
Matt Butcher
Matt Farina
FOREWORD BY Brian Ketelsen

M A N N I N G

Includes 70 Techniques

www.allitebooks.com

http://www.allitebooks.org

Go in Practice
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Go in Practice
MATT BUTCHER

MATT FARINA

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Susanna Kline
20 Baldwin Road Technical development editors: Ivan Kirkpatrick, Kim Shrier,
PO Box 761 Glenn Burnside, Alain Couniot
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljevic

Project editor: Karen Gulliver
Copy editor: Sharon Wilkey
Proofreader: Melody Dolab

Technical Proofreader: James Frasché
Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781633430075
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

brief contents
PART 1 BACKGROUND AND FUNDAMENTALS1

1 ■ Getting into Go 3
2 ■ A solid foundation 27
3 ■ Concurrency in Go 59

PART 2 WELL-ROUNDED APPLICATIONS85

4 ■ Handling errors and panic 87
5 ■ Debugging and testing 113

PART 3 AN INTERFACE FOR YOUR APPLICATIONS145

6 ■ HTML and email template patterns 147
7 ■ Serving and receiving assets and forms 168
8 ■ Working with web services 194

PART 4 TAKING YOUR APPLICATIONS TO THE CLOUD215

9 ■ Using the cloud 217
10 ■ Communication between cloud services 235
11 ■ Reflection and code generation 253
v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

contents
foreword xiii
preface xv
acknowledgments xvi
about this book xviii
about the authors xx
about the cover illustration xxi

PART 1 BACKGROUND AND FUNDAMENTALS....................1

1 Getting into Go 3
1.1 What is Go? 4

1.2 Noteworthy aspects of Go 6
Multiple return values 6 ■ A modern standard library 7
Concurrency with goroutines and channels 9 ■ Go the toolchain—
more than a language 13

1.3 Go in the vast language landscape 17
C and Go 17 ■ Java and Go 18 ■ Python, PHP, and Go 19
JavaScript, Node.js, and Go 21

1.4 Getting up and running in Go 22
Installing Go 22 ■ Working with Git, Mercurial, and version
control 22 ■ Exploring the workspace 23 ■ Working with
environment variables 23

1.5 Hello, Go 24

1.6 Summary 25
www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2 A solid foundation 27
2.1 Working with CLI applications, the Go way 28

Command-line flags 28

TECHNIQUE 1 GNU/UNIX-style command-line arguments 31
Command-line frameworks 33

TECHNIQUE 2 Avoiding CLI boilerplate code 33
2.2 Handling configuration 38

TECHNIQUE 3 Using configuration files 39
TECHNIQUE 4 Configuration via environment variables 43

2.3 Working with real-world web servers 44
Starting up and shutting down a server 45

TECHNIQUE 5 Graceful shutdowns using manners 46
Routing web requests 49

TECHNIQUE 6 Matching paths to content 49
TECHNIQUE 7 Handling complex paths with wildcards 52
TECHNIQUE 8 URL pattern matching 54
TECHNIQUE 9 Faster routing (without the work) 57

2.4 Summary 58

3 Concurrency in Go 59
3.1 Understanding Go’s concurrency model 59

3.2 Working with goroutines 60
TECHNIQUE 10 Using goroutine closures 61
TECHNIQUE 11 Waiting for goroutines 63
TECHNIQUE 12 Locking with a mutex 67

3.3 Working with channels 72
TECHNIQUE 13 Using multiple channels 73
TECHNIQUE 14 Closing channels 76
TECHNIQUE 15 Locking with buffered channels 80

3.4 Summary 82

PART 2 WELL-ROUNDED APPLICATIONS85

4 Handling errors and panics 87
4.1 Error handling 88

TECHNIQUE 16 Minimize the nils 90
TECHNIQUE 17 Custom error types 92
TECHNIQUE 18 Error variables 93
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4.2 The panic system 95
Differentiating panics from errors 96 ■ Working with panics 97

TECHNIQUE 19 Issuing panics 97
Recovering from panics 99

TECHNIQUE 20 Recovering from panics 100
Panics and goroutines 104

TECHNIQUE 21 Trapping panics on goroutines 105
4.3 Summary 111

5 Debugging and testing 113
5.1 Locating bugs 114

Wait, where is my debugger? 114

5.2 Logging 114
Using Go’s logger 115

TECHNIQUE 22 Logging to an arbitrary writer 116
TECHNIQUE 23 Logging to a network resource 118
TECHNIQUE 24 Handling back pressure in network logging 120

Working with system loggers 123

TECHNIQUE 25 Logging to the syslog 123
5.3 Accessing stack traces 126

TECHNIQUE 26 Capturing stack traces 126
5.4 Testing 129

Unit testing 129

TECHNIQUE 27 Using interfaces for mocking or stubbing 130
TECHNIQUE 28 Verifying interfaces with canary tests 132

Generative testing 134

5.5 Using performance tests and benchmarks 136
TECHNIQUE 29 Benchmarking Go code 137
TECHNIQUE 30 Parallel benchmarks 139
TECHNIQUE 31 Detecting race conditions 141

5.6 Summary 142

PART 3 AN INTERFACE FOR YOUR APPLICATIONS.........145

6 HTML and email template patterns 147
6.1 Working with HTML templates 148

Standard library HTML package overview 148 ■ Adding
functionality inside templates 150
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
TECHNIQUE 32 Extending templates with functions 150
Limiting template parsing 152

TECHNIQUE 33 Caching parsed templates 153
When template execution breaks 154

TECHNIQUE 34 Handling template execution failures 154
Mixing templates 155

TECHNIQUE 35 Nested templates 156
TECHNIQUE 36 Template inheritance 158
TECHNIQUE 37 Mapping data types to templates 161

6.2 Using templates for email 164
TECHNIQUE 38 Generating email from templates 164

6.3 Summary 166

7 Serving and receiving assets and forms 168
7.1 Serving static content 169

TECHNIQUE 39 Serving subdirectories 171
TECHNIQUE 40 File server with custom error pages 172
TECHNIQUE 41 Caching file server 174
TECHNIQUE 42 Embedding files in a binary 176
TECHNIQUE 43 Serving from an alternative location 178

7.2 Handling form posts 180
Introduction to form requests 180

TECHNIQUE 44 Accessing multiple values for a form field 182
Working with files and multipart submissions 183

TECHNIQUE 45 Uploading a single file 183
TECHNIQUE 46 Uploading multiple files 185
TECHNIQUE 47 Verify uploaded file is allowed type 187

Working with raw multipart data 189

TECHNIQUE 48 Incrementally saving a file 189
7.3 Summary 193

8 Working with web services 194
8.1 Using REST APIs 195

Using the HTTP client 195 ■ When faults happen 196

TECHNIQUE 49 Detecting timeouts 197
TECHNIQUE 50 Timing out and resuming with HTTP 198

8.2 Passing and handling errors over HTTP 200
Generating custom errors 201

CONTENTS xi
TECHNIQUE 51 Custom HTTP error passing 201
Reading and using custom errors 203

TECHNIQUE 52 Reading custom errors 204
8.3 Parsing and mapping JSON 206

TECHNIQUE 53 Parsing JSON without knowing the schema 206
8.4 Versioning REST APIs 209

TECHNIQUE 54 API version in the URL 209
TECHNIQUE 55 API version in content type 211

8.5 Summary 213

PART 4 TAKING YOUR APPLICATIONS
TO THE CLOUD..215

9 Using the cloud 217
9.1 What is cloud computing? 218

The types of cloud computing 218 ■ Containers and cloud-native
applications 220

9.2 Managing cloud services 222
Avoiding cloud provider lock-in 222

TECHNIQUE 56 Working with multiple cloud providers 222
Dealing with divergent errors 225

TECHNIQUE 57 Cleanly handling cloud provider errors 225
9.3 Running on cloud servers 227

Performing runtime detection 227

TECHNIQUE 58 Gathering information on the host 227
TECHNIQUE 59 Detecting dependencies 229

 Building for the cloud 230

TECHNIQUE 60 Cross-compiling 230
Performing runtime monitoring 232

TECHNIQUE 61 Monitoring the Go runtime 233
9.4 Summary 234

10 Communication between cloud services 235
10.1 Microservices and high availability 236

10.2 Communicating between services 237
Making REST faster 237

CONTENTSxii
TECHNIQUE 62 Reusing connections 238
TECHNIQUE 63 Faster JSON marshal and unmarshal 241

Moving beyond REST 244

TECHNIQUE 64 Using protocol buffers 244
TECHNIQUE 65 Communicating over RPC with protocol

buffers 247
10.3 Summary 252

11 Reflection and code generation 253
11.1 Three features of reflection 254

TECHNIQUE 66 Switching based on type and kind 254
TECHNIQUE 67 Discovering whether a value implements an

interface 258
TECHNIQUE 68 Accessing fields on a struct 262

11.2 Structs, tags, and annotations 266
Annotating structs 266 ■ Using tag annotations 267

TECHNIQUE 69 Processing tags on a struct 268
11.3 Generating Go code with Go code 274

TECHNIQUE 70 Generating code with go generate 275
11.4 Summary 280

index 281

foreword
When I heard that Matt Farina and Matt Butcher were starting a new book on Go, I
was excited. Both have been key contributors in the Go ecosystem for years, and have
extensive work experience and backgrounds that flavor the prose in this book with the
spice of past learnings. The book is intended as a spiritual successor to Go in
Action, taking you beyond the basics that we introduced there and into more practical
learning.

 The book is broken into four easily digestible parts, each with a different focus.
Part 1 is a refresher on key Go concepts. If you’re in a hurry and comfortable with
your Go skills, you can safely skip this section, but I discourage that. In reviewing the
final manuscript, I found nuggets of such value that I think everyone would benefit
from these chapters.

 Part 2 dives into the mechanics of managing a Go application in the real world.
The chapter on errors is one of the best treatises on Go errors I’ve ever read, and the
chapter on debugging and testing provides useful information on that crucial middle
step of application development that takes your application from proof of concept to
reliable production system.

 In part 3, you’ll learn about ways to create user interfaces for your application. The
chapter on templates is an excellent guide to what many find to be a complicated part
of Go’s ecosystem. You’ll see practical ways to reuse your templates and make your
web interfaces more dry. The examples alone are worth the price of the book, as it’s
difficult to find examples of template usage that can be easily mapped to a real-world
application. Later, you’ll see how to create and consume a standards-compliant REST
API and learn the tricks to properly versioning that API.
xiii

FOREWORDxiv
 The final section of the book moves into the interoperability layer that’s required
in nearly every application today. You’ll dive deep into cloud infrastructure and see
where Go fits in the cloud-computing model. You’ll finish with great coverage of
microservices and service-to-service communication patterns.

 Whether you’re just coming to Go or you’ve been writing Go applications for
years, this book has vital knowledge that will help you take your application develop-
ment to the next level. The authors do a great job of presenting complex information
with a unified voice and in a manner that’s easy to digest. I’m excited for the publica-
tion of this book and the value that it brings to the Go community. I hope that you’ll
enjoy reading it as much as I have.

 —BRIAN KETELSEN

 CO-AUTHOR OF GO IN ACTION

 CO-FOUNDER OF GOPHER ACADEMY

preface
When we first started using Go, we saw a language with a lot of potential. We wanted to
build applications with it. But it was a new language, and many companies are wary of
introducing a new programming language.

 This is especially true in the enterprise, where Go has the potential to have a huge
impact. New languages are challenged to be trusted, accepted, and adopted. There
are hundreds of thousands of developers in businesses where leaders need to be
swayed to try a new language and developers need to learn it well enough to build
applications and see a benefit.

 Open source projects, conferences, training, and books all help to make a pro-
gramming language more palatable. We wanted to write a book that teaches Go in
order to help the Go community, help those trying to learn Go or to convince their
organizations’ leadership, and help us in the companies that we work for and with.

 When we first started the book, it was targeted squarely at cloud development with
Go. Go is a language built for the cloud, and we’ve spent years working in cloud com-
puting. Once we started working with Manning Publications, we saw an opportunity to
expand beyond the cloud, into more useful and helpful patterns. And so the book
shifted from being cloud-focused to pattern-focused. Yet it still retains its cloud roots.

 Go in Practice is our attempt to help developers move from being familiar with the
language to being productive with it. To help the community of developers grow,
while helping organizations write better software.
xv

acknowledgments
We’ve spent about two years writing this book, but none of the effort would have been
possible without the commitment of our families. They’ve supported us through the
early mornings, late nights, and weekends when we were focused on writing. They
were there as we were fixated on solving problems, even when we weren’t sitting down
to write.

 Good code is never created in a vacuum. We’re also grateful to the women and
men of the Go community who have so generously given their time to create a great
language, great libraries, and a thriving ecosystem. It has been exciting to be a part of
such a diverse, burgeoning community of developers. In particular, Rob Pike, Brian
Ketelsen, and Dave Cheney all reached out to us early in our Go learning process.
They’re admirable ambassadors of the language. Special thanks to Brian for contrib-
uting the foreword to the book and for endorsing our work.

 We appreciate the many individuals who gave time and effort to the creation of
this book. It has been an arduous process, and thanks to many careful readers, includ-
ing our MEAP readers, we found and corrected numerous mistakes.

 We’d like to thank everyone at Manning, especially our development editor,
Susanna Kline; our technical development editors, Ivan Kirkpatrick, Kim Shrier,
Glenn Burnside, and Alain Couniot; and our technical proofreader, James Frasché; as
well as everyone who worked on our book behind the scenes. Thanks also to the many
reviewers who took the time to read our manuscript at various stages of its develop-
ment and who provided invaluable feedback: Anthony Cramp, Austin Riendeau,
Brandon Titus, Doug Sparling, Ferdinando Santacroce, Gary A. Stafford, Jim
Amrhein, Kevin Martin, Nathan Davies, Quintin Smith, Sam Zaydel, and Wes Shaddix.

 Finally, we owe a debt of gratitude to the Glide community, which has grown with us
as we worked to build a top-tier package manager for Go. Thank you for your support.
xvi

ACKNOWLEDGMENTS xvii
Matt Butcher

I began writing this book at Revolv, continued when Google/Nest acquired us, and
finished at Deis. Thanks to all three for supporting the writing of this book. Thanks to
Brian Hardock, Cristian Cavalli, Lann Martin, and Chris Ching, all of whom served as
early sounding boards. Matt Boersma provided helpful feedback for several chapters.
Kent Rancourt and Aaron Schlesinger each inspired particular code examples in this
book. Matt Fisher, Sivaram Mothiki, Keerthan Mala, Helgi Þorbjörnsson (yes, Helgi, I
copied and pasted that), Gabe Monroy, Chris Armstrong, Sam Boyer, Jeff Bleiel,
Joshua Anderson, Rimas Mocevicius, Jack Francis, and Josh Lane all (wittingly or
unwittingly) influenced specific portions of this book. The impact of Michelle Noorali
and Adam Reese cannot be understated; I’ve learned a lot watching a couple of Ruby
developers master Go. And thanks to Angie, Annabelle, Claire, and Katherine for
their unflagging support and understanding.

Matt Farina

I would like to thank Kristin, my beautiful and amazing wife, along with our wonderful
daughters, Isabella and Aubrey, for their love and support.

 I wrote this book while working at Hewlett Packard Enterprise, formerly Hewlett-
Packard. Working at HPE has taught me invaluable lessons while providing me with
the opportunity to work alongside and learn from those far wiser than myself. Specifi-
cally, I need to thank Rajeev Pandey, Brian Aker, Steve McLellan, Erin Handgen, Eric
Gustafson, Mike Hagedorn, Susan Balle, David Graves, and many others. They have
affected the way I write and operate applications, and that has shown up in these
chapters in subtle ways.

 There have been many others who influenced portions of this book, sometimes
without realizing it. Thanks to Tim Pletcher, Jason Buberel, Sam Boyer, Larry Gar-
field, and all those I may have forgotten who had a positive influence.

 Finally, I want to thank Matt Butcher. I never imagined authoring books until you
suckered me into it. Thanks!

about this book
Go in Practice is a book about practical development using the Go programming lan-
guage. Developers already familiar with the basics of Go will find patterns and tech-
niques for creating Go applications. Chapters are organized around central themes
(for example, chapter 10, “Communicating between cloud services”), but then
explore a variety of techniques related to that theme.

How the book is organized
The 11 chapters are divided into four parts.

 Part 1, “Background and fundamentals,” provides a foundation for building appli-
cations. Chapter 1 provides the background of Go for those not already familiar with
it or those with a passing understanding who would like to learn more. Building con-
sole applications and servers is the topic of chapter 2, and concurrency in Go is the
topic of chapter 3.

 Part 2, “Well-rounded applications,” contains chapters 4 and 5. These chapters
cover errors, panics, debugging, and testing. The goal of this section is to build appli-
cations you trust that handle problems well.

 Part 3, “An interface for your applications,” contains three chapters with topics
ranging from generating HTML and to serving assets to providing and working with
APIs. Many Go applications provide web applications and REST APIs for interaction.
These chapters cover patterns to aid in their construction.

 Part 4, “Taking your applications to the cloud,” contains the remaining chapters,
which focus on cloud computing and generating code. Go is a language built with
cloud needs in mind. This section showcases patterns that enable working with those
services and operating applications, sometimes as microservices, in them. It also cov-
ers generating code and metaprogramming.
xviii

ABOUT THIS BOOK xix
 There are 70 techniques explored in the book, each with its own Problem, Solu-
tion, and Discussion sections.

Code conventions and downloads
All source code in the book is presented in a mono-spaced typeface like this, which
sets it off from the surrounding text. In many listings, the code is annotated to point
out key concepts, and numbered bullets are sometimes used in the text to provide
additional information about the code.

 Source code for the examples in the book is available for download from the pub-
lisher’s website at www.manning.com/books/go-in-practice and from GitHub at
github.com/Masterminds/go-in-practice.

Author Online Forum
The purchase of Go in Practice includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum and
subscribe to it, point your web browser to www.manning.com/books/go-in-practice.
This page provides information on how to get on the forum after you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.manning.com/books/go-in-practice
www.manning.com/books/go-in-practice

about the authors
MATT BUTCHER is an architect at Deis, where contributing to
open source projects is his day job. He has written several books
and dozens of articles. Matt holds a PhD in philosophy and
teaches in the Computer Science department at Loyola Univer-
sity Chicago. Matt is passionate about building strong teams and
developing elegant solutions to complex problems.

MATT FARINA is a Principal Engineer in the Advanced Technol-
ogy Group at Hewlett Packard Enterprise. He is an author,
speaker, and regular contributor to open source software who
has been developing software for over a quarter century. He
likes to solve problems for regular people by creating solutions
using both the latest technology and the mundane that can be
easily overlooked.
xx

about the cover illustration
The figure on the cover of Go in Practice is captioned “Habit of the Wife of a Russian
Peasant in 1768.” The illustration is taken from Thomas Jefferys’ A Collection of the
Dresses of Different Nations, Ancient and Modern, published in London between 1757 and
1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” An Eng-
lish cartographer, he was the leading map supplier of his day. He engraved and
printed maps for government and other official bodies and produced a wide range of
commercial maps and atlases, especially of North America. His work as a map maker
sparked an interest in local dress customs of the lands he surveyed and mapped, and
these are brilliantly displayed in his four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century, and collections such as this one were popular, introduc-
ing the tourist as well as the armchair traveler to the inhabitants of other countries.
The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and
individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitant of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more var-
ied personal life, or a more varied and interesting intellectual and technical life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.
xxi

Part 1

Background and
fundamentals

This opening part of the book provides some background about Go and a
foundation for building applications. Chapter 1 starts with an overview of Go for
those not already familiar with it.

 Chapters 2 and 3 move into base components for an application. Chapter 2
provides the foundation for building an application, including working with
console applications and servers, and handling configuration. Chapter 3 focuses
on using goroutines. Goroutines are one of the more powerful and useful ele-
ments in Go. They’re regularly used in Go applications, and you’ll see them
through the rest of this book.

Getting into Go
The way we build and run software is changing. Innovation has swept in, disrupting
long-standing assumptions about the computing environments that software runs
in. To fully take advantage of these innovations, you need languages and tools that
support them at their core.

 When most mainstream programming languages and supporting toolchains
were developed, they were designed for single-core processing. That’s what we had.
Now desktop computers, servers, and even our phones have processors with multi-
ple cores. Running software with operations taking place concurrently can happen
anywhere.

 Toolchains around building applications have changed. Increased functionality
and complexity in software requires environments that can build and execute the
code rapidly and efficiently. Testing larger and more complicated codebases needs
to happen quickly so it doesn’t become a development blocker. Many applications

This chapter covers
 Introducing Go

 Understanding where Go fits into the language
landscape

 Getting up and running in Go
3

4 CHAPTER 1 Getting into Go
are developed using libraries. Libraries and their versions are managed differently,
thanks to solutions to disk-space problems that hampered this in the past.

 The way infrastructure and software are delivered has changed. Using colocated
servers, managing your own hardware, or getting simple virtual private servers used to
be the norm. Standing up a service at scale often meant you needed an investment in
running your own hardware, including load balancers, servers, and storage. Getting
everything ordered, assembled, and connected to the world would take weeks or
months. Now it’s available in a matter of seconds or minutes via the cloud.

 This chapter introduces the Go programming language for those not already
familiar with it. In this chapter, you’ll learn about the language, the toolchain that
accompanies it, where Go fits into the landscape of languages, and how to install Go
and get it running.

1.1 What is Go?
Go, sometimes referred to as golang to make it easier to find on the web, is a statically
typed and compiled open source programming language initially developed by
Google. Robert Griesemer, Rob Pike, and Ken Thompson were attempting to create a
language for modern systems programming that solved real-world problems they
encountered while building large systems at scale.

 Instead of attempting to attain theoretical pureness, these designers engineered
Go around real-world practical situations. It’s inspired by a host of languages that
came before it, including C, Pascal, Smalltalk, Newsqueak, C#, JavaScript, Python,
Java, and many others.

 Go isn’t the typical statically typed and compiled language. The static typing has
features that make it feel dynamic, and the compiled binaries have a runtime that
includes garbage collection. The design of the language took into account the types
of projects that Google would need to use it for: large codebases operating at scale
and being developed by large developer teams.

 At its core, Go is a programming language defined by a specification that can be
implemented by any compiler. The default implementation is shipped via the go tool.
But Go is more than a programming language. As figure 1.1 illustrates, layers are built
on top of the language.

 Developing applications requires more than a programming language—for exam-
ple, testing, documentation, and formatting. Each of these areas needs tools to sup-
port it. The go tool that’s used to compile applications also provides functionality to
support these elements. It’s a toolchain for application development. One of the most
notable aspects of the toolchain is package management. Out of the box, the pro-
gramming language Go and the go toolchain provide for packages. A built-in package
system, along with a common toolchain for the essential elements of development,
has enabled an ecosystem to form around the programming language.

 One of the defining characteristics of Go is its simplicity. When Griesemer, Pike, and
Thompson were originally designing the language, a feature didn’t go in until all three

5What is Go?
agreed that it should be a feature of the language. This style of decision-making, along
with their years of experience, led to a simple but powerful language. It’s simple
enough to keep in your head yet powerful enough to write a wide variety of software.

 An example of this philosophy can be seen in the variable syntax:

var i int = 2

Here a variable is created as an integer and set to a value of 2. Because an initial value
is given, you can shorten the syntax as follows:

var i = 2

When an initial value is provided, the compiler is smart enough to figure out the type.
In this case, the compiler sees the value of 2 and knows the type is an integer.

 Go doesn’t stop there. Do we need the var keyword? Go provides something called
short variable declarations:

i := 2

This is a concise equivalent to the first variable statement. It’s less than half the length
of the first example, easy to read, and happens because the compiler figures out the
missing parts.

 Simplicity means Go doesn’t have all the features of every other programming lan-
guage. For example, Go has neither a ternary operator (usually ?:) nor type generics.
Lacking some features present in other modern languages has opened Go to occa-
sional criticism, but this shouldn’t deter you from using Go. With software, there’s
often more than one way to solve a programming problem. Although Go may lack a
feature that another language contains, Go provides ways to solve the same problems
in a well-thought-out manner.

A programming language: Go is a modern
programming language designed to use
modern hardware architectures.

A development toolchain: To support Go
application development, built-in tools provide
testing, documentation, formatting, and more.

An ecosystem: Go contains built-in package
management that works with source-code
management systems such as Git. An ecosystem
of packages and libraries have sprung up to
support Go applications.

Go

What is Go?

Figure 1.1 The layers of Go

6 CHAPTER 1 Getting into Go
 Although the core of the language is fairly simple, the Go built-in package system
enables you to add many aspects. Many of the missing elements can be built as a third-
party package and incorporated into applications via the package system.

 The minimal size and complexity has benefits. The language can be learned
quickly and easily retained. This turns out to be quite a benefit when quickly crafting
and iterating over a codebase.

1.2 Noteworthy aspects of Go
Because Go is designed around practical situations, it has several noteworthy features.
These useful characteristics, when used together, provide the building blocks for Go
applications.

1.2.1 Multiple return values

One of the first things you’ll learn in Go is that functions and methods can return
multiple values. Most programming languages support returning a single value from a
function. When you need to return multiple values, they’re shoehorned into a tuple,
hash, or other type, and that value is returned. Go is one of the few languages natively
supporting multiple return values. This feature is regularly used, and something you’ll
see in virtually every part of Go and the libraries and applications written in it. For
example, consider the following function that returns two string names.

package main

import (
 "fmt"
)

func Names() (string, string) {
 return "Foo", "Bar"
}

func main() {
 n1, n2 := Names()
 fmt.Println(n1, n2)

 n3, _ := Names()
 fmt.Println(n3)
}

TIP Imported packages used in this chapter, such as fmt, bufio, net, and
others, are part of the standard library. More details, including their APIs and
how they work, can be found at https://golang.org/pkg.

In this example, each return is defined in the function definition after the arguments
B. In this case, there are two string values. When return is called, it returns two
strings C to match the definition. When the Names function is called, you need to
have a variable for each return to capture the value D. But if you want to ignore one

Listing 1.1 Multiple returns: returns.go

Two strings defined for returnB

Two strings are returned.C

Variables get two values
and print them.

D

Gets first return value and skips secondE

https://golang.org/pkg

7Noteworthy aspects of Go
of the returned values, use _ instead of a variable name E. (Don’t worry too much
about the details of this example. You’ll come back to these concepts, libraries, and
tools in the coming chapters.)

 Building on the idea of multiple returned values, you can name them and work
with these names the same way you do variables. To illustrate, let’s rework the previous
example to use named return values in the next listing.

package main

import (
 "fmt"
)

func Names() (first string, second string) {
 first = "Foo"
 second = "Bar"
 return
}

func main() {
 n1, n2 := Names()
 fmt.Println(n1, n2)

As the Names function executes, the named return variables B are available to have
values assigned to them C. When return is called D with no values, the current val-
ues for the return names are returned. For code calling the function, getting the
response E and using it works the same as without using names.

1.2.2 A modern standard library

Modern applications have common themes, such as being networked and dealing
with encryption. Instead of burdening you, the developer, with the task of hunting for
commonly needed libraries, the Go standard library provides useful modern function-
ality out of the box. Let’s take a look at a few elements in the standard library so you
can get an idea of what’s included.

NOTE The entire standard library is documented, with examples, at
http://golang.org/pkg/.

NETWORKING AND HTTP
Building applications in a networked world means applications need to work as both a
client that can connect to other networked devices, and as a server that other applica-
tions can connect to (see listing 1.3). The Go standard library makes this easy,
whether you’re working with HTTP or dealing directly with Transmission Control Pro-
tocol (TCP), User Datagram Protocol (UDP), or other common setups.

Listing 1.2 Named return values: returns2.go

Returned values have names.B

Values assigned to named
return variables

C

return is called with no values.D

Variables are filled with values.E
www.allitebooks.com

http://golang.org/pkg/
http://www.allitebooks.org

8 CHAPTER 1 Getting into Go

package main

import (
 "bufio"
 "fmt"
 "net"
)

func main() {
 conn, _ := net.Dial("tcp", "golang.org:80")
 fmt.Fprintf(conn, "GET / HTTP/1.0\r\n\r\n")
 status, _ :=

➥bufio.NewReader(conn).ReadString('\n')
 fmt.Println(status)
}

Connecting directly to a port is part of the net package, in which Go provides a com-
mon setup for different types of connections. The Dial function B connects using
the type and endpoint specified. In this case, it makes a TCP connection to golang.org
on port 80. Over the connection, a GET request is sent C, and the first line of the
response is printed D.

 The ability to listen on a port is similarly easy to work with. Instead of calling out to
an endpoint by using Dial, the Listen function in the net package enables an appli-
cation to listen on a port and act on incoming connections.

 HTTP, Representational State Transfer (REST), and web servers are incredibly com-
mon. To handle this common case, Go has the http package for providing both a cli-
ent and a server (see the following listing). The client is simple enough to use that it
meets the needs of the common everyday cases and extensible enough to use for the
complex cases.

package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
)

func main() {
 resp, _ :=

➥http.Get("http://example.com/")
 body, _ :=

➥ioutil.ReadAll(resp.Body)
 fmt.Println(string(body))
 resp.Body.Close()
}

Listing 1.3 Read TCP status: read_status.go

Listing 1.4 HTTP GET: http_get.go

Connects over TCPB

Sends string over
the connectionC

Prints the first response lineD

Makes an HTTP GET request

Reads the body from the response
Prints the
body as a

string

Closes the connection

9Noteworthy aspects of Go
This example shows how to print the body of a simple HTTP GET request. The HTTP
client can go far beyond this to deal with proxies, perform TLS handling, set headers,
handle cookies, create client objects, and even swap out the transport layer altogether.

 Creating an HTTP server with Go is a common task. What Go provides in the stan-
dard library is powerful enough to operate at scale, easy to get started with, and flexi-
ble enough to handle complex applications. Chapter 3 is dedicated to getting up and
running with an HTTP server.

HTML
If you’re working with web servers, you’re likely going to work with HTML as well. The
html and html/template packages provide a great start to generating web pages.
Whereas the html package deals with escaping and unescaping HTML, the html/
template package deals with creating reusable HTML templates. The security model
for handling the data is documented, and helper functions exist for working with
HTML, JavaScript, and more. The template system is extensible, making it an ideal
base for more-complicated functionality, while providing a good set of functionality
for anyone to get started.

CRYPTOGRAPHY

Cryptography has become a common component of an application, whether you’re
dealing with hashes or encrypting sensitive information. Go provides the common
functionality including MD5, multiple versions of Secure Hash Algorithm (SHA),
Transport Layer Security (TLS), Data Encryption Standard (DES), Triple Data Encryp-
tion Algorithm (TDEA), Advanced Encryption Standard (AES, formerly known as Rijn-
dael), Keyed-Hash Message Authentication Code (HMAC), and many others.
Additionally, a cryptographically secure random number generator is provided.

DATA ENCODING

When you share data between systems, an immediate concern is encoding. Did the
data come in with base64 encoding? Does JavaScript Object Notation (JSON) or
Extensible Markup Language (XML) data need to be turned into a local object? These
are common situations, especially in our modern networked world.

 Go was designed with encoding in mind. Internally, Go is entirely handled as
UTF-8. This should be no surprise, as the creators of UTF-8 also created Go. But not
everything passed around between systems is in UTF-8, and you have to deal with data
formats that add meaning to the text. To handle the transitions and manipulations,
Go has packages and interfaces. The packages provide features such as the ability to
turn a JSON string into instantiated objects, and the interfaces provide a way to switch
between encodings or add new ways to work with encodings via external packages.

1.2.3 Concurrency with goroutines and channels

Computer processors with multiple processing cores have become commonplace.
They’re in devices from servers to cell phones. Yet most programming languages were
designed for processors with a single core, because that’s what existed at the time.

10 CHAPTER 1 Getting into Go
Some programming languages even have a runtime with a global thread lock hamper-
ing the ability to easily run routines in parallel. Go was designed with parallel and con-
current processing in mind.

 Go has a feature called a goroutine, a function that can be run concurrently to the
main program or other goroutines. Sometimes dubbed lightweight threads, goroutines
are managed by the Go runtime, where they’re mapped and moved to the appropri-
ate operating system thread and garbage-collected when no longer needed. When
multiple processor cores are available, the goroutines can be run in parallel because
various threads are running on different processing cores. But from the developer’s
point of view, creating a goroutine is as easy as writing a function. Figure 1.2 illustrates
how goroutines work.

To further illustrate how this works, let’s look at a goroutine that counts from 0 to 4
while the main program prints Hello World concurrently, as shown in the following
listing.

0
1
Hello World
2
3
4

This printed output is a mix of two functions printing concurrently. The code to make
this happen is similar to normal procedural programming, but with a small twist, as
shown next.

Listing 1.5 Concurrent output

A goroutine, a function executing
concurrently to other functions,
runs on a thread managed by the
Go scheduler.

Goroutines can be moved
between operating system
threads by the Go scheduler.
If a thread is blocked—say, by an
I/O bound task—other goroutines
can be moved to other threads.

Modern computing systems
have processors with multiple
cores, and in some cases
multiple processors with
multiple cores. Threads take
advantage of this.

Goroutine

Goroutine Goroutine

Goroutine

Goroutine

Goroutine

Goroutine

Goroutine

Thread Thread

Processing Core Processing Core

Figure 1.2 Goroutines running in threads distributed on the available processing cores

11Noteworthy aspects of Go

package main

import (
 "fmt"
 "time"
)

func count() {
 for i := 0; i < 5; i++ {
 fmt.Println(i)
 time.Sleep(time.Millisecond * 1)
 }
}

func main() {
 go count()
 time.Sleep(time.Millisecond * 2)
 fmt.Println("Hello World")
 time.Sleep(time.Millisecond * 5)
}

The count function B is a normal function that counts from 0 to 4. To run count in
parallel rather than in order, you use the go keyword C. This causes main to continue
executing immediately. Both count and main execute concurrently.

 Channels provide a way for two goroutines to communicate with each other. By
default, they block execution, allowing goroutines to synchronize. Figure 1.3 shows a
simple example.

Listing 1.6 Printing concurrently

Function to execute
as goroutine

B

Starts goroutineC

Goroutine Channel Goroutine

Goroutine Channel Goroutine

Goroutine Channel Goroutine

Instance

Instance

Instance

Step 1: A goroutine has an instance of a type.

Step 2: The goroutine passes the instance into a channel.

Step 3: The channel passes the instance into another goroutine.

Figure 1.3 Passing variables between goroutines via a channel

12 CHAPTER 1 Getting into Go
In this example, a variable is passed from one goroutine to another through a chan-
nel. This operation works even when goroutines are running in parallel on different
processor cores. Although this example shows one-directional information passing,
channels can be one-directional or bidirectional.

 The following listing is an example of taking advantage of a channel.

package main

import (
 "fmt"
 "time"
)

func printCount(c chan int) {
 num := 0
 for num >= 0 {
 num = <-c
 fmt.Print(num, " ")
 }
}

func main() {
 c := make(chan int)
 a := []int{8, 6, 7, 5, 3, 0, 9, -1}

 go printCount(c)

 for _, v := range a {
 c <- v
 }
 time.Sleep(time.Millisecond * 1)
 fmt.Println("End of main")
}

At the start of main, an integer-typed channel c is created D to communicate between
goroutines. When printCount is started as a goroutine, the channel is passed in E. As
an argument to printCount, the channel needs to be identified as an integer channel
B. In the for loop inside printCount, num waits for channel c to send in integers C.
Back in main, a list of integers is iterated over and passed into the channel c one at a
time F. When each integer is passed into the channel on main F, it’s received into
num within printCount C. printCount continues until the for loop goes into
another iteration and comes to the channel statement again C, where it waits for
another value to come in on the channel. After main is done iterating over the inte-
gers, it continues on. When main is finished executing, the entire program is done, so
you pause for a second G before exiting so printCount can complete before main is
done. Running this code produces the following listing.

8 6 7 5 3 0 9 -1 End of main

Listing 1.7 Using channels: channel.go

Listing 1.8 Channel output

An int type channel passed inB

Waits for value to come inC

A channel is created.D

Starts the goroutineE
Passes ints into channelF

main pauses before ending.G

13Noteworthy aspects of Go
Using channels and goroutines together provides functionality similar to lightweight
threads or internal micro-services that communicate over a type-defined API. These
can be chained or pieced together by using various techniques.

 You’ll return to goroutines and channels, two of Go’s most powerful concepts, sev-
eral times in this book. You’ll see how they’re used to write servers, handle message
passing, and delay the execution of tasks. You’ll also examine design patterns for
working with goroutines and channels.

1.2.4 Go the toolchain—more than a language

Developing modern scalable and maintainable applications requires many elements.
Compiling isn’t the only common step. From the beginning, Go had this in mind. Go
is more than a language and compiler. The go executable is a toolchain enabling
lightweight package management, testing, documentation generation, and more, in
addition to being able to compile a Go codebase into an executable. To illustrate, let’s
look at a few of the components in the toolchain.

PACKAGE MANAGEMENT

Many modern programming languages have package managers, but how many have
package management built right in? Go does, and this proves to be useful for two
important reasons. The obvious reason is programmer productivity. The second rea-
son is faster compile time. Package handling was designed with a compiler in mind.
It’s one of the reasons the compiler is so fast.

 The easiest way to ease into packages is to look at the standard library (see the fol-
lowing listing), which is built on the package system.

package main

import "fmt"

func main() {
 fmt.Println("Hello World!")
}

Packages are imported by their name. In this case, fmt is the format package. Every-
thing in the package that can be referenced is available with the package name as the
prefix. Here you have fmt.Println:

import (
 "fmt"
 "net/http"
)

Package imports can be grouped together and should be in alphabetical order. In this
case, the net/http package is referenced with the http. prefix.

 The import system works with packages from outside the Go standard library, and
those packages are referenced just like any other package:

Listing 1.9 Single package import

The fmt package is imported.

A function from fmt is used.

14 CHAPTER 1 Getting into Go
import (
 "golang.org/x/net/html"
 "fmt"
 "net/http"
)

Package names are unique strings and can be anything. Here they’re URLs to external
packages. This enables Go to know this unique resource and to go out and get it for
you:

$ go get ./...

The go get command can accept a path, such as golang.org/x/net/html, to get an
individual package or ./... can be used, which will walk through the codebase and
get any referenced external packages. Here Go looks at the import statement, sees an
external reference, gets the package, and makes it available in the current workspace.

 Go can talk to version-control systems to get the packages. It can speak to Git, Mer-
curial, SVN, and Bazaar when you have them installed in your local environment. In
this case, Go retrieves the codebase from Git and checks out the latest commit from
the default branch.

 This package system isn’t designed to be everything anyone would ever want in a
package system. It provides the basics that can be used directly or as a basis for a more
fully featured system.

TESTING

Testing is a common element of software development—some would say it’s essential.
Go provides a system for testing that includes a package in the standard library, a com-
mand-line runner, code-coverage reporting, and race-condition detection.

 Creating and executing tests is fairly straightforward, as shown in the next listing.

package main

import "fmt"

func getName() string {
 return "World!"
}

func main() {
 name := getName()
 fmt.Println("Hello ", name)
}

Starting with a variant form of a Hello World application, you have a function, get-
Name, that can be tested. Go’s naming convention for test files is that they end in
_test.go. This suffix tells Go that this is a file to be run when tests execute, and
excluded when the application is built, as shown in the next listing.

Listing 1.10 Hello World: hello.go

External package referenced by URL

15Noteworthy aspects of Go

package main

import "testing"

func TestName(t *testing.T) {
 name := getName()

 if name != "World!" {
 t.Error("Respone from getName is unexpected value")
 }
}

When go test is run, it executes the function that begins with Test B. In this case,
TestName is executed, and a struct t is passed in to help with testing. It contains useful
functionality such as reporting an error. For more details, see the full testing pack-
age. If the name isn’t correct, the test reports an error C.

 The output of go test shows the packages tested and how they fared, as shown in
the following listing. To test the current package and the ones nested in subdirecto-
ries, go test ./... can be used.

$ go test
PASS
ok go-in-practice/chapter1/hello 0.012s

If getName had returned something different from World!, you’d see something differ-
ent. In the next example, the test system reports the location where the test error
occurs, indicating the failed test, the file the test is in, and the line where the error hap-
pens. In this case, getName has been altered to return something different from World!.

$ go test
--- FAIL: TestName (0.00 seconds)
 hello_test.go:9: Response from getName is unexpected value
FAIL
exit status 1
FAIL go-in-practice/chapter1/hello 0.010s

Go provides the basic tooling and processes needed to get up and running quickly with
tests. Go itself uses these tools. For those who want something more opinionated, such
as behavior-driven development or something found in a framework from another lan-
guage, external packages can be used that build atop the built-in functionality. Tests in
Go have the full power of the language available, which includes packages.

Listing 1.11 Hello World test: hello_test.go

Listing 1.12 Running go test

Listing 1.13 Running go test failure

Functions starting
with Test are run.

B

C Report
error if
test fails

16 CHAPTER 1 Getting into Go
CODE COVERAGE
In addition to executing tests, the test system can generate code-coverage reports and
provide a view of the coverage down to the statement level, as shown in listing 1.14.

NOTE As of Go 1.5, the coverage commands are part of the core Go tool-
chain. Prior to 1.5, cover had been an add-on tool.

To see the code coverage from the tests, run the following command:

$ go test -cover

Adding the -cover flag to the go test command causes it to report code coverage
alongside the other details about the tests.

$ go test –cover
PASS
Coverage: 33.3% of statements
ok go-in-practice/chapter1/hello 0.011s

Code coverage doesn’t stop there. Coverage can be exported into files that other tools
can use. Those reports can be displayed using built-in tools. Figure 1.4 shows a report
displayed in a web browser that indicates which statements were executed in the tests.

Quite often test coverage reports provide details down to the line level. Multiple state-
ments can be on the same line. A simple example can be seen in if and else state-
ments. Go will display which statements were executed and which don’t have coverage
in the tests.

TIP More information about the cover tool can be found on the Go blog at
http://blog.golang.org/cover.

Testing is an important feature in Go and one we spend some time on in chapter 4.

Listing 1.14 Testing with code coverage

Figure 1.4 Code coverage displayed in a web browser

http://blog.golang.org/cover

17Go in the vast language landscape
FORMATTING

Should block indentations use tabs or spaces? Formatting and style questions are reg-
ularly discussed and debated when it comes to coding conventions. How much time
would we save if these discussions didn’t need to happen? With Go, you don’t need to
spend time debating formatting or other idioms.

 Effective Go, available at http://golang.org/doc/effective_go.html, is a guide to writ-
ing idiomatic Go. It describes styles and conventions used throughout the Go commu-
nity. Using these conventions makes it easier to read and interact with Go programs.

 Go has a built-in tool for reformatting code to meet many of the style guidelines.
Running the go fmt command from the root of a package causes Go to go through
each of the .go files in a package and rewrite them into the canonical style. The go
fmt command can have a path to a package or ./... (iterate over all subdirectories)
appended to it.

 Numerous editors have commands, either built in or through add-on packages, to
handle formatting for you. These include Vim, Sublime Text, Eclipse, and many oth-
ers. For example, the Sublime Text package GoSublime updates the formatting of a
file when it’s saved.

1.3 Go in the vast language landscape
GitHub, the popular code-hosting service, holds projects in hundreds of languages.
The TIOBE index, a listing of the most popular programming languages, indicates
that those popular languages are capturing a diminishing percent of the market.
More languages have traction. With so many languages available, it’s useful to know
where Go fits in.

 Go was designed to be a systems language. What we call cloud computing is often
considered a form of systems programming. Go was designed with systems program-
ming use cases in mind, which is where it excels.

 Being a systems language narrows its focus. For example, although Go is useful in
situations where C or C++ has been used, it’s not a good language for embedded sys-
tems. Go has a runtime and a garbage-collection system that don’t run well on embed-
ded systems with limited resources.

 Comparing Go to other popular programming languages can provide insight into
where it sits relative to those languages. Although we believe Go is great for some
applications, this isn’t a debate about which programming languages to use. Choosing
the right languages needs to take into account more than the characteristics of those
languages.

1.3.1 C and Go

Go initially came to life as an alternative to C for developing applications. Because the
original inspiration came out of developing in C (and C is one of the most popular
languages, if not the most popular), it’s helpful to show the similarities and differ-
ences in these languages.

http://golang.org/doc/effective_go.html

18 CHAPTER 1 Getting into Go
 Both Go and C compile into machine code for
a target operating system and architecture. Both
share many style similarities, but Go goes well
beyond what C does.

 Go provides a runtime that includes features
such as managing threads and garbage collection.
When writing Go applications, you give up con-
trol over thread management and work around
interruptions for garbage collection as you would
with other garbage-collected languages. In C, you
manage threads and memory yourself. Any
threads and the corresponding work on them are
handled by the application. Memory is intention-
ally managed without a garbage collector.

 C and its object-oriented derivatives such as
C++ enable a wide variety of applications to be
written. High-performance embedded systems,
large-scale cloud applications, and complicated desktop applications can all be written
in C. Go is useful as a systems and cloud-platform language. Go applications have a
sweet spot that provides real productivity.

 The Go runtime and toolchain provide a lot out of the box. This functionality
enables Go applications to be written fairly quickly and with less tedious work than a
comparable C counterpart. For example, a Go application taking advantage of all four
cores in a server can use goroutines. The C version would need to start threads and
manage the work moved between them in addition to the application code.

 Compiling C applications can take time. This is especially true when working with
outside dependencies and the need to compile them. Speed when compiling applica-
tions in Go was a design goal, and Go applications compile faster than their C coun-
terparts. When applications scale in size to the point that compiling can take minutes
or hours, saving time while compiling can make a real difference in the productivity of
your development. Compiling Go applications is fast enough that many applications
and their dependent packages can compile in seconds or less.

1.3.2 Java and Go

Java, which is consistently one of the most popular programming languages on the
planet, is used for a wide variety of projects, ranging from server applications to
mobile and Android applications to cross-platform desktop applications. Go was origi-
nally designed as a systems language. Although its use has expanded into areas such as
web and mobile development, Go still isn’t a language that you can use to easily write
a desktop application. It excels the most when used as originally intended.

 Given that Java is so popular and can be used for a wider variety of applications,
why would anyone want to use Go? Although the basic syntax is similar, Java and Go
are quite different. Go compiles to a single binary for an operating system. This binary

C + Go = cgo
Go provides support for bind-
ing C libraries to Go programs.
Go provides a library of C com-
patibility tools. This library
eases the transition between,
for example, C-style strings
and Go strings. Furthermore,
the Go tools can build mixed C
and Go programs. Go also has
support for Simplified Wrap-
per and Interface Generator
(SWIG) wrappers. You can get
a feel for the features by run-
ning go help c and go doc
cgo to read a brief overview.

19Go in the vast language landscape
contains the Go runtime, all the imported packages, and the entire application—
everything needed to run the program. Java takes a different approach. With Java, you
have a runtime installed on the operating system. Java applications are packaged into
a file that can be run on any system with the runtime. The applications need to be exe-
cuted in a compatible runtime version.

 These differing approaches, depicted in figure 1.5, have practical applications.
Deploying a Go application to a server entails deploying the one file. Deploying a Java
application requires installing and maintaining Java on the system along with deploy-
ing the application.

Another key difference between Java and Go has to do with how applications are exe-
cuted. Go programs are compiled into a system binary and executed by the operating
system. Java applications are executed in a virtual machine (VM) typically containing a
just-in-time (JIT) compiler. A JIT can look at how the code is executing in context and
optimize it accordingly.

 This raises an important question: is code running a VM with a JIT faster than a
compiled binary? The answer isn’t straightforward because it depends on the JIT, the
code being executed, and more. In tests comparing similar functionality side by side,
no clear-cut winner emerges.

1.3.3 Python, PHP, and Go

Python and PHP are two of the most popular dynamic languages in the world. Python
has become one of the most popular languages taught and used in universities. It can
be used for a wide variety of purposes, from building cloud applications to websites to
command-line utilities. PHP is the most popular programming language used to build
websites with a focus on the web. Although these two languages have many differ-
ences, they have a few similarities that highlight some of the ways Go works.

Java application

Java runtime

Operating system

Go application

Operating system

A Java application is compiled into a file that can
be executed on any system with a Java runtime.

A Java runtime, known as the Java Runtime
environment (JRE), needs to be installed on a
server or system to run a Java application.

A Go application is compiled for an operating
system and deployed to a server or system to run
it. There is no runtime dependency that needs to
be installed on the system.

Figure 1.5 Java and Go running in an operating system

20 CHAPTER 1 Getting into Go
 Python and PHP are dynamically typed languages, whereas Go is a statically typed
language with dynamic-like features. Dynamic languages check type at runtime and
even perform what appear to be type conversions on the fly. Statically typed languages
do type checking based on static code analysis. Go has the ability to do some type
switching. Under some circumstances, variables of one type can be turned into vari-
ables of a different type. This may seem unorthodox for a statically typed language,
but it’s useful.

 When Python and PHP are used to build a website or application, they typically sit
behind a web server such as Nginx or Apache. A web browser connects to the web
server that handles the communication. The web server then hands off information to
the language runtime and program.

 Go has a built-in web server, as illustrated in figure 1.6. Applications, such as web
browsers, connect directly to a Go application, and the Go application manages the
connection. This provides a lower level of control and interaction with applications
that connect. The built-in Go web server handles connections concurrently, taking full
advantage of how the language works.

One of the reasons it’s useful to put Python and PHP behind a web server has to do
with threads and concurrent connections. Python has a global interpreter lock that
allows only one thread to execute at a time. PHP applications tend to run from start to
end in a process. To enable multiple connections to an application concurrently, a
web server can sit in front of the application and handle running the concurrent con-
nections in separate processes.

 The built-in Go web server takes advantage of goroutines to run connections con-
currently. The Go runtime manages the goroutines across application threads. You’ll
see this in more detail in chapter 3. Whereas Python and PHP end up with separate

A request to a Python or PHP
application coming into a
web server. From there the web
server routes it to a process.

A Go application receives
connections directly from clients.
No intermediate application is
necessary. Go handles the
thread management.

Web
Server

Process

Process

Process

Operating System

Go Application

Operating System

Figure 1.6 Python, PHP, and Go paths of a client request

21Go in the vast language landscape
processes for the different connections, Go shares an environment, allowing you to
share resources where it makes sense.

 Under the hood in the primary implementation, Python and PHP are built in C.
Built-in objects, methods, and functions, whose implementation is in C, execute more
quickly than application objects, methods, and functions. The code written for an
application takes a different path that includes an intermediate format that’s inter-
preted. One of the performance tips for both Python and PHP is to take performance-
critical code and rewrite it in C.

 Go applications compile into a binary. Software in the standard library and appli-
cation code are both compiled into machine code. There’s no distinction.

1.3.4 JavaScript, Node.js, and Go

JavaScript came into being in just over 10 days. It went on to be one of the most popu-
lar languages in the world, as it was baked into all the major web browsers. More
recently, JavaScript has been used on servers, in desktop applications, and in other
areas. This was driven by the Node.js platform.

 Go and JavaScript, primarily through Node.js, can fill a similar space but do so in
different ways. Exploring how they fill the space differently helps to highlight where
Go fits in the space.

 JavaScript has a single-threaded model. Although asynchronous I/O may use sepa-
rate threads, the main program executes in a single thread. When code in the main
thread takes a significant amount of time, it blocks other code from executing. Go
uses a multithreaded model in which the runtime manages goroutines running con-
currently on the different threads. The Go model, with multiple threads running
across multiple cores, can take advantage of more of the available hardware than the
single thread used in JavaScript.

 Node.js uses the V8 engine created by Google and used in Google Chrome. The V8
engine contains a virtual machine with a JIT compiler. This is conceptually similar to
Java. The virtual machine and JIT can lead to some performance improvements. As V8
watches a long-running program execute, it can improve performance over time. For
example, it can look at the execution of a loop and see ways to improve the perfor-
mance beyond the direct machine code because it knows the context. V8 also knows a
variable type even though JavaScript is dynamically typed. The longer a program runs,
the more V8 can learn and improve the performance.

 On the other hand, Go programs are compiled machine code and execute at stati-
cally typed machine-code speeds. No JIT is looking to improve runtime execution. As
in C, there’s no practical need for a JIT.

PACKAGE HANDLING

The Node.js ecosystem has a community and tooling surrounding the handling and dis-
tribution of packages. These can range from libraries to command-line utilities to full
applications. The package manager npm is often bundled with installation of Node.js. A
central repository of information about packages is available at www.npmjs.org. When

http://www.npmjs.org

22 CHAPTER 1 Getting into Go
a package is fetched, metadata about the package is received from the central reposi-
tory, and the package is downloaded from its source location.

 As we touched on earlier, Go has a package-handling system. Unlike Node.js,
which has metadata and content in a central repository, Go has no central repository,
and packages are fetched from their source location.

1.4 Getting up and running in Go
You have a few options for getting into Go, depending on your level of commitment.

 The easiest way to get started with Go is through a tour at http://tour.golang.org, which
walks you through using some of its main features. What separates the Go tour from typical
tutorials is in how the examples work. You can execute the examples right in your browser.
If you want to change them and execute your changes, you can do that as well.

 If you want to try executing simple Go applications, you can do that through the
Go Playground at https://play.golang.org. The Go Playground is what enables the
tour examples to be executable. Here you can test code and share a link to it. The
examples in this book that represent a program can be executed in the Playground.

1.4.1 Installing Go

Installing Go is a fairly straightforward process. Everything you need to know about
getting and installing Go is documented at http://golang.org/doc/install. This
includes the operating systems supported, the hardware architectures that can be tar-
geted for these systems, and more.

 For Microsoft Windows and Mac OS X, installers take care of the installation. It’s as
easy as installing any other program. Users of Homebrew on OS X can install Go by
using the command brew install go.

 Installing Go on Linux includes a wider variety of options. You can install go using
built-in package managers, such as apt-get and yum. The version available is usually
an older version, and newer versions are faster or contain new features. Through the
Go install instructions, you can download the most recent version of Go, put it on
your system, and add the Go executables to your path. On versions of Linux that sup-
port the Debian package system, such as Ubuntu, you can use the godeb tool to install
the latest version of Go. The author of godeb explains the process at http://blog.labix
.org/2013/06/15/in-flight-deb-packages-of-go.

1.4.2 Working with Git, Mercurial, and version control

To work with packages and external imports stored in version-control systems, Go
expects these systems to be installed on the local system. Go doesn’t reimplement any
software configuration management (SCM) tools; rather, it knows about them and
takes advantage of them when installed.

 Two of the dominant version-control systems used by Go developers for packages
are Git and Mercurial (hg). Git is widely popular and is used by numerous Google
developers and by the packages they release to GitHub. You’ll need to have Git
installed, but Go doesn’t require a specific version. Any recent version should do.

http://tour.golang.org
https://play.golang.org
http://golang.org/doc/install
http://blog.labix.org/2013/06/15/in-flight-deb-packages-of-go
http://blog.labix.org/2013/06/15/in-flight-deb-packages-of-go

23Getting up and running in Go
1.4.3 Exploring the workspace

The go toolchain expects Go code to be in a workspace. A workspace is a directory hier-
archy with the src, pkg, and bin directories, as shown in the following listing.

$GOPATH/
 src/
 github.com/
 Masterminds/
 cookoo/
 glide/
 bin/
 glide
 pkg/
 darwin_amd64/
 github.com/
 Masterminds/
 cookoo.a

The one environment variable that you need to set is $GOPATH B. This points go to the
base directory for the workspace. Source code, including both the code you’re work-
ing on and any dependent code, goes in the src directory. Although you’ll do some
management of this directory, the Go tools will help manage external source code
repositories. The other two directories are almost always managed by the Go tools
themselves. When you run go install on a project, executables (like the one in list-
ing 1.15) will be compiled and written to bin. In this example, the Glide project com-
piles into an executable named glide. The Cookoo project, though, doesn’t have a
standalone executable. It provides only libraries that other Go programs can use. Run-
ning go install on it will create an archive file suffixed with .a, and that’s stored in
the pkg directory.

1.4.4 Working with environment variables

GOPATH is one environment variable that the go executable expects to exist. GOPATH
tells Go where your workspace is to import packages, install binaries, and store inter-
mediate archives. The following example creates a workspace in a directory named go
on a UNIX-like system:

$ mkdir $HOME/go
$ export GOPATH=$HOME/go

Inside GOPATH, the go program will create a bin directory where executables are
installed. For convenience, it’s useful to add this directory to your path. For example,
on UNIX-like systems:

$ export PATH=$PATH:$GOPATH/bin

Listing 1.15 Workspace layout

The base directory, or $GOPATHB
The source

code to
external

dependencies

Compiled programs

Compiled libraries

24 CHAPTER 1 Getting into Go
If you’d like to install binaries to an alternative location, the GOBIN environment vari-
able can be set to that path. This is an optional environment variable.

1.5 Hello, Go
In an obvious twist on the standard Hello World program, the next listing shows a sim-
ple application that prints Hello, my name is Inigo Montoya through a web server.

package main

import (
 "fmt"
 "net/http"
)

func hello(res http.ResponseWriter, req *http.Request) {
 fmt.Fprint(res, "Hello, my name is Inigo Montoya")
}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("localhost:4000", nil)
}

This simple application has three parts. It opens with a package declaration B. Where
libraries are declared with a short name describing what they do—for example, net or
crypto—applications have the package main. To write strings and operate as a web
server, the fmt and http packages are imported C. Importing these packages makes
them available in the code and in the compiled application.

 The application execution begins with the main function D that has no arguments
or returned values. Following the first line of main, the http.HandleFunc function is
called, telling the web server to execute the function hello when the path / is
matched. The hello function follows an interface for handlers. It receives an object
for the HTTP request and response. This is followed by a call to http.ListenAnd-
Serve, telling the web server to start up and listen on port 4000 of the domain local-
host.

 You can execute this application in two ways. In the next listing you use go run,
which compiles the application into a temp directory and executes it.

$ go run inigo.go

The temporary file is cleaned up when the application is done running. This is useful
in development of new versions of applications that are regularly tested.

 After the application has started, you can open a web browser and visit
http://localhost:4000 to view the response, as shown in figure 1.7.

Listing 1.16 Hello World web server: inigo.go

Listing 1.17 Running inigo.go

The main package is used for applications.B

C Import
needed
packages.

Handler for
an HTTP
request

D Main
application
execution

http://localhost:4000

25Summary
Alternately, an application can be built and run as in the following listing.

$ go build inigo.go
$./inigo

Here the first step is to build the application. Using go build without filenames will
build the current directory. Using a filename, or set of filenames, only builds the selec-
tion. From there, the built application needs to be executed.

1.6 Summary
Go is a language designed for modern hardware and application development. It
takes advantage of recent advances in technology while providing a toolchain so that
Go development just works. In this chapter, you took a peek at what makes Go a pow-
erful language worth using to develop applications, and learned the following:

 The Go philosophy of simplicity plus extensibility that created a useful lan-
guage and enables an ecosystem to surround it

 Features of Go that take advantage of modern hardware, such as goroutines
that enable concurrent execution

 The toolchain accompanying the Go language, including testing, package man-
agement, formatting, and documentation

 How Go compares to languages such as C, Java, JavaScript, Python, PHP, and
others, as well as when to use it and when to use something else

 How to install and get up and running in Go

Chapter 2 starts with the foundation necessary to build applications from console util-
ities through web services. How should you handle applications that have commands,

Listing 1.18 Building inigo.go

Figure 1.7 “Hello, my name is Inigo Montoya” viewed in web browser

26 CHAPTER 1 Getting into Go
arguments, and flags? Does a web service need to gracefully shut down? Answering
questions like these provides the foundation for production-ready applications.

 The rest of the book explores practical aspects of building and working with Go
applications. Chapters build on each other, culminating in putting the practices
together to build a well-rounded application.

A solid foundation
The foundation an application is built upon can be as important as any feature.
Handling the way an application shuts down so you don’t lose data or create a bad
user experience is an example of a step you take when building a strong foundation.

 This chapter covers four foundational areas. You’ll start with console applica-
tions, also known as CLI applications. You’ll learn about handling command-line
options, sometimes called flags or getopts, in a way that’s consistent with modern
applications on Linux and other POSIX systems. As part of this, you’ll explore a
setup that enables you to focus on application code rather than structure while
developing console applications.

 You’ll follow that up by looking at several ways to pass configuration into an
application. This includes various popular file and content formats used to store
configuration.

This chapter covers
 Working with command-line flags, options, and

arguments

 Passing configuration into an application

 Starting and gracefully stopping a web server

 Path routing for web and API servers
27

www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 A solid foundation
 From there, you’ll move onto servers and practical measures for starting and stop-
ping them. This may seem fairly straightforward, but addressing certain situations
early (for example, stopping a server before data has finished being saved) can cut
down on future problems.

 The chapter ends with path-matching techniques for servers. URL path matching is
common for websites and servers providing a Representational State Transfer (REST)
API. You’ll learn how and when to implement a few of the common methods for path
matching.

 By the end of this chapter, you’ll know the best practices for building command-
line clients and web servers that can serve as a foundation for building robust applica-
tions in Go.

2.1 Working with CLI applications, the Go way

Whether you’re using a console application (such as the source-control manage-
ment system Git or an application such as the MySQL database or the Apache web
server), command-line arguments and flags are part of the application user inter-
face. The Go standard library has built-in functionality for working with these, but it
comes with a twist.\

2.1.1 Command-line flags

The argument and flag handling in the Go standard library is based on Plan 9, which
has a different style from the systems based on GNU/Linux and Berkeley Software Dis-
tribution (BSD), such as Mac OS X and FreeBSD, that are in wide use today. For exam-
ple, on Linux and BSD systems, you can use the command ls -la to list all files in a
directory. The -la part of the command contains two flags, or options. The l flag tells
ls to use the long form listing, and the a flag causes the list to include hidden files.
The Go flag system won’t let you combine multiple flags, and instead sees this as one
flag named la.

 GNU-style commands (such as Linux’s ls) support long options (for example,
--color) that require two dashes in order to tell the program that the string color
isn’t five options, but one.

 A debate has arisen over whether the Go (or Plan 9) system offers any real advan-
tages over the style that dominates GNU, Linux, and BSD. Honestly, it boils down to a
matter of preference. GNU-style double-dashes feel clunky and error-prone to some.

Windowed applications
Designed as a systems language, Go doesn’t provide native support for building win-
dowed applications like the ones you find in Microsoft Windows or Mac OS X. The Go
community has dabbled in windowed development, but no clear direction has pre-
sented itself.

29Working with CLI applications, the Go way
But Go’s single-dash long options eliminate the ability (as you just saw) of grouping
single-character options into one.

 This built-in flag system doesn’t differentiate between short and long flags. A flag
can be short or long, and each flag needs to be separated from the others. For exam-
ple, if you run go help build, you’ll see flags such as -v, -race, -x, and -work. For the
same option, you’ll see a single flag rather than a long or short name to use.

 To illustrate the default flag behavior, the following listing shows a simple console
application using the flag package.

$ flag_cli
Hello World!
$ flag_cli –s –name Buttercup
Hola Buttercup!
$ flag_cli –-spanish –name Buttercup
Hola Buttercup!

Each flag is separate from the rest and begins with either a - or --, as they’re inter-
changeable. A method is available for defining a flag with either a short or long name,
but as you can see in the next listing, it’s an implicit method.

package main

import (
 "flag"
 "fmt"
)

var name = flag.String("name", "World", "A name to say hello to.")

var spanish bool

func init() {
 flag.BoolVar(&spanish, "spanish", false, "Use Spanish language.")
 flag.BoolVar(&spanish, "s", false, "Use Spanish language.")
}

func main() {
 flag.Parse()

Listing 2.1 Hello World CLI using flag package

Listing 2.2 Source of Hello World using flag package: flag_cli.go

Plan 9
Developed at Bell Labs as a successor to UNIX, Plan 9 is an open source operating
system primarily developed between the 1980s and 2002. Ken Thompson and Rob
Pike, two of the creators of Go, were initial members of the team leading the devel-
opment of Plan 9. Their influence over both projects has led to similarities.

Imports the standard
flag package Creates

a new
variable
from a
flag

B

New variable to store flag valueC

Sets variable to
the flag value D

Parses the flags, placing
values in variables
E

30 CHAPTER 2 A solid foundation
 if spanish == true {
 fmt.Printf("Hola %s!\n", *name)
 } else {
 fmt.Printf("Hello %s!\n", *name)
 }
}

Here you can see two ways to define a flag. In the first, a variable can be created from
a flag. In this example, it’s done using flag.String() B. flag.String takes a flag
name, default value, and description as arguments. The value of name is an address
containing the value of the flag. To access this value, you’ll need to access name as a
pointer F.

 The second method for handling a flag is the one that implicitly lets you have a
long and short flag. Start by creating a normal variable C of the same type as the flag.
This will be used to store the value of a flag. Then use one of the flag functions that
places the value of a flag into an existing variable D. In this case, flag.BoolVar is
used twice, once for the long name and once for the short name.

TIP Flag functions exist for each variable type. To learn about each of them,
see the flag package (http://golang.org/pkg/flag).

Finally, for the flag values to be in the variables, flag.Parse() needs to be run E.

TIP Command-line arguments aren’t registered with the flag package but
are available via the Args or Arg function from the flag package.

The flag package doesn’t create help text for you but does help with the flags. This
package has two handy functions you can use. The PrintDefaults function generates
help text for flags. For example, the line of help text for the preceding name option
B reads as follows:

-name string
 A name to say hello to. (default "World")

This is a nicety in Go that makes it easier to keep your user informed about how your
program works.

 Flags also have a VisitAll function that accepts a callback function as an argu-
ment. This iterates over each of the flags executing the callback function on it and
allows you to write your own help text for them. For example, the following listing
would instead display -name: A name to say hello to. (Default: 'World').

flag.VisitAll(func(flag *flag.Flag) {
 format := "\t-%s: %s (Default: '%s')\n"
 fmt.Printf(format, flag.Name, flag.Usage, flag.DefValue)
})

Listing 2.3 Custom flag help text

Accesses name
as a pointerF

http://golang.org/pkg/flag

31TECHNIQUE 1 GNU/UNIX-style command-line arguments
TECHNIQUE 1 GNU/UNIX-style command-line arguments

Although the built-in flag package is useful and provides the basics, it doesn’t provide
flags in the manner most of us have come to expect. The difference in user interac-
tion between the style used in Plan 9 and the style in Linux- and BSD-based systems is
enough to cause users to stop and think. This is often due to problems they’ll encoun-
ter when trying to mix short flags, such as those used when executing a command like
ls -la.

PROBLEM
Those of us who write for non-Windows systems will likely be working with a UNIX
variant, and our users will expect UNIX-style flag processing. How do you write Go
command-line tools that meet users’ expectations? Ideally, you want to do this with-
out writing one-off specialized flag processing.

SOLUTION
This common problem has been solved in a couple of ways. Some applications, such
as Docker, the software container management system, have a subpackage containing
code to handle Linux-style flags. In some cases, these are forks of the Go flag pack-
age, in which the extra needs are added in. But maintaining per-project implementa-
tions of argument parsing results is an awful lot of duplicated effort to repeatedly
solve the same generic problem.

 The better approach is to use an existing library. You can import several stand-
alone packages into your own application. Many are based on the flag package pro-
vided by the standard library and have compatible or similar interfaces. Importing
one of these packages and using it is faster than altering the flag package and main-
taining the difference.

DISCUSSION
In the following examples, you’ll see two packages with slightly different approaches.
The first attempts to keep API compatibility with the Go flag package, whereas the
second breaks from it.

GNUFLAG

Similar to the flag package, the launchpad.net/gnuflag package brings GNU-style
(Linux) flags to Go. Don’t let the name fool you. The license isn’t the GPL license, typ-
ical of GNU-based programs and libraries, but rather a BSD-style license in line with
the Go license.

 Several forms of flags are supported when using gnuflag, including these:

 -f for a single-letter or short flag
 -fg for a group of single-letter flags
 --flag for a multiletter or long flag name
 --flag x for a long flag with a value passed in as x
 -f x or -fx for a short flag with a passed-in value

32 CHAPTER 2 A solid foundation
The gnuflag package has almost the exact same API as the flag package, with one
notable difference. The Parse function has an additional argument. Otherwise, it’s a
drop-in replacement. The flag package will parse flags between the command name
and the first nonflag argument. For example, in listing 2.4, the -s and -n flags are
defined, and -n takes a value. When flag parses foo, it has reached a nonflag argu-
ment and stops parsing. That means -bar won’t be parsed to see if it’s a flag. The
gnuflag package has an option to continue parsing that would allow it to find flags
positioned where -bar is.

$ flag_based_cli –s –n Buttercup foo -bar

To switch from the flag package to the gnuflag package, you need to change only
two things in an application. First, instead of importing the flag package, import
launchpad.net/gnuflag. Then, add an additional first argument to the Parse func-
tion of either true or false. A value of true looks for flags anywhere in the com-
mand, and false behaves like the flag package. That’s it.

NOTE lanuchpad.net uses the Bazaar version-control system. You need to
have this installed in order for Go to fetch the package. More details are avail-
able at http://bazaar.canonical.com/.

GO-FLAGS

Some community flag packages break from the conventions used in the flag package
within the standard library. One such package is github.com/jessevdk/go-flags. It
provides Linux- and BSD-style flags, providing even more features than those in
gnuflag, but uses an entirely different API and style. Features include the following:

 Short flags, such as –f, and groups of short flags, such as -fg.
 Multiple-letter or long flags, such as --flag.
 Supporting option groups.
 Generating well-formed help documentation.
 Passing values for flags in multiple formats such as -p/usr/local, -p /usr

/local, and -p=/usr/local.
 The same option can, optionally, appear more than once and be stored multi-

ple times on a slice.

To illustrate using this flag package, the following listing shows our Spanish-capable
Hello World console application rewritten using go-flags.

package main

import (
 "fmt"

Listing 2.4 flag package flag parsing

Listing 2.5 Using go-flags

http://bazaar.canonical.com/

33TECHNIQUE 2 Avoiding CLI boilerplate code
 flags "github.com/jessevdk/go-flags"
)

var opts struct {
 Name string `short:"n" long:"name" default:"World"

➥description:"A name to say hello to."`
 Spanish bool `short:"s" long:"spanish"
 ➥description:"Use Spanish Language"`
}

func main() {
 flags.Parse(&opts)

 if opts.Spanish == true {
 fmt.Printf("Hola %s!\n", opts.Name)
 } else {
 fmt.Printf("Hello %s!\n", opts.Name)
 }
}

The first big difference you’ll notice from previous techniques is how flags are
defined. In this instance, they’re defined as properties on a struct B. The property
names provide access to the values in your application. Information about a flag, such
as short name, long name, default value, and description, are gathered using reflec-
tion to parse the space-separated key-value pairs following a property on a struct. This
key-value-pair parsing capability is provided by the reflect package in the standard
library. For example, opts.Name is mapped to a flag that has a short name -n, a long
name --name, a default value of World, and a description used for help text.

 For the values to be available on the opts struct, the Parse function needs to be
called with the opts struct passed in C. After that, the properties on the struct can be
called normally with flag values or their defaults available D.

2.1.2 Command-line frameworks

Processing flags certainly isn’t the only important part of building a command-line
application. Although Go developers learn as a matter of course how to begin with a
main function and write a basic program, we often find ourselves writing the same set
of features for each new command-line program we write. Fortunately, tools can pro-
vide a better entry point for creating command-line programs, and you’ll look at one
of those in this section.

TECHNIQUE 2 Avoiding CLI boilerplate code

You know the drill: You need a quick command-line tool for doing some light process-
ing. You start from scratch and build that same old, bare-minimum boilerplate code.
And it works. Unfortunately, it works well enough that you soon find yourself writing a
more advanced version. This one has new options. But to add these new features, you
refactor the boilerplate code into something just flexible enough to get the new job
done. And the cycle repeats.

Imports go-flags aliased
to the name flags

Struct containing
the defined flags

B

Parses the flag values
into the struct

C

Properties on opts
used with flag values

D

34 CHAPTER 2 A solid foundation
PROBLEM
Repeatedly, we find ourselves writing the same kinds of command-line programs. At
first, we think of them as disposable, but some of the tools we write end up growing far
beyond our initial expectations. Why keep writing the same boilerplate, only to be
faced later with refactoring the top level of the program? Are there tools that can pro-
vide a simple and repeatable pattern for rapidly building CLI programs?

SOLUTION
If you want something more opinionated and full of features for building a console
application, frameworks are available to handle command routing, help text, subcom-
mands, and shell autocompletion, in addition to flags. A popular framework used to
build console-based applications is cli (https://github.com/urfave/cli). This frame-
work has been used by projects such as the open source platform-as-a-service (PaaS)
project Cloud Foundry, the container management system Docker, and the continu-
ous integration and deployment system Drone.

DISCUSSION
Combining routing, flag and option parsing, and help documentation into a setup
that’s self-documenting, cli.go is one of the easiest ways to get started building a con-
sole application that works the way you’d expect it to.

A SIMPLE CONSOLE APPLICATION

Before looking at a console application with multiple commands, it’s useful to look at
a console application that executes a single action. You’ll use this foundation in an
expansion to multiple commands and subcommands. Figure 2.1 shows the structure
that a single-action application can use from the command line.

The following listing is a simple console application that displays Hello World! or says
hello to a name you choose.

$ hello_cli
Hello World!
$ hello_cli --name Inigo
Hello Inigo!
$ hello_cli –n Inigo
Hello Inigo!
$ hello_cli –help
NAME:
 hello_cli - Print hello world

Listing 2.6 Hello World CLI: hello_cli.go

Options available using
context Global* getters—
for example, GlobalString()

Optionally, one or more
arguments

$ app [options] arguments

Figure 2.1 Usage structure
of a simple application

https://github.com/urfave/cli

35TECHNIQUE 2 Avoiding CLI boilerplate code
USAGE:
 hello_cli [global options] command [command options] [arguments...]

VERSION:
 0.0.0

COMMANDS:
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
 --name, -n 'World' Who to say hello to.
 --help, -h show help
 --version, -v print the version

Using cli.go, the application-specific code needed to generate this application is
only 26 lines long and can be seen in the following listing. The rest of the work and
user interface is handled by cli.go.

package main

import (
 "fmt"
 "os"

 "gopkg.in/urfave/cli.v1"
)

func main() {
 app := cli.NewApp()
 app.Name = "hello_cli"
 app.Usage = "Print hello world"
 app.Flags = []cli.Flag{
 cli.StringFlag{
 Name: "name, n",
 Value: "World",
 Usage: "Who to say hello to.",
 },
 }
 app.Action = func(c *cli.Context) error {
 name := c.GlobalString("name")
 fmt.Printf("Hello %s!\n", name)
 return nil
 }

 app.Run(os.Args)
}

After cli.go is imported, a new application is created using cli.NewApp. The
returned variable is the basis for the application. Setting the Name and Usage proper-
ties is useful for documentation B.

TIP If the Name property is left unset, cli.go will attempt to determine the
name by using the name of the application. If an application may be
renamed, it’s useful to use the default behavior.

Listing 2.7 Hello World CLI: hello_cli.go

Includes the
cli.go package

Creates a new
application

B

Sets up a
global flag

C

Defines the action
to run

D

Runs the applicationE

36 CHAPTER 2 A solid foundation
The Flags property is a slice of cli.Flag containing the global flags C. Each flag has
a long name, short name, or both. Some flags, such as a cli.StringFlag, have a
Value property for the default value. cli.BoolFlag is an example of a flag without a
default value. Its presence sets the value to true, and its absence sets the value to
false. The Usage property is used for documentation that can be seen on the help
screen.

 cli.go provides the ability to have a default action when the application is run, to
have commands, and to have nested subcommands. We cover commands and subcom-
mands in the next section. Here you set the Action property that handles the default
action D. The value of Action is a function that accepts *cli.Context as an argument
and returns an error. This function contains the application code that should be run.
In this case, it obtains the name to say hello to by using c.GlobalString("name")

before printing hello to the name. If you want the returned error to cause the appli-
cation to exit with a nonzero exit code, return an error of cli.ExitError, which can
be created using the cli.NewExitError function.

 The final step is to run the application that was just set up. To do this, os.Args,

the arguments passed into the application, are passed into the Run method on the
application E.

TIP Arguments are available in the Action function. In this case, a string slice
of arguments can be obtained by calling c.Args. For example, the first argu-
ment would be c.Args()[0].

COMMANDS AND SUBCOMMANDS

Applications built with cli.go often have commands and subcommands, as illustrated
in figure 2.2. Think of an application such as Git, in which you can run commands
such as git add, git commit, and git push.

Options available to
all commands using
context Global*
getters—for example,
GlobalString(”name”)

The command
to execute

$ app [global options] command [command options] arguments

Options available to
this commands through
context getters—for
example, String(”name”)

Optionally, one or
more arguments

$ app [global options] command sub-command [command options] arguments

A command nested
below another command

Figure 2.2 Usage structure of an application with commands and subcommands

37TECHNIQUE 2 Avoiding CLI boilerplate code
To illustrate using commands, the following listing is a simple application with com-
mands to count up and count down.

package main

import (
 "fmt"
 "os"

 " gopkg.in/urfave/cli.v1"
)

func main() {
 app := cli.NewApp()
 app.Usage = "Count up or down."
 app.Commands = []cli.Command{
 {
 Name: "up",
 ShortName: "u",
 Usage: "Count Up",
 Flags: []cli.Flag{
 cli.IntFlag{
 Name: "stop, s",
 Usage: "Value to count up to",
 Value: 10,
 },
 },
 Action: func(c *cli.Context) error {
 start := c.Int("stop")
 if start <= 0 {
 fmt.Println("Stop cannot be negative.")
 }
 for i := 1; i <= start; i++ {
 fmt.Println(i)
 }
 return nil
 },
 },
 {
 Name: "down",
 ShortName: "d",
 Usage: "Count Down",
 Flags: []cli.Flag{
 cli.IntFlag{
 Name: "start, s",
 Usage: "Start counting down from",
 Value: 10,
 },
 },
 Action: func(c *cli.Context) error {
 start := c.Int("start")
 if start < 0 {
 fmt.Println("Start cannot be negative.")

Listing 2.8 Count up and down: count_cli.go

One or more
commands is
defined.

B

CA command-
specific option

is defined.

Gets a command-
specific flag

D

38 CHAPTER 2 A solid foundation
 }
 for i := start; i >= 0; i-- {
 fmt.Println(i)
 }
 return nil
 },
 },
 }

 app.Run(os.Args)
}

Instead of defining the Action, a slice of cli.Command is defined on the Commands
property with details about each command B. Action, by default, will be set to show
the help screen. That way, if no commands are used with the application, help will be
displayed. Each command has a Name and Action along with optional Flags, Usage,
and ShortName. Just as the base application can have a Commands property with a list of
commands, each command can have a Commands property with a list of subcommands
to that command.

 Flags defined on a command are similar to those defined globally. The pattern of
definition is the same with the Name and Usage, and in some cases, a default Value.
Global options, as shown in figure 2.2, are available to every command and come
before the command itself. Command-specific options, defined on the command C,
are placed after the command. Additionally, retrieving them is done from cli
.Context by using a function such as String, Int, or Bool D. Global flags are similar
but have Global prepended to them.

 We started off this section by showing how Go command-line programs differ from
the UNIX norm. First we presented command-line flags. We introduced libraries that
provide UNIX-style command-line flags. Then we introduced a higher-level issue: how
do you quickly and repeatedly build command-line applications without rewriting the
same old boilerplate code? You looked at a fantastic library for that. Now you’re ready
to explore a topic relevant to almost all programs: configuration.

2.2 Handling configuration

A second foundational area that complements flag handling is persistent application
configuration. Examples of this form of configuration include the files in the etc
directory on some Linux installations and user-specific configuration files such as
.gitconfig or .bashrc files.

 Passing configuration to an application is a common need. Virtually every applica-
tion, including console applications and servers, can benefit from persistent configu-
ration. Operation toolchains such as Ansible, Chef, and Puppet have quite a bit of
functionality for managing configuration in a distributed manner. How can configura-
tion information be easily passed into and made available in your applications?

39TECHNIQUE 3 Using configuration files
Whereas the preceding section talked about passing in configuration via command-
line options, this section looks at passing in configuration via files, or in the case of
12-factor apps, using environment variables. In this section, we add support for com-
mon configuration formats, including JSON, YAML, and INI. Then we present the
approach favored in the 12-factor pattern, which passes in configuration through
environment variables.

TECHNIQUE 3 Using configuration files

Command-line arguments, like those in the preceding section, are good for many
things. But when it comes to one-time configuration of a program installed into a par-
ticular environment, command-line arguments aren’t the right fit. The most common
solution is to store configuration data in a file that the program can load at startup.

 In the next few sections, you’ll look at the three most popular configuration file
formats and how to work with them in Go.

PROBLEM
A program requires configuration above and beyond that which you can provide with
a few command-line arguments. And it would be great to use a standard file format.

SOLUTION
One of today’s most popular configuration file formats is JavaScript Object Notation
(JSON). The Go standard library provides JSON parsing and handling. It should be no
surprise that JSON configuration files are common.

DISCUSSION
Consider the JSON file config.json with the following:

{
 "enabled": true,
 "path": "/usr/local"
}

The following listing showcases a JSON configuration parser.

Ansible, Chef, and Puppet
Ansible, Chef, and Puppet are popular ops platforms for managing computers and
their configurations. They’re commonly used to manage the software installed on
clusters of servers and the configuration needed for the applications running in them.
For example, take an application connected to a database. The database could be
on the same server, a different server, or a cluster of servers. The ops platform would
manage the installation and configuration, providing the right connection information
to the application.

40 CHAPTER 2 A solid foundation

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type configuration struct {
 Enabled bool
 Path string
}

func main() {
 file, _ := os.Open("conf.json")
 defer file.Close()

 decoder := json.NewDecoder(file)
 conf := configuration{}
 err := decoder.Decode(&conf)
 if err != nil {
 fmt.Println("Error:", err)
 }
 fmt.Println(conf.Path)
}

This method has only a few parts. First, a type or collection of types needs to be cre-
ated representing the JSON file B. The names and nesting must be defined and map
to the structure in the JSON file. The main function begins by opening the configura-
tion file C and decoding the JSON file into an instance of the configuration struct
D. If no errors occur, the values from the JSON file won’t be available on the conf vari-
able and can be used in your application.

NOTE JSON parsing and handling has many features and nuances. Chapter 6,
which covers working with JSON APIs, presents the JSON features in more
detail.

Storing configuration in JSON is useful if you’re already familiar with JSON, using a
distributed configuration store such as etcd, or want to stick with the Go standard
library. JSON files can’t contain comments, which can be a common complaint when
creating configuration files or generating examples of them. In the following two
techniques, comments are available.

Listing 2.9 Parsing a JSON configuration file: json_config.go

A type capable of holding
the JSON values

B

Opens the configuration fileC

Parses the JSON
into a variable
with the variables

D

etcd
Inspired by Apache ZooKeeper and Doozer, etcd provides distributed shared configu-
ration and service discovery. This highly available store uses the Raft consensus
algorithm to manage the replication. etcd is written in Go. For more information, visit
https://github.com/coreos/etcd.

https://github.com/coreos/etcd

41TECHNIQUE 3 Using configuration files
SOLUTION
YAML, a recursive acronym meaning YAML Ain’t Markup Language, is a human-readable
data serialization format. YAML is easy to read, can contain comments, and is fairly easy
to work with. Using YAML for application configuration is common and a method we,
the authors, recommend and practice. Although Go doesn’t ship with a YAML proces-
sor, several third-party libraries are readily available. You’ll look at one here.

DISCUSSION
Consider this simple YAML configuration file:

A comment line
enabled: true
path: /usr/local

The following listing is an example of parsing and printing configuration from a
YAML file.

package main

import (
 "fmt"
 "github.com/kylelemons/go-gypsy/yaml"
)

func main() {
 config, err := yaml.ReadFile("conf.yaml")
if err != nil {
 fmt.Println(err)
 }
 fmt.Println(config.Get("path"))
 fmt.Println(config.GetBool("enabled"))
}

To work with YAML files and content, this listing imports the github.com/kylelemons/
go-gypsy/yaml package B. This package, which we’ve used and recommend, provides
features to read YAML as a string or from a file C, deal with different types, and turn
configuration into YAML output.

 Using the function ReadFile, the configuration file is read in and returns a File
struct from the yaml package. This struct provides access to the data in the YAML file.
Using the Get method, the value of a string can be obtained D. For other types, such
as a Boolean, you can use methods such as GetBool. Each type has its own method to
ensure proper handling and return type.

SOLUTION
INI files are a format in wide use and have been around for decades. This is another
format your Go applications can potentially use. Although the Go developers didn’t
include a processor in the language, once again libraries are readily available to meet
your needs.

Listing 2.10 Parsing a YAML configuration file: yaml_config.go

Imports a third-party YAML B

Reads a YAML file into
a struct parser

C

Prints the values
from the YAML file

D

42 CHAPTER 2 A solid foundation

Parses t
file into
struct h
errors
DISCUSSION
Consider the following INI file:

; A comment line
[Section]
enabled = true
path = /usr/local # another comment

In the following listing, this file is parsed, and you can see how to use the internal
data.

package main

import (
 "fmt"

 "gopkg.in/gcfg.v1"
)

func main() {
 config := struct {
 Section struct {
 Enabled bool
 Path string
 }
 }{}

 err := gcfg.ReadFileInto(&config, "conf.ini")
 if err != nil {
 fmt.Println("Failed to parse config file: %s", err)
 }
 fmt.Println(config.Section.Enabled)
 fmt.Println(config.Section.Path)
}

In this case, the third-party package gopkg.in/gcfg.v1 handles parsing the INI file
into a data structure B. This package provides a means to parse INI files and strings
similar to JSON handling in the standard library.

 Before the INI file can be parsed, a variable needs to exist to receive the values
from the file. As in the JSON technique, the structure of this variable needs to map to
the structure in the INI file. In this case, a struct is created, though a new type similar
to the JSON example could be used instead, with an internal struct for a section C.
This struct is where the configuration values will reside after parsing.

 The function ReadFileInto reads the file into the struct that was created D. If an
error occurs, it will be available. After this has passed, the configuration from the INI
file is available to be used E.

 The gopkg.in/gcfg.v1 package has several useful features such as tags and read-
ing strings, files, or anything implementing the io.Reader interface. For more infor-
mation, see the package documentation.

Listing 2.11 Parsing an INI configuration file: ini_config.go

Includes third-party
package to parse INI files

B

Creates a structure to
hold the config values

C

he INI
 the
andling

D

Uses the INI valuesE

43TECHNIQUE 4 Configuration via environment variables
TECHNIQUE 4 Configuration via environment variables

The venerable configuration file certainly provides a great vehicle for passing configu-
ration data to programs. But some of today’s emerging environments defy some of the
assumptions we make when using traditional configuration files. Sometimes the one
configuring the application won’t have access to the filesystem at the level we assume.
Some systems treat configuration files as part of the source codebase (and thus as
static pieces of an executable). This removes some of the utility of configuration files.

 Nowhere is this trend clearer than in the emerging PaaS cloud services. Deploying
into these systems is usually accomplished by pushing a source-code bundle to a con-
trol server (like a Git push). But the only runtime configuration you get on such serv-
ers is done with environment variables. Let’s take a look at a technique for working in
such an environment.

PROBLEM
Many PaaS systems don’t provide a way to specify per-instance configuration files. Con-
figuration opportunities are limited to a small number of environmental controls,
such as environment variables.

SOLUTION
Twelve-factor apps, commonly deployed to Heroku, Cloud Foundry, Deis, and other
PaaS or container cluster managers (covered in chapter 11), are becoming more com-
mon. One of the factors of a twelve-factor app is storing the configuration in the envi-
ronment. This provides a way to have a different configuration for each environment
an application runs in.

Twelve-factor apps
This popular and widely used methodology for building web applications, software as
a service, and similar applications uses the following 12 factors:

1 Use a single codebase, tracked in revision control, that can be deployed mul-
tiple times.

2 Explicitly declare dependencies and isolate them from other applications.
3 Store application configuration in the environment.
4 Attach supporting services.
5 Separate the build and run stages.
6 Execute the application as one or more stateless processes.
7 Export services via TCP port binding.
8 Scale horizontally by adding processes.
9 Maximize robust applications with fast startup and graceful shutdown.
10 Keep development, staging, and production as similar as possible.
11 Handle logs as event streams.
12 Run admin tasks as separate processes.

More details can be found on these factors at http://12factor.net.

http://12factor.net

44 CHAPTER 2 A solid foundation
DISCUSSION
Consider, for example, the environment variable PORT containing the port a web
server should listen to. The following listing retrieves this piece of configuration and
uses it when starting a web server.

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 http.HandleFunc("/", homePage)
 http.ListenAndServe(":"+os.Getenv("PORT"), nil)
}

func homePage(res http.ResponseWriter, req *http.Request) {
 if req.URL.Path != "/" {
 http.NotFound(res, req)
 return
 }
 fmt.Fprint(res, "The homepage.")
}

This example uses the http package from the standard library. You may remember it
from the simple Hello World web server in listing 1.16. In the following section, we
cover more on web servers.

 Retrieving configuration from the environment is fairly straightforward. From the
os package, the Getenv function retrieves the value as a string B. When no environ-
ment variable is found, an empty string is returned. If you need to convert the string
to another type, you can use the strconv package. For example, if the PORT in this
example needed to be an integer, you could use the ParseInt function.

WARNING Be careful with the information in environment variables and the
processes able to obtain the information in them. For example, a third-party
subprocess started by your application could have access to the environment
variables.

2.3 Working with real-world web servers

Although the Go standard library provides a great foundation for building web serv-
ers, it has some options you may want to change and some tolerance you may want to
add. Two common areas, which we cover in this section, are matching URL paths to
callback functions and starting and stopping servers with an interest in gracefully shut-
ting down.

 Web servers are a core feature of the http package. This package uses the founda-
tion for handling TCP connections from the net package. Because web servers are a

Listing 2.12 Environment variable–based configuration: env_config.go

Retrieves the PORT
from the environment

B

45Working with real-world web servers
core part of the standard library and are commonly in use, simple web servers were
introduced in chapter 1. This section moves beyond base web servers and covers some
practical gotchas that come up when building applications. For more information on
the http package, visit http://golang.org/pkg/net/http/.

2.3.1 Starting up and shutting down a server

Starting a server in Go is fairly easy. Using the net or http packages, you can create a
server, listen on a TCP port, and start responding to incoming connections and
requests. But what happens when you want to shut down that server? What if you shut
down the server while users are connected, or before all the data (such as logs or user
information) has been written to disk?

 The commands used to start and stop a server in the operating system should be
handled by an initialization daemon. Using go run on a codebase is handy in develop-
ment and may be used with some systems based on twelve-factor apps but isn’t typical
or recommended. Manually starting an application is simple but isn’t designed to inte-
grate nicely with operations tools or handle problems such as an unexpected system
restart. Initialization daemons were designed for these cases and do them well.

 Most systems have a default toolchain used for initialization. For example, systemd
(https://freedesktop.org/wiki/Software/systemd/) is common on Linux distribu-
tions such as Debian and Ubuntu systems. If a script is used with systemd, you’ll be
able to use commands like those in the following listing.

$ systemctl start myapp.service
$ systemctl stop myapp.service

A wide variety of initialization daemons are available. They vary depending on your
flavor of operating system, and numerous ones exist for the various versions of Linux.
You may be familiar with some of their names, including upstart, init, and launchd.
Because configuration scripts and commands can vary widely among these systems, we
don’t cover them here. These tools are well documented, and many tutorials and
examples are available.

NOTE We recommend that you don’t write your applications as daemons
but rather use an initialization daemon to manage the execution of the
application.

A COMMON ANTIPATTERN: A CALLBACK URL
A simple pattern (or rather antipattern) for development is to have a URL such as
/kill or /shutdown, that will shut down the server when called. The following listing
showcases a simple version of this method.

Listing 2.13 Start and stop applications with upstart

Starts the application myapp
Stops the running application myapp

http://golang.org/pkg/net/http/
https://freedesktop.org/wiki/Software/systemd/

46 CHAPTER 2 A solid foundation

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 http.HandleFunc("/shutdown", shutdown)
 http.HandleFunc("/", homePage)
 http.ListenAndServe(":8080", nil)
}

func shutdown(res http.ResponseWriter, req *http.Request) {
 os.Exit(0)
}

func homePage(res http.ResponseWriter, req *http.Request) {
 if req.URL.Path != "/" {
 http.NotFound(res, req)
 return
 }
 fmt.Fprint(res, "The homepage.")
}

We don’t recommend this method, but we share it because it’s a pattern easily found
on the internet. Although its simplicity is an advantage, the list of disadvantages is
problematic and includes the following:

 The URL needs to be blocked in production, or more likely, removed before
going to production. Needing to have code differences for development and
production is prone to introducing bugs. If this URL were left in for produc-
tion, anyone who discovered it could easily take down your service.

 When the callback URL receives a request, the server shuts down immediately.
Any actions in progress are immediately stopped. Any data not saved to disk is
lost because there’s no opportunity to save it before exiting.

 Using a URL sidesteps typical operations tooling such as Ansible, Chef, and Pup-
pet or initialization toolchains. More-appropriate tools exist that manage
updates and running applications.

We don’t recommend using this method. It’s most useful for development when the
process is in the background or being run as a daemon. Go applications typically
shouldn’t be daemons, and better methods are available for starting and stopping the
server, even for development.

TECHNIQUE 5 Graceful shutdowns using manners

When a server shuts down, you’ll often want to stop receiving new requests, save any
data to disk, and cleanly end connections with existing open connections. The http

Listing 2.14 Callback shutdown URL: callback_shutdown.go

A special path registered
to shut down the server

Tells the
application
to exit
immediately

47TECHNIQUE 5 Graceful shutdowns using manners
package in the standard library shuts down immediately and doesn’t provide an
opportunity to handle any of these situations. In the worst cases, this results in lost or
corrupted data.

PROBLEM
To avoid data loss and unexpected behavior, a server may need to do some cleanup on
shutdown.

SOLUTION
To handle these, you’ll need to implement your own logic or use a package such as
github.com/braintree/manners.

DISCUSSION
Braintree, a division of PayPal, created the manners package that gracefully shuts down
while maintaining the same interface for ListenAndServe that the core http package
uses. Internally, the package uses the core http server while keeping track of connec-
tions by using WaitGroup from the sync package. WaitGroup is designed to keep track
of goroutines. The following listing takes a look at a simple manners-based server.

package main

import (
 "fmt"
 "net/http"
 "os"
 "os/signal"
 "github.com/braintree/manners"
)

func main() {
 handler := newHandler()

 ch := make(chan os.Signal)
 signal.Notify(ch, os.Interrupt, os.Kill)
 go listenForShutdown(ch)

 manners.ListenAndServe(":8080", handler)

}

func newHandler() *handler {
 return &handler{}
}

type handler struct{}

func (h *handler) ServeHTTP(res http.ResponseWriter, req *http.Request) {
 query := req.URL.Query()
 name := query.Get("name")
 if name == "" {
 name = "Inigo Montoya"
 }
 fmt.Fprint(res, "Hello, my name is ", name)
}

Listing 2.15 Graceful shutdown using manners: manners_shutdown.go

Gets instance
of a handler

B

Sets up monitoring of
operating system signals

C

Starts the web serverD

EHandler
responding to
web requests

48 CHAPTER 2 A solid foundation
func listenForShutdown(ch <-chan os.Signal) {
 <-ch
 manners.Close()
}

The main function begins by getting an instance of a handler function capable of
responding to web requests B. This handler is a simple Hello World responder E. In
its place, a more complex one handling routing rules, such as the path or regular
expression handlers covered later in the chapter, could be used.

 To gracefully shut down, you need to know when to do so. The signal package
provides a means to get signals from the operating system, including signals to inter-
rupt or kill the application. The next step is to set up a channel that receives interrupt
and kill signals from the operating system so the code can react to them C. Listen-
AndServe, like its counterpart in the http package, blocks execution. To monitor sig-
nals, a goroutine needs to run concurrently. The function listenForShutdown waits
until it receives a signal on the channel F. After a signal comes in, it sends a message
to Shutdown on the server. This tells the server to stop accepting new connections and
shut down after all the current requests are completed.

 Calling ListenAndServe in the same manner as the http package D starts the
server.

TIP The server waits only for request handlers to finish before exiting. If
your code has separate goroutines that need to be waited on, that would need
to happen separately, using your own implementation of WaitGroup.

This approach has several advantages, including the following:

 Allows current HTTP requests to complete rather than stopping them mid-
request.

 Stops listening on the TCP port while completing the existing requests. This
opens the opportunity for another application to bind to the same port and
start serving requests. If you’re updating versions of an application, one version
could shut down while completing its requests, and another version of the
application could come online and start serving.

A couple of disadvantages also exist under some conditions:

 The manners package works for HTTP connections rather than all TCP connec-
tions. If your application isn’t a web server, the manners package won’t work.

 In some cases, one version of an application will want to hand off exiting socket
connections currently in use to another instance of the same application or
another application. For example, if you have long-running socket connections
between a server and client applications, the manners package will attempt to
wait or interrupt the connections rather than hand them off.

Waits for
shutdown signal
and reacts

F

49TECHNIQUE 6 Matching paths to content
2.3.2 Routing web requests

One of the fundamental tasks of any HTTP server is to receive a given request and map
it to an internal function that can then return a result to the client. This routing of a
request to a handler is important; do it well, and you can build web services that are
easily maintainable and flexible enough to fit future needs. This section presents vari-
ous routing scenarios and solutions for each.

 We start with simple scenarios and provide simple solutions. But we encourage you
to plan ahead. The simple solution we talk about first is great for direct mappings, but
may not provide the flexibility that a contemporary web application needs.

TECHNIQUE 6 Matching paths to content

Web applications and servers providing a REST API typically execute different func-
tionality for different paths. Figure 2.3 illustrates the path portion of the URL com-
pared to the other components. In the Hello World example from chapter 1, listing
1.16 uses a single function to handle all possible paths. For a simple Hello World
application, this works. But a single function doesn’t handle multiple paths well and
doesn’t scale to real-world applications. This section covers multiple techniques to
handle differentiating paths and, in some cases, different HTTP methods (sometimes
referred to as verbs).

PROBLEM
To correctly route requests, a web server needs to be able to quickly and efficiently
parse the path portion of a URL.

SOLUTION: MULTIPLE HANDLERS
To expand on the method used in listing 1.16, this technique uses a handler function
for each path. This technique, presented in the guide “Writing Web Applications”
(http://golang.org/doc/articles/wiki/), uses a simple pattern that can be great for
web apps with only a few simple paths. This technique has nuances that you’ll see in a
moment that may make you consider one of the techniques following it.

DISCUSSION
Let’s start with a simple program that illustrates using multiple handlers, shown in the
following listing.

The path portion
of the URL

http://example.com/foo#bar?baz=quo

Figure 2.3 The path portion of the
URL used in routing requests

http://golang.org/doc/articles/wiki/

50 CHAPTER 2 A solid foundation

Handl

package main

import (
 "fmt"
 "net/http"
 "strings"
)

func main() {
 http.HandleFunc("/hello", hello)
 http.HandleFunc("/goodbye/", goodbye)
 http.HandleFunc("/", homePage)
 http.ListenAndServe(":8080", nil)
}

func hello(res http.ResponseWriter, req *http.Request) {
 query := req.URL.Query()
 name := query.Get("name")
 if name == "" {
 name = "Inigo Montoya"
 }
 fmt.Fprint(res, "Hello, my name is ", name)
}

func goodbye(res http.ResponseWriter, req *http.Request) {
 path := req.URL.Path
 parts := strings.Split(path, "/")
 name := parts[2]
 if name == "" {
 name = "Inigo Montoya"
 }
 fmt.Fprint(res, "Goodbye ", name)
}

func homePage(res http.ResponseWriter, req *http.Request) {
 if req.URL.Path != "/" {
 http.NotFound(res, req)
 return
 }
 fmt.Fprint(res, "The homepage.")
}

NOTE Content collected from an end user should be sanitized before using.
That includes displaying the content back to a user. This functionality is part
of the templating Go package covered in chapter 5.

Here you use three handler functions for three paths or path parts B. When a path is
resolved, it tries to go from the most specific to the least specific. In this case, any path
that isn’t resolved prior to the / path will resolve to this one.

 It’s worth noting that paths ending in / can have redirection issues. In this listing,
a user who visits /goodbye will be automatically redirected to /goodbye/. If you have
query strings, they may be dropped. For example, /goodbye?foo=bar will redirect to
/goodbye/.

Listing 2.16 Multiple handler functions: multiple_handlers.go

Registers URL
path handlers

B

Starts the web server
on port 8080

C

er function
mapped to

/hello

Gets the name from
the query string

D

Handler
function for
/goodbye/

E

Looks in the
path for a name

F

Home and not
found handler
function

G

Checks the path
to decide if home
page or not found

H

51TECHNIQUE 6 Matching paths to content
 The way resolution works by default is important to know as well. The handler reg-
istered to /hello will work only for /hello. The handler registered to /goodbye/ will
be executed for /goodbye (with a redirect), /goodbye/, /goodbye/foo, /goodbye
/foo/bar, and so on.

 The handler function hello is mapped to the path /hello C. As arguments, the
handler functions receive an http.ResponseWriter and an http.Request. Optionally,
a name to say hello to can be in a query string with a key of name D. The requested
URL is a property on http.Request as url.URL. The Query method on the URL
returns either the value for the key, or an empty string if no value is available for the
key. If the value is empty here, it’s set to Inigo Montoya.

TIP The net/url package, which contains the URL type, has many useful
functions for working with URLs.

NOTE To differentiate between HTTP methods, check the value of
http.Request.Method. This contains the method (for example, GET, POST,
and so on).

The goodbye function handles the path /goodbye/, including the case where addi-
tional text is appended E. In this case, a name can be optionally passed in through
the path. For example, a path of /goodbye/Buttercup will set the name to Buttercup
F. To achieve this, the URL is split by using the strings package to find the part of
the path following /goodbye/.

 The homePage function handles both the / path and any case where a page isn’t
found G. To decide whether to return a 404 Page Not Found message or home page
content, the http.Request.Path needs to be checked H. The http package contains
a NotFound helper function that can optionally be used to set the response HTTP code
to 404 and send the text 404 page not found.

TIP The http package contains the Error function that can be used to set
the HTTP error code and respond with a message. The NotFound function
takes advantage of this for the 404 case.

Using multiple function handlers is the core way to handle different functions along-
side different paths. The pros of this method include the following:

 As the basic method in the http package, it’s well documented and tested, and
examples are right at hand.

 The paths and their mappings to functions are easy to read and follow.

Alongside the pros are some cons that lead many, including the authors, to use other
methods. The cons are as follows:

 You can’t use different functions for different HTTP methods on the same path.
When creating REST APIs, the verb (for example, GET, POST, or DELETE) can
require significantly different functionality.

52 CHAPTER 2 A solid foundation
 Wildcard or named sections to a path, a common feature or feature request for
mapping systems, aren’t available.

 Virtually every handler function needs to check for paths outside their bounds
and handle returning a Page Not Found message. For example, in listing 2.16
the handler /goodbye/ will receive paths prepended with /goodbye. Anything
returned by any path is handled here, so if you want to return a Page Not
Found message for the path /goodbye/foo/bar/baz, that would need to be
handled here.

Using multiple handlers is useful for simple cases. Because it doesn’t require packages
outside the http package, the external dependencies are kept to a minimum. If an
application is going to move beyond simple use cases, one of the following techniques
is likely to be a better fit.

TECHNIQUE 7 Handling complex paths with wildcards

The previous technique is straightforward, but as you saw, it’s decidedly inflexible
when it comes to path naming. You must list every single path that you expect to see.
For larger applications or for applications that follow the REST recommendations, you
need a more flexible solution.

PROBLEM
Instead of specifying exact paths for each callback, an application may need to sup-
port wildcards or other simple patterns.

SOLUTION
Go provides the path package with functionality to work with slash-separated paths.
This package isn’t directly designed to work with URL paths. Instead, it’s a generic
package intended to work with paths of all sorts. In fact, it works well when coupled
with an HTTP handler.

DISCUSSION
The following listing builds a router that uses path matching to map URL paths and
HTTP methods to a handler function.

package main

import (
 "fmt"
 "net/http"
 "path"
 "strings"
)

func main() {
 pr := newPathResolver()
 pr.Add("GET /hello", hello)
 pr.Add("* /goodbye/*", goodbye)
 http.ListenAndServe(":8080", pr)
}

Listing 2.17 Resolve URLs using path package: path_handlers.go

Imports the path package
to handle URL matches

Gets an instance of a
path-based router

B

Sets the HTTP server
to use your router

D
CMaps

functions
to paths

53TECHNIQUE 7 Handling complex paths with wildcards

C
o

s

func newPathResolver() *pathResolver {

 return &pathResolver{make(map[string]http.HandlerFunc)}

}

type pathResolver struct {

 handlers map[string]http.HandlerFunc

}

func (p *pathResolver) Add(path string, handler http.HandlerFunc) {

 p.handlers[path] = handler

}

func (p *pathResolver) ServeHTTP(res http.ResponseWriter, req *http.Request)

{

 check := req.Method + " " + req.URL.Path

 for pattern, handlerFunc := range p.handlers {

 if ok, err := path.Match(pattern, check); ok && err == nil {

 handlerFunc(res, req)

 return

 } else if err != nil {

 fmt.Fprint(res, err)

 }

 }

 http.NotFound(res, req)

}

func hello(res http.ResponseWriter, req *http.Request) {

 query := req.URL.Query()

 name := query.Get("name")

 if name == "" {

 name = "Inigo Montoya"

 }

 fmt.Fprint(res, "Hello, my name is ", name)

}

func goodbye(res http.ResponseWriter, req *http.Request) {

 path := req.URL.Path

 parts := strings.Split(path, "/")

 name := parts[2]

 if name == "" {

 name = "Inigo Montoya"

 }

 fmt.Fprint(res, "Goodbye ", name)

}

The main function starts off quite differently by getting an instance of a pathResolver
B. The pathResolver, which you’ll look at in a moment, contains the core logic for
matching functions to paths. After an instance of the pathResolver has been created,
two mappings of HTTP verbs and their paths are added to the resolver C. The format
for these is the HTTP method name followed by a path, with a space separating the two.
You can use an asterisk (*) as a wildcard character for the HTTP method or in the path.

Creates new
initialized
pathResolver

Adds paths
to internal

lookup

onstructs
ur method
+ path to

check

Iterates over
registered path

E

Executes the
handler function
for a matched path

F

Checks whether
current path

matches a
registered one

G

If no path matches, the page wasn’t found.H

54 CHAPTER 2 A solid foundation
 The pathResolver is set as the handler function for the built-in HTTP server when
the server is started D. For pathResolver to work as a handler function, it needs to
implement the ServeHTTP method and implicitly implement the HandlerFunc inter-
face. The ServeHTTP method is where path resolving happens.

 When a request comes into the server, the ServeHTTP method iterates over the
paths registered with the pathResolver E. For each path, it checks the current HTTP
method and path to see if a function is mapped to the combination F. This is a
check you construct because with REST servers you’ll often need to handle different
HTTP methods (for example, a DELETE or GET request) with entirely different func-
tions. When a match is found, the handler function registered for that case is exe-
cuted G. If no matched paths are found in the lookup, you default to a 404 Page Not
Found error H.

 You should be aware of the pros and cons of path resolution using the path pack-
age. Here are the pros:

 Easy to get started with simple path matching.
 Included in the standard library, the path package is well traveled and tested.

The cons have a common thread in that the path package is generic to paths and not
specific to URL paths. The cons are as follows:

 The wildcard abilities of the path package are limited. For example, a path of
foo/* will match foo/bar but not foo/bar/baz. Using * for a wildcard stops at
the next /. To match foo/bar/baz, you’d need to look for a path like foo/*/*.

 Because this is a generic path package rather than one specific to URLs, some
nice-to-have features are missing. For example, in listing 2.17 the path
/goodbye/* is registered. Visiting the path /goodbye in a browser will display a
Page Not Found message, whereas visiting /goodbye/ works. Although there’s a
technical path difference (the trailing /), the common web use case isn’t trans-
parently handled. You’ll need to identify and handle cases such as this one.

This method is useful for simple path scenarios and it’s one that we, the authors, have
successfully used.

TECHNIQUE 8 URL pattern matching

For most REST-style apps, simple pattern matching with regular expressions is more
than sufficient. But what if you want to go beyond that and do something fancy with
your URLs? The path package isn’t well suited for this because it supports only simple
POSIX-style pattern matching.

PROBLEM
Simple path-based matching isn’t enough for an application that needs to treat a path
more like a text string and less like a file path. This is particularly important when
matching across a path separator (/).

55TECHNIQUE 8 URL pattern matching
SOLUTION
The built-in path package enables simple path-matching schemes, but sometimes you
may need to match complex paths or have intimate control over the path. For those
cases, you can use regular expressions to match your paths. You’ll combine Go’s built-
in regular expressions with the HTTP handler and build a fast but flexible URL path
matcher.

DISCUSSION
In the next listing you’ll walk through using paths and a resolver based on regular
expressions.

package main

import (
 "fmt"
 "net/http"
 "regexp"
 "strings"
)

func main() {
 rr := newPathResolver()
 rr.Add("GET /hello", hello)
 rr.Add("(GET|HEAD) /goodbye(/?[A-Za-z0-9]*)?", goodbye)
 http.ListenAndServe(":8080", rr)}

func newPathResolver() *regexResolver {
 return ®exResolver{
 handlers: make(map[string]http.HandlerFunc),
 cache: make(map[string]*regexp.Regexp),
 }
}

type regexResolver struct {
 handlers map[string]http.HandlerFunc
 cache map[string]*regexp.Regexp
}

func (r *regexResolver) Add(regex string, handler http.HandlerFunc) {
 r.handlers[regex] = handler
 cache, _ := regexp.Compile(regex)
 r.cache[regex] = cache
}

func (r *regexResolver) ServeHTTP(res http.ResponseWriter, req *http.Request)
{

 check := req.Method + " " + req.URL.Path
 for pattern, handlerFunc := range r.handlers {
 if r.cache[pattern].MatchString(check) == true {
 handlerFunc(res, req)
 return
 }
 }

 http.NotFound(res, req)
}

Listing 2.18 Resolve URLs using regular expressions: regex_handlers.go

Imports the regular
expression package

Registers paths
to functionsB

Stores compiled regular
expressions for reuse

Looks up and
executes the
handler function

C

If no path matches,
returns a Page Not
Found error

56 CHAPTER 2 A solid foundation
func hello(res http.ResponseWriter, req *http.Request) {
 query := req.URL.Query()
 name := query.Get("name")
 if name == "" {
 name = "Inigo Montoya"
 }
 fmt.Fprint(res, "Hello, my name is ", name)
}

func goodbye(res http.ResponseWriter, req *http.Request) {
 path := req.URL.Path
 parts := strings.Split(path, "/")
 name := ""
 if len(parts) > 2 {
 name = parts[2]
 }
 if name == "" {
 name = "Inigo Montoya"
 }
 fmt.Fprint(res, "Goodbye ", name)
}

The layout of the regular-expression-based path resolution (listing 2.18) is the same as
the path resolution example (listing 2.17). The differences lie in the format of the
path patterns registered for a function and in the ServeHTTP method handling the
resolution.

 Paths are registered as regular expressions B. The structure is the same as the
path package technique, with an HTTP method followed by the path, separated by a
space. Whereas GET /hello showcases a simple path, a more complicated example is
(GET|HEAD) /goodbye(/?[A-Za-z0-9]*)?. This more complicated example accepts
either a GET or HEAD HTTP method. The regular expression for the path will accept
/goodbye, /goodbye/ (the trailing / matters), and /goodbye/ followed by letters and
numbers.

 In this case, ServeHTTP iterates over the regular expressions looking for a match C.
When the first match is found, it will execute the handler function registered to that
regular expression. If more than one regular expression matches an incoming path,
the first one added would be the first one checked and used.

NOTE Compiled versions of the regular expressions are built and cached at
the time they’re added. Go provides a Match function in the regexp package
that can check for matches. The first step for this function is to compile the
regular expression. By compiling and caching the regular expression, you
don’t need to recompile the regular expressions each time the server handles
a request.

Using regular-expression checking for paths provides a significant amount of power,
allowing you to finely tune the paths you want to match. This flexibility is paired with
the complicated nature of regular expressions that may not be easy to read, and you’ll

57TECHNIQUE 9 Faster routing (without the work)
likely want to have tests to make sure your regular expressions are matching the
proper paths.

TECHNIQUE 9 Faster routing (without the work)

One criticism of Go’s built-in http package is that its routing and multiplexing (mux-
ing) is basic. In the previous sections, we showed some straightforward ways of work-
ing with the http package, but depending on your needs, you may not be satisfied
with the configurability, performance, or capabilities of the built-in HTTP server. Or
you may just want to avoid writing boilerplate routing code.

PROBLEM
The built-in http package isn’t flexible enough, or doesn’t perform well in a particu-
lar use case.

SOLUTION
Routing URLs to functions is a common problem for web applications. Therefore,
numerous packages have been built and tested, and are commonly used to tackle the
problem of routing. A common technique is to import an existing request router and
use it within your application.

 Popular solutions include the following:

 github.com/julienschmidt/httprouter is considered a fast routing package
with a focus on using a minimal amount of memory and taking as little time
as possible to handle routing. It has features such as the ability to have case-
insensitive paths, cleaning up /../ in a path, and dealing with an optional
trailing /.

 github.com/gorilla/mux is part of the Gorilla web toolkit. This loose collec-
tion of packages provides components you can use in an application. The mux
package provides a versatile set of criteria to perform matching against, includ-
ing host, schemes, HTTP headers, and more.

 github.com/bmizerany/pat provides a router inspired by the routing in Sina-
tra. The registered paths are easy to read and can contain named parameters
such as /user/:name. It has inspired other packages such as github.com/
gorilla/pat.

Each package has a different feature set and API. Numerous other routing packages
exist as well. With a little investigation, you can easily find a quality third-party package
that meets your needs.

Sinatra web application library
Sinatra is an open source web application framework written in Ruby. This framework
has been used by numerous organizations and has inspired well over 50 comparable
frameworks in many other languages, including several in Go.

58 CHAPTER 2 A solid foundation
2.4 Summary

After the foundational elements for an application are decided on and in place, it’s
easier to dive into application-specific situations and the elements that will make your
application useful. This chapter covered several foundational elements and options:

 Handling command-line options in a comfortable and accessible manner. This
ranges from lightweight solutions to a simple framework for building console-
based applications and utilities.

 Retrieving configuration information from files and the environment in various
ways and data formats.

 Starting and stopping a web server that works with ops tooling and graceful
shutdowns to avoid a bad user experience or loss of data.

 Several ways to handle resolving URL paths for an application, and route to han-
dler functions.

In the next chapter, you’ll look at concurrency in Go. Concurrency is a cornerstone
and building block of Go applications. You’ll learn how to effectively use it.

Concurrency in Go
This chapter presents Go’s concurrency model. Unlike many recent procedural
and object-oriented languages, Go doesn’t provide a threading model for concur-
rency. Instead, it uses goroutines and channels. Concurrency is cheap (resource-
wise) and much easier to manage than traditional thread pools. This chapter first
focuses on goroutines, functions capable of running concurrently. Then it dives
into channels, Go’s mechanism for communicating between goroutines.

3.1 Understanding Go’s concurrency model

Roughly speaking, concurrency is a program’s ability to do multiple things at the same
time. In practice, when we talk about concurrent programs, we mean programs that

This chapter covers
 Understanding Go’s concurrency model

 Using goroutines for concurrent processing

 Locking and waiting

 Using channels for communication between
goroutines

 Strategically closing channels
59

60 CHAPTER 3 Concurrency in Go
have two or more tasks that run independently of each other, at about the same time,
but remain part of the same program.

 Popular programming languages such as Java and Python implement concurrency
by using threads. Go takes a different route. Following a model proposed by the
renowned computer scientist Tony Hoare, Go uses the concurrency model called Com-
municating Sequential Processes (CSP). This chapter covers the practical aspects of work-
ing with Go’s concurrency model, though we suggest reading a little about the theory
behind CSP and Go at golang.org.

 Two crucial concepts make Go’s concurrency model work:

 Goroutines—A goroutine is a function that runs independently of the function
that started it. Sometimes Go developers explain a goroutine as a function that
runs as if it were on its own thread.

 Channels—A channel is a pipeline for sending and receiving data. Think of it as
a socket that runs inside your program. Channels provide a way for one gorou-
tine to send structured data to another.

The techniques in this chapter use goroutines and channels. We won’t spend time on
the theory or underpinnings of the goroutine and channel systems, but will stick to
practical use of these two concepts.

 Concurrency in Go is cheap and easy. Therefore, you’ll frequently see it used in
libraries and tools. In fact, you’ll see it used frequently throughout this book. This
chapter introduces several concurrency topics, with emphasis on how Go’s model dif-
fers from that of other popular languages. It also focuses on best practices. Goroutines
and channels are one of the few places in the Go language where programmers can
introduce memory leaks. You can remedy this situation by following certain patterns,
which we introduce in this chapter.

3.2 Working with goroutines

When it comes to syntax, a goroutine is any function that’s called after the special key-
word go. Almost any function could, in theory, be called as a goroutine, though there
are plenty of functions you probably wouldn’t want to call as goroutines. One of the
most frequent uses of goroutines is to run a function “in the background” while the
main part of your program goes on to do something else. As an example, let’s write a
short program that echoes back any text you type in, but only for 30 seconds, as shown
in the next listing. After that, it exits on its own.

package main

import (
 "fmt"
 "io"
 "os"
 "time"

Listing 3.1 Using a goroutine to run a task

61TECHNIQUE 10 Using goroutine closures

30
)

func main() {
 go echo(os.Stdin, os.Stdout)
 time.Sleep(30 * time.Second)
 fmt.Println("Timed out.")
 os.Exit(0)
}

func echo(in io.Reader, out io.Writer) {
 io.Copy(out, in)
}

This program uses a goroutine to run the echoing behavior in the background, while
a timer runs in the foreground. If you were to run the program and type in some text,
the output would look something like this:

$ go run echoback.go
Hello.
Hello.
My name is Inigo Montoya
My name is Inigo Montoya
You killed my father
You killed my father
Prepare to die
Prepare to die
Timed out.

Here’s how the program works. Each line that you type in is displayed by the shell as
you type it, and then echoed back by the program as soon as it reads the line. And it
continues this echo loop until the timer runs out. As you can see in the example,
there’s nothing special about the echo function, but when you call it with the keyword
go, it’s executed as a goroutine.

 The main function starts the goroutine and then waits for 30 seconds. When
the main function exits, it terminates the main goroutine, which effectively halts the
program.

TECHNIQUE 10 Using goroutine closures

Any function can be executed as a goroutine. And because Go allows you to declare
functions inline, you can share variables by declaring one function inside another and
closing over the variables you want to share.

PROBLEM
You want to use a one-shot function in a way that doesn’t block the calling function,
and you’d like to make sure that it runs. This use case frequently arises when you want
to, say, read a file in the background, send messages to a remote log server, or save a
current state without pausing the program.

Calls the function echo
as a goroutine

Sleeps for
 seconds

Prints out a message saying
we’re done sleeping

Exits the program.
This stops the goroutine.

The echo function is
a normal function.

io.Copy copies data to an
os.Writer from an os.Reader.

62 CHAPTER 3 Concurrency in Go
SOLUTION
Use a closure function and give the scheduler opportunity to run.

DISCUSSION
In Go, functions are first-class. They can be created inline, passed into other functions,
and assigned as values to a variable. You can even declare an anonymous function and
call it as a goroutine, all in a compact syntax, as the following listing shows.

package main

import (
 "fmt"
 "runtime"
)

func main() {
 fmt.Println("Outside a goroutine.")
 go func() {
 fmt.Println("Inside a goroutine")
 }()
 fmt.Println("Outside again.")

 runtime.Gosched()
}

This listing shows how to create the function inline and immediately call it as a gorou-
tine. But if you execute this program, you may be surprised at the output, which may
change from run to run. It’s not uncommon to see this:

$ go run ./simple.go
Outside a goroutine.
Outside again.
Inside a goroutine

Goroutines run concurrently, but not necessarily in parallel. When you schedule a
goroutine to run by calling go func, you’re asking the Go runtime to execute that
function for you as soon as it can. But that’s likely not immediately. In fact, if your Go
program can use only one processor, you can almost be sure that it won’t run immedi-
ately. Instead, the scheduler will continue executing the outer function until a circum-
stance arises that causes it to switch to another task. This leads us to another facet of
this example.

 You may have noticed the last line of the function, runtime.Gosched(). This is a
way to indicate to the Go runtime that you’re at a point where you could pause and
yield to the scheduler. If the scheduler has other tasks queued up (other goroutines),
it may then run one or more of them before coming back to this function.

 If you were to omit this line and rerun the example, your output would likely look
like this:

Listing 3.2 An anonymous goroutine

Declares an anonymous
function and executes it
as a goroutine

Yields to the scheduler

63TECHNIQUE 11 Waiting for goroutines
$ go run ./simple.go
Outside a goroutine.
Outside again.

The goroutine never executes. Why? The main function returns (terminating the pro-
gram) before the scheduler has a chance to run the goroutine. When you run runtime
.Gosched, though, you give the runtime an opportunity to execute other goroutines
before it exits.

 There are other ways of yielding to the scheduler; perhaps the most common is to
call time.Sleep. But none gives you the explicit ability to tell the scheduler what to do
when you yield. At best, you can indicate to the scheduler only that the present gorou-
tine is at a point where it can or should pause. Most of the time, the outcome of yield-
ing to the scheduler is predictable. But keep in mind that other goroutines may also
hit points at which they pause, and in such cases, the scheduler may again continue
running your function.

 For example, if you execute a goroutine that runs a database query, running
runtime.Gosched may not be enough to ensure that the other goroutine has com-
pleted its query. It may end up paused, waiting for the database, in which case the
scheduler may continue running your function. Thus, although calling the Go sched-
uler may guarantee that the scheduler has a chance to check for other goroutines,
you shouldn’t rely on it as a tool for ensuring that other goroutines have a chance to
complete.

 There’s a better way of doing that. The solution to this complex situation is shown
next.

TECHNIQUE 11 Waiting for goroutines

Sometimes you’ll want to start multiple goroutines but not continue working until
those goroutines have completed their objective. Go wait groups are a simple way to
achieve this.

PROBLEM
One goroutine needs to start one or more other goroutines, and then wait for them to
finish. In this practical example, you’ll focus on a more specific problem: you want to
compress multiple files as fast as possible and then display a summary.

SOLUTION
Run individual tasks inside goroutines. Use sync.WaitGroup to signal the outer pro-
cess that the goroutines are done and it can safely continue. Figure 3.1 illustrates this
general design: several workers are started, and work is delegated to the workers. One
process delegates the tasks to the workers and then waits for them to complete.

DISCUSSION
Go’s standard library provides several useful tools for working with synchronization.
One that frequently comes in handy is sync.WaitGroup, a tool for telling one gorou-
tine to wait until other goroutines complete.

64 CHAPTER 3 Concurrency in Go
Let’s begin with a simple tool that compresses an arbitrary number of individual files.
In the following listing you’ll use the built-in Gzip compression library (compress
/gzip) to take each individual file and compress it.

package main

import (
 "compress/gzip"
 "io"
 "os"
)

func main() {
 for _, file := range os.Args[1:] {
 compress(file)
 }
}

func compress(filename string) error {
 in, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer in.Close()

 out, err := os.Create(filename + ".gz")
 if err != nil {
 return err
 }
 defer out.Close()

 gzout := gzip.NewWriter(out)
 _, err = io.Copy(gzout, in)
 gzout.Close()

 return err
}

This tool takes a list of files on the command line and then compresses each file, cre-
ating a file with the same name as the original, but with .gz appended as an extension.
Say you have a directory that looks like this:

Listing 3.3 Simple Gzip compression tool

Main

Workers1. Start several
 workers

3. Continue

2. Wait until all
 of the workers
 are done Figure 3.1 Start multiple workers and

wait for completion.

Collects a list of files
passed in on the
command line

Opens the source file for reading

Opens a destination file,
with the .gz extension added
to the source file’s name

The gzip.Writer compresses
data and then writes it to
the underlying file.

The io.Copy function does all
the copying for you.

65TECHNIQUE 11 Waiting for goroutines
$ ls -1 exampledata
example1.txt
example2.txt
example3.txt

You have three text files in your exampledata directory. Using your tool, you can com-
press them:

$ go run simple_gz.go exampledata/*
$ ls -1 exampledata
example1.txt
example1.txt.gz
example2.txt
example2.txt.gz
example3.txt
example3.txt.gz

In that example run, you can see that your simple_gz.go program created a Gzipped
version of each file.

 Now let’s talk about performance. As written, the preceding program uses only
one goroutine (and thus uses only one CPU core). It’s unlikely that this program is
going to make good use of all of the disk I/O bandwidth, too. Although the code runs
just fine, it’s nowhere near as fast as it could be. And because each file can be com-
pressed individually, it’s conceptually simple to break out your single thread of execu-
tion into something parallelized.

 You can rewrite a program like this to compress each file in its own goroutine.
Although this would be a suboptimal solution for compressing thousands of files
(you’d probably overwhelm the I/O capacity of the system), it works well when dealing
with a few hundred files or less.

 Now here’s the trick: you want to compress a bunch of files in parallel, but have the
parent goroutine (main) wait around until all of the workers are done. You can easily
accomplish this with a wait group. In listing 3.4 you’ll modify the code in such a way
that you don’t change the compress function at all. This is generally considered better
design because it doesn’t require your worker function (compress) to use a wait group
in cases where files need to be compressed serially.

package main

import (
 "compress/gzip"
 "fmt"
 "io"
 "os"
 "sync"
)

func main() {
 var wg sync.WaitGroup

Listing 3.4 Compressing files in parallel with a wait group

A WaitGroup doesn’t need
to be initialized.

66 CHAPTER 3 Concurrency in Go
 var i int = -1
 var file string
 for i, file = range os.Args[1:] {
 wg.Add(1)
 go func(filename string) {
 compress(filename)
 wg.Done()
 }(file)
 }
 wg.Wait()

 fmt.Printf("Compressed %d files\n", i+1)
}

func compress(filename string) error {
 // Unchanged from above
}

In this revised compression tool, you’ve changed the main function in significant
ways. First, you’ve added a wait group.

 A wait group is a message-passing facility that signals a waiting goroutine when it’s
safe to proceed. To use it, you tell the wait group when you want it to wait for some-
thing, and then you signal it again when that thing is done. A wait group doesn’t need
to know more about the things it’s waiting for other than (a) the number of things it’s
waiting for, and (b) when each thing is done. You increment the first with wg.Add,
and as your task completes, you signal this with wg.Done. The wg.Wait function blocks
until all tasks that were added are done. Figure 3.2 illustrates the process.

 In this program, you call wg.Done inside a goroutine. That goroutine accepts a file-
name and then runs your compress function on it. Notice that you’ve done something
that at first blush appears redundant. Instead of closing over file inside the closure,

Because you want to reference i outside the
for loop you declare the variables here.

The outer goroutine (main) waits until all the
compressing goroutines have called wg.Done.

For every file you add, you tell the wait group that you’re
waiting for one more compress operation.

This function calls compress
and then notifies the wait

group that it’s done.

Because you’re calling a goroutine in
a for loop, you need to do a little

trickery with the parameter passing.

Main

Workers

Add items to
wait group

2. Mark wait group done

Wait until all
works are done
and then continue

1.

3.

Figure 3.2 Wait groups in action

67TECHNIQUE 12 Locking with a mutex
you pass the file into the program as filename. You do this for a reason related to the
Go scheduler.

 The variable file is scoped to the for loop, which means that its value will change
on each iteration of the loop. But as you saw earlier in the chapter, declaring a gorou-
tine doesn’t result in its immediate execution. If your loop runs five times, you’ll have
five goroutines scheduled, but possibly none of them executed. And on each of those
five iterations, the value of file will change. By the time the goroutines execute, they
may all have the same (fifth) version of the file string. That isn’t what you want. You
want each to be scheduled with that iteration’s value of file, so you pass it as a func-
tion parameter, which ensures that the value of file is passed to each goroutine as it’s
scheduled.

 Although this might at first seem an esoteric problem, it’s not uncommon. Any-
time a loop executes goroutines, you need to be extra careful that the variables the
goroutine uses aren’t changed by the loop. The easiest way to accomplish this is to
make copies of the variables inside the loop.

TECHNIQUE 12 Locking with a mutex

Anytime two or more goroutines are working with the same piece of data, and that
data may change, you have the potential for a race condition. In a race condition, two
things are “racing” to use the same piece of information. Problems arise when both
are working with the same data at around the same time. One goroutine may be only
partway through modifying a value when another goroutine tries to use it. And that
situation can have unintended consequences.

PROBLEM
Multiple goroutines need to access or modify the same piece of data.

SOLUTION
One simple way to avoid this situation is for each goroutine to place a “lock” on a
resource that it’s using, and then unlock the resource when it’s done. For all other
goroutines, when they see the lock, they wait until the lock is removed before attempt-
ing to lock that resource on their own. Use sync.Mutex to lock and unlock the object.

DISCUSSION
The built-in sync package provides a sync.Locker interface as well as a couple of lock
implementations. These provide essential locking behavior.

Don’t reimplement locks
For a while now, a rumor has been circulating that Go locks perform so poorly that
you’re better off implementing your own. This has led many Go developers to build
their own lock libraries. In the best case, this is unnecessary work. In the worst case,
developers build broken or slower locking systems.

Unless you have a proven use case and performance-sensitive code, you should
refrain from reimplementing locks on your own. The built-in package is simple to use,
battle-tested, and meets the performance needs of most applications.

68 CHAPTER 3 Concurrency in Go

T
use
in
The following listing is an example of a program with a race condition. This simple
program reads any number of files and tallies the number of occurrences for each
word it finds. At the end of its execution, it prints a list of words that appear more
than once.

package main

import (
 "bufio"
 "fmt"
 "os"
 "strings"
 "sync"
)

func main() {
 var wg sync.WaitGroup

 w := newWords()
 for _, f := range os.Args[1:] {
 wg.Add(1)
 go func(file string) {
 if err := tallyWords(file, w); err != nil {
 fmt.Println(err.Error())
 }
 wg.Done()
 }(f)
 }
 wg.Wait()

 fmt.Println("Words that appear more than once:")
 for word, count := range w.found {
 if count > 1 {
 fmt.Printf("%s: %d\n", word, count)
 }
 }
}

type words struct {
 found map[string]int
}

func newWords() *words {
 return &words{found: map[string]int{}}
}

Listing 3.5 Word counter with race condition

(continued)
Later in the chapter, you’ll work with channels. On occasion, you may find that code
already using channels can better handle locking with channels. This is fine (we’ll
show you how to do it). But in general, there’s no practical reason for implementing
your own locking library.

Again, you’ll use a wait
group to monitor a
group of goroutines.

he main loop
s the pattern
technique 12.

At the end of the
program, you print
what you found.

You track words in a struct. You could
use a map type, but using a struct
here makes the next refactor easier.

Creates a new words instance

69TECHNIQUE 12 Locking with a mutex
func (w *words) add(word string, n int) {
 count, ok := w.found[word]
 if !ok {
 w.found[word] = n
 return
 }
 w.found[word] = count + n
}

func tallyWords(filename string, dict *words) error {
 file, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer file.Close()

 scanner := bufio.NewScanner(file)
 scanner.Split(bufio.ScanWords)
 for scanner.Scan() {
 word := strings.ToLower(scanner.Text())
 dict.add(word, 1)
 }
 return scanner.Err()
}

The main function loops over all the files you supply on the command line, generating
statistics for each as it goes. What you expect, when you run the preceding code, is for
the tool to read text files and print out a list of the words that it finds. Let’s try it on a
single file:

$ go run race.go 1.txt
Words that appear more than once:
had: 2
down: 2
the: 5
have: 2
that: 3
would: 3
…

That’s what you’d expect the output to look like. Now, if you pass in more than one
filename, the tool will process each file in its own goroutine. Let’s try that:

$ go run race.go *.txt
fatal error: concurrent map writes

goroutine 8 [running]:
runtime.throw(0x115890, 0xd)
 /usr/local/go/src/runtime/panic.go:527 +0x90 fp=0x82029cbf0
 sp=0x82029cbd8
runtime.evacuate(0xca600, 0x8202142d0, 0x16)
 /usr/local/go/src/runtime/hashmap.go:825 +0x3b0 fp=0x82029ccb0
 sp=0x82029cbf0

Tracks the number of times
you’ve seen this word

If the word isn’t
already tracked, add
it. Otherwise,
increment the count.

Open a file, parse its
contents, and count
the words that appear.
Copy function does all
the copying for you.

Scanner is a useful tool
for parsing files like this.

70 CHAPTER 3 Concurrency in Go
runtime.growWork(0xca600, 0x8202142d0, 0x31)
 /usr/local/go/src/runtime/hashmap.go:795 +0x8a fp=0x82029ccd0
 sp=0x82029ccb0
runtime.mapassign1(0xca600, 0x8202142d0, 0x82029ce70, 0x82029cdb0)
 /usr/local/go/src/runtime/hashmap.go:433 +0x175 fp=0x82029cd78
 sp=0x82029ccd0
…

At least some of the time, this will fail. Why? The error gives a hint: concurrent map
writes. If you rerun the command with the --race flag, you’ll get an even better idea:

go run --race race.go *.txt
==================
WARNING: DATA RACE
Read by goroutine 8:
 runtime.mapaccess2_faststr()
 /tmp/workdir/go/src/runtime/hashmap_fast.go:281 +0x0
 main.tallyWords()
 /Users/mbutcher/Code/go-in-practice/chapter3/race/race.go:62 +0x3ed
 main.main.func1()
 /Users/mbutcher/Code/go-in-practice/chapter3/race/race.go:18 +0x66

Previous write by goroutine 6:
 runtime.mapassign1()
 /tmp/workdir/go/src/runtime/hashmap.go:411 +0x0
 main.tallyWords()
 /Users/mbutcher/Code/go-in-practice/chapter3/race/race.go:62 +0x48a
 main.main.func1()
 /Users/mbutcher/Code/go-in-practice/chapter3/race/race.go:18 +0x66

Goroutine 8 (running) created at:
 main.main()
 /Users/mbutcher/Code/go-in-practice/chapter3/race/race.go:22 +0x238

Goroutine 6 (running) created at:
 main.main()
 /Users/mbutcher/Code/go-in-practice/chapter3/race/race.go:22 +0x238
==================

The call to words.add has a problem. Multiple goroutines are accessing the same bit
of memory, the words.found map, at the same time (note the bold lines). This causes
a race condition to modify the map.

If you look back at the original program, you can quickly find the problem. If add is
called by multiple goroutines at around the same time, multiple simultaneous opera-
tions may occur on the same map. This is a recipe for corrupting the map.

Go includes built-in race detection
Many of the Go tools, including go run and go test, accept a --race flag, which
enables race detection. Race detection substantially slows execution, but it’s useful
for detecting race conditions during the development cycle.

71TECHNIQUE 12 Locking with a mutex

.

 One simple solution is to lock the map before you modify it, and then unlock it
afterward. You can accomplish this with a few changes to the code, as shown in the
next listing.

package main

import (
 // Same as before…
 "sync"
)

func main() {
 var wg sync.WaitGroup

 w := newWords()
 for _, f := range os.Args[1:] {
 wg.Add(1)
 go func(file string) {
 if err := tallyWords(file, w); err != nil {
 fmt.Println(err.Error())
 }
 wg.Done()
 }(f)
 }
 wg.Wait()

 fmt.Println("Words that appear more than once:")
 w.Lock()
 for word, count := range w.found {
 if count > 1 {
 fmt.Printf("%s: %d\n", word, count)
 }
 }
 w.Unlock()
}

type words struct {
 sync.Mutex
 found map[string]int
}

func newWords() *words {
 return &words{found: map[string]int{}}
}

func (w *words) add(word string, n int) {
 w.Lock()
 defer w.Unlock()
 count, ok := w.found[word]
 if !ok {
 w.found[word] = n
 return
 }
 w.found[word] = count + n
}

Listing 3.6 Word counter with locks

Locks and unlocks the map
when you iterate at the end
Strictly speaking, this isn’t
necessary because you know
that this section won’t
happen until all files are
processed.

The words struct now
inherits the mutex lock.

Locks the object, modifies the
map, and then unlocks the object

72 CHAPTER 3 Concurrency in Go
func tallyWords(filename string, dict *words) error {
 // Unchanged from before
}

In this revised version, the words struct declares an anonymous field referencing
sync.Mutex, basically granting the words.Lock and words.Unlock methods. This is a
common way of exposing a lock on a struct. (You used these methods when looping
over the words at the end of main.)

 Now, inside the add method, you lock the object, modify the map, and then unlock
the object. When multiple goroutines enter the add method, the first will get the lock,
and the others will wait until the lock is released. This will prevent multiple goroutines
from modifying the map at the same time.

 It’s important to note that locks work only when all access to the data is managed
by the same lock. If some data is accessed with locks, and others without, a race condi-
tion can still occur.

 Sometimes it’s useful to allow multiple read operations on a piece of data, but to
allow only one write (and no reads) during a write operation. The sync.RWLock pro-
vides this functionality. The sync package has several other useful tools that simplify
coordination across goroutines. But at this point, let’s turn our attention to another
core concept in Go’s concurrency model: channels.

3.3 Working with channels

Channels provide a way to send messages from one goroutine to another. This section
covers several ways of using channels to accomplish common tasks and solve common
problems.

 The easiest way to understand channels is to compare them to network sockets.
Two applications can connect over a network socket. Depending on how these appli-
cations were written, network traffic can flow in a single direction or bidirectionally.
Sometimes network connections are short-lived, and sometimes they stick around for
a long time. Smart applications may even use multiple network connections, each
sending and receiving different kinds of data. Just about any data can be sent over a
network socket, but there’s a drawback: that data has to be marshaled into raw bytes.

 Go channels work like sockets between goroutines within a single application. Like
network sockets, they can be unidirectional or bidirectional. Channels can be short-
lived or long-lived. And it’s common to use more than one channel in an app, having
different channels send different kinds of data. But unlike network connections,
channels are typed and can send structured data. There’s generally no need to mar-
shal data onto a channel.

 Let’s dive into channels by refactoring an earlier code sample to use channels.

73TECHNIQUE 13 Using multiple channels

TECHNIQUE 13 Using multiple channels

Go developers are fond of pointing out that channels are communication tools. They
enable one goroutine to communicate information to another goroutine. Sometimes
the best way to solve concurrency problems in Go is to communicate more informa-
tion. And that often translates into using more channels.

PROBLEM
You want to use channels to send data from one goroutine to another, and be able to
interrupt that process to exit.

SOLUTION
Use select and multiple channels. It’s a common practice in Go to use channels to
signal when something is done or ready to close.

DISCUSSION
To introduce channels, let’s revisit the first code example in this chapter. That pro-
gram echoed user input for 30 seconds. It accomplished this by using a goroutine to
echo the information, and a time.Sleep call to wait. Let’s rewrite that program to use
channels in addition to goroutines.

 You’re not looking to add new functionality or even to vastly improve the initial
example. You’re interested in taking a different approach to solving the same prob-
lem. In so doing, you’ll see several idiomatic uses of channels.

 Before looking at the code in listing 3.7, consider the following concepts that
you’ll see come into play here:

 Channels are created with make, just like maps and slices.
 The arrow operator (<-) is used both to signify the direction of a channel (out

chan<- []byte) and to send or receive data over a channel (buf := <-echo).
 The select statement can watch multiple channels (zero or more). Until some-

thing happens, it’ll wait (or execute a default statement, if supplied). When a
channel has an event, the select statement will execute that event. You’ll see
more on channels later in this chapter.

Don’t overuse channels
Channels are a fantastic tool for communicating between goroutines. They’re simple
to use, as you’ll see, and make concurrent programming much easier than the
threading models of other popular languages.

But be wary of overuse. Channels carry overhead and have a performance impact.
They introduce complexity into a program. And most important, channels are the sin-
gle biggest source of memory management issues in Go programs. As with any tool,
use channels when the need arises, but resist the temptation to polish your new ham-
mer and then go looking for nails.

74 CHAPTER 3 Concurrency in Go

gor
re

pas
new ch
comm
package main

import (
 "fmt"
 "os"
 "time"
)

func main() {
 done := time.After(30 * time.Second)
 echo := make(chan []byte)
 go readStdin(echo)
 for {
 select {
 case buf := <-echo:
 os.Stdout.Write(buf)
 case <-done:
 fmt.Println("Timed out")
 os.Exit(0)
 }
 }
}

func readStdin(out chan<- []byte) {
 for {
 data := make([]byte, 1024)
 l, _ := os.Stdin.Read(data)
 if l > 0 {
 out <- data
 }
 }
}

Running the preceding code results in the following:

$ go run echoredux.go
test 1
test 1
test 2
test 2
test 3
test 3
Timed out

As you saw with the previous implementation, if you type test 1, that text is echoed
back. After 30 seconds, the program halts itself.

 Rewriting the echo example has introduced new concepts regarding channels. The
first channel in the preceding code is created by the time package. The time.After
function builds a channel that will send a message (a time.Time) when the given dura-
tion has elapsed. Calling time.After(30 * time.Second) returns a <-chan time.Time

Listing 3.7 Using multiple channels

Creates a channel that will
receive a message when 30
seconds have elapsed

Makes a new channel for passing
bytes from Stdin to Stdout.
Because you haven’t specified a
size, this channel can hold only
one message at a time.

Starts a
outine to
ad Stdin,
ses it our
annel for
unicating

Uses a select statement to
pass data from Stdin to
Stdout when received, or to
shut down when the time-out
event occurs

Takes a write-only channel (chan<-) and
sends any received input to that channel

Copies some data from Stdin
into data. Note that File.Read
blocks until it receives data.

Sends the buffered data
over the channel

75TECHNIQUE 13 Using multiple channels
(receive-only channel that receives time.Time objects) that, after 30 seconds, will
receive a message. Thus, practically speaking, the two methods of pausing in the fol-
lowing listing are operationally equivalent.

package main

import (
 "time"
)

func main() {
 time.Sleep(5 * time.Second)

 sleep := time.After(5 * time.Second)
 <-sleep
}

Some functions (for example, time.After) create and initialize channels for you. But
to create a new channel, you can use the built-in make function.

 Channels are bidirectional by default. But as you saw in the preceding example,
you can specify a “direction” for the channel when passing it into a function (or dur-
ing any other assignment). The readStdin function can only write to the out channel.
Any attempt to read from it will result in a compile-time error. Generally, it’s consid-
ered good programming practice to indicate in a function signature whether the
function receives or sends on a channel.

 The last important facet of this program is select. A select statement is syntacti-
cally similar to a switch statement. It can take any number of case statements, as well
as a single optional default statement.

 The select statement checks each case condition to see whether any of them
have a send or receive operation that needs to be performed. If exactly one of the
case statements can send or receive, select will execute that case. If more than one
can send or receive, select randomly picks one. If none of the case statements can
send or receive, select falls through to a default (if specified). And if no default is
specified, select blocks until one of the case statements can send or receive.

 In this example, select is waiting to receive on two channels. If a message comes
over the echo channel, the string that’s sent is stored in buf (buf := <-echo), and then
written to standard output. This illustrates that a receive operation can assign the
received value to a variable.

 But the second case that your select is waiting for is a message on the done chan-
nel. Because you don’t particularly care about the contents of the message, you don’t
assign the received value to a variable. You just read it off the channel, and the select
discards the value (<-done).

 There’s no default value on your select, so it’ll block until either a message is
received on <-echo or a message is received on <-done. When the message is received,
select will run the case block and then return control. You’ve wrapped your select

Listing 3.8 Pausing with Sleep and After

Blocks for five seconds

Creates a channel that will get
notified in five seconds, then
block until that channel
receives a notification

76 CHAPTER 3 Concurrency in Go
in a for loop, so the select will be run repeatedly until the <-done channel receives a
message and the program exits.

 One thing we didn’t cover in this technique is closing channels when you’re done
with them. In our example app, the program is too short-lived to require this, and you
rely on the runtime to clean up after you. In the next technique, you’ll look at a strat-
egy for closing channels.

TECHNIQUE 14 Closing channels

In Go, developers rely on the memory manager to clean up after themselves. When a
variable drops out of scope, the associated memory is scrubbed. But you have to be
careful when working with goroutines and channels. What happens if you have a
sender and receiver goroutine, and the sender finishes sending data? Are the receiver
and channel automatically cleaned up? Nope. The memory manager will only clean
up values that it can ensure won’t be used again, and in our example, an open chan-
nel and a goroutine can’t be safely cleaned.

 Imagine for a moment that this code was part of a larger program, and that the
function main was a regular function called repeatedly throughout the lifetime of the
app. Each time it’s called, it creates a new channel and a new goroutine. But the chan-
nel is never closed, nor does the goroutine ever return. That program would leak both
channels and goroutines.

 The question arises: how can you correctly and safely clean up when you’re using
goroutines and channels? Failing to clean up can cause memory leaks or channel/
goroutine leaks, where unneeded goroutines and channels consume system resources
but do nothing.

PROBLEM
You don’t want leftover channels and goroutines to consume resources and cause
leaky applications. You want to safely close channels and exit goroutines.

SOLUTION
The straightforward answer to the question “How do I avoid leaking channels and
goroutines?” is “Close your channels and return from your goroutines.” Although that
answer is correct, it’s also incomplete. Closing channels the wrong way will cause your
program to panic or leak goroutines.

 The predominant method for avoiding unsafe channel closing is to use additional
channels to notify goroutines when it’s safe to close a channel.

DISCUSSION
You can use a few idiomatic techniques for safely shutting down channels.

 Let’s start, though, with a negative example, shown in the following listing. Begin-
ning with the general idea of the program from listing 3.7, let’s construct a program
that incorrectly manages its channel.

77TECHNIQUE 14 Closing channels

package main

import (
 "fmt"
 "time"
)

func main() {
 msg := make(chan string)
 until := time.After(5 * time.Second)

 go send(msg)

 for {
 select {
 case m := <-msg:
 fmt.Println(m)
 case <-until:
 close(msg)
 time.Sleep(500 * time.Millisecond)
 return
 }
 }
}

func send(ch chan string) {
 for {
 ch <- "hello"
 time.Sleep(500 * time.Millisecond)
 }
}

This example code is contrived to illustrate a problem that’s more likely to occur in a
server or another long-running program. You’d expect this program to print 10 or so
hello strings and then exit. But if you run it, you get this:

$ go run bad.go
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello
panic: send on closed channel

goroutine 20 [running]:
main.send(0x82024c060)
 /Users/mbutcher/Code/go-in-practice/chapter3/closing/bad.go:28 +0x4c
created by main.main
 /Users/mbutcher/Code/go-in-practice/chapter3/closing/bad.go:12 +0x90

Listing 3.9 Improper channel close

Starts a send goroutine
with a sending channel

Loops over a select that
watches for messages from
send, or for a time-out

If a message
arrives from

send, prints it When the time-out
occurs, shuts things
down. You pause to
ensure that you see
the failure before the
main goroutine exits.

Sends “Hello” to the
channel every half-second
www.allitebooks.com

http://www.allitebooks.org

78 CHAPTER 3 Concurrency in Go
goroutine 1 [sleep]:
time.Sleep(0x1dcd6500)
 /usr/local/go/src/runtime/time.go:59 +0xf9
main.main()
 /Users/mbutcher/Code/go-in-practice/chapter3/closing/bad.go:20 +0x24f
exit status 2

At the end, the program panics because main closes the msg channel while send is still
sending messages to it. A send on a closed channel panics. In Go, the close function
should be closed only by a sender, and in general it should be done with some protec-
tive guards around it.

 What happens if you close the channel from the sender? No panic will happen, but
something interesting does. Take a look at the quick example in the next listing.

package main

import "time"

func main() {
 ch := make(chan bool)
 timeout := time.After(600 * time.Millisecond)
 go send(ch)
 for {
 select {
 case <-ch:
 println("Got message.")
 case <-timeout:
 println("Time out")
 return
 default:
 println("*yawn*")
 time.Sleep(100 * time.Millisecond)
 }
 }
}

func send(ch chan bool) {
 time.Sleep(120 * time.Millisecond)
 ch <- true
 close(ch)
 println("Sent and closed")
}

After running this code, you’d expect that the main loop would do the following: hit
the default clause a couple of times, get a single message from send, and then hit the
default clause a few more times before the time-out happens and the program exits.

 Instead, you’ll see this:

$ go run sendclose.go
yawn
yawn
yawn

Listing 3.10 Close from sender

Loops over a select
with two channels and
a default

If you get a message over your
main channel, prints something

If a time-out
occurs,

terminates
the program By default, sleeps for

a bit. This makes the
example easier to
work with.

Sends a single
message over the
channel and then
closes the channel

79TECHNIQUE 14 Closing channels
yawn
Got message.
Got message.
Sent and closed
yawn
Sent and closed
yawn
Got message.
Got message.
Got message.
Got message.
… #thousands more
Time out

This occurs because a closed channel always returns the channel’s nil value, so send
sends one true value and then closes the channel. Each time the select examines ch
after ch is closed, it’ll receive a false value (the nil value on a bool channel).

 You could work around this issue. For example, you could break out of the
for/select loop as soon as you see false on ch. Sometimes that’s necessary. But the
better solution is to explicitly indicate that you’re finished with the channel and then
close it.

 The best way to rewrite listing 3.9 is to use one additional channel to indicate that
you’re done with the channel. This gives both sides the opportunity to cleanly handle
the closing of the channel, as shown in the next listing.

package main

import (
 "fmt"
 "time"
)

func main() {
 msg := make(chan string)
 done := make(chan bool)
 until := time.After(5 * time.Second)

 go send(msg, done)

 for {
 select {
 case m := <-msg:
 fmt.Println(m)
 case <-until:
 done <- true
 time.Sleep(500 * time.Millisecond)
 return
 }
 }
}

func send(ch chan<- string, done <-chan bool) {

Listing 3.11 Using a close channel

Adds an additional Boolean
channel that indicates when
you’re finished

Passes two channels into send

When you time-out,
lets send know the
process is done

ch is a receiving
channel, while done is
a sending channel.

80 CHAPTER 3 Concurrency in Go
 for {
 select {
 case <-done:
 println("Done")
 close(ch)
 return
 default:
 ch <- "hello"
 time.Sleep(500 * time.Millisecond)
 }
 }
}

This example demonstrates a pattern that you’ll frequently observe in Go: using a
channel (often called done) to send a signal between goroutines. In this pattern, you
usually have one goroutine whose primary task is to receive messages, and another
whose job is to send messages. If the receiver hits a stopping condition, it must let the
sender know.

 In listing 3.11, the main function is the one that knows when to stop processing.
But it’s also the receiver. And as you saw before, the receiver shouldn’t ever close a
receiving channel. Instead, it sends a message on the done channel indicating that it’s
done with its work. Now, the send function knows when it receives a message on done
that it can (and should) close the channel and return.

TECHNIQUE 15 Locking with buffered channels

Thus far, you’ve looked at channels that contain one value at a time and are created
like this: make(chan TYPE). This is called an unbuffered channel. If such a channel has
received a value, and is then sent another one before the channel can be read, the sec-
ond send operation will block. Moreover, the sender will also block until the channel
is read.

 Sometimes you’ll want to alter those blocking behaviors. And you can do so by cre-
ating buffered channels.

PROBLEM
In a particularly sensitive portion of code, you need to lock certain resources. Given
the frequent use of channels in your code, you’d like to do this with channels instead
of the sync package.

SOLUTION
Use a channel with a buffer size of 1, and share the channel among the goroutines
you want to synchronize.

DISCUSSION
Technique 12 introduced sync.Locker and sync.Mutex for locking sensitive areas of
code. The sync package is part of Go’s core, and is thus well tested and maintained.
But sometimes (especially in code that already uses channels), it’s desirable to imple-
ment locks with channels instead of the mutex. Often this is a stylistic preference: it’s
prudent to keep your code as uniform as possible.

When done has a message,
shuts things down

81TECHNIQUE 15 Locking with buffered channels
 When talking about using a channel as a lock, you want this kind of behavior:

1 A function acquires a lock by sending a message on a channel.
2 The function proceeds to do its sensitive operations.
3 The function releases the lock by reading the message back off the channel.
4 Any function that tries to acquire the lock before it’s been released will pause

when it tries to acquire the (already locked) lock.

You couldn’t implement this scenario with an unbuffered channel. The first step in
this process would cause the function to block because an unbuffered channel blocks
on send. In other words, the sender waits until something receives the message it puts
on the channel.

 But one of the features of a buffered channel is that it doesn’t block on send pro-
vided that buffer space still exists. A sender can send a message into the buffer and
then move on. But if a buffer is full, the sender will block until there’s room in the
buffer for it to write its message.

 This is exactly the behavior you want in a lock. You create a channel with only
one empty buffer space. One function can send a message, do its thing, and then
read the message off the buffer (thus unlocking it). The next listing shows a simple
implementation.

package main

import (
 "fmt"
 "time"
)

func main() {
 lock := make(chan bool, 1)
 for i := 1; i < 7; i++ {
 go worker(i, lock)
 }
 time.Sleep(10 * time.Second)
}

func worker(id int, lock chan bool) {
 fmt.Printf("%d wants the lock\n", id)
 lock <- true
 fmt.Printf("%d has the lock\n", id)
 time.Sleep(500 * time.Millisecond)
 fmt.Printf("%d is releasing the lock\n", id)
 <-lock
}

Listing 3.12 Simple locking with channels

Creates a buffered
channel with one space

Starts up to six goroutines
sharing the locking channel

A worker acquires the lock by sending
it a message. The first worker to hit
this will get the one space, and thus
own the lock. The rest will block.

The space between the
lock <- true and the <-
lock is “locked.”

Releases the lock by reading a value, which
then opens that one space on the buffer
again so that the next function can lock it

82 CHAPTER 3 Concurrency in Go
This pattern is simple: there’s one step to lock and one to unlock. If you run this pro-
gram, the output will look like this:

$ go run lock.go
2 wants the lock
1 wants the lock
2 has the lock
5 wants the lock
6 wants the lock
4 wants the lock
3 wants the lock
2 is releasing the lock
1 has the lock
1 is releasing the lock
5 has the lock
5 is releasing the lock
6 has the lock
6 is releasing the lock
3 has the lock
3 is releasing the lock
4 has the lock
4 is releasing the lock

In this output, you can see how your six goroutines sequentially acquire and release
the lock. Within the first few milliseconds of starting the program, all six goroutines
have tried to get the lock. But only goroutine 2 gets it. A few hundred milliseconds
later, 2 releases the lock and 1 gets it. And the lock trading continues until the last
goroutine (4) acquires and releases the lock. (Note that in this code, you can rely on
the memory manager to clean up the locking channel. After all references to the
channel are gone, it’ll clean up the channel for you.)

 Listing 3.12 illustrates one advantage of using buffered queues: preventing send
operations from blocking while there’s room in the queue. Specifying a queue length
also allows you to specify just how much buffering you want to do. You might be able
to imagine needing a lock that can be claimed by up to two goroutines, and you could
accomplish this with a channel of length 2. Buffered queues are also employed for
constructing message queues and pipelines.

3.4 Summary

This chapter introduced Go’s concurrency system. You first looked at goroutines and
the useful packages that Go provides for synchronizing across goroutines. Then you
looked at Go’s powerful channel system, which allows multiple goroutines to commu-
nicate with each other over typed pipes. You covered several important idioms and
patterns, including the following:

 Go’s CSP-based concurrency model
 Concurrent processing with goroutines
 Using the sync package for waiting and locking

83Summary
 Communicating between goroutines with channels
 Closing channels properly

In the coming chapters, you’ll see goroutines and channels in practice. You’ll see how
Go’s web server starts a new goroutine for each request, and how patterns such as fan-
out work for distributing a workload among multiple channels. If there’s one feature
that makes Go a standout system language, it’s Go’s concurrency model.

 Next, we turn to error handling. Although it’s not a glamorous topic, Go’s method
of handling errors is one of its exceptional features.

Part 2

Well-rounded applications

The second part covers when things don’t go as planned. What happens if
an application panics? How do you have tests that help catch problems before
they occur in production? Chapter 4 focuses on errors and panics—how things
can be handled well when they go wrong. This is especially true when handling
panics and errors on goroutines. Chapter 5 shifts gears into debugging and test-
ing. This includes logging problems so that you can debug when situations arise
in production.

Handling errors
and panics
As Robert Burns famously expressed in his poem “To a Mouse,” “The best-laid
schemes o’ mice an’ men / Gang aft agley.” Our best plans often still go wrong. No
other profession knows this truth as thoroughly as software developers. This chap-
ter focuses on handling those situations when things go awry.

 Go distinguishes between errors and panics—two types of bad things that can
happen during program execution. An error indicates that a particular task couldn’t
be completed successfully. A panic indicates that a severe event occurred, probably
as a result of a programmer error. This chapter presents a thorough look at each
category.

This chapter covers
 Learning the Go idioms for errors

 Providing meaningful data with errors

 Adding your own error types the Go way

 Working with panics

 Transforming panics into errors

 Working with panics on goroutines
87

88 CHAPTER 4 Handling errors and panics
 We start with errors. After briefly revisiting the error-handling idioms for Go, we
dive into best practices. Errors can inform developers about something that has gone
wrong, and if you do it right, they can also assist in recovering and moving on. Go’s
way of working with errors differs from the techniques used in languages such as
Python, Java, and Ruby. But when you correctly use these techniques, you can write
robust code.

 The panic system in Go signals abnormal conditions that may threaten the integ-
rity of a program. Our experience has been that it’s used sporadically, and often reac-
tively, so our focus in this chapter is on making the most of the panic system, especially
when it comes to recovering from a panic. You’ll learn when to use panics, how (and
when) to recover from them, and how Go’s error and panic mechanisms differ from
other languages.

 Although Go is occasionally criticized for having a verbose error system, this chap-
ter illustrates why this system is conducive to building better software. By keeping
errors at the forefront of the developer’s mind, Go fights against our own cognitive
overconfidence bias. We may be disposed to believe that we write bug-free code. But
when we always keep error handling front and center, Go gets us used to the idea that
we have to code defensively, regardless of how good we think we are.

4.1 Error handling

One of Go’s idioms that often trips up newcomers is its error handling. Many popular
languages, including Python, Java, and Ruby, involve a theory of exception handling
that includes throwing and catching special exception objects. Others, like C, often use
the return value for error handling, and manage the mutated data through pointers.

 In lieu of adding exception handlers, the Go creators exploited Go’s ability to
return multiple values. The most commonly used Go technique for issuing errors is to
return the error as the last value in a return, as shown in the following listing.

package main

import (
 "errors"
 "strings"
)

func Concat(parts ...string) (string, error) {
 if len(parts) == 0 {
 return "", errors.New("No strings supplied")
 }

 return strings.Join(parts, " "), nil
}

Listing 4.1 Returning an error

Useful error and
string utilities

Concat returns a string
and an error.

Returns an error if
nothing was passed in

Returns the new
string and nil

89Error handling
The Concat function takes any number of strings, concatenates them together (sepa-
rating the strings with a space character), and then returns the newly joined string.
But if no strings are passed into the function, it returns an error.

The declaration of the Concat function illustrates the typical pattern for returning
errors. In idiomatic Go, the error is always the last return value.

 Because errors are always the last value returned, error handling in Go follows a
specific pattern. A function that returns an error is wrapped in an if/else statement
that checks whether the error value is something other than nil, and handles it if so.
The next listing shows a simple program that takes a list of arguments from the com-
mand line and concatenates them.

func main() {

 args := os.Args[1:]

 if result, err := Concat(args...); err != nil {
 fmt.Printf("Error: %s\n", err)
 } else {
 fmt.Printf("Concatenated string: '%s'\n", result)
 }

}

If you were to run this code, you’d see output like this:

$ go run error_example.go hello world
Concatenated string: 'hello world'

Or, if you didn’t pass any arguments, you’d see the error message:

$ go run error_example.go
Error: No strings supplied

Listing 4.2 shows how to use the Concat function you made already, and it illustrates a
common Go idiom. As you no doubt recall, Go’s if statement has an optional assign-
ment clause before the expression. The intent is to provide a place to get ready for the
evaluation, but stay in the if/else scope. You could read it like this: if GET READY;
EVALUATE SOMETHING.

Listing 4.2 Handling an error

Variable-length arguments
As Concat illustrates, Go supports variable-length argument lists (varargs). By using
the … prefix before a type, you can tell Go that any number of that type of argument
is allowed. Go collapses these into a slice of that type. In listing 4.1, parts will be
treated as a []string.

Uses just the args after Args[0].
You don’t want the program name.

Handles the error

Prints the
result in a non-
error case

90 CHAPTER 4 Handling errors and panics
 Listing 4.2 shows this technique in action. First, you run Concat(args…), which
expands the args array as if you’d called Concat(arg[0], arg[1],…). You assign the
two return values to result and err. Then, still on that line, you check to see if err
isn’t nil. If err is set to something, you know an error occurred, so you print the
error message.

 It’s important to note that when you use this two-part if statement, the assign-
ments stay in scope for any else and else if statements, so result is still in scope
when you go to print it.

 This scoping illustrates why the two-clause if is a nice feature to have. It encour-
ages good memory-management practices while simultaneously preventing that pat-
tern that haunts our debugging nightmares: if a = b.

 In listing 4.1, you saw the Concat function, and in listing 4.2 you’ve seen how it’s
used. But there’s a technique already present in this example that you should look
at explicitly.

TECHNIQUE 16 Minimize the nils

Nils are annoying for several reasons. They’re a frequent cause of bugs in the system,
and we as developers are often forced into a practice of checking values to protect
against nils.

 In some parts of Go, nils are used to indicate something specific. As you saw in the
preceding code, anytime an error return value is nil, you ought to construe that as
meaning, specifically, “There were no errors when this function executed.” But in
many other cases, the meaning of a nil is unclear. And in perhaps the most annoying
cases, nils are treated as placeholders anytime a developer doesn’t feel like returning a
value. That’s where this technique comes in.

PROBLEM
Returning nil results along with errors isn’t always the best practice. It puts more work
on your library’s users, provides little useful information, and makes recovery harder.

SOLUTION
When it makes sense, avail yourself of Go’s powerful multiple returns and send back
not just an error, but also a usable value.

DISCUSSION
This pattern is illustrated in the Concat function you saw previously. Let’s take a sec-
ond look, focusing on the line where an error is returned.

func Concat(parts ...string) (string, error) {
 if len(parts) == 0 {
 return "", errors.New("No strings supplied")
 }

 return strings.Join(parts, " "), nil
}

Listing 4.3 Returning useful data with an error

Returns both an
empty string and
an error

91TECHNIQUE 16 Minimize the nils
When an error occurs, both an empty string and an error message are returned. A
savvy library user can carefully use the preceding code without having to add a lot of
explicit error handling. In our contrived Concat case, returning an empty string
makes sense. If you have no data to concatenate, but the return value’s contract says
you’ll return a string, an empty string is the kind of thing that one would expect.

TIP When you’re creating errors, Go has two useful assistive functions. The
errors.New function from the errors package is great for creating simple new
errors. The fmt.Errorf function in the fmt package gives you the option of
using a formatting string on the error message. Go developers use these two
functions frequently.

By constructing Concat this way, you’ve done your library users a favor. The savvy
library user who doesn’t particularly care about the error case can now streamline the
code, as shown in the next listing.

func main() {
 args := os.Args[1:]
 result, _ := Concat(args...)
 fmt.Printf("Concatenated string: '%s'\n", result)

}

Just as before, you take the command-line arguments and pass them to Concat. But
when you call Concat, you don’t wrap it in an if statement to handle the error.
Because Concat is authored in such a way that it returns a usable value even when an
error occurs, and because the presence or absence of the error doesn’t impact the
task at hand, you can avoid having to do an extra error check. Instead of wrapping the
code in an if/else block, you ignore the error and work with result as a string.

 When your context requires you to detect that an error occurred and respond
accordingly, this pattern still facilitates that. You can still capture the error value and
figure out what went wrong and why, so the pattern of returning both an error
and a usable value makes it easier for your library users to write code that best fits
their use case.

 It’s not always desirable, or even possible, to return non-nil values with every error.
If no useful data can be constructed under a failure condition, returning nil may be
preferable. The rule of thumb is that if a function can return a useful result when it
errs, then it should return one. But if it has nothing useful to return, it should send
back nil.

 Finally, it’s important for you to make your code’s behavior easily understood by
other developers. Go rightly emphasizes writing concise but useful comments atop
every shared function. Documenting how your Concat function behaves should look
something like the following listing.

Listing 4.4 Relying on good error handling

Passes the values of batch

92 CHAPTER 4 Handling errors and panics

// Concat concatenates a bunch of strings, separated by spaces.
// It returns an empty string and an error if no strings were passed in.
func Concat(parts ...string) (string, error) {
 //…
}

This brief comment follows the Go convention for commenting and makes it clear what
happens under normal operation as well as what happens under an error condition.

 If you’re coming from a background that involves languages like Java or Python,
the error system may at first seem primitive. There are no special try/catch blocks.
Instead, convention suggests using if/else statements. Most errors that are returned
are often of type error. Developers new to Go sometimes express concern that error
handling seems clunky.

 Such concerns vanish as developers get used to the Go way of doing things. Go’s
favoring of convention over language syntax pays off, as code is simpler to read and
write. But we’ve noticed a surprising pattern with Go: whereas languages such as Java
and Python favor developing specific error or exception types, Go developers rarely
create specific error types.

 This is no doubt related to the fact that many Go core libraries use the error type
as is. As Go developers see it, most errors have no special attributes that would be bet-
ter conveyed by a specific error type. Consequently, returning a generic error is the
simplest way to handle things. Take, for example, the Concat function. Creating a
ConcatError type for that function has no compelling benefit. Instead, you use the
built-in errors package to construct a new error.

 This simple error handling is often the best practice. But sometimes it can be use-
ful to create and use specific error types.

TECHNIQUE 17 Custom error types

Go’s error type is an interface that looks like the following listing.

type error interface {
 Error() string
}

Anything that has an Error function returning a string satisfies this interface’s con-
tract. Most of the time, Go developers are satisfied working with errors as the error
type. But in some cases, you may want your errors to contain more information than a
simple string. In such cases, you may choose to create a custom error type.

PROBLEM
Your function returns an error. Important details regarding this error might lead users
of this function to code differently, depending on these details.

Listing 4.5 Documenting returns under error conditions

Listing 4.6 The error interface

93TECHNIQUE 18 Error variables
SOLUTION
Create a type that implements the error interface but provides additional functionality.

DISCUSSION
Imagine you’re writing a file parser. When the parser encounters a syntax error, it gen-
erates an error. Along with having an error message, it’s generally useful to have infor-
mation about where in the file the error occurred. You could build such an error as
shown in the following listing.

type ParseError struct {
 Message string
 Line, Char int
}

func (p *ParseError) Error() string {
 format := "%s o1n Line %d, Char %d"
 return fmt.Sprintf(format, p.Message, p.Line, p.Char)
}

This new ParseError struct has three properties: Message, Line, and Char. You imple-
ment the Error function by formatting all three of those pieces of information into
one string. But imagine that you want to return to the source of the parse error and
display that entire line, perhaps with the trouble-causing character highlighted. The
ParseError struct makes that easy to do.

 This technique is great when you need to return additional information. But what
if you need one function to return different kinds of errors?

TECHNIQUE 18 Error variables

Sometimes you have a function that performs a complex task and may break in a cou-
ple of different, but meaningful, ways. The previous technique showed one way of
implementing the error interface, but that method may be a little heavy-handed if
each error doesn’t also need additional information. Let’s look at another idiomatic
use of Go errors.

PROBLEM
One complex function may encounter more than one kind of error. And it’s useful to
users to indicate which kind of error was returned so that the ensuing applications can
appropriately handle each error case. But although distinct error conditions may
occur, none of them needs extra information (as in technique 17).

SOLUTION
One convention that’s considered good practice in Go (although not in certain other
languages) is to create package-scoped error variables that can be returned whenever
a certain error occurs. The best example of this in the Go standard library comes in
the io package, which contains errors such as io.EOF and io.ErrNoProgress.

Listing 4.7 Parse error

The error message without
location information

The location information

Implements the
Error interface

94 CHAPTER 4 Handling errors and panics

A rand
num

genera
with a fi

sou
DISCUSSION
Before diving into the details of using error variables, let’s consider the problem and
one obvious, but not particularly good, solution.

 The problem you’d like to solve is being able to tell the difference between two
errors. Let’s build a small program in the next listing that simulates sending a simple
message to a receiver.

package main

import (
 "errors"
 "fmt"
 "math/rand"
)

var ErrTimeout = errors.New("The request timed out")
var ErrRejected = errors.New("The request was rejected")

var random = rand.New(rand.NewSource(35))

func main() {
 response, err := SendRequest("Hello")
 for err == ErrTimeout {
 fmt.Println("Timeout. Retrying.")
 response, err = SendRequest("Hello")
 }
 if err != nil {
 fmt.Println(err)
 } else {
 fmt.Println(response)
 }
}

func SendRequest(req string) (string, error) {

 switch random.Int() % 3 {
 case 0:
 return "Success", nil
 case 1:
 return "", ErrRejected
 default:
 return "", ErrTimeout
 }
}

This listing exemplifies using variables as fixed errors. The code is designed to simu-
late the basics of a sending function. But instead of sending anything anywhere, the
SendRequest function randomly generates a response. The response could be a suc-
cess or it could be one of our two errors, ErrTimeout or ErrRejected.

Listing 4.8 Handling two different errors

The time-out error
instance

The rejection
error instance

om
ber
tor
xed
rce

Calls the stubbed-out
SendRequest function

Handles the time-out
condition with retries

Handles any other error as a failure

If there’s no error, prints the result

Defines a function that
superficially behaves like
a message sender

Instead of sending a
message, randomly
generates behavior

Handles the
time-out

condition
with retries

Instead of sending a message,
randomly generates behavior

95The panic system

Running the preceding program results in the following output:

$ go run two_errors.go
Timeout. Retrying.
The request was rejected

The first request to SendRequest returns a time-out, and the second call returns a
rejection. If the second call had instead returned a time-out too, the program would
have continued running until a call to SendRequest returned either a success or a
rejection. It’s common to see patterns like this in network servers.

 Software developers working in a language such as Java or Python would be likely
to implement ErrTimeout and ErrRejected as classes, and then throw new instances
of each class. The try/catch pattern used by many languages is built for dealing with
error information encapsulated in error types. But as you’ve seen previously, Go
doesn’t provide a try/catch block. You could use type matching (especially with a
type switch statement) to provide the same functionality. But that’s not the Go way.
Instead, idiomatic Go uses a method that’s both more efficient and simpler: create
errors as package-scoped variables and reference those variables.

 You can see in the preceding code that handling error variables is as simple as
checking for equality. If the error is a time-out, you can retry sending the message
repeatedly. But when the error is a rejection, you stop processing. And as before,
returning a nil indicates that neither error occurs, and you handle that case accord-
ingly. With a pattern like this, the same error variables are used repeatedly. This is effi-
cient because errors are instantiated only once. It’s also conceptually simple. As long
as your error doesn’t have special properties (as you saw in technique 16), you can cre-
ate variables and then work with them as such.

 There’s one more facet of error handling that you should look at, and that’s the
Go panic.

4.2 The panic system

In addition to the preceding error handling, Go provides a second way of indicating
that something is wrong: the panic system. As the name indicates, a panic tells you
that something has gone seriously awry. It should be used sparingly and intelligently.
In this section, we explain how and when panics should be used and along the way tell
you about some of our own failures.

Not so random
One interesting detail of listing 4.7 is found in the randomizer. Because you initialize
the randomizer to a fixed value, it’ll always return the same sequence of “random”
numbers. This is great for us because you can illustrate a known sequence. But in
production applications, you shouldn’t use fixed integers to seed a source. One sim-
ple alternative is to use time.Now as a seed source.

96 CHAPTER 4 Handling errors and panics
4.2.1 Differentiating panics from errors

The first thing to understand about panics is how they differ conceptually from errors.
An error indicates that an event occurred that might violate expectations about what
should have happened. A panic, in contrast, indicates that something has gone wrong
in such a way that the system (or the immediate subsystem) can’t continue to function.

 Go assumes that errors will be handled by you, the programmer. If an error occurs
and you ignore it, Go doesn’t do anything on your behalf. Not so with panics. When a
panic occurs, Go unwinds the stack, looking for handlers for that panic. If no handler
is found, Go eventually unwinds all the way to the top of the function stack and stops
the program. An unhandled panic will kill your application.

 Let’s look at an example that illustrates this difference in the following listing.

package main

import (
 "errors"
 "fmt"
)

var ErrDivideByZero = errors.New("Can't divide by zero")

func main() {
 fmt.Println("Divide 1 by 0")
 _, err := precheckDivide(1, 0)
 if err != nil {
 fmt.Printf("Error: %s\n", err)
 }

 fmt.Println("Divide 2 by 0")
 divide(2, 0)
}

func precheckDivide(a, b int) (int, error) {
 if b == 0 {
 return 0, ErrDivideByZero
 }
 return divide(a, b), nil
}

func divide(a, b int) int {
 return a / b
}

Here, you define two functions. The divide function performs a division operation.
But it doesn’t handle that one well-known case of dividing by 0. In contrast, the
precheckDivide function explicitly checks the divisor and returns an error if the divi-
sor is 0. You’re interested in seeing how Go behaves under these two conditions, so in
main you test first with the precheckDivide function and then again with the plain old
divide function.

Listing 4.9 Error and panic

First you divide using the
precheckDivide function,
which returns an error.

Then you run a similar division,
but with the divide function.

The precheckDivide
function returns an error
if the divisor is 0.

The regular divide function
wraps the division operator
with no checks.

97TECHNIQUE 19 Issuing panics
 Running this program provides this output:

go run zero_divider.go
Divide 1 by 0
Error: Can't divide by zero
Divide 2 by 0
panic: runtime error: integer divide by zero
[signal 0x8 code=0x7 addr=0x22d8 pc=0x22d8]

goroutine 1 [running]:
main.main()
 /Users/mbutcher/Code/go-in-practice/chapter4/zero_divider.go:18 +0x2d8

The first division using precheckDivide returns an error, and the second division
causes a panic because you never checked the divisor. Conceptually speaking, the rea-
sons for this are important:

 When you checked the value before dividing, you never introduced the situa-
tion where the program was asked to do something it couldn’t.

 When you divided, you caused the system to encounter a state that it couldn't
handle. This is when a panic should occur.

Practically speaking, errors are something that we as developers ought to expect to go
wrong. After all, they’re documented in the code. You can glance at the definition of
precheckDivide and see an error condition that you need to handle when you call
the function. Although an error might represent something outside the norm, we
can’t really say that they’re unexpected.

 Panics, on the other hand, are unexpected. They occur when a constraint or limi-
tation is unpredictably surpassed. When it comes to declaring a panic in your code,
the general rule of thumb is don’t panic unless there’s no clear way to handle the con-
dition within the present context. When possible, return errors instead.

4.2.2 Working with panics

Go developers have expectations about how to correctly panic, though those expectations
aren’t always clearly laid out. Before diving into the proper handling of panics, you’ll look
at a technique that all Go developers should know when it comes to issuing panics.

TECHNIQUE 19 Issuing panics

The definition of Go’s panic function can be expressed like this: panic(interface{}).
When you call panic, you can give it almost anything as an argument. You can, should
you so desire, call panic(nil), as shown in the following listing.

package main

func main() {
 panic(nil)
}

Listing 4.10 Panic with nil

Panic about nothing!

98 CHAPTER 4 Handling errors and panics
When you run this program, Go captures your panic just fine:

$ go run proper_panic.go
panic: nil

goroutine 1 [running]:
main.main()
 /Users/mbutcher/Code/go-in-practice/chapter4/proper_panic.go:4 +0x32

This error isn’t particularly useful. You could instead panic with a string:
panic("Oops, I did it again."). Now when you run the code, you’d get this:

$ go run proper_panic.go
panic: Oops, I did it again.

goroutine 1 [running]:
main.main()
 /Users/mbutcher/Code/go-in-practice/chapter4/proper_panic.go:4 +0x64

This seems better. At least you have some helpful information. But is this the right
thing to do?

PROBLEM
When you raise a panic, what should you pass into the function? Are there ways of
panicking that are useful or idiomatic?

SOLUTION
The best thing to pass to a panic is an error. Use the error type to make it easy for the
recovery function (if there is one).

DISCUSSION
With a signature that accepts interface{}, it’s not obvious what you’re supposed to
pass into a panic. You could give it the object that caused the panic. As you’ve seen,
you could give it a string, or a nil, or an error.

 The best thing to pass a panic (under normal circumstances, at least) is something
that fulfills the error interface. There are two good reasons for this. The first is that it’s
intuitive. What sort of thing would cause a panic? An error. It’s reasonable to assume
that developers will expect this. The second reason is that it eases handling of a panic.
In a moment, you’ll look at recovering from panics. There you’ll see how to take a
panic, handle the dire part, and then use the panic’s content as a plain old error.

 Given this, the next listing shows the idiomatic way to issue a panic.

package main

import "errors"

func main() {
 panic(errors.New("Something bad happened."))
}

Listing 4.11 A proper panic

Calls panic and passes
it an error

99TECHNIQUE 19 Issuing panics
With this method, it’s still easy to print the panic message with print formatters:
fmt.Printf("Error: %s", thePanic). And it’s just as easy to send the panic back
through the error system. That’s why it’s idiomatic to pass an error to a panic.

We’ve never seen particularly credible ways of using panics beyond the technique
we’ve described here. But our lack of creativity doesn’t mean that there might not be a
useful but non-idiomatic way of creatively passing non-error types to a panic.

 Now that you have a firm understanding of how to raise panics, you can turn to the
other half of the issue: recovery.

4.2.3 Recovering from panics

Any discussion of panics would be incomplete without a discussion of recovering from
panics. Panic recovery in Go depends on a feature of the language called deferred func-
tions. Go has the ability to guarantee the execution of a function at the moment its
parent function returns. This happens regardless of whether the reason for the parent
function’s return is a return statement, the end of the function block, or a panic. An
example in the next listing helps explain this.

package main

import "fmt"

func main() {
 defer goodbye()

 fmt.Println("Hello world.")
}

func goodbye() {
 fmt.Println("Goodbye")
}

Without the defer statement, this program would print Goodbye followed by Hello
world. But defer modifies the order of execution. It defers executing goodbye until
the rest of main has executed. Right as the main function completes, the deferred
goodbye function is run. The output of the program is this:

$ go run simple_defer.go
Hello world.
Goodbye

Listing 4.12 Simple defer

Thinking outside the panic box
Although we’ve just claimed that the best thing to send a panic is an error, there’s a
reason that panics don’t require error types: the panic system is defined to be flexi-
ble. In some ways, this is analogous to the way that Java allows Throwables that
aren’t necessarily exceptions. A Go panic is one way to unwind the stack.

Defers execution of goodbye

Prints a line. This happens before goodbye.

100 CHAPTER 4 Handling errors and panics
The defer statement is a great way to close files or sockets when you’re finished, free
up resources such as database handles, or handle panics. Technique 19 showed the
appropriate strategy for emitting a panic. Now you can take what you know about
defer and concentrate for a moment on recovering from panics.

TECHNIQUE 20 Recovering from panics

Capturing a panic in a deferred function is standard practice in Go. We cover it here
for two reasons. First, this discussion is a building block to another technique. Second,
it provides the opportunity to take a step from the pattern into the mechanics so you
can see what’s happening instead of viewing panics as a formula to be followed.

PROBLEM
A function your application calls is panicking, and as a result your program is crashing.

SOLUTION
Use a deferred function and call recover to find out what happened and handle the
panic.

 The left side of figure 4.1 illustrates how an unhandled panic will crash your pro-
gram. The right side illustrates how the recover function can stop the function stack
from unwinding and allow the program to continue running.

DISCUSSION
Go provides a way of capturing information from a panic and, in so doing, stopping
the panic from unwinding the function stack further. The recover function retrieves
the data.

 Let’s take a look at a small example in the next listing that shows both emitting and
handling a panic.

func a() func a()

func b()

func c()
panic()

func c()
panic()

func b() with recover

Unhandled panic Panic with deferred recovery

Figure 4.1 Recovering
from a panic

101TECHNIQUE 20 Recovering from panics

package main

import (
 "errors"
 "fmt"
)

func main() {
 defer func() {
 if err := recover(); err != nil {
 fmt.Printf("Trapped panic: %s (%T)\n", err, err)
 }
 }()

 yikes()
}

func yikes() {
 panic(errors.New("Something bad happened."))
}

This program illustrates what’s probably the most common pattern for panic recovery.
To catch the panic that yikes raises, you write a deferred closure function that checks
for a panic and recovers if it finds one.

 In Go, when you defer a closure, you’re defining a function and then marking it to
be called (in this case, with an empty argument list). The general form is defer
func(){ /* body */ }(). Note that although it looks like it’s defined and called at
once, Go’s runtime won’t call the function until it’s appropriate for a deferred func-
tion to execute. In a moment, you’ll see how the separation between defining the clo-
sure and then executing it later impacts the scope of the closure in a useful way.

 The recover function in Go returns a value (interface{}) if a panic has been
raised, but in all other cases it returns nil. The value returned is whatever value was
passed into the panic. Running the preceding code returns this:

$ go run recover_panic.go
Trapped panic: Something bad happened. (*errors.errorString)

Notice that because you add the %T to the formatting string, you also get information
about the type of err, which is the error type created by errors.New.

 Now you can take things one step further and look at how to use this clo-
sure/recover combination to recover from a panic. Closures inherit the scope of their
parent. Deferred closures, like the preceding one, inherit whatever is in scope before
they’re declared. For instance, the following listing works fine.

Listing 4.13 Recovering from a panic

Provides a deferred closure to
handle panic recovery

Calls a function that panics

Emits a panic with an
error for a body

102 CHAPTER 4 Handling errors and panics

package main

import "fmt"

func main() {
 var msg string
 defer func() {
 fmt.Println(msg)
 }()
msg = "Hello world"

}

Because msg is defined before the closure, the closure may reference it. And as
expected, the value of the message will reflect whatever the state of msg is when the
deferred function executes. The preceding code prints Hello world.

 But even though defer is executed after the rest of the function, a closure doesn’t
have access to variables that are declared after the closure is declared. The closure is
evaluated in order, but not executed until the function returns. For that reason, the
following listing causes a compile error.

package main

import "fmt"

func main() {
 defer func() {
 fmt.Println(msg)
 }()
 msg := "Hello world"
}

Because msg isn’t declared prior to the deferred function, when the code is evaluated,
msg is undefined.

 Bringing together the details, you can take one final step in this technique. Let’s
look at a slightly more sophisticated use of a deferred function. This one handles a
panic and cleans up before returning, and is a good representative sample of how to
use deferred functions and recover in practice.

 Imagine that you’re writing a piece of code that preprocesses a CSV file, removing
empty lines from the beginning. For the sake of boiling this code down to an example,
RemoveEmptyLines isn’t fully implemented. Instead, it always returns a panic. With
this bad behavior, we can illustrate how to recover from a panic, close the problematic
file, and then return an error, as shown in the following listing.

Listing 4.14 Scope for deferred closures

Listing 4.15 msg out of scope

Defines the variable
outside the closure

Prints the variable in the
deferred closure

Sets the value of the variable

Prints a variable

Declares and sets the variable. Compiles will fail
because the declaration is after the function.

103TECHNIQUE 20 Recovering from panics

Nor
yo

wi
file

package main

import (
 "errors"
 "fmt"
 "io"
 "os"
)

func main() {
 var file io.ReadCloser
file, err := OpenCSV("data.csv")
 if err != nil {
 fmt.Printf("Error: %s", err)
 return
 }
 defer file.Close()

 // Do something with file.

}

func OpenCSV(filename string) (file *os.File, err error) {
 defer func() {
 if r := recover(); r != nil {
 file.Close()
 err = r.(error)
 }
 }()

 file, err = os.Open(filename)
 if err != nil {
 fmt.Printf("Failed to open file\n")
 return file, err
 }

 RemoveEmptyLines(file)

 return file, err
}

func RemoveEmptyLines(f *os.File) {
 panic(errors.New("Failed parse"))
}

Again, the problem in the preceding code is that your RemoveEmptyLines function
always panics. If you were to implement this function, it would check to see whether
the leading lines of the file were empty, and if they were, it would advance the reader
past those lines.

 Listing 4.16 uses deferred functions in two places. In the main function, you use a
deferred function to ensure that your file is closed. This is considered good practice
when you’re working with files, network connections, database handles, and other
resources that need to be closed to prevent side effects or leaks. The second deferred

Listing 4.16 Cleanup

Runs OpenCSV and handles any
errors. This implementation
always returns an error.

Uses a deferred
function to ensure
that a file gets closed

mally,
u’d do
more

th the
 here.

OpenCSV opens and
preprocesses your
file. Note the named
return values.

The main deferred error
handling happens here.

Opens the data file and
handles any errors (such
as file not found)

Runs our intentionally broken
RemoveEmptyLines function

Instead of stripping empty
lines, you always fail here.

104 CHAPTER 4 Handling errors and panics
function appears inside the OpenCSV function. This deferred function is designed to
do three things:

 Trap any panics.
 Make sure that if a panic occurs, the file is closed. This is considered good prac-

tice even though in this context it may be redundant.
 Get the error from the panic and pass it back by using the regular error-

handling mechanism.

One detail of the declaration of OpenCSV is worth mentioning: we label the return val-
ues in the function declaration. That makes it possible to refer to the file and err
variables inside the closure, and ensures that when err is set to the panic’s error, the
correct value is returned.

 As we’ve shown, defer is a powerful and useful way of dealing with panics, as well
as reliably cleaning up. As we close out this technique, here are a few useful guidelines
for working with deferred functions:

 Put deferred functions as close to the top of a function declaration as possible.
 Simple declarations such as foo := 1 are often placed before deferred functions.
 More-complex variables are declared before deferred functions (var myFile

io.Reader), but not initialized until after.
 Although it’s possible to declare multiple deferred functions inside a function,

this practice is generally frowned upon.
 Best practices suggest closing files, network connections, and other similar

resources inside a defer clause. This ensures that even when errors or panics
occur, system resources will be freed.

In the next technique, you’ll take one more step in handling panics and learn how to
reliably prevent panics on goroutines from halting a program.

4.2.4 Panics and goroutines

So far, we haven’t talked much about one of Go’s most powerful features: goroutines.
You start goroutines by using the go keyword; if you have a function called run, you
can start it as a goroutine like this: go run. To quote the Go Programming Language
Specification, the go statement “starts the execution of a function call as an indepen-
dent concurrent thread of control, or goroutine, within the same address space”
(http://golang.org/ref/spec#Go_statements). More simply, you can think of it as run-
ning a function on its own thread, but without having access to that thread.

Goroutines beneath the hood
The implementation of goroutines is a little more sophisticated than just running a
function on its own thread. The Go Concurrency Wiki page (https://github
.com/golang/go/wiki/LearnConcurrency) provides a big list of articles that dive into
various aspects of Go’s CSP-based concurrency model.

http://golang.org/ref/spec#Go_statements
https://github.com/golang/go/wiki/LearnConcurrency
https://github.com/golang/go/wiki/LearnConcurrency

105TECHNIQUE 21 Trapping panics on goroutines
To illustrate this idea, imagine that you have a simple server. The server functions as
follows:

 The main function runs start to start a new server.
 The start function processes configuration data and then runs the listen

function.
 The listen function opens a network port and listens for new requests. When

it gets a request, instead of handling the request itself, it calls go handle, pass-
ing on any necessary information to the handle function.

 The handle function processes the request and then calls response.
 The response function sends data back to the client and terminates the

connection.

The listener function uses goroutines to handle multiple client connections at once.
As it receives requests, it can push the workload onto a number of handle functions,
each running in its own space. Variations of this powerful pattern are used frequently
in Go server applications. Figure 4.2 illustrates this application and its function stacks
when you use goroutines.

Each row represents a function stack, and each call to go starts a new function stack.
Each time listen receives a new request, a new function stack is created for the ensu-
ing handle instance. And whenever handle finishes (for example, when response
returns), that spawned goroutine is cleaned up.

 Goroutines are powerful and elegant. Because they’re both simple to write and
cheap to use (they incur little overhead on your program), Go developers use them
frequently. But in one specific (and unfortunately common) situation, the combina-
tion of goroutines and panics can result in a program crash.

TECHNIQUE 21 Trapping panics on goroutines

When handling a panic, the Go runtime unwinds the function stack until a recover
occurs. But if it gets to the top of a function stack and recover is never called, the pro-
gram dies. Recall figure 4.2, which showed how a goroutine gets its own function call
stack. What happens when a panic occurs on that goroutine? Take a look at figure 4.3.
Imagine that during a request, the response function encounters an unforeseen fatal
error and panics. As a good server developer, you’ve added all kinds of error-handling
logic to listen. But if you haven’t added anything to handle, the program will crash.
Why? Because when a panic is unhandled at the top of a function stack, it causes Go to

main() start() listen()

handle() response()

go handle()

Figure 4.2 A simple server

106 CHAPTER 4 Handling errors and panics
terminate in an error state. A panic on a goroutine can’t jump to the call stack of the
function that initiated the goroutine. There’s no path for a panic to go from handle
to listen in this example. This is the problem our current technique focuses on.

PROBLEM
If a panic on a goroutine goes unhandled on that goroutine’s call stack, it crashes
the entire program. Sometimes this is acceptable, but often the desired behavior is
recovery.

SOLUTION
Simply stated, handle panics on any goroutine that might panic. Our solution will
make it easier to design servers that handle panics without relying on panic handling
in every single handle function.

DISCUSSION
The interesting thing about this particular problem is that although it’s trivially easy to
solve, the solution is repetitive, and often the burden of implementing it is pushed to
developers outside your control. First, you’ll look at a basic implementation of the
code outlined previously in figure 4.3. From there, you’ll explore the trivial solution
and will discover how Go’s idioms make this solution troublesome. Then you’ll see a
pattern for solving it more conveniently.

 The next listing shows a basic implementation of the kind of server illustrated in
figure 4.3. It functions as a basic echo server. When you run it, you can connect to it
on port 1026 and send a plain line of text. The remote server will echo that text back
to you.

package main

import (
 "bufio"
 "fmt"
 "net"
)

func main() {
 listen()
}

func listen() {

Listing 4.17 An echo server

main() start() listen()

handle() response()

go handle()

panic()

CrashFigure 4.3 Crash on
a goroutine

107TECHNIQUE 21 Trapping panics on goroutines

,
 listener, err := net.Listen("tcp", ":1026")
 if err != nil {
 fmt.Println("Failed to open port on 1026")
 return
 }
 for {
 conn, err := listener.Accept()
 if err != nil {
 fmt.Println("Error accepting connection")
 continue
 }

 go handle(conn)
 }
}

func handle(conn net.Conn) {
 reader := bufio.NewReader(conn)

 data, err := reader.ReadBytes('\n')
 if err != nil {
 fmt.Println("Failed to read from socket.")
 conn.Close()
 }

 response(data, conn)
}

func response(data []byte, conn net.Conn) {
 defer func() {
 conn.Close()
 }()
 conn.Write(data)
}

If you ran this code, it would start a server. You could then interact with the server like
this:

$ telnet localhost 1026
Trying ::1...
Connected to localhost.
Escape character is '^]'.
test
test
Connection closed by foreign host.

When you type test (indicated in bold in the preceding code), the server echoes
back that same text and then closes the connection.

 This simple server works by listening for new client connections on port 1026.
Each time a new connection comes in, the server starts a new goroutine that runs the
handle function. Because each request is handled on a separate goroutine, this server
can effectively handle numerous concurrent connections.

Starts a new server
listening on port 1026

Listens for
new client
connections
and handles
any connection
errors

When a connection is accepted,
passes it to the handle function

Tries to read a line of data
from the connection

If you fail to read a line
prints an error and
closes the connection

Once you get a line of text,
passes it to response

Writes the data back out to the
socket, echoing it to the client;
then closes the connection.

108 CHAPTER 4 Handling errors and panics
 The handle function reads a line of text (raw bytes) and then passes that line and
the connection to the response function. The response function echoes the text back
to the client and then closes the connection.

 This isn’t exactly an ideal server, but it illustrates the basics. It also shows some pit-
falls. Imagine that response could panic. Say you replace the preceding code with the
following listing to simulate that situation.

func response(data []byte, conn net.Conn) {
 panic(errors.New("Failure in response!"))
}

It might immediately stand out to you that even though the connection is never closed
in this situation, things are more worrisome: this panic will crash the server. Servers
shouldn’t be so fragile that they crash when one particular request fails. Adding recov-
ery handling to the listen function seems like a natural move. But that won’t help
because the goroutine is operating on a separate function stack.

 From here, let’s refactor our first pass at a server and make it tolerant. This time
you’ll add the panic handling in the handle function. The following listing presents
only the handle and response functions; the rest of the code is the same as in list-
ing 4.17.

func handle(conn net.Conn) {
 defer func() {
 if err := recover(); err != nil {
 fmt.Printf("Fatal error: %s", err)
 }
 conn.Close()
 }()
 reader := bufio.NewReader(conn)

 data, err := reader.ReadBytes('\n')
 if err != nil {
 fmt.Println("Failed to read from socket.")
 }

 response(data, conn)
}

func response(data []byte, conn net.Conn) {
 conn.Write(data)
 panic(errors.New("Pretend I'm a real error"))
}

Your new handle function now includes a deferred function that uses recover to see
whether a panic has occurred. This stops the panic from propagating up the stack.
Notice that you’ve also slightly improved the connection management: you use defer
to ensure that in all cases, no matter what happens, the connection is closed when

Listing 4.18 Panic in the response

Listing 4.19 Handle panics on a goroutine

Instead of doing something
useful, simulates a panic

The deferred function
handles the panic and
makes sure that in all
cases the connection is
closed.

Again, you issue a
panic to simulate
a failure.

109TECHNIQUE 21 Trapping panics on goroutines
handle is done. With this new revision, the server no longer crashes when response
panics.

 So far, so good. But you can take this example another step with the Go handler
server idiom. It’s common in Go to create a server library that provides a flexible
method of handling responses. The "net/http".Server library is a fantastic example
of this. As shown earlier in the book, creating an HTTP server in Go is as simple as giving
the HTTP system a handler function and starting a server (see the following listing).

package main

import (
 "errors"
 "net/http"
)

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

All of the logic for starting and managing a server is within the net/http package. But
the package leaves it up to you, the developer, to tell it how to handle a request. In the
preceding code, you have an opportunity to pass in a handler function. This is any
function that satisfies the following type:

type HandlerFunc func(ResponseWriter, *Request)

Upon receiving a request, the server does much the same as what you did in the earlier
echo server architecture: it starts a goroutine and executes the handler function on
that thread. What do you suppose would happen if you wrote a handler that panics?

func handler(res http.ResponseWriter, req *http.Request) {
 panic(errors.New("Fake panic!"))
}

If you run the server with that code, you’ll find that the server dumps the panic infor-
mation to the console, but the server keeps running:

2015/04/08 07:57:31 http: panic serving [::1]:51178: Fake panic!
goroutine 5 [running]:
net/http.func·011()
 /usr/local/Cellar/go/1.4.1/libexec/src/net/http/server.go:1130 +0xbb
main.handler(0x494fd0, 0xc208044000, 0xc208032410)
 /Users/mbutcher/Code/go-in-practice/chapter4/http_server.go:13 +0xdd
net/http.HandlerFunc.ServeHTTP(0x3191e0, 0x494fd0, 0xc208044000,

0xc208032410)
…

Listing 4.20 A small HTTP server

Listing 4.21 A panicky handler

Gives the HTTP system
a handler function

Starts up a server

110 CHAPTER 4 Handling errors and panics
But your handler function didn’t do anything to handle the panic! That safety net is
provided by the library. With this in mind, if you were to take the echo service and
turn it into a well-behaving library, you’d slightly modify your architecture so that pan-
ics were handled inside the library.

 When we began working with Go in earnest, we wrote a trivial little library (now
part of github.com/Masterminds/cookoo) to protect us from accidentally unhandled
panics on goroutines. The following listing shows a simplified version of that library.

package safely

import (
 "log"
)

type GoDoer func()

func Go(todo GoDoer) {
 go func() {
 defer func() {
 if err := recover(); err != nil {
 log.Printf("Panic in safely.Go: %s", err)
 }
 }()
 todo()
 }()
}

This simple library provides panic handling, so you don’t have to remember to do it
on your own. The next listing shows an example of safely.Go in action.

package main

import (
 "github.com/Masterminds/cookoo/safely"
 "errors"
 "time"
)

func message() {
 println("Inside goroutine")
 panic(errors.New("Oops!"))
}

func main() {
 safely.Go(message)
 println("Outside goroutine")
 time.Sleep(1000)
}

Listing 4.22 safely.Go

Listing 4.23 Using safely.Go to trap panics

GoDoer is a simple
parameterless
function. safely.Go runs a function

as a goroutine and
handles any panics.

First you run an anonymous function.

The anonymous function handles
panics, following the usual pattern

of deferring a recovery.
The function then calls the
GoDoer that was passed in.

Imports the
safely package

Defines a callback that
matches the GoDoer type

Instead of go message,
you use this.

Make sure the goroutine has a chance
to execute before the program exits.

111Summary
In this example, you define a simple function that satisfies the GoDoer type (it has no
parameters and no return value). Then when you call safely.Go(message), it exe-
cutes your message function in a new goroutine, but with the added benefit of trap-
ping any panics. Because message does panic, running this program provides the
following output:

$ go run safely_example.go
Outside goroutine
Inside goroutine
2015/04/08 08:28:00 Panic in safely.Go: Oops!

Instead of the panic stopping the program execution, safely.Go traps and logs the
panic message.

This particular library might not suit your exact needs, but it illustrates a good prac-
tice: construct libraries so that a panic on a goroutine doesn’t have the surprising or
unintended result of halting your program.

 Go’s provision of both an error-handling system and a runtime panic system is ele-
gant. But as you’ve seen in this section, panics tend to arise in surprising situations. If
you forget to plan for them, you can find yourself mired in difficult debugging situa-
tions. That’s why we’ve spent so much time discussing remedial techniques here—and
why we suggest preventative no-brainer techniques like safely.Go instead of relying
on developers to remember to do the right thing.

4.3 Summary

Let’s be honest: there’s nothing glamorous about error handling. But we firmly
believe that one of the traits that distinguishes a good programmer from a great pro-
grammer is the way the developer writes error-handling code. Great programmers are
mindful of protecting the system against bugs and failures.

 That’s why we spent an entire chapter covering the details of the error and panic
systems in Go, and providing techniques for handling common situations. We showed
you best practices for providing meaningful data with errors and how such techniques
extend to issuing panics. And we wrapped up with a long look at panics and gorou-
tines. We covered these topics:

 Understanding Go’s patterns for error handling
 Using error variables

Closures help here
Instead of using a named function such as message, you could use a closure. A clo-
sure allows you to access variables that are in scope, and can be used to sidestep
the fact that GoDoer doesn’t accept any parameters. But if you do this, beware of
race conditions and other concurrency issues!

112 CHAPTER 4 Handling errors and panics
 Adding custom error types
 Properly using and handling panics
 Using error handling on goroutines

As you move into the next chapters, you’ll visit other code-quality topics such as log-
ging and writing tests. Taken together, we believe that these tools equip you to be a
highly successful (dare we say, great) Go developer.

Debugging and testing
One of the advantages of working with a modern language is tooling. Over the
years, developers have created fantastic tools that streamline the development pro-
cess. Go is designed as a language for system developers, and it’s loaded with tools
designed to make your job easier. This chapter focuses on those tools and strategies
for building resilient software. We talk about logging, debugging, and different
sorts of testing.

 In the preceding chapter, we talked about errors and panics. It seems fitting
that we begin this chapter with techniques for finding the sorts of bugs that lead to
unexpected errors and panics. We’ll begin with debugging.

This chapter covers
 Capturing debugging information

 Using a logger to log error and debugging information

 Working with stack traces

 Writing unit tests

 Creating acceptance tests

 Detecting race conditions

 Running performance tests
113

114 CHAPTER 5 Debugging and testing
5.1 Locating bugs

Sometimes you see a bug and know immediately what caused it. More often, you need
to spend a short amount of time in the code hunting for the problem. And every once
in a while, you hit those frustrating beasts that take hours or even days to track down.

 That third category of bug usually warrants the use of special tools or tactics to
track down the issue. This section covers some of those tools and tactics.

5.1.1 Wait, where is my debugger?

The go-to debugging tool of choice for many software developers is (surprise!) the
debugger. This magnificent tool executes your code and walks you through each step of
the way at whatever pace you desire.

 Before we dive headlong into the discussion, there’s one thing worth noting.
Despite the plethora of developer-oriented features in Go, it doesn’t yet have a fully
functional debugger. The core team has focused on other things, and the closest thing
to an official Go debugger is the GNU Debugger (GDB) plugin. You can use the vener-
able old GDB to do some debugging, but it’s not as reliable as many developers desire.

TIP If you’d like to get GDB configured for debugging Go, the golang web-
site has a great introduction (http://golang.org/doc/gdb).

The Go community has also stepped in, and one project in particular looks good to
us. Delve (https://github.com/derekparker/delve) is a new Go debugger under
active development. As of this writing, the Delve installation process is tricky, espe-
cially on a Mac. But if you’re looking for a full-featured debugger that does an admira-
ble job of tracing goroutines, Delve is a sound bet. Our guess is that Delve will
supplant GDB as the choice debugger for the Go community.

 Another alternative is the slightly less traditional Godebug tool
(https://github.com/mailgun/godebug). Although breakpoints have to be coded
into your source, Godebug instruments your code and allows you to get a deeper view
into what’s going on.

 With all of that said, maybe we’re a little bit old-school, but we haven’t found the
debugger situation to be much of a drawback. Go provides great libraries and tools
that have gotten us out of even our most sticky situations. With that caveat behind us,
let’s dive into some good code-quality practices in Go.

5.2 Logging

It has long been the accepted practice that long-running processes write status infor-
mation to a log file or subsystem. If you take a look at any popular programming lan-
guage, you’ll find libraries that provide common logging features. Go is no exception.
In fact, the Go designers decided to include logging in the core libraries.

 Typically, logs are intended to capture certain pieces of valuable information that
developers, system administrators, and other programs can use to learn about an

https://github.com/mailgun/godebug
http://golang.org/doc/gdb
https://github.com/derekparker/delve

115Logging
application’s running lifetime. For example, a quick peek at a web server’s log file
should reveal when the server was last started, whether it has encountered any abnor-
mal conditions, and whether it’s handling requests.

5.2.1 Using Go’s logger

Go provides two built-in packages for logging: log and log/syslog. We’ll talk about
the main package first, and in section 5.2.2 we’ll turn to the syslog package.

 The log package provides basic support (mainly in the form of formatting) for
writing log messages. In its simplest usage, it formats messages and sends them to
Standard Error, as shown in the following listing.

package main

import (
 "log"
)

func main() {
 log.Println("This is a regular message.")
 log.Fatalln("This is a fatal error.")
 log.Println("This is the end of the function.")
}

If you were to run this code, the output would look something like this:

$ go run simple.go
2015/04/27 08:18:36 This is a regular message.
2015/04/27 08:18:36 This is a fatal error.
exit status 1

We have a few things to point out about this example. The first is that the error mes-
sages are all sent to Standard Error, regardless of whether the message is an actual
error or an informational message. If you glance at the godocs for the log package,
you’ll notice that it doesn’t distinguish between message types. But it does make a sec-
ond distinction, and that leads us to our other point.

 When you call log.Fatalln or any of the other “fatal” calls, the library prints the
error message and then calls os.Exit(1), forcing the program to quit. Additionally,
log.Panic calls log an error message and then issue a panic.

 The log functions all have printf-style variants so that you can insert information
into your log message string: log.Printf("The value of i is %s", i).

 Practically speaking, we haven’t found the basic logging functions to be all that
useful. Although some momentum exists in the Docker/container world behind log-
ging to Standard Out and Standard Error, the prevailing wisdom seems to be that log
messages should be sent to either a logging service or a designated file. To that end,
we’ve gotten a lot more use out of the log.Logger type that’s also in the package.

Listing 5.1 Simple log usage

Writes a message
to os.Stderr

Writes a message to
os.Stderr and then exits
with an error code

This never gets executed.

116 CHAPTER 5 Debugging and testing

Se
TECHNIQUE 22 Logging to an arbitrary writer

Sending messages to Standard Error is useful for simple tools. When you’re building
servers, applications, or system services, you need a better place to send your log mes-
sages. Later in the chapter, you’ll look at writing directly to the system log, but here
you’ll look at using the log package to write to any io.Writer.

PROBLEM
You want to send logging messages to a file or to a network service without having to
write your own logging system.

SOLUTION
Initialize a new log.Logger and send log messages to that.

DISCUSSION
The log.Logger provides features for sending log data to any io.Writer, which
includes things like file handles and network connections (net.Conn). The next list-
ing shows a brief example that illustrates setting up a log file and sending messages.

package main

import (
 "log"
 "os"
)

func main() {
 logfile, _ := os.Create("./log.txt")
 defer logfile.Close()

 logger := log.New(logfile, "example ", log.LstdFlags|log.Lshortfile)

 logger.Println("This is a regular message.")
 logger.Fatalln("This is a fatal error.")
 logger.Println("This is the end of the function.")
}

This example begins by creating a log file and then using it as a destination for log
messages.

NOTE The way we set up this example, the log file will get overwritten every
time because we used os.Create. This is nice for our example, but you may
want to open an existing log file instead of clobbering it.

When creating a new log.Logger, you can pass three pieces of information to it. The
first is the io.Writer where you want to send messages. The second is a prefix for log
messages, and the third is a list of flags that determines the format of the log message.
To understand the second and third, let’s take a look at some sample log data from
the log.txt file generated by the preceding program:

Listing 5.2 Logging to a file

Creates a log file

Makes sure it
gets closedCreates

a logger

nds it some
messages As before, this will

never get called.

117TECHNIQUE 22 Logging to an arbitrary writer
$ cat log.txt
example 2015/05/12 08:42:51 outfile.go:16: This is a regular message.
example 2015/05/12 08:42:51 outfile.go:17: This is a fatal error.

As before, only two of the three logger.Log calls succeed because the second one also
generates a fatal error. But you can see from the file how the Go logger logs the data.
Roughly speaking, you can break a log message into three parts: the prefix, the auto-
matically generated information, and the log message itself, as shown in figure 5.1.

You can control the prefix field with the second argument to log.New. As you may
have noticed, when we created our logger, the prefix had a trailing whitespace (after
example). That wasn’t an accident. By default, the logger doesn’t put any space
between the prefix and the generated data.

 When it comes to the generated information, you don’t have direct control over
the information, but you have some degree of indirect control. For example,
although you can’t format the date and time fields exactly as you’d like, you can set
flags that determine how specific the log message is. When creating the log.Logger,
the third argument is a bitmask of flags. As you saw in this example, we passed in the
flags log.LstdFlags | log.Lshortfile. This sets the date format and then instructs
the logger to show the file and line info. (You might notice that those are also high-
lighted bold in figure 5.1.)

 For the most part, only two pieces of information are automatically generated for
you: information about when the event happened and information about where it hap-
pened. With the date and time information, you can set the precision of the timestamp:

 Ldate controls printing the date.
 Ltime prints the timestamp.
 Lmicrosends adds microsecond precision to the time. This automatically results

in the time being printed, even if Ltime isn’t set.
 LstdFlags turns on both Ldate and Ltime.

Then a pair of flags deals with the location information:

 Llongfile shows a full file path and then the line number: /foo/bar/baz.go:123.
 Lshortifle shows just the filename and the line number: baz.go:123.

Prefix Generated Message Data Message

example 2015/05/12 08:42:51 outfile.go:16: This is a regular message.

Ldate
Ltime
Lmicroseconds
LstdFlags

Llongfile
Lshortfile

Figure 5.1 Components of a log file

118 CHAPTER 5 Debugging and testing
Although you can combine flags with a Boolean OR, some combinations are obviously
incompatible (namely, Llongfile and Lshortfile).

 Logging to files is usually straightforward, but sometimes logging to different
sources can introduce complexity. We’ll start with one of the more difficult cases—
working with network-based loggers—and then return to more straightforward cases
in which existing logging tools cover our needs.

TECHNIQUE 23 Logging to a network resource

The previous technique showed how to log to a generic io.Writer. The code we
wrote used a simple file as a destination for the log message. But these days, many of
the applications we write—especially servers—run in the cloud inside Docker images,
VMs, or other resources that have only ephemeral storage. Furthermore, we often run
servers in clusters, where it’s desirable to aggregate the logs of all servers onto one log-
ging service.

 Later in this chapter, you’ll look at using syslog as an external logger. But right
now you’ll look at another option: logging onto a network resource.

 Many popular logging services, including Logstash (http://logstash.net/) and
Heka (http://hekad.readthedocs.org/en/v0.9.2/), aggregate logs. These services typ-
ically expose a port to which you can connect and stream log messages. This style of
logging has been popularized in the influential Twelve-Factor App paradigm
(http://12factor.net/), whose eleventh factor is “Treat logs as event streams.” As sim-
ple as all that sounds, some bugaboos arise in sending log messages as streams.

PROBLEM
Streaming logs to a network service is error-prone, but you don’t want to lose log mes-
sages if you can avoid it.

SOLUTION
By using Go’s channels and some buffering, you can vastly improve reliability.

DISCUSSION
Before you can get going on the code, you need something that can simulate a log
server. Although existing services such as Logstash and Heka are available, you’ll avail
yourself of a simple UNIX tool called Netcat (nc). Netcat ships standard on most UNIX
and Linux flavors, including OS X. A Windows version is also available.

 You want to start a simple TCP server that accepts simple text messages and writes
them to the console. This is a simple Netcat command:

nc -lk 1902

Now you have a listener (-l) listening continuously (-k) on port 1902. (Some versions
of Netcat may also need the –p flag.) This little command will do a fine job of simulat-
ing a log server.

 Now you can get some code running by adapting listing 5.2 to write to a network
socket, as shown in the following listing.

http://logstash.net/
http://12factor.net/
http://hekad.readthedocs.org/en/v0.9.2/

119TECHNIQUE 23 Logging to a network resource

package main

import (
 "log"
 "net"
)

func main() {

 conn, err := net.Dial("tcp", "localhost:1902")
 if err != nil {
 panic("Failed to connect to localhost:1902")
 }
 defer conn.Close()

 f := log.Ldate | log.Lshortfile
 logger := log.New(conn, "example ", f)

 logger.Println("This is a regular message.")
 logger.Panicln("This is a panic.")
}

Surprisingly, little needs to be changed to write to a network connection instead of a
file. Go’s network library is convenient and simple. You create a new TCP connection
with net.Dial, connecting it to the port you opened with Netcat. It’s always recom-
mended to close a network connection in a defer block. If nothing else, when a panic
occurs (as it will in this demo code), the network buffer will be flushed on close, and
you’re less likely to lose critical log messages telling you why the code panicked.

 Again, you use the log package to log to the remote server. Using the logging
package here gives you a few advantages. The first is that you get a timestamp for free,
and when logging to a network server, it’s always a good idea to log the host time and
not rely solely on the log server’s timestamp. This helps you reconstruct a record of
events even if the log messages are delayed on their way to the log server. Second, as
you can see by comparing listings 5.2 and 5.3, when you stick with the logging system,
it’s trivially easy to swap out the underlying log storage mechanism. This is great for
testing and running developer environments.

 Did you notice that we also changed log.Fatalln to a log.Panicln in this exam-
ple? There’s a simple reason for this; the log.Fatal* functions have an unfortunate
side effect: the deferred function isn’t called. Why not? Because log.Fatal* calls
os.Exit, which immediately terminates the program without unwinding the function
stack. We covered this topic in the preceding chapter. Because the deferred function
is skipped, your network connection is never properly flushed and closed. Panics, on
the other hand, are easier to capture. In reality, production code for anything but sim-
ple command-line clients should avoid using fatal errors. And as you saw in the previ-
ous chapter, there are specific cases in which you should call a panic.

 With all of this in mind, when you execute the preceding code, your nc instance
should receive some log messages:

Listing 5.3 Network log client

Connects to
the log server

Makes sure you clean
up by closing the
connection, even on
panic

Sends log messages to
the network connection

Logs a message and then
panics–don’t use Fatalln here.

120 CHAPTER 5 Debugging and testing
$ nc -lk 1902
example 2015/05/27 log_client.go:23: This is a regular message.
example 2015/05/27 log_client.go:24: This is a panic.

These messages made their way from the example client to the simple server you’re
running on nc. You have a nice, simple network logging utility. But you may also have
a problem here in the form of a culprit commonly known as back pressure.

TECHNIQUE 24 Handling back pressure in network logging

In the previous technique, you saw how to log messages to a network server. Logging
to a network offers compelling advantages:

 Logs from many services can be aggregated to one central location.
 In the cloud, servers with only ephemeral storage can still have logs preserved.
 Security and auditability are improved.
 You can tune log servers and app servers differently.

But there’s one major drawback to sending your log messages to a remote logging
server: you’re dependent on the network. In this technique, you’ll see how to deal
with network-based issues in logging.

PROBLEM
Network log services are prone to connection failures and back pressure. This leads to
lost log messages and sometimes even service failures.

SOLUTION
Build a more resilient logger that buffers data.

DISCUSSION
You’re likely to run into two major networking issues:

 The logger’s network connection drops (either
because the network is down or because the remote
logger is down).

 The connection over which the logs are sent slows
down.

The first problem is familiar to us all and is clearly a prob-
lem to be addressed. The second is a little less obvious.

 Listing 5.3 detailed a rough sequence of events. Let’s
trace it out at a high level, as shown in figure 5.2. (The
network mechanics are a little more complicated, but you
don’t need to know them to understand the situation.)

 Your application first opens a TCP connection, then
sends messages, then closes the connection. But some-
thing you don’t see in your code is the response from the
logger. This is because things are going on at the TCP
layer that don’t bubble up into the application code.

App Logger

App Logger

TCP COnnect

Ack

Msg 1

Ack

Msg 2

Ack

Close

Figure 5.2 Sending messages
over TCP

121TECHNIQUE 24 Handling back pressure in network logging
 Specifically, when a message is sent as a TCP/IP packet, the receiver is obligated to
respond to the packet by acknowledging (ACK) that the message was received. It’s pos-
sible (and even likely) that one log message may become more than one packet sent
across the network. Say a log message is split into two separate packets. The remote
logger would then receive the first part and send an ACK. Then the client would send
the second half, to which the logger would also send an ACK. With this system, the cli-
ent gains some assurance that the data it sent was indeed received by the remote host.

 That’s all well and good until the remote host slows down. Imagine a log server that’s
receiving thousands of messages from many clients at once. With all of that data coming
in, it may slow down. But while it slows, the quantity of logs coming in doesn’t diminish.
And with TCP, the log server must send an ACK for each new message that comes in.
When it delays sending the ACK, the client sits waiting. The client
must slow down too, as its resources are tied up waiting for log
messages to send. This is the scenario known as back pressure.

 One solution to the back-pressure problem is to switch from
TCP to UDP. By doing this, you get rid of connection overhead at
the protocol level. And most significantly, the application
doesn’t need to wait for ACK messages from the log server. Fig-
ure 5.3 illustrates this method.

 UDP requires no network connection maintenance. The cli-
ent sends information to the server whenever it’s ready. And
altering the Go code from listing 5.3 is simple, as you can see in
the next listing.

package main

import (
 "log"
 "net"
 "time"
)

func main() {

 timeout := 30 * time.Second
 conn, err := net.DialTimeout("udp", "localhost:1902", timeout)
 if err != nil {
 panic("Failed to connect to localhost:1902")
 }
 defer conn.Close()

 f := log.Ldate | log.Lshortfile
 logger := log.New(conn, "example ", f)

 logger.Println("This is a regular message.")
 logger.Panicln("This is a panic.")
}

Listing 5.4 UDP-based logging

Adds an explicit
timeout

Dials a UDP connection
instead of a TCP one

App Logger

Msg 1

Msg 2

App Logger

Figure 5.3 UDP log
messages

122 CHAPTER 5 Debugging and testing
The changes to the code are minimal. Instead of using the regular net.Dial, this
code has net.DialTimeout, which adds a nicety to the regular net.Dial call: it speci-
fies how long it’ll wait for the connection before giving up. You set this to 30 seconds.
With TCP, the timeout includes time to send the message and receive the ACK. But
with UDP, you set the timeout largely for just how long it takes your app to resolve the
address and send the message. Setting a timeout gives you a little bit of a safety net
when the network isn’t functioning as expected.

 To run the preceding code, you also need to restart your nc server as a UDP server:
nc -luk 1902.

 Using UDP for logging has distinct advantages:

 The app is resistant to back pressure and log server outages. If the log server
hiccups, it may lose some UDP packets, but the client won’t be impacted.

 Sending logs is faster even without back pressure.
 The code is simple.

But this route also has some major disadvantages. Depending on your needs, these
drawbacks may indicate that this is the wrong route for you:

 Log messages can get lost easily. UDP doesn’t equip you to know whether a mes-
sage was received correctly.

 Log messages can be received out of order. Large log messages may be pack-
etized and then get jumbled in transition. Adding a timestamp to the message
(as you’ve done) can help with this, but not totally resolve it.

 Sending the remote server lots of UDP messages may turn out to be more likely
to overwhelm the remote server, because it can’t manage its connections and
slow down the data intake. Although your app may be immune to back pres-
sure, your log server may be worse off.

Based on our own experiences, UDP-based logging definitely has a time and a place. It’s
quick and efficient. If you can predict with relative accuracy how much work your log
server needs to do, this method provides a useful and simple path to network logging.

 But a few cases might definitively tilt your decision away from UDP logging. You
may not want to use UDP logging when you can’t accurately predict how much logging
data will go from the app server to the log server, or when losing occasional log mes-
sages is unacceptable.

 TCP logging is prone to back pressure, but UDP logging won’t guarantee data accu-
racy. It’s a conundrum that we’re used to dealing with from image encoding: do you
want precise images at the expense of large file sizes (GIF, PNG), or compact images
that lose some data (JPEG)? With logging, you may need to make a similar choice. This
isn’t to say that nothing can be done to make things better. For example, back-
pressure stress can be delayed by creating a large buffer for logs to be temporarily
stored in case of network saturation.

123TECHNIQUE 25 Logging to the syslog
5.2.2 Working with system loggers

In the previous sections, we took it upon ourselves to write a logging system. In many
cases, though, existing system loggers may be adequate for the task at hand. In this
section, you’ll look at system loggers.

NOTE Powerful third-party logging packages are available for Go. Logrus
(https://github.com/Sirupsen/logrus) and Glog (https://github.com/golang/
glog) are two popular examples.

The ideas behind logging have solidified over the decades, and one idea that’s now
firmly entrenched in our code is the concept of assigning a log level to a message. The
level indicates the importance of the information in the log message and at the same
time often indicates the kind of message being logged. Typical log levels include
Trace, Debug, Info, Warn, Error, and Critical, though you’ll sometimes see others
including Notice, Alert, and Emergency.

 Although applications may deviate from the norm, the following list represents
common types of log messages that applications write, together with the typical name
or names of the log level:

 Informational message—These tend to include information on the application’s
current status, when it started, and when it stopped. Metrics are usually logged
as informational messages too. The Info log level is designated for this kind of
message.

 Problems—When an application encounters an error, the error message (and
supporting information) is sent to a log. Typically, log levels are Warn, Error,
and Critical, depending on severity.

 Debugging information—As developers write code, it’s often convenient to send
debugging information into the log. This information is targeted specifically to
the programmers (not usually the operators or sys admins). It’s assigned to the
Debug log level.

 Stack dumps or deep info—Sometimes you need to get at extremely detailed infor-
mation about a program. For a particularly complex portion of code, you may
want to dump a stack trace or information about the goroutine. The Trace level
is used for this.

Many systems, including all modern UNIX-like systems, support these log levels in the
system logger. Go itself also provides a system logging library. We’ll look at that now.

TECHNIQUE 25 Logging to the syslog

Logging is a well understood problem, and over the decades, standard facilities have
emerged for system-wide logging. Unsurprisingly, Go includes out-of-the-box support
for such facilities.

 Syslogs provide some major advantages to creating your own. First, they’re mature
and stable products that are optimized for dealing with latency, redundant messages,
and archiving. Most contemporary system loggers handle periodic log rotation,

https://github.com/Sirupsen/logrus
https://github.com/golang/glog
https://github.com/golang/glog

124 CHAPTER 5 Debugging and testing
compression, and deduplication. These things make your life easier. Additionally, sys-
tem administrators are adept at using these log files for analysis, and many tools and
utilities are available for working with the log files. These are compelling reasons to
log to the standard facility rather than creating your own.

PROBLEM
You want to send application log messages into the system logger.

SOLUTION
Configure Go’s syslog package and use it.

DISCUSSION
Go’s logging package includes support for syslogs. In fact, a dedicated package is avail-
able for this: log/syslog. The syslog package gives you two ways of working with the
system log. First, you can use it as a logging back end to the logger you’ve looked at
already. This is a great way of taking code that you already have and redirecting it into
the syslog.

 Second, you can use all of the defined log levels and facilities directly in a syslog-
specific style. This second route isn’t as portable, but it’s closer to what syslog expects.

 Although we’ll focus on this second method of doing things, the following listing is
a quick example of generating a Go logger that’s backed to syslog.

package main

import (
 "fmt"
 "log"
 "log/syslog"
)

func main() {
 priority := syslog.LOG_LOCAL3 | syslog.LOG_NOTICE
 flags := log.Ldate | log.Lshortfile
 logger, err := syslog.NewLogger(priority, flags)
 if err != nil {
 fmt.Printf("Can't attach to syslog: %s", err)
 return
 }

 logger.Println("This is a test log message.")
}

When you run this code, your syslog should have a message that looks something like
this:

Jun 30 08:34:03 technosophos syslog_logger[76564]: 2015/06/30
syslog_logger.go:18: This is a test log message.

This message formatting is less than ideal, but it captures what you need to know. Let’s
walk through the highlights of the code.

Listing 5.5 A logger directed to syslog

Tells the logger how to
appear to syslog

Sets the flags,
as you’ve
done before

Creates
a new
syslog
logger

Sends a
simple message

125TECHNIQUE 25 Logging to the syslog
 When you map a Go logger’s front end to a syslog back end, you need to make
some simplifications. Syslog’s rich notion of facilities and priorities isn’t adequately
represented in Go’s logger, so you have to specifically tell the Go logger how to set
facility and severity. And unfortunately, you get to do this only once, at creation time.
In this example, you tell Go where to log the messages (the LOG_LOCAL3 facility), and
how important the log message is. Because you can set this only once, you set it to
LOG_NOTICE, which is important enough to get it logged by default, but not important
enough to trigger any alarms.

 UNIX-like sysloggers (including those in Linux and OS X) rely on configuration
files to indicate where the logs will be written. On a Mac, for example, the preceding
messages are written to /var/log/system.log, whereas some flavors of Linux write it to
/var/log/messages.

 When you first create the Go logger, not only do you have to set the priority (the
combination of facility and severity), but you also pass it the formatting flags that
other instances of the Go logger use. For simplicity, you’ve used the same flags used in
previous examples.

 Now, any messages you send to the logger—regardless of their severity—will be
written to the log file as notices.

 Using Go’s logger is convenient, but setting the severity correctly and using more
of syslog’s capabilities would be more useful. You can do that by using the log/syslog
logging functions directly, as shown in the next listing.

package main

import (
 "log/syslog"
)

func main() {
 logger, err := syslog.New(syslog.LOG_LOCAL3, "narwhal")
 if err != nil {
 panic("Cannot attach to syslog")
 }
 defer logger.Close()

 logger.Debug("Debug message.")
 logger.Notice("Notice message.")
 logger.Warning("Warning message.")
 logger.Alert("Alert message.")
}

This code sets up a system logger and then sends it messages with a variety of severity
levels. Setting up the logger is straightforward. Logging locally requires you to provide
two pieces of information: the facility that you want to log to (LOG_LOCAL3) and the
prefix you want every message to begin with (narwhal). Normally, the prefix is the
name of the service or application that’s running.

Listing 5.6 Logging to the system log

Creates a new
syslog client

Sends the logger a
variety of messages

126 CHAPTER 5 Debugging and testing

The Go syslog library comes with various logging functions, most of them mapping to
severity. Each call to a logging function sends the message to the system logger, which
can then decide (based on its own rules) what to do with the message.

 If you run the preceding example and then look at the syslog file, you should see
something like this:

Jun 30 08:52:06 technosophos narwhal[76635]: Notice message.
Jun 30 08:52:06 technosophos narwhal[76635]: Warning message.
Jun 30 08:52:06 technosophos narwhal[76635]: Alert message.

The first few fields are the timestamp and hostname. Those are generated by the sys-
log. Next comes the label, which you set as narwhal. After that, the system adds the
process ID (PID). Finally, it sends your message. The order and format of the syslog-
generated fields vary depending on the configuration of the logger.

 You logged four messages, but only three are displayed. The call to syslog.Debug
isn’t present. The reason is that the system log used to run the example is configured
to not send debug messages to the log file. If you wanted to see debug messages, you’d
need to alter the configuration of your system’s syslog facility. The nice thing about
this setup is that you, as the developer, don’t have to make decisions about what’s dis-
played and under what circumstances. You can leave that choice up to those who use
the application.

 This section has covered many of the common log message types, but there
remains one common tool we programmers often value for debugging. Sometimes it’s
handy to log a stack trace.

5.3 Accessing stack traces

Many languages provide access to the call stack. A stack trace (or stack dump) provides a
human-readable list of the functions being used at the time the stack is captured. For
example, imagine a program in which main calls foo, which then calls bar. The bar
function then dumps a stack trace. The trace would be three calls deep, showing how
bar is the current function, called by foo, which is in turn called by main.

TECHNIQUE 26 Capturing stack traces

Stack traces can give developers critical insight into what’s happening on the system.
They’re useful for logging and debugging. Go makes it possible to access the stack
trace at any given point in program execution.

Logging to a remote syslog
Go also provides a syslog.Dial function that allows you to connect to a remote sys-
log daemon. Network-attached syslog daemons are useful for aggregating logs
across a variety of servers. Many times, the local syslog is proxied to such a remote
server. But the syslog.Dial function is there for the occasions when you need to
connect directly to a remote logging server.

127TECHNIQUE 26 Capturing stack traces
PROBLEM
You want to fetch a stack trace at a critical point in the application.

SOLUTION
Use the runtime package, which has several tools.

DESCRIPTION
Generating stack dumps in Go isn’t a particularly difficult exercise when you know
how to do it. But how to get one seems to be a commonly asked question. If all you
need is a trace for debugging, you can easily send one to Standard Output by using
the runtime/debug function PrintStack, as the next listing shows.

package main

import (
 "runtime/debug"
)

func main() {
 foo()
}

func foo() {
 bar()
}

func bar() {
 debug.PrintStack()
}

Running the code prints a stack trace like this:

$ go run trace.go
/Users/mbutcher/Code/go-in-practice/chapter5/stack/trace.go:20 (0x205b)
 bar: debug.PrintStack()
/Users/mbutcher/Code/go-in-practice/chapter5/stack/trace.go:13 (0x203b)
 foo: bar()
/Users/mbutcher/Code/go-in-practice/chapter5/stack/trace.go:9 (0x201b)
 main: foo()
/usr/local/Cellar/go/1.4.2/libexec/src/runtime/proc.go:63 (0x12983)
 main: main_main()
/usr/local/Cellar/go/1.4.2/libexec/src/runtime/asm_amd64.s:2232 (0x37711)
 goexit:

This can be helpful for simple debugging cases. But if you want to capture the trace to
send it somewhere else, you need to do something slightly more sophisticated. You
can use the runtime package’s Stack function, shown in the next listing.

package main

import (

Listing 5.7 Print stack to Standard Output

Listing 5.8 Using the Stack function

Defines a few functions so you
have something to trace

Prints the trace

128 CHAPTER 5 Debugging and testing
 "fmt"
 "runtime"
)

func main() {
 foo()
}

func foo() {
 bar()
}

func bar() {
 buf := make([]byte, 1024)

 runtime.Stack(buf, false)

 fmt.Printf(“Trace:\n %s\n", buf)

}

In this example, you send the stack to Standard Output, but you could just as easily
log or store it. Running this code produces output like this:

$ go run trace.go
Trace:
 goroutine 1 [running]:
main.bar()
 /Users/mbutcher/Code/go-in-practice/chapter5/stack/trace.go:18 +0x7a
main.foo()
 /Users/mbutcher/Code/go-in-practice/chapter5/stack/trace.go:13 +0x1b
main.main()

You may notice that this version is shorter than the other. The lower-level system calls
are left out of Stack’s data. We have a few quick things to point out about this code.

 First, with Stack, you must supply a presized buffer. But there’s no convenient way
to determine how big the buffer needs to be to capture all of the output. (And in
some cases, the output is so big that you might not want to capture it all.) You need to
decide ahead of time how much space you’d like to allocate.

 Second, Stack takes two arguments. The second is a Boolean flag, which is set to
false in this example. Setting it to true will cause Stack to also print out stacks for all
running goroutines. This can be tremendously useful when debugging concurrency
problems, but it substantially increases the amount of output. The trace of the preced-
ing code, for example, runs an entire printed page.

 If all of this isn’t sufficient, you can use the runtime package’s Caller and Callers
functions to get programmatic access to the details of the call stack. Although it’s
quite a bit of work to retrieve and format the data, these functions give you the flexi-
bility to discover the details of a particular call stack. Both the runtime and the
runtime/debug packages contain numerous other functions for analyzing memory
usage, goroutines, threading, and other aspects of your program’s resource usage.

 In the last part of this chapter, we switch from debugging to testing.

Makes a buffer
Writes the stack into the buffer

Prints the results

129Testing
5.4 Testing

Testing and debugging are exercises
that require learning the details
about a program. But whereas debug-
ging is reactive, testing is proactive.
This section covers a few strategies for
making the most of Go’s testing tools.

5.4.1 Unit testing

Writing tests alongside your code has
become a standard software develop-
ment practice. Some software devel-
opment strategies (such as test-
driven development) even hinge on
the authoring of test cases.

 Most introductions to the Go lan-
guage explain how to write tests by
using the built-in tools. Go was designed with testing in mind, and includes tooling for
running tests inside projects. Any Go source file that ends with _test.go is treated as a
test file. The tool go test is used to run these tests.

 Within _test.go files, you can write functions that begin with Test and that take a
single parameter of type *testing.T. Each function will be executed as a unit test. Say
you have a source file called hello.go. This file contains a single function, Hello, that
returns the string hello, as shown in the following listing.

package hello

func Hello() string {
 return "hello"
}

To write a test for this simple function, create a file called hello_test.go and add tests
there, as shown in the next listing.

package hello

import "testing"

func TestHello(t *testing.T) {
 if v := Hello(); v != "hello" {
 t.Errorf("Expected 'hello', but got '%s'", v)
 }
}

Listing 5.9 A Simple hello

Listing 5.10 A hello test

The test is always in the same
package as the code it’s testing.

The testing package contains
Go’s built-in testing tools.

TestHello follows the
pattern of a test function.

Reports errors through the *testing.T object

Testing code goes with source code
We see two common mistakes when pro-
grammers are learning to test Go code.
The first is to try to put the test files in
their own directory. Popular testing tools in
other languages do this, but Go doesn’t.
Test files belong in the same directory as
the code they test.

The second mistake is to try to put the
tests in a different package (package
hello_test or something similar). Tests
should go in the same package as the
code they test. This makes it possible to
test unexported code as well as just the
public API.

130 CHAPTER 5 Debugging and testing
This example points out the earmarks of a typical Go test. Go doesn’t include a lot of
assertion tools like other testing frameworks (though libraries are available for this).
But the testing.T object supplies functions for reporting unexpected conditions.
The most frequently used functions on testing.T are as follows:

 T.Error(args …interface{}) or T.Errorf(msg string, args interface{})—
These log a message and then mark the test as failed. The second version allows
formatting strings, as shown in listing 5.10.

 T.Fatal(args …interface{}) or T.Fatalf(msg string, args interface{})—
These log a message, mark the test as failed, and then stop the testing. You
should do this whenever one failed test indicates that no others will pass.

Various other functions are available as well, designed to make it possible to skip
tests, to fail immediately, and so on. With this in mind, let’s look at a few techniques
for testing.

TECHNIQUE 27 Using interfaces for mocking or stubbing

Go’s type system focuses on composition rather than inheritance. Instead of building
large trees of object types, the Go developer creates interfaces that describe desired
behavior. Anything that fulfills the interface type can be considered to be of that type.
For example, one of the most commonly used interfaces is called io.Writer. It looks
like the following listing.

type Writer interface {
 Write(p []byte) (n int, err error)
}

The io.Writer interface applies to anything that can write a sequence of bytes
according to the preceding signature. The os.File type and the net.Conn type both
implement io.Writer, as do many other types. One of the best parts of Go’s type sys-
tem is that the implementing type doesn’t need to explicitly declare which interfaces
it satisfies (though documenting these isn’t a bad idea). You may even choose to
declare an interface that matches some properties of an existing type, and thereby
create a useful abstraction. Nowhere is this more useful than when testing.

PROBLEM
You’re writing code that depends on types defined in external libraries, and you want
to write test code that can verify that those libraries are correctly used.

SOLUTION
Create interfaces to describe the types you need to test. Use those interfaces in your
code, and then write stub or mock implementations for your tests.

Listing 5.11 The stringer interface

131TECHNIQUE 27 Using interfaces for mocking or stubbing
DISCUSSION
Say you’re writing software that uses a third-party library that looks like the following
listing.

type Message struct {
 // ...
}

func (m *Message) Send(email, subject string, body []byte) error {
 // ...
 return nil
}

This describes some kind of message-sending system. In your code, you use that
library to send a message from your application. In the course of writing your tests,
you want to ensure that the code that sends the message is being called, but you don’t
want to send the message. One way to gracefully deal with this is to write your own
interface that describes the methods shown in listing 5.12, and have your code use
that interface in its declarations instead of directly using the Message type, as the fol-
lowing listing shows.

type Messager interface {
 Send(email, subject string, body []byte) error
}

func Alert(m Messager, problem []byte) error {
 return m.Send("noc@example.com", "Critical Error", problem)
}

Because you’ve created an abstraction from Message to Messager, you can easily write
a mock and use that for your testing, as shown in the next listing.

package msg

import (
 "testing"
)

type MockMessage struct {
 email, subject string
 body []byte
}

func (m *MockMessage) Send(email, subject string, body []byte) error
 m.email = email

Listing 5.12 The message struct

Listing 5.13 Use an interface

Listing 5.14 Testing with a mock

Defines an interface that
describes the methods
you use on Message

Passes that interface instead
of the Message type

The MockMessage
implements Messager.

132 CHAPTER 5 Debugging and testing
 m.subject = subject
 m.body = body
 return nil
}

func TestAlert(t *testing.T) {
 msgr := new(MockMessage)
 body := []byte("Critical Error")

 Alert(msgr, body)

 if msgr.subject != "Critical Error" {
 t.Errorf("Expected 'Critical Error', Got '%s'", msgr.subject)
 }
 // ...
}

You implement the Messager interface with the MockMessage type. That type provides
the same functions that your production code uses, but instead of sending the mes-
sage, it stores the data. You can then conveniently test that the information sent to the
Messager is indeed what you expect.

 This is a simple and powerful technique for writing good tests. As an additional
bonus, abstracting with interfaces in this way makes it easier to later change imple-
mentations. The pattern lends itself to modular programming.

TECHNIQUE 28 Verifying interfaces with canary tests

The preceding example illustrated a technique that relies on using interfaces to
describe an existing set of functions. Sometimes, though, subtle errors in interface
definitions may cause runtime headaches. This is especially true when you’re either
relying on type assertions or using external libraries whose function signatures change
often. One trivially simple testing technique can save you some needless headaches.

PROBLEM
You want to make sure that the interfaces you’re defining describe the things that
you’re intending to describe. This is useful in four cases:

 When you’re exporting types that implement external interfaces.
 When you create interface types that describe external types.

Creates a new
MockMessage

Runs the Alert method
with your mock

Accesses the MockMessage
properties to verify results

Interfaces change infrequently
Ideally, after an interface is exported and made public, it shouldn’t be changed. But
in the world of software development, this expectation isn’t always met. Library
authors do occasionally change interfaces to fix poor design or to add new features.
These days, it’s considered okay to change interfaces as long as you indicate this by
increasing the major version number of your program (for example, 1.2.3 becomes
2.0.0). Be aware, though, that many projects—including some major ones—don’t fol-
low this recommendation.

133TECHNIQUE 28 Verifying interfaces with canary tests
 When you rely on external interfaces, and those interfaces change (even
though by convention, they shouldn’t).

 When use of that interface is restricted to type assertions. (We give an example
of this next.)

SOLUTION
Write type-assertion “canary” tests that will fail quickly if you made a mistake on your
interface definition.

DISCUSSION
When you’re writing interfaces or implementations of interfaces—especially in
cases where type information is resolved at runtime—it’s helpful to write simple type-
assertion canary tests that will explode at compile time.

 Say you’re writing a customer writer that implements io.Writer. You’re exporting
this in your library so that other code may use it. Your implementation looks like the
following listing.

type MyWriter struct{
 // …
}

func (m *MyWriter) Write([]byte) error {
 // Write data somewhere…
 return nil
}

This code looks pretty straightforward, and at a quick glance, it looks like it imple-
ments io.Writer. Now imagine using this code with a type assertion, as shown in the
next listing.

func main() {
 m := map[string]interface{}{
 "w": &MyWriter{},
 }
}

func doSomething(m map[string]interface{}) {
 w := m["w"].(io.Writer)
}

This code compiles just fine. And if your test coverage is thorough, it might even pass
that, too. But something is wrong.

 You can write a quick canary test to see this. A canary test (deriving its name from
the “canary in the coal mine” story) is a test designed to alert you of basic failures in
your assumptions. The next listing shows a canary test for whether MyWriter is an
io.Writer.

Listing 5.15 MyWriter

Listing 5.16 Asserting a writer

This generates a
runtime exception.

134 CHAPTER 5 Debugging and testing

func TestWriter(t *testing.T) {
 var _ io.Writer = &MyWriter{}
}

This is a simple test. You don’t even have to run the test to cause it to fail. The com-
piler will fail before the binary can ever be built:

$ go test
_/Users/mbutcher/Code/go-in-practice/chapter5/tests/canary
./canary_test.go:15: cannot use MyWriter literal (type *MyWriter)
 as type io.Writer in assignment:
 *MyWriter does not implement io.Writer (wrong type for Write method)
 have Write([]byte) error
 want Write([]byte) (int, error)
FAIL _/Users/mbutcher/Code/go-in-practice/chapter5/tests/canary
[build failed]

The test fails because your Write method doesn’t match the signature of io.Writer’s
Write([]byte) (int, error). The compilation error tells you exactly how to fix your
writer to match the interface you intended to match. Some interfaces are more com-
plex than io.Writer, and it’s with these that you tend to benefit most when writing
canary tests.

 The last technique showed how to create interfaces to describe existing types. That
strategy is great for generalizing testing. But creating an interface to match an existing
type is another example of a case where a canary test might be useful. By canary test-
ing your interfaces, you’ll catch cases where the external library author changes a
function signature.

5.4.2 Generative testing

Generative testing is a large and complex topic. But in its most basic form, generative
testing refers to the strategy of automatically generating test data in order to both
broaden the information tested and overcome our biases when we choose our test
data.

PROBLEM
You want to bulletproof your code against surprising edge cases.

SOLUTION
Use Go’s testing/quick package to generate testing data.

DISCUSSION
Go has a testing package that’s frequently overlooked. The testing/quick package
provides several helpers for rapidly building tests that are more exhaustive than usual.
These tools aren’t useful in all cases, but sometimes they can help you make your test-
ing process more reliable.

Listing 5.17 Canary test of MyWriter

Have the compiler do a
type assertion for you.

135TECHNIQUE 28 Verifying interfaces with canary tests
 Say you have a simple function that pads a given string to a given length (or trun-
cates the string if it’s greater than that length). The function looks like the next listing.

func Pad(s string, max uint) string {
 log.Printf("Testing Len: %d, Str: %s\n", max, s)
 ln := uint(len(s))
 if ln > max {
 return s[:max-1]
 }
 s += strings.Repeat(" ", int(max-ln))
 return s
}

Normally, you’d be inclined to write some simple tests for this function, perhaps like
the following listing.

func TestPad(t *testing.T) {
 if r := Pad("test", 6); len(r) != 6 {
 t.Errorf("Expected 6, got %d", len(r))
 }
}

Unsurprisingly, this test passes. But this is a great function to test with a generator. You
know that regardless of the string that’s passed in, you always want a string of exactly
the given length. Using the testing/quick function called Check(), you can test a
much broader range of strings (including those that use characters you might not
have thought to test), as shown in the next listing.

func TestPadGenerative(t *testing.T) {
 fn := func(s string, max uint8) bool {
 p := Pad(s, uint(max))
 return len(p) == int(max)
 }

 if err := quick.Check(fn, &quick.Config{MaxCount: 200}); err != nil {
 t.Error(err)
 }
}

The "testing/quick".Check function is the heart of your test. It takes a function that
you’ve defined and an optional configuration, and then constructs numerous tests. It
does this by introspecting the function’s parameters and then generating random test

Listing 5.18 A padding function

Listing 5.19 Simple pad unit test

Listing 5.20 Generative test for pad

Logs the output just
for your convenience
here

If the string is longer than
the max, truncates it.

Pads the string until
it’s the max length

fn takes a string and a uint8,
runs Pad(), and checks that
the returned length is right.

Using testing/quick, you tell it
to run no more than 200

randomly generated tests of fn.
You report any errors through

the normal testing package.

136 CHAPTER 5 Debugging and testing
data of the right parameter type. If you wanted to test longer strings, for example, you
could change your fn function to take a uint16 instead of a uint8.

 If you run this test, you’ll discover a bug in the original code:

$ go test
2015/07/21 09:20:15 Testing Len: 6, Str: test
2015/07/21 09:06:09 Testing Len: 32, Str: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
--- FAIL: TestPadGenerative (0.00s)
 generative_test.go:39: #1: failed on input

"\U000305ea\U000664e9\U000cbd92\U00091bbf\U0010b40d\U000fd581…", 0x20
FAIL
exit status 1
FAIL _/Users/mbutcher/Code/go-in-practice/chapter5/tests/generative
0.005s

What happened? One of the strings that was generated was longer than its maximum
length, which kicked off the truncation code (listing 5.17) that your previous test
didn’t account for. You accidentally sliced incorrectly—s[:max-1] should be s[:max]
because you’re giving it a length, not an index. After you’ve fixed that, rerunning the
test should show many tests using randomly generated values.

Go’s quick testing package comes with other utilities. Most of these are designed to
help you quickly generate test data, as in the preceding example. Go’s generator is
good enough that it can extend beyond simple types like integers and strings, and
even generate random struct instances.

5.5 Using performance tests and benchmarks
Which is faster: the path-matching package or a custom-written regular expression to
patch paths? How is that fan-out pattern working in practice? Why is my HTTP server
so slow? One of the frequent tasks of the seasoned programmer is to identify and fix
performance issues with code. Once again, Go provides some useful tools.

 Nestled inside Go’s testing package are some performance-testing features
designed to repeatedly run pieces of code and then report on their efficiency.

Go’s random generator
If the values are randomly generated, why do you get the same strings when you run
the test repeatedly? Go doesn’t automatically seed the "math/rand".Rand gener-
ator each time it runs. If you want different data each run, you can pass a seeded
random generator by using "testing/quick".Config. This is a good way to
increase test data coverage, but it comes at the cost of repeatability. If you do hit a
failure, you’ll need to make note of the data that caused the error because it may not
come up again for a long time.

137TECHNIQUE 29 Benchmarking Go code

Pa
TECHNIQUE 29 Benchmarking Go code

In this technique, you’ll learn how to use the testing.B benchmarking tool to test the
efficiency of a piece of code.

PROBLEM
You have code paths for accomplishing something, and you want to know which way is
faster. Is it faster to use text/template for formatting text, or just stick with fmt?

SOLUTION
Use the benchmarking feature, testing.B, to compare the two.

DISCUSSION
Benchmarks are treated similarly to tests. They go in the same _test files that unit tests
and examples go in, and they’re executed with the go test command. But their con-
struction differs.

 In the next listing, let’s write a benchmark designed to zero in on the average time
it takes to compile and run a simple text template.

package main

import (
 "bytes"
 "testing"
 "text/template"
)

func BenchmarkTemplates(b *testing.B) {
 b.Logf("b.N is %d\n", b.N)
 tpl := "Hello {{.Name}}"
 data := &map[string]string{
 "Name": "World",
 }
 var buf bytes.Buffer
 for i := 0; i < b.N; i++ {
 t, _ := template.New("test").Parse(tpl)
 t.Execute(&buf, data)
 buf.Reset()
 }
}

Just as tests are prefixed with Test, benchmarks should be prefixed with Benchmark.
And instead of receiving a *testing.T, a benchmark receives a *testing.B. Although
the *testing.B instance has many of the same methods as a *testing.T, it also has
several properties specific to benchmarking. The most important is the N struct mem-
ber. This is used in the preceding code as the upper limit on a loop. This is the key to
benchmarking. Every benchmark should iterate to the *b.N point. The benchmarking
tool repeatedly runs the same test and attempts to gain meaningful insight into the
performance of the code by varying the number of times the test is run.

Listing 5.21 Benchmark template compile and run

BenchmarkTemplates
gets a *testing.B.

Prints the value of b.N

Runs the core of your
test b.N times

rses the template
Executes the template

Clears the buffer to avoid
memory-allocation issues

138 CHAPTER 5 Debugging and testing
 If you run this code, you’ll see this:

$ go test -bench .
testing: warning: no tests to run
PASS
BenchmarkTemplates 100000 10102 ns/op
--- BENCH: BenchmarkTemplates
 bench_test.go:10: b.N is 1
 bench_test.go:10: b.N is 100
 bench_test.go:10: b.N is 10000
 bench_test.go:10: b.N is 100000
ok /Users/mbutcher/Code/go-in-practice/chapter5/tests/bench 1.145s

To run benchmarks, use the go test tool, but pass it –bench PATTERN, where PATTERN
is a regular expression that matches the benchmarking functions you want to run.
The dot (.) tells the benchmarker to run all of the benchmarks.

 The preceding output tells you that the test was run with a maximum number of
100,000 iterations and that each run through the loop averaged 10,102 nanoseconds.
Because you included Printf, you get a little extra visibility into how the benchmarking
works. It begins with a low value for b.N: 1. Then it raises the value of b.N (not always
exponentially) until the algorithms in the benchmarking suite settle in on an average.

 Listing 5.20 runs only one benchmark, and on some code that you might be able
to easily optimize. Let’s expand and add an extra test in the following listing.

func BenchmarkTemplates(b *testing.B) {
 b.Logf("b.N is %d\n", b.N)
 tpl := "Hello {{.Name}}"
 data := &map[string]string{
 "Name": "World",
 }
 var buf bytes.Buffer
 for i := 0; i < b.N; i++ {
 t, _ := template.New("test").Parse(tpl)
 t.Execute(&buf, data)
 buf.Reset()
 }
}
func BenchmarkCompiledTemplates(b *testing.B) {
 b.Logf("b.N is %d\n", b.N)
 tpl := "Hello {{.Name}}"
 t, _ := template.New("test").Parse(tpl)
 data := &map[string]string{
 "Name": "World",
 }
 var buf bytes.Buffer
 for i := 0; i < b.N; i++ {
 t.Execute(&buf, data)
 buf.Reset()
 }
}

Listing 5.22 Two template benchmarks

Moves the template
compilation out of the loop

139TECHNIQUE 30 Parallel benchmarks
The second benchmark, BenchmarkCompiledTemplates, compiles the template once
and then executes it multiple times. You can guess that this optimization reduces run-
time, but how much?

$ go test -bench .
testing: warning: no tests to run
PASS
BenchmarkTemplates 200000 10167 ns/op
--- BENCH: BenchmarkTemplates
 bench_test.go:10: b.N is 1
 bench_test.go:10: b.N is 100
 bench_test.go:10: b.N is 10000
 bench_test.go:10: b.N is 200000
BenchmarkCompiledTemplates 1000000 1318 ns/op
--- BENCH: BenchmarkCompiledTemplates
 bench_test.go:23: b.N is 1
 bench_test.go:23: b.N is 100
 bench_test.go:23: b.N is 10000
 bench_test.go:23: b.N is 1000000
ok _/Users/mbutcher/Code/go-in-practice/chapter5/tests/bench 3.483s

These results show that reusing the compiled template shaves almost 9,000 nanosec-
onds off the average loop iteration. It runs in one-tenth the original time! The bench-
marking package provides other features that can assist in creating good benchmarks.
Here you’ll look at another benchmarking technique for testing concurrency.

TECHNIQUE 30 Parallel benchmarks

One of Go’s strongest points is its goroutine model of concurrent programming. But
for any given piece of code, how can you tell how well it will perform when spread out
over multiple goroutines? Again, the benchmarking tool can help you here.

PROBLEM
You want to test how a given piece of code performs when spread over goroutines. Ide-
ally, you want to test this with a variable number of CPUs.

SOLUTION
A *testing.B instance provides a RunParallel method for exactly this purpose. Com-
bined with command-line flags, you can test how well goroutines parallelize.

DISCUSSION
Beginning with listing 5.21, you can fashion the template test into a parallel test.
Instead of executing the body of a loop, the testing framework executes a function
repeatedly, but as separate goroutines, as shown in the following listing.

func BenchmarkParallelTemplates(b *testing.B) {
 tpl := "Hello {{.Name}}"
 t, _ := template.New("test").Parse(tpl)
 data := &map[string]string{
 "Name": "World",

Listing 5.23 Parallel benchmarking

140 CHAPTER 5 Debugging and testing
 }
 b.RunParallel(func(pb *testing.PB) {
 var buf bytes.Buffer
 for pb.Next() {
 t.Execute(&buf, data)
 buf.Reset()
 }
 })
}

Most of our testing code remains unchanged. But instead of looping over a call to
t.Execute(), you segment the code a little further. Running RunParallel runs the
closure on multiple goroutines. Each one receives an indication, through pb.Next(),
as to whether it should continue iterating. (Again, the looping feature is required.)
This code example is almost the same as the one included with the Go documentation.

 Now you need to run it. First, you’ll run it alongside our other two examples
(though with the Logf() functions removed). And you’ll run it on only one CPU,
which is the default:

$ go test -bench .
testing: warning: no tests to run
PASS
BenchmarkTemplates 200000 10695 ns/op
BenchmarkCompiledTemplates 1000000 1406 ns/op
BenchmarkParallelTemplates 1000000 1404 ns/op
ok _/Users/mbutcher/Code/go-in-practice/chapter5/tests/bench 5.097s

Your parallel version didn’t outperform the regular version. Why? Because the gorou-
tines were all run on the same processor. Let’s specify that you want to see the testing
tool run several versions of the same code, using a different number of CPUs each
time:

$ go test -bench . -cpu=1,2,4
testing: warning: no tests to run
PASS
BenchmarkTemplates 200000 10019 ns/op
BenchmarkTemplates-2 100000 14033 ns/op
BenchmarkTemplates-4 100000 14971 ns/op
BenchmarkCompiledTemplates 1000000 1217 ns/op
BenchmarkCompiledTemplates-2 1000000 1137 ns/op
BenchmarkCompiledTemplates-4 1000000 1307 ns/op
BenchmarkParallelTemplates 1000000 1249 ns/op
BenchmarkParallelTemplates-2 2000000 784 ns/op
BenchmarkParallelTemplates-4 2000000 829 ns/op
ok _/Users/mbutcher/Code/go-in-practice/chapter5/tests/bench 14.993s

In this run, you specify –cpu=1,2,4, which tells go test to run the tests with one, two,
and then four CPUs, respectively. It runs each test this way and prints the results,
appending –N to indicate when more than one processor was used.

Instead of a for loop, passes
a closure into RunParallel

141TECHNIQUE 31 Detecting race conditions
 Unsurprisingly, your earlier nonparallel tests don’t perform any better when using
more CPUs. With only one main goroutine running, there’s no optimization to be
had. A noticeable hit occurs, due to the higher accounting overhead of multiple CPUs,
but that disappears when you look at the results of BenchmarkParallelTemplates.
There, you drop about a third of the time off when you spread processing over multi-
ple CPU cores. The slightly higher time for the four cores, compared to two, may indi-
cate that locking slows you down ever so slightly.

 What if you make a naïve mistake, though, and try a quick optimization?

TECHNIQUE 31 Detecting race conditions

When attempting to parallelize processing with multiple goroutines and multiple
CPUs, you run the possibility of accidentally accessing things in the wrong order. A
race condition occurs when two or more goroutines attempt to modify the same piece of
information at about the same time. If the execution order differs from what you
intend, the result may be surprising. And these conditions are often hard to diagnose.
But Go includes a race detection tool, and the preceding parallel benchmark tech-
nique provides an opportunity to try it.

PROBLEM
In programs with many goroutines, race conditions could occur. Being able to test for
this possibility is desirable.

SOLUTION
Use the –race flag (sometimes called go race or grace).

DISCUSSION
Let’s begin with listing 5.22 and make an ill-conceived performance optimization.
Instead of declaring a new buffer for each goroutine, let’s share one in the following
listing. This will reduce the allocations your tested code has to perform.

func BenchmarkParallelOops(b *testing.B) {
 tpl := "Hello {{.Name}}"
 t, _ := template.New("test").Parse(tpl)
 data := &map[string]string{
 "Name": "World",
 }
 var buf bytes.Buffer
 b.RunParallel(func(pb *testing.PB) {
 for pb.Next() {
 t.Execute(&buf, data)
 buf.Reset()
 }
 })
}

Now let’s run that code sample. It’s likely that the parallel benchmark will fail:

Listing 5.24 Benchmarks and race conditions

Moved out of
the closure

142 CHAPTER 5 Debugging and testing
$ go test -bench Oops -cpu=1,2,4
testing: warning: no tests to run
PASS
BenchmarkParallelOops 1000000 1371 ns/op
BenchmarkParallelOops-2 panic: runtime error: slice bounds out of
 range [recovered]
 panic: runtime error: slice bounds out of range

goroutine 26 [running]:
text/template.errRecover(0x208355f40)
 /usr/local/Cellar/go/1.4.2/libexec/src/text/template/exec.go:100 +0xbc
bytes.(*Buffer).Write(0x2082e2070…, 0x0)
…

A look through the stack trace gives a few clues about what happened, but the real
underlying cause isn’t clear. If you add the –race flag onto the testing call, Go instru-
ments for race conditions, and the information you receive is much more helpful:

$ go test -bench Oops -race -cpu=1,2,4
testing: warning: no tests to run
PASS
BenchmarkParallelOops 200000 5675 ns/op
BenchmarkParallelOops-2 ==================
WARNING: DATA RACE
Write by goroutine 20:
 bytes.(*Buffer).Write()
 /usr/local/Cellar/go/1.4.2/libexec/src/bytes/buffer.go:126 +0x53
 text/template.(*state).walk()
 /usr/local/Cellar/go/1.4.2/libexec/src/text/template/exec.go:182 +0x401
 text/template.(*state).walk()
…

Now the cause is much clearer: more than one thing tried to use the bytes.Buffer at
once. Reading through more of the special race condition stack trace will even show
where the race occurs. Multiple goroutines are writing at the same time. From here,
you have the options of stepping back to the older method or using a sync.Mutex to
lock and unlock access around the buffer.

 This illustration is a good example of a race failure. It’s easy to reproduce. But
many other race conditions are less predictable. The race may manifest negatively
only on occasion, which makes detecting and debugging difficult. That’s where using
the –race flag becomes handy. You can use it not only on benchmarks (which is a
great place), but also with go run and all calls to go test.

5.6 Summary

This chapter has covered techniques for debugging and testing your Go programs.
You’ve looked at logging tools, stack tracing, unit testing, and benchmarking. All of
these are fundamental tools for writing production-grade Go code.

143Summary
 The chapter covered the following topics:

 Logging over the network
 Working with the Go log package
 Capturing stack traces
 Using Go’s pattern for writing unit tests
 Benchmarking with Go’s testing tools
 Performing basic generative testing
 Detecting race conditions

In the coming chapters, the techniques you learned here will shape the way you write
your code.

Part 3

An interface
for your applications

Applications often interact with the outside world through APIs and user
interfaces. This is the focus of part 3.

 Quite often, user interfaces are built using web technologies. Go provides
numerous features out of the box that help you build and operate them. But
these base features don’t provide the more complex capabilities available in
other platforms. Chapter 6 powers up HTML and email templates, going beyond
what you can do with the standard library. Chapter 7 builds on this and covers
serving assets and dealing with submissions that come from forms.

 REST APIs provide a common means of interaction. These APIs enable
JavaScript, mobile, and desktop applications to interact with your application.
REST APIs are also the way to expose web services. Chapter 8 covers working with
and exposing web service APIs.

HTML and email
template patterns
When you’re programmatically creating text or HTML responses in many program-
ming environments, you need to seek out the right library to handle the HTML. Go
handles this a little differently. In the standard library, Go provides template han-
dling for both text and HTML. The HTML handling is built on top of the text tem-
plate engine to add HTML-aware intelligence.

 Although the standard library enables you to work with HTML templates, it
stops short of having too many opinions. Instead, it provides a foundation along
with the ability to extend and combine templates. For example, you could nest tem-
plates or have a template inherit from another one. This simple and extensible
design allows you to use many common template patterns.

This chapter covers
 Adding functionality inside templates

 Nesting templates

 Using template inheritance

 Rendering objects to HTML

 Using email templates
147

148 CHAPTER 6 HTML and email template patterns
 In this chapter, you’ll learn how to extend the functionality inside HTML templates
and techniques to use templates together. Along the way, we offer tips, including some
related to performance, that can speed up applications. For example, you’ll learn
where you can parse a template that can save overall processing time. You’ll then learn
how to use text templates when you send email messages.

6.1 Working with HTML templates

The html and html/template packages in the standard library provide the foundation
for working with HTML. This includes the ability to work with variables and functions
in the templates. The html/template package is built on the text/template package,
which provides general text template handling. HTML, being text, can use the text
handling. The advantage of the html/template package over the text/template
package for HTML is the context-aware intelligence that saves developers work.

 Although these packages provide the groundwork to working with HTML, they
stop short of having many opinions. What you can do and how you should structure
your HTML templates is left to the application authors. In the next couple of tech-
niques, you’ll look at patterns that will be helpful in extending the template packages
for your own applications.

6.1.1 Standard library HTML package overview

Before you look at those patterns, you need to look at how the packages in the stan-
dard library work. Whereas the html package provides only a couple of functions to
escape and unescape strings for HTML, the html/template package provides a good
foundation for working with templates. First, let’s look at a basic HTML template in
the next listing.

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>{{.Title}}</title>
 </head>
 <body>
 <h1>{{.Title}}</h1>
 <p>{{.Content}}</p>
 </body>
</html>

This listing illustrates the basics of a template. Aside from the actions (also called direc-
tives), which are enclosed in double curly brackets, the template looks like a normal
HTML file. Here the directives are to print a value passed into the template, such as
printing the passed-in title. The next step is to call this template from code and pass it
the values to fill in for {{.Title}} and {{.Content}}, as shown in the next listing.

Listing 6.1 A simple HTML template: simple.html

Title based on
Title property

The title and content
being displayed

149Working with HTML templates

package main

import (
 "html/template"
 "net/http"
)

type Page struct {
 Title, Content string
}

func displayPage(w http.ResponseWriter, r *http.Request) {
 p := &Page{
 Title: "An Example",
 Content: "Have fun stormin’ da castle.",
 }
 t := template.Must(template.ParseFiles("templates/simple.html"))
 t.Execute(w, p)
}

func main() {
 http.HandleFunc("/", displayPage)
 http.ListenAndServe(":8080", nil)
}

This simple application takes some data and displays it via a simple web server, using the
template from listing 6.1. The html/template package is used here instead of the
text/template package because it’s context-aware and handles some operations for you.

 Being context-aware is more than knowing that these are HTML templates. The
package understands what’s happening inside the templates. Take the following tem-
plate snippet:

{{.Content}}

The html/template package expands this intelligently. For escaping purposes, it adds
context-appropriate functionality. The preceding snippet is automatically expanded
to look like this:

{{.Content | html}}

The variables (in this case, .Id and .Content) are piped through appropriate func-
tions to escape their content before turning it into the final output. Escaping turns
characters that could be seen as markup and that alter the page structure or meaning
into references that display properly but don’t alter the structure or meaning. If you
were using the text/template package, you would need to add the escaping yourself.

 The context-aware escaping is built around a security model in which template
developers are considered trusted, and user data, injected via variables, is considered
untrusted and should be escaped. For example, if an application user input the string
<script>alert('busted pwned')</script>, and you displayed that string through

Listing 6.2 Using a simple HTML template: simple_template.go

Uses html instead of
text template package

Data object to pass to
template containing
properties to print

Parses a
template
for later

use

Writes to HTTP output using
template and dataset

Serves the output via
simple web server

150 CHAPTER 6 HTML and email template patterns
the HTML template system, it would be escaped and <script>alert('
;busted pwned')</script> would be rendered in the template. This is
safe to display to users and avoids a potential cross-site scripting (XSS) vulnerability.

 When you want a variable to be rendered as is, without being escaped, you can use
the HTML type in the html/template package. Technique 35 provides an example that
uses the HTML type to inject data into a template and avoid escaping.

 The following four techniques look at ways to extend the built-in template system,
allowing you to use common template patterns.

6.1.2 Adding functionality inside templates

Templates in Go have functions that can and will be called from within them. As you
just saw, the intelligence in the HTML templates adds escaping functions in the right
place for you. These functions are where complex functionality is handled in the tem-
plates. Out of the box, the template packages provide fewer than 20 functions, and
several are to support this intelligence.

 For example, consider one of the built-in functions, whose implementation is pro-
vided by fmt.Sprintf, is printf. The following code shows its use inside a template:

{{"output" | printf "%q"}}

The snippet takes the string output and passes it into printf by using the format
string %q. The output is the quoted string output.

TECHNIQUE 32 Extending templates with functions

Although templates provide quite a few features, often you need to extend them with
your own functionality. The need to add features isn’t uncommon or uncalled for. For
example, we’ve often seen the need to display a date and time in an easy-to-read for-
mat. This common request could easily be implemented as part of the template sys-
tem. This is just one common example, and template systems can be extended in
many cases.

PROBLEM
The built-in functions in the templates don’t provide all the functionality you need.

SOLUTION
Just as Go makes functions available in templates (such as fmt.Sprintf being avail-
able in templates as printf), make your own functions available.

DISCUSSION
You can display information in templates in various ways. Although the way data is
generated should be kept in the application logic, the way it’s formatted and displayed
should cleanly happen in a template. Presenting date and time information is a good
example. In an application, the time information should be stored in a type, such as
time.Time. When displayed to users, it could be displayed in a myriad of ways.

 Go actions, the data and commands enclosed in double curly brackets, can have
commands that act on the data. These commands can be chained into pipelines

151TECHNIQUE 32 Extending templates with functions
separated by a |. This is the same idea as using pipes from a UNIX-based command-
line interface (CLI). Go provides an API to add commands to the set available to a
template. The limited set of commands that comes out of the box doesn’t need to be
the only set available to your templates. The following listing takes a template and
adds the capability to display formatted dates.

package main

import (

 "html/template"

 "net/http"

 "time"

)

var tpl = `<!DOCTYPE HTML>

<html>

 <head>

 <meta charset="utf-8">

 <title>Date Example</title>

 </head>

 <body>

 <p>{{.Date | dateFormat "Jan 2, 2006"}}</p>

 </body>

</html>`

var funcMap = template.FuncMap{

 "dateFormat": dateFormat,

}

func dateFormat(layout string, d time.Time) string {

 return d.Format(layout)

}

func serveTemplate(res http.ResponseWriter, req *http.Request) {

 t := template.New("date")

 t.Funcs(funcMap)

 t.Parse(tpl)

 data := struct{ Date time.Time }{

 Date: time.Now(),

 }

 t.Execute(res, data)

}

func main() {

 http.HandleFunc("/", serveTemplate)

 http.ListenAndServe(":8080", nil)

}

Listing 6.3 Add template functions: date_command.go

An HTML template
as a string

Pipes Date through the
dateFormat command

Maps Go functions to
template functions

Function to convert a time
to a formatted string

Creates a new template.Template instance

Passes additional functions in
map into template engine

Parses the template string
into the template engine

Creates a
dataset to
pass into
template

to display

Sends template with data
to output response

Serves the template and
dataset using a web server

152 CHAPTER 6 HTML and email template patterns
Rather than referencing an external file, this HTML template is stored as a string in a
variable. Inside the template, the data in Date is passed through the template function
dateFormat with a specified format string before becoming part of the output. It’s
important to know that the piping mechanism passes the output from one item in the
pipeline into the next item in the pipeline as the last argument.

 Because dateFormat isn’t one of the core template functions, it needs to be made
available to the template. Making custom functions available in templates requires two
steps. First, a map needs to be created in which names to be used inside the template
are mapped to functions in Go. Here the function dateFormat is mapped to the name
dateFormat. Although the same name is used for both the Go function and name avail-
able inside the template, that doesn’t have to be the case. They can be different names.

 When a new template.Template instance is created, the function map (here,
named funcMap) needs to be passed into Funcs to make the new function mapping
available to templates. After this happens, templates can use the functions. Before
using the template, the final step is to parse the template into template.Template.

 From here, the template instance is used normally. The data structure is defined,
in this case, by an anonymous struct, with the data to pass in as a key-value mapping.
The data structure is passed into Execute along with the io.Writer to output the ren-
dered template. In this case, when dateFormat is encountered in the template, the
format of Jan 2, 2006 is passed in, followed by the time.Time instance. The instance
of time.Time is converted to a string following this format.

NOTE The date and time used in format strings needs to be specific and is
detailed in the package documentation at http://golang.org/pkg/time
/#Time.Format.

If you’re going to apply the same function set to numerous templates, you can use a
Go function to create your templates and add your template functions each time:

func parseTemplateString(name, tpl string) *template.Template {
 t:= template.New(name)
 t.Funcs(funcMap)
 t = template.Must(t.Parse(tpl))
 return t
}

This function could be repeatedly used to create a new template object from a tem-
plate string with your custom template functions included. In listing 6.3, this could be
used inside the serveTemplate function instead of parsing the template and adding
the template functions there. Using a Go function to configure your templates for you
could be done with files as well.

6.1.3 Limiting template parsing

Parsing templates that were originally in text into type instances is a bit of work for a
Go application. Parsing a template turns a string of characters into an object model
with a variety of nodes and node types that Go knows how to use. The parser in the

http://golang.org/pkg/time/#Time.Format
http://golang.org/pkg/time/#Time.Format

153TECHNIQUE 33 Caching parsed templates
text/template/parser package sits behind functions in the template packages such
as Parse and ParseFiles. Unless you work directly with the parser, which isn’t recom-
mended, it’s easy to miss all the work going on behind the functions you use.

 Methods such as the following technique allow you to avoid extra work by using a
parser that can speed up your application.

TECHNIQUE 33 Caching parsed templates

Go applications, as servers that respond to multiple requests, can generate many
responses to requests from many different clients. If for each response the application
has to parse a template, a lot of duplicate work is going on. If you can eliminate some
of that work at response time, you can speed up your application’s performance.

PROBLEM
You want to avoid repeatedly parsing the same template while an application is running.

SOLUTION
Parse the template, store the ready-to-use template in a variable, and repeatedly use
the same template each time you need to generate the output.

DISCUSSION
Instead of parsing the template in the http handler function, which means parsing
the template each time the handler function runs, you can move the parsing out of
the handler. Then you can repeatedly execute the template against different datasets
without parsing it each time. The following listing is a modified version of listing 6.2
that caches the parsed template.

package main

import (
 "html/template"
 "net/http"
)

var t = template.Must(template.ParseFiles("templates/simple.html"))

type Page struct {
 Title, Content string
}

func diaplayPage(w http.ResponseWriter, r *http.Request) {
 p := &Page{
 Title: "An Example",
 Content: "Have fun stormin’ da castle.",
 }
 t.Execute(w, p)
}

func main() {
 http.HandleFunc("/", diaplayPage)
 http.ListenAndServe(":8080", nil)
}

Listing 6.4 Caching a parsed template: cache_template.go

Parses the template when
the package is initialized

Executes the
template in the http
handler function

154 CHAPTER 6 HTML and email template patterns
Instead of parsing the template in the handler function, as listing 6.2 does, the tem-
plate is parsed once when the package is initialized. When the http handler function
is executed, the template is executed normally.

 As the benchmark test examples from chapter 5 showed, parsing a template and
reusing the parsed template is faster than parsing each time. This is a subtle, simple
way to speed up application responses.

6.1.4 When template execution breaks

All software has the potential to fail. Template execution is no exception. When tem-
plate execution fails, an error is returned. But in some cases, template execution can
fail and partial output is displayed to the end user. This can provide an experience
you want to avoid.

TECHNIQUE 34 Handling template execution failures

When templates are executed, the output is written as it walks through the template.
If a function is called, causing an error midway through the template, an error will be
returned and execution will stop. But the part of the template before the error would
already be displayed to end users.

PROBLEM
When an error happens while executing a template, you want to catch the error
before anything is displayed to the user. Instead of displaying the partially broken
pages, display something more appropriate, such as an error page.

SOLUTION
Write the output of the template to a buffer. If no errors occur, write the output of the
buffer to end users. Otherwise, handle the error.

DISCUSSION
Templates should be fairly unintelligent. They display data, and functions can be used
to format the data. Any errors in the data should be handled before templates are
used with the data, and the functions called within the templates should be for display
purposes. This keeps the separation of concerns in place and limits failures when tem-
plates are executed, which is important for streaming.

 Streaming responses is useful. When you execute a template to a response writer, end
users start to receive the page more quickly. When you buffer a response, there’s a delay
in end users receiving it. End users expect native desktop performance out of web appli-
cations, and streaming responses helps achieve that. When possible, write to output.

 But at times, the optimal case doesn’t work out. If executing templates carries a
potential for errors, you can write the output of the template to a buffer. If errors
occur, they can be handled before displaying anything to the end users. The following
listing builds on listing 6.4 to introduce a buffered output.

155TECHNIQUE 34 Handling template execution failures

package main

import (
 "bytes"
 "fmt"
 "html/template"
 "io"
 "net/http"
)

var t *template.Template

func init() {
 t = template.Must(template.ParseFiles("./templates/simple.html"))
}

type Page struct {
 Title, Content string
}

func diaplayPage(w http.ResponseWriter, r *http.Request) {
 p := &Page{
 Title: "An Example",
 Content: "Have fun stormin’ da castle.",
 }
 var b bytes.Buffer
 err := t.Execute(&b, p)
 if err != nil {
 fmt.Fprint(w, "A error occured.")
 return
 }
 b.WriteTo(w)
}

func main() {
 http.HandleFunc("/", diaplayPage)
 http.ListenAndServe(":8080", nil)
}

When the template is executed, a buffer is written to instead of http.Response-
Writer. If any errors occur, those are handled before copying the contents of the buf-
fer to the output http.ResponseWriter.

6.1.5 Mixing templates

The foundation of generating HTML output is the html/template package. It handles
safely generating HTML output. But the documented use cases are simple. When
building applications, you’ll often want to mix templates together, have patterns for
reusing and managing them, cache generated output, and more. In the following pat-
terns, you’ll see three ways to work with templates, built on top of the standard library,
allowing you to use more-complex template handling. These patterns are template
nesting, extending a base template through inheritance, and mapping a data object to
a specific template (for example, a user object being mapped to a user template).

Listing 6.5 Buffering a template response: buffered_template.go

Creates a buffer to store
the output of the
executed template

Handles any errors from
template execution

Copies the buffered output
to the response writer

156 CHAPTER 6 HTML and email template patterns
TECHNIQUE 35 Nested templates

Sharing and reusing sections of templates, like code reuse, is a common need. If you
have an application with numerous web pages, you’ll typically find that most elements
are common across pages, and some elements are custom.

PROBLEM
You want to avoid duplicating the common sections of HTML markup in each tem-
plate and the maintenance burden that goes along with that. Like the software you’re
developing, you want to take advantage of reuse.

SOLUTION
Use nested templates to share common sections of HTML, as shown in figure 6.1. The
subtemplates enable reuse for sections of markup, cutting down on duplication.

DISCUSSION
The template system in Go is designed to handle multiple templates and allow them
to work together. A parent template can import other templates. When the parent is
executed to render the output, the subtemplates are included as well. The following
listing shows how this works, touching on some important nuances.

<!DOCTYPE HTML>
<html>
 {{template "head.html" .}}
 <body>
 <h1>{{.Title}}</h1>
 <p>{{.Content}}</p>
 </body>
</html>

Listing 6.6 Index template including head template: index.html

Page template

Header template

Footer template

A template for a full web page.

Templates containing common sections
of markup are included for reusabillity.

When a page is rendered, the template
and all nested subtemplates are used
to generate the output.

Figure 6.1 Using nested subtemplates to share common template code

Includes another template in this
one, passing in entire dataset

157TECHNIQUE 35 Nested templates
This nested template example starts out with index.html. This is similar to the simple
template from listing 6.1. The difference is that instead of a <head> section, there’s a
directive to include another template.

 The directive {{template "head.html" .}} has three parts. template tells the tem-
plate engine to include another template, and head.html is the name of that template.
The final part is the . after head.html. This is the dataset to pass to the template. In
this case, the entire dataset from the parent template is passed to this template. If a
property on the dataset contained a dataset for a subtemplate, that could be passed in
(for example, if {{template "head.html" .Foo}} were used, the properties on .Foo
would be the ones available inside head.html). See the following listing.

<head>
 <meta charset="utf-8">
 <title>{{.Title}}</title>
</head>

When head.html, as seen in listing 6.7, is invoked by index.html, the entire dataset is
passed in. When Title is used, it’s the same Title used in index.html, as head.html
has access to the entire dataset.

 The next listing brings the example together.

package main

import (
 "html/template"
 "net/http"
)

var t *template.Template

func init() {
 t = template.Must(template.ParseFiles("index.html", "head.html"))
}

type Page struct {
 Title, Content string
}

func diaplayPage(w http.ResponseWriter, r *http.Request) {
 p := &Page{
 Title: "An Example",
 Content: "Have fun stormin’ da castle.",
 }
 t.ExecuteTemplate(w, "index.html", p)
}

func main() {
 http.HandleFunc("/", diaplayPage)
 http.ListenAndServe(":8080", nil)
}

Listing 6.7 Head template included in the index: head.html

Listing 6.8 Using the nested templates: nested_templates.go

Title is the same value
used in index.html.

Loads the two templates
into a template object

Invokes the template
with the page data

Serves the page on the
built-in web server

158 CHAPTER 6 HTML and email template patterns
This listing starts by parsing the two templates to the same template object. This allows
head.html to be accessible to index.html when it’s executed. When the template is
executed, ExecuteTemplate is used so that the template name to execute can be spec-
ified. If Execute had been used, as in the previous listings, the first template listed in
ParseFiles would be used. ExecuteTemplate provides control over the template file
when multiple ones are available.

TECHNIQUE 36 Template inheritance

Many template systems implement a model with a base template and other templates
that fill in the missing sections of the base template. They extend the base template.
This is different from the previous technique, in which subtemplates were shared
among a group of different top-level templates. In this case, the top-level template is
shared.

PROBLEM
You want to have a base template and have other templates extend the base template.
The templates would have multiple sections that can be extended.

SOLUTION
Instead of thinking of a file as a template, think of sections of a file as templates. The
base file contains the shared markup and refers to other templates that haven’t yet
been defined, as shown in figure 6.2. The templates extending the base file provide
the missing subtemplates or override those in the base. After they’re combined, you
have a fully working template with a shared base.

DISCUSSION
The template system enables some inheritance patterns within templates. It doesn’t rep-
resent the full range of inheritance available in other template systems, but patterns can
be applied. The following listing shows a base template for others to inherit from.

User template

Title

Styles

Scripts

Content

Base template

Title

Styles

Scripts

Content

The user template inherits the base template and provides content for subsections of the template.

Figure 6.2 A shared based template

159TECHNIQUE 36 Template inheritance

{{define "base"}}<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>{{template "title" .}}</title>
 {{ block "styles" . }}<style>
 h1 {
 color: #400080
 }
 </style>{{ end }}
 </head>
 <body>
 <h1>{{template "title" .}}</h1>
 {{template "content" .}}
 {{block "scripts" .}}{{end}}
 </body>
</html>{{end}}

Instead of the entire file being a template, the file contains multiple templates. Each
template starts with a define or block directive and closes with an end directive. The
block directive defines and immediately executes a template. This file opens by defin-
ing a base template. The base template, which can be referred to by name, invokes
other templates but doesn’t necessarily define them. Templates that extend this one,
such as listing 6.10, will need to fill in the missing templates. In other cases, you may
have a section with default content that you want to allow to be overridden by an
extending template. Some sections may be optional. For those sections, you can cre-
ate empty templates to be used by default.

NOTE The block directive and ability to redefine template sections that have
content was introduced in Go 1.6. Prior to this, you couldn’t redefine tem-
plates that had content.

{{define "title"}}User: {{.Username}}{{end}}
{{define "content"}}

 Userame: {{.Username}}
 Name: {{.Name}}

{{end}}

Templates extending the base need to make sure all of the subtemplates without a
default are filled out. Here the title and content sections need to be defined because
they’re required. You’ll notice that the optional sections with empty or default con-
tent defined from listing 6.9 don’t need to have sections defined.

 The following listing showcases filling in an optional template in addition to the
required sections.

Listing 6.9 A base template to inherit from: base.html

Listing 6.10 Inheriting required sections: user.html

Starts a new base
template with define

Invokes the title template,
which is defined elsewhere

Defines and
immediately invokes
the styles template

Defines and invokes the scripts
template, which is currently
empty. An extending template can
redefine the contents of scripts.

End of the base template

Defines a title template

Defines a content
template

160 CHAPTER 6 HTML and email template patterns

{{define "title"}}{{.Title}}{{end}}
{{define "content"}}
<p>
 {{.Content}}
</p>
{{end}}
{{define "styles"}}
<style>
h1 {
 color: #800080
}
</style>
{{end}}

Here the styles template is defined. This overrides the default supplied in listing 6.9.
 The following listing brings the templates together.

package main

import (
 "html/template"
 "net/http"
)

var t map[string]*template.Template

func init() {
 t = make(map[string]*template.Template)
 temp := template.Must(template.ParseFiles("base.html", "user.html"))
 t["user.html"] = temp
 temp = template.Must(template.ParseFiles("base.html", "page.html"))
 t["page.html"] = temp
}

type Page struct {
 Title, Content string
}

type User struct {
 Username, Name string
}

func displayPage(w http.ResponseWriter, r *http.Request) {
 p := &Page{
 Title: "An Example",
 Content: "Have fun stormin’ da castle.",
 }
 t["page.html"].ExecuteTemplate(w, "base", p)
}

func displayUser(w http.ResponseWriter, r *http.Request) {
 u := &User{
 Username: "swordsmith",

Listing 6.11 Inheriting with optional section: page.html

Listing 6.12 Using template inheritance: inherit.go

Defines a template to
fill in an optional
section of the parent

A map to store
templates in a
map of named
templates Sets up the

template map

Loads templates along
with base into the map

Data objects to pass
into templates

Populates a dataset
for the page

Invokes the
template for
the page

161TECHNIQUE 37 Mapping data types to templates
 Name: "Inigo Montoya",
 }
 t["user.html"].ExecuteTemplate(w, "base", u)
}

func main() {
 http.HandleFunc("/user", displayUser)
 http.HandleFunc("/", displayPage)
 http.ListenAndServe(":8080", nil)
}

This listing starts by creating a map to hold the templates. Each template is stored
separately from the others. The map is populated with the template instances by
using a key for the template name. When the templates user.html and page.html are
loaded, the base.html file is loaded with each of them. This allows for the inheritance
in each case.

 Preparing to render a page happens in a similar manner to the normal template
usage. A dataset is defined and populated. When it’s time to render a response, the
template to use is selected from the map of templates and the base template is
invoked. The base is the root of the page and needs to be the one invoked. It will
invoke the subtemplates defined in the inheritance.

TECHNIQUE 37 Mapping data types to templates

The previous two template techniques rendered all the output together. A dataset
consisting of the entire page needs to be passed in, and the template setup needs to
handle the variations to the full page.

 An alternative approach is to render parts of the page, such as a user object
instance, on its own and then pass the rendered content to a higher-level template.
The higher-level template doesn’t need to know the data type or how to render it. Fig-
ure 6.3 represents this concept.

Serves pages via the
built-in web server

Page template

Content

Aside

Aside

A template for a full web page.

Sections of content rendered separately
from their own datasets and templates.

Web pages are rendered by using a common
page template. Sections of content are
rendered from their templates and datasets
and passed into the next template.

Figure 6.3 HTML rendered objects passed into the template

162 CHAPTER 6 HTML and email template patterns
PROBLEM
You want to render an object to HTML and pass the rendered object to a higher-level
template, where it can be part of the output.

SOLUTION
Use templates to render objects as HTML. Store the HTML in a variable and pass the
HTML to higher-level templates wrapped in template.HTML, marking it as safe HTML
that doesn’t need to be escaped.

DISCUSSION
There are a couple reasons to have multiple rendering steps. First, if part of the page
is expensive to generate a dataset for or render to HTML, it’s worth not repeating
when each page is generated.

 For example, imagine you have a directory listing for a user. The listing contains
information about a user and their activity that can be viewed by many other users.
Obtaining the dataset to render would require multiple data source lookups. If that
were cached, you could skip loading this information each time the page is viewed.

 Caching this dataset would still require the dataset being rendered on each page
load, and you’d need to store a complicated dataset somewhere. Rendering the data
would mean the template package handles rendering in the right format and making
sure everything is properly escaped. If the cache were instead populated with a ren-
dered HTML snippet to reuse each time, more work on each page generation would
be skipped due to better caching.

 In a second case, say you have applications with complicated logic and have many
pages to render. You could have many templates containing a lot of duplicate markup.
If each template were instead scoped to render one thing—whether it be the main
content, a piece of the sidebar, or the page wrapper—the templates could be easier to
manage.

 The following listing shows how to render an object from a template, store the
HTML, and later inject it into another template.

<blockquote>
“{{.Quote}}”
— {{.Person}}
</blockquote>

This template, quote.html, is associated with a Quote object. The template is used to
render the Quote object as HTML and has Quote object fields to render. You’ll notice
there are no other elements for a complete page here. Instead those are part of
index.html, shown in the following listing.

Listing 6.13 A Quote object template: quote.html

Properties on the Quote object
to be written to output

163TECHNIQUE 37 Mapping data types to templates

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>{{.Title}}</title>
 </head>
 <body>
 <h1>{{.Title}}</h1>
 <p>{{.Content}}</p>
 </body>
</html>

The index.html file is a template for the page wrapper. It contains variables that make
sense in the scope of a page. The variables printed out aren’t specific to a user or any-
thing else. The following listing pulls this together.

package main

import (
 "bytes"
 "html/template"
 "net/http"
)

var t *template.Template
var qc template.HTML

func init() {
 t = template.Must(template.ParseFiles("index.html", "quote.html"))
}

type Page struct {
 Title string
 Content template.HTML
}

type Quote struct {
 Quote, Name string
}

func main() {
 q := &Quote{
 Quote: `You keep using that word. I do not think
 it means what you think it means.`,
 Person: "Inigo Montoya",
 }
 var b bytes.Buffer
 t.ExecuteTemplate(&b, "quote.html", q)
 qc = template.HTML(b.String())

 http.HandleFunc("/", diaplayPage)
 http.ListenAndServe(":8080", nil)
}

Listing 6.14 A generic page wrapper: index.html

Listing 6.15 Bringing the templates together: object_templates.go

Properties related to
displaying a generic page

Variables to hold
persistent data shared
between requests

Loads the two template
files for later use

Types to store data
for templates with
differing and specific
properties

Populates a
dataset to supply
to template

Writes template and data

Stores quote as HTML in global variable

Serves handler using
built-in web server

164 CHAPTER 6 HTML and email template patterns
func diaplayPage(w http.ResponseWriter, r *http.Request) {
 p := &Page{
 Title: "A User",
 Content: qc,
 }
 t.ExecuteTemplate(w, "index.html", p)
}

This code starts out in a fairly typical manner. It begins by parsing the two templates,
quote.html and index.html, into a variable. In this case, you have two data structures
for use. The first is for the output of a web page. The second is Quote, which can be
converted to HTML.

 To create a piece of content separate from generating the page, a quote is instanti-
ated as part of the main function. Quote is passed into ExecuteTemplate along with
the quote.html template to render the quote as HTML. Instead of writing the template
to output, the template is written to Buffer. Then Buffer is converted to a string and
passed into template.HTML. The html/template package escapes most of the data
sent into it. An exception to that is template.HTML, which is safe HTML. Because the
content was generated from a template that performed escaping, you can store the
output of the quote.html template as safe HTML to use later.

 In the Page type, you’ll notice that the Content property is the type template.HTML.
When the dataset used to generate the page is created, the HTML generated from
the Quote object is set as the Content. When the index.html template is invoked with
the dataset, the template system knows to skip escaping anything of the type
template.HTML. The quote HTML is used as is. This provides a clean way to store and
pass around safe HTML.

WARNING User input HTML should never be considered safe. Always escape
user input information, such as information gathered from a form field,
before presenting.

6.2 Using templates for email

Email is one of the staples of modern communication. It’s often used for service noti-
fications, registration verification, and more. Even services looking to take over where
email has dominated will end up using it in some capacity.

 The Go standard library doesn’t provide a special template package for email as it
does for HTML. Instead, the text and html template packages provide what you need
to send text and HTML email.

TECHNIQUE 38 Generating email from templates

Email is one of the places templates can be used. Sometimes email is generated as text
and other times as HTML. These happen to be the two template packages provided by
the standard library.

Creates page dataset
with quote HTML

Writes quote and page
to web server output

165TECHNIQUE 38 Generating email from templates
PROBLEM
When creating and sending email, you want to incorporate templates.

SOLUTION
Use the template packages to generate the email text into a buffer. Pass the generated
email in the buffer to the code used to send the email, such as the smtp package.

DISCUSSION
Templates can be used for a wide variety of things, and email messages are a great
place to use them. To illustrate this, the following listing creates email messages from
a template and sends them using the net/smtp package.

package main

import (
 "bytes"
 "net/smtp"
 "strconv"
 "text/template"
)

type EmailMessage struct {
 From, Subject, Body string
 To []string
}

type EmailCredentials struct {
 Username, Password, Server string
 Port int
}

const emailTemplate = `From: {{.From}}
To: {{.To}}
Subject {{.Subject}}

{{.Body}}
`

var t *template.Template

func init() {
 t = template.New("email")
 t.Parse(emailTemplate)
}

func main() {
 message := &EmailMessage{
 From: "me@example.com",
 To: []string{"you@example.com"},
 Subject: "A test",
 Body: "Just saying hi",
 }

 var body bytes.Buffer
 t.Execute(&body, message)

Listing 6.16 Send email from a template: email.go

Uses text templates to
send plain text email

The data structure
for an email

The email template
as a string

Populates a dataset with
the email for the template
and mail client

Populates a buffer with the rendered
message text from the template

166 CHAPTER 6 HTML and email template patterns

th
 authCreds := &EmailCredentials{
 Username: "myUsername",
 Password: "myPass",
 Server: "smtp.example.com",
 Port: 25,
 }

 auth := smtp.PlainAuth("",
 authCreds.Username,
 authCreds.Password,
 authCreds.Server,
)

 smtp.SendMail(authCreds.Server+":"+strconv.Itoa(authCreds.Port),
 auth,
 message.From,
 message.To,
 body.Bytes())
}

This code sends a simple email generated from a template. You’ll notice the listing is
using the text/template package instead of the html/template package used in the
previous listings in the chapter. The html/template package is built on top of the
text/template package. It provides HTML-specific features such as context-aware
escaping on top of the text/template package.

 Using the text/template package means the injected properties (for example,
.Body) aren’t escaped. If you need to escape anything injected into the template, you
can use escape functions from the text/template package.

 When you execute the template with a dataset, pass in a buffer to store the ren-
dered template. The buffer provides the source of the content to send from the mail
client.

 This concept can be expanded to send a variety of email in a variety of ways. For
example, you could use the html/template package to send HTML email. Or you
could combine this with the other template techniques to create complex templates.

6.3 Summary

Using and extending template patterns for both HTML and email allows you to handle
complexity in a more maintainable manner. This is useful as complexity grows within
an application. These patterns include the following:

 Extending the functionality within templates through the use of piping commands.
 Caching and buffering templates.
 Having reusable sections within templates that can be shared across templates.

For HTML templates, this includes having reusable sections such as a header or
footer.

 Starting with a base or master template that’s extended by other templates
used.

Sets up the
SMTP mail client

Sends
e email

The bytes from the message buffer are
passed in when the message is sent.

167Summary
 Mapping templates to objects, such as a user template for a user object, and
rolling the templates up into a page-level output.

 Generating email output with templates.

In the next chapter, you’ll explore serving static content and handling user input
from HTML forms. This includes serving files such as JavaScript files, stylesheets, and
images in several ways. You’ll cover HTML form-handling patterns that can take the
pain out of working with user input, especially when it comes to files.

Serving and receiving
assets and forms
If you think about it, the original web service was serving files. This is what was first
created back in 1991 when the web began. The interaction we enjoy today wasn’t
there at the beginning. When interaction came, it did so through web forms. These
constructs, created decades ago, are still synonymous with the modern web and
foundational to modern web applications.

 This chapter starts by presenting methods to serve static files for your Go appli-
cation. Because Go is a web server, rather than running behind a web server such as
Apache or Nginx, you need to set up how you want files such as Cascading Style
Sheets (CSS), JavaScript, images, or other files to be served. You’ll learn several
ways to store and serve files that provide solutions for varying applications.

This chapter covers
 Serving static files such as those needed

to view a website

 Handling HTML forms, including file
uploads

 Working with raw multipart messages
168

169Serving static content
 From there, we move into form handling. Form handling with Go may seem fairly
straightforward, and for simple cases it is. Yet, cases such as handling files as multipart
form data can require tapping into parts of Go not often touched or understood. This
is especially true if you want to work with large files.

 File serving and form handling combined with template handling from the previ-
ous chapter lay a foundation for building web applications in Go. You can use these
techniques with your front-end technologies of choice to build rich web applications.

7.1 Serving static content

A website or web application built with Go doesn’t need to sit behind a web server.
Instead, it handles serving all of the content with its web server, whether that content
is application pages or static files, such as CSS, images, or JavaScript. Figure 7.1 illus-
trates the difference between a Go application and one using a separate web server.

A common pattern has an
application running behind a
web server. The web server
receives user connections
and passes data between the
connection and application.

A Go application receives
connections directly from
clients using a built-in web
server. No intermediate
application is necessary. Go
handles the thread
management.

Web
Server

Application process

Application process

Application process

...

Operating system

Operating system

Go applicationHTTP server package

Figure 7.1 A Go application communicating over HTTP compared to a common web server model

Common Gateway Interface
Although Go is typically run as a server that serves all content, it can be used with a
Common Gateway Interface (CGI) or FastCGI server. The net/http/cgi package
works with the CGI interface, and the net/http/fastcgi package works with a
FastCGI interface. In this environment, static content may be served by another web
server. These packages are intended for compatibility with existing systems. CGI
starts up a new process to respond to each request, which is less efficient than typ-
ical Go serving. This is a setup we don’t recommend using.

170 CHAPTER 7 Serving and receiving assets and forms
To handle static files, the http package in the standard library has a series of functions
that deal with file serving. Before you look into a few techniques to serve files within
an application, it’s important to know a little about the functionality built into the
http package, shown in the next listing.

package main

import (
 "net/http"
)

func main() {
 dir := http.Dir("./files")
 http.ListenAndServe(":8080", http.FileServer(dir))
}

The FileServer handler in the http package is a semi-smart file server. From a direc-
tory on the local filesystem, FileServer will serve files following proper permissions.
It’s capable of looking at the If-Modified-Since HTTP header and responding with a
304 Not Modified response if the version of the file a user already has matches the one
currently being served.

 When you want to write your own handler to serve files, the ServeFile function in
the http package is useful, as shown in the next listing.

package main

import (
 "net/http"
)

func main() {
 http.HandleFunc("/", readme)
 http.ListenAndServe(":8080", nil)
}

func readme(res http.ResponseWriter, req *http.Request) {
 http.ServeFile(res, req, "./files/readme.txt")
}

This example takes a different approach to serving a file. A basic web server has a sin-
gle handler to serve all paths. This readme handler serves the content of a file located
at ./files/readme.txt by using the ServeFile function. ServeFile takes a file or direc-
tory as its third argument to serve. And like FileServer, ServeFile looks at the
If-Modified-Since HTTP header and responds with a 304 Not Modified response
if possible.

 This functionality, along with some of its underpinnings, enables you to serve con-
tent by using a variety of techniques.

Listing 7.1 http package file serving: file_serving.go

Listing 7.2 Serve file with custom handler: servefile.go

Uses a directory
on the filesystem

Serves the
filesystem directory

Registers a handler
for all paths

Serves the contents
of a readme file

171TECHNIQUE 39 Serving subdirectories
TECHNIQUE 39 Serving subdirectories

A common practice, used in many frameworks and applications, is to serve files from
the local filesystem where the application resides. This allows other applications to
mount external filesystems as if they were local or have them local.

PROBLEM
You want to serve a directory and its subdirectories from the filesystem as part of your
web application.

SOLUTION
Use the built-in file server or the file-serving handlers to serve the files from the local
filesystem. For intimate control over error pages, including the case of a file not being
found, you need to implement your own file server.

DISCUSSION
An easy way to understand file serving is to look at a simple example. Take the direc-
tory example_app/static/ and serve it from the path example.com/static/. This may
seem fairly straightforward, and for some cases it is, but if you want intimate control
over the experience, you’ll see in a moment that you need to bypass some of the built-
in file serving to have that control. First, let’s look at a simple example.

func main() {
 dir := http.Dir("./files/")
 handler := http.StripPrefix("/static/", http.FileServer(dir))
 http.Handle("/static/", handler)

 http.HandleFunc("/", homePage)
 http.ListenAndServe(":8080", nil)
}

Here, the built-in web server is serving the ./files/ directory at the path /static/ by
using the file server from the http package. The directory on the filesystem could be
any directory and doesn’t need to be within the source for the application. Strip-
Prefix is used to remove any prefix in the URL before passing the path to the file
server to find. When serving a subpath in your application, this is needed to find the
right files.

 This approach has two gotchas that you should be aware of. The first has to do with
generating error pages, which includes the common 404 Not Found error. You may
want to customize these pages in your website or application. It’s common to have styl-
ized or even specialized error pages to help end users. FileServer and ServeFile
return a basic error message as text. It’s not a web page, but rather English text that
browsers display on a white background. There’s no opportunity to change how these

Listing 7.3 Serving a subdirectory

A directory and its subdirectories on
the filesystem are chosen to serve.

The /static/ path serves the
directory and needs to be removed

before looking up file path.

Serves a home page that may include
files from the static directory

172 CHAPTER 7 Serving and receiving assets and forms
are displayed or what language they’re displayed in while using FileServer or Serve-
File. Technique 40 provides a method to make these changes.

 The second gotcha when serving a directory of files is simpler to work around.
When serving a directory and its subdirectories, you need a path-resolution method
that will work for subdirectories. For example, if the path package is used in order to
resolve wildcard paths, you’d be limited to the base directory. Paying attention to path
resolution is important if your application serves files and generates other content. To
illustrate the problem, let’s look at the pathResolver from listing 2.17 along with the
following main function in listing 7.4.

TIP Wildcard path routing is covered in chapter 2. Listing 2.17 provides a
simple example relating to the problem described here.

func main() {
 pr := newPathResolver()
 pr.Add("GET /hello", hello)

 dir := http.Dir("./files")
 handler := http.StripPrefix("/static/", http.FileServer(dir))
 pr.Add("GET /static/*", handler.ServeHTTP)

 http.ListenAndServe(":8080", pr)
}

This code is set up to serve both content and files. A file in the files directory will be
served, but any subdirectories of files won’t have their files served. This is because the
* used as a wildcard in the path package stays at one directory level. The solution is to
use a different method for path resolution, such as the regular expression method
described in chapter 2.

TECHNIQUE 40 File server with custom error pages

The built-in file server in the Go standard library generates error pages, including the
common 404 Not Found error for you. This is presented as English text, rather than a
web page, and can’t be changed.

 What if you’re building an application for those who don’t know English? Or what
if you want to build response pages to help people find the content they’re looking for
when they ended up with a Not Found error? These are common situations.

PROBLEM
How can you specify your own error pages, including a response to a file not being
found, when your application is serving files?

SOLUTION
Use a custom file server that allows you to specify handlers for error pages. The
github.com/Masterminds/go-fileserver package provides functionality to comple-
ment the built-in file server while enabling custom error handling.

Listing 7.4 Using path package path resolution

173TECHNIQUE 40 File server with custom error pages
DISCUSSION
FileServer and ServeFile both rely on the function ServeContent in the http pack-
age. That function calls private functions within the package that use the functions
Error and NotFound to produce these responses. Error handling is baked in at the
lowest levels. To alter these, you need to build your own file server. This can either be
something entirely new or a fork of the file server from the standard library.

 The package github.com/Masterminds/go-fileserver is a fork of the file server
in the standard library. This fork adds the ability to use custom error handlers,
including the common 404 Not Found response. It’s designed to be used alongside
the http package in the standard library, only providing file-serving elements not
already in the standard library. To illustrate how this file server works, let’s look at the
following listing.

package main

import (
 "fmt"
 fs "github.com/Masterminds/go-fileserver"
 "net/http"
)

func main() {

 fs.NotFoundHandler = func(w http.ResponseWriter, req *http.Request)
 w.Header().Set("Content-Type", "text/plain; charset=utf-8")
 fmt.Fprintln(w, "The requested page could not be found.")
 }

 dir := http.Dir("./files")
 http.ListenAndServe(":8080", fs.FileServer(dir))
}

This example is similar to the file server in the standard library, with a couple of differ-
ences. First, a handler function is set for the case when no file is found. Anytime a file
isn’t found, this function will write the response. Although it’s not used here, a custom
function can be set for all error responses as well. The setup to serve a directory of
files is the same as the file server in the standard library. An http.Dir instance is cre-
ated for the directory of files to serve. The second difference has to do with serving
the files. Rather than using http.FileServer, the function fs.FileServer is used.
This function will make sure the proper error handlers are called.

NOTE github.com/Masterminds/go-fileserver was created for this book.
Because of the size of the codebase, which would have spanned many pages,
and the useful nature of the file server, it was released as a package to be used
in applications.

Listing 7.5 Custom file server error pages: file_not_found.go

Imports the file
server package

Sets a function to call
when no file found

Sets up a directory to
serve files from

Uses built-in web
server and custom
file server

https://tools.ietf.org/html/rfc7540

174 CHAPTER 7 Serving and receiving assets and forms

M
store

in me
TECHNIQUE 41 Caching file server

In some cases, it’s too time-consuming to read a file from the filesystem or other file
source each time you want to serve it. Instead, it would be faster to cache and serve
some files from memory, skipping calls to disk altogether.

 Speedy file serving can eliminate slowdowns on high-traffic websites. Web caches
such as Varnish have become popular and are used on many of the most popular web-
sites and applications. You could put a web cache in front of a Go application to cache
files such as images, CSS, and JavaScript to serve them from memory. In some cases, a
useful alternative to an external application is to store files in memory in your Go
application and serve the files yourself.

PROBLEM
Instead of serving static files from the filesystem each time they’re requested, you want
to cache files in memory in order to quickly serve responses to requests.

SOLUTION
Store files in memory when they’re first requested and serve responses using Serve-
Content rather than a file server.

DISCUSSION
Most of the time, it’s appropriate to use a reverse proxy, such as the popular open
source project Varnish, to handle caching and serving of files quickly. For those occa-
sions, it’s appropriate to cache commonly used files in memory. The following listing
shows how to load a file from disk and serve it from memory.

package main

import (
 "bytes"
 "io"
 "net/http"
 "os"
 "sync"
 "time"
)

type cacheFile struct {
 content io.ReadSeeker
 modTime time.Time
}

var cache map[string]*cacheFile
var mutex = new(sync.RWMutex)

func main() {
 cache = make(map[string]*cacheFile)
 http.HandleFunc("/", serveFiles)
 http.ListenAndServe(":8080", nil)
}

Listing 7.6 Load and serve static files from memory: cache_serving.go

Data structure to store
a file in memoryap to

 files
mory

Mutex to handle race
conditions while handling
parallel cache changes

Makes the map usable

175TECHNIQUE 41 Caching file server
func serveFiles(res http.ResponseWriter, req *http.Request) {
 mutex.RLock()
 v, found := cache[req.URL.Path]
 mutex.RUnlock()

 if !found {
 mutex.Lock()
 defer mutex.Unlock()
 fileName := "./files" + req.URL.Path
 f, err := os.Open(fileName)
 defer f.Close()

 if err != nil {
 http.NotFound(res, req)
 return
 }

 var b bytes.Buffer
 _, err = io.Copy(&b, f)
 if err != nil {
 http.NotFound(res, req)
 return
 }
 r := bytes.NewReader(b.Bytes())

 info, _ := f.Stat()
 v := &cacheFile{
 content: r,
 modTime: info.ModTime(),
 }
 cache[req.URL.Path] = v
 }

 http.ServeContent(res, req, req.URL.Path, v.modTime, v.content)
}

This example opens with a data structure to hold the content in memory. When serv-
ing the data, the time and the content are important. The time can be sent to brows-
ers and used as part of the If-Modified-Since HTTP header. Although it’s not
covered here, a time value can be used to look over the cache and clear old items
from the cache. Monitoring the memory use of the cache and removing stale items
can be useful.

 Inside the server handler function serving the files, the first step is to try to get the
file from the in-memory cache. Go’s multiple return handling on a map allows you to
find out whether an item was in the cache and get the value from the cache. Around
the lookup, mutex.RLock and mutex.RUnlock calls are made as part of the setup to
prevent race conditions by parallel requests modifying the cache. These calls are on a
RWMutex object from the sync package. RWMutex enables an arbitrary number of read-
ers or one writer to have access at a time. RLock and RUnlock are for readers. You’ll see
the writer in a moment.

 If the file wasn’t stored in the cache, the process begins to load the file and popu-
late the cache. Because cache will be updated and you don’t want parallel requests

Loads from the cache if
it’s already populated

When the file isn’t in the cache,
starts loading process

Maps can’t be
written to

concurrently
or be read

while being
written to.

Using a mutex
prevents this

from
happening.

Opens the file to cache, making
sure to defer the close

Handles an error when
a file can’t be opened

Copies the file to an
in-memory buffer

Handles errors copying
from file to memory

Puts the bytes into a
Reader for later use

Populates the cache
object and stores it
for later

Serves
the file

from
cache

176 CHAPTER 7 Serving and receiving assets and forms
updating the same cache item, mutex.Lock is called. This waits for any current read-
ers or writers to complete while blocking any future ones. Releasing the lock so that
readers and other writers can access cache is done by deferring the mutex.UnLock call.

 After the lock is in place, an attempt is made to load the file from the filesystem,
with the closing of the file being deferred to the exit of the function. If the file isn’t
found or another error occurs, the 404 Not Found message is displayed. This is a
place where you could optionally cache File Not Found responses and log the error
messages.

 The content of the file is copied into Buffer, and then the bytes are transferred
into a Reader instance. This happens because Buffer can be written to. The content
of the File can be copied into it. Reader implements both the io.Reader
and io.Seeker interfaces needed by ServeContent. To take advantage of the
If-Modified-Since HTTP header, the last modified time is retrieved from the file and
stored in the cache alongside the content itself.

 Finally, the cached file is served using ServeContent. This function does a lot of
work for you. Looking at the requested filename, it attempts to figure out the MIME
type and set the proper headers. It looks at the last modified time and sets the headers
to provide 304 Not Modified HTTP responses where appropriate. When it serves the
content, it figures out information such as the content length to set the appropriate
headers.

TIP Using a memory-caching service such as groupcache (https://github
.com/golang/groupcache) can provide a shared memory cache between serv-
ers. This is useful when the file storage isn’t local, a common situation in file
serving at scale.

Serving files from memory is something that should be done with care. Loading many
files into memory without monitoring runtime memory or cleaning up can cause
problems. These should be monitored and managed, and what’s kept in memory
should be optimized for your use cases. You don’t want a server running out of mem-
ory or an application’s memory footprint to grow unwatched or unregulated.

TECHNIQUE 42 Embedding files in a binary

Sometimes you’ll want to include assets right inside the application binary. Then,
instead of looking for them on the filesystem, they’re included in the application
binary. This can be useful when distributing an application. The binary is the only
thing needing to be distributed, rather than a collection of files to accompany it.

PROBLEM
You want to include static assets, such as images or stylesheets, in a Go binary.

SOLUTION
Store the assets as data assigned to variables in your application. Serve files from these
variables instead of the filesystem. Because of the intricate nature of converting files’

https://github.com/golang/groupcache
https://github.com/golang/groupcache

177TECHNIQUE 42 Embedding files in a binary
bytes and referencing them within your code, use the github.com/GeertJohan/
go.rice package and command-line application to automate this process for you.

DISCUSSION
The idea is simple. Convert a file into bytes, store those bytes and the related informa-
tion in a variable, and use the variable to serve the file via ServeContent from the
http package. Implementing a conversion process yourself while taking into account
the changing state of those files during development, testing, and builds isn’t straight-
forward. That’s why we recommend using a package, such as go.rice, to handle this
process for you.

 go.rice enables you to work with files from the filesystem during development
(for example, when using go run), to use files embedded in the built binary, and to
build files into binaries. The following listing showcases simple file serving using
go.rice.

package main

import (
 "github.com/GeertJohan/go.rice"
 "net/http"
)

func main() {
 box := rice.MustFindBox("../files/")
 httpbox := box.HTTPBox()
 http.ListenAndServe(":8080", http.FileServer(httpbox))
}

Using go.rice has a similar style to serving from the filesystem. Instead of using
http.Dir to specify the directory, rice.MustFindBox is used with the filesystem loca-
tion. Serving of the files happens using the built-in FileServer from the http pack-
age. Instead of passing in an http.Dir object, an HTTPBox object is passed in. HTTPBox
provides the http.FileSystem interface that’s needed for FileServer.

 If this code is run using go run, it will get the files from the filesystem. Building a
binary with the files included takes an extra step. For this extra step, you’ll need the
rice tool that can be installed from a command line as follows:

$ go get github.com/GeertJohan/go.rice/rice

After this tool is installed, you can build a Go binary with the following two commands:

$ rice embed-go
$ go build

The first command, rice embed-go, converts the real filesystem elements into a vir-
tual filesystem inside Go files. This includes the content of the files. It’s important to

Listing 7.7 Embedding files in binaries with go.rice: embedded_files.go

Imports go.rice to handle
file locations for you

Creates a box to
represent a location
on the filesystem

An HTTPBox provides files using
the http.FileSystem interfaceServes files from the box

178 CHAPTER 7 Serving and receiving assets and forms
know that this command uses os.Walk, which doesn’t walk symlinks. The go build
command builds a binary normally. This binary will include the rice-built Go files
containing the virtual filesystem.

TIP Using minification techniques on the files being embedded, such as
removing unneeded whitespace from CSS and JavaScript files, can reduce the
size of the Go binary that’s generated.

The go.rice package can be used with templates. The following listing provides an
example of loading a template from a box.

box := rice.MustFindBox("templates")
templateString, err := box.String("example.html")
if err != nil {
 log.Fatal(err)
}

The go.rice package provides other helpers for the process of working with embed-
ded files. The documentation at https://github.com/GeertJohan/go.rice gets into
the specifics of what you can do with the helper functionality.

TECHNIQUE 43 Serving from an alternative location

At times you’ll want to store and serve the files separately from the application. A com-
mon example is serving a web application’s JavaScript, CSS, and other assets from a
content delivery network (CDN).

PROBLEM
Instead of serving files through the same server as your application, you want to serve
files through an alternative location. The alternative location needs to work with mul-
tiple environments such as your production, testing, and development environments.

SOLUTION
Serve the files from alternative locations, such as a CDN in production. For each envi-
ronment, manage the deployment of files alongside the application and pass the loca-
tion into the application as configuration. Use the location within your template files
to tell browsers where to get the files from.

DISCUSSION
In each environment, you’ll want to have a copy or a representative copy of the appli-
cation’s assets. Although these files may be served separately from the application
pages, they shouldn’t be used from a single source for all environments. This clean
separation, illustrated in figure 7.2, allows any testing environments to be full testing
environments, allows developers to be creative in development environments, and

Listing 7.8 Templates as embedded files

Retrieves the template, which can be
used with template Parse functions,

as a string from the box

Gets a box
pointing to a

templates
directory

https://github.com/GeertJohan/go.rice

179TECHNIQUE 43 Serving from an alternative location
enables safe development and testing whereby a slip-up in development or testing
doesn’t impact production users.

 When the location of the files is different in each environment, the location needs to
be passed into the application as configuration. This can happen via a shared configu-
ration service such as etcd, in configuration files, as arguments passed into the applica-
tion at startup time, or some other means of passing configuration. The following
listing provides a basic example of passing a location in as a command-line argument.

var t *template.Template
var l = flag.String("location", "http://localhost:8080", "A location.")

var tpl = `<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>A Demo</title>
 <link rel="stylesheet" href="{{.Location}}/styles.css">
 </head>
 <body>
 <p>A demo.</p>
 </body>
</html>`

func servePage(res http.ResponseWriter, req *http.Request) {
 data := struct{ Location *string }{
 Location: l,
 }
 t.Execute(res, data)
}

Listing 7.9 Passing a URL location to a template

Application

Assets

Application

Assets

Application

Assets

User’s browser

Development

Testing

Production

Figure 7.2 A browser fetches a different application and asset set in each environment.

Gets the location of the static files
from the application arguments

The path to the CSS is
relative to the location.

An HTTP handler
passing the
location into the
template

180 CHAPTER 7 Serving and receiving assets and forms
This rudimentary example takes a command-line argument for a location and uses it
within a template. When no value is passed into the application, a default is used.

 This example serves to illustrate the idea. In production software, you’d use some-
thing more complicated:

1 Pass the location in as configuration. See chapter 2 for multiple ways you can do
this, including configuration files, etcd, and command-line arguments.

2 If no value is passed in, it should be logged and possibly cause a panic. The lack
of a configuration value shouldn’t allow production, and testing before that, to
serve content pointing to an invalid URL.

3 The location can be attached to a global configuration object and reused across
responses in the application.

If the server handling these files is only serving the files, it should be optimized for
serving static files. For example, if you’re using an Apache web server, you can turn off
modules you don’t need.

 HTTP/2, the most recent version of the HTTP specification, provides features that
may cause you to consider serving files along with application pages. For example,
when a browser requests a page, an HTTP/2 server can respond with the page and any
associated files for the page. The associated files can be sent to the browser even before
it requests them, and all of the files can be sent over the original connection requesting
the page. For this to happen, the server needs to serve the application and files.

NOTE The HTTP/2 specification is documented in RFC 7540 by the Internet
Engineering Task Force. You can read it at https://tools.ietf.org/html/
rfc7540.

Serving content is only half of the process for modern interactive applications. To
complete the cycle, the server needs to handle interaction from users.

7.2 Handling form posts

Working with HTML forms and POST or PUT requests in general is common in web
applications and websites. Go provides much of what you need in the http package
within the standard library. Although the functionality is available under the hood, it’s
not always obvious how you should use it. The following patterns highlight methods
for working with data, whether it’s a form submission or a multipart POST or PUT
request.

7.2.1 Introduction to form requests

When a request is made to a server and it contains form data, that request isn’t pro-
cessed into a usable structure by default. Most of the request handling across most Go
programs doesn’t need to work with form data, so it’s a feature you need to opt into.
Opting in is fairly straightforward. The following example shows the simplest way to
parse form data and get access to it:

https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540

181Handling form posts
func exampleHandler(w http.ResponseWriter, r *http.Request) {
 name := r.FormValue("name")
}

Behind this call to FormValue, a lot is going on. FormValue starts by parsing the form
data into a Go data structure. In this case, it’s looking to parse text form data and mul-
tipart form data, such as files. After the data is parsed, it looks up the key (form field
name) and returns the first value for the key, if one exists. If there’s nothing with this
key, an empty string is returned.

 Although this case makes it look easy, a lot is going on that you may not want, and
there are features that you can’t access here. For example, what if you want to skip
looking for multipart form data and trying to parse it because you know it won’t be
present? Or what if a form field has multiple values, and you want to get at all of them?

 The first step to work with form data is to parse it (see listing 7.10). Inside a request
handler are two methods on the Request object that can parse form data into a Go
data structure. The ParseForm method parses fields that contain text. If you need to
work with binary data or files from the form, you need to use ParseMultipartForm. As
its name suggests, this method works on multipart form data (a form containing con-
tent with different MIME content types). ParseMultipartForm is called by FormValue
in the preceding example if parsing hasn’t happened yet.

 The form data is parsed into two locations:

 The Form property on the Request object will contain the values from the URL
query along with the values submitted as a POST or PUT body. Each key on Form
is an array of values. The FormValue method on Request can be used to get the
first value for a key. That’s the value sitting in the 0 key of the array on Form.

 When you want the values from the POST or PUT body without those from the
URL query, you can use the PostForm property on the Request object. Like
FormValue, the PostFormValue method can retrieve the first value from Post-
Form for a key.

func exampleHandler(w http.ResponseWriter, r *http.Request) {
 err := r.ParseForm()
 if err != nil {
 fmt.Println(err)
 }
 name := r.FormValue("name")
}

This listing contains the handling for a simple form. This simple example works for
forms with only text fields. If a file field were present, it wouldn’t be parsed or accessi-
ble. And it works only for form values that have a single response. HTML forms allow
for multiple responding values. Both of these are covered in the following techniques.

Listing 7.10 Parsing a simple form response

Parses a simple form containing
only text-based fields

Handles any errors that
occurred parsing the formGets the first value for the

name field from the form

182 CHAPTER 7 Serving and receiving assets and forms
TECHNIQUE 44 Accessing multiple values for a form field

Form fields can have more than one value for a name. A common example is check
boxes on a form. You can have a multiple select list using check boxes that, in the
HTML, all have the same name.

PROBLEM
FormValue and PostFormValue each return the first value for a form field. When you
have multiple values, how can you access all of them?

SOLUTION
Instead of using FormValue and PostFormValue to retrieve a field value, look up the
field on the Form or PostForm properties on the Request object. Then iterate over all
the values.

DISCUSSION
When a form field has more than one value, you’ll need to do a little more work to
access it. The following listing shows how to parse a form and retrieve multiple values
for a field.

func exampleHandler(w http.ResponseWriter, r *http.Request) {
 maxMemory := 16 << 20
 err := r.ParseMultipartForm(maxMemory)
 if err != nil {
 fmt.Println(err)
 }
 for k, v := range r.PostForm["names"] {
 fmt.Println(v)
 }
}

The HTTP handler function opens by defining a number for the maximum amount of
memory to use when parsing a multipart form. In this case, the number is 16 mega-
bytes. When ParseMultipartForm is called, the maximum amount of memory for stor-
ing file parts needs to be specified. Parts of files larger than this number will be stored
to disk. The default number used when FormValue or PostFormValue needs to call
ParseMultipartForm is 32 megabytes.

 Instead of using FormValue or PostFormValue to obtain the first value for a form
field, all the values of the names form field are iterated over. The names field on the
PostForm property is used, limiting the values to just those submitted in the POST or
PUT body.

TIP When presenting forms to users and processing forms, use security ele-
ments such as a cross-site request forgery (CSRF) token. For more informa-
tion, see https://en.wikipedia.org/wiki/Cross-site_request_forgery.

Listing 7.11 Parsing a form with multiple values for a field

The maximum memory to store file
parts, where rest is stored to disk

Parses a multipart form
Handles any error
parsing the form

Iterates over all the POST
values of the names form field

https://en.wikipedia.org/wiki/Cross-site_request_forgery

183TECHNIQUE 45 Uploading a single file
7.2.2 Working with files and multipart submissions

After you move from text handling into file handling and multipart submissions that
contain more than one type of content, the way you handle the processing changes. In
its simplest form, you can see this when you upload a file via an online form. The file
has a content type, such as an image, and the other text fields on the form. That’s at
least two types of content that need different handling.

 In this section, you’ll explore the handling of multipart submissions often thought
of as file handling. These submissions can come in via simple and fast file uploads or
large files that need special handling.

TECHNIQUE 45 Uploading a single file

Working with files is different from working with the input from text fields. Each file is
a binary file with surrounding metadata.

PROBLEM
When a file is uploaded with a form, how to you process and save it?

SOLUTION
When a file is uploaded, process the form as a multipart form by using Process-
MultipartForm on the Request object. This picks up the file parts. Then use the
FormFile method on the Request object to access and file fields, uploading a single
file. For each file, you can access the metadata and a file object that’s similar to File
objects from the os package.

DISCUSSION
Handling a file is nearly as straightforward as handling text form data. The difference
lies in the binary file and the metadata surrounding it, such as the filename. The fol-
lowing listing presents a simple file-upload form.

<!doctype html>
<html>
 <head>
 <title>File Upload</title>
 </head>
 <body>
 <form action="/" method="POST" enctype="multipart/form-data">
 <label for="file">File:</label>
 <input type="file" name="file" id="file">

 <button type="submit" name="submit">Submit</button>
 </form>
 </body>
</html>

This form has some important parts. The form method is POST, and its encoding is
in multipart. Being multipart allows the text part of the form to be uploaded and

Listing 7.12 A form with a single-value file-upload field

The form must be
multipart for file uploads.

A single-
value file
field with the
name “file”

A button is needed
to submit the form.

184 CHAPTER 7 Serving and receiving assets and forms

Be su
form fi
leavin

Cr
loca

st
uploa

Co
uploa

to t
processed as text, while the file is handled using its own file type. The input field is
typed for a file, which tells browsers to use a file picker and upload the contents of the
file. This form is served and processed by the handler function for the http package
in the following listing.

func fileForm(w http.ResponseWriter, r *http.Request) {

 if r.Method == "GET" {

 t, _ := template.ParseFiles("file.html")

 t.Execute(w, nil)

 } else {

 f, h, err := r.FormFile("file")

 if err != nil {

 panic(err)

 }

 defer f.Close()

 filename := "/tmp/" + h.Filename

 out, err := os.Create(filename)

if err != nil {

 panic(err)

 }

 defer out.Close()

 io.Copy(out, f)

 fmt.Fprint(w, "Upload complete")

 }

}

This handler, meant to be used with the web server in the http package, handles both
displaying the form and processing the submitted form. It opens by detecting the
method for the request. When a GET request is submitted, it returns the form from list-
ing 7.12. When another HTTP method is used, such as a POST or PUT request, the form
submission is processed.

 The first step used to process the file field is to retrieve it by using the FormFile
method on the Request. If the form hasn’t been parsed, FormFile will call Parse-
MultipartForm. FormFile then returns a multipart.File object, a *multipart
.FileHeader object, and an error if there is one. The *multipart.FileHeader object
has a Filename property that it uses here as part of the location on the local filesystem
to store the upload. To save the file locally, a new file is created on the filesystem and
the contents of the upload are copied into this new file.

 This solution works well for a field with a single file. HTML forms allow for multi-
value fields, and this solution will pick up only the first of the files. For multivalue file
uploads, see the next technique.

Listing 7.13 Handle a single file upload

http handler to display and
process the form in file.html

When the path is accessed with a GET
request, displays the HTML page and form

Gets the file
handler, header
information, and
error for the
form field keyed
by its name

Handles any errors
retrieving the form fieldre to close the

elds file before
g the function.

Creates a local location to
save the file, including the
file’s name. In this case, it’s a
temp location, but a
production application would
have a file store location.

eates a
l file to
ore the
ded file

Be sure to close the
local file before
leaving the function.

pies the
ded file
he local
location

185TECHNIQUE 46 Uploading multiple files
TECHNIQUE 46 Uploading multiple files

File fields on forms can optionally have the multiple attribute. When this attribute is
on the input element, any number of files can be uploaded. In this case, using Form-
File won’t work to process the form. It assumes there’s only one file per input field
and will return only the first file.

PROBLEM
How do you process the files when multiple files are uploaded to a single file-input
field on a form?

SOLUTION
Instead of using FormFile, which handles single files, parse the form and retrieve a
slice with the files from the MultipartForm property on the Request. Then iterate
over the slice, individually handling each file.

DISCUSSION
An input field handling multiple files needs to have only the multiple attribute on it.
For example, the difference between the following listing and the single file-upload
form in listing 7.12 is the multiple attribute.

<!doctype html>
<html>
 <head>
 <title>File Upload</title>
 </head>
 <body>
 <form action="/" method="POST" enctype="multipart/form-data">
 <label for="files">File:</label>
 <input type="file" name="files" id="files" multiple>

 <button type="submit" name="submit">Submit</button>
 </form>
 </body>
</html>

This form, with the multipart encoding, has an input to handle multiple files. The
multiple attribute turns a single file-input field into one accepting multiple files. The
following listing processes this form to handle multiple files.

Listing 7.14 A form with a multiple value file-upload field

The form must be
multipart for file uploads.

A button is needed to
submit the form.

A multivalue file field with
the name “files” and the

multiple attribute

186 CHAPTER 7 Serving and receiving assets and forms

func fileForm(w http.ResponseWriter, r *http.Request) {
 if r.Method == "GET" {
 t, _ := template.ParseFiles("file_multiple.html")
 t.Execute(w, nil)
 } else {
 err := r.ParseMultipartForm(16 << 20)
 if err != nil {
 fmt.Fprint(w, err)
 return
 }

 data := r.MultipartForm
 files := data.File["files"]
 for _, fh := range files {
 f, err := fh.Open()
 defer f.Close()
 if err != nil {
 fmt.Fprint(w, err)
 return
 }

 out, err := os.Create("/tmp/" + fh.Filename)
 defer out.Close()
 if err != nil {
 fmt.Fprint(w, err)
 return
 }

 _, err = io.Copy(out, f)

 if err != nil {
 fmt.Fprintln(w, err)
 return
 }
 }

 fmt.Fprint(w, "Upload complete")
 }
}

This listing contains a handler function for the web server in the http package. It
opens by presenting the form if the request is a GET request rather than one posting a
form. When a request other than a GET request occurs, it handles the form submission.

 Before you can work with the form fields, the form needs to be processed. Calling
ParseMultipartForm on the Request object causes the form to be parsed. This is han-
dled internally by methods such as FormFile used in previous techniques. The value
passed in sets the amount of memory to use for holding form data in memory to
16 MB and the rest of the files will be written to disk as temporary files.

Listing 7.15 Process file form field with multiple files

http handler to display and process the
form in file_multiple.html

When the path is accessed with a GET
request, displays the HTML page and form

Parses the form in
the request and

handles any errors
Retrieves a slice, keyed by the
input name, containing the
files from the MultipartForm

Iterates over the
files uploaded to

the files field

Opens a file handler
for one of the
uploaded filesBe sure to close and

handle any errors
opening a file handler.

Creates a local file to
store the contents of

the uploaded file Be sure to close and
handle any errors when
creating a local file.

Copies the uploaded
file to the location on

the filesystem Handles any errors
copying the uploaded file
to the local file

187TECHNIQUE 47 Verify uploaded file is allowed type
 After the form has been parsed, the fields are available on MultipartForm. The
uploads to the file-input field with the name files are available on the File property
of MultipartForm as a slice of values. Each value is a *multipart.FileHeader object.

 Iterate over the files to process each of them. Calling the Open method on a
*multipart.FileHeader object returns File, a handler for the file. To save the file to
disk, you need to create a new file somewhere to save the contents. The name of the
uploaded file is available in the Filename property on the *multipart.FileHeader.
After you have a local location to store the contents, copy the uploaded file to the
local file by using io.Copy.

 This solution requires moving a level lower in the package API. In doing so, you
open up a little more power while needing to handle a little more on your own.

TECHNIQUE 47 Verify uploaded file is allowed type

When a file is uploaded, it could be any type of file. The upload field could be expect-
ing an image, a document, or something else altogether. But is that what was
uploaded? How would you handle an improper file being uploaded?

 Client-side detection is sometimes seen as an option. For example, input fields
with a type of file can have an accept property with a list of extensions or MIME types,
also referred to as content types. Unfortunately, the accept property isn’t implemented
in all browsers. Even in the browsers where it works, the ability to easily alter the value
makes it unreliable. Type checking needs to happen in your application.

PROBLEM
How can you detect the type of file uploaded to a file field inside your application?

SOLUTION
To get the MIME type for a file, you can use one of a few ways, with varying degrees of
trust in the value:

 When a file is uploaded, the request headers will have a Content-Type field
with either a specific content type, such as image/png, or a general value of
application/octet-stream.

 A file extension is associated with a MIME type and can provide insight into the
type of file being uploaded.

 You can parse the file and detect the content type based on the contents of the
file.

DISCUSSION
The three solutions have varying degrees of trust. The Content-Type field is set by
the application doing the uploading, and the file extension is set by the user upload-
ing the file. These two methods rely on outside parties for accuracy and trust. The
third solution requires parsing the file and knowing what to look for to map to a con-
tent type. This is the most difficult method and uses the most system resources, but is
also the most trusted one. To understand how to use these methods, you’ll look at
each of them.

188 CHAPTER 7 Serving and receiving assets and forms
 When a file is uploaded, as you saw in techniques 45 and 46, a *multipart.File-
Header object is available to interact with. This is the second of the responses from
FormFile on the Request object. The *multipart.FileHeader object has a property
named Header with all of the uploaded header fields including the content type. For
example:

file, header, err := r.FormFile("file")
contentType := header.Header["Content-Type"][0]

Here FormFile is called on a field with the name file. Header fields can be multi-
value. In this case, you’ll need to get the first one, even if there’s only one value. The
content type here will either be a specific MIME type, such as image/png, or a generic
value of application/octet-stream when the type was unknown.

 An alternative to the uploaded header value, the filename’s file extension can pro-
vide insight into the type of file. The mime package includes the function TypeBy-
Extension that attempts to return the MIME type based on the file extension. For
example:

file, header, err := r.FormFile("file")
extension := filepath.Ext(header.Filename)
type := mime.TypeByExtension(extension)

Determining the type based on the file extension provides only some degree of accu-
racy. File extensions can be changed. The standard library contains a limited exten-
sion to MIME type mapping but is capable of reaching out to the operating system to
retrieve a larger list.

 Another option is to parse the file and determine the type from the file itself. You
can perform this type of operation in two ways. The http package contains the func-
tion DetectContentType, capable of detecting the type for a limited number of file
types. These include HTML, text, XML, PDF, PostScript, common image formats, com-
pressed files such as RAR, Zip, and GZip, wave audio files, and WebM video files.

 The following example showcases the DetectContentType function:

file, header, err := r.FormFile("file")
buffer := make([]byte, 512)
_, err = file.Read(buffer)
filetype := http.DetectContentType(buffer)

The buffer is only 512 bytes because DetectContentType looks at only up to the first
512 bytes when determining the type. When it isn’t able to detect a specific type,
application/octet-stream is returned.

 The limited list of content types DetectContentType can detect means you’ll need
another method if you want to detect other common formats such as Microsoft Word
documents, MP4 files, or many other common formats. To parse and detect these
other formats, the easiest method is to integrate with an external MIME sniffing library

189TECHNIQUE 48 Incrementally saving a file
such as the widely used libmagic. At the time of writing, several Go packages provide
bindings to libmagic, making it easy to use from within Go.

NOTE A specification to sniff MIME types is available at http://mimesniff.spec
.whatwg.org/.

7.2.3 Working with raw multipart data

The previous file-handling techniques work well when you’re dealing with small files
or files as a whole, but limit your ability to work with files while they’re being
uploaded. For example, if you’re writing a proxy and want to immediately transfer the
file to another location, the previous techniques will cache large files on the proxy.

 The Go standard library provides both high-level helper functions for common
file-handling situations, and lower-level access that can be used for the less common
ones or when you want to define your own handling.

 The handler function for a request is executed when a request begins, rather than
when a request is completed. Many requests happen quickly, and the helper functions
account for any delay. If you work with, for example, large files, you have an opportu-
nity to act while uploads are happening.

 Instead of using the ParseMultipartForm method on the Request object inside
an http handler function, you can access the raw stream of the request by accessing
the underlying *multipart.Reader object. This object is accessible by using the
MultipartReader method on the Request.

 The following technique uses the lower-level multipart handling. This illustrates
how it works in addition to handling some common cases.

TECHNIQUE 48 Incrementally saving a file

Imagine that you’re building a system meant to handle a lot of large file uploads. The
files aren’t stored on your API server but are instead stored in a back-end service
designed for files. Using ParseMultipartForm is going to put those files into the tem-
porary files directory on your API server while the uploads are in progress. To support
large file uploads with ParseMultipartForm handling, your server would need a large
disk cache for the files and careful handling to make sure it doesn’t get full while par-
allel uploads are happening.

PROBLEM
You want to save the file, as it’s being uploaded, to a location of your choice. That loca-
tion could be on the server, on a shared drive, or on another location altogether.

SOLUTION
Instead of using ParseMultipartForm, read the multipart data from the request as it’s
being uploaded. This can be accessed with the MultipartReader method on the
Request. As files and other information are coming in, chunk by chunk, save and pro-
cess the parts rather than wait for uploads to complete.

http://mimesniff.spec.whatwg.org/
http://mimesniff.spec.whatwg.org/

190 CHAPTER 7 Serving and receiving assets and forms
DISCUSSION
Using an API server as a pass-through for data on its way to a final destination is a com-
mon model. You’ll often see nonfile data being stored in a database. Large file han-
dling or handling a lot of files concurrently presents a problem in local resources, in
storing that much information as a cache on its way to the final location. An easy solu-
tion is to pass the problem on to the final destination, which should already be able to
handle storing large files. Don’t cache them locally if you don’t need to.

 The way to access the multipart stream directly, which is what ParseMultipartForm
does, is to retrieve the reader from the Request with MultipartReader. After you have
the reader, you can loop over the parts and read each one as it comes in.

 When you process a multipart form, you’ll often want to process file fields along
with text fields. The following listing contains a simple form with a text field, file field,
and Submit button.

<!doctype html>
<html>
 <head>
 <title>File Upload</title>
 </head>
 <body>
 <form action="/" method="POST" enctype="multipart/form-data">
 <label for="name">Name:</label>
 <input type="text" name="name" id="name">

 <label for="file">File:</label>
 <input type="file" name="file" id="file">

 <button type="submit" name="submit">Submit</button>
 </form>
 </body>
</html>

The next listing contains an http handler function to display and process the form in
listing 7.16. This handler function displays the form, processes the form, and incre-
mentally saves the file.

func fileForm(w http.ResponseWriter, r *http.Request) {
 if r.Method == "GET" {
 t, _ := template.ParseFiles("file_plus.html")
 t.Execute(w, nil)
 } else {

Listing 7.16 HTML form containing a file and text field

Listing 7.17 Incrementally save uploaded files

A text input field

A file field input field requiring
the form to be multipart

A Submit button
also available as
a field

http handler to display and
process the form in file_plus.html

When the path is accessed with a GET request,
displays the HTML page and form path is accessed

with a GET request, displays the HTML page and form

191TECHNIQUE 48 Incrementally saving a file

f

on
tore
e

 mr, err := r.MultipartReader()
 if err != nil {
 panic("Failed to read multipart message")
 }

 values := make(map[string][]string)
 maxValueBytes := int64(10 << 20)
 for {
 part, err := mr.NextPart()
 if err == io.EOF {
 break
 }

 name := part.FormName()
 if name == "" {
 continue
 }

 filename := part.FileName()
 var b bytes.Buffer
 if filename == "" {
 n, err := io.CopyN(&b, part, maxValueBytes)
 if err != nil && err != io.EOF {
 fmt.Fprint(w, "Error processing form")
 return
 }
 maxValueBytes -= n
 if maxValueBytes == 0 {
 msg := "multipart message too large"
 fmt.Fprint(w, msg)
 return
 }
 values[name] = append(values[name],b.String())
 continue
 }

 dst, err := os.Create("/tmp/" + filename)
 defer dst.Close()
 if err != nil {
 return
 }
 for {
 buffer := make([]byte, 100000)
 cBytes, err := part.Read(buffer)
 if err == io.EOF {
 break
 }
 dst.Write(buffer[0:cBytes])
 }
 }

 fmt.Fprint(w, "Upload complete")
 }
}

Retrieves the multipart
reader giving access to
the uploaded files and
handles any errors

A map to
store form
field values
not relating

to files

10 megabyte
counter for
nonfile field

size

Continues looping until all
of the multipart message
has been read

Attempts to read the next part,
breaking the loop if the end of
the request is reached

Retrieves the name of
the form field,

continuing the loop if
there’s no name

Retrieves the name of
the file if one exists

A buffer to read the
value of a text field intoIf there’s no filename,

treats it as a text field

Copies the contents o
the part into a buffer

If there’s an error reading
the contents of the part,

handles the error

Using a byte counter,
makes sure the total size of

text fields isn’t too large

Puts the content for the form
field into a map for later access

Creates a location
the filesystem to s
the content of a fil

Closes the file when
exiting the http handler

As the file content
of a part is
uploaded, writes
it to the file

192 CHAPTER 7 Serving and receiving assets and forms
This code opens with an http handler function. When it receives a GET HTTP request,
it responds with an HTML form. When that form is posted, it processes the form.

 Because the handler function parses the form, instead of relying on Parse-
MultipartForm, you have a few elements to set up before working with the form itself.
For access to the data on the form as it comes in, you’ll need access to a reader. The
MultipartReader method on the Request object returns *mime.Reader, which you
can use to iterate over the multipart body of the request. This reader consumes input
as needed. For the form fields not being handled as files, you need a place to store the
values. Here a map is created to store the values.

 After the setup is complete, the handler iterates over the parts of the multipart
message. The loop starts by attempting to retrieve the next part of the multipart mes-
sage. If there are no more parts, an io.EOF error is returned and the function breaks
out of the parsing loop. EOF stands for the end of the file.

 The parsing loop can now start handling the parts of the message. It first checks
for the name of the form field by using the FormName method and continues the loop
if there’s no name. Files will have a filename in addition to the name of the field. This
can be retrieved by using the FileName method. The existence of a filename is a way
to distinguish between file and text-field handling.

 When there’s no filename, the handler copies the value of the content of the field
into a buffer and decrements a size counter that starts at 10 megabytes. If the size
counter runs down to 0, the parser returns and provides an error. This is put in place
as a protection against text-field content being too large and consuming too much
memory. 10 MB is quite large and is the default value inside ParseMultipartForm as
well. If no errors occur, the content of the text form field is stored in the values map
previously created and the parsing loop continues on the next part.

 If the parsing loop has reached this point, the form field is a file. A file on the
operating system is created to store the contents of the file. At this point, an alterna-
tive location such as cloud storage could be used to write the file to. Instead of creat-
ing a file on the operating system, a connection to another storage system could be
opened. After the destination is opened, the handler loops over the content of the
part, iteratively reading it as it comes in. Until a notification of the end of the part,
designated with an io.EOF error, comes in, the bytes are written to the destination as
they arrive. For example, if you use this to upload a large file, you can watch the data
slowly being written to the output file while the upload is happening. After the loop
completes, the files are all available on disk and the text fields are available on the
values map.

193Summary
7.3 Summary

Serving files and working with forms are common elements in any web application.
They’re staples of the web, and their use goes back decades. This chapter covered
methods to use them while taking advantage of Go’s helper functionality and power.
These include the following:

 Uploading files to users from a Go server in a variety of ways, depending on
your needs

 Using the Go helper functions for quick and easy access to form submissions
 Working with the underlying parts of the Go form parser and output it provides
 Getting access to the underlying multipart form handling and using it to parse

and manipulate submissions

In the next chapter, you’ll learn about working with REST APIs. You’ll learn about
building them, versioning them, and other characteristics needed to build stable,
production-ready APIs that your applications can consume and that you can expose to
others.

Working with web services
REST APIs are a cornerstone of the modern internet. They enable cloud computing,
have been a pillar in the DevOps and automation movements, and set up client-
side web development, among other things. They’re one of the great enablers on
the internet.

 Although plenty of tutorials about creating and consuming simple APIs are
available, what happens when things don’t go as planned? The internet was
designed to be fault-tolerant. API requests and servers need to enable that fault tol-
erance to work.

 This chapter starts with the basics of REST APIs and quickly moves on to han-
dling cases that don’t go as planned. You’ll look at detecting timeout failures,
including those that Go doesn’t formally flag as timeouts. You’ll also look at resum-
ing file transfers when timeouts happen, and you’ll learn how to pass errors
between an API endpoint and a requesting client.

This chapter covers
 Making REST requests

 Detecting timeouts and resuming downloads

 Passing errors over HTTP

 Parsing JSON, including arbitrary JSON structures

 Versioning REST APIs
194

195Using REST APIs
 Many APIs pass information as JSON. After a quick look at how JSON parsing works
in Go, you’ll learn about handling JSON structures when you don’t know the structure
of the data ahead of time. This is useful when you need to work with poorly defined or
undefined JSON data.

 Functionality within applications changes over time, and this often causes APIs to
change. When APIs change, they need to be versioned. How can APIs be versioned?
You’ll learn a couple of methods for versioning REST APIs.

 From this chapter, you’ll learn how to move from the basics of API handling into
more robust functionality.

8.1 Using REST APIs
The Go standard library includes an HTTP client that’s pretty straightforward for most
common use cases. After you move beyond the common use cases, you’ll see rarer but
still regularly needed cases without a clear solution. Before we touch on a couple of
those, let’s look at how the HTTP client works.

8.1.1 Using the HTTP client

The HTTP client is found in the net/http library within the standard library. It has
helper functions to perform GET, HEAD, and POST requests, can perform virtually any
HTTP request, and can be heavily customized.

 The helper functions are http.Get, http.Head, http.Post, and http.PostForm.
With the exception of http.PostForm, each function is for the HTTP verb its name
suggests. For example, http.PostForm handles POST requests when the data being
posted should be posted as a form. To illustrate how these functions work, the follow-
ing listing shows a simple use of http.Get.

package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
)

func main() {
 res, _ :=

➥http.Get("http://goinpracticebook.com")
 b, _ := ioutil.ReadAll(res.Body)
 res.Body.Close()
 fmt.Printf("%s", b)
}

The helper functions are all backed by the default HTTP client that’s accessible and
can perform any HTTP request. For example, the following listing shows how to use
the default client to make a DELETE request.

Listing 8.1 A simple HTTP get

Performs a
GET request

Reads the body of the response and closes
the Body reader when done reading it

Prints the body to Standard Output

196 CHAPTER 8 Working with web services

package main

import (
 "fmt"
 "net/http"
)

func main() {
 req, _ := http.NewRequest("DELETE",
 ➥"http://example.com/foo/bar", nil)
 res, _ := http.DefaultClient.Do(req)
 fmt.Printf("%s", res.Status)
}

Making a request is broken into two separate parts. The first part is the request, con-
tained in http.Request instances. These contain the information about the request.
The second part is the client that performs a request. In this example, the default cli-
ent is used. By separating the request into its own object, you provide a separation of
concerns. Both of these can be customized. The helper functions wrap creating a
request instance and executing it with a client.

 The default client has configuration and functionality to handle things like HTTP
redirects, cookies, and timeouts. It also has a default transport layer that can be
customized.

 Clients can be customized to allow you to set up the client any way you need to. The
following listing shows the creation of a simple client with a timeout set to one second.

func main() {
 cc := &http.Client{Timeout: time.Second}
 res, err :=

➥cc.Get("http://goinpracticebook.com")
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
 b, _ := ioutil.ReadAll(res.Body)
 res.Body.Close()
 fmt.Printf("%s", b)
}

Custom clients allow numerous elements to be customized, including the transport
layer, cookie handling, and the way that redirects are followed.

8.1.2 When faults happen

The internet was designed with fault tolerance in mind. Things break or don’t work as
expected, and you try to route around the problem while reporting it. In the age of
cloud-native computing, this characteristic has been used to allow applications to

Listing 8.2 DELETE request with default HTTP client

Listing 8.3 A simple custom HTTP client

Creates a new request object set
up for a delete HTTP method

Performs the request
with the default client

Displays the status code from
performing the request

Handles any errors such
as a client timeout

Performs a GET request
using the custom client

Creates a custom HTTP client
with a timeout of one second

197TECHNIQUE 49 Detecting timeouts
move between locations and to be updated in place. When you’re working with HTTP
connections, it’s useful to detect problems, report them, and try to fix them automati-
cally when possible.

TECHNIQUE 49 Detecting timeouts

Connection timeouts are a common problem and useful to detect. For example, if a
timeout error occurs, especially if it’s in the middle of a connection, retrying the oper-
ation might be worthwhile. On retry, the server you were connected to may be back
up, or you could be routed to another working server.

 To detect timeouts in the net package, the errors returned by it have a Timeout()
method that’s set to true in the case of a timeout. Yet, in some cases, a timeout occurs
and Timeout() doesn’t return true, or the error you’re working with comes from
another package, such as url, and doesn’t have the Timeout() method.

 Timeouts are typically detected by the net package when a timeout is explicitly set,
such as in listing 8.3. When a timeout is set, the request needs to complete in the time-
out period. Reading the body is included in the timeout window. But a timeout can
also happen when one isn’t set. In this case, a timeout in the network occurs while the
timeout checking isn’t actively looking for it.

PROBLEM
How can network timeouts be reliably detected?

SOLUTION
When timeouts occur, a small variety of errors occurs. Check the error for each of
these cases to see if it was a timeout.

DISCUSSION
When an error is returned from a net package operation or a package that takes
advantage of net, such as http, check the error against known cases showing a time-
out error. Some of these will be for the explicit cases where a timeout was set and
cleanly detected. Others will be for the cases where a timeout wasn’t set but a timeout
occurred.

 The following listing contains a function that looks at a variety of error situations
to detect whether the error was caused by a timeout.

func hasTimedOut(err error) bool {
 switch err := err.(type) {
 case *url.Error:
 if err, ok := err.Err.(net.Error); ok && err.Timeout() {
 return true
 }

Listing 8.4 Detect a network timeout from error

A function whose response is true or false if
a network timeout caused the error

Uses a type switch to detect
the type of underlying error

A url.Error may be caused by an underlying net
error that can checked for a timeout.

198 CHAPTER 8 Working with web services
 case net.Error:
 if err.Timeout() {
 return true
 }
 case *net.OpError:
 if err.Timeout() {
 return true
 }
 }

 errTxt := "use of closed network connection"
 if err != nil && strings.Contains(err.Error(), errTxt) {
 return true
 }

 return false
}

This function provides the capability to detect a variety of timeout situations. The fol-
lowing snippet is an example of using that function to check whether an error was
caused by a timeout:

res, err := http.Get("http://example.com/test.zip")
if err != nil && hasTimedOut(err) {
 fmt.Println("A timeout error occured")
 return
}

Reliably detecting a timeout is useful, and the next technique highlights this in practice.

TECHNIQUE 50 Timing out and resuming with HTTP

If a large file is being downloaded and a timeout occurs, starting the download from
the beginning isn’t ideal. This is becoming truer with the growth of file sizes. In many
cases, files are gigabytes or larger. It’d be nice to avoid the extra bandwidth use and
time to redownload data.

PROBLEM
You want to resume downloading a file, starting from the end of the data already
downloaded, after a timeout occurs.

SOLUTION
Retry the download again, attempting to use the Range HTTP header in which a range
of bytes to download is specified. This allows you to request a file, starting partway
through the file where it left off.

DISCUSSION
Servers, such as the one provided in the Go standard library, can support serving parts
of a file. This is a fairly common feature in file servers, and the interface for specifying
ranges has been a standard since 1999, when HTTP 1.1 came out:

Looks for timeouts
detected by the net
package

Some errors, without a custom
type or variable to check against,

can indicate a timeout.

199TECHNIQUE 50 Timing out and resuming with HTTP

as

le
 of

 the
te.

An H
con

file
f
y
func main() {
 file, err := os.Create("file.zip")
 if err != nil {
 fmt.Println(err)
 return
 }
 defer file.Close()

 location := https://example.com/file.zip
 err = download(location, file, 100)
 if err != nil {
 fmt.Println(err)
 return
 }

 fi, err := file.Stat()
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Got it with %v bytes downloaded", fi.Size())
}

This snippet creates a local file location, downloads a remote file to it, displays the num-
ber of bytes downloaded, and will retry up to 100 times when a network timeout occurs.
The real work is inside the download function spelled out in the following listing.

func download(location string, file *os.File, retries int64) error {
 req, err := http.NewRequest("GET", location, nil)
 if err != nil {
 return err
 }
 fi, err := file.Stat()
 if err != nil {
 return err
 }
 current := fi.Size()
 if current > 0 {
 start := strconv.FormatInt(current, 10)
 req.Header.Set("Range", "bytes="+start+"-")
 }

 cc := &http.Client{Timeout: 5 * time.Minute}
 res, err := cc.Do(req)
 if err != nil && hasTimedOut(err) {
 if retries > 0 {
 return download(location, file, retries-1)
 }
 return err
 } else if err != nil {
 return err
 }

Listing 8.5 Download with retries

Creates a local file to
store the download

Downloads the remote
file to the local file,
retrying up to 100 times

Displays the size
of the file after
the download is
complete

Creates a new GET
request for the file
being downloaded

Starts the local file to find
the current file information

Retrieves
the size

of the
local file

When the local file already h
content, sets a header
requesting where the local fi
left off. Ranges have an index
0, making the current length
index for the next needed by

TTP client
figured to
explicitly
check for
timeout

Performs the
request for the
or part if part o
the file is alread
stored locally

When checking for an error, tries
the request again if the error was

caused by a timeout

200 CHAPTER 8 Working with web services
 if res.StatusCode < 200 || res.StatusCode >= 300 {
 errFmt := "Unsuccess HTTP request. Status: %s"
 return fmt.Errorf(errFmt, res.Status)
 }

 if res.Header.Get("Accept-Ranges") != "bytes" {
 retries = 0
 }

 _, err = io.Copy(file, res.Body)
 if err != nil && hasTimedOut(err) {
 if retries > 0 {
 return download(location, file, retries-1)
 }
 return err
 } else if err != nil {
 return err
 }

 return nil
}

Although the download function can handle timeouts in a fairly straightforward man-
ner, it can be customized for your cases:

 The timeout is set to five minutes. This can be tuned for your application. A
shorter or longer timeout may provide better performance in your environ-
ment. For example, if you’re downloading files that typically take longer than
five minutes, a timeout longer than most files take will limit the number of
HTTP requests needed for a normal download.

 If a hash of a file is easily available, a check could be put in to make sure that
the final download matches the hash. This integrity check can improve trust in
the final download, even if it takes multiple attempts to download the file.

Checking for errors and attempting to route around the problem can lead to fault-
tolerant features in applications.

8.2 Passing and handling errors over HTTP

Errors are a regular part of passing information over HTTP. Two of the most common
examples are Not Found and Access Denied situations. These situations are common
enough that the HTTP specification includes the capability to pass error information
from the beginning. The Go standard library provides a rudimentary capability to pass
errors. For example, the following listing provides simple HTTP generating an error.

package main

import "net/http"

func displayError(w http.ResponseWriter, r *http.Request) {
 http.Error(w, "An Error Occurred", http.StatusForbidden)
}

Listing 8.6 Passing an error over HTTP

Handles
nonsuccess HTTP
status codes

If the server doesn’t
support serving partial
files, sets retries to 0

Copies
the

remote
response

to the
local file

If a timeout error occurs while
copying the file, tries retrieving

the remaining content

Returns an
HTTP status
403 with a
message

201TECHNIQUE 51 Custom HTTP error passing
func main() {
 http.HandleFunc("/", displayError)
 http.ListenAndServe(":8080", nil)
}

This simple server always returns the error message An Error Occurred. Along with
the custom message, served with a type of text/plain, the HTTP status message is set
to 403, correlating to forbidden access.

 The http package in the standard library has constants for the various status codes.
You can read more about the codes at https://en.wikipedia.org/wiki/List_of_HTTP_
status_codes.

 A client can read the codes the server responds with to learn about what happened
with the request. In listing 8.5, when the res.StatusCode is checked, the client is
looking for a status in the 200 range, which signifies a successful request. The follow-
ing snippet shows a simple example of printing the status:

res, _ := http.Get("http://example.com")
fmt.Println(res.Status)
fmt.Println(res.StatusCode)

The res.Status is a text message for the status. Example responses look like 200 OK
and 404 Not Found. If you’re looking for the error code as a number, res.Status-
Code is the status code as an int.

 Both the response code and the error message are useful for clients. With them,
you can display error messages and automatically handle situations.

8.2.1 Generating custom errors

A plain text error string and an HTTP status code representing an error are often
insufficient. For example, if you’re displaying web pages, you’ll likely want your error
pages to be styled like your application or site. Or if you’re building an API server that
responds with JSON, you’ll likely want error responses to be in JSON as well.

 The first part of working with custom error responses is for the server to generate
them.

TECHNIQUE 51 Custom HTTP error passing

You don’t have much room for customization when using the Error function within
the http package. The response type is hardcoded as plain text, and the X-Content-
Type-Options header is set to nosniff. This header tells some tools, such as Microsoft
Internet Explorer and Google Chrome, to not attempt to detect a content type other
than what was set. This leaves little opportunity to provide a custom error, aside from
the content of the plain text string.

PROBLEM
How can you provide a custom response body and content type when there’s an error?

Sets up all paths to serve the
HTTP handler displayError

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

202 CHAPTER 8 Working with web services

JSONE
functi
simil

http.E
bu

resp
 body is

Make
the

status c
prope
for the

Writes
JSON b
as out
SOLUTION
Instead of using the built-in Error function, use custom functions that send both
the correct HTTP status code and the error text as a more appropriate body for your
situation.

DISCUSSION
Providing error responses that are more than a text message is useful to those con-
suming an application. For example, someone viewing a web page gets a 404 Not
Found error. If this error page is styled like the rest of the site and provides informa-
tion to help users find what they’re looking for, it can guide users rather than only
provide a surprise that what they’re looking for wasn’t found and that they can’t easily
find it.

 A second example involves REST API error messages. APIs are typically used by soft-
ware development kits (SDKs) and applications. For example, if a call to an API
returns a 409 Conflict message, more detail could be provided to guide the user. Is
there an application-specific error code an SDK can use? In addition to the error mes-
sage, is there additional guidance that can be passed to the user?

 To illustrate how this works, let’s look at an error response in JSON. We’ll keep the
same response format as the other REST API responses that provide an application-
specific error code in addition to the HTTP error. Although this example is targeted at
API responses, the same style applies to web pages.

type Error struct {
 HTTPCode int `json:"-"`
 Code int `json:"code,omitempty"`
 Message string `json:"message"`
}

func JSONError(w http.ResponseWriter, e Error) {
 data := struct {
 Err Error `json:"error"`
 }{e}
 b, err := json.Marshal(data)
 if err != nil {
 http.Error(w, "Internal Server Error", 500)
 return
 }
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(e.HTTPCode)
 fmt.Fprint(w, string(b))
}

func displayError(w http.ResponseWriter, r *http.Request) {
 e := Error{
 HTTPCode: http.StatusForbidden,
 Code: 123,
 Message: "An Error Occurred",
 }

Listing 8.7 Custom JSON error response

A type to hold the
information about an
error, including metadata
about its JSON structure

rror
on is
ar to
rror,
t the
onse
JSON

Wraps Error struct
in anonymous struct
with error property

Converts error
data to JSON and
handles an error
if one exists

Sets the
response MIME
type to
application/json

s sure
 HTTP
ode is
rly set
 error

 the
ody
put

Creates an instance
of Error to use for
the response error

203TECHNIQUE 51 Custom HTTP error passing
 JSONError(w, e)
}

func main() {
 http.HandleFunc("/", displayError)
 http.ListenAndServe(":8080", nil)
}

This listing is conceptually similar to listing 8.6. The difference is that listing 8.6
returns a string with the error message, and listing 8.7 returns a JSON response like
the following:

{
 "error": {
 "code": 123,
 "message": "An Error Occurred"
 }
}

After errors are passed as JSON, an application reading them can take advantage of
the data being passed in this structured format. Using errors passed as JSON can be
seen in the next technique.

8.2.2 Reading and using custom errors

Any client can work with HTTP status codes to detect an error. For example, the fol-
lowing snippet detects the various classes of errors:

res, err := http.Get("http://goinpracticebook.com/")

switch {
case 300 <= res.StatusCode && res.StatusCode < 400:
 fmt.Println("Redirect message")
case 400 <= res.StatusCode && res.StatusCode < 500:
 fmt.Println("Client error")
case 500 <= res.StatusCode && res.StatusCode < 600:
 fmt.Println("Server error")
}

The 300 range of messages has to do with redirects. You’ll rarely see these because the
default setting for the HTTP client is to follow up to 10 redirects. The 400 range repre-
sents client errors. Access Denied, Not Found, and other errors are in this range. The
500 range of errors is returned when a server error occurs; something went wrong on
the server.

 Using the status code can provide insight into what’s going on. For example, if the
status code is a 401, you need to log in to see the request. A user interface could then
provide an opportunity to log in to try the request again, or an SDK could attempt to
authenticate or re-authenticate and try the request again.

Returns the error message
as JSON when the HTTP
handler is called

204 CHAPTER 8 Working with web services

Uses
retrieve t

and
htt
TECHNIQUE 52 Reading custom errors

If an application responds with custom errors, such as those generated by technique 51,
this presents an API response with a different structure from the expected response in
addition to there being an error.

PROBLEM
When a custom error with a different structure is returned as an API response, how
can you detect that and handle it differently?

SOLUTION
When a response is returned, check the HTTP status code and MIME type for a possi-
ble error. When one of these returns unexpected values or informs of an error, con-
vert it to an error, return the error, and handle the error.

DISCUSSION
Go is known for explicit error handling, and HTTP status codes are no different.
When an unexpected status is returned from an HTTP request, it can be handled like
other errors. The first step is to return an error when the HTTP request didn’t go as
expected, as shown in the next listing.

type Error struct {

 HTTPCode int `json:"-"`

 Code int `json:"code,omitempty"`

 Message string `json:"message"`

}

func (e Error) Error() string {

 fs := "HTTP: %d, Code: %d, Message: %s"

 return fmt.Sprintf(fs, e.HTTPCode, e.Code, e.Message)

}

func get(u string) (*http.Response, error) {

 res, err := http.Get(u)

 if err != nil {

 return res, err

 }

 if res.StatusCode < 200 || res.StatusCode >= 300 {

 if res.Header.Get("Content-Type") != "application/json" {

 sm := "Unknown error. HTTP status: %s"

 return res, fmt.Errorf(sm, res.Status)

 }

Listing 8.8 Convert HTTP response to an error

Structure to hold
data from the error

The Error method
implements the
error interface on
the Error struct.

The get function should be
used instead of http.Get to
make requests.

 http.Get to
he resource
 return any

p.Get errors

Checks the response content type and
returns an error if it’s not correct

Checks if the response code was
outside the 200 range of

successful responses

205TECHNIQUE 52 Reading custom errors
 b, _ := ioutil.ReadAll(res.Body)

 res.Body.Close()

 var data struct {

 Err Error `json:"error"`

 }

 err = json.Unmarshal(b, &data)

 if err != nil {

 sm := "Unable to parse json: %s. HTTP status: %s"
 return res, fmt.Errorf(sm, err, res.Status)
 }
 data.Err.HTTPCode = res.StatusCode

 return res, data.Err
 }

 return res, nil
}

This code replaces the http.Get function for making a request to a server with the
get function, which handles custom errors. The Error struct, which holds the data
from the error, has the same structure as the error in technique 51. This custom error
handling is designed to work with a server that emits errors in the same way as tech-
nique 51. These two techniques could share a common package defining the error.

 Adding the Error() method to the Error type implements the error interface.
This allows instances of Error to be passed between functions as an error, like any
other error.

 The main function in the following snippet illustrates using the get function
instead of http.Get. Any custom errors will print the custom error details from the
JSON and exit the application:

func main() {
 res, err := get("http://localhost:8080")
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 b, _ := ioutil.ReadAll(res.Body)
 res.Body.Close()
 fmt.Printf("%s", b)
}

Using this technique for getting and passing HTTP errors around applications allows
these errors to get the benefits of other error handling in Go. For example, using
switch statements to test the type of error and reacting appropriately, as listing 8.4
showed, will work for the custom errors.

Reads the body of the
response into a buffer

Parses the JSON
response and

places the data
into a struct and

responds to
any errors

Adds the HTTP
status code to the
Error instanceReturns the custom

error and the response

When there’s no error, returns
the response as expected

206 CHAPTER 8 Working with web services
8.3 Parsing and mapping JSON

When communicating over REST APIs, the most common format to transfer informa-
tion is JSON. Being able to easily and quickly convert JSON strings into native Go data
structures is useful, and the Go standard library provides that functionality out of the
box via the encoding/json package. For example, the following listing parses a simple
JSON data structure into a struct.

package main

import (
 "encoding/json"
 "fmt"
)

type Person struct {
 Name string `json:"name"`
}

var JSON = `{
 "name": "Miracle Max"
}`

func main() {
 var p Person
 err := json.Unmarshal([]byte(JSON), &p)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Println(p)
}

Although the standard library provides everything you need for the foundational
JSON-parsing use cases, you may run into some known and common situations without
an obvious solution.

TECHNIQUE 53 Parsing JSON without knowing the schema

The structure of JSON is often passed along via documentation, examples, and from
reading the structure. Although schemas exist for JSON, such as JSON Schema, they’re
often not used. Not only is JSON schemaless, but API responses may vary the structure,
and in some cases you may not know the structure.

 When JSON data is parsed in Go, it goes into structs with a structure defined in the
code. If you don’t know the structure when the structs are being created, or the struc-
ture changes, that presents a problem. It may seem as though it’s difficult to intro-
spect JSON or operate on documents with a varying structure. That’s not the case.

PROBLEM
How can you parse a JSON data structure into a Go data structure when you don’t
know the structure ahead of time?

Listing 8.9 A simple custom JSON-parsing example

A struct that also represents information
in JSON. The json tag maps the Name
property to name in the JSON.

JSON represented
as a string

An instance of the
Person struct to hold
the parsed JSON data

Parses the JSON data
into the instance of
the Person struct

Handles any
parsing
errors

Acts on the now populated Person
object, in this case printing it

207TECHNIQUE 53 Parsing JSON without knowing the schema
SOLUTION
Parse the JSON into an interface{} instead of a struct. After the JSON is in an inter-
face, you can inspect the data and use it.

DISCUSSION
A little-known feature of the encoding/json package is the capability to parse arbi-
trary JSON into an interface{}. Working with JSON parsed into an interface{} is
quite different from working with JSON parsed into a known structure, because of the
Go type system. The following listing contains an example of parsing JSON this way.

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

var ks = []byte(`{
"firstName": "Jean",
"lastName": "Bartik",
"age": 86,
"education": [
 {
 "institution": "Northwest Missouri State Teachers College",
 "degree": "Bachelor of Science in Mathematics"
 },
 {
 "institution": "University of Pennsylvania",
 "degree": "Masters in English"
 }
],
"spouse": "William Bartik",
"children": [
 "Timothy John Bartik",
 "Jane Helen Bartik",
 "Mary Ruth Bartik"
]
}`)

func main() {
 var f interface{}
 err := json.Unmarshal(ks, &f)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 fmt.Println(f)
}

Listing 8.10 Parse JSON into an interface{}

A JSON document to be
parsed and unmarshaled

A variable instance of type
interface{} to hold the JSON data

Parses the JSON data and puts it
into the interface{} type variable

Handles any errors,
such as invalid JSON

Accesses the JSON data
now on the interface{}

208 CHAPTER 8 Working with web services

Sw
 based

the d
type fo

va
The JSON parsed here contains a variety of structure situations. This is important
because working with the interface{} isn’t the same as working with JSON parsed
into a struct. You’ll look at working with this data in a moment.

 When JSON data is parsed into a struct, such as the example in listing 8.9, it’s eas-
ily accessible. In that case, the name of the person from the parsed JSON is available at
p.Name. If you tried to access firstName on the interface{} in the same way, you’d
see an error. For example:

fmt.Println(f.firstName)

Accessing firstName like a property would generate an error:

f.firstName undefined (type interface {} is interface with no methods)

Before you can work with the data, you need to access it as a type other than interface{}.
In this case, the JSON represents an object, so you can use the type map[string]
interface{}. It provides access to the next level of data. The following is a way to access
firstName:

m := f.(map[string]interface{})
fmt.Println(m["firstName"])

At this point, the top-level keys are all accessible, allowing firstName to be accessible
by name.

 To programmatically walk through the resulting data from the JSON, it’s useful to
know how Go treats the data in the conversion. When the JSON is unmarshaled, the
values in JSON are converted into the following Go types:

 bool for JSON Boolean
 float64 for JSON numbers
 []interface{} for JSON arrays
 map[string]interface{} for JSON objects
 nil for JSON null
 string for JSON strings

Knowing this, you can build functionality to walk the data structure. For example, the
following listing shows functions recursively walking the parsed JSON, printing the key
names, types, and values.

func printJSON(v interface{}) {
 switch vv := v.(type) {
 case string:
 fmt.Println("is string", vv)
 case float64:
 fmt.Println("is float64", vv)
 case []interface{}:
 fmt.Println("is an array:")

Listing 8.11 Walk arbitrary JSON

itch
 on
ata
r a
lue

For each type of data from the JSON,
displays information about the type and
value. On objects and arrays from the
JSON, recursively calls printJSON to
display the properties inside them.

209TECHNIQUE 54 API version in the URL
 for i, u := range vv {
 fmt.Print(i, " ")
 printJSON(u)
 }
 case map[string]interface{}:
 fmt.Println("is an object:")
 for i, u := range vv {
 fmt.Print(i, " ")
 printJSON(u)
 }
 default:
 fmt.Println("Unknown type")
 }
}

Although it’s handy to be able to parse and work with JSON when you don’t know the
structure, it’s useful to have known structures or to handle the version changes when
those structures change. In the next section, you’ll learn about versioning APIs that
includes changes in JSON structures.

8.4 Versioning REST APIs

Web services evolve and change, which leads to changes in the APIs used to access or
manage them. To provide a stable API contract for API consumers, changes to the API
need to be versioned. Because programs are the users of an API, they need to be
updated to account for changes, which takes time after an update is released.

 APIs are typically versioned by major number changes such as v1, v2, and v3. This
number scheme signifies breaking changes to the API. An application designed to work
with v2 of an API won’t be able to consume the v3 API version because it’s too different.

 But what about API changes that add functionality to an existing API? For example,
say that functionality is added to the v1 API. In this case, the API can be incremented
with a point version; feature additions can increment the API to v1.1. This tells devel-
opers and applications about the additions.

 The following two techniques cover a couple of ways to expose versioned APIs.

TECHNIQUE 54 API version in the URL

A change in the API version needs to be easy to see and work with. The easier it is for
developers to see, understand, and consume, the more likely they are to work with it
and to fully use services.

 Versioned APIs that easily work with existing tools are also important. For example,
the ability to quickly test API calls with cURL or Postman, a popular API extension for
Chrome, makes it easier for developers to develop and test APIs.

PROBLEM
What is an easily accessible method to provide versioned APIs?

For each type of data from the JSON,
displays information about the type and
value. On objects and arrays from the
JSON, recursively calls printJSON to
display the properties inside them.

210 CHAPTER 8 Working with web services
SOLUTION
Provide the API version in the REST API URL. For example, instead of providing an API
of https://example.com/api/todos, add a version to the path so it looks like
https://example.com/api/v1/todos.

DISCUSSION
Figure 8.1 illustrates an incredibly popular method for versioning APIs: via the URL.
Google, OpenStack, Salesforce, Twitter, and Facebook are a few examples that use
APIs versioned this way.

As the following listing shows, implementing this URL structure is done when the
mapping between path and handlers occurs.

package main

import (
 "encoding/json"
 "fmt"
 "net/http"
)

type testMessage struct {
 Message string `json:"message"`
}

func displayTest(w http.ResponseWriter, r *http.Request) {
 data := testMessage{"A test message."}
 b, err := json.Marshal(data)
 if err != nil {
 http.Error(w, "Internal Server Error", 500)
 return
 }
 w.Header().Set("Content-Type", "application/json")
 fmt.Fprint(w, string(b))
}

func main() {
 http.HandleFunc("/api/v1/test", displayTest)
 http.ListenAndServe(":8080", nil)
}

In this example, the way the handler function is mapped to the path doesn’t allow you
to easily handle different request methods such as POST, PUT, or DELETE. If an endpoint
represents a resource, the same URL typically handles all these requests. You can find

Listing 8.12 Register the API path including a version

https://example.com/api/v1/todos

The URL prefix to the APIs API version Path to specific API
Figure 8.1 REST API version
in the URL

An example
handler
function
returning a
JSON response

When the handler
function is mapped to
the URL, the API
version is included.

https://example.com/api/todos
https://example.com/api/v1/todos

211TECHNIQUE 55 API version in content type
techniques for handling multiple HTTP methods being mapped to the same URL in
chapter 2.

 Although this is an easy method for passing an API version, it’s not technically
semantic. A URL doesn’t represent an object. Instead, it represents accessing an object
within a version of an API. The trade-off is developer ease. Specifying an API version in
the URL is easier for developers consuming the API.

TECHNIQUE 55 API version in content type

Although the previous technique focused on a method that was easy for developers,
the method wasn’t semantic. Part of the original theory of REST was that a URL repre-
sented something. That could be an object, list, or something else. Based on the
details in the request, such as the requested content type or HTTP method, the
response or action to that object would be different.

PROBLEM
How can API versions be handled in a semantic manner?

SOLUTION
Instead of referencing JSON in the request and response, use a custom content type
that includes the version. For example, instead of working with application/json,
use a custom content type such as application/vnd.mytodo.v1.json or application/
vnd.mytodo.json; version=1.0. These custom types specify the intended schema for
the data.

DISCUSSION
To handle multiple API versions at a single path, as seen in figure 8.2, the handling
needs to take into account the content type in addition to any other characteristics.
Listing 8.13 showcases one method for detecting the content type and using that to
generate the response.

https://example.com/api/v1/todos

The URL prefix to the APIs API version Path to specific API

https://example.com/todos

Path to specific APIThe URL prefix to the APIs

An API-specific path
with the API version
in the URL.

A single URL represents a resource
or group of resources. HTML pages,
JSON listing, and API call are all
available at this URL.

Figure 8.2 Differences between semantic URLs and API version in URL

212 CHAPTER 8 Working with web services

Perfo
the requ
func main() {
 http.HandleFunc("/test", displayTest)
 http.ListenAndServe(":8080", nil)
}

func displayTest(w http.ResponseWriter, r *http.Request) {
 t := r.Header.Get("Accept")
 var err error
 var b []byte
 var ct string
 switch t {
 case "application/vnd.mytodos.json; version=2.0":
 data := testMessageV2{"Version 2"}
 b, err = json.Marshal(data)
 ct = "application/vnd.mytodos.json; version=2.0"
 case "application/vnd.mytodos.json; version=1.0":
 fallthrough
 default:
 data := testMessageV1{"Version 1"}
 b, err = json.Marshal(data)
 ct = "application/vnd.mytodos.json; version=1.0"
 }

 if err != nil {
 http.Error(w, "Internal Server Error", 500)
 return
 }
 w.Header().Set("Content-Type", ct)
 fmt.Fprint(w, string(b))
}

type testMessageV1 struct {
 Message string `json:"message"`
}

type testMessageV2 struct {
 Info string `json:"info"`
}

When a client requests the content, it can specify no content type to get the default
response. But if it wants to use API version 2, it will need to forego a simple GET
request and specify more details. For example, the following snippet requests version
2 and prints out the response:

ct := "application/vnd.mytodos.json; version=2.0"

req, _ := http.NewRequest("GET", "http://localhost:8080/test", nil)

req.Header.Set("Accept", ct)

res, _ := http.DefaultClient.Do(req)

Listing 8.13 Pass the API version in the content type

Registers a path that can
have multiple content types

Detects the content type
that was requested

Generates
different
content to
return based on
different
content types

If an error occurs
in creating the
JSON, returns it

Sets the content
type to the type
that was generatedSends the content

to the requestor

The content type with the API
version to request

Creates a new GET
request to the server
created in listing 8.13

Adds the requested content
type to the request headers

rms
est

213Summary
if res.Header.Get("Content-Type") != ct {

 fmt.Println("Unexpected content type returned")

 return

}

b, _ := ioutil.ReadAll(res.Body)

res.Body.Close()

fmt.Printf("%s", b)

Although this method provides the capability to have multiple API versions from a sin-
gle endpoint, you need to be aware of the following considerations:

 Content types in the vnd. namespace are supposed to be registered with the
Internet Assigned Numbers Authority (IANA).

 When making a request for a nondefault version, you need to add extra steps to
specify the content type for the version. This adds more work to applications
consuming the API.

8.5 Summary

In this chapter, you started with the basics of working with web services such as making
REST requests. You quickly moved from the basics to elements of building robust web
service interactions that included the following:

 Detecting network timeouts, even when the network layer doesn’t formally flag
them, and resuming downloads when timeouts occur.

 Passing errors between API endpoints and client requestors by using and going
beyond the HTTP status header.

 Parsing JSON, even when you don’t know the structure ahead of time.
 Using two methods for versioning REST APIs and working with versioned APIs.

In the next chapter, you’ll learn about working with cloud services. Running applica-
tions effectively in the cloud involves more than working with the APIs that let you
configure them. In chapter 9, you’ll learn techniques to help your Go applications be
effective in the cloud.

Verifies that the
response used the
expected content type

Prints the response body

Part 4

Taking your applications
to the cloud

Cloud computing is changing the way applications are built and operated.
Go is an ideal language for building computing systems and applications that
run in the cloud. Part 4 dives headlong into cloud computing.

 Chapter 9 opens part 4 by describing what cloud computing is and the con-
siderations for building applications running in the cloud. The patterns in this
chapter make it easier to run and monitor applications in the cloud. Chapter 10
continues the cloud theme by showing you services working together and pro-
viding high-performance API communication. This is especially powerful when a
microservice architecture is used.

 Chapter 11 closes out part 4 and the book by looking at reflection and
metaprogramming. Reflection makes working with static types easier and is
widely used in Go because it's inexpensive and accessible. Metaprogramming
enables code generation, which opens a new door to the way some applications
and libraries can be written.

Using the cloud
Cloud computing has become one of the buzzwords of modern computing. Is it just a
buzzword or something more? This chapter opens with an introduction to cloud
computing that explores this question and what cloud computing looks like in a
practical sense. You’ll see how it relates to the traditional models working with
hardware servers and virtual machines.

 Cloud computing is a space filled with various cloud providers. It’s easy to build
an application that ends up being locked into a single vendor. You’ll learn how to
avoid cloud vendor lock-in while architecting code in a manner that’s easier to
develop locally and test.

 When you’re ready to run your application in the cloud, you’ll find situations
you need to work with, such as learning about the host your application is running

This chapter covers
 Introducing cloud computing

 Working with multiple cloud providers

 Gathering information on the cloud host

 Compiling to various operating systems and
architectures

 Monitoring the Go runtime in an application
217

218 CHAPTER 9 Using the cloud
on, monitoring the Go runtime inside every application, and cross-compiling to vari-
ous systems before deploying. You’ll explore how to do this while avoiding pitfalls that
can catch you off guard.

 This chapter rounds out some key cloud concepts. After you’ve completed this
chapter and the previous chapters, you’ll have what you need to build and operate
cloud-based applications written in Go.

9.1 What is cloud computing?

This is one of the fundamental questions that can make all the difference in both soft-
ware development and operating applications. Is cloud a marketing term? Yes. Is there
something else fundamentally different going on? Yes. Given the way the term is
thrown around for use in everything from web applications and phone applications to
physical servers and virtual machines, its meaning can be difficult to navigate for
someone not familiar with the space. In this introductory section, you’ll learn about
cloud computing in a way that you can apply to software development and operations.

9.1.1 The types of cloud computing

In the simplest form of cloud computing, part of a system is managed by someone
else. This can be someone else in your company, an outside service provider, an auto-
mation system, or any combination of these. If an outside service provider is provid-
ing part of the stack, what parts are they providing? Figure 9.1 shows the three forms
of cloud computing and how they compare to an environment where you own the
entire stack.

 With a traditional server or rack of servers, you need to manage all of the compo-
nents of the stack, right down to the physical space holding the hardware. When
changes are needed, someone needs to order the hardware, wait for it to show up,
connect it, and manage it. This can take a bit of time.

Application Application Application Application

Data DataDataData

Runtime Runtime Runtime Runtime

Operating system Operating system Operating system Operating system

VirtualizationVirtualization Virtualization Virtualization

Servers Servers Servers Servers

Storage Storage Storage Storage

Networking Networking NetworkingNetworking

Traditional
Server/Rack

IaaS:
Infrastructure as a service

PaaS:
Platform as a service

SaaS:
Software as a service

M
an

ag
ed

 b
y

yo
u

M
an

ag
ed

 b
y

yo
u

M
an

ag
ed

 b
y

yo
u

Se
rv

ic
e

m
an

ag
ed

Se
rv

ic
e

m
an

ag
ed

Se
rv

ic
e

m
an

ag
ed

Figure 9.1 The types of cloud computing

219What is cloud computing?
INFRASTRUCTURE AS A SERVICE

Accessing infrastructure as a service (IaaS) is different from previous forms of working
with virtual machines. Sure, services have been providing virtual machines and colo-
cated servers for years. When IaaS came into being, the change was the way those serv-
ers were used and accessed.

 Prior to IaaS, you’d typically get a server and then continue to use that server for
months or years. IaaS turned that on its head. Under an IaaS setup, virtual servers are
created and destroyed as needed. When you need a server, it’s created. As soon as you
no longer need it, you return it to the pool of available resources. For example, if you
need to test an idea, you might create many servers, test the idea, and then immedi-
ately get rid of the servers.

 Creating and working with IaaS resources happens via a programmable API. This is
typically a REST API that can be used by command-line tools and applications to man-
age the resources.

 IaaS is about more than servers. Storage, networking, and other forms of infra-
structure are accessible and configurable in the same way. As the name suggests, the
infrastructure is the configurable part. The operating system, runtime environment,
application, and data are all managed by cloud consumers and their management
software.

 Examples of an IaaS include services provided by Amazon Web Services, Microsoft
Azure, and Google Cloud.

PLATFORM AS A SERVICE

Platform as a service (PaaS) differs from IaaS in some important ways. One of the sim-
plest is in how you work with it. To deploy an application to a platform, you use an API
to deploy your application code and supporting metadata, such as the language the
application was written in. The platform takes this information and then builds and
runs the application.

 In this model, the platform manages the operating system and runtime. You don’t
need to start virtual machines, choose their resource sizes, choose an operating sys-
tem, or install system software. Handling those tasks is left up to the platform to man-
age. You gain back the time typically spent managing systems so you can focus on
other tasks such as working on your application.

 To scale applications, instances of the application are created and run in parallel.
In this way, applications are scaled horizontally. A PaaS may be able to do some scaling
automatically, or you can use an API to choose the number of instances yourself.

 Heroku, Cloud Foundry, and Deis are three of the most widely known examples of
a PaaS.

SOFTWARE AS A SERVICE

Say your application needs a database to store data in. You could create a cluster of
virtual machines using IaaS, install the database software and configure it, monitor
the database to make sure everything works properly, and continually update the sys-
tem software for security. Or you could consume a database as a service and leave the

220 CHAPTER 9 Using the cloud
operations, scale, and updates to a service provider. Using APIs, you set up a database
and access it. This ladder case is an example of software as a service (SaaS), shown in
figure 9.2.

 SaaS comprises a wide range of software, from the building blocks to other applica-
tions to consumer applications. Using SaaS for application building blocks, such as
databases and storage, allows teams to focus on the activities that make their applica-
tions different.

 SaaS examples are wide-ranging and include Salesforce, Microsoft Office 365, and
the payment processor Stripe.

9.1.2 Containers and cloud-native applications

When Docker, the container management software, came into the public eye, using
containers to run and distribute applications became popular. Containers are differ-
ent from virtual machines or traditional servers.

 Figure 9.3 compares virtual machines and containers. On the left is a system, going
all the way down to the hardware server, that runs virtual machines. On the right is a
separate system running containers. Each is running two applications as workloads,
with App A being scaled horizontally to have two instances, for a total of three work-
load instances.

 When virtual machines run, the hypervisor provides an environment for an operat-
ing system to run in that emulates hardware or uses special hardware for virtual
machines. Each virtual machine has a guest operating system with its own kernel. Inside
the operating system are all the applications, binaries, and libraries in the operating sys-
tem or set up by the users. Applications run in this environment. When two instances

Software as a service
(e.g., database as a service)

Platform as a service

Infrastructure as a service
(e.g., virtual machines)

Infrastructure as a Service (IaaS) is accessible
to both build applications on and run
other services on.

Platform as a Service (PaaS) is usually run
on IaaS, is accessible to build applications
on, and it can run SaaS applications on it.

Software as a Service (SaaS) can be run in
IaaS or PaaS environments and is accessible
for other applications and people to use.

Figure 9.2 The layers of cloud services can sit on each other.

221What is cloud computing?
of an application run in parallel (which is how horizontal scaling works), the entire
guest operating system, applications, libraries, and your application are replicated.

 Using virtual machines comes with certain architectural elements worth noting:

 When a virtual machine starts up, the kernel and guest operating system need
time to boot up. This takes time because computers take time to boot up.

 Hypervisors and modern hardware can enforce a separation between each vir-
tual machine.

 Virtual machines provide an encapsulated server with resources being assigned
to it. Those resources may be used by that machine or held for that machine.

Containers operate on a different model. The host server, whether it’s a physical
server or virtual machine, runs a container manager. Each container runs in the host
operating system. When using the host kernel, its startup time is almost instantaneous.
Containers share the kernel, and hardware drivers and the operating system enforce a
separation between the containers. The binaries and libraries used, commonly associ-
ated with the operating system, can be entirely separate. For example, in figure 9.3,
App A could be using the Debian binaries and libraries, and App B could be running
on those from CentOS. The applications running in those containers would see their
environment as Debian or CentOS.

 Cloud-native applications is a term that tends to be used alongside containers. Cloud-
native applications take advantage of the programmatic nature of the cloud to scale
with additional instances on demand, remediate failures so many problems in the sys-
tems are never experienced by end users, tie together microservices to build larger
applications, and more. Containers, with their capability to start almost instantly
while being more densely placed on the underlying servers than virtual machines,
provide an ideal environment for scaling, remediation, and microservices.

DEFINITION Remediation is the automatic correction of problems in running
applications. Microservices are small, independent processes that communicate
with other small processes over defined APIs. Microservices are used together
to create larger applications. Microservices are covered in more detail in
chapter 10.

App B

App B

App A1 App A2

App A2App A1
bins/libs bins/libsbins/libs

Guest OS Guest OSGuest OS

Hypervisor

Host OS

Server

bins/libsbins/libs

Host OS

Server

C
on

ta
in

er
 m

an
ag

er

Vi
rtu

al
 m

ac
hi

ne

C
on

ta
in

er

Figure 9.3 Comparing containers and virtual machines

222 CHAPTER 9 Using the cloud
This only scratches the surface of containers, cloud-native computing, and cloud com-
puting in general. If you’re interested in more information, numerous books, training
courses, and other information cover the topic in more detail.

 One of the most important elements of cloud services that we need to look at in
more detail is the way you manage the services. The interface to manage cloud ser-
vices provides a point of interaction for Go applications.

9.2 Managing cloud services
Managing cloud services, whether they’re IaaS, PaaS, or SaaS, typically happens
through an API. This enables command-line tools, custom user interfaces, autono-
mous applications (bots), and other tools to manage the services for you. Cloud ser-
vices are programmable.

 Web applications, such as the web console each cloud service vendor provides,
appear to be simple and effective ways to view and manage cloud services. For some
simple cases, this works. But the full power of the cloud is in the ability to program it.
That includes automatically scaling horizontally, automatically repairing problems,
and operating on large numbers of cloud assets at the same time.

 Each of the cloud providers offers a REST API, and most of the time an SDK is built
to interact with the API. The SDK or the API can be used within your applications to
use the cloud services.

9.2.1 Avoiding cloud provider lock-in

Cloud services are like platforms, and each has its own API. Although they provide the
same or similar feature sets, their programmable REST API is often quite different. An
SDK designed for one service provider won’t work against a competitor. There isn’t a
common API specification that they all implement.

TECHNIQUE 56 Working with multiple cloud providers

Many cloud service providers exist, and they’re distributed all over the world. Some
are region-specific, conforming to local data-sovereignty laws, whereas others are
global companies. Some are public and have an underlying infrastructure that’s
shared with others; others are private, and everything down to the hardware is yours.
These cloud providers can compete on price, features, and the changing needs of the
global landscape.

 Given the continuously changing landscape, it’s useful to remain as flexible as pos-
sible when working with cloud providers. We’ve seen code written specifically for one
cloud provider that has caused an application to become stuck on that provider, even
when the user wanted to switch. Switching would be a lot of work, causing delays in
new features. The trick is to avoid this kind of lock-in up front.

223TECHNIQUE 56 Working with multiple cloud providers

n

t

a
n
PROBLEM
Cloud service providers typically have their own APIs, even when they offer the same
or similar features. Writing an application to work with one API can lead to lock-in
with that API and that vendor.

SOLUTION
The solution has two parts. First, create an interface to describe your cloud interac-
tions. If you need to save a file or create a server instance, have a definition on the
interface for that. When you need to use these cloud features, be sure to use the
interface.

 Second, create an implementation of the interface for each cloud provider you’re
going to use. Switching cloud service providers becomes as simple as writing an imple-
mentation of an interface.

DISCUSSION
This is an old model that’s proven to be effective. Imagine if computers could work with
only a single printer manufacturer. Instead, operating systems have interfaces, and driv-
ers are written to connect the two. This same idea can apply to cloud providers.

 The first step is to define and use an interface for a piece of functionality rather
than to write the software to use a specific provider’s implementation. The following
listing provides an example of one designed to work with files.

type File interface {

 Load(string) (io.ReadCloser, error)

 Save(string, io.ReadSeeker) error

}

File handling is a useful case to look at because cloud providers offer different types of
file storage, operators have differing APIs, and file handling is a common operation.

 After an interface is defined, you need a first implementation. The easiest one,
which allows you to test and locally develop your application, is to use the local filesys-
tem as a store. This allows you to make sure the application is working before intro-
ducing network operations or a cloud provider. The following listing showcases an
implementation of the File interface that loads and saves from the local filesystem.

type LocalFile struct {
 Base string
}

func (l LocalFile) Load(path string) (io.ReadCloser, error) {
 p := filepath.Join(l.Base, path)
 return os.Open(p)
}

Listing 9.1 Interface for cloud functionality

Listing 9.2 Simple implementation of cloud file storage

An interface for working with files

Generic methods for working with files.
The names contain no details of the
underlying implementations.

A struct for the foundation of the
implementation. The Base property
stores the base path for file storage.

Opens a file stored
locally or returns a
error. os.File
instances implemen
the io.ReadCloser
interface, allowing
return from os.Ope
to work.

224 CHAPTER 9 Using the cloud
func (l LocalFile) Save(path string, body io.ReadSeeker) error {

 p := filepath.Join(l.Base, path)
 d := filepath.Dir(p)
 err := os.MkdirAll(d, os.ModeDir|os.ModePerm)
 if err != nil {
 return err
 }

 f, err := os.Create(p)
 if err != nil {
 return err
 }
 defer f.Close()

 _, err = io.Copy(f, body)
 return err
}

After you have this basic implementation, you can write application code that can use
it. The following listing shows a simple example of saving and loading a file.

func main() {
 content := `Lorem ipsum dolor sit amet, consectetur` +
 `adipiscing elit. Donec a diam lectus.Sed sit` +
 `amet ipsum mauris. Maecenascongue ligula ac` +
 `quam viverra nec consectetur ante hendrerit.`
 body := bytes.NewReader([]byte(content))

 store, err := fileStore()
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 fmt.Println("Storing content...")
 err = store.Save("foo/bar", body)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 fmt.Println("Retrieving content...")
 c, err := store.Load("foo/bar")
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
 o, err := ioutil.ReadAll(c)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
 fmt.Println(string(o))
}

Listing 9.3 Example using a cloud provider interface

Saving files requires making
sure the local directory exists
for the requested path and
copying the contents to the
saved file location.

Example content
placed in an instance
implementing the
io.ReadSeeker
interface

Retrieves a store
implementing the File
interface from listing 9.1
and handles any errors

Saves the example
content to the file store

Retrieves and prints out
content from the file store

225TECHNIQUE 57 Cleanly handling cloud provider errors
The fileStore function retrieves an object implementing the File interface from
listing 9.1. That could be an implementation connected to a cloud provider such as
Amazon Web Services, Google Cloud, or Microsoft Azure. A variety of types of cloud
file storage are available, including object storage, block storage, and file storage. The
implementation could be connected to any of these. Although the implementation
can vary, where it’s used isn’t tied to any one implementation.

 The file store to use can be chosen by configuration, which was covered in chapter
2. In the configuration, the details of the type and any credentials can be stored. The
credentials are important because development and testing should happen by using
different account details from production.

 In this example, the following function uses the local filesystem to store and
retrieve files. In an application, the path will likely be a specific location:

func fileStore() (File, error) {
 return &LocalFile{Base: "."}, nil
}

This same concept applies to every interaction with a cloud provider, whether it’s add-
ing compute resourcing (for example, creating virtual machines), adding users to an
SaaS customer relationship management (CRM) system, or anything else.

9.2.2 Dealing with divergent errors

Handling errors is just as important as handling successful operations when interact-
ing with different cloud providers. Part of what has made the internet and those
known for using the cloud successful is handling errors well.

TECHNIQUE 57 Cleanly handling cloud provider errors

In technique 56, errors from the Load and Save methods were bubbled up to the code
that called them. In practice, details from the errors saving to the local filesystem or
any cloud provider, which are different in each implementation, were bubbled up to
the application code.

 If the application code that calls methods such as Load and Save is going to display
errors to end users or attempt to detect meaning from the errors in order to act on
them, you can quickly run into problems when working with multiple cloud providers.
Each cloud provider, SDK, or implementation can have different errors. Instead of
having a clean interface, such as the File interface in listing 9.1, the application code
needs to know details about the implementations errors.

PROBLEM
How can application code handle interchangeable implementations of an interface
while displaying or acting on errors returned by methods in the interface?

SOLUTION
Along with the methods on an interface, define and export errors. Instead of return-
ing implementation-specific errors, return package errors.

226 CHAPTER 9 Using the cloud
DISCUSSION
Continuing the examples from technique 56, the following listing defines several
common errors to go along with the interface.

var (
 ErrFileNotFound = errors.New("File not found")
 ErrCannotLoadFile = errors.New("Unable to load file")
 ErrCannotSaveFile = errors.New("Unable to save file")
)

By defining the errors as variables that are exported by the package, they can be used
in comparisons. For example:

if err == ErrFileNotFound {
fmt.Println("Cannot find the file")
}

To illustrate using these errors in implementations of an interface, the following list-
ing rewrites the Load method from listing 9.2 to use these errors.

func (l LocalFile) Load(path string) (io.ReadCloser, error) {
 p := filepath.Join(l.Base, path)
 var oerr error
 o, err := os.Open(p)
 if err != nil && os.IsNotExist(err) {
 log.Printf("Unable to find %s", path)
 oerr = ErrFileNotFound
 } else if err != nil {
 log.Printf("Error loading file %s, err: %s", path, err)
 oerr = ErrCannotLoadFile
 }
 return o, oerr
}

Logging the original error is important. If a problem occurs when connecting to the
remote system, that problem needs to be logged. A monitoring system can catch
errors communicating with external systems and raise alerts so you have an opportu-
nity to remediate the problems.

 By logging the original error and returning a common error, the implementation
error can be caught and handled, if necessary. The code calling this method can know
how to act on returned errors without knowing about the implementation.

Listing 9.4 Errors to go with cloud functionality interface

Listing 9.5 Adding errors to file load method

Three package-
exported errors
to go along with
the interface in
listing 9.1

A variable to store the returned
error. It defaults to nil.

When a file isn’t found, handles the
error to return the File Not Found error

Logs the original error
so it’s not lost

Handles errors other
than files not being found

with a similar pattern

Returns the package
error, if there is one,
along with the file

227TECHNIQUE 58 Gathering information on the host
 Logging is important to observe an application operating in its environment and
debug issues, but that’s just the beginning of operating in the cloud. Detecting the
environment, building in environment tolerance, monitoring the runtime, detecting
information when it’s needed, and numerous other characteristics affect how well it
runs and your ability to tune the application. Next you’ll look at applications running
in the cloud.

9.3 Running on cloud servers

When an application is being built to run in the cloud, at times you may know all the
details of the environment, but at other times information will be limited. Building
applications that are tolerant to unknown environments will aid in the detection and
handling of problems that could arise.

 At the same time, you may develop applications on one operating system and
architecture but need to operate them on another. For example, you could develop
an application on Windows or Mac OS X and operate it on Linux in production.

 In this section, you’ll explore how to avoid pitfalls that can come from assuming
too much about an environment.

9.3.1 Performing runtime detection

It’s usually a good idea to detect the environment at runtime rather than to assume
characteristics of it in your code. Because Go applications communicate with the ker-
nel, one thing you need to know is that if you’re on Linux, Windows, or another sys-
tem, details beyond the kernel that Go was compiled for can be detected at runtime.
This allows a Go application to run on Red Hat Linux or Ubuntu. Or a Go application
can tell you if a dependency is missing, which makes troubleshooting much easier.

TECHNIQUE 58 Gathering information on the host

Cloud applications can run in multiple environments such as development, testing,
and production environments. They can scale horizontally, with the potential to have
many instances dynamically scheduled. And they can run in multiple data centers at
the same time. Being run in this manner makes it difficult to assume information
about the environment or pass in all the details with application configuration.

 Instead of knowing through configuration, or assuming host environment details,
it’s possible to detect information about the environment.

PROBLEM
How can information about a host be detected within a Go application?

SOLUTION
The os package enables you to get information about the underlying system. Informa-
tion from the os package can be combined with information detected through other
packages, such as net, or from calls to external applications.

228 CHAPTER 9 Using the cloud
DISCUSSION
The os package has the capability to detect a wide range of details about the environ-
ment. The following list highlights several examples:

 os.Hostname() returns the kernel’s value for the hostname.
 The process ID for the application can be retrieved with os.Getpid().
 Operating systems can and do have different path and path list separators.

Using os.PathSeparator or os.PathListSeparator instead of characters
allows applications to work with the system they’re running on.

 To find the current working directory, use os.Getwd().

Information from the os package can be used in combination with other information
to know more about a host. For example, if you try to look up the IP addresses for the
machine an application is running on by looking at all the addresses associated with
all the interfaces to the machine, you can end up with a long list. That list would
include the localhost loop-back and IPv4 and IPv6 addresses, even when one case may
not be routable to the machine. To find the IP address to use, an application can look
up the hostname, known by the system, and find the associated IP address. The follow-
ing listing shows this method.

func main() {
 name, err := os.Hostname()
 if err != nil {
 fmt.Println(err)
 return
 }

 addrs, err := net.LookupHost(name)
 if err != nil {
 fmt.Println(err)
 return
 }

 for _, a := range addrs {
 fmt.Println(a)
 }

The system knows its own hostname, and looking up the address for that hostname
will return the local one. This is useful for an application that can be run in a variety
of environments or scaled horizontally. The hostname and address information could
change or have a high rate of variability.

 Go applications can be compiled for a variety of operating systems and run in vari-
ous environments. Applications can detect information about their environment
rather that assuming it. This removes the opportunity for bugs or other unexpected
situations.

Listing 9.6 Look up the host’s IP addresses via the hostname

Retrieves the hostname
as the kernel knows it

Looks up the IP
addresses associated
with the hostname

Prints each of the IP addresses, as
there can be more than one

229TECHNIQUE 59 Detecting dependencies
TECHNIQUE 59 Detecting dependencies

In addition to communicating with the kernel or base operating system, Go applica-
tions can call other applications on the system. This is typically accomplished with the
os/exec package from the standard library. But what happens if the application being
called isn’t installed? Assuming that a dependency is present can lead to unexpected
behavior, and a failure to detect any issues in a reportable way makes detecting the
problem in your application more difficult.

PROBLEM
How can you ensure that it’s okay to execute an application before calling it?

SOLUTION
Prior to calling a dependent application for the first time, detect whether the applica-
tion is installed and available for you to use. If the application isn’t present, log an
error to help with troubleshooting.

DISCUSSION
We’ve already talked about how Go applications can run on a variety of operating sys-
tems. For example, if an application is compiled for Linux, it could be running on a
variety of distributions with different applications installed. If your application relies
on another application, it may or may not be installed. This becomes more compli-
cated with the number of distributions available and used in the cloud. Some special-
ized Linux distributions for the cloud are small, with limited or virtually no commands
installed.

 Anytime a cloud application relies on another application being installed, it
should validate that dependency and log the absence of the missing component. This
is relatively straightforward to do with the os/exec package. The following listing pro-
vides a function to perform detection.

func checkDep(name string) error {
 if _, err := exec.LookPath(name); err != nil {
 es := "Could not find '%s' in PATH: %s"
 return fmt.Errorf(es, name, err)
 }

 return nil
}

This function can be used within the flow of an application to check whether a depen-
dency exists. The following snippet shows an example of checking and acting on an
error:

Listing 9.7 Function to check whether the application is available

Checks whether the passed-in dependency is in one of
the PATHs. When not present, an error is generated.

Returns an error when the
dependency isn’t found

Returning nil if
there was no error

230 CHAPTER 9 Using the cloud
err := checkDep("fortune")
if err != nil {
 log.Fatalln(err)
}

fmt.Println("Time to get your fortunte")

In this example, the error is logged when a dependency isn’t installed. Logging isn’t
always the action to take. There may be a fallback method to retrieve the missing
dependency or an alternative dependency to use. Sometimes a missing dependency
may be fatal to an application, and other times it can skip an action when a depen-
dency isn’t installed. When you know something is missing, you can handle the situa-
tion appropriately.

9.3.2 Building for the cloud

There’s no one hardware architecture or operating system for the cloud. You may
write an application for the AMD64 architecture running on Windows and later find
you need to run it on ARM8 and a Linux distribution. Building for the cloud requires
designing to support multiple environments, which is easier handled up front in
development and is something the standard library can help you with.

TECHNIQUE 60 Cross-compiling

In addition to the variety of environments in cloud computing, it’s not unusual to
develop a Go application on Microsoft Windows or Apple’s OS X and want to operate
it on a Linux distribution in production, or to distribute an application via the cloud
with versions for Windows, OS X, and Linux. In a variety of situations, an application is
developed in one operating system but needs to run in a different one.

PROBLEM
How can you compile for architectures and operating systems other than the one
you’re currently on?

SOLUTION
The go toolchain provides the ability to cross-compile to other architectures and oper-
ating systems. In addition to the go toolchain, gox allows you to cross-compile multiple
binaries in parallel. You also can use packages, such as filepath, to handle differ-
ences between operating systems instead of hardcoding values, such as the POSIX path
separator /.

DISCUSSION
As of Go 1.5, the compiler installed with the go toolchain can cross-compile out of the
box. This is done by setting the GOARCH and GOOS environment variables to specify the
architecture and operating system. GOARCH specifies the hardware architecture such as
amd64, 386, or arm, whereas GOOS specifies the operating system such as windows,
linux, darwin, or freebsd.

 The following example provides a quick illustration:

$ GOOS=windows GOARCH=386 go build

231TECHNIQUE 60 Cross-compiling
This tells go to build a Windows binary for the 386 architecture. Specifically, the
resulting executable will be of the type “PE32 executable for MS Windows (console)
Intel 80386 32-bit.”

WARNING If your application is using cgo to interact with C libraries, com-
plications can arise. Be sure to test the applications on all cross-compiled
platforms.

If you want to compile to multiple operating systems and architectures, one option is
gox, which enables building multiple binaries concurrently, as shown in figure 9.4.

You can install gox as follows:

$ go get -u github.com/mitchellh/gox

After gox is installed, you can create binaries in parallel by using the gox command.
The following listing provides an example of building an application for OS X, Win-
dows, and Linux on both the AMD64 and 386 architectures.

$ gox \
 -os="linux darwin windows " \
 -arch="amd64 386" \
 -output="dist/{{.OS}}-{{.Arch}}/{{.Dir}}" .

When building binaries in other operating systems—especially when operating them
in the cloud—it’s a best practice to test the result before deploying. This way, any envi-
ronment bugs can be detected before deploying to that environment.

Listing 9.8 Cross-compile an application with gox

gox

linux amd64 build

linux 386 build

windows amd64 build

darwin amd64 build

...

The operating system and architecture
combinations to build are passed into gox.

The binaries are built concurrently.

Figure 9.4 gox builds binaries for different
operating systems and architectures concurrently.

Uses the os flag to
specify multiple
operating systems The arch flag is used

to specify one or
more architectures.

A template is used to specify the output location. This way, binaries
with the same name end up in different identifying directories.

232 CHAPTER 9 Using the cloud
 Besides compiling for different environments, differences between operating systems
need to be handled within an application. Go has two useful parts to help with that.

 First, packages provide a single interface that handles differences behind the
scenes. For example, one of the most well-known is the difference between path and
path list separators. On Linux and other POSIX-based systems, these are / and :,
respectively. On Windows, they’re \ and ;. Instead of assuming these, use the
path/filepath package to make sure any paths are handled safely. This package pro-
vides features such as the following:

 filepath.Separator and filepath.ListSeparator—Represent the appropri-
ate path and list separator values on any operating system the application is
compiled to. You can use these when you need direct access to the separators.

 filepath.ToSlash—Take a string representing a path and convert the separa-
tors to the correct value.

 filepath.Split and filepath.SplitList—Split a path into its parts or split a
list of paths into individual paths. Again, the correct separators will be used.

 filepath.Join—Join a list of parts into a path, using the correct separator for
the operating system.

The go toolchain also has build tags that allow code files to be filtered, based on
details such as operating system and architecture when being compiled. A build tag is
at the start of a file and looks like this:

// +build !windows

This special comment tells the compiler to skip this file on Windows. Build tags can
have multiple values. The following example skips building a file on Linux or OS X
(darwin):

// +build !linux,!darwin

These values are linked to GOOS and GOARCH options.
 Go also provides the ability to name files in such a way that they’re picked up for

the different environments. For example, foo_windows.go would be compiled and
used for a Windows build, and foo_386.go would be used when compiling for the 386
(sometimes called x86) hardware architecture.

 These features enable applications to be written for multiple platforms while work-
ing around their differences and tapping into what makes them unique.

9.3.3 Performing runtime monitoring

Monitoring is an important part of operating applications. It’s typical to monitor run-
ning systems to find issues, to detect when the load has reached levels that require scal-
ing up or down, or to understand what’s going on within an application to speed it up.

 The easiest way to monitor an application is to write issues and other details to a
log. The log subsystem can write to disk and another application can read it or the log
subsystem can push it out to a monitoring application.

233TECHNIQUE 61 Monitoring the Go runtime

ly,

on
TECHNIQUE 61 Monitoring the Go runtime

Go applications include more than application code or code from libraries. The Go
runtime sits in the background, handling the concurrency, garbage collection,
threads, and other aspects of the application.

 The runtime has access to a wealth of information. That includes the number of
processors seen by the application, current number of goroutines, details on memory
allocation and usage, details on garbage collection, and more. This information can
be useful for identifying problems within the application or for triggering events such
as horizontal scaling.

PROBLEM
How can your application log or otherwise monitor the Go runtime?

SOLUTION
The runtime and runtime/debug packages provide access to the information within
the runtime. Retrieve information from the runtime by using these packages and
write it to the logs or other monitoring service at regular intervals.

DISCUSSION
Imagine that an imported library update includes a serious bug that causes the gorou-
tines it created to stop going away. The goroutines slowly accumulate so that millions
of them are being handled by the runtime when it should have been hundreds. (We,
the authors, don’t need to imagine this situation, because we’ve encountered it.)
Monitoring the runtime enables you to see when something like this happens.

 When an application starts up, it can start a goroutine to monitor the runtime and
write details to a log. Running in a goroutine allows you to run the monitoring and
write to the logs concurrently, alongside the rest of the application, as the following
listing shows.

func monitorRuntime() {
 log.Println("Number of CPUs:", runtime.NumCPU())
 m := &runtime.MemStats{}
 for {
 r := runtime.NumGoroutine()
 log.Println("Number of goroutines", r)

 runtime.ReadMemStats(m)
 log.Println("Allocated memory", m.Alloc)
 time.Sleep(10 * time.Second)
 }
}

func main() {
 go monitorRuntime()

Listing 9.9 Monitor an application’s runtime

A function to monitor the runtime When monitoring starts,
reports the number of
processors available

Loops
continuous
pausing
for 10
seconds
between
each iterati

Logs the number
of goroutines
and amount of
allocated
memory

When the application starts, begins monitoring
the application

234 CHAPTER 9 Using the cloud
 i := 0
 for i < 40 {
 go func() {
 time.Sleep(15 * time.Second)
 }()
 i = i + 1
 time.Sleep(1 * time.Second)
 }
}

It’s important to know that calls to runtime.ReadMemStats momentarily halt the Go
runtime, which can have a performance impact on your application. You don’t want
to do this often, and you may want to perform operations that halt the Go runtime
only when in a debug mode.

 Organizing your runtime monitoring this way allows you to replace writing to the
log with interaction with an outside monitoring service. For example, if you were
using one of the services from New Relic, a monitoring service, you would send the
runtime data to their API or invoke a library to do this.

 The runtime package has access to a wealth of information:

 Information on garbage collection, including when the last pass was, the heap
size that will cause the next to trigger, how long the last garbage collection pass
took, and more

 Heap statistics, such as the number of objects it includes, the heap size, how
much of the heap is in use, and so forth

 The number of goroutines, processors, and cgo calls

We’ve found that monitoring the runtime can provide unexpected knowledge and
highlight bugs. It can help you find goroutine issues, memory leaks, or other problems.

9.4 Summary

Cloud computing has become one of the biggest trends in computing and is some-
thing Go is quite adept at. In this chapter, you learned about using Go in the cloud.
Whereas previous chapters touched on complementary topics to cloud computing,
this chapter covered aspects for making successful Go applications in the cloud,
including the following:

 Working with various cloud providers, while avoiding vendor lock-in
 Gathering information about the host rather than assuming details of it
 Compiling applications for varying operating systems and avoiding operating

system lock-in
 Monitoring the Go runtime to detect issues and details about a running

application

In the next chapter, you’ll explore communicating between cloud services by using
techniques other than REST APIs.

Creates example
goroutines and memory
usage while the
application runs for 40
seconds

Communication between
cloud services
Representational State Transfer (REST) is the most common form of communica-
tion between services, and the most common data format used to transfer informa-
tion is JSON. REST is an incredibly powerful way to expose interacting with
applications to developers and the applications they build.

 When communicating between cloud services or microservices within a broader
application, you have options besides REST. Some of these options provide for
faster communication that uses less bandwidth. In a microservice architecture, in
which network communications come into play and can make a real performance
difference, some areas can be optimized.

This chapter covers
 Introducing microservice communication

 Reusing connections between services for faster
performance

 Providing faster JSON marshaling and unmarshaling

 Using protocol buffers for faster payload transfer

 Communicating over RPC
235

236 CHAPTER 10 Communication between cloud services
 In this chapter, you’ll first learn about a microservice architecture and how the net-
work can become a bottleneck or cause performance slowdowns when these services
communicate. From there, you’ll learn techniques that can speed up REST communi-
cations—in particular, JSON communications. Then you’ll explore communication
techniques other than REST and JSON that can provide an alternative approach.

 After this chapter, you’ll be able to move beyond the REST communication tech-
niques covered in this book and into faster alternatives used by microservices operat-
ing quickly and at scale.

10.1 Microservices and high availability

Applications built with a microservice architecture are created as collections of inde-
pendently deployable services. The rise of complex systems, the desire to indepen-
dently scale parts of an application, and the need to have applications that are less
brittle and more resilient have led to the rise of these microservices. Examples of
microservices include configuration manager applications such as etcd, or applica-
tions that transcode media from one format to another. Microservices tend to have
the following characteristics:

 Perform a single action. For example, store configuration or transcode media
from one format to another.

 Elastic and can be horizontally scaled. As load on a microservice changes, it can
be scaled up or down as needed.

 Resilient to failures and problems. The service can be deployed so that it
doesn’t go offline, even when instances of the application have problems.

This is similar to and inspired by the UNIX philosophy of Do one thing and do it well.
 Imagine that you’re building a service that transcodes media from one format to

another. A user can upload media, the format is transcoded, and later the media in
the new format is available for download. This could be built as a monolithic applica-
tion in which all elements are part of the same application, or as microservices with
different functional parts that are their own applications.

 A simple transcoding application built using microservices is illustrated in figure 10.1.

User
User

interface

API server

Message queue

Transcoder

Notifications

File storage

Each part of a transcoding
application is a separate
microservice that
communicates with
other parts via APIs.

Figure 10.1 A simple transcoding application broken into microservices

237Communicating between services
In this application, media is uploaded through the user interface to the API server. The
API server puts the media in the file store and places a job to transcode the media
into a message queue. Transcoders pull the job from the message queue, transcode
the media into a new format, place the new file into file storage, and place a job
into the queue to notify the user that the transcoding is complete. From the user inter-
face, the user can retrieve the transcoded file. The user interface communicates with
the API server to retrieve the file from storage.

 Each of these microservices can be written in a different programming language,
reused on different applications, and may even be consumed as a service. For exam-
ple, file storage could be an object storage consumed as software as a service.

 Scaling each of these services depends on the needs of the service. For example,
the transcoder service can scale depending on how much media needs to be
transcoded. The API server and notifications service can scale differently from the
transcoder, depending on the appropriate amount of resources they need.

 Users have the expectation that services never go offline. The days of maintenance
windows during which services aren’t available are in the past. Accidental outages can
lose user trust and reduce income. One of the advantages of microservices is that each
service can be made highly available in a method most appropriate for that service.
For example, keeping an API server highly available is different from keeping a mes-
sage queue highly available.

10.2 Communicating between services

One of the key elements in a microservice architecture is communication between the
microservices. If not well done, this can become a bottleneck in the performance of
an application.

 In the transcoding example in figure 10.1, four microservices are communicating
with each other when uploading a new piece of media to be transcoded. If these used
REST to communicate and the communications were over TLS, which is typical, a sig-
nificant amount of time would be spent in network communications.

 The performance of communications becomes more important when you use an
increasing number of microservices. Companies such as Google, which are known for
using microservice architectures, have gone so far as to create new, faster ways to com-
municate between microservices and build their own networking layer that outper-
forms what’s being sold in the market.

 Faster communication is something you can bring to your applications. As you’ll
see in this chapter, it isn’t that complicated to implement.

10.2.1 Making REST faster

REST is the most common form of communication used in web and cloud services.
Although transferring representational state data over HTTP is common, it’s not effi-
cient or as fast as other protocols. Most setups aren’t optimized out of the box, either.
This often makes communication a place to speed up application performance.

238 CHAPTER 10 Communication between cloud services
TECHNIQUE 62 Reusing connections

It’s not unusual for each HTTP request to be made over its own connection. Negotiat-
ing each connection takes time, including the time to negotiate TLS for secure com-
munications. Next, TCP slow-start ramps up as the message is communicated. Slow-start
is a congestion-control strategy designed to prevent network congestion. As a slow-
start ramps up, a single message may take multiple round-trips between the client and
server to communicate.

PROBLEM
When each request is over its own connection, a significant amount of time is lost to
network communication. How can an application avoid as much of this lost time as
possible?

SOLUTION
Reuse connections. Multiple HTTP requests can be made over a single connection.
That connection needs to be negotiated and ramped up for slow-start only once. After
passing the first message, others happen more quickly.

DISCUSSION
Whether your application is using HTTP/2 (first available in Go 1.6) or HTTP/1 and
HTTP/1.1 for your communications, you can reuse connections. Go tries to reuse con-
nections out of the box, and it’s the patterns in an application’s code that can cause
this to not happen.

 When connections are reused, as shown in figure 10.2, the time spent opening and
closing connections is reduced. Because TCP slow-start has already happened, the
time to communicate future messages is faster as well. This is why the second, third,
and fourth messages take less time when the connection is reused.

 The server included in the net/http package provides HTTP keep-alive support.
Most systems support TCP keep-alive needed to reuse connections out of the box. As
of Go 1.6, the net/http package includes transparent support for HTTP/2, which has
other communication advantages that can make communication even faster.

Open Open Open Open

Open

Close Close Close Close

Close

Each request using a different connection

All requests sharing the same connection

Time

Server

Server

Client

Client

Figure 10.2 Messages being passed with and without connection reuse

239TECHNIQUE 62 Reusing connections
NOTE HTTP keep-alive and TCP keep-alive are different. HTTP keep-alive is a
feature of the HTTP protocol a web server needs to implement. The web
server needs to periodically check the connection for incoming HTTP
requests within the keep-alive time span. When no HTTP request is received
within that time span, it closes the connection. Alternately, TCP keep-alive is
handled by the operating system in TCP communications. Disabling keep-
alive with DisableKeepAlives disables both forms of keep-alive.

Most of the problems preventing connection reuse are in the clients used to commu-
nicate with HTTP servers. The first and possibly most widespread problem happens
when custom transport instances are used and keep-alive is turned off.

 When the basic functions in the net/http package are used, such as http.Get()
or http.Post(), they use http.DefaultClient, which is configured with keep-alive
enabled and set up for 30 seconds. When an application creates a custom client but
doesn’t specify a transport, http.DefaultTransport is used. http.DefaultTransport
is used by http.DefaultClient and is configured with keep-alive enabled.

 Transporting without keep-alive can be seen in open source applications, examples
online, and even in the Go documentation. For instance, the Go documentation has
an example that reads as follows:

tr := &http.Transport{
 TLSClientConfig: &tls.Config{RootCAs: pool},
 DisableCompression: true,
}
client := &http.Client{Transport: tr}
resp, err := client.Get("https://example.com")

In this example, a custom Transport instance is used with altered certificate authori-
ties and compression disabled. In this case, keep-alive isn’t enabled. The following list-
ing provides a similar example, with the difference being that keep-alive is enabled.

tr := &http.Transport{
 TLSClientConfig: &tls.Config{RootCAs: pool},
 DisableCompression: true,
 Dial: (&net.Dialer{
 Timeout: 30 * time.Second,
 KeepAlive: 30 * time.Second,
 }).Dial,
}
client := &http.Client{Transport: tr}
resp, err := client.Get("https://example.com")

One part of working with http.Transport can be confusing. Setting its DisableKeep-
Alives property to true disables connection reuse. Setting DisableKeepAlives to
false doesn’t mean that connections are explicitly reused. It means you can opt in to
either HTTP or TCP keep-alive.

The Dial function is configured
with a keep-alive and timeout.
This is the same configuration
as the http.DefaultTransport.

240 CHAPTER 10 Communication between cloud services
Unless you have a reason to disable keep-alive, we suggest you use it. When making
many HTTP requests to the same endpoint, it provides for faster performance.

 The other behavior that can prevent connection reuse occurs when the body of a
response isn’t closed. Prior to HTTP/2, pipelining was almost never implemented or
used. Pipelining allows multiple requests and their responses to be communicated in
parallel rather than in serial, as you can see in figure 10.3. Prior to HTTP/2, one
request and response needed to be completed before the next could be used. The
body of the response would need to be closed before another HTTP request and
response could use the connection.

 The following listing illustrates a common case of one response body not being
closed before another HTTP request is made.

func main() {
r, err := http.Get("http://example.com")
if err != nil {
 …
}
defer r.Body.Close()
o, err := ioutil.ReadAll(r.Body)
if err != nil {
 …
}
// Use the body content

r2, err := http.Get("http://example.com/foo")
if err != nil {
 …
}
defer r2.Body.Close()
o, err = ioutil.ReadAll(r2.Body)
if err != nil {
 …
}
…
}

Listing 10.2 Failing to close an HTTP response body

Open Close

Open Close

In pipelining,
requests are concurrent.

Requests in serial,
one after another

Server

Client

Server

Client

Time

Figure 10.3 HTTP Pipelining compared to serial requests

Makes an HTTP
request and gets
a response

Defers closing the
body until the main()
function exits

Makes a second HTTP
request. Because the body
isn’t yet closed on the
first, a new connection
needs to be made.

241TECHNIQUE 63 Faster JSON marshal and unmarshal
In this case, using defer isn’t optimal. Instead, the body should be closed when it’s no
longer needed. The following listing illustrates the same example, with the connec-
tion being shared because the body is closed.

func main() {
 r, err := http.Get("http://example.com")
 if err != nil {
 …
 }
 o, err := ioutil.ReadAll(r.Body)
 if err != nil {
 …
 }
 r.Body.Close()
 // Use the body content

 r2, err := http.Get("http://example.com/foo")
 if err != nil {
 …
 }
 o, err = ioutil.ReadAll(r2.Body)
 if err != nil {
 …
 }
 r2.Body.Close()
 …
}

This subtle change to the application can impact how network connections behind
the scenes are happening and can improve the overall performance of an application,
especially as it scales.

TECHNIQUE 63 Faster JSON marshal and unmarshal

A majority of the communication that happens over REST involves passing data as
JSON. The JSON marshaling and unmarshaling provided by the encoding/json pack-
age uses reflection to figure out values and types each time. Reflection, provided by
the reflect package, takes time to figure out types and values each time a message is
acted on. If you’re repeatedly acting on the same structures, quite a bit of time will be
spent reflecting. Reflection is covered in more detail in chapter 11.

PROBLEM
Instead of figuring out the types of data each time JSON is marshaled or unmarshaled,
how can the type be figured out once and skipped on future passes?

SOLUTION
Use a package able to generate code that can marshal and unmarshal the JSON. The
generated code skips reflection and provides a faster execution path with a smaller
memory footprint.

Listing 10.3 Using and closing the HTTP response quickly

Makes an HTTP
request and gets
a response

Copies the response body to
another instance and closes
the body when done with it

Makes another
HTTP request. This
request reuses the
connection made
during the previous
request.

242 CHAPTER 10 Communication between cloud services
DISCUSSION
Reflection in Go is fairly fast. It does allocate memory that needs to be garbage-
collected, and there’s a small computational cost. When using optimized generated
code, those costs can be reduced, and you can see a performance improvement.

 Several packages are designed to do this. In listing 10.4 you’ll look at the package
github.com/ugorji/go/codec, which is designed to work with Binc, MessagePack,
and Concise Binary Object Representation (CBOR) in addition to JSON. Binc,
MessagePack, and CBOR are alternative data exchange formats, though none is as
popular as JSON.

//go:generate codecgen -o user_generated.go user.go

package user

type User struct {
 Name string `codec:"name"`
 Email string `codec:",omitempty"`
}

A struct marked up for the codec package is almost the same as the json package. The
difference is in the name codec.

 To generate code, the codecgen command needs to be installed. This can be done
as follows:

$ go get -u github.com/ugorji/go/codec/codecgen

After codecgen is installed, you can use it to generate code on this file, named user.go,
by executing the following command:

$ codecgen -o user_generated.go user.go

The output file is named user_generated.go. In the generated file, you’ll notice that
two public methods have been added to the User type: CodecEncodeSelf and Codec-
DecodeSelf. When these are present, the codec package uses them to encode or
decode the type. When they’re absent, the codec package falls back to doing these at
runtime.

 When the codecgen command is installed, it can be used with go generate. go
generate will see the first comment line of the file, which is specially formatted for it,
and execute codecgen. To use go generate, run the following command:

$ go generate ./...

Listing 10.4 A struct annotated for codec

codec can’t generate code
for main packages. Here the
user functionality is in the
user package.

The User struct is annotated
for codec instead of JSON

The Name property will be
found as “name” in the JSON
file. The difference is the
case on the name.

The codec annotation
will omit Email when

it generates JSON
output and the Email

value is empty.

A code comment for
the go generate
command to know
how to generate code
from this file

243TECHNIQUE 63 Faster JSON marshal and unmarshal

e
es
NOTE The next chapter covers generators and reflection in depth.

After the User type is ready for use, the encoding and decoding can be incorporated
into the rest of the application, as shown in the next listing.

jh := new(codec.JsonHandle)
u := &user.User{
 Name: "Inigo Montoya",
 Email: "inigo@montoya.example.com",
}

var out []byte
err := codec.NewEncoderBytes(&out, jh).Encode(&u)
if err != nil {
 …
}

fmt.Println(string(out))

Here’s the output of this code:

{"name":"Inigo Montoya","Email":"inigo@montoya.example.com"}

Notice that the name key is lowercase, whereas the Email key has an uppercase first let-
ter. The User type, defined in listing 10.4, has uppercase property names leading to
key names that directly reflect that. But the Name property has a custom key of name
used here.

 The byte slice with the JSON that was created in listing 10.5 can be decoded into an
instance of User, as shown in the following listing.

var u2 user.User
err = codec.NewDecoderBytes(out, jh).Decode(&u2)
if err != nil {
 …
}

fmt.Println(u2)

Although the API to github.com/ugorji/go/codec is different from the encoding
/json package in the standard library, it’s simple enough to be easily used.

Listing 10.5 Encode an instance to JSON with codec

Listing 10.6 Decode JSON into an instance of a type

Creates a new JSON handler for
the encoder. The codec package
has handlers for each type it
works with.

Creates a byte slice to
store the output in.

This will be the
generated JSON from
the instance of User.

Encodes the instance of User into
the output using the JSON handle.

The codec package does this in two
steps that can be done together.

Creates an instance
of User populated
with data

Converts the byte
slice to a string
and prints it

Creates a variable to
hold the decoded JSON

Decodes the JSON by using the
JSON handler, both created in
listing 10.5, into the new instanc
of the User type. The decoder us
two steps that can be used
together. The decoder can reuse
the JSON handler.

Prints the populated
instance of User

244 CHAPTER 10 Communication between cloud services

P
c
w

So
fie

can
optio
10.2.2 Moving beyond REST

Although REST is common and usable for end-user-facing APIs, alternatives may be
faster and more efficient for communication between your microservices. Given the
rise of microservices, the amount of communication between them, and the manner
in which network communication can be a bottleneck, exploring other options is
worthwhile.

 The network bottleneck has become enough of an issue that companies that oper-
ate on a large scale, such as Google and Facebook, have innovated new technologies
to speed up communication between microservices.

TECHNIQUE 64 Using protocol buffers

JSON and XML are commonly used to serialize data. These formats are fairly easy to
use and the transfer format is easy to read, but they’re not optimized for transport
over a network or for serialization.

PROBLEM
What formats that are optimized for network transfer and serialization are available
for use in Go applications?

SOLUTION
Some more recent formats, including protocol buffers (a.k.a. protobuf) by Google
and Apache Thrift and originally developed at Facebook, are faster in network trans-
fer and serialization. These are available in Go, along with numerous other languages.

DISCUSSION
Protocol buffers, by Google, are a popular choice for a high-speed transfer format.
The data in the messages being transferred over the network is smaller than XML or
JSON and it can be marshaled and unmarshaled faster than XML and JSON as well.
The transfer method isn’t defined by protocol buffers. They can be transferred on a
filesystem, using RPC, over HTTP, via a message queue, and numerous other ways.

 Google provides support for working with protocol buffers in C++, C#, Go, Java, and
Python. Other languages, such as PHP, have third-party libraries that provide support.

 A protocol format is defined in a file. It contains the structure of the message and
can be used to automatically generate the needed code. The following listing contains
an example of the file user.proto.

package chapter10;

message User {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;
}

Listing 10.7 Protocol buffer file

rotocol buffers have package names used to avoid naming
ollisions. These are different from Go packages, but the name
ill be used when the Go code is generated.

A message is an aggregate of fields and
other messages. It’s represented in a Go
application by generated code.

The field name is a required string.
The “= 1” is the unique tag in the
binary encoding for the field.

A required int32. Protocol buffers can
represent other types including int64,
float32, and float64.

me
lds
 be
nal.

245TECHNIQUE 64 Using protocol buffers

o
h
TIP For more details regarding what can be passed in messages, including mes-
sages inside messages, see the protocol buffer documentation at https://
developers .google.com/protocol-buffers/docs/overview.

Because the protocol buffer is used to generate Go code, it’s recommended that it
have its own package. In this Go package, the protocol buffer file and generated code
can reside. As you’ll see in listing 10.8, the directory in this case is userpb.

 To compile the protocol buffer to code, you first need to install the compiler:

1 Download and install the compiler. You can get it at https://developers.google
.com/protocol-buffers/docs/downloads.html.

2 Install the Go protocol buffer plugin. This can be done using go get:
$ go get -u github.com/golang/protobuf/protoc-gen-go

To generate the code, run the following command from the same directory as the
.proto file:

$ protoc -I=. --go_out=. ./user.proto

The command does a few things:

 -I specifies the input source directory.
 --go_out indicates where the generated Go source files will go.
 ./user.proto is the name of the file to generate the source from.

After the generated code has been created, it can be used to pass messages between a
client and server. The following listing provides the setup for a server to respond with
protocol buffer messages.

import (

 "net/http"

 pb "github.com/Masterminds/go-in-practice/chapter10/userpb"

 "github.com/golang/protobuf/proto"

)

func main() {

 http.HandleFunc("/", handler)

 http.ListenAndServe(":8080", nil)

}

WARNING Although this example communicates user information over HTTP
for simplicity, in production applications, user information should be trans-
ported over encrypted communications for security.

Listing 10.8 Protocol buffer server setup

The messages are passed
using a normal http server. The import for the generated

code and the custom messages

The protobuf package
needs to be imported t
know how to work wit
the generated code.

A simple server with
a single handler

https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/downloads.html
https://developers.google.com/protocol-buffers/docs/downloads.html

246 CHAPTER 10 Communication between cloud services

Sets th
type a

the
Listing 10.8 opens in a similar manner to the web servers in earlier chapters. The
same patterns there can be used here. The real work is done in the handler, shown in
the following listing.

func handler(res http.ResponseWriter, req *http.Request) {

 u := &pb.User{

 Name: proto.String("Inigo Montoya"),

 Id: proto.Int32(1234),

 Email: proto.String("inigo@montoya.example.com"),

 }

 body, err := proto.Marshal(u)

 if err != nil {

 http.Error(res, err.Error(), http.StatusInternalServerError)

 return

 }

 res.Header().Set("Content-Type", "application/x-protobuf")

 res.Write(body)

}

Writing a response as a protocol buffer is fairly similar to writing a JSON or XML
response. One difference is that values to properties on messages are pointers to a
value rather than a value itself. Calls to proto.String, proto.Int32, and other func-
tions return pointers to values rather than the values passed in.

 A client can be used to retrieve and read the messages. The following listing show-
cases a simple client.

res, err := http.Get("http://localhost:8080")
if err != nil {
 …
}
defer res.Body.Close()

b, err = ioutil.ReadAll(res.Body)
if err != nil {
 …
}

var u pb.User
err = proto.Unmarshal(b, &u)
if err != nil {
 …
}

Listing 10.9 Protocol buffer server handler

Listing 10.10 Protocol buffer client

Creates a pointer to a new instance
of the generated User type in the
protocol buffer package

Values are wrapped in calls to
the proto package to return a

reference to the value.

Marshals the instance
into a message

e content
nd writes
 message
to output

Performs a GET request to
the server from listings
10.8 and 10.9

Reads the response body
to get one complete
protocol buffer message

Creates a variable and unmarshals the
message into it. The pb package is the same
imported package from listing 10.8.

247TECHNIQUE 65 Communicating over RPC with protocol buffers
fmt.Println(u.GetName())
fmt.Println(u.GetId())
fmt.Println(u.GetEmail())

Protocol buffers are ideal when you need to pass messages between your microservices
and are trying to limit the amount of time used to pass the message.

TECHNIQUE 65 Communicating over RPC with protocol buffers

Communicating requires more than just the payload passed between two endpoints.
Communication includes the manner in which the payload is transferred. REST has cer-
tain semantics it enforces, which include a path and an HTTP verb, and are resource-
based. At times, the semantics of REST aren’t desired—for example, for an API call to
restart a server. That’s an operation, and at times operation-based semantics fit.

 An alternative is to use a remote procedure call (RPC) instead. With an RPC, a pro-
cedure is executed in a subroutine that’s often in a remote location. This is often
another service altogether. The calls aren’t tied to the semantics of the medium and
are more closely related to executing a function on the remote system.

 One of the potential issues of RPC is that both sides communicating with each
other need to know about the procedure being executed. This is different from REST,
in which the details of the communicated payload are enough. Knowing about the
procedure can make working with RPC, especially when services are written in multi-
ple languages, seem more difficult.

PROBLEM
How can you communicate over RPC in a manner that’s portable across programming
languages?

SOLUTION
Use gRPC and protocol buffers to handle defining the interfaces, generating the cross-
language code, and implementing the RPC communications.

DISCUSSION
gRPC (www.grpc.io) is an open source, high-performance RPC framework that can use
HTTP/2 as a transport layer. It was developed at Google and has support for Go, Java,
Python, Objective-C, C#, and several other languages. Given the language support,
you’ll notice both server-side languages and languages used for building mobile appli-
cations. gRPC can be used for communication between mobile devices and supporting
services.

 gRPC uses code generation to create the messages and handle parts of the commu-
nication. This enables the communication to easily work between multiple languages,
as the interfaces and messages are generated properly for each language. To define
the messages and RPC calls, gRPC uses protocol buffers, as the following listing shows.

Properties are pointers to values. The
generated code has methods returning a
value for each property that starts with Get.
Use these to get the passed values.

www.grpc.io

248 CHAPTER 10 Communication between cloud services

syntax = "proto3";

package chapter10;

service Hello {
 rpc Say (HelloRequest) returns (HelloResponse) {}
}

message HelloRequest {
 string name = 1;
}

message HelloResponse {
 string message = 1;
}

TIP For more details on version 3 of protocol buffers, see the version language
guide at https://developers.google.com/protocol-buffers/docs/proto3.

Based on this protocol buffers file, messages and stub code can be generated to han-
dle much of the work. The command to generate the code is a little different from the
example in technique 64 to account for RPC generation.

 The command (run here from the same directory as the hello.proto file) is shown
here:

protoc -I=. --go_out=plugins=grpc:. ./hello.proto

The difference you’ll see is in --go_out=plugins=gprc:., where the gRPC plugin is
specified as part of the Go output generation. Without specifying this, the output
won’t generate the service stub code. After this command is complete, code will be
generated for the messages and to work with the Go gRPC package.

WARNING To use protocol buffers version 3, you need at least version 3.0.0 of
the protocol buffers application to be installed. That can be downloaded
from https://github.com/google/protobuf/releases.

The following listing shows a simple Hello World server that accepts RPC messages
and responds to them. This is an example of a microservice that responds over RPC.

Listing 10.11 Define messages and RPC calls with a protocol buffer

gRPC requires protocol buffers version 3.
To get version 3, this needs to be explicitly
the first noncomment line of the file.

A package is a unique name, so that differing
protocol buffers don’t set on each other. The names
aren’t tied to Go packages, but Go uses them.

When you want to
communicate messages over
a service like RPC, they’re
defined using a service.

An RPC service call
named Say that receives
HelloRequest and
returns HelloResponseThe messages passed

by the RPC Hello
service. They each
have one string
property.

https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/google/protobuf/releases

249TECHNIQUE 65 Communicating over RPC with protocol buffers

package main

import (

 "log"

 "net"

 pb "github.com/Masterminds/go-in-practice/chapter10/hellopb"

 "golang.org/x/net/context"

 "google.golang.org/grpc"

)

type server struct{}

func (s *server) Say(ctx context.Context, \

 in *pb.HelloRequest) (*pb.HelloResponse, error) {

 msg := "Hello " + in.Name + "!"

 return &pb.HelloResponse{Message: msg}, nil

}

func main() {

 l, err := net.Listen("tcp", ":55555")

 if err != nil {

 ...

 }

 s := grpc.NewServer()

 pb.RegisterHelloServer(s, &server{})

 s.Serve(l)

}

The golang.org/x/net/context package is an important part of the communication,
and gRPC depends on it. This package carries deadlines, cancelation signals, and
other request-scoped values across API boundaries. For example, context could con-
tain a timeout that the callee needs to know about. You’ll explore more of this when
you look at the client.

NOTE The context package will be moving to the standard library for Go 1.7
and later.

To use the service in listing 10.12, you need a client. That client can be in any lan-
guage, and client code can be generated by the protocol buffers. The following listing
provides a Go client using the already generated Go code.

Listing 10.12 gRPC server responding to requests

Imports the code generated from the
protocol buffer from listing 10.11 Imports the context and gRPC

packages that know how to work
with the generated code. You
need to fetch these packages.

Creates an implementation of
the Say call defined as a service
in listing 10.11. It receives and
responds with the messages
from listing 10.11.

Starts a TCP server listening on
port 55555 and handles any
errors. The gRPC server will use it.

Creates a gRPC server and
handles requests over the
TCP connection

Registers the implementation of the hello
service on the RPC server. This ensures
that the interface matches properly.

250 CHAPTER 10 Communication between cloud services

H
messag

the o

package main

import (

 "fmt"

 "os"

 pb "github.com/Masterminds/go-in-practice/chapter10/hellopb"

 "golang.org/x/net/context"

 "google.golang.org/grpc"

)

func main() {

 address := "localhost:55555"

 conn, err := grpc.Dial(address, grpc.WithInsecure())

 if err != nil {

 ...

 }

 defer conn.Close()

 c := pb.NewHelloClient(conn)

 name := "Inigo Montoya"

 hr := &pb.HelloRequest{Name: name}

 r, err := c.Say(context.Background(), hr)

 if err != nil {

 ...

 }

 fmt.Println(r.Message)

}

The context being passed to Say is important. In this case, it’s an empty context that’s
never canceled and has no values. It’s a simple background process. The context
package has other contexts, and you can read more about them in the package docu-
mentation at https://godoc.org/golang.org/x/net/context.

 One example is using a context with a cancel function. This is useful if the caller
goes away (for example, the application is closed), and the callee needs to be
informed of this. The client could create a context like this:

ctx, cancel := context.WithCancel(context.Background())
defer cancel()

Listing 10.13 Request to a gRPC server with protocol buffers

Includes the generated code from the protocol
buffer for the messages and service

The gRPC package needed to
communicate with the server

Connects to the other service and handles
any errors. Insecure communications

shouldn’t be used in production. Be sure
to set up the connection to be closed.

Creates a new instance of a hello
client, defined in the protocol
buffer file from listing 10.11. It
communicates over the already
created connection.

Prepares a
elloRequest
e to pass to
ther service

Passes a context and request to
Say and gets a response and
error. Notice the interface to Say
is the same as the server from
listing 10.12. Handles any errors
that may have occurred.Prints the response that was

generated in the other service

https://godoc.org/golang.org/x/net/context

251TECHNIQUE 65 Communicating over RPC with protocol buffers
When the function this code is in ends, the cancel() function is called. This tells the
context to cancel the work. This is communicated to the other service, even when
hosted on an entirely different system. On the server, this cancellation can be seen
through a channel, which is how it’s implemented in the client as well. For example,
in an RPC function such as Say, there could be the following:

select {
case <-ctx.Done():
 return nil, ctx.Err()
}

When a message is sent over the channel available from Done(), which happens when
the cancel() function is called, it will be received here. The ctx.Err() function is
aware of the type of cancelation that was set up. In this case, the error sent back will
note that the work was canceled.

 Contexts are a powerful tool for passing information over the course of a remote
call—especially when the remote call will take a good amount of time.

 When the client and server are using HTTP/2, as they are by default when both
ends are using gRPC, the communications use the connection reuse and multiplexing
described earlier in the chapter. This enables a fast, modern transport layer for trans-
ferring the protocol buffer binary messages.

 The advantages and disadvantages of RPC utilizing gRPC should be weighed before
using them. The advantages include the following:

 Using protocol buffers, the payload size is smaller and faster to marshal or
unmarshal than JSON or XML.

 The context allows for canceling, communicating timeouts or due dates, and
other relevant information over the course of a remote call.

 The interaction is with a called procedure rather than a message that’s passed
elsewhere.

 Semantics of the transport methodology—for example, HTTP verbs—don’t
limit the communications over RPC.

The disadvantages include the following:

 The transport payload isn’t human-readable as JSON or XML can be.
 Applications need to know the interface and details of the of the RPC calls.

Knowing the semantics of the message isn’t enough.
 Integration is deeper than a message, such as you’d have with REST, because a

remote procedure is being called. Exposing remote procedure access to
untrusted clients may not be ideal and should be handled with care for security.

In general, RPCs can be a good alternative for interactions between microservices you
control that are part of a larger service. They can provide fast, efficient communica-
tion and will even work across multiple programming languages. RPCs shouldn’t typi-
cally be exposed to clients outside your control, such as a public API. The information

252 CHAPTER 10 Communication between cloud services
needed for those clients to be successful is more difficult to communicate, making
REST and JSON better options.

10.3 Summary

In this chapter, you explored REST communications and faster alternatives. These
alternatives, or similar options, are used by Google, Facebook, and others that operate
using many discrete services that need to work together. The techniques you learned
about include the following:

 Communications in a microservice architecture and how that can be a bottleneck
 Reusing connections to improve performance by avoiding repeated TCP slow-

start, congestion-control ramp-ups and connection negotiations
 Faster JSON marshaling and unmarshaling that avoids extra time spent reflecting
 Using protocol buffering instead of JSON for messaging
 Communicating over RPC using gRPC

In the next chapter, you’ll learn about reflection and metaprogramming in Go. That
includes using tags on structs and code generation.

Reflection and
code generation
In this chapter, we turn our attention to some of Go’s most interesting features.
First, we present Go’s reflection system. Reflection, in software development, refers
to a program’s ability to examine its own structure. Although Go’s reflection subsys-
tem isn’t as versatile as Java’s, it’s still powerful. One feature that has enjoyed novel
use is the annotation of structs. You’ll see in this chapter how to write custom tags
for struct fields. As useful as Go’s reflection system is, though, sometimes it’s
cleaner to avoid complex and expensive runtime reflection, and instead write code
that writes code. Code generation can accomplish some of the things that are typi-
cally done in other languages with generics. That practice, called metaprogramming,
is the last thing you’ll look at in this chapter.

This chapter covers
 Using values, kinds, and types from Go’s

reflection system

 Parsing custom struct annotations

 Writing code generators for use with the
go generate tool
253

254 CHAPTER 11 Reflection and code generation
11.1 Three features of reflection

Software developers use reflection to examine objects during runtime. In a strongly
typed language like Go, you may want to find out whether a particular object satisfies
an interface. Or discover what its underlying kind is. Or walk over its fields and modify
the data.

 Go’s reflection tools are located inside the reflect package. To understand those
tools, we need to define a few terms. You need to understand three critical features
when working with Go’s reflection mechanism: values, types, and kinds.

 You might approach the first term, value, by thinking of a variable. A variable is a
name that points to a piece of data, as illustrated in figure 11.1. (The figure labels this
Variable name.) The piece of data that it points to is called a value. Depending on the
type, the value may be nil. It may be a pointer, which in turn points to a value some-
where else. Or it may be a nonempty piece of data. For example, with x := 5, the value
of x is 5. For var b bytes.Buffer, the value of b is an empty buffer. And with myFunc
:= strings.Split, the value of myFunc is a function. In the reflect package, the type
reflect.Value represents a value.

Go is a typed language. Each value in Go has a particular type associated with it. For
example, with var b bytes.Buffer, the type is bytes.Buffer. For any reflect.Value
in Go, you can discover its type. Type information is accessible through the reflect
.Type interface.

 Finally, Go defines numerous primitive kinds, such as struct, ptr (pointer), int,
float64, string, slice, func (function), and so on. The reflect package enumer-
ates all of the possible kinds with the type reflect.Kind. (Note that in figure 11.1, the
value of type string also has the kind string.)

 The typical tasks you perform when working with reflection use these three con-
cepts. Usually, reflection begins by taking a value and then inspecting it to learn about
its contents, its type, and its kind.

TECHNIQUE 66 Switching based on type and kind

One of the most frequent uses of Go’s reflection system is identifying either the type
or kind of a value. Go has various tools for learning about the type and kind of a par-
ticular value.

firstName : "Inigo"
var lastName string "Montoya"

Variable name

Type

Value

Figure 11.1 Variables and values

255TECHNIQUE 66 Switching based on type and kind
PROBLEM
You want to write a function that takes generic values (interface{}s), and then does
something useful with them based on underlying types.

SOLUTION
Go provides various methods for learning this information, ranging from the type
switch to the reflect.Type and reflect.Kind types. Each has subtle strong points.
Here, you’ll look at type switches and then employ the reflect package to build a
kind switch.

DISCUSSION
Say you want to write a function with the signature sum(…interface{}) float64. You
want this function to take any number of arguments of various types. And you want it
to convert the values to float64 and then sum them.

 The most convenient tool that Go provides for doing this is the type switch. With
this special case of the switch control structure, you can perform operations based on
the type of a value, instead of the data contained in a value. As you read through com-
mon Go libraries, you’ll frequently encounter type switches (though using kinds and
switches, which you’ll see later in this section, is rare). Let’s start with a simple
(though incomplete) example in the next listing.

package main

import (
 "fmt"
 "strconv"
)

func main() {
 var a uint8 = 2
 var b int = 37
 var c string = "3.2"
 res := sum(a, b, c)
 fmt.Printf("Result: %f\n", res)
}

func sum(v ...interface{}) float64 {
 var res float64 = 0
 for _, val := range v {
 switch val.(type) {
 case int:
 res += float64(val.(int))
 case int64:
 res += float64(val.(int64))
 case uint8:
 res += float64(val.(uint8))
 case string:
 a, err := strconv.ParseFloat(val.(string), 64)
 if err != nil {
 panic(err)

Listing 11.1 Sum with type switch

Sums a uint8, an int,
and a string

Loops through all of the values
given, and switches over them
based on type

For each type that you
support (int, int64, uint8,
string), converts to float64
and sumFor a string, you

use the strconv
library to convert

the string to a
float64

256 CHAPTER 11 Reflection and code generation
 }
 res += a
 default:
 fmt.Printf("Unsupported type %T. Ignoring.\n", val)
 }
 }
 return res
}

If you were to run this code, you’d get Result: 42.200000. This code illustrates the
basic use of a type switch, as well as one of its limitations compared to regular switches.

 In a standard switch statement, you might combine multiple values on a single
case line: case 1, 2, 3: println("Less than four"). Combining types in a case state-
ment introduces complications when assigning values, so typically a type switch has
one type per line. If you were to support all of the integer types (int, int8, int16,
int32, int64, uint, uint8, uint16, uint32, uint64), you’d need 10 separate case
clauses. Although writing similar logic for 10 kinds may feel like an inconvenience, it
isn’t really a problem. But it’s important to remember that type switches operate on
types (not kinds).

 Let’s add a new type to the preceding example, as shown in the following listing.

package main

import (
 "fmt"
 "strconv"
)

type MyInt int64

func main() {

//…
 var d MyInt = 1
 res := sum(a, b, c, d)
 fmt.Printf("Result: %f\n", res)
}

func sum(v ...interface{}) float64 {
 var res float64 = 0
 for _, val := range v {
 switch val.(type) {
 case int:
 res += float64(val.(int))
 case int64:
 res += float64(val.(int64))
 case uint8:
 res += float64(val.(uint8))
 case string:
 a, err := strconv.ParseFloat(val.(string), 64)

Listing 11.2 Type switch with extra type

If the type isn’t one of the four you
support, prints an error and ignores

MyInt is an int64.

Creates a new MyInt and
gives it the value 1

This will not match
for a MyInt.

257TECHNIQUE 66 Switching based on type and kind
 if err != nil {
 panic(err)
 }
 res += a
 default:
 fmt.Printf("Unsupported type %T. Ignoring.\n", val)
 }
 }
 return res
}

Running this program generates the following output:

$ go run typekind.go
Unsupported type main.MyInt. Ignoring.
Result: 42.200000

The type of var d MyInt isn’t int64; it’s MyInt. In the type switch, it matches the
default clause instead of the int64 case. At times, this is precisely the behavior you’d
desire. But for this case, it’d be better if sum() could tell what the underlying kind was,
and work from that instead.

 The solution to this problem is to use the reflect package, and work based on
kind instead of type. The first part of our example will be the same, but the sum()
function is different, as shown in the next listing.

package main

import (
 "fmt"
 "reflect"
 "strconv"
)

type MyInt int64

func main() {
 //…var a uint8 = 2
 var b int = 37
 var c string = "3.2"
 var d MyInt = 1
 res := sum(a, b, c, d)
 fmt.Printf("Result: %f\n", res)
}

func sum(v ...interface{}) float64 {
 var res float64 = 0
 for _, val := range v {
 ref := reflect.ValueOf(val)
 switch ref.Kind() {

Listing 11.3 A Kind switch

This will catch the MyInt value.

Gets the reflect.Value
of the item

From the value, you can
switch on the Kind().

258 CHAPTER 11 Reflection and code generation
 case reflect.Int, reflect.Int64:
 res += float64(ref.Int())
 case reflect.Uint8:
 res += float64(ref.Uint())
 case reflect.String:
 a, err := strconv.ParseFloat(ref.String(), 64)
 if err != nil {
 panic(err)
 }
 res += a
 default:
 fmt.Printf("Unsupported type %T. Ignoring.\n", val)
 }
 }
 return res
}

In this revised version, you replace the type switch with a regular value-based switch,
and you use the reflect package to take each val interface{} and get a reflect
.Value describing it. One of the pieces of information you can learn from a
reflect.Value is its underlying kind.

 Another thing that the reflect.Value type gives you is a group of functions capa-
ble of converting related types to their largest representation. A reflect.Value with a
uint8 or uint16 can be easily converted to the biggest unsigned integer type by using
the reflect.Value’s Uint() method.

 With these features, you can collapse an otherwise verbose type switch to a more
concise kind-based switch. Instead of needing 10 cases for the integer types, you could
accomplish the same feature with only two cases (one for all the signed integers, and
one for the unsigned integers).

 But types and kinds are distinct things. Here, you’ve produced two cases that per-
form approximately the same task. Summing numeric values can be more easily done
by determining kinds. But sometimes you’re more concerned with specifics. As you’ve
seen elsewhere in the book, type switches are excellent companions for error han-
dling. You can use them to sort out different error types in much the same way that
other languages use multiple catch statements in a try/catch block.

 Later in this chapter, we return to examining types. In that case, you’ll use the
reflect.Type type to discover information about a struct. But before you get to that
case, let’s look at another common reflection task: determining whether a particular
type implements an interface.

TECHNIQUE 67 Discovering whether a value implements an interface

Go’s type system is different from the inheritance-based methods of traditional object-
oriented languages. Go uses composition instead of inheritance. A Go interface
defines a pattern of methods that another type must have before it can be considered
to implement that interface. A concrete and simple example might help here. The

reflect.Kind is
a normal type,

so you can
switch on
multiple

values.

The reflect.Value type provides convenience
functions for converting related subkinds to their

biggest version (e.g., int, int8, int16…to int64).

259TECHNIQUE 67 Discovering whether a value implements an interface
fmt package defines an interface called Stringer that describes a thing capable of
representing itself as a string:

type Stringer interface {
 String() string
}

Any type that provides a String() method that takes no arguments and returns a
string is ipso facto a fmt.Stringer.

PROBLEM
Given a particular type, you want to find out whether that type implements a defined
interface.

SOLUTION
There are two ways to accomplish this. One is with a type assertion, and the other uses
the reflect package. Use the one that best meets your needs.

DISCUSSION
Go’s view of interfaces differs from that of object-oriented languages like Java. In Go, a
thing isn’t declared to fulfill an interface. Instead, an interface is a description against
which a type can be compared. And interfaces are themselves types. That is why when
you write types in Go, you don’t declare which interfaces they satisfy. In fact, as you
saw in chapter 4, it’s common to write interfaces to match existing code.

 One easy way to conceptualize this is by considering how we, as humans, often gen-
eralize and categorize. If I were to ask you, “What do a swan, a snow drift, and a cloud
have in common?” you would answer, “All are white.” This doesn’t mean that the three
things have a common ancestor (the object-oriented approach). Instead, it means
that all three share a commonality: whiteness. This is the way types work in Go. They
express commonality, not inheritance.

 Go makes it easy to determine whether a given interface matches another inter-
face type. Determining the answer to this question can be done at the same time as
converting that type, as shown in the next listing.

package main

import (
 "bytes"
 "fmt"
)

func main() {
 b := bytes.NewBuffer([]byte("Hello"))
 if isStringer(b) {
 fmt.Printf("%T is a stringer\n", b)
 }
 i := 123
 if isStringer(i) {

Listing 11.4 Checking and converting a type

Tests whether a
*bytes.Buffer is a
fmt.Stringer. It is.

Tests whether an
integer is a
fmt.Stringer. It’s not.

260 CHAPTER 11 Reflection and code generation

Creat
po

type io
 fmt.Printf("%T is a stringer\n", i)
 }
}

func isStringer(v interface{}) bool {
 _, ok := v.(fmt.Stringer)
 return ok
}

Type assertions are one way of testing whether a given value implements an interface.
But what if you want to test whether a type implements an interface, but determine
which interface at runtime? To accomplish this, you need to use the reflect package
and little bit of trickery.

 Earlier in the chapter, you looked at the basic types in the reflect package. An
astute reader might have noticed something missing. Go’s reflection package has no
reflect.Interface type. Instead, reflect.Type (which is itself an interface) pro-
vides tools for querying whether a given type implements a given interface type. To
reflect on an interface type at runtime, you can use reflect.Type, as the following
listing shows.

package main

import (
 "fmt"
 "io"
 "reflect"
)

type Name struct {
 First, Last string
}

func (n *Name) String() string {
 return n.First + " " + n.Last
}

func main() {
 n := &Name{First: "Inigo", Last: "Montoya"}

 stringer :=
(*fmt.Stringer)(nil)

 implements(n, stringer)

 writer := (*io.Writer)(nil)
 implements(n, writer)
}

Listing 11.5 Determine whether a type implements an interface

Takes an interface{} value and runs a
type assertion to the desired interface

Creates a Name type and
gives it a String() method,
then instantiates one

Creates a nil pointer
of type fmt.Stringer

Tests whether n is a
fmt.Stringer (has a
String() method)es a nil

inter of
.Writer

Tests whether n is an io.Writer
(has a Write() method)

261TECHNIQUE 67 Discovering whether a value implements an interface
func implements(concrete interface{}, target interface{}) bool {
 iface := reflect.TypeOf(target).Elem()

 v := reflect.ValueOf(concrete)
 t := v.Type()

 if t.Implements(iface) {
 fmt.Printf("%T is a %s\n", concrete, iface.Name())
 return true
 }
 fmt.Printf("%T is not a %s\n", concrete, iface.Name())
 return false
}

This example takes what may appear to be a roundabout method. The implements()
function takes two values. It tests whether the first value (concrete) implements the
interface of the second (target). If you were to run this code, you’d get the following
output:

$ go run implements.go
*main.Name is a Stringer
*main.Name is not a Writer

Our Name type implements fmt.Stringer because it has a String() string method.
But it doesn’t implement io.Writer because it doesn’t have a Write([]bytes) (int,
error) method.

 The implements() function does assume that the target is a pointer to a value
whose dynamic type is an interface. With a few dozen lines, you could check that by
reflecting on the value and checking that it’s a pointer. As it stands now, it’d be possi-
ble to cause implements() to panic by passing a target that doesn’t match that
description.

 To get to the point where you can test whether concrete implements the target
interface, you need to get the reflect.Type of both the concrete and the target.
There are two ways of doing this. The first uses reflect.TypeOf() to get a
reflect.Type, and a call to Type.Elem() to get the type that the target pointer
points to:

iface := reflect.TypeOf(target).Elem()

The second gets the value of concrete, and then gets the reflect.Type of that value.
From there, you can test whether a thing of one type implements an interface type
using the Type.Interface() method:

v := reflect.ValueOf(concrete)
t := v.Type()

Gets a reflect.Type that describes
the target of the pointer

Gets the reflect.Type of the
concrete type passed in

Tests whether the concrete instance
fulfills the interface of the target

262 CHAPTER 11 Reflection and code generation
The trickier part of this test, though, is getting a reference to an interface. There’s no
way to directly reflect on an interface type. Interfaces don’t work that way; you can’t
just instantiate one or reference it directly.

 Instead, you need to find a way to create a placeholder that implements an inter-
face. The simplest way is to do something we usually recommend studiously avoiding:
intentionally create a nil pointer. In the preceding code, you create two nil pointers,
and you do so like this: stringer := (*fmt.Stringer)(nil). In essence, you do this
just to create a thing whose only useful information is its type. When you pass these
into the implements() function, it’ll be able to reflect on the nil pointers and deter-
mine the type. You need the Elem() call in order to get the type of the nil.

 The code in listing 11.5 illustrates how working with Go’s reflection system can
require thinking creatively about how to set up various reflection operations. Tasks
that might seem superficially simple may require some thoughtful manipulation of
the type system.

 Next, let’s look at how to use Go’s reflection system to take a struct and program-
matically access its fields.

TECHNIQUE 68 Accessing fields on a struct

Go structs are the most commonly used tool for describing structured data in Go.
Because Go can glean all of the important information about a struct’s contents dur-
ing compilation, structs are efficient. At runtime, you may want to find out informa-
tion about a struct, including what its fields are and whether particular values of a
struct have been set.

PROBLEM
You want to learn about a struct at runtime, discovering its fields.

SOLUTION
Reflect the struct and use a combination of reflect.Value and reflect.Type to find
out information about the struct.

DISCUSSION
In the last few techniques, you’ve seen how to start with a value and reflect on it to get
information about its value, its kind, and its type. Now you’re going to combine these
techniques to walk a struct and learn about it.

 The tool you’ll create is a simple information-printing program that can read a
value and print information about it to the console. The principles will come in
handy, though, in the next section, where you’ll use some similar techniques to work
with Go’s annotation system.

 First, let’s start with a few types to examine in the following listing.

package main

import (
 "fmt"
 "reflect"

Listing 11.6 Types to examine

263TECHNIQUE 68 Accessing fields on a struct

G

th
 "strings"
)
type MyInt int

type Person struct {
 Name *Name
 Address *Address
}

type Name struct {
 Title, First, Last string
}

type Address struct {
 Street, Region string
}

Now you have an integer-based type and a few structs. The next thing to do is to write
some code to inspect these types, as shown in the next listing.

func main() {
 fmt.Println("Walking a simple integer")
 var one MyInt = 1
 walk(one, 0)

 fmt.Println("Walking a simple struct")
 two := struct{ Name string }{"foo"}
 walk(two, 0)

fmt.Println("Walking a struct with struct fields")
 p := &Person{
 Name: &Name{"Count", "Tyrone", "Rugen"},
 Address: &Address{"Humperdink Castle", "Florian"},
 }
 walk(p, 0)
}

type MyInt int

type Person struct {
 Name *Name
 Address *Address
}

type Name struct {
 Title, First, Last string
}

type Address struct {
 Street, Region string
}

func walk(u interface{}, depth int) {
 val := reflect.Indirect(reflect.ValueOf(u))
 t := val.Type()
 tabs := strings.Repeat("\t", depth+1)

Listing 11.7 Recursively examining a value

Shows details for a simple type

Shows details for a simple struct

Shows details
for a struct with
struct fields

The walk() function
takes any value and
a depth (for
formatting).

For your unknown value u,
you get the reflect.Value. If
it’s a pointer, you
dereference the pointer.

ets the
type of
is value

Depth helps you do some tab
indenting for prettier output.

264 CHAPTER 11 Reflection and code generation

If
i

i

a

 fmt.Printf("%sValue is type %q (%s)\n", tabs, t, val.Kind())
 if val.Kind() == reflect.Struct {
 for i := 0; i < t.NumField(); i++ {
 field := t.Field(i)
 fieldVal := reflect.Indirect(val.Field(i))

 tabs := strings.Repeat("\t", depth+2)
 fmt.Printf("%sField %q is type %q (%s)\n",
 tabs, field.Name, field.Type, fieldVal.Kind())

 if fieldVal.Kind() == reflect.Struct {
 walk(fieldVal.Interface(), depth+1)
 }
 }
 }
}

The preceding example combines just about everything you’ve learned about reflec-
tion. Types, values, and kinds all come into play as you walk through a value and exam-
ine its reflection data. If you run this little program, the output looks like this:

$ go run structwalker.go
Walking a simple integer
 Value is type "main.MyInt" (int)
Walking a simple struct
 Value is type "struct { Name string }" (struct)
 Field "Name" is type "string" (string)
Walking a struct with struct fields
 Value is type "main.Person" (struct)
 Field "Name" is type "*main.Name" (struct)
 Value is type "main.Name" (struct)
 Field "Title" is type "string" (string)
 Field "First" is type "string" (string)
 Field "Last" is type "string" (string)
 Field "Address" is type "*main.Address" (struct)
 Value is type "main.Address" (struct)
 Field "Street" is type "string" (string)
 Field "Region" is type "string" (string)

In this output, you can see the program examine each of the values you’ve given it.
First, it checks a MyInt value (of kind int). Then it walks the simple struct. Finally, it
walks the more complex struct and recurses down through the struct until it hits only
nonstruct kinds.

 The walk() function does all of the interesting work in this program. It begins
with an unknown value, u, and inspects it. While you’re walking through an unknown
value, you want to make sure that you follow pointers. If reflect.ValueOf() is called
on a pointer, it will return a reflect.Value describing a pointer. That isn’t interesting
in this case. Instead, what you want is the value at the other end of that pointer, so you
use reflect.Indirect() to get a reflect.Value describing the value pointed to. The
reflect.Indirect() method is useful in that if it’s called on a value that’s not a
pointer, it will return the given reflect.Value, so you can safely call it on all values:

val := reflect.Indirect(reflect.ValueOf(u))

the kind
s struct,

you
examine
ts fields.

For each field, you
need both the

reflect.StructField
nd the reflect.Value.

If the field is also a struct, you
can recursively call walk().

265TECHNIQUE 68 Accessing fields on a struct
Along with the value of u, you need some type and kind information. In this example,
you get each of the three reflection types:

 The value (in this case, if you get a pointer for a value, you follow the pointer)
 The type
 The kind

Kinds are particularly interesting in this case. Some kinds, notably slices, arrays, maps,
and structs, may have members. In this case, you’re interested mainly in learning
about the structure of your given value (u). Although you wouldn’t need to enumer-
ate the values in maps, slices, or arrays, you’d like to examine structs. If the kind is
reflect.Struct, you take a look at that struct’s fields.

 The easiest way to enumerate the fields of a struct is to get the type of that struct and
then loop through the fields of that type by using a combination of Type.NumField()
(which gives you the number of fields) and Type.Field(). The Type.Field() method
returns a reflect.StructField object describing the field. From there, you can learn
about the field’s data type and its name.

 But when it comes to getting the value of a struct field, you can’t get this from
either the reflect.Type (which describes the data type) or the reflect.StructField
(which describes the field on a struct type). Instead, you need to get the value from
the reflect.Value that describes the struct value. Fortunately, you can combine your
knowledge of the type and the value to know that the numeric index of the type field
will match the numeric index of the value’s struct field. You can use Value.Field()
with the same field number as Type.Field(), and get the associated value for that
field. Again, if the field is a pointer, you’d rather have a handle to the value at the
other end of the pointer, so you call reflect.Indirect() on the field value. If you
take a look at the output of the preceding program, you’ll see this in action:

Field "Name" is type "*main.Name" (struct)
Value is type "main.Name" (struct)

The field Name is of type *main.Name. But when you follow the pointer, you get a value
of type main.Name. This little program is dense, so to summarize what you’ve just seen:

 From interface{}, you can use reflect.ValueOf() to get reflect.Value.
 Sometimes a value might be a pointer. To follow the pointer and get the

reflect.Value of the thing pointed to, you call reflect.Indirect().
 From reflect.Value, you can conveniently get the type and kind.
 For structs (kind == reflect.Struct), you can get the number of fields on

that struct by using Type.NumField(), and you can get a description of each
field (reflect.StructField) by using Type.Field().

 Likewise, with reflect.Value objects, you can access struct field values by using
Value.Field().

If you were interested in discovering other information, the reflect package con-
tains tools for learning about the methods on a struct, the elements in maps, lists,

266 CHAPTER 11 Reflection and code generation
and arrays, and even information about what a channel can send or receive. For all of
Go’s elegance, though, the reflection package can be difficult to learn and unforgiv-
ing to use: many of the functions and methods in that package will panic rather than
return errors.

 The example you’ve looked at here sets the stage for using one of our favorite Go
features. Next, you’ll look at Go’s annotation system. You’ll see how to build and
access your own struct tags.

11.2 Structs, tags, and annotations

Go has no macros, and unlike languages such as Java and Python, Go has only Spartan
support for annotations. But one thing you can easily annotate in Go is properties on
a struct. You’ve already seen this practice for providing JSON processing information.
Here’s an example.

11.2.1 Annotating structs

In the previous chapter, you saw an example of using struct annotations with things
like the JSON encoder. For example, you can begin with the struct from listing 11.5
and annotate it for the JSON encoder, as shown in the following listing.

package main

import (
 "encoding/json"
 "fmt"
)

type Name struct {
 First string `json:"firstName"`
 Last string `json:"lastName "`
}

func main() {
 n := &Name{"Inigo", "Montoya"}
 data, _ := json.Marshal(n)
 fmt.Printf("%s\n", data)B
}

This code declares a single struct, Name, that’s annotated for JSON encoding. Roughly
speaking, it maps the struct member First to the JSON field firstName, and the struct
field Last to lastName. If you were to run this code, the output would look like this:

$ go run json.go
{"firstName":"Inigo","lastName":"Montoya"}

The struct annotations make it possible to control how your JSON looks. Struct tags
provide a convenient way to provide small bits of processing data to fields on a struct.

Listing 11.8 Simple JSON struct

Annotates struct fields for JSON
encoding and decoding

Marshals n to JSON and prints it

267Structs, tags, and annotations
Practically speaking, annotations are a free-form string enclosed in back quotes that
follows the type declaration of a struct field.

 Annotations play no direct functional role during compilation, but annotations
can be accessed at runtime by using reflection. It’s up to the annotation parsers to fig-
ure out whether any given annotation has information that the parser can use. For
example, you could modify the preceding code to include different annotations, as
shown in the next listing.

type Name struct {
 First string `json:"firstName" xml:"FirstName"`
 Last string `json:"lastName,omitempty"`
 Other string `not,even.a=tag`
}

These annotations are all legal, in the sense that the Go parser will correctly handle
them. And the JSON encoder will be able to pick out which of those applies to it. It will
ignore the xml tag as well as the oddly formatted annotation on the Other field.

 As you can see from the tags in listing 11.9, an annotation has no fixed format. Just
about any string can be used. But a certain annotation format has emerged in the Go
community and is now a de facto standard. Go developers call these annotations tags.

11.2.2 Using tag annotations

The sample JSON struct you looked at earlier contained annotations of the form ̀ json:

"NAME,DATA"`, where NAME is the name of the field (in JSON documents), and DATA is
a list of optional information about the field (omitempty or kind data). Figure 11.2
shows an example of a struct annotated for both JSON and XML.

 Likewise, if you look at the encoding/xml package, you’d see a pattern similar to
annotations for converting structs to and from XML. Tags for XML look like this:
`xml:"body"` and `xml:"href,attr"`. Again, the pattern is similar to the JSON tag
pattern: `xml:"NAME,DATA"`, where NAME is the field name, and DATA contains a list of

Listing 11.9 A variety of annotations

type Person struct {
 FirstName string `json:"first" xml:"firstName,attr"`
 LastName string `json:"last" xml:"lastName"`
}

{
 "first": "Inigo",
 "last": "Montoya"
}

<Person firstName="Inigo">
 <LastName>Montoya</LastName>
</Person>

Figure 11.2 A struct marshaled to JSON and to XML

268 CHAPTER 11 Reflection and code generation
information about the field (though XML annotations are more sophisticated than
JSON annotations).

 This format isn’t enshrined in the definition of a struct annotation, though. It’s
just a convention that has proven useful and thus enjoys widespread adoption. Go’s
reflection package even makes it easy to work with tags, as you’ll see shortly.

TECHNIQUE 69 Processing tags on a struct

Annotations can be useful in a wide variety of situations. The preceding examples
show how they can be used by encoders. Annotations can just as readily be used to
describe how database field types map to structs, or how to format data for display.
We’ve even seen cases in which annotations were used to tell Go to pass struct values
through other filtering functions.

 And because the annotation format is undefined, to build your annotations, you
need only decide on a format and then write an implementation.

PROBLEM
You want to create your own annotations and then programmatically access the anno-
tation data of a struct at runtime.

SOLUTION
Define your annotation format (preferably using the tag-like syntax described previ-
ously). Then use the reflect package to write a tool that extracts the annotation
information from a struct.

DISCUSSION
Say you want to write an encoder for a simple file syntax for name-value pairs. This for-
mat is similar to the old INI format. An example of this file format looks like this:

total=247
running=2
sleeping=245
threads=1189
load=70.87

Here, the names are on the left side of the equals sign, and the values are on the right.
Now imagine that you want to create a struct to represent this data. It looks like the
following listing.

Annotations for validation
One of the most interesting uses for annotations that we’ve seen is for validating
field data on a struct. By adding regular expressions in tags (`validate:"^[a-z]+$
"`), and then writing code to run those regular expressions over struct data, you can
write validation code easily and concisely. An example can be found in the Deis
Router project at https://github.com/deis/router.

https://github.com/deis/router

269TECHNIQUE 69 Processing tags on a struct

type Processes struct {
 Total int
 Running int
 Sleeping int
 Threads int
 Load float32
}

To convert the plain file format into a struct like this, you can create a tag that fits your
needs and then mark up your struct with them (see the following listing).

type Processes struct {
 Total int `ini:"total"`
 Running int `ini:"running"`
 Sleeping int `ini:"sleeping"`
 Threads int `ini:"threads"`
 Load float32 `ini:"load"`
}

This tag structure follows the same convention as the JSON and XML tags you saw ear-
lier. But there’s no automatic facility in Go to handle parsing the file format and learn-
ing from the struct annotations how to populate a Processes struct. You’ll do that
work yourself.

 As you design this, you can once again rely on existing conventions. Encoders and
decoders in Go tend to provide marshal() and unmarshal() methods with a fairly
predictable set of parameters and return values. So your INI file decoder will imple-
ment the same pattern, as shown in the following listing.

func Marshal(v interface{}) ([]byte, error) {}
func Unmarshal(data []byte, v interface{}) error {}

The bulk of both of these functions involves reflecting over the interface{} values
and learning about how to extract data from or populate data into those values. To
keep the code concise, the following example deals only with marshaling and unmar-
shaling structs.

 Reflection tends to be a little verbose, so you’ll split up the code for your program
into smaller chunks, starting with a struct for your INI file and the main() function. In
the first part, you’ll create a new type (Processes), and then in the main() function
you’ll create a Processes struct, marshal it to your INI format, and then unmarshal it
into a new Processes struct. See the next listing.

Listing 11.10 A bare Processes struct

Listing 11.11 The Processes struct with annotations

Listing 11.12 The marshal and unmarshal pattern

270 CHAPTER 11 Reflection and code generation

package main

import (
 "bufio"
 "bytes"
 "errors"
 "fmt"
 "reflect"
 "strconv"
 "strings"
)

type Processes struct {
 Total int `ini:"total"`
 Running int `ini:"running"`
 Sleeping int `ini:"sleeping"`
 Threads int `ini:"threads"`
 Load float64 `ini:"load"`
}

func main() {
 fmt.Println("Write a struct to output:")
 proc := &Processes{
 Total: 23,
 Running: 3,
 Sleeping: 20,
 Threads: 34,
 Load: 1.8,
 }
 data, err := Marshal(proc)
 if err != nil {
 panic(err)
 }
 fmt.Println(string(data))

 fmt.Println("Read the data back into a struct")
 proc2 := &Processes{}
 if err := Unmarshal(data, proc2); err != nil {
 panic(err)
 }
 fmt.Printf("Struct: %#v", proc2)
}

The top-level code is straightforward. You begin with an instance of your Processes
struct and then marshal it into a byte array. When you print the results, they’ll be in
your INI file format. Then you take that same data and run it back through the other
direction, expanding the INI data into a new Processes struct. Running the program
produces output like this:

$ go run load.go
Write a struct to a output:
total=23
running=3

Listing 11.13 Processes and main()

Most of these imports
are used later.

You saw this struct in
listing 11.11.

Creates an instance
of the Processes
struct

Marshals the struct
into a []byte

Prints the result

Creates a new Processes struct
and unmarshals the data into it

Prints out the struct

271TECHNIQUE 69 Processing tags on a struct

Fo
pro

you h
only st
sleeping=20
threads=34
load=1.8

Read the data back into a struct
Struct: &main.Processes{Total:23, Running:3, Sleeping:20, Threads:34,

Load:1.8}

The first section of output shows your marshaled data, and the second shows your
unmarshaled struct. Next you can look at the Marshal() function, which brings much
of your reflection knowledge back to the forefront. See the following listing.

func fieldName(field reflect.StructField) string {
 if t := field.Tag.Get("ini"); t != "" {
 return t
 }
 return field.Name
}

func Marshal(v interface{}) ([]byte, error) {
 var b bytes.Buffer
 val :=

reflect.Indirect(reflect.ValueOf(v))
 if val.Kind() != reflect.Struct {
 return []byte{}, errors.New("unmarshal can only take structs")
 }

 t := val.Type()
 for i := 0; i < t.NumField(); i++ {
 f := t.Field(i)
 name := fieldName(f)
 raw := val.Field(i).Interface()
 fmt.Fprintf(&b, "%s=%v\n", name, raw)
 }
 return b.Bytes(), nil
}

This Marshal() function takes the given v interface{} and reads through its fields.
By examining the type, it can iterate through all the fields on the struct, and for each
field, it can access the annotation (via StructField.Tag()). As it loops through the
struct fields, it can also fetch the relevant values for each struct field. Rather than man-
ually convert these values from their native type to a string, you rely on fmt.Fprintf()
to do that work for you.

 Of note, the fieldName() function uses Go’s automatic tag parsing. Although you
can (if you desire) store any string data in an annotation, Go can parse tags for you.
For any annotation tag that follows the format NAME:"VALUE", you can access
the value by using StructField.Tag.Get(). It returns the value unprocessed. It’s a

Listing 11.14 The Marshal function

A utility function to read tags off of struct fields
Gets the tag off the
struct field

If there is no tag, falls
back to the field name

Gets a reflect.Value of the
current interface.
Dereferences pointers.

r this
gram,
andle
ructs. Loops through all of the

fields on the struct

Gets the
name from

tagName

Relies on the print
formatter to print the
raw data into the buffer

Returns the contents of the buffer

272 CHAPTER 11 Reflection and code generation
common idiom for tag values to contain a comma-separated list of params
(json:”myField,omitempty"). For our simple tags, though, you allow only a single
field in the VALUE space. Finally, if you don’t get any tag data for the field, you return
the struct field’s name.

This Marshal() function isn’t particularly flexible. For example, it’ll read only structs.
Maps, which could just as easily be converted to INI fields, aren’t supported. Likewise,
your Marshal() function is going to work well only on certain data types. It won’t, for
example, produce useful results for fields whose values are structs, channels, maps,
slices, or arrays. Yet although those operations require lots of code, there’s nothing
particularly daunting about extending this Marshal() function to support a broader
array of types.

 In the next listing you can look at the process of taking an existing bit of INI data
and turning it into a struct. Again, this uses annotations and the reflection subsystem.

func Unmarshal(data []byte, v interface{}) error {

 val := reflect.Indirect(reflect.ValueOf(v))
 t := val.Type()

 b := bytes.NewBuffer(data)
 scanner := bufio.NewScanner(b)
 for scanner.Scan() {
 line := scanner.Text()
 pair := strings.SplitN(line, "=", 2)
 if len(pair) < 2 {
 // Skip any malformed lines.
 continue
 }
 setField(pair[0], pair[1], t, val)
 }
 return nil
}

The Unmarshal() function reads []byte and tries to convert the fields it finds there
into matching fields on the supplied v interface{}. Your INI parser is trivially simple:
it iterates through the lines of the file and splits name-value pairs. But when it comes
time to populate the given struct with the newly loaded values, you have to do a fair
amount of work.

Listing 11.15 The Unmarshal function

Ignoring struct fields with annotations
Sometimes you want to tell encoders to ignore fields on a struct. The common idiom
for doing this is to use a dash (-) in the name field of the annotation (json:"-"“).
Although we don’t support this in the preceding code, you could extend the example
to ignore fields whose name is -.

Again, you begin with a
(dereferenced)
reflect.Value.

From data, you use a scanner to
read one line of INI data at a time.

Splits a line at the
equals sign

Passes the task of setting
the value to setField()

273TECHNIQUE 69 Processing tags on a struct

t
t the
kip
his
or.
 The unmarshal() function relies heavily on the setField() helper, which uses
most of the reflection strategies you’ve seen in this chapter. Again, you’re going to
switch on kinds, which make for verbose code. See the next listing.

func setField(name, value string, t reflect.Type, v reflect.Value) {

 for i := 0; i < t.NumField(); i++ {

 field := t.Field(i)

 if name == fieldName(field) {

 var dest reflect.Value

 switch field.Type.Kind() {

 default:

 fmt.Printf("Kind %s not supported.\n",

field.Type.Kind())

 continue

 case reflect.Int:

 ival, err := strconv.Atoi(value)

 if err != nil {

 fmt.Printf(

 "Could not convert %q to int: %s\n",

 value, err)

 continue

 }

 dest = reflect.ValueOf(ival)

 case reflect.Float64:

 fval, err := strconv.ParseFloat(value, 64)

 if err != nil {

 fmt.Printf(

 "Could not convert %q to float64: %s\n",

 value, err)

 continue

 }

 dest = reflect.ValueOf(fval)

 case reflect.String:

 dest = reflect.ValueOf(value)

 case reflect.Bool:

 bval, err := strconv.ParseBool(value)

 if err != nil {

 fmt.Printf(

 "Could not convert %q to bool: %s\n",

 value, err)

 continue

Listing 11.16 The setField helper function

setField takes the raw name and
value from the INI data, and also the
type and value of the struct itself.

Iterates through each field on the
struct, looking for one whose name

matches the INI field’s name

Uses a kind switch to figure out
how to take your value string
and convert it to the right type

If you don’
know abou
kind, just s
the field. T
isn’t an err

This version
supports only a few

kinds of values.
Supporting other

types is usually easy,
but highly repetitive.

Once a raw
value is

converted to
its type, wraps

it in a value

274 CHAPTER 11 Reflection and code generation
 }

 dest = reflect.ValueOf(bval)

 }

 v.Field(i).Set(dest)

 }

 }

}

The setField() function takes the raw name-value pair, as well as the reflect.Value
and reflect.Type of the struct, and attempts to match the pair to its appropriate field
on the struct. (Again, you restrict the tool to working only with structs, though you
could extend it to work with map types.) Finding the matching field name is relatively
easy because you can reuse the fieldName() function defined in listing 11.14. But
when it comes to the value, you need to convert the data from the string form you
were given to whatever the data type of the struct field is. For the sake of space, the
code in listing 11.14 handles only a few data types (int, float64, string, and bool).
And you didn’t explore types that extend from your base kinds. But the pattern illus-
trated here could be extended to handle other types. Finally, you store the newly con-
verted value on the struct by first wrapping it in reflect.Value() and then setting the
appropriate struct field.

 One thing becomes clear when scanning the code you’ve written in this technique:
because of Go’s strong type system, converting between types often takes a lot of boil-
erplate code. Sometimes you can take advantage of built-in tools (for example,
fmt.Fprintf()). Other times, you must write tedious code. On certain occasions, you
might choose a different route. Instead of writing reflection code, you might find it
useful to use Go’s generator tool to generate source code for you. In the next section,
you’ll look at one example of writing a generator to do work that would otherwise
require runtime type checking and detailed reflection code.

11.3 Generating Go code with Go code

Newcomers to Go often share a set of similar concerns. With no generics, how do you
create type-specific collections? Is there an easier way to write typed collections instead
of using reflection? The runtime cost of reflection is high. Is there a way to write better-
performing code? Annotations have only limited capabilities; is there another way to
transform code? As mentioned before, Go doesn’t support macros, and annotations
have only limited capabilities. Is there another way to transform code? How do you
metaprogram in Go?

 An often overlooked feature of Go is its capability to generate code. Go ships with
a tool, go generate, designed exactly for this purpose. In fact, metaprogramming with
generators is a powerful answer to the preceding questions. Generated code (which is
then compiled) is much faster at runtime than reflection-based code. It’s also usually
much simpler. For generating a large number of repetitive but type-safe objects, gen-
erators can ease your development lifecycle. And although many programmers turn a

Sets the value for the
relevant struct field

275TECHNIQUE 70 Generating code with go generate
jaundiced eye toward metaprogramming, the fact of the matter is that we use code
generators frequently. As you saw in the previous chapter, Protobuf, gRPC, and Thrift
use generators. Many SQL libraries are generators. Some languages even use genera-
tors behind the scenes for macros, generics, and collections. The nice thing about Go
is that it provides powerful generator tools right out of the box.

 At the root of Go’s embracing of code generation is a simple tool called go generate.
Like other Go tools, go generate is aware of the Go environment, and can be run on
files and packages. Conceptually speaking, it’s shockingly simple.

 The tool walks through the files you’ve specified, and it looks at the first line of each
file. If it finds a particular pattern, it executes a program. The pattern looks like this:

//go:generate COMMAND [ARGUMENT...]

The generator looks for this comment right at the top of each Go file that you tell it to
search. If it doesn’t find a header, it skips the file. If it does find the header, it executes
the COMMAND. The COMMAND can be any command-line tool that the generator can find
and run. You can pass any number of arguments to the command. Let’s build a trivi-
ally simple example in the next listing.

//go:generate echo hello
package main

func main() {
 println("Goodbyte")
}

This is legit Go code. If you compiled and ran it, it would print Goodbyte to the con-
sole. But it has a generator on the first line. The generator’s command is echo, which
is a UNIX command that echoes a string back to Standard Output. And it has one
argument, the string hello. Let’s run the generator and see what it does:

$ go generate simple.go
hello

All the generator does is execute the command, which prints hello to the console.
Although this implementation is simple, the idea is that you can add commands that
generate code for you. You’ll see this in action in the next technique.

TECHNIQUE 70 Generating code with go generate

Writing custom type-safe collections, generating structs from database tables, trans-
forming JSON schemata into code, generating many similar objects—these are some
of the things we’ve seen developers use Go generators for. Sometimes Go developers
use the Abstract Syntax Tree (AST) package or yacc tool to generate Go code. But
we’ve found that one fun and easy way to build code is to write Go templates that gen-
erate Go code.

Listing 11.17 A trivial generator

276 CHAPTER 11 Reflection and code generation
PROBLEM
You want to be able to create type-specific collections, such as a queue, for an arbitrary
number of types. And you’d like to do it without the runtime safety issues and perfor-
mance hit associated with type assertions.

SOLUTION
Build a generator that can create queues for you, and then use generation headers to
generate the queues as you need them.

DISCUSSION
A queue is a simple data structure; you push data onto the front, and dequeue data off
the back. The first value into the queue is the first value out (first in, first out, or
FIFO). Usually, queues have two methods: insert (or enqueue) to push data onto the
back of the queue, and remove (or dequeue) to get the value at the front of the queue.

 What you want is to be able to automatically generate queues that are specific to
the types you want to store in the queues. You want queues that follow a pattern like
the next listing.

package main

type MyTypeQueue struct {
 q []MyType
}

func NewMyTypeQueue() *MyTypeQueue {
 return &MyTypeQueue{
 q: []MyType{},
 }
}

func (o *MyTypeQueue) Insert(v MyType) {
 o.q = append(o.q, v)
}

func (o *MyTypeQueue) Remove() MyType {
 if len(o.q) == 0 {
 panic("Oops.")
 }
 first := o.q[0]
 o.q = o.q[1:]
 return first
}

This code is a good representation of what you want to have generated for you. There
are certain bits of information that you want to be filled in at generation time. The
obvious example is the type. But you also want the package name to be filled out auto-
matically. Your next step, then, is to translate the preceding code into a Go template.
The next listing shows the beginning of your queue generator tool.

Listing 11.18 Simple queue

A simple queue backed
by a typed slice

Adds an item to the
back of the queue

Removes an item from
the front of the queue

In production code, you’d
replace the panic with an error.
We simplify here to keep the
generator code smaller.

277TECHNIQUE 70 Generating code with go generate

package main

import (
 "fmt"
 "os"
 "strings"
 "text/template"
)

var tpl = `package {{.Package}}

type {{.MyType}}Queue struct {
 q []{{.MyType}}
}

func New{{.MyType}}Queue() *{{.MyType}}Queue {
 return &{{.MyType}}Queue{
 q: []{{.MyType}}{},
 }
}

func (o *{{.MyType}}Queue) Insert(v {{.MyType}}) {
 o.q = append(o.q, v)
}

func (o *{{.MyType}}Queue) Remove() {{.MyType}} {
 if len(o.q) == 0 {
 panic("Oops.")
 }
 first := o.q[0]
 o.q = o.q[1:]
 return first
}
`

Your template is almost the same as the target code you wrote previously, but with the
package name replaced with {{.Package}}, and the MyType prefix replaced with
{{.MyType}}. From here, you need to write the code that performs the generation.
This is a command-line tool designed to fit the //go:generate COMMAND ARGUMENT…
pattern. Ideally, what you’d like is to be able to write something like this:

//go:generate queue MyInt

And as a result, the generator would generate a MyIntQueue implementation. It’d be
even nicer if you could generate queues for multiple types at once:

//go:generate queue MyInt MyFloat64

You should be able to easily accommodate that, too, as shown in the next listing.

Listing 11.19 The queue template

.Package is your
package placeholder

.MyType is your
type placeholder

278 CHAPTER 11 Reflection and code generation

Co

func main() {
 tt := template.Must(template.New("queue").Parse(tpl))
 for i := 1; i < len(os.Args); i++ {
 dest := strings.ToLower(os.Args[i]) + "_queue.go"
 file, err := os.Create(dest)
 if err != nil {
 fmt.Printf("Could not create %s: %s (skip)\n", dest, err)
 continue
 }

 vals := map[string]string{
 "MyType": os.Args[i],
 "Package": os.Getenv("GOPACKAGE"),
 }
 tt.Execute(file, vals)

 file.Close()
 }
}

Because you want to accept multiple types at the command line, you start out by loop-
ing through os.Args. For each one, you automatically generate an output file with the
name TYPE_queue.go. Though to be consistent with the Go file-naming conventions,
you should lowercase the type name.

 Your template had only two variables. One is the Go type that you want to handle.
But the other is the package. One nice thing that the go generate command does for
you is populate a few environment variables with useful information about the loca-
tion of the generator file. The $GOPACKAGE environment variable is set to the name of
the package where the go:generate header was found.

 When the template is executed, the vals map is used to populate the template,
and a complete Go file is generated.

 To run this, you need to place the go:generate header in an appropriate file, as
shown in the next listing.

//go:generate ./queue MyInt
package main

import "fmt"

type MyInt int

func main() {
 var one, two, three MyInt = 1, 2, 3
 q := NewMyIntQueue()
 q.Insert(one)
 q.Insert(two)
 q.Insert(three)

 fmt.Printf("First value: %d\n", q.Remove())
}

Listing 11.20 The main queue generator

Listing 11.21 Using the generator

mpiles the
generator
template

Loops through the
args, making a file
named
TYPE_queue.go
for each

Sets .MyType to the
type specified in the
passed-in argument

Sets .Package to
the value of the
environment
variable
$GOPACKAGE

Executes the
template,

sending the
results to the file

The generate header generates
a queue for type MyInt

Defines the MyInt type

Uses the MyIntQueue

279TECHNIQUE 70 Generating code with go generate
This is a good example of typical usage of a Go generator. In this one file, you declare
a generator, you declare your type, and you even use the generator. Clearly, this code
will not compile until you’ve run the generator. But because the generator doesn’t
depend on your code compiling, you can (and should) run it before building your
package.

 That raises an important point about generators: they’re intended to be used as
development tools. The Go authors intended that generation was part of the develop-
ment lifecycle, not the build or runtime cycle. For example, you should always gener-
ate your code and then check the generated code into your VCS. You shouldn’t
require your users to run a generator (even if your users are other developers).

 To run the preceding generator, you need to do a few things. First, compile the
generator tool from listings 11.18 and 11.19. In order for the generator line to work,
you need to have it in the local directory (because you called it as ./queue). Alter-
nately, you could store the queue program anywhere on your path ($PATH), often
including $GOPATH/bin, and call it as //go:generate queue.

 With queue compiled and located where go generate can find it, you need to run
your go generate tool, and then you can run the main program using the generated
code:

$ ls
myint.go
$ go generate
$ ls
myint.go
myint_queue.go
$ go run myint.go myint_queue.go
First value: 1

After the generator has created your extra queue code, you can run the program in
listing 11.21. Everything it needs has been generated.

 The code you’re using for this generator is basic. Instead of adding good error
handling, you let the queue panic. And you don’t handle the case where you’d want to
queue pointers. But these problems are easily remedied by using the normal strate-
gies. Adding pointers, for example, is just a matter of adding another template param-
eter that adds an asterisk (*) where appropriate.

 Again, Go templates aren’t the only way to generate code. Using the go/ast pack-
age, you can generate code by programming the abstract syntax tree. For that matter,
you could just as easily write Python, C, or Erlang code that generated Go. You’re not
even limited to outputting Go. Imagine generating SQL CREATE statements by using a
generator that reads structs. One of the things that make go generate so elegant is
the versatility within its simplicity.

280 CHAPTER 11 Reflection and code generation

Taking a higher-level view, generators can be a useful way of writing repetitive code
that would otherwise use reflection. Go’s reflection mechanism is useful, but it’s
tedious to write and limited in capabilities, and the performance of your application
will suffer. That’s not to say that reflection is bad. Rather, it’s a tool designed to solve a
specific set of problems.

 On the other hand, generating code isn’t always the best solution either. Metapro-
gramming can make debugging hard. It also adds steps to the development process.
Just as with reflection, generation should be used when the situation calls for it. But
it’s not a panacea or a workaround for Go’s strong typing.

11.4 Summary

This chapter has taken on two of the more difficult Go topics: reflection and metapro-
gramming. With reflection, you examined how types, values, kinds, fields, and tags
can be used to solve a variety of programming problems. And with metaprogramming,
you saw how the go generate tool can be used to write code that creates code.

 During the course of this chapter, you saw how to do the following:

 Use kinds to identify critical details about types
 Determine at runtime whether a type implements an interface
 Access struct fields at runtime
 Work with annotations
 Parse tags within struct annotations
 Write marshal and unmarshal functions
 Use go generate
 Write Go templates that generate Go code

Over the course of this book, you’ve walked through a broad range of topics. We hope
that the techniques we’ve demonstrated are as practical and applicable in your coding
as they’ve been in ours. Go is a fantastic systems language. Part of the reason is the
simplicity of Go’s syntax and semantics. But more than that, Go developers built a pro-
gramming language not as an academic exercise, but in an effort to solve real prob-
lems in elegant ways. We hope this book has illustrated both Go’s elegance and its
practicality.

Inspired by go generate
We were inspired enough by the elegance of Go’s generator that when we created the
Helm package manager for Kubernetes (http://helm.sh), we implemented a similar
pattern for transforming templates into Kubernetes manifest files.

http://helm.sh

index
Symbols

- character 272
?: operator 5
. character 138
* character 53, 279
<- operator 73

Numerics

304 Not Modified response
170

404 Not Found error 54, 173,
176, 202

409 Conflict message 202

A

Abstract Syntax Tree. See AST
accept property 187
ACK messages 121
Action function 36
actions 148
AES (Advanced Encryption

Standard) 9
Alert log level 123
An Error Occurred message

201
annotations

structs 266–267
tags 267–274
validating 268

anonymous goroutine 62
Ansible ops platform 39
API version

in content type 211
in URL 209

apt-get package manager 22
arrow operator 73
AST (Abstract Syntax Tree)

275
asterisk character 53, 279
asynchronous I/O 21
autonomous applications 222

B

back pressure 120
bar function 126
BenchmarkCompiled-

Templates 139
benchmarking 136–143
BenchmarkParallelTemplates

141
block directive 159
bool channel 79
bots 222
brew install go command 22
BSD (Berkeley Software

Distribution) 28
building for cloud 230–232
bytes.Buffer 142

C

C language 17–18
c.Args() method 36
Caller function 128
Callers function 128
cancel() function 251
Cascading Style Sheets.

See CSS
CBOR (Concise Binary Object

Representation) 242

CDN (content delivery
network) 178

CGI (Common Gateway
Interface) 169

cgo 231
channels 9–13, 60, 72–83
Char property 93
Check() function 135
Chef ops platform 39
CLI applications, working

with 28–38
command-line flags 28–33

gnuflag 31–32
go-flags 32–33

command-line frameworks
33–38

commands and
subcommands 36

simple console
application 34–36

cli.go framework 35
cli.NewApp 35
cli.NewExitError function 36
close function 78–79
cloud computing 217–234

building for cloud 230–232
containers and cloud-native

applications 220–222
infrastructure as service 219
managing services 222–227

avoiding cloud provider
lock-in 222–225

handling errors 225–227
overview 17
performing runtime

detection 227–230
performing runtime

monitoring 232–234
281

282 INDEX
cloud computing (continued)
platform as service 219
software as service 219–220

cloud file storage 223
cloud provider errors 225
cloud provider interface 224
cloud provider lock-in,

avoiding 222–225
cloud services

microservices 236–237
REST

alternatives to 244–252
making faster 237–243

cloud-native applications, con-
tainers and 220–222

code coverage 16
code generation 274–280
codec package 242
CodecDecodeSelf 242
CodecEncodeSelf 242
codecgen command 242
command-line flags

gnuflag package 31–32
go-flags 32–33
overview 28–33

command-line frameworks
33–38

commands and
subcommands 36

overview 33
simple console application

34–36
command-line interface.

See CLI
Commands property 38
Common Gateway Interface.

See CGI
Communicating Sequential

Processes. See CSP
communication

between cloud services
235–252

with protocol buffers 247
compressing files 65
Concat function 89–92
ConcatError type 92
Concise Binary Object Repre-

sentation. See CBOR
concurrency 59–83

channels 72–83
goroutines 60–72
overview 9–13

conf variable 40
configuration 38–44
configuration struct 40

connection timeouts 197
containers

cloud-native applications
and 220–222

overview 221
content delivery network.

See CDN
Content property 164
content types 181, 187–188
Content-Type field 187
context package 249–250
count function 11
-cover flag 16
Critical log level 123
cross-compiling 230
cross-site scripting. See XSS
cryptography 9
CSP (Communicating Sequen-

tial Processes) 60
CSRF (cross-site request forg-

ery) token 182
CSS (Cascading Style Sheets)

168
ctx.Err() function 251
custom errors

generating 201–203
passing 201
reading and using 203–205

D

dash character 272
data encoding 9
Data Encryption Standard.

See DES
dateFormat function 152
Debug log level 123
debugging

information 123
locating bugs 114
logging 114–126

log package 115–122
system loggers 123–126

with stack traces 126–128
deep info. See stack dumps
default flag behavior 29
default statement 73, 75
defer block 119
deferred functions 99, 102–104
define directive 159
DELETE request 54, 195–196
dequeue method 276
DES (Data Encryption

Standard) 9

DetectContentType function
188

detecting dependencies 229
Dial function 8
directives 148
DisableKeepAlives property

239
divide function 96
done channel 80
Done() function 251
dot character 138
double curly brackets 148, 150
download function 199–200

E

Elem() function 262
Email key 243
email, using templates for

164–167
Emergency log level 123
encoding/json package

206–207, 241, 243
encoding/xml package 267
end directive 159
enqueue method 276
environment variables 23–24
EOF (end of the file) 192
err value 90
err variable 104
Error function 51, 92–93, 173,

201–202
error handling 88–95
error interface 204–205
Error log level 123
error messages 123
error passing 201
Error struct 202, 204–205
error type 92
Error() method 205
errors

cloud services 225–227
differentiating from panics

96–97
passing and handling over

HTTP 200–205
generating custom errors

201–203
reading and using custom

errors 203–205
errors.New function 91, 101
ErrRejected error 94
ErrTimeout error 94
etcd 40

283INDEX
exampledata directory 65
ExecuteTemplate 158, 164
Extensible Markup Language.

See XML
external packages 14

F

FastCGI server 169
faults, REST APIs 196–200
fieldName() function 271
fields, ignoring 272
file handling, multipart submis-

sions and 183–189
File interface 223–225
file storage 223
file string 67
File struct 41
file variable 104
FileName method 192
filepath.Join 232
filepath.ListSeparator 232
filepath.Separator 232
filepath.Split 232
filepath.SplitList 232
filepath.ToSlash 232
FileServer handler 170–171
fileStore function 225
flag package 29–32
flag.Parse() method 30
Flags property 36
float64 function 255
fmt command 17
fmt package 91, 259
fmt.Errorf function 91
fmt.Fprintf() function 271
fmt.Sprintf function 150
for loop 12, 67
for/select loop 79
form handling 180–193

files and multipart
submissions 183–189

form requests 180–182
raw multipart data 189–193

Form property 181
format package 13
formatting 17
FormFile method 183–184
FormName method 192
FormValue function 181–182
fs.FileServer function 173
functionality, adding to HTML

templates 150–152

G

GDB (GNU Debugger) plugin
114

generating code 275
generative testing 134–136
GET HTTP request 192
GET request 8–9, 54, 184, 186,

190, 212
GetBool method 41
getName 15
git add command 36
git commit command 36
git push command 36
Git version-control system 22
github.com/Masterminds/

go-fileserver package
172–173

glide executable 23
global flags 38
GNU Debugger plugin 114
gnuflag package 31–32
go build command 178
Go flag system 28
go fmt command 17
go generate command 275,

278
go get command 14
go install command 23
go keyword 104
Go programming language

3–26
compared with other

languages 17–22
C language 17–18
JavaScript 21–22
Node.js 21–22
PHP language 19–21
Python language 19–21

concurrency with goroutines
and channels 9–13

environment variables 23–24
go executable as toolchain

13–17
code coverage 16
formatting 17
package management

13–14
testing 14–15

Hello application 24–26
installing 22
multiple return values 6–7
overview 3–6
standard library of 7–9

cryptography 9

data encoding 9
HTML 9
networking and HTTP

7–9
version control 22
workspace 23

go test command 16, 138
go tool 4
go toolchain 230, 232
go-flags 32–33
go.rice package 177–178
go/ast package 279
GOARCH variable 230
godeb tool 22
GoDoer type 110–111
golang. See Go programming

language
goodbye function 51
GOOS variable 230
$GOPACKAGE variable 278
$GOPATH variable 23
Gorilla web toolkit 57
goroutines 60–72

overview 9–13
panics and 104–112

gox 230–231
groupcache 176
gRPC plugin 248

H

handle function 105, 107–108
handler function 48
HandlerFunc interface 54
<head> section 157
head.html 157
Hello application 24–26
hello function 24
hello_test.go file 129
HMAC (Keyed-Hash Message

Authentication Code)
9

homePage function 51
host information 227
host IP addresses 228
html package 148
HTML templates 148–164

mixing templates 155–164
parsing templates 152–154
standard library 148–152
template execution

failure 154–155
HTML type 150
html/template packages 9,

148–150, 155, 164, 166

284 INDEX
HTTP client
overview 7–9
passing and handling errors

over 200–205
generating custom errors

201–203
reading and using custom

errors 203–205
REST APIs 195–196

http function 153–154, 190
HTTP methods 49
http package 8, 44, 47–48, 51–

52, 170–171, 177, 180,
184, 188, 201

http.DefaultClient 239
http.DefaultTransport 239
http.Dir object 173, 177
http.FileServer function 173
http.Get() function 195, 205,

239
http.HandleFunc function 24
http.Head function 195
http.Post() function 195, 239
http.PostForm function 195
http.Request.Method 51
http.Request.Path 51
http.ResponseWriter 155
http.Transport 239
hypervisors 221

I

IaaS (infrastructure as service)
219

if statement 89–91
if/else statement 89
If-Modified-Since header 170,

175
ignoring fields 272
implements() function 261–

262
import statement 14
index.html file 157, 163
Info log level 123
informational messages 123
insert method 276
installing Go 22
interface{} 207–208
io.EOF error 93, 192
io.ErrNoProgress error 93
io.Reader interface 42, 176
io.Seeker interface 176
io.Writer interface 118, 130,

133

J

JavaScript, Node.js 21–22
JIT (just-in-time) compiler 19
JSON (JavaScript Object Nota-

tion)
marshaling 241
overview 9, 39
parsing and mapping

206–209
unmarshaling 241

json package 242
JSON schemas 206

K

Keyed-Hash Message Authenti-
cation Code. See HMAC

Kind switch 257
kinds (reflection) 262–266
Kubernetes 280

L

launchpad.net/gnuflag
package 31

Ldate 117
libmagic 189
libraries 7–9
lightweight threads 10, 13
Line property 93
listen function 8, 105, 108
ListenAndServe 47–48
listener function 105
listenForShutdown function 48
Llongfile 117
Lmicrosends 117
Load method 225–226
locating bugs 114
locking with channels 81
locks 67
log levels 123
log package 115–116, 119–122
log.Fatal function 119
log.Fatalln function 115
log.Logger function 116
log.Lshortfile 117
log.LstdFlags 117
log.Panic function 115
log.Printf method 115
Logf() function 140
logging 114–126

log package 115–122
overview 114
system loggers 123–126

LOG_NOTICE setting 125
long flags 32
ls -la command 28
Lshortifle 117
LstdFlags 117
Ltime 117

M

main function 11, 24, 33, 40,
53, 61, 63, 69, 80, 99,
103, 164

manners package 47–48
mapping JSON 206–209
marshal() method 269,

271–272
marshaling 241
memory-caching service 176
Mercurial version-control

system 22
message function 111
Message property 93, 131
metaprogramming 274
microservices 221, 236–237
mime package 188
mixing templates 155–164
MockMessage type 132
multipart submissions, file han-

dling and 183–189
multipart.File object 184
multipart.FileHeader

object 184, 187–188
MultipartForm property 185,

187
MultipartReader method 189,

192
multiple attribute 185
multiple cloud providers 222
multiple return values 6–7
multiple-letter flags 32
mutex.RLock 175
mutex.RUnlock 175
MyInt value 264

N

name key 243
Name property 35, 243
named return variables 7
Names function 6–7
net package 8, 197
net.Conn type 130
net.Dial 119, 122
net.DialTimeout 122

285INDEX
net/http package 109, 238–239
net/http/cgi package 169
net/http/fastcgi package 169
net/smtp package 165
net/url package 51
Netcat 118
networking 7–9
New Relic 234
nil value 79, 89
Node.js 21–22
NotFound function 51, 173
Notice log level 123
npm package manager 21

O

OpenCSV function 104
ops platforms 39
os.File type 130
os.Getpid() method 228
os.Getwd() method 228
os.Hostname() method 228
os.PathListSeparator 228
os.PathSeparator 228
os/exec package 229
Other field 267

P

PaaS (platform-as-a-service) 34,
219

package handling 13
package management 13–14
Page type 164
page.html template 161
panic(nil) function 97
panics 95–112

differentiating from errors
96–97

goroutines and 104–112
overview 95
recovering from 99–104
working with panics 97–99

Parse function 32–33, 153
ParseError function 93
ParseFiles function 153, 158
ParseForm method 181
ParseInt function 44
ParseMultipartForm 181–182,

186, 189, 192
parsing JSON 206–209
parsing templates 152–154
path package 52, 54–56
pathResolver 53, 172

PATTERN expression 138
pb.Next() function 140
performance tests.

See benchmarking
PHP language 19–21
PID (process ID) 126
piped variables 149
pipelining 240
platform-as-a-service. See PaaS
PORT variable 44
POST requests 195
PostForm property 181–182
PostFormValue method

181–182
precheckDivide function

96–97
printCount 12
PrintDefaults function 30
printf function 150
PrintStack function 127
process ID. See PID
Processes struct 269–270
processing tags 268
ProcessMultipartForm 183
protocol buffers

clients 246
communicating with 247
defining messages and RPC

calls with 248
file 244
overview 244
plugin 245
request gRPC server

with 250
server handler 246
server setup 245

Puppet ops platform 39
Python language 19–21

Q

queue templates 277
Quote object 162, 164

R

race condition 67, 141
race detection 70
--race flag 70
race flag 141–142
randomly generated values 136
Range HTTP header 198
raw multipart data 189–193
ReadFile function 41

ReadFileInto function 42
reading custom errors 204
readme handler 170
readStdin function 75
recover function 100–101
reflect package 33, 241, 254–

255, 257–260, 265, 268
reflect.Indirect() method

264–265
reflect.Interface type 260
reflect.Kind 255
reflect.Type 255, 258
reflect.TypeOf() function 261
reflect.Value type 258
reflect.ValueOf() function 264
reflection

features of 254–266
kinds 262–266
structs, annotating 266–267
tags, annotating 267–274
types 259–262
values 255–259

regexp package 56
reimplementing locks 67
remote procedure call. See RPC
remove method 276
RemoveEmptyLines function

102–103
Request object 181–183, 186,

188–189, 192
res.Status 201
res.StatusCode 201
response function 105, 108
REST (Representational State

Transfer)
alternatives to 244–252
making faster 237–243
overview 8

REST APIs 195–200
faults 196–200
using HTTP client 195–196
versioning 209–213

result value 90
return values 6–7
reusing connections 238
rice embed-go command 177
rice.MustFindBox 177
Rijndael. See AES (Advanced

Encryption Standard)
RLock 175
routing web requests 49–58
RPC (remote procedure call)

247
run function 104
RUnlock 175

286 INDEX
RunParallel method 139
runtime detection, cloud com-

puting and 227–230
runtime monitoring, cloud

computing and
232–234

runtime package 127–128, 234
runtime.Gosched() function

62–63
runtime.ReadMemStats

function 234
RWMutex object 175

S

SaaS (software as service)
219–220

Save method 225
SCM (software configuration

management) 22
SDKs (software development

kits) 202
Secure Hash Algorithm.

See SHA
select statement 73, 75
SendRequest function 94
ServeContent function

173–174, 176
ServeFile function 170–171
ServeHTTP method 54, 56
serveTemplate function 152
serving static content 169–180
setField() function 273–274
SHA (Secure Hash Algorithm)

9
short flags 32
short variable declarations 5
signal package 48
simple_gz.go program 65
Sinatra 57
slow-start 238
smtp package 165
software as service. See SaaS
software configuration manage-

ment. See SCM
software development kits.

See SDKs
source code 129
stack dumps 123, 126
Stack function 127–128
stack traces, debugging

with 126–128
Standard Error 115–116
standard library (HTML

templates) 150–152

Standard Output 127–128
start function 105
static content. See serving static

content
strconv package 44
streaming responses 154
String() method 259
strings package 51
StripPrefix 171
struct fields 272
StructField.Tag.Get()

function 271
StructField.Tag() function 271
structs

accessing 262
accessing fields on 262
annotating 266–267
generating 275
marshaling 269
processing tags on 268
unmarshaling 269

styles template 159–160
sum() function 257
switching values 254
sync package 47, 67, 72, 80,

175
sync.Locker interface 67
sync.Mutex 67, 142
sync.RWLock 72
sync.WaitGroup 63
syslog package 115, 124
syslog.Debug function 126
syslog.Dial function 126
system loggers 123–126

T

T.Error function 130
t.Execute() function 140
T.Fatal function 130
tags, annotating 267–274
target interface 261
TCP (Transmission Control

Protocol) 7
TDEA (Triple Data Encryption

Algorithm) 9
template execution failure

154–155
template.HTML 162
template.Template instance

152
templates 147–167

HTML templates 148–164
mixing templates 155–164
parsing templates 152–154

standard library 148–152
template execution

failure 154–155
overview 147
using for email 164–167

ternary operator 5
_test.go files 129
testing 129–136

benchmarking 136–143
generative testing 134–136
overview 14–15
unit testing 129–134

testing code 129
testing package 15, 136
testing/quick package 134
TestName 15
text/template package

148–149, 166
text/template/parser

package 153
time.After function 74
time.Sleep 63, 73
time.Time function 74
Timeout() method 197
timeouts 197
TLS (Transport Layer Security)

9
toolchain, go executable as

13–17
code coverage 16
formatting 17
package management 13–14
testing 14–15

Trace log level 123
transcoding application 236
Transmission Control Protocol.

See TCP
Triple Data Encryption Algo-

rithm. See TDEA
try/catch blocks 92, 95
Twelve-Factor App paradigm

118
twelve-factor apps 43
type switch

sum with 255
with extra type 256

Type.Elem() function 261
Type.Interface() method 261
Type.NumField() function 265
TypeByExtension function 188
types

checking and converting 259
discussion 259–262
examining 262

287INDEX
U

UDP (User Datagram Protocol)
7

unbuffered channel 80–81
unit testing 129–134
UNIX variant 31
unmarshal() method 269, 272
unmarshaling 241
User type 243
user.html template 161
user.proto file 244
user_generated.go file 242

V

vals map 278
Value property 36
values

discussion 255–259
examining 263
implementing

interfaces 258
return of multiple 6–7
switching 254

values map 192
varargs 89
variable 254

variable syntax 5
variable-length argument

lists 89
verbs 49
version control 22
versioning REST APIs 209–213
VisitAll function 30
VMs (virtual machines) 19, 220

W

WaitGroup 47–48
walk() function 263–264
Warn log level 123
web servers, working with

44–58
overview 44
routing web requests 49–58
starting up and shutting

down server 45–48
web services 194–213

parsing and mapping
JSON 206–209

passing and handling errors
over HTTP 200–205

generating custom
errors 201–203

reading and using custom
errors 203–205

REST APIs 195–200
faults 196–200
using HTTP client

195–196
versioning 209–213

wg.Done function 66
wg.Wait function 66
words struct 72
words.add 70
words.found map 70
words.Lock method 72
words.Unlock method 72
workspace 23

X

X-Content-Type-Options
header 201

XML (Extensible Markup
Language) 9

xml tag 267
XSS (cross-site scripting) 150

Y

YAML (YAML Ain’t Markup
Language) 41

yaml package 41
yikes function 101
yum package manager 22

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Go in Action
by William Kennedy

with Brian Ketelsen and Erik St. Martin

ISBN: 9781617291784
264 pages
$44.99
November 2015

Go Web Programming
by Sau Sheong Chang

ISBN: 9781617292569
312 pages
$44.99
July 2016

https://www.manning.com/books/go-in-action
https://www.manning.com/books/go-web-programming
https://www.manning.com/books/go-in-action
https://www.manning.com/books/go-web-programming

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Java 8 in Action
Lambdas, streams, and
functional-style programming
by Raoul-Gabriel Urma, Mario Fusco,

and Alan Mycroft

ISBN: 9781617291999
424 pages
$49.99
August 2014

Docker in Action
by Jeff Nickoloff

ISBN: 9781633430235
304 pages
$49.99
March 2016

https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/docker-in-action
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/docker-in-action

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Docker in Practice
by Ian Miell and Aidan Hobson Sayers

ISBN: 9781617292729
372 pages
$44.99
April 2016

Mesos in Action
by Roger Ignazio

ISBN: 9781617292927
272 pages
$44.99
May 2016

https://www.manning.com/books/docker-in-practice
https://www.manning.com/books/mesos-in-action
https://www.manning.com/books/docker-in-practice
https://www.manning.com/books/mesos-in-action

G
o may be the perfect systems language. Built with simpli-
city, concurrency, and modern applications in mind, Go
provides the core tool set for rapidly building web, cloud,

and systems applications. If you know a language like Java or C#,
it’s easy to get started with Go; the trick is fi nding the practical
dirt-under-the-fi ngernails techniques that you need to build
production-ready code.

Go in Practice guides you through dozens of real-world tech-
niques in key areas. Following a cookbook-style Problem/
Solution/Discussion format, this practical handbook builds on
the foundational concepts of the Go language and introduces
specifi c strategies you can use in your day-to-day applications.
You’ll learn techniques for building web services, using Go in
the cloud, testing and debugging, routing, network applications,
and much more. Aft er fi nishing this book, you will be ready to
build sophisticated cloud-native Go applications.

What’s Inside
Dozens of specifi c, practical Golang techniques
Using Go for devops and cloudops
Writing RESTful web services and microservices
 Practical Web dev techniques

Written for experienced developers who have already started ex-
ploring Go and want to use it eff ectively in a production setting.

Matt Butcher is a soft ware architect at Deis. Matt Farina is a Prin-
cipal Engineer in the Advanced Technology Group at Hewlett
Packard Enterprise. Th ey are both authors, speakers, and regular
open source contributors.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/go-in-practice

$44.99 / Can $51.99 [INCLUDING eBOOK]

GO/PROGRAMMING

M A N N I N G

“Vital knowledge that
will help take your

application development
 to the next level.”—From the Foreword by

Brian Ketelsen
Coauthor of Go in Action

“An invaluable resource
you can start using on
day one to build high-

performance, real-world
web applications.”

—Gary A. Staff ord
Th oughtWorks

“A great combination
of simple examples with

thorough explanations of
 practical concepts in Go.”—Brandon Titus, Mercury

Butcher Farina
Go IN PRACTICE SEE INSERT

	Go in Practice
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Matt Butcher
	Matt Farina

	about this book
	How the book is organized
	Code conventions and downloads
	Author Online Forum

	about the authors
	about the cover illustration
	Part 1 Background and fundamentals
	1 Getting into Go
	1.1 What is Go?
	1.2 Noteworthy aspects of Go
	1.2.1 Multiple return values
	1.2.2 A modern standard library
	1.2.3 Concurrency with goroutines and channels
	1.2.4 Go the toolchain—more than a language

	1.3 Go in the vast language landscape
	1.3.1 C and Go
	1.3.2 Java and Go
	1.3.3 Python, PHP, and Go
	1.3.4 JavaScript, Node.js, and Go

	1.4 Getting up and running in Go
	1.4.1 Installing Go
	1.4.2 Working with Git, Mercurial, and version control
	1.4.3 Exploring the workspace
	1.4.4 Working with environment variables

	1.5 Hello, Go
	1.6 Summary

	2 A solid foundation
	2.1 Working with CLI applications, the Go way
	2.1.1 Command-line flags
	Technique 1 GNU/UNIX-style command-line arguments
	2.1.2 Command-line frameworks
	Technique 2 Avoiding CLI boilerplate code

	2.2 Handling configuration
	Technique 3 Using configuration files
	Technique 4 Configuration via environment variables

	2.3 Working with real-world web servers
	2.3.1 Starting up and shutting down a server
	Technique 5 Graceful shutdowns using manners
	2.3.2 Routing web requests
	Technique 6 Matching paths to content
	Technique 7 Handling complex paths with wildcards
	Technique 8 URL pattern matching
	Technique 9 Faster routing (without the work)

	2.4 Summary

	3 Concurrency in Go
	3.1 Understanding Go’s concurrency model
	3.2 Working with goroutines
	Technique 10 Using goroutine closures
	Technique 11 Waiting for goroutines
	Technique 12 Locking with a mutex

	3.3 Working with channels
	Technique 13 Using multiple channels
	Technique 14 Closing channels
	Technique 15 Locking with buffered channels

	3.4 Summary

	Part 2 Well-rounded applications
	4 Handling errors and panics
	4.1 Error handling
	Technique 16 Minimize the nils
	Technique 17 Custom error types
	Technique 18 Error variables

	4.2 The panic system
	4.2.1 Differentiating panics from errors
	4.2.2 Working with panics
	Technique 19 Issuing panics
	4.2.3 Recovering from panics
	Technique 20 Recovering from panics
	4.2.4 Panics and goroutines
	Technique 21 Trapping panics on goroutines

	4.3 Summary

	5 Debugging and testing
	5.1 Locating bugs
	5.1.1 Wait, where is my debugger?

	5.2 Logging
	5.2.1 Using Go’s logger
	Technique 22 Logging to an arbitrary writer
	Technique 23 Logging to a network resource
	Technique 24 Handling back pressure in network logging
	5.2.2 Working with system loggers
	Technique 25 Logging to the syslog

	5.3 Accessing stack traces
	Technique 26 Capturing stack traces

	5.4 Testing
	5.4.1 Unit testing
	Technique 27 Using interfaces for mocking or stubbing
	Technique 28 Verifying interfaces with canary tests
	5.4.2 Generative testing

	5.5 Using performance tests and benchmarks
	Technique 29 Benchmarking Go code
	Technique 30 Parallel benchmarks
	Technique 31 Detecting race conditions

	5.6 Summary

	Part 3 An interface for your applications
	6 HTML and email template patterns
	6.1 Working with HTML templates
	6.1.1 Standard library HTML package overview
	6.1.2 Adding functionality inside templates
	Technique 32 Extending templates with functions
	6.1.3 Limiting template parsing
	Technique 33 Caching parsed templates
	6.1.4 When template execution breaks
	Technique 34 Handling template execution failures
	6.1.5 Mixing templates
	Technique 35 Nested templates
	Technique 36 Template inheritance
	Technique 37 Mapping data types to templates

	6.2 Using templates for email
	Technique 38 Generating email from templates

	6.3 Summary

	7 Serving and receiving assets and forms
	7.1 Serving static content
	Technique 39 Serving subdirectories
	Technique 40 File server with custom error pages
	Technique 41 Caching file server
	Technique 42 Embedding files in a binary
	Technique 43 Serving from an alternative location

	7.2 Handling form posts
	7.2.1 Introduction to form requests
	Technique 44 Accessing multiple values for a form field
	7.2.2 Working with files and multipart submissions
	Technique 45 Uploading a single file
	Technique 46 Uploading multiple files
	Technique 47 Verify uploaded file is allowed type
	7.2.3 Working with raw multipart data
	Technique 48 Incrementally saving a file

	7.3 Summary

	8 Working with web services
	8.1 Using REST APIs
	8.1.1 Using the HTTP client
	8.1.2 When faults happen
	Technique 49 Detecting timeouts
	Technique 50 Timing out and resuming with HTTP

	8.2 Passing and handling errors over HTTP
	8.2.1 Generating custom errors
	Technique 51 Custom HTTP error passing
	8.2.2 Reading and using custom errors
	Technique 52 Reading custom errors

	8.3 Parsing and mapping JSON
	Technique 53 Parsing JSON without knowing the schema

	8.4 Versioning REST APIs
	Technique 54 API version in the URL
	Technique 55 API version in content type

	8.5 Summary

	Part 4 Taking your applications to the cloud
	9 Using the cloud
	9.1 What is cloud computing?
	9.1.1 The types of cloud computing
	9.1.2 Containers and cloud-native applications

	9.2 Managing cloud services
	9.2.1 Avoiding cloud provider lock-in
	Technique 56 Working with multiple cloud providers
	9.2.2 Dealing with divergent errors
	Technique 57 Cleanly handling cloud provider errors

	9.3 Running on cloud servers
	9.3.1 Performing runtime detection
	Technique 58 Gathering information on the host
	Technique 59 Detecting dependencies
	9.3.2 Building for the cloud
	Technique 60 Cross-compiling
	9.3.3 Performing runtime monitoring
	Technique 61 Monitoring the Go runtime

	9.4 Summary

	10 Communication between cloud services
	10.1 Microservices and high availability
	10.2 Communicating between services
	10.2.1 Making REST faster
	Technique 62 Reusing connections
	Technique 63 Faster JSON marshal and unmarshal
	10.2.2 Moving beyond REST
	Technique 64 Using protocol buffers
	Technique 65 Communicating over RPC with protocol buffers

	10.3 Summary

	11 Reflection and code generation
	11.1 Three features of reflection
	Technique 66 Switching based on type and kind
	Technique 67 Discovering whether a value implements an interface
	Technique 68 Accessing fields on a struct

	11.2 Structs, tags, and annotations
	11.2.1 Annotating structs
	11.2.2 Using tag annotations
	Technique 69 Processing tags on a struct

	11.3 Generating Go code with Go code
	Technique 70 Generating code with go generate

	11.4 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

