
Adrian Mouat

 Using
Docker
DEVELOPING AND DEPLOYING SOFTWARE WITH CONTAINERS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Adrian Mouat

Boston

Using Docker

www.allitebooks.com

http://www.allitebooks.org

978-1-491-91576-9

[LSI]

Using Docker
by Adrian Mouat

Copyright © 2016 Adrian Mouat. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Melanie Yarbrough
Copyeditor: Christina Edwards
Proofreader: Amanda Kersey

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

December 2015: First Edition

Revision History for the First Edition
2015-12-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915769 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Using Docker, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491915769
http://www.allitebooks.org

To those who try, whether they fail or succeed.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. xi

Part I. Background and Basics

1. The What and Why of Containers. 3
Containers Versus VMs 4
Docker and Containers 6
Docker: A History 8
Plugins and Plumbing 10
64-Bit Linux 10

2. Installation. 13
Installing Docker on Linux 13

Run SELinux in Permissive Mode 14
Running Without sudo 15

Installing Docker on Mac OS or Windows 15
A Quick Check 17

3. First Steps. 19
Running Your First Image 19
The Basic Commands 20
Building Images from Dockerfiles 24
Working with Registries 27

Private Repositories 29
Using the Redis Official Image 30
Conclusion 33

v

www.allitebooks.com

http://www.allitebooks.org

4. Docker Fundamentals. 35
The Docker Architecture 35

Underlying Technologies 36
Surrounding Technologies 37
Docker Hosting 39

How Images Get Built 39
The Build Context 39
Image Layers 41
Caching 43
Base Images 44
Dockerfile Instructions 46

Connecting Containers to the World 49
Linking Containers 49
Managing Data with Volumes and Data Containers 51

Sharing Data 53
Data Containers 54

Common Docker Commands 55
The run Command 56
Managing Containers 59
Docker Info 62
Container Info 62
Dealing with Images 63
Using the Registry 66

Conclusion 67

Part II. The Software Lifecycle with Docker

5. Using Docker in Development. 71
Say “Hello World!” 71
Automating with Compose 81

The Compose Workflow 83
Conclusion 84

6. Creating a Simple Web App. 85
Creating a Basic Web Page 86
Taking Advantage of Existing Images 88
Add Some Caching 93
Microservices 96
Conclusion 97

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

7. Image Distribution. 99
Image and Repository Naming 99
The Docker Hub 100
Automated Builds 102
Private Distribution 104

Running Your Own Registry 104
Commerical Registries 111

Reducing Image Size 111
Image Provenance 113

Conclusion 114

8. Continuous Integration and Testing with Docker. 115
Adding Unit Tests to Identidock 116
Creating a Jenkins Container 121

Triggering Builds 128
Pushing the Image 129

Responsible Tagging 129
Staging and Production 131
Image Sprawl 131
Using Docker to Provision Jenkins Slaves 132

Backing Up Jenkins 132
Hosted CI Solutions 133
Testing and Microservices 133

Testing in Production 135
Conclusion 135

9. Deploying Containers. 137
Provisioning Resources with Docker Machine 138
Using a Proxy 141
Execution Options 147

Shell Scripts 148
Using a Process Manager (or systemd to Rule Them All) 150
Using a Configuration Management Tool 153

Host Configuration 157
Choosing an OS 157
Choosing a Storage Driver 157

Specialist Hosting Options 160
Triton 160
Google Container Engine 162
Amazon EC2 Container Service 162
Giant Swarm 165

Persistent Data and Production Containers 167

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Sharing Secrets 167
Saving Secrets in the Image 167
Passing Secrets in Environment Variables 168
Passing Secrets in Volumes 168
Using a Key-Value Store 169

Networking 170
Production Registry 170
Continuous Deployment/Delivery 171
Conclusion 171

10. Logging and Monitoring. 173
Logging 174

The Default Docker Logging 174
Aggregating Logs 176
Logging with ELK 176
Docker Logging with syslog 187
Grabbing Logs from File 193

Monitoring and Alerting 194
Monitoring with Docker Tools 194
cAdvisor 196
Cluster Solutions 197

Commercial Monitoring and Logging Solutions 201
Conclusion 201

Part III. Tools and Techniques

11. Networking and Service Discovery. 205
Ambassadors 206
Service Discovery 210

etcd 210
SkyDNS 215
Consul 219
Registration 223
Other Solutions 225

Networking Options 226
Bridge 226
Host 227
Container 228
None 228

New Docker Networking 228
Network Types and Plugins 230

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Networking Solutions 230
Overlay 231
Weave 233
Flannel 237
Project Calico 242

Conclusion 246

12. Orchestration, Clustering, and Management. 249
Clustering and Orchestration Tools 250

Swarm 251
Fleet 257
Kubernetes 263
Mesos and Marathon 271

Container Management Platforms 282
Rancher 282
Clocker 283
Tutum 285

Conclusion 286

13. Security and Limiting Containers. 289
Things to Worry About 290
Defense-in-Depth 292

Least Privilege 292
Securing Identidock 293
Segregate Containers by Host 295
Applying Updates 296

Avoid Unsupported Drivers 299
Image Provenance 300

Docker Digests 300
Docker Content Trust 301
Reproducible and Trustworthy Dockerfiles 305

Security Tips 307
Set a User 307
Limit Container Networking 309
Remove Setuid/Setgid Binaries 311
Limit Memory 312
Limit CPU 313
Limit Restarts 314
Limit Filesystems 314
Limit Capabilities 315
Apply Resource Limits (ulimits) 316

Run a Hardened Kernel 318

Table of Contents | ix

Linux Security Modules 318
SELinux 319
AppArmor 322

Auditing 322
Incident Response 323
Future Features 324
Conclusion 324

Index. 327

x | Table of Contents

Preface

Containers are a lightweight and portable store for an application and its dependencies.

Written down by itself, this sounds dry and boring. But the process improvements
made possible by containers are anything but; used correctly, containers can be game-
changing. So persuasive is the lure of the architectures and workflows made possible
by containers that it feels like every major IT company has gone in a year from never
having heard of Docker or containers to actively investigating and using them.

The rise of Docker has been astonishing. I don’t remember any technology that has
had such a fast and profound effect on the IT industry. This book is my attempt to
help you understand why containers are so important, what you stand to gain from
adopting containerization and, most importantly, how to go about it.

Who Should Read This Book
This book tries to take a holistic approach to Docker, explaining the reasons for using
Docker and showing how to use it and how to integrate it into a software-
development workflow. The book covers the entire software lifecycle, from develop‐
ment through to production and maintenance.

I have tried to avoid assuming too much of the reader beyond a basic knowledge of
Linux and software development in general. The intended readership is primarily
software developers, operations engineers, and system administrators (particularly
those keen to develop a DevOps approach), but technically informed managers and
enthusiasts should also be able to get something out of this book.

Why I Wrote This Book
I was in the fortunate position to learn about and use Docker while it was still in the
early stages of its meteoric rise. When the opportunity to write this book appeared, I
leapt at it with both hands. If my scribblings can help some of you to understand and

xi

make the most of the containerization movement, I will have achieved more than I
have in years of developing software.

I truly hope that you enjoy reading this book and that it helps you on the path to
using Docker in your organization.

Navigating This Book
This book is organized roughly as follows:

• Part I starts by explaining what containers are and why you should be interested
in them, before going into a tutorial chapter showing the basics of Docker. It ends
with a large chapter explaining the fundamental concepts and technology in
Docker, including an overview of the various Docker commands.

• Part II explains how to use Docker in a software-development lifecycle. It starts
by showing how to set up a development environment, before building a simple
web application that is used as an ongoing example through the rest of Part II.
The chapter covers development, testing, and integration, as well as how to
deploy containers and how to effectively monitor and log a production system.

• Part III goes into advanced details and the tools and techniques needed to run
multihost clusters of Docker containers safely and reliably. If you are already
using Docker and need to understand how to scale up or solve networking and
security issues, this is for you.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xii | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/using-docker/.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Using Docker by Adrian Mouat
(O’Reilly). Copyright 2016 Adrian Mouat, 978-1-491-91576-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Preface | xiii

https://github.com/using-docker/
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/using-docker.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I am immensely grateful for all the help, advice, and criticism I received during the
writing of this book. If I missed your name in the following list, please accept my
apologies; your contribution was appreciated whether I acted on it or not.

For their generous feedback, I would like to thank Ally Hume, Tom Sugden, Lukasz
Guminski, Tilaye Alemu, Sebastien Goasguen, Maxim Belooussov, Michael Boelen,

xiv | Preface

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/using-docker
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Ksenia Burlachenko, Carlos Sanchez, Daniel Bryant, Christoffer Holmstedt, Mike
Rathbun, Fabrizio Soppelsa, Yung-Jin Hu, Jouni Miikki, and Dale Bewley.

For technical conversations and input on specific technologies in the book, I would
like to thank Andrew Kennedy, Peter White, Alex Pollitt, Fintan Ryan, Shaun Cramp‐
ton, Spike Curtis, Alexis Richardson, Ilya Dmitrichenko, Casey Bisson, Thijs
Schnitger, Sheng Liang, Timo Derstappen, Puja Abbassi, Alexander Larsson, and Kel‐
sey Hightower. For allowing me to reuse monsterid.js, I would like to thank Kevin
Gaudin.

For all their help, I would like to thank the O’Reilly staff, in particular my editor Brian
Anderson and Meghan Blanchette, for starting the whole process.

Diogo Mónica and Mark Coleman—thanks to both of you for answering my last-
minute plea for help.

A particular shout-out has to go to two companies: Container Solutions and Cloud‐
Soft. Jamie Dobson and Container Solutions kept me busy blogging and speaking at
events, and put me in contact with several people who had an impact on this book.
CloudSoft graciously allowed me to use their office during the writing of this book
and hosted the Edinburgh Docker meetup, both of which were very important to me.

For putting up with my obsession and moaning over the book, I would like to thank
all my friends and family; you know who you are (and are unlikely to read this any‐
way).

Finally, I would like to thank the BBC 6 Music DJs who provided the soundtrack to
this book, including Lauren Laverne, Radcliffe and Maconie, Shaun Keaveny, and
Iggy Pop.

Preface | xv

PART I

Background and Basics

In the first part of this book, we’ll start by taking look at what containers are and why
they are becoming so popular. This is followed by an introduction to Docker and the
key concepts you need to understand to make the most of containers.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

The What and Why of Containers

Containers are fundamentally changing the way we develop, distribute, and run soft‐
ware. Developers can build software locally, knowing that it will run identically
regardless of host environment—be it a rack in the IT department, a user’s laptop, or
a cluster in the cloud. Operations engineers can concentrate on networking, resour‐
ces, and uptime and spend less time configuring environments and battling system
dependencies. The use and uptake of containers is increasing at a phenomenal rate
across the industry, from the smallest start ups to large-scale enterprises. Developers
and operations engineers should expect to regularly use containers in some fashion
within the next few years.

Containers are an encapsulation of an application with its dependencies. At first
glance, they appear to be just a lightweight form of virtual machines (VMs)—like a
VM, a container holds an isolated instance of an operating system (OS), which we
can use to run applications.

However, containers have several advantages that enable use cases that are difficult or
impossible with traditional VMs:

• Containers share resources with the host OS, which makes them an order of
magnitude more efficient. Containers can be started and stopped in a fraction of
a second. Applications running in containers incur little to no overhead com‐
pared to applications running natively on the host OS.

• The portability of containers has the potential to eliminate a whole class of bugs
caused by subtle changes in the running environment—it could even put an end
to the age-old developer refrain of “but it works on my machine!”

• The lightweight nature of containers means developers can run dozens of con‐
tainers at the same time, making it possible to emulate a production-ready dis‐

3

1 The diagram depicts a type 2 hypervisor, such as Virtualbox or VMWare Workstation, which runs on top of a
host OS. Type 1 hypervisors, such as Xen, are also available where the hypervisor runs directly on top of the
bare metal.

2 The kernel is the core component in an OS and is responsible for providing applications with essential system
functions related to memory, CPU, and device access. A full OS consists of the kernel plus various system
programs, such as init systems, compilers, and window managers.

tributed system. Operations engineers can run many more containers on a single
host machine than using VMs alone.

• Containers also have advantages for end users and developers outside of deploy‐
ing to the cloud. Users can download and run complex applications without
needing to spend hours on configuration and installation issues or worrying
about the changes required to their system. In turn, the developers of such appli‐
cations can avoid worrying about differences in user environments and the avail‐
ability of dependencies.

More importantly, the fundamental goals of VMs and containers are different—the
purpose of a VM is to fully emulate a foreign environment, while the purpose of a
container is to make applications portable and self-contained.

Containers Versus VMs
Though containers and VMs seem similar at first, there are some important differ‐
ences, which are easiest to explain using diagrams.

Figure 1-1 shows three applications running in separate VMs on a host. The hypervi‐
sor1 is required to create and run VMs, controlling access to the underlying OS and
hardware as well as interpreting system calls when necessary. Each VM requires a full
copy of the OS, the application being run, and any supporting libraries.

In contrast, Figure 1-2 shows how the same three applications could be run in a con‐
tainerized system. Unlike VMs, the host’s kernel2 is shared with the running contain‐
ers. This means that containers are always constrained to running the same kernel as
the host. Applications Y and Z use the same libraries and can share this data rather
than having redundant copies. The container engine is responsible for starting and
stopping containers in a similar way to the hypervisor on a VM. However, processes
running inside containers are equivalent to native processes on the host and do not
incur the overheads associated with hypervisor execution.

Both VMs and containers can be used to isolate applications from other applications
running on the same host. VMs have an added degree of isolation from the hypervi‐
sor and are a trusted and battle-hardened technology. Containers are comparatively
new, and many organizations are hesitant to completely trust the isolation features of
containers before they have a proven track record. For this reason, it is common to

4 | Chapter 1: The What and Why of Containers

find hybrid systems with containers running inside VMs in order to take advantage
of both technologies.

Figure 1-1. Three VMs running on a single host

Figure 1-2. Three containers running on a single host

Containers Versus VMs | 5

3 OpenVZ never achieved mass adoption, possibly because of the requirement to run a patched kernel.

Docker and Containers
Containers are an old concept. For decades, UNIX systems have had the chroot com‐
mand that provides a simple form of filesystem isolation. Since 1998, FreeBSD has
had the jail utility, which extended chroot sandboxing to processes. Solaris Zones
offered a comparatively complete containerization technology around 2001 but was
limited to the Solaris OS. Also in 2001, Parrallels Inc, (then SWsoft) released the
commercial Virtuozzo container technology for Linux and later open sourced the
core technology as OpenVZ in 2005.3 Then Google started the development of
CGroups for the Linux kernel and began moving its infrastructure to containers. The
Linux Containers (LXC) project started in 2008 and brought together CGroups, ker‐
nel namespaces, and chroot technology (among others) to provide a complete con‐
tainerization solution. Finally, in 2013, Docker brought the final pieces to the
containerization puzzle, and the technology began to enter the mainstream.

Docker took the existing Linux container technology and wrapped and extended it in
various ways—primarily through portable images and a user-friendly interface—to
create a complete solution for the creation and distribution of containers. The Docker
platform has two distinct components: the Docker Engine, which is responsible for
creating and running containers; and the Docker Hub, a cloud service for distributing
containers.

The Docker Engine provides a fast and convenient interface for running containers.
Before this, running a container using a technology such as LXC required significant
specialist knowledge and manual work. The Docker Hub provides an enormous
number of public container images for download, allowing users to quickly get
started and avoid duplicating work already done by others. Further tooling developed
by Docker includes Swarm, a clustering manager; Kitematic, a GUI for working with
containers; and Machine, a command-line utility for provisioning Docker hosts.

By open sourcing the Docker Engine, Docker was able to grow a large community
around Docker and take advantage of public help with bug fixes and enhancements.
The rapid rise of Docker meant that it effectively became a de facto standard, which
led to industry pressure to move to develop independent formal standards for the
container runtime and format. In 2015, this culminated in the establishment of the
Open Container Initiative, a “governance structure” sponsored by Docker, Microsoft,
CoreOS, and many other important organizations, whose mission is to develop such
a standard. Docker’s container format and runtime forms the basis of the effort.

The uptake of containers has largely been driven by developers, who for the first time
were given the tools to use containers effectively. The fast start-up time of Docker

6 | Chapter 1: The What and Why of Containers

4 This originally stood for Linux, Apache, MySQL, and PHP—common components in a web application.

containers is essential to developers who crave quick and iterative development cycles
where they can promptly see the results of code changes. The portability and isolation
guarantees of containers ease collaboration with other developers and operations;
developers can be sure their code will work across environments, and operations can
focus on hosting and orchestrating containers rather than worrying about the code
running inside them.

The changes brought about by Docker are significantly changing the way we develop
software. Without Docker, containers would have remained in the shadows of IT for
a long time to come.

The Shipping Metaphor
The Docker philosophy is often explained in terms of a shipping-container metaphor,
which presumably explains the Docker name. The story normally goes something like
this:

When goods are transported, they have to pass through a variety of different means,
possibly including trucks, forklifts, cranes, trains, and ships. These means have to be
able to handle a wide variety of goods of different sizes and with different require‐
ments (e.g., sacks of coffee, drums of hazardous chemicals, boxes of electronic goods,
fleets of luxury cars, and racks of refrigerated lamb). Historically, this was a cumber‐
some and costly process, requiring manual labor, such as dock workers, to load and
unload items by hand at each transit point (Figure 1-3).

The transport industry was revolutionized by the introduction of the intermodal con‐
tainer. These containers come in standard sizes and are designed to be moved
between modes of transport with a minimum of manual labor. All transport machi‐
nery is designed to handle these containers, from the forklifts and cranes to the
trucks, trains, and ships. Refrigerated and insulated containers are available for trans‐
porting temperature sensitive goods, such as food and pharmaceuticals. The benefits
of standardization also extend to other supporting systems, such as the labeling and
sealing of containers. This means the transport industry can let the producers of
goods worry about the contents of the containers so that it can focus on the move‐
ment and storage of the containers themselves.

The goal of Docker is to bring the benefits of container standardization to IT. In
recent years, software systems have exploded in terms of diversity. Gone are the days
of a LAMP4 stack running on a single machine. A typical modern system may include
Javascript frameworks, NoSQL databases, message queues, REST APIs, and backends
all written in a variety of programming languages. This stack has to run partly or
completely on top of a variety of hardware—from the developer’s laptop and the in-
house testing cluster to the production cloud provider. Each of these environments is

Docker and Containers | 7

different, running different operating systems with different versions of libraries on
different hardware. In short, we have a similar issue to the one seen by the transport
industry—we have to continually invest substantial manual effort to move code
between environments. Much as the intermodal containers simplified the transporta‐
tion of goods, Docker containers simplify the transportation of software applications.
Developers can concentrate on building the application and shipping it through test‐
ing and production without worrying about differences in environment and depen‐
dencies. Operations can focus on the core issues of running containers, such as
allocating resources, starting and stopping containers, and migrating them between
servers.

Figure 1-3. Dockers working in Bristol, England, in 1940 (by Ministry of Information
Photo Division Photographer)

Docker: A History
In 2008, Solomon Hykes founded dotCloud to build a language-agnostic Plaftform-
as-a-Service (PaaS) offering. The language-agnostic aspect was the unique selling
point for dotCloud—existing PaaSs were tied to particular sets of languages (e.g.,

8 | Chapter 1: The What and Why of Containers

Heroku supported Ruby, and Google App Engine supported Java and Python). In
2010, dotCloud took part in Y Combinator accelerator program, where it was were
exposed to new partners and began to attract serious investment. The major turning
point came in March 2013, when dotCloud open sourced Docker, the core building
block of dotCloud. While some companies may have been scared that they were giv‐
ing away their magic beans, dotCloud recognized that Docker would benefit enor‐
mously from becoming a community-driven project.

Early versions of Docker were little more than a wrapper around LXC paired with a
union filesystem, but the uptake and speed of development was shockingly fast.
Within six months, it had more than 6,700 stars on GitHub and 175 nonemployee
contributors. This led dotCloud to change its name to Docker, Inc. and to refocus its
business model. Docker 1.0 was announced in June 2014, just 15 months after the 0.1
release. Docker 1.0 represented a major jump in stability and reliability—it was now
declared “production ready,” although it had already seen production use in several
companies, including Spotify and Baidu. At the same time, Docker started moving
toward being a complete platform rather than just a container engine, with the launch
of the Docker Hub, a public repository for containers.

Other companies were quick to see the potential of Docker. Red Hat became a major
partner in September 2013 and started using Docker to power its OpenShift cloud
offering. Google, Amazon, and DigitalOcean were quick to offer Docker support on
their clouds, and several startups began specializing in Docker hosting, such as Stack‐
Dock. In October 2014, Microsoft announced that future versions of Windows Server
would support Docker, representing a huge shift in positioning for a company tradi‐
tionally associated with bloated enterprise software.

DockerConEU in December 2014 saw the announcement of Docker Swarm, a clus‐
tering manager for Docker and Docker Machine, a CLI tool for provisioning Docker
hosts. This was a clear signal of Docker’s intention to provide a complete and integra‐
ted solution for running containers and not allowing themselves to be restricted to
only providing the Docker engine.

Also that December, CoreOS announced the development of rkt, its own container
runtime, and the development of the appc container specification. In June 2015, dur‐
ing DockerCon in San Francisco, Solomon Hykes from Docker and Alex Polvi from
CoreOS announced the formation of the Open Container Initiative (then called the
Open Container Project) to develop a common standard for container formats and
runtimes.

Also in June 2015, the FreeBSD project announced that Docker was now supported
on FreeBSD, using ZFS and the Linux compatibility layer. In August 2015, Docker
and Microsoft released a “tech preview” of the Docker Engine for Windows server.

Docker: A History | 9

5 Personally, I’ve never liked the phrase; all batteries provide much the same functionality and can only be
swapped with batteries of the same size and voltage. I assume the phrase has its origins in Python’s “Batteries
Included” philosophy, which it uses to describe the extensive standard library that ships with Python.

With the release of Docker 1.8, Docker introduced the content trust feature, which
verifies the integrity and publisher of Docker images. Content trust is a critical com‐
ponent for building trusted workflows based on images retrieved from Docker regis‐
tries.

Plugins and Plumbing
As a company, Docker Inc. has always been quick to recognize it owes a lot of its suc‐
cess to the ecosystem. While Docker Inc. was concentrating on producing a stable,
production-ready version of the container engine, other companies such as CoreOS,
WeaveWorks, and ClusterHQ were working on related areas, such as orchestrating
and networking containers. However, it quickly became clear that Docker Inc., was
planning to provide a complete platform out of the box, including networking, stor‐
age, and orchestration capabilities. In order to encourage continued ecosystem
growth and ensure users had access to solutions for a wide range of use cases, Docker
Inc. announced it would create a modular, extensible framework for Docker where
stock components could be swapped out for third-party equivalents or extended with
third-party functionality. Docker Inc. called this philosophy “Batteries Included, But
Replaceable,” meaning that a complete solution would be provided, but parts could be
swapped out.5

At the time of writing, the plugin infrastructure is in its infancy, but is available.
There are several plugins already available for networking containers and data man‐
agement.

Docker also follows what it calls the “Infrastructure Plumbing Manifesto,” which
underlines its commitment to reusing and improving existing infrastructure compo‐
nents where possible and contributing reusable components back to the community
when new tools are required. This led to the spinning out of the low-level code for
running containers into the runC project, which is overseen by the OCI and can be
reused as the basis for other container platforms.

64-Bit Linux
At the time of writing, the only stable, production-ready platform for Docker is 64-bit
Linux. This means your computer will need to run a 64-bit Linux distribution, and all
your containers will also be 64-bit Linux. If you are a Windows or Mac OS user, you
can run Docker inside a VM.

10 | Chapter 1: The What and Why of Containers

Support for other native containers on other platforms, including BSD, Solaris, and
Windows Server, is in various stages of development. Since Docker does not natively
do any virtualization, containers must always match the host kernel—a Windows
Server container can only run on a Windows Server host, and a 64-bit Linux con‐
tainer will only run on a 64-bit Linux host.

Microservices and Monoliths
One of the biggest use cases and strongest drivers behind the uptake of containers are
microservices.

Microservices are a way of developing and composing software systems such that
they are built out of small, independent components that interact with one another
over the network. This is in contrast to the traditional monolithic way of developing
software, where there is a single large program, typically written in C++ or Java.

When it comes to scaling a monolith, commonly the only choice is to scale up, where
extra demand is handled by using a larger machine with more RAM and CPU power.
Conversely, microservices are designed to scale out, where extra demand is handled
by provisioning multiple machines the load can be spread over. In a microservice
architecture, it’s possible to only scale the resources required for a particular service,
focusing on the bottlenecks in the system. In a monolith, it’s scale everything or noth‐
ing, resulting in wasted resources.

In terms of complexity, microservices are a double-edged sword. Each individual
microservice should be easy to understand and modify. However, in a system com‐
posed of dozens or hundreds of such services, the overall complexity increases due to
the interaction between individual components.

The lightweight nature and speed of containers mean they are particularly well suited
for running a microservice architecture. Compared to VMs, containers are vastly
smaller and quicker to deploy, allowing microservice architectures to use the mini‐
mum of resources and react quickly to changes in demand.

For more information on microservices, see Building Microservices by Sam Newman
(O’Reilly) and Martin Fowler’s Microservice Resource Guide.

64-Bit Linux | 11

http://shop.oreilly.com/product/0636920033158.do
http://martinfowler.com/microservices/

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Installation

This chapter will briefly cover the steps required to install Docker. There are a few
gotchas, depending on which operating system you’re using; but with any luck it,
should be a straightforward and painless affair. If you already have a recent version of
Docker installed (say 1.8 or newer), you can safely skip to the next chapter.

Installing Docker on Linux
By far the best way to install Docker on Linux is through the installation script pro‐
vided by Docker. While most of the major Linux distributions have their own pack‐
ages, these tend to lag behind Docker releases, which is a serious issue, given the pace
of Docker development.

Docker Requirements

Docker doesn’t have many requirements, but you do need to be
running a reasonably modern kernel (version 3.10 or above at the
time of writing). You can check this by running uname -r. If you
are using RHEL or CentOS, you will need version 7 or later.
Also remember that you need to be running on a 64-bit architec‐
ture. You can check this by running uname -m; the result should be
x86_64.

You should be able to the use the script provided at https://get.docker.com to automat‐
ically install Docker. The official instructions will tell you to simply run curl -sSL |
sh or wget -qO- | sh, and you’re welcome to do that, but I recommend you inspect
the script before running it to verify you are happy with the changes it will make to
your system:

13

https://get.docker.com

$ curl https://get.docker.com > /tmp/install.sh
$ cat /tmp/install.sh
...
$ chmod +x /tmp/install.sh
$ /tmp/install.sh
...

The script will do a few checks, then install Docker using the appropriate package for
your system. It will also install some extra dependencies for security and filesystem
features if they are missing.

If you simply don’t want to use the installer, or you would like to use a different ver‐
sion of Docker than the one provided by the installer, you can also download a binary
from the Docker website. The downside to this approach is that no checks for depen‐
dencies will be done, and you will have to manually install updates. For more infor‐
mation and links to binaries, see the Docker Binary page.

Tested with Docker 1.8

At the time of writing, Docker is at version 1.8. All commands have
been tested against this version.

Run SELinux in Permissive Mode
If you are running a Red Hat-based distribution, including RHEL, CentOS, and
Fedora, you will probably have the SELinux security module installed.

When getting started with Docker, I recommend you run SELinux in permissive
mode, which will log, rather than enforce, errors. If you run SELinux in enforcing
mode, you are likely to see various cryptic “Permission Denied” errors when running
examples from this book.

To check your SELinux mode, run sestatus and check the output. For example:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: error (Success)
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

If you see “enforcing” here, SELinux is enabled and enforcing rules.

To change SELinux into permissive mode, just run sudo setenforce 0.

14 | Chapter 2: Installation

https://docs.docker.com/installation/binaries/

1 Windows and Docker have announced a joint initiative to support Docker on Windows Server. This will
allow Windows Server users to launch Windows-based images without virtualization.

2 The Docker Toolbox also includes Kitematic, a GUI for running Docker containers. We won’t cover Kitematic
in this book, but it is certainly worth investigating, especially when getting started with Docker.

For more information on SELinux and why you should consider enabling it once you
are confident with Docker, see “SELinux”.

Running Without sudo
As Docker is a priviliged binary, by default, we need to prefix commands with sudo in
order for them to run. This quickly gets boring. We can get around this by adding our
user to the docker group. On Ubuntu, you should be able to do the following:

$ sudo usermod -aG docker

which will create the docker group, if it doesn’t exist already, and add the current user.
You’ll then need to log out and log in again. Other Linux distributions should be sim‐
ilar.

You’ll also need to restart the Docker service, which is distribution dependent. On
Ubuntu, this looks like:

$ sudo service docker restart

For the sake of brevity, this book omits sudo from all Docker commands.

Adding a user to the docker group is equivalent to giving that user
root privileges. As such, it has security implications you should be
aware of, especially if you are using a shared machine. For futher
information, see the Docker security page.

Installing Docker on Mac OS or Windows
If you are using Windows or Mac OS, you will need some form of virtualization in
order to run Docker.1 You can either download a full VM solution and follow the
Linux instructions to install Docker or install the Docker Toolbox, which includes the
minimal boot2docker VM as well as other Docker tools we will use in this book, such
as Compose and Swarm. If you use Homebrew to install applications on your Mac,
there is a brew recipe available for boot2docker; but in general, I recommend using
the official Toolbox installation to avoid issues.

Once the Toolbox is installed, you can access Docker by opening the Docker quick‐
start terminal.2 Alternatively, you can configure an existing terminal by entering the
following commands:

Installing Docker on Mac OS or Windows | 15

https://docs.docker.com/articles/security/
https://www.docker.com/toolbox

$ docker-machine start default
Starting VM...
Started machines may have new IP addresses. You may need to rerun the
`docker-machine env` command.
$ eval $(docker-machine env default)

which will set up your environment with the settings needed to access the Docker
Engine running in the VM.

Be aware of the following when using the Docker Toolbox:

• In the examples in this book, I assume Docker is running on the host machine. If
you’re using the Docker Toolbox, this won’t be the case. In particular, you will
need to change references to localhost to the IP address of the VM. For exam‐
ple:

 $ curl localhost:5000

will become something like:

 $ curl 192.168.59.103:5000

You can easily discover the IP of the VM by running docker-machine ip default,
which allows for some automation:

 $ curl $(docker-machine ip default):5000

• Mapped volumes between your local OS and the Docker container must be cross-
mounted inside the VM. The Docker Toolbox automates this to some extent, but
be aware that this is happening if you have issues when using Docker volumes.

• You may need to change settings inside the VM if you have special requirements.
The file /var/lib/boot2docker/profile inside the boot2docker VM has various set‐
tings, including the Docker Engine configuration. You can also run your own
scripts after VM initialization by editing the /var/lib/boot2docker/bootlocal.sh file.
Refer to the boot2docker GitHub repository for full details.

If you have any problems following the examples in this book, try logging in to the
VM directly with docker-machine ssh default and running the commands from
there.

16 | Chapter 2: Installation

https://github.com/boot2docker/boot2docker

Docker Experimental Channel

As well as the normal, stable build, Docker maintain an experimen‐
tal build that contains the latest features for testing purposes. As
these features are still being discussed and developed, they are
likely to change significantly before making it into a stable build.
The experimental build should only be used for investigating new
features before they are officially released and should never be used
in production.
The experimental build can be installed on Linux using the script:

$ curl -sSL https://experimental.docker.com/ | sh

or by downloading a binary version from the Docker website. Note
that the build is updated nightly, and hashes are available for verify‐
ing the download.

A Quick Check
Just to make sure everything is installed correctly and working, try running the
docker version command. You should see something like:

$ docker version
Client:
 Version: 1.8.1
 API version: 1.20
 Go version: go1.4.2
 Git commit: d12ea79
 Built: Thu Aug 13 02:35:49 UTC 2015
 OS/Arch: linux/amd64

Server:
 Version: 1.8.1
 API version: 1.20
 Go version: go1.4.2
 Git commit: d12ea79
 Built: Thu Aug 13 02:35:49 UTC 2015
 OS/Arch: linux/amd64

If so, you’re all set and ready for the next chapter. If instead you get something like:

$ docker version
Client:
 Version: 1.8.1
 API version: 1.20
 Go version: go1.4.2
 Git commit: d12ea79
 Built: Thu Aug 13 02:35:49 UTC 2015
 OS/Arch: linux/amd64
Get http:///var/run/docker.sock/v1.20/version: dial unix /var/run/docker.sock:
no such file or directory.

A Quick Check | 17

http://bit.ly/1Q8g39C

* Are you trying to connect to a TLS-enabled daemon without TLS?
* Is your docker daemon up and running?

this means that the Docker daemon isn’t running (or the client can’t access it). To
investigate the problem, try starting the Docker daemon manually by running sudo
docker daemon—this should give you some information on what is going wrong and
help in searching for an answer. (Note that this will only work on a Linux host. If
you’re using the Docker Toolbox or similar, you’ll need to check the documentation
for more help.)

18 | Chapter 2: Installation

1 Images will be defined in more detail later; but for the moment, just consider them “templates” for containers.

CHAPTER 3

First Steps

This chapter will guide you through your first steps with using Docker. We start by
launching and using some simple containers to give you a feel for how Docker works.
Then we move onto Dockerfiles—the basic building block of Docker containers —and
Docker Registries, which support the distribution of containers. The chapter ends with
a look at how to use a container to host a key-value store with persistent storage.

Running Your First Image
To test Docker is installed correctly, try running:

$ docker run debian echo "Hello World"

This may take a little while, depending on your Internet connection, but eventually
you will get something similar to the following:

Unable to find image 'debian' locally
debian:latest: The image you are pulling has been verified
511136ea3c5a: Pull complete
638fd9704285: Pull complete
61f7f4f722fb: Pull complete
Status: Downloaded newer image for debian:latest
Hello World

So what’s happened here? We’ve called the docker run command, which is responsi‐
ble for launching containers. The argument debian is the name of the image1 we want
to use—in this case, a stripped-down version of the Debian Linux distribution. The
first line of the output tells us we don’t have a local copy of the Debian image. Docker
then checks online at the Docker Hub and downloads the newest version of the

19

2 I normally use rm rather than mv when demonstrating this in presentations, but the fear of someone running
the command on the their host forced me to use mv here.

Debian image. Once the image has been downloaded, Docker turns the image into a
running container and executes the command we specified—echo "Hello World"—
inside it. The result of running this command is shown in the last line of the output.

If you run the same command again, it will immediately launch the container without
downloading. The command should take around one second to run, which is
astounding if you consider the amount of work that has happened: Docker has provi‐
sioned and launched our container, executed our echo command, and then shut
down the container again. If you were to try to do something similar with a tradi‐
tional VM, you would be waiting several seconds, possibly minutes.

We can ask Docker to give us a shell inside a container with the following command:

$ docker run -i -t debian /bin/bash
root@622ac5689680:/# echo "Hello from Container-land!"
Hello from Container-land!
root@622ac5689680:/# exit
exit

This will give you a new command prompt inside the container, very similar to
ssh’ing into a remote machine. In this case, the flags -i and -t tell Docker we want
an interactive session with a tty attached. The command /bin/bash gives us a bash
shell. When you exit the shell, the container will stop—containers only run as long as
their main process.

The Basic Commands
Let’s try to understand Docker a bit more by launching a container and seeing what
effect various commands and actions have. First, let’s launch a new container; but this
time, we’ll give it a new hostname with the -h flag:

$ docker run -h CONTAINER -i -t debian /bin/bash
root@CONTAINER:/#

What happens if we break a container?

root@CONTAINER:/# mv /bin /basket
root@CONTAINER:/# ls
bash: ls: command not found

We’ve moved the /bin directory and made the container pretty useless, at least tem‐
porarily.2 Before we get rid of this container, let’s see what the ps, inspect, and diff
commands tell us about it. Open a new terminal (leave the container session run‐
ning), and try running docker ps from the host. You will see something like this:

20 | Chapter 3: First Steps

3 Docker-generated names are a random adjective followed by the name of a famous scientist, engineer, or
hacker. You can instead set the name by using the --name argument (e.g., docker run --name boris debian
echo "Boo").

4 As in the templating engine for the Go programming language. This is a fully featured templating engine that
provides a lot of flexibility and power for filtering and selecting data. You can find more information on how
to use inspect at the Docker website.

CONTAINER ID IMAGE COMMAND ... NAMES
00723499fdbf debian "/bin/bash" ... stupefied_turing

This tells us a few details about all the currently running containers. Most of the out‐
put should be self-explanatory, but note that Docker has given the container a reada‐
ble name that can be used to identify it from the host, in this case
"stupefied_turing“.3 We can get more information on a given container by running
docker inspect with the name or ID of the container:

$ docker inspect stupefied_turing
[
{
 "Id": "00723499fdbfe55c14565dc53d61452519deac72e18a8a6fd7b371ccb75f1d91",
 "Created": "2015-09-14T09:47:20.2064793Z",
 "Path": "/bin/bash",
 "Args": [],
 "State": {
 "Running": true,
...

There is a lot of valuable output here, but it’s not exactly easy to parse. We can use
grep or the --format argument (which takes a Go template4) to filter for the informa‐
tion we’re interested in. For example:

$ docker inspect stupefied_turing | grep IPAddress
 "IPAddress": "172.17.0.4",
 "SecondaryIPAddresses": null,
$ docker inspect --format {{.NetworkSettings.IPAddress}} stupefied_turing
172.17.0.4

Both give us the IP address of the running container. But for now, let’s move onto
another command, docker diff:

$ docker diff stupefied_turing
C /.wh..wh.plnk
A /.wh..wh.plnk/101.715484
D /bin
A /basket
A /basket/bash
A /basket/cat
A /basket/chacl
A /basket/chgrp

The Basic Commands | 21

https://docs.docker.com/reference/commandline/inspect/

A /basket/chmod
...

What we’re seeing here is the list of files that have changed in the running container;
in this case, the deletion of /bin and addition of everything in /basket, as well as the
creation of some files related to the storage driver. Docker uses a union file system
(UFS) for containers, which allows multiple filesystems to be mounted in a hierarchy
and to appear as a single filesystem. The filesystem from the image has been mounted
as a read-only layer, and any changes to the running container are made to a read-
write layer mounted on top of this. Because of this, Docker only has to look at the
topmost read-write layer to find the changes made to the running system.

The last thing I want to show you before we’re finished with this container is docker
logs. If you run this command with the name of your container, you will get a list of
everything that’s happened inside the container:

$ docker logs stupefied_turing
root@CONTRAINER:/# mv /bin /basket
root@CONTRAINER:/# ls
bash: ls: command not found

We’re finished with our broken container now, so let’s get rid of it. First, exit from the
shell:

root@CONTRAINER:/# exit
exit
$

This will also stop the container, since the shell was the only running process. If you
run docker ps, you should see there are no running containers.

However, this doesn’t tell the whole story. If you type docker ps -a, you will get a list
of all containers including stopped containers (officially called exited containers). An
exited container can be restarted by issuing docker start (although we’ve broken the
paths in this container, so in this case, you won’t be able to start it). To get rid of the
container, use the docker rm command:

$ docker rm stupefied_turing
stupefied_turing

22 | Chapter 3: First Steps

www.allitebooks.com

http://www.allitebooks.org

5 Well, I say useful, but that’s not strictly accurate.

Cleaning Up Stopped Containers

If you want to get rid of all your stopped containers, you can use
the output of docker ps -aq -f status=exited, which gets the
IDs of all stopped containers. For example:

 $ docker rm -v $(docker ps -aq -f status=exited)

Since this is a common operation, you might want to put it into a
shell script or alias. Note that the -v argument will delete any
Docker-managed volumes that aren’t referenced by other contain‐
ers.
You can avoid piling up stopped containers by giving the --rm flag
to docker run, which will delete the container and associated file
system when the container exits.

OK, let’s see how we can build a new, useful container we actually want to keep.5

We’re going to create a Dockerized cowsay application. If you don’t know what cow‐
say is, I suggest you brace yourself. Start by launching a container and installing some
packages:

$ docker run -it --name cowsay --hostname cowsay debian bash
root@cowsay:/# apt-get update
...
Reading package lists... Done
root@cowsay:/# apt-get install -y cowsay fortune
...
root@cowsay:/#

Give it a whirl!

root@cowsay:/# /usr/games/fortune | /usr/games/cowsay

/ Writing is easy; all you do is sit \
| staring at the blank sheet of paper |
| until drops of blood form on your |
| forehead. |
| |
\ -- Gene Fowler /

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

The Basic Commands | 23

6 Just play along. It’s easier that way.

Excellent. Let’s keep this container.6 To turn it into an image, we can just use the
docker commit command. It doesn’t matter if the container is running or stopped. To
do this, we need to give the command the name of the container (“cowsay”) a name
for the image (“cowsayimage”) and the name of the repository to store it in (“test”):

root@cowsay:/# exit
exit
$ docker commit cowsay test/cowsayimage
d1795abbc71e14db39d24628ab335c58b0b45458060d1973af7acf113a0ce61d

The returned value is the unique ID of our image. Now we have an image with cow‐
say installed that we can run:

$ docker run test/cowsayimage /usr/games/cowsay "Moo"

< Moo >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

This is great! However, there are a few problems. If we need to change something, we
have to manually repeat our steps from that point. For example, if we want to use a
different base image, we would have to start again from scratch. More importantly, it
isn’t easily repeatable; it’s difficult and potentially error-prone to share or repeat the
set of steps required to create the image. The solution to this is to use a Dockerfile to
create an automated build for the image.

Building Images from Dockerfiles
A Dockerfile is simply a text file that contains a set of steps that can be used to create
a Docker image. Start by creating a new folder and file for this example:

$ mkdir cowsay
$ cd cowsay
$ touch Dockerfile

And insert the following contents into Dockerfile:

FROM debian:wheezy

RUN apt-get update && apt-get install -y cowsay fortune

The FROM instruction specifies the base image to use (debian, as before; but this time,
we have specified that we want to use the version tagged “wheezy”). All Dockerfiles

24 | Chapter 3: First Steps

must have a FROM instruction as the first noncomment instruction. RUN instructions
specify a shell command to execute inside the image. In this case, we are just instal‐
ling cowsay and fortune in the same way as we did before.

We can now build the image by running the docker build command inside the same
directory:

$ ls
Dockerfile
$ docker build -t test/cowsay-dockerfile .
Sending build context to Docker daemon 2.048 kB
Step 0 : FROM debian:wheezy
 ---> f6fab3b798be
Step 1 : RUN apt-get update && apt-get install -y cowsay fortune
 ---> Running in 29c7bd4b0adc
...
Setting up cowsay (3.03+dfsg1-4) ...
 ---> dd66dc5a99bd
Removing intermediate container 29c7bd4b0adc
Successfully built dd66dc5a99bd

Then we can run the image in the same way as before:

$ docker run test/cowsay-dockerfile /usr/games/cowsay "Moo"

Images, Containers, and the Union File System
In order to understand the relationship between images and containers, we need to
explain a key piece of technology that enables Docker—the UFS (sometimes simply
called a union mount). Union file systems allow multiple file systems to be overlaid,
appearing to the user as a single filesytem. Folders may contain files from multiple
filesystems, but if two files have the exact same path, the last mounted file will hide
any previous files. Docker supports several different UFS implentations, including
AUFS, Overlay, devicemapper, BTRFS, and ZFS. Which implementation is used is
system dependent and can be checked by running docker info where it is listed
under “Storage Driver.” It is possible to change the filesystem, but this is only recom‐
mended if you know what you are doing and are aware of the advantages and disad‐
vantages.

Docker images are made up of multiple layers. Each of these layers is a read-only fil‐
eystem. A layer is created for each instruction in a Dockerfile and sits on top of the
previous layers. When an image is turned into a container (from a docker run or
docker create command), the Docker engine takes the image and adds a read-write
filesystem on top (as well as initializing various settings such as the IP address, name,
ID, and resource limits).

Because unnecessary layers bloat images (and the AUFS filesystem has a hard limit of
127 layers), you will notice that many Dockerfiles try to minimize the number of lay‐
ers by specifying several UNIX commands in a single RUN instruction.

Building Images from Dockerfiles | 25

7 Be careful not to confuse users when writing ENTRYPOINT scripts—remember the script will swallow any com‐
mands given to docker run, which they may not be expecting.

A container can be in one of several states: created, restarting, running, paused, or exi‐
ted. A “created” container is one that has been initialized with the docker create
command but hasn’t been started yet. The exited status is commonly referred to as
“stopped” and indicates there are no running processes inside the container (this is
also true of a “created” container, but an exited container will have already been
started at least once). A container exits when its main processes exits. An exited con‐
tainer can be restarted with the docker start command. A stopped container is not
the same as an image. A stopped container will retain changes to its settings, meta‐
data, and filesystem, including runtime configuration such as IP address that are not
stored in images. The restarting state is rarely seen in practice and occurs when the
Docker engine attempts to restart a failed container.

But we can actually make things a little bit easier for the user by taking advantage of
the ENTRYPOINT Dockerfile instruction. The ENTRYPOINT instruction lets us specify an
executable that is used to handle any arguments passed to docker run.

Add the following line to the bottom of the Dockerfile:

ENTRYPOINT ["/usr/games/cowsay"]

We can now rebuild and run the image without needing to specify the cowsay com‐
mand:

$ docker build -t test/cowsay-dockerfile .
...
$ docker run test/cowsay-dockerfile "Moo"
...

Much easier! But now we’ve lost the ability to use the fortune command inside the
container as input to cowsay. We can fix this by providing our own script for the
ENTRYPOINT, which is a common pattern when creating Dockerfiles. Create a file
entrypoint.sh with the following contents and save it in the same directory as the
Dockerfile:7

#!/bin/bash
if [$# -eq 0]; then
 /usr/games/fortune | /usr/games/cowsay
 else
 /usr/games/cowsay "$@"
fi

Set the file to be executable with chmod +x entrypoint.sh.

26 | Chapter 3: First Steps

All this script does is pipe input from fortune into cowsay if it is called with no argu‐
ments; otherwise, it calls cowsay with the given arguments. We next need to modify
the Dockerfile to add the script into the image and call it with the ENTRYPOINT
instruction. Edit the Dockerfile so that it looks like:

FROM debian

RUN apt-get update && apt-get install -y cowsay fortune
COPY entrypoint.sh /

ENTRYPOINT ["/entrypoint.sh"]

The COPY instruction simply copies a file from the host into the image’s filesys‐
tem, the first argument being the file on the host and the second the destination
path, very similar to cp.

Try building a new image and running containers with and without arguments:

$ docker build -t test/cowsay-dockerfile .
...snip...
$ docker run test/cowsay-dockerfile

/ The last thing one knows in \
| constructing a work is what to put |
| first. |
| |
\ -- Blaise Pascal /

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||
$ docker run test/cowsay-dockerfile Hello Moo

< Hello Moo >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Working with Registries
Now that we’ve created something amazing, how can we share it with others? When
we first ran the Debian image at the start of the chapter, it was downloaded from the
official Docker registry—the Docker Hub. Similarly, we can upload our own images
to the Docker Hub for others to download and use.

Working with Registries | 27

The Docker Hub can be accessed from both the command line and the website. You
can search for existing images with the Docker search command or use http://regis
try.hub.docker.com.

Registries, Repositories, Images, and Tags
There is a hierarchical system for storing images. The following terminology is used:

Registry
A service responsible for hosting and distributing images. The default registry is
the Docker Hub.

Repository
A collection of related images (usually providing different versions of the same
application or service).

Tag
An alphanumeric identifier attached to images within a repository (e.g., 14.04 or
stable).

So the command docker pull amouat/revealjs:latest will download the image
tagged latest within the amouat/revealjs repository from the Docker Hub registry.

In order to upload our cowsay image, you will need to sign up for an account with the
Docker Hub (either online or using the docker login command). After you have
done this, all we need to do is tag the image into an appropriately named repository
and use the docker push command to upload it to the Docker Hub. But first, let’s add
a MAINTAINER instruction to the Dockerfile, which simply sets the author contact
information for the image:

FROM debian

MAINTAINER John Smith <john@smith.com>
RUN apt-get update && apt-get install -y cowsay fortune
COPY entrypoint.sh /

ENTRYPOINT ["/entrypoint.sh"]

Now let’s rebuild the image and upload it to the Docker Hub. This time, you will need
to use a repository name that starts with your username on the Docker Hub (in my
case, amouat), followed by / and whatever name you want to give the image. For
example:

$ docker build -t amouat/cowsay .
...
$ docker push amouat/cowsay
The push refers to a repository [docker.io/amouat/cowsay] (len: 1)

28 | Chapter 3: First Steps

http://registry.hub.docker.com
http://registry.hub.docker.com

e8728c722290: Image successfully pushed
5427ac510fe6: Image successfully pushed
4a63ead8b301: Image successfully pushed
73805e6e9ac7: Image successfully pushed
c90d655b99b2: Image successfully pushed
30d39e59ffe2: Image successfully pushed
511136ea3c5a: Image successfully pushed
latest: digest: sha256:bfd17b7c5977520211cecb202ad73c3ca14acde6878d9ffc81d95...

As I didn’t specify a tag after the repository name, it was automatically assigned the
latest tag. To specify a tag, just add it after the repository name with a colon (e.g.,
docker build -t amouat/cowsay:stable.).

Once the upload has completed, the world can download your image via the docker
pull command (e.g., docker pull amouat/cowsay).

Private Repositories
Of course, you might not want the world to have access to your image. In this case,
you have a couple of choices. You can pay for a hosted private repository (on the
Docker Hub or a similar service such as quay.io), or you can run your own registry.
For more information on private repositories and registries, see Chapter 7.

Image Namespaces
There are three namespaces pushed Docker images can belong to, which can be iden‐
tified from the image name:

• Names prefixed with a string and /, such as amouat/revealjs, belong to the
“user” namespace. These are images on the Docker Hub that have been uploaded
by a given user. For example, amouat/revealjs is the revealjs image uploaded by
the user amouat. It is free to upload public images to the Docker Hub, which
already contains thousands of images from the whimisical supertest2014/nyan
to the very useful gliderlabs/logspout.

• Names such as debian and ubuntu, with no prefixes or /s, belong to “root” name‐
space, which is controlled by Docker Inc. and reserved for the official images for
common software and distributions available from the Docker Hub. Although
curated by Docker, the images are generally maintained by third parties, nor‐
mally the providers of the software in question (e.g., the nginx image is main‐
tained by the nginx company). There are official images for most common
software packages, which should be your first port of call when looking for an
image to use.

• Names prefixed with a hostname or IP are images hosted on third-party regis‐
tries (not the Docker Hub). These include self-hosted registries for organizations,

Working with Registries | 29

8 At the time of writing, there are 1,350 PostgreSQL images.

as well as competitors to the Hub, such as quay.io. For example, localhost:
5000/wordpress refers to an WordPress image hosted on a local registry.

This namespacing ensures users cannot be confused about where images have come
from; if you’re using the debian image, you know it is the official image from the
Docker Hub and not some other registry’s version of the debian image.

Using the Redis Official Image
Ok, I admit it: you’re probably not going to get a lot of mileage out of the cowsay
image. Let’s see how we can use an image from one of the official Docker repositories
—in this case, we’ll have a look at the offical image for Redis, a popular key-value
store.

Official Repositories

If you search the Docker Hub for a popular application or service,
such as the Java programming language or the PostgreSQL data‐
base, you will find hundreds of results.8 The official Docker reposi‐
tories are intended to provide curated images of known quality and
provenance and should be your first choice where possible. They
should be returned at the top of searches and marked as official.
When you pull from an official repository, the name will have no
user portion, or it will be set to library (e.g., the MongoDB reposi‐
tory is available from mongo and library/mongo). You will also get
a message saying, “The image you are pulling has been verified,”
indicating the Docker daemon has validated the checksums for the
image and therefore has verified its provenance.

Start by getting the image:

$ docker pull redis
Using default tag: latest
latest: Pulling from library/redis

d990a769a35e: Pull complete
8656a511ce9c: Pull complete
f7022ac152fb: Pull complete
8e84d9ce7554: Pull complete
c9e5dd2a9302: Pull complete
27b967cdd519: Pull complete
3024bf5093a1: Pull complete

30 | Chapter 3: First Steps

e6a9eb403efb: Pull complete
c3532a4c89bc: Pull complete
35fc08946add: Pull complete
d586de7d17cd: Pull complete
1f677d77a8fa: Pull complete
ed09b32b8ab1: Pull complete
54647d88bc19: Pull complete
2f2578ff984f: Pull complete
ba249489d0b6: Already exists
19de96c112fc: Already exists
library/redis:latest: The image you are pulling has been verified.
Important: image verification is a tech preview feature and should not be re...
Digest: sha256:3c3e4a25690f9f82a2a1ec6d4f577dc2c81563c1ccd52efdf4903ccdd26cada3
Status: Downloaded newer image for redis:latest

Start up the Redis container, but this time use the -d argument:

$ docker run --name myredis -d redis
585b3d36e7cec8d06f768f6eb199a29feb8b2e5622884452633772169695b94a

The -d tells Docker to run the container in the background. Docker starts the con‐
tainer as normal, but rather than printing the output from the container, it returns
the containers ID and exits. The container is still running in the background, and you
can use the docker logs command to see any output from the container.

Ok, so how do we use it? Obviously we need to connect to the database in some way.
We don’t have an application, so we’ll just use the redis-cli tool. We could just
install the redis-cli on the host, but it’s easier and more informative to launch a new
container to run redis-cli in and link the two:

$ docker run --rm -it --link myredis:redis redis /bin/bash
root@ca38735c5747:/data# redis-cli -h redis -p 6379
redis:6379> ping
PONG
redis:6379> set "abc" 123
OK
redis:6379> get "abc"
"123"
redis:6379> exit
root@ca38735c5747:/data# exit
exit

Pretty neat—we’ve just linked two containers and added some data to Redis in a few
seconds. So how did this work?

Using the Redis Official Image | 31

Docker Networking Changes

This chapter, and the rest of this book, use the --link command to
network containers. Forthcoming changes to the way networking
works in Docker mean that in the future, it will be more idiomatic
to “publish services” rather than link containers. However, links
will continue to be supported for the forseeable future, and the
examples in this book should work without changes.
For more information on the upcoming changes to networking, see
“New Docker Networking”.

The linking magic happened with the --link myredis:redis argument to docker
run. This told Docker that we wanted to connect the new container to the existing
“myredis” container, and that we want to refer to it by the name “redis” inside our
new container. To achieve this, Docker set up an entry for “redis” in /etc/hosts inside
the container, pointing to the IP address of the “myredis”. This allowed us to use the
hostname “redis” in the redis-cli rather than needing to somehow pass in, or discover,
the IP address of the Redis container.

After that, we run the Redis ping command to verify that we are connected to a Redis
server before adding and retrieving some data with set and put.

This is all good, but there is still an issue: how do we persist and back up our data?
For this, we don’t want to use the standard container filesystem—instead we need
something that can be easily shared between the container and the host or other con‐
tainers. Docker provides this through the concept of volumes. Volumes are files or
directories that are directly mounted on the host and not part of the normal union
file system. This means they can be shared with other containers and all changes will
be made directly to the host filesystem. There are two ways of declaring a directory as
a volume, either using the VOLUME instruction inside a Dockerfile or specifying the
-v flag to docker run. Both the following Dockerfile instruction and docker run
command have the effect of creating a volume as /data inside a container:

VOLUME /data

and:

$ docker run -v /data test/webserver

By default, the directory or file will be mounted on the host inside your Docker
installation directory (normally /var/lib/docker/). It is possible to specify the host
directory to use as the mount via the docker run command (e.g., docker run -d -
v /host/dir:/container/dir test/webserver). It isn’t possible to specify a host
directory inside a Dockerfile for reasons of portability and security (the file or direc‐
tory may not exist in other systems, and containers shouldn’t be able to mount sensi‐
tive files like etc/passwd without explicit permission).

32 | Chapter 3: First Steps

www.allitebooks.com

http://www.allitebooks.org

So, how do we use this to do backups with the Redis container? The following shows
one way, assuming the myredis container is still running:

$ docker run --rm -it --link myredis:redis redis /bin/bash
root@09a1c4abf81f:/data# redis-cli -h redis -p 6379
redis:6379> set "persistence" "test"
OK
redis:6379> save
OK
redis:6379> exit
root@09a1c4abf81f:/data# exit
exit
$ docker run --rm --volumes-from myredis -v $(pwd)/backup:/backup \
 debian cp /data/dump.rdb /backup/
$ ls backup
dump.rdb

Note that we have used the -v argument to mount a known directory on the host and
--volumes-from to connect the new container to the Redis database folder.

Once you’ve finished with the myredis container, you can stop and delete it:

$ docker stop myredis
myredis
$ docker rm -v myredis
myredis

And you can remove all leftover containers with:

$ docker rm $(docker ps -aq)
45e404caa093
e4b31d0550cd
7a24491027fc
...

Conclusion
This ends the chapter on getting started with Docker. It’s been a whirlwind tour, but
by now, you should feel confident about creating and running your own containers.
In the next chapter, we’ll go into details about the architecture of Docker and some of
the fundamental concepts.

Conclusion | 33

CHAPTER 4

Docker Fundamentals

In this chapter, we’ll expand on the fundamental Docker concepts. We’ll start by look‐
ing at the overall architecture of Docker, including the technologies it builds on. This
is followed by more in-depth sections on building Docker images, networking con‐
tainers, and handling data in volumes. The chapter ends with an overview of the
remaining Docker commands.

As this chapter contains a lot of reference material, you may prefer
to skim the main points and move onto Chapter 5, referring back
to this chapter as needed.

The Docker Architecture
In order to understand how best to use Docker and some of the more unusual behav‐
ior in Docker, it’s good to have a rough understanding of how the Docker platform is
put together under the covers.

In Figure 4-1, we can see the major components of a Docker installation:

• At the center is the Docker daemon, which is responsible for creating, running,
and monitoring containers, as well as building and storing images, both of which
are represented on the right of the diagram. The Docker daemon is launched by
running docker daemon, which is normally taken care of by the host OS.

• The Docker client is on the left-hand side and is used to talk to the Docker dae‐
mon via HTTP. By default, this happens over a Unix domain socket, but it can
also use a TCP socket to enable remote clients or a file descriptor for systemd-
managed sockets. Since all communication has to be done over HTTP, it is easy

35

connect to remote Docker daemons and develop programming language bind‐
ings, but it also has implications for how features are implemented, such as
requiring a build context for Dockerfiles as explained in “The Build Context”).
The API used for communication with daemon is well defined and documented,
allowing developers to write programs that interface directly with the deamon,
without using the Docker client. The Docker client and daemon are distributed
as a single binary.

• Docker registries store and distribute images. The default registry is the Docker
Hub, which hosts thousands of public images as well as curated “official” images.
Many organizations run their own registries that can be used to store commercial
or sensitive images as well as avoiding the overhead of needing to download
images from the Internet. See “Running Your Own Registry” for information on
running your own registry. The Docker daemon will download images from reg‐
istries in response to docker pull requests. It will also automatically download
images specified in docker run requests and in the FROM instruction of Docker‐
files if they are not available locally.

Figure 4-1. High-level overview of major Docker components

Underlying Technologies
The Docker daemon uses an “execution driver” to create containers. By default, this is
Docker’s own runc driver, but there is also legacy support for LXC. Runc is very
closely tied to the following kernel features:

• cgroups, which are responsible for managing resources used by a container (e.g.,
CPU and memory usage). They are also responsible for freezing and unfreezing
containers, as used in the docker pause functionality.

36 | Chapter 4: Docker Fundamentals

• namespaces are responsible for isolating containers; making sure that a contain‐
er’s filesystem, hostname, users, networking, and processes are separated from
the rest of the system.

Libcontainer also supports SElinux and AppArmor, which can be enabled for tighter
security. See Chapter 13 for more information.

Another major technology underlying Docker is the Union File System (UFS), used
to store the layers for containers. The UFS is provided by one of several storage driv‐
ers, either AUFS, devicemapper, BTRFS, or Overlay. See the previous discussion of
UFS in “Images, Containers, and the Union File System”

Surrounding Technologies
The Docker engine and the Docker Hub do not in-and-of themselves constitute a
complete solution for working with containers. Most users will find they require sup‐
porting services and software, such as cluster management, service-discovery tools,
and advanced networking capabilities. As described in “Plugins and Plumbing”,
Docker Inc. plans to build a complete out-of-the-box solution that includes these fea‐
tures but allows users to easily swap out the default components for third-party ones.
The “swappable batteries” strategy primarily refers to the API level—allowing compo‐
nents to hook into the Docker Engine—but can also been seen as allowing supporting
Docker technology packaged as independent binaries to be easily replaced with third-
party equivalents.

The current list of supporting technologies supplied by Docker includes:

Swarm
Docker’s clustering solution. Swarm can group together several Docker hosts,
allowing the user to treat them as a unified resource. See Chapter 12 for more
information.

Compose
Docker Compose is a tool for building and running applications composed of
multiple Docker containers. It is primarily used in development and testing
rather than production. See “Automating with Compose” for more details.

Machine
Docker Machine installs and configures Docker hosts on local or remote resour‐
ces. Machine also configures the Docker client, making it easy to swap between
environments. See Chapter 9 for an example.

Kitematic
Kitematic is a Mac OS and Windows GUI for running and managing Docker
containers.

The Docker Architecture | 37

Docker Trusted Registry
Docker’s on-premise solution for storing and managing Docker images. Effec‐
tively a local version of the Docker Hub that can integrate with an existing secu‐
rity infrastructure and help organizations comply with regulations regarding the
storage and security of data. Features include metrics, Role-Based Access Control
(RBAC), and logs, all managed through an administrative console. This is cur‐
rently the only non–open source product from Docker Inc.

There is already a large list of services and applications from third parties that build
on or work with Docker. Several solutions have already emerged in the following
areas:

Networking
Creating networks of containers that span hosts is a nontrivial problem that can
be solved in a variety of ways. Several solutions have appeared in this area,
including Weave and Project Calico. In addition, Docker will soon have an inte‐
grated networking solution called Overlay. Users will be able to swap out the
Overlay driver for other solutions using Docker’s networking plugin framework.

Service discovery
When a Docker container comes up, it needs some way of finding the other serv‐
ices it needs to talk to, which are typically also running in containers. As contain‐
ers are dynamically assigned IP addresses, this isn’t a trivial problem in a large
system. Solutions in this area include Consul, Registrator, SkyDNS, and etcd.

Orchestration and cluster management
In large container deployments, tooling is essential in order to monitor and man‐
age the system. Each new container needs to be placed on a host, monitored, and
updated. The system needs to respond to failures or changes in load by moving,
starting, or stopping containers appropriately. There are already several compet‐
ing solutions in the area, including Kubernetes from Google, Marathon (a frame‐
work for Mesos), CoreOS’s Fleet, and Docker’s own Swarm tooling.

All of these topics are covered in more depth in Part III. It is worth pointing out that
there also alternatives to the Docker Trusted Registry, including the CoreOS Enter‐
prise Registry and Artifactory from JFrog.

In addition to the previously mentioned network-driver plugins, Docker also sup‐
ports volume plugins for integration with other storage systems. Notable volume plu‐
gins include Flocker, a multihost data management and migration tool, and
GlusterFS for distributed storage. More information on the plugin framework can be
found at the Docker website.

An interesting side effect of the rise of containers is the new breed of operating sys‐
tems designed to host them. While Docker runs happily on most current Linux dis‐
tributions such as Ubuntu and Red Hat, there are several projects underway to create

38 | Chapter 4: Docker Fundamentals

http://weave.works/net/
http://www.projectcalico.org/
https://consul.io/
https://github.com/gliderlabs/registrator
https://github.com/skynetservices/skydns/
https://github.com/coreos/etcd
http://kubernetes.io/
https://github.com/mesosphere/marathon
https://mesos.apache.org/
https://github.com/coreos/fleet
https://coreos.com/products/enterprise-registry/
https://coreos.com/products/enterprise-registry/
http://www.jfrog.com/open-source/#os-arti
https://github.com/ClusterHQ/flocker
https://github.com/calavera/docker-volume-glusterfs
https://docs.docker.com/extend/plugins/

minimal and easy-to-maintain distributions that are focused entirely on running con‐
tainers (or containers and VMs), especially within a context of powering a data-
centre or cluster. Examples include Project Atomic, CoreOS, and RancherOS.

Docker Hosting
We’ll cover Docker hosting in more detail in Chapter 9, but it’s worth pointing out
some of the many choices here. Many of the traditional cloud providers, including
Amazon, Google, and Digital Ocean, have brought out some level of Docker offering.
Google’s Container Engine may be the most interesting of these, as it is built directly
on top of Kubernetes. Of course, even when a cloud provider doesn’t have a specific
Docker offering, it’s normally still possible to provision VMs that can run Docker
containers.

Joyent has also entered the space with its own container offering, called Triton, built
on top of SmartOS. By implementing the Docker API with its own container and
Linux emulation technology, Joyent was able to create a public cloud that interfaces
with the standard Docker client. Importantly, Joyent believes its container implemen‐
tation is secure enough to run directly on bare metal rather than having to be placed
in VMs, meaning it can result in large efficiency savings, especially in terms of I/O.

There are also several projects that build a PaaS platform on top of Docker, including
Deis, Flynn, and Paz.

How Images Get Built
We saw in “Building Images from Dockerfiles” that the primary way to make new
images is through Dockerfiles and the docker build command. This section will
look at what happens here in a little more depth and end with a guide to the various
instructions that can be used in a Dockerfile. It’s handy to have some understanding
of how the build command works internally, as its behavior can sometimes be sur‐
prising.

The Build Context
The docker build command requires a Dockerfile and a build context (which may be
empty). The build context is the set of local files and directories that can be refer‐
enced from ADD or COPY instructions in the Dockerfile and is normally specified as a
path to a directory. For example, we used the build command docker build -t
test/cowsay-dockerfile . in “Building Images from Dockerfiles”, which sets the
context to '.', the current working directory. All the files and directories under the
path form the build context and will be sent to the Docker daemon as part of the
build process.

How Images Get Built | 39

http://www.projectatomic.io/
https://coreos.com/
http://rancher.com/rancher-os/
http://deis.io/
https://flynn.io/
http://paz.sh

In cases where a context is not specified-if only a URL to a Dockerfile is given or the
contents of a Dockerfile is piped from STDIN--the build context is considered to be
empty.

Don’t Use+/+as the Build Context

As the build context is gathered into a tarball and sent to the
Docker daemon, you really don’t want to use a directory with lots
of files in it already. For example, using /home/user, Downloads,
or / will result in a long delay while the Docker client bundles
everything up and transfers it to the daemon.

If a URL beginning with http or https is given, it is assumed to be a direct link to a
Dockerfile. This is unlikely to be very useful, as no context is associated with the
Dockerfile (and links to archives are not accepted).

A git repository can also be given as the build context. In this situation, the Docker
client will clone the repository and any submodules to a temporary directory that is
then sent to the Docker daemon as the build context. Docker will interpret the con‐
text as a git repository if the path begins with github.com/, _ git@, or _git://. In gen‐
eral, I would suggest avoiding this method and instead checking out repositories by
hand, which is more flexible and leaves less chance for confusion.

The Docker client can also take input on STDIN by giving a "-" as an argument in
place of the build context. The input can either be a Dockerfile with no context (e.g.,
docker build - < Dockerfile) or an archive file that constitutes the context and includes
a Dockerfile (e.g. docker build - < context.tar.gz). Archive files can be in tar.gz, xz, or
bzip2 format.

The location of the Dockerfile within the context can be specified with the -f argu‐
ment (e.g., docker build -f dockerfiles/Dockerfile.debug .). If unspecified, Docker will
look for a file called Dockerfile at the root of the context.

40 | Chapter 4: Docker Fundamentals

1 Don’t worry if I’ve lost you here. It should make more sense after looking at the output of docker build in
our debug example.

Use a .dockerignore File

In order to remove unneeded files from the build context, you can
use a .dockerignore file. The file should contain the names of files to
exclude, separated by newlines. The wildcard characters * and ? are
allowed. For example, if we have the following .dockerignore file:

.git
*/.git
//.git
*.sw?

Will ignore a .git file or directory in the root of the build con‐
text, but allow it any subdirectory (i.e., .git is ignored, but
dir1/.git isn’t).

Will ignore a .git file or directory exactly one directory below
the root (i.e., dir1/.git is ignored but .git and dir1/dir2/.git
aren’t).

Will ignore a .git file or directory exactly two directories below
the root (i.e., dir1/dir2/.git is ignored but .git and dir1/.git
aren’t).

Will ignore test.swp, test.swo, and bla.swp but not dir1/test.swp.

Full regular expressions such as [A-Z]* are not supported.
At the time of writing, there isn’t a way to match files over all sub‐
directories (e.g., you can’t ignore both /test.tmp and /dir1/test.tmp
in one expression).

Image Layers
New Docker users are often thrown by the way images are built up. Each instruction
in a Dockerfile results in a new image layer, which can also be used to start a con‐
tainer. The new layer is created by starting a container using the image of the previ‐
ous layer, executing the Dockerfile instruction and saving a new image. When a
Dockerfile instruction successfully completes, the intermediate container will be
deleted, unless the --rm=false argument was given.1 Since each instruction results in
an static image—essentially just a filesystem and some metadata—all running pro‐
cesses in the instruction will be stopped. This means that while you can start long-
lived processes, such as databases or SSH daemons in a RUN instruction, they will not
be running when the next instruction is processed or a container is started. If you

How Images Get Built | 41

want a service or process to start with the container, it must be launched from an
ENTRYPOINT or CMD instruction.

You can see the full set of layers that make up an image by running the docker his
tory command. For example:

$ docker history mongo:latest
IMAGE CREATED CREATED BY ...
278372cb22b2 4 days ago /bin/sh -c #(nop) CMD ["mongod"]
341d04fd3d27 4 days ago /bin/sh -c #(nop) EXPOSE 27017/tcp
ebd34b5e9c37 4 days ago /bin/sh -c #(nop) ENTRYPOINT &{["/entrypoint.
f3b2b8cf226c 4 days ago /bin/sh -c #(nop) COPY file:ef2883b33ed7ba0cc
ba53e9f50f18 4 days ago /bin/sh -c #(nop) VOLUME [/data/db]
c537910de5cc 4 days ago /bin/sh -c mkdir -p /data/db && chown -R mong
f48ad436057a 4 days ago /bin/sh -c set -x
df59596772ab 4 days ago /bin/sh -c echo "deb http://repo.mongodb.org/
96de83c82d4b 4 days ago /bin/sh -c #(nop) ENV MONGO_VERSION=3.0.6
0dab801053d9 4 days ago /bin/sh -c #(nop) ENV MONGO_MAJOR=3.0
5e7b428dddf7 4 days ago /bin/sh -c apt-key adv --keyserver ha.pool.sk
e81ad85ddfce 4 days ago /bin/sh -c curl -o /usr/local/bin/gosu -SL "h
7328803ca452 4 days ago /bin/sh -c gpg --keyserver ha.pool.sks-keyser
ec5be38a3c65 4 days ago /bin/sh -c apt-get update
430e6598f55b 4 days ago /bin/sh -c groupadd -r mongodb && useradd -r
19de96c112fc 6 days ago /bin/sh -c #(nop) CMD ["/bin/bash"]
ba249489d0b6 6 days ago /bin/sh -c #(nop) ADD file:b908886c97e2b96665

When a build fails, it can be very useful to launch the layer before the failure. For
example, if we have the following Dockerfile:

FROM busybox:latest

RUN echo "This should work"
RUN /bin/bash -c echo "This won't"

and try to build it:

$ docker build -t echotest .
Sending build context to Docker daemon 2.048 kB
Step 0 : FROM busybox:latest
 ---> 4986bf8c1536
Step 1 : RUN echo "This should work"
 ---> Running in f63045cc086b
This should work
 ---> 85b49a851fcc
Removing intermediate container f63045cc086b
Step 2 : RUN /bin/bash -c echo "This won't"
 ---> Running in e4b31d0550cd
/bin/sh: /bin/bash: not found
The command '/bin/sh -c /bin/bash -c echo "This won't"' returned a non-zero
code: 127

ID of the temporary container Docker launched to run our instruction in.

42 | Chapter 4: Docker Fundamentals

www.allitebooks.com

http://www.allitebooks.org

ID of the image created from the container.

The temporary container is now deleted.

While, in this case, the problem is fairly clear from the error, we can run the image
created from the last successful layer in order to debug the instruction. Note that we
are using the last image ID here (85b49a851fcc), not the ID of the last container
(e4b31d0550cd):

$ docker run -it 7831e2ca1809
/ # /bin/bash -c "echo hmm"
/bin/sh: /bin/bash: not found
/ # /bin/sh -c "echo ahh!"
ahh!
/ #

And the problem becomes even more obvious: the busybox image doesn’t include the
bash shell.

Caching
Docker also caches each layer in order to speed up the building of images. This cach‐
ing is very important for efficient workflows, but is somewhat naive. The cache is
used for an instruction if:

• The previous instruction was found in the cache and
• there is a layer in the cache that has exactly the same instruction and parent layer

(even spurious spaces will invalidate the cache).

Also, in the case of COPY and ADD instructions, the cache will be invalidated if the
checksum or metadata for any of the files has changed.

This means that RUN instructions that are not guaranteed to have the same result
across multiple invocations will still be cached. Be particularly aware of this if you
download files, run apt-get update, or clone source repositories.

If you need to invalidate the cache, you can run docker build with the --no-cache
argument. You can also add or change an instruction before the point where you
want to invalidate the cache; and for this reason, you may sometimes see Dockerfiles
with lines like this:

ENV UPDATED_ON "14:12 17 February 2015"
RUN git clone....

I would advise against using this technique, since it tends to confuse later users of the
image, especially when the image was built on a different date than the line suggests.

How Images Get Built | 43

Base Images
When creating your own images, you will need to decide which base image to start
from. There are a lot of choices, and it’s worth taking the time to understand the vari‐
ous advantages and disadvantages of each.

The best-case scenario is that you don’t need to create an image at all—you can just
use an existing one and mount your configuration files and/or data into it. This is
likely to be the case for common application software, such as databases and web
servers, where there are official images available. In general, you are much better off
using an official image than rolling your own—you get the benefit of other people’s
work and experience in figuring out how best to run the software inside a container.
If there is a particular reason an official image doesn’t work for you, consider opening
an issue on the parent project, as it is likely others are facing similar problems or
know of workarounds.

If you need an image to host your own application, first have a look to see if there is
an official base image for the language or framework you are using (e.g., Go or Ruby
on Rails). Often you can use separate images for building and distributing your soft‐
ware (e.g., you could use the java:jdk image to build a Java application but then dis‐
tribute the resulting JAR file using the smaller java:jre image, which gets rid of the
unnecessary build tooling). Similarly, some official images (such as node) have special
“slim” builds that remove a lot of development tools and headers.

Sometimes you really just need a small but complete Linux distro. If I’m going for
true minimalism, I’ll use the alpine image, which is only just over 5 MB in size but
still has an extensive packager manager for easily installing applications and tools. If I
want a more complete image, I’ll normally use one of the debian images, which are
much smaller than the also common ubuntu images but has access to the same pack‐
ages. If your organization is tied to a particular distribution of Linux, you should also
be able to find a Docker image for it. This may make more sense than moving to a
new distribution that your organization doesn’t support or have experience with.

A lot of the time, it’s not necessary to go overboard with making sure images are as
small as possible. Remember that base layers are shared between images, so if you
already have the ubuntu:14.04 image and pull an image from the Hub that is based
on it, you will only pull the changes rather than the full image. However, minimal
images are definitely a big bonus when aiming for fast deploys and easy distribution.

It is possible to go ultra minimal and ship images with only binaries. To do this, write
a Dockerfile that inherits from the special scratch image (a completely blank filesys‐
tem) and simply copies your binary in and sets an appropriate CMD instruction. Your
binary will need to include all its required libraries (no dynamic linking) and have no
possibility of calling external commands. In addition, remember the binary will need

44 | Chapter 4: Docker Fundamentals

2 It’s actually possible to take this concept of minimal computing even further by abandoning Docker and the
full Linux kernel in favor of a unikernel approach. In an unikernel architecture, applications are combined
with a kernel containing only the features used by the application, which is then run directly on a hypervisor.
This gets rid of several unnecessary layers of code and unused drivers, resulting in a much smaller and faster
application (unikernels commonly boot in under a second, that is, they can be started in direct response to
user requests). If you’d like to learn more about this, take a look at “Unikernels: Rise of the Virtual Library
Operating System” by Anil Madhavapeddy and David J. Scott and MirageOS.

to be compiled for the architecture of the container, which may be different than the
architecture of the machine running the Docker client.2

While the minimalist approach can be very tempting, note that it can leave you in a
difficult situation when it comes to debugging and maintenance—busybox won’t have
a lot tools to work with, and if you’ve used scratch, you won’t even have a shell.

Phusion Reaction
Another interesting choice of base image is phusion/baseimage-docker. The Phu‐
sion developers created this base image in reaction to the official Ubuntu image,
which they claim is missing several essential services. Several core Docker developers
disagreed with Phusion’s standpoint, which led to various exchanges across blogs,
IRC, and Twitter. The main points of contention are:

The need for an init service
The view of Docker is that each container should only run a single application
and ideally a single process. If you only have a single process, there is no need for
an init service. The main argument put forth by Phusion is that the lack of an init
service can lead to containers full of zombie processes—processes that have not
been killed correctly by their parent processes or reaped by a supervising process.
While this argument is correct, the only way zombie processes can occur is from
bugs in the application code; the vast majority of users should not run into this
problem, and if they do, the best solution is to fix the code.

A running cron daemon
The base ubuntu and debian images do not start the cron daemon by default, but
the phusion image does. Phusion argues that many applications are dependent
on cron, so it is essential to have it running. The Docker view—which I’m
inclined to agree with—is that cron should only be running if your application is
dependent on it.

An SSH daemon
The default images do not install or run an SSH daemon by default. The normal
way of getting a shell is to use the docker exec command (see “Managing Con‐
tainers”), which avoids the penalty of running an unnecessary process per con‐
tainer. Phusion seems to accept this and has disabled their SSH daemon by

How Images Get Built | 45

https://queue.acm.org/detail.cfm?id=2566628
https://queue.acm.org/detail.cfm?id=2566628
http://www.openmirage.org/

default, but their image is still considerably bloated by the inclusion of the dae‐
mon and its libraries.

Personally, I would only recommend using the Phusion base image if you have a spe‐
cific need to run multiple processes, cron, and ssh inside your container. Otherwise, I
would stick with images from the official Docker repositories, such as ubuntu:14.04
and debian:wheezy.

Rebuilding Images

Note that when docker build is run, Docker will look at the FROM
instruction and attempt to pull the image if it doesn’t exist locally. If
it does exist, Docker will use that image without checking to see if
there is a newer version available. This means that just doing a
docker build isn’t enough to ensure your images are completely
up to date, you also have to either explicitly docker pull all ances‐
tor images or delete them in order to force the build command to
download the latest versions.
This becomes very important when common base images, such as
debian, are updated with security patches.

Dockerfile Instructions
This section briefly covers the various instructions available for use in Dockerfiles. It
doesn’t go deep into details, partly because things are still changing and likely to
quickly get out of date and partly because there is comphrensive and always up-to-
date documentation available on the Docker website. Comments in Dockerfiles are
indicated by starting the line with a #.

Exec Versus Shell Form

Several instructions (RUN, CMD, and ENTRYPOINT) take both a shell
format and an exec format. The exec form takes a JSON array (e.g.,
["executable", "param1", "param2"]) that assumes the first
item is the name of an executable that is then executed with the
remaining items as parameters. The shell format is a freeform
string that will be interpreted by passing to /bin/sh -c. Use the
exec form to avoid the shell munging strings or in cases where the
image doesn’t have /bin/sh.

The following instructions are available in Dockerfiles:

46 | Chapter 4: Docker Fundamentals

http://docs.docker.com/reference/builder/

ADD

Copies files from the build context or remote URLs into the image. If an archive
file is added from a local path, it will automatically be unpacked. As the range of
functionality covered by ADD is quite large, it’s generally best to prefer the simpler
COPY command for copying files and directories in the build context and RUN
instructions with curl or wget to download remote resources (which retains the
possibility of processing and deleting the download in the same instruction).

CMD

Runs the given instruction when the container is started. If an ENTRYPOINT has
been defined, the instruction will be interpreted as an argument to the ENTRY
POINT (in this case, make sure you use the exec format). The CMD instruction is
overridden by any arguments to docker run after the image name. Only the last
CMD instruction will have an effect, and any previous CMD instructions will be
overridden (including those in base images).

COPY

Used to copy files from the build context into the image. It has two forms, COPY
src dest_ and COPY ["src", "dest"], both of which copy the file or directory
at src in the build context to dest inside the container. The JSON array format is
required if the paths have spaces in them. Wildcards can be used to specify multi‐
ple files or directories. Note that you cannot specify src paths outside the build
context (e.g., ../another_dir/myfile will not work).

ENTRYPOINT

Sets an executable (and default arguments) to be run when the container starts.
Any CMD instructions or arguments to docker run after the image name will be
passed as parameters to the executable. ENTRYPOINT instructions are often used to
provide “starter” scripts that initialize variables and services before interpreting
any given arguments.

ENV

Sets environment variables inside the image. These can be referred to in subse‐
quent instructions. For example:

...
ENV MY_VERSION 1.3
RUN apt-get install -y mypackage=$MY_VERSION
...

The variables will also be available inside the image.

EXPOSE

Indicates to Docker that the container will have a process listening on the given
port or ports. This information is used by Docker when linking containers (see

How Images Get Built | 47

“Linking Containers”) or publishing ports by supplying the -P argument to
docker run; by itself the EXPOSE instruction will not affect networking.

FROM

Sets the base image for the Dockerfile; subsequent instructions build on top of
this image. The base image is specified as IMAGE:TAG (e.g., debian:wheezy). If the
tag is omitted, it is assumed to be latest, but I strongly recommend you always
set the tag to a specific version to avoid surprises. Must be the first instruction in
a Dockerfile.

MAINTAINER

Sets the “Author” metadata on the image to the given string. You can retrieve this
with docker inspect -f {{.Author}} IMAGE. Normally used to set the name
and contact details of the maintainer of the image.

ONBUILD

Specifies an instruction to be executed later, when the image is used as the base
layer to another image. This can be useful for processing data that will be added
in a child image (e.g., the instruction may copy in code from a chosen directory
and run a build script on the data).

RUN

Runs the given instruction inside the container and commits the result.

USER

Sets the user (by name or UID) to use in any subsequent RUN, CMD, or ENTRYPOINT
instructions. Note that UIDs are the same between the host and container, but
usernames may be assigned to different UIDs, which can make things tricky
when setting permissions.

VOLUME

Declares the specified file or directory to be a volume. If the file or directory
already exists in the image, it will copied into the volume when the container is
started. If multiple arguments are given, they are interpreted as multiple volume
statements. You cannot specify the host directory for a volume inside a Docker‐
file for portability and security reasons. For more information, see “Managing
Data with Volumes and Data Containers”.

WORKDIR

Sets the working directory for any subsequent RUN, CMD, ENTRYPOINT, ADD, or COPY
instructions. Can be used multiple times. Relative paths may be used and are
resolved relative to the previous WORKDIR.

48 | Chapter 4: Docker Fundamentals

Connecting Containers to the World
Say you’re running a web server inside a container. How do you provide the outside
world with access? The answer is to “publish” ports with the -p or -P commands. This
command forwards ports on the host to the container. For example:

$ docker run -d -p 8000:80 nginx
af9038e18360002ef3f3658f16094dadd4928c4b3e88e347c9a746b131db5444
$ curl localhost:8000
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

The -p 8000:80 argument has told Docker to forward port 8000 on the host to port
80 in the container. Alternatively, the -P argument can be used to tell Docker to auto‐
matically select a free port to forward to on the host. For example:

$ ID=$(docker run -d -P nginx)
$ docker port $ID 80
0.0.0.0:32771
$ curl localhost:32771
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

The primary advantage of the -P command is that you are no longer responsible for
keeping track of allocated ports, which becomes important if you have several con‐
tainers publishing ports. In these cases you can use the docker port command to
discover the port allocated by Docker.

Linking Containers
Docker links are the simplest way to allow containers on the same host to talk to each
other. When using the default Docker networking model, communication between
containers will be over an internal Docker network, meaning communications are
not exposed to the host network.

Connecting Containers to the World | 49

3 In this discussion and throughout the book, I will refer to the container being linked as the link container and
the container being launched as the master container (as it is responsible for initiating the link).

Docker Networking Changes

In future versions of Docker (likely 1.9 and on), the idiomatic way
to network containers will be to “publish services,” rather than link
containers. However, links will continue to be supported for the
forseeable future, and the examples in this book should work
without changes.
For more information on the upcoming changes to networking, see
“New Docker Networking”.

Links are initialized by giving the argument --link CONTAINER:ALIAS to docker
run, where CONTAINER is the name of the link container3 and ALIAS is a local name
used inside the master container to refer to the link container.

Using Docker links will also add the alias and the link container ID to /etc/hosts on
the master container, allowing the link container to be addressed by name from the
master container.

In addition, Docker will set a bunch of environment variables inside the master con‐
tainer that are designed to make it easy to talk to the link container. For example, if
we create and link to a Redis container:

$ docker run -d --name myredis redis
c9148dee046a6fefac48806cd8ec0ce85492b71f25e97aae9a1a75027b1c8423
$ docker run --link myredis:redis debian env
ATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=f015d58d53b5
REDIS_PORT=tcp://172.17.0.22:6379
REDIS_PORT_6379_TCP=tcp://172.17.0.22:6379
REDIS_PORT_6379_TCP_ADDR=172.17.0.22
REDIS_PORT_6379_TCP_PORT=6379
REDIS_PORT_6379_TCP_PROTO=tcp
REDIS_NAME=/distracted_rosalind/redis
REDIS_ENV_REDIS_VERSION=3.0.3
REDIS_ENV_REDIS_DOWNLOAD_URL=http://download.redis.io/releases/redis-3.0.3.tar.gz
REDIS_ENV_REDIS_DOWNLOAD_SHA1=0e2d7707327986ae652df717059354b358b83358
HOME=/root

we can see that Docker has set up environment variables prefixed with REDIS_PORT,
that contain information on how to connect to the container. Most of these seem
somewhat redundant, as the information in the value is already contained in the vari‐
able name. Nevertheless, they are useful as a form of documentation if nothing else.

50 | Chapter 4: Docker Fundamentals

4 Technically, directories or files, as a volume may be a single file.
5 OK, two-and-a-half, depending on how you want to count.

Docker has also imported environment variables from the linked container, which it
has prefixed with REDIS_ENV. While this functionality can be very useful, it’s impor‐
tant to be aware that this happens if you use environment variables to store secrets
such as API tokens or database passwords.

By default, containers will be able to talk to each other whether or not they have been
explicitly linked. If you want to prevent containers that haven’t been linked from
communicating, use the arguments --icc=false and --iptables when starting the
Docker daemon. Now when containers are linked, Docker will set up Iptables rules to
allow the containers to communicate on any ports that have been declared as
exposed.

Unfortunately, Docker links as they stand have several shortcomings. Perhaps most
significantly, they are static—although links should survive container restarts, they
aren’t updated if the linked container replaced. Also, the link container must be
started before the master container, meaning you can’t have bidirectional links.

For further information on networking containers, see Chapter 11.

Managing Data with Volumes and Data Containers
To recap, Docker volumes are directories4 that are not part of the container’s UFS (see
“Images, Containers, and the Union File System”)—they are just normal directories
on the host that are bind mounted (see Bind Mounting) into the container.

There are three5 different ways to initialize volumes, and it’s important to understand
the differences between the methods. First, we can declare a volume at runtime with
the -v flag:

$ docker run -it --name container-test -h CONTAINER -v /data debian /bin/bash
root@CONTAINER:/# ls /data
root@CONTAINER:/#

This will make the directory /data inside the container into a volume. Any files the
image held inside the /data directory will be copied into the volume. We can find out
where the volume lives on the host by running docker inspect on the host from a
new shell:

$ docker inspect -f {{.Mounts}} container-test
[{5cad... /mnt/sda1/var/lib/docker/volumes/5cad.../_data /data local true}]

Managing Data with Volumes and Data Containers | 51

6 If you’re connected to a remote Docker daemon, you’ll need to run this on the remote host via SSH. If you’re
using Docker Machine (which you will be if you installed Docker via the Docker Toolbox), you can do this via
docker-machine ssh default.

In this case, the volume /data/ in the container is simply a link to the direc‐
tory /var/lib/docker/volumes/5cad…/_data on the host. To prove this, we can add a
file into the directory on the host:6

$ sudo touch /var/lib/docker/volumes/5cad.../_data/test-file

And you should immediately be able to see from inside the container:

$ root@CONTAINER:/# ls /data
test-file

The second way to set up a volume is by using the VOLUME instruction in a Dockerfile:

FROM debian:wheezy
VOLUME /data

This has exactly the same effect as specifying -v /data to docker run.

Setting Volume Permissions in Dockerfiles
You will often need to set the permissions and ownership on a volume or initialize a
volume with some default data or configuration files. The key point to be aware of
here is that any instruction after the VOLUME instruction in a Dockerfile will not be
able to make changes to that volume. For example, the following Dockerfile will not
work as expected:

FROM debian:wheezy
RUN useradd foo
VOLUME /data
RUN touch /data/x
RUN chown -R foo:foo /data

We want the touch and chown commands to run on the image’s filesystem, but they
will actually run inside the volume of a temporary container used to create the layer
(refer back to “How Images Get Built” for more details). This volume will be removed
once the commands complete, rendering the instruction pointless.

The following Dockerfile will work:

FROM debian:wheezy
RUN useradd foo
RUN mkdir /data && touch /data/x
RUN chown -R foo:foo /data
VOLUME /data

52 | Chapter 4: Docker Fundamentals

www.allitebooks.com

http://www.allitebooks.org

7 Second equal?

When a container is started from this image, Docker will copy any files from the vol‐
ume directory in the image into the container’s volume. This won’t happen if you
specify a host directory for the volume (so that host files aren’t accidentally overwrit‐
ten).

If for some reason you can’t set permissions and ownership in a RUN instruction, you
will have to do so using a CMD or ENTRYPOINT script that runs after container creation.

The third7 way is to extend the -v argument to docker run with an explicit directory
to bind to on the host using the format -v HOST_DIR:CONTAINER_DIR. This can’t be
done from a Dockerfile (it would be nonportable and a security risk). For example:

$ docker run -v /home/adrian/data:/data debian ls /data

This will mount the directory /home/adrian/data on the host as /data inside the con‐
tainer. Any files already existing in the /home/adrian/data directory will be available
inside the container. If the /data directory already exists in the container, its contents
will be hidden by the volume. Unlike the other invocations, no files from the image
will be copied into the volume, and the volume won’t be deleted by Docker (i.e.,
docker rm -v will not remove a volume that is mounted at a user-chosen directory).

Bind Mounting

When a specific host directory is used in a volume (the -v
HOST_DIR:CONTAINER_DIR syntax), it is often referred to as bind
mounting. This is somewhat misleading, as all volumes are techni‐
cally bind mounted—the difference is that the mount point is made
explicit rather than hidden in a directory owned by Docker.

Sharing Data
The -v HOST_DIR:CONTAINER_DIR syntax is very useful for sharing files between the
host and one or more containers. For example, configuration files can be kept on the
host and mounted into containers built from generic images.

We can also share data between containers by using the --volumes-from CONTAINER
argument with docker run. For example, we can create a new container that has
access to the volumes from the container in our previous example like so:

$ docker run -it -h NEWCONTAINER --volumes-from container-test debian /bin/bash
root@NEWCONTAINER:/# ls /data
test-file
root@NEWCONTAINER:/#

Managing Data with Volumes and Data Containers | 53

8 We could have used any command that exits immediately here, but the echo message will serve to remind us
of the purpose of the container when we run docker ps -a. Another option is not to start the container at all
by using the docker create command instead of docker run.

It’s important to note that this works whether or not the container holding the vol‐
umes (container-test in this case) is currently running. As long as at least one exist‐
ing container links to a volume, it won’t be deleted.

Data Containers
A common practice is to create data containers—containers whose sole purpose is to
share data between other containers. The main benefit of this approach is that it pro‐
vides a handy namespace for volumes that can be easily loaded using the --volumes-
from command.

For example, we can create a data container for a PostgreSQL database with the fol‐
lowing command:

$ docker run --name dbdata postgres echo "Data-only container for postgres"

This will create a container from the postgres image and initialize any volumes
defined in the image before running the echo command and exiting.8 There’s no need
to leave data containers running, since doing so would just be a waste of resources.

We can then use this volume from other containers with the --volumes-from argu‐
ment. For example:

$ docker run -d --volumes-from dbdata --name db1 postgres

Images for Data Containers

There’s normally no need to use a “minimal image” such as busy
box or scratch for the data container. Just use the same image that
is used for the container consuming the data. For example, use the
postgres image to create a data container to be used with the Post‐
gres database.
Using the same image doesn’t take up any extra space—you must
already have downloaded or created the image for the consumer. It
also gives the image a chance to seed the container with any initial
data and ensures permissions are set up correctly.

Deleting volumes
Volumes are only deleted if:

• the container was deleted with docker rm -v, or

54 | Chapter 4: Docker Fundamentals

• the --rm flag was provided to docker run

and:

• no existing container links to the volume
• no host directory was specified for the volume (the -v HOST_DIR:CONTAINER_DIR

syntax was not used)

At the moment, this means that unless you are very careful about always running
your containers like this, you are likely to have orphan files and directories in your
Docker installation directory and no easy way of telling what they represent. Docker
is working on a top-level “volume” command that will allow you to list, create,
inspect, and remove volumes independent of containers. This is expected to land in
1.9, which should be out by the time this book is published.

Common Docker Commands
This section gives a brief (at least in comparison to the official documentation) and
nonexhaustive overview of the various Docker commands, focusing on the com‐
mands commonly used on a day-to-day basis. Since Docker is rapidly changing and
evolving, refer to the official documentation on the Docker website for full and up-to-
date details on a given command. I have not specified in detail the arguments and
syntax of the various commands (with the exception of docker run). Refer to the in-
built help for this, which can be accessed by giving the --help argument to any com‐
mand or via the docker help command.

Common Docker Commands | 55

http://docs.docker.com

Docker Boolean Flags

In most Unix command-line tools, you will find flags that don’t
take a value, such as -l in ls -l. Since these flags are either set or
not set, Docker considers these to be boolean flags and—unlike
most other tools—supports explictly supplying a boolean value flag
(i.e., it will accept both -f=true and -f). In addition (and this is
where things get confusing), you can have both default true and
default false flags. Unlike default false, default true flags are consid‐
ered to be set if unspecified. Specifying a flag without an argument
has the same effect as setting it to true—a default true flag is not
unset by an argument with a value; the only way a default true flag
can be unset is by explicitly setting it to false (e.g., -f=false).
To find out if a flag is default true or default false, refer to docker
help for the command. For example:

$ docker logs --help
...
 -f, --follow=false Follow log output
 --help=false Print usage
 -t, --timestamps=false Show timestamps
...

shows that the -f, --help, and -t arguments are all default false.
To give a couple of concrete examples, consider the default true --
sig-proxy argument to docker run. The only way to turn this
argument off is by explicitly setting it false. For example:

$ docker run --sig-proxy=false ...

All of the following are equivalent:
$ docker run --sig-proxy=true ...
$ docker run --sig-proxy ...
$ docker run ...

In the case of a default false argument, such as --read-only, the
following will set it to true:

$ docker run --read-only=true
$ docker run --read-only

Leaving it unspecified or explicitly setting to false are equivalent.
This also leads to some quirky behavior with flags that normally
short-circuit logic (e.g., docker ps --help=false will work as
normal without printing the help message).

The run Command
We’ve already seen docker run in action; it’s the go-to command for launching new
containers. As such, it is by far the most complex command and supports a large list

56 | Chapter 4: Docker Fundamentals

of potential arguments. The arguments allow users to configure how the image is run,
override Dockerfile settings, configure networking, and set privileges and resources
for the container.

The following options control the lifecycle of the container and its basic mode of
operation:

-a, --attach

Attaches the given stream (STDOUT, etc.) to the terminal. If unspecified, both
stdout and stderr are attached. If unspecified and the container is started in
interactive mode (-i), stdin is also attached.

Incompatible with -d

-d, --detach

Runs the container in “detached” mode. The command will run the container in
the background and return the container ID.

-i, --interactive

Keeps stdin open (even when it’s not attached). Generally used with -t to start
an interactive container session. For example:

$ docker run -it debian /bin/bash
root@bd0f26f928bb:/# ls
...snip...

--restart

Configures when Docker will attempt to restart an exited container. The argu‐
ment no will never attempt to restart a container, and always will always try to
restart, regardless of exit status. The on-failure argument will attempt to restart
containers that exit with a nonzero status and can take an optional argument
specifying the number of times to attempt to restart before giving up (if not
specified, it will retry forever). For example, docker run --restart on-

failure:10 postgres will launch the postgres container and attempt to restart it
10 times if it exits with a nonzero code.

--rm

Automatically removes the container when it exits. Cannot be used with -d.

-t, --tty

Allocates a pseudo-TTY. Normally used with -i to start an interactive container.

The following options allow setting of container names and variables:

-e, --env

Sets environment variables inside the container. For example:

Common Docker Commands | 57

$ docker run -e var1=val -e var2="val 2" debian env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=b15f833d65d8
var1=val
var2=val 2
HOME=/root

Also note the --env-file option for passing variables in via a file.

-h, --hostname

Sets the container’s unix host name to NAME. For example:

$ docker run -h "myhost" debian hostname
myhost

--name NAME

Assigns the name NAME to the container. The name can then be used to address
the container in other Docker commands.

The following options allow the user to set up volumes (see “Managing Data with
Volumes and Data Containers” for more details):

-v, --volume

There are two forms of the argument to set up a volume (a file or directory
within a container that is part of the native host filesystem, not the container’s
union file system). The first form only specifies the directory within the con‐
tainer and will bind to a host directory of Docker’s choosing. The second form
specifies the host directory to bind to.

--volumes-from

Mounts volumes from the specified container. Often used in association with
data containers (see “Data Containers”).

There are several options affecting networking. The basic commands you can expect
to commonly use are:

--expose

Equivalent of Dockerfile EXPOSE instruction. Identifies the port or port range as
being used in the container but does not open the port. Only really makes sense
in association with -P and when linking containers.

--link

Sets up a private network interface to the specified container. See “Linking Con‐
tainers” for more information.

-p, --publish

“Publishes” a port on the container, making it accessible from the host. If the host
port is not defined, a random high-numbered port will chosen, which can be dis‐

58 | Chapter 4: Docker Fundamentals

covered by using the docker port command. The host interface on which to
expose the port may also be specified.

-P, --publish-all

Publish all exposed ports on the container to the host. A random high-numbered
port will be chosen for each exposed port. The docker port command can be
used to see the mapping.

There are several more advanced options you may find useful if you need to do more
advanced networking. Be aware that several of these options will require you to have
some understanding of networking and how it is implemented in Docker. For more
information, refer to Chapter 11.

The docker run command also has a large set of options for controlling the privi‐
leges and capabilities of containers. See Chapter 13 for details on these.

The following options directly override Dockerfile settings:

--entrypoint

Sets the entrypoint for the container to the given argument, overriding any ENTRY
POINT instruction in the Dockerfile.

-u, --user

Sets the user that commands are run under. May be specified as a username or
UID. Overrides USER instruction in Dockerfile.

-w, --workdir

Sets the working directory in the container to the provided path. Overrides any
value in the Dockerfile.

Managing Containers
In addition to docker run, the following docker commands are used to manage con‐
tainers during their lifecyle:

docker attach [OPTIONS] CONTAINER

The attach command allows the user to view or interact with the main process
inside the container. For example:

$ ID=$(docker run -d debian sh -c "while true; do echo 'tick'; sleep 1; done;")
$ docker attach $ID
tick
tick
tick
tick

Note that using CTRL-C to quit will end the process and cause the container to exit.

Common Docker Commands | 59

docker create

Creates a container from an image but does not start it. Takes most of the same
arguments as docker run. To start the container, use docker start.

docker cp

Copies files and directories between a container and the host.

docker exec

Runs a command inside a container. Can be used to perform maintenance tasks
or as a replacement for ssh to log in to a container.

For example:

$ ID=$(docker run -d debian sh -c "while true; do sleep 1; done;")
$ docker exec $ID echo "Hello"
Hello
$ docker exec -it $ID /bin/bash
root@5c6c32041d68:/# ls
bin dev home lib64 mnt proc run selinux sys usr
boot etc lib media opt root sbin srv tmp var
root@5c6c32041d68:/# exit
exit

docker kill

Sends a signal to the main process (PID 1) in a container. By default, sends a
SIGKILL, which will cause the container to exit immediately. Alternatively, the
signal can be specified with the -s argument. The container ID is returned.

For example:

$ ID=$(docker run -d debian bash -c \
 "trap 'echo caught' SIGTRAP; while true; do sleep 1; done;")
$ docker kill -s SIGTRAP $ID
e33da73c275b56e734a4bbbefc0b41f6ba84967d09ba08314edd860ebd2da86c
$ docker logs $ID
caught
$ docker kill $ID
e33da73c275b56e734a4bbbefc0b41f6ba84967d09ba08314edd860ebd2da86c

docker pause

Suspends all processes inside the given container. The processes do not receive
any signal that they are being suspended and consequently cannot shut down or
clean up. The processes can be restarted with docker unpause. docker pause
uses the Linux cgroups freezer functionality internally. This command contrasts
with docker stop, which stops the processes and sends signals observable by the
processes.

60 | Chapter 4: Docker Fundamentals

docker restart

Restarts one or more containers. Roughly equivalent to calling docker stop fol‐
lowed by docker start on the containers. Takes an optional argument -t that
specifies the amount of time to wait for the container to shut down before it is
killed with a SIGTERM.

docker rm

Removes one or more containers. Returns the names or IDs of succesfully
deleted containers. By default, docker rm will not remove any volumes. The -f
argument can be used to remove running containers, and the -v argument will
remove volumes created by the container (as long as they aren’t bind mounted or
in use by another container).

For example, to delete all stopped containers:

$ docker rm $(docker ps -aq)
b7a4e94253b3
e33da73c275b
f47074b60757

docker start

Starts a stopped container (or containers). Can be used to restart a container that
has exited or to start a container that has been created with docker create but
never launched.

docker stop

Stops (but does not remove) one or more containers. After calling docker stop
on a container, it will transition to the “exited” state. Takes an optional argument
-t which specifies the amount of time to wait for the container to shutdown
before it is killed with a SIGTERM.

docker unpause

Restarts a container previously paused with docker pause.

Detaching from Containers

When attached to a Docker container, either by starting it in inter‐
active mode or attaching to it with docker attach, you will stop
the container if you try to disconnect with CTRL-C. Instead, if you
use CTRL-P CTRL-Q you can detach from the container without
stopping it.
This code will only work when attached in interactive mode with a
TTY (i.e., using both the -i and -t flags).

Common Docker Commands | 61

Docker Info
The following subcommands can be used to get more information on the Docker
installation and usage:

docker info

Prints various information on the Docker system and host.

docker help

Prints usage and help information for the given subcommand. Identical to run‐
ning a command with the --help flag.

docker version

Prints Docker version information for client and server as well as the version of
Go used in compilation.

Container Info
The following commands provide more information on running and stopped con‐
tainers.

docker diff

Shows changes made to the containers filesystem compared to the image it was
launched from. For example:

$ ID=$(docker run -d debian touch /NEW-FILE)
$ docker diff $ID
A /NEW-FILE

docker events

Prints real-time events from the daemon. Use CTRL-C to quit. For more infor‐
mation on this, see Chapter 10.

docker inspect

Provides detailed information on given containers or images. The information
includes most configuration information and covers network settings and vol‐
ume mappings. The command can take one argument, -f, which is used to sup‐
ply a Go template that can be used to format and filter the output.

docker logs

Outputs the “logs” for a container. This is simply everything that has been writ‐
ten to STDERR or STDOUT inside the container. For more information on logging in
Docker, see Chapter 10.

62 | Chapter 4: Docker Fundamentals

www.allitebooks.com

http://www.allitebooks.org

docker port

Lists the exposed port mappings for the given container. Can optionally be given
the internal container port and protocol to look up. Often used after docker run
-P <image> to discover the assigned ports.

For example:

$ ID=$(docker run -P -d redis)
$ docker port $ID
6379/tcp -> 0.0.0.0:32768
$ docker port $ID 6379
0.0.0.0:32768
$ docker port $ID 6379/tcp
0.0.0.0:32768

docker ps

Provides high-level information on current containers, such as the name, ID, and
status. Takes a lot of different arguments, notably -a for getting all containers,
not just running ones. Also note the -q argument, which only returns the con‐
tainer IDs and is very useful as input to other commands such as docker rm.

docker top

Provides information on the running processes inside a given container. In effect,
this command runs the UNIX ps utility on the host and filters for processes in
the given container. The command can be given the same arguments the ps util‐
ity and defaults to -ef (but be careful to make sure the PID field is still in the
output).

For example:

$ ID=$(docker run -d redis)
$ docker top $ID
UID PID PPID C STIME TTY TIME CMD
999 9243 1836 0 15:44 ? 00:00:00 redis-server *:6379
$ ps -f -u 999
UID PID PPID C STIME TTY TIME CMD
999 9243 1836 0 15:44 ? 00:00:00 redis-server *:6379
$ docker top $ID -axZ
LABEL PID TTY STAT TIME COMMAND
docker-default 9243 ? Ssl 0:00 redis-server *:6379

Dealing with Images
The following commands provide tools for creating and working with images:

docker build

Builds an image from a Dockerfile. See “Building Images from Dockerfiles” and
“How Images Get Built” for details on usage.

Common Docker Commands | 63

docker commit

Creates an image from the specified container. While docker commit can be use‐
ful, it is generally preferable to create images using docker build, which is easily
repeatable. By default, containers are paused prior to commit, but this can be
turned off with the --pause=false argument. Takes -a and -m arguments for set‐
ting metadata.

For example:

$ ID=$(docker run -d redis touch /new-file)
$ docker commit -a "Joe Bloggs" -m "Comment" $ID commit:test
ac479108b0fa9a02a7fb290a22dacd5e20c867ec512d6813ed42e3517711a0cf
$ docker images commit
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
commit test ac479108b0fa About a minute ago 111 MB
$ docker run commit:test ls /new-file
/new-file

docker export

Exports the contents of the container’s filesystem as a tar archive on STDOUT. The
resulting archive can be loaded with docker import. Note that only the filesys‐
tem is exported; any metadata such as exported ports, CMD, and ENTRYPOINT set‐
tings will be lost. Also note that any volumes are not inlcuded in the export.
Contrast with docker save.

docker history

Outputs information on each of the layers in an image.

docker images

Provides a list of local images, including information such as repository name,
tag name, and size. By default, intermediate images (used in the creation of top-
level images) are not shown. The VIRTUAL SIZE is the total size of the image
including all underlying layers. As these layers may be shared with other images,
simply adding up the size of all images does not provide an accurate estimate of
disk usage. Also, images will appear multiple times if they have more than one
tag; different images can be discerned by comparing the ID. Takes several argu‐
ments; in particular, note -q, which only returns the image IDs and is useful as
input to other commands such as docker rmi.

For example:

$ docker images | head -4
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
identidock_identidock latest 9fc66b46a2e6 26 hours ago 839.8 MB
redis latest 868be653dea3 6 days ago 110.8 MB
containersol/pres-base latest 13919d434c95 2 weeks ago 401.8 MB

To remove all dangling images:

64 | Chapter 4: Docker Fundamentals

$ docker rmi $(docker images -q -f dangling=true)
Deleted: a9979d5ace9af55a562b8436ba66a1538357bc2e0e43765b406f2cf0388fe062

docker import

Creates an image from an archive file containing a filesystem, such as that created
by docker export. The archive may be identified by a file path or URL or
streamed through STDIN (by using the - flag). Returns the ID of the newly cre‐
ated image. The image can be tagged by supplying a repository and tag name.
Note that an image built from import will only consist of a single layer and will
lose Docker configuration settings such as exposed ports and CMD values. Con‐
trast with docker load.

Example of “flattening” an image by exporting and importing:

$ docker export 35d171091d78 | docker import - flatten:test
5a9bc529af25e2cf6411c6d87442e0805c066b96e561fbd1935122f988086009
$ docker history flatten:test
IMAGE CREATED CREATED BY SIZE COMMENT
981804b0c2b2 59 seconds ago 317.7 MB Imported from -

docker load

Loads a repository from a tar archive passed via STDIN. The repository may con‐
tain several images and tags. Unlike docker import, the images will include his‐
tory and metadata. Suitable archive files are created by docker save, making
save and load a viable alternative to registries for distributing images and pro‐
ducing backups. See docker save for an example.

docker rmi

Deletes the given image or images. Images are specified by ID or repository and
tag name. If a repository name is supplied but no tag name, the tag is assumed to
be latest. To delete images that exist in multiple repositories, specify that image
by ID and use the -f argument. You will need to run this once per repository.

docker save

Saves the named images or repositories to a tar archive, which is streamed to
STDOUT (use -o to write to a file). Images can be specified by ID or as
repository:tag. If only a repository name is given, all images in that repository
will be saved to the archive, not just the latest tag. Can be used in conjunction
with docker load to distribute or back up images.

For example:

$ docker save -o /tmp/redis.tar redis:latest
$ docker rmi redis:latest
Untagged: redis:latest
Deleted: 868be653dea3ff6082b043c0f34b95bb180cc82ab14a18d9d6b8e27b7929762c
...

Common Docker Commands | 65

$ docker load -i /tmp/redis.tar
$ docker images redis
REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE
redis latest 0f3059144681 3 months ago
111 MB

docker tag

Associates a repository and tag name with an image. The image can identified by
ID or repository and tag (the latest tag is assumed if none is given). If no tag is
given for the new name, latest is assumed.

For example:

$ docker tag faa2b75ce09a newname
$ docker tag newname:latest amouat/newname
$ docker tag newname:latest amouat/newname:newtag
$ docker tag newname:latest myregistry.com:5000/newname:newtag

Adds the image with ID faa2b75ce09a to the repository newname, using the
tag latest as none was specified.

Adds the newname:latest image to the amouat/newname repository, again
using the tag latest. This label is in a format suitable for pushing to the
Docker Hub, assuming the user is amouat.

As above except using the tag newtag instead of latest.

Adds the newname:latest image to the repository myregistry.com/newname
with the tag newtag. This label is in a format suitable for pushing to a registry
at http://myregistry.com:5000.(((range="endofrange”,
startref="ix_04_docker_fundamentals-asciidoc23”)))(((range="endofrange”,
startref="ix_04_docker_fundamentals-asciidoc22”)))

Using the Registry
The following commands relate to using registries, including the Docker Hub. Be
aware the Docker saves credentials to the file .dockercfg in your home directory:

docker login

Register with, or log in to, the given registry server. If no server is specified, it is
assumed to be the Docker Hub. The process will interactively ask for details if
required, or they can be supplied as arguments.

66 | Chapter 4: Docker Fundamentals

docker logout

Logs out from a Docker registry. If no server is specified, it is assumed to be the
Docker Hub.

docker pull

Downloads the given image from a registry. The registry is determined by the
image name and defaults to the Docker Hub. If no tag name is given, the image
tagged latest will be downloaded (if available). Use the -a argument to down‐
load all images from a repository.

docker push

Pushes an image or repository to the registry. If no tag is given, this will push all
images in the repository to the registry, not just the one marked latest.

docker search

Prints a list of public repositories on the Docker Hub matching the search term.
Limits results to 25 repositories. You can also filter by stars and automated
builds. In general, it’s easiest to use the website.

Conclusion
There has been a lot of information in this chapter! If you even just managed to skim
the main points, you should have a reasonably broad understanding of how Docker
works and the main commands. In Part II, we will see how to apply this knowledge to
a software project, from development through to production. You may find it easier
to understand some of the material in this chapter after seeing it in practice.

Conclusion | 67

PART II

The Software Lifecycle with Docker

In Part I, we introduced the philosophy behind containers and got familiar with their
basic use. In Part II, we go into more depth, using Docker to build, test, and deploy a
web application. We will see how Docker containers can be used in development,
testing, and production. This chapter will focus on a single-host system—see Part III
for information on deploying and orchestrating containers on multiple hosts.

By the end of Part II, you will understand how to integrate Docker into the software-
development process and be comfortable with everyday use of Docker. To make the
most of Docker, it is important to adopt a DevOps approach. In particular, during
development, we will be thinking about how to run software in production, which
will ease the pain of deployment to a variety of environments.

While the application we will build over the course of the chapters is necessarily very
small, we will also cover technology and practices required for running large-scale
applications maintained by large teams of developers.

Containers are not suited to building enterprise software monoliths with a release
cycle measured in weeks or months. Instead, we will naturally find ourselves taking
microservice approach and exploring techniques such as continuous deployment
where it is possible to safely push to production multiple times a day.

The advantage of containers, DevOps, microservices, and continuous delivery essen‐
tially comes down to the idea of a fast feedback loop. By iterating quicker, we can
develop, test, and validate systems of higher quality in shorter time periods.

1 If you want to learn more about Python and Flask, have a look at Flask Web Development by Miguel Grinberg
(O’Reilly), especially if you’re going to be creating web apps.

CHAPTER 5

Using Docker in Development

Throughout Part II, we are going to develop a simple web application that returns a
unique image for a given string, similar to the identicons used on GitHub and Stack‐
Overflow for users with no set image. We will write the application using the Python
programming and the Flask web framework. Python was chosen for this example
because it is commonly used and succinct and readable. Don’t worry if you don’t pro‐
gram in Python. We will focus on how to interact with Docker, not on details of the
Python code.1 Similarly, Flask was chosen since it is lightweight and easy to under‐
stand. We will be using Docker to manage all our dependencies, so there is no need
install Python or Flask on your host computer.

This chapter will focus on getting on a container-based workflow and tools in place
before we begin development in the next chapter.

Say “Hello World!”
Let’s begin by creating a web server that just returns “Hello World!” First, create a
new directory called identidock to hold our project. Inside this directory, create a sub‐
directory app that will hold our Python code. Inside the app directory, create a file
called identidock.py:

$ tree identidock/
identidock/
└── app
 └── identidock.py

1 directory, 1 file

71

http://shop.oreilly.com/product/0636920031116.do

Put the following code in identidock.py:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello World!\n'

if __name__ == '__main__':
 app.run(debug=True, host='0.0.0.0')

To briefly explain this code:

Initializes Flask and sets up the application object.

Creates a route associated with the URL. Whenever this URL is requested, it will
result in a call to the hello_world function.

Initializes the Python webserver. The use of 0.0.0.0 (instead of localhost or
127.0.0.1) as host argument binds to all network interfaces, which is needed to
allow the container to be accessed from the host or other containers. The if
statement on the line above ensures this line only executes when the file is called
as a standalone program and not when running as part of a larger application.

Source Code

The source code for this chapter can be found on GitHub. There
are tags for the various stages of the code through the chapter.
I’ve been told that code doesn’t copy/paste well from the e-book
release, so use the GitHub repo if you’re having issues.

Now we need a container to put this code in and run it. In the identidock directory,
create a file called Dockerfile with the following contents:

FROM python:3.4

RUN pip install Flask==0.10.1
WORKDIR /app
COPY app /app

CMD ["python", "identidock.py"]

72 | Chapter 5: Using Docker in Development

www.allitebooks.com

https://github.com/using-docker/using_docker_in_dev
http://www.allitebooks.org

This Dockerfile uses an official Python image as a base, which contains a Python 3
installation. On top of this, it installs Flask and copies in our code. The CMD instruc‐
tion simply runs our identidock code.

Official Image Variants
Many of the official repositories for popular programming languages such as Python,
Go, and Ruby contain multiple images for different purposes. In addition to images
for different version numbers, you are likely to find one or both of the following:

slim
These images are cut-down versions of the standard images. Many common
packages and libraries will be missing. These are essential when you need to
reduce on image size for distribution but often require extra work installing and
maintaining packages already available in the standard image.

onbuild
These images use the Dockerfile ONBUILD instruction to delay execution of cer‐
tain commands until a new “child” image is built that inherits the onbuild image.
These commands are processed as part of the FROM instruction of the child image
and typically do things like copy over code and run a compile step. These images
can make it quicker and easier to get started with a language, but in the long-run,
they tend to be limiting and confusing. I would generally only recommend using
onbuild images when first exploring a repository.

For our example application, we are using a standard base image for Python 3 and not
one of these variants.

Now we can build and run our simple application:

$ cd identidock
$ docker build -t identidock .
...
$ docker run -d -p 5000:5000 identidock
0c75444e8f5f16dfe5aceb0aae074cc33dfc06f2d2fb6adb773ac51f20605aa4

Here I’ve passed the -d flag to docker run in order to start the container in the back‐
ground, but you can also omit it if you want to see output from the webserver. The -p
5000:5000 argument tells Docker we want to forward port 5000 in the container to
port 5000 on the host.

Now let’s test it out:

$ curl localhost:5000
Hello World!

Say “Hello World!” | 73

Docker Machine IPs

If you’re running Docker using Docker machine (which you will be
if you installed Docker using the Docker Toolbox on Mac or Win‐
dows), you won’t be able to use localhost as the URL. Instead,
you’ll need to use the IP address of the VM running Docker. Using
Docker machine’s ip command can help automate this. For exam‐
ple:

$ curl $(docker-machine ip default):5000
Hello World!

This book assumes Docker is running locally; be sure to replace
localhost with the appropriate IP where appropriate.

Excellent! But there’s a pretty major problem with the workflow as it stands: every lit‐
tle change to the code means we need to rebuild the image and restart the container.
Thankfully, there is a simple solution. We can bind mount the source code folder on
the host over the top of the one inside the container. The following code stops and
removes the last run container (if the previous example wasn’t the last run container,
you’ll need to look up its ID in docker ps) before starting a new one with the code
directory mounted to /app:

$ docker stop $(docker ps -lq)
0c75444e8f5f
$ docker rm $(docker ps -lq)
$ docker run -d -p 5000:5000 -v "$(pwd)"/app:/app identidock

The -v $(pwd)/app:/app argument mounts the app directory at /app inside the con‐
tainer. It will override the contents of /app inside the container and also be writable
inside the container (you can mount a volume as read-only if you don’t want this).
Arguments to -v must be absolute paths, so here we’ve used $(pwd) to prepend the
current directory, which saves us some typing and keeps things portable.

74 | Chapter 5: Using Docker in Development

Bind Mounts

When a host directory is specified for a volume using the -v
HOST_DIR:CONTAINER_DIR argument to docker run, it is com‐
monly referred to as a “bind mount,” as it binds a folder (or file) on
the host to a folder (or file) inside the container. This is a little con‐
fusing, as all volumes are technically bind mounts, but we have to
do a little more work to find the folder on the host when it isn’t
specificed explicitly.
Note that the HOST_DIR always refers to the machine running the
Docker engine. If you are connected to a remote Docker daemon,
the path must exist on the remote machine. If you’re using a local
VM provisioned by Docker machine (which you will be if you
installed Docker via Toolbox), it will cross-mount your home
directory to make things easier during development.

Verify that it’s still working:

$ curl localhost:5000
Hello World!

Although we have just mounted the same directory that was added using the COPY
command inside the image, it is now using exactly the same directory on the host and
inside the container, rather than its own copy from the image. Because of this, we can
now edit identidock.py and see our changes immediately:

$ sed -i '' s/World/Docker/ app/identidock.py
$ curl localhost:5000
Hello Docker!

Here I’ve used the sed utility to make a quick in-place change to the identidock.py file.
If sed isn’t available, or you’re not familiar with it, you can always use a normal text
editor to change the text “World” to “Docker.”

So now we have a fairly normal development environment, except all our dependen‐
cies—the Python compiler and libraries—are encapsulated inside a Docker container.
However, there is still a key problem. There is no way we could use this container in
production, mainly because it is running the default Flask webserver, which is only
intended for development and too inefficient and insecure for production use. A cru‐
cial point in adopting Docker is to reduce the differences between development and
production, so let’s look at how we can do that now.

Say “Hello World!” | 75

Wot? No virtualenv?
If you’re an experienced Python developer, you may be surprised that we’re not using
virtualenv to develop our application. virtualenv is an extremely useful tool for isolat‐
ing Python environments. It allows developers to have separate versions of Python
and supporting libraries for each application. Normally, it is essential and ubiquitous
in Python development.

When using containers, however, it is less useful, as we are already provided with an
isolated environment. If you’re used to virtualenv, you can certainly still use it inside a
container, but you are unlikely to see much benefit, unless you experience clashes
with other applications or libraries installed in the container.

uWSGI is a production-ready application server that can also sit behind a webserver
such as nginx. Using uWSGI instead of the default Flask webserver will provide us
with a flexible container we can use in a range of settings. We can transition the con‐
tainer to use uWSGI by just modifying two lines in the Dockerfile:

FROM python:3.4

RUN pip install Flask==0.10.1 uWSGI==2.0.8
WORKDIR /app
COPY app /app

CMD ["uwsgi", "--http", "0.0.0.0:9090", "--wsgi-file", "/app/identidock.py", \
 "--callable", "app", "--stats", "0.0.0.0:9191"]

Add uWSGI to the list of Python packages to install.

Create a new command to run uWSGI. Here we tell uWSGI to start an http
server listening on port 9090, running the app application from /app/identi‐
dock.py. It also starts a stats server on port 9191. We could alternatively have
overridden the CMD via the docker run command.

Build it and run it so that we can see the difference:

$ docker build -t identidock .
...
Successfully built 3133f91af597
$ docker run -d -p 9090:9090 -p 9191:9191 identidock
00d6fa65092cbd91a97b512334d8d4be624bf730fcb482d6e8aecc83b272f130
$ curl localhost:9090
Hello Docker!

If you now run docker logs with the container ID, you will see the logging informa‐
tion for uWSGI, confirming we are indeed using the uWSGI server. Also, we’ve asked

76 | Chapter 5: Using Docker in Development

https://virtualenv.pypa.io/en/latest/
https://uwsgi-docs.readthedocs.org/en/latest/

uWSGI to expose some stats, which you can see at http://localhost:9191. The Python
code that normally starts the default web server hasn’t been executed as it wasn’t run
directly from the command line.

The server is working correctly now, but there is still some housekeeping we should
do. If you examine the uWSGI logs, you’ll notice that the server is rightly complain‐
ing about being run as root. This is a pointless security leak we can easily fix in the
Dockerfile by specifying a user to run under. At the same time, we will explicitly
declare the ports the container listens on:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgi uwsgi
RUN pip install Flask==0.10.1 uWSGI==2.0.8
WORKDIR /app
COPY app /app

EXPOSE 9090 9191
USER uwsgi

CMD ["uwsgi", "--http", "0.0.0.0:9090", "--wsgi-file", "/app/identidock.py", \
 "--callable", "app", "--stats", "0.0.0.0:9191"]

To explain the new lines:

Creates the uwsgi user and group in a normal Unix fashion.

Uses the EXPOSE instruction to declare the ports accessible to the host and other
containers.

Sets the user for all the following lines (including CMD and ENTRYPOINT) to be
uwsgi.

Say “Hello World!” | 77

http://localhost:9191

Users and Groups Inside Containers

rs”,"inside containers”)))The Linux kernel uses UIDs and GIDs to
identify users and detemine their access rights. Mapping UIDs and
GIDs to identifiers is handled in userspace by the OS. Because of
this, UIDs in the container are the same as UIDs on the host, but
users and groups created inside containers do not propogate to the
host. A side effect of this is that access permissions can get confus‐
ing; files can appear to be owned by different users inside and out‐
side of containers. For example, note the changing owner of the
following file:

$ ls -l test-file
-rw-r--r-- 1 docker staff 0 Dec 28 18:26 test-file
$ docker run -it -v $(pwd)/test-file:/test-file
debian bash
root@e877f924ea27:/# ls -l test-file
-rw-r--r-- 1 1000 staff 0 Dec 28 18:26 test-file
root@e877f924ea27:/# useradd -r test-user
root@e877f924ea27:/# chown test-user test-file
root@e877f924ea27:/# ls -l /test-file
-rw-r--r-- 1 test-user staff 0 Dec 28 18:26 /test-file
root@e877f924ea27:/# exit
exit
docker@boot2docker:~$ ls -l test-file
-rw-r--r-- 1 999 staff 0 Dec 28 18:26 test-file

Build this image as normal and test the new user setting:

$ docker build -t identidock .
...
$ docker run identidock whoami
uwsgi

Note we’ve overridden the default CMD instruction that calls the webserver with the
whoami command, which returns the name of the running user inside the container.

Always Set a USER

It’s important to set the USER statement in all your Dockerfiles (or
change the user within an ENTRYPOINT or CMD script). If you don’t
do this, your processes will be running as root within the container.
As UIDs are the same within a container and on the host, should
an attacker manage to break the container, he will have root access
to the host machine.
There is work ongoing to automatically map the root user inside a
container to a high-numbered user on the host, but at the time of
writing (Docker version 1.8), this hasn’t landed yet.

78 | Chapter 5: Using Docker in Development

Great, now commands inside the container are no longer running as root. Let’s
launch the container again, but with a slightly different set of arguments:

$ docker run -d -P --name port-test identidock

This time we haven’t specified specific ports on the host to bind to. Instead, we’ve
used the -P argument, which makes Docker automatically map a random high-
numbered port on the host to each “exposed” port on the container. We have to ask
Docker what these ports are before we can access the service:

$ docker port port-test
9090/tcp -> 0.0.0.0:32769
9191/tcp -> 0.0.0.0:32768

Here we can see that it has bound 9090 to 32769 on the host and 9191 to 32768, so we
can now access the service (note that the port numbers are likely to be different for
you):

$ curl localhost:32769
Hello Docker!

At first this might seem a pointless extra step—and it is in this case—but when you
have multiple containers running on a single host, it’s a lot easier to ask Docker to
automatically map free ports than it is keep track of unused ports yourself.

So now we have a webservice running that is pretty close to how it would look in pro‐
duction. There are still a lot of things you would want to tweak in production—such
as the uWSGI options for processes and threads—but we have closed the gap enor‐
mously from the default Python debug webserver.

We now have a new problem: we’ve lost access to the development tools such as
debugging output and live code-reloading provided by the default Python web server.
While we can drastically reduce the differences between the development and pro‐
duction environments, they still have fundamentally different needs that will always
require some changes. Ideally, we want to use the same image for both development
and production but enable a slightly different set of features depending on where it is
running. We can achieve this by using an environment variable and a simple script to
switch features depending on context.

Create a file called cmd.sh in the same directory as the Dockerfile with the following
contents:

#!/bin/bash
set -e

if ["$ENV" = 'DEV']; then
 echo "Running Development Server"
 exec python "identidock.py"
else
 echo "Running Production Server"

Say “Hello World!” | 79

2 We now have variables such as port numbers duplicated across files. We could fix this by using arguments or
environment variables.

 exec uwsgi --http 0.0.0.0:9090 --wsgi-file /app/identidock.py \
 --callable app --stats 0.0.0.0:9191
fi

The intent of this script should be fairly clear. If the variable ENV is set to DEV, it will
run the debug webserver; otherwise it will use the production server.2. The exec com‐
mand is used in order to avoid creating a new process, which ensures any signals
(such as SIGTERM) are recieved by our uwsgi process rather than being swallowed by
the parent process.

Use Configuration Files and Helper Scripts

To keep things simple, I’ve included everything inside the Docker‐
file. However, as the application grows, it makes sense to move
things out into supporting files and scripts where possible. In par‐
ticular, the pip dependencies should be moved to a requirements.txt
file, and the uWSGI configuration can move to a .ini file.

Next, we need to update the Dockerfile to use the script:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgi uwsgi
RUN pip install Flask==0.10.1 uWSGI==2.0.8
WORKDIR /app
COPY app /app
COPY cmd.sh /

EXPOSE 9090 9191
USER uwsgi

CMD ["/cmd.sh"]

Adds the script to the container.

Calls it from the CMD instruction.

Before we try out the new version, it’s time to stop any old containers we have run‐
ning. The following will stop and remove all containers from the host; do not run this
if you have containers you want to keep:

$ docker stop $(docker ps -q)
c4b3d240f187
9be42abaf902
78af7d12d3bb

80 | Chapter 5: Using Docker in Development

$ docker rm $(docker ps -aq)
1198f8486390
c4b3d240f187
9be42abaf902
78af7d12d3bb

Now we can rebuild the image with the script and test it out:

$ chmod +x cmd.sh
$ docker build -t identidock .
...
$ docker run -e "ENV=DEV" -p 5000:5000 identidock
unning Development Server
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
 * Restarting with stat

Good. Now when we run with -e "ENV=DEV", we get a development server; other‐
wise, we get the production server.

Development Servers

You may find that the default Python server doesn’t meet your
needs during development, especially when linking several con‐
tainers together. In this case, you can run uWSGI in development
as well. You will still want the ability to switch environments so that
you can turn on uWSGI features such as live code-reloading, which
shouldn’t be run in production.

Automating with Compose
There’s a final bit of automation we can add to make things a bit simpler. Docker
Compose is designed to quickly get Docker development environments up and run‐
ning. Essentially, it uses YAML files to store the configuration for sets of containers,
saving developers from repetitive and error-prone typing or rolling thier own solu‐
tion. Our application is so basic that it doesn’t buy us much at the moment, but it will
quickly come into its own as things get more complicated. Compose will free us from
the need to maintain our own scripts for orchestration, including starting, linking,
updating, and stopping our containers.

If you installed Docker using the Docker Toolbox, you should already have Compose
available. If not, follow the instructions at the Docker website. I used version 1.4.0 of
Compose in this chapter, but as we’re only using basic functionality, anything after 1.2
should be good.

Create a file called docker-compose.yml in the identidock directory with the follow‐
ing contents:

identidock:
 build: .

Automating with Compose | 81

http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/install/

 ports:
 - "5000:5000"
 environment:
 ENV: DEV
 volumes:
 - ./app:/app

The first line declares the name of the container to build. Multiple containers
(often called services in Compose lingo) can be defined in a single YAML file.

The build key tells Compose that the image for this container is to be built from
a Dockerfile that exists in the current directory (.). Every container definition
needs to include either a build or image key. image keys take the tag or ID of an
image to use for the container, the same as image argument to docker run.

The ports key is directly analagous to the -p argument to docker run for expos‐
ing ports. Here we map port 5000 in the container to port 5000 on the host. Ports
can be specified without quotes, but this is best avoided as it can cause confusion
when YAML parses statements such as 56:56 as a base 60 number.

The environment key is directly analagous to the -e argument to docker run,
which sets environment variables in the container. Here we are setting ENV to DEV
in order to run the Flask development webserver.

The volumes key is directly analogous to the -v argument to docker run for set‐
ting volumes. Here we are bind mounting the app directory into the container as
before in order to allow us to make changes to the code from the host.

Many more keys can be set in Compose YAML files, normally mapping directly to the
equivalent docker run arguments.

If you now run docker-compose up, you will get almost exactly the same result as the
previous docker run command:

$ docker-compose up
Creating identidock_identidock_1...
Attaching to identidock_identidock_1
identidock_1 | Running Development Server
identidock_1 | * Running on http://0.0.0.0:5000/
identidock_1 | * Restarting with reloader

From another terminal:

$ curl localhost:5000
Hello Docker!

When you’re finished running the application, you can just hit ctrl-c to stop the
container.

82 | Chapter 5: Using Docker in Development

To switch to the uWSGI server, we would need to change the environment and ports
keys in the YAML. This can either be done by editing the existing docker-compose.yml
or by creating a new YAML file for production and pointing docker-compose at using
the -f flag or the COMPOSE_FILE environment variable.

The Compose Workflow
The following commands are commonly used when working with Compose. Most
are self-explanatory and have direct Docker equivalents, but it’s worth being aware of
them:

up
Starts all the containers defined in the Compose file and aggregates the log out‐
put. Normally you will want to use the -d argument to run Compose in the back‐
ground.

build
Rebuilds any images created from Dockerfiles. The up command will not build
an image unless it doesn’t exist, so use this command whenever you need to
update an image.

ps
Provides information on the status of containers managed by Compose.

run
Spins up a container to run a one-off command. This will also spin up any linked
containers unless the --no-deps argument is given.

logs
Outputs colored and aggregated logs for the Compose-managed containers.

stop
Stops containers without removing them.

rm
Removes stopped containers. Remember to use the -v argument to remove any
Docker-managed volumes.

A normal workflow begins with calling docker-compose up -d to start the applica‐
tion. The docker-compose logs and ps commands can be used to verify the status of
the application and help debugging.

After changes to the code, call docker-compose build followed by docker-compose
up -d. This will build the new image and replace the running container. Note that
Compose will preserve any old volumes from the original containers, which means
that databases and caches persist over containers (this can be confusing, so be care‐

Automating with Compose | 83

ful). If you don’t need a new image but have modified the Compose YAML, calling up
-d will cause Compose to replace the container with one with the new settings. If you
want to force Compose to stop and recreate all the containers, use the --force-
recreate flag.

When you’re finished with the application, calling docker-compose stop will halt the
application. The same containers will be restarted if docker-compose start or up is
called, assuming no code has changed. Use docker-compose rm to get rid of them
completely.

For a full overview of all the commands, see the Docker reference page.

Conclusion
We’re now at the stage where we have a working environment and we can begin to
develop our application. We’ve seen:

• How to leverage the official images to quickly create a portable and recreatable
development suite, without installing any tools on the host

• How to use volumes to make dynamic changes to code running in containers
• How to maintain both a production and development environment in a single

container
• How to use Compose to automate the development workflow

Docker has given us a familiar development environment, with all the tools we need;
yet at the same time, we can quickly test things out in an environment that mirrors
production.

There’s still a lot of things we need to do, especially with regard to testing and contin‐
uous integration/delivery, but we’ll come to those in the next few chapters as we pro‐
gress with development.

84 | Chapter 5: Using Docker in Development

https://docs.docker.com/compose/reference/

1 Which in turn uses the WP_Identicon project, among others.

CHAPTER 6

Creating a Simple Web App

In this chapter, we’ll turn our “Hello World!” program into a simple web app that
generates a unique image for users when they enter some text. These images are
sometimes known as identicons and can be used to identify users by providing a
unique image generated from their username or IP address. At the end of this chap‐
ter, you’ll have a basic working application that we will extend and play with in the
following chapters. By creating this application, we’ll see how to compose Docker
containers to build a fully functioning system and how this naturally leads to a micro‐
service approach.

Identicons
Identicons are images that are automatically generated from a value, normally the
hash of an IP address or username. They provide a visual representation of the object
so that it can be readily identified. Use cases include providing identifying images for
users on a website by hashing their username or IP address and providing automatic
favicons for websites.

They were originally developed by Don Park in early 2007 to identify commentors on
his blog, the code for which is still available on his GitHub project page.

Since then, there have been several further implementations with different graphical
styles. Two large creators of identicons are Stack Overflow and GitHub (Figure 6-1,
left), both of which use them for users who haven’t set their own. Stack Overflow uses
ones generated by the Gravatar service (Figure 6-1, right).1 GitHub generates its own
identicons.

85

http://scott.sherrillmix.com/blog/blogger/wp_identicon/
https://github.com/donpark/identicon

2 A better solution would be to use a templating engine such as Jinja2, which comes bundled with Flask.

Figure 6-1. Left: A typical GitHub identicon; Right: A typical Gravatar identicon

If you’ve followed along with the previous chapter, you should have a project with the
following structure:

identidock/
├── Dockerfile
├── app
│ └── identidock.py
├── cmd.sh
└── docker-compose.yml

Don’t worry if you haven’t been following along. You can grab the code so far from
this book’s GitHub page. For example:

$ git clone -b v0 https://github.com/using-docker/creating-a-simple-web-app/
...

Alternatively, go to the releases page on the GitHub project to download the files.

The tag v0 is the code as it was at the end of the last chapter; later tags provide the
updates as we work through the chapter.

Version Control

This book assumes knowledge of Git for pushing and cloning repo‐
sitories. In a later chapter, we’ll also look at the Docker Hub inte‐
gration with GitHub and BitBucket. If you’re not up-to-speed with
Git, check out https://try.github.io for a free tutorial.

Creating a Basic Web Page
As a first step, let’s get a very basic web page working for our application. For simplic‐
ity, we will just return the HTML as a string.2 Replace identidock.py with the fol‐
lowing:

from flask import Flask

86 | Chapter 6: Creating a Simple Web App

https://github.com/using-docker/creating-a-simple-web-app
https://try.github.io

app = Flask(__name__)
default_name = 'Joe Bloggs'

@app.route('/')
def get_identicon():

 name = default_name

 header = '<html><head><title>Identidock</title></head><body>'
 body = '''<form method="POST">
 Hello <input type="text" name="name" value="{}">
 <input type="submit" value="submit">
 </form>
 <p>You look like a:

 '''.format(name)
 footer = '</body></html>'

 return header + body + footer

if __name__ == '__main__':
 app.run(debug=True, host='0.0.0.0')

We’re really not doing much more than the “Hello World!” program here. We’ve just
modified the returned text to be a small HTML page including a form for the user to
type in a name. The format function replaces the substring "{}" with the value of the
name variable, which we’ve hardcoded to “Joe Bloggs” for the time being.

Run docker-compose up -d and open a browser to http://localhost:5000 to see the
page shown in Figure 6-2.

Figure 6-2. First Look at identidock

The broken image is expected, as we haven’t added any code for image generation yet.
Similarly, the submit button is also broken.

At this point in development, it would be a wise idea to put in place automated tests
and perhaps even continuous integration/delivery. However, for the sake of narrative,
we’ll continue to develop the application a bit more before introducing testing and
continuous integration in the following chapters.

Creating a Basic Web Page | 87

http://localhost:5000

Taking Advantage of Existing Images
It’s time to actually make this program do something. What we need is a function or
service that takes a string and returns a unique image. We can then call it with the
name the user supplies in the web page and use it to replace the broken image.

In this case, we are going to use dnmonster, an existing Docker image for this pur‐
pose. dnmonster exposes a (roughly) RESTful API we can use. We could easily substi‐
tute another identicon services for dnmonster, especially if it exposes a RESTful API
and is packaged into a container.

To call it from our existing code, we need to make a few changes, primarily adding a
new get_identicon function:

from flask import Flask, Response
import requests

app = Flask(__name__)
default_name = 'Joe Bloggs'

@app.route('/')
def mainpage():

 name = default_name

 header = '<html><head><title>Identidock</title></head><body>'
 body = '''<form method="POST">
 Hello <input type="text" name="name" value="{}">
 <input type="submit" value="submit">
 </form>
 <p>You look like a:

 '''.format(name)
 footer = '</body></html>'

 return header + body + footer

@app.route('/monster/<name>')
def get_identicon(name):

 r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80')
 image = r.content

 return Response(image, mimetype='image/png')

if __name__ == '__main__':
 app.run(debug=True, host='0.0.0.0')

Import the Response module from Flask, which we use to return images.

88 | Chapter 6: Creating a Simple Web App

Import the requests library, which we will use to talk to the dnmonster service.

Make an HTTP GET request to the dnmonster service. We ask for an identicon
for the value of the name variable with a size of 80 pixels.

Our return statement is a little more complicated because we need to use the
Response function to tell Flask we are returning a PNG image rather than HTML
or text.

Next, we need to make a small change to our Dockerfile so that our new code has the
correct libraries:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgi uwsgi
RUN pip install Flask==0.10.1 uWSGI==2.0.8 requests==2.5.1
WORKDIR /app
COPY app /app
COPY cmd.sh /

EXPOSE 9090 9191
USER uwsgi

CMD ["/cmd.sh"]

We’ve added the requests library used in the preceding Python code.

We’re now ready to launch the dnmonster container and link it to our application
container. In order to make it clear what is happening under the surface, we’ll do this
with plain Docker commands before moving to Compose later. As this is the first
time we’ve used the dnmonster image, it will be downloaded from the Docker Hub:

$ docker build -t identidock .
...
$ docker run -d --name dnmonster amouat/dnmonster:1.0
Unable to find image 'amouat/dnmonster:1.0' locally
1.0: Pulling from amouat/dnmonster
...
Status: Downloaded newer image for amouat/dnmonster:1.0
e695026b14f7d0c48f9f4b110c7c06ab747188c33fc80ad407b3ead6902feb2d

Now we start the application container in almost the same way as the previous chap‐
ter, except we add the argument --link dnmonster:dnmonster to connect the con‐
tainers. This is the magic that makes the URL http://dnmonster:8080 addressable in
the Python code:

$ docker run -d -p 5000:5000 -e "ENV=DEV" --link dnmonster:dnmonster identidock
16ae698a9c705587f6316a6b53dd0268cfc3d263f2ce70eada024ddb56916e36

For more information on links, refer back to “Linking Containers”.

Taking Advantage of Existing Images | 89

http://docs.python-requests.org/en/latest/
http://dnmonster:8080

3 To remove running containers, you can run docker rm $(docker stop ps -q).

If you open your browser to http://localhost:5000 again, you should see something
like Figure 6-3.

Figure 6-3. The first identicon!

It doesn’t look like much, but we’ve just generated our first identicon. The submit but‐
ton is still broken, so we’re not actually using any user input, but we’ll fix that in a
minute. First, let’s get Compose running again so we don’t have to remember all those
docker run commands. Update docker-compose.yml:

identidock:
 build: .
 ports:
 - "5000:5000"
 environment:
 ENV: DEV
 volumes:
 - ./app:/app
 links:
 - dnmonster

dnmonster:
 image: amouat/dnmonster:1.0

Declares a link from the identidock container to the dnmonster container. Com‐
pose will take care of starting containers in the correct order for this to happen.

Defines the new dnmonster container. All we need to tell Compose is to use the
amouat/dnmonster:1.0 image from the Docker Hub.

At this point, you should stop and remove the containers we launched earlier3 and
run docker-compose up -d. You should now have the app running again and be able
to update the code without needing to restart the containers.

To enable the button, we need to handle a POST request to the server and use the form
variable (which holds the username) to generate the image. We’re also going to be a

90 | Chapter 6: Creating a Simple Web App

http://localhost:5000

bit clever and hash the user input. This anonymizes any sensitive input such as e-mail
addresses and also makes sure the input is in a form suitable for a URL (we won’t
need to escape characters such as spaces). In our application, the hashing isn’t impor‐
tant since we’re only dealing with names, but it shows how to use the service in other
scenarios and protects anyone that does happen to enter sensitive information.

Update identicon.py so that it looks like:

from flask import Flask, Response, request
import requests
import hashlib

app = Flask(__name__)
salt = "UNIQUE_SALT"
default_name = 'Joe Bloggs'

@app.route('/', methods=['GET', 'POST'])
def mainpage():

 name = default_name
 if request.method == 'POST':
 name = request.form['name']

 salted_name = salt + name
 name_hash = hashlib.sha256(salted_name.encode()).hexdigest()

 header = '<html><head><title>Identidock</title></head><body>'
 body = '''<form method="POST">
 Hello <input type="text" name="name" value="{0}">
 <input type="submit" value="submit">
 </form>
 <p>You look like a:

 '''.format(name, name_hash)
 footer = '</body></html>'

 return header + body + footer

@app.route('/monster/<name>')
def get_identicon(name):

 r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80')
 image = r.content

 return Response(image, mimetype='image/png')

if __name__ == '__main__':
 app.run(debug=True, host='0.0.0.0')

Taking Advantage of Existing Images | 91

Imports the library we will use to hash user input. As it’s a standard library, we
don’t need to update the Dockerfile to install it.

Defines the salt value to use with our hash function. By changing this value, dif‐
ferent sites can produce different identicons for the same input.

By default, Flask routes only respond to HTTP GET requests. Our form submits
an HTTP POST request, so we need to add the named argument methods to the
route declaration and explicitly announce that the route will handle both POST
and GET requests.

If the request.method equals "POST", the request is a result of clicking on the
submit button. In this case, we want to update the name variable to the value of
the text entered by the user.

Gets the hash for our input using the SHA256 algorithm.

Modify the image URL to take our hashed value. This will cause the browser to
call the get_identicon route with our hashed value when it tries to load the
image.

Once you’ve saved the new version of this file, the debug Python webserver should
pick up the changes and automatically restart. You can now view the fully working
version of our web app and find out what your identicon is (Figure 6-4).

Figure 6-4. Gordon the Turtle’s identicon!

dnmonster
The dnmonster image is a Node.js application wrapped in a Docker container. The
application is a port of Kevin Guadin’s monsterid.js from in-browser JavaScript to
Node.js. Monsterid.js is itself based on MonsterID by Andreas Gohr, which creates
monsters in the 8-bit computing style of RetroAvatar. You can find dnmonster on
GitHub.

Unlike monsterid.js, dnmonster does not do any hashing of inputs, instead leaving
this up to the caller (Figure 6-5).

92 | Chapter 6: Creating a Simple Web App

https://github.com/KevinGaudin/monsterid.js
http://www.splitbrain.org/projects/monsterid
http://retroavatar.appspot.com/
https://github.com/amouat/dnmonster

Figure 6-5. Monsters!

Add Some Caching
So far so good. But there’s one horrible thing about this application at the minute
(apart from the monsters)—every time a monster is requested, we make a computa‐
tionally expensive call to the dnmonster service. There’s no need for this—the whole
point of an identicon is that the image remains the same for a given input, so we
should be caching the result.

We’ll use Redis to achieve this. Redis is an in-memory key-value data store. It’s great
for tasks like this where there’s not a huge amount of information and we’re not wor‐
ried about durability (if an entry is lost or deleted, we can just regenerate the image).
We could add the Redis server into our identidock container, but it’s easier and more
idiomatic to spin up a new container. This way we can take advantage of the official
Redis image already available on the Docker Hub and avoid dealing with the extra
hassle of running multiple processes in a container.

Running Multiple Process in a Container
The majority of containers only run a single process. Where multiple processes are
needed, it’s best to run multiple containers and link them together, as we have done in
this example.

However, sometimes you really do need to run multiple processes in a single con‐
tainer. In these cases, it’s best to use a process manager such as supervisord or runit to
handle starting and monitoring the processes. It is possible to write a simple script to
start your processes, but be aware that you will then be responsible for cleaning up
the processes and forwarding any signals.

For more information on using supervisord inside containers, see this Docker article.

First, we need to update our Python code to use the cache:

from flask import Flask, Response, request
import requests
import hashlib
import redis

app = Flask(__name__)

Add Some Caching | 93

http://supervisord.org/
http://smarden.org/runit/
https://docs.docker.com/articles/using_supervisord/

cache = redis.StrictRedis(host='redis', port=6379, db=0)
salt = "UNIQUE_SALT"
default_name = 'Joe Bloggs'

@app.route('/', methods=['GET', 'POST'])
def mainpage():

 name = default_name
 if request.method == 'POST':
 name = request.form['name']

 salted_name = salt + name
 name_hash = hashlib.sha256(salted_name.encode()).hexdigest()
 header = '<html><head><title>Identidock</title></head><body>'
 body = '''<form method="POST">
 Hello <input type="text" name="name" value="{0}">
 <input type="submit" value="submit">
 </form>
 <p>You look like a:

 '''.format(name, name_hash)
 footer = '</body></html>'

 return header + body + footer

@app.route('/monster/<name>')
def get_identicon(name):

 image = cache.get(name)
 if image is None:
 print ("Cache miss", flush=True)
 r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80')
 image = r.content
 cache.set(name, image)

 return Response(image, mimetype='image/png')

if __name__ == '__main__':
 app.run(debug=True, host='0.0.0.0')

Import the Redis module.

Set up the Redis cache. We will use Docker links to make the redis hostname
resolvable.

Check to see if the name is already in the cache.

94 | Chapter 6: Creating a Simple Web App

Redis will return None if we have a cache miss. In this case, we just get the identi‐
con as usual except we also…

Output some debug information to say we didn’t find a cached version and…

Add the image into the cache and associate it with the given name.

We’re using a new module and a new container, so unfortunately we need to update
both the Dockerfile and our docker-compose.yml. First the Dockerfile:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgi uwsgi
RUN pip install Flask==0.10.1 uWSGI==2.0.8 requests==2.5.1 redis==2.10.3
WORKDIR /app
COPY app /app
COPY cmd.sh /

EXPOSE 9090 9191
USER uwsgi

CMD ["/cmd.sh"]

We just need to install the Redis client library for Python.

And the updated docker-compose.yml:
identidock:
 build: .
 ports:
 - "5000:5000"
 environment:
 ENV: DEV
 volumes:
 - ./app:/app
 links:
 - dnmonster
 - redis

dnmonster:
 image: amouat/dnmonster:1.0

redis:
 image: redis:3.0

Sets up a link to the Redis container.

Creates a Redis container based on the official image.

Now if you first stop identidock with docker-compose stop, you can do a docker-
compose build and docker-compose up to launch the new version. As we haven’t

Add Some Caching | 95

made any functional changes, you shouldn’t notice any differences with the new ver‐
sion of the app. If you want to convince yourself that the new code is working, you
can check the debug output; or if you’re really keen, try hooking up a monitoring sol‐
ution such as Prometheus described in Chapter 10 and seeing what happens when
you generate load against the application.

Microservices
We’ve developed identidock according to a microservice architecture, where systems
are composed of multiple small and independent services. The style is often contras‐
ted with monolithic architectures where the system is contained within a single large
service. Even though identidock is just a toy application, it still highlights various
characteristics of the style.

If we had instead used a monolithic architecture, we would have equivalents of
dnmonster, Redis, and identidock all written in a single language and running as a
single component in a single container. A well-designed monolith would factor these
components into separate libraries and use existing libraries where possible.

In contrast, our identidock application has a Python web application talking to a Java‐
Script service and a C key-value store across three containers. Later on in the book,
we will see how to plug in more microservices to identidock with very little work,
including a reverse proxy in Chapter 9 and a monitoring and logging solution in
Chapter 10.

There are several advantages to this approach. It is much easier to scale-out a micro‐
service framework to multiple machines. Microservices can be quickly and easily
swapped out for more efficient equivalents, or rolled back in the case of unexpected
problems without bringing down the rest of the system. Different languages can be
used in separate microservices, allowing developers to choose languages appropriate
to the task at hand.

There are disadvantages as well, primarily in the overhead of all the distributed com‐
ponents. Communication occurs over the network rather than being a library call. We
have to use tools like Compose to ensure all the components are started together and
linked properly. Orchestration and service discovery become significant issues that
need to be addressed.

Modern Internet applications can derive enormous benefits from the increased scal‐
ing and dynamic options provided by microservices, as proven by companies such as

96 | Chapter 6: Creating a Simple Web App

4 For more information on the advantages and disadvantages of microservices, take a look a Martin Fowler’s
articles on the subject, including “Microservices”

Netflix, Amazon, and SoundCloud. For this reason, microservices will be a significant
and important architecture going forward, but—as usual—they are no silver bullet.4

Conclusion
We’ve now got a basic working version of our application. While it’s still very simple,
it has enough functionality to use several containers and highlight various aspects of
developing with containers. We’ve seen how we can reuse existing images, both as
foundations to build on—as with the Python base image—and as black boxes that
provide a service—as with the dnmonster image.

Most importantly, we’ve seen how containers naturally lead to groups of small, well-
defined services that interact to form a larger system—the microservices approach.

Conclusion | 97

http://martinfowler.com/articles/microservices.html

CHAPTER 7

Image Distribution

Once you’ve created your images, you’ll want to make them available, be it to cowork‐
ers, continuous integration servers, or end users. There are several ways to distribute
images: you can rebuild them from Dockerfiles, pull from a registry, or use the
docker load command to install from an archive file.

In this chapter, we’ll take a deeper look at the differences between these methods and
explore the best ways to handle image distribution both internally in a team and
externally to users. We’ll see how we can tag and upload our identidock image so that
it can be used in other parts of our workflow and downloaded by others.

The code for this chapter is available at this book’s GitHub. The tag
v0 is the code as it was at the end of the last chapter, with later tags
representing the progression of the code through this chapter. To
get this version of the code:

$ git clone -b v0 \
https://github.com/using-docker/image-dist/
...

Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

Image and Repository Naming
We saw in “Working with Registries” how to tag images appropriately and upload
them to remote repositories. When distributing images, it’s very important to use
descriptive and accurate names and tags. To recap, image names and tags are set
when building the image or by using the docker tag command:

99

http://bit.ly/1IaHmJE
http://bit.ly/1IaHitw

$ cd identidock
$ docker build -t "identidock:0.1" .
$ docker tag "identidock:0.1" "amouat/identidock:0.1"

Sets the repository name to identidock and the tag to 0.1.

Associates the name amouat/identidock with the image, which refers to the
username amouat on the Docker Hub.

Beware of the latest Tag

Do not let the latest tag mislead you! Docker will use the tag as a
default when none is given, but beyond this, it carries no special
meaning. Many repositories use it as an alias for the most up-to-
date stable image, but this is only a convention and is entirely
unenforced.
Images tagged latest, as with all other images, will not be updated
automatically when a new version is pushed to the registry—you
still need to explicitly run docker pull to retrieve updated ver‐
sions.
When a docker run or docker pull refers to an image name with
no tag, Docker will use the image tagged latest if it exists or throw
an error if it doesn’t.
Because of the amount of user confusion surrounding the latest
tag, it is worth considering avoiding it completely, especially for
public-facing repositories.

Tag names have to follow a few rules. Tags must be made up of upper- or lowercase
letters, numbers, or the symbols . and -. They must be between 1 and 128 characters
in length. The first character cannot be . or -.

Repository names and tags are critically important when building a development
workflow. Docker places very few restrictions on legal names and allows the creation
and deletion of names at any time. This means it is up to the development team to
come up with and enforce a workable naming scheme.

The Docker Hub
The most straightforward solution to making your images available is to use the
Docker Hub. The Docker Hub is the online registry provided by Docker Inc. The
Hub provides free repositories for public images, or users can pay for private reposi‐
tories.

100 | Chapter 7: Image Distribution

1 If not, go and sign up at https://hub.docker.com.

Alternative Private Hosting

The Docker Hub isn’t the only game in town if you’re looking to
host your private repositories in the cloud. At the time of writing,
the leading competitor is quay.io, which offers a few more features
than the Docker Hub at a competitive price.

We can easily upload our identidock image. Assuming you already have an account
on the Docker Hub,1 we can do this directly from the command line:

$ docker tag identidock:latest amouat/identidock:0.1
$ docker push amouat/identidock:0.1
The push refers to a repository [docker.io/amouat/identidock] (len: 1)
76899e56d187: Image successfully pushed
...
0.1: digest: sha256:8aecd14cb97cc4333fdffe903aec1435a1883a44ea9f25b45513d4c2...

The first thing we need to do is create an alias for the image in the Docker Hub
user namsepace. This means it must be in the form <username>/<repository
name> where <username> is your username on the Docker Hub (in my case
amouat) and <repositoryname> is the name you want the repository to have on
the Hub. We also take the opportunity to set the tag to 0.1 for this image.

Pushes the image using the alias we just created. This will create the repository if
it doesn’t exist and upload the image under the appropriate tag.

At this point, identidock is publicly available, and anyone can retrieve it by doing a
docker pull.

If you go to the Docker Hub website, you will be able to find your repository under a
URL such as https://registry.hub.docker.com/u/amouat/identidock/. If you’re logged in,
you will also be able to perform various admin tasks, such as setting a description for
the repository, marking other users as collaborators, and setting up webhooks.

The Docker Hub | 101

https://hub.docker.com
https://registry.hub.docker.com/u/amouat/identidock/

2 You will first need to link your GitHub or Bitbucket account if you haven’t already done so.

Figure 7-1. Homepage on the Docker Hub

Whenever we want to update the repository, we just repeat the tag and push steps
using whichever image we want. If we use an existing tag, the previous image will be
overwritten. This is great, but what if we simply want our images to be updated
whenever our code is? This is a very common use case; and for that reason, the
Docker Hub introduced the concept of automated builds.

Automated Builds
Let’s set up an automated build on the Docker Hub for identidock. Once we’ve done
this, the Hub will build the identidock image and save it to our repository whenever
we push changes to the source code. To do this, you’ll need to set up a GitHub or
Bitbucket repository. You can either push up the code you have so far, or “fork” the
official code, which can be found on this book’s GitHub.

Automated builds are configured via the Hub’s website interface rather than on the
command line. If you are logged in to the website, you should see a dropdown menu
on the top right titled “Create.” From here, select “Create Automated Build” and
locate the repository with the identidock code.2 Once you’ve selected the repository,
you will be taken to the configuration page for the automated build. The repository
name defaults to the name of the source code repository, which you should change to

102 | Chapter 7: Image Distribution

https://github.com/using-docker/image-dist

3 If you forked the repo, this file will already exist; just change some of the text instead.

something meaningful like identidock_auto. Give the repository a short description
such as “Automatic build for identidock.” Leave the first “Tag” field as Branch and
name as master to track the code from the master branch. Set “Dockerfile Location”
to /identidock/Dockerfile if you’ve forked from my repository. The final “Tag” field
determines the name assigned to the image on the Docker Hub. You can leave this as
latest, or change it to something more meaninful such as auto. Once you’re done,
click “Create.” Docker will take you to the build page for this new repository. You can
kick off the first build by clicking “Trigger a Build.” Once the build has completed,
you will be able to download the image (assuming the build succeeds).

We can test the build automation by making a small change to source code. In this
case, we’ll add a README file the Docker Hub will also use to display some informa‐
tion on the repository. Create a file README.md in the identidock directory with a
short description such as the following:3

identidock
==========

Simple identicon server based on monsterid from Kevin Gaudin.

From "Using Docker" by Adrian Mouat published by O'Reilly Media.

Check this file in and push it:

$ git add README.md
$ git commit -m "Added README"
[master d8f3317] Added README
 1 file changed, 6 insertions(+)
 create mode 100644 identidock/README.md
$ git push
Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 456 bytes | 0 bytes/s, done.
Total 4 (delta 2), reused 0 (delta 0)
To git@github.com:using-docker/image-dist.git
 c81ff68..d8f3317 master -> master

If you wait a moment and then visit the build page for the repository, you should see
it building a new version of the image.

Should a build fail for whatever reason, you can get the logs by clicking on the “Build
Code” on the “Build Details” tab. You can also kick off a new build at any time by
clicking the “Trigger a Build” button.

Automated Builds | 103

This approach to building and distributing images isn’t a great fit for all projects. Your
images are public unless you pay for private repositories, and you’re at the mercy of
the Docker Hub—should the Hub go down, you won’t be able to update your images,
and users won’t be able to download them. There’s also the simple matter of effi‐
ciency; if you need to quickly build and move images through a pipeline, you are not
going to want the overhead of transferring files from the Hub and waiting on queued
builds. For open source projects and small side projects, the Hub is perfect. But for
anything larger or more serious, you will want to replace or augment it with other
solutions.

Private Distribution
There are a few options outside of the Docker Hub. You could do things manually, by
exporting and importing images or simply rebuilding images from Dockerfiles on
each Docker Host. Both these solutions are suboptimal: building from Dockerfiles
each time is slow and may result in differences between images across hosts; export‐
ing and importing images is somewhat tricky and error prone. The remaining option
is to use a different registry, which can be hosted either by yourself or a third party.

We’ll start by looking at the free solution—running your own registry—before taking
a look at some of the commercial offerings.

Running Your Own Registry
The Docker registry is not the same as the Docker Hub. Both implement the registry
API, allowing users to push, pull, and search images, but the Docker Hub is a closed-
source remote service, whereas the registry is an open source application that be run
locally. The Docker Hub also contains support for user accounts, statistics, and a web
interface that are not present in the Docker registry.

Work in Progress

While registry v2 is stable, several important features are still being
developed. For this reason, I have focused on the main use-cases in
this section and avoided going into detail on advanced features.
Full, up-to-date documentation on the registry can be found on the
Docker distribution GitHub project.

In this chapter, we’re only going to look at version 2 of the registry, which will only
work with Docker daemons version 1.6 and later. If you need to support older ver‐
sions of Docker, you’ll need to run the previous version of the registry (it’s also possi‐
ble to run both versions of the registry in tandem for a transitionary period). Version
2 of the registry represents a major advance in security, reliability, and efficiency over
version 1, so I strongly recommend using version 2 if at all possible.

104 | Chapter 7: Image Distribution

https://github.com/docker/distribution

The easiest way to run a local registry is by using the official image. We can quickly
get started by running:

$ docker run -d -p 5000:5000 registry:2
...
75fafd23711482bbee7be50b304b795a40b7b0858064473b88e3ddcae3847c37

Now that we have a running registry, we can tag an image appropriately and push it.
If you’re using docker-machine, you can still use the localhost address, as it will be
interpreted by the Docker engine (rather than the client), which is running on the
same host as the registry:

$ docker tag amouat/identidock:0.1 localhost:5000/identidock:0.1
$ docker push localhost:5000/identidock:0.1
The push refers to a repository [localhost:5000/identidock] (len: 1)
...
0.1: digest: sha256:d20affe522a3c6ef1f8293de69fea5a8621d695619955262f3fc2885...

If we now remove the local version, we can pull it again:

$ docker rmi localhost:5000/identidock:0.1
Untagged: localhost:5000/identidock:0.1
$ docker pull localhost:5000/identidock:0.1
0.1: Pulling from identidock
...
76899e56d187: Already exists
Digest: sha256:d20affe522a3c6ef1f8293de69fea5a8621d695619955262f3fc28852e173108
Status: Downloaded newer image for localhost:5000/identidock:0.1

Docker sees that we already have an image with the same content, so all that really
happens is the tag is added back. You may have noticed that the registry generated a
digest for the image. This is unique hash based on the content on the image and its
metadata. You can pull images using the digest like so:

$ docker pull localhost:5000/identidock@sha256:\
d20affe522a3c6ef1f8293de69fea5a8621d695619955262f3fc28852e173108
sha256:d20affe522a3c6ef1f8293de69fea5a8621d695619955262f3fc28852e173108: Pul...
...
76899e56d187: Already exists
Digest: sha256:d20affe522a3c6ef1f8293de69fea5a8621d695619955262f3fc28852e173108
Status: Downloaded newer image for localhost:5000/identidock@sha256:d20affe5...

The primary advantage of using a digest is that it guarantees you are pulling exactly
the image you think you are. When pulling by tag, the underlying image may change
at any time without you knowing. Also, using digests ensures the integrity of the
image; you can be sure it hasn’t been tampered with during transit or in storage. For
details see on how to securely handle images and establish their provenance, see
“Image Provenance”.

The main reason you want a registry is to act as a central store for your team or orga‐
nization. That means you will need to be able to pull from the registry from a remote

Private Distribution | 105

Docker daemon. But if we try that with the registry we just launched, we’ll get the
following error:

$ docker pull 192.168.1.100:5000/identidock:0.1
Error response from daemon: unable to ping registry endpoint
https://192.168.99.100:5000/v0/
v2 ping attempt failed with error: Get https://192.168.99.100:5000/v2/:
tls: oversized record received with length 20527
 v1 ping attempt failed with error: Get https://192.168.99.100:5000/v1/_ping:
tls: oversized record received with length 20527

Here I’ve substituted the IP address of the server for “localhost.” You will get this
error whether you pull from a daemon on another machine or on the same
machine as the registry.

So what happened? The Docker daemon is refusing to connect to the remote host
because it doesn’t have a valid Transport Layer Security (TLS) certificate. The only
reason it worked before is because Docker has a special exception for pulling from
“localhost” servers. We can fix this issue in one of three ways:

1. Restart each Docker daemon that accesses the registry with the argument --
insecure-registry 192.168.1.100:5000, replacing the address and port as
appropriate for your server.

2. Install a signed certificate from a trusted certificate authority on the host, as you
would for hosting a website accessed over HTTPS.

3. Install a self-signed certificate on the host and a copy on every Docker daemon
that needs to access the registry.

The first option is the easiest, but we won’t consider it here due to the security con‐
cerns. The second option is the best but requires you to obtain a certificate from a
trusted certificate authority, which normally has an associated cost. The third option
is secure but requires the manual step of copying the certificate to each daemon.

If you want to create your own self-signed certificate, you can use the OpenSSL tool.
These steps should be carried out on a machine you want to keep running long term
as a registry server. They were tested on an Ubuntu 14.04 VM running on Digital
Ocean; there are likely to be differences on other operating systems.

root@reginald:~# mkdir registry_certs
root@reginald:~# openssl req -newkey rsa:4096 -nodes -sha256 \
> -keyout registry_certs/domain.key -x509 -days 365 \
 -out registry_certs/domain.crt
Generating a 4096 bit RSA private key
..++
..++
writing new private key to 'registry_certs/domain.key'

106 | Chapter 7: Image Distribution

4 You can skip this step if you have a certificate signed by a trusted certificate authority.

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:reginald
Email Address []:
root@reginald:~# ls registry_certs/
domain.crt domain.key

Creates a x509 self-signed certificate and a 4096-bit RSA private key. The certifi‐
cate is signed with a SHA256 digest and is valid for 365 days. OpenSSL will ask
for information, you can input or leave at the default values.

The common name is important; it must match the name you want to access the
server on and should not be an IP address (“reginald” is the name of my server).

At the end of this process, we have a certificate file called domain.crt that will be
shared with clients and a private key domain.key that must be kept secure and not
shared.

Addressing the Registry by IP Address
If you want to use an IP address to reach your registry, things are a little more compli‐
cated. You can’t simply use the IP address as the common name. You need to set up
Subject Alternative Names (or SANs) for the IP address or addresses you want to use.

In general, I would advise against this approach. It’s better just to pick a name for
your server and make it addressable by the name internally (in the worst case, you
can always manually add the server name to /etc/hosts). This is generally easier to set
up and doesn’t require retagging of all images should you want to change the IP
address.

Next, we need to copy the certificate to each Docker daemon that will access the reg‐
istry.4 It should be copied to the file /etc/docker/certs.d/<registry_address>/ca.crt

Private Distribution | 107

5 You may need to remove any previously launched registry instances.

where <registry_address> is the address and port of your registry server. You will also
need to restart the Docker daemon. For example:

root@reginald:~# sudo mkdir -p /etc/docker/certs.d/reginald:5000
root@reginald:~# sudo cp registry_certs/domain.crt \
 /etc/docker/certs.d/reginald:5000/ca.crt
root@reginald:~# sudo service docker restart
docker stop/waiting
docker start/running, process 3906

To run on a remote host, you will need to transfer the CA certificate to the
Docker host, using scp or a similar tool. If you used a public, trusted CA, you can
skip this step.

Now we can start the registry:5

root@reginald:~# docker run -d -p 5000:5000 \
 -v $(pwd)/registry_certs:/certs \
 -e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt \
 -e REGISTRY_HTTP_TLS_KEY=/certs/domain.key \
 --restart=always --name registry registry:2
...
b79cb734d8778c0e36934514c0a1ed13d42c342c7b8d7d4d75f84497cc6f45f4

Places the certificates in the container as a volume.

We can use environment variables to configure the registry to use our certificates.

Pull an image, retag it, and push it, just to prove things are working:

root@reginald:~# docker pull debian:wheezy
wheezy: Pulling from library/debian
ba249489d0b6: Pull complete
19de96c112fc: Pull complete
library/debian:wheezy: The image you are pulling has been verified.
Important: image verification is a tech preview feature and should not be
relied on to provide security.
Digest: sha256:90de9d4ecb9c954bdacd9fbcc58b431864e8023e42f8cc21782f2107054344e1
Status: Downloaded newer image for debian:wheezy
root@reginald:~# docker tag debian:wheezy reginald:5000/debian:local
root@reginald:~# docker push reginald:5000/debian:local
The push refers to a repository [reginald:5000/debian] (len: 1)
19de96c112fc: Image successfully pushed
ba249489d0b6: Image successfully pushed
local: digest: sha256:3569aa2244f895ee6be52ed5339bc83e19fafd713fb1138007b987...

You’ll need to replace “reginald” with the name of your server.

108 | Chapter 7: Image Distribution

6 You can’t swap the registry name for an IP address as it will fail to match the certificate. Instead, edit /etc/hosts
or set up the DNS to allow the name to resolve.

Finally, we have a remotely accessible registry working securely and storing images.
When testing from other machines, remember to copy the certificate file to /etc/
docker/certs.d/<registry_address>/ca.crt on the Docker engine, and make sure the
Docker engine can resolve the address of the registry.6

There are plenty of configuration options for Docker that you can use to set up and
tweak the registry for particular use cases. The registry options are configured by a
YAML file in the image, which you can replace with a volume. Values can also be
overridden at runtime by specifying environment variables, as we did with REGIS
TRY_HTTP_TLS_KEY and REGISTRY_HTTP_TLS_CERTIFICATE in the previous example.
At the time of writing, the configuration file lives at /go/src/github.com/docker/distri‐
bution/cmd/registry/config.yml, but this is likely to change to an easier path. The
default configuration is designed for development use and will need significant
changes for production usage. You can find full details on how to configure the regis‐
try as well as example configuration files on the distribution GitHub project.

The following sections describe the major features and customizations you’ll need to
consider when setting up a registry.

Storage
By default, the registry image uses the filesystem driver, which will unsurprisingly
save all data and images to the filesystem. This is a great choice for development and
probably appropriate for many setups. You will need to declare a volume at the
defined root directory and point it to a reliable filestore. For example, including the
following code in config.yml will configure the registry to use the filesystem driver
and save data under /var/lib/registry, which should be declared as a volume:

storage:
 filesystem:
 rootdirectory: /var/lib/registry

To save data to the cloud, you can use either the Amazon S3 or Microsoft Azure stor‐
age drivers.

There is also support for the Ceph distributed object store and using Redis as an in-
memory cache to speed up layer access.

Authentication
So far, we’ve seen how to access the registry with TLS, but we’ve not done anything
about authenticating users. This is probably reasonable if you are only using public

Private Distribution | 109

images or your registry is only accessible on a private network, but most organiza‐
tions will want to restrict access to only authenticated users.

There are two ways to achieve this:

1. Set up a proxy, such as nginx, in front of the registry that is responsible for
authenticating users. An example of this is given in the official documentation on
the GitHub project, which uses nginx’s user/password authentication. Once set
up, the docker login command can be used to authenticate to the registry.

2. Token-based authentication using JSON Web Tokens. When using this method,
the registry will refuse to serve clients that do not present a valid token but will
redirect them to the authentication server. Tokens can be obtained from the
authentication server after which the client will be able to access the registry. The
authentication server is not provided by Docker, and at the time of writing, there
is only a single open source solution by Cesanta Software. Currently, the only
other option is to roll your own based on a JSON Web Token library or pay for
one of the commerical solutions described in “Commerical Registries”. Although
this is clearly more complex and difficult to set up, it will be essential for many
large or distributed organizations.

HTTP
This section is used to configure the HTTP interface for the registry. It’s essential that
this is set correctly for the registry to function. In particular, you will need to set the
location of the TLS certificate and key for the registry; in the previous example, we
did this using the environment variables REGISTRY_HTTP_TLS_KEY and REGIS
TRY_HTTP_TLS_CERTIFICATE.

A typical configuration might look like:

http:
 addr: reginald:5000
 secret: DD100CC4-1356-11E5-A926-33C19330F945
 tls:
 certificate: /certs/domain.crt
 key: /certs/domain.key

Address of the registry.

A random string used to sign state information stored by clients. Intended to
protect against tampering. Ideally should be randomly generated.

Sets up the certificates as we saw before. The files must be accessible to the con‐
tainer, either by mounting a volume or copying into the container.

110 | Chapter 7: Image Distribution

https://docs.docker.com/registry/nginx/
https://github.com/cesanta/docker_auth

Other settings
Note that there are various other settings that can be used to set up middleware, noti‐
fications, logging, and caching. For full information, see the Docker distribution Git‐
Hub project.

Commerical Registries
If you’re looking for a more complete solution with web-based management, both the
Docker Trusted Registry and the and CoreOS Enterprise Registry are available. These
are on-premise commercial solutions that will sit behind your firewall.

Both offerings come with significant features beyond the simple storing of images.
They both offer tools for working with Docker images in teams such as fine-grained
permission controls and GUIs for installation and administration tasks.

Reducing Image Size
By this point, you’ve probably noticed that Docker images can be on the large side;
most images seem to be 100s of MBs in size, which means a lot of time spent waiting
for images to be transferred back and forth. This is mitigated to a large degree by the
hierarchical structure of images; if you already have a parent layer of an image, you
only need to download the new child layers.

However, there is still a lot to be said for trying to reduce the size of images, and it’s
not quite as easy as it sounds. The naive answer is to start deleting unneeded files
from the image. Unfortunately, this doesn’t work. Remember that an image is made
up of multiple layers, one for each of the commands in the corresponding Dockerfile
and its parent Dockerfiles. The total size of the image is the sum of all its layers. If you
remove a file in one layer, it will still be present in the parent layers. To give a concrete
example, consider the following Dockerfile:

FROM debian:wheezy

RUN dd if=/dev/zero of=/bigfile count=1 bs=50MB
RUN rm /bigfile

This is just a quick way to create a file.

If we now build and inspect the image:

$ docker build -t filetest .
...
$ docker images filetest
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
filetest latest e2a98279a101 8 seconds ago 135 MB
$ docker history filetest
IMAGE ... CREATED BY SIZE ...

Reducing Image Size | 111

https://www.docker.com/docker-trusted-registry
https://coreos.com/products/enterprise-registry/

e2a98279a101 /bin/sh -c rm /bigfile 0 B
5d0f04380012 /bin/sh -c dd if=/dev/zero of=/bigfile count= 50 MB
c90d655b99b2 /bin/sh -c #(nop) CMD [/bin/bash] 0 B
30d39e59ffe2 /bin/sh -c #(nop) ADD file:3f1a40df75bc5673ce 85.01 MB
511136ea3c5a 0 B

We can see here the total size of the image is 135 MB, exactly 50 MB larger than
the base image.

The docker history command gives us the full picture. The top two lines
describe the layers created by our Dockerfile. We can see the dd command has
created a layer 50 MB in size, and the rm command has just created a new layer
on top.

In contrast, if we have the following Dockerfile:

FROM debian:wheezy

RUN dd if=/dev/zero of=/bigfile count=1 bs=50MB && rm /bigfile

And we build and inspect it:

$ docker build -t filetest .
...
$ docker images filetest
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
filetest latest 40a9350a4fa2 34 seconds ago 85.01 MB
$ docker history filetest
IMAGE ... CREATED BY SIZE ...
40a9350a4fa2 /bin/sh -c dd if=/dev/zero of=/bigfile count= 0 B
c90d655b99b2 /bin/sh -c #(nop) CMD [/bin/bash] 0 B
30d39e59ffe2 /bin/sh -c #(nop) ADD file:3f1a40df75bc5673ce 85.01 MB
511136ea3c5a 0 B

We haven’t increased the size of the base image. If we delete the file in the same layer
that it’s created, it won’t be included in the image. Because of this, you will often find
Dockerfiles that download tarballs or other archive files, unpack them, and immedi‐
ately remove the archive file in one RUN instruction. For example, the official Mon‐
goDB image includes the following instruction (URL truncated for formatting):

RUN curl -SL "https://$MONGO_VERSION.tgz" -o mongo.tgz \
 && curl -SL "https://$MONGO_VERSION.tgz.sig" -o mongo.tgz.sig \
 && gpg --verify mongo.tgz.sig \
 && tar -xvf mongo.tgz -C /usr/local --strip-components=1 \
 && rm mongo.tgz*

A similar technique can applied to source code—you will sometimes see it downloa‐
ded, compiled to a binary, and deleted all in the same line.

For the same reason, there is no point in attempting to clean up after the package
manager like this:

112 | Chapter 7: Image Distribution

RUN rm -rf /var/lib/apt/lists/*

But you can do this (again from the official mongo Dockerfile):

RUN apt-get update \
 && apt-get install -y curl numactl \
 && rm -rf /var/lib/apt/lists/*

Also see the previous discussion in “Base Images” about choosing base images wisely
to keep image size down.

There is another option you can use to reduce image size if you’re really in a pinch. If
you run docker export on a container then docker import the result, you end up
with an image containing only a single layer. For example:

$ docker create identidock:latest
fe165be64117612c94160c6a194a0d8791f4c6cb30702a61d4b3ac1d9271e3bf
$ docker export $(docker ps -lq) | docker import -
146880a742cbd0e92cd9a79f75a281f0fed46f6b5ece0219f5e1594ff8c18302
$ docker tag 146880a identidock:import
$ docker images identidock
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
identidock import 146880a742cb 5 minutes ago 730.9 MB
identidock 0.1 76899e56d187 23 hours ago 839.5 MB
identidock latest 1432cc6c20e5 4 days ago 839 MB
$ docker history identidock:import
IMAGE CREATED CREATED BY SIZE COMMENT
146880a742cb 11 minutes ago 730.9 MB Imported from -

This has cut down the image size, but at a cost:

• We need to redo all the Dockerfile instructions such as EXPOSE, CMD, PORTS, which
are not reflected in the filesystem.

• We have lost all the metadata associated with the image.
• We can no longer share space with other images that have the same parent.

Image Provenance
When distributing and consuming images, it is important to consider how to estab‐
lish the provenance of images, that is, where and who they came from. If you down‐
load an image, you want to be sure that it was really created by who it claims to be,
that it hasn’t been tampered with, and that it is exactly the same image the creator of
the image tested.

The Docker solution for this is known as Docker content trust, which at the time of
writing is undergoing testing and not enabled by default. See “Image Provenance” for
more details.

Image Provenance | 113

https://docs.docker.com/security/trust/content_trust/

Conclusion
The effective distribution of images is crucial component in any Docker workflow.
This chapter has taken a look at the primary solutions to this: the Docker Hub and
private registries. We also looked at some of the issues surrounding image distribu‐
tion, including the need to name and tag images appropriately and how to reduce the
size of images.

In the next chapter, we’ll see how to push the images to the next step in the workflow
—the continuous integration server.

114 | Chapter 7: Image Distribution

CHAPTER 8

Continuous Integration and
Testing with Docker

In this chapter, we’re going to look into how Docker and Jenkins can be used to create
a continuous integration (CI) workflow for building and testing our application. We’ll
also take a look at other aspects of testing with Docker and a brief look at how to test
a microservices architecture.

Testing containers and microservices brings a few different challenges to testing.
Microservices make for easy unit tests but difficult system and integration tests due to
the increased number of services and network links. Mocking of network services
becomes more relevant than the traditional mocking of classes in a monolithic Java or
C# codebase. Keeping test code in images maintains the portability and consistency
benefits of containers but increases their size.

The code for this chapter is available from this book’s GitHub. The
tag v0 is the identdock code as it was at the end of the last chapter,
with later tags representing the progression of the code through
this chapter. To get this version of the code:

$ git clone -b v0 \
https://github.com/using-docker/ci-testing/
...

Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

115

https://github.com/using-docker/ci-testing
https://github.com/using-docker/ci-testing/releases

1 Many developers advocate a test-driven development (TDD) approach, where tests are written before the
code that makes them pass. This book hasn’t followed this approach, mainly for the sake of narrative.

Adding Unit Tests to Identidock
The first thing we should do is add some unit tests to our identidock codebase. These
will test some basic functionality of our identidock code, with no reliance on external
services.1

Start by creating the file identidock/app/tests.py with the following contents:

import unittest
import identidock

class TestCase(unittest.TestCase):

 def setUp(self):
 identidock.app.config["TESTING"] = True
 self.app = identidock.app.test_client()

 def test_get_mainpage(self):
 page = self.app.post("/", data=dict(name="Moby Dock"))
 assert page.status_code == 200
 assert 'Hello' in str(page.data)
 assert 'Moby Dock' in str(page.data)

 def test_html_escaping(self):
 page = self.app.post("/", data=dict(name='">TEST<!--'))
 assert '' not in str(page.data)

if __name__ == '__main__':
 unittest.main()

This is just a very simple test file with three methods:

setUp
Initializes a test version of our Flask web application.

test_get_mainpage
Test method that calls the URL / with the input “Moby Dock” for the name field.
The test then checks that the method returns a 200 status code and the data con‐
tains the strings “Hello” and “Moby Dock.”

test_html_escaping
Tests that HTML entities are properly escaped in input.

Let’s run these tests:

116 | Chapter 8: Continuous Integration and Testing with Docker

$ docker build -t identidock .
...
$ docker run identidock python tests.py
.F
==
FAIL: test_html_escaping (__main__.TestCase)
--
Traceback (most recent call last):
 File "tests.py", line 19, in test_html_escaping
 assert '' not in str(page.data)
AssertionError

--
Ran 2 tests in 0.010s

FAILED (failures=1)

Hmm, that’s not good. The first test passed, but the second one has failed, since we’re
not escaping user input properly. This is a serious security issue that in a larger appli‐
cation can lead to data leaks and cross-site scripting attacks (XSS). To see the effect on
the application, launch identidock and try inputing a name such as ">pwned!</
b><!--", including the quotes. An attacker could portentially inject malicious Java‐
script into our application and trick users into running it.

Thankfully, the fix is easy. We just need to update our Python application to sanitize
the user input by replacing HTML entities and quotes with escape codes. Update
identidock.py so that it looks like:

from flask import Flask, Response, request
import requests
import hashlib
import redis
import html

app = Flask(__name__)
cache = redis.StrictRedis(host='redis', port=6379, db=0)
salt = "UNIQUE_SALT"
default_name = 'Joe Bloggs'

@app.route('/', methods=['GET', 'POST'])
def mainpage():

 name = default_name
 if request.method == 'POST':
 name = html.escape(request.form['name'], quote=True)

 salted_name = salt + name
 name_hash = hashlib.sha256(salted_name.encode()).hexdigest()
 header = '<html><head><title>Identidock</title></head><body>'
 body = '''<form method="POST">

Adding Unit Tests to Identidock | 117

2 Embarassingly, I never noticed this problem until the review stages of the book. I again learned the lesson that
it is important to test even trivial looking code and that it’s best to use pre-existing, proven code and tools
where possible.

 Hello <input type="text" name="name" value="{0}">
 <input type="submit" value="submit">
 </form>
 <p>You look like a:

 '''.format(name, name_hash)
 footer = '</body></html>'

 return header + body + footer

@app.route('/monster/<name>')
def get_identicon(name):

 name = html.escape(name, quote=True)
 image = cache.get(name)
 if image is None:
 print ("Cache miss", flush=True)
 r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80')
 image = r.content
 cache.set(name, image)

 return Response(image, mimetype='image/png')

if __name__ == '__main__':
 app.run(debug=True, host='0.0.0.0')

Use the html.escape method to sanitize the user input.

Now if we build and test our application again:

$ docker build -t identidock .
...
$ docker run identidock python tests.py
..
--
Ran 2 tests in 0.009s

OK

Great—problem solved. You can verify this by restarting identidock with the new
containers (remember to run docker-compose build) and trying to enter malicious
input.2 If we had used a real templating engine rather than simple string concatena‐
tion, the escaping would have been handled for us, avoiding this issue.

118 | Chapter 8: Continuous Integration and Testing with Docker

Now that we have some tests, we should extend our cmd.sh file to support automati‐
cally executing them. Replace cmd.sh with the following:

#!/bin/bash
set -e

if ["$ENV" = 'DEV']; then
 echo "Running Development Server"
 exec python "identidock.py"
elif ["$ENV" = 'UNIT']; then
 echo "Running Unit Tests"
 exec python "tests.py"
else
 echo "Running Production Server"
 exec uwsgi --http 0.0.0.0:9090 --wsgi-file /app/identidock.py \
 --callable app --stats 0.0.0.0:9191
fi

Now we can rebuild and run the tests by just changing the environment variable:

$ docker build -t identidock .
...
$ docker run -e ENV=UNIT identidock
Running Unit Tests
..
--
Ran 2 tests in 0.010s

OK

There are more unit tests we could write. In particular, there are no tests for the
get_identicon method. To test this method in a unit test, we would need to either
bring up test versions of the dnmonster and Redis services, or use a test double. A test
double stands in for the real service, and is commonly either a stub, which simply
returns a canned answer (e.g., the stub for a stock price service might always return
“42”) or a mock that can be programmed with expectations for how it expects to be
called (such as being called exactly once for a given transaction). For more informa‐
tion on test doubles, see the Python mock module as well as specialist HTTP tools
such as Pact, Mountebank, and Mirage.

Adding Unit Tests to Identidock | 119

https://docs.python.org/3/library/unittest.mock.html
https://github.com/realestate-com-au/pact
http://www.mbtest.org/
https://mirage.readthedocs.org

3 Tests like these are likely to be system or integration tests rather than unit tests, or they could be unit tests in a
nonmockist test configuration. Many unit test experts will advise that components such as databases should
be replaced with mocks, but in situations where the component is stable and reliable, it is often easiest and
sensible to use the component directly.

Including Tests in Images

In this chapter, we bundle the tests for identidock into the identi‐
dock image, which is in line with the Docker philosophy of using a
single image through development, testing, and production. This
also means we can easily check the tests on images running in dif‐
ferent environments, which can be useful to rule out issues when
debugging.
The disadvantage is that it creates a larger image—you have to
include the test code plus any dependencies such as testing libra‐
ries. In turn, this also means there is a greater attack surface; it’s
possible, if unlikely, that an attacker could use test utilities or code
to break the system in production.
In most cases, the advantages of the simplicity and reliability of
using a single image will outweigh the disadvantages of the slightly
increased size and theoretical security risk.

The next step is to get our tests automatically run in a CI server so we can see how
our code could be automatically tested when code is checked in to source control and
before moving to staging or production.

Using Containers for Fast Testing
All tests, and in particular unit tests, need to run quickly in order to encourage devel‐
opers to run them often without getting stuck waiting on results. Containers repre‐
sent a fast way to boot a clean and isolated environment, which can be useful when
dealing with tests that mutate their environment. For example, imagine you have a
suite of tests that make use of a service3 that has been prepopulated with some test
data. Each test that uses the service is likely to mutate the data in some way, either
adding, removing, or modifying data. One way to write the tests is to have each test
attempt to clean up the data after running, but this is problematic; if a test (or the
clean-up) fails, it will pollute the test data for all following tests, making the source of
the failure difficult to diagnose and requiring knowledge of the service being tested (it
is no longer a black box). An alternative is to destroy the service after each test and
start with a fresh one for each test. Using VMs for this purpose would be far too slow,
but it is achievable with containers.

Another area of testing where containers shine is running services in different envi‐
ronments/configurations. If your software has to run across a range of Linux distribu‐

120 | Chapter 8: Continuous Integration and Testing with Docker

4 The Docker socket is the endpoint used for communicating between the client and the daemon. By default,
this is an IPC socket accessed via the file /var/run/docker.sock, but Docker also supports TCP sockets exposed
via a network address and systemd-style sockets. This chapter assumes you are using the default socket
at /var/run/docker.sock. As the socket is accessed via a file descriptor, we can simply mount this endpoint as a
volume in the container.

tions with different databases installed, set up an image for each configuration and
you can fly through your tests. The caveat of this approach is that it won’t take into
account kernel differences between distributions.

Creating a Jenkins Container
Jenkins is a popular open source CI server. There are other options for CI servers and
hosted solutions, but we’ll use Jenkins for our web app, simply because of its popular‐
ity. We want to set up Jenkins so that whenever we push changes to our identidock
project, Jenkins will automatically check out the changes, build the new images, and
run some tests against them—both our unit tests and some system tests. It will then
create a report on the results of the tests.

We’ll base our solution on an image from the official Jenkins repository. I’ve used ver‐
sion 1.609.3, but new Jenkins releases are constantly appearing—feel free to try
using a newer version, but I can’t guarantee it will work without modification.

In order to allow our Jenkins container to build images, we’re going to mount the
Docker socket4 from the host into the container, effectively allowing Jenkins to create
“sibling” containers. An alternative to this is to use Docker-in-Docker (DinD), where
the Docker container can create its own “child” containers. The two approaches are
contrasted in Figure 8-1.

Creating a Jenkins Container | 121

Figure 8-1. Docker-In-Docker versus socket mounting

Docker-in-Docker
Docker-in-Docker (or DinD) is simply running Docker itself inside a Docker con‐
tainer. There is some special configuration necessary to get this to work, primarily
running the container in privileged mode and dealing with some filesystem issues.
Rather than work this out yourself, it’s easiest to use Jérôme Petazzoni’s DinD project,
which is available at https://github.com/jpetazzo/dind and describes all the required
steps. You can quickly get started by using Jérôme’s DinD image from the Docker
Hub:

$ docker run --rm --privileged -t -i -e LOG=file jpetazzo/dind
ln: failed to create symbolic link '/sys/fs/cgroup/systemd/name=systemd':
Operation not permitted
root@02306db64f6a:/# docker run busybox echo "Hello New World!"
Unable to find image 'busybox:latest' locally
Pulling repository busybox
d7057cb02084: Download complete
cfa753dfea5e: Download complete
Status: Downloaded newer image for busybox:latest
Hello New World!

The major difference between DinD and the socket-mounting approach is that the
containers created by DinD are isolated from the host containers; running docker ps
in the DinD container will only show the containers created by the DinD Docker dae‐
mon. In contrast, running docker ps under the socket-mounting approach will show
all the containers, regardless of where the command is run from.

In general, I prefer the simplicity of the socket-mounting approach, but in certain cir‐
cumstances, you may want the extra isolation of DinD. If you do choose to run DinD,
be aware of the following:

122 | Chapter 8: Continuous Integration and Testing with Docker

https://github.com/jpetazzo/dind

• You will have your own cache, so builds will be slower at first, and you will have
to pull all your images again. This can be mitigated by using a local registry or
mirror. Don’t try mounting the build cache from the host; the Docker engine
assumes exclusive access to this, so bad things can happen when shared between
two instances.

• The container has to run in privileged mode, so it’s not any more secure than the
socket-mounting technique (if an attacker gains access, she can mount any
device, including drives). This should get better in the future as Docker adds sup‐
port for finer-grained privileges, which will allow users to choose the devices
DinD has access to.

• DinD uses a volume for the /var/lib/docker directory, which will quickly eat up
your disk space if you forget to delete the volume when removing the container.

For more information on why you should be careful with DinD, see jpetazzo’s GitHub
article.

In order to mount the socket from the host, we need to make sure that the Jenkins
user inside the container has sufficient access privileges. In a new directory called
identijenk, create a Dockerfile with the following contents:

FROM jenkins:1.609.3

USER root
RUN echo "deb http://apt.dockerproject.org/repo debian-jessie main" \
 > /etc/apt/sources.list.d/docker.list \
 && apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D \
 && apt-get update \
 && apt-get install -y apt-transport-https \
 && apt-get install -y sudo \
 && apt-get install -y docker-engine \
 && rm -rf /var/lib/apt/lists/*
RUN echo "jenkins ALL=NOPASSWD: ALL" >> /etc/sudoers

USER jenkins

This Dockerfile takes the Jenkins base image, installs the Docker binary, and adds
password-less sudo rights to the jenkins user. We intentionally haven’t added jen
kins to the Docker group, so we will have to prefix all our Docker commands with
sudo.

Creating a Jenkins Container | 123

http://bit.ly/1WtECmm
http://bit.ly/1WtECmm

Don’t Use the docker Group

Instead of using sudo, we could have added the jenkins user to the
host’s docker group. The problem is that this requires us to find
and use the GID of the docker group on the CI host and hard-code
it into the Dockerfile. This makes our Dockerfile nonportable, as
different hosts will have different GIDs for the docker group. To
avoid the confusion and pain this can cause, it is preferable to use
sudo.

Build the image:

$ docker build -t identijenk .
...
Successfully built d0c716682562

Test it:

$ docker run -v /var/run/docker.sock:/var/run/docker.sock \
 identijenk sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ...
a36b75062e06 identijenk "/bin/tini -- /usr/lo" 1 seconds ago Up Less tha...

In the docker run command, we have mounted both the Docker socket in order to
connect to the host’s Docker daemon. In older versions of Docker, it was common to
also mount the Docker binary, rather than install Docker inside the container. This
had the advantage of keeping the version of Docker on the host and in the container
in sync. However, from version 1.7.1, Docker began using dynamic libraries, which
means any dependencies also need to be mounted in the container. Rather than deal
with the problems of finding and updating the correct libraries to mount, it is easier
to simply install Docker in the image.

Now that we’ve got Docker working inside the container, we can install some other
stuff we need to get our Jenkins’ build working. Update the Dockerfile like so:

FROM jenkins:1.609.3

USER root
RUN echo "deb http://apt.dockerproject.org/repo debian-jessie main" \
 > /etc/apt/sources.list.d/docker.list \
 && apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D \
 && apt-get update \
 && apt-get install -y apt-transport-https \
 && apt-get install -y sudo \
 && apt-get install -y docker-engine \
 && rm -rf /var/lib/apt/lists/*
RUN echo "jenkins ALL=NOPASSWD: ALL" >> /etc/sudoers

RUN curl -L https://github.com/docker/compose/releases/download/1.4.1/\
docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose; \

124 | Chapter 8: Continuous Integration and Testing with Docker

 chmod +x /usr/local/bin/docker-compose

USER jenkins
COPY plugins.txt /usr/share/jenkins/plugins.txt
RUN /usr/local/bin/plugins.sh /usr/share/jenkins/plugins.txt

Install Docker Compose, which we will use to build and run our images.

Copy in and process a plugins.txt file, which defines a list of plugins to install in
Jenkins.

Create the file plugins.txt in the same directory as the Dockerfile with the following
contents:

scm-api:0.2
git-client:1.16.1
git:2.3.5
greenballs:1.14

The first three plugins set up an interface we can use to set up access to the Identi‐
dock project in Git. The “greenballs” plugin replaces the default Jenkins blue balls for
successful builds with green ones.

We’re now just about ready to launch our Jenkins container and start configuring our
build, but first we should create a data container to persist our configuration:

$ docker build -t identijenk .
...
$ docker run --name jenkins-data identijenk echo "Jenkins Data Container"
Jenkins Data Container

We’ve used the Jenkins image for data container so we can be sure the permissions are
set correctly. The container exits once the echo command completes, but as long as
it’s not deleted, it can be used in --volumes-from arguments. For more details on data
containers, see “Managing Data with Volumes and Data Containers”.

Now we’re ready to launch the Jenkins container:

$ docker run -d --name jenkins -p 8080:8080 \
 --volumes-from jenkins-data \
 -v /var/run/docker.sock:/var/run/docker.sock \
 identijenk
75c4b300ade6a62394a328153b918c1dd58c5f6b9ac0288d46e02d5c593929dc

If you open a browser at http://localhost:8080, you should see Jenkins initializing. In a
moment, we’ll set it up with a build and test for our identidock project. But first we
need to make a minor change to the identidock project itself. Currently, the docker-
compose.yml file for our project initializes a development version of identidock, but
we are about to develop some system tests we want to run on something much closer
to production. For this reason, we need to create a new file jenkins.yml that we will
use to start the production version of identidock inside Jenkins:

Creating a Jenkins Container | 125

http://localhost:8080

identidock:
 build: .
 expose:
 - "9090"
 environment:
 ENV: PROD
 links:
 - dnmonster
 - redis

dnmonster:
 image: amouat/dnmonster:1.0

redis:
 image: redis:3.0

As Jenkins lives in a sibling container, we don’t need to publish ports on the host
in order to connect to it. I’ve included the expose command mainly as documen‐
tation; you will still be able to access the identidock container from Jenkins
without it, assuming you haven’t played with the default networking settings.

Set the environment to production.

This file needs to be added to the identidock repository that Jenkins will retrieve the
source code from. You can either add it to your own repository if you configured one
earlier or use the existing repository.

We’re now ready to start configuring our Jenkins build. Open the Jenkins web inter‐
face and follow these instructions:

1. Click the “create new jobs” link.
2. Enter “identidock” for the “Item name,” select “Freestyle project,” and click OK.
3. Configure the “Source Code Management” settings. If you used a public GitHub

repository, you just need to select “Git” and enter the repository URL. If you used
a private repository, you will need to set up credentials of some sort (several
repositories, including BitBucket, have deployment keys that can be used to set up
read-only access for this purpose). Alternatively, you can use the version available
on GitHub.

4. Click “Add build step” and select “Execute shell.” In the “Command” box, enter
the following:

#Default compose args
COMPOSE_ARGS=" -f jenkins.yml -p jenkins "

#Make sure old containers are gone
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

126 | Chapter 8: Continuous Integration and Testing with Docker

https://github.com/using-docker/identidock
https://github.com/using-docker/identidock

#build the system
sudo docker-compose $COMPOSE_ARGS build --no-cache
sudo docker-compose $COMPOSE_ARGS up -d

#Run unit tests
sudo docker-compose $COMPOSE_ARGS run --no-deps --rm -e ENV=UNIT identidock
ERR=$?

#Run system test if unit tests passed
if [$ERR -eq 0]; then
 IP=$(sudo docker inspect -f {{.NetworkSettings.IPAddress}} \
 jenkins_identidock_1)
 CODE=$(curl -sL -w "%{http_code}" $IP:9090/monster/bla -o /dev/null) || true
 if [$CODE -ne 200]; then
 echo "Site returned " $CODE
 ERR=1
 fi
fi

#Pull down the system
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

return $ERR

Note that sudo is used to call Docker Compose, again because the Jenkins user
isn’t in the docker group.

We use docker inspect to discover the IP address of the identidock container.

We use curl to access the identidock service and check that it returns an HTTP
200 code indicating it is functioning correctly. Note that we are using the path /
monster/bla to ensure that identidock can connect to the dnmonster service.

You can also get this code from GitHub. Normally, scripts like this would be checked
into source control with other code, but for our example, simply pasting into Jenkins
is enough.

Now, you should be able to test this out by clicking “Save” followed by “Build Now.”
You can view the details of the build by clicking on the build ID and selecting “Con‐
sole Output.” You should see something similar to Figure 8-2.

Creating a Jenkins Container | 127

https://github.com/using-docker/ci-testing

Figure 8-2. Successful Jenkins build

This is pretty good in as far as it goes. We’ve successfully got Docker running and
managed to execute our unit tests, plus a simple “smoke test” on our application. If
this was a real application, we would be looking to have a full suite of tests that ensure
the application is functioning correctly and can handle a range of inputs, but this is
all we need for our simple demo.

Triggering Builds
At the moment, builds are triggered manually by clicking “Build Now.” A major
improvement to this is to have builds happen automatically on check-in to the Git‐
Hub project. To do this, enable the “Poll SCM” method in the identidock configura‐
tion and enter “H/5 * * * *” into the text box. This will cause Jenkins to check the
repository every five minutes for any changes and schedule a build if any changes
have occurred.

This is a simple solution and it works well enough, but it is somewhat wasteful and
means builds are constantly lagging by up to five minutes. A better solution is to con‐
figure the repository to notify Jenkins of updates. This can be done using Web Hooks
from either BitBucket or GitHub but requires that the Jenkins server is accessible on
the public Internet.

128 | Chapter 8: Continuous Integration and Testing with Docker

5 Note that this doesn’t guarantee you will be able to recreate an identical container as dependencies may have
changed. See “Reproducible and Trustworthy Dockerfiles” for details on how to mitigate this.

Using the Docker Hub Image

At this point, some of you may be asking, “Why are we building an
image at all?” If you followed the previous section, you should have
an automated build set up on the Docker Hub that is firing on
check-ins to the source repository. It is possible to take advantage
of this by using the Webhooks feature on Docker Hub to automati‐
cally kick off a Jenkins build after a successful build on the Docker
Hub repository. We can then pull, rather than build, the image in
our script. This also requires the Jenkins server to be accessible on
the public Internet.
This solution may be useful for small projects that are creating
standalone Docker images, but larger projects will probably want
the extra speed and security of controlling their own build.

Pushing the Image
Now that we’ve tested our Identidock image, we need to push it through the rest of
our pipeline somehow. The first step in this is to tag it and push it to a registry. From
here it can be picked up by the next stage in the pipeline and pushed to staging or
production.

Responsible Tagging
Tagging images correctly is essential to maintain control and provenance over a
container-based pipeline. Get it wrong and you will have images running in produc‐
tion that are difficult—if not impossible—to relate back to builds, making debugging
and maintenance unnecessarily tricky. For any given image, we should be able to
point to the exact Dockerfile and build context that was used to create it.5

Tags can be overwritten and changed at any time. Because of this, it is up to you to
create and enforce a reliable process for tagging and versioning images.

For our example application, we will add two tags to the image: the git hash of the
repository and newest. This way the newest tag will always refer to the newest build
that has passed our tests, and we can use the git hash to recover the build files for any
image. I’ve intentionally avoided using the latest tag due to the issues discussed in
Beware of the latest Tag. Update the build script in Jenkins to:

#Default compose args
COMPOSE_ARGS=" -f jenkins.yml -p jenkins "

Pushing the Image | 129

#Make sure old containers are gone
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

#build the system
sudo docker-compose $COMPOSE_ARGS build --no-cache
sudo docker-compose $COMPOSE_ARGS up -d

#Run unit tests
sudo docker-compose $COMPOSE_ARGS run --no-deps --rm -e ENV=UNIT identidock
ERR=$?

#Run system test if unit tests passed
if [$ERR -eq 0]; then
 IP=$(sudo docker inspect -f {{.NetworkSettings.IPAddress}} \
 jenkins_identidock_1)
 CODE=$(curl -sL -w "%{http_code}" $IP:9090/monster/bla -o /dev/null) || true
 if [$CODE -eq 200]; then
 echo "Test passed - Tagging"
 HASH=$(git rev-parse --short HEAD)
 sudo docker tag -f jenkins_identidock amouat/identidock:$HASH
 sudo docker tag -f jenkins_identidock amouat/identidock:newest
 echo "Pushing"
 sudo docker login -e joe@bloggs.com -u jbloggs -p jbloggs123
 sudo docker push amouat/identidock:$HASH
 sudo docker push amouat/identidock:newest
 else
 echo "Site returned " $CODE
 ERR=1
 fi
fi

#Pull down the system
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

return $ERR

Get the short version of the git hash.

Add the tags.

Log in to the registry.

Push the images to the registry.

Note that you will need to rename the tag appropriately for the repository you wish to
push to. For example, if your repository is running at myhost:5000, you will need to
use myhost:5000/identidock:newest. Similarly, you will need to change the docker
login credentials to match.

130 | Chapter 8: Continuous Integration and Testing with Docker

If you start a new build, you should find that the script now tags and pushes the
images to the registry, ready for the next stage in the pipeline. This is great for our
example application and is probably a good start for most projects. But as things get
more complex, you are likely to want to use more tags and more descriptive names.
The git describe command can be put to good use in generating more meaningful
names based on tags.

Finding All Tags For an Image

Each tag for an image is stored separately. This means that in order
to discover all the tags for an image, you need to filter the full
image list based on the image ID. For example, to find all tags for
the image with tag amouat/identidock:newest:

$ docker images --no-trunc | grep \
 $(docker inspect -f {{.Id}} amouat/identidock:newest)
amouat/identidock 51f6152 96c7b4c094c8f76ca82b6206f...
amouat/identidock newest 96c7b4c094c8f76ca82b6206f...
jenkins_identidock latest 96c7b4c094c8f76ca82b6206f...

And we can see that the same image is also tagged 51f6152.
Remember that you will only see a tag if it exists in your image
cache. For example, if I pull debian:latest, I don’t get the debian:
7 tag even though (at the time of writing) it has the image ID. Simi‐
larly, if I have both the debian:latest and debian:7 images, and I
pull a new version of debian:latest, the debian:7 tagged image
will not be affected and will remain linked to the previous image
ID.

Staging and Production
Once an image has been tested, tagged, and pushed to a registry, it needs to be passed
on to the next stage in the pipeline, probably staging or production. This can be trig‐
gered in several ways, including by using Registry webhook notifications, or by using
Jenkins to call the next step.

Image Sprawl
In a production system, you will need to address the problem of image sprawl. The
Jenkins server should be periodically purged of images, and you will also need to con‐
trol the number of images in the Registry, or it will rapidly fill with old and obsolete
images. One solution is to remove all images older than a given date, possibly saving

Pushing the Image | 131

https://docs.docker.com/registry/notifications/

6 At the time of writing, this is easier said than done with locally hosted Docker registries, as the remove func‐
tion hasn’t been implemented. There are several issues to be overcome, which are described in detail on the
distribution roadmap.

them to a back-up store if space allows.6Alternatively, you may want to look at more
advanced tooling such as the CoreOS Enterprise Registry or Docker Trusted Registry,
both of which include advanced features for managing repositories.

Test the Right Thing

It is important to make sure you test the same container image that
is run in production. Don’t build the image from a Dockerfile in
testing and build again for production—you want to be certain that
you are running the same thing you tested and no differences have
crept in. For this reason, it is essential to run some form of registry
or store for your images that can be shared between testing, stag‐
ing, and production.

Using Docker to Provision Jenkins Slaves
As your build requirements grow, you will require more and more resources to run
your tests. Jenkins uses the concept of “build slaves,” which essentially form a task
farm Jenkins can use to outsource builds.

If you would like to use Docker to dynamically provision these slaves, take a look at
the Docker plugin for Jenkins.

Backing Up Jenkins
Since we used a data container for our Jenkins service, backing up Jenkins should be
as simple as:

$ docker run --volumes-from jenkins-data -v $(pwd):/backup \
 debian tar -zcvf /backup/jenkins-data.tar.gz /var/jenkins_home

This should result in the file jenkins-data.tar.gz appearing in your $(pwd)/backup
directory. You may want to stop or pause the Jenkins container prior to running this
command. You can then run something like the following command to create a new
data container and extract the backup into it:

$ docker run --name jenkins-data2 identijenk echo "New Jenkins Data Container"
$ docker run --volumes-from jenkins-data2 -v $(pwd):/backup \
 debian tar -xzvf /backup/backup.tar

Unfortunately, this approach does require you to be aware of the mount points of
your container. This can be automated by inspecting the container, so you can also

132 | Chapter 8: Continuous Integration and Testing with Docker

https://github.com/docker/distribution/blob/master/ROADMAP.md
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

7 Normally, there will be one container per service, or multiple containers per service if more resources are
needed.

use tools like docker-backup to do this for you, and I expect to see more support for
workflows like this in future versions of Docker.

Hosted CI Solutions
There are also numerous hosted solutions for CI, from companies that will maintain
a Jenkins installation in the cloud for you, to more specialized solutions such as
Travis, Wercker, CircleCI, and drone.io. Most of these solutions seem to be targeted
at running unit tests for predefined language stacks rather than running tests against
systems of containers. There does seem to be some movement in this area, and I
expect to see offerings aimed at testing Docker containers soon.

Testing and Microservices
If you’re using Docker, there’s a good chance you’ve also adopted a microservice
architecture. When testing a microservice architecture, you will find that there are
more levels of testing that are possible, and it is up to you to decide how and what to
test. A basic framework might consist of:

Unit tests
Each service7 should have a comprehensive set of unit tests associated with it.
Unit tests should only test small, isolated pieces of functionality. You may use test
doubles to replace dependencies on other services. Due to the number of tests, it
is important that they run as quickly as possible to encourage frequent testing
and avoid developers waiting on results. Unit tests should make up the largest
proportion of tests in your system.

Component tests
These can be on the level of testing the external interface of individual services,
or on the level of subsystem testing of groups of services. In both cases, you are
likely to find you have dependencies on other services, which you may need to
replace with test doubles as described earlier. You may also find it useful to
expose metrics and logging via your service’s API when testing, but make sure
this is kept in a separate namespace (e.g., use a different URL prefix) to your
functional API.

End-to-end tests
Tests that ensure the entire system is working. Since these are quite expensive to
run (in terms of both resources and time), there should only be a few of these—
you really don’t want a situation where it takes hours to run the tests, seriously

Hosted CI Solutions | 133

https://github.com/discordianfish/docker-backup
https://travis-ci.org
http://wercker.com/
https://circleci.com
https://drone.io

delaying deployments and fixes (consider scheduled runs, which we describe
shortly). Some parts of the system may be impossible or prohibitively expensive
to run in testing and may still need to be replaced with test doubles (launching
nuclear missiles in testing is probably a bad idea). Our identidock test falls under
end-to-end testing; the test runs the full system from end to end with no use of
test doubles.

In addition, you may want to consider:

Consumer-contract tests
These tests, which are also called consumer-driven contracts, are written by the
consumer of a service and primarily define the expected input and output data.
They can also cover side effects (changing state) and performance expectations.
There should be a separate contract for each consumer of the service. The pri‐
mary benefit of such tests is that it allows the developers of a service to know
when they risk breaking compatability with consumers; if a contract test fails,
they know to they need to either change their service, or work with the develop‐
ers of the consumer to change the contract.

Integration tests
These are tests to check that the communication channels between each compo‐
nent are working correctly. This sort of testing becomes important in a microser‐
vice architecture where the amount of plumbing and coordination between
components is an order of magnitude greater than monolithic architectures.
However, you are likely to find that most of your communication channels are
covered by your component and end-to-end testing.

Scheduled runs
Since it’s important to keep the CI build fast, there often isn’t enough time to run
extensive tests, such as testing against unusual configurations or different plat‐
forms. Instead, these tests can be scheduled to run overnight when there is spare
capacity.

Many of these tests can be classified as preregistry and postregistry, depending on
whether they occur prior to adding the image to the registry. For example, unit test‐
ing is preregistry: no image should be pushed to the registry if it fails a unit test. The
same goes for some consumer contract tests and some component tests. On the other
hand, an image will have already been pushed to a registry before it can be end-to-
end tested. If a postregistry test fails, there is a question about what to do next. While
any new images should not be pushed to production (or should be rolled back if they
have already been deployed), the fault may actually be due to other, older images or
the interaction between new images. These sort of failures may require a greater level
of investigation and thought to handle correctly.

134 | Chapter 8: Continuous Integration and Testing with Docker

Testing in Production
Finally, you may want to think about testing in production. Don’t worry, this isn’t as
crazy as it sounds. In particular, it can make a lot of sense when dealing with a large
number of users with widely different environments and configurations that are hard
to test for.

One common approach is sometimes called blue/green deployment. Say we want to
update an existing production service—let’s call it the “blue” version—to a new a ver‐
sion—let’s call it the “green” version. Rather than just replace the blue version with
the green version, we can run them in tandem for a given time period. Once the
green version is up and running, we flip the switch to start routing traffic to it. We
then monitor the system for any unexpected changes in behavior, such as increased
error rates or latency. If we’re not happy with the new version, all we have to do is flip
the switch back to return the blue version to production. Once we’re satisfied things
are working correctly, we can turn off the blue version.

Other methods follow a similar principle—both the old and new versions should run
in tandem. In A/B, or multivariate testing, two (or more) versions of a service are run
together for a test period, with users randomly split between two. Certain statistics
are monitored, and based on the results at the end of testing, one of the versions is
kept. In ramped deployment, the new version of a service is only made available to a
small subset of users. If these users find no problems, the new version will be progres‐
sively made available to more and more users. In shadowing, both versions of the ser‐
vice are run for all requests, but only the results from the old, stable version are used.
By comparing the results from the old version and the proposed new version, it is
possible to ensure the new version has identical behavior to the old version (or differs
in an expected and positive way). Shadowing is particularly useful when testing new
versions that do not have functional changes such as performance improvements.

Conclusion
The key idea to take away is that containers fit naturally into a continuous interga‐
tion/delivery workflow. There are a few things to bear in mind—primarily that you
must push the same image through the pipeline rather than rebuilding at separate
stages—but you should be able to adapt existing CI tooling to containers without too
many problems, and the future is likely to bring further specialized tooling in this
area.

If you’re embracing a large microservice architecture, it’s worth taking more time to
think about how you are going to do testing and researching some of the techniques
outlined in this chapter.

Conclusion | 135

CHAPTER 9

Deploying Containers

Now its time to start getting to the business end of things and thinking about how to
actually run Docker in production. At the time of writing, everybody is talking about
Docker, and many are experimenting with Docker, but comparatively few run Docker
in production. While detractors sometimes point to this as a failing of Docker, they
seem to miss a couple of key points. Given the relative youth of Docker, it is very
encouraging that so many people are using it in production (including Spotify, Yelp,
and Baidu) and that those who only use it in development and testing are still gaining
many advantages.

That being said, it is perfectly possible and reasonable to use containers in production
today. Larger projects and organizations may want to start small and build up over
time, but it is already a feasible and straightforward solution for the majority of
projects.

As things currently stand, the most common way of deploying containers is by first
provisioning VMs and then starting containers on the VMs. This isn’t an ideal solu‐
tion—it creates a lot of overhead, slows down scaling, and forces users to provision
on a multicontainer granularity. The main reason for running containers inside VMs
is simply security. It’s essential that customers cannot access other customers’ data or
network traffic, and containers by themselves only provide weak guarantees of isola‐
tion at the moment. Further, if one container monopolizes kernel resources, or causes
a panic, it will affect all containers running on the same host. Even most of the spe‐
cialist solutions—Google Container Engine (GKE) and the Amazon EC2 Container
Service (ECS)—still use VMs internally. There are currently two exceptions to this
rule, Giant Swarm and Triton from Joyent, both of which are discussed later.

Throughout this chapter, we will show how our simple web application can be
deployed on a range of clouds, as well as specialized Docker hosting services. We will

137

also look at some of the issues and techniques for running containers in production,
both in the cloud and using on-premise resources.

The code for this chapter is available at this book’s GitHub. We
won’t build on the previous Python code anymore but will continue
to use the images we have created. You can choose to use your own
version of the identidock image or simply use the amouat/identi
dock repository.
You can check out the code for the start of the chapter using the v0
tag:

$ git clone -b v0 \
 https://github.com/using-docker/deploying-containers/
...

Later tags represent the progression of the code throughout the
chapter.
Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

Provisioning Resources with Docker Machine
The fastest and simplest way to provision new resources and run containers on them
is via Docker Machine. Machine can create servers, install Docker on them, and con‐
figure the local Docker client to access them. Machine comes with drivers for most of
the major cloud providers (including AWS, Google Compute Engine, Microsoft
Azure, and Digital Ocean) as well as VMWare and VirtualBox.

Beta Software Alert!

At the time of writing, Docker Machine is in beta (I tested Docker
Machine version 0.4.1). This means you are likely to encounter
bugs and missing functionality, but it should still be usable and rea‐
sonably stable. Unfortunately, it also means the commands and
syntax are likely to change slightly from what you see here. For this
reason, I don’t recommend using Machine in production yet,
although it is very useful for testing and experimentation.
(And yes, this warning is true for nearly everything in this book. It
just felt like time to point that out again….)

Let’s have a look at how to use Machine to get identidock up and running in the
cloud. To begin with, you’ll need to install Machine on your local computer. If you
installed Docker via Docker Toolbox, it should already be available. If not, you can
download a binary from GitHub, which can then be placed on your path (e.g., /usr/

138 | Chapter 9: Deploying Containers

https://github.com/using-docker/deploying-containers
https://github.com/using-docker/deploying-containers/releases
https://github.com/docker/machine/releases

local/bin/docker-machine). Once you’ve done this, you should be able to start running
commands:

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
default virtualbox Running tcp://192.168.99.100:2376

You may or may not get any output here, depending on what hosts Machine has
detected. In my case, it picked up my local boot2docker VM. What we want to do
next is add a host somewhere in the cloud. I’ll walk through this using Digital Ocean,
but AWS and the other cloud providers should be very similar. You’ll need to have
registered online and generated a personal access token (open the “Applications &
API” page to do this) in order to follow along. You will be charged for resource usage,
so make sure to remove the machine when you’re finished with it:

$ docker-machine create --driver digitalocean \
 --digitalocean-access-token 4820... \
 identihost-do
Creating SSH key...
Creating Digital Ocean droplet...
To see how to connect Docker to this machine, run: docker-machine env identi...

We’ve now created a Docker host on Digital Ocean. The next thing to do is to point
our local client at it, using the command given in the output:

$ docker-machine env identihost-do
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://104.236.32.178:2376"
export DOCKER_CERT_PATH="/Users/amouat/.docker/machine/machines/identihost-do"
export DOCKER_MACHINE_NAME="identihost-do"
Run this command to configure your shell:
eval "$(docker-machine env identihost-do)"
$ eval "$(docker-machine env identihost-do)"
$ docker info
Containers: 0
Images: 0
Storage Driver: aufs
 Root Dir: /var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 0
 Dirperm1 Supported: false
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 3.13.0-57-generic
Operating System: Ubuntu 14.04.3 LTS
CPUs: 1
Total Memory: 490 MiB
Name: identihost-do
ID: PLDY:REFM:PU5B:PRJK:L4QD:TRKG:RWL6:5T6W:AVA3:2FXF:ESRC:6DCT
Username: amouat
Registry: https://index.docker.io/v1/

Provisioning Resources with Docker Machine | 139

https://cloud.digitalocean.com/settings/applications
https://cloud.digitalocean.com/settings/applications

1 Some providers, including AWS, may require you to open port 5000 in the firewall first.

WARNING: No swap limit support
Labels:
 provider=digitalocean

And we can see that we’re connected to a Ubuntu host running on Digital Ocean. If
we now run docker run hello-world, it will execute on the remote server.

Now to run identidock, you can use the previous docker-compose.yml from the end of
Chapter 6, or use the following docker-compose.yml, which uses an image from the
Docker Hub for identidock:

identidock:
 image: amouat/identidock:1.0
 ports:
 - "5000:5000"
 - "9000:9000"
 environment:
 ENV: DEV
 links:
 - dnmonster
 - redis
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

Note that if the Compose file includes a build instruction, this build will occur on the
remote server. Any volume mounts will need to be removed, since they will refer to
the disk on the remote server, not your local computer.

Run Compose normally:

$ docker-compose up -d
...
Creating identidock_identidock_1...
$ curl $(docker-machine ip identihost-do):5000
<html><head><title>Hello...

This will take a while as it will need to first download and build the required
images.

We can use the docker-machine ip command to find where our Docker host is
running.

So now identidock is running in the cloud and accessible to anyone.1 It’s fantastic that
we were able to get something up and running so quickly, but there are a few things
that aren’t quite right. Notably, the application is running the development Python

140 | Chapter 9: Deploying Containers

webserver on port 5000. We should change to use the production version, but it
would also be nice to put a reverse proxy or load balancer in front of the application,
which would allow us to make changes to the identidock infrastructure without
changing the external IP address. Nginx has support for load balancing, so it also
makes it simple to bring up several identidock instances and share traffic between
them.

Smoke Testing Identidock

Throughout this book, we curl the identidock service to make sure
it works. However, simply grabbing the frontpage isn’t a great test;
it only proves that the identidock container is up and running. A
better test is to retrieve an identicon, which proves both the identi‐
dock and dnmonster containers are active and communicating.
You can do this with a test such as:

$ curl localhost:5000/monster/gordon | head -c 4
�PNG

Here we’ve used the Unix head utility to grab the first four charac‐
ters of the image, which avoids dumping binary data to our termi‐
nal.

Using a Proxy
Let’s start by creating a reverse proxy using nginx that our identidock service can sit
behind. Create a new folder identiproxy for this and create the following Dockerfile:

FROM nginx:1.7

COPY default.conf /etc/nginx/conf.d/default.conf

Also create a file default.conf with the following contents:

server {
 listen 80;
 server_name 45.55.251.164;

 location / {

 proxy_pass http://identidock:9090;
 proxy_next_upstream error timeout invalid_header http_500 http_502
 http_503 http_504;
 proxy_redirect off;
 proxy_buffering off;
 proxy_set_header Host 45.55.251.164;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Using a Proxy | 141

Replace this with the IP address of your Docker host or a domain name that
points to it.

Redirect all traffic to the identidock container. We’ll use links to make this work.

If you still have Machine running and pointed to the cloud server, we can now build
our image on the remote server:

$ docker build --no-cache -t identiproxy:0.1 .
Sending build context to Docker daemon 3.072 kB
Sending build context to Docker daemon
Step 0 : FROM nginx:1.7
 ---> 637d3b2f5fb5
Step 1 : COPY default.conf /etc/nginx/conf.d/default.conf
 ---> 2e82d9a1f506
Removing intermediate container 5383f47e3d1e
Successfully built 2e82d9a1f506

It’s easy to forget that we’re speaking to a remote Docker engine, but the image now
exists on the remote server, not your local development machine.

Now we can return to the identidock folder and create a new Compose configura‐
tion file to test it out. Create a prod.yml with the following contents:

proxy:
 image: identiproxy:0.1
 links:
 - identidock
 ports:
 - "80:80"
identidock:
 image: amouat/identidock:1.0
 links:
 - dnmonster
 - redis
 environment:
 ENV: PROD
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

Note that I’ve used tags for the all the images. In production, you should be care‐
ful about the versions of containers you are running. Using latest is particularly
bad as it can be difficult or impossible to figure out what version of the applica‐
tion the container is running.

142 | Chapter 9: Deploying Containers

Note that we’re no longer exposing ports on the identidock container (only the
proxy container needs to do that) and we’ve updated the environment variable to
start the production version of the webserver.

Using extends in Compose
For more verbose YAML files, you can use the extends keyword to share config
details between environments. For example, we could define a file common.yml with
the following contents:

identidock:
 image: amouat/identidock:1.0
 environment:
 ENV: DEV
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

We can then rewrite our prod.yml file as:

proxy:
 image: identiproxy:0.1
 links:
 - identidock
 ports:
 - "80:80"
identidock:
 extends:
 file: common.yml
 service: identidock
 environment:
 ENV: PROD
dnmonster:
 extends:
 file: common.yml
 service: dnmonster
redis:
 extends:
 file: common.yml
 service: redis

Where the extends keyword pulls in the appropriate config from the common file.
Settings in the prod.yml will override settings in the common.yml. Values in links and
volumes-from are not inherited to avoid unexpected breakages. Because of this, in our
case, using extends actually results in a more verbose prod.yml file, although it would
still have the important advantage of automatically inheriting any changes made to
the base file. The main reason I’ve avoided using extends in the book is simply to
keep the examples standalone.

Using a Proxy | 143

Stop the old version and start the new:

$ docker-compose stop
Stopping identidock_identidock_1... done
Stopping identidock_redis_1... done
Stopping identidock_dnmonster_1... done
Starting identidock_dnmonster_1...
Starting identidock_redis_1...
Recreating identidock_identidock_1...
Creating identidock_proxy_1...

Now let’s test it out; it should now answer on the default port 80 rather than port
9090:

$ curl $(docker-machine ip identihost-do)
<html><head><title>Hello...

Excellent! Now our container is sitting behind a proxy, which makes it possible to do
things like load balance over a group of identidock instances or move identidock to a
new host without breaking the IP address (as long as the proxy remains on the old
host and is updated with the new value). In addition, security has increased because
the application container can only be accessed via the proxy and is no longer expos‐
ing ports to the Internet at large.

We can do a bit better than this though. It’s really annoying that the IP of the host and
the container name are hardcoded into the proxy image; if we want to use a different
name than “identidock” or use identiproxy for another service, we need to build a
new image or overwrite the config with a volume. What we want is to have these
parameters set as environment variables. We can’t use environment variables directly
in nginx, but we can write a script that will generate the config at runtime, then start
nginx. We need to go back to our identiproxy folder and update the default.conf file
so that we have placeholders instead of the hardcoded variables:

server {
 listen 80;
 server_name {{NGINX_HOST}};

 location / {

 proxy_pass {{NGINX_PROXY}};
 proxy_next_upstream error timeout invalid_header http_500 http_502
 http_503 http_504;
 proxy_redirect off;
 proxy_buffering off;
 proxy_set_header Host {{NGINX_HOST}};
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

and create the following entrypoint.sh, which will do our replacement:

144 | Chapter 9: Deploying Containers

#!/bin/bash
set -e

sed -i "s|{{NGINX_HOST}}|$NGINX_HOST|;s|{{NGINX_PROXY}}|$NGINX_PROXY|" \
 /etc/nginx/conf.d/default.conf
cat /etc/nginx/conf.d/default.conf
exec "$@"

We’re using the sed utility to do our replacement. This is a bit hacky, but it will be
fine for our purposes. Note we’ve used |’s instead of /’s to avoid confusion with
slashes in URLs.

Prints the final template into the logs, which is handy for debugging.

Executes whatever CMD has been passed. By default, the Nginx container defines a
CMD instruction that starts nginx in the foreground, but we could define a differ‐
ent CMD at runtime that runs different commands or starts a shell if required.

Now we just need to update our Dockerfile to include our new script:

FROM nginx:1.7

COPY default.conf /etc/nginx/conf.d/default.conf
COPY entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]
CMD ["nginx", "-g", "daemon off;"]

This command starts our proxy and will be passed as an argument to our entry‐
point.sh script if no command is specified in docker run.

Make it executable and rebuild. This time we’ll just call it proxy, as we’ve abstracted
out the identidock details:

$ chmod +x entrypoint.sh
$ docker build -t proxy:1.0 .
...

To use our new image, go back to the identidock folder and update our prod.yml to
use the new image:

proxy:
 image: proxy:1.0
 links:
 - identidock
 ports:
 - "80:80"
 environment:
 - NGINX_HOST=45.55.251.164
 - NGINX_PROXY=http://identidock:9090
identidock:

Using a Proxy | 145

 image: amouat/identidock:1.0
 links:
 - dnmonster
 - redis
 environment:
 ENV: PROD
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

Set this variable to the IP or name of your host.

So now if you bring down the old version and restart the app, we’ll be using the new,
generic image. For our simple web app, this is all we need, but due to the use of
Docker links, we are currently stuck with a single-host configuration—we can’t move
to a multihost architecture (which would be necessary for fault tolerance and scaling)
without using more advanced networking and service discovery features that we will
see in Chapters 11 and 12.

Once you’ve finished with the application, you can stop it with:

$ docker-compose -f prod.yml stop
...
$ docker-compose -f prod.yml rm
...

When you’re ready to shut down the cloud resource, just do:

$ docker-machine stop identihost-do
$ docker-machine rm identihost-do

It’s worth making sure the resources have been correctly freed in the cloud provider’s
web interface.

Next, let’s take a look at some of the alternatives to using Compose.

146 | Chapter 9: Deploying Containers

2 Well, not really. It’s important to think about how to secure your application before inviting Joe Public to take
a look. See Chapter 13 for more information.

3 Oh, and you’ll want to think about how to handle monitoring and logging too. Don’t forget those. See Chap‐
ter 10.

Setting the COMPOSE_FILE Variable

Rather than explicitly specifying the -f prod.yml to compose each
time, you can also set the COMPOSE environment variable. For exam‐
ple:

$ COMPOSE_FILE=prod.yml
$ docker compose up -d
...

This will use the file prod.yml rather than the default docker-
compose.yml.

Supercharged Config File Generation
The technique of using templates to build configuration files for Docker containers is
fairly common when Dockerizing applications, especially when they don’t natively
support environment variables. When moving beyond simple examples like the one
here, you will want to use a proper template processor, such as Jinga2 or Go tem‐
plates, in order to avoid strange errors due to regexp clashes.

The problem is common enough that Jason Wilder created dockerize to help auto‐
mate this process. Dockerize will generate configuration files from a template file and
environment variables, then call the normal application. In this way, it can be used to
wrap application start-up scripts called from a CMD or ENTRYPOINT instruction.

However, Jason took this one step further with docker-gen. Docker-gen can use val‐
ues from container metadata (such as IP address) as well as environment variables. It
can also run continuously, responding to Docker events such as new container cre‐
ation to update configuration files appropriately. A great example of this is his nginx-
proxy container, which will automatically add containers with the k VIRTUAL_HOST
environment variable to a load-balanced group.

Execution Options
Now that we’ve got a production ready system,2 how should we go about starting the
system on the server?3 So far we’ve looked at Compose and Machine, but since both
these projects are relatively new and in rapid development, it’s wise to be wary of
using them in production for anything except small side projects (and, at the time of
writing, there are warnings to this extent on the Docker website). Both the projects

Execution Options | 147

https://github.com/jwilder/dockerize
https://github.com/jwilder/docker-gen

are quickly maturing and developing production features—to get an idea of where
they are going, you can find roadmap documents in the GitHub repositories, which
are great for getting an idea of how close the projects are to production-ready.

So, if Compose isn’t an option, what is? Let’s take a look at some of the other possibili‐
ties. All of the following code assumes that images are available on Docker Hub,
rather than building them on the server. If you want to follow along, either push your
own images to a registry or use my images from the Docker Hub (amouat/identi
dock:1.0, amouat/dnmonster:1.0 and amouat/proxy:1.0).

Shell Scripts
The easiest answer to running without Compose is just to write a short shell script
that executes Docker commands to bring up the containers. This will work well
enough for a lot of simple use cases, and you if add in some monitoring, you can
make sure you know about it if anything goes wrong that requires your attention.
However, in the long run, it is far from perfect; you will likely end up maintaining a
messy and unstructured script that evolves over time to grow features of other solu‐
tions.

We can ensure containers that exit prematurely are automatically restarted by using
the --restart argument to docker run. The argument specifies the restart policy,
which can be no, on-failure, or always. The default is no, which will never automat‐
ically restart containers. The on-failure policy will only restart containers that exit
with a nonzero exit code and can also specify a maximum number of retries (e.g.,
docker run --restart on-failure:5 will attempt to restart the container five times
before giving up).

The following script (named deploy.sh) will get our identidock service up and run‐
ning:

#!/bin/bash
set -e

echo "Starting identidock system"

docker run -d --restart=always --name redis redis:3
docker run -d --restart=always --name dnmonster amouat/dnmonster:1.0
docker run -d --restart=always \
 --link dnmonster:dnmonster \
 --link redis:redis \
 -e ENV=PROD \
 --name identidock amouat/identidock:1.0
docker run -d --restart=always \
 --name proxy \
 --link identidock:identidock \
 -p 80:80 \
 -e NGINX_HOST=45.55.251.164 \

148 | Chapter 9: Deploying Containers

 -e NGINX_PROXY=http://identidock:9090 \
 amouat/proxy:1.0

echo "Started"

Note that we’re really just converting our docker-compose.yml file into the equivalent
shell commands. But unlike Compose, there is no logic for cleaning up after failures,
or to check for already running containers.

In the case of Digital Ocean, I can now use the following ssh and scp commands to
start identidock using the shell script:

$ docker-machine scp deploy.sh identihost-do:~/deploy.sh
deploy.sh 100% 575 0.6KB/s 00:00
$ docker-machine ssh identihost-do
...
$ chmod +x deploy.sh
$./deploy.sh
Starting identidock system
3b390441b16eaece94df7e0e07d1edcb4c11ce7232108849d691d153330c6dfb
57459e4c0c2a75d2fbcef978aca9344d445693d2ad6d9efe70fe87bf5721a8f4
5da04a34302b400ec08e9a1d59c3baeec14e3e65473533c165203c189ad58364
d1839d8de1952fca5c41e0825ebb27384f35114574c20dd57f8ce718ed67e3f5
Started

We could also have just run these commands directly in the shell. The main reason to
prefer the script is for documentation and portability reasons—if I want to start iden‐
tidock on a new host, I can easily find the instructions to bring up an identical ver‐
sion of the application.

When we need to update images or make changes, we can either use Machine to con‐
nect our local client to the remote Docker server or log directly in to the remote
server and use the client there. To perform a zero-downtime update of a container,
you will need to have a load balancer or reverse proxy in front of the container and
do something like:

1. Bring a up a new container with the updated image (it’s best to avoid trying to
update images in place).

2. Point the load balancer at the new image, for some or all of the traffic.
3. Test the new container is working.
4. Turn off the old container.

Also, refer to “Testing in Production”, which describes various techniques for deploy‐
ing updates without breaking services.

Execution Options | 149

Breaking Links on Restart

Older versions of Docker had problems with links breaking when
containers restarted. If you see similar issues, make sure you are
running an up-to-date version of Docker. At the time of writing, I
am using Docker version 1.8, which works correctly; any changes
to a container’s IP address are automatically propagated to linked
containers. Also note that only /etc/hosts is updated, and environ‐
ment variables are not updated on changes to linked containers.

In the rest of this section, we’ll look at how you can control the starting and deploy‐
ment of containers using existing technology you may already be familiar with. In
Chapter 12, we will look at some of the newer, Docker specific tooling that also
addresses this issue.

Using a Process Manager (or systemd to Rule Them All)
Instead of relying on a shell script and the Docker restart functionality, you can use a
process manager or init system such as systemd or upstart to bring up your contain‐
ers. This can be particularly useful if you have host services that don’t run in a con‐
tainer, but are dependent on one or more containers. If you want to do this, be aware
that there are some issues:

• You will need to make sure you don’t use Docker’s automatic container restarting
functionality, that is, don’t use --restart=always in your docker run com‐
mands.

• Normally, your process manager will end up monitoring the docker client pro‐
cess, rather the processes inside the container. This works most of the time, but if
the network connection drops or something else goes wrong, the Docker client
will exit but leave the container running, which can cause problems. Instead, it
would be much better if the process manager monitored the main process inside
the container. This situation may change in the future, but until then, be aware of
the systemd-docker project, which works around this by taking control of the
container’s cgroup. (For more information on the problem, see this GitHub
issue.)

To give you an example of how to manage containers with systemd, the following ser‐
vice files can be used to start our identidock service on a systemd host. For this exam‐
ple, I’ve used CentOS 7, but other systemd-based distributions should be very similar.
I haven’t included an upstart example, as all major distributions seem to be moving to
systemd. All of the files should be stored under /etc/systemd/system/.

Let’s start by looking at the service file for the Redis container, identidock.redis.service,
which isn’t dependent on any other containers:

150 | Chapter 9: Deploying Containers

https://github.com/ibuildthecloud/systemd-docker
https://github.com/docker/docker/issues/6791
https://github.com/docker/docker/issues/6791

[Unit]
Description=Redis Container for Identidock
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop redis
ExecStartPre=-/usr/bin/docker rm redis
ExecStartPre=/usr/bin/docker pull redis
ExecStart=/usr/bin/docker run --rm --name redis redis

[Install]
WantedBy=multi-user.target

We need to make sure Docker is running before starting the container.

As the Docker commands may take some time to run, it’s easiest to turn the
timeout off.

Before starting the container, we first remove any old container with the same
name, which means we will destroy the Redis cache on restart. But in the case of
identidock, it’s not an issue. The use of - at the start of the command tells sys‐
temd not to abort if the command returns a nonzero return code.

Doing a pull ensures we are running the newest version.

The identidock service identidock.identidock.service is similar but requires other serv‐
ices:

[Unit]
Description=identidock Container for Identidock
After=docker.service
Requires=docker.service
After=identidock.redis.service
Requires=identidock.redis.service
After=identidock.dnmonster.service
Requires=identidock.dnmonster.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop identidock
ExecStartPre=-/usr/bin/docker rm identidock
ExecStartPre=/usr/bin/docker pull amouat/identidock
ExecStart=/usr/bin/docker run --name identidock \
 --link dnmonster:dnmonster \
 --link redis:redis \
 -e ENV=PROD \

Execution Options | 151

 amouat/identidock

[Install]
WantedBy=multi-user.target

In addition to Docker, we need to declare that we are dependent on the other
containers used in identidock, in this case, the Redis and dnmonster containers.
Both After and Requires are needed to avoided race conditions.

The proxy service (called identidock.proxy.service) looks like:

[Unit]
Description=Proxy Container for Identidock
After=docker.service
Requires=docker.service
Requires=identidock.identidock.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop proxy
ExecStartPre=-/usr/bin/docker rm proxy
ExecStartPre=/usr/bin/docker pull amouat/proxy
ExecStart=/usr/bin/docker run --name proxy \
 --link identidock:identidock \
 -p 80:80 \
 -e NGINX_HOST=0.0.0.0 \
 -e NGINX_PROXY=http://identidock:9090 \
 amouat/proxy

[Install]
WantedBy=multi-user.target

And finally the dnmonster service (called identidock.dnmonster.service) looks like:

[Unit]
Description=dnmonster Container for Identidock
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop dnmonster
ExecStartPre=-/usr/bin/docker rm dnmonster
ExecStartPre=/usr/bin/docker pull amouat/dnmonster
ExecStart=/usr/bin/docker run --name dnmonster amouat/dnmonster

[Install]
WantedBy=multi-user.target

We can now start identidock with systemctl start identidock.*. The major dif‐
ference between using this system and the Docker restart functionality is that restart‐

152 | Chapter 9: Deploying Containers

ing a stopped container will kick off a chain of restarts in systemd; if the Redis
container goes down, both the identidock and proxy containers will also be restarted.
This isn’t the case in Docker, since it knows how to update links without restarting
the container completely.

Despite the previously mentioned issues, it is worth noting that both CoreOS and the
Giant Swarm PaaS use systemd to control containers. At the moment, it seems fair to
say that there is unresolved tension between Docker and systemd, both of which want
to be in charge of the lifecycle of services running on the host.

Using a Configuration Management Tool
If your organization is responsible for more than a handful of hosts, chances are that
you’re using some sort of configuration management (CM) tool (and if not, you
probably should be). All projects need to consider how they are going to ensure the
operating system on the Docker host is up to date, especially with regard to security
patches. In turn, you also want to make sure the Docker images you are running are
up to date and you aren’t mixing multiple versions of your software. CM solutions
such as Puppet, Chef, Ansible, and Salt are designed to help manage these issues.

There are two main ways we can use CM tools with containers:

1. We can treat our containers as VMs and use CM software to manage and update
the software inside them.

2. We can use the CM software to manage the Docker host and ensure containers
are running the correct version of images, but view the containers themselves as
black boxes that can be replaced, but not modified.

The first approach is feasible, but is not the Docker way. You’ll be working against
Dockerfiles and the small-container-with-a-single-process philosophy that Docker is
built around. In the rest of this section, we’ll focus on the second alternative, which is
much more in line with the Docker philosophy and microservices approach.

In this approach, the containers themselves are similar to golden images in VM par‐
lance and shouldn’t be modified once running. When you need to update them, you
replace the entire container with one running the new image rather than try to
change anything running inside the image. This has the major advantage that you
know exactly what is running in your container by just looking at the image tag
(assuming you are using a proper tagging system and aren’t reusing tags).

Let’s look at an example of how you can do this.

Execution Options | 153

Ansible
We’ll use Ansible for this example, since it is popular, easy to get started with, and
open source. This isn’t to say it is better or worse than other tools!

Unlike many other configuration management solutions, Ansible doesn’t require the
installation of agents on hosts. Instead, it mainly relies on SSH to configure hosts.

Ansible has a Docker module, which has functionality for both building and orches‐
trating containers. It is possible to use Ansible inside Dockerfiles to install and con‐
figure software, but here we will just consider using Ansible to set up a VM with our
identidock image. As we’re only running on a single host, we’re not really making the
most the Ansible here, but it does show how well Ansible and Docker can be used
together.

Rather than install the Ansible client, we can just use an Ansible client image from
the Hub. There isn’t an official image available, but the generik/ansible image will
work for testing.

Start by creating a hosts file that contains a list of all the servers we want Ansible to
manage. Include the IP address of your remote host or VM here.

$ cat hosts
[identidock]
46.101.162.242

Now we need to create the “playbook” for installing identidock. Create a file identi‐
dock.yml with the following contents, replacing the image names if you want to use
your own:

- hosts: identidock
 sudo: yes
 tasks:
 - name: easy_install
 apt: pkg=python-setuptools
 - name: pip
 easy_install: name=pip
 - name: docker-py
 pip: name=docker-py
 - name: redis container
 docker:
 name: redis
 image: redis:3
 pull: always
 state: reloaded
 restart_policy: always
 - name: dnmonster container
 docker:
 name: dnmonster
 image: amouat/dnmonster:1.0

154 | Chapter 9: Deploying Containers

http://www.ansible.com

 pull: always
 state: reloaded
 restart_policy: always
 - name: identidock container
 docker:
 name: identidock
 image: amouat/identidock:1.0
 pull: always
 state: reloaded
 links:
 - "dnmonster:dnmonster"
 - "redis:redis"
 env:
 ENV: PROD
 restart_policy: always
 - name: proxy container
 docker:
 name: proxy
 image: amouat/proxy:1.0
 pull: always
 state: reloaded
 links:
 - "identidock:identidock"
 ports:
 - "80:80"
 env:
 NGINX_HOST: www.identidock.com
 NGINX_PROXY: http://identidock:9090
 restart_policy: always

Most of the configuration is very similar to Docker Compose, but note that:

• We have to install docker-py on the host in order to use the Ansible Docker
module. This in turn requires us to install some python dependencies.

• The pull variable determines when Docker images are checked for updates. Set‐
ting it to always ensures Ansible will check for a new version of the image each
time the task executes.

• The state variable determines what state the container should be in. Setting it to
reloaded will restart the container whenever a change is made to the configura‐
tion.

There are many more configuration options available, but this config will get us
something very similar to the other setups described in this chapter.

All that’s left to do is to run the playbook:

$ docker run -it \
 -v ${HOME}/.ssh:/root/.ssh:ro \
 -v $(pwd)/identidock.yml:/ansible/identidock.yml \
 -v $(pwd)/hosts:/etc/ansible/hosts \

Execution Options | 155

 --rm=true generik/ansible ansible-playbook identidock.yml

PLAY [identidock] ***

GATHERING FACTS ***
The authenticity of host '46.101.41.99 (46.101.41.99)' can't be established.
ECDSA key fingerprint is SHA256:R0LfM7Kf3OgRmQmgxINko7SonsGAC0VJb27LTotGEds.
Are you sure you want to continue connecting (yes/no)? yes
Enter passphrase for key '/root/.ssh/id_rsa':
ok: [46.101.41.99]

TASK: [easy_install] **
changed: [46.101.41.99]

TASK: [pip] ***
changed: [46.101.41.99]

TASK: [docker-py] ***
changed: [46.101.41.99]

TASK: [redis container] ***
changed: [46.101.41.99]

TASK: [dnmonster container] ***
changed: [46.101.41.99]

TASK: [identidock container] **
changed: [46.101.41.99]

TASK: [proxy container] ***
changed: [46.101.41.99]

PLAY RECAP **
46.101.41.99 : ok=8 changed=7 unreachable=0 failed=0
$ curl 46.101.41.99
<html><head><title>Hello...

This command is needed to map in the SSH key pair used to access the remote
server.

This will take some time, as Ansible will need to pull the images. But once it’s fin‐
ished, our identidock application should be running.

We’ve barely touched on the power of Anisble here. There are many more things you
can do, especially in terms of defining processes to perform rolling updates of con‐
tainers without breaking dependencies or significant downtime.

156 | Chapter 9: Deploying Containers

Host Configuration
So far, this chapter has assumed that containers are being run on the stock Docker
droplet (Digital Ocean’s term for preconfigured VMs) provided by Digital Ocean
(which, at the time of writing, runs Ubuntu 14.04). But there are many other choices
for the host operating system and infrastructure with different tradeoffs and advan‐
tages. In particular, if you are responsible for running an on-premise resource, you
should consider your options carefully.

Although it is possible to provision bare-metal machines for running Docker hosts
(both on-premise and in the cloud), currently the most practical option is to use
VMs. Most organizations will already have some sort of VM service you can use to
provision hosts for your containers and provides strong guarantees of isolation and
security between users.

Choosing an OS
There are already a few choices in this space, with different advantages and disadvan‐
tages. If you want to run a small-to-medium application, you will probably find it
easiest to stick to what you know—if you use Ubuntu or Fedora and you or your
organization is familiar with it with that OS, use it (but be aware of the storage driver
issues discussed shortly). If on the other hand, you want to run a very large applica‐
tion or cluster (hundreds or thousands of containers across many hosts), you will
want to look at more specialized options such as CoreOS, Project Atomic, or Ran‐
cherOS, as well as the orchestration solutions we discuss in Chapter 12.

If you’re running on a cloud host, most of them will already have a Docker image
ready to use, which will have been tried and tested to work on their infrastructure.

Choosing a Storage Driver
There are currently several storage drivers supported by Docker, with more on the
way. Choosing an appropriate storage driver is essential to ensuring reliability and
efficiency in production. Which driver is best depends on your use case and opera‐
tional experience. The current options are:

AUFS
The first storage driver for Docker. To date, this is probably the most tested and
commonly used driver. Along with Overlay, it has the major advantage of sup‐
porting sharing of memory pages between containers—if two containers load
libraries or data from the same underlying layer, the OS will be able to use the
same memory page for both containers. The major problem with AUFS is that it
is not in the mainline kernel, although it has been used by Debian and Ubuntu
for some time. Also, AUFS operates on the file level, so if you make a small
change to a large file, the whole file will be copied into the container’s read/write

Host Configuration | 157

4 Don’t ask me how to pronounce BTRFS: some people say “ButterFS” and some say “BetterFS.” I say “FSCK.”
5 In thin provisioning, rather than allocating all the resources a client asks for immediately, resources are only

allocated on-demand. This contrasts with thick provisioning, where the requested resources are immediately
set aside for the client, even though the client may only use a fraction of the resources.

layer. In contrast, BTRFS and Device mapper operate on the block level and are
therefore more space efficient with large files. If you currently use an Ubuntu or
Debian host, you will most likely be using the AUFS driver.

Overlay
Very similar to AUFS and was merged into the Linux kernel in version 3.18.
Overlay is very likely to be the main storage driver going forward and should
have slightly better performance than AUFS. Currently, the main drawbacks are
the need to have an up-to-date kernel (which will require patching for most dis‐
tros) and that it has seen less testing than AUFS and some of the other options.

BTRFS
A copy-on-write filesystem4 focused on supporting fault tolerance and very large
files sizes and volumes. Since BTRFS has several quirks and gotchas (especially
regarding chunks), it’s recommended only for organizations that have experience
with BTRFS or require a particular feature of BTRFS that is not supported by the
other drivers. It may be a good choice if your containers read and write to very
large files due to the block-level support.

ZFS
This much-loved filesystem was orginally developed by Sun Microsystems. Simi‐
lar to BTRFS in many regards, but arguably with better performance and reliabil‐
ity. Running ZFS on Linux isn’t trivial, as it can’t be included in the kernel
because of licensing issues. For this reason, it’s only likely to be used by organiza‐
tions with substantial existing experience with ZFS.

Device mapper
Used by default on Red Hat systems. Device mapper is a kernel driver that is used
as a foundation to several other technologies including RAID, device encryption,
and snapshots. Docker uses Device mapper’s thin provisioning5 (sometimes
called thinp) target to do copy-on-write on the level of blocks, rather than files.
The “thin pool” is allocated from a sparse file that defaults to 100 GB. Containers
are allocated a filesystem backed by the pool when created whose size defaults to
100 GB (as of Docker 1.8). As the files are sparse, the actual disk usage is much
less, but a container won’t be able to grow past 100 GB without changing the
defaults. Device mapper is arguably the most complex of the Docker storage
drivers and is a common source of problems and support requests. If possible, I
would recommend using one of the alternatives. But if you do use device mapper,

158 | Chapter 9: Deploying Containers

be aware that there are a lot of options that can be tuned to provide better perfor‐
mance (in particular, it’s a good idea to move storage off the default “loopback”
device and onto a real device).

VFS
The default Linux Virtual File System. This does not implement CoW and
requires making a full copy of the image when starting a container. This slows
down starting containers significantly and massively increases the amount of
diskspace required. The advantages are that it is simple and doesn’t require any
special kernel features. VFS may be a reasonable choice if you have problems
with other drivers and don’t mind taking the performance hit (e.g., if you have a
small number of long-lived containers).

Unless you have a specific reason to choose an alternative, I would suggest running
either AUFS or Overlay, even if it means applying kernel updates.

Switching storage driver
Switching storage driver is pretty easy, assuming you have the requisite dependencies
installed. Just restart the Docker daemon, passing the appropriate value for --
storage-driver (-s for short). For example, use docker daemon -s overlay to start
the daemon with the overlay storage driver if your kernel supports it. It’s also impor‐
tant to note the --graph or -g argument, which sets the root of the Docker runtime—
you may need to move this to a partition running the appropriate filesystem (e.g.,
docker daemon -s btrfs -g /mnt/btrfs_partition for the BTRFS driver).

To make the change permanent, you’ll need to edit the startup script or config file for
the Docker service. On Ubuntu 14.04, this means editing the variable DOCKER_OPTS in
the file /etc/default/docker.

Host Configuration | 159

Moving Images Between Storage Drivers

When you switch storage driver, you will lose access to all your old
containers and images. Switching back to the old storage driver will
restore access. To move an image to a new storage driver, just save
the image to a TAR file then load in the new filesystem. For exam‐
ple:

$ docker save -o /tmp/debian.tar debian:wheezy
$ sudo stop docker
$ docker daemon -s vfs
...

From a new terminal:
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
$ docker load -i /tmp/debian.tar
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
debian wheezy b3d362b23ec1 2 days ago 84.96 MB

Specialist Hosting Options
There are already some specialist container hosting options that don’t require you to
manage hosts directly.

Triton
Triton from Joyent is perhaps the most interesting of the options, as it doesn’t use
VMs internally. This gives Triton a significant performance benefit over VM-based
solutions and allows for provisioning on a per-container basis.

Triton doesn’t use the Docker engine but has its own container engine running on the
SmartOS hypervisor (which has its roots in Solaris) using Linux Virtualization. By
implementing the Docker remote API, Triton is fully compatible with the normal
Docker client, which is used as the standard interface to Triton. Images from the
Docker Hub work as normal.

Triton is open source and available in both a hosted version that runs on the Joyent
cloud and an on-premise version. We can quickly get identidock running using the
public Joyent public cloud. After setting up a Triton account and pointing the Docker
client at Triton, try running a docker info:

$ docker info
Containers: 0
Images: 0
Storage Driver: sdc
 SDCAccount: amouat
Execution Driver: sdc-0.3.0

160 | Chapter 9: Deploying Containers

https://www.joyent.com

Logging Driver: json-file
Kernel Version: 3.12.0-1-amd64
Operating System: SmartDataCenter
CPUs: 0
Total Memory: 0 B
Name: us-east-1
ID: 92b0cf3a-82c8-4bf2-8b74-836d1dd61003
Username: amouat
Registry: https://index.docker.io/v1/

Note the values for the OS and execution driver, which indicate we aren’t running on
a normal Docker engine. We can use Compose and the following triton.yml file to
launch identidock, as Triton supports the majority of the Docker engine API:

proxy:
 image: amouat/proxy:1.0
 links:
 - identidock
 ports:
 - "80:80"
 environment:
 - NGINX_HOST=www.identidock.com
 - NGINX_PROXY=http://identidock:9090
 mem_limit: "128M"
identidock:
 image: amouat/identidock:1.0
 links:
 - dnmonster
 - redis
 environment:
 ENV: PROD
 mem_limit: "128M"
dnmonster:
 image: amouat/dnmonster:1.0
 mem_limit: "128M"
redis:
 image: redis
 mem_limit: "128M"

This is almost the same as the prod.yml above, with the addition of memory settings
that tell Triton the size of container to launch. We’re also using public images rather
than building our own (Triton doesn’t currently support docker build).

Launch the application:

$ docker-compose -f triton.yml up -d
...
Creating triton_proxy_1...
$ docker inspect -f {{.NetworkSettings.IPAddress}} triton_proxy_1
165.225.128.41
$ curl 165.225.128.41
<html><head><title>Hello...

Specialist Hosting Options | 161

6 See the paper, “Large-scale cluster management at Google with Borg,” for a fascinating look at how to run a
cluster handling hundreds of thousands of jobs.

Triton automatically uses a publicly accessible IP when it sees a published port.

After running containers on Triton, make sure to stop and remove them; Triton
charges for stopped but not removed containers.

Using the native Docker tools to interact with Triton is a great experience, but there
are some rough edges; not all API calls are supported, and there are some issues sur‐
rounding how Compose handles volumes, but these should be worked out in time.

Until such a time as mainstream cloud providers are convienced that the isolation
guarantees of the Linux kernel are strong enough that containers can be run without
security concerns, Triton is one of the most attractive solutions for running contain‐
erized systems.

Google Container Engine
Google Container Engine (GKE) takes a more opinionated approach to running con‐
tainers, building on top of the Kubernetes orchestration system.

Kubernetes is an open source project designed by Google, using some of the lessons
learned from running containers internally with their Borg cluster manager.6

Deploying an application to GKE requires a basic understanding of Kubernetes and
the creation of some Kubernetes-specific configuration files, which we will leave to
“Kubernetes”.

In return for this extra work in configuring your application, you get services such as
automatic replication and load balancing. These may sound like services that are only
needed for large services with high traffic and many distributed parts, but they
quickly become important for any service that wants to have any guarantees about
up-time.

I’d strongly recommend Kubernetes, and GKE in particular, for deploying container
systems, but be aware that this will tie to you to the Kubernetes model, making it
more difficult to move your system between providers.

Amazon EC2 Container Service
Amazon’s EC2 Container Service (ECS) helps you run containers on Amazon’s EC2
infrastructure. ECS provides a web interface and an API for launching containers and
managing the underlying EC2 cluster.

162 | Chapter 9: Deploying Containers

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/container-engine/
https://aws.amazon.com/ecs/

On each nodeo of the cluster, ECS will start a container agent, which communicates
with the ECS service and is responsible for starting, stopping and monitoring con‐
tainers.

It’s relatively quick to get identidock running on ECS, although it does involve a typi‐
cal AWS interface with dozens of configuration options. Once you are registered with
ECS and have a created a cluster, we need to upload a “Task Definition” for identi‐
dock. The following JSON can be used as the definition for identidock:

{
 "family": "identidock",
 "containerDefinitions": [
 {
 "name": "proxy",
 "image": "amouat/proxy:1.0",
 "cpu": 100,
 "memory": 100,
 "environment": [
 {
 "name": "NGINX_HOST",
 "value": "www.identidock.com"
 },
 {
 "name": "NGINX_PROXY",
 "value": "http://identidock:9090"
 }
],
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "links": [
 "identidock"
],
 "essential": true
 },
 {
 "name": "identidock",
 "image": "amouat/identidock:1.0",
 "cpu": 100,
 "memory": 100,
 "environment": [
 {
 "name": "ENV",
 "value": "PROD"
 }
],
 "links": [
 "dnmonster",

Specialist Hosting Options | 163

 "redis"
],
 "essential": true
 },
 {
 "name": "dnmonster",
 "image": "amouat/dnmonster:1.0",
 "cpu": 100,
 "memory": 100,
 "essential": true
 },
 {
 "name": "redis",
 "image": "redis:3",
 "cpu": 100,
 "memory": 100,
 "essential": false
 }
]
}

Each container needs to specify an amount of memory (in megabytes) and number of
CPU units. The essential key defines whether or not the task should be stopped if
that container fails. In our case, the Redis container can be considered as nonessential
as the application will still work without it. The other fields should be self-
explanatory.

Once the task has been successfully created, it needs to be started on the cluster. Iden‐
tidock should be started as a service, rather than a one-off task. Running as a service
means that ECS will monitor the containers to ensure availability and provides the
option to connect to Amazon’s Elastic Load Balancer to spread traffic between instan‐
ces. When creating the service, ECS will ask for a name and the number of task
instances it should ensure are running. After creating the service and waiting for the
task to start, you should be able to access identidock via the IP address of the EC2
instance. This can be found on the task instance details page, in the expanded infor‐
mation for the proxy container.

Stopping the service and associated resources takes several steps. First, the service
needs to be updated and the number of tasks changed to 0, to avoid ECS trying to
bring up replacement tasks when shutting down. At this point, the service can be
deleted. Before the cluster can be deleted, you will also need to deregister the con‐
tainer instances. Be careful to also stop any associated resources you may have
started, such as Elastic Load Balancers or EBS storage.

There is a lot of engineering work going on behind the scenes in ECS. It’s easy to
launch hundreds or thousands of containers with a few clicks, providing serious capa‐
bilities for scaling. The scheduling of containers onto hosts is highly configurable,
allowing users to optimize for their own needs such as maximum efficiency or maxi‐

164 | Chapter 9: Deploying Containers

7 No relation to Docker’s clustering solution, which is also called swarm.

mum reliability. Users can replace the default ECS scheduler with their own or use a
third-party solution such as Marathon (see “Mesos and Marathon”).

ECS also integrates with existing Amazon features such as Elastic Load Balancer for
spreading load over multiple instances and the Elastic Block Store for persistent stor‐
age.

Giant Swarm
Giant Swarm bills itself as “an opinionated solution for microservice architectures,”
which really means it’s a fast and easy way to launch a Docker-based system using a
specialized configuration format. Giant Swarm offers a hosted version on a shared
cluster as well as a dedicated offering (where Giant Swarm will provision and main‐
tain bare-metal hosts for you) and an on-premise solution. At the time of writing, the
shared offering is still in alpha, but the dedicated offering is production ready.

Giant Swarm is a rarity in that it makes minimal-to-no use of VMs. Users with strict
security requirements have separate bare-metal hosts, but the shared cluster has con‐
tainers from separate users running next to each other.

Let’s see how to run identidock on the Giant Swarm shared cluster. Assuming you’ve
got access to Giant Swarm and installed the swarm CLI,7 start by creating the follow‐
ing configuration file and saving it as swarm.json:

{
 "name": "identidock_svc",
 "components": {
 "proxy": {
 "image": "amouat/proxy:1.0",
 "ports": [80],
 "env": {
 "NGINX_HOST": "$domain",
 "NGINX_PROXY": "http://identidock:9090"
 },
 "links": [{
 "component": "identidock",
 "target_port": 9090
 }],
 "domains": { "80": "$domain" }
 },
 "identidock": {
 "image": "amouat/identidock:1.0",
 "ports": [9090],
 "links": [
 {
 "component": "dnmonster",

Specialist Hosting Options | 165

https://giantswarm.io

 "target_port": 8080
 },
 {
 "component": "redis",
 "target_port": 6379
 }
]
 },
 "redis": {
 "image": "redis:3",
 "ports": [6379]
 },
 "dnmonster": {
 "image": "amouat/dnmonster:1.0",
 "ports": [8080]
 }
 }
}

Now it’s time to kick identidock into action:

$ swarm up --var=domain=identidock-$(swarm user).gigantic.io
Starting service identidock_svc...
Service identidock_svc is up.
You can see all components using this command:

 swarm status identidock_svc

$ swarm status identidock_svc
Service identidock_svc is up

component image instanceid created status
dnmonster amouat/dnmonster:1.0 m6eyoilfiei1 2015-09-04 09:50:40 up
identidock amouat/identidock:1.0 r22ut7h0vx39 2015-09-04 09:50:40 up
proxy amouat/proxy:1.0 6dr38cmrg3nx 2015-09-04 09:50:40 up
redis redis:3 jvcf15d6lpz4 2015-09-04 09:50:40 up
$ curl identidock-amouat.gigantic.io
<html><head><title>Hello...

Here we’ve shown off one of the features that distinguishes Giant Swarm configura‐
tion files from Docker Compose—the ability use template variables. In this case,
we’ve passed in the host name we want on the command line, and swarm has gone
ahead and replaced the $domain in the swarm.json with this value. Other features pro‐
vided by swarm.json include the ability to define pods—groups of containers that are
scheduled together—and also the ability to define how many instances of a container
should be running.

Finally, in addition to swarm CLI, there is web UI for monitoring services and view‐
ing logs and a REST API for automating interaction with Giant Swarm.

166 | Chapter 9: Deploying Containers

8 If you’re using configuration management software such as Ansible to manage container deployment, it may
come with or prescribe a solution to this problem.

Persistent Data and Production Containers
Arguably, the data-storage story hasn’t changed much under Docker, at least at the
larger end of the scale. If you run your own databases, you have the choice of using
Docker container, VMs, or raw metal. Whenever you have a large amount of data,
your VM or container will end up effectively pinned to the host machine due to the
difficulties of moving the data around. This means the portability benefits normally
associated with containers won’t be of help here, but you may still want to use con‐
tainers to keep a consistent platform and for isolation benefits. If you have concerns
about performance, using --net=host and --privileged will ensure the container is
effectively as efficient as the host VM or box, but be aware of the security implica‐
tions. If you don’t run your own databases, but use a hosted service such as Amazon
RDS, things continue much as before.

At the smaller end of the scale, where containers have configuration files and moder‐
ate amounts of data, you may find volumes limiting, as they tie you to a host
machine, making scaling and migrating containers more difficult. You may want to
consider moving such data to separate key-value stores or DBs, which you can also
run in a container. An interesting alternative approach is to use Flocker to manage
your data volumes. Flocker leverages the features of the ZFS filesystem to support the
migration of data with containers. If you’re trying to take a microservices approach,
you will find things a lot simpler if you strive to keep your containers stateless where
possible.

Sharing Secrets
You will probably have some sensitive data, such as passwords and API keys, that
needs to be securely shared with your containers. The following describes the various
approaches to doing this, along with their advantages and disadvantages.8

Saving Secrets in the Image
Never do this. It’s a bad idea.TM

It might be the easiest solution, but it means the secret is now available to anyone
with access to the image. It can’t be deleted because it will still exist in previous layers.
Even if you’re using a private registry or not using a registry at all, it would be far too
easy for someone to share the image by accident, and there is no need for everyone
who can access the image to know the secret. Also, it ties your image to a specific
deployment.

Persistent Data and Production Containers | 167

https://github.com/ClusterHQ/flocker

9 It’s worth pointing out that the Twelve-Factor methodology predates Docker containers, so some advice needs
to be adapted.

You could store secrets encrypted in images, but then you still need a way of passing
the decryption key, and you are unnecessarily giving attackers something to work
with.

Just forget about this idea. I only included it here so I can point at this section when
someone does it and it goes horribly wrong.

Passing Secrets in Environment Variables
Using environment variables to pass secrets is a very straightforward solution and is
considerably better than baking secrets into the image. It’s simple to do: just pass the
secrets as arguments to docker run. For example:

$ docker run -d -e API_TOKEN=my_secret_token myimage

Many applications and configuration files will support using environment variables
directly. For the rest, you may need some scripting similar to what we did in “Using a
Proxy”.

This is the method recommended by the popular and respected The Twelve-Factor
App methodology for building software-as-a-service applications.9 While I would
strongly recommend reading this document and implementing most of the advice,
storing secrets in the environment has some serious drawbacks, including:

• Environment variables are visible to all child processes, docker inspect, and any
linked containers. None of these has a good reason for being able to see these
secrets.

• The environment is often saved for logging and debugging purposes. There is a
large risk of secrets appearing in debug logs and issue trackers.

• They can’t be deleted. Ideally we would overwrite or wipe the secret after using it,
but this isn’t possible with Docker containers.

For these reasons, I would advise against using this method.

Passing Secrets in Volumes
A slightly better—but still far from perfect—solution is to use volumes to share
secrets. For example:

$ docker run -d -v $(pwd):/secret-file:/secret-file:ro myimage

168 | Chapter 9: Deploying Containers

http://12factor.net
http://12factor.net

Unless you map in whole configuration files with secrets, you will probably require
some scripting to handle secrets passed this way. If you’re feeling really clever, it is
possible to create a temporary file with the secret and delete the file after reading it
(be careful not to delete the original though!).

For configuration files that use environment variables, you can also create a script
that sets up the environment variables and can be sourced prior to running the
appropriate application. For example:

$ cat /secret/env.sh
export DB_PASSWORD=s3cr3t
$ source /secret/env.sh >> run_my_app.sh
...

This has the important advantage of not exposing the variables to docker inspect or
linked containers.

The major drawback with this approach is that it requires you to keep your secrets in
files, which are all too easy to check into version control. It can also be a more fiddly
solution that typically requires scripting.

Using a Key-Value Store
Arguably the best solution is to use a key-value store to keep secrets and retrieve
them from the container at runtime. This allows a level of control over the secrets
that isn’t possible with the previous options, but also requires more set up and putting
your trust in the key-value store.

Some solutions in this area include:

KeyWhiz
Stores secrets encrypted in memory and provides access via a REST API and a
command-line interface (CLI). Developed and used by Square (a payment-
processing company).

Vault
Can store secrets encrypted in a variety of backends, including file and Consul.
Also has a CLI and API. Has several features not currently present in KeyWhiz,
but is arguably less mature. Developed by Hashicorp, which is also behind Con‐
sul service discovery tool and the Terraform infrastructure-configuration tool.

Crypt
Stores values encrypted in the etcd or Consul key-value stores. The major advan‐
tage with this approach is that allows a degree of control over the secrets that
wasn’t previously possible. It becomes easy to change and delete secrets, apply
“leases” to secrets so they expire after a given time-period, or to lock down access
to secrets in case of a security alert.

Sharing Secrets | 169

https://square.github.io/keywhiz/
https://hashicorp.com/blog/vault.html
https://xordataexchange.github.io/crypt/

10 Virtual Ethernet, or veth, is a virtual network device with its own MAC address that was developed for use in
VMs.

However, there is still a problem here: how does the container authenticate itself to
the store? Typically, you will still need to pass the container either a private key using
a volume or a token via an environment variable. The previous objections to using an
environment variable can be mitigated by creating a one-use token that is revoked
immediately after use. Another solution currently in development is to use a volume
plugin for the store that mounts secrets from the store as a file inside the container.
GitHub has more information on this approach with regard to the KeyWhiz store.

This type of solution will be the future. The level of control it provides over sensitive
data is more than worth any complications in implementation, which should be
reduced as tooling improves. However, you may wish to wait and see how the sector
evolves before making a decision. In the meantime, use volumes to share your secrets,
but be very careful not to check them into SCM.

Networking
Networking is discussed in depth in Chapter 11. However, it is worth noting that if
you’re using the stock Docker networking in production, you are taking a considera‐
ble performance hit—setting up the Docker bridge and using veth10 means that a lot
of network routing is happening in user space, which is a lot slower than being han‐
dled by routing hardware or the kernel.

Production Registry
With identidock, we’ve just been using the Docker Hub to retrieve our images. Most
production setups will include a registry (or multiple registries) to provide fast access
to images and avoid relying on a third party for crucial infrastructure (some organi‐
zations will also be uneasy about storing their code with a third party, whether it’s in a
private repository or not). For details on setting up a registry, refer back to “Running
Your Own Registry”.

Keeping the images inside the registry up to date and correct is important—you don’t
want hosts to be able to pull old and potentially vulnerable images. For this reason,
it’s a good idea to run regular audits on registries as discussed in “Auditing”. However,
remember that each Docker host will also maintain its own cache of images, which
also needs to be checked.

Mirroring and similar use cases to enable scalable topologies, and high availability is
currently being work on the by the Docker distribution project.

170 | Chapter 9: Deploying Containers

https://github.com/calavera/docker-volume-keywhiz
https://github.com/docker/distribution/

Continuous Deployment/Delivery
Continuous Delivery is the extension of continuous integration to production; engi‐
neers should be able to make changes in development, have them run through test‐
ing, and then have them be available for deployment at the touch of a button.
Continuous Deployment takes this a step further and automatically pushes changes
that pass testing to deployment.

We saw in Chapter 8 how to set up a continuous-integration system using Jenkins.
Extending this to Continuous Deployment can be achieved by pushing images to the
production registry and migrating running containers to the new image. Migrating
images without downtime requires bringing up new containers and rerouting traffic
before stopping the old containers. There are several possible ways to achieve this in a
safe manner such as blue/green deployments and ramped deployments, as discussed
in “Testing in Production”. Implementing these techniques is often done with in-
house tooling, although frameworks such as Kubernetes offer built-in solutions, and I
expect to see specialist tools arrive on the market.

Conclusion
There’s been a lot in this chapter, and we’ve seen there a lot of different aspects to con‐
sider when deploying containers to production, even with something as simple as
identidock.

Although the container space is still very young, there are already several production-
grade options for hosting containers. The best option to choose is dependent on the
size and complexity of your system and how much effort and money you are willing
to expend on deployment and maintenance. Small deployments can be managed by
simply running a Docker Engine on a VM in the cloud, but this incurs a large main‐
tenance burden with larger deployments. This can be mitigated by using systems such
as Kubernetes and Mesos, which are discussed in Chapter 12, or by using a specialist
hosting service such as Giant Swarm, Triton, or ECS.

In this chapter, we looked at some of the issues commonly faced in production, from
tasks as seemingly simple as launching containers to thorny issues such as passing
secrets, handling data volumes, and continuous deployment. Some of these issues
require new approaches in a containerized system, especially when it is comprised of
dynamic microservices. New patterns and best practices will be developed to deal
with these issues, leading to new tooling and frameworks. Containers can already be
used reliably in production, but the future is even brighter.

Continuous Deployment/Delivery | 171

CHAPTER 10

Logging and Monitoring

Effective monitoring and logging of running containers is essential if you want to
keep any nontrivial system up and running and debug issues effectively. In a micro‐
service architecture, logging and monitoring become even more important due to the
increased number of machines. Given the ephemeral nature of containers, a given
container may no longer exist when debugging an issue, making centralized logs an
indispensable tool.

In recent weeks and months, the number of solutions available for both logging and
monitoring has exploded. Existing monitoring and logging vendors have begun to
offer specialist container solutions and integrations. This chapter will try to give an
overview of the various options and techniques available, with a focus on free and
open source offerings. We will see how to extend the identidock application with a
logging and monitoring solution that could easily be scaled out for larger applica‐
tions.

The code for this chapter is available at GitHub. As with Chapter 9,
the examples use images from the Hub, but you can replace the
identidock container with your own if you wish.
You can check out the code for the start of the chapter using the v0
tag:

$ git clone -b v0 \
 https://github.com/using-docker/logging/
...

Later tags represent the progression of the code through the chap‐
ter.
Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

173

https://github.com/using-docker/logging
https://github.com/using-docker/logging/releases

1 See the official docs for more information on the Remote API and how to enable it.

Logging
We’ll start by taking a look at how the default logging works in Docker, then we’ll
look at adding a full logging solution to identidock before moving on to look at some
alternatives and considering production issues.

The Default Docker Logging
It’s simplest to begin by describing what docker provides out of the box. If you don’t
specify any arguments or install any logging software, Docker will log everything sent
to STDOUT and STDERR. The logs can then be retrieved with the docker logs com‐
mand. For example:

$ docker run --name logtest debian sh -c 'echo "stdout"; echo "stderr" >>2'
stderr
stdout
$ docker logs logtest
stderr
stdout

We can also get the timestamp by using the -t argument:

$ docker logs -t logtest
2015-04-27T10:30:54.002057314Z stderr
2015-04-27T10:30:54.005335068Z stdout

And we can also stream the logs from a running container with -f:

$ docker run -d --name streamtest debian \
 sh -c 'while true; do echo "tick"; sleep 1; done;'
13aa6ee6406a998350781f994b23ce69ed6c38daa69c2c83263c863337a38ef9
$ docker logs -f streamtest
tick
tick
tick
tick
tick
tick
...

We can also do this from the Docker Remote API,1 which opens possibilities for pro‐
grammatically routing and processing logs. If you are using Docker Machine, you
should be able to do something like:

$ curl -i --cacert ~/.docker/machine/certs/ca.pem \
 --cert ~/.docker/machine/certs/ca.pem \
 --key ~/.docker/machine/certs/key.pem \
 "https://$(docker-machine ip default):2376/containers/\

174 | Chapter 10: Logging and Monitoring

http://bit.ly/1QMFApf

2 Yes, I was stupid enough to find this out the hard way.

$(docker ps -lq)/logs?stderr=1&stdout=1"
tick
tick
tick
...

If you are using Mac OS, note that curl works slightly differently and that you will
need to create a single certificate that contains both the ca.pem and key.pem details.
There is more detail on this on the Open Solitude blog.

There are some shortcomings with the default logging. It can only handle STDOUT and
STDERR, which is problematic if your application only logs to file. Also there is no log
rotation, which means if you try to use an application such as yes (which just repeat‐
edly writes “yes” to STDOUT) to keep a container running, you will find the container
quickly eats all the free space on your disk drive.2 For example:

$ docker run -d debian yes
ba054389b7266da0aa4e42300d46e9ce529e05fc4146fea2dff92cf6027ed0c7

There are several other logging methods available that can be started by using the --
log-driver argument to docker run. The default logger can be changed by passing
the --log-driver argument when starting the Docker daemon. The possible values
for the logger are:

json-file

The default logging we’ve just looked at.

syslog

The syslog driver, which we’ll look at shortly.

journald

The driver for the systemd journal.

gelf

The Graylog Extended Log Format (GELF) driver.

fluentd

Forwards log messages to fluentd.

none

Turns off logging.

Turning off logging can be useful in situations such as the preceding yes example.

Logging | 175

http://bit.ly/1IaCxjC
http://www.fluentd.org

Aggregating Logs
No matter which logging driver you use, it will only provide a partial solution, espe‐
cially in multihost systems. What we want to do is aggregate all logs—potentially
across hosts—into a single location so that we can run analytic and monitoring tools
on them.

There are two basic approaches to doing this:

1. Run a secondary process inside all our containers that acts as an agent and for‐
wards logs to our aggregation service.

2. Collect the logs on the host, or in a separate, standalone container and forward to
the aggregation service.

The first technique works, and is sometimes used, but bloats images and unnecessa‐
rily increases the number of running processes, so we will only consider the second
technique.

There are several ways we can access the container logs from the host:

1. We can use the Docker API to programmatically access the logs. This has the
advantage of being officially supported, at the cost of some overhead from using
the HTTP connection. We’ll see an example of using Logspout to do this in the
next section.

2. If using the syslog driver, we can use syslog functionality to automatically for‐
ward the logs, as shown in “Forwarding Logs with rsyslog”.

3. We can just directly access the log files from the Docker directory. This is
described in “Grabbing Logs from File”.

If the application you are using insists on logging to file rather than STDOUT or
STDERR, have a look at Handling Applications that Log to File for a couple of work‐
arounds.

Logging with ELK
To add logging to our identidock application we’re going to use what’s sometimes
known as the ELK stack, which is short for Elasticsearch, Logstash, and Kibana:

Elasticsearch
A text search engine with near real-time search. It is designed to easily scale
across nodes in order to handle large volumes of data and is perfect for searching
through masses of log data.

176 | Chapter 10: Logging and Monitoring

https://github.com/elastic/elasticsearch

3 If you want to run this in the cloud, go ahead, but you might find you need to upgrade your server to run all
the services.

Logstash
A tool for reading in raw logs, then parsing and filtering them, before sending
them onto another service, such as index or store (in our case, Logstash will for‐
ward to Elasticsearch). It has support for a wide range of input and output types
as well as pre-existing parsers for various application logs.

Kibana
A JavaScript-based graphical interface to Elasticsearch. It can be used to run Elas‐
ticsearch queries and visualize the results in various charts. Dashboards can be
set up to provide an instant overview of the state of the system.

We’ll run this stack locally, based on the prod.yml from the last chapter.3 In an ideal
setup, we would move the ELK containers to a separate host to maintain a clear sepa‐
ration of concerns. In Chapter 11, we’ll take a look at how this can be done; but for
the sake of simplicity, we’ll keep everything on one host for this chapter.

The first thing we need to do is figure out how to send our Docker logs to Logstash.
For this, we will use Logspout, a Docker-specific tool that uses the Docker API to
stream logs from running containers to a given endpoint (something like rsyslog for
Docker). Since we want to use Logstash as our endpoint, we will also install the
logspout-logstash adapter, which formats the Docker logs in a manner easily read by
Logstash. Logspout is designed to be as small and efficient as possible so that it can be
run on each Docker host while using the minimum of resources. To achieve this,
Logspout is written in Go and built on top of the extremely minimal Alpine Linux
image. Since the default container for Logspout doesn’t include the logstash adapter,
we’ll use one I prepared earlier.

The overall setup we are aiming for looks something like Figure 10-1, with the con‐
tainer logs on the left being collated by logspout, then parsed and filtered by Logstash
before being deposited in Elasticsearch. Finally, Kibana is used to visualize and inves‐
tigate the data in the Elasticsearch container.

Logging | 177

https://github.com/elastic/logstash
https://github.com/elastic/kibana
https://github.com/gliderlabs/logspout
https://github.com/looplab/logspout-logstash

Figure 10-1. Container logging with Logspout and ELK

Start by creating a new file, prod-with-logging.yml, which should contain:

proxy:
 image: amouat/proxy:1.0
 links:
 - identidock
 ports:
 - "80:80"
 environment:
 - NGINX_HOST=45.55.251.164
 - NGINX_PROXY=http://identidock:9090
identidock:
 image: amouat/identidock:1.0
 links:
 - dnmonster
 - redis
 environment:
 ENV: PROD
dnmonster:
 image: amouat/dnmonster
redis:
 image: redis

logspout:
 image: amouat/logspout-logstash
 volumes:
 - /var/run/docker.sock:/tmp/docker.sock
 ports:
 - "8000:80"

Replace the IP address with your host’s IP.

I’ve used my identidock image from the Hub, but feel free to replace with your
own version.

178 | Chapter 10: Logging and Monitoring

Mounts the Docker socket so that Logspout can connect to the Docker API.

Publishes Logspout’s HTTP interface for viewing logs. Don’t leave this exposed in
a production system.

Now, if you bring up the application again, you should be able to connect to Log‐
spout’s streaming HTTP interface:

$ docker-compose -f prod-with-logging.yml up -d
...
$ curl localhost:8000/logs

Open identidock in a browser, and you should start seeing some logs in the terminal:

logging_proxy_1|192.168.99.1 - - [24/Sep/2015:11:36:53 +0000] "GET / HTTP/1....
logging_identidock_1|[pid: 6|app: 0|req: 1/1] 172.17.0.14 () {40 vars in 660...
logging_identidock_1|Cache miss
 logging_proxy_1|192.168.99.1 - - [24/Sep/2015:11:36:53 +0000] "GET /mon...
logging_identidock_1|[pid: 6|app: 0|req: 2/2] 172.17.0.14 () {42 vars in 788...
logging_identidock_1|[pid: 6|app: 0|req: 3/3] 172.17.0.14 () {42 vars in 649...

Great, that part seems to be working, and you might find this interface useful in the
future. Next, we need to send the output somewhere useful—in this case to a Log‐
stash container. Note that in multihost systems, you will need to run one Logspout
container per host, which will route to a centralized Logstash instance. Let’s wire up
Logstash now. Start by updating our Compose file:

...
logspout:
 image: amouat/logspout-logstash
 volumes:
 - /var/run/docker.sock:/tmp/docker.sock
 ports:
 - "8000:80"
 links:
 - logstash
 command: logstash://logstash:5000
logstash:
 image: logstash
 volumes:
 - ./logstash.conf:/etc/logstash.conf
 environment:
 LOGSPOUT: ignore
 command: -f /etc/logstash.conf

Add a link to the Logstash container.

Use the “logstash” prefix, which tells Logspout to use the Logstash module for
output.

Logging | 179

Map in the configuration file for Logstash.

Logspout will not gather logs from any container that has the environment vari‐
able LOGSPOUT set. We don’t want to gather logs from the Logstash container as it
risks starting a cycle where a malformed log entry causes an error in Logstash
which gets logged and sent back to Logstash which causes a new error that gets
logged and sent back….

The configuration file should be saved as logstash.conf with the following contents:

input {
 tcp {
 port => 5000
 codec => json
 }
 udp {
 port => 5000
 codec => json
 }
}

output {
 stdout { codec => rubydebug }
}

To work with the Logspout output, we need to use the json codec.

For testing, we’ll output the logs to STDOUT.

Now let’s run it and see what happens:

$ docker-compose -f prod-with-logging.yml up -d
...
$ curl -s localhost > /dev/null
$ docker-compose -f prod-with-logging.yml logs logstash
...
logstash_1 | {
logstash_1 | "message" => "2015/09/24 12:50:25 logstash: write u...
logstash_1 | "docker.name" => "/logging_logspout_1",
logstash_1 | "docker.id" => "d8f69d05123c43c9da7470951547b23ab32d4...
logstash_1 | "docker.image" => "amouat/logspout-logstash",
logstash_1 | "docker.hostname" => "d8f69d05123c",
logstash_1 | "@version" => "1",
logstash_1 | "@timestamp" => "2015-09-24T12:50:25.708Z",
logstash_1 | "host" => "172.17.0.11"
logstash_1 | }
...

You should see a few entries in Ruby format like the preceding code. Note that the
output includes fields such as name of the container and its ID, which have been

180 | Chapter 10: Logging and Monitoring

added by Logspout. Logstash has taken the JSON output, ingested it, and spat it out
in its Ruby debug format. But there’s a lot more we can do with Logstash; we can filter
and mutate the logs as needed. For example you might want to remove personally
identifiable or sensitive information before passing it on to another service for further
processing or storage. In our case, it would be nice to pull apart the nginx log mes‐
sage into its constituent parts. We can do this by adding a filter section to the Log‐
stash configuration file:

input {
 tcp {
 port => 5000
 codec => json
 }
 udp {
 port => 5000
 codec => json
 }
}

filter {
 if [docker.image] =~ /^amouat\/proxy.*/ {
 mutate { replace => { type => "nginx" } }
 grok {
 match => { "message" => "%{COMBINEDAPACHELOG}" }
 }
 }
}

output {
 stdout { codec => rubydebug }
}

This filter checks the message to see if it comes from an image with the name
amouat/proxy. If it does, the message is parsed using the existing Logstash filter COM
BINEDAPACHELOG, which results in a few extra fields being added to the output. If you
add the preceding filter and restart the application, you should find log entries like
the following:

logstash_1 | {
logstash_1 | "message" => "87.246.78.46 - - [24/Sep/2015:13:02:...
logstash_1 | "docker.name" => "/logging_proxy_1",
logstash_1 | "docker.id" => "5bffa4f4a9106e7381b22673569094be20e8...
logstash_1 | "docker.image" => "amouat/proxy:1.0",
logstash_1 | "docker.hostname" => "5bffa4f4a910",
logstash_1 | "@version" => "1",
logstash_1 | "@timestamp" => "2015-09-24T13:02:59.751Z",
logstash_1 | "host" => "172.17.0.23",
logstash_1 | "type" => "nginx",
logstash_1 | "clientip" => "87.246.78.46",
logstash_1 | "ident" => "-",
logstash_1 | "auth" => "-",

Logging | 181

logstash_1 | "timestamp" => "24/Sep/2015:13:02:59 +0000",
logstash_1 | "verb" => "GET",
logstash_1 | "request" => "/",
logstash_1 | "httpversion" => "1.1",
logstash_1 | "response" => "200",
logstash_1 | "bytes" => "266",
logstash_1 | "referrer" => "\"-\"",
logstash_1 | "agent" => "\"curl/7.37.1\""
logstash_1 | }

Note that the filter has extracted a whole bunch of extra information such as the
response code, the request type, and URL. Using a similar technique, you can set up
filters for logging of all your various images.

The next step is to connect the Logstash container to an Elasticsearch container. We’ll
also add in the Kibana container at the same time, as it will provide our interface to
Elasticsearch.

Update our Compose file so that it now includes:

...
logspout:
 image: amouat/logspout-logstash
 volumes:
 - /var/run/docker.sock:/tmp/docker.sock
 ports:
 - "8000:80"
 links:
 - logstash
 command: logstash://logstash:5000

logstash:
 image: logstash:1.5
 volumes:
 - ./logstash.conf:/etc/logstash.conf
 environment:
 LOGSPOUT: ignore
 links:
 - elasticsearch
 command: -f /etc/logstash.conf

elasticsearch:
 image: elasticsearch:1.7
 environment:
 LOGSPOUT: ignore

kibana:
 image: kibana:4
 environment:
 LOGSPOUT: ignore
 ELASTICSEARCH_URL: http://elasticsearch:9200
 links:

182 | Chapter 10: Logging and Monitoring

 - elasticsearch
 ports:
 - "5601:5601"

Adds a link to the Elasticsearch container.

Creates an Elasticsearch container based on the official image.

Creates a Kibana 4 container. Note that we add a link to the Elasticsearch con‐
tainer and expose port 5601 for the interface.

We also need to update the output section of the logstash.conf file to point to our Elas‐
ticsearch container:

...
output {
 elasticsearch { host => "elasticsearch" }
 stdout { codec => rubydebug }
}

Outputs data in a format readable by Elasticsearch to the remote host called
“elasticsearch.”

If you want to, you can now remove this line; it’s only necessary for debugging
and is currently causing logs to be duplicated.

Let’s restart the application and take a look:

$ docker-compose -f prod-with-logging.yml up -d
Recreating logging_dnmonster_1...
Recreating logging_redis_1...
Recreating logging_elasticsearch_1...
Recreating logging_kibana_1...
Recreating logging_identidock_1...
Recreating logging_proxy_1...
Recreating logging_logstash_1...
Recreating logging_logspout_1...

Then open up localhost in your browser and play around with the identidock appli‐
cation for a while so that our logging stack has some data to analyze. When you’re
ready, open localhost:5601 in your browser to start the Kibana application. You
should see something like Figure 10-2.

Logging | 183

Figure 10-2. Kibana configuration page

Select @timestamp as the time-field name and click “Create.” You should then get a
page with all the fields Elasticsearch has found, including our nginx and Docker ones.

If you then click on “Discover,” you should get a page with a histogram showing log
volumes above a list of recent logs, similar to Figure 10-3.

Figure 10-3. Kibana Discover page

184 | Chapter 10: Logging and Monitoring

You can easily change the time period by clicking the clock icon in the top right. Logs
can be filtered by searching for the presence of terms in certain fields. For example,
try searching for “Cache miss” on the “message” field to get a histogram of cache
misses over time. More advanced charts and visualizations can be generated using the
“Visualize” tab, including line charts and pie charts as well data tables and custom
metrics.

Kibana 3 Versus 4

If you use a pre 4.0-version of Kibana, you will need to make sure
your browser can access the Elasticsearch container by forwarding a
port to the host. This is because Kibana is a JavaScript-based appli‐
cation that runs in the client. From version 4 on, connections are
proxied through Kibana, removing this requirement.

This chapter isn’t meant as a full introduction to advanced log analysis, so we won’t
go any further with Kibana. Suffice to say that Kibana and similar solutions offer
powerful and highly visual ways to investigate your application and data.

Log Storage and Rotation
Whatever log driver and analysis solution you end up using, you still need to decide
how you’re going to store your logs and for how long. If you haven’t thought about
this at all, you likely have containers using the default logging that are slowly eating
up all the hard disk until they crash the host.

The Linux logrotate utility can be used to manage the growth of logfiles. Typically,
several generations of logfiles are used, with files being moved through the genera‐
tions at regular intervals. For example, in addition to the current log, you may have
father, grandfather, and a great-grandfather logs. The grandfather and great-
grandfather are compressed to save storage. Every day, the current log is moved to the
father log, the old father log is compressed and moved to the grandfather log, the
grandfather becomes great-grandfather, and the old great-grandfather log is deleted.

You can use the following logrotate configuration to achieve this, which should be
saved to a new file under /etc/logrotate.d/ (e.g., /etc/logrotate.d/docker), or added
to /etc/logrotate.conf:

/var/lib/docker/containers/*/*.log {

 daily

 rotate 3

 compress

 delaycompress

 missingok

 copytruncate
}

Logging | 185

Rotate the logs every day.

Keep three generations of log files.

Use compression but delay by one generation.

Stop logrotate from throwing an error if files are missing.

Rather than moving the current logfile, copy it then truncate it (set the size to 0).
This is needed to ensure Docker doesn’t get upset when the file disappears. There
is a chance of data loss if the application logs data between the copy and truncate.

By default, you’ll probably find that logrotate is executed as a cron job once a day; if
you want to tidy up logs more often than that, you’ll need to change this.

For more permanent and robust log storage, forward your logs to a robust database
such as PostgreSQL. You can easily add this as second output from Logstash or an
equivalent tool. Do not rely purely on indexing solutions like Elasticsearch for stor‐
age, as they don’t have the same fault tolerance guarantees of mature databases like
PostgreSQL. Note that you can use Logstash filters to cut out data such as personably
identifiable information if required.

Handling Applications that Log to File

If you have an application that logs to file rather than STDOUT/
STDERR, you still have a couple of options available. If you are
already using the Docker API to do your logging (e.g., with the
Logspout container), the simplest solution is to run a process (nor‐
mally tail -F) that just prints the file to STDOUT. An elegant way
to do this that maintains the single process to a container philoso‐
phy is to use a second container that mounts the log files with --
volumes-from.
For example, if we have a container called “tolog” that declares a
volume at /var/log, we can use the following:

$ docker run -d --name tolog-logger \
 --volumes-from tolog \
 debian tail -F
/dev/log/*

If you don’t want to take this approach, you can also mount the
logs to a known directory on the host and run a collector such as
fluentd on them.

186 | Chapter 10: Logging and Monitoring

http://www.fluentd.org/

Docker Logging with syslog
Assuming your Docker host has syslog support, you can use the syslog driver, which
will send the container logs to syslog on the host. This is perhaps best explained with
an example:

$ ID=$(docker run -d --log-driver=syslog debian \
 sh -c 'i=0; while true; do i=$((i+1)); echo "docker $i"; sleep 1; done;')
$ docker logs $ID
"logs" command is supported only for "json-file" logging driver (got: syslog)
$ tail /var/log/syslog
Sep 24 10:17:45 reginald docker/181b6d654000[3594]: docker 48
Sep 24 10:17:46 reginald docker/181b6d654000[3594]: docker 49
Sep 24 10:17:47 reginald docker/181b6d654000[3594]: docker 50
Sep 24 10:17:48 reginald docker/181b6d654000[3594]: docker 51
Sep 24 10:17:49 reginald docker/181b6d654000[3594]: docker 52
Sep 24 10:17:50 reginald docker/181b6d654000[3594]: docker 53
Sep 24 10:17:51 reginald docker/181b6d654000[3594]: docker 54
Sep 24 10:17:52 reginald docker/181b6d654000[3594]: docker 55
Sep 24 10:17:53 reginald docker/181b6d654000[3594]: docker 56
Sep 24 10:17:54 reginald docker/181b6d654000[3594]: docker 57

At the time of writing, the docker logs command only works with the default
logging.

On my Ubuntu host, docker logs were being sent to /var/log/syslog. This may be
different on other Linux distributions.

The syslog log file with the container messages probably also contains messages for
various other services, as well as other containers. As the log messages have the con‐
tainer ID (in short form), we can easily use the grep tool to find messages pertaining
to a given container:

$ grep ${ID:0:12} /var/log/syslog
Sep 24 10:16:58 reginald docker/181b6d654000[3594]: docker 1
Sep 24 10:16:59 reginald docker/181b6d654000[3594]: docker 2
Sep 24 10:17:00 reginald docker/181b6d654000[3594]: docker 3
Sep 24 10:17:01 reginald docker/181b6d654000[3594]: docker 4
Sep 24 10:17:02 reginald docker/181b6d654000[3594]: docker 5
Sep 24 10:17:03 reginald docker/181b6d654000[3594]: docker 6
Sep 24 10:17:04 reginald docker/181b6d654000[3594]: docker 7
...

Logging | 187

The logs use the shortform ID, which means we have to reduce the full ID to 12
characters.

The Docker Events API
In addition to the container logs and Docker daemon logs, there is another set of data
you may want to monitor and react to—Docker events. Events are logged for most of
the stages in the lifecycle of a Docker container. These events include create,
destroy, die, export, kill, pause, attach, restart, start, stop, and unpause. Most
of these should be self-explanatory, but note that die occurs when a container exits
and destroy occurs when it is deleted (i.e., docker rm is invoked). Figure 10-4 shows
the lifecycle as a chart.

The untag and delete events are logged for images. untag occurs when a tag is
deleted, which will happen whenever docker rmi is succesfully invoked. The delete
event occurs when the underlying image is deleted (this event does not always occur
on docker rmi because there may be multiple tags for an image). Timestamps are dis‐
played in RFC 3339 format.

We can retrieve events using the docker events command:

$ docker events
2015-09-24T15:23:28.000000000+01:00 44fe57bab...: (from debian) create
2015-09-24T15:23:28.000000000+01:00 44fe57bab...: (from debian) attach
2015-09-24T15:23:28.000000000+01:00 44fe57bab...: (from debian) start
2015-09-24T15:23:28.000000000+01:00 44fe57bab...: (from debian) die

As the docker events command returns a stream, you will need to run some Docker
commands from another terminal before you see any results. The docker events
command also takes arguments for filtering results and controlling the time period
for which to return results. Events can be filtered by containers, images, and events.
Timestamps used in arguments need to be formatted according to RFC 3339 (e.g.,
“2006-01-02T15:04:05.000000000Z07:00”) or given as seconds since the Unix epoch
(e.g., “1378216169”).

188 | Chapter 10: Logging and Monitoring

https://www.ietf.org/rfc/rfc3339.txt

Figure 10-4. The Docker lifecycle (adapted from official Docker docs, originally by Mat
Good, Glider labs, released under CC-BY-SA 4.0 license)

The Docker events API can be very useful when you want want to automatically react
to container events. For example, the Logspout utility uses the API to notice when
containers are started and begin streaming logs from them. The nginx-proxy from
Jason Wilder discussed in “Supercharged Config File Generation” uses the events API
to automatically load balance containers when they come up. In addition, you may
simply want to log the data in order to perform analysis on the lifecycles of your con‐
tainers.

Logging | 189

http://bit.ly/1QMFApf
http://bit.ly/cc-by-sa-4

4 It shouldn’t be, but it seems that parts of syslog have yet to emerge from the ’80s….

We can make things a little better by setting up syslog to put our Docker logs in a
separate log file. Docker logs to the “daemon” facility in syslog speak, so you can
easily set up syslog to messages for all daemons to a given file, but filtering for just the
Docker messages is a little harder.4 If you’re using rsyslog version 7 or above (and
there’s a good chance you are), you can use the following rule:

:syslogtag,startswith,"docker/" /var/log/containers.log

Which will place all Docker container messages in /var/log/containers.log. Save this
rule to an rsyslog configuration file. On Ubuntu at least, you can make a new file /etc/
rsyslog.d/30-docker.conf and save it there. Then restart syslog and the logs will appear
in our new file:

$ sudo service rsyslog restart
rsyslog stop/waiting
rsyslog start/running, process 15863
$ docker run -d --log-driver=syslog debian \
 sh -c 'i=0; while true; do i=$((i+1)); echo "docker $i"; sleep 1; done;'
$ cat /var/log/containers.log
Sep 24 10:30:46 reginald docker/1a1a57b885f3[3594]: docker 1
Sep 24 10:30:47 reginald docker/1a1a57b885f3[3594]: docker 2
Sep 24 10:30:48 reginald docker/1a1a57b885f3[3594]: docker 3
Sep 24 10:30:49 reginald docker/1a1a57b885f3[3594]: docker 4
Sep 24 10:30:50 reginald docker/1a1a57b885f3[3594]: docker 5
Sep 24 10:30:51 reginald docker/1a1a57b885f3[3594]: docker 6
Sep 24 10:30:52 reginald docker/1a1a57b885f3[3594]: docker 7

At the moment, logging will also be going to other files (e.g., /var/log/syslog). To stop
this, add a line immediately after our rule with &stop For example:

:syslogtag,startswith,"docker/" /var/log/containers.log
&stop

190 | Chapter 10: Logging and Monitoring

Syslog and Docker Machine VMs

At the time of writing, syslog isn’t running by default in the
boot2docker VMs provisioned by Machine. You can start it for
testing purposes by logging into the M and running syslogd. For
example:

$ docker-machine ssh default
...
docker@default:~$ syslogd

You can make this change permanent by calling syslogd from the
file /var/lib/boot2docker/bootsync.sh inside the boot2docker VM,
which the VM will execute before starting Docker. For example:

$ docker-machine ssh default
...
docker@default:~$ cat /var/lib/boot2docker/bootsync.sh
#!/bin/sh
syslogd

Note that the boot2docker VM uses busybox’s default syslog imple‐
mentation, which isn’t as flexible as rsyslogd.

You can set syslog as the default logging option for Docker containers by adding --
log-driver=syslog to the daemon initialization (normally by editing the configura‐
tion file for the Docker service (e.g., add to DOCKER_OPTS in the file /etc/default/docker
on Ubuntu).

Forwarding Logs with rsyslog
We can also tell rsyslog to forward our logs onto another server rather than store
them locally. This can be used to provide logs to a central service such as Logstash, or
another syslog server without the overhead of using something like Logspout.

To replace Logspout with rsyslog in our identidock example, we need to change the
Logstash config to expect syslog input, forward a port on the host to Logstash for rsy‐
slog to talk to, and tell rsyslog to send logs over the network rather than to a file.

We can start by reconfiguring Logstash. Update the config file to:

input {
 syslog {
 type => syslog
 port => 5544
 }
}

filter {
 if [type] == "syslog" {
 syslog_pri { }
 date {

Logging | 191

5 I know, obvious, right?

 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]
 }
 }
}

output {
 elasticsearch { host => "elasticsearch" }
 stdout { codec => rubydebug }
}

Now let’s configure rsyslog. The configuration is almost the same as above, except
rather than specify the file /var/log/containers.log, we will use the syntax @@local
host:5544. For example:

:syslogtag,startswith,"docker/" @@localhost:5544
&stop

This will tell rsyslog to send the logs using TCP to port 5544 on localhost. To use
UDP instead, use only a single @.5

The final piece of configuration is rewrite our Compose file. Before we do this, it’s
best to stop any running identidock instances:

$ docker-compose -f prod-with-logging.yml stop
...

Now we can safely remove Logspout from the Compose file and publish a port on the
host for rsyslog to talk to Logstash over:

...
logstash:
 image: logstash:1.5
 volumes:
 - ./logstash.conf:/etc/logstash.conf
 environment:
 LOGSPOUT: ignore
 links:
 - elasticsearch
 - "127.0.0.1:5544:5544"
 command: -f /etc/logstash.conf

elasticsearch:
 image: elasticsearch:1.7
 environment:
 LOGSPOUT: ignore

kibana:
 image: kibana:4.1
 environment:

192 | Chapter 10: Logging and Monitoring

 LOGSPOUT: ignore
 ELASTICSEARCH_URL: http://elasticsearch:9200
 links:
 - elasticsearch
 ports:
 - "5601:5601"

Publish the port 5544. We only bind to the interface 127.0.0.1 so that the host
can connect to the port but other machines on the network cannot.

Finally, restart rsyslog and identidock. Now we can see our logs are sent to Logstash
through rsyslog, rather than the slower Logspout method. There’s still some work to
be done configuring filters to get all the information we had from Logspout into Log‐
stash, but using rsyslog for forwarding logs is a very efficient and robust solution.

Guaranteed Logging
When designing your logging infrastructure, you will—whether you are aware of it or
not—trade the need for complete accuracy and reliability for efficiency. If you just
need your logs for debugging and monitoring purposes, you can likely just use what‐
ever solution you find simplest. If, however, there are certain log messages that must
result in an immediate alert, or your logs must be verifiably complete for compliance
with policies, it is essential that you consider the properties and guarantees of the var‐
ious links in your logging infrastructure.

Some key points to consider:

• What transport protocol is being used to send your logs? UDP is faster but offers
less reliability guarantees than TCP (but TCP is still not guaranteed to be relia‐
ble).

• What happens in the case of a network outage? Note that many tools, including
rsyslog, can be configured to buffer messages until the remote server can be
reached.

• How are your messages being stored and backed up? Databases offer greater reli‐
ability and fault-tolerance guarantees than filesystems.

An overlapping concern is security of logs; your logs likely contain sensitive informa‐
tion, and it’s important to control who has access to them. You will want to make sure
that any logs traveling over the public Internet are encrypted and that only the appro‐
priate people can access stored logs.

Grabbing Logs from File
Another efficient way of forwarding logs is to access the raw logs on the filesystem.

Logging | 193

If you’re using the default logging, Docker currently keeps the container log files
at /var/lib/docker/containers/<container id>/<container id>-json.log.

Taking logs directly from file is efficient but relies on internal Docker implementation
details rather than an exposed API. For this reason, it is possible that logging solu‐
tions based on this method will break with updates to the Docker engine.

Monitoring and Alerting
In a microservice system, you are likely to have dozens, possibly hundreds or thou‐
sands, of running containers. You are going to want as much help as you can get to
monitor the state of running containers and the system in general. A good monitor‐
ing solution should show at a glance the health of the system and give advance warn‐
ing if resources are running low (e.g., disk space, CPU, memory). We also want to be
alerted should things start going wrong (e.g., if requests start taking several seconds
or more to process).

Monitoring with Docker Tools
Docker comes with a basic CLI tool, docker stats, that returns a live stream of
resource usage. The command takes the name of one or more containers and prints
various statistics for them, in much the same way as the Unix application top. For
example:

$ docker stats logging_logspout_1
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
logging_logspout_1 0.13% 1.696 MB/2.099 GB 0.08% 4.06 kB/9.479 kB

The stats cover CPU and memory usage as well as network utilization. Note that
unless you have set memory limits on the container, the limit you see on memory will
represent the total amount of memory on the host, rather than the amount of mem‐
ory available to the container.

194 | Chapter 10: Logging and Monitoring

Get Stats On All Running Containers

Most of the time, you will want to get stats from all the running
containers on the host (in my opinion this should be the default).
You can do this with a bit of shell script fu:

$ docker stats \
 $(docker inspect -f {{.Name}} $(docker ps -q))
CONTAINER CPU % MEM USAGE/LIMIT ...
/logging_dnmonster_1 0.00% 57.51 MB/2.099 GB
/logging_elasticsearch_1 0.60% 337.8 MB/2.099 GB
/logging_identidock_1 0.01% 29.03 MB/2.099 GB
/logging_kibana_1 0.00% 61.61 MB/2.099 GB
/logging_logspout_1 0.14% 1.7 MB/2.099 GB
/logging_logstash_1 0.57% 263.8 MB/2.099 GB
/logging_proxy_1 0.00% 1.438 MB/2.099 GB
/logging_redis_1 0.14% 7.283 MB/2.099 GB

The docker ps -q gets the IDs of all running containers, used as
input to docker inspect -f {{.Name}}, which turns the IDs to
names which are passed to docker stats.

This is useful in as far as it goes, and also hints at the existence of a Docker API that
can be used to get such data programmatically. This API does indeed exist and you
can call the endpoint at /containers/<id>/stats to get a stream of various statistics
on the container, with more detail than the CLI. This API is somewhat inflexible; you
can stream updates for all values every second, or only pull all stats once, but there
are no options to control frequency or filtering. This means you are likely to find the
stats API incurs too much overhead for continuous monitoring, but is still useful for
ad hoc queries and investigations.

Most of the various metrics exposed by Docker are also available directly from the
Linux kernel, through the CGroups and namespaces features, which can be accessed
by various libraries and tools, including Docker’s runc library. If you have a specific
metric you want to monitor, you can write an efficient solution using runc or making
kernel calls directly. You will need to use a language that allows you to make low-level
kernel calls, such as Go or C. There are also a few gotchas you should be aware of,
such as how to avoid forking new processes for updating metrics. The Docker article
Runtime Metrics explains how to do this and goes into depth about the various met‐
rics available from the kernel. Once you’ve exposed the values you need, you may
want to look into tools such as statsd for aggregating and calaculating metrics,
InfluxDB and OpenTSDB for storage, and Graphite and Grafana for displaying the
results.

Monitoring and Alerting | 195

https://github.com/opencontainers/runc
https://docs.docker.com/articles/runmetrics
https://github.com/etsy/statsd
http://influxdb.com/
http://opentsdb.net
http://graphite.readthedocs.org
https://github.com/grafana/grafana

Monitoring and Alerting with Logstash

While Logstash is very much a logging tool, it’s worth pointing out
that you can already achieve a level of monitoring with Logstash,
and that the logs themselves are an important metric to monitor.
For example, you could check nginx status codes and automatically
email or message an alert upon receiving a high volume of 500s.
Logstash also has output modules for many common monitoring
solutions, including Nagios, Ganglia, and Graphite.

In the majority of cases, you will want to use a pre-existing tool for gathering and
aggregating metrics and producing visualizations. There are many commercial solu‐
tions to this, but we will look at the leading open source and container-specific solu‐
tions.

cAdvisor
cAdvisor (a contraction of Container Advisor) from Google is the most commonly
used Docker monitoring tool. It provides a graphical overview of the resource usage
and performance metrics of containers running on the host.

As cAdvisor is available as a container itself, we can get it up and running in a flash.
Just launch the cAdvisor container with the following arguments:

$ docker run -d \
 --name cadvisor \
 -v /:/rootfs:ro \
 -v /var/run:/var/run:rw \
 -v /sys:/sys:ro \
 -v /var/lib/docker/:/var/lib/docker:ro \
 -p 8080:8080 \
 google/cadvisor:latest

If you’re on a Red Hat (or CentOS) host, you’ll also need to mount the cgroups folder
with --volume=/cgroup:/cgroup.

Once the container is running, point your browser at http://localhost:8080. You
should see a page with a bunch of graphs, something like Figure 10-5. You can drill
down to specific containers by clicking the “Docker Containers” link and then click‐
ing the name of the container you’re interested in.

196 | Chapter 10: Logging and Monitoring

http://localhost:8080

Figure 10-5. cAdvisor graph of CPU usage

cAdvisor aggregates and processes various stats and also makes these available
through a REST API for further processing and storage. The data can also be
exported to InfluxDB, a database designed for storing and querying time series data
including metrics and analytics. The roadmap for cAdvisor includes features such as
hints on how to improve and tune the performance of containers, and usage-
prediction information to cluster orchestration and scheduling tools.

Cluster Solutions
cAdvisor is great, but is a per-host solution. If you’re running a large system, you will
want to get statistics on containers across all hosts as well on the hosts themselves.
You will want to get stats on how groups of containers are doing, representing both
subsystems as well as slices of functionality across instances. For example, you may
want to look at the memory usage of all your nginx containers, or the CPU usage of a
set of containers running a data analysis task. Since the required metrics tend to be
application and problem specific, a good solution will provide you with a query lan‐
guage that can be used to construct new metrics and visualizations.

Google has developed a cluster monitoring solution built on top of cAdvisor called
Heapster, but at the time of writing, it only supports Kubernetes and CoreOS, so we
won’t consider it here.

Instead we’ll take look at Prometheus, an open source cluster-monitoring solution
from SoundCloud that can take input from a wide range of sources, including cAdvi‐

Monitoring and Alerting | 197

sor. It is designed to support large microservice architectures and is used by both
SoundCloud and Docker Inc.

Prometheus
Prometheus is unusual in that it operates on a pull-based model. Applications are
expected to expose metrics themselves, which are then pulled by the Prometheus
server rather than sending metrics directly to Prometheus. The Prometheus UI can
be used to query and graph data interactively, and the separate PromDash can be used
to save graphs, charts, and guages to a dashboard. Prometheus also has an Alertman‐
ager component that can aggregate and inhibit alerts and forward to notification
services, such as email, and specialist services, such as PagerDuty and Pushover.

Let’s take a look at Prometheus with identidock. We won’t add any specialist metrics
in, but we could easily do this by using the Python client library to decorate calls in
our Python code.

Instead we’ll connect Prometheus to our cAdvisor container. We could also have used
the container-exporter project, which also uses Docker’s libcontainer library. If you
already have the cAdvisor container running, you can see the metrics it exposes to
Prometheus at the /metrics endpoint:

$ curl localhost:8080/metrics
HELP container_cpu_system_seconds_total Cumulative system cpu time consume...
TYPE container_cpu_system_seconds_total counter
container_cpu_system_seconds_total{id="/",name="/"} 97.89
container_cpu_system_seconds_total{id="/docker",name="/docker"} 40.66
container_cpu_system_seconds_total{id="/docker/071c24557187c14fb7a2504612d4c...
container_cpu_system_seconds_total{id="/docker/1a1a57b885f33d2e16e85cee7f138...
...

Starting the Prometheus container is straightforward but does require us to create a
configuration file. Save the following file as prometheus.conf:

global:
 scrape_interval: 1m
 scrape_timeout: 10s
 evaluation_interval: 1m

scrape_configs:

- job_name: prometheus
 scheme: http
 target_groups:
 - targets:
 - 'cadvisor:8080'
 - 'localhost:9090'

198 | Chapter 10: Logging and Monitoring

http://prometheus.io
http://www.pagerduty.com
https://pushover.net
http://bit.ly/1HzVqSo

Tells Prometheus to retrieve statistics every five seconds, arguably a relatively
high value. In a production environment, you will need to choose an interval by
weighing the cost of scraping against the cost of out-of-date metrics.

Tells Prometheus the URL to scrape cAdvisor on (we’ll use a link to set the host‐
name up).

Also scrape Prometheus’ own metrics endpoint on port 9090.

Start the Prometheus container with:

$ docker run -d --name prometheus -p 9090:9090 \
 -v $(pwd)/prometheus.conf:/prometheus.conf \
 --link cadvisor:cadvisor \
 prom/prometheus -config.file=/prometheus.conf

You should now be able to open the Prometheus application at http://localhost:9090.
The home page will give you some information on how Prometheus has been config‐
ured and the status of endpoints it is scraping. If you go to the “Graph” tab, you can
start investigating the data inside Prometheus. Prometheus has its own query lan‐
guage that includes support for filters, regular expressions, and various operators. As
a simple example, try entering the expression:

sum(container_cpu_usage_seconds_total {name=~"logging*"}) by (name)

This should provide the CPU usage for each of our identidock containers across time.
The {name=~"logging*"} expression filters out containers that are not part of our
Compose application (e.g., cAdvisor and Prometheus itself). You will need to replace
“logging” with the name of your Compose project or folder. The sum function is
required as CPU usage is reported per CPU. You should get a result similar to
Figure 10-6.

We can take this further and set up a dashboard with the PromDash container. This is
reasonably straightforward and left as an exercise for the reader. Figure 10-7 shows a
dashboard with the above CPU metric and a graph of memory usage. PromDash also
supports displaying graphs from multiple distributed Prometheus instances, which
can be useful in displaying graphs per geographical location or across departments.

Monitoring and Alerting | 199

http://localhost:9090

Figure 10-6. Prometheus graph of container CPU usage

This of course is very basic use of Prometheus. A real-world installation would
involve scraping far more endpoints over distributed hosts, setting up dashboards
and in-depth visualizations with PromDash, and altering with the Alertmanager.

200 | Chapter 10: Logging and Monitoring

Figure 10-7. PromDash dashboard for identidock

Commercial Monitoring and Logging Solutions
I’ve intentionally only looked in-depth at open source and on-premise solutions in
this chapter, but there exists a lot of commercial solutions that are well developed and
supported. The area is highly contested and fought over. Rather than mention specific
solutions in this rapidly evolving space, I’ll just say that it is definitely worth looking
in to, especially if you are seeking a mature or hosted solution.

Conclusion
Effective logging and monitoring is critical to running a microservice-based applica‐
tion. This chapter showed how we could add effective logging and monitoring identi‐
dock using the ELK stack alongside cAdvisor and Prometheus. Although this
solution is much more heavyweight than our application itself (to the extent that log‐
ging and monitoring itself dominates the metrics), we have seen how quick and sim‐
ple it is to get an effective solution in place.

In the future, we will see much more logging support and options from Docker itself.
Commercial offerings are very strong across logging, monitoring, and alerting, so
expect to see all vendors coming up with specialist Docker and microservice offer‐
ings.

Commercial Monitoring and Logging Solutions | 201

PART III

Tools and Techniques

Part III goes into advanced details about the tools and techniques needed to run clus‐
ters of Docker containers safely and reliably.

We start by looking at networking and service discovery, a task that quickly becomes
essential when dealing with containers on more than one host. To put it another way;
how do your containers find oen another and how do you connect them?

We then look into software solutions designed to help with orchestration and cluster‐
ing of containers. These tools help developers address issues such as load balancing,
scaling, and failover, and help operations schedule containers and maximize resource
usage. Any long-lived application will run into these issues sooner rather than later—
knowing the problems and potential solutions ahead of time is a significant advan‐
tage.

The final chapter covers how to ensure the security of containers and microservice
deployments. Containers pose new challenges for security but also offer new tools
and techniques. Despite its position at the end of the book, this is an important topic
that everyone involved with containers should familiarize themselves with.

1 I mean “client” in the broadest sense here; primarily, I mean applications and other services running on the
backend, but also peers (in the sense of a cluster of cooperating instances) and end-user clients such as brows‐
ers.

2 Where appropriate is very context dependent, possibly meaning “any,” “the fastest,” or “the one nearest my
data,” etc.

CHAPTER 11

Networking and Service Discovery

The line between service discovery and networking can become surprisingly blurred
in a container context. Service discovery is the process of automatically providing cli‐
ents1 of a service with connection information (normally IP address and port) for an
appropriate2 instance of that service. This problem is easy in a static, single-host sys‐
tem where there is exactly one instance of everything, but is much more complicated
in a distributed system with multiple instances of services that come and go over
time. One way to approach discovery is for the client simply to request the service by
name (e.g., db or api), and do some magic on the backend to have this resolve to the
appropriate location. This “magic” can take the form of simple ambassador contain‐
ers, a service discovery solution such as Consul, a networking solution such as Weave
(which includes service discovery features), or some combination of the previous.

For our purposes, networking can be regarded as the process of connecting contain‐
ers together. It does not involve plugging in physical Ethernet cables, although it often
involves software equivalents such as veth. Container networking starts from the
assumption that there is a route available between hosts, whether that route involves
traversing the public Internet or just a fast local switch.

So, service discovery allows clients to discover instances, and networking takes care
of putting the connections in place. Networking and service discovery solutions tend
to overlap in functionality, as service discovery solutions can point across networks,
and networking solutions often include service-discovery features (such as Weave). A

205

3 Using service discovery “alone” will still require the use of some networking, whether it is the default Docker
“bridge” network with ports exposed to the host, or “host” networking, both of which require management of
ports.

pure service-discovery solution, like Consul, will likely offer richer functionality in
terms of health checking, failover, and load balancing. Networking solutions offer dif‐
ferent possibilities for connecting and routing containers3 in addition to features such
as traffic encryption and isolating groups of containers.

Quite often, you will need to use both a service-discovery solution and a networking
one (and you always need some sort of networking). Exactly what is required will
depend on your situation, and best practices are still evolving. Networking is likely to
change between development, testing, and production environments, but service dis‐
covery typically involves decisions at the application level and will remain the same
across environments.

This chapter attempts to move through the networking and service discovery space in
terms of complexity, so we start off by looking at the simplest cross-host solution—
ambassador containers—before looking at service discovery solutions—including
etcd and Consul—and moving on to look at Docker networking details and solutions
such as Weave, Flannel, and Project Calico.

Ambassadors
One way to connect containers across hosts is through the use of ambassadors. These
are proxy containers that stand in for the real container (or service) and forward traf‐
fic to the actual service. Ambassadors provide a separation of concerns that make
them useful in many scenarios, not just for connecting services across hosts.

The major advantage of ambassador containers is that they allow the production net‐
work architecture to differ from the development architecture without requiring
changes to code. Developers can use local versions of databases and other resources,
safe in the knowledge that ops can rewire the application to use their own clustered
services, or remote resources, without touching the code. Ambassadors can also be
rewired to use a different backing service on the fly, whereas using links to directly
connect to the service would require a restart of the client container.

The disadvantage of ambassador containers is that they require extra configuration,
incur overhead, and are a potential point of failure. They can can quickly become
overly complex and a management burden when multiple connections are required.

In Figure 11-1, we see a typical development setup where the developer directly links
the application to a database container using Docker links, both running on her local

206 | Chapter 11: Networking and Service Discovery

laptop. This is great for making quick changes and being able to throw things away
and start over while developing.

Figure 11-1. Development setup without ambassadors

In Figure 11-2, we see a common production setup where ops have used an ambassa‐
dor to link the application to their production service, which is running on a separate
server. All ops needed to do was to configure the ambassador to pass traffic through
to the service and use links to connect the application to the ambassador. The code
continues to use the same hostnames and ports as before with the new setup being
handled inside the ambassador.

Figure 11-2. Using an ambassador to Link to a production service

In Figure 11-3, we see a setup where the application is talking to a container on a
remote host, which is itself behind an ambassador. This setup allows the remote host
to move traffic to a new container on a new address by just updating the ambassador.
Again, no changes were needed to the code to use the new setup.

Figure 11-3. Using ambassadors to link to a remote container

Ambassadors | 207

The ambassador itself can be a very simple container—all it needs to do is set up a
connection between the application and the service. There’s no official image for cre‐
ating ambassadors, so you will need to either roll your own or choose from a user
image on the Hub.

The amouat/ambassador Image
This chapter uses an image called amouat/ambassador. The image is a simple port of
Sven Dowideit’s ambassador, modified to use the alpine base image and run as an
automated build on the Docker Hub.

The image uses the socat tool to set up a relay between the ambassador and the desti‐
nation. Environment variables in the same form as those created by Docker links
(e.g., REDIS_PORT_6379_TCP=tcp://172.17.0.1:6379) define where to connect the
relay to. This means a relay to a locally linked container (such as Host B in
Figure 11-3) can be set up with very little configuration.

As the image is built on the minimal Alpine Linux distribution, it clocks in at just
over 7 MB, so is small enough to be quickly downloaded and adds little overhead to
the system.

Let’s look at how we can use ambassadors to link up our identidock application with a
Redis container running on a separate host, per Figure 11-3. We’ll provision two Vir‐
tualBox VMs with Docker machine (see “Provisioning Resources with Docker
Machine”) to do this, but you could also easily run this example using Docker hosts
in the cloud. Let’s get the hosts ready:

$ docker-machine create -d virtualbox redis-host
...
$ docker-machine create -d virtualbox identidock-host
...

Now set up a Redis container (called real-redis) and an ambassador (called real-
redis-ambassador) on redis-host:

$ eval $(docker-machine env redis-host)
$ docker run -d --name real-redis redis:3
Unable to find image 'redis:3' locally
3: Pulling from redis
...
60bb8d255b950b1b34443c04b6a9e5feec5047709e4e44e58a43285123e5c26b
$ docker run -d --name real-redis-ambassador \
 -p 6379:6379 \
 --link real-redis:real-redis \
 amouat/ambassador
be613f5d1b49173b6b78b889290fd1d39dbb0fda4fbd74ee0ed26ab95ed7832c

208 | Chapter 11: Networking and Service Discovery

https://hub.docker.com/r/svendowideit/ambassador/
http://www.dest-unreach.org/socat/

We need to publish the port 6379 on the host to allow remote connections

The ambassador uses the environment variables from the linked real-redis
container to set up a relay that will stream requests that come in on port 6379 to
to the real-redis container.

Now set up an ambassador on identidock-host:

$ eval $(docker-machine env identidock-host)
$ docker run -d --name redis_ambassador --expose 6379 \
 -e REDIS_PORT_6379_TCP=tcp://$(docker-machine ip redis-host):6379 \
 amouat/ambassador
Unable to find image 'amouat/ambassador:latest' locally
latest: Pulling from amouat/ambassador
31f630c65071: Pull complete
cb9fe39636e8: Pull complete
3931d220729b: Pull complete
154bc6b29ef7: Already exists
Digest: sha256:647c29203b9c9aba8e304fabfd194429a4138cfd3d306d2becc1a10e646fcc23
Status: Downloaded newer image for amouat/ambassador:latest
26d74433d44f5b63c173ea7d1cfebd6428b7227272bd52252f2820cdd513f164

We need to manually set up an environment variable to tell the ambassador to
connect to the remote host. The IP address of the remote host is retrieved by
using the docker-machine ip command.

Finally start up identidock and dnmonster, linking identidock to our ambassador:

$ docker run -d --name dnmonster amouat/dnmonster:1.0
Unable to find image 'amouat/dnmonster:1.0' locally
1.0: Pulling from amouat/dnmonster
...
c7619143087f6d80b103a0b26e4034bc173c64b5fd0448ab704206b4ccd63fa
$ docker run -d --link dnmonster:dnmonster \
 --link redis_ambassador:redis \
 -p 80:9090 \
 amouat/identidock:1.0
Unable to find image 'amouat/identidock:1.0' locally
1.0: Pulling from amouat/identidock
...
5e53476ee3c0c982754f9e2c42c82681aa567cdfb0b55b48ebc7eea2d586eeac

Give it a whirl:

$ curl $(docker-machine ip identidock-host)
<html><head>...

Sweet! We’ve just got identidock running across hosts without changing any code,
just through the use of two small ambassador containers. This approach might be a
little fiddly and requires the use of extra containers, but it is also very simple and flex‐
ible. It is easy to imagine scenarios involving more sophisticated ambassadors such as:

Ambassadors | 209

• Encrypting traffic across an untrusted link
• Automatically connecting containers when they start by monitoring the Docker

event stream
• Proxying read requests to a read-only server and write requests to a different

server

In all cases, the client doesn’t need to know about the extra intelligence in the ambas‐
sador.

However, while ambassador containers can be useful, in most cases, it is easier and
more scalable to use networking and/or service discovery-solutions to find and con‐
nect to remote services and containers.

Service Discovery
At the start of the chapter, we defined service discovery as the process of automatically
providing clients of a service with connection information for an appropriate instance of
that service.

For the client application, this means they will need to request, or be given, the
address of the service in some way. We’ll see solutions that require clients to make
explicit calls to an API for the service address as well as DNS based solutions, which
can be easily integrated with existing applications.

This section will cover the major service discovery solutions being used with Docker
today. We’ll take an in-depth look at etcd, Consul, and SkyDNS before a quick round-
up of some other notable solutions. None of these have been written specifically for
containers, but all are designed for use in large distributed systems.

etcd
etcd is a distributed key-value store. It is an implementation of the Raft consensus
algorithm in Go, designed to be both efficient and fault-tolerant. Consensus is the
process of multiple members agreeing on values, a process that quickly becomes
complicated in the face of failures and errors. The Raft algorithm ensures values are
consistent and that new values can be added whenever a majority of members are
available.

Each member in an etcd cluster runs an instance of the etcd binary, which will com‐
municate with the other members. Clients access etcd through a REST interface that
runs on all the members.

210 | Chapter 11: Networking and Service Discovery

https://raftconsensus.github.io/
https://raftconsensus.github.io/

4 Basically a “majority” in plain English.

The recommended minimum size of an etcd cluster is 3 to provide fault tolerance in
the case of failure. However, for the following example, we’ll use just two members to
show how etcd works.

Optimal Cluster Size
For both etcd and Consul, a cluster size of 3, 5, or 7 is recommended, striking a bal‐
ance between failure tolerance and performance.

If there is only a single member, data will be lost in the event of failure. If there are
two members and one fails, the remaining member will be unable to reach a quorum4

and further writes will fail until the second member returns.

Table 11-1. Cluster size implications

Servers No. required for majority Failure tolerance

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3

As can be seen in Table 11-1, adding further members improves failure tolerance.
However, more members also mean that writes require agreement and communica‐
tion between more nodes, slowing down the system. Once the size of the cluster
grows beyond 7, the likelihood of enough nodes failing to bring down the system is
low enough that adding further nodes isn’t worth the performance tradeoff. Also note
that even numbers are generally best avoided as they increase the cluster size (and
hence decrease performance) but do not improve failure tolerance.

Of course, many distributed systems run with far more than 7 hosts. In these cases, 5
or 7 hosts are used to form the cluster, and the remaining nodes run clients that can

Service Discovery | 211

query the system but do not take part in consensus replication. These is done via
proxies in etcd and client mode in Consul.

We’ll start by creating the new hosts with Docker machine:

$ docker-machine create -d virtualbox etcd-1
...
$ docker-machine create -d virtualbox etcd-2
...

Now we can launch the etcd containers. Since we know the members of the etcd clus‐
ter in advance, we’ll just explicitly list them when starting the containers. It’s also pos‐
sible to use a URL-or DNS-based discovery mechanism for clusters where the
addresses aren’t known in advance. There are a lot of flags that need to be set when
starting etcd, so I’ve used environment variables to hold the VM IP addresses, which
makes things a little simpler:

$ HOSTA=$(docker-machine ip etcd-1)
$ HOSTB=$(docker-machine ip etcd-2)
$ eval $(docker-machine env etcd-1)
$ docker run -d -p 2379:2379 -p 2380:2380 -p 4001:4001 \
 --name etcd quay.io/coreos/etcd \
 -name etcd-1 -initial-advertise-peer-urls http://${HOSTA}:2380 \
 -listen-peer-urls http://0.0.0.0:2380 \
 -listen-client-urls http://0.0.0.0:2379,http://0.0.0.0:4001 \
 -advertise-client-urls http://${HOSTA}:2379 \
 -initial-cluster-token etcd-cluster-1 \
 -initial-cluster \
 etcd-1=http://${HOSTA}:2380,etcd-2=http://${HOSTB}:2380 \
 -initial-cluster-state new
...
d4c12bbb16042b11252c5512ab595403fefcb2f46abb6441b0981103eb596eed

Gets the official etcd image from the quay.io registry.

Sets up various URLs for accessing etcd. We need to make sure etcd listens on IP
0.0.0.0 for remote and local connections, but tells other clients and peers to
connect via the IP address of the host. In a real setup, the etcd nodes should com‐
municate on an internal network not exposed to the outside world (i.e., not
obtained through docker-machine ip).

We explicitly list all the nodes in the cluster, including the node being launched.
This can be replaced with other discovery methods.

The setup is almost the same on the second VM, except we need to advertise the IP of
etcd-2 to external clients:

212 | Chapter 11: Networking and Service Discovery

$ eval $(docker-machine env etcd-2)
$ docker run -d -p 2379:2379 -p 2380:2380 -p 4001:4001 \
 --name etcd quay.io/coreos/etcd \
 -name etcd-2 -initial-advertise-peer-urls http://${HOSTB}:2380 \
 -listen-peer-urls http://0.0.0.0:2380 \
 -listen-client-urls http://0.0.0.0:2379,http://0.0.0.0:4001 \
 -advertise-client-urls http://${HOSTB}:2379 \
 -initial-cluster-token etcd-cluster-1 \
 -initial-cluster \
 etcd-1=http://${HOSTA}:2380,etcd-2=http://${HOSTB}:2380 \
 -initial-cluster-state new
...
2aa2d8fee10aec4284b9b85a579d96ae92ba0f1e210fb36da2249f31e556a65e

Our etcd cluster is now up and running. We can ask etcd for a list of members with a
simple curl query against the HTTP API:

$ curl -s http://$HOSTA:2379/v2/members | jq '.'
{
 "members": [
 {
 "clientURLs": [
 "http://192.168.99.100:2379"
],
 "peerURLs": [
 "http://192.168.99.100:2380"
],
 "name": "etcd-1",
 "id": "30650851266557bc"
 },
 {
 "clientURLs": [
 "http://192.168.99.101:2379"
],
 "peerURLs": [
 "http://192.168.99.101:2380"
],
 "name": "etcd-2",
 "id": "9636be876f777946"
 }
]
}

I’ve used the jq tool here to pretty print the output. Members can be dynamically
added and deleted from the cluster by sending POST and DELETE HTTP requests to
the same endpoint.

The next step is to add some data and make sure it can be read from both hosts. Data
is stored in directories in etcd and returned as JSON. The following example stores
the value service_address in the directory service_name by using an HTTP PUT
request:

Service Discovery | 213

$ curl -s http://$HOSTA:2379/v2/keys/service_name \
 -XPUT -d value="service_address" | jq '.'
{
 "node": {
 "createdIndex": 17,
 "modifiedIndex": 17,
 "value": "service_address",
 "key": "/service_name"
 },
 "action": "set"
}

To get it back, we just need to do a GET on the directory:

$ curl -s http://$HOSTA:2379/v2/keys/service_name | jq '.'
{
 "node": {
 "createdIndex": 17,
 "modifiedIndex": 17,
 "value": "service_address",
 "key": "/service_name"
 },
 "action": "get"
}

By default, etcd returns some metadata on the key as well as its value. Note that we set
the data on etcd-1 and read it from etcd-2. Since they are part of the same cluster, it
doesn’t matter which host you use for operations; they will both give the same answer.

There is also a command-line client called etcdctl that can be used to talk to the etcd
cluster. Rather than install it, we can just use a container:

$ docker run binocarlos/etcdctl -C ${HOSTB}:2379 get service_name
service_address

You can get a better feel for how etcd works by looking at the logs for the etcd con‐
tainers, which will show how the members cooperate to elect leaders among other
details. A full description and specification of the underlying Raft algorithm can be
found at https://raftconsensus.github.io/.

We can now see how we could write an application that uses etcd for service discov‐
ery directly. In the case of identidock, we would make a simple HTTP request in the
Python code to find the address of the Redis and dnmonster services. The dnmonster
and Redis containers could also be changed to register their addresses with etcd when
they start, completely automating the system.

Rather than modify the identidock code, we will see in the following section on
SkyDNS how we can build a discovery solution on top of etcd that doesn’t require any
changes to the code.

214 | Chapter 11: Networking and Service Discovery

https://raftconsensus.github.io/

SkyDNS
The SkyDNS utility provides DNS-based service discovery on top of etcd. Most nota‐
bly, it is used by Google Container Engine to provide service discovery in its Kuber‐
netes offering (see “Kubernetes”).

We can use SkyDNS to complete the etcd solution and get identidock running across
two hosts with no changes to the code. If you followed along with the last example,
you will have two servers running an etcd cluster; etcd-1, whose IP address is
$HOSTA; and etcd-2, whose IP address is $HOSTB. By the time we’ve finished, we will
have the system shown in Figure 11-4, with the identidock container using SkyDNS
to find the dnmonster and Redis containers.

Figure 11-4. Cross-host identidock with SkyDNS and etcd

The first thing to do is to add some SkyDNS configuration settings to etcd so that it
knows what to do when it comes up:

$ curl -XPUT http://${HOSTA}:2379/v2/keys/skydns/config \
 -d value='{"dns_addr":"0.0.0.0:53", "domain":"identidock.local."}' | jq .
{
 "action": "set",
 "node": {
 "key": "/skydns/config",
 "value": "{\"dns_addr\":\"0.0.0.0:53\", \"domain\":\"identidock.local.\"}",
 "modifiedIndex": 6,
 "createdIndex": 6
 }
}

This will tell SkyDNS to listen to all interfaces on port 53 and that it is an authority
for the domain identidock.local.

Service Discovery | 215

https://github.com/skynetservices/skydns

5 At the time of writing, the SkyDNS image isn’t an automated build, which makes it something of a black box.
You may prefer to build your own SkyDNS container so that you can be certain of what is in it. There is a
Dockerfile available on the SkyDNS GitHub project for this purpose.

It makes sense for us to use a container for SkyDNS, but it can also be run as a host
process. We’ll use the skynetservices/skydns image5 created by the SkyDNS devel‐
opers. Let’s spin it up on etcd-1 now:

$ eval $(docker-machine env etcd-1)
$ docker run -d -e ETCD_MACHINES="http://${HOSTA}:2379,http://${HOSTB}:2379" \
 --name dns skynetservices/skydns:2.5.2a
...
f95a871247163dfa69cf0a974be6703fe1dbf6d07daad3d2fa49e6678fa17bd9

We had to give it some extra config to tell it where to find its etcd backend, but we
now have a working DNS server. Except we haven’t told it about any services yet.
We’ll start by bringing up our Redis server on etcd-2 and adding that to SkyDNS:

$ eval $(docker-machine env etcd-2)
$ docker run -d -p 6379:6379 --name redis redis:3
...
d9c72d30c6cbf1e48d3a69bc6b0464d16232e45f32ec00dcebf5a7c6969b6aad
$ curl -XPUT http://${HOSTA}:2379/v2/keys/skydns/local/identidock/redis \
 -d value='{"host":"'$HOSTB'","port":6379}' | jq .
{
 "action": "set",
 "node": {
 "key": "/skydns/local/identidock/redis",
 "value": "{\"host\":\"192.168.99.101\",\"port\":6379}",
 "modifiedIndex": 7,
 "createdIndex": 7
 }
}

We used a path ending /local/identidock/redis for the curl request, which maps to the
domain redis.identidock.local. The JSON data specifies the IP address and port we
want the name to resolve to. We have used the IP address of the host rather than the
Redis container, as the container IP is local to etcd-2.

At this point, we can try things out to see how they work. We’ll start a new container
and use the --dns flag to point it to our DNS container for lookups:

$ eval $(docker-machine env etcd-1)
$ docker run --dns $(docker inspect -f {{.NetworkSettings.IPAddress}} dns) \
 -it redis:3 bash
...
root@3baff51314d6:/data# ping redis.identidock.local
PING redis.identidock.local (192.168.99.101): 48 data bytes
56 bytes from 192.168.99.101: icmp_seq=0 ttl=64 time=0.102 ms
56 bytes from 192.168.99.101: icmp_seq=1 ttl=64 time=0.090 ms

216 | Chapter 11: Networking and Service Discovery

https://github.com/skynetservices/skydns

6 If you want to do this, you can expose port 53 on the DNS container to the host and use the address of the
Docker bridge for the DNS server.

7 The VirtualBox VM will actually recreate this file on reboot, undoing our changes; the instructions here are
intended as an example only. Production hosts may also have different methods for changing resolv.conf, such
as the resolvconf utility.

56 bytes from 192.168.99.101: icmp_seq=2 ttl=64 time=0.096 ms
^C--- redis.identidock.local ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.090/0.096/0.102/0.000 ms
root@3baff51314d6:/data# redis-cli -h redis.identidock.local ping
PONG

Pretty good! The only issue is that redis.identidock.local is a bit of a mouthful. It
would be much better if we could just say redis, but that’s a no go:

root@3baff51314d6:/data# ping redis
ping: unknown host

If we start a new container and add identidock.local as a search domain, the OS will
automatically try to resolve redis.identidock.local if redis doesn’t resolve:

root@3baff51314d6:/data# exit
$ docker run --dns $(docker inspect -f {{.NetworkSettings.IPAddress}} dns) \
 --dns-search identidock.local \
 -it redis:3 redis-cli -h redis ping
PONG

Excellent, that’s pretty much what we need, but we don’t want to have to specify the
--dns and --dns-search flags every time we run a container. Instead, we could give
them as options to the Docker daemon, but this has a bit of a chicken-and-egg prob‐
lem when the DNS server is a container itself,6 so we’re going to go with another
option. We’ll add the relevant values to the host’s /etc/resolv.conf file,7 which controls
where the OS will look for domain names and is automatically propagated to contain‐
ers:

$ docker-machine ssh etcd-1
...
docker@etcd-1:~$ echo -e "domain identidock.local \nnameserver " \
 $(docker inspect -f {{.NetworkSettings.IPAddress}} dns) > /etc/resolv.conf
docker@etcd-1:~$ cat /etc/resolv.conf
domain identidock.local
nameserver 172.17.0.3
docker@etcd-1:~$ exit

Make it work:

$ docker run redis:3 redis-cli -h redis ping
PONG

Now lets start dnmonster and add it to the DNS:

Service Discovery | 217

$ docker run -d --name dnmonster amouat/dnmonster:1.0
$ DNM_IP=$(docker inspect -f {{.NetworkSettings.IPAddress}} dnmonster)
$ curl -XPUT http://$HOSTA:2379/v2/keys/skydns/local/identidock/dnmonster \
 -d value='{"host": "'$DNM_IP'","port":8080}'
...

We’ve used the internal container IP for dnmonster here, so it will only be accessible
from etcd-1. If we had multiple SkyDNS servers operating on several hosts, we
would want to mark this record as being host local so that it doesn’t confuse the other
servers. This can be done by defining a host local domain when starting SkyDNS.

Finally, start up identidock and make sure it works, without a link in sight:

$ docker run -d -p 80:9090 amouat/identidock:1.0
$ curl $HOSTA
<html><head><title>...

So now we have a service discovery interface that doesn’t require any changes to our
implementation and is running on top of the distributed and fault-tolerant etcd store.

Digging into SkyDNS
If you want to see how SkyDNS works, you can use the dig utility that is included in
the SkyDNS image. For example:

$ docker exec -it dns sh
/ # dig @localhost SRV redis.identidock.local
dig @localhost SRV redis.identidock.local

; <<>> DiG 9.10.1-P2 <<>> @localhost SRV redis.identidock.local
; (2 servers found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51805
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;redis.identidock.local. IN SRV

;; ANSWER SECTION:
redis.identidock.local. 3600 IN SRV 10 100 6379 redis.identidock.local.

;; ADDITIONAL SECTION:
redis.identidock.local. 3600 IN A 192.168.99.101

;; Query time: 4 msec
;; SERVER: ::1#53(::1)
;; WHEN: Sat Jul 25 17:18:39 UTC 2015
;; MSG SIZE rcvd: 98

218 | Chapter 11: Networking and Service Discovery

8 See “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services” for
precise definitions of these terms.

Here the DNS server has returned the SRV record for redis.identidock.local. The
information includes the IP address and port number, as well as the priority, weight,
and TTL.

SkyDNS uses SRV or service records as well as the traditional A records (which per‐
form IPv4 resolution). Among other fields, SRV records include the port for the ser‐
vice, its time-to-live (TTL), priority, and weight. Setting a TTL allows records to be
automatically expunged if a client or agent does not regularly update the value, which
can be used to implement failover and more graceful error handling than simply tim‐
ing out.

Other features include grouping multiple hosts into address pools, which can be used
as a form of load balancing, and support for publishing metrics and stats to services
such as Prometheus and Graphite.

Consul
Consul is Hashicorp’s answer to the service-discovery problem. In addition being a
distributed, highly available key-value store, it also boasts advanced health-checking
features and a DNS server by default.

CAP Theorem

When looking into key-value stores and service discovery, you will
quickly run into the CAP theorem, which roughly states that a dis‐
tributed system cannot simultaneously be Consistent, Available,
and Partition tolerant.8

An AP system will favor availability over consistency, so reads and
writes should nearly always be possible (and are typically fast), but
may not always be up to date (in some cases, old data may be
returned). A CP system will favor consistency, so writes may fail in
some cases, but whenever data is returned, it will be correct and up
to date.
In practice, the water seems to be a bit more muddy, in particular
with regard to Consul. Both etcd and Consul are based on the Raft
algorithm, which provides a CP solution. However, Consul has
three different modes (“default,” “consistent,” and “stale”) that pro‐
vide different levels of consistency versus availability tradeoff.

Service Discovery | 219

https://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://consul.io
https://en.wikipedia.org/wiki/CAP_theorem

Every host runs an instance of the Consul agent, in either server or client mode. The
agent can check the status of various services as well as general stats like memory
usage, keeping complexity out of the client application. A subset of hosts (normally 3,
5, or 7 see “Optimal Cluster Size”) will run the agent in server mode, which is respon‐
sible for writing and storing data and collaborating with the other server agents.
Agents in client mode will forward requests to server agents.

Getting started is just as easy, especially if we use Docker containers. In this case, we’ll
use a container from GliderLabs. Again, we’ll start by creating two new VMs for this
purpose:

$ docker-machine create -d virtualbox consul-1
...
$ docker-machine create -d virtualbox consul-2
...

Now start up the Consul containers. Again, we’ll save the IPs of the VMs to variables
to save some work:

$ HOSTA=$(docker-machine ip consul-1)
$ HOSTB=$(docker-machine ip consul-2)
$ eval $(docker-machine env consul-1)
$ docker run -d --name consul -h consul-1 \
 -p 8300:8300 -p 8301:8301 -p 8301:8301/udp \
 -p 8302:8302/udp -p 8400:8400 -p 8500:8500 \
 -p 172.17.42.1:53:8600/udp \
 gliderlabs/consul agent -data-dir /data -server \
 -client 0.0.0.0 \
 -advertise $HOSTA -bootstrap-expect 2
...
ff226b3114541298d19a37b0751ca495d11fabdb652c3f19798f49db9cfea0dc

Starts the Consul agent in server mode and saves data to the /data directory.

Specifies the address to listen for client API requests. This defaults to 127.0.0.1,
which is only addressable inside the container.

The -advertise flag specifies the address other hosts should contact the server
on, in this case the IP address of the host. We also set the -bootstrap-expect
flag to tell Consul to wait for a second server to join the cluster.

Here we are using the public IPs returned from Docker machine to link the hosts. In
production, you will want to use a private address that cannot be reached from the
Internet at large.

Bring up the second container, this time using the -join command to link the first
server:

$ eval $(docker-machine env consul-2)
$ docker run -d --name consul -h consul-2 \

220 | Chapter 11: Networking and Service Discovery

http://gliderlabs.com/

9 We’re using the GNU Linux version of base64 here. If you’re running the MacOS version, use the argument -D
instead of -d.

 -p 8300:8300 -p 8301:8301 -p 8301:8301/udp \
 -p 8302:8302/udp -p 8400:8400 -p 8500:8500 \
 -p 172.17.42.1:53:8600/udp \
 gliderlabs/consul agent -data-dir /data -server \
 -client 0.0.0.0 \
 -advertise $HOSTB -join $HOSTA
...

We can check that they’ve both been added to the cluster with the Consul CLI:

$ docker exec consul consul members
Node Address Status Type Build Protocol DC
consul-1 192.168.99.100:8301 alive server 0.5.2 2 dc1
consul-2 192.168.99.101:8301 alive server 0.5.2 2 dc1

We can see how the key-value store works by setting and getting some data:

$ curl -XPUT http://$HOSTA:8500/v1/kv/foo -d bar
true
$ curl http://$HOSTA:8500/v1/kv/foo | jq .
[
 {
 "Value": "YmFy",
 "Flags": 0,
 "Key": "foo",
 "LockIndex": 0,
 "ModifyIndex": 39,
 "CreateIndex": 16
 }
]

Hmm, we get something back, but what’s this "Value":"YmFy"? It turns out that Con‐
sul base64 encodes data on the fly. We can get the original back by using the jq and
base64 tools:9

$ curl -s http://$HOSTA:8500/v1/kv/foo | jq -r '.[].Value' | base64 -d
bar

A bit more work, but we’re there.

There’s a separate API for adding services to Consul, which ties into Consul’s service
discovery and health-checking functionality. Generally, the key-value store is just
used for storing configuration details and small amounts of metadata.

Let’s see how we can use Consul services to get identidock working across the hosts.
We’ll aim for the same structure as before, with Redis running on consul-2 and iden‐
tidock and dnmonster running on consul-1. Start by bringing up Redis:

Service Discovery | 221

$ eval $(docker-machine env consul-2)
$ docker run -d -p 6379:6379 --name redis redis:3
...
2f79ea13628c446003ebe2ec4f20c550574c626b752b6ffa3b70770ad3e1ee6c

And now tell Consul about our Redis service via the /service/register endpoint:

$ curl -XPUT http://$HOSTA:8500/v1/agent/service/register \
 -d '{"name": "redis", "address":"'$HOSTB'","port": 6379}'
$ docker run amouat/network-utils dig @172.17.42.1 +short redis.service.consul
...
192.168.99.101

Next, we need to configure consul-1 to use Consul for DNS resolution. We’ll take a
different approach to the previous etcd example and configure the Docker daemon
rather than the host /etc/resolv.conf file. To do this, we need to edit the file /var/lib/
boot2docker/profile so it includes the --dns and --dns-search flags:

$ docker-machine ssh consul-1
...
docker@consul-1:~$ sudo vi /var/lib/boot2docker/profile
...
docker@consul-1:~$ cat /var/lib/boot2docker/profile

EXTRA_ARGS='
--label provider=virtualbox
--dns 172.17.42.1
--dns-search service.consul
'
CACERT=/var/lib/boot2docker/ca.pem
DOCKER_HOST='-H tcp://0.0.0.0:2376'
DOCKER_STORAGE=aufs
DOCKER_TLS=auto
SERVERKEY=/var/lib/boot2docker/server-key.pem
SERVERCERT=/var/lib/boot2docker/server.pem

This argument allows us to use short names like “redis” rather than the full name
“redis.service.consul.”

You’ll then need to restart the Daemon and bring Consul back up. I found it easiest to
restart the VM:

docker@consul-1:~$ exit
$ eval $(docker-machine env consul-1)
$ docker start consul
consul

A quick test:

$ docker run redis:3 redis-cli -h redis ping
PONG

Start up dnmonster on consul-1 and add the service:

222 | Chapter 11: Networking and Service Discovery

$ docker run -d --name dnmonster amouat/dnmonster:1.0
...
41c8a78989803737f65460d75f8bed1a3683ee5a25c958382a1ca87f27034338
$ DNM_IP=$(docker inspect -f {{.NetworkSettings.IPAddress}} dnmonster)
$ curl -XPUT http://$HOSTA:8500/v1/agent/service/register \
 -d '{"name": "dnmonster", "address":"'$DNM_IP'","port": 8080}'

Finally, get identidock running:

$ docker run -d -p 80:9090 amouat/identidock:1.0
...
22cfd97bfba83dc31732886a4f0aec51e637b8c7834c9763e943e80225f990ec
$ curl $HOSTA
<html><head><title>...

And again, we have identidock working without links.

One of the most interesting features of Consul is the support for health checking to
ensure the various parts of the system are alive and functioning. We can write tests
for the host node itself (e.g., to check disk space or memory), or for particular serv‐
ices. The following code defines a simple HTTP test for the dnmonster service:

$ curl -XPUT http://$HOSTA:8500/v1/agent/service/register \
 -d '{"name": "dnmonster", "address":"'$DNM_IP'","port": 8080,
 "check": {"http": "http://'$DNM_IP':8080/monster/foo",
 "interval": "10s"}
 }'

The check will ensure the container responds to an HTTP request on the given URL
with a 2xx status code. Note that this check has to be run on consul-1 for the test to
pass. We can can examine the status of the test by hitting the /health/checks/dnmon
ster/ endpoint:

$ curl -s $HOSTA:8500/v1/health/checks/dnmonster | jq '.[].Status'
"passing"

Tests can also be written using scripts, which will pass if the script returns 0, allowing
for arbitrarily complex checks. By combining health checks with Consul’s support for
watches (which are used to monitor data for updates), it is relatively simple to imple‐
ment failover solutions and/or automatically notify administrators of problems.

Other notable features include support for multiple data centers and encryption of
network traffic.

Registration
In the preceding examples, we have manually performed the final step of service dis‐
covery—registration; we had to write a curl request to register the Redis and dnmon‐
ster services with both SkyDNS and Consul. We could instead add logic to Redis or

Service Discovery | 223

10 If we don’t want to, or can’t, modify the service inside the container, this can be done with a wrapper script or
“side-kick” process.

dnmonster container to do this automatically on start,10 but it’s also possible write a
service that automatically registers containers when they start by monitoring Docker
events.

This is the purpose of Registrator from GliderLabs. Registrator works alongside Con‐
sul, etcd, or SkyDNS to provide automatic registration of containers. It works by
monitoring the Docker event stream for container creation and adds relevant entries
to the underlying framework based on the container metadata.

DNS-Based Service Discovery Pros and Cons
Many of the solutions here provide a DNS interface for service discovery. In some
cases, this is the primary, or only interface; in other cases, it is a convenience in addi‐
tion to other APIs.

There are important reasons for favoring DNS for service discovery:

• DNS supports legacy applications out-of-the-box. This can be worked around
when using other service-discovery mechanisms by adding ambassador contain‐
ers, but this requires extra effort from both development and operations.

• Developers don’t need to do anything special or learn a new API. Applications
using DNS will work without modification on a wide range of platforms.

• DNS is a well-known and trusted protocol with multiple implementations and
wide support.

There are also several downsides to DNS-based discovery, which means you may
want to consider other mechanisms in certain scenarios. We will we discount the
criticism that DNS is slow—in a service-discovery scenario, we are talking about fast,
local lookups as opposed to slow, remote ones. The remaining issues are:

• Normal DNS lookups do not return port information, so this either has to be
assumed or looked up through another channel (DNS SRV records do return
port information, but applications and frameworks almost invariably only use
the hostname).

• Applications (and operating systems) may also cache DNS responses, leading to
delays updating clients when a service moves.

• Most DNS services only provide limited support for health checking and load
balancing. Typically load balancing is limited to round-robin or random selec‐
tion, which will only satisfy a subset of users. Health checking can be built on top

224 | Chapter 11: Networking and Service Discovery

https://github.com/gliderlabs/registrator

of TTL, but more sophisticated and in-depth checks typically require additional
services.

• Clients are free to implement logic that selects between services based on
attributes such as the versions of APIs available and capacity.

Other Solutions
There are several other choices for service discovery you may want to consider:

ZooKeeper
A centralized, reliable, and readily available store, used for coordinating services
in both Mesos and Hadoop. ZooKeeper is written in Java and is accessed via a
Java API, although bindings are available for several languages. Clients are
required to maintain active connections to ZooKeeper servers and perform keep‐
alives, which requires significant coding work (but note that libraries like Curator
exist to help with this).

The major advantage of ZooKeeper is that it is mature, stable, and battle-tested. If
you already have infrastructure using ZooKeeper, it may well be a good choice. If
not, the extra work of integrating and building on top of ZooKeeper is likely not
worth it, especially if you’re not using Java.

SmartStack
Airbnb’s solution for service discovery. It is made up of two components: Nerve,
for health checking and registration, and Synapse, for discovery.

Synapse runs on each host that consumes services and assigns each service to a
port, which is proxied to the actual service. Synapse uses HAProxy to do routing
and will automatically update and restart HAProxy when changes occur. It can be
configured to get the list of services to proxy from a store (such as ZooKeeper or
etcd) or by watching the Docker event stream for container creation events (simi‐
lar to Registrator).

Each service will have a corresponding Nerve process or container, which will
check the health of the service and automatically register it with the store used by
Synapse (e.g., ZooKeeper or etcd).

Eureka
Netflix’s solution for load balancing and failover in AWS. Designed as a “middle-
tier” solution to deal with the ephemerality of AWS nodes. If you are intending to
run a large service on AWS infrastructure, this is definitely worth investigating.

WeaveDNS
WeaveDNS is the service-discovery component of the Weave networking solu‐
tion. Containers register their host or container name with WeaveDNS when

Service Discovery | 225

https://zookeeper.apache.org/
https://curator.apache.org
http://nerds.airbnb.com/smartstack-service-discovery-cloud/
https://github.com/airbnb/nerve
https://github.com/airbnb/synapse
http://www.haproxy.org/
https://github.com/Netflix/eureka/wiki
http://docs.weave.works/weave/latest_release/weavedns.html

they start, providing a fully automated solution. WeaveDNS runs as part of the
Weave router on each host and communicates with other Weave routers in the
network so that all container names can be resolved. WeaveDNS also provides a
simple form of load balancing. See “Weave” for more information.

docker-discover
Essentially a Docker native implementation of SmartStack, using etcd as a back‐
end. Like SmartStack, it is made up of two components: docker-register, the
Nerve equivalent for health checking and registration, and docker-discover, the
Synapse equivalent for discovery. As with SmartStack, docker-discover uses
HAProxy to handle routing. A very interesting project, but the lack of updates
and supporting organization mean development and support is likely to be pat‐
chy.

Finally, it is important to note that the new networking features coming to Docker
(“New Docker Networking”) also provide a limited form of service discovery via the
service object. This form of service discovery relies on working with either the
Docker Overlay networking driver or another compatible plugin, such as Calico.

Networking Options
As we’ve seen, both ambassador containers and service-discovery solutions can be
used to connect service across hosts, where the underlying network allows. However,
this requires exposing ports through the host, which requires manual management
and doesn’t scale well. A better solution is to provide IP connectivity between con‐
tainers, which is the focus of the solutions described in this chapter.

However, before we start looking into full cross-host networking solutions, it’s worth
understanding how the default Docker networking works and what options are avail‐
able. There are four basic modes available: bridge, host, container, and none.

Bridge
The default bridge network is great in development, providing a painless way to get
containers talking to each other. In production, it’s not so great; all the plumbing
required behind the scenes has considerable overhead.

Figure 11-5 shows what the Docker bridge network looks like. There is a Docker
bridge, normally called docker0 and running on 172.17.42.1, which is used to con‐
nect containers. When a container is started, Docker will instantiate a veth pair—
essentially the software equivalent of an Ethernet cable—connecting eth0 in the con‐
tainer to the bridge. External connectivity is provided by IP forwarding and iptables
rules that set up IP masquerading—a form of network address translation (NAT).

226 | Chapter 11: Networking and Service Discovery

http://jasonwilder.com/blog/2014/07/15/docker-service-discovery/
https://github.com/jwilder/docker-register
https://github.com/jwilder/docker-discover

Figure 11-5. Default Docker bridge networking

By default, all containers can talk to each other, regardless of whether or not they are
linked or if they export or publish ports (for an example of this, see “Limit Container
Networking”). You can stop this by setting intercontainer communication off by pass‐
ing the --icc=false flag when starting the Docker daemon, which will set an iptables
rule. By setting --icc=false and --iptables=true, you can allow only linked con‐
tainers to communicate, which is again done by adding iptables rules.

All of this works, and is very useful in development, but efficiency concerns mean
that it may not be appropriate for production.

Host
A container running with --net=host shares the networking namespace of the host,
fully exposing it to the public network. This means the container has to share the IP
address of the host, but also cuts out all of the plumbing of the bridge network, mean‐
ing it is as fast as normal host networking.

As the IP address is shared, containers that need to talk to each other will have to co-
ordinate over ports on the host, which will require some thought and probably
changes to applications.

There are also security implications, as you may unintentionally expose ports to the
outside world, which can be managed by a firewall layer.

The significantly improved efficiency means you may want to consider a hybrid net‐
working model where externally facing and network heavy containers such as proxies
and caches use host networking, but the rest of your containers sit on the internal
bridge network. Note that you can’t use links to connect containers on the bridge net‐
work to containers on the host network, but containers on the bridge network can
talk to containers on the host by using the IP address of the docker0 bridge.

Networking Options | 227

11 Arguably, using the term “network” is misleading. In many respects, a Docker network is really a namespace
for containers that allows them to be grouped and segregated, plus communication channels.

Container
Uses the networking namespace from another container. This can be very useful in
certain situations (e.g., where you bring up a container pre-configured with the net‐
working stack and tell all other containers to use that stack). This allows the creation
and easy reuse of efficient network stacks specialized to a given scenario or data-
center architecture. The disadvantage is that all containers sharing a network stack
will need to use the same IP address, etc.

This can work well in certain situations and is notably used by Kubernetes (“Kuber‐
netes”).

None
Just as it sounds—turns off networking completely for a container. This can be useful
for containers that don’t need any network, such as a compiler container that writes
its output to a volume.

The none networking mode can also be useful when you need to set up your own
networking from scratch. If this is the case, you may find tools such as pipework to be
very useful for working with networking inside cgroups and namespaces.

New Docker Networking
At the time of writing, the Docker networking stack and interface is going through a
major overhaul. This will most likely be completed by the time this book goes to print
and represents a large change in the way Docker networks are created and used
(although the code in this book should continue to work unchanged). This section
looks at these changes based on the work released in the experimental Docker chan‐
nel. As this isn’t finalized; there are likely to be minor differences between what is
presented here and what ends up in the stable Docker release.

The immediate change is that docker gets two new top-level “objects”: network and
service. This allows “networks”11 to be created and managed separately from contain‐
ers. When containers are launched, they can be assigned to a given network and will
only be able to directly connect to other containers on the same network. Containers
can publish services that allow them to be contacted via name, replacing the need for
links (which can still be used, but will be less useful).

This is best explained by a few examples.

The network ls subcommand will list the current networks and their IDs:

228 | Chapter 11: Networking and Service Discovery

https://github.com/jpetazzo/pipework

$ docker network ls
NETWORK ID NAME TYPE
d57af6043446 none null
8fcc0afef384 host host
30fa18d442b5 bridge bridge

We can create a service with the --publish-service flag when starting a container.
The following creates the db service on the bridge network:

$ docker run -d --name redis1 --publish-service db.bridge redis
9567dd9eb4fbd9f588a846819ec1ea9b71dc7b6cbd73ac7e90dc0d75a00b6f65

We can see the existing services with the service ls subcommand:

$ docker service ls
SERVICE ID NAME NETWORK CONTAINER
f87430d2f240 db bridge 9567dd9eb4fb

Now we can create a new container on the same network and talk to the redis1 con‐
tainer without the need for links by using the “db” service:

$ docker run -it redis redis-cli -h db ping
PONG

Containers belonging to different networks will be unable to communicate by default.

If we do use links, we can see it really just sets up services underneath the hood:

$ docker run -d --name redis2 redis
7fd526b2c7a6ad8a3faf4be9c1c23375dc5ae4cd17ff863a293c67df816a2b09
$ docker run --link redis2:redis2 redis redis-cli -h redis2 ping
PONG
$ docker service ls
SERVICE ID NAME NETWORK CONTAINER
59b749c7fe0b redis2 bridge 7fd526b2c7a6
f87430d2f240 db bridge 9567dd9eb4fb

Getting more interesting, we can reassign the containers that provide services using
the service attach and service detach subcommands:

$ docker run redis redis-cli -h db set foo bar
OK
$ docker run redis redis-cli -h redis2 set foo baz
OK
$ docker run redis redis-cli -h db get foo
bar
$ docker service detach redis1 db
$ docker service attach redis2 db
$ docker run redis redis-cli -h db get foo
baz

Adds some data to redis1, currently exposed by the db service.

Adds some data to redis2.

New Docker Networking | 229

12 Also referred to as network drivers.
13 New volume drivers can also be loaded via a plugin such as flocker. At the time of writing, there is work on

creating a top-level volume object, but this is still some time away from fruition.

Now redis2 is exposed by the db service.

So we can see the new model offers a lot more flexibility and oversight when wiring
up containers and maintaining systems, while still supporting the previous network‐
ing paradigm.

Network Types and Plugins
You probably noticed that networks have different types.12 There is a type for each of
the “classic” networking options—host, none, and bridge, which we covered earlier—
but there is also the overlay type and the ability to add new types in the form of net‐
working plugins. The default network can be set on the Docker daemon. If a default
network is not set, the bridge network is used.

Plugins
Docker plugins, including network drivers,13 can be added to Docker by installing
them under the /usr/share/docker/plugins directory. This is commonly achieved by
running a container that mounts this directory.

Plugins can be written in any language, as long as they can interface with Docker’s
JSON-RPC API.

We’ll see an example of using the Project Calico network plugin in “Project Calico”. I
expect to see a wide range of plugins to appear, tailored to different scenarios and
using different underlying technologies (such as IPVLAN and Open vSwitch).

Networking Solutions
The following section takes a look at the various solutions that can be put in place for
cross-host networking clusters of containers. We’ll look at Overlay, the Docker “bat‐
teries included” solution that will ship with the new networking stack, Weave, a
feature-rich solution designed for ease-of-use, Flannel, the CoreOS solution, and
Project Calico, Metaswitch’s layer-3-based solution.

230 | Chapter 11: Networking and Service Discovery

https://github.com/ClusterHQ/flocker-docker-plugin
http://www.jsonrpc.org/
https://github.com/torvalds/linux/blob/master/Documentation/networking/ipvlan.txt
http://openvswitch.org/

Docker networking is a very nascent and fluid sector. On top of
this, it is a very rich space, with the potential to support many dif‐
ferent solutions tailored to various scenarios. While the tools pre‐
sented here are the state of the art at the time of writing, the sector
is changing rapidly—by the time this book is in print, there will be
changes to the way these solutions work, and new solutions will be
available. You should do your own research before settling on any
solution outlined here.

Overlay
Overlay is the “batteries included” Docker implementation for cross-host networking.
It uses VXLAN tunnels to connect hosts with their own IP space and NAT for exter‐
nal connectivity. The serf library is used for communication between peers.

Linking containers into the network is handled in much the same way as with the
standard bridge network; a Linux bridge is set up for the Overlay network, and a veth
pair is used to connect to the container.

Experimental Warning!

The VMs used in this example are running the experimental build
of Docker, which means there will differences from your version. By
the time you read this book, the stable release of Docker will sup‐
port networking plugins, which you should use instead.
This example uses the following versions of Docker and Consul:

docker@overlay-1:~$ docker --version
Docker version 1.8.0-dev, build 5fdc102, experimental
docker@overlay-1:~$ docker run gliderlabs/consul version
Consul v0.5.2
Consul Protocol: 2 (Understands back to: 1)

As an example, I have provisioned two hosts overlay-1 and overlay-2 with the
experimental branch of Docker and Consul as a key-value store. We’ll set up identi‐
dock in the same manner as before, with Redis running on overlay-2 and both the
dnmonster and identidock containers running on overlay-1.

By the time this book is released, you should be able to do something very similar
with the stable branch. I’ve directly ssh‘d into the VMs here to make sure the same
version of the Docker client and daemon is used.

Start by ssh‘ing into overlay-2:

$ docker-machine ssh overlay-2
...

First, we’ll create a new network called “ovn” using the overlay driver:

Networking Solutions | 231

https://serfdom.io/

docker@overlay-2:~$ docker network create -d overlay ovn
5d2709e8fd689cb4dee6acf7a1346fb563924909b4568831892dcc67e9359de6
docker@overlay-2:~$ docker network ls
NETWORK ID NAME TYPE
f7ae80f9aa44 none null
1d4c071e42b1 host host
27c18499f9e5 bridge bridge
5d2709e8fd68 ovn overlay

We can get more details on the network from the network info subcommand:

docker@overlay-2:~$ docker network info ovn
Network Id: 5d2709e8fd689cb4dee6acf7a1346fb563924909b4568831892dcc67e9359de6
Name: ovn
Type: overlay

Now it’s time to start up Redis, using the --publish-service redis.ovn argument
to expose the container as a service on the “ovn” network with the name “redis”:

docker@overlay-2:~$ docker run -d --name redis-ov2 \
 --publish-service redis.ovn redis:3
...
29a02f672a359c5a9174713418df50c72e348b2814e88d537bd2ab877150a4a5

If we now exit overlay-2 and ssh to overlay-1, we can see that it has access to the
same network:

docker@overlay-2:~$ exit
$ docker-machine ssh overlay-1
docker@overlay-1:~$ docker network ls
NETWORK ID NAME TYPE
7f9a4f144131 none null
528f9267a171 host host
dfec33441302 bridge bridge
5d2709e8fd68 ovn overlay

Start the dnmonster and identidock containers in the same way, using --publish-
service to connect to the ovn network:

docker@overlay-1:~$ docker run -d --name dnmonster-ov1 \
 --publish-service dnmonster.ovn amouat/dnmonster:1.0
...
37e7406613f3cbef0ca83320cf3d99aa4078a9b24b092f1270352ff0e1bf8f92
docker@overlay-1:~$ docker run -d --name identidock-ov1 \
 --publish-service identidock.ovn amouat/identidock:1.0
...
41f328a59ff3644718b8ce4f171b3a246c188cf80a6d0aa96b397500be33da5e

And finally check that it all works:

docker@overlay-1:~$ docker exec identidock-ov1 curl -s localhost:9090
<html><head><title>Hello...

232 | Chapter 11: Networking and Service Discovery

Very simply and very quickly we got identidock running across two hosts. As imple‐
mentation details and usage is likely to change, we won’t go deep into details of how
the Overlay driver works.

Weave
Weave is a developer-friendly networking solution designed to work across a wide
range of environments with minimal work. Weave is perhaps the most complete solu‐
tion available, as it includes WeaveDNS for service discovery and load balancing, has
in-built IP address management (IPAM), and support for encrypting communica‐
tions.

Let’s see how easy it is to get identidock running with Weave across two hosts. We’ll
stick with the architecture we used in the ambassador and service-dicsovery examples
where Redis runs on one host (weave-redis in this case) and the identidock and
dnmonster containers on the other host (weave-identidock). Again, we’ll use
Docker machine to provide us with VMs. I used Weave version 1.1.0 for this exam‐
ple; you can expect to see minor differences when running newer versions.

We’ll start by building weave-redis:

$ docker-machine create -d virtualbox weave-redis
...

Now ssh in and install Weave:

$ docker-machine ssh weave-redis
...
docker@weave-redis:~$ sudo curl -sL git.io/weave -o /usr/local/bin/weave
docker@weave-redis:~$ sudo chmod a+x /usr/local/bin/weave
docker@weave-redis:~$ weave launch
Setting docker0 MAC (mitigate https://github.com/docker/docker/issues/14908)
Unable to find image 'weaveworks/weaveexec:v1.1.0' locally
v1.1.0: Pulling from weaveworks/weaveexec
...
Digest: sha256:8b5e1b692b7c2cb9bff6f9ce87360eee88540fe32d0154b27584bc45acbbef0a
Status: Downloaded newer image for weaveworks/weaveexec:v1.1.0
Unable to find image 'weaveworks/weave:v1.1.0' locally
v1.1.0: Pulling from weaveworks/weave
Digest: sha256:c34b8ee7b72631e4b7ddca3e1157b67dd866cae40418c279f427589dc944fac0
Status: Downloaded newer image for weaveworks/weave:v1.1.0

The preceding commands have downloaded Weave, then pulled and started the con‐
tainers providing the Weave infrastructure. We’ll go into more details about what
each of these containers does later.

The next step is to point our Docker client at the Weave proxy rather than the Docker
daemon. This gives Weave a chance to set up various networking hooks whenever a
container is started:

Networking Solutions | 233

http://weave.works/

docker@weave-redis:~$ eval $(weave env)

And now we can launch our Redis container, and it will be automatically connected
to the Weave network:

docker@weave-redis:~$ docker run --name redis -d redis:3
Unable to find image 'redis:3' locally
3: Pulling from redis
...
3c97d635be5107f5a79cafe3cfaf1960fa3d14eec3ed5fa80e2045249601583f
docker@weave-redis:~$ exit

Now for the identidock and dnmonster host. This time we’ll just run ssh commands
from docker-machine rather than logging in, as it makes configuration a little easier.
Start by creating the weave-identidock VM and installing Weave:

$ docker-machine create -d virtualbox weave-identidock
...
$ docker-machine ssh weave-identidock \
 "sudo curl -sL https://git.io/weave -o /usr/local/bin/weave && \
 sudo chmod a+x /usr/local/bin/weave"

This time when we run weave launch, we need to pass the IP of the weave-redis
host:

$ docker-machine ssh weave-identidock \
 "weave launch $(docker-machine ip weave-redis)"
Unable to find image 'weaveworks/weaveexec:v1.1.0' locally
v1.1.0: Pulling from weaveworks/weaveexec
...
Digest: sha256:8b5e1b692b7c2cb9bff6f9ce87360eee88540fe32d0154b27584bc45acbbef0a
Status: Downloaded newer image for weaveworks/weaveexec:v1.1.0
Unable to find image 'weaveworks/weave:v1.1.0' locally
v1.1.0: Pulling from weaveworks/weave
Digest: sha256:c34b8ee7b72631e4b7ddca3e1157b67dd866cae40418c279f427589dc944fac0
Status: Downloaded newer image for weaveworks/weave:v1.1.0

Now it’s time to check the networking. We’ll ssh into weave-identidock and see if we
can access the Redis container running on weave-redis. Again, note that we need to
set up the Weave proxy:

$ docker-machine ssh weave-identidock
...
docker@weave-identidock:~$ eval $(weave env)
docker@weave-identidock:~$ docker run redis:3 redis-cli -h redis ping
...
PONG

Success! To finish the example, let’s start up the dnmonster and identidock containers
and make sure the application works:

docker@weave-identidock:~$ docker run --name dnmonster -d amouat/dnmonster:1.0
...

234 | Chapter 11: Networking and Service Discovery

1bc9cdd5c3dd532d4f6a56529be8e2a068a9402c1e07df69ec33971f5c4b89b9
docker@weave-identidock:~$ docker run --name identidock -d -p 80:9090 \
 amouat/identidock:1.0
...
9b5e9c89a7807bcad2cff49dc0692d0e8d064494288df5405a6573d886c0208d
docker@weave-identidock:~$ exit
$ curl $(docker-machine ip weave-identidock)
<html><head>...
$ curl -s $(docker-machine ip weave-identidock)/monster/gordon | head -c 4
�PNG

Great, we’ve got cross-host networking working with DNS resolution of container
names and not a link in sight.

To understand how this works, it’s worth looking at the containers Weave has started
to manage its infrastructure:

$ docker ps
CONTAINER ID ... PORTS NAMES
0b7693194bb9 weaveproxy
b6e515f4d02b 172.17.42.1:53->53/udp, 0.0.0.0:6783->6783/t... weave

These containers and the identidock containers are shown in Figure 11-6.

Figure 11-6. Identidock running on Weave

Networking Solutions | 235

Both hosts are running the same Weave images, which were started by the weave
launch commands earlier. These containers take care of the various parts of the
weave infrastructure:

weave
This container holds the Weave router, which is responsible for handling net‐
working routes and talking to the other hosts on the weave network. Weave rout‐
ers talk to each other via TCP to establish communication and share information
on the network topology. Network traffic is sent via UDP connections set up sep‐
arately. Weave routers learn the network topology over time, allowing them to
route efficiently and deal with changing networks without full connectivity. The
router also handles DNS, which allows developers to refer to containers by name
across hosts.

weaveproxy
This container is responsible for the magic that allows us to run normal docker
run commands but have them attached to the Weave network. The container
intercepts docker run requests to the Docker daemon to allow Weave a chance
to set up networking and modify the run request so the container uses the Weave
networking stack. Once this is done, the modified request is forwarded onto the
Docker daemon. This interception technique is enabled by the eval $(weave
proxy-env) line that sets the DOCKER_HOST environment variable to point to the
weave proxy rather than the actual Docker daemon.

Weave creates a weave bridge, which you can see by running ifconfig. Each con‐
tainer including the weave router is connected to the bridge via a veth pair.

Weave includes the ability to put containers on separate subnets so that applications
can be segregated from each other and support for encryption so that Weave net‐
works can span untrusted links.

For full information on the Weave architecture and features, see the official docu‐
mentation.

The focus of Weave is on building a great developer experience, where containers can
be networked and discovered across hosts with a minimum of fuss.

236 | Chapter 11: Networking and Service Discovery

http://docs.weave.works/weave/latest_release/index.html
http://docs.weave.works/weave/latest_release/index.html

Running Weave as a Plugin

Weave can also be run using the Docker plugin framework, which
effectively replaces the proxy container.
At the time of writing, there are several limitations to this method
that make the instructions here preferable, mainly relating to on-
going work in the networking plugin API to provide Weave and
other networking plugins with all the information and hooks that
are needed. For example, there is currently an issue with Weave los‐
ing configuration information if the cluster is restarted.
These issues may well have been resolved by the time you read this.

Flannel
Flannel is the cross-host networking solution from CoreOS. It’s primarily used with
CoreOS-based clusters, but there’s no reason why it can’t be used with other stacks.

Flannel will assign a subnet to each host, which is then used to assign IPs to contain‐
ers. Flannel works well with Kubernetes (see “Kubernetes”), where it can be used to
assign a unique and routable IP to each pod. Flannel runs a daemon on each host that
retrieves its configuration from etcd (see “etcd”)—for this reason the cluster must
have already been configured to use etcd. A variety of backends are available includ‐
ing:

udp
The default backend that forms an overlay network where layer 2 networking
information is encapsulated in UDP packets sent over the existing network.

vxlan
Uses VXLAN to encapsulate network packets. As this is done inside the kernel,
this is potentially much faster than UDP, which has to go through user-space.

aws-vpc
For setting up networks on Amazon EC2.

host-gw
Sets up IP routes to subnets using remote IP addresses. Requires that hosts have
direct layer 2 connectivity with each other.

gce
For setting up networks on Google Compute engine.

We’ll use Docker Machine again to get started with Flannel, but this time, things are a
bit more complicated—the Flannel daemon needs to configure the flannel0 network
bridge before the Docker engine starts up, which makes it tricky to run Flannel as a
container. We could do some funky bootstrapping involving running Flannel with a

Networking Solutions | 237

https://github.com/coreos/flannel

secondary Docker daemon, but it’s easier to just run flannel as a process on the host.
In addition, Flannel has a dependency on etcd, which we will also run as a native pro‐
cess.

Admittedly, Docker-machine-provisioned VMs aren’t really a good fit for this use-
case due to the extra configuration we have to do, which includes undoing various
bits of machine config. However, it is an enlightening exercise that should help you
get started with Flannel on your own network infrastructure.

Flannel and etcd Version

These examples use version 2.0.13 of etcd and 0.5.1 of Flannel. As
Flannel is in heavy development, you can expect to find some dif‐
ferences if you use a newer version.

In this example, we will set up two hosts, flannel-1 and flannel-2, and check that
the containers on each hosts can connect. We’ll start by provisioning two VirtualBox
VMs to act as our hosts:

$ docker-machine create -d virtualbox flannel-1
...
$ docker-machine create -d virtualbox flannel-2
...
$ docker-machine ip flannel-1 flannel-2
192.168.99.102
192.168.99.103

Note the IP addresses of each machine. You’ll need these to set up etcd, which we’ll
now install on flannel-1. But first we need to stop the Docker daemon and delete
the docker0 bridge:

$ docker-machine ssh flannel-1
...
docker@flannel-1:~$ sudo /usr/local/etc/init.d/docker stop
docker@flannel-1:~$ sudo ip link delete docker0

Now download and extract etcd:

docker@flannel-1:~$ curl -sL https://github.com/coreos/etcd/releases/download/\
v2.0.13/etcd-v2.0.13-linux-amd64.tar.gz -o etcd.tar.gz
docker@flannel-1:~$ tar xzvf etcd.tar.gz

Time to launch etcd. Using a couple of environment variables makes this easier to
read:

docker@flannel-1:~$ HOSTA=192.168.99.102
docker@flannel-1:~$ HOSTB=192.168.99.103
docker@flannel-1:~$ nohup etcd-v2.0.13-linux-amd64/etcd \
 -name etcd-1 -initial-advertise-peer-urls http://$HOSTA:2380 \
 -listen-peer-urls http://$HOSTA:2380 \
 -listen-client-urls http://$HOSTA:2379,http://127.0.0.1:2379 \

238 | Chapter 11: Networking and Service Discovery

 -advertise-client-urls http://$HOSTA:2379 \
 -initial-cluster-token etcd-cluster-1 \
 -initial-cluster \
etcd-1=http://$HOSTA:2380,etcd-2=http://$HOSTB:2380 \
 -initial-cluster-state new &

The nohup utility is used so that etcd remains running after we log out of the host. It
will log output to the file nohup.out.

So now we have etcd set up on flannel-1. We’ll come back and finish installing Flan‐
nel after we’ve got things running on flannel-2:

docker@flannel-1:~$ exit
$ docker-machine ssh flannel-2
docker@flannel-2:~$ sudo /usr/local/etc/init.d/docker stop
docker@flannel-2:~$ sudo ip link delete docker0
docker@flannel-2:~$ curl -sL https://github.com/coreos/etcd/releases/\
download/v2.0.13/etcd-v2.0.13-linux-amd64.tar.gz -o etcd.tar.gz
docker@flannel-2:~$ tar xzvf etcd.tar.gz

Starting etcd is the same as before, except the IPs are reversed:

docker@flannel-2:~$ HOSTA=192.168.99.102
docker@flannel-2:~$ HOSTB=192.168.99.103
docker@flannel-2:~$ nohup etcd-v2.0.13-linux-amd64/etcd \
 -name etcd-2 -initial-advertise-peer-urls http://$HOSTB:2380 \
 -listen-peer-urls http://$HOSTB:2380 \
 -listen-client-urls http://$HOSTB:2379,http://127.0.0.1:2379 \
 -advertise-client-urls http://$HOSTB:2379 \
 -initial-cluster-token etcd-cluster-1 \
 -initial-cluster \
etcd-1=http://$HOSTA:2380,etcd-2=http://$HOSTB:2380 \
 -initial-cluster-state new &

Now it’s time to download Flannel:

docker@flannel-2:~$ curl -sL https://github.com/coreos/flannel/releases/\
download/v0.5.1/flannel-0.5.1-linux-amd64.tar.gz -o flannel.tar.gz
docker@flannel-2:~$ tar xzvf flannel.tar.gz

Next, we need to set some configuration in etcd to tell Flannel which IP range it can
use:

docker@flannel-2:~$./etcd-v2.0.13-linux-amd64/etcdctl
 set /coreos.com/network/config '{ "Network": "10.1.0.0/16" }'

And now we can start up the Flannel daemon. Note that we need to tell Flannel to use
the interface eth1, which allows communication with the other VM:

docker@flannel-2:~$ nohup sudo ./flannel-0.5.1/flanneld -iface=eth1 &

Flannel is now running, and if you run ifconfig, you should see the Flannel bridge:

docker@flannel-2:~$ ifconfig flannel0
flannel0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-...

Networking Solutions | 239

14 MTU is the Maximum Transmission Unit, which controls how big data packets can get in the network.

 inet addr:10.1.37.0 P-t-P:10.1.37.0 Mask:255.255.0.0
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1472 Metric:1
 RX packets:4 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:500
 RX bytes:216 (216.0 B) TX bytes:221 (221.0 B)

Note that it has been given an address within the range specified in the Flannel con‐
figuration.

The next thing to do is to configure Docker to use Flannel. If we’re using a different
VM image or bare metal, we could use the mk-docker-opts.sh script distributed
with Flannel to automatically configure the Docker engine. However, our VirtualBox
image doesn’t include bash, so we’ll just do it by hand instead. First, take a look at the
file /run/flannel/subnet.env Flannel has created for us:

docker@flannel-2:~$ cat /run/flannel/subnet.env
FLANNEL_SUBNET=10.1.79.1/24
FLANNEL_MTU=1472
FLANNEL_IPMASQ=false

We need to set the Docker daemon flag --bip to the value of the FLANNEL_SUBNET
and --mtu to the value of FLANNEL_MTU, which will tell Docker to use an IP and
MTU14 compatible with Flannel. Docker daemon flags are configured in the
file /var/lib/boot2docker/profile. After updating the file (which can be done with sudo
vi in the VM), it should look something like:

docker@flannel-2:~$ cat /var/lib/boot2docker/profile

EXTRA_ARGS='
--label provider=virtualbox
--bip 10.1.79.1/24
--mtu 1472
'
CACERT=/var/lib/boot2docker/ca.pem
DOCKER_HOST='-H tcp://0.0.0.0:2376'
DOCKER_STORAGE=aufs
DOCKER_TLS=auto
SERVERKEY=/var/lib/boot2docker/server-key.pem
SERVERCERT=/var/lib/boot2docker/server.pem

We can now restart the Docker engine:

docker@flannel-2:~$ sudo /etc/init.d/docker start
hostname: flannel-2: Unknown host
Need TLS certs for flannel-2,,10.0.2.15,192.168.99.103
docker@flannel-2:~$ exit

240 | Chapter 11: Networking and Service Discovery

Finally, we need to repeat these steps on flannel-1:

$ docker-machine ssh flannel-1
...
docker@flannel-1:~$ curl -sL https://github.com/coreos/flannel/releases/\
download/v0.5.1/flannel-0.5.1-linux-amd64.tar.gz -o flannel.tar.gz
v0.5.1/flannel-0.5.1-linux-amd64.tar.gz -o flannel.tar.gz
docker@flannel-1:~$ tar xzvf flannel.tar.gz
...
docker@flannel-1:~$ nohup sudo ./flannel-0.5.1/flanneld -iface=eth1 &
docker@flannel-1:~$ cat /run/flannel/subnet.env
FLANNEL_SUBNET=10.1.83.1/24
FLANNEL_MTU=1472
FLANNEL_IPMASQ=false
docker@flannel-1:~$ sudo vi /var/lib/boot2docker/profile
...
docker@flannel-1:~$ sudo /etc/init.d/docker start
hostname: flannel-1: Unknown host
Need TLS certs for flannel-1,,10.0.2.15,192.168.99.102
docker@flannel-1:~$ exit

Note that this value should be different than flannel-2 so that both hosts allo‐
cate container IPs from different ranges.

Now everything should be working, so let’s make sure our containers can communi‐
cate. On flannel-1, we’ll start up the Netcat utility to listen for connections on a
given port:

$ eval $(docker-machine env flannel-1)
$ docker run --name nc-test -d amouat/network-utils nc -l 5001
...

Network Tools Container

In order to test various networky things when stuff goes wrong, it’s
handy to have an image with some network tools installed. I’ve set
up an image called amouat/network-utils that can be used for this
purpose. Inside you’ll find stuff like curl, Netcat, traceroute, and
dnsutils, as well as jq for pretty printing JSON ouptut from REST
APIs.
Example usage:

$ docker run -it amouat/network-utils
root@7e80c9731ea0:/# curl -s https://api.github.com\
/repos/amouat/network-utils-container\
 | jq '. .description'
"Docker container with some network utilities"

Now find the IP address Flannel has assigned to the container:

Networking Solutions | 241

15 The “Data Link Layer” in the OSI model, which is where MAC addresses come in.
16 The “Network Layer” in the OSI model, which is where IPv4 and IPv6 come in.

$ IP=$(docker inspect -f {{.NetworkSettings.IPAddress}} nc-test)
$ echo $IP
10.1.83.2

Note that this is within the range we requested earlier. Now let’s start up Netcat on
flannel-2 and test connecting to the nc-test container:

$ eval $(docker-machine env flannel-2)
$ docker run -e IP=$IP \
 amouat/network-utils sh -c 'echo -n "hello" | nc -v $IP 5001'
Unable to find image 'amouat/network-utils:latest' locally
...
Status: Downloaded newer image for amouat/network-utils:latest
Connection to 10.1.83.2 5001 port [tcp/*] succeeded!

And if we look in the logs for the nc-test container, we can see the message we sent:

$ eval $(docker-machine env flannel-1)
$ docker logs nc-test
hello

And there you go: two containers talking across hosts using their own IPs. It may
have felt like a lot of work to get there, but remember this is something that will
hopefully be automated for new hosts joining the cluster, and users of CoreOS stacks
can expect it to work out of the box.

But we still can’t get identidock running though. Although we have cross-host net‐
working, we don’t have service discovery, which requires one of the previously dis‐
cussed solutions such as SkyDNS or rewriting identidock to use etcd.

Project Calico
Project Calico (henceforth, simply Calico) takes a slightly different approach to net‐
working. This is easiest described in terms of the OSI model, which divides network‐
ing into seven conceptual layers. Most other networking solutions, such as Weave and
Flannel (when using the UDP backend), build an overlay network by encapsulating
layer 215 traffic into a higher layer. Calico instead uses standard IP routing and net‐
working tools to provide a layer 316 solution.

The major advantages of a pure layer 3 solution are in simplicity and efficiency. Cali‐
co’s primary operating mode requires no encapsulation and is designed for data-
centers where the organization has control over the physical network fabric. Routing
within a Calico network is established using the Border Gateway Protocol or BGP—a
venerable protocol that underpins much of the wider Internet—to connect routers
within, and at the edges of, the data-center network. This approach allows Calico to

242 | Chapter 11: Networking and Service Discovery

https://en.wikipedia.org/wiki/OSI_model

work on top of a wide variety of layer 2 and layer 3 physical topologies. There is no
requirement to use NAT for external connectivity in Calico; containers can be con‐
nected directly to public IPs where security policy and IP availability allows.

The disadvantage of Calico is that its primary mode doesn’t work in public clouds,
where users don’t have control over the network fabric. Calico can still be used in
public clouds, but normally requires the use of IP-in-IP tunneling to provide connec‐
tivity.

Also notable is Calico’s security model, which allows fine-grained control over which
containers can talk to each other.

Experimental Warning!

The VMs I’m using in this example are using the experimental
build of Docker, which means there will be differences in your ver‐
sion. By the time you read this book, the stable release of Docker
will support networking plugins, which you should use instead.
For the sake of completeness, I ran the following example using
digital ocean VMs provisioned with the following commands:

$ docker-machine create -d digitalocean \
 --digitalocean-access-token=<token> \
 --digitalocean-private-networking \
 --engine-install-url \
 "https://experimental.docker.com" calico-1
...
$ docker-machine create -d digitalocean \
 --digitalocean-access-token=<token> \
 --digitalocean-private-networking \
 --engine-install-url \
 "https://experimental.docker.com" calico-2
...
$ docker-machine ssh calico-1
root@calico-1:~# docker -v
Docker version 1.8.0-dev, build 3ee15ac, experimental

I also manually installed Consul on one of the boxes that was
required for the Docker daemons to share network configuration
details.
Various things will have changed by the time you read this, and you
can expect to need to make minor changes to the example. Don’t
try to use the same versions of Calico and Docker as me—instead
install the latest supported and stable versions of both.

The following assumes we have two Docker Machine provisioned VMs set up, called
calico-1 and calico-2, which can communicate with each other on the addresses
<calico-1 ipv4> and <calico-2 ipv4> (these addresses may be internal and not

Networking Solutions | 243

accessible from the Internet). In this case, I am using the Digital Ocean cloud, but
other clouds should be very similar.

The first thing we need to do is to set up etcd on each host, which is used by Calico to
share information about the network between hosts:

$ HOSTA=<calico-1 ipv4>
$ HOSTB=<calico-2 ipv4>
$ eval $(docker-machine env calico-1)
$ docker run -d -p 2379:2379 -p 2380:2380 -p 4001:4001 \
 --name etcd quay.io/coreos/etcd \
 -name etcd-1 -initial-advertise-peer-urls http://${HOSTA}:2380 \
 -listen-peer-urls http://0.0.0.0:2380 \
 -listen-client-urls http://0.0.0.0:2379,http://0.0.0.0:4001 \
 -advertise-client-urls http://${HOSTA}:2379 \
 -initial-cluster-token etcd-cluster-1 \
 -initial-cluster \
etcd-1=http://${HOSTA}:2380,etcd-2=http://${HOSTB}:2380 \
 -initial-cluster-state new
...
b9a6b79e42a1d24837090de4805bea86571b75a9375b3cf2100115e49845e6f3
$ eval $(docker-machine env calico-2)
$ docker run -d -p 2379:2379 -p 2380:2380 -p 4001:4001 \
 --name etcd quay.io/coreos/etcd \
 -name etcd-2 -initial-advertise-peer-urls http://${HOSTB}:2380 \
 -listen-peer-urls http://0.0.0.0:2380 \
 -listen-client-urls http://0.0.0.0:2379,http://0.0.0.0:4001 \
 -advertise-client-urls http://${HOSTB}:2379 \
 -initial-cluster-token etcd-cluster-1 \
 -initial-cluster \
etcd-1=http://${HOSTA}:2380,etcd-2=http://${HOSTB}:2380 \
 -initial-cluster-state new
...
2aa2d8fee10aec4284b9b85a579d96ae92ba0f1e210fb36da2249f31e556a65e

Now that we have etcd running, let’s install Calico. This will be somewhat out-of-date
by the time you read this, but the rough steps should still be similar. Start by down‐
loading Calico:

$ docker-machine ssh calico-1
...
root@calico-1:~# curl -sSL -o calicoctl \
 https://github.com/Metaswitch/calico-docker/releases/download/v0.5.2/calicoctl
root@calico-1:~# chmod +x calicoctl

Load the xt_set kernel module, which is needed for some IP tables features used by
Calico:

root@calico-1:~# modprobe xt_set

We need to tell Calico what address range it can assign IPs from. This is done using
the pool add subcommand:

244 | Chapter 11: Networking and Service Discovery

root@calico-1:~# sudo ./calicoctl pool add 192.168.0.0/16 --ipip --nat-outgoing

The --ipip flag tells calico to set up an IP-in-IP tunnel between hosts, which is only
needed if the hosts don’t have direct layer 2 connectivity. This command only needs
to be run on one host.

Next, we start up the Calico services, including the Docker network plugin, which
runs as a container:

root@calico-1:~# sudo ./calicoctl node --ip=<calico-1 ipv4>
WARNING: ipv6 forwarding is not enabled.
Pulling Docker image calico/node:v0.5.1
Calico node is running with id: d72f2eb6f10ea24a76d606e3ee75bf...

Now set up the other host in the same way:

$ docker-machine ssh calico-2
...
root@calico-2:~# curl -sSL -o calicoctl
https://github.com/Metaswitch/calico-docker\
/releases/download/v0.5.2/calicoctl
root@calico-2:~# chmod +x calicoctl
root@calico-2:~# modprobe xt_set
root@calico-2:~# sudo ./calicoctl node --ip=<calico-1 ipv4>
WARNING: ipv6 forwarding is not enabled.
Pulling Docker image calico/node:v0.5.1
Calico node is running with id: b880fac45feb7ebf3393ad4ce63011a2...
root@calico-2:~#

And now we can get identidock running once more. Start by launching Redis on
calico-2 using the --publish-service redis.anet.calico argument, which will
create a new Calico network called “anet” and the “redis” service:

root@calico-2:~# docker run --name redis -d \
 --publish-service redis.anet.calico redis:3
....
6f0db3fe01508c0d2fc85365db8d3dcdf93edcdaae1bcb146d34ab1a3f87b22f

If we now log in to calico-1, we can connect to the same network and reach the
Redis container:

root@calico-2:~# exit
$ docker-machine ssh calico-1
root@calico-1:~# docker run --name redis-client \
 --publish-service redis-client.anet.calico \
 redis:3 redis-cli -h redis ping
...
PONG

Now let’s start up the dnmonster and identidock containers on the same network:

root@calico-1:~# docker run --name dnmonster \
 --publish-service dnmonster.anet.calico -d amouat/dnmonster:1.0
...

Networking Solutions | 245

17 As far as I can tell, the B doesn’t stand for anything except BIRD itself, in a recursive and annoying fashion.

fba8f7885a2e1700bc0e263cc10b7d812e926ca7447e98d9477a08b253cafe0
root@calico-1:~# docker run --name identidock \
 --publish-service identidock.anet.calico -d amouat/identidock:1.0
...
589f6b6b17266e59876dfc34e15850b29f555250a05909a95ed5ea73c4ee7115

Time to make sure things are working:

root@calico-1:~# docker exec identidock curl -s localhost:9090
<html><head><title>Hello...

Great, we now have identidock up and running with Calico. We’ve accessed identi‐
dock from the container, since we need the client to be on the Calico network. Of
course, it is possible to expose the application to other networks, such as the public
Internet, but it requires a little more work and is likely to change, so we won’t cover it
here.

Behind the scenes, there’s a few pieces in place that make this work:

etcd
Stores and distributes information on hosts and containers.

BIRD
The BIRD Internet Routing Daemon (or BIRD)17 uses BGP to route IP traffic
between hosts and containers.

Felix
The Calico agent that runs on each compute host to configure local network pol‐
icy, using data in etcd.

The Calico plugin
Responsible for setting up network connections when a Docker container is cre‐
ated and recording it in etcd.

The current focus of Calico is providing efficient, and comparatively simple, net‐
working for VMs and containers in situations where the organization controls the
networking fabric, such as private clouds used by large companies. At the same time,
the Calico plugin looks set to provide a comparatively efficient and simple solution
for networking containers running on the same public cloud.

Conclusion
Service discovery is often an essential feature in modern distributed and dynamic sys‐
tems. Containers and services are constantly in flux, being stopped, started, and

246 | Chapter 11: Networking and Service Discovery

moved in response to demand or failures. Under such circumstances, solutions that
require manual work to reroute connections simply won’t work.

Most of the service-discovery solutions we’ve seen support DNS-based lookups,
where clients can simply address services by name and the system takes care of rout‐
ing to the appropriate instance. This is excellent in terms of simplicity at the client
end and for supporting existing applications and tools, but DNS can become a hin‐
drance in highly dynamic systems. DNS responses are often cached, resulting in
delays and errors when a service moves host. Load balancing is typically round-robin
at best, which is rarely ideal. In addition, clients may want to include their own logic
for selecting between potential services, which becomes much simpler with richer
APIs.

Which service-discovery tool you need to use is very use-case specific. Most projects
already use a relevant tool due to software requirements or existing platform tooling
(e.g., Mesos uses ZooKeeper, and GKE uses etcd). In such cases, it makes sense to use
what is already there rather than bringing another tool into the mix. Choosing
between etcd (or etcd plus SkyDNS) and Consul is much more difficult. Both are rel‐
atively new projects (etcd is slightly older) but are based on sound underlying algo‐
rithms. Consul includes DNS support and some advanced features by default, which
will often swing the balance. etcd is arguably less “opinionated” than Consul and has
a more advanced key-value store, which may make it a better choice in scenarios
requiring a lot of customization. The DNS support of Consul and SkyDNS may not
be relevant if you use APIs to discover services or are already including a networking
solution that provides name resolution.

Choosing a networking solution is an even more difficult task, mainly due to the
immaturity of the space. In the coming months, we will see more solutions become
available (especially in the form of networking plugins) and clearer differentiation
between them. So far, I haven’t undertaken any performance or scalability testing of
the solutions, as I expect the numbers will change wildly in the future as vendors
work on optimizations and tailor themselves to particular use cases. That being said,
from the current crop of solutions, I would say the following:

• Docker’s Overlay network is likely to become the most-used solution during
development, simply because it is the “batteries included” option. Depending on
how stable and efficient it becomes, it may also be appropriate for small deploy‐
ments running on the cloud.

• Weave is focusing heavily on ease-of-use and the developer experience, making it
another good choice for development. Weave also includes features such as
encryption and firewall traversal that will make it very attractive in situations
such as cross-cloud deployments.

Conclusion | 247

• Flannel is used in CoreOS stacks and offers specialist backends for various sce‐
narios. At the time of writing, Flannel may be too much work to use in develop‐
ment (this should change as plugins are developed) but offers an efficient and
simple solution in several production scenarios.

• Project Calico’s primary target is large organizations or data centers that control
their own network fabric. In such cases, Project Calico’s layer 3 approach can
offer a simple and efficient solution. That being said, the Project Calico network
plugin looks to be both easy to use and comparatively fast, potentially making it
attractive in development and single-cloud deployments.

• Roll your own. In some circumstances, ops will know exactly how they want
things to be wired up for efficiency. In this case, you can create your own net‐
working plugin or use tools like pipework to insert specialist plumbing. You also
may be able to use the container or host networking modes, which will remove
the overhead of the Docker bridge and NAT rules but means containers have to
share IP addresses.

The correct choice here is very much dependent on your particular needs and the
platform you are running on top of. You may find that certain solutions operate con‐
siderably faster or slower than others or enable use cases not available in other solu‐
tions. Nothing will beat actually trying out the different solutions in tests that
replicate the conditions your application will run under.

248 | Chapter 11: Networking and Service Discovery

1 The distinction between these approaches is often known as “pets versus cattle.”

CHAPTER 12

Orchestration, Clustering,
and Management

Most software systems evolve over time. New features are added and old ones
pruned. Fluctuating user demand means an efficient system must be able to quickly
scale resources up and down. Demands for near zero-downtime require automatic
failover to preprovisioned back-up systems, normally in a separate data center or
region.

On top of this, organizations often have multiple such systems to run, or need to run
occasional tasks such as data mining that are separate from the main system, but
require significant resources or talk to the existing system.

When using multiple resources, it is important to make sure they are efficiently used
—not sitting idle—but can still cope with spikes in demand. Balancing cost-
effectiveness against the ability to quickly scale is A difficult task that can be
approached in a variety of ways.

All of this means that running a nontrivial system is full of administrative tasks and
challenges, the complexity of which should not be underestimated. It quickly
becomes impossible to look after machines on an individual level; rather than patch‐
ing and updating machines one by one they must be treated identically. When a
machine develops a problem, it should be destroyed and replaced, rather than nursed
back to health.1

Various software tools and solutions exist to help with these challenges and cover
each of the following areas to a greater or lesser degree:

249

Clustering
Grouping “hosts”—either VMs or bare-metal—and networking them together. A
cluster should feel like a single resource rather than a group of disparate
machines.

Orchestration
Making all the pieces work together. Starting containers on appropriate hosts and
connecting them. An orchestration system may also include support for scaling,
automatic failover, and node rebalancing.

Management
Providing oversight into the system and supporting various administrative tasks.

We will start by looking at the primary orchestration and clustering tools in the
Docker ecosystem: Swarm, fleet, Kubernetes, and Mesos. Swarm is the Docker native
clustering solution, which also tackles orchestration to a large degree, particularly
when used with Docker Compose. Fleet is a low-level clustering and scheduling sys‐
tem used by CoreOS. Kubernetes is a higher-level and somewhat opinionated orches‐
tration solution that builds in failover and scaling features by default, and can run on
top of other clustering solutions. Mesos is a low-level clustering solution that works
with higher-level “frameworks” to provide a robust and complete solution to cluster‐
ing and orchestration.

After this, we’ll take a look at some “container management platforms”—Rancher,
Clocker, and Tutum—that provide interfaces (both GUIs and CLIs) to manage con‐
tainer systems across hosts. These platforms typically use building blocks we’ve
already seen—such as overlay networking solutions—but bundle them together into
an integrated offering.

The code for this chapter is available at this book’s GitHub.
You can check out the code for this chapter using:

$ git clone -b \
 https://github.com/using-docker/orchestration/
...

Alternatively, you can download the code directly from the GitHub
project.

Clustering and Orchestration Tools
This section investigates the primary clustering and orchestration tools available for
Docker—Swarm, fleet, Kubernetes, and Mesos. For each tool, we will look at its
unique features and see how they can be used to run our identidock example.

250 | Chapter 12: Orchestration, Clustering, and Management

https://github.com/using-docker/orchestration

Swarm
Swarm is the native clustering tool for Docker. Swarm uses the standard Docker API,
i.e., containers can be launched using normal docker run commands and Swarm will
take care of selecting an appropriate host to run the container on. This also means
that other tools that use the Docker API—such as Compose and bespoke scripts—can
use Swarm without any changes and take advantage of running on a cluster rather
than a single host.

The basic architecture of Swarm is fairly straightforward: each host runs a Swarm
agent and one host runs a Swarm manager (on small test clusters this host may also
run an agent). The manager is responsible for the orchestration and scheduling of
containers on the hosts. Swarm can be run in a high-availability mode where etcd,
Consul, or ZooKeeper is used to handle failover to a back-up manager. There are sev‐
eral different methods for how hosts are found and added to a cluster, which is
known as discovery in Swarm. By default, token-based discovery is used, where the
addresses of hosts are kept in a list stored on the Docker Hub.

At the time of writing, Swarm is at version 0.4 and a work-in-progress. Notably there
is no cross-host networking, so any linked containers must run on the same host.
This issue is likely to have been addressed by the time you read this; cross-host net‐
working will be provided by integration with the networking plugins under develop‐
ment.

As a quick way to get started with Swarm, let’s set up a small cluster of VMs. We’ll use
Docker Machine to create the VMs and the default Swarm token-based discovery
method for linking them together. Start by creating the token for our cluster using
swarm create:

$ SWARM_TOKEN=$(docker run swarm create)
$ echo $SWARM_TOKEN
26a4af8d51e1cf2ea64dd625ba51a4ff

We can now create the manager (or master) host:

$ docker-machine create -d virtualbox \
 --engine-label dc=a \
 --swarm --swarm-master \
 --swarm-discovery token://$SWARM_TOKEN \
 swarm-master
Creating VirtualBox VM...
Creating SSH key...
Starting VirtualBox VM...
Starting VM...
To see how to connect Docker to this machine, run: docker-machine env swarm-ma...

Machine has created a new virtualbox VM called swarm-master and attached it to the
Swarm cluster with the token we generated previously. We’ve also attached the label

Clustering and Orchestration Tools | 251

https://docs.docker.com/swarm/

dc=a to the Docker engine on the host, for reasons that will become clear later. Next,
we’ll create two further VMs, swarm-1 and swarm-2, to make up our cluster:

$ docker-machine create -d virtualbox \
 --engine-label dc=a \
 --swarm \
 --swarm-discovery token://$SWARM_TOKEN \
 swarm-1
...
$ docker-machine create -d virtualbox \
 --engine-label dc=b \
 --swarm \
 --swarm-discovery token://$SWARM_TOKEN \
 swarm-2
...

Note that we have labeled swarm-1 as dc=a and swarm-2 as dc=b.

We can manually verify that these nodes have been added to the cluster by looking at
the Hub API:

$ curl https://discovery-stage.hub.docker.com/v1/clusters/$SWARM_TOKEN
["192.168.99.103:2376","192.168.99.102:2376","192.168.99.101:2376",
"192.168.99.100:2376"]

The IPs shown are the addresses of the VMs we created. These IPs only have to be
addressable by the Swarm manager. We can get the same information (regardless of
the discovery method) by issuing the swarm list command. You could download the
Swarm binary to do this, but it’s easiest just to use the Swarm image, as we did when
creating the token:

$ docker run swarm list token://$SWARM_TOKEN
192.168.99.108:2376
192.168.99.109:2376
192.168.99.107:2376

We can see a diagram of the simple cluster we’ve created in Figure 12-1. The labels
dc=a and dc=b are intended to indicate data center A and data center B, respectively.
While 2 VMs running on a laptop have about as much in common with a data center
as a midge does with a Jumbo jet, it serves our example well and you could easily add
powerful cloud resources to your cluster with very similar commands.

252 | Chapter 12: Orchestration, Clustering, and Management

Figure 12-1. Swarm cluster example

Swarm Discovery
The default token-based discovery is very useful for getting started quickly, but has a
significant disadvantage—it requires all hosts to be able to access the Hub, which
becomes a single point of failure.

There are several other discovery mechanisms available including simply providing
the Docker manager with a list of IP addresses and using a distributed store such as
etcd, Consul, or ZooKeeper.

For full information on the discovery methods available, see the documentation.

Let’s connect our Docker client to the Swarm master and see what docker info tells
us:

$ eval $(docker-machine env --swarm swarm-master)
$ docker info
Containers: 4
Images: 3
Role: primary
Strategy: spread
Filters: affinity, health, constraint, port, dependency
Nodes: 3
 swarm-1: 192.168.99.102:2376
 └ Containers: 1
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 1.022 GiB
 └ Labels: dc=a, executiondriver=native-0.2, ...

Clustering and Orchestration Tools | 253

https://docs.docker.com/swarm/discovery/

 swarm-2: 192.168.99.103:2376
 └ Containers: 1
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 1.022 GiB
 └ Labels: dc=b, executiondriver=native-0.2, ...
 swarm-master: 192.168.99.101:2376
 └ Containers: 2
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 1.022 GiB
 └ Labels: dc=a, executiondriver=native-0.2, ...
CPUs: 3
Total Memory: 3.065 GiB

This gives us some detailed information on the cluster, and we can see the three hosts
(“nodes” in Swarm parlance) we have created. Each node is running a Swarm agent
container that connects it to the cluster, and the swarm-master node is also running a
Swarm master container for managing the cluster. Running an agent on the same
node as the master wouldn’t be advisable in a production setting (due to failover
issues) but it’s fine for our demonstration.

Now it’s time to test out our cluster!

$ docker run -d debian sleep 10
ebce5d18121002f35b2666da4dd2dce189ece9573c8ebeba531d85f51fbad8e8
$ docker ps
CONTAINER ID IMAGE COMMAND ... NAMES
ebce5d181210 debian "sleep 10" ... swarm-1/furious_bell

This command will take a short amount of time to complete while the debian
image is downloaded. When talking to a Swarm cluster, you won’t get updates on
download progress.

We can see that our container has been created and automatically scheduled on the
swarm-1 host. This may seem slightly underwhelming, but it’s pretty neat; behind the
scenes Swarm has intercepted our request, analyzed our cluster, and forwarded our
request to the most appropriate host.

Filters
Filters control which nodes are available to run containers on. There are several dif‐
ferent types of filter that are applied by default. We can see an example of a default
filter in action by starting a few Nginx containers:

$ docker run -d -p 80:80 nginx
6d571c0acaa926cea7194255617dcd384375c105b0285ef657c911fb59c729ce
$ docker run -d -p 80:80 nginx
7b1cd5dade7de5bed418d360c03be72d615222b95e5f486d70ce42af5f9e825c
$ docker run -d -p 80:80 nginx
ab542c443c05c40a39450111ece852e9f6422ff4ff31864f84f2e0d0e6697605
$ docker ps

254 | Chapter 12: Orchestration, Clustering, and Management

CONTAINER ID IMAGE ... PORTS NAMES
ab542c443c05 nginx 192.168.99.102:80->80/tcp, 443/tcp swarm-1/mad_eng...
7b1cd5dade7d nginx 192.168.99.101:80->80/tcp, 443/tcp swarm-master/co...
6d571c0acaa9 nginx 192.168.99.103:80->80/tcp, 443/tcp swarm-2/elated_...

Note that Swarm has placed each Nginx container on a different host. What happens
if we try to start a fourth container?

$ docker run -d -p 80:80 nginx
Error response from daemon: unable to find a node with port 80 available

The port filter runs by default and schedules containers which request a specific port
on the host to nodes with that port free. By the time we start the fourth container,
there are no available hosts with port 80 free, so Swarm denies the request.

The constraint filter can be used to select subsets of nodes matching the given key/
value pairs. To see this in action, we can use the labels we applied to the hosts earlier:

$ docker run -d -e constraint:dc==b postgres
e4d1b2991158cff1442a869e087236807649fe9f907d7f93fe4ad7dedc66c460
$ docker run -d -e constraint:dc==b postgres
704261c8f3f138cd590103613db6549da75e443d31b7d8e1c645ae58c9ca6784
 docker ps
CONTAINER ID IMAGE ... NAMES
704261c8f3f1 postgres swarm-2/berserk_yalow
e4d1b2991158 postgres swarm-2/nostalgic_ptolemy
...

Both of the containers have been scheduled on swarm-2, which is the only host with
the label dc=b. To prove the point, we can also use constraint:dc==a or con
straint:dc!=b:

$ docker run -d -e constraint:dc==a postgres
62efba99ef9e9f62999bbae8424bd27da3d57735335ebf553daec533256b01ef
$ docker ps
CONTAINER ID IMAGE ... NAMES
62efba99ef9e postgres swarm-master/dreamy_noyce
704261c8f3f1 postgres swarm-2/berserk_yalow
e4d1b2991158 postgres swarm-2/nostalgic_ptolemy
...

We can see that this container was scheduled on swarm-master, which has the label
dc=a.

The constraint filter can also be used to filter on various host metadata such as the
host name, storage driver, and operating system.

You can see how constraints could be used to schedule containers to start on hosts in
given regions (e.g., constraint:region!=europe) or with special hardware (e.g., con
straint:disk==ssd or constraint:gpu==true).

The remaining filters are:

Clustering and Orchestration Tools | 255

health
which will only schedule containers on “healthy” hosts;

dependency
which will coschedule dependent containers (e.g., containers that share a volume
or are linked will be placed onto the same host); and

affinity
which allows users to define “attractions” between containers and other contain‐
ers or hosts. For example, you can specify a container to be scheduled next to an
existing container or only to run on hosts that already have the given image.

Constraint and Affinity Expression Syntax
Affinity and constraint filter expressions can use the operators == (node must match
value) and != (node must not match value).

They can also use regular expressions and globbing patterns. For example:

$ docker run -d -e constraint:region==europe* postgres

$ docker run -d -e constraint:node==/swarm-[12]/ postgres

Will run on hosts who have region label beginning with +europe+.

Will run on hosts name swarm-1 or swarm-2 (but not swarm-master).

In addition, “soft” constraints or affinities can be given by placing a ~ before the value.
In such cases, the scheduler will attempt to meet the rule, but if it can’t it will still run
the container on a resource not matching the rule rather than fail completely. For
example:

$ docker run -d -e constraint:dc==~a postgres

This will first attempt to run the container on a host labeled dc=a, but will still run on
other hosts if no such host is available.

Strategies
Assuming there is more than one available host after filter constraints have been
applied, how does Swarm choose the host for a container? The answer is it depends
on the chosen strategy. The following strategies are available:

spread
Places the container on the least loaded host.

binpack
Places the container on the most loaded host that still has capacity.

256 | Chapter 12: Orchestration, Clustering, and Management

random
Places the container on a random host.

The spread strategy will result in containers being equally distributed over hosts. The
major advantage of this approach is that it limits the number of containers affected
when a host goes down. The binpack strategy will fill hosts as much as possible,
thereby optimizing machine usage. The random strategy is primarily intended for
debugging.

It currently looks like Swarm will be most useful for small-to-medium deployments,
perhaps with dozens or possibly hundreds of hosts. If you want to run Swarm on
larger clusters, consider looking into the Swarm and Mesos integration, which sup‐
ports using the Swarm API to launch containers on the Mesos infrastructure that has
been shown to reliably scale to 10s of thousands of hosts.

Delete Your VMs

In this chapter, we create a lot of VMs using Docker Machine.
These VMs use a lot of resources, so it’s important to stop and
remove them when you’re finished with an exmaple. This can be
easily done with Machine commands:

$ docker-machine stop swarm-master
$ docker-machine rm swarm-master
Successfully removed swarm-master

The major advantage of Swarm is that it only uses straight Docker API calls, meaning
making it possible to move even large workloads and applications to different clusters
or to run them across multiple clusters. Using Mesos or Kubernetes will result in a
more difficult to port architecture.

Fleet
Fleet is the cluster management tool from CoreOS. It bills itself as a “low-level cluster
engine,” i.e., it is expected to form a “foundation layer” for higher-level solutions such
as Kubernetes.

The most distinguishing feature of fleet is that it builds on top of systemd. While sys‐
temd provides system and service initialization for a single machine, fleet extends this
to a cluster of machines. Fleet reads systemd unit files, which are then scheduled on a
machine or machines in the cluster.

The technical architecture of fleet is shown in Figure 12-2. Each machine runs an
engine and an agent. Only one engine is active in the cluster at any time, but all agents
are constantly running (for the sake of the diagram, the active engine is shown sepa‐
rately to the machines, but it will be running on one of them). Systemd unit files

Clustering and Orchestration Tools | 257

https://coreos.com/fleet/
https://wiki.freedesktop.org/www/Software/systemd/

(henceforth units) are submitted to the engine, which will schedule the job on the
“least-loaded” machine. The unit file will normally simply run a container. The agent
takes care of starting the unit and reporting state. Etcd is used to enable communica‐
tion between machines and store the status of the cluster and units.

Figure 12-2. Fleet architecture

The architecture is designed to be fault-tolerant; if a machine dies, any units sched‐
uled on that machine will be restarted on new hosts.

Fleet supports various scheduling hints and constraints. At the most basic level, units
can be scheduled as global, that is, an instance will run on all machines, or as a single
unit that will run on a single machine. Global scheduling is very useful for utility con‐
tainers for tasks such as logging and monitoring. Various affinity type constraints are
supported. So a container that runs a health check can be scheduled to always run
next to the application server, for example. Metadata can also be attached to hosts and
used for scheduling, so you could ask your containers to run on machines belonging
to a given region or with certain hardware, for example.

As fleet is based on systemd, it also supports the concept of socket activation (i.e., a
container can be spun up in response to a connection on a given port). The primary
advantage of this is that processes can be created just in time, rather than sitting
around idle waiting for something to happen. There are potentially other benefits
related to management of sockets, such as not losing messages between container
restarts.

258 | Chapter 12: Orchestration, Clustering, and Management

Let’s see how we can get identidock running on a fleet cluster. For this example, I’ve
created a GitHub project that contains a Vagrant template that will launch three VMs:

$ git clone https://github.com/amouat/fleet-vagrant
...
$ cd fleet-vagrant
$ vagrant up
...
$ vagrant ssh core-01 -- -A
CoreOS alpha (758.1.0)

We’ve now brought up a cluster of three VMs running CoreOS, which already have
Flannel (see “Flannel”) and fleet installed. We can use the fleet command-line tool
fleetctl to get a list of machines in the cluster:

core@core-01 ~ $ fleetctl list-machines
MACHINE IP METADATA
16aacf8b... 172.17.8.103 -
39b02496... 172.17.8.102 -
eb570763... 172.17.8.101 -

First, we want to install SkyDNS (see “SkyDNS”) for DNS-based service discovery. It
makes sense to install common services such as this on all nodes in the cluster, so
we’ll define it to be a global unit. The service file is called skydns.service and has the
following contents (it should already be in your VM):

[Unit]
Description=SkyDNS

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill dns
ExecStartPre=-/usr/bin/docker rm dns
ExecStartPre=/usr/bin/docker pull skynetservices/skydns:2.5.2b
ExecStart=/usr/bin/env bash -c "IP=$(/usr/bin/ip -o -4 addr list docker0 \
 | awk '{print $4}' | cut -d/ -f1) \
 && docker run --name dns -e ETCD_MACHINES=http://$IP:2379 \
 skynetservices/skydns:2.5.2b"
ExecStop=/usr/bin/docker stop dns

[X-Fleet]
Global=true

Apart from the [X-Fleet] section, the rest is just a standard systemd unit file. In Exe
cStart, we first do some shell hackery to get the IP address of the docker0 bridge for
accessing the host’s etcd instance. The container is launched without the -d argument,
which allows systemd to monitor the application and take care of logging. The
[X-Fleet] section tells fleet we want to run this unit on all machines, rather than the
default of a running single instance.

Before we start our DNS servers, we need to add some configuration to etcd:

Clustering and Orchestration Tools | 259

core@core-01 ~ $ etcdctl set /skydns/config \
 '{"dns_addr":"0.0.0.0:53", "domain":"identidock.local."}'
{"dns_addr":"0.0.0.0:53", "domain":"identidock.local."}

This tells SkyDNS that it is responsible for the skydns.local domain.

Now we can start up the service. Units are launched with the fleetctl start com‐
mand:

core@core-01 ~ $ fleetctl start skydns.service
Triggered global unit skydns.service start

And we can get the status of all units with the list-units command. Once every‐
thing is launched and running, you should get output like:

core@core-01 ~ $ fleetctl list-units
UNIT MACHINE ACTIVE SUB
skydns.service 16aacf8b.../172.17.8.103 active running
skydns.service 39b02496.../172.17.8.102 active running
skydns.service eb570763.../172.17.8.101 active running

This shows that a SkyDNS container is running on each of the machines in our clus‐
ter.

Now that we have DNS running, let’s start up our Redis container and register it with
DNS. The config for the Redis unit can be found in the file redis.service, which
looks like:

[Unit]
Description=Redis
After=docker.service
Requires=docker.service
After=flanneld.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill redis
ExecStartPre=-/usr/bin/docker rm redis
ExecStartPre=/usr/bin/docker pull redis:3
ExecStart=/usr/bin/docker run --name redis redis:3
ExecStartPost=/usr/bin/env bash -c 'sleep 2 \
 && IP=$(docker inspect -f {{.NetworkSettings.IPAddress}} redis) \
 && etcdctl set /skydns/local/identidock/redis \
 "{\\"host\\":\\"$IP\\",\\"port\\":6379}"'
ExecStop=/usr/bin/docker stop redis

This time we haven’t included an [X-Fleet] section, so only a single instance of Redis
will be launched. In the [ExecStartPost] section, we’ve included some code to auto‐
matically register Redis with SkyDNS after starting the container. The short sleep is
required for Docker to set up the network configuration before we grab the IP
address. This sort of code is generally best placed in a supporting script, but I’ve left it
in the main unit file for simplicity.

260 | Chapter 12: Orchestration, Clustering, and Management

Start up the Redis service and the dnmonster service (the dnmonster unit file follows
the same format as the Redis one):

core@core-01 ~ $ fleetctl start redis.service
Unit redis.service launched on 53a8f347.../172.17.8.101
core@core-01 ~ $ fleetctl start dnmonster.service
Unit dnmonster.service launched on ce7127e7.../172.17.8.102

You should see the dnmonster and Redis units are scheduled on separate machines,
in order to spread the load:

core@core-01 ~ $ fleetctl list-units
UNIT MACHINE ACTIVE SUB
dnmonster.service 39b02496.../172.17.8.102 activating start-pre
redis.service 16aacf8b.../172.17.8.103 activating start-pre
skydns.service 16aacf8b.../172.17.8.103 active running
skydns.service 39b02496.../172.17.8.102 active running
skydns.service eb570763.../172.17.8.101 active running

It will take some time before the machines have downloaded and started the appro‐
priate containers.

Now let’s start the identidock container. The unit file identidock.service looks like:

[Unit]
Description=identidock

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill identidock
ExecStartPre=-/usr/bin/docker rm identidock
ExecStartPre=/usr/bin/docker pull amouat/identidock:1.0
ExecStart=/usr/bin/env bash -c "docker run --name identidock --link dns \
 --dns $(docker inspect -f {{.NetworkSettings.IPAddress}} dns) \
 --dns-search identidock.local amouat/identidock:1.0"
ExecStop=/usr/bin/docker stop identidock

This time I’ve used Docker’s --dns and --dns-search flags to tell the container to
resolve DNS queries through the SkyDNS container on its machine. To make things a
bit easier, we can also ask fleet to schedule the container on the machine we’re cur‐
rently logged in to. To do this, first find the ID of the machine using fleetctl list-
machines -l:

core@core-01 ~ $ fleetctl list-machines -l
MACHINE IP METADATA
16aacf8ba9524e368b5991a04bf90aef 172.17.8.103 -
39b02496db124c3cb11ba88a13684c16 172.17.8.102 -
eb570763ac8349ec927fac657bffa9ee 172.17.8.101 -

Then add the following to the bottom of the identidock.service file:

[X-Fleet]
MachineID=<id>

Clustering and Orchestration Tools | 261

Replacing <id> with the ID of the machine you’re running on. In my case, this would
be:

[X-Fleet]
MachineID=eb570763ac8349ec927fac657bffa9ee

Now we can start the identidock unit and it should be scheduled on the current
machine:

core@core-01 ~ $ fleetctl start identidock.service
Unit identidock.service launched on eb570763.../172.17.8.101

Once the service has started, we can see if things are working:

core@core-01 ~ $ docker exec -it identidock bash
uwsgi@ae8e3d7c494a:/app$ ping redis
PING redis.identidock.local (192.168.76.3): 56 data bytes
64 bytes from 192.168.76.3: icmp_seq=0 ttl=60 time=1.641 ms
64 bytes from 192.168.76.3: icmp_seq=1 ttl=60 time=2.133 ms
^C--- redis.identidock.local ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.641/1.887/2.133/0.246 ms
uwsgi@ae8e3d7c494a:/app$ curl localhost:9090
<html><head><title>Hello

We can also test what happens if a machine goes down:

core@core-01 ~ $ fleetctl list-units
UNIT MACHINE ACTIVE SUB
dnmonster.service 39b02496.../172.17.8.102 active running
identidock.service eb570763.../172.17.8.101 active running
redis.service 16aacf8b.../172.17.8.103 active running
skydns.service 16aacf8b.../172.17.8.103 active running
skydns.service 39b02496.../172.17.8.102 active running
skydns.service eb570763.../172.17.8.101 active running

Redis is running on 172.17.8.103, which is the core-03 machine. We can use the
Vagrant to stop the machine:

core@core-01 ~ $ exit
$ vagrant halt core-03
==> core-03: Attempting graceful shutdown of VM...

Now log back in and check the status:

core@core-01 ~ $ fleetctl list-units
UNIT MACHINE ACTIVE SUB
dnmonster.service 39b02496.../172.17.8.102 active running
identidock.service eb570763.../172.17.8.101 active running
redis.service 39b02496.../172.17.8.102 activating start-pre
skydns.service 39b02496.../172.17.8.102 active running
skydns.service eb570763.../172.17.8.101 active running

The Redis service has automatically been rescheduled onto a running machine. It will
take some time until the host has downloaded the container, but once it has, it will

262 | Chapter 12: Orchestration, Clustering, and Management

register the new address with SkyDNS and identidock will continue to function. This
pause could be largely avoided by preloading the required images onto each host.

As we can see, fleet has a lot of useful functionality, but is more geared toward long-
lived services rather than transient containers for batch tasks and similar. The sched‐
uling strategies are also very basic—“least loaded” works in many cases, but other
scenarios will call for more subtle or complex strategies. In such cases, you may find
Kubernetes to be a better fit, which can be run on top of fleet.

Kubernetes
Kubernetes is a container-orchestration tool built by Google, based on their experien‐
ces using containers in production over the last decade. Kubernetes is somewhat
opinionated and enforces several concepts around how containers are organized and
networked. The primary concepts you need to understand are:

Pods
Pods are groups of containers that are deployed and scheduled together. Pods
form the atomic unit of scheduling in Kubernetes, as opposed to single contain‐
ers in other systems. A pod will typically include 1 to 5 containers that work
together to provide a service. In addition to these user containers, Kubernetes
will run other containers to provide logging and monitoring services. Pods are
treated as ephemeral in Kubernetes; you should expect them to be created and
destoyed continually as the system evolves.

Flat networking space
Networking works significantly differently in Kubernetes than it does when using
the default Docker bridge network. In the default Docker networking, containers
live on a private subnet and can’t communicate directly with containers on other
hosts without forwarding ports on the host or using proxies. In Kubernetes, con‐
tainers within a pod share an IP address, but the address space is “flat” across all
pods, that is, all pods can talk to each other without any network address transla‐
tion (NAT). This makes multihost clusters much more easy to manage, at the
cost of not supporting links and making single host (or, more accurately, single
pod) networking a little more tricky. As containers in the same pod share an IP,
they can communicate by using ports on the localhost address (which means
you need to coordinate port usage within a pod).

Labels
Labels are key-value pairs attached to objects in Kubernetes, primarily pods, used
to describe identifying characteristics of the object (e.g., version: dev and tier:
frontend). Labels are not normally unique; they are expected to identify groups
of containers. Label selectors can then be used to identify objects or groups of
objects (e.g., all the pods in the frontend tier with environment set to produc‐

Clustering and Orchestration Tools | 263

http://kubernetes.io/

tion). By using labels, it is easy to do grouping tasks such as assigning pods to
load-balanced groups or moving pods between groups.

Services
Services are stable endpoints that can be addressed by name. Services can be con‐
nected to pods by using label selectors. For example, my “cache” service may con‐
nect to several “redis” pods identified by the label selector "type": "redis". The
service will automatically round-robin requests between the pods. In this way,
services can be used to connect parts of a system to each other. Using services
provides a layer of abstraction that means applications do not need to know
internal details of the service they are calling. For example, application code run‐
ning inside a pod only needs to know the name and port of the database service
to call, it does not care how many pods make up the database, or which pod it
talked to last time. Kubernetes will set up a DNS server for the cluster that
watches for new services and allows them to be addressed by name in application
code and configuration files.

It is also possible to set up services that do not point to pods but to other pre-existing
services such as external APIs or databases.

Replication controllers
Replication controllers are the normal way to instantiate pods in Kubernetes
(typically, you don’t use the Docker CLI in Kubernetes). They control and moni‐
tor the number of running pods (called replicas) for a service. For example, a
replication controller may be responsible for keeping five Redis pods running.
Should one fail, it will immediately launch a new one. If the number of replicas is
reduced, it will stop any excess pods. Although using replication controllers to
instantiate all pods adds an extra layer of configuration, it also significantly
improves fault tolerance and reliability.

Figure 12-3 shows part of a Kubernetes cluster, where we have two pods created by a
replication controller and exposed by a service. The service round-robins requests
between the pods that are selected based on the value of the tier label. Within a pod,
there is only a single IP address that is shared between all containers. Containers
within a pod can communicate by using ports on the localhost address. The service
has been assigned a separate IP address, which is publicly accessible.

264 | Chapter 12: Orchestration, Clustering, and Management

Figure 12-3. Example Kubernetes cluster

To get identidock running on Kubernetes, we’ll use separate pods for the dnmonster,
identidock, and redis containers. This may sound like overkill, but these services
could all potentially scale independently (one identidock service could use a loadba‐
lanced group of two dnmonster services and three redis servers) , which means we
don’t have to rewrite our application to address services using ports on localhost.
We don’t need to add logging or monitoring containers, as Kubernetes will do this for
us. Kubernetes also provides a load-balanced frontend proxy, so we don’t need an
Nginx proxy container either.

Getting Kubernetes
The Kubernetes GitHub pages contain getting started guides for many different plat‐
forms. If you would like to play around with Kubernetes on a local resource, you can
run Kubernetes from a set of Docker containers or a Vagrant VM available from the

Clustering and Orchestration Tools | 265

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/docker.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md

2 The examples here are for v1 of the API. Later versions of the API can be expected to have slightly different
syntax.

Kubernetes GitHub pages. Otherwise, a safe bet for a hosted version of Kubernetes is
to use Google Container Engine (GKE), which is Google’s own commercial offering.

If you install Kubernetes yourself, you will need to configure the DNS addon to
resolve service names. If you are running on GKE, this will already be configured and
running.

These instructions were written using Google Container Engine (GKE) to run Kuber‐
netes, but they should be very similar to other Kubernetes installations.2 See “Getting
Kubernetes” for more information on obtaining or installing Kubernetes. The rest of
this section assumes you are at a point where you can successfully run kubectl com‐
mands and that your Kubernetes installation includes a DNS server.

Let’s start by defining the replication controller to start our Redis instance. Create a
file called redis-controller.json with the following contents:

{ "kind":"ReplicationController",
 "apiVersion":"v1",
 "metadata":{ "name":"redis-controller" },
 "spec":{
 "replicas":1,
 "selector":{ "name":"redis-pod" },
 "template":{
 "metadata":{
 "labels":{ "name":"redis-pod" }
 },
 "spec":{
 "containers":[{
 "name":"redis",
 "image":"redis:3",
 "ports":[{
 "containerPort":6379,
 "protocol":"TCP"
 }] }] } } } }

Here we are asking Kubernetes to create a replication-controlled pod consisting of a
single container running the redis:3 image, exposing the port 6379. We provide the
pod with a label that has the key “name” and value “redis-pod.” The replication con‐
troller is an object in its own right, with the name “redis-controller.”

Let’s start this pod using the kubectl tool:

$ kubectl create -f redis-controller.json
services/redis

266 | Chapter 12: Orchestration, Clustering, and Management

https://cloud.google.com/container-engine/

3 Similarly, you run kubectl get rc to get a list of replication controllers and kubectl get services to get a
list of services.

If you then run kubectl get pods you will get a list of all running and pending pods
with various details including labels and IP addresses as well as the containers and
images they are running.3 This command outputs too much information to print
here, but the list of running images should be something like:

gcr.io/google_containers/fluentd-gcp:1.6
gcr.io/google_containers/skydns:2015-03-11-001
gcr.io/google_containers/kube2sky:1.9
gcr.io/google_containers/etcd:2.0.9
redis:3

The non-redis containers take care of running various system tasks; fluentd han‐
dles logging; and skydns, kube2sky, and etcd handle DNS resolution of service
names. Note that our Redis pod is in the pending state; it will take some time for
Kubernetes to download the image and start up the pod.

To see how it works under the hood, if you’re running on GKE, you can log in to the
VM for a pod by running gcloud compute ssh HOST, where HOST is the value from
the HOST heading in kubectl get pods (only use the part prior to the /). From
there, you can run docker ps and interact with containers as you would in a regular
VM running Docker containers.

The next step is to define a service that will allow other containers to connect to our
redis pod without needing to know its IP address. Create a file redis-service.json with
the following contents:

{ "kind":"Service",
 "apiVersion":"v1",
 "metadata":{ "name":"redis" },
 "spec":{
 "ports": [{
 "port":6379,
 "targetPort":6379,
 "protocol":"TCP"
 }],
 "selector":{ "name":"redis-pod" }
 } }

This defines a service that will connect callers to our redis pod. The service is given
the name “redis,” which will be picked up by the DNS cluster addon (installed in GKE
by default) and made resolvable. Importantly, this means our identidock code will
work without needing to edit the hostnames.

The redis pod is identifed by the selector "name":"redis-pod". If we had multiple
redis nodes with the label "name":"redis-pod", this selector would match all of the

Clustering and Orchestration Tools | 267

them. When there is more than one selected pod, the service will choose a random
pod to process the request (it’s also possible to set an affinity for selecting the pod;
e.g., "ClientIP" will consistently assign clients to pods based on their IP address). By
changing the label on pods, they can be dynamically moved in and out of selector
groups, which can be used to accomplish tasks such as temporarily taking a pod out
of production for debugging or maintenance.

Next, we can create our dnmonster controller and service in a very similar manner.
Create a file dnmonster-controller.json with the following contents:

{ "kind":"ReplicationController",
 "apiVersion":"v1",
 "metadata":{ "name":"dnmonster-controller" },
 "spec":{
 "replicas":1,
 "selector":{ "name":"dnmonster-pod" },
 "template":{
 "metadata":{
 "labels":{ "name":"dnmonster-pod" } },
 "spec":{
 "containers":[{
 "name":"dnmonster",
 "image":"amouat/dnmonster:1.0",
 "ports":[{
 "containerPort":8080,
 "protocol":"TCP"
 }] }] } } } }

And the dnmonster service as dnmonster-service.json:

{ "kind":"Service",
 "apiVersion":"v1",
 "metadata":{ "name":"dnmonster" },
 "spec":{
 "ports": [{
 "port":8080,
 "targetPort":8080,
 "protocol":"TCP"
 }],
 "selector":{ "name":"dnmonster-pod" }
 } }

Start them up:

$ kubectl create -f dnmonster-controller.json
replicationcontrollers/dnmonster-controller
$ kubectl create -f dnmonster-service.json
services/dnmonster

This follows exactly the same pattern as the redis controller and service; we have a
dnmonster service that can be accessed using the hostname dnmonster and that for‐
wards to the single dnmonster instance created by the replication controller.

268 | Chapter 12: Orchestration, Clustering, and Management

Now we can create our identidock pod and begin to wire it all together. Create a file
identidock-controller.json with the following contents:

{ "kind":"ReplicationController",
 "apiVersion":"v1",
 "metadata":{ "name":"identidock-controller" },
 "spec":{
 "replicas":1,
 "selector":{ "name":"identidock-pod" },
 "template":{
 "metadata":{
 "labels":{ "name":"identidock-pod" } },
 "spec":{
 "containers":[{
 "name":"identidock",
 "image":"amouat/identidock:1.0",
 "ports":[{
 "containerPort":9090,
 "protocol":"TCP"
 }] }] } } } }

Bring it up:

$ kubectl create -f identidock-controller.json
replicationcontrollers/identidock-controller

Identidock should now be up and running, but we still need to create the identidock
service to make it accessible to the outside world. Create a file identidock-service.json
with the following contents:

{ "kind":"Service",
 "apiVersion":"v1",
 "metadata":{ "name":"identidock" },
 "spec":{
 "type": "LoadBalancer",
 "ports": [{
 "port":80,
 "targetPort":9090,
 "protocol":"TCP"
 }],
 "selector":{ "name":"identidock-pod" }
 } }

This service is a little bit different. We’ve set the "type" to be "LoadBalancer", which
will create an externally accessible load balancer that will listen for connections on
port 80 and forward them to our identidock service on port 9090.

If you’re running on GKE, you may also need to open port 80 on the firewall, which
can be done by creating a rule with the gcloud tool:

$ gcloud compute firewall-rules create --allow=tcp:80 identidock-80

Clustering and Orchestration Tools | 269

Now, assuming there is no firewall in the way, you should be able to connect using the
public IP address listed for the identidock service:

$ kubectl get services identidock
NAME LABELS SELECTOR IP(S) PORT(S)
identidock <none> name=identidock-pod 10.111.250.210 80/TCP
 23.251.128.247
$ curl 23.251.128.247
<html><head><title>Hello...

Volumes in Kubernetes
Volumes are also different in Kubernetes. The major difference is that they are
declared at the pod level, rather than the container level, and can be shared between
containers within the pod. Kubernetes offers several types of volumes, for various use
cases, including:

emptyDir
This will initialize an empty directory on the pod that the containers can write to.
When the pod dies, so does the directory. This is very useful for temporary data
that is only needed for the lifetime of the pod, or data that is regularly backed up
to another, more persistent store.

gcePersistentDisk
For users on GKE, this can be used to store data within the Google Cloud. The
data will persist beyond the lifetime of the pod.

awsElasticBlockStore
For users on AWS, this can be used to stored data on Amazon’s Elastic Block
Store (EBS). The data will persist beyond the lifetime of the pod.

nfs
For accessing files on a Network File System (NFS) share. Again, data will persist
beyond the lifetime of the pod.

secret
For storing sensitive information such as passwords and API tokens used by
pods. Secret volumes must be populated via the Kubernetes API and are stored in
tmpfs, which exists entirely in RAM and is never written to disk.

Using Kubernetes took a bit more configuration work but has resulted in a system
that supports failover and load balancing out-of-the-box. Rather than having con‐
tainers hard linked to each other, using services gives us a layer of abstraction that
allows us to easily scale and swap the underlying pods and containers. The disadvan‐
tage is that Kubernetes has added a considerable amount of extra weight to our sim‐

270 | Chapter 12: Orchestration, Clustering, and Management

4 Previously known as slave nodes.

ple identidock application; the extra logging and monitoring infrastructure requires
significantly resources and hence increases running costs.

For some applications, the system design and choices enforced by Kubernetes will not
be appropriate. For the majority of applications, especially microservices and those
with little or well-contained state, it provides an easy-to-use, resilient, and scalable
service for surprisingly little work.

Mesos and Marathon
Apache Mesos is an open source cluster manager. It’s designed to scale to very large
clusters involving hundreds or thousands of hosts. Mesos supports diverse workloads
from multiple tenants; one user’s Docker containers may be running next to another
user’s Hadoop tasks.

Apache Mesos was started as a project at the University of California, Berkeley before
becoming the underlying infrastructure used to power Twitter and an important tool
at many major companies such as eBay and Airbnb. A lot of continuing development
in Mesos and supporting tools (such as Marathon) is undertaken by Mesosphere, a
company cofounded by Ben Hindman, one of the orginal developers of Mesos.

The architecture of Mesos is designed around high-availability and resilience. The
major components in a Mesos cluster are:

Mesos agent nodes4

Responsible for actually running tasks. All agents submit a list of their available
resources to the master. There will typically be tens to thousands of agent nodes.

Mesos master
The master is responsible for sending tasks to the agents. It maintains a list of
available resources that are then offered to frameworks. The master decides how
many resources to offer based on an allocation strategy. There will typically be
two or four standby masters ready to take over in case of a failure.

ZooKeeper
Used in elections and for looking up address of current master. Typically three or
five ZooKeeper instances will be running to ensure availability and to handle fail‐
ures.

Frameworks
Frameworks coordinate with the master to schedule tasks onto agent nodes.
Frameworks are composed of two parts: the executor process that runs on the
agents and takes care of running the tasks and the scheduler that registers with

Clustering and Orchestration Tools | 271

https://mesos.apache.org

5 Presumably this is why they called it Marathon. Ba-dum-tsh, indeed.

the master and selects the resources to use based on offers from the master. There
may be multiple frameworks running on a Mesos cluster for different kinds of
tasks. Users wishing to submit jobs interact with frameworks rather than directly
with Mesos.

In Figure 12-4, we see a Mesos cluster that uses the Marathon framework as the
scheduler. The Marathon scheduler uses ZooKeeper to locate the current Mesos mas‐
ter it will submit tasks to. Both the Marathon scheduler and the Mesos master have
standbys ready to start work should the current master become unavailable.

Figure 12-4. Mesos cluster

Typically, ZooKeeper will run on the same hosts as the Mesos master and its stand‐
bys. In a small cluster, these hosts may also run agents, but larger clusters require
communication with the master, making this less feasible. Marathon may run on the
same hosts as well, or may instead run on separate hosts that live on the network
boundary and form the access point for clients, thus keeping clients separated from
the Mesos cluster itself.

Marathon (from Mesosphere) is designed to start, monitor, and scale long-running5

applications. Marathon is designed to be flexible about the applications it launches,
and can even be used to start other complementary frameworks such as Chronos
(“cron” for the data center). It makes a good choice of framework for running Docker
containers, which are directly supported in Marathon. Like the other orchestration
frameworks we’ve looked at, Marathon supports various affinity and constraint rules.
Clients interact with Marathon through a REST API. Other features include support

272 | Chapter 12: Orchestration, Clustering, and Management

https://mesosphere.github.io/marathon/

for health checks and an event stream that can be used to integrate with load-
balancers or for analyzing metrics.

To get an idea how Mesos and Marathon work, we’ll set up a three-node cluster using
Docker Machine that mimics the setup in Figure 12-4. However, we’ll only run a sin‐
gle instance of ZooKeeper, the Marathon scheduler, and the Mesos master. All nodes
will run a Mesos agent. A production architecture is considerably different and
should include multiple instances of the central services for high availability.

Start by creating the hosts, mesos-1, mesos-2, and mesos-3:

$ docker-machine create -d virtualbox mesos-1
Creating VirtualBox VM...
...
$ docker-machine create -d virtualbox mesos-2
...
$ docker-machine create -d virtualbox mesos-3
...

We also need to do a bit of configuration to allow the mesos hostnames to resolve.
This shouldn’t be necessary, but I ran into problems without it:

$ docker-machine ssh mesos-1 'sudo sed -i "\$a127.0.0.1 mesos-1" /etc/hosts'
$ docker-machine ssh mesos-2 'sudo sed -i "\$a127.0.0.1 mesos-2" /etc/hosts'
$ docker-machine ssh mesos-3 'sudo sed -i "\$a127.0.0.1 mesos-3" /etc/hosts'

We’ll start by configuring mesos-1, which will run the Mesos master, ZooKeeper, the
Marathon framework as well as an agent.

The first thing we want to start is ZooKeeper, which the other containers will use to
register and find services. We’re using an image I created here, as at the time of writ‐
ing, there wasn’t an official one. I’ve used --net=host for this container, mainly for
efficiency reasons and for consistency with the master and agent containers, which
require host networking so they can open new ports for services.

$ eval $(docker-machine env mesos-1)
$ docker run --name zook -d --net=host amouat/zookeeper
...
Status: Downloaded newer image for amouat/zookeeper:latest
dfc27992467c9563db05af63ecb6f0ec371c03728f9316d870bd4b991db7b642

Save the IP addresses of our nodes into variables to make the following configuration
a bit easier:

$ MESOS1=$(docker-machine ip mesos-1)
$ MESOS2=$(docker-machine ip mesos-2)
$ MESOS3=$(docker-machine ip mesos-3)

Now we can bring up the master:

$ docker run --name master -d --net=host \
 -e MESOS_ZK=zk://$MESOS1:2181/mesos \

Clustering and Orchestration Tools | 273

 -e MESOS_IP=$MESOS1 \
 -e MESOS_HOSTNAME=$MESOS1 \
 -e MESOS_QUORUM=1 \
 mesosphere/mesos-master:0.23.0-1.0.ubuntu1404
...
Status: Downloaded newer image for mesosphere/mesos-master:0.23.0-1.0.ubuntu1404
9de83f40c3e1c5908381563fb28a14c2e23bb6faed569b4d388ddfb46f7d7403

Tells the master where to find ZooKeeper and register itself.

Sets the IP to use for the masters.

We’re only going to have a single master node for the purposes of the demo.

We’re using a mesos image from Mesosphere. This image isn’t an automated
build, and it’s hard to tell exactly what is in it, so I don’t recommend using it in
production.

And we’ll run an agent on the same host:

$ docker run --name agent -d --net=host \
 -e MESOS_MASTER=zk://$MESOS1:2181/mesos \
 -e MESOS_CONTAINERIZERS=docker \
 -e MESOS_IP=$MESOS1 \
 -e MESOS_HOSTNAME=$MESOS1 \
 -e MESOS_EXECUTOR_REGISTRATION_TIMEOUT=10mins \
 -e MESOS_RESOURCES="ports(*):[80-32000]" \
 -e MESOS_HOSTNAME=$MESOS1 \
 -v /var/run/docker.sock:/run/docker.sock \
 -v /usr/local/bin/docker:/usr/bin/docker \
 -v /sys:/sys:ro \
 mesosphere/mesos-slave:0.23.0-1.0.ubuntu1404
...
Status: Downloaded newer image for mesosphere/mesos-slave:0.23.0-1.0.ubuntu1404
38aaec1d08a41e5a6deeb62b7b097254b5aa2b758547e03c37cf2dfc686353bd

Mesos has the concept of containerizers, which provide isolation between tasks
and are run on the agent. Adding the docker argument here allows us to execute
Docker containers as tasks on the agent.

We need to extend the “registration timeout” to allow the agent time to download
images before aborting.

By default, agents will only offer a subset of high-numbered ports to frameworks.
As identidock uses some low-numbered ports, we need to explicitly add them to
the offered resources. For conciseness, I’ve neglected to remove the ports used by
Mesos from this list, but this can cause a conflict if a framework requests a port
already in use.

274 | Chapter 12: Orchestration, Clustering, and Management

In order for the agent to be able to start new containers, we mount the Docker
sock and binary.

Mounting /sys is needed for the agent to report accurate details on the resources
available on the host.

$ docker run -d --name marathon -p 9000:8080 \
 mesosphere/marathon:v0.9.1 --master zk://$MESOS1:2181/mesos \
 --zk zk://$MESOS1:2181/marathon \
 --task_launch_timeout 600000
...
Status: Downloaded newer image for mesosphere/marathon:v0.9.1
697d78749c2cfd6daf6757958f8460963627c422710f366fc86d6fcdce0da311

We need to move Marathon from its default port of 8080 to avoid potentially
conflicting with the dnmonster container.

Sets a timeout of 600,000 ms to match the agent executor registration timeout of
10 minutes. This setting addresses a temporary issue and will be removed in a
future version.

Next, bring up an agent on the other hosts:

$ eval $(docker-machine env mesos-2)
$ docker run --name agent -d --net=host \
 -e MESOS_MASTER=zk://$MESOS1:2181/mesos \
 -e MESOS_CONTAINERIZERS=docker \
 -e MESOS_IP=$MESOS2 \
 -e MESOS_HOSTNAME=$MESOS2 \
 -e MESOS_EXECUTOR_REGISTRATION_TIMEOUT=10mins \
 -e MESOS_RESOURCES="ports(*):[80-32000]" \
 -v /var/run/docker.sock:/run/docker.sock \
 -v /usr/local/bin/docker:/usr/bin/docker \
 -v /sys:/sys:ro \
 mesosphere/mesos-slave:0.23.0-1.0.ubuntu1404
...
Status: Downloaded newer image for mesosphere/mesos-slave:0.23.0-1.0.ubuntu1404
ac1216e7eedbb39475404f45a5655c7dc166d118db99072ed3d460322ad1a1c2
$ eval $(docker-machine env mesos-3)
$ docker run --name agent -d --net=host \
 -e MESOS_MASTER=zk://$MESOS1:2181/mesos \
 -e MESOS_CONTAINERIZERS=docker \
 -e MESOS_IP=$MESOS3 \
 -e MESOS_HOSTNAME=$MESOS3 \
 -e MESOS_EXECUTOR_REGISTRATION_TIMEOUT=10mins \
 -e MESOS_RESOURCES="ports(*):[80-32000]" \
 -v /var/run/docker.sock:/run/docker.sock \
 -v /usr/local/bin/docker:/usr/bin/docker \
 -v /sys:/sys:ro \
 mesosphere/mesos-slave:0.23.0-1.0.ubuntu1404
...

Clustering and Orchestration Tools | 275

Status: Downloaded newer image for mesosphere/mesos-slave:0.23.0-1.0.ubuntu1404
b5eecb7f56903969d1b7947144617050f193f20bb2a59f2b8e4ec30ef4ec3059

Now, if you open http://$MESOS1:5050 in a browser (replacing $MESOS1 with the IP
address of mesos-1), you should see the web interface for Mesos. Similarly the Mara‐
thon interface should be available on port 9000.

We now have the infrastructure in place for running containers on Mesos agents via
Marathon. But before we can get identidock running, we need to add a service dis‐
covery mechanism. In this case, we’ll use mesos-dns and launch it on mesos-1.

Marathon jobs are defined in a JSON file that contains details of the job to launch and
its resource requirements.

We can use the following JSON file to start mesos-dns on mesos-1:

{
 "id": "mesos-dns",
 "container": {
 "docker": {
 "image": "bergerx/mesos-dns",
 "network": "HOST",
 "parameters": [
 { "key": "env",
 "value": "MESOS_DNS_ZK=zk://192.168.99.100:2181/mesos" },
 { "key": "env", "value": "MESOS_DNS_MASTERS=192.168.99.100:5050" },
 { "key": "env", "value": "MESOS_DNS_RESOLVERS=8.8.8.8" }
]
 }
 },
 "cpus": 0.1,
 "mem": 120.0,
 "instances": 1,
 "constraints": [["hostname", "CLUSTER", "192.168.99.100"]]
}

We’re using a user-provided build of mesos-dns here, as it automatically reads
configuration from environment variables, which at the time of writing wasn’t
supported by the mesosphere/mesos-dns image.

Again, it makes sense to use host networking for efficiency, although we could
use the bridge network and publish port 53.

We need to set environment variables to configure mesos-dns. This is done by
using the parameter option, which adds flags to the docker run command used
to start the image. Replace the IP address 192.168.99.100 with the IP of mesos-1
in your cluster.

276 | Chapter 12: Orchestration, Clustering, and Management

http://$MESOS1:5050
https://github.com/mesosphere/mesos-dns

All tasks need to define what resources they need to run. In this case, we’re asking
for “0.1” CPU resources and 120 megabytes of memory.

For this test, we only need a single instance of mesos-dns.

We’ll pin mesos-dns to the mesos-1 host by specifying a hostname constraint
with the IP of mesos-1.

Exactly how resources are allocated to a container is dependent on the isolator used
by Mesos, which is configurable. Normally, CPU will be a relative weighting, that is,
when there is contention for CPU, a container with a weighting 0.2 will receive twice
as much CPU as one with a weighting of 0.1. The agent will also deduct the CPU
value from the resources it offers to Mesos (so if an agent has “8” CPU and runs a
task with “1” CPU, it will offer “7” CPU for further tasks).

Save the file as dns.json and send to Marathon using the REST API and the follow‐
ing command:

$ curl -X POST http://$MESOS1:9000/v2/apps -d @dns.json \
 -H "Content-type: application/json" | jq .
{
 "id": "/mesos-dns",
 "cmd": null,
 "args": null,
 "user": null,
...

We could also use the marathonctl command-line tool or the web interface to submit
jobs.

If you now look at the Marathon web interface, you should see that it is in the process
of deploying the mesos-dns application. Once mesos-dns is up and running, we need
to tell each of our hosts to use it. The easiest solution is to update resolv.conf in each
of the hosts, which will be automatically propagated to any containers when they are
started.

You can do this by running a sed script on each of the hosts:

$ docker-machine ssh mesos-1 \
 "sudo sed -i \"1s/^/domain marathon.mesos\nnameserver $MESOS1\n/\" \
 /etc/resolv.conf"
$ docker-machine ssh mesos-2 \
 "sudo sed -i \"1s/^/domain marathon.mesos\nnameserver $MESOS1\n/\" \
 /etc/resolv.conf"
$ docker-machine ssh mesos-3 \
 "sudo sed -i \"1s/^/domain marathon.mesos\nnameserver $MESOS1\n/\" \
 /etc/resolv.conf"

This should result in a resolv.conf on each host that looks like the following:

Clustering and Orchestration Tools | 277

domain marathon.mesos
nameserver 192.168.99.100
...

If your resolv.conf includes a search line, you will also need to extend it to include
marathon.mesos or name resolution will fail.

Now create a launcher for each of our containers. We’ll put these on the bridge net‐
work, but they’ll all need to expose a port so that they can be accessed via the host.

As usual, we’ll start with Redis. Save the following as redis.json:

{
 "id": "redis",
 "container": {
 "docker": {
 "image": "redis:3",
 "network": "BRIDGE",
 "portMappings": [
 {"containerPort": 6379, "hostPort": 6379}
]

 }
 },
 "cpus": 0.3,
 "mem": 300.0,
 "instances": 1
}

And submit:

$ curl -X POST http://$MESOS1:9000/v2/apps -d @redis.json \
 -H "Content-type: application/json"
...

Similarly for dnmonster, save the following as dnmonster.json:

{
 "id": "dnmonster",
 "container": {
 "docker": {
 "image": "amouat/dnmonster:1.0",
 "network": "BRIDGE",
 "portMappings": [
 {"containerPort": 8080, "hostPort": 8080}
]

 }
 },
 "cpus": 0.3,
 "mem": 200.0,
 "instances": 1
}

278 | Chapter 12: Orchestration, Clustering, and Management

And submit:

$ curl -X POST http://$MESOS1:9000/v2/apps -d @dnmonster.json \
 -H "Content-type: application/json"
...

Finally, save the following as identidock.json:

{
 "id": "identidock",
 "container": {
 "docker": {
 "image": "amouat/identidock:1.0",
 "network": "BRIDGE",
 "portMappings": [
 {"containerPort": 9090, "hostPort": 80}
]

 }
 },
 "cpus": 0.3,
 "mem": 200.0,
 "instances": 1
}

And submit:

$ curl -X POST http://$MESOS1:9000/v2/apps -d @identidock.json \
 -H "Content-type: application/json"
...

Once the agents have downloaded and started the images, you should be able to
access identidock via the IP address of whichever host was assigned the identidock
task. You can find this out from either the web interface or the REST API. For exam‐
ple:

$ curl -s http://$MESOS1:9000/v2/apps/identidock | jq '.app.tasks[0].host'
"192.168.99.101"
$ curl 192.168.99.101
<html><head><title>Hello...

Marathon will ensure any apps that die are restarted, assuming there are enough
resources available. It’s educational to try stopping and restarting the mesos-2 and
mesos-3 machines and see how tasks are migrated and restarted as resources go off‐
line and new ones become available.

More complex health checks can easily be added to apps, normally by implementing a
HTTP endpoint Marathon can poll at regular intervals. For example, we can update
identidock.json to contain the following:

{
 "id": "identidock",
 "container": {

Clustering and Orchestration Tools | 279

 "docker": {
 "image": "amouat/identidock:1.0",
 "network": "BRIDGE",
 "portMappings": [
 {"containerPort": 9090, "hostPort": 80}
]

 }
 },
 "cpus": 0.3,
 "mem": 200.0,
 "instances": 1,
 "healthChecks": [
 {
 "protocol": "HTTP",
 "path": "/",
 "gracePeriodSeconds": 3,
 "intervalSeconds": 10,
 "timeoutSeconds": 10,
 "maxConsecutiveFailures": 3
 }]
}

This will attempt to fetch the home page for identidock every 10 seconds. If the fetch
fails for whatever reason (e.g., the return code isn’t between 200 and 399 or a response
is received within the timeout), Marathon will test the endpoint twice more before
killing the task.

To deploy the health check, just stop the old identidock deployment and start the
updated one:

$ curl -X DELETE http://$MESOS1:9000/v2/apps/identidock
{"version":"2015-09-02T13:53:23.281Z","deploymentId":"1db18cce-4b39-49c0-8f2f...
$ curl -X POST http://$MESOS1:9000/v2/apps -d @identidock.json \
 -H "Content-type: application/json"
...

Now you should be able to find “Health Check Results” if you click through the Mar‐
athon web interface.

We’ve already seen constraints in action in Marathon when we scheduled the mesos-
dns container on a host with a given IP address. We can also specify constraints that
choose hosts with (or without) given attributes, including being able to spread con‐
tainers across hosts for fault tolerance.

One problem with the current setup is that the address of the identidock service is
dependent on the IP of the host it is scheduled on. Clearly, it’s important to have a
way of reliably routing to the identidock service from a static endpoint. One way to
do this would be to use mesos-dns to discover the current endpoint, but Marathon
also provides a servicerouter tool that generates an HAProxy config for routing to
Marathon apps. Another solution is to roll your own proxy or load-balancing service

280 | Chapter 12: Orchestration, Clustering, and Management

https://github.com/mesosphere/marathon/blob/master/bin/servicerouter.py
http://www.haproxy.org/

that listens to Marathon’s event bus for application creation and destruction events
and forwards requests accordingly.

A second issue is the usage of fixed ports, like 6379 for Redis and 8080 for dnsmon‐
ster. We’ve already had to remap the Marathon interface to port 9000 to avoid a con‐
flict with dnmonster. We could fix this by rewriting the application to use dynamic
ports assigned by Marathon, but a better solution would be use to a SDN. There are
guides available online to installing Weave alongside Mesos, and Mesosphere is work‐
ing on natively integrating Project Calico (see “Project Calico”) with Mesos.

Marathon also features application groups that can be used to gather applications
together to ensure they are deployed in the correct order to satisfy dependencies (e.g.,
starting a database before the application server) both on startup and when scaling or
performing rolling updates.

A unique feature of Mesos, when compared to the other orchestration solutions, is its
support for mixed workloads. Multiple frameworks can be running on the same clus‐
ter, allowing Hadoop or Storm data-processing tasks to run alongside Docker con‐
tainers driving a microservice application. This is one of the features that makes
Mesos particularly useful at driving high utilization; it’s possible to schedule high-
CPU but low-bandwidth tasks on the same host as tasks with the opposite character‐
istics to maximize resource usage. Efficient usage of a cluster is dependent on
accurately requesting resources rather than over-provisioning when submitting tasks
to Marathon or other frameworks. In the identidock example, the memory figures
were intentionally inflated in order to ensure that not all the tasks would be allocated
to the same agent, although in reality, a single host could easily cope. In order to
address this, Mesos supports over-subscription, which allows “revocable” tasks to be
started on an agent that is not offering enough resources but, according to monitor‐
ing, still has capacity. These revocable tasks will be stopped if resource usage spikes
and hence are normally low-priority tasks, such as running background analytics. For
more information on over-subscription in Mesos, see the Mesos site and GitHub.

Running Swarm or Kubernetes on Mesos
As Mesos itself provides a low-level clustering and scheduling infrastructure, it’s pos‐
sible to run higher-level interfaces such as Kubernetes and Swarm on top of Mesos. At
first this might sound foolish—there is a large degree of duplication in the functional‐
ity provided. However, running on top of Mesos means you can take advantage of the
existing Mesos functionality for fault tolerance, high availability, and resource utiliza‐
tion. You can also take advantage of easy portability to any data center or cloud that
supports Mesos, while still keeping the features and ease of use of Kubernetes or
Swarm. There are significant advantages for operations as well; they can concentrate
on providing the underlying Mesos infrastructure while supporting diverse work‐
loads and high utilization.

Clustering and Orchestration Tools | 281

http://mesos.apache.org/documentation/latest/oversubscription/
https://github.com/mesosphere/serenity

For more information, see Kubernetes-Mesos.

Container Management Platforms
There are several platforms designed to help automate the task of provisioning,
orchestrating, and monitoring containers. These platforms do not provide container
hosting directly, but instead provide an interface on top of public clouds and private
infrastructure. All of the examples we will look at here provide a web interface and
give an overview of the system. These platforms can be a great way to ease the man‐
agement of container deployments while maintaining a layer of abstraction from the
infrastructure provider (or providers), which can make it easier to move between
cloud platforms or to use multiple cloud platforms.

Rancher
Rancher, presumably named after the “pets versus cattle” analogy, is the most
Docker-centric of the management platforms.

Getting started with Rancher is super simple; just run the Rancher server container
on one of your hosts:

$ docker run -d --restart=always -p 8080:8080 rancher/server

Then if you point a browser at port 8080 on that host, you should see the Rancher
interface. From there, you can begin adding hosts, which can be VMs on your infra‐
structure, or cloud resources. When using a public cloud such as Digital Ocean or
AWS, Rancher will automatically provision a VM if you provide it with your access
keys. When installing Rancher on an existing VM, it’s a simple case of running the
Rancher agent on the host using the arguments given by the Rancher interface, which
will be something like:

$ docker run -d --privileged -v /var/run/docker.sock:/var/run/docker.sock \
 rancher/agent:v0.8.1 http://<host_ip>:8080/v1/scripts/<token>

Rancher needs to mount the Docker socket so that it can start new containers on the
host. Once the agent is up and running, it should appear on the HOSTS tab of the
Rancher interface. The infrastructure screen will show a list of all running containers
on the hosts (with the exception of the Rancher agents). For testing, the Rancher
server may run on the same host as an agent, but Rancher advises using a dedicated
host for the server in production.

It’s trivial to get identidock up and running on Rancher. Just create a service for each
of the containers, and link the identidock service to the dnmonster and Redis serv‐
ices. You may also want to publish port 9000 as port 80 on the identidock service.
There is no need to publish any other ports; Rancher will take care of networking

282 | Chapter 12: Orchestration, Clustering, and Management

http://bit.ly/1XLRuBx
http://rancher.com/rancher/

across hosts and scheduling containers on appropriate hosts. Figure 12-5 shows iden‐
tidock running on a Rancher-managed cluster with two hosts.

Figure 12-5. Rancher running identidock

Alternatively, we could have used Rancher Compose, a CLI tool for deploying Docker
Compose files to Rancher.

Rancher makes it easy to find details on running containers, including accessing the
logs and even running a shell to debug processes.

While Rancher currently provides its own solution for cross-host networking (using
IPsec), service discovery, and simple orchestration, their intention is to move entirely
to the Docker stack (i.e., using Swarm for orchestration and the new networking plu‐
gins). They are also working on Kubernetes and Mesos integration. Given how easy it
is to get started with Rancher, or to add it to an existing system, it’s certainly worth
trying out.

Clocker
Clocker is a self-hosted, open source container-management platform built on top of
Apache Brooklyn. Compared to Rancher, it provides a more application-oriented sol‐
ution and supports the mixing of VMs and containers within an application. It sup‐
ports a very wide range of cloud providers through the use of the jclouds toolkit.

Getting going with Clocker takes a little bit of work. After downloading the software,
it has to be configured with cloud deployment tokens and access keys. Once this is

Container Management Platforms | 283

https://github.com/rancher/rancher-compose
https://en.wikipedia.org/wiki/IPsec
https://brooklyncentral.github.io/clocker/
https://brooklyn.incubator.apache.org/
https://jclouds.apache.org/

done, a Clocker cloud can be spun up and will automatically provision hosts and
install networking using Weave or Project Calico.

Once a Clocker cloud is in place, a new application can be started to run Docker con‐
tainers. The following YAML will bring up identidock on Clocker:

id: identidock
name: "Identidock"
location: my-docker-cloud
services:
- type: docker:redis:3
 name: redis
 id: redis
 openPorts:
 - 6379
- type: docker:amouat/dnmonster:1.0
 name: dnmonster
 id: dnmonster
 openPorts:
 - 8080
- type: docker:amouat/identidock:1.0
 name: identidock
 id: identidock
 portBindings:
 80: 9090
 links:
 - $brooklyn:component("redis")
 - $brooklyn:component("dnmonster")

Figure 12-6. Clocker running identidock using Weave and AWS

284 | Chapter 12: Orchestration, Clustering, and Management

The advantage of Clocker is that we can easily mix a Docker deployment with non‐
containerized resources. For example, we can replace the Redis container with a VM
running Redis by using the following YAML for the Redis service:

- type: org.apache.brooklyn.entity.nosql.redis.RedisStore
 name: redis
 location: jclouds:softlayer:lon02
 id: redis
 install.version: 3.0.0
 start.timeout: 10m

This will provision a VM in Softlayer’s London data center, then install and run Redis
on it.

At the time of writing, Clocker is in heavy development. While it currently lacks some
of the polish of other solutions, its use of Brooklyn and jclouds technology means it
can be deployed on a wide range of systems and will happily run with a mixture of
different kinds of infrastructure.

Tutum
Tutum provides a hosted platform for deploying and managing containers. They
focus strongly on usability and providing a clean interface.

Adding nodes to Tutum can be done by providing credentials to a public cloud pro‐
vider or by installing the Tutum agent on an existing machine. The agent runs as a
daemon, rather than a container, which means it isn’t supported by all operating sys‐
tems (notably the boot2docker images created by Docker Machine aren’t supported).

Tutum uses stackfiles for defining sets of linked services. These are intentionally very
similar to Compose files but add some extra fields related to orchestration and scaling
such as target_num_containers and deployment_strategy, while dropping others such
as user and cap_add.

Internally, Tutum uses Weave (see “Weave”) to provide cross-host networking and
service discovery.

Getting identidock running on Tutum is also a breeze. Figure 12-7 shows the Tutum
dashboard, with identidock running on two Digital Ocean nodes.

Container Management Platforms | 285

https://www.tutum.co/

Figure 12-7. Tutum running identidock

In addition to the web interface, Tutum can be accessed via a REST API and the
Tutum CLI.

For anyone that is looking for a centralized service that alleviates a lot of the opera‐
tions work around setting up and running containerized services, Tutum is worth
looking at. People who wish to remain in full control of their services or are wary of
trusting a centralized service should look elsewhere.

Conclusion
There are clearly a lot of choices for orchestrating, clustering, and managing contain‐
ers. That being said, the choices are generally well differentiated. In terms of orches‐
tration, we can say the following:

• Swarm has the advantage (and disadvantage) of using the standard Docker inter‐
face. While this makes it very simple to use Swarm and to integrate it into exist‐
ing workflows, it may also make it more difficult to support the more complex
scheduling that may be defined in custom interfaces.

• Fleet is a low-level and fairly simple orchestration layer that can be used as a base
for running higher-level orchestration tools, such as Kubernetes or custom sys‐
tems.

• Kubernetes is an opinionated orchestration tool that comes with service discov‐
ery and replication baked in. It may require some redesigning of existing applica‐
tions, but used correctly, will result in a fault-tolerant and scalable system.

• Mesos a is low-level, battle-hardened scheduler that supports several frameworks
for container orchestration, including Marathon, Kubernetes, and Swarm.

At the time of writing, Kubernetes and Mesos are more developed and stable than
Swarm. In terms of scale, only Mesos has been proven to support large-scale systems

286 | Chapter 12: Orchestration, Clustering, and Management

of hundreds or thousands of nodes. However, when looking at small clusters of, say,
less than a dozen nodes, Mesos may be an overly complex solution.

If terms of management platforms, Rancher looks great for pure Docker deploy‐
ments. It can be easily added or removed from existing deployments, so there is little
risk in trying it out.

Conclusion | 287

1 The better articles on Docker security include the series by Dan Walsh of Red Hat on opensource.com and
Jonathan Rudenberg’s article on image insecurity, but note that the issues in Jonathan’s article have been
largely addressed by the development of digests and the Notary project.

CHAPTER 13

Security and Limiting Containers

To use Docker safely, you need to be aware of the potential security issues and the
major tools and technqiues for securing container-based systems. In this chpater we
will consider security from the viewpoint of running Docker in production, but most
of the advice is equally applicable to development. Even with security, it is important
to keep the development and production environments similar in order to avoid the
issues around moving code between environments that Docker was intended to solve.

Reading online posts and news items1 about Docker can give you the impression that
Docker is inherently insecure and not ready for production use. While you certainly
need to be aware of issues related to using containers safely, containers, if used prop‐
erly, can provide a more secure and efficient system than using VMs or bare-metal
alone.

This chapter begins by exploring some of the issues surrounding the security of
container-based systems that you should be thinking about when using containers.

289

https://opensource.com/business/14/7/docker-security-selinux
https://titanous.com/posts/docker-insecurity

2 There is currently ongoing work to automatically map the root user in a container to a nonprivileged user on
the host. This would dramatically reduce the capabilities of an attacker in the event of a breakout, but would
create problems with the ownership of volumes.

Disclaimer!

The guidance in this chapter is based on my opinion. I am not a
security researcher, nor am I responsible for any major public-
facing system. That being said, I am confident that any system that
follows the guidance in this chapter will be in a better security sit‐
uation than the majority of systems out there. The advice in this
chapter does not form a complete solution and should only be used
to inform the development of your own security procedures and
policy.

Things to Worry About
So what sorts of security issues should you been thinking about in a container-based
environment? The following list is nonexhaustive but should give you food for
thought:

Kernel exploits
Unlike in a VM, the kernel is shared among all containers and the host, magnify‐
ing the importance of any vulnerabilities present in the kernel. Should a con‐
tainer cause a kernel panic, it will take down the whole host. In VMs, the
situation is much better: an attacker would have to route an attack through both
the VM kernel and the hypervisor before being able to touch the host kernel.

Denial-of-service (DoS) attacks
All containers share kernel resources. If one container can monopolize access to
certain resources—including memory and more esoteric resources such as user
IDs (UIDs)—it can starve out other containers on the host, resulting in a denial-
of-service, where legitimate users are unable to access part or all of the system.

Container breakouts
An attacker who gains access to a container should not be able to gain access to
other containers or the host. Because users are not namespaced, any process that
breaks out of the container will have the same privileges on the host as it did in
the container; if you were root in the container, you will be root on the host.2

This also means that you need to worry about potential privilege escalation
attacks—where a user gains elevated privileges such as those of the root user,
often through a bug in application code that needs to run with extra privileges.
Given that container technology is still in its infancy, you should organize your

290 | Chapter 13: Security and Limiting Containers

security around the assumption that container breakouts are unlikely, but possi‐
ble.

Poisoned images
How do you know that the images you are using are safe, haven’t been tampered
with, and come from where they claim to come from? If an attacker can trick you
into running her image, both the host and your data are at risk. Similarly, you
want to be sure the images you are running are up to date and do not contain
versions of software with known vulnerabilities.

Compromising secrets
When a container accesses a database or service, it will likely require some secret,
such as an API key or username and password. An attacker who can get access to
this secret will also have access to the service. This problem becomes more acute
in a microservice architecture in which containers are constantly stopping and
starting, as compared to an architecture with small numbers of long-lived VMs.
Solutions for sharing secrets were previously discussed in “Sharing Secrets”.

Containers and Namespacing
In a much-cited article, Dan Walsh of Red Hat wrote “Containers Do Not Contain.”
By this, he primarily meant that not all resources that a container has access to are
namespaced. Resources that are namespaced are mapped to a separate value on the
host (e.g., PID 1 inside a container is not PID 1 on the host or in any other container).
In contrast, resources that are not namespaced are the same on the host and in con‐
tainers.

Resources that are not namespaced include:

User IDs (UIDs)
Users inside a container have the same UID in the container and on the host.
This means that if a container is running as the root user, and a container break‐
out occurs, the attacker will be root on the host. There is work-in-progress to
map the root user in a container to a high-numbered user on the host, but this
hasn’t landed yet.

The kernel keyring
If your application or a dependent application uses the kernel keyring for han‐
dling cryptographic keys or something similar, it’s very important to be aware of
this. Keys are separated by UID; therefore, containers running with the same
UID will have access to the same keys, as well as the equivalent user on the host.

The kernel itself and any kernel modules
If a container loads a kernel module (which requires extra privileges), the module
will be available across all containers and the host. This includes the Linux Secu‐
rity Modules discussed later.

Things to Worry About | 291

https://opensource.com/business/14/7/docker-security-selinux

3 There is an interesting argument about whether containers will ever be as secure as VMs. VM proponents
argue that the lack of a hypervisor and the need to share kernel resources mean that containers will always be
less secure. Container proponents argue that VMs are more vulnerable because of their greater attack surface,
pointing to the large amounts of complicated and privileged code in VMs required for emulating esoteric
hardware (as an example, see the recent VENOM vulnerability that exploited code in floppy-drive emulation).

Devices
Including disk drives, sound-cards, and graphics processing units (GPUs).

The system time
Changing the time inside a container changes the system time for the host and all
other containers. This is only possible in containers that have been given the
SYS_TIME capability, which is not granted by default.

The simple fact is that both Docker and the underlying Linux kernel features it relies
on are still young and nowhere near as battle hardened as the equivalent VM technol‐
ogy. For the time being at least, containers do not offer the same level of security
guarantees as VMs.3

Defense-in-Depth
So what can you do? Assume vulnerability and build defense-in-depth. Consider the
analogy of a castle, which has multiple layers of defense, tailored to thwart various
kinds of attack. Typically, a castle has a moat, or exploits local geography, to control
access routes to the castle. The walls are thick stone, designed to repel fire and can‐
non blasts. There are battlements for defenders and multiple levels of keeps inside the
castle walls. Should an attacker get past one of set of defenses, there will be another to
face.

The defenses for your system should also consist of multiple layers. For example,
your containers will most likely run in VMs so that if a container-breakout occurs,
another level of defense can prevent the attacker from getting to the host or contain‐
ers belonging to other users. Monitoring systems should be in place to alert admins in
the case of unusual behavior. Firewalls should restrict network access to containers,
limiting the external attack surface.

Least Privilege
Another important principle to adhere to is least privilege; each process and container
should run with the minimum set of access rights and resources it needs to perform

292 | Chapter 13: Security and Limiting Containers

http://venom.crowdstrike.com/

4 The concept of least privilege was first articulated as, “Every program and every privileged user of the system
should operate using the least amount of privilege necessary to complete the job,” by Jerome Saltzer in “Pro‐
tection and the control of information sharing in multics” (Communications of the ACM, vol. 17). Recently,
Diogo Mónica and Nathan McCauley from Docker have been championing the idea of “least-privilege micro‐
services” based on Saltzer’s principle.

its function.4 The main benefit of this approach is that if one container is compro‐
mised, the attacker should still be severely limited in being able to access further data
or resources.

In regards to least privilege, you can take many steps to reduce the capabilities of con‐
tainers, such as:

• Ensure that processes in containers do not run as root so that exploiting a vulner‐
ability present in a process does not give the attacker root access.

• Run filesystems as read-only so that attackers cannot overwrite data or save mali‐
cious scripts to file.

• Cut down on the kernel calls a container can make to reduce the potential attack
surface.

• Limit the resources a container can use to avoid DoS attacks where a compro‐
mised container or application consumes enough resources (such as memory or
CPU) to bring the host to a halt.

Docker Privileges == Root Privileges

This chapter focuses on the security of running containers, but it is
important to point out that you also have to be careful about who
you give access to the Docker daemon. Any user who can start and
run Docker containers effectively has root access to the host. For
example, consider that you can run the following:

$ docker run -v /:/homeroot -it debian bash
...

And you can now access any file or binary on the host machine.
If you run remote API access to your Docker daemon, be careful
about how you secure it and who you give access to. If possible,
restrict access to the local network.

Securing Identidock
In order to provide some context to this chapter, let’s take a look at how we could
secure the identidock application for production. Identidock doesn’t store any sensi‐
tive information, so the main concern is an attacker getting in and repurposing the

Securing Identidock | 293

5 Again, it’s easiest if you play along…

server for spam or similar. I am assuming that identidock is of some value and has a
user-base who would be at least mildly disappointed if identidock stopped working.5

The major things I would make sure are in place include:

• The identidock containers run in a VM or on a dedicated host to avoid exposing
other users or services to attack (see “Segregate Containers by Host”).

• The loadbalancer/reverse proxy is the only container that exposes a port to the
outside world, cutting out a large amount of attack surface. Any monitoring or
logging services should only be exposed via private interfaces or VPN (see “Limit
Container Networking”).

• All identidock images define a user and do not run as root (see “Set a User”).
• All identidock images are downloaded by hash or otherwise obtained in a secure

and verified manner (see “Image Provenance”).
• Monitoring and alerting is in place for detecting unusual traffic or behavior (see

Chapter 10).
• All containers are running with up-to-date software and in production mode

with debug information turned off (see “Applying Updates”).
• AppArmor or SELinux is enabled if available on the host (see “AppArmor” and

“SELinux”).
• Add some form of access control or password protection to Redis.

Given enough time, I would:

• Remove any unneeded setuid binaries from the identidock images. This reduces
the risk of attackers who gain access to a container being able to increase their
privileges (see “Remove Setuid/Setgid Binaries”).

• Run filesystems as read-only where possible. The dnmonster, identidock, and
redis containers can run with a read-only container filesystem, but the redis vol‐
ume must be writable (see “Limit Filesystems”).

• Drop unneeded kernel privileges. Both the dnmonster and identidock containers
will run with all capabilities dropped (see “Limit Capabilities”).

If I was feeling more paranoid, or running a more security sensitive service, I would:

• Limit memory on each container with the -m flag. This would prevent some DoS
attacks and memory leaks. Requires profiling of the containers to determine the
maximum memory usage, or very loose limits.

294 | Chapter 13: Security and Limiting Containers

• Run SELinux with specialized types for the containers. This can be a very effec‐
tive security measure, but represents a significant amount of work and is only
possible if running with the devicemapper storage driver (see “SELinux”).

• Apply a ulimit on the number of processes. This limit is applied to the user of
the container, so it is more tricky to use than it may sound. It will cut out the
threat of fork bombs being used as a DoS attack (see “Apply Resource Limits (uli‐
mits)”).

• Encrypt internal communications to make it harder for attackers to tamper with
data.

In addition, there should be periodic audits of the system to make sure everything is
up to date and no containers are hogging resources. Even in a toy application like
identidock, there are a lot of security measures that should be put in place and a lot
more that can be considered.

The rest of this chapter will go into detail about how to implement these defenses and
more. The key point to remember is that the more checks and boundaries you have in
place, the greater the chances of stopping an attack before it can do real harm. Used
incorrectly, Docker will reduce the security of the system by opening up new attack
vectors. Used correctly, it will improve security by adding further levels of isolation
and limiting the scope of applications to damage the system.

Segregate Containers by Host
If you have a multitenancy setup where you are running containers for multiple users
(whether these are internal users in your organization or external customers), ensure
each user is placed on a separate Docker host, as shown in Figure 13-1. This is less
efficient than sharing hosts between users and will result in a higher number of VMs
and/or machines than reusing hosts but is important for security. The main reason is
to prevent container breakouts resulting in a user gaining access to another user’s
containers or data. If a container breakout occurs, the attacker will still be on a sepa‐
rate VM or machine and unable to easily access containers belonging to other users.

Segregate Containers by Host | 295

Figure 13-1. Segregating containers by host

Similarly, if you have containers that process or store sensitive information, keep
them on a host separate from containers handling less sensitive information and, in
particular, away from containers running applications directly exposed to end users.
For example, containers processing credit-card details should be kept separate from
containers running the Node.js frontend.

Segregation and use of VMs can also provide added protection against DoS attacks;
users won’t be able to monopolize the memory on the host and starve out other users
if they are contained within their own VM.

In the short-to-medium term, the vast majority of container deployments will involve
VMs. Although this isn’t an ideal situation, it does mean we can combine the effi‐
ciency of containers with the security of VMs.

Applying Updates
The ability to quickly apply updates to a running system is critical to maintaining
security, especially when vulnerabilities are disclosed in common utilities and frame‐
works.

The process of updating a containerized system roughly involves the following steps:

1. Identify images that require updating. This includes both base images and any
dependent images. See “Getting a List of Running Images” for how to do this
with the CLI.

2. Get or create an updated version of each base image. Push this version to your
registry or download site.

296 | Chapter 13: Security and Limiting Containers

6 A workaround is to pull all the images you want to keep, then push them in to a new, clean registry.

3. For each dependent image, run docker build with the --no-cache argument.
Again, push these images.

4. On each Docker host, run docker pull to ensure that it has up-to-date images.
5. Restart the containers on each Docker host.
6. Once you’ve determined that everything is functioning correctly, remove the old

images from the hosts. If you can, also remove them from your registry.

Some of these steps sound easier than they are. Identifying images that need updating
may require some grunt work and shell fu. Restarting the containers assumes you
have in place some sort of support for rolling updates or are willing to tolerate down-
time. At the time of writing, functionality to completely remove images from a regis‐
try and reclaim the disk space is still being worked on.6

If you use the Docker Hub to build your images, note that you can set up repository
links that will kick off a build of your image when any linked image changes. By set‐
ting a link to the base image, your image will automatically get rebuilt if the base
image changes.

Getting a List of Running Images
The following gets the image IDs for all running images:

$ docker inspect -f "{{.Image}}" $(docker ps -q)
42a3cf88f3f0cce2b4bfb2ed714eec5ee937525b4c7e0a0f70daff18c3f2ee92
41b730702607edf9b07c6098f0b704ff59c5d4361245e468c0d551f50eae6f84

We can use a little more shell fu to get some more information:

$ docker images --no-trunc | \
 grep $(docker inspect -f "-e {{.Image}}" $(docker ps -q))
nginx latest 42a3cf88f... 2 weeks ago 132.8 MB
debian latest 41b730702... 2 weeks ago 125.1 MB

To get a list of all images and their base or intermediate images (use --no-trunc for
full IDs):

$ docker inspect -f "{{.Image}}" $(docker ps -q) | \
 xargs -L 1 docker history -q
41b730702607
3cb35ae859e7
42a3cf88f3f0
e59ba510498b
50c46b6286b9
ee8776c93fde
439e7909f795

Applying Updates | 297

7 This is very similar to modern ideas of immutable infrastructure, where infrastructure—including bare-metal,
VMs, and containers—is never modified and is instead replaced when a change is required.

0b5e8be9b692
e7e840eed70b
7ed37354d38d
55516e2f2530
97d05af69c46
41b730702607
3cb35ae859e7

And you can extend this again to get information on the images:

$ docker images | \
 grep $(docker inspect -f "{{.Image}}" $(docker ps -q) | \
 xargs -L 1 docker history -q | sed "s/^/\-e /")
nginx latest 42a3cf88f3f0 2 weeks ago 132.8 MB
debian latest 41b730702607 2 weeks ago 125.1 MB

If you want to get details on the intermediate images as well as named images, add the
-a argument to the docker images command. Note that this command has a signifi‐
cant gotcha—if your host doesn’t have a tagged version of a base image, it won’t show
up in the list. For example, the official Redis image is based on debian:wheezy, but
the base image will appear as <None> in docker images -a unless the host has sepa‐
rately and explicitly pulled the debian:wheezy image (and it is exactly the same ver‐
sion of that image).

When you need to patch a vulnerability found in a third-party image, including the
official images, you are dependent on that party providing a timely update. In the
past, providers have been criticized for being slow to respond. In such a situation, you
can either wait or prepare your own image. Assuming you have access to the Docker‐
file and source for the image, rolling your image may be a simple and effective tem‐
porary solution.

This approach should be contrasted with the typical VM approach of using
configuration-management (CM) software such as Puppet, Chef, or Ansible. In the
CM approach, VMs aren’t recreated but are updated and patched as needed, either
through SSH commands or an agent installed in the VM. This approach works, but it
means that separate VMs are often in different states, and involves significant com‐
plexity in tracking and updating the VMs. This is necessary to avoid the overhead of
recreating VMs and maintaining a master or golden image for the service. The CM
approach can be taken with containers as well but adds significant complexity for no
benefit—the simpler golden image approach works well with containers because of
the speed at which containers can be started and the ease of building and maintaining
images.7

298 | Chapter 13: Security and Limiting Containers

Label Your Images

Identifying images and what they contain can be made a lot easier
by liberal use of labels when building images. This feature appeared
in 1.6 and allows the image creator to associate arbitrary key-value
pairs with an image. This can be done in the Dockerfile:

FROM debian
LABEL version 1.0
LABEL description "A test image for describing labels"

You can take things further and add data such as the git hash that
the code in the image was compiled from, but this requires using
some form of templating tool to automatically update the value.
Labels can also be added to a container at runtime:

$ docker run -d --name label-test \
 -l group=a debian sleep 100
1d8d8b622ec86068dfa5cf251cbaca7540b7eaa67664a13c620006...
$ docker inspect -f '{{json .Config.Labels}}' label-test
{"group":"a"}

This can be useful when you want to handle certain events at run‐
time, such as dynamically allocating containers to load-balancer
groups.

At time you will need to update the Docker daemon to gain access to new features,
security patches, or bug fixes. This will force you to either migrate all containers to a
new host or temporarily halt them while the update is applied. It is recommended
that you subscribe to either the docker-user or docker-dev Google groups to receive
notifications of important updates.

Avoid Unsupported Drivers
Despite its youth, Docker has already gone through several stages of development,
and various features have been deprecated or unmaintained. Relying on such features
is a security risk, as they will not be receiving the same attention and updates as other
parts of Docker. The same goes for drivers and extensions depended on by Docker.

In particular, do not use the legacy LXC execution driver. By default, this is turned
off, but you should check that your daemon isn’t running with the -e lxc argument.

Storage drivers are another major area of development and change. At the time of
writing, Docker is moving from AUFS to Overlay as the preferred storage driver. The
AUFS driver is being taken out of the kernel and is no longer under development.
Users of AUFS are encouraged to move to Overlay in the near future.

Applying Updates | 299

http://bit.ly/1XLSu8X
http://bit.ly/1XLSx4y

8 A full discussion of public-key cryptography is fascinating but out of scope here. For more information see
Applied Cryptography by Bruce Schneier.

9 A similar construct is used in protocols such as Bittorrent and Bitcoin and is known as a hash list.

Image Provenance
To safely use images, we need to have guarantees about their provenance: where they
came from and who created them. We need to be sure that we are getting exactly the
same image the original developer tested and that no one has tampered with it, either
during storage or transit. If we can’t verify this, the image may have become corrup‐
ted or—much worse—replaced with something malicious. Given the previously dis‐
cussed security issues with Docker, this a major concern; you should assume that a
malicious image has full access to the host.

Provenance is far from a new problem in computing. The primary tool in establish‐
ing the provenance of software or data is the secure hash. A secure hash is something
like a fingerprint for data—it is a (comparatively) small string that is unique to the
given data. Any changes to the data will result in the hash changing. Several algo‐
rithms are available for calculating secure hashes, with varying degrees of complexity
and guarantees of the uniqueness of the hash. The most common algorithms are SHA
(which has several variants) and MD5 (which has fundamental problems and should
be avoided). If we have a secure hash for some data and the data itself, we can recal‐
culate the hash for the data and compare it. If the hashes match, we can be certain the
data has not been corrupted or tampered with. However, one issue remains—why
should we trust the hash? What’s to stop an attacker from modifying both the data
and the hash? The best answer to this is cryptographic signing and public/private key
pairs.

Through cryptographic signing, we can verify the identify of the publisher of an arti‐
fact. If a publisher signs an artifact with their private key,8 any recipient of that artifact
can verify it came from the publisher by checking the signature using the publisher’s
public key. Assuming the client has already obtained a copy of the publisher’s key, and
that publisher’s key has not been compromised, we can be sure the content came
from the publisher and has not been tampered with.

Docker Digests
Secure hashes are known as digests in Docker parlance. A digest is a SHA256 hash of
a filesystem layer or manifest, where a manifest is metadata file describing the con‐
stituent parts of a Docker image. As the manifest contains a list of all the image’s lay‐
ers identified by digest,9 if you can verify that the manifest hasn’t been tampered with,
you can safely download and trust all the layers, even over untrustworthy channels
(e.g., HTTP).

300 | Chapter 13: Security and Limiting Containers

10 In the context of this chapter, anyone who pushes an image is a publisher; it is not restricted to large compa‐
nies or organizations.

Docker Content Trust
Docker introduced content trust in 1.8. This is Docker’s mechanism for allowing pub‐
lishers10 to sign their content, completing the trusted distribution mechanism. When
a user pulls an image from a repository, she receives a certificate that includes the
publisher’s public key, allowing her to verify that the image came from the publisher.

When content trust is enabled, the Docker engine will only operate on images that
have been signed and will refuse to run any images whose signatures or digests do not
match.

Let’s see content trust in action. We’ll start by trying to pull signed and unsigned
images:

$ export DOCKER_CONTENT_TRUST=1
$ docker pull debian:wheezy
Pull (1 of 1): debian:wheezy@sha256:c584131da2ac1948aa3e66468a4424b6aea2f33a...
sha256:c584131da2ac1948aa3e66468a4424b6aea2f33acba7cec0b631bdb56254c4fe: Pul...
4c8cbfd2973e: Pull complete
60c52dbe9d91: Pull complete
Digest: sha256:c584131da2ac1948aa3e66468a4424b6aea2f33acba7cec0b631bdb56254c4fe
Status: Downloaded newer image for debian@sha256:c584131da2ac1948aa3e66468a4...
Tagging debian@sha256:c584131da2ac1948aa3e66468a4424b6aea2f33acba7cec0b631bd...
$ docker pull amouat/identidock:unsigned
No trust data for unsigned

In Docker 1.8, content trust must be enabled by setting the environment variable
DOCKER_CONTENT_TRUST=1. In later versions of Docker, this will become the
default.

Here we can see that the official, signed, Debian image has pulled successfully. In con‐
trast, Docker has refused to pull the unsigned image amouat/identidock:unsigned.

So what about pushing signed images? It’s surprisingly easy:

$ docker push amouat/identidock:newest
The push refers to a repository [docker.io/amouat/identidock] (len: 1)
...
843e2bded498: Image already exists
newest: digest: sha256:1a0c4d72c5d52094fd246ec03d6b6ac43836440796da1043b6ed8...
Signing and pushing trust metadata
You are about to create a new root signing key passphrase. This passphrase
will be used to protect the most sensitive key in your signing system. Please
choose a long, complex passphrase and be careful to keep the password and the
key file itself secure and backed up. It is highly recommended that you use a
password manager to generate the passphrase and keep it safe. There will be no

Image Provenance | 301

way to recover this key. You can find the key in your config directory.
Enter passphrase for new offline key with id 70878f1:
Repeat passphrase for new offline key with id 70878f1:
Enter passphrase for new tagging key with id docker.io/amouat/identidock ...
Repeat passphrase for new tagging key with id docker.io/amouat/identidock ...
Finished initializing "docker.io/amouat/identidock"

Since this is the first time I’ve pushed to this repository with content trust enabled,
Docker has created a new root signing key and a tagging key. We’ll come back to the
tagging key in a minute, but note the importance of keeping the root key safe and
secure. Life becomes very difficult if you lose this; all users of your repositories will be
unable to pull new images or update existing images without manually removing the
old certificate.

Now we can download our image using content trust:

$ docker rmi amouat/identidock:newest
Untagged: amouat/identidock:newest
$ docker pull amouat/identidock:newest
Pull (1 of 1): amouat/identidock:newest@sha256:1a0c4d72c5d52094fd246ec03d6b6...
sha256:1a0c4d72c5d52094fd246ec03d6b6ac43836440796da1043b6ed81ea4167eb71: Pul...
...
7e7d073d42e9: Already exists
Digest: sha256:1a0c4d72c5d52094fd246ec03d6b6ac43836440796da1043b6ed81ea4167eb71
Status: Downloaded newer image for amouat/identidock@sha256:1a0c4d72c5d52094...
Tagging amouat/identidock@sha256:1a0c4d72c5d52094fd246ec03d6b6ac43836440796d...

If you haven’t downloaded an image from a given repository before, Docker will first
retrieve the certificate for the publisher of that repository. This is done over HTTPS
and is low risk but can likened to connecting to a host via SSH for the first time; you
have to trust that you are being given the correct credentials. Future pulls from that
repository can be verified using the existing certificate.

Back Up Your Signing Keys!

Docker will encrypt all keys at rest and takes care to ensure private
material is never written to disk. Due to the importance of the keys,
it is recommended that they are backed up on two encrypted USB
sticks kept in a secure location. To create a TAR file with the keys,
run:

$ umask 077
$ tar -zcvf private_keys_backup.tar.gz \
 ~/.docker/trust/private
$ umask 022

The umask commands ensure file permissions are set to read-only.
Note that as the root key is only needed when creating or revoking
keys, it can—and should—be stored offline when not in use.

302 | Chapter 13: Security and Limiting Containers

Back to the tagging key. A tagging key is generated for each repository owned by a
publisher. The tagging key is signed by the root key, which allows it to be verified by
any user with the publisher’s certificate. The tagging key can be shared within an
organization and used to sign any images for that repository. After generating the tag‐
ging key, the root key can and should be taken offline and stored securely.

Should a tagging key become compromised, it is still possible to recover. By rotating
the tagging key, the compromised key can be removed from the system. This process
happens invisibly to the user and can be done proactively to protect against undetec‐
ted key compromises.

content trust also provides freshness guarantees to guard against replay attacks. A
replay attack occurs when an artifact is replaced with a previously valid artifact. For
example, an attacker may replace a binary with an older, known vulnerable version
that was previously signed by the publisher. As the binary is correctly signed, the user
can be tricked into running the vulnerable version of the binary. To avoid this, con‐
tent trust makes use of timestamp keys associated with each repository. These keys are
used to sign metadata associated with the repository. The metadata has a short expi‐
ration date that requires it to be frequently resigned by the timestamp key. By verify‐
ing that the metadata has not expired before downloading the image, the Docker
client can be sure it is receiving an up-to-date (or fresh) image. The timestamp keys
are managed by the Docker Hub and do not require any interaction from the pub‐
lisher.

A repository can contain both signed and unsigned images. If you have content trust
enabled and want to download an unsigned image, use the --disable-content-
trust flag:

$ docker pull amouat/identidock:unsigned
No trust data for unsigned
$ docker pull --disable-content-trust amouat/identidock:unsigned
unsigned: Pulling from amouat/identidock
...
7e7d073d42e9: Already exists
Digest: sha256:ea9143ea9952ca27bfd618ce718501d97180dbf1b5857ff33467dfdae08f57be
Status: Downloaded newer image for amouat/identidock:unsigned

If you want to learn more about content trust, see the offical Docker documentation,
as well as The Update Framework, which is the underlying specification used by con‐
tent trust.

While this is a reasonably complex infrastructure with multiple sets of keys, Docker
has worked hard to ensure it is still simple for end users. With content trust, Docker
has developed a user-friendly, modern security framework providing provenance,
freshness, and integrity guarantees.

Image Provenance | 303

https://docs.docker.com/security/trust/content_trust/
http://theupdateframework.com/

Content trust is currently enabled and working on the Docker Hub. To set up content
trust for a local registry, you will also need to configure and deploy a Notary server.

Notary
The Docker Notary project is a generic server-client framework for publishing and
accessing content in a trustworthy and secure manner. Notary is based on The Update
Framework specification, which provides a secure design for distributing and updat‐
ing content.

Docker’s content trust framework is essentially an integration of Notary with the
Docker API. By running both a registry and a Notary server, organizations can pro‐
vide trusted images to users. However, Notary is designed to be standalone and usable
in a wide range of scenarios.

A major use case for Notary is to improve the security and trustworthiness of the
common curl | sh approach, which is typified by the current Docker installation
instructions:

$ curl -sSL https://get.docker.com/ | sh

If such a download is compromised either on the server or in transit, the attacker will
be able to run arbitrary commands on the victim’s computer. The use of HTTPS will
stop the attacker from being able to modify data in transit, but they may still be able
to prematurely end the download, thereby truncating the code in a potentially dan‐
gerous way. The equivalent example of using Notary looks something like this:

$ curl http://get.docker.com/ | notary verify docker.com/scripts v1 | sh

The call to notary compares a checksum for the script with the checksum in Notary’s
trusted collection for docker.com. If it passes, we have verified that the script does
indeed come from docker.com and has not been tampered with. If it fails, Notary will
bail out, and no data will be passed to sh. What’s also notable is that the script itself
can be transferred over insecure channels—in this case, HTTP—without worry; if the
script is altered in transit, the checksum will change and Notary will throw an error.

If you are using unsigned images, it is still possible to verify images by pulling by
digest, instead of by name and tag. For example:

$ docker pull debian@sha256:f43366bc755696485050ce14e1429c481b6f0ca04505c4a3093d\
fdb4fafb899e

This will pull the debian:jessie image as of the time of writing. Unlike the
debian:jessie tag, it is guaranteed to always pull exactly the same image (or none at
all). If the digest can be securely transferred and authenticated in some manner (e.g.,
sent via a PGP signed e-mail from a trusted party), you can guarantee the authenticity
of the image. Even with content trust enabled, it is still possible to pull by digest.

304 | Chapter 13: Security and Limiting Containers

https://github.com/docker/notary
https://github.com/docker/notary

If you don’t trust either a private registry or the Docker Hub to distribute your
images, you can always use the docker load and docker save commands to export
and import images. The images can be distributed by an internal download site or
simply by copying files. Of course, if you go down this route, you are likely to find
yourself recreating many of the features of the Docker registry and content-trust
components.

Reproducible and Trustworthy Dockerfiles
Ideally, Dockerfiles should produce exactly the same image each time. In practice,
this is hard to achieve. The same Dockerfile is likely to produce different images over
time. This is clearly a problematic situation, as again, it becomes hard to be sure what
is in your images. It is possible to at least come close to entirely reproducible builds
by adhering to the following rules when writing Dockerfiles:

• Always specify a tag in FROM instructions. FROM redis is bad, because it pulls the
latest tag, which is expected to change over time, including major version
changes. FROM redis:3.0 is better but can still be expected to change with minor
updates and bug fixes (which may be exactly what you want). If you want to be
sure you are pulling exactly the same image each time, the only choice is to use a
digest as described previously. For example:

FROM redis@sha256:3479bbcab384fa343b52743b933661335448f8166203688006...

Using a digest will also protect against accidental corruption or tampering.
• Provide version numbers when installing software from package managers. apt-
get install cowsay is OK, as cowsay is unlikely to change; but apt-get
install cowsay=3.03+dfsg1-6 is better. The same goes for other package instal‐
lers such as pip—provide a version number if you can. The build will fail if an old
package is removed, but at least this gives you warning. Also note a problem still
remains: packages are likely to pull in dependencies, and these dependencies are
often specified in >= terms and can hence change over time. To completely lock
down the version of things, have a look at tools like aptly, which allows you to
take snapshots of repositories.

• Verify any software or data downloaded from the Internet. This means using
checksums or cryptographic signatures. Of all of the steps listed here, this is the
most important. If you don’t verify downloads, you are vulnerable to accidental
corruption as well as attackers tampering with downloads. This is particularly
important when software is transferred with HTTP, which offers no guarantees
against man-in-the-middle attacks. The following section offers specific advice
on how to do this.

Image Provenance | 305

http://www.aptly.info/

Most Dockerfiles for the official images provide good examples of using tagged ver‐
sions and verifying downloads. They also typically use a specific tag of a base image
but do not use version numbers when installing software from package managers.

Securely downloading software in Dockerfiles
In the majority of cases, vendors will make signed checksums available for verifying
downloads. For example, the Dockerfile for the official Node.js image includes the
following:

RUN gpg --keyserver pool.sks-keyservers.net \
 --recv-keys 7937DFD2AB06298B2293C3187D33FF9D0246406D \
 114F43EE0176B71C7BC219DD50A3051F888C628D

ENV NODE_VERSION 0.10.38
ENV NPM_VERSION 2.10.0
RUN curl -SLO "http://nodejs.org/dist/v$NODE_VERSION/\
node-v$NODE_VERSION-linux-x64.tar.gz" \
 && curl -SLO "http://nodejs.org/dist/v$NODE_VERSION/SHASUMS256.txt.asc" \
 && gpg --verify SHASUMS256.txt.asc \
 && grep " node-v$NODE_VERSION-linux-x64.tar.gz\$" SHASUMS256.txt.asc \
 | sha256sum -c -

Gets the GPG keys used to sign the Node.js download. Here we do have to trust
that these are the correct keys.

Downloads the Node.js tarball.

Downloads the checksum for the tarball.

Uses GPG to verify that the checksum was signed by whoever owns the keys we
obtained.

Checks that the checksum matches the tarball by using the sha256sum tool.

If either the GPG test or the checksum test fails, the build will abort.

In some cases, packages are available in third-party repositories, which means they
can be installed securely by adding the given repository and its signing key. For
example, the Dockerfile for the official Nginx image includes the following:

RUN apt-key adv --keyserver hkp://pgp.mit.edu:80 \
 --recv-keys 573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62
RUN echo "deb http://nginx.org/packages/mainline/debian/ jessie nginx" \
 >> /etc/apt/sources.list

The first command obtains the signing key for Nginx (which is added to the key‐
store), and the second command adds the Nginx package repository to the list of

306 | Chapter 13: Security and Limiting Containers

repositories to check for software. After this, Nginx can be simply and securely
installed with apt-get install -y nginx (preferably with a version number).

Assuming no signed package or checksum is available, creating your own is straight‐
forward. For example, to create a checksum for a Redis release:

$ curl -s -o redis.tar.gz http://download.redis.io/releases/redis-3.0.1.tar.gz
$ sha1sum -b redis.tar.gz
fe1d06599042bfe6a0e738542f302ce9533dde88 *redis.tar.gz

Here we’re creating a 160-bit SHA1 checksum. The -b flag tells the sha1sum util‐
ity that we are dealing with binary data, not text.

Once you’ve tested and verified the software, you can add something like the follow‐
ing to your Dockerfile:

RUN curl -sSL -o redis.tar.gz \
 http://download.redis.io/releases/redis-3.0.1.tar.gz \
 && echo "fe1d06599042bfe6a0e738542f302ce9533dde88 *redis.tar.gz" \
 | sha1sum -c -

This downloads the file as redis.tar.gz and asks sha1sum to verify the checksum. If the
check fails, the command will fail, and the build will abort.

Changing all these details for each release is a lot of work if you release often, so auto‐
mating the process is worthwhile. In many of the official image repositories, such as
this one, you can find update.sh scripts for this purpose.

Security Tips
This section contains actionable tips on securing container deployments. Not all the
advice is applicable to all deployments, but you should become familiar with the basic
tools you can use.

Many of the tips describe various ways in which containers can be limited so that they
are unable to adversely affect other containers or the host. The main issue to bear in
mind is that the host kernel’s resources—CPU, memory, network, UIDs, and so forth
—are shared among containers. If a container monopolizes any of these, it will starve
out other containers. Worse, if a container can exploit a bug in kernel code, it may be
able to bring down the host or gain access to the host and other containers. This
could be caused either accidentally, through some buggy programming, or mali‐
ciously, by an attacker seeking to disrupt or compromise the host.

Set a User
Never run production applications as root inside the container. That’s worth saying
again: never run production applications as root inside the container. And attacker who
breaks the application will have full access to the container, including its data and

Security Tips | 307

http://bit.ly/1QMyDVf

programs. Worse, an attacker who manages to break out of the container will have
root access on the host. You wouldn’t run an application as root in a VM or on bare
metal, so don’t do it in a container.

To avoid running as root, your Dockerfiles should always create a nonprivileged user
and switch to it with a USER statement or from an entrypoint script. For example:

RUN groupadd -r user_grp && useradd -r -g user_grp user
USER user

This creates a group called user_grp and a new user called user who belongs to that
group. The USER statement will take effect for all of the following instructions and
when a container is started from the image. You may need to delay the USER instruc‐
tion until later in the Dockerfile if you need to first perform actions that need root
privileges such as installing software.

Many of the official images create an unprivileged user in the same way but do not
contain a USER instruction. Instead, they switch users in an entrypoint script, using
the gosu utility. For example, the entrypoint script for the official Redis image looks
like this:

#!/bin/bash
set -e
if ["$1" = 'redis-server']; then
 chown -R redis .
 exec gosu redis "$@"
fi

exec "$@"

This script includes the line chown -R redis ., which sets the ownership of all files
under the images data directory to the redis user. If the Dockerfile had declared a
USER, this line wouldn’t work. The next line exec gosu redis "$@" executes the
given redis command as the redis user. The use of exec means the current shell is
replaced with redis, which becomes PID 1 and has any signals forwarded appropri‐
ately.

308 | Chapter 13: Security and Limiting Containers

11 I’m using Ubuntu instead of Debian here as the Ubuntu image includes sudo by default.
12 We’re using the OpenBSD version here.

Use gosu, not sudo

The traditional tool for executing commands as another user is
sudo. While sudo is a powerful and venerable tool, it has some side
effects that make it less than ideal for use in entrypoint scripts. For
example, we can see what happens if we run sudo ps aux inside a
Ubuntu11 container:

$ docker run --rm ubuntu:trusty sudo ps aux
USER PID %CPU ... COMMAND
root 1 0.0 sudo ps aux
root 5 0.0 ps aux

We have two processes, one for sudo and one for the command we
ran.
In contrast, if we install gosu into a Ubuntu image:

$ docker run --rm amouat/ubuntu-with-gosu \
 gosu root ps aux
USER PID %CPU ... COMMAND
root 1 0.0 ps aux

we have only one process running—gosu has executed the com‐
mand and gotten out of the way completely. Importantly, the com‐
mand is running as PID 1, so it will correctly receive any signals
sent to the container, unlike the sudo example.

If you have an application that insists on running as root (and you can’t fix it), con‐
sider using tools such as sudo, SELinux (see “SELinux”), and fakeroot to constrain the
process.

Limit Container Networking
A container should open only the ports it needs to use in production, and these ports
should be accessible only to the other containers that need them. This is a little trick‐
ier than it sounds, as by default, containers can talk to each other whether or not
ports have been explicitly published or exposed. We can see this by having a quick
play with the Netcat tool:12

$ docker run --name nc-test -d amouat/network-utils nc -l 5001
f57269e2805cf3305e41303eafefaba9bf8d996d87353b10d0ca577acc731186
$ docker run \
 -e IP=$(docker inspect -f {{.NetworkSettings.IPAddress}} nc-test) \
 amouat/network-utils sh -c 'echo -n "hello" | nc -v $IP 5001'
Connection to 172.17.0.3 5001 port [tcp/*] succeeded!

Security Tips | 309

$ docker logs nc-test
hello

Tells the Netcat utility to listen to port 5001 and echo any input.

Sends “hello” to the first container using Netcat.

The second container is able to connect to nc-test despite there being no ports pub‐
lished or exposed. We can change this by running the Docker daemon with the --
icc=false flag. This turns off inter-container communication, which can prevent
compromised containers from being able to attach other containers. Any explicitly
linked containers will still be able to communicate.

Docker controls inter-container communication by setting IPtables rules (which
requires that the --iptables flag is set on the daemon, as it should be by default).

The following example demonstrates the effect of setting --icc=false on the dae‐
mon:

$ cat /etc/default/docker | grep DOCKER_OPTS=
DOCKER_OPTS="--iptables=true --icc=false"
$ docker run --name nc-test -d --expose 5001 amouat/network-utils nc -l 5001
d7c267672c158e77563da31c1ee5948f138985b1f451cd2222cf248006491139
$ docker run \
 -e IP=$(docker inspect -f {{.NetworkSettings.IPAddress}} nc-test)
 amouat/network-utils sh -c 'echo -n "hello" | nc -w 2 -v $IP 5001'
nc: connect to 172.17.0.10 port 5001 (tcp) timed out: Operation now in progress
$ docker run \
 --link nc-test:nc-test \
 amouat/network-utils sh -c 'echo -n "hello" | nc -w 2 -v nc-test 5001'
Connection to nc-test 5001 port [tcp/*] succeeded!
$ docker logs nc-test
hello

On Ubuntu, the Docker daemon is configured by setting DOCKER_OPTS in /etc/
default/docker.

The -w 2 flag tells Netcat to time out after two seconds.

The first connection fails, as intercontainer communication is off and no link is
present. The second command succeeds, as we have added the link. If you want to
understand how this works under the hood, try running sudo iptables -L -n on
the host with and without linked containers.

When publishing ports to the host, Docker publishes to all interfaces (0.0.0.0) by
default. You can instead specify the interface you want to bind to explicitly:

$ docker run -p 87.245.78.43:8080:8080 -d myimage

This reduces the attack surface by only allowing traffic from the given interface.

310 | Chapter 13: Security and Limiting Containers

13 Setuid and setgid binaries run with the privileges of the owner rather than the user. These are normally used
to allow users to temporarily run with the escalated privileges required to execute a given task, such as setting
a password.

Remove Setuid/Setgid Binaries
Chances are that your application doesn’t need any setuid or setgid binaries.13 If we
can disable or remove such binaries, we stop any chance of them being used for privi‐
lege escalation attacks.

To get a list of such binaries in an image, try running find / -perm + 6000 -type f
-exec ls -ld {} \. For example:

$ docker run debian find / -perm +6000 -type f -exec ls -ld {} \; 2> /dev/null
-rwsr-xr-x 1 root root 10248 Apr 15 00:02 /usr/lib/pt_chown
-rwxr-sr-x 1 root shadow 62272 Nov 20 2014 /usr/bin/chage
-rwsr-xr-x 1 root root 75376 Nov 20 2014 /usr/bin/gpasswd
-rwsr-xr-x 1 root root 53616 Nov 20 2014 /usr/bin/chfn
-rwsr-xr-x 1 root root 54192 Nov 20 2014 /usr/bin/passwd
-rwsr-xr-x 1 root root 44464 Nov 20 2014 /usr/bin/chsh
-rwsr-xr-x 1 root root 39912 Nov 20 2014 /usr/bin/newgrp
-rwxr-sr-x 1 root tty 27232 Mar 29 22:34 /usr/bin/wall
-rwxr-sr-x 1 root shadow 22744 Nov 20 2014 /usr/bin/expiry
-rwxr-sr-x 1 root shadow 35408 Aug 9 2014 /sbin/unix_chkpwd
-rwsr-xr-x 1 root root 40000 Mar 29 22:34 /bin/mount
-rwsr-xr-x 1 root root 40168 Nov 20 2014 /bin/su
-rwsr-xr-x 1 root root 70576 Oct 28 2014 /bin/ping
-rwsr-xr-x 1 root root 27416 Mar 29 22:34 /bin/umount
-rwsr-xr-x 1 root root 61392 Oct 28 2014 /bin/ping6

You can then “defang” the binaries with chmod a-s to remove the suid bit. For exam‐
ple, we can create a defanged Debian image with the following Dockerfile:

FROM debian:wheezy

RUN find / -perm +6000 -type f -exec chmod a-s {} \; || true

The || true allows us to ignore any errors from the find command.

Build and run it:

$ docker build -t defanged-debian .
...
Successfully built 526744cf1bc1
docker run --rm defanged-debian \
 find / -perm +6000 -type f -exec ls -ld {} \; 2> /dev/null | wc -l
0
$

It’s more likely that your Dockerfile will rely on a setuid/setgid binary than your
application. Therefore, you can always perform this step near the end, after any such

Security Tips | 311

calls and before changing the user (removing setuid binaries is pointless if the appli‐
cation runs with root privileges).

Limit Memory
Limiting memory protects against DoS attacks and applications with memory leaks
that slowly consume all the memory on the host (such applications can be restarted
automatically to maintain a level of service).

The -m and --memory-swap flags to docker run limit the amount of memory and
swap memory a container can use. Somewhat confusingly, the --memory-swap argu‐
ment sets the total amount of memory, that is, memory plus swap memory rather
than just swap memory. By default, no limits are applied. If the -m flag is used but not
--memory-swap, then --memory-swap is set to double the argument to -m. This is best
explained with an example. Here we’ll use the amouat/stress image that includes the
Unix stress utility used to test what happens when resources are hogged by a process.
In this case, we will tell it to grab a certain amount of memory:

$ docker run -m 128m --memory-swap 128m amouat/stress \
 stress --vm 1 --vm-bytes 127m -t 5s
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
stress: info: [1] successful run completed in 5s
$ docker run -m 128m --memory-swap 128m amouat/stress \
 stress --vm 1 --vm-bytes 130m -t 5s
stress: FAIL: [1] (416) <-- worker 6 got signal 9
stress: WARN: [1] (418) now reaping child worker processes
stress: FAIL: [1] (422) kill error: No such process
stress: FAIL: [1] (452) failed run completed in 0s
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
$ docker run -m 128m amouat/stress \
 stress --vm 1 --vm-bytes 255m -t 5s
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
stress: info: [1] successful run completed in 5s

These arguments tell the stress utility to run one process that will grab 127 MB of
memory and timeout after five seconds.

This time we try to grab 130 MB, which fails because we are only allowed 128
MB.

This time we try to grab 255 MB, and because --swap-memory has defaulted to
256 MB, the command succeeds.

312 | Chapter 13: Security and Limiting Containers

http://people.seas.harvard.edu/~apw/stress/

Limit CPU
If an attacker can get one container, or one group of containers, to start using all the
CPU on the host, that attacker will be able to starve out any other containers on the
host, resulting in a DoS attack.

In Docker, CPU share is determined by a relative weighting with a default value of
1,024; therefore, by default, all containers will receive an equal share of CPU.

The way it works is best explained with an example. Here we start four containers
with the amouat/stress image we saw earlier, except this time they will all attempt to
grab as much CPU as they like, rather than memory.

$ docker run -d --name load1 -c 2048 amouat/stress
912a37982de1d8d3c4d38ed495b3c24a7910f9613a55a42667d6d28e1da71fe5
$ docker run -d --name load2 amouat/stress
df69312a0c959041948857fca27b56539566fb5c7cda33139326f16485948bc8
$ docker run -d --name load3 -c 512 amouat/stress
c2675318fefafa3e9bfc891fa303a16e72caf221ec23a4c222c2b889ea82d6e2
$ docker run -d --name load4 -c 512 amouat/stress
5c6e199423b59ae481d41268c867c705f25a5375d627ab7b59c5fbfbcfc1d0e0
$ docker stats $(docker inspect -f {{.Name}} $(docker ps -q))
CONTAINER CPU % ...
/load1 392.13%
/load2 200.56%
/load3 97.75%
/load4 99.36%

In this example, the container load1 has a weighting of 2,048, load2 has the default
weighting of 1,024, and the other two containers have weightings of 512. On my
machine with 8 cores and hence a total of 800% CPU to allocate, this results in load1
getting approximately half the CPU, load2 getting a quarter, and load3 and load4
getting an eighth each. If only one container is running, it will be able to grab as
much resources as it wants.

The relative weighting means it shouldn’t be possible for any container to starve out
the others with the default settings. However, you may have “groups” of containers
that dominate CPU over other containers, in which case you can assign containers in
that group a lower default value to ensure fairness. If you do assign CPU shares, make
sure you bear the default value in mind so that any containers that run without an
explicit setting still receive a fair share without dominating other containers.

Alternatively, CPU can be shared by using the Completely Fair Scheduler (CFS) by
using the --cpu-period and --cpu-quota flags. In this method, containers are given
a set CPU quota (defined in microseconds) they can use in a given period. If a con‐
tainer exceeds its CPU quota for a given period, it must wait until the next period
before it can continue execution. For example:

$ docker run -d --cpu-period=50000 --cpu-quota=25000 myimage

Security Tips | 313

This container would be allowed to use half the CPU every 50 ms, assuming a 1 CPU
system. For more information on CFS, see the Linux kernel documentation.

Limit Restarts
If a container is constantly dying and restarting, it will waste a large amount of system
time and resources, possibly to the extent of causing a DoS. This can be easily preven‐
ted by using the on-failure restart policy instead of the always policy. For example:

$ docker run -d --restart=on-failure:10 my-flaky-image
...

This causes Docker to restart the container up to a maximum of 10 times. The cur‐
rent restart count can be found under .RestartCount in the metadata returned by
docker inspect:

$ docker inspect -f "{{ .RestartCount }}" $(docker ps -lq)
0

Docker employs an exponential backoff when restarting containers (it will wait for
100 ms, then 200 ms, then 400 ms, and so forth, on subsequent restarts). By itself, this
should be effective in preventing DoS attacks that try to exploit the restart functional‐
ity.

Limit Filesystems
Stopping attackers from being able to write to file prevents several attacks and gener‐
ally makes life harder for hackers. They can’t write a script to file and trick your appli‐
cation into running it or overwrite sensitive data or configuration files.

Starting with Docker 1.5, you can pass the --read-only flag to docker run, which
makes the container’s filesystem entirely read-only:

$ docker run --read-only debian touch x
touch: cannot touch 'x': Read-only file system

You can do something similar with volumes by adding :ro to the end of the volume
argument:

$ docker run -v $(pwd):/pwd:ro debian touch /pwd/x
touch: cannot touch '/pwd/x': Read-only file system

The majority of applications need to write out files and won’t operate in a completely
read-only environment. In such cases, you can find the folders and files the applica‐
tion needs write access to and use volumes to mount only those files.

Adopting such an approach has huge benefits for auditing; if I can be sure my con‐
tainer’s filesystem is exactly the same as the image it was created from, I can perform
a single offline audit on the image rather than auditing each separate container.

314 | Chapter 13: Security and Limiting Containers

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

14 These are CHOWN, DAC_OVERRIDE, FSETID, FOWNER, MKNOD, NET_RAW, SETGID, SETUID, SETFCAP, SETPCAP,
NET_BIND_SERVICE, SYS_CHROOT, KILL, and AUDIT_WRITE. Dropped capabilities notably include (but are not
limited to) SYS_TIME, NET_ADMIN, SYS_MODULE, SYS_NICE, and SYS_ADMIN. For full information on capabilities,
see man capabilities.

15 If you run this example, you’ll have a broken system until you set the time correctly. Try running sudo
ntpdate or sudo ntpdate-debian to change back to the correct time.

Limit Capabilities
The Linux kernel defines sets of privileges—called capabilities—that can be assigned
to processes to provide them with greater access to the system. The capabilities cover
a wide range of functions, from changing the system time to opening network sock‐
ets. Previously, a process either had full root privileges or was just a user, with no in-
between. This was particularly troubling with applications such as ping, which
required root privileges only for opening a raw network socket. This meant that a
small bug in the ping utility could allow attackers to gain full root privileges on the
system. With the advent of capabilities, it is possible to create a version of ping that
only has the privileges it needs for creating a raw network socket rather than full root
privileges, which means would-be attackers gain much less from exploiting any bugs.

By default, Docker containers run with a subset of capabilities.14 So, for example, a
container will not normally be able to use devices such as the GPU and soundcard or
insert kernel modules. To give extended privileges to a container, start it with the --
privileged argument to docker run.

In terms of security, what we really want to do is limit the capabilities of containers as
much as we can. We can control the capabilities available to a container by using the
--cap-add and --cap-drop arguments. For example, if we want to change the system
time (don’t try this unless you want to break things!):

$ docker run debian date -s "10 FEB 1981 10:00:00"
Tue Feb 10 10:00:00 UTC 1981
date: cannot set date: Operation not permitted
$ docker run --cap-add SYS_TIME debian date -s "10 FEB 1981 10:00:00"
Tue Feb 10 10:00:00 UTC 1981
$ date
Tue Feb 10 10:00:03 GMT 1981

In this example, we can’t modify the date until we add the SYS_TIME privilege to the
container. As the system time is a non-namespaced kernel feature, setting the time
inside a container sets it for the host and all other containers as well.15

A more restrictive approach is to drop all privileges and just add back the ones we
need:

Security Tips | 315

$ docker run --cap-drop all debian chown 100 /tmp
chown: changing ownership of '/tmp': Operation not permitted
$ docker run --cap-drop all --cap-add CHOWN debian chown 100 /tmp

This represents a major increase in security; an attacker who breaks into a container
will still be hugely restricted in which kernel calls she is able to make. However, some
problems exist:

• How do you know which privileges you can safely drop? Trial and error seems to
be the simplest approach, but what if you accidentally drop a privilege your
application only needs rarely? Identifying required privileges is easier if you have
a full test suite you can run against the container and are following a microservi‐
ces approach that has less code and moving parts in each container to consider.

• The capabilities are not as neatly grouped and fine-grained as you may wish. In
particular, the SYS_ADMIN capability has a lot of functionality; kernel developers
seemed to have used it as a default when they couldn’t find (or perhaps couldn’t
be bothered to look for) a better alternative. In effect, it threatens to recreate the
simple binary split of admin user versus normal user that capabilities were
designed to take us away from.

Apply Resource Limits (ulimits)
The Linux kernel defines resource limits that can be applied to processes, such as lim‐
iting the number of child processes that can be forked and the number of open file
descriptors allowed. These can also be applied to Docker containers, either by passing
the --ulimit flag to docker run or setting container-wide defaults by passing --
default-ulimit when starting the Docker daemon. The argument takes two values, a
soft limit and a hard limit separated by a colon, the effects of which are dependent on
the given limit. If only one value is provided, it is used for both the soft and hard
limit.

The full set of possible values and meanings are described in full in man setrlimit
(but note that the as limit can’t be used with containers). Of particular interest are the
following values:

cpu
Limits the amount of CPU time to the given number of seconds. Takes a soft
limit (after which the container is sent a SIGXCPU signal) followed by a SIGKILL
when the hard limit is reached. For example, again using the stress utility from
“Limit Memory” and “Limit CPU” to maximize CPU usage:

$ time docker run --ulimit cpu=12:14 amouat/stress stress --cpu 1
stress: FAIL: [1] (416) <-- worker 5 got signal 24
stress: WARN: [1] (418) now reaping child worker processes
stress: FAIL: [1] (422) kill error: No such process

316 | Chapter 13: Security and Limiting Containers

16 A file descriptor is a pointer into a table recording information on the open files on the system. An entry is
created whenever a file is accessed, recording the mode (read, write, etc.) the file is accessed with and pointers
to the underlying files.

stress: FAIL: [1] (452) failed run completed in 12s
stress: info: [1] dispatching hogs: 1 cpu, 0 io, 0 vm, 0 hdd

real 0m12.765s
user 0m0.247s
sys 0m0.014s

The ulimit argument killed the container after it used 12 seconds of CPU.

This is potentially useful for limiting the amount of CPU that can be used by
containers kicked off by another process (e.g., running computations on behalf of
users). Limiting CPU in such a way may be an effective mitigation against DoS
attacks in such circumstances.

nofile
The maximum number of file descriptors16 that can be concurrently open in the
container. Again, this can be used to defend against DoS attacks and ensure an
attacker isn’t able to read or write to the container or volumes. (Note that you
need to set nofile to one more than the maximum number you want.) For exam‐
ple:

$ docker run --ulimit nofile=5 debian cat /etc/hostname
b874469fe42b
$ docker run --ulimit nofile=4 debian cat /etc/hostname
Timestamp: 2015-05-29 17:02:46.956279781 +0000 UTC
Code: System error

Message: Failed to open /dev/null - open /mnt/sda1/var/lib/docker/aufs...

Here, the OS requires several file descriptors to be open, although cat only
requires a single file descriptor. It’s hard to be sure of how many file descriptors
your application will need, but setting it to a number with plenty of room for
growth offers some protection against DoS attacks, compared to the default of
1,048,576.

nproc
The maximum number of processes that can be created by the user of the con‐
tainer. On the face of it, this sounds useful, because it can prevent fork-bombs
and other types of attack. Unfortunately, the nproc limits are not set per con‐
tainer but rather for the user of the container across all processes. For example:

$ docker run --user 500 --ulimit nproc=2 -d debian sleep 100
92b162b1bb91af8413104792607b47507071c52a2e3128f0c6c7659bfbb84511

Security Tips | 317

$ docker run --user 500 --ulimit nproc=2 -d debian sleep 100
158f98af66c8eb53702e985c8c6e95bf9925401c3901c082a11889182bc843cb
$ docker run --user 500 --ulimit nproc=2 -d debian sleep 100
6444e3b5f97803c02b62eae601fbb1dd5f1349031e0251613b9ff80871555664
FATA[0000] Error response from daemon: Cannot start container 6444e3b5f9780...
[8] System error: resource temporarily unavailable
$ docker run --user 500 -d debian sleep 100
f740ab7e0516f931f09b634c64e95b97d64dae5c883b0a349358c5995806e503

The third container couldn’t be started because two processes already belonging
to UID 500. However, by simply dropping the --ulimit argument, we can con‐
tinue to create processes as the user. While this is a major drawback, nproc limits
may still be useful in situations where you use the same user across a limited
number of containers.

Also note that you can’t set nproc limits for the root user.

Run a Hardened Kernel
Beyond simply keeping your host operating system up to date and patched, you may
want to consider running a hardened kernel, using patches such as those provided by
grsecurity and PaX. PaX provides extra protection against attackers manipulating
program execution by modifying memory (such as buffer overflow attacks). It does
this by marking program code in memory as nonwritable and data as nonexecutable.
In addition, memory is randomly arranged to mitigate against attacks that attempt to
reroute code to existing procedures (such as system calls in common libraries). grse‐
curity is designed to work alongside PaX and adds patches related to role-based
access control (RBAC), auditing, and various other miscellaneous features.

To enable PaX and/or grsecurity, you will probably need to patch and compile the
kernel yourself. This isn’t as daunting as it sounds, and plenty of resources are avail‐
able (WikiBooks and InsanityBit).

These security enhancements may cause some applications to break. PaX will conflict
with any programs that generate code at runtime. Also, a small overhead is incurred
by the extra security checks and measures. Finally, if you use a precompiled kernel,
you will need to ensure that it is recent enough to support the version of Docker you
want to run.

Linux Security Modules
The Linux kernel defines the Linux Security Module (LSM) interface, which is imple‐
mented by various modules that want to enforce a particular security policy. At the
time of writing, several implementations exist, including AppArmor, SELinux,
Smack, and TOMOYO Linux. These security modules can be used to provide another

318 | Chapter 13: Security and Limiting Containers

https://grsecurity.net/
https://pax.grsecurity.net/
http://bit.ly/1QMzhC1
http://bit.ly/1QMzntt

level of security checks on the access rights of processes and users, beyond that pro‐
vided by the standard file-level access control.

The modules normally used with Docker are SELinux (typically with Red Hat-based
distributions) and AppArmor (typically with Ubuntu and Debian distributions).
We’ll take a look at both of these modules now.

SELinux
The SELinux, or Security Enhanced Linux, module was developed by the National
Security Agency (NSA) in the United States as an implementation of what they call
Mandatory Access Control (MAC), in contrast to the standard Unix model of Discre‐
tionary Access Control (DAC). In somewhat plainer language, there are two major
differences between the access control enforced by SELinux and the standard Linux
access controls:

• SELinux controls are enforced based on types, which are essentially labels applied
to processes and objects (files, sockets, and so forth). If the SELinux policy for‐
bids a process of type A to access an object of type B, that access will be disal‐
lowed regardless of the file permissions on the object or the access privileges of
the user. SELinux tests occur after the normal file-permission checks.

• It is possible to apply multiple levels of security, similar to the governmental
model of confidential, secret, and top-secret access. Processes belonging to a
lower level cannot read files written by processes of a higher level, regardless of
where in the filesystem the file resides or the file permissions. So a top-secret
process could write a file to /tmp with chmod 777 privileges, but a confidential
process would still be unable to access the file. This is known as Multi-Level Secu‐
rity (MLS) in SELinux, which also has the closely related concept of Multi-
Category Security (MCS). MCS allows categories to be applied to processes and
objects and denies access to a resource if it does not belong to the correct cate‐
gory. Unlike MLS, categories do not overlap and are not hierarchical. MCS can be
used to restrict access to resources to subsets of a type (e.g., by using a unique
category, a resource can be restricted to use by only a single process).

SELinux comes installed by default on Red Hat distributions and should be simple to
install on most other distributions. You can check whether SELinux is running by
executing sestatus. If that command exists, it will tell you whether SELinux is
enabled or disabled and whether it is in permissive or enforcing mode. When in per‐
missive mode, SELinux will log access-control infringements but will not enforce
them.

The default SELinux policy for Docker is designed to protect the host from contain‐
ers, as well as containers from other containers. Containers are assigned the default
process type svirt_lxc_net_t, and files accessible to a container are assigned

Linux Security Modules | 319

svirt_sandbox_file_t. The policy enforces rules that mean containers are only able
to read and execute files from /usr on the host and cannot write to any file on the
host. It also assigns a unique MCS category number to each container, intended to
prevent containers from being able to access files or resources written by other con‐
tainers in the event of a breakout.

Enabling SELinux

If you’re running a Red Hat-based distribution, SELinux should be
installed already. You can check whether it’s enabled and enforcing
rules by running sestatus on the command line. To enable SELi‐
nux and set it to enforcing mode, edit /etc/selinux/config, so that it
contains the line SELINUX=enforcing.
You will also need to ensure that SELinux support is enabled on the
Docker daemon. The daemon should be running with the flag --
selinux-enabled. If not, it should be added to the file /etc/syscon‐
fig/docker.
You must be using the devicemapper storage driver to use SELinux.
At the time of writing, getting SELinux to work with Overlay and
BTRFS is an ongoing effort, but they are not currently compatible.
For installation on other distributions, refer to the relevant docu‐
mentation. Note that SELinux needs to label all files in your filesys‐
tem, which takes some time. Do not install SELinux on a whim!

Enabling SELinux has an immediate and drastic effect on using containers with vol‐
umes. If you have SELinux installed, you will no longer be able to read or write to
volumes by default:

$ sestatus | grep mode
Current mode: enforcing
$ mkdir data
$ echo "hello" > data/file
$ docker run -v $(pwd)/data:/data debian cat /data/file
cat: /data/file: Permission denied

We can see the reason by inspecting the folder’s security context:

$ ls --scontext data
unconfined_u:object_r:user_home_t:s0 file

The label for the data doesn’t match the label for containers. The fix is to apply the
container label to the data by using the chcon tool, effectively notifying the system
that we expect these files to be consumed by containers:

$ chcon -Rt svirt_sandbox_file_t data
$ docker run -v $(pwd)/data:/data debian cat /data/file
hello

320 | Chapter 13: Security and Limiting Containers

$ docker run -v $(pwd)/data:/data debian sh -c 'echo "bye" >> /data/file'
$ cat data/file
hello
bye
$ ls --scontext data
unconfined_u:object_r:svirt_sandbox_file_t:s0 file

Note that if you only run chcon on the file and not the parent folder, you will be able
to read the file but not write to it.

From version 1.7 and on, Docker automatically relabels volumes for use with con‐
tainers if the :Z or :z suffix is provided when mounting the volume. The :z labels the
volume as usable by all containers (this is required for data containers that share vol‐
umes with multiple containers), and the :Z labels the volume as only usable by that
container. For example:

$ mkdir new_data
$ echo "hello" > new_data/file
$ docker run -v $(pwd)/new_data:/new_data debian cat /new_data/file
cat: /new_data/file: Permission denied
$ docker run -v $(pwd)/new_data:/new_data:Z debian cat /new_data/file
hello

You can also use the --security-opt flag to change the label for a container or to
disable the labeling for a container:

$ touch newfile
$ docker run -v $(pwd)/newfile:/file --security-opt label:disable \
 debian sh -c 'echo "hello" > /file'
$ cat newfile
hello

An interesting use of SELinux labels is to apply a specific label to a container in order
to enforce a particular security policy. For example, you could create a policy for an
Nginx container that only allows it to communicate on ports 80 and 443.

Be aware that you will be unable to run SELinux commands from inside containers.
Inside the container, SELinux will appear to be turned off, which prevents applica‐
tions and users from trying to run commands such as setting SELinux policies that
will get blocked by SELinux on the host.

A lot of tools and articles are available for helping to develop SELinux policies. In
particular, be aware of audit2allow, which can turn log messages from running in
permissive mode into policies that allow you to run in enforcing mode without
breaking applications.

The future for SELinux looks promising; as more flags and default implementations
are added to Docker, running SELinux-secured deployments should become simpler.
The MCS functionality should allow for the creation of secret or top-secret containers
for processing sensitive data with a simple flag. Unfortunately, the current user expe‐

Linux Security Modules | 321

rience with SELinux is not great; newcomers to SELinux tend to watch everything
break with “Permission Denied” and have no idea of what’s wrong and no idea how to
fix it. Developers refuse to run with SELinux enabled, leading back to the problem of
having different environments between development and production—the very prob‐
lem Docker was meant to solve. If you want or need the extra protection that SELinux
provides, you will have to grin and bear the current situation until things improve.

AppArmor
The advantage and disadvantage of AppArmor is that it is much simpler than SELi‐
nux. It should just work and stay out of your way but cannot provide the same granu‐
larity of protection as SELinux. AppArmor works by applying profiles to processes,
restricting which privileges they have at the level of Linux capabilities and file access.

If you’re using an Ubuntu host, chances are it is running right now. You can check
this by running sudo apparmor_status. Docker will automatically apply an AppA‐
rmor profile to each launched container. The default profile provides a level of pro‐
tection against rogue containers attempting to access various system resources, and
can normally be found at /etc/apparmor.d/docker. At the time of writing, the default
profile cannot be changed, as the Docker daemon will overwrite it when it reboots.

If AppArmor interferes with the running of a container, it can be turned off for that
container by passing --security-opt="apparmor:unconfined" to docker run. You
can pass a different profile for a container by passing --security-

opt="apparmor:PROFILE" to docker run, where PROFILE is the name of a security
profile previously loaded by AppArmor.

Auditing
Running regular audits or reviews on your containers and images is a good way to
ensure that your system is kept clean and up to date and to double-check that no
security breaches have occurred. An audit in a container-based system should check
that all running containers are using up-to-date images and that those images are
using up-to-date and secure software. Any divergence in a container from the image
it was created from should be identified and checked. In addition, audits should cover
other areas nonspecific to container-based systems, such as checking access logs, file
permissions, and data integrity. If audits can be largely automated, they can run regu‐
larly to detect any issues as quickly as possible.

Rather than having to log in to each container and examine each individually, we can
instead audit the image used to build the container and use docker diff to check for
any drift from the image. This works even better if you use a read-only filesystem (see
“Limit Filesystems”) and can be sure that nothing has changed in the container.

322 | Chapter 13: Security and Limiting Containers

As a minimum, you should check that the versions of software used are up to date
with the latest security patches. This should be checked on each image and any files
identified as having changed by docker diff. If you are using volumes, you will also
need to audit each of those directories.

The amount of work involved in auditing can be seriously reduced by running mini‐
mal images that only contain the files and libraries essential to the application.

The host system also needs to be audited just as you would a regular host machine or
VM. Making sure the kernel is correctly patched becomes even more critical in a
container-based system that shares the kernel among containers.

Several tools are already available for auditing container-based systems, and we can
expect to see more in the coming months. Notably, Docker released the Docker
Bench for Security tool, which checks for compliance with many of the suggestions
from the Docker Benchmark document from the Center for Internet Security (CIS).
Also, the open source Lynis auditing tool contains several checks related to running
Docker.

Incident Response
Should something bad occur, you can take advantage of several Docker features to
quickly respond to the situation and investigate the cause of the problem. In particu‐
lar, docker commit can be used to quickly take a snapshot of the compromised sys‐
tem, and docker diff and docker logs can reveal changes made by the attacker.

A major question that needs to be answered when dealing with a compromised con‐
tainer is, “Could a container breakout have occurred?” (i.e., could the attacker have
gained access to the host machine?). If you believe that this is possible or likely, the
host machine will need to be wiped and all containers recreated from images (without
some form of attack mitigation in place). If you are sure the attack was isolated to the
container, you can simply stop that container and replace it. (Never put the
compromized container back into service even if it holds data or changes not in the
base image; you simply can’t trust the container anymore.)

An effective way to prevent attack may be to limit the container in some way, such as
dropping capabilities or running with a read-only filesystem.

Once the immediate situation has been dealt with and some form of attack mitigation
put in place, the compromised image you committed can be analyzed to determine
the exact causes and extent of the attack.

For information on how to develop an effective security policy covering incident
response, read CERT’s “Steps for Recovering from a UNIX or NT System Compro‐
mise” and the advice given on the ServerFault website.

Incident Response | 323

https://dockerbench.com
https://dockerbench.com
https://benchmarks.cisecurity.org/
https://cisofy.com/lynis/
https://www.cert.org/historical/tech_tips/win-UNIX-system_compromise.cfm
https://www.cert.org/historical/tech_tips/win-UNIX-system_compromise.cfm
https://serverfault.com/questions/218005/how-do-i-deal-with-a-compromised-server

Future Features
Several Docker features related to security are in the works. Since these features have
been prioritized by Docker, they will are likely be available by the time you read this:

Seccomp
The Linux seccomp (or secure computing mode) facility can be used to restrict the
system calls that can be made by a process. Seccomp is most notably used by web
browsers, including both Chrome and Firefox, to sandbox plugins. By integrating
seccomp with Docker, containers can be locked down to a specified set of system
calls. The proposed Docker seccomp intergration would by default deny calls to
32-bit system calls, old networks, and various system functions that containers
don’t typically need access to. In addition, other calls could be explicitly denied or
allowed at runtime. For example, the following code would allow the container to
make the clock_adjtime syscall needed for syncing the system time by using the
Network Time Protocol daemon:

$ docker run -d --security-opt seccomp:allow:clock_adjtime ntpd

User namespacing
As mentioned previously, a few proposals exist for how to improve the issue of
user namespacing, in particular with regard to the root user. We can expect to see
support for mapping the root user to a nonprivileged user on the host soon.

In addition, I would expect to see some consolidation of the various security tools
available to Docker, possibly in the form of a security profile for containers. At the
moment, a lot of overlap exists between the various security tools and options (e.g.,
file access can be restricted by using SELinux, dropping capabilities, or using the --
read-only flag).

Conclusion
As we’ve seen in this chapter, there are many aspects to consider when securing a sys‐
tem. The primary advice is to follow the principles of defense-in-depth and least priv‐
ilege. This ensures that even if an attacker manages to compromise a component of
the system, that attacker won’t gain full access to the system and will have to penetrate
further defenses before being able to cause significant harm or access sensitive data.

Groups of containers belonging to different users or operating on sensitive data
should run in VMs separate from containers belonging to other users or running
publicly accessible interfaces. The ports exposed by containers should be locked
down, particularly when exposed to the outside world, but also internally to limit the
access of any compromised containers. The resources and functionality available to
containers should be limited to only that required by their purpose, by setting limits
on their memory usage, filesystem access, and kernel capabilities. Further security

324 | Chapter 13: Security and Limiting Containers

can be provided at the kernel level by running hardened kernels and using security
modules such as AppArmor or SELinux.

In addition, attacks can be detected early through the use of monitoring and auditing.
Auditing in particular is interesting in a container-based system, because containers
can be easily compared to the images they were created from to detect suspicious
changes. In turn, images can be vetted offline to make sure they are running up-to-
date and secure versions of software. Compromised containers with no state can be
quickly replaced with new versions.

Containers are a positive force in terms of security because of the extra level of isola‐
tion and control they provide. A system using containers properly will only be more
secure than the equivalent system without containers.

Conclusion | 325

Index

Symbols
.dockerignore file, 41
–a (docker run option), 57
–d (docker run option), 57
–e (docker run option), 57
–h (docker run option), 58
–i (docker run option), 57
–p (docker run option), 49, 58
–P (docker run option), 49, 59
–t (docker run option), 57
–u (docker run option), 59
–v (docker run option), 58
–w (docker run option), 59
––attach (docker run option), 57
––detach (docker run option), 57
––entrypoint (docker run option), 59
––env (docker run option), 57
––expose (docker run option), 58
––hostname (docker run option), 58
––interactive (docker run option), 57
––link (docker run option), 58
––name (docker run option), 58
––publish (docker run option), 58
––publish–all (docker run option), 59
––restart (docker run option), 57, 148
––rm (docker run option), 57
––tty (docker run option), 57
––user (docker run option), 59
––volume (docker run option), 58
––volumes–from (docker run option), 58
––workdir (docker run option), 59

A
A/B (multivariate) testing, 135

access controls, SELinux vs. standard Linux,
319

ADD instruction, 47
affinity filter, 256
aggregating logs, 176
alerting (see monitoring and alerting)
Amazon EC2 Container Service (ECS), 137,

162-165
Amazon Elastic Load Balancer, 164
ambassador containers (ambassadors), 206-210

advantages and disadvantages, 206
and amouat/ambassador image, 208

amouat/ambassador image, 208
amouat/network–utils image, 241
Ansible, 154-156
Apache Mesos (see Mesos)
AppArmor, 322
application groups, Marathon, 281
architecture, Docker, 35-39
auditing, 322
AUFS storage driver, 157
authentication of registry users, 109
Automated Builds, 102-104
awsElasticBlockStore (Kubernetes volume), 270
aws–vpc Flannel backend, 237

B
backup

data, 32
Jenkins, 132

base images, 44-46
bind mounts, 75
blue/green deployment, 135
boolean flags, 56

327

bridge networking mode, 226
BTRFS storage driver, 158
build (docker–compose command), 83
build context, 39-41
build slaves, 132
builds, triggering with Jenkins, 128

C
caching

for identidock web app, 93-97
of layers, 43

cAdvisor, 196
Calico, 242-246, 248
CAP theorem, 219
capabilities, limiting, 315
CFS (Completely Fair Scheduler), 313
cgroups, 36
CI (see Continuous Integration)
Clocker, 283
clustering and orchestration

third–party solutions, 38
tools for, 250-282
with fleet, 257-263
with Kubernetes, 263-271
with Marathon, 272-281
with Mesos, 271-281
with Swarm, 251-257

clustering, defined, 250
clusters

monitoring solutions, 197-200
optimal size for etcd/Consul, 211

CMD instruction, 47
commands

Compose, 83
container information, 62
container management, 59-61
Docker, 20-24, 55-67
Docker installation/usage information sub‐

commands, 62
for image creation and manipulation, 63
for registries, 66
run, 56-59

Completely Fair Scheduler (CFS), 313
component tests, 133
Compose, 37

automating development with, 81-84
commands, 83
extends keyword, 143

configuration files

and Dockerfile, 80
with dockerize and docker–gen, 147

Configuration Management (CM) tool
and security, 298
for container deployment, 153-156

consensus, 210
constraint filter, 255
Consul, 219-223

and CAP theorem, 219
optimal cluster size, 211

consumer contract tests, 134
container breakouts, 290
container networking (see networking)
container networking mode, 228
Content Trust, 10, 113, 301-305, 304
Continuous Delivery, 171
Continuous Deployment, 171
Continuous Integration (CI), 115-135

adding unit tests to identidock, 116-121
creating Jenkins container for, 121-129
hosted solutions for, 133
pushing images, 129-132
testing and microservices, 133-135
testing in production, 135

COPY instruction, 47
CPU share, limiting, 313
cross–host networking, 230-246

with Flannel, 237-242
with Overlay, 231-233
with Weave, 233-237

Crypt, 169
cryptographic signing, 300

D
DAC (Discretionary Access Control), 319
daemon (see Docker daemon)
data

backing up, 32
managing with volumes/data containers,

51-55
sensitive, 167-170
sharing, 53

data containers, 54
defense–in–depth, 292
denial–of–service (DoS) attacks, 290

limiting CPU to prevent, 313
limiting memory to prevent, 312
limiting restarts to prevent, 314

dependency filter, 256

328 | Index

deployment, container, 137-171
CM tool, 153-156
continuous deployment/delivery, 171
execution options, 147-156
host configuration, 157-160
networking, 170
persistent data and production containers,

167
process manager for, 150-153
production registry, 170
provisioning resources with Docker

Machine, 138-141
proxies for, 141-147
security tips for, 307-318
sharing sensitive data, 167-170
shell scripts, 148
specialist hosting options, 160-166
systemd for, 150-153

development, 71-84
automating with Compose, 81-84
Hello World message project, 71-84

device mapper storage driver, 158
dig utility, 218
digests, 105, 300
Discretionary Access Control (DAC), 319
dnmonster image, 92
DNS–based service discovery, 224
docker attach command, 59
docker build command, 39, 63
Docker client, 35
docker commit command, 24, 64
Docker Compose (see Compose)
Docker Content Trust (see Content Trust)
docker cp command, 60
docker create command, 60
Docker daemon, 35, 293
docker diff command, 62
Docker Engine, 6
Docker events API, 188-189
docker events command, 62
docker exec command, 60
docker export command, 64
docker group, Jenkins user vs. sudo in, 124
docker help subcommand, 62
docker history command, 64
Docker Hub, 6, 36

alternatives to, 101
and official repositories, 30
Docker registry vs., 104

for image distribution, 100-102
Webhooks for Jenkins build, 129

docker images command, 64
docker import command, 65
docker info command, 62
docker inspect command, 21, 62
docker kill command, 60
docker load command, 65
docker login command, 66
docker logout command, 67
docker logs command, 22, 62
Docker Machine, 37

IP addresses, 74
provisioning resources with, 138-141
syslog and, 191

Docker Notary project, 304
docker pause command, 60
docker port command, 63
docker ps command, 22, 63
docker pull command, 67
docker push command, 67
Docker registry, Docker Hub vs., 104
docker restart command, 61
docker rm command, 61, 83
docker rmi command, 65
docker run command, 56-59

container names/variables options, 57
lifecycle options, 57
networking options, 58
privilege/capability options, 59
volume options, 58

docker save command, 65
docker search command, 67
docker start command, 61
docker stats tool, 194
docker stop command, 61, 83
docker tag command, 66
docker top command, 63
Docker Trusted Registry, 38
docker unpause command, 61
docker version subcommand, 62
Dockerfiles

building images from, 24-27
rules for generating reproducible builds

from, 305-307
securely downloading software in, 306
setting volume permissions in, 52
USER statement in, 78

dockerize, 147

Index | 329

docker–discover, 226
docker–gen, 147
Docker–in–Docker (DinD), 122
drivers, unsupported, 299

E
EC2 Container Service (ECS), 137, 162-165
Elasticsearch, 176
ELK (Elasticsearch, Logstash, Kibana) stack,

176-186
emptyDir (Kubernetes volume), 270
end–to–end tests, 133
ENTRYPOINT instruction, 26, 47
ENV instruction, 47
environment variables, passing sensitive data

in, 168
essential key, 164
etcd, 210-214

and CAP theorem, 219
and Flannel, 237-242
optimal cluster size, 211

Eureka, 225
exec format, shell format vs., 46
exited container, 26
experimental build, Docker, 17
EXPOSE instruction, 47
extends keyword, 143

F
filesystems, limiting, 314
filters, Swarm, 254-256
Flannel, 237-242, 248
fleet, 257-263, 286
fluentd logger value, 175
Frameworks, 271
FreeBSD project, 9
FROM instruction, 48

G
gce Flannel backend, 237
gcePersistentDisk (Kubernetes volume), 270
GELF (Graylog Extended Log Format) driver,

175
gelf logger value, 175
Giant Swarm, 165
GIDs, 78
Git, version control and, 86
global unit scheduling, 258

golden image, 298
Google Container Engine (GKE), 162

and Kubernetes, 266
and SkyDNS, 215
and VMs, 137
Docker hosting, 39

Graylog Extended Log Format (GELF) driver,
175

groups, containers and, 78

H
hardened kernel, 318
health checking, Consul and, 223
health filter, 256
helper scripts, 80
history of Docker, 8
host networking mode, 227
host operating system, choosing, 157
hosting, 39

alternatives to Docker Hub, 101
specialist options, 160-166
with ECS, 162-165
with Giant Swarm, 165
with GKE, 162
with Triton, 160-162

hosts
choosing an OS, 157
configuration, 157-160
segregating containers by, 295
storage driver for, 157

host–gw Flannel backend, 237
HTTP interface, for registry, 110

I
identicons, 85
identidock (web app exercise)

adding unit tests to, 116-121
and Hello World message, 71-81
and microservices, 96
Automated Builds for, 102-104
caching for, 93-97
clustering and orchestration tools, 250-282
container deployment, 137-171
creating, 85-97
creating basic web page for, 86
image distribution for, 99-114
Jenkins container creation, 121-129
logging, 174-194
networking, 226-248

330 | Index

production registry, 170
provisioning resources with Machine,

138-141
pushing images, 129-132
securing, 293-295
service discovery, 210-226
using existing images for, 88-92

image provenance
Docker Content Trust, 301-305
Docker digests, 300
establishing, 113
reproducible/trustworthy Dockerfiles,

305-307
security issues, 300-307

image sprawl, 131
images

alternative private hosting, 101
and private repositories, 29
and UFS, 25
Automated Builds for, 102-104
base, 44-46
build context for, 39-41
building from Dockerfiles, 24-27, 39-48
caching of layers, 43
commands for creating/working with, 63
distributing via your own registry, 104-111
distribution of, 36, 99-114
distribution via Docker Hub, 100-102
Dockerfile instructions, 46-48
finding all tags for, 131
for data containers, 54
including tests in, 120
labeling, 299
layers, 41-43
lists of running, 297
namespaces, 29
naming/tagging, 99
onbuild, 73
poisoned, 291
private distribution, 104-111
production, 131
provenance, 113
pushing, 129-132
rebuilding, 46
reducing size for distribution, 111-113
reliable tagging, 129-131
saving sensitive data in, 167
slim, 73
staging, 131

storage hierarchy, 28
testing Docker installation with, 19
using Redis image, 30-33
variants, 73

incident response, 323
Infrastructure Plumbing Manifesto, 10
installation, Docker, 13-18

and running SELinux in permissive mode,
14

and sudo prefix, 15
on Mac OS, 15
on Windows, 15
quick check for, 17

instructions, exec vs. shell form, 46
integration tests, 134
IP address

addressing registry by, 107
Docker machine, 74

IP address management (IPAM), 233

J
Jenkins

and image sprawl, 131
backing up, 132
container creation, 121-129
triggering builds with, 128
using Docker to provision slaves in, 132

journald logger value, 175
json–file logger value, 175

K
kernel exploits, 290
kernel, hardened, 318
keys, backing up, 302
KeyWhiz, 169
key–value store

and CAP theorem, 219
etcd, 210-214
for sensitive data, 169

Kibana, 177, 182-185
Kitematic, 37
Kubernetes, 263-271, 286

and Google Container Engine, 162
and SkyDNS, 215
getting started with, 265
running on Mesos, 281
volumes in, 270

Index | 331

L
labels

in Kubernetes, 263
using when building images, 299

latest tag, 100
layers, 25

caching, 43
image, 41-43

least privilege principle, 292
libcontainer, 37
lifecycle, container, 57
link container (term), 50
links

and guaranteed logging, 193
breaking on restart of containers, 150
for containers, 49-51
forthcoming Docker changes, 32

Linux
64–bit platform, 10
installing Docker on, 13
logrotate utility, 185
seccomp, 324

Linux Containers (LXC) project, 6
Linux Security Modules (LSMs), 318-322
logging, 174-194

aggregating logs, 176
commercial solutions, 201
default Docker, 174
Docker events API, 188-189
forwarding logs with rsyslog, 191-193
guaranteed, 193
log storage/rotation, 185
with ELK stack, 176-186
with raw logs on filesystem, 193
with syslog, 187-193

logrotate utility, 185
logs (docker–compose command), 83
Logspout, 177
Logstash, 177, 196
LSMs (Linux Security Modules), 318-322
LXC (Linux Containers) project, 6
LXC execution driver, 299

M
MAC (Mandatory Access Control), 319
Mac OS, Docker installation on, 15
Machine (see Docker Machine)
MAINTAINER instruction, 48
management (container management), 282-287

Clocker, 283
defined, 250
platforms, 282-286
Rancher, 282
Tutum, 285

Mandatory Access Control (MAC), 319
Marathon, 272-281
master container (term), 50
MCS (Multi–Category Security), 319
MD5 algorithm, 300
memory, limiting, 312
Mesos, 271-281, 286

and Marathon, 272-281
running Swarm or Kubernetes on, 281

Mesos Agent Nodes, 271
Mesos Frameworks, 271
Mesos Master, 271
microservices

and identidock web app, 96
and unit tests, 115
monoliths vs., 11, 96
testing of, 133-135

MLS (Multi–Level Security), 319
mock, 119
monitoring and alerting, 194-201

cluster solutions, 197-200
commercial solutions, 201
getting stats on all running containers, 195
with cAdvisor, 196
with Docker tools, 194-196
with Logstash, 196
with Prometheus, 197-200

monoliths, microservices vs., 11, 96
multivariate (A/B) testing, 135
Multi–Category Security (MCS), 319
Multi–Level Security (MLS), 319

N
names, image, 99
namespaces/namespacing, 29, 37, 291

future security features, 324
networking, 226-248

ambassadors as alternative to, 206-210
and container deployment, 170
basic modes, 226-228
bridge mode, 226
container mode, 228
cross–host solutions, 230-246
defined in container context, 205

332 | Index

forthcoming Docker changes, 32, 50
forthcoming Docker features, 228-230
host mode, 227
in Kubernetes, 263
limiting, 309-310
none mode, 228
options for, 226-248
plugins, 230
run command options, 58
security tips, 309-310
third–party solutions, 38
types, 230
with Calico, 242-246
with Flannel, 237-242
with Overlay, 231-233
with Weave, 233-237

nfs (Kubernetes volume), 270
nofile limit, 317
none logger value, 175
Notary project, 304
nproc limit, 317

O
official repositories, 30
onbuild images, 73
ONBUILD instruction, 48
Open Container Initiative, 6
operating systems, container–focused, 38
orchestration (term), 250

(see also clustering and orchestration)
Overlay, 158, 231-233, 247
over–subscription, 281

P
permissions, 52
permissive mode (SELinux), 14
Phusion, 45
phusion/baseimage–docker, 45
pip dependencies, 80
plugins

and Docker philosophy, 10
networking, 230

pods, 263
poisoned images, 291
port filter, 255
postregistry/preregistry tests, 134
private keys, 300
privilege escalation attacks, 311
privileges

Docker daemon and root access, 293
least privilege principle, 292
limiting capabilities, 315

process manager, 150-153
production registry, 170
Project Calico (see Calico)
PromDash, 198
Prometheus, 197-200
provenance (see image provenance)
proxies, 141-147
ps (docker–compose command), 83
publishing ports, 49
Python, 71, 76

Q
quay.io, 101

R
Raft algorithm, 219
ramped deployment, 135
Rancher, 282
Redis

for identidock web app, 93-97
using official image, 30-33

registration, service discovery and, 223
registries, 36

addressing by IP address, 107
and image storage hierarchy, 28
and private repositories, 29
commands for using, 66
commercial alternatives, 111
data storage, 109
HTTP interface, 110
user authentication, 109
working with, 27-29

replay attacks, 303
replication controllers, 264
repositories

and image storage hierarchy, 28
names/tags, 100
official, 30
private, 29

requirements, Docker installation, 13
resource limits, 316-318
restarts, limiting, 314
reverse proxy, 141
revocable tasks, 281
rkt, 9
rm (docker–compose command), 83

Index | 333

root
avoiding running production applications

as, 307-309
namespace, 29

root access, Docker daemon and, 293
root privileges, 15
root signing key, 302
rsyslog, 191-193
run (docker–compose command), 83
run command (see docker run command)
RUN instruction, 48
runc driver, 36

S
SANs (Subject Alternative Names), 107
scaling, monoliths vs. microservices, 11
scheduled runs, 134
seccomp (secure computing mode), 324
secret (Kubernetes volume), 270
secrets (see sensitive data)
secure hash, 300
security, 289-325

and Docker Content Trust, 301-305
and Docker digests, 300
and unsupported drivers, 299
and USER statement in Dockerfiles, 78
AppArmor, 322
applying resource limits, 316-318
applying updates, 296-299
auditing, 322
containers and namespacing, 291
defense–in–depth, 292
forthcoming Docker features, 324
getting lists of running images, 297
image provenance, 300-307
important issues, 290-292
incident response, 323
least privilege principle, 292
limiting capabilities, 315
limiting CPU, 313
limiting filesystems, 314
limiting memory, 312
limiting restarts, 314
LSMs, 318-322
Notary project, 304
of identidock, 293-295
removing setuid/setgid binaries, 311
reproducible/trustworthy Dockerfiles,

305-307

running a hardened kernel, 318
segregating containers by host, 295
SELinux, 319-322
setting a user, 307-309
tips, 307-318

SELinux security module, 319-322
AppArmor vs., 322
enabling, 320
Linux access controls vs., 319
running in permissive mode, 14

sensitive data
compromising, 291
key–value store for, 169
passing via environment variables, 168
passing via volumes, 168
saving in the image, 167
sharing, 167-170

service discovery, 210-226, 246
ambassadors as alternative to, 206-210
and CAP theorem, 219
defined, 205
DNS–based pros and cons, 224
registration, 223
third–party solutions, 38
with Consul, 219-223
with docker–discover, 226
with etcd, 210-214
with Eureka, 225
with SkyDNS, 215-219
with SmartStack, 225
with WeaveDNS, 225
with ZooKeeper, 225

services, in Kubernetes, 264
setuid/setgid binaries, removing, 311
SHA algorithm, 300
shadowing, 135
sharing data, 53
shell format, exec format vs., 46
signing keys, 302
SkyDNS, 215-219

and fleet, 259
slim images, 73
SmartStack, 225
socket activation, 258
staging images, 131
state variables, 155
stop (docker–compose command), 83
stopped containers, 23, 26
storage drivers

334 | Index

and host configuration, 157
and UFS, 37
security issues, 299
switching, 159

stub, 119
subcommands, for Docker installation/usage

information, 62
Subject Alternative Names (SANs), 107
sudo (command prefix), 15, 124
Swarm, 9, 37, 251-257, 286

discovery methods, 253
filters, 254-256
running on Mesos, 281
strategies for container hosting, 256

syslog, 175, 187-193, 191
systemd

fleet and, 257
for container deployment, 150-153

T
tagging key, 302
tags

and image storage hierarchy, 28
naming rules, 100
of images, 99
reliable process for creating, 129-131

test double, 119
testing, 115-135

adding unit tests to identidock, 116-121
and network tools container, 241
containers for fast testing, 120
in production, 135
including in images, 120
of container image, 132
of microservices, 133-135

thin provisioning, 158
timestamp keys, 303
Transport Layer Security (TLS), 106
Triton, 39, 160-162
Tutum, 285
Twelve–Factor methodology, 168

U
udp Flannel backend, 237
UIDs, 78
ulimits, applying, 316-318
unikernel architecture, 45
Union File System (UFS; union mount), 22, 25,

37

unit tests, 133
unsupported drivers, 299
up (docker–compose command), 83
updates, 296-299
USER instruction, 48, 78
user namespacing, 29, 324
users

and root privileges, 15
and sudo command prefix, 15
setting, 307-309

uWSGI configuration, 80

V
Vault, 169
version control, 86
VFS storage driver, 159
virtualenv, 76
VMs (virtual machines)

containers vs., 4
deleting, 257

VOLUME instruction, 48
volume plugins, 38
volumes

defined, 32
deleting, 54
in Kubernetes, 270
initializing, 51
managing data with, 51-55
passing sensitive data in, 168
setting permissions in Dockerfiles, 52

vxlan Flannel backend, 237

W
watches, Consul and, 223
Weave, 233-237, 247
Weave container, 236
WeaveDNS, 225
weaveproxy container, 236
Webhooks, for Jenkins build, 129
Windows, Docker installation on, 15
WORKDIR instruction, 48

Z
ZFS storage driver, 158
ZooKeeper, 225, 271

Index | 335

About the Author
Adrian Mouat is the chief scientist for Container Solutions, a pan-European services
company that specializes in Docker and Mesos. Previously, he was an applications
consultant at EPCC, part of the University of Edinburgh.

Colophon
The animal on the cover of Using Docker is a bowhead whale (Balaena mysticetus). It
is a dark-colored, stocky whale, notable for its lack of dorsal fin. They live their lives
in Arctic and sub-Arctic waters, unlike other whales that migrate to low latitude
waters to feed or reproduce.

Bowhead whales are large and robust, growing up to 53 feet (males) and 59 feet
(females). They have massive triangular skulls that they use to break through Arctic
ice to breathe. Bowhead whales have strongly bowed, white lower jaws and narrow
upper jaws, which house the longest baleen of any whale (at 9.8 feet) and is used to
strain its tiny prey from the water. Its paired blowholes are found at the highest point
of its head; they can spout water 20 feet high. It boasts the thickest blubber of any
animal, ranging from 17–20 inches thick.

Bowhead whales travel alone or in small pods of six. They can remain underwater for
up to an hour, but tend to limit their single dives to 4–15 minutes. These whales typi‐
cally travel about 2–5 kilometers per hour—slow for a whale, but when in danger,
they can reach speeds of 10 km/hr. Despite not being very social, bowhead whales are
the most vocal of large whales. They communicate using underwater sounds while
traveling, socializing, and feeding. During mating season, bowheads make long, com‐
plex songs as mating calls.

These whales are known as the longest living mammals, living for over 200 years. In
2007, a 49-foot bowhead whale was caught off the coast of Alaska with an explosive
harpoon head found embedded in its neck blubber. The weapon was traced back to a
major whaling center in New Bedford, Massachusetts, and determined to have been
manufactured in 1890. Other bowhead whales have been aged between 135 and 172
years old. Once in danger of extinction, bowhead whales have increased since com‐
mercial whaling ceased. Small numbers (25–40) are still hunted during subsistence
hunts by Alaska natives, but this level of hunt is not expected to affect the population’s
recovery.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from Braukhaus Lexicon. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Background and Basics
	Chapter 1. The What and Why of Containers
	Containers Versus VMs
	Docker and Containers
	Docker: A History
	Plugins and Plumbing
	64-Bit Linux

	Chapter 2. Installation
	Installing Docker on Linux
	Run SELinux in Permissive Mode
	Running Without sudo

	Installing Docker on Mac OS or Windows
	A Quick Check

	Chapter 3. First Steps
	Running Your First Image
	The Basic Commands
	Building Images from Dockerfiles
	Working with Registries
	Private Repositories

	Using the Redis Official Image
	Conclusion

	Chapter 4. Docker Fundamentals
	The Docker Architecture
	Underlying Technologies
	Surrounding Technologies
	Docker Hosting

	How Images Get Built
	The Build Context
	Image Layers
	Caching
	Base Images
	Dockerfile Instructions

	Connecting Containers to the World
	Linking Containers
	Managing Data with Volumes and Data Containers
	Sharing Data
	Data Containers

	Common Docker Commands
	The run Command
	Managing Containers
	Docker Info
	Container Info
	Dealing with Images
	Using the Registry

	Conclusion

	Part II. The Software Lifecycle with Docker
	Chapter 5. Using Docker in Development
	Say “Hello World!”
	Automating with Compose
	The Compose Workflow

	Conclusion

	Chapter 6. Creating a Simple Web App
	Creating a Basic Web Page
	Taking Advantage of Existing Images
	Add Some Caching
	Microservices
	Conclusion

	Chapter 7. Image Distribution
	Image and Repository Naming
	The Docker Hub
	Automated Builds
	Private Distribution
	Running Your Own Registry
	Commerical Registries

	Reducing Image Size
	Image Provenance
	Conclusion

	Chapter 8. Continuous Integration and Testing with Docker
	Adding Unit Tests to Identidock
	Creating a Jenkins Container
	Triggering Builds

	Pushing the Image
	Responsible Tagging
	Staging and Production
	Image Sprawl
	Using Docker to Provision Jenkins Slaves

	Backing Up Jenkins
	Hosted CI Solutions
	Testing and Microservices
	Testing in Production

	Conclusion

	Chapter 9. Deploying Containers
	Provisioning Resources with Docker Machine
	Using a Proxy
	Execution Options
	Shell Scripts
	Using a Process Manager (or systemd to Rule Them All)
	Using a Configuration Management Tool

	Host Configuration
	Choosing an OS
	Choosing a Storage Driver

	Specialist Hosting Options
	Triton
	Google Container Engine
	Amazon EC2 Container Service
	Giant Swarm

	Persistent Data and Production Containers
	Sharing Secrets
	Saving Secrets in the Image
	Passing Secrets in Environment Variables
	Passing Secrets in Volumes
	Using a Key-Value Store

	Networking
	Production Registry
	Continuous Deployment/Delivery
	Conclusion

	Chapter 10. Logging and Monitoring
	Logging
	The Default Docker Logging
	Aggregating Logs
	Logging with ELK
	Docker Logging with syslog
	Grabbing Logs from File

	Monitoring and Alerting
	Monitoring with Docker Tools
	cAdvisor
	Cluster Solutions

	Commercial Monitoring and Logging Solutions
	Conclusion

	Part III. Tools and Techniques
	Chapter 11. Networking and Service Discovery
	Ambassadors
	Service Discovery
	etcd
	SkyDNS
	Consul
	Registration
	Other Solutions

	Networking Options
	Bridge
	Host
	Container
	None

	New Docker Networking
	Network Types and Plugins

	Networking Solutions
	Overlay
	Weave
	Flannel
	Project Calico

	Conclusion

	Chapter 12. Orchestration, Clustering, and Management
	Clustering and Orchestration Tools
	Swarm
	Fleet
	Kubernetes
	Mesos and Marathon

	Container Management Platforms
	Rancher
	Clocker
	Tutum

	Conclusion

	Chapter 13. Security and Limiting Containers
	Things to Worry About
	Defense-in-Depth
	Least Privilege

	Securing Identidock
	Segregate Containers by Host
	Applying Updates
	Avoid Unsupported Drivers

	Image Provenance
	Docker Digests
	Docker Content Trust
	Reproducible and Trustworthy Dockerfiles

	Security Tips
	Set a User
	Limit Container Networking
	Remove Setuid/Setgid Binaries
	Limit Memory
	Limit CPU
	Limit Restarts
	Limit Filesystems
	Limit Capabilities
	Apply Resource Limits (ulimits)

	Run a Hardened Kernel
	Linux Security Modules
	SELinux
	AppArmor

	Auditing
	Incident Response
	Future Features
	Conclusion

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

