.pct_savings': {'$gt': 25 })

query = query.sort([('pricing.pct_savings', -1)])

To support this type of query, we’ll create an index on the pricing.pct_savings field:

db.products.ensure_index('pricing.pct_savings')

Since MongoDB can read indexes in ascending or descending order,
the order of the index does not matter when creating single-element
indexes.

80 | Chapter 5: Ecommerce

Find albums by genre and sort by year produced

The following returns the documents for the albums of a specific genre, sorted in reverse
chronological order:

query = db.products.find({

 'type':'Audio Album',

 'details.genre': 'jazz'})

query = query.sort([

 ('details.issue_date', -1)])

In order to support this query efficiently, we’ll create a compound index on the prop‐
erties used in the filter and the sort:

db.products.ensure_index([

 ('type', 1),

 ('details.genre', 1),

 ('details.issue_date', -1)])

The final component of the index is the sort field. This allows MongoDB
to traverse the index in the sorted order and avoid a slow in-memory
sort.

Find movies based on starring actor

Another example of a detail field-based query would be one that selects films that a
particular actor starred in, sorted by issue date:

query = db.products.find({'type': 'Film',

 'details.actor': 'Keanu Reeves'})

query = query.sort([('details.issue_date', -1)])

To support this query, we’ll create an index on the fields used in the query:

db.products.ensure_index([

 ('type', 1),

 ('details.actor', 1),

 ('details.issue_date', -1)])

This index begins with the type field and then narrows by the other search field, where
the final component of the index is the sort field to maximize index efficiency.

Find movies with a particular word in the title

In most relational and document-based databases, querying for a single word within a
string-type field requires scanning, making this query much less efficient than the others
mentioned here.

One of the most-requested features of MongoDB is the so-called full-text index, which
makes queries such as this one more efficient. In a full-text index, the individual words

Product Catalog | 81

(sometimes even subwords) that occur in a field are indexed separately. In exciting and
recent (as of the writing of this section) news, development builds of MongoDB cur‐
rently contain a basic full-text search index, slated for inclusion in the next major release
of MongoDB. Until MongoDB full-text search index shows up in a stable version of
MongoDB, however, the best approach is probably deploying a separate full-text search
engine (such as Apache Solr or ElasticSearch) alongside MongoDB, if you’re going to
be doing a lot of text-based queries.

Although there is currently no efficient full-text search support within MongoDB, there
is support for using regular expressions (regexes) with queries. In Python, we can pass

a compiled regex from the re module to the find() operation directly:

import re

re_hacker = re.compile(r'.*hacker.*', re.IGNORECASE)

query = db.products.find({'type': 'Film', 'title': re_hacker})

query = query.sort([('details.issue_date', -1)])

Although this query isn’t particularly fast, there is a type of regex search that makes good
use of the indexes that MongoDB does support: the prefix regex. Explicitly matching
the beginning of the string, followed by a few prefix characters for the field you’re
searching for, allows MongoDB to use a “regular” index efficiently:

import re

re_prefix = re.compile(r'^A Few Good.*')

query = db.products.find({'type': 'Film', 'title': re_prefix})

query = query.sort([('details.issue_date', -1)])

In this query, since we’ve matched the prefix of the title, MongoDB can seek directly to
the titles we’re interested in.

Regular Expression Pitfalls
If you use the re.IGNORECASE flag, you’re basically back where you were,
since the indexes are created as case-sensitive. If you want case-
insensitive search, it’s typically a good idea to store the data you want
to search on in all-lowercase or all-uppercase format.

If for some reason you don’t want to use a compiled regular expression, MongoDB

provides a special syntax for regular expression queries using plain Python dict objects:

query = db.products.find({

 'type': 'Film',

 'title': {'$regex': '.*hacker.*', '$options':'i'}})

query = query.sort([('details.issue_date', -1)])

82 | Chapter 5: Ecommerce

The indexing strategy for these kinds of queries is different from previous attempts.

Here, create an index on { type: 1, details.issue_date: -1, title: 1 } using
the following Python console:

>>> db.products.ensure_index([

... ('type', 1),

... ('details.issue_date', -1),

... ('title', 1)])

This index makes it possible to avoid scanning whole documents by using the index for
scanning the title rather than forcing MongoDB to scan whole documents for the title

field. Additionally, to support the sort on the details.issue_date field, by placing this

field before the title field, ensures that the result set is already ordered before MongoDB
filters title field.

Conclusion: Index all the things!

In ecommerce systems, we typically don’t know exactly what the user will be filtering
on, so it’s a good idea to create a number of indexes on queries that are likely to happen.
Although such indexing will slow down updates, a product catalog is only very infre‐
quently updated, so this drawback is justified by the significant improvements in search
speed. To sum up, if your application has a code path to execute a query, there should
be an index to accelerate that query.

Sharding Concerns
Database performance for these kinds of deployments are dependent on indexes. You
may use sharding to enhance performance by allowing MongoDB to keep larger por‐
tions of those indexes in RAM. In sharded configurations, you should select a shard key
that allows the server to route queries directly to a single shard or small group of shards.

Since most of the queries in this system include the type field, it should be included in
the shard key. Beyond this, the remainder of the shard key is difficult to predict without
information about your database’s actual activity and distribution. There are a few things
we can say a priori, however:

• details.issue_date would be a poor addition to the shard key because, although

it appears in a number of queries, no query was selective by this field, so mongos
would not be able to route such queries based on the shard key.

• It’s good to ensure some fields from the detail document that are frequently quer‐
ied, as well as some with an even distribution to prevent large unsplittable chunks.

In the following example, we’ve assumed that the details.genre field is the second-

most queried field after type. To enable sharding on these fields, we’ll use the following

shardcollection command:

Product Catalog | 83

>>> db.command('shardcollection', 'dbname.product', {

... key : { 'type': 1, 'details.genre' : 1, 'sku':1 } })

{ "collectionsharded" : "dbname.product", "ok" : 1 }

Scaling read performance without sharding

While sharding is the best way to scale operations, some data sets make it impossible to

partition data so that mongos can route queries to specific shards. In these situations,

mongos sends the query to all shards and then combines the results before returning to
the client.

In these situations, you can gain some additional read performance by allowing

mongos to read from the secondary mongod instances in a replica set by configuring the
read preference in the client. Read preference is configurable on a per-connection or

per-operation basis. In pymongo, this is set using the read_preference keyword
argument.

The pymongo.SECONDARY argument in the following example permits reads from the
secondary (as well as a primary) for the entire connection:

conn = pymongo.MongoClient(read_preference=pymongo.SECONDARY_PREFERRED)

If you wish to restrict reads to only occur on the secondary, you can use SECONDARY
instead:

conn = pymongo.MongoClient(read_preference=pymongo.SECONDARY)

You can also specify read_preference for specific queries, as shown here:

results = db.product.find(..., read_preference=pymongo.SECONDARY_PREFERRED)

Or:

results = db.product.find(..., read_preference=pymongo.SECONDARY)

Category Hierarchy
One of the issues faced by product catalog maintainers is the classification of products.
Products are typically classified hierarchically to allow for convenient catalog browsing
and product planning. One question that arises is just what to do when that categori‐
zation changes. This use case addresses the construction and maintenance of a hier‐
archical classification system in MongoDB.

Solution Overview
To model a product category hierarchy, our solution here keeps each category in its own
document with a list of the ancestor categories for that particular subcategory. To anchor
our examples, we use music genres as the categorization scheme we’ll examine.

84 | Chapter 5: Ecommerce

Since the hierarchical categorization of products changes relatively infrequently, we’re
more concerned here with query performance and update consistency than update
performance.

Schema Design
Our schema design will focus on the hierarchy in Figure 5-1. When designing a hier‐

archical schema, one approach would be to simply store a parent_id in each document:

{ _id: "modal-jazz",

 name: "Modal Jazz",

 parent: "bop",

 ...

}

Figure 5-1. A music classification hierarchy

While using such a schema is flexible, it only allows us to examine one level of hierarchy
with any given query. If we want to be able to instead query for all ancestors or de‐
scendants of a category, it’s better to store the ancestor list in some way.

One approach to this would be to construct the ID of a subcategory based on the IDs
of its parent categories:

{ _id: "ragtime:bop:modal-jazz",

 name: "Modal Jazz",

 parent: "ragtime/bop",

 ...

}

This is a convenient approach because:

• The ancestors of a particular category are self-evident from the _id field.

Category Hierarchy | 85

• The descendants of a particular category can be easily queried by using a prefix-
style regular expression. For instance, to find all descendants of “bop,” you would

use a query like {_id: /^ragtime:bop:.*/}.

There are a couple of problems with this approach, however:

• Displaying the ancestors for a category requires a second query to return the an‐
cestor documents.

• Updating the hierarchy is cumbersome, requiring string manipulation of the _id
field.

The solution we’ve chosen here is to store the ancestors as an embedded array,
including the name of each ancestor for display purposes. We’ve also switched to using

ObjectId()s for the _id field and moving the human-readable slug to its own field to
facilitate changing the slug if necessary. Our final schema, then, looks like the following:

{ _id: ObjectId(...),

 slug: "modal-jazz",

 name: "Modal Jazz",

 parent: ObjectId(...),

 ancestors: [

 { _id: ObjectId(...),

 slug: "bop",

 name: "Bop" },

 { _id: ObjectId(...),

 slug: "ragtime",

 name: "Ragtime" }] }

Operations
This section outlines the category hierarchy manipulations that you may need in an
ecommerce site. All examples in this document use the Python programming language
and the pymongo driver for MongoDB, but of course you can implement this system
using any supported programming language.

Read and display a category

The most basic operation is to query a category hierarchy based on a slug. This type of
query is often used in an ecommerce site to generate a list of “breadcrumbs” displaying
to the user just where in the hierarchy they are while browsing. The query, then, is the
following:

category = db.categories.find(

 {'slug': slug },

 {'_id': 0, 'name': 1, 'ancestors.slug': 1, 'ancestors.name': 1})

In order to make this query fast, we just need an index on the slug field:

86 | Chapter 5: Ecommerce

>>> db.categories.ensure_index('slug', unique=True)

Add a category to the hierarchy

Suppose we wanted to modify the hierarchy by adding a new category, as shown in
Figure 5-2. This insert operation would be trivial if we had used our simple schema that

only stored the parent ID:

doc = dict(name='Swing', slug='swing', parent=ragtime_id)

Figure 5-2. Adding Swing to the hierarchy

Since we are keeping information on all the ancestors, however, we need to actually
calculate this array and store it after performing the insert. For this, we’ll define the

following build_ancestors helper function:

def build_ancestors(_id, parent_id):

 parent = db.categories.find_one(

 {'_id': parent_id},

 {'name': 1, 'slug': 1, 'ancestors':1})

 parent_ancestors = parent.pop('ancestors')

 ancestors = [parent] + parent_ancestors

 db.categories.update(

 {'_id': _id},

 {'$set': { 'ancestors': ancestors } })

Note that you only need to travel up one level in the hierarchy to get the ancestor list
for “Ragtime” that you can use to build the ancestor list for “Swing.” Once you have the
parent’s ancestors, you can build the full ancestor list trivially. Putting it all together
then, let’s insert a new category:

doc = dict(name='Swing', slug='swing', parent=ragtime_id)

swing_id = db.categories.insert(doc)

build_ancestors(swing_id, ragtime_id)

Category Hierarchy | 87

Change the ancestry of a category

This section addresses the process for reorganizing the hierarchy by moving “Bop”

under “Swing,” as shown in Figure 5-3. First, we’ll update the bop document to reflect
the change in its ancestry:

db.categories.update(

 {'_id':bop_id}, {'$set': { 'parent': swing_id } })

Figure 5-3. Adding Swing to the hierarchy

Now we need to update the ancestor list of the bop document and all its descendants. In

order to do this, we’ll first build the subgraph of bop in memory, including all of the

descendants of bop, and then calculate and store the ancestor list for each node in the
subgraph.

For the purposes of calculating the ancestor list, we will store the subgraph in a dict

containing all the nodes in the subgraph, keyed by their parent field. This will allow us

to quickly traverse the hierarchy, starting with the bop node and visiting the nodes in
order:

from collections import defaultdict

def build_subgraph(root):

 nodes = db.categories.find(

 { 'ancestors._id': root['_id'] },

 { 'parent': 1, 'name': 1, 'slug': 1, 'ancestors': 1})

 nodes_by_parent = defaultdict(list)

 for n in nodes:

 nodes_py_parent[n['parent']].append(n)

 return nodes_by_parent

88 | Chapter 5: Ecommerce

The defaultdict from the Python standard library is a dictionary with a special
behavior when you try to access a key that is not there. In this case, rather than

raising a KeyError like a regular dict, it will generate a new value based on a

factory function passed to its constructor. In this case, we’re using the list

function to create an empty list when the given parent isn’t found.

Once we have this subgraph, we can update the nodes as follows:

def update_node_and_descendants(

 nodes_by_parent, node, parent):

 # Update node's ancestors

 node['ancestors'] = parent.ancestors + [

 { '_id': parent['_id'],

 'slug': parent['slug'],

 'name': parent['name']}]

 db.categories.update(

 {'_id': node['_id']},

 {'$set': {

 'ancestors': ancestors,

 'parent': parent['_id'] } })

 # Recursively call children of 'node'

 for child in nodes_by_parent[node['_id']]:

 update_node_and_descendants(

 nodes_by_parent, child, node)

In order to ensure that the subgraph-building operation is fast, we’ll need an index on

the ancestors._id field:

>>> db.categories.ensure_index('ancestors._id')

Rename a category

One final operation we’ll explore with our category hierarchy is renaming a category.
In order to a rename a category, we’ll need to both update the category itself and also
update all its descendants. Consider renaming “Bop” to “BeBop,” as in Figure 5-4.

Category Hierarchy | 89

Figure 5-4. Rename “Bop” to “BeBop”

First, we’ll update the category name with the following operation:

db.categories.update(

 {'_id':bop_id}, {'$set': { 'name': 'BeBop' } })

Next, we’ll update each descendant’s ancestors list:

db.categories.update(

 {'ancestors._id': bop_id},

 {'$set': { 'ancestors.$.name': 'BeBop' } },

 multi=True)

There are a couple of things to know about this update:

• We’ve used the positional operation $ to match the exact “ancestor” entry that
matches the query.

• The multi option allows us to update all documents that match this query. By
default, MongoDB will only update the first document that matches.

Sharding Concerns
For most deployments, sharding the categories collection has limited value because the
collection itself will have a small number of documents. If you do need to shard, since

all the queries use _id, it makes an appropriate shard key:

90 | Chapter 5: Ecommerce

>>> db.command('shardcollection', 'dbname.categories', {

... 'key': {'_id': 1} })

{ "collectionsharded" : "dbname.categories", "ok" : 1 }

Inventory Management
The most basic requirement of an ecommerce system is its checkout functionality. Be‐
yond the basic ability to fill up a shopping cart and pay, customers have come to expect
online ordering to account for out-of-stock conditions, not allowing them to place items
in their shopping cart unless those items are, in fact, available. This section provides an
overview of an integrated shopping cart and inventory management data model for an
online store.

Solution Overview
Customers in ecommerce stores regularly add and remove items from their “shopping
cart,” change quantities multiple times, abandon the cart at any point, and sometimes
have problems during and after checkout that require a hold or canceled order. These
activities make it difficult to maintain inventory systems and counts and to ensure that
customers cannot “buy” items that are unavailable while they shop in your store.

The solution presented here maintains the traditional metaphor of the shopping cart,
but allows inactive shopping carts to age. After a shopping cart has been inactive for a
certain period of time, all items in the cart re-enter the available inventory and the cart
is emptied. The various states that a shopping cart can be in, then, are summarized in
Figure 5-5.

Figure 5-5. Shopping cart states

Inventory Management | 91

Here’s an explanation of each state:

active
In this state, the user is active and items may be added or removed from the shopping
cart.

pending
In this state, the cart is being checked out, but payment has not yet been captured.
Items may not be added or removed from the cart at this time.

expiring
In this state, the cart has been inactive for too long and it is “locked” while its items
are returned to available inventory.

expired
In this state, the shopping cart is inactive and unavailable. If the user returns, a new
cart must be created.

Schema
Our schema for this portion of the system consists of two collections: product and

cart. Let’s consider product first. This collection contains one document for each item
a user can place in their cart, called a “stock-keeping unit” or SKU. The simplest approach

is to simply use a SKU number as the _id and keep a quantity counter for each item.

We’ll add in a details field for any item details you wish to display to the user as they’re
browsing the store:

{ _id: '00e8da9b', qty: 16, details: ... }

It turns out to be useful to augment this schema with a list of shopping carts containing

the particular SKU. We do this because we’re going to use product as the definitive

collection of record for our system. This means that if there is ever a case where cart

and product contain inconsistent data, product is the collection that “wins.” Since
MongoDB does not support multidocument transactions, it’s important to have a meth‐

od of “cleaning up” when two collections become inconsistent, and keeping a carted

property in product provides that avenue here:

{ _id: '00e8da9b',

 qty: 16,

 carted: [

 { qty: 1, cart_id: 42,

 timestamp: ISODate("2012-03-09T20:55:36Z"), },

 { qty: 2, cart_id: 43,

 timestamp: ISODate("2012-03-09T21:55:36Z") }

]

}

92 | Chapter 5: Ecommerce

In this case, the inventory shows that we actually have 16 available items, but there are
also two carts that have not yet completed checkout, which have one and two items in
them, respectively.

Our cart collection, then, would contain an _id, state, last_modified date to handle
expiration, and a list of items and quantities:

{ _id: 42,

 last_modified: ISODate("2012-03-09T20:55:36Z"),

 status: 'active',

 items: [

 { sku: '00e8da9b', qty: 1, details: {...} },

 { sku: '0ab42f88', qty: 4, details: {...} }

]

}

Note that we’ve copied the item details from the product document into the cart
document so we can display relevant details for each line item without fetching the

original product document. This also helps us avoid the usability problem of what to
do about a SKU that changes prices between being added to the cart and checking out;
in this case, we always charge the user the price at the time the item was added to the cart.

Operations
This section introduces operations that we’ll want to support on our data model. As
always, the examples use the Python programming language and the pymongo driver,
but the system can be implemented in any language you choose.

Add an item to a shopping cart

Moving an item from the available inventory to a cart is a fundamental requirement for
a shopping cart system. Our system must ensure that an item is never added to a shop‐
ping cart unless there is sufficient inventory to fulfill the order.

Patterns
For this operation, and for several others in this section, we’ll use pat‐

terns from Chapter 3 to keep our product and cart collections
consistent.

In order to add an item to our cart, the basic approach will be to:

1. Update the cart, ensuring it is still active, and adding the line item.

2. Update the inventory, decrementing available stock, only if there is sufficient inven‐
tory available.

Inventory Management | 93

3. If the inventory update failed due to lack of inventory, compensate by rolling back
our cart update and raising an exception to the user.

The actual function we write to add an item to a cart would resemble the following:

def add_item_to_cart(cart_id, sku, qty, details):

 now = datetime.utcnow()

 # Make sure the cart is still active and add the line item

 result = db.cart.update(

 {'_id': cart_id, 'status': 'active' },

 { '$set': { 'last_modified': now },

 '$push': {

 'items': {'sku': sku, 'qty':qty, 'details': details } } })

 if not result['updatedExisting']:

 raise CartInactive()

 # Update the inventory

 result = db.product.update(

 {'_id':sku, 'qty': {'$gte': qty}},

 {'$inc': {'qty': -qty},

 '$push': {

 'carted': { 'qty': qty, 'cart_id':cart_id,

 'timestamp': now } } })

 if not result['updatedExisting']:

 # Roll back our cart update

 db.cart.update(

 {'_id': cart_id },

 { '$pull': { 'items': {'sku': sku } } })

 raise InadequateInventory()

Here, we’re using the quantity in our update spec to ensure that only a document
with both the right SKU and sufficient inventory can be updated. Once again, we

use safe mode to have the server tell us if anything was updated.

Note that we need to update the carted property as well as qty when modifying

product.

Here, we $pull the just-added item from the cart. Note that $pull means that all
line items for the SKU will be pulled. This is not a problem for us, since we’ll
introduce another function to modify the quantity of a SKU in the cart.

Since our updates always include _id, and this is a unique and indexed field, no addi‐
tional indexes are necessary to make this function perform well.

Modifying the quantity in the cart

Often, a user will wish to modify the quantity of a particular SKU in their cart. Our
system needs to ensure that when a user increases the quantity of an item, there is

94 | Chapter 5: Ecommerce

sufficient inventory. Additionally, the carted attribute in the product collection needs
to be updated to reflect the new quantity in the cart.

Our basic approach here is the same as when adding a new line item:

1. Update the cart (optimistically assuming there is sufficient inventory).

2. Update the product collection if there is sufficient inventory.

3. Roll back the cart update if there is insufficient inventory and raise an exception.

Our code, then, looks like the following:

def update_quantity(cart_id, sku, old_qty, new_qty):

 now = datetime.utcnow()

 delta_qty = new_qty - old_qty

 # Make sure the cart is still active and add the line item

 result = db.cart.update(

 {'_id': cart_id, 'status': 'active', 'items.sku': sku },

 {'$set': { 'last_modified': now },

 '$inc': { 'items.$.qty': delta_qty }

 })

 if not result['updatedExisting']:

 raise CartInactive()

 # Update the inventory

 result = db.product.update(

 {'_id':sku,

 'carted.cart_id': cart_id,

 'qty': {'$gte': delta_qty} },

 {'$inc': {'qty': -delta_qty },

 '$set': { 'carted.$.qty': new_qty, 'timestamp': now } })

 if not result['updatedExisting']:

 # Roll back our cart update

 db.cart.update(

 {'_id': cart_id, 'items.sku': sku },

 {'$inc': { 'items.$.qty': -delta_qty } })

 raise InadequateInventory()

Note that we’re including items.sku in our update spec. This allows us to use the

positional $ in our $set modifier to update the correct (matching) line item.

 Both here and in the rollback operation, we’re using the $inc modifier rather

than $set to update the quantity. This allows us to correctly handle situations
where a user might be updating the cart multiple times simultaneously (say, in
two different browser windows).

Here again, we’re using the positional $ in our update to carted, so we need to

include the cart_id in our update spec.

Inventory Management | 95

Once again, we’re using _id in all our updates, so adding an index doesn’t help us here.

Checking out

The checkout operation needs to do two main operations:

• Capture payment details.

• Update the carted items once payment is made.

Our basic algorithm here is as follows:

1. Lock the cart by setting it to pending status.

2. Collect payment for the cart. If this fails, unlock the cart by setting it back to active
status.

3. Set the cart’s status to complete.

4. Remove all references to this cart from any carted properties in the product
collection.

The code would look something like the following:

def checkout(cart_id):

 now = datetime.utcnow()

 result = db.cart.update(

 {'_id': cart_id, 'status': 'active' },

 update={'$set': { 'status': 'pending','last_modified': now } })

 if not result['updatedExisting']:

 raise CartInactive()

 try:

 collect_payment(cart)

 except:

 db.cart.update(

 {'_id': cart_id },

 {'$set': { 'status': 'active' } })

 raise

 db.cart.update(

 {'_id': cart_id },

 {'$set': { 'status': 'complete' } })

 db.product.update(

 {'carted.cart_id': cart_id},

 {'$pull': {'cart_id': cart_id} },

 multi=True)

We’re using the return value from update here to let us know whether we actually
locked a currently active cart by moving it to pending status.

96 | Chapter 5: Ecommerce

We’re using multi=True here to ensure that all the SKUs that were in the cart

have their carted properties updated.

Here, we could actually use a new index on the carted.cart_id property so that our

final update is fast:

>>> db.product.ensure_index('carted.cart_id')

Returning inventory from timed-out carts

Periodically, we need to “expire” inactive carts and return their items to available in‐
ventory. Our approach here is as follows:

1. Find all carts that are older than the threshold and are due for expiration. Lock

them by setting their status to "expiring".

2. For each "expiring" cart, return all their items to available inventory.

3. Once the product collection has been updated, set the cart’s status to "expired".

The actual code, then, looks something like the following:

def expire_carts(timeout):

 now = datetime.utcnow()

 threshold = now - timedelta(seconds=timeout)

 # Lock and find all the expiring carts

 db.cart.update(

 {'status': 'active', 'last_modified': { '$lt': threshold } },

 {'$set': { 'status': 'expiring' } },

 multi=True)

 # Actually expire each cart

 for cart in db.cart.find({'status': 'expiring'}):

 # Return all line items to inventory

 for item in cart['items']:

 db.product.update(

 { '_id': item['sku'],

 'carted.cart_id': cart['id'] },

 {'$inc': { 'qty': item['qty'] },

 '$pull': { 'carted': { 'cart_id': cart['id'] } } }) <

 db.cart.update(

 {'_id': cart['id'] },

 {'$set': { status': 'expired' })

We’re using multi=True to “batch up” our cart expiration initial lock.

Inventory Management | 97

Unfortunately, we need to handle expiring the carts individually, so this function

can actually be somewhat time-consuming. Note, however, that the ex

pire_carts function is safely resumable, since we have effectively “locked” the

carts needing expiration by placing them in "expiring" status.

Here, we update the inventory, but only if it still has a carted entry for the cart

we’re expiring. Note that without the carted property, our function would
become unsafe to retry if an exception occurred since the inventory could be
incremented multiple times for a single cart.

Finally, we fully expire the cart. We could also delete it here if we don’t wish to
keep it around any more.

In order to support returning inventory from timed-out carts, we’ll need to create an

index on the status and last_modified properties. Since our query on last_modi

fied is an inequality, we should place it last in the compound index:

>>> db.cart.ensure_index([('status', 1), ('last_modified', 1)])

Error handling

The previous operations do not account for one possible failure situation. If an exception
occurs after updating the shopping cart but before updating the inventory collection,
then we have an inconsistent situation where there is inventory “trapped” in a shopping
cart.

To account for this case, we’ll need a periodic cleanup operation that finds inventory

items that have carted items and check to ensure that they exist in some user’s active
cart, and return them to available inventory if they do not. Our approach here is to visit

each product with some carted entry older than a specified timestamp. Then, for each
SKU found:

1. Load the cart that’s possibly expired. If it’s actually "active", refresh the carted

entry in the product.

2. If an "active" cart was not found to match the carted entry, then the carted is
removed and the available inventory is updated:

def cleanup_inventory(timeout):

 now = datetime.utcnow()

 threshold = now - timedelta(seconds=timeout)

 # Find all the expiring carted items

 for item in db.product.find(

 {'carted.timestamp': {'$lt': threshold }}):

 # Find all the carted items that matched

 carted = dict(

98 | Chapter 5: Ecommerce

 (carted_item['cart_id'], carted_item)

 for carted_item in item['carted']

 if carted_item['timestamp'] < threshold)

 # First Pass: Find any carts that are active and refresh the carted

 # items

 for cart in db.cart.find(

 { '_id': {'$in': carted.keys() },

 'status':'active'}):

 cart = carted[cart['_id']]

 db.product.update(

 { '_id': item['_id'],

 'carted.cart_id': cart['_id'] },

 { '$set': {'carted.$.timestamp': now } })

 del carted[cart['_id']]

 # Second Pass: All the carted items left in the dict need to now be

 # returned to inventory

 for cart_id, carted_item in carted.items():

 db.product.update(

 { '_id': item['_id'],

 'carted.cart_id': cart_id },

 { '$inc': { 'qty': carted_item['qty'] },

 '$pull': { 'carted': { 'cart_id': cart_id } } })

Here, we’re visiting each SKU that has possibly expired carted entries one at a

time. This has the potential for being time-consuming, so the timeout value
should be chosen to keep the number of SKUs returned small. In particular, this

timeout value should be greater than the timeout value used when expiring carts.

Note that we’re once again using the positional $ to update only the carted item

we’re interested in. Also note that we’re not just updating the product document

in-memory and calling .save(), as that can lead to race conditions.

Here again we don’t call .save(), since the product’s quantity may have been
updated since this function started executing. Also note that we might end up

modifying the same product document multiple times (once for each possibly

expired carted entry). This is most likely not a problem, as we expect this code
to be executed extremely infrequently.

Here, the index we need is on carted.timestamp to make the initial find() run quickly:

>>> db.product.ensure_index('carted.timestamp')

Inventory Management | 99

Sharding Concerns
If you need to shard the data for this system, the _id field is a reasonable choice for

shard key since most updates use the _id field in their spec, allowing mongos to route

each update to a single mongod process. There are a couple of potential drawbacks with

using _id, however:

• If the cart collection’s _id is an increasing value such as an ObjectId(), all new carts
end up on a single shard.

• Cart expiration and inventory adjustment require update operations and queries

to broadcast to all shards when using _id as a shard key.

It’s possible to mitigate the first problem at least by using a pseudorandom value for _id
when creating a cart. A reasonable approach would be the following:

import hashlib

import bson

def new_cart():

 object_id = bson.ObjectId()

 cart_id = hashlib.md5(str(object_id)).hexdigest()

 return cart_id

We’re creating a bson.ObjectId() to get a unique value to use in our hash. Note

that since ObjectId uses the current timestamp as its most significant bits, it’s
not an appropriate choice for shard key.

Now we randomize the object_id, creating a string that is extremely likely to be
unique in our system.

To actually perform the sharding, we’d execute the following commands:

>>> db.command('shardcollection', 'dbname.inventory'

... 'key': { '_id': 1 })

{ "collectionsharded" : "dbname.inventory", "ok" : 1 }

>>> db.command('shardcollection', 'dbname.cart')

... 'key': { '_id': 1 })

{ "collectionsharded" : "dbname.cart", "ok" : 1 }

100 | Chapter 5: Ecommerce

CHAPTER 6

Content Management Systems

In this chapter, we’ll look at how you can use MongoDB as a data storage engine for a
content management system (CMS). In particular, we’ll examine two main areas of CMS
development. Our first use case, “Metadata and Asset Management” (page 101), deals with
how we can model our metadata (pages, blog posts, photos, videos) using MongoDB.

Our next use case, “Storing Comments” (page 111), explores several different approaches
to storing user comments in a CMS, along with the trade-offs for each approach.

Metadata and Asset Management
In any kind of a content management system, you need to decide on the basic objects
that the CMS will be managing. For this section, we’ve chosen to model our CMS on
the popular Drupal CMS. (Drupal does have a MongoDB plug-in, but we’ve chosen a
simpler implementation for the purposes of illustration in this section.) Here, we explore
how MongoDB can be used as a natural data model backend for such a CMS, focusing
on the storage of the major types of content in a CMS.

Solution Overview
To build this system, we’ll use MongoDB’s flexible schema to store all content “nodes”

in a single collection nodes regardless of type. This guide provides prototype schemas
and describes common operations for the following primary node types:

Basic page
Basic pages are useful for displaying infrequently changing text such as an About
page. With a basic page, the salient information is the title and the content.

Blog post
Blog posts are part of a “stream” of posts from users on the CMS, and store title,
author, content, and date as relevant information.

101

http://www.drupal.org

Photo
Photos participate in photo galleries, and store title, description, author, and date
along with the actual photo binary data.

Note that each type of node may participate in groups of nodes. In particular, a basic
page would be part of a folder on the site, a blog post would be part of a blog, and a photo
would be part of a gallery. This section won’t go into details about how we might group
these nodes together, nor will it address navigational structure.

Schema Design
Although documents in the nodes collection contain content of different types, all
documents have a similar structure and a set of common fields. Consider the following
prototype document for a “basic page” node type:

{ _id: ObjectId(...)),

 metadata: {

 nonce: ObjectId(...),

 type: 'basic-page'

 parent_id: ObjectId(...),

 slug: 'about',

 title: 'About Us',

 created: ISODate(...),

 author: { _id: ObjectId(…), name: 'Rick' },

 tags: [...],

 detail: { text: '# About Us\n...' }

 }

}

Most fields are descriptively titled. The parent_id field identifies groupings of items,

as in a photo gallery, or a particular blog. The slug field holds a URL-friendly unique
representation of the node, usually that is unique within its section for generating URLs.

All documents also have a detail field that varies with the document type. For the basic

page, the detail field might hold the text of the page. For a blog entry, the detail field
might hold a subdocument. Consider the following prototype for a blog entry:

{ ...

 metadata: {

 ...

 type: 'blog-entry',

 parent_id: ObjectId(...),

 slug: '2012-03-noticed-the-news',

 ...,

 detail: {

 publish_on: ISODate(…),

 text: 'I noticed the news from Washington today…'

 }

 }

}

102 | Chapter 6: Content Management Systems

Photos require a different approach. Because photos can be potentially large, it’s im‐
portant to separate the binary photo storage from the node’s metadata. GridFS provides
the ability to store larger files in MongoDB.

GridFS

GridFS is actually a convention, implemented in the client, for storing large blobs of
binary data in MongoDB. MongoDB documents are limited in size to (currently) 16
MB. This means that if your blob of data is larger than 16 MB, or might be larger than
16 MB, you need to split the data over multiple documents.

This is just what GridFS does. In GridFS, each blob is represented by:

• One document that contains metadata about the blob (filename, md5 checksum,
MIME type, etc.), and

• One or more documents containing the actual contents of the blob, broken into
256 kB “chunks.”

While GridFS is not optimized in the same way as a traditional distributed filesystem,
it is often more convenient to use. In particular, it’s convenient to use GridFS:

• For storing large binary objects directly in the database, as in the photo album
example, or

• For storing file-like data where you need something like a distributed filesystem but
you don’t want to actually set up a distributed filesystem.

As always, it’s best to test with your own data to see if GridFS is a good fit for you.

GridFS stores data in two collections—in this case, cms.assets.files, which stores

metadata, and cms.assets.chunks, which stores the data itself. Consider the following

prototype document from the cms.assets.files collection:

{ _id: ObjectId(…),

 length: 123...,

 chunkSize: 262144,

 uploadDate: ISODate(…),

 contentType: 'image/jpeg',

 md5: 'ba49a...',

 metadata: {

 nonce: ObjectId(…),

 slug: '2012-03-invisible-bicycle',

 type: 'photo',

 locked: ISODate(...),

 parent_id: ObjectId(...),

 title: 'Kitteh',

 created: ISODate(…),

 author: { _id: ObjectId(…), name: 'Jared' },

 tags: […],

Metadata and Asset Management | 103

 detail: {

 filename: 'kitteh_invisible_bike.jpg',

 resolution: [1600, 1600], … }

 }

}

Note that in this example, most of our document looks exactly the same as a basic page
document. This helps to facilitate querying nodes, allowing us to use the same code for
either a photo or a basic page. This is facilitated by the fact that GridFS reserves the

metadata field for user-defined data.

Operations
This section outlines a number of common operations for building and interacting with
the metadata and asset layer of the CMS for all node types. All examples in this document
use the Python programming language, but of course you can implement this system
using any language you choose.

Create and edit content nodes

The most common operations inside of a CMS center on creating and editing content.

Consider the following insert operation:

db.cms.nodes.insert({

 'metadata': {

 'nonce': ObjectId(),

 'parent_id': ObjectId(...),

 'slug': '2012-03-noticed-the-news',

 'type': 'blog-entry',

 'title': 'Noticed in the News',

 'created': datetime.utcnow(),

 'author': { 'id': user_id, 'name': 'Rick' },

 'tags': ['news', 'musings'],

 'detail': {

 'publish_on': datetime.utcnow(),

 'text': 'I noticed the news from Washington today…' }

 }

 })

One field that we’ve used but not yet explained is the nonce field. A nonce is a value that
is designed to be only used once. In our CMS, we’ve used a nonce to mark each node
when it is inserted or updated. This helps us to detect problems where two users might
be modifying the same node simultaneously. Suppose, for example, that Alice and Bob
both decide to update the About page for their CMS, and the sequence goes something
like this (Figure 6-1):

104 | Chapter 6: Content Management Systems

1. Alice saves her changes. The page refreshes, and she sees her new version.

2. Bob then saves his changes. The page refreshes, and he sees his new version.

3. Alice and Bob both refresh the page. Both of them see Bob’s version. Alice’s version
has been lost, and Bob didn’t even know he was overwriting it!

Figure 6-1. Alice and Bob edit collision

A nonce can fix this problem by ensuring that updates to a node only succeed when
you’re updating the same version of the document that you’re editing, as shown in
Figure 6-2.

Metadata and Asset Management | 105

Figure 6-2. Alice and Bob edit collision detected

By using our nonce field, we can detect editing collisions and give the user the oppor‐
tunity to resolve them. Our update operation for a content node, then, looks something
like the following:

def update_text(parent_id, slug, nonce, text):

 result = db.cms.nodes.update(

 { 'metadata.parent_id': parent_id,

 'metadata.slug': slug,

 'metadata.nonce': nonce },

 { '$set':{'metadata.detail.text': text,

 'metadata.nonce': ObjectId() } },

 safe=True)

 if not result['updatedExisting']:

 raise ConflictError()

Here, we use safe mode to let MongoDB tell us whether it found a document to

update or not. By including the nonce in the query, we ensure that the document

will only be updated if it has not been modified since we loaded the nonce (which
may have been a different web request).

Here, we simply raise an exception. More advanced approaches might keep a
history of the document and show differences, allowing the user to resolve them
manually.

We might also want to perform metadata edits to the item such as adding tags:

106 | Chapter 6: Content Management Systems

db.cms.nodes.update(

 { 'metadata.parent_id': parent_id, 'metadata.slug': slug },

 { '$addToSet': { 'tags': { '$each': ['interesting', 'funny'] } } })

In this example, the $addToSet operator will only add values to the tags field if they do

not already exist in the tags array; there’s no need to supply or update the nonce.

To support updates and queries on the metadata.parent_id and metadata.slug fields
and to ensure that two editors don’t create two documents with the same parent or slug,
we can create a unique index on these two fields:

>>> db.cms.nodes.ensure_index([

... ('metadata.parent_id', 1), ('metadata.slug', 1)], unique=True)

Upload a photo

Uploading photos to our CMS requires some extra attention, as the amount of data to
be transferred can be substantially higher than for a “normal” content node. This led to
our decision to use GridFS for the storage of photos. Furthermore, we would rather not
load the entire photo’s data into memory at once, so the following code “streams” data

through to MongoDB, one chunk at a time:

def upload_new_photo(

 input_file, parent_id, slug, title, author, tags, details):

 fs = GridFS(db, 'cms.assets')

 now = datetime.utcnow()

 with fs.new_file(

 content_type='image/jpeg',

 metadata=dict(

 nonce=bson.ObjectId(),

 type='photo',

 locked=now,

 parent_id=parent_id,

 slug=slug,

 title=title,

 created=now,

 author=author,

 tags=tags,

 detail=detail)) as upload_file:

 while True:

 chunk = input_file.read(upload_file.chunk_size)

 if not chunk: break

 upload_file.write(chunk)

 # unlock the file

 db.assets.files.update(

 {'_id': upload_file._id},

 {'$set': { 'locked': None } })

Though most of our photo information goes into the metadata field, the MIME
content type is one of the supported fields at the “top level” of GridFS files.

Metadata and Asset Management | 107

When creating a photo, we set a locked value to indicate when the upload started.
This helps us detect stalled uploads and conflicting updates later.

Since we’re storing files in GridFS in chunks of chunk_size, we read them from
the client using the same buffer size.

Finally, we unlock the record, signifying that the upload is completed.

Because uploading the photo spans multiple documents and is a nonatomic operation,

we “lock” the file during upload by writing the current datetime in the record. The

following code shows how the locked field is used to manage updates to the photo
content:

def update_photo_content(input_file, parent_id, slug):

 fs = GridFS(db, 'cms.assets')

 # Delete the old version if it's unlocked or was locked more than 5

 # minutes ago

 file_obj = db.cms.assets.find_one(

 { 'metadata.parent_id': parent_id,

 'metadata.slug': slug,

 'metadata.locked': None })

 if file_obj is None:

 threshold = datetime.utcnow() - timedelta(seconds=300)

 file_obj = db.cms.assets.find_one(

 { 'metadata.parent_id': parent_id,

 'metadata.slug': slug,

 'metadata.locked': { '$lt': threshold } })

 if file_obj is None: raise FileDoesNotExist()

 fs.delete(file_obj['_id'])

 # update content, keep metadata unchanged

 file_obj['locked'] = datetime.utcnow()

 with fs.new_file(**file_obj):

 while True:

 chunk = input_file.read(upload_file.chunk_size)

 if not chunk: break

 upload_file.write(chunk)

 # unlock the file

 db.assets.files.update(

 {'_id': upload_file._id},

 {'$set': { 'locked': None } })

Note that we need to invoke the delete method on the GridFS rather than just

use our normal remove MongoDB functionality. This is because we need to make

sure that both the document in cms.assets.files is removed and the

corresponding chunks in cms.assets.chunks.

108 | Chapter 6: Content Management Systems

As with the basic operations, editing tags is almost trivial:

db.cms.assets.files.update(

 { 'metadata.parent_id': parent_id, 'metadata.slug': slug },

 { '$addToSet': { 'metadata.tags': { '$each': ['interesting', 'funny']}}})

Since our queries tend to use both metadata.parent_id and metadata.slug, a unique
index on this combination is sufficient to get good performance:

>>> db.cms.assets.files.ensure_index([

... ('metadata.parent_id', 1), ('metadata.slug', 1)], unique=True)

Locate and render a node

To locate a “normal” node based on the value of metadata.parent_id and metada

ta.slug, we can use the find_one operation rather than find:

node = db.nodes.find_one({'metadata.parent_id': parent_id,

 'metadata.slug': slug })

To locate an image based on the value of metadata.parent_id and metadata.slug, we

use the GridFS method get_version:

code,sourceCode,python

fs = GridFS(db, 'cms.assets')

with fs.get_version({'metadata.parent_id': parent_id, 'metadata.slug': slug })

 as img_fpo:

 # do something with the image file

Search for nodes by tag

To retrieve a list of “normal” nodes based on their tags, the query is straightforward:

nodes = db.nodes.find({'metadata.tags': tag })

To retrieve a list of images based on their tags, we’ll perform a search on cms.as

sets.files directly:

image_file_objects = db.cms.assets.files.find({'metadata.tags': tag })

fs = GridFS(db, 'cms.assets')

for image_file_object in db.cms.assets.files.find(

 {'metadata.tags': tag }):

 image_file = fs.get(image_file_object['_id'])

 # do something with the image file

In order to make these queries perform well, of course, we need an index on

metadata.tags:

>>> db.cms.nodes.ensure_index('metadata.tags')

>>> db.cms.assets.files.ensure_index('metadata.tags')

Metadata and Asset Management | 109

Generate a feed of recently published blog articles

One common operation in a blog is to find the most recently published blog post, sorted
in descending order by date, for use on the index page of the site, or in an RSS or ATOM
feed:

articles = db.nodes.find({

 'metadata.parent_id': 'my-blog'

 'metadata.published': { '$lt': datetime.utcnow() } })

articles = articles.sort({'metadata.published': -1})

Since we’re now searching on parent_id and published, we need an index on these
fields:

>>> db.cms.nodes.ensure_index(

... [('metadata.parent_id', 1), ('metadata.published', -1)])

Sharding Concerns
In a CMS, read performance is more critical than write performance. To achieve the

best read performance in a shard cluster, we need to ensure that mongos can route queries
to their particular shards.

Keep in mind that MongoDB cannot enforce unique indexes across
shards. There is, however, one exception to this rule. If the unique index
is the shard key itself, MongoDB can continue to enforce uniqueness

in the index. Since we’ve been using the compound key (metadata.par

ent_id, metadata.slug) as a unique index, and we have relied on this
index for correctness, we need to be sure to use it as our shard key.

To shard our node collections, we can use the following commands:

>>> db.command('shardcollection', 'dbname.cms.nodes', {

... key : { 'metadata.parent_id': 1, 'metadata.slug' : 1 } })

{ "collectionsharded": "dbname.cms.nodes", "ok": 1}

>>> db.command('shardcollection', 'dbname.cms.assets.files', {

... key : { 'metadata.parent_id': 1, 'metadata.slug' : 1 } })

{ "collectionsharded": "dbname.cms.assets.files", "ok": 1}

To shard the cms.assets.chunks collection, we need to use the files_id field as the
shard key. The following operation will shard the collection (note that we have appended

the _id field to guard against an enormous photo being unsplittable across chunks):

>>> db.command('shardcollection', 'dbname.cms.assets.chunks', {

... key : { 'files_id': 1, '_id': 1 } })

{ "collectionsharded": "dbname.cms.assets.chunks", "ok": 1}

110 | Chapter 6: Content Management Systems

Note that sharding on the _id field ensures routable queries because all reads from

GridFS must first look up the document in cms.assets.files and then look up the

chunks separately by files_id.

Storing Comments
Most content management systems include the ability to store and display user-
submitted comments along with any of the normal content nodes. This section outlines
the basic patterns for storing user-submitted comments in such a CMS.

Solution Overview
MongoDB provides a number of different approaches for storing data like user com‐
ments on content from a CMS. There is no one correct implementation, but rather a
number of common approaches and known considerations for each approach. This
section explores the implementation details and trade-offs of each option. The three
basic patterns are:

Store each comment in its own document
This approach provides the greatest flexibility at the expense of some additional
application-level complexity. For instance, in a comment-per-document approach,
it is possible to display comments in either chronological or threaded order. Fur‐
thermore, it is not necessary in this approach to place any arbitrary limit on the
number of comments that can be attached to a particular object.

Embed all comments in the “parent” document
This approach provides the greatest possible performance for displaying comments
at the expense of flexibility: the structure of the comments in the document controls
the display format. (You can, of course, re-sort the comments on the client side, but
this requires extra work on the application side.) The number of comments, how‐
ever, is strictly limited by MongoDB’s document size limit.

Store comments separately from the “parent,” but grouped together with each other
This hybrid design provides more flexibility than the pure embedding approach,
but provides almost the same performance.

Also consider that comments can be threaded, where comments are always replies to a
“parent” item or to another comment, which carries certain architectural requirements
discussed next.

Approach: One Document per Comment
If we wish to store each comment in its own document, the documents in our com

ments collection would have the following structure:

Storing Comments | 111

{

 _id: ObjectId(...),

 node_id: ObjectId(...),

 slug: '34db',

 posted: ISODateTime(...),

 author: {

 id: ObjectId(...),

 name: 'Rick'

 },

 text: 'This is so bogus ... '

}

This form is only suitable for displaying comments in chronological order. Comments
store the following:

• The node_id field that references the node parent

• A URL-compatible slug identifier

• A posted timestamp

• An author subdocument that contains a reference to a user’s profile in the id field

and their name in the name field

• The full text of the comment

In order to support threaded comments, we need to use a slightly different structure:

{

 _id: ObjectId(...),

 node_id: ObjectId(...),

 parent_id: ObjectId(...),

 slug: '34db/8bda'

 full_slug: '2012.02.08.12.21.08:34db/2012.02.09.22.19.16:8bda',

 posted: ISODateTime(...),

 author: {

 id: ObjectId(...),

 name: 'Rick'

 },

 text: 'This is so bogus ... '

}

This structure:

• Adds a parent_id field that stores the contents of the _id field of the parent com‐
ment

• Modifies the slug field to hold a path composed of the parent or parent’s slug and
this comment’s unique slug

• Adds a full_slug field that combines the slugs and time information to make it
easier to sort documents in a threaded discussion by date

112 | Chapter 6: Content Management Systems

Operation: Post a new comment

To post a new comment in a chronologically ordered (i.e., without discussion threading)

system, we just need to use a regular insert():

slug = generate_pseudorandom_slug()

db.comments.insert({

 'node_id': node_id,

 'slug': slug,

 'posted': datetime.utcnow(),

 'author': author_info,

 'text': comment_text })

To insert a comment for a system with threaded comments, we first need to generate

the appropriate slug and full_slug values based on the parent comment:

posted = datetime.utcnow()

generate the unique portions of the slug and full_slug

slug_part = generate_pseudorandom_slug()

full_slug_part = posted.strftime('%Y.%m.%d.%H.%M.%S') + ':' + slug_part

load the parent comment (if any)

if parent_slug:

 parent = db.comments.find_one(

 {'node_id': node_id, 'slug': parent_slug })

 slug = parent['slug'] + '/' + slug_part

 full_slug = parent['full_slug'] + '/' + full_slug_part

else:

 slug = slug_part

 full_slug = full_slug_part

actually insert the comment

db.comments.insert({

 'node_id': node_id,

 'slug': slug,

 'full_slug': full_slug,

 'posted': posted,

 'author': author_info,

 'text': comment_text })

Operation: View paginated comments

To view comments that are not threaded, we just need to select all comments partici‐

pating in a discussion and sort by the posted field. For example:

cursor = db.comments.find({'node_id': node_id})

cursor = cursor.sort('posted')

cursor = cursor.skip(page_num * page_size)

cursor = cursor.limit(page_size)

Storing Comments | 113

Since the full_slug field contains both hierarchical information (via the path) and

chronological information, we can use a simple sort on the full_slug field to retrieve
a threaded view:

cursor = db.comments.find({'node_id': node_id})

cursor = cursor.sort('full_slug')

cursor = cursor.skip(page_num * page_size)

cursor = cursor.limit(page_size)

To support these queries efficiently, maintain two compound indexes on node_id, pos

ted and node_id, full_slug:

>>> db.comments.ensure_index([

... ('node_id', 1), ('posted', 1)])

>>> db.comments.ensure_index([

... ('node_id', 1), ('full_slug', 1)])

Operation: Retrieve comments via direct links

To directly retrieve a comment, without needing to page through all comments, we can

select by the slug field:

comment = db.comments.find_one({

 'node_id': node_id,

 'slug': comment_slug})

We can also retrieve a “subdiscussion,” or a comment and all of its descendants recur‐

sively, by performing a regular expression prefix query on the full_slug field:

import re

subdiscussion = db.comments.find_one({

 'node_id': node_id,

 'full_slug': re.compile('^' + re.escape(parent_full_slug)) })

subdiscussion = subdiscussion.sort('full_slug')

Since we’ve already created indexes on { node_id: 1, full_slug: 1 } to support
retrieving subdiscussions, we don’t need to add any other indexes here to achieve good
performance.

Approach: Embedding All Comments
This design embeds the entire discussion of a comment thread inside of its parent node
document.

Consider the following prototype topic document:

{ _id: ObjectId(...),

 ...,

 metadata: {

 ...

 comments: [

114 | Chapter 6: Content Management Systems

 { posted: ISODateTime(...),

 author: { id: ObjectId(...), name: 'Rick' },

 text: 'This is so bogus ... ' },

 ...],

 }

}

This structure is only suitable for a chronological display of all comments because it

embeds comments in chronological order. Each document in the array in the com

ments contains the comment’s date, author, and text.

To support threading using this design, we would need to embed comments within
comments, using a structure more like the following:

{ _id: ObjectId(...),

 ... lots of topic data ...

 metadata: {

 ...,

 replies: [

 { posted: ISODateTime(...),

 author: { id: ObjectId(...), name: 'Rick' },

 text: 'This is so bogus ... ',

 replies: [

 { author: { ... }, ... },

 ...]

 }

 ...]

 }

}

Here, the replies field in each comment holds the subcomments, which can in turn
hold subcomments.

Operation: Post a new comment

To post a new comment in a chronologically ordered (i.e., unthreaded) system, we need

the following update:

db.cms.nodes.update(

 { ... node specification ... },

 { '$push': { 'metadata.comments': {

 'posted': datetime.utcnow(),

 'author': author_info,

 'text': comment_text } } })

The $push operator inserts comments into the comments array in correct chronological
order. For threaded discussions, the update operation is more complex. To reply to a
comment, the following code assumes that it can retrieve the path as a list of positions,
for the parent comment:

if path != []:

 str_path = '.'.join('replies.%d' % part for part in path)

Storing Comments | 115

 str_path += '.replies'

else:

 str_path = 'replies'

db.cms.nodes.update(

 { ... node specification ... },

 { '$push': {

 'metadata.' + str_path: {

 'posted': datetime.utcnow(),

 'author': author_info,

 'text': comment_text } } })

This constructs a field name of the form metadata.replies.0.replies.2... as

str_path and then uses this value with the $push operator to insert the new comment

into the replies array.

Operation: View paginated comments

To view the comments in a nonthreaded design, we need to use the $slice operator:

node = db.cms.nodes.find_one(

 { ... node specification ... },

 { ... some fields relevant to your page from the root discussion ...,

 'metadata.comments': { '$slice': [page_num * page_size, page_size] }

 })

To return paginated comments for the threaded design, we must retrieve the whole
document and paginate the comments within the application:

node = db.cms.nodes.find_one(... node specification ...)

def iter_comments(obj):

 for reply in obj['replies']:

 yield reply

 for subreply in iter_comments(reply):

 yield subreply

paginated_comments = itertools.slice(

 iter_comments(node),

 page_size * page_num,

 page_size * (page_num + 1))

Operation: Retrieve a comment via direct links

Instead of retrieving comments via slugs as in “Approach: One Document per Com‐
ment” (page 111), the following example retrieves comments using their position in the
comment list or tree. For chronological (i.e., nonthreaded) comments, we’ll just use the

$slice operator to extract a single comment, as follows:

node = db.cms.nodes.find_one(

 {'node_id': node_id},

 {'comments': { '$slice': [position, position] } })

comment = node['comments'][0]

116 | Chapter 6: Content Management Systems

For threaded comments, we must know the correct path through the tree in our appli‐
cation, as follows:

node = db.cms.nodes.find_one(... node specification ...)

current = node.metadata

for part in path:

 current = current.replies[part]

comment = current

Approach: Hybrid Schema Design
In the “hybrid approach,” we store comments in “buckets” that hold about 100 com‐
ments. Consider the following example document:

{ _id: ObjectId(...),

 node_id: ObjectId(...),

 page: 1,

 count: 42,

 comments: [{

 slug: '34db',

 posted: ISODateTime(...),

 author: { id: ObjectId(...), name: 'Rick' },

 text: 'This is so bogus ... ' },

 ...]

}

Each document maintains page and count data that contains metadata regarding the

page number and the comment count in this page, in addition to the comments array
that holds the comments themselves.

Operation: Post a new comment

In order to post a new comment, we need to $push the comment onto the last page and

$inc that page’s comment count. Consider the following example that adds a comment

onto the last page of comments for some node:

def post_comment(node, comment):

 result = db.comment_pages.update(

 { 'node_id': node['_id'],

 'page': node['num_comment_pages'],

 'count': { '$lt': 100 } },

 { '$inc': { 'count': 1 },

 '$push': { 'comments': comment } },

 upsert=True)

 if not result['updatedExisting']:

 db.cms.nodes.update(

 { '_id': node['_id'],

 'num_comment_pages': node['num_comment_pages'] },

 { '$inc': { 'num_comment_pages': 1 } })

 db.comment_pages.update(

Storing Comments | 117

 { 'node_id': node['_id'],

 'page': node['num_comment_pages'] + 1},

 { '$inc': { 'count': 1 },

 '$push': { 'comments': comment } },

 upsert=True)

There are a few things to note about this code:

The first update will only $push a comment if the page is not yet full.

If the last comment page is full, we need to increment the num_comment_pages
property in the node (so long as some other process has not already incremented
that property).

We also need to re-run the update to $push the comment onto the newly created

comment page. Here, we’ve dropped the count constraint to make sure the $push
goes through. (While it’s technically possible that 100 other concurrent writers
were adding comments and the new page is already full, it’s highly unlikely, and
the application works just fine if there happen to be 101 comments on a page.)

To support the update operations, we need to maintain a compound index on node_id,

page in the comment_pages collection:

>>> db.comment_pages.ensure_index([

... ('node_id', 1), ('page', 1)])

Operation: View paginated comments

The following function defines how to paginate comments where the number of com‐
ments on a page is not known precisely (i.e., with roughly 100 comments, as in this case):

def find_comments(discussion_id, skip, limit):

 query = db.comment_pages.find(

 { 'node_id': node_id })

 query = query.sort('page')

 for page in query:

 new_skip = skip - page['count']

 if new_skip >= 0:

 skip = new_skip

 continue

 elif skip > 0:

 comments = page['comments'][skip:]

 else:

 comments = page['comments']

 skip = new_skip

 for comment in comments:

 if limit == 0:

 break

 limit -= 1

 yield comment

 if limit == 0: break

118 | Chapter 6: Content Management Systems

Here, we iterate through the pages until our skip requirement is satisfied, then yield

comments until our limit requirement is satisfied. For example, if we have three pages
of comments with 100, 102, 101, and 22 comments on each page, and we wish to retrieve

comments where skip=300 and limit=50, we’d use the following algorithm:

Skip Limit Discussion

300 50 Page 0 has 100 comments, so skip -= 100.

200 50 Page 1 has 102 comments, so skip -= 102.

98 50 Page 2 has 101 comments, so set skip=0 and return last 3 comments.

0 47 Page 3 has 22 comments, so return them all and set limit-= 22.

0 25 There are no more pages; terminate loop.

Operation: Retrieve a comment via direct links

To retrieve a comment directly without paging through all preceding pages of com‐
mentary, we’ll use the slug to find the correct page, and then use application logic to
find the correct comment:

page = db.comment_pages.find_one(

 { 'node_id': node_id,

 'comments.slug': comment_slug},

 { 'comments': 1 })

for comment in page['comments']:

 if comment['slug'] = comment_slug:

 break

To perform this query efficiently, we’ll need a new index on node_id, com

ments.slug (this is assuming that slugs are only guaranteed unique within a node):

>>> db.comment_pages.ensure_index([

... ('node_id', 1), ('comments.slug', 1)])

Sharding Concerns
For all of the architectures just discussed, we will want the node_id field to participate
in any shard key we pick.

For applications that use the “one document per comment” approach, we’ll use the slug

(or full_slug, in the case of threaded comments) fields in the shard key to allow the

mongos instances to route requests by slug:

>>> db.command('shardcollection', 'dbname.comments', {

... 'key' : { 'node_id' : 1, 'slug': 1 } })

{ "collectionsharded" : "dbname.comments", "ok" : 1 }

In the case of comments that are fully embedded in parent content, the comments will
just participate in the sharding of their parent document.

Storing Comments | 119

For hybrid documents, we can use the page number of the comment page in the shard

key along with the node_id to prevent a single discussion from creating a giant, un‐
splittable chunk of comments. The appropriate command for this is as follows:

>>> db.command('shardcollection', 'dbname.comment_pages', {

... key : { 'node_id' : 1, 'page': 1 } })

{ "collectionsharded" : "dbname.comment_pages", "ok" : 1 }

120 | Chapter 6: Content Management Systems

CHAPTER 7

Online Advertising Networks

In this chapter, we’ll examine building an online advertising network that connects
advertisers and media websites. Advertisers provide the ads for display, with each ad
designed for a particular ad zone. Media sites, on the other hand, provide content pages
for display with various regions marked for serving ads. When the media site displays
a page, it makes a request to the ad network for one or more ads to display in its ad
zones.

As part of the ad serving, the ad network records the number of pageviews of each ad
in order to track statistics for the ad, which may then also be used to bill the advertiser.

Solution Overview
This solution is structured as a progressive refinement of the ad network, starting out
with the basic data storage requirements and adding more advanced features to the
schema to support more advanced ad targeting. The key performance criterion for this
solution is the latency between receiving an ad request and returning the (targeted) ad
to be displayed.

Design 1: Basic Ad Serving
A basic ad-serving algorithm consists of the following steps:

1. The network receives a request for an ad, specifying at a minimum the site_id and

zone_id to be served.

2. The network consults its inventory of ads available to display and chooses an ad
based on various business rules.

121

3. The network returns the actual ad to be displayed, recording the pageview for the
ad as well.

This design uses the site_id and zone_id submitted with the ad request, as well as
information stored in the ad inventory collection, to make the ad targeting decisions.
Later examples will build on this, allowing more advanced ad targeting.

Schema Design
A very basic schema for storing ads available to be served consists of a single collection,

ad.zone:

{

 _id: ObjectId(...),

 site_id: 'cnn',

 zone_id: 'banner',

 ads: [

 { campaign_id: 'mercedes:c201204_sclass_4',

 ad_unit_id: 'banner23a',

 ecpm: 250 },

 { campaign_id: 'mercedes:c201204_sclass_4',

 ad_unit_id: 'banner23b',

 ecpm: 250 },

 { campaign_id: 'bmw:c201204_eclass_1',

 ad_unit_id: 'banner12',

 ecpm: 200 },

 ...]

}

Note that for each site-zone combination you’ll be storing a list of ads, sorted by their
eCPM values.

eCPM, CPM, CPC, CTR, etc.
The world of online advertising is full of somewhat cryptic acronyms.
Most of the decisions made by the ad network in this chapter will be
based on the eCPM, or effective cost per mille. This is a synthetic meas‐
ure meant to allow comparison between CPM (cost per mille) ads,
which are priced based on the number of impressions, and CPC (cost
per click) ads, which are priced per click.

The eCPM of a CPM ad is just the CPM. Calculating the eCPM of a
CPC ad is fairly straightforward, based on the CTR (click-through rate),
which is defined as the number of clicks per ad impression. The formula
for eCPM for a CPC ad then is:

eCPM = CPC × CTR × 1000

In this chapter, we’ll assume that the eCPM is already known for each
ad, though you’ll obviously need to calculate it in a real ad network.

122 | Chapter 7: Online Advertising Networks

Operation: Choose an Ad to Serve
The query we’ll use to choose which ad to serve selects a compatible ad and sorts by the

advertiser’s ecpm bid in order to maximize the ad network’s profits:

from itertools import groupby

from random import choice

def choose_ad(site_id, zone_id):

 site = db.ad.zone.find_one({

 'site_id': site_id, 'zone_id': zone_id})

 if site is None: return None

 if len(site['ads']) == 0: return None

 ecpm_groups = groupby(site['ads'], key=lambda ad:ad['ecpm'])

 ecpm, ad_group = ecpm_groups.next()

 return choice(list(ad_group))

First, we find a compatible site and zone for the ad request.

Next, we group the ads based on their eCPM. This step requires that the ads
already be sorted by descending eCPM.

Finally, we randomly select an ad from the most expensive ad group.

In order to execute the ad choice with the lowest latency possible, we need to maintain

a compound index on site_id, zone_id:

>>> db.ad.zone.ensure_index([

... ('site_id', 1),

... ('zone_id', 1)])

Operation: Make an Ad Campaign Inactive
One case we need to deal with is making a campaign inactive. This may happen for a
variety of reasons. For instance, the campaign may have reached its end date or ex‐
hausted its budget for the current time period. In this case, the logic is fairly straight‐
forward:

def deactivate_campaign(campaign_id):

 db.ad.zone.update(

 { 'ads.campaign_id': campaign_id },

 {' $pull': { 'ads', { 'campaign_id': campaign_id } } },

 multi=True)

This update statement first selects only those ad zones that had available ads from the

given campaign_id and then uses the $pull modifier to remove them from rotation.

To execute the multiupdate quickly, we’ll keep an index on the ads.campaign_id field:

>>> db.ad.zone.ensure_index('ads.campaign_id')

Design 1: Basic Ad Serving | 123

Sharding Concerns
In order to scale beyond the capacity of a single replica set, you will need to shard the

ad.zone collection. To maintain the lowest possible latency (and the highest possible
throughput) in the ad selection operation, the shard key needs to be chosen to allow

MongoDB to route the ad.zone query to a single shard. In this case, a good approach

is to shard on the site_id, zone_id combination:

>>> db.command('shardcollection', 'dbname.ads.ad.zone', {

... 'key': {'site_id': 1, 'zone_id': 1} })

{ "collectionsharded": "dbname.ads.ad.zone", "ok": 1 }

Design 2: Adding Frequency Capping
One problem with the logic described in “Design 1: Basic Ad Serving” (page 121) is that
it will tend to display the same ad over and over again until the campaign’s budget is
exhausted. To mitigate this, advertisers may wish to limit the frequency with which a
given user is presented a particular ad. This process is called frequency capping and is
an example of user profile targeting in advertising.

In order to perform frequency capping (or any type of user targeting), the ad network
needs to maintain a profile for each visitor, typically implemented as a cookie in the

user’s browser. This cookie, effectively a user_id, is then transmitted to the ad network
when logging impressions, clicks, conversions, etc., as well as the ad-serving decision.
This section focuses on how that profile data impacts the ad-serving decision.

Schema Design
In order to use the user profile data, we need to store it. In this case, it’s stored in a

collection ad.user:

{

 _id: 'cookie_value',

 advertisers: {

 mercedes: {

 impressions: [

 { date: ISODateTime(...),

 campaign: 'c201204_sclass_4',

 ad_unit_id: 'banner23a',

 site_id: 'cnn',

 zone_id: 'banner' } },

 ...],

 clicks: [

 { date: ISODateTime(...),

 campaign: 'c201204_sclass_4',

 ad_unit_id: 'banner23a',

 site_id: 'cnn',

 zone_id: 'banner' } },

124 | Chapter 7: Online Advertising Networks

 ...],

 bmw: [...],

 ...

 }

}

There are a few things to note about the user profile:

• All data is embedded in a single profile document. When you need to query this
data (detailed next), you don’t necessarily know which advertiser’s ads you’ll be
showing, so it’s a good practice to embed all advertisers in a single document.

• The event information is grouped by event type within an advertiser, and sorted by
timestamp. This allows rapid lookups of a stream of a particular type of event.

Operation: Choose an Ad to Serve
The query we’ll use to choose which ad to serve now needs to iterate through ads in
order of profitability and select the “best” ad that also satisfies the advertiser’s targeting
rules (in this case, the frequency cap):

from itertools import groupby

from random import shuffle

from datetime import datetime, timedelta

def choose_ad(site_id, zone_id, user_id):

 site = db.ad.zone.find_one({

 'site_id': site_id, 'zone_id': zone_id})

 if site is None or len(site['ads']) == 0: return None

 ads = ad_iterator(site['ads'])

 user = db.ad.user.find_one({'user_id': user_id})

 if user is None:

 # any ad is acceptable for an unknown user

 return ads.next()

 for ad in ads:

 advertiser_id = ad['campaign_id'].split(':', 1)[0]

 if ad_is_acceptable(ad, user[advertiser_id]):

 return ad

 return None

Here we once again find all ads that are targeted to that particular site and ad
zone.

Next, we have factored out a Python generator that will iterate through all the ads
in order of profitability.

Now we load the user profile for the given user. If there is no profile, we return
the first ad in the iterator.

Design 2: Adding Frequency Capping | 125

Finally, we iterate through each of the ads and check it using the ad_is_accept

able function.

Here’s our ad_iterator generator:

def ad_iterator(ads):

 '''Find available ads, sorted by ecpm, with random sort for ties'''

 ecpm_groups = groupby(ads, key=lambda ad:ad['ecpm'])

 for ecpm, ad_group in ecpm_groups:

 ad_group = list(ad_group)

 shuffle(ad_group)

 for ad in ad_group: yield ad

This generator yields the ads in an order that both maximizes profitability and randomly

shuffles ads of the same eCPM. Finally, here’s our ad filter ad_is_acceptable:

def ad_is_acceptable(ad, profile):

 '''Returns False if the user has seen the ad today'''

 threshold = datetime.utcnow() - timedelta(days=1)

 for event in reversed(profile['impressions']):

 if event['timestamp'] < threshold: break

 if event['detail']['ad_unit_id'] == ad['ad_unit_id']:

 return False

 return True

This function examines all the user’s ad impressions for the current day and rejects an
ad that has been displayed to that user.

In order to retrieve the user profile with the lowest latency possible, there needs to be

an index on the _id field, which MongoDB supplies by default.

Sharding
When sharding the ad.user collection, choosing the _id field as a shard key allows
MongoDB to route queries and updates to the user profile:

>>> db.command('shardcollection', 'dbname.ads.ad.user', {

... 'key': {'_id': 1 } })

{ "collectionsharded": "dbname.ads.ad.user", "ok": 1 }

Design 3: Keyword Targeting
Where frequency capping in the previous section is an example of user profile targeting,
you may also wish to perform content targeting so that the user receives relevant ads
for the particular page being viewed. The simplest example of this is targeting ads at the

result of a search query. In this case, a list of keywords is sent to the choose_ad() call

along with the site_id, zone_id, and user_id.

126 | Chapter 7: Online Advertising Networks

Schema Design
In order to choose relevant ads, we’ll need to expand the ad.zone collection to store
relevant keywords for each ad:

{

 _id: ObjectId(...),

 site_id: 'cnn',

 zone_id: 'search',

 ads: [

 { campaign_id: 'mercedes:c201204_sclass_4',

 ad_unit_id: 'search1',

 keywords: ['car', 'luxury', 'style'],

 ecpm: 250 },

 { campaign_id: 'mercedes:c201204_sclass_4',

 ad_unit_id: 'search2',

 keywords: ['car', 'luxury', 'style'],

 ecpm: 250 },

 { campaign_id: 'bmw:c201204_eclass_1',

 ad_unit_id: 'search1',

 keywords: ['car', 'performance'],

 ecpm: 200 },

 ...]

}

Operation: Choose a Group of Ads to Serve
In the approach described here, we’ll choose a number of ads that match the keywords
used in the search, so the following code has been tweaked to return an iterator over

ads in descending order of preference. We’ve also modified the ad_iterator to take the
list of keywords as a second parameter:

def choose_ads(site_id, zone_id, user_id, keywords):

 site = db.ad.zone.find_one({

 'site_id': site_id, 'zone_id': zone_id})

 if site is None: return []

 ads = ad_iterator(site['ads'], keywords)

 user = db.ad.user.find_one({'user_id': user_id})

 if user is None: return ads

 for ad in ads:

 advertiser_id = ad['campaign_id'].split(':', 1)[0]

 if ad_is_acceptable(ad, user[advertiser_id]):

 yield ad

 return None

Our ad_iterator method has been modified to allow us to score ads based on both
their eCPM as well as their relevance:

def ad_iterator(ads, keywords):

 '''Find available ads, sorted by score, with random sort for ties'''

 keywords = set(keywords)

 scored_ads = [

Design 3: Keyword Targeting | 127

 (ad_score(ad, keywords), ad) for ad in ads]

 score_groups = groupby(

 sorted(scored_ads), key=lambda score, ad: score)

 for score, ad_group in score_groups:

 ad_group = list(ad_group)

 shuffle(ad_group)

 for ad in ad_group: yield ad

def ad_score(ad, keywords):

 '''Compute a desirability score based on the ad eCPM and keywords'''

 matching = set(ad['keywords']).intersection(keywords) return

 ad['ecpm'] * math.log(1.1 + len(matching))

def ad_is_acceptible(ad, profile):

 # same as above

The main thing to note in the preceding code is that ads must now be sorted according

to some score, which in this case is computed based on a combination of the ecpm of
the ad as well as the number of keywords matched. More advanced use cases may boost
the importance of various keywords, but this goes beyond the scope of this use case.
One thing to keep in mind is that because the ads are now being sorted at display time,
there may be performance issues if a large number of ads are competing for the same
display slot.

128 | Chapter 7: Online Advertising Networks

CHAPTER 8

Social Networking

In this chapter, we’ll explore how you could use MongoDB to store the social graph for
a social networking site. We’ll look at storing and grouping followers as well as how to
publish events to different followers with different privacy settings.

Solution Overview
Our solution assumes a directed social graph where a user can choose whether or not
to follow another user. Additionally, the user can designate “circles” of users with which
to share updates, in order to facilitate fine-grained control of privacy. The solution
presented here is designed in such a way as to minimize the number of documents that
must be loaded in order to display any given page, even at the expense of complicating
updates.

The particulars of what type of data we want to host on a social network obviously
depend on the type of social network we’re designing, and is largely beyond the scope
of this use case. In particular, the main variables that you would have to consider in
adapting this use case to your particular situation are:

What data should be in a user profile?
This may include gender, age, interests, relationship status, and so on for a “per‐
sonal” social network, or may include resume-type data for a more “business-
oriented” social network.

What type of updates are allowed?
Again, depending on what flavor of social network you are designing, you may wish
to allow posts such as status updates, photos, links, check-ins, and polls, or you may
wish to restrict your users to links and status updates.

129

Schema Design
In the solution presented here, we’ll use two main “independent” collections and three
“dependent” collections to store user profile data and posts.

Independent Collections
The first collection, social.user, stores the social graph information for a given user
along with the user’s profile data:

{

 _id: 'T4Y...AC', // base64-encoded ObjectId

 name: 'Rick',

 profile: { ... age, location, interests, etc. ... },

 followers: {

 "T4Y...AD": { name: 'Jared', circles: ['python', 'authors'] },

 "T4Y...AF": { name: 'Bernie', circles: ['python'] },

 "T4Y...AI": { name: 'Meghan', circles: ['python', 'speakers'] },

 ...

],

 circles: {

 "10gen": {

 "T4Y...AD": { name: 'Jared' },

 "T4Y...AE": { name: 'Max' },

 "T4Y...AF": { name: 'Bernie' },

 "T4Y...AH": { name: 'Paul' },

 ... },

 ...}

4 },

 blocked: ['gh1...0d']

}

There are a few things to note about this schema:

• Rather than using a “raw” ObjectId for the _id field, we’ll use a base64-encoded

version. Although we can use raw ObjectId values as keys, we can’t use them to

“reach inside” a document in a query or an update. By base64-encoding the _id

values, we can use queries or updates that include the _id value like circles.

10gen.T4Y...AD.

• We’re storing the social graph bidirectionally in the followers and circles col‐
lections. While this is technically redundant, having the bidirectional connections
is useful both for displaying the user’s followers on the profile page, as well as prop‐
agating posts to other users, as we’ll see later.

• In addition to the normal “positive” social graph, this schema above stores a block
list that contains an array of user IDs for posters whose posts never appear on the
user’s wall or news feed.

130 | Chapter 8: Social Networking

• The particular profile data stored for the user is isolated into the profile subdo‐
cument, allowing us to evolve the profile’s schema as necessary without worrying
about name collisions with other parts of the schema that need to remain fixed for
social graph operations.

Of course, to make the network interesting, it’s necessary to add various types of posts.

We’ll put these in the social.post collection:

{

 _id: ObjectId(...),

 by: { id: "T4Y...AE", name: 'Max' },

 circles: ['*public*'],

 type: 'status',

 ts: ISODateTime(...),

 detail: {

 text: 'Loving MongoDB' },

 comments: [

 { by: { id:"T4Y...AG", name: 'Dwight' },

 ts: ISODateTime(...),

 text: 'Right on!' },

 ... all comments listed ...]

}

Here, the post stores minimal author information (by), the post type, a timestamp ts,

post details detail (which vary by post type), and a comments array. In this case, the
schema embeds all comments on a post as a time-sorted flat array. For a more in-depth
exploration of the other approaches to storing comments, refer back to “Storing Com‐
ments” (page 111).

A couple of points are worthy of further discussion:

• Author information is truncated; just enough is stored in each by property to display
the author name and a link to the author profile. If a user wants more detail on a
particular author, we can fetch this information as they request it. Storing minimal
information like this helps keep the document small (and therefore fast.)

• The visibility of the post is controlled via the circles property; any user that is part

of one of the listed circles can view the post. The special values *public* and

circles allow the user to share a post with the whole world or with any users in
any of the posting user’s circles, respectively.

• Different types of posts may contain different types of data in the detail field.
Isolating this polymorphic information into a subdocument is a good practice,
helping to identify which parts of the document are common to all posts and which
can vary. In this case, we would store different data for a photo post versus a status

update, while still keeping the metadata (_id, by, circles, type, ts, and com

ments) the same.

Schema Design | 131

Dependent Collections
In addition to independent collections, for optimal performance we’ll need to create a
few dependent collections that will be used to cache information for display. The first

of these collections is the social.wall collection, and is intended to display a “wall”
containing posts created by or directed to a particular user. The format of the

social.wall collection follows:

{

 _id: ObjectId(...),

 user_id: "T4Y...AE",

 month: '201204',

 posts: [

 { id: ObjectId(...),

 ts: ISODateTime(...),

 by: { id: "T4Y...AE", name: 'Max' },

 circles: ['*public*'],

 type: 'status',

 detail: { text: 'Loving MongoDB' },

 comments_shown: 3,

 comments: [

 { by: { id: "T4Y...AG", name: 'Dwight',

 ts: ISODateTime(...),

 text: 'Right on!' },

 ... only last 3 comments listed ...

]

 },

 { id: ObjectId(...),s

 ts: ISODateTime(...),

 by: { id: "T4Y...AE", name: 'Max' },

 circles: ['*circles*'],

 type: 'checkin',

 detail: {

 text: 'Great office!',

 geo: [40.724348,-73.997308],

 name: '10gen Office',

 photo: 'http://....' },

 comments_shown: 1,

 comments: [

 { by: { id: "T4Y...AD", name: 'Jared' },

 ts: ISODateTime(...),

 text: 'Wrong coast!' },

 ... only last 1 comment listed ...

]

 },

 { id: ObjectId(...),

 ts: ISODateTime(...),

 by: { id: "T4Y...g9", name: 'Rick' },

 circles: ['10gen'],

 type: 'status',

 detail: {

132 | Chapter 8: Social Networking

 text: 'So when do you crush Oracle?' },

 comments_shown: 2,

 comments: [

 { by: { id: "T4Y...AE", name: 'Max' },

 ts: ISODateTime(...),

 text: 'Soon... ;-)' },

 ... only last 2 comments listed ...

]

 },

 ...

]

}

There are a few things to note about this schema:

• Each post is listed with an abbreviated number of comments (three might be typ‐
ical). This is to keep the size of the document reasonable. If we need to display more

comments on a post, we’d perform a secondary query on the social.post collection
for full details.

• There are actually multiple social.wall documents for each social.user docu‐
ment, one wall document per month. This allows the system to keep a “page” of
recent posts in the initial page view, fetching older months if requested.

• Once again, the by properties store only the minimal author information for display,
helping to keep this document small.

• The number of comments on each post is stored to allow later updates to find posts

with more than a certain number of comments since the $size query operator does
not allow inequality comparisons.

The other dependent collection we’ll use is social.news, posts from people the user

follows. This schema includes much of the same information as the social.wall in‐
formation, so this document has been abbreviated for clarity:

{

 _id: ObjectId(...),

 user_id: "T4Y...AE",

 month: '201204',

 posts: [...]

}

Operations
Since these schemas optimize for read performance at the possible expense of write
performance, a production system should provide a queueing system for processing
updates that may take longer than the desired web request latency.

Operations | 133

Viewing a News Feed or Wall Posts
The most common operation on a social network is probably the display of a particular

user’s news feed, followed by a user’s wall posts. Because the social.news and so

cial.wall collections are optimized for these operations, the query is fairly straight‐
forward. Since these two collections share a schema, viewing the posts for a news feed
or a wall are actually quite similar operations, and can be supported by the same code:

def get_posts(collection, user_id, month=None):

 spec = { 'user_id': viewed_user_id }

 if month is not None:

 spec['month'] = {'$lte': month}

 cur = collection.find(spec)

 cur = cur.sort('month', -1)

 for page in cur:

 for post in reversed(page['posts']):

 yield page['month'], post

The function get_posts will retrieve all the posts on a particular user’s wall or news
feed in reverse-chronological order. Some special handling is required to efficiently
achieve the reverse-chronological ordering:

• The posts within a month are actually stored in chronological order, so the order
of these posts must be reversed before displaying.

• As a user pages through her wall, it’s preferable to avoid fetching the first few months
from the server each time. To achieve this, the preceding code specifies the first

month to fetch in the month argument, passing this in as an $lte expression in the

query. This can be substantially faster than using a .skip() argument to

our .find().

• Rather than only yielding the post itself, the post’s month is also yielded from the

generator. This provides the month argument to be used in any subsequent calls to

get_posts.

There is one other issue that needs to be considered in selecting posts for display: fil‐
tering posts for display. In order to choose posts for display, we’ll need to use some filter

functions on the posts generated by get_posts. The first of these filters is used to de‐
termine whether to show a post when the user is viewing his or her own wall:

def visible_on_own_wall(user, post):

 '''if poster is followed by user, post is visible'''

 for circle, users in user['circles'].items():

 if post['by']['id'] in users: return True

 return False

In addition to the user’s wall, our social network provides an “incoming” page that
contains all posts directed toward a user regardless of whether that poster is followed
by the user. In this case, we need to use the block list to filter posts:

134 | Chapter 8: Social Networking

def visible_on_own_incoming(user, post):

 '''if poster is not blocked by user, post is visible'''

 return post['by']['id'] not in user['blocked']

When viewing a news feed or another user’s wall, the permission check is a bit different

based on the post’s circles property:

def visible_post(user, post):

 if post['circles'] == ['*public*']:

 # public posts always visible

 return True

 circles_user_is_in = set(

 user['followers'].get(post['by']['id'], []))

 if not circles_user_is_in:

 # user is not circled by poster; post is invisible

 return False

 if post['circles'] == ['*circles*']:

 # post is public to all followed users; post is visible

 return True

 for circle in post['circles']:

 if circle in circles_user_is_in:

 # User is in a circle receiving this post

 return True

 return False

In order to quickly retrieve the pages in the desired order, we’ll need an index on

user_id, month in both the social.news and social.wall collections.

>>> for collection in ('db.social.news', 'db.social.wall'):

... collection.ensure_index([

... ('user_id', 1),

... ('month', -1)])

Commenting on a Post
Other than viewing walls and news feeds, creating new posts is the next most common

action taken on social networks. To create a comment by user on a given post containing

the given text, we’ll need to execute code similar to the following:

from datetime import datetime

def comment(user, post_id, text):

 ts = datetime.utcnow()

 month = ts.strfime('%Y%m')

 comment = {

 'by': { 'id': user['id'], 'name': user['name'] }

 'ts': ts,

 'text': text }

 # Update the social.posts collection

 db.social.post.update(

 { '_id': post_id },

 { '$push': { 'comments': comment } })

Operations | 135

 # Update social.wall and social.news collections

 db.social.wall.update(

 { 'posts.id': post_id },

 { '$push': { 'comments': comment },

 '$inc': { 'comments_shown': 1 } },

 upsert=True,

 multi=True)

 db.social.news.update(

 { 'posts.id': _id },

 { '$push': { 'comments': comment },

 '$inc': { 'comments_shown': 1 } },

 upsert=True,

 multi=True)

The preceding code can actually result in an unbounded number of comments being

inserted into the social.wall and social.news collections. To compensate for this, we
need to periodically run the following update statement to truncate the number of dis‐
played comments and keep the size of the news and wall documents manageable:

COMMENTS_SHOWN = 3

def truncate_extra_comments():

 db.social.news.update(

 { 'posts.comments_shown': { '$gt': COMMENTS_SHOWN } },

 { '$pop': { 'posts.$.comments': -1 },

 '$inc': { 'posts.$.comments_shown': -1 } },

 multi=True)

 db.social.wall.update(

 { 'posts.comments_shown': { '$gt': COMMENTS_SHOWN } },

 { '$pop': { 'posts.$.comments': -1 },

 '$inc': { 'posts.$.comments_shown': -1 } },

 multi=True)

In order to efficiently execute the updates to the social.news and social.wall col‐
lections just shown, we need to be able to quickly locate both of the following document
types:

• Documents containing a given post

• Documents containing posts displaying too many comments

To quickly execute these updates, then, we need to create the following indexes:

>>> for collection in (db.social.news, db.social.wall):

... collection.ensure_index('posts.id')

... collection.ensure_index('posts.comments_shown')

Creating a New Post
Creating a new post fills out the content-creation activities on a social network:

136 | Chapter 8: Social Networking

from datetime import datetime

def post(user, dest_user, type, detail, circles):

 ts = datetime.utcnow()

 month = ts.strfime('%Y%m')

 post = {

 'ts': ts,

 'by': { id: user['id'], name: user['name'] },

 'circles': circles,

 'type': type,

 'detail': detail,

 'comments': [] }

 # Update global post collection

 db.social.post.insert(post)

 # Copy to dest user's wall

 if user['id'] not in dest_user['blocked']:

 append_post(db.social.wall, [dest_user['id']], month, post)

 # Copy to followers' news feeds

 if circles == ['*public*']:

 dest_userids = set(user['followers'].keys())

 else:

 dest_userids = set()

 if circles == ['*circles*']:

 circles = user['circles'].keys()

 for circle in circles:

 dest_userids.update(user['circles'][circle])

 append_post(db.social.news, dest_userids, month, post)

The basic sequence of operations in this code is as follows:

1. The post is first saved into the “system of record,” the social.post collection.

2. The recipient’s wall is updated with the post.

3. The news feeds of everyone who is circled in the post is updated with the post.

Updating a particular wall or group of news feeds is then accomplished using the

append_post function:

def append_post(collection, dest_userids, month, post):

 collection.update(

 { 'user_id': { '$in': sorted(dest_userids) },

 'month': month },

 { '$push': { 'posts': post } },

 multi=True)

In order to quickly update the social.wall and social.news collections, we once again

need an index on both user_id and month. This time, however, the ideal order on the

indexes is month, user_id. This is due to the fact that updates to these collections will
always be for the current month; having month appear first in the index makes the index
right-aligned, requiring significantly less memory to store the active part of the index.

Operations | 137

However, in this case, since we already have an index user_id, month, which must be

in that order to enable sorting on month, adding a second index is unnecessary, and
would end up actually using more RAM to maintain two indexes. So even though this

particular operation would benefit from having an index on month, user_id, it’s best to
leave out any additional indexes here.

Maintaining the Social Graph
In a social network, maintaining the social graph is an infrequent but essential operation.

To add a user other to the current user self’s circles, we’ll need to run the following
function:

def circle_user(self, other, circle):

 circles_path = 'circles.%s.%s' % (circle, other['_id'])

 db.social.user.update(

 { '_id': self['_id'] },

 { '$set': { circles_path: { 'name': other['name']} } })

 follower_circles = 'followers.%s.circles' % self['_id']

 follower_name = 'followers.%s.name' % self['_id']

 db.social.user.update(

 { '_id': other['_id'] },

 { '$push': { follower_circles: circle },

 '$set': { follower_name: self['name'] } })

Note that in this solution, previous posts of the other user are not added to the self
user’s news feed or wall. To actually include these past posts would be an expensive and
complex operation, and goes beyond the scope of this use case.

Of course, we must also support removing users from circles:

def uncircle_user(self, other, circle):

 circles_path = 'circles.%s.%s' % (circle, other['_id'])

 db.social.user.update(

 { '_id': self['_id'] },

 { '$unset': { circles_path: 1 } })

 follower_circles = 'followers.%s.circles' % self['_id']

 db.social.user.update(

 { '_id': other['_id'] },

 { '$pull': { follower_circles: circle } })

 # Special case -- 'other' is completely uncircled

 db.social.user.update(

 { '_id': other['_id'], follower_circles: {'$size': 0 } },

 { '$unset': { 'followers.' + self['_id' } }})

In both the circling and uncircling cases, the _id is included in the update queries, so
no additional indexes are required.

138 | Chapter 8: Social Networking

Sharding
In order to scale beyond the capacity of a single replica set, we need to shard each of the

collections mentioned previously. Since the social.user, social.wall, and so

cial.news collections contain documents that are specific to a given user, the user’s _id
field is an appropriate shard key:

>>> db.command('shardcollection', 'dbname.social.user', {

... 'key': {'_id': 1 } })

{ "collectionsharded": "dbname.social.user", "ok": 1 }

>>> db.command('shardcollection', 'dbname.social.wall', {

... 'key': {'user_id': 1 } })

{ "collectionsharded": "dbname.social.wall", "ok": 1 }

>>> db.command('shardcollection', 'dbname.social.news', {

... 'key': {'user_id': 1 } })

{ "collectionsharded": "dbname.social.news", "ok": 1 }

It turns out that using the posting user’s _id is actually not the best choice for a shard

key for social.post. This is due to the fact that queries and updates to this table are

done using the _id field, and sharding on by.id, while tempting, would require these

updates to be broadcast to all shards. To shard the social.post collection on _id, then,
we need to execute the following command:

>>> db.command('shardcollection', 'dbame.social.post', {

... 'key': {'_id':1 } })

{ "collectionsharded": "dbname.social.post", "ok": 1 }

Sharding | 139

CHAPTER 9

Online Gaming

This chapter outlines the basic patterns and principles for using MongoDB as a persis‐
tent storage engine for an online game, particularly one that contains role-playing
characteristics.

Solution Overview
In designing an online game, there is a need to store various data about the player’s
character. Some of the attributes might include:

Character attributes
These might include intrinsic characteristics such as strength, dexterity, charisma,
etc., as well as variable characteristics such as health, mana (if the game includes
magic), etc.

Character inventory
If our game includes the ability for the player to carry around objects, we’ll need to
keep track of the items carried.

Character location/relationship to the game world
If our game allows the player to move their character from one location to another,
this information needs to be stored as well.

In addition, we need to store all this data for large numbers of players who might be
playing the game simultaneously, and this data needs to be both readable and writable
with minimal latency in order to ensure responsiveness during gameplay.

In addition to the preceding data, we also need to store data for:

Items
These include various artifacts that the character might interact with such as weap‐
ons, armor, treasure, etc.

141

Locations
The various locations in which characters and items might find themselves such as
rooms, halls, etc.

Another consideration when designing the persistence backend for an online game is
its flexibility. Particularly in early releases of a game, we might wish to change gameplay
mechanics significantly as players provide feedback. When implementing these
changes, being able to migrate persistent data from one format to another with minimal
(or no) downtime is essential.

The solution presented by this use case assumes that the read and write performance is
equally important and must be accessible with minimal latency.

Schema Design
Ultimately, the particulars of the schema depend on the design of the game. When
designing our schema, we’ll try to encapsulate all the commonly used data into a small
number of objects in order to minimize the number of queries to the database and the

number of seeks in a query. Encapsulating all player state into a character collection,

item data into an item collection, and location data into a location collection satisfies
both these criteria.

Character Schema
In a role-playing game, then, a typical character state document might look like the
following:

{

 _id: ObjectId('...'),

 name: 'Tim',

 character: {

 intrinsics: {

 strength: 10,

 dexterity: 16,

 intelligence: 17,

 charisma: 8 },

 'class': 'mage',

 health: 212,

 mana: 152

 },

 location: {

 id: 'maze-1',

 description: 'a maze of twisty little passages...',

 exits: {n:'maze-2', s:'maze-1', e:'maze-3'},

 players: [

 { id:ObjectId('...'), name:'grue' },

 { id:ObjectId('...'), name:'Tim' }

],

142 | Chapter 9: Online Gaming

 inventory: [

 { qty:1, id:ObjectId('...'), name:'scroll of cause fear' }]

 },

 gold: 523,

 armor: [

 { id:ObjectId('...'), region:'head'},

 { id:ObjectId('...'), region:'body'},

 { id:ObjectId('...'), region:'feet'}],

 weapons: [{id:ObjectId('...'), hand:'both'}],

 inventory: [

 { qty:1, id:ObjectId('...'), name:'backpack', inventory: [

 { qty:4, id:ObjectId('...'), name: 'potion of healing'},

 { qty:1, id:ObjectId('...'), name: 'scroll of magic mapping'},

 { qty:2, id:ObjectId('...'), name: 'c-rations'}]},

 { qty:1, id:ObjectId('...'), name:"wizard's hat", bonus:3},

 { qty:1, id:ObjectId('...'), name:"wizard's robe", bonus:0},

 { qty:1, id:ObjectId('...'), name:"old boots", bonus:0},

 { qty:1, id:ObjectId('...'), name:"quarterstaff", bonus:2}]

}

There are a few things to note about this document:

• Information about the character’s location in the game is encapsulated under the

location attribute. Note in particular that all of the information necessary to de‐
scribe the room is encapsulated within the character state document. This allows
the game system to render the room without making a second query to the database
to get room information.

• The armor and weapons attributes contain little information about the actual items

being worn or carried. This information is actually stored under the inventory
property. Since the inventory information is stored in the same document, there is

no need to replicate the detailed information about each item into the armor and

weapons properties.

• The inventory contains the item details necessary for rendering each item in the

character’s possession, including any enchantments (bonus) and quantity. Once
again, embedding this data into the character record means we don’t have to per‐
form a separate query to fetch item details necessary for display.

Item Schema
Likewise, the item schema should include all details about all items globally in the game:

{

 _id: ObjectId('...'),

 name: 'backpack',

 bonus: null,

 inventory: [

 { qty:4, id:ObjectId('...'), name: 'potion of healing'},

Schema Design | 143

 { qty:1, id:ObjectId('...'), name: 'scroll of magic mapping'},

 { qty:2, id:ObjectId('...'), name: 'c-rations'}]},

 weight: 12,

 price: 160,

 ...

}

Note that this document contains more or less the same information as stored in the

inventory attribute of character documents, as well as additional data that may only

be needed sporadically in the case of gameplay such as weight and price.

Location Schema
Finally, the location schema specifies the state of the world in the game:

{

 id: 'maze-1',

 description: 'a maze of twisty little passages...',

 exits: {n:'maze-2', s:'maze-1', e:'maze-3'},

 players: [

 { id:ObjectId('...'), name:'grue' },

 { id:ObjectId('...'), name:'Tim' }],

 inventory: [

 { qty:1, id:ObjectId('...'), name:'scroll of cause fear' }],

}

Here, note that location stores exactly the same information as is stored in the loca

tion attribute of the character document. We’ll use location as the system of record
when the game requires interaction between multiple characters or between characters
and noninventory items.

Operations
In an online gaming system, with the state embedded in a single document for charac

ter, item, and location, the primary operations we’ll be performing are as follows:

• Querying for the character state by _id

• Extracting relevant data for display

• Updating various attributes about the character

This section describes procedures for performing these queries, extractions, and up‐

dates. In particular, we will avoid loading the location or item documents except when
absolutely necessary.

144 | Chapter 9: Online Gaming

Load Character Data from MongoDB
The most basic operation in this system is loading the character state:

>>> character = db.characters.find_one({'_id': character_id})

In this case, the default index that MongoDB supplies on the _id field is sufficient for
good performance of this query.

Extract Armor and Weapon Data for Display
In order to save space, the character schema just described stores item details only in

the inventory attribute, storing ObjectIds in other locations. To display these item
details, as on a character summary window, we need to merge the information from the

armor and weapons attributes with information from the inventory attribute.

Suppose, for instance, that our code is displaying the armor data using the following
Jinja2 template:

<div>

 <h2>Armor</h2>

 <dl>

 {% if value.head %}

 <dt>Helmet</dt>

 <dd>{{value.head[0].description}}</dd>

 {% endif %}

 {% if value.hands %}

 <dt>Gloves</dt>

 <dd>{{value.hands[0].description}}</dd>

 {% endif %}

 {% if value.feet %}

 <dt>Boots</dt>

 <dd>{{value.feet[0].description}}</dd>

 {% endif %}

 {% if value.body %}

 <dt>Body Armor</dt>

 <dd>{% for piece in value.body %}

 piece.description

 {% endfor %}</dd>

 {% endif %}

 </dl>

</dd>

In this case, we want the various description fields to be text similar to “+3 wizard’s
hat.” The context passed to this template, then, would be of the following form:

Operations | 145

{

 "head": [{ "id":..., "description": "+3 wizard's hat" }],

 "hands": [],

 "feet": [{ "id":..., "description": "old boots" }],

 "body": [{ "id":..., "description": "wizard's robe" }],

}

In order to build up this structure, we’ll use the following helper functions:

def get_item_index(inventory):

 '''Given an inventory attribute, recursively build up an item

 index (including all items contained within other items)

 '''

 result = {}

 for item in inventory:

 result[item['_id']] = item

 if 'inventory' in item:

 result.update(get_item_index(item['inventory]))

 return result

def describe_item(item):

 '''Add a 'description' field to the given item'''

 result = dict(item)

 if item['bonus']:

 description = '%+d %s' % (item['bonus'], item['name'])

 else:

 description = item['name']

 result['description'] = description

 return result

def get_armor_for_display(character, item_index):

 '''Given a character document, return an 'armor' value

 suitable for display'''

 result = dict(head=[], hands=[], feet=[], body=[])

 for piece in character['armor']:

 item = describe_item(item_index[piece['id']])

 result[piece['region']].append(item)

 return result

In order to actually display the armor, then, we’d use the following code:

>>> item_index = get_item_index(

... character['inventory'] + character['location']['inventory'])

>>> armor = get_armor_for_dislay(character, item_index)

Note in particular that we’re building an index not only for the items the character is
actually carrying in inventory, but also for the items that the player might interact with
in the room.

146 | Chapter 9: Online Gaming

Similarly, in order to display the weapon information, we need to build a structure such
as the following:

{

 "left": None,

 "right": None,

 "both": { "description": "+2 quarterstaff" }

}

The helper function is similar to that for get_armor_for_display:

def get_weapons_for_display(character, item_index):

 '''Given a character document, return a 'weapons' value

 suitable for display'''

 result = dict(left=None, right=None, both=None)

 for piece in character['weapons']:

 item = describe_item(item_index[piece['id']])

 result[piece['hand']] = item

 return result

In order to actually display the weapons, then, we’d use the following code:

>>> armor = get_weapons_for_display(character, item_index)

Extract Character Attributes, Inventory, and Room Information for
Display
In order to display information about the character’s attributes, inventory, and sur‐
roundings, we also need to extract fields from the character state. In this case, however,
the schema just defined keeps all the relevant information for display embedded in those
sections of the document. The code for extracting this data, then, is the following:

>>> attributes = character['character']

>>> inventory = character['inventory']

>>> room_data = character['location']

Pick Up an Item from a Room
In our game, suppose the player decides to pick up an item from the room and add it
to their inventory. In this case, we need to update both the character state and the global
location state:

def pick_up_item(character, item_index, item_id):

 '''Transfer an item from the current room to the character's inventory'''

 item = item_index[item_id]

 character['inventory'].append(item)

 db.character.update(

 { '_id': character['_id'] },

 { '$push': { 'inventory': item },

 '$pull': { 'location.inventory': { '_id': item['id'] } } })

Operations | 147

 db.location.update(

 { '_id': character['location']['id'] },

 { '$pull': { 'inventory': { 'id': item_id } } })

While the preceding code may be for a single-player game, if we allow multiple players
or nonplayer characters to pick up items, that introduces a problem where two char‐
acters may try to pick up an item simultaneously. To guard against that, we can use the

location collection to decide between ties. In this case, the code is now the following:

def pick_up_item(character, item_index, item_id):

 '''Transfer an item from the current room to the character's inventory'''

 item = item_index[item_id]

 character['inventory'].append(item)

 result = db.location.update(

 { '_id': character['location']['id'],

 'inventory.id': item_id },

 { '$pull': { 'inventory': { 'id': item_id } } },

 safe=True)

 if not result['updatedExisting']:

 raise Conflict()

 db.character.update(

 { '_id': character['_id'] },

 { '$push': { 'inventory': item },

 '$pull': { 'location': { '_id': item['id'] } } })

By ensuring that the item is present before removing it from the room in the update
call, we guarantee that only one player/nonplayer character/monster can pick up the
item.

Remove an Item from a Container
In the game described here, the backpack item can contain other items. We might fur‐
ther suppose that some other items may be similarly hierarchical (e.g., a chest in a room).
Suppose that the player wishes to move an item from one of these “containers” into their

active inventory as a prelude to using it. In this case, we need to update both the
character state and the item state:

def move_to_active_inventory(character, item_index, container_id, item_id):

 '''Transfer an item from the given container to the character's active

 inventory

 '''

 result = db.item.update(

 { '_id': container_id,

 'inventory.id': item_id },

 { '$pull': { 'inventory': { 'id': item_id } } },

 safe=True)

 if not result['updatedExisting']:

 raise Conflict()

 item = item_index[item_id]

148 | Chapter 9: Online Gaming

 container = item_index[item_id]

 character['inventory'].append(item)

 container['inventory'] = [

 item for item in container['inventory']

 if item['_id'] != item_id]

 db.character.update(

 { '_id': character['_id'] },

 { '$push': { 'inventory': item } })

 db.character.update(

 { '_id': character['_id'], 'inventory.id': container_id },

 { '$pull': { 'inventory.$.inventory': { 'id': item_id } } })

Note in this code that we:

Ensure that the item’s state makes this update reasonable (the item is actually
contained within the container). Abort with an error if this is not true.

Update the in-memory character document’s inventory, adding the item.

Update the in-memory container document’s inventory, removing the item.

Update the character document in MongoDB.

In the case that the character is moving an item from a container in his own
inventory, update the character’s inventory representation of the container.

Move the Character to a Different Room
In our game, suppose the player decides to move north. In this case, we need to update
the character state to match the new location:

def move(character, direction):

 '''Move the character to a new location'''

 # Remove character from current location

 db.location.update(

 {'_id': character['location']['id'] },

 {'$pull': {'players': {'id': character['_id'] } } })

 # Add character to new location, retrieve new location data

 new_location = db.location.find_and_modify(

 { '_id': character['location']['exits'][direction] },

 { '$push': { 'players': {

 'id': character['_id'],

 'name': character['name'] } } },

 new=True)

 character['location'] = new_location

 db.character.update(

 { '_id': character['_id'] },

 { '$set': { 'location': new_location } })

Here, note that the code updates the old room, the new room, and the character docu‐

ment. Since we’re using $push and $pull operations to update the location collection,
we don’t need to worry about race conditions.

Operations | 149

Buy an Item
If the character wants to buy an item, we need to do the following:

1. Add that item to the character’s inventory.

2. Decrement the character’s gold.

3. Increment the shopkeeper’s gold.

4. Update the room.

The following code does just that:

def buy(character, shopkeeper, item_id):

 '''Pick up an item, add to the character's inventory, and transfer

 payment to the shopkeeper

 '''

 price = db.item.find_one({'_id': item_id}, {'price':1})['price']

 result = db.character.update(

 { '_id': character['_id'],

 'gold': { '$gte': price } },

 { '$inc': { 'gold': -price } },

 safe=True)

 if not result['updatedExisting']:

 raise InsufficientFunds()

 try:

 pick_up_item(character, item_id)

 except:

 # Add the gold back to the character

 result = db.character.update(

 { '_id': character['_id'] },

 { '$inc': { 'gold': price } })

 raise

 character['gold'] -= price

 db.character.update(

 { '_id': shopkeeper['_id'] },

 { '$inc': { 'gold': price } })

Note that the buy() function ensures that the character has sufficient gold to pay for

the item using the updatedExisting trick used for picking up items. The race condition
for item pickup is handled as well, “rolling back” the removal of gold from the character’s
wallet if the item cannot be picked up.

150 | Chapter 9: Online Gaming

Why so much application code?
If you’re coming from a relational database, particularly if you have a background as a
DBA, you may be accustomed to pushing as much logic as possible into the database.
Although this approach may be desirable in some circumstances, it’s really not feasible
with MongoDB due to limited programming capabilities within the server (compared
to many relational database systems). Moving more of the workload to the application
servers, as MongoDB often requires, actually carries with it an important benefit: ap‐
plication servers are typically much easier to scale than database servers. Even with
MongoDB’s straightforward sharding, it’s hard to compete with the scale-up sequence
for an app server:

1. Bring up an app server

2. Add it to the load balancer

Of course, there are some cases where data locality and indexes can make doing some
operations on the MongoDB server more efficient. A good rule of thumb is to consider
whether there’s a significant performance advantage to keeping a calculation on the
MongoDB server, and if not, move it to the application layer.

Sharding
If the system needs to scale beyond a single MongoDB node, we’ll want to use a sharded
cluster. Sharding in this use case is fairly straightforward, since all our items are always

retrieved by _id. To shard the character and location collections, the commands
would be the following:

>>> db.command('shardcollection', 'dbname.character', {

... 'key': { '_id': 1 } })

{ "collectionsharded" : "dbname.character", "ok" : 1 }

>>> db.command('shardcollection', 'dbname.location', {

... 'key': { '_id': 1 } })

{ "collectionsharded" : "dbname.location", "ok" : 1 }

Sharding | 151

Afterword

In this book, you’ve seen some common design patterns used with MongoDB
applications:

• Embedding subdocuments versus referencing them by _id

• Using MongoDB’s dynamic schemas to enable polymorphic data

• Methods of mimicking transactions with a nontransactional database

You’ve also seen examples of how you might apply these design patterns in various
scenarios:

• Real-time analytics

• Ecommerce

• Content management systems

• Online advertising

• Social networking

• Online gaming

The truth, of course, is that the world of NoSQL, and particularly MongoDB, is ex‐
ploding right now. No book can hope to be a comprehensive catalog of schema design,
operational architecture, sharding, and replication setup. My hope is that this book has
given you a flavor for the kinds of decisions you’re going to have to make in your own
applications. By seeing concrete examples of problems and good MongoDB solutions,
you should be able to extend the approaches here to the particular problems you face.

153

Where Do I Go from Here?
Some of the best sources for ongoing MongoDB education and networking are the
MongoDB conference series and user groups. 10gen (the MongoDB company) hosts
one-day conferences, sometimes accompanied by training workshops, in various cities
around the world. For a list of conferences, some of the meetups, as well as other up‐
coming events, you can visit 10gen’s Events and Webinars page.

Additionally, several of the use cases in this book can also be found in the MongoDB
Manual’s Use Cases section, along with a wealth of additional documentation.

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/mongodb-applied-design-
patterns.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

154 | Afterword

http://10gen.com/events
http://docs.mongodb.org/manual/use-cases/
http://docs.mongodb.org/manual/use-cases/
http://oreil.ly/mongodb-applied-design-patterns
http://oreil.ly/mongodb-applied-design-patterns
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
2, 82

A
ad serving, 121–124

algorithm for, 121
ad zones, 121
$addToSet operator, 107
adding and removing friends, 138
ad_iterator generator, 126, 127
aggregation framework, 45
aggregation pipeline, 45
ALTER TABLE statement, 20
append_post function, 137
armor attribute, 143, 145
array of properties approach, 23
arrays, 3, 8
artifacts in online games, 141
asset management (see content storage in CMS)
atomic multistatement transactions, 26
autoincrement primary key, 65
automatic sharding, 10, 48

B
B-tree structure, 44
base64-encoding, 130
batch inserts, 42

bidirectional connections, 130
BLOB data, 4, 78
blobs of binary data, 103
blogs and blog posts, 101, 110
breadcrumb navigation, 86
BSON document format, 3, 8, 21, 38
bson.ObjectId(), 100
bulk inserts, 42
buy() function, 150

C
capped collections, 51
carted attribute, 95
category hierarchy (see product categories)
character data in online gaming, 141, 142, 145,

147
choose_ad() call, 126
chunks, 48
chunk_size, 107
circles property, 131, 135
cleanup operations, 32, 98
CMS (content management systems)

comment storage, 111–120
content storage, 101–111

collections
capped, 51
dependent, 132
for GridFS data, 103
in MongoDB, 11

155

independent, 130
multiple, 51
TTL, 51
uncapped, 37
vs. indexes, 44

collstats command, 42
comment storage in CMS

hybrid schema design, 117
operations for, 111–119
sharding for, 119
solution overview, 111

comments
embedding, 114
non-threaded, 116
on social networking sites, 135
one per page, 111
posting new, 113, 115, 117
retrieving via direct links, 114, 116, 119
threaded, 114, 116
viewing paginated, 113, 116, 118

comments collection, 111
complex updates, 28
compound documents, 26
compound shard keys, 50, 72
content storage in CMS

operations for, 104–110
schema design, 102
sharding for, 110
solution overview, 101

continue_on_error, 42
cookies, 124
CPC (cost per click) ads, 122
CPM (cost per mille) ads, 122
creating content nodes, 104
cutoff variable, 69

D
daily aggregation, 57
daily statistics, 69
data chunks, 48
data fragmentation, 51
defaultdict, 89
delete method, 108
denormalizing data, 7
dependent collections, 132
design patterns (see operational architecture)
detail field, 102
directed social graphs, 129, 138
distributed joins, 7, 10

distributed transactions, 10
documents

compound, 26
hierarchical, 56
higher-level aggregate, 57
in MongoDB, 3
pre-allocating, 54

Drupal, 101

E
ecommerce

inventory management, 91–100
product catalogs, 75–83
product categories, 84–90

eCPM (effective cost per mille) values, 122, 123
editing content nodes, 104
embedded schema, 10
embedding comments, 114
embedding data, 9
emit function, 66
EVA (entity-attribute-value) schema, 77
event data storage

managing growth of, 50
managing index size, 42
operations for, 39–48
schema design, 38
sharding for, 48–50
solution overview, 37

event logging, 59
event object, 40
expire_carts function, 97
explain(), 43, 45
extractions, 144, 147

F
find(), 46, 82, 99, 134
finding events by data type, 42–44
find_and_modify command, 65
find_one operation, 61, 109
first normal form (1NF), 4
frequency capping, 124–126
full_slug field, 114

G
galleries, 102
get_posts function, 134
get_version, 109

156 | Index

GridFS, 103, 107
$group operator, 46
group commits, 41
$gte conditional, 43

H
hashes, 48
helper function, 87, 146
hierarchical aggregated reports

operations for, 67–72
schema design, 65
sharding, 72
solution overview, 64

hierarchical classification (see product cate‐
gories)

hierarchical documents, 56
hint(), 45
historical charts, 62
hourly field, 54
hourly statistics, 67
h_aggregate function, 72

I
_id field, 14, 46, 102
$inc modifier, 95, 117
incomplete write operations, 9
increment operation, 53
independent collections, 130
indexes

case sensitivity of, 82
for accelerating queries, 83
managing size of, 42
RAM usage, 42, 138
right-aligned, 43, 137
rules for design of, 44
unique, 110

inheritance, 17
insert(), 42, 113
inserting log records, 39
inventory attribute, 145
inventory management

operations for, 93–99
schema design, 92
sharding for, 100
solution overview, 91

inventory property, 143
isolation levels, 10

items in online games
picking up, 147
purchasing, 150
removing, 148
storing data for, 141, 143

J
j (journal) option, 41
JavaScript lock, 66
join collection query, 13
JOIN operation, 6, 77
JSON (JavaScript Object Notation) format, 8

K
key columns, 6
key-value pairs, 8
keyword targeting, 126–128
keywords, 126

L
last_run variable, 67, 69, 72
limit(), 12
list function, 89
location in online gaming, 141, 143, 144, 149
locked field, 108
$lt operator, 43
$lte operator, 134

M
many-to-many (M:N) relationships, 13
mapf function, 66
MapReduce, 65
mapreduce command, 63, 64
$match operation, 46, 48
media sites, 121
metadata management (see content storage in

CMS)
migration scripts, 20
Ming, 21
minute property, 55
mongod, 84, 100
MongoDB

aggregation framework, 45
arrays of data in, 3
atomic update operations in, 25, 28, 33
automatic sharding, 10
benefits and complications of, 8

Index | 157

BSON document format, 8, 38
data storage for CMS, 101
distributed operation design, 26
document size limit, 12, 13
effective use of, 23
embedding vs. referencing in, 3
full text index, 81
index design, 44
loading character data from, 145
mapreduce output modes, 68
multidocument transactions, 10
polymorphic schemas in, 17, 19
product catalog data, 78
query optimizer, 45
RAM in, 42
schema design flexibility, 14
storage efficiency, 21
update operators, 26
updating documents in, 20
vs. relational database model for product

catalogs, 75–80
vs. relational databases, 3, 23, 150

MongoEngine, 21
MongoKit, 21
mongos, 84, 100
monthly field, 54
monthly statistics, 70
multi option, 90
multiple collections, 51
multiple databases, 52
multistatement transactions, 9

N
news feeds, 134
nodes, 101, 109, 111
non-threaded comments, 116
nonce field, 104
normal forms, 4–6
normalization, 3
normalized schema, 10
normalizing data

for flexibility, 11
for high-arity relationships, 12

num_comment_pages property, 118

O
object-document mapper (ODM), 21
object-oriented (OO) programming, 17–20

ObjectID, 39, 49, 86
one-to-many relationships, 12, 14
online advertising networks

operations for, 123, 125, 127
schema design, 122, 124, 126
sharding for, 124, 126
solution overview, 121

online gaming
operations for, 144–151
schema design, 142
sharding for, 151
solution overview, 141

online shopping carts
adding items to, 93
checking out, 96
handling errors in, 98
modifying quantities in, 94
timed-out, 97

operational architecture
CMS comment storage, 111–119
CMS content storage, 104–110
event data storage, 39–48
hierarchical aggregated reports, 67–72
online advertising networks, 123, 125, 127
online gaming, 144–151
online shopping carts, 93–99
pre-aggregated reports, 59–63
product catalogs, 80–83
product categories, 86–90
social networking, 133–138

operational intelligence (see real-time analytics)
output modes for mapreduce, 68

P
page faults, 12
paginated comments, 113, 116, 118
patterns (see operational architecture)
photos, 21, 102, 107
plain-text logfiles, 37
polymorphic inheritance modeling, 18
polymorphic schemas

in MongoDB, 17
object-oriented programming, 17–20
schema evolution, 20
semi-structured domain data, 22

polymorphism, 17
positional operation $, 90, 95
posting new comments, 113, 115, 117
posting on social networking sites, 135, 136

158 | Index

pre-aggregated reports
operations for, 59–63
schema design, 53–58
sharding, 63
solution overview, 52

pre-allocating documents, 54, 60
prefix regex, 82
product catalogs

operations for, 80–83
sharding for, 83
solution overview, 75–80

product categories
add/insert operation, 87
operations for, 86–90
read and display operation, 86
renaming, 89
reorganizing, 88
schema design, 85
sharding for, 90
solution overview, 84

product collection, 95
$project operator, 46
property-value pairs, 22
public property, 131
$pull operator, 94, 123, 149
$push operator, 29, 115, 117, 149
pymongo, 59
Python, 59
Python dict, 40, 82

Q
queries

by data type, 42–44
flexibility of, 38
in MongoDB, 11, 19
in online games, 144
MongoDB query optimizer, 45
shard keys and, 49
speed of, 43

R
race conditions, 28, 30, 99, 149
RAM

document size and, 12
index size and, 42, 83, 138

random seeks, 7
raw transactional data, 37

RDBMS (relational database modeling system),
17, 21, 23

read_preference keyword argument, 84
real-time analytics

hierarchical aggregated reports, 63–73
pre-aggregated reports, 52–63
schema requirements for, 53

real-time charts, 61
reduce function, 67
redundancy, 5
regex (regular expression), 82
relational databases

atomic multistatement transactions, 25
isolation levels, 10
maintaining consistency, 25
multistatement transactions, 9
normal forms, 4–6
performance issues, 6
polymorphic schemas in, 17
product catalog data models, 75–78
schema evolution, 20
vs. MongoDB, 23, 150

remove(), 51
replication, 41
retire_transaction, 32
retrieving comments via direct links, 114, 119
right-aligned indexes, 43, 137
role-playing games, 141

S
safe mode, 94, 106
.save(), 99
schema design

basic ad serving, 122
CMS comment storage, 117
CMS content storage, 102
event logs, 38
flexibility of MongoDB, 14
frequency capping, 124
hierarchical aggregated reports, 65
inventory management, 92
keyword targeting, 127
online gaming, 142
pre-aggregated reports, 53–58
product categories, 85
social networking, 130–133

sd property, 22
semi-structured domain data, 22
serving ads, 123, 125, 127

Index | 159

$set modifier, 95
shard clusters, 48, 151
shard keys

compound, 50, 72, 124
files_id field, 110
hashes, 48
in MongoDB, 48
node_id, 119
path field, 49
selecting, 50
semi-random, 49
slug or full slug, 119
three-part, 63
timestamps, 48
type field, 83
unique indexes, 110
user_id, 139
_id field, 100, 126

shardcollection command, 63, 83
sharding

ad serving, 124
automatic, 10, 48
CMS comment storage, 119
CMS content storage, 110
event data, 48–50
frequency capping, 126
hierarchical aggregated reports, 72
inventory management, 100
online gaming, 151
pre-aggregated reports, 63
product catalogs, 83
product categories, 90
social networking, 139

shopping carts (see online shopping carts)
short_description field, 22
site_id, 121, 123, 126
$size query, 133
skip(), 12
$slice operator, 116
slug field, 86, 102
social graphs, 129, 138
social networking

operations for, 133–138
schema design, 130–133
sharding for, 139
solution overview, 129

SQL equivalent statements, 47
status updates, 129
$sum statement, 46

T
this keyword, 66
threaded comments, 114, 116
time field, 47
time to live (TTL) indexes, 51
timestamps, 38, 48
transactional data, 37, 63
ts (timestamp) value, 67
TTL collections, 51
two-phase commit protocol, 26, 30
txn_id, 32
type field, 83
types, using proper, 38

U
uncapped collections, 37
update() statement, 29
updates

atomic, 14
complex, 28
emulating transactions, 30–33
in relational databases, 26
incomplete write operations, 9
optimistic with compensation, 29–33
speed of, 13, 53, 83

uploading photos, 107
upsert operation, 53, 54, 57, 59
user comments (see comments)
user profiles, 124, 129
user_id, 126
UTCtimestamp, 38

V
viewing paginated comments, 113, 116, 118

W
wall posts, 134
weapons attribute, 143, 145
web pages, 101
weekly statistics, 70
write concern, 40

Z
zone_id, 121, 123, 126

160 | Index

About the Author
Rick Copeland is the principal consultant and founder of Arborian Consulting, a busi‐
ness focusing on MongoDB and Python custom development and training. Rick is a
frequent speaker at MongoDB events, an avid MongoDB enthusiast, and a charter
member of 10gen’s “MongoDB Masters.” On the non-MongoDB side of things, Rick is
also a well-known Python developer and member of the Python Software Foundation,
having contributed to a number of open source projects and spoken at various events
and user groups.

Rick is also the author of Essential SQLAlchemy (O’Reilly), which introduces readers to
the excellent SQLAlchemyPython database toolkit.

Colophon
The animal on the cover of MongoDB Applied Design Patterns is the thirteen-lined
ground squirrel (Ictidomys tridecemlineatus), also known as the leopard ground squir‐
rel, squinney, or striped gopher. It gains both its Latin name (tredecim meaning thirteen)
and common name from the 13 alternating dark and light lines that run down its back
and sides. It also has spots within the darker stripes of fur, which help camouflage the
animal in its grassland habitat.

Thirteen-lined ground squirrels are widespread in the Great Plains region of North
America, and in fact are the reason for Minnesota’s nickname “The Gopher State”
(though this is a misnomer, as they are not members of the gopher family). Strictly active
during the day, this squirrel’s diet consists of grass, seeds, and insects. They prefer open
areas with short grass and well-drained soil for creating their burrows. Though they live
individually rather than in colonies, there may be as many as 20 ground squirrels per
acre in a particularly good habitat.

These animals range from 6–11 inches long, and their weight varies widely depending
on the time of year. Most usually weigh between 5–6 ounces, but can get near half a
pound when preparing for winter hibernation. In preparation, the ground squirrel puts
on a heavy layer of fat and stores food in its burrow. Around October, it enters the
burrow, rolls into a tight ball, and decreases its respiration to about one breath every
five minutes, until it emerges again in March or April.

Each thirteen-lined ground squirrel’s burrow is around 15–20 feet long, with several
side passages and multiple entrances. With the exception of the hibernation chamber,
the burrows are no more than 1-2 feet below the surface. Typically, the tunnel turns
sharply near its beginning, to trick digging predators into believing that the burrow has
dead-ended.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga‐
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://shop.oreilly.com/product/9780596516147.do

	Copyright
	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Part I: Design Patterns
	Part II: Use Cases

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Design Patterns
	Chapter 1. To Embed or Reference
	Relational Data Modeling and Normalization
	What Is a Normal Form, Anyway?
	So What’s the Problem?
	Denormalizing for Performance

	MongoDB: Who Needs Normalization, Anyway?
	MongoDB Document Format
	Embedding for Locality
	Embedding for Atomicity and Isolation
	Referencing for Flexibility
	Referencing for Potentially High-Arity Relationships
	Many-to-Many Relationships

	Conclusion

	Chapter 2. Polymorphic Schemas
	Polymorphic Schemas to Support Object-Oriented Programming
	Polymorphic Schemas Enable Schema Evolution
	Storage (In-)Efficiency of BSON

	Polymorphic Schemas Support Semi-Structured Domain Data
	Conclusion

	Chapter 3. Mimicking Transactional Behavior
	The Relational Approach to Consistency
	Compound Documents
	Using Complex Updates
	Optimistic Update with Compensation
	Conclusion

	Part II. Use Cases
	Chapter 4. Operational Intelligence
	Storing Log Data
	Solution Overview
	Schema Design
	Operations
	Sharding Concerns
	Managing Event Data Growth

	Pre-Aggregated Reports
	Solution Overview
	Schema Design
	Operations
	Sharding Concerns

	Hierarchical Aggregation
	Solution Overview
	Schema Design
	MapReduce
	Operations
	Sharding Concerns

	Chapter 5. Ecommerce
	Product Catalog
	Solution Overview
	Operations
	Sharding Concerns

	Category Hierarchy
	Solution Overview
	Schema Design
	Operations
	Sharding Concerns

	Inventory Management
	Solution Overview
	Schema
	Operations
	Sharding Concerns

	Chapter 6. Content Management Systems
	Metadata and Asset Management
	Solution Overview
	Schema Design
	Operations
	Sharding Concerns

	Storing Comments
	Solution Overview
	Approach: One Document per Comment
	Approach: Embedding All Comments
	Approach: Hybrid Schema Design
	Sharding Concerns

	Chapter 7. Online Advertising Networks
	Solution Overview
	Design 1: Basic Ad Serving
	Schema Design
	Operation: Choose an Ad to Serve
	Operation: Make an Ad Campaign Inactive
	Sharding Concerns

	Design 2: Adding Frequency Capping
	Schema Design
	Operation: Choose an Ad to Serve
	Sharding

	Design 3: Keyword Targeting
	Schema Design
	Operation: Choose a Group of Ads to Serve

	Chapter 8. Social Networking
	Solution Overview
	Schema Design
	Independent Collections
	Dependent Collections

	Operations
	Viewing a News Feed or Wall Posts
	Commenting on a Post
	Creating a New Post
	Maintaining the Social Graph

	Sharding

	Chapter 9. Online Gaming
	Solution Overview
	Schema Design
	Character Schema
	Item Schema
	Location Schema

	Operations
	Load Character Data from MongoDB
	Extract Armor and Weapon Data for Display
	Extract Character Attributes, Inventory, and Room Information for Display
	Pick Up an Item from a Room
	Remove an Item from a Container
	Move the Character to a Different Room
	Buy an Item

	Sharding

	Afterword
	Index
	About the Author

