William Kennedy
with Brian Ketelsen
Erik St. Martin

Foreworn By Steve Francia

M MANNING

vww . allitebooks.cond

http://www.allitebooks.org

Go in Action

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

Go 1in Action

WILLIAM KENNEDY

WITH BRIAN KETELSEN
AND ERIK ST. MARTIN

MANNING
SHELTER ISLAND

vww.allitebooks.cond

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editor: Kim Shrier
PO Box 761 Copyeditor: Jodie Allen
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Jimmy Frasché
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617291784
Printed in the United States of America
12345678910 -EBM - 20 19 18 17 16 15

vww.allitebooks.cond

http://www.manning.com
http://www.allitebooks.org

brief conients

© 00 N O O K~ W N R

Introducing Go 1

Go quick-start 9

Packaging and tooling 39
Arrays, slices, and maps 57
Go’s type system 88
Concurrency 128

Concurrency patterns 158
Standard library 184

Testing and benchmarking 211

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

contents

Joreword xi

preface xiii

acknowledgments — xiv

about this book xvi

about the cover illustration xix

Introducing Go 1

1.1 Solving modern programming challenges with Go 2

Development speed 3 = Concurrency 3 = Go’s lype system 5
Memory management 7

1.2 Hello, Go 7
Introducing the Go Playground 8
1.3 Summary 38

Go quick-start 9
2.1 Program architecture 10
2.2 Main package 11
2.3 Search package 13
search.go 14 = feed.go 22 = match.go/defaull.go 26
2.4 RSS matcher 32
2.5 Summary 38

vww.allitebooks.cond

http://www.allitebooks.org

viii CONTENTS

Packaging and tooling 39
3.1 Packages 40
Package-naming conventions 40 = Package main 40
3.2 Imports 42
Remote imports 42 = Named imports 43
3.3 init 44
3.4 Using Go tools 45
3.5 Going farther with Go developer tools 47
govet 47 = Go format 48 = Go documentation 48
3.6 Collaborating with other Go developers 51
Creating repositories for sharing 51
3.7 Dependency management 52
Vendoring dependencies 52 = Introducing gb 54
3.8 Summary 56

Arrays, slices, and maps 57
4.1 Array internals and fundamentals 57

Internals 58 = Declaring and initializing 58 = Working with
arrays 60 = Multidimensional arrays 62 = Passing arrays
between functions 64

4.2 Slice internals and fundamentals 65

Internals 65 = Creating and initializing 65 = Working with
slices 68 = Multidimensional slices 79 = Passing slices between
Sfunctions 80

4.3 Map internals and fundamentals 81

Internals 81 = Creating and initializing 83 = Working with
maps 84 = Passing maps between functions 86

4.4 Summary 87

Go’s type system 88
5.1 User-defined types 89
5.2 Methods 92
5.3 The nature of types 96
Built-in types 96 = Reference types 97 = Struct types 98

vww.allitebooks.cond

http://www.allitebooks.org

5.4

5.5
5.6
5.7

CONTENTS

Interfaces 101

Standard library 102 = Implementation 104 = Method
sets 105 = Polymorphism 109

Type embedding 111
Exporting and unexporting identifiers 119
Summary 127

Concurrency 128

6.1
6.2
6.3
6.4

6.5

6.6

Concurrency versus parallelism 129
Goroutines 132
Race conditions 139
Locking shared resources 142

Atomic functions 142 = Mutexes 145
Channels 147

Unbuffered channels 148 = Buffered channels 153
Summary 157

Concurrency patterns 158

7.1
7.2
7.3
7.4

Runner 158
Pooling 167
Work 177
Summary 183

Standard hibrary 184

8.1
8.2

8.3

8.4

8.5

Documentation and source code 185
Logging 187

Log package 187 = Customized loggers 191
Conclusion 195

Encoding/Decoding 196

Decoding [SON 196 = Encoding [SON 201
Conclusion 202

Input and output 203

Writer and Reader interfaces 203 = Working together 205
Simple curl 208 = Conclusion 210

Summary 210

vww.allitebooks.cond

ix

http://www.allitebooks.org

CONTENTS

Testing and benchmarking 211
9.1 Unit testing 212
Basic unit test 212 = Table tests 216 = Mocking calls 219
Testing endpoints 223
9.2 Examples 228
9.3 Benchmarking 232
9.4 Summary 236

index 237

Joreword

In computer science, when you think of exceptional people, a few names come to
mind. Among them are Rob Pike, Robert Griesmier, and Ken Thompson, who are
responsible for UNIX, Plan 9, B, Java’s JVM HotSpot, V8, Strongtalk, Sawzall, Ed,
Acme, and UTF8, among many other creations. In 2007, they came together to experi-
ment with a very powerful idea, combining their decades of experience to create a
new systems language inspired by existing languages but truly unlike anything that
came before. They released their creation as open source and named it “Go.” If Go
continues on the course it is now on, it may indeed prove to be the most impactful of
their many notable creations.

Humanity is at its best when people join together with the pure intention of mak-
ing the world a better place. In 2013, Brian and Erik formed the Gopher Academy
and were soon joined by Bill and a few other similar-minded people, united in the
pursuit of building a better community around the Go language. They first noticed
that the community needed a place to gather and share material online so they set up
the Go discussion board (slack) and the Gopher Academy blog. As time went on and
the community continued to grow, they established the world’s first global Go confer-
ence, GopherCon. Through their deep experience with the community, they knew
that a resource was needed to guide the many thousands of programmers into this
new language, so they began to write the book that you now hold in your hands.

This book is a labor of love from three individuals who have given so much of their
time and talents to the Go community. I have been alongside Bill, Brian, and Erik to
witness them writing and revising over the past year as they maintained their existing
responsibilities as editors of the Gopher Academy blog, as conference organizers, in
their day jobs, and in their roles as fathers and husbands. To them this is not a book,

xii

FOREWORD

but a tribute to the language they love. They weren’t content with producing a “good”
book. They wrote and reviewed, rewrote and revised many drafts of each page, exam-
ple, and chapter until they had a book worthy of the language they hold so dear.

It takes courage to leave a language of comfort and familiarity and try a language
that is not only new to you but new to the world. This road less traveled is a bumpy
one, lined with bugs that only early adopters are familiar with. It includes unexpected
errors, spotty or missing documentation, and a lack of established libraries to use.
This is the path of a trailblazer, a pioneer. If you are reading this now, you are likely on
the beginning of this journey.

From the first chapter to the last, this book is crafted to provide you, the reader, a
concise and comprehensive guide to exploring, learning, and using Go. In all the
world, you couldn’t hope to have better guides than Bill, Brian, and Erik. I'm excited
for you to discover all the goodness that is Go and look forward to seeing you online
and at the Go meetups and conferences.

STEVE FRANCIA
GOPHER AND CREATOR OF HUGO,
COBRA, VIPER, AND SPF13-VIM

preface

Back in October 2013 after writing the GoingGo.net blog for a few months, I received
a call from Brian Ketelsen and Erik St. Martin. They were in the process of writing this
book and asked if I would be a part of it. I jumped at the opportunity and started writ-
ing. I was still very new to Go at the time, so this was a great chance to learn more
about the language, work with Brian and Erik and share what I learned at a greater
scale than the blog.

After we finished the first four chapters, we released the book under the Manning
Early Access Program (MEAP). Soon after, we received an email from a member of
the language team. This person provided a review that contained a detailed set of
changes plus a wealth of knowledge, advice, encouragement, and support. From
there, we decided to rewrite chapter 2 from scratch and performed a major overhaul
of chapter 4. We learned that rewriting chapters was not going to be the exception
but the norm. That experience also taught us that it was going to take the help of the
community to write this book, and we needed to make that happen immediately.

Ever since then, this book has been a community effort. We have tried to puta proper
amount of time in researching each chapter, developing code samples, and working with
the community to review, discuss, and edit the material and code. We have done our best
to make sure this book is technically correct, shows only idiomatic code, and teaches you
Go the way the community feels it should be written and thought about. We do have
some of our own thoughts, practices, and guidelines sprinkled in as well.

We hope this book helps you learn Go and you find it a useful resource today and
for many years to come. Brian, Erik, and I are always online and available to help any-
one who reaches out to us. If you purchased the book, thank you, and don’t be shy
about saying “hi.”

WILLIAM KENNEDY

acknowledgments

We have spent over 18 months writing this book, but none of our efforts would have
been possible without the support of many people—our families, friends, colleagues,
and mentors; the entire Go community; and our publisher, Manning.

When you’re writing a book like this, you need an editor who will not only share
the good but help you through the bad and be there for you at all cost. Jennifer Stout,
you're a brilliant, nurturing, and amazing friend. Thank you for everything and for
being there when we needed you the most. Thank you for making this book a reality.
Thanks also to all the other folks at Manning who worked with us during the develop-
ment and production of our book.

You can’t know everything, so it requires a community of people to give their time
and knowledge. We thank the Go community and everyone who participated in
reviews and provided feedback on the manuscript at various stages of its development,
especially Adam McKay, Alex Basile, Alex Jacinto, Alex Vidal, Anjan Bacchu, Benoit
Benedetti, Bill Katz, Brian Hetro, Colin Kennedy, Doug Sparling, Jeffrey Lim, Jesse
Evans, Kevin Jackson, Mark Fisher, Matt Zulak, Paulo Pires, Peter Krey, Philipp K.
Janert, Sam Zaydel, and Thomas O’Rourke. Thanks also to Jimmy Frasché for his care-
ful technical review of the final manuscript shortly before it went into production.

There are a few other people who need to be acknowledged in particular.

Kim Shrier was there from the very beginning, providing reviews, and giving of his
time to teach. We learned so many things from you and we are grateful. The book is
better technically because of you.

Bill Hathaway got involved heavily in the last year of writing the book, shaping
each chapter; his thoughts and opinions were invaluable. We must give Bill credit as a
coauthor of chapter 9. It would not exist without Bill’s time, talent, and effort.

ACKNOWLEDGMENTS XV

We would also like to recognize Cory Jacobson, Jeffery Lim, Chetan Conikee, and
Nan Xiao, who consistently provided time for reviews, opinions, and guidance.
Thanks to Gabriel Aszalos, Fatih Arslan, Kevin Gillette, and Jason Waldrip for help
with sample code and reviews. And special thanks to Steve Francia for contributing
the foreword and endorsing our work.

We end by sincerely thanking our families and friends. Anything that takes this
level of commitment and time always has an effect on the ones you love.

WILLIAM KENNEDY

I would like to thank Lisa, my beautiful wife, and my five children: Brianna, Melissa,
Amanda, Jarrod, and Thomas. Lisa, I know you and the kids spent way too many days,
nights, and weekends without your husband and father. Thank you for letting me take
all the time I needed to work on the book: I love each and every one of you.

I would also like to thank my business partner Ed Gonzalez, creative director Erick
Zelaya, and the entire team at Ardan Studios. Ed, thanks for supporting me from the
beginning. I could not have done this without you. You are more than just a business
partner, you are a friend and brother: thank you. Erick, thanks for everything you do
to support me and the company. Not sure what we would do without you.

BRIAN KETELSEN

I would like to thank my family for their patience during this four-year-long process of
producing a book. Christine, Nathan, Lauren, and Evelyn: thank you for putting up
with me as I wrote chapters in a lounge chair by the pool while you were swimming.
Thank you for believing that this book could and would be published.

ERIK ST. MARTIN

I would like to thank my fiancée Abby, and my three children Halie, Wyatt, and Allie
for being so patient and understanding how much time writing a book and organizing
conferences demand. I love you all so very much and am lucky to have you.

I would also like to thank Bill Kennedy for the tremendous effort he has poured
into this book—we asked him to help us write it, and he steered the ship most of the
way due to the demands of our jobs and organizing GopherCon. I also want to thank
the community for all their reviews and words of encouragement.

about this book

Go is an open source programming language that makes it easy to build simple, reli-
able, and efficient software. Although it borrows ideas from existing languages, it has
a unique and simple nature that makes Go programs different in character from pro-
grams written in other languages. It balances the capabilities of a low-level systems lan-
guage with some high-level features you see in modern languages today. This creates a
programming environment that allows you to be incredibly productive, performant,
and fully in control; in Go, you can write less code and do so much more.

Who should read this book?

This book was written for an intermediate-level developer who has some experience
with other programming languages and wants to learn Go. Our goal in writing this
book is to provide you an intensive, comprehensive, and idiomatic view of the lan-
guage. We focus on both the specification and implementation of the language,
including topics that range from language syntax, Go’s type system, concurrency,
channels, testing, and more. We believe this book is perfect for anyone who wants a
jump-start in learning Go as well as for those who want a more thorough understand-
ing of the language and its internals.

Roadmap

The book consists of nine chapters, briefly described here:

= Chapter 1 is a quick introduction to what the language is, why it was created,
and the problems it solves. It also briefly introduces some of Go’s core concepts
such as concurrency.

xvi

ABOUT THIS BOOK xvii

= Chapter 2 walks you through a complete Go program, teaching you all that Go
has to offer as a language along the way.

= Chapter 3 introduces the concept of packaging and how to best set up your Go
workspace and development environment. It also shows how to use the Go tool-
ing, including fetching and building your code.

= Chapter 4 provides a detailed view of Go’s builtin data types: arrays, slices,
and maps. It explains the implementation and mechanics behind these data
structures.

= Chapter 5 is a detailed view of Go’s type system, from struct types to named
types to interfaces and type embedding. It also covers how all these things come
together to allow you to structure and write complex software in a simpler way.

= Chapter 6 dives deeply into how the Go scheduler, concurrency, and channels
work. It teaches the mechanics behind this aspect of the language.

= Chapter 7 takes what you learn from chapter 6 and shows more practical code
around concurrency patterns. You will learn how to implement goroutine pools
to manage work and how to pool reusable resources to be shared.

= Chapter 8 explores the standard library and goes deep into three packages: log,
json, and io. The chapter focuses on some of the intricacies of these three
packages.

= Chapter 9 closes the book by showing how to use the testing and benchmarking
framework. You will learn how to write unit and table tests and benchmarks, and
how to add examples to your documentation and use the examples as tests.

About the code

All source code in the book is presented in a mono-spaced typeface like this, which
sets it off from the surrounding text. In many listings, the code is annotated to point
out key concepts, and numbered bullets are sometimes used in the text to provide
additional information about the code.

Source code for the examples in the book is available for download from the pub-
lisher’s website at www.manning.com/books/go-in-action and from GitHub at https://
github.com/goinaction/code.

Author Online

Purchase of Go in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/books/go-in-action. This
page provides information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct on the forum.

http://www.manning.com/books/go-in-action
https://github.com/goinaction/code
https://github.com/goinaction/code
http://www.manning.com/books/go-in-action

Xviii

ABOUT THIS BOOK

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contributions to the AO remain voluntary (and unpaid). We sug-
gest you ask the authors challenging questions, lest their interest stray.

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

WILLIAM KENNEDY (@goinggodotnet) is a managing partner at Ardan Studio in
Miami, Florida, a mobile, web, and systems development company. He is also the
author of the blog GoingGo.Net, and the organizer for the Go meetup in Miami. Bill
is focused on Go education through his training company, Ardan Labs. He can often
be found talking at conferences and giving workshops both locally and over hangouts.
He always finds time to work with individuals and groups who want to take their Go
knowledge, blogging, and coding skills to the next level.

BRIAN KETELSEN (@bketelsen) is the CIO and cofounder of XOR Data Exchange.
Brian is a co-organizer of GopherCon, the annual Go conference, and the founder of
GopherAcademy—a community-focused organization created for the promotion of
the Go language and the education of Go developers. He’s been using Go since 2010.

ERIK ST. MARTIN (@erikstmartin) is the Director of Software Development at XOR
Data Exchange, a big data and analytics company located in Austin, Texas, but resides
in Tampa, Florida. Erik is a long-time contributor to open source and its communities.
He’s an organizer for GopherCon, an annual Go conference, and the organizer of the
Go Tampa meetup group. He’s very passionate about Go and the community and
eager to find new ways to foster its growth.

about the cover illustration

The figure on the cover of Go in Action is captioned “Man from the East Indies.” The
illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations,
Ancient and Modern (four volumes), London, published between 1757 and 1772. The
title page states that these are hand-colored copperplate engravings, heightened with
gum arabic. Thomas Jefferys (1719-1771) was called “Geographer to King George
III.” He was an English cartographer who was the leading map supplier of his day. He
engraved and printed maps for government and other official bodies and produced a
wide range of commercial maps and atlases, especially of North America. His work as
a map maker sparked an interest in local dress customs of the lands he surveyed and
mapped, and which are brilliantly displayed in this collection.

Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late eighteenth century, and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitants of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.

vww.allitebooks.cond

http://www.allitebooks.org

Introducing Go

In this chapter
= Solving modern computing challenges with Go
= Using the Go tools

Computers have evolved, but programming languages haven’t kept up the same
pace of evolution. The cell phones we carry might have more CPU cores than the
first computer we used. High-powered servers now have 64, 128, or even more cores,
but we’re still programming using the techniques we were using for a single core.

The art of programming has evolved too. Most programs aren’t written by a sin-
gle developer any more: they’re written by teams of people sitting in different time
zones and working at different times of the day. Large projects are broken up into
smaller pieces and assigned to programmers who then deliver their work back to
the team in the form of a library or package that can be used across an entire suite
of applications.

Today’s programmers and companies believe more than ever in the power of
open source software. Go is a programming language that makes sharing code easy.
Go ships with tools that make it simple to use packages written by others, and Go
makes it easy to share our own packages too.

11

CHAPTER 1 Introducing Go

In this chapter you’ll see how Go is different from other programming languages.
Go rethinks the traditional object-oriented development you might be used to, while
still providing an efficient means for code reuse. Go makes it easier for you to effec-
tively use all of the cores on your expensive server, and it takes away the penalty of
compiling a very large project.

As you read this chapter, you’ll get a feeling for the many decisions that shaped the
creation of Go, from its concurrency model to its lightning-fast compiler. We
mentioned it in the preface, but it bears repeating: this book has been written for an
intermediate-level developer who has some experience with other programming lan-
guages and wants to learn Go. Our goal in writing this book is to provide you an inten-
sive, comprehensive, and idiomatic view of the language. We focus on both the
specification and implementation of the language, including the wide-ranging topics
of language syntax, Go’s type system, concurrency, channels, testing, and more. We
believe this book is perfect for anyone who wants a jump-start in learning Go or who
wants a more thorough understanding of the language and its internals.

The source code for the examples in the book is available at https://github.com/
goinaction/code.

We hope you’ll appreciate the tools that ship with Go to make your life as a devel-
oper easier. In the end, you’ll appreciate why so many developers are choosing Go
when they start up that new project.

Solving modern programming challenges with Go

The Go team went to great lengths to solve the problems facing software developers
today. Developers have to make an uncomfortable choice between rapid development
and performance when choosing a language for their projects. Languages like C and
C++ offer fast execution, whereas languages like Ruby and Python offer rapid develop-
ment. Go bridges these competing worlds and offers a high-performance language
with features that make development fast.

As we explore Go, you'll find well-planned features and concise syntax. As a lan-
guage, Go is defined not only by what it includes, but by what it doesn’t include. Go
has a concise syntax with few keywords to memorize. Go has a compiler that’s so fast,
sometimes you’ll forget it’s running. As a Go developer, you’ll spend significantly less
time waiting for your project to build. Because of Go’s built-in concurrency features,
your software will scale to use the resources available without forcing you to use spe-
cial threading libraries. Go uses a simple and effective type system that takes much of
the overhead out of object-oriented development and lets you focus on code reuse.
Go also has a garbage collector, so you don’t have to manage your own memory. Let’s
look quickly at these key features.

https://github.com/goinaction/code
https://github.com/goinaction/code

111

112

Solving modern programming challenges with Go 3

Development speed

Compiling a large application in C or C++ takes more

time than getting a cup of coffee. Figure 1.1 shows an
. . . THE #1 PROGRAMMER EXCUSE
XKCD classic excuse for messing around in the office. FOR LEGITIMATELY SLACKING OFF:
Go offers lightning-quick compiles by using a ‘MY CODE'S COMPILING.
smart compiler and simplified dependency resolu-
tion algorithms. When you build a Go program, the

HEY! GET BACK
ToWORK!

compiler only needs to look at the libraries that you
directly include, rather than traversing the depen-
dencies of all the libraries that are included in the

entire dependency chain like Java, C, and C++. Con-
sequently, many Go applications compile in under a Figure 1.1 Working hard?
second. The entire Go source tree compiles in under (via XKCD)

20 seconds on modern hardware.

Writing applications in dynamic languages makes you productive quickly because
there are no intermediate steps between writing code and executing it. The trade-off
is that dynamic languages don’t offer the type safety that static languages do and often
need a comprehensive test suite to avoid discovering incorrect type bugs at runtime.

Imagine writing a large application in a dynamic language like JavaScript and com-
ing across a function that expects to receive a field called ID. Is that an integer, a
string, or a UUID? The way to find out is to look at the source. You could try to execute
the function with a number or a string and see what happens. In Go, you wouldn’t
spend time wondering, because the compiler will catch type differences for you.

Concurrency

One of the hardest things to do as a programmer is to write an application that effec-
tively uses the available resources of the hardware running it. Modern computers have
many cores, but most programming languages don’t have effective tools for utilizing
those additional resources easily. They often require a lot of thread synchronization
code, which is prone to errors.

Go’s concurrency support is one of its strongest features. Goroutines are like
threads, but use far less memory and require less code to use. Channels are data struc-
tures that let you send typed messages between goroutines with synchronization built
in. This facilitates a programming model where you send data between goroutines,
rather than letting the goroutines fight to use the same data. Let’s look at these fea-
tures in more detail now.

GOROUTINES

Goroutines are functions that run concurrently with other goroutines, including the
entry point of your program. In other languages, you’d use threads to accomplish the
same thing, but in Go many goroutines execute on a single thread. For example, if you
write a web server and you want to handle different web requests simultaneously, you’d
have to write a lot of extra code to use threads in C or Java. In Go, the net/http library

CHAPTER 1 Introducing Go
Goroutine Goroutine Goroutine Goroutine Goroutine Goroutine

Goroutine Goroutine Goroutine

Thread Thread Thread

Figure 1.2 Many goroutines execute on a single 0S thread

has concurrency built in using goroutines. Each inbound request automatically runs on
its own goroutine. Goroutines use less memory than threads and the Go runtime will
automatically schedule the execution of goroutines against a set of configured logical
processors. Each logical processor is bound to a single OS thread (see figure 1.2). This
makes your application much more efficient with significantly less development effort.
If you want to execute some code concurrently while you move on to accomplish
other things, a goroutine is perfect for the job. Here’s a quick example:
func log(msg string) {

some logging code here

}

// Elsewhere in our code after we've discovered an error.

go log("something dire happened")

That keyword go is all you need to schedule the log function to run as a goroutine
and for that goroutine be run concurrently with other goroutines. This means you can
continue executing the rest of your application while the logging happens concur-
rently, which often results in greater perceived performance for your end users. As
stated before, goroutines have minimal overhead, so it isn’t uncommon to spawn tens
of thousands of them. We’ll explore goroutines and concurrency more in-depth in
chapter 6.

CHANNELS

Channels are data structures that enable safe data communication between gorou-
tines. Channels help you to avoid problems typically seen in programming languages
that allow shared memory access.

The hardest part of concurrency is ensuring that your data isn’t unexpectedly
modified by concurrently running processes, threads, or goroutines. When multiple
threads change the same data without locks or synchronization, heartache always fol-
lows. In other languages, when you have global variables and shared memory, you’re
required to use complicated locking disciplines to prevent unsynchronized changes to
the same variables.

113

Solving modern programming challenges with Go 5

Goroutine

Goroutine
Goroutine
Channel Channel

Figure 1.3 Using channels to safely
pass data between goroutines

Channels help to solve this problem by providing a pattern that makes data safe from
concurrent modification. Channels help to enforce the pattern that only one gorou-
tine should modify the data at any time. You can see an example of this flow in
figure 1.3, where channels are used to send data between several running goroutines.
Imagine an application where many different processes need to know about or modify
data sequentially. Using goroutines and channels, you can model this process safely.

In figure 1.3 you see three goroutines and two unbuffered channels. The first gor-
outine passes a data value through the channel to a second goroutine that’s already
waiting. The exchange of the data between both goroutines is synchronized, and once
the hand-off occurs, both goroutines know the exchange took place. After the second
goroutine performs its tasks with the data, it then sends the data to a third goroutine
that’s waiting. That exchange is also synchronized, and both goroutines can have
guarantees the exchange has been made. This safe exchange of data between gorou-
tines requires no other locks or synchronization mechanisms.

It’s important to note that channels don’t provide data access protection between
goroutines. If copies of data are exchanged through a channel, then each goroutine
has its own copy and can make any changes to that data safely. When pointers to the
data are being exchanged, each goroutine still needs to be synchronized if reads and
writes will be performed by the different goroutines.

Go’s type system

Go provides a flexible hierarchy-free type system that enables code reuse with minimal
refactoring overhead. It’s still object-oriented development, but without the tradi-
tional headaches. If you’ve ever spent a week planning your abstract classes and inter-
faces in a complex Java or C++ program, you’ll appreciate the simplicity of Go’s type
system. Go developers simply embed types to reuse functionality in a design pattern
called composition. Other languages use composition, but it’s often deeply tied to
inheritance, which can make it complicated and difficult to use. In Go, types are com-
posed of smaller types, which is in contrast to traditional inheritance-based models.

In addition Go has a unique interface implementation that allows you to model
behavior, rather than model types. You don’t need to declare that you’re implementing

CHAPTER 1 Introducing Go

an interface in Go; the compiler does the work of determining whether values of your
types satisfy the interfaces you're using. Many interfaces in Go’s standard library are
very small, exposing only a few functions. In practice this takes some time to get used
to, especially if you’ve been writing in object-oriented languages like Java.

TYPES ARE SIMPLE

Go has built-in types like int and string as well as user-defined types. A typical user-
defined type in Go will have typed fields to store data. If you’ve seen structs in G, Go’s
user-defined types will look familiar and operate similarly. But types may also declare
methods that operate on that data. Rather than building a long inheritance struc-
ture—Client extends User extends Entity—Go developers build small types—Cus-
tomer and Admin—and embed them into larger ones. Figure 1.4 demonstrates the
difference between inheritance and composition.

Inheritance Composition

Passenger vehicle Truck | Carry passengers

Figure 1.4 Inheritance
versus composition

GO INTERFACES MODEL SMALL BEHAVIORS
Interfaces allow you to express the behavior of a type. If a value of a type implements
an interface, it means the value has a specific set of behaviors. You don’t even need to
declare that you're implementing an interface; you just need to write the implementa-
tion. Other languages call this duck typing—if it quacks like a duck, then it can be a
duck—and Go does it well. In Go, if your type implements the methods of an inter-
face, a value of your type can be stored in a value of that interface type. No special dec-
larations are required.

In a strictly object-oriented language like Java, interfaces are all-encompassing.
You're often required to think through a large inheritance chain before you’re able to
even start writing code. Here’s an example of a Java interface:

interface User {

public void login();

public void logout () ;
}
Implementing this interface in Java requires you to create a class that fulfills all of the
promises made in the User interface and explicitly declare that you implement the
interface. In contrast, a Go interface typically represents just a single action. One of
the most common interfaces you’ll use in Go is io.Reader. The io.Reader interface

1.1.4

1.2

Hello, Go 7

provides a simple way to declare that your type has data to be read in a way that other
functions in the standard library understand. Here’s the definition:

type Reader interface {
Read(p [lbyte) (n int, err error)
}
To write a type that implements the io.Reader interface, you only need to implement
a Read method that accepts a slice of bytes and returns an integer and possible error.

This is a radical departure from the interface systems used in other object-oriented
programming languages. Go’s interfaces are smaller and more aligned with single
actions. In practice, this allows significant advantages in code reuse and composability.
You can implement an io.Reader on nearly any type that has data available, and then
pass it to any Go function that knows how to read from io.Reader.

The entire networking library in Go is built using the io.Reader interface, because
it allows it to separate the network implementation required for each different net-
work operation from the functionality of your application. It makes interfaces fun, ele-
gant, and flexible. That same io.Reader enables simple operations with files, buffers,
sockets, and any other data source. Using a single interface allows you to operate on
data efficiently, regardless of the source.

Memory management

Improper memory management causes applications to crash and leak memory, and
even crash the operating system. Go has a modern garbage collector that does the
hard work for you. In other systems languages, like C or C++, you need to allocate a
piece of memory before you can use it, and then free it when you’re done. If you fail
to do either of these correctly, you’ll have program crashes or memory leaks. It isn’t
always easy to track a piece of memory when it’s no longer needed; threads and heavy
concurrency make it even harder. When you write code with garbage collection in
mind, Go’s garbage collection adds little overhead to program execution time, but
reduces development effort significantly. Go takes the tedium out of programming
and leaves the bean counting to the accountants.

Hello, Go

It’s much easier to get the feel of a programming language by seeing it in action. Let’s
look at the traditional Hello World! application written in Go:

Go programs are
organized as packages.

package main The import statement allows you to use external
code. The fmt package provided by the standard
import "fmt" library allows you to format and output data.

func main(){) : L The main function is what gets executed when
fmt.Println("Hello World!") you run your application—just like in C.

121

1.3

CHAPTER 1 Introducing Go

This sample program prints a familiar phrase on your screen when you run it. But how
should you run it? Without installing Go on your computer, you can use almost all that
Go provides right from your web browser.

Introducing the Go Playground

The Go Playground allows you to edit and run Go code from your web browser. Fire up
aweb browser and navigate to http://play.golang.org. The code in the browser window
is editable right on the screen (see figure 1.5). Click Run and see what happens!

- Xa X Go Playground .

Go Playground Run Format Share About

package main
import “fmt"

func main() {
fmt.Println("Hello, playground")
}

Figure 1.5 The Go Playground

You can even change the code to make the greeting text output in a different lan-
guage. Go ahead and change the greeting inside the fmt.Println() function and hit
Run again.

SHARING GO CODE Go developers use the Playground to share code ideas, test
theories, and debug their code, as you soon will too. Every time you create a new
application on the Playground, you can click Share to get a sharable URL that
anyone else can open. Try this one: http://play.golang.org/p/EWIXic]dmz.

The Go Playground is the perfect way to demonstrate an idea to a coworker or friend
who’s trying to learn something, or to solicit help. On the Go IRC channels, Slack
group, mailing lists, and countless emails sent among Go developers, you’ll see Go
Playground programs being created, modified, and shared.

Summary
= Go is modern, fast, and comes with a powerful standard library.
= Go has concurrency built-in.
= Go uses interfaces as the building blocks of code reuse.

http://play.golang.org
http://play.golang.org/p/EWIXicJdmz

Go quick-start

In this chapter

Reviewing a comprehensive Go program

Declaring types, variables, functions, and
methods

Launching and synchronizing goroutines
Writing generic code using interfaces
Handling errors as normal program logic

Go has its own elegance and programming idioms that make the language produc-
tive and fun to code in. The language designers set out to create a language that
would let them be productive without losing access to the lower-level programming
constructs they needed. This balance is achieved through a minimized set of key-
words, built-in functions, and syntax. Go also provides a comprehensive standard
library. The standard library provides all the core packages programmers need to
build real-world web- and network-based programs.

To see this in action, we’ll review a complete Go program that implements func-
tionality that can be found in many Go programs being developed today. The pro-
gram pulls different data feeds from the web and compares the content against a
search term. The content that matches is then displayed in the terminal window.

vww.allitebooks.cond

http://www.allitebooks.org

10

2.1

CHAPTER 2 Go quick-start

The program reads text files, makes web calls, and decodes both XML and JSON into
struct type values, and it does all of this using Go concurrency to make things fast.

You can download and review the code in your favorite editor by navigating to the
book repository for this chapter:

https://github.com/goinaction/code/tree/master/chapter2/sample

Don’t feel that you need to understand everything you read and review in this chapter
the first, second, or even the third time. Though many of the programming concepts
you know today can be applied when learning Go, Go also has its unique idioms and
style. If you can liberate yourself from your current programming language and look
at Go with a fresh set of eyes and a clear mind, you’ll find it easier to understand and
appreciate, and you’ll see Go’s elegance.

Program architecture

Before we dive into the code, let’s review the architecture behind the program (shown
in figure 2.1) and see how searching all the different feeds is accomplished.

Main goroutine
) Set of feeds
h
Retrieve o searc

feeds
|
N S)
Perform Search goroutines
search Interface Send Report
ﬁ matcher result complete

Track i
results ’ !

\—/r—\ X Track results goroutine

Display | |57 | Shutdown Wait all
results |
[j.] Gorouting -------- Channel Figure 2.1 The flow of the program architecture

The program is broken into several distinct steps that run across many different
goroutines. We’ll explore the code as it flows from the main goroutine into the search-
ing and tracking goroutines and then back to the main goroutine. To start, here’s the
structure of the project.

Listing 2.1 Project structure for the application

cd $GOPATH/src/github.com/goinaction/code/chapter?

- sample
- data
data.json -- Contains a list of data feeds
- matchers

2.2

Main package 11

rss.go -- Matcher for searching rss feeds
- search
default.go -- Default matcher for searching data
feed.go -- Support for reading the json data file
match.go -- Interface support for using different matchers
search.go -- Main program logic for performing search
main.go -- Programs entry point

The code is organized into these four folders, which are listed in alphabetical order.
The data folder contains a JSON document of data feeds the program will retrieve
and process to match the search term. The matchers folder contains the code for the
different types of feeds the program supports. Currently the program only supports
one matcher that processes RSS type feeds. The search folder contains the business
logic for using the different matchers to search content. Finally we have the parent
folder, sample, which contains the main.go code file, which is the entry point for the
program.

Now that you’ve seen where all the code for the program is, you can begin to
explore and understand how the program works. Let’s start with the entry point for
the program.

Main package
The program’s entry point can be found in the main.go code file. Even though there
are only 21 lines of code, there are a few things going on that we have to mention.

Listing 2.2 main.go

01 package main

02

03 import (

04 "log"

05 "os"

06

07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"
09)

10

11 // init is called prior to main.

12 func init() {

13 // Change the device for logging to stdout.

14 log.SetOutput (os.Stdout)

15 }

16

17 // main is the entry point for the program.

18 func main() {

19 // Perform the search for the specified term.

20 search.Run ("president")

21 }

Every Go program that produces an executable has two distinct features. One of those
features can be found on line 18. There you can see the function main declared. For

12

CHAPTER 2 Go quick-start

the build tools to produce an executable, the function main must be declared, and it
becomes the entry point for the program. The second feature can be found on line 01
of program.

Listing 2.3 main.go: line 01

01 package main

You can see the function main is located in a package called main. If your main func-
tion doesn’t exist in package main, the build tools won’t produce an executable.

Every code file in Go belongs to a package, and main.go is no exception. We’ll go
into much more detail about packages in chapter 3, because packages are an impor-
tant feature of Go. For now, understand that packages define a unit of compiled code
and their names help provide a level of indirection to the identifiers that are declared
inside of them, just like a namespace. This makes it possible to distinguish identifiers
that are declared with exactly the same name in the different packages you import.

Now turn your attention to lines 03 through 09 of the main.go code file, which
declares imports.

Listing 2.4 main.go: lines 03-09

03 import (

04 "log"

05 "os"

06

07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"

09)

Imports are just that: they import code and give you access to identifiers such as types,
functions, constants, and interfaces. In our case, the code in the main.go code file can
now reference the Run function from the search package, thanks to the import on
line 08. On lines 04 and 05, we import code from the standard library for the log and
os packages.

All code files in a folder must use the same package name, and it’s common prac-
tice to name the package after the folder. As stated before, a package defines a unit of
compiled code, and each unit of code represents a package. If you quickly look back
at listing 2.1, you’ll see how we have a folder in this project called search that matches
the import path on line 08.

You may have noticed that on line 07 we import the matchers package and use the
blank identifier before listing out the import path.

Listing 2.5 main.go: line 07

07 _ "github.com/goinaction/code/chapter2/sample/matchers"

2.3

Search package 13

This is a technique in Go to allow initialization from a package to occur, even if you
don’t directly use any identifiers from the package. To make your programs more
readable, the Go compiler won’t let you declare a package to be imported if it’s not
used. The blank identifier allows the compiler to accept the import and call any init
functions that can be found in the different code files within that package. For our
program, this is required because the rss.go code file in the matchers package con-
tains an init function to register the RSS matcher for use. We’ll come back to how all
this works later.

The main.go code file also has an init function that’s declared on lines 12
through 15.

Listing 2.6 main.go: lines 11-15

11 // init is called prior to main.

12 func init () {

13 // Change the device for logging to stdout.
14 log.SetOutput (os.Stdout)

15 1}

All init functions in any code file that are part of the program will get called before
the main function. This init function sets the logger from the standard library to
write to the stdout device. By default, the logger is set to write to the stderr device.
In chapter 7 we’ll talk more about the log package and other important packages
from the standard library.

Finally, let’s look at the one statement that the main function performs on line 20.

Listing 2.7 main.go: lines 19-20

19 // Perform the search for the specified term.
20 search.Run ("president")

Here you see a call to the Run function that belongs to the search package. This func-
tion contains the core business logic for the program, which requires a string for the
search term. Once the Run function returns, the program will terminate.

Now we can look at the code that belongs to the search package.

Search package

The search package contains the framework and business logic for the program. The
package is organized into four different code files, each with a unique responsibility.
As we continue to follow the logic of the program, we’ll explore each of these differ-
ent code files.

Let’s briefly talk about what a matcher is, since the entire program revolves around
the execution of matchers. A matcher in our program is a value that contains specific
intelligence for processing a feed type. In our program we have two matchers. The
framework implements a default matcher that has no intelligence, and in the matchers

14

23.1

CHAPTER 2 Go quick-start

package we have an implementation of an RSS matcher. The RSS matcher knows how to
get, read, and search RSS feeds. Later on we could extend the program to use matchers
that could read JSON documents or CSV files. We’ll talk more about how to implement
matchers later.

search.go

Following are the first nine lines of code that can be found inside the search.go code
file. This is the code file where the Run function is located.

Listing 2.8 search/search.go: lines 01-09

01 package search

02

03 import (
04 "log"
05 "sync"
06)

07

08 // A map of registered matchers for searching.
09 var matchers = make (map[string]Matcher)

As you’ll see, each code file will contain the keyword package at the top with a name
for the package. Each code file in the search folder will contain search for the pack-
age name. The lines from 03 through 06 import the log and sync packages from the
standard library.

When you import code from the standard library, you only need to reference the
name of the package, unlike when you import code from outside of the standard
library. The compiler will always look for the packages you import at the locations ref-
erenced by the GOROOT and GOPATH environment variables.

Listing 2.9 GOROOT and GOPATH environmental variables

GOROOT="/Users/me/go"
GOPATH="/Users/me/spaces/go/projects"

The log package provides support for logging messages to the stdout, stderr, or even
custom devices. The sync package provides support for synchronizing goroutines,
which is required by our program. On line 09 you’ll see our first variable declaration.

Listing 2.10 search/search.go: lines 08-09

08 // A map of registered matchers for searching.
09 var matchers = make (map[string]Matcher)

This variable is located outside the scope of any function and so is considered a
package-level variable. The variable is declared using the keyword var and is declared
as a map of Matcher type values with a key of type string. The declaration for the

Search package 15

Matcher type can be found in the match.go code file, and we’ll describe the purpose
of this type later. There’s another important aspect of this variable declaration: the
name of the variable matchers starts with a lowercase letter.

In Go, identifiers are either exported or unexported from a package. An exported
identifier can be directly accessed by code in other packages when the respective
package is imported. These identifiers start with a capital letter. Unexported identifi-
ers start with a lowercase letter and can’t be directly accessed by code in other pack-
ages. But just because an identifier is unexported, it doesn’t mean other packages
can’t indirectly access these identifiers. As an example, a function can return a value
of an unexported type and this value is accessible by any calling function, even if the
calling function has been declared in a different package.

This variable declaration also contains an initialization of the variable via the
assignment operator and a special built-in function called make.

Listing 2.11 Making a map

make (map[string]Matcher)

A map is a reference type that you're required to make in Go. If you don’t make the
map first and assign it to your variable, you’ll receive errors when you try to use the map
variable. This is because the zero value for a map variable is nil. In chapter 4 we’ll go
into greater detail about maps.

In Go, all variables are initialized to their zero value. For numeric types, that value
is 0; for strings it’s an empty string; for Booleans it’s false; and for pointers, the zero
value is nil. When it comes to reference types, there are underlying data structures
that are initialized to their zero values. But variables declared as a reference type set to
their zero value will return the value of nil.

Now let’s walk through the Run function that’s called by the main function, which
you saw earlier.

Listing 2.12 search/search.go: lines 11-57

11 // Run performs the search logic.
12 func Run(searchTerm string) {

13 // Retrieve the list of feeds to search through.

14 feeds, err := RetrieveFeeds()

15 if err != nil {

16 log.Fatal (err)

17 }

18

19 // Create a unbuffered channel to receive match results.
20 results := make(chan *Result)

21

22 // Setup a wait group so we can process all the feeds.
23 var waitGroup sync.WaitGroup

24

25 // Set the number of goroutines we need to wait for while

16

CHAPTER 2 Go quick-start

26 // they process the individual feeds.

27 wailtGroup.Add(len (feeds))

28

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {

31 // Retrieve a matcher for the search.

32 matcher, exists := matchers[feed.Type]

33 if lexists {

34 matcher = matchers["default"]

35 }

36

37 // Launch the goroutine to perform the search.
38 go func (matcher Matcher, feed *Feed) {

39 Match (matcher, feed, searchTerm, results)
40 wailtGroup.Done ()

41 } (matcher, feed)

42 }

43

44 // Launch a goroutine to monitor when all the work is done.
45 go func() {

46 // Wait for everything to be processed.

47 waitGroup.Wait ()

48

49 // Close the channel to signal to the Display
50 // function that we can exit the program.

51 close(results)

52 ()

53

54 // Start displaying results as they are available and
55 // return after the final result is displayed.

56 Display(results)

57 }

The Run function contains the main control logic for the program. It’s a good repre-
sentation of how Go programs can be structured to handle the launching and syn-
chronization of goroutines that run concurrently. Let’s walk through the logic section
by section, and then explore the other code files that lend their support.

Let’s review how the Run function is declared.

Listing 2.13 search/search.go: lines 11-12

11 // Run performs the search logic.
12 func Run(searchTerm string) {

To declare a function in Go, use the keyword func followed by the function name, any
parameters, and then any return values. In the case of Run, you have a single parame-
ter called searchTerm of type string. The term the program will search against is
passed into the Run function, and if you look at the main function again, you can see
that exchange.

Search package 17

Listing 2.14 main.go: lines 17-21

17 // main is the entry point for the program.

18 func main() {

19 // Perform the search for the specified term.
20 search.Run ("president")

21 }

The first thing that the Run function does is retrieve a list of data feeds. These feeds
are used to pull content from the internet that is then matched against the specified
search term.

Listing 2.15 search/search.go: lines 13-17

13 // Retrieve the list of feeds to search through.
14 feeds, err := RetrieveFeeds/()

15 if err != nil {

16 log.Fatal (err)

17 }

There are a few important concepts here that we need to go through. You can see on
line 14 that we make a function call to the function RetrieveFeeds. This function
belongs to the search package and returns two values. The first return value is a slice
of Feed type values. A slice is a reference type that implements a dynamic array. You use
slices in Go to work with lists of data. Chapter 4 goes into greater detail about slices.

The second return value is an error. On line 15, the error value is evaluated for
errors, and if an error did occur, the function Fatal from the log package is called.
The Fatal function accepts an error value and will log to the terminal window before
terminating the program.

Though not unique to Go, you can see that our functions can have multiple return
values. It’'s common to declare functions that return a value and an error value just
like the RetrieveFeeds function. If an error occurs, never trust the other values being
returned from the function. They should always be ignored, or else you run the risk of
the code generating more errors or panics.

Let’s take a closer look at how the values being returned from the function are
being assigned to variables.

Listing 2.16 search/search.go: lines 13-14

13 // Retrieve the list of feeds to search through.
14 feeds, err := RetrieveFeeds()

Here you see the use of the short variable declaration operator (:=). This operator is
used to both declare and initialize variables at the same time. The type of each value
being returned is used by the compiler to determine the type for each variable,
respectively. The short variable declaration operator is just a shortcut to streamline

18

CHAPTER 2 Go quick-start

your code and make the code more readable. The variable it declares is no different
than any other variable you may declare when using the keyword var.
Now that we have our list of data feeds, we can move on to the next line of code.

Listing 2.17 search/search.go: lines 19-20

19 // Create a unbuffered channel to receive match results.
20 results := make(chan *Result)

On line 20, we use the built-in function make to create an unbuffered channel. We use
the short variable declaration operator to declare and initialize the channel variable
with the call to make. A good rule of thumb when declaring variables is to use the key-
word var when declaring variables that will be initialized to their zero value, and to
use the short variable declaration operator when you’re providing extra initialization
or making a function call.

Channels are also a reference type in Go like maps and slices, but channels imple-
ment a queue of typed values that are used to communicate data between goroutines.
Channels provide inherent synchronization mechanisms to make communication
safe. In chapter 6 we’ll go into more details about channels and goroutines.

The next two lines of code are used later to prevent the program from terminating
before all the search processing is complete.

Listing 2.18 search/search.go: lines 22-27

22 // Setup a walt group so we can process all the feeds.

23 var waitGroup sync.WaitGroup

24

25 // Set the number of goroutines we need to wait for while
26 // they process the individual feeds.

27 waitGroup.Add(len (feeds))

In Go, once the main function returns, the program terminates. Any goroutines that
were launched and are still running at this time will also be terminated by the Go run-
time. When you write concurrent programs, it’s best to cleanly terminate any gorou-
tines that were launched prior to letting the main function return. Writing programs
that can cleanly start and shut down helps reduce bugs and prevents resources from
corruption.

Our program is using a WaitGroup from the sync package to track all the gorou-
tines we’re going to launch. A WaitGroup is a great way to track when a goroutine is
finished performing its work. A WaitGroup is a counting semaphore, and we’ll use it to
count off goroutines as they finish their work.

On line 23 we declare a variable of type WaitGroup from the sync package. Then
on line 27 we set the value of the WaitGroup variable to match the number of gorou-
tines we’re going to launch. As you’ll soon see, we’ll process each feed concurrently
with its own goroutine. As each goroutine completes its work, it will decrement the

Search package 19

count of the WaitGroup variable, and once the variable gets to zero, we’ll know all the
work is done.
Next let’s look at the code that launches these goroutines for each feed.

Listing 2.19 search/search.go: lines 29-42

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {

31 // Retrieve a matcher for the search.

32 matcher, exists := matchers[feed.Type]

33 if lexists {

34 matcher = matchers["default"]

35 }

36

37 // Launch the goroutine to perform the search.
38 go func(matcher Matcher, feed *Feed) {

39 Match (matcher, feed, searchTerm, results)
40 waitGroup.Done ()

41 } (matcher, feed)

42 }

The code for lines 30 through 42 iterate through the list of data feeds we retrieved
earlier and launch a goroutine for each one. To iterate over the slice of feeds, we use
the keywords for range. The keyword range can be used with arrays, strings, slices,
maps, and channels. When we use for range to iterate over a slice, we get two values
back on each iteration. The first is the index position of the element we’re iterating
over, and the second is a copy of the value in that element.

If you look closer at the for range statement on line 30, you'll see the use of the
blank identifier again.

Listing 2.20 search/search.go: lines 29-30

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {

This is the second time you see the blank identifier being used. You first saw it in
main.go when we imported the matchers package. Now it’s being used as a substitu-
tion for the variable that would be assigned to the index value for the range call.
When you have a function that returns multiple values, and you don’t have a need for
one, you can use the blank identifier to ignore those values. In our case with this
range, we won’t be using the index value, so the blank identifier allows us to ignore it.

The first thing we do in the loop is check the map for a Matcher value that can be
used to process a feed of the specific feed type.

Listing 2.21 search/search.go: lines 31-35

31 // Retrieve a matcher for the search.
32 matcher, exists := matchers[feed.Type]

20

CHAPTER 2 Go quick-start

33 if lexists {
34 matcher = matchers["default"]
35 }

We haven’t talked about how this map gets its values yet. You’ll see later on how the
program initializes itself and populates this map. On line 32 we check the map for a
key that matches the feed type. When looking up a key in a map, you have two
options: you can assign a single variable or two variables for the lookup call. The first
variable is always the value returned for the key lookup, and the second value, if speci-
fied, is a Boolean flag that reports whether the key exists or not. When a key doesn’t
exist, the map will return the zero value for the type of value being stored in the map.
When the key does exist, the map will return a copy of the value for that key.

On line 33 we check whether the key was located in the map, and if it’s not, we
assign the default matcher to be used. This allows the program to function without
causing any issues or interruption for feeds that the program currently doesn’t sup-
port. Then we launch a goroutine to perform the search.

Listing 2.22 search/search.go: lines 37-41

37 // Launch the goroutine to perform the search.
38 go func (matcher Matcher, feed *Feed) {

39 Match (matcher, feed, searchTerm, results)
40 waltGroup.Done ()

41 } (matcher, feed)

In chapter 6 we’ll go into more detail about goroutines, but for now a goroutine is a
function that’s launched to run independently from other functions in the program.
Use the keyword go to launch and schedule goroutines to run concurrently. On line
38 we use the keyword go to launch an anonymous function as a goroutine. An anony-
mous function is a function that’s declared without a name. In our for range loop, we
launch an anonymous function as a goroutine for each feed. This allows each feed to
be processed independently in a concurrent fashion.

Anonymous functions can take parameters, which we declare for this anonymous
function. On line 38 we declare the anonymous function to accept a value of type
Matcher and the address of a value of type Feed. This means the variable feed is a
pointer variable. Pointer variables are great for sharing variables between functions.
They allow functions to access and change the state of a variable that was declared
within the scope of a different function and possibly a different goroutine.

On line 41 the values of the matcher and feed variables are being passed into the
anonymous function. In Go, all variables are passed by value. Since the value of a
pointer variable is the address to the memory being pointed to, passing pointer vari-
ables between functions is still considered a pass by value.

On lines 39 and 40 you see the work each goroutine is performing.

Search package 21

Listing 2.23 search/search.go: lines 3940

39 Match (matcher, feed, searchTerm, results)
40 waitGroup.Done ()

The first thing the goroutine does is call a function called Match, which can be found
in the match.go code file. The Match function takes a value of type Matcher, a pointer
to a value of type Feed, the search term, and the channel where the results are written
to. We’ll look at the internals of this function later, but for now it’s enough to know
that Match will search the feed and output matches to the results channel.

Once the function call to Match completes, we execute the code on line 40, which
is to decrement the WaitGroup count. Once every goroutine finishes calling the Match
function and the Done method, the program will know every feed has been processed.
There’s something else interesting about the method call to Done: the WaitGroup
value was never passed into the anonymous function as a parameter, yet the anony-
mous function has access to it.

Go supports closures and you’re seeing this in action. In fact, the searchTerm and
results variables are also being accessed by the anonymous function via closures.
Thanks to closures, the function can access those variables directly without the need to
pass them in as parameters. The anonymous function isn’t given a copy of these vari-
ables; it has direct access to the same variables declared in the scope of the outer func-
tion. This is the reason why we don’t use closures for the matcher and feed variables.

Listing 2.24 search/search.go: lines 29-32

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {

31 // Retrieve a matcher for the search.

32 matcher, exists := matchers[feed.Type]

The values of the feed and matcher variables are changing with each iteration of the
loop, as you can see on lines 30 and 32. If we used closures for these variables, as the
values of these variables changed in the outer function, those changes would be
reflected in the anonymous function. All the goroutines would be sharing the same
variables as the outer function thanks to closures. Unless we passed these values in as
function parameters, most of the goroutines would end up processing the same feed
using the same matcher—most likely the last one in the feeds slice.

With all the search goroutines working, sending results on the results channel
and decrementing the waitGroup counter, we need a way to display those results and
keep the main function alive until all the processing is done.

Listing 2.25 search/search.go: lines 44-57

44 // Launch a goroutine to monitor when all the work is done.
45 go func() {
46 // Wait for everything to be processed.

22

23.2

CHAPTER 2 Go quick-start

47 waitGroup.Wait ()

48

49 // Close the channel to signal to the Display
50 // function that we can exit the program.

51 close(results)

52 ()

53

54 // Start displaying results as they are available and
55 // return after the final result is displayed.

56 Display(results)

57 1}

The code between lines 45 and 56 is tricky to explain until we dive deeper into some
of the other code in the search package. For now let’s describe what we see and come
back to it later to understand the mechanics. On lines 45 through 52 we launch yet
another anonymous function as a goroutine. This anonymous function takes no
parameters and uses closures to access both the WaitGroup and results variables.
This goroutine calls the method Wait on the WaitGroup value, which is causing the
goroutine to block until the count for the WaitGroup hits zero. Once that happens,
the goroutine calls the built-in function close on the channel, which as you’ll see
causes the program to terminate.

The final piece of code in the Run function is on line 56. This is a call to the
Display function, which can be found in the match.go code file. Once this function
returns, the program terminates. This doesn’t happen until all the results in the chan-
nel are processed.

feed.go

Now that you've seen the Run function, let’s look at the code behind the function call
to RetrieveFeeds on line 14 of the search.go code file. This function reads the
data.json file and returns the slice of data feeds. These feeds drive the content that will
be searched by the different matchers. Here are the first eight lines of code that can
be found inside the feed.go code file.

Listing 2.26 feed.go: lines 01-08

01 package search

02

03 import (

04 "encoding/json"

05 "os"

06)

07

08 const dataFile = "data/data.json"

This code file exists in the search folder, and on line 01 the code file is declared to be
in package search. You can see that on lines 03 through 06 we import two packages
from the standard library. The json package provides support for encoding and
decoding JSON and the os package provides support for accessing operating system
functionality like reading files.

Search package 23

You may have noticed that to import the json package, we needed to specify a path
that includes the encoding folder. Regardless of the path we specify, the name of the
package is json. The physical location of the package from within the standard library
doesn’t change this fact. As we access functionality from the json package, we’ll use
just the name json.

On line 08 we declare a constant named dataFile, which is assigned a string that
specifies the relative path to the data file on disk. Since the Go compiler can deduce
the type from the value on the right side of the assignment operator, specifying the
type when declaring the constant is unnecessary. We also use a lowercase letter for the
name of the constant, which means this constant is unexported and can only be
directly accessed by code within the search package.

Next let’s look at a portion of the data.json data file.

Listing 2.27 data.json

[

"site" : "npr",
"link" : "http://www.npr.org/rss/rss.php?id=1001",
"type" : "rss"

T,

{
"site" : "cnn",
"link" : "http://rss.cnn.com/rss/cnn_world.rss",
"type" : "rss"

I

{
"site" : "foxnews",
"link" : "http://feeds.foxnews.com/foxnews/world?format=xml",
"type" : "rss"

1,

{
"site" : "nbcnews",
"link" : "http://feeds.nbcnews.com/feeds/topstories",
"type" : "rss"

]

The actual data file contains more than four data feeds, but listing 2.27 shows a valid
version of the data file. The data file contains an array of JSON documents. Each docu-
ment in the data file provides a name of the site we’re getting the data from, a link to
the data, and the type of data we expect to receive.

These documents need to be decoded into a slice of struct types so we can use this
data in our program. Let’s look at the struct type that will be used to decode this data file.

Listing 2.28 feed.go: lines 10-15

10 // Feed contains information we need to process a feed.
11 type Feed struct {
12 Name string " json:"site"’

24

CHAPTER 2 Go quick-start

13 URI string “json:"link""
14 Type string “json:"type"®
15 }

On lines 11 through 15 we declare a struct type named Feed, which is an exported
type. This type is declared with three fields, each of which are strings that match the
fields for each document in the data file. If you look at each field declaration, tags
have been included to provide the metadata that the JSON decoding function needs
to create the slice of Feed type values. Each tag maps a field name in the struct type to
a field name in the document.

Now we can review the RetrieveFeeds function that we called on line 14 in the
search.go code file. This is the function that reads the data file and decodes every doc-
ument into a slice of Feed type values.

Listing 2.29 feed.go: lines 17-36

17 // RetrieveFeeds reads and unmarshals the feed data file.

18 func RetrieveFeeds () ([]*Feed, error) {

19 // Open the file.

20 file, err := os.Open(dataFile)

21 if err !'= nil {

22 return nil, err

23 }

24

25 // Schedule the file to be closed once

26 // the function returns.

27 defer file.Close()

28

29 // Decode the file into a slice of pointers
30 // to Feed values.

31 var feeds []*Feed

32 err = json.NewDecoder (file) .Decode (&feeds)
33

34 // We don't need to check for errors, the caller can do this.
35 return feeds, err

36 }

Let’s start with the declaration of the function on line 18. The function takes no
parameters and returns two values. The first return value is a slice of pointers to Feed
type values. The second return value is an error value that reports back if the function
call was successful. As you’ll continue to see, returning error values is common prac-
tice in this code example and throughout the standard library.

Now let’s look at lines 20 through 23, where we use the os package to open the
data file. The call to the Open method takes the relative path to our data file and
returns two values. The first return value is a pointer to a value of type File, and the
second return value is an error to check if the call to Open was successful. Inmediately
on line 21 we check the error value and return the error if we did have a problem
opening the file.

Search package 25

If we’re successful in opening the file, we then move to line 27. Here you see the
use of the keyword defer.

Listing 2.30 feed.go: lines 25-27

25 // Schedule the file to be closed once
26 // the function returns.
27 defer file.Close()

The keyword defer is used to schedule a function call to be executed right after a
function returns. It’s our responsibility to close the file once we’re done with it. By
using the keyword defer to schedule the call to the close method, we can guarantee
that the method will be called. This will happen even if the function panics and termi-
nates unexpectedly. The keyword defer lets us write this statement close to where the
opening of the file occurs, which helps with readability and reducing bugs.

Now we can review the final lines of code in the function. Let’s look at lines 31
through 35.

Listing 2.31 feed.go: lines 29-36

29 // Decode the file into a slice of pointers

30 // to Feed values.

31 var feeds []*Feed

32 err = json.NewDecoder (file) .Decode (&feeds)

33

34 // We don't need to check for errors, the caller can do this.
35 return feeds, err

36 }

On line 31 we declare anil slice named feeds that contains pointers to Feed type val-
ues. Then on line 32 we make a call to the Decode method off the value returned by
the NewDecoder function from the json package. The NewDecoder function takes the
file handle we created from the method call to Open and returns a pointer to a value
of type Decoder. From that value we call the Decode method, passing the address to
the slice. The Decode method then decodes the data file and populates our slice with a
set of Feed type values.
The Decode method can accept any type of value thanks to its declaration.

Listing 2.32 Using the empty interface

func (dec *Decoder) Decode (v interface{}) error

The parameter for the Decode method accepts a value of type interface{}. Thisis a
special type in Go and works with the reflection support that can be found in the
reflect package. In chapter 9 we’ll go into more detail about reflection and how this
method works.

The last line of code on line 35 returns the slice and error values back to the call-
ing function. In this case there’s no need for the function to check the error value

26

2.3.3

CHAPTER 2 Go quick-start

after the call to Decode. The function is complete and the calling function can check
the error value and determine what to do next.

Now it’s time to see how the search code supports different types of feed imple-
mentations by reviewing the matcher code.

match.go/default.go

The match.go code file contains the support for creating different types of matchers
that can be used by the search Run function. Let’s go back and look at the code from
the Run function that executes the search using the different types of matchers.

Listing 2.33 search/search.go : lines 29 - 42

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {

31 // Retrieve a matcher for the search.

32 matcher, exists := matchers[feed.Type]

33 if lexists {

34 matcher = matchers["default"]

35 }

36

37 // Launch the goroutine to perform the search.
38 go func (matcher Matcher, feed *Feed) {

39 Match (matcher, feed, searchTerm, results)
40 wailtGroup.Done ()

41 } (matcher, feed)

42 }

The code on line 32 looks up a matcher value based on the feed type; that value is
then used to process a search against that specific feed. Then on line 38 through 41, a
goroutine is launched for that matcher and feed value. The key to making this code
work is the ability of this framework code to use an interface type to capture and call
into the specific implementation for each matcher value. This allows the code to han-
dle different types of matcher values in a consistent and generic way. Let’s look at the
code in match.go and see how we’re able to implement this functionality.
Here are the first 17 lines of code for match.go.

Listing 2.34 search/match.go: lines 01-17

01 package search

02

03 import (
04 "log"
05)

06

07 // Result contains the result of a search.
08 type Result struct {

09 Field string
10 Content string
11 }

12

Search package 27

13 // Matcher defines the behavior required by types that want

14 // to implement a new search type.

15 type Matcher interface {

16 Search (feed *Feed, searchTerm string) ([]*Result, error)

17)

Let’s jump to lines 15 through 17 and look at the declaration of the interface type
named Matcher. Up until now we’ve only been declaring struct types, but here you see
code that’s declaring an interface type. We’ll get into a lot more detail about inter-
faces in chapter 5, but for now know that interfaces declare behavior that’s required to
be implemented by struct or named types to satisfy the interface. The behavior of an
interface is defined by the methods that are declared within the interface type.

In the case of the Matcher interface, there’s only one method declared, Search,
which takes a pointer to a value of type Feed and a search term of type string. The
method also returns two values: a slice of pointers to values of type Result and an
error value. The Result type is declared on lines 08 through 11.

You follow a naming convention in Go when naming interfaces. If the interface
type contains only one method, the name of the interface ends with the ersuffix. This
is the exact case for our interface, so the name of the interface is Matcher. When mul-
tiple methods are declared within an interface type, the name of the interface should
relate to its general behavior.

For a user-defined type to implement an interface, the type in question needs to
implement all the methods that are declared within that interface type. Let’s switch to
the default.go code file and see how the default matcher implements the Matcher
interface.

Listing 2.35 search/default.go: lines 01-15

01 package search

02

03 // defaultMatcher implements the default matcher.
04 type defaultMatcher struct{}

05

06 // init registers the default matcher with the program.
07 func init() {

08 var matcher defaultMatcher

09 Register ("default", matcher)

10 }

11

12 // Search implements the behavior for the default matcher.
13 func (m defaultMatcher) Search(feed *Feed, searchTerm string)

([]1*Result, error) {
14 return nil, nil
15}
On line 04 we declare a struct type named defaultMatcher using an empty struct. An
empty struct allocates zero bytes when values of this type are created. They’re great
when you need a type but not any state. For the default matcher, we don’t need to
maintain any state; we only need to implement the interface.

28

CHAPTER 2 Go quick-start

On lines 13 through 15 you see the implementation of the Matcher interface by
the defaultMatcher type. The implementation of the interface method Search just
returns nil for both return values. Other implementations, such as the implementa-
tion for the RSS matcher, will implement the specific business rules for processing
searches in their version of this method.

The declaration of the Search method is declared with a value receiver of type
defaultMatcher.

Listing 2.36 search/default.go: line 13

13 func (m defaultMatcher) Search

The use of a receiver with any function declaration declares a method that’s bound to
the specified receiver type. In our case, the declaration of the Search method is now
bound to values of type defaultMatcher. This means we can call the method Search
from values and pointers of type defaultMatcher. Whether we use a value or pointer
of the receiver type to make the method call, the compiler will reference or derefer-
ence the value if necessary to support the call.

Listing 2.37 Example of method calls

// Method declared with a value receiver of type defaultMatcher
func (m defaultMatcher) Search(feed *Feed, searchTerm string)

// Declare a pointer of type defaultMatch
dm := new(defaultMatch)

// The compiler will dereference the dm pointer to make the call
dm.Search(feed, "test")

// Method declared with a pointer receiver of type defaultMatcher
func (m *defaultMatcher) Search(feed *Feed, searchTerm string)

// Declare a value of type defaultMatch
var dm defaultMatch

// The compiler will reference the dm value to make the call
dm.Search(feed, "test")

It’s best practice to declare methods using pointer receivers, since many of the
methods you implement need to manipulate the state of the value being used to make
the method call. In the case of the defaultMatcher type, we want to use a value
receiver because creating values of type defaultMatcher result in values of zero allo-
cation. Using a pointer makes no sense since there’s no state to be manipulated.

Unlike when you call methods directly from values and pointers, when you call a
method via an interface type value, the rules are different. Methods declared with
pointer receivers can only be called by interface type values that contain pointers.
Methods declared with value receivers can be called by interface type values that con-
tain both values and pointers.

Search package 29

Listing 2.38 Example of interface method call restrictions

// Method declared with a pointer receiver of type defaultMatcher
func (m *defaultMatcher) Search(feed *Feed, searchTerm string)

// Call the method via an interface type value

var dm defaultMatcher

var matcher Matcher = dm // Assign value to interface type
matcher.Search(feed, "test") // Call interface method with value

> go build
cannot use dm (type defaultMatcher) as type Matcher in assignment
// Method declared with a value receiver of type defaultMatcher

func (m defaultMatcher) Search(feed *Feed, searchTerm string)

// Call the method via an interface type value
var dm defaultMatcher

var matcher Matcher = &dm // Assign pointer to interface type
matcher.Search(feed, "test") // Call interface method with pointer
> go build

Build Successful

There’s nothing else that the defaultMatcher type needs to do to implement the
interface. From this point forward, values and pointers of type defaultMatcher satisfy
the interface and can be used as values of type Matcher. That’s the key to making this
work. Values and pointers of type defaultMatcher are now also values of type Matcher
and can be assigned or passed to functions accepting values of type Matcher.

Let’s look at the implementation of the Match function declared in the match.go
code file. This is the function called by the Run function on line 39 in the search.go
code file.

Listing 2.39 search/match.go: lines 19-33

19 // Match is launched as a goroutine for each individual feed to run
20 // searches concurrently.
21 func Match(matcher Matcher, feed *Feed, searchTerm string,

results chan<- *Result) {

22 // Perform the search against the specified matcher.
23 searchResults, err := matcher.Search(feed, searchTerm)
24 if err != nil {

25 log.Println(err)

26 return

27 }

28

29 // Write the results to the channel.

30 for _, result := range searchResults {

31 results <- result

32 }

33 }

This is the function that performs the actual search using values or pointers that
implement the Matcher interface. This function accepts values of type Matcher as the

vww.allitebooks.cond

http://www.allitebooks.org

30

CHAPTER 2 Go quick-start

first parameter. Only values or pointers that implement the Matcher interface will be
accepted for this parameter. Since the defaultMatcher type now implements the
interface declared with a value receiver, values or pointers of type defaultMatcher
can be passed into this function.

On line 23, the Search method is called from the Matcher type value that was
passed into the function. Here the specific implementation of the Search method for
the value assigned to the Matcher variable is executed. Once the Search method
returns, the error value on line 24 is checked for an error. If there’s an error, the func-
tion writes the error to the log and returns. If the search doesn’t return an error and
there are results, the results are written to the channel so that they can be picked up
by the main function that’s listening on that channel.

The final piece of code in match.go is the Display function that’s called by the
main function on line 56. This is the function preventing the program from terminat-
ing until all the results from the search goroutines are received and logged.

Listing 2.40 search/match.go: lines 35-43

35 // Display writes results to the terminal window as they
36 // are received by the individual goroutines.
37 func Display (results chan *Result) {

38 // The channel blocks until a result is written to the channel.
39 // Once the channel is closed the for loop terminates.

40 for result := range results {

41 fmt.Printf ("$s:\n%s\n\n", result.Field, result.Content)

42 }

43 }

A bit of channel magic allows this function to process all of the results before return-
ing. It’s based on how channels and the keyword range behaves when a channel is
closed. Let’s briefly look at the code in the Run function again that closes the results
channel and calls the Display function.

Listing 2.41 search/search.go: lines 44-57

44 // Launch a goroutine to monitor when all the work is done.
45 go func() {

46 // Wait for everything to be processed.

47 wailtGroup.Wait ()

48

49 // Close the channel to signal to the Display

50 // function that we can exit the program.

51 close(results)

52 PO

53

54 // Start displaying results as they are available and
55 // return after the final result is displayed.

56 Display(results)

57 }

Search package 31

The goroutine on lines 45 through 52 waits on the waitGroup for all the search gorou-
tines to call the Done method. Once the last search goroutine calls Done, the Wait
method returns, and then the code on line 51 closes the results channel. Once the
channel is closed, the goroutine terminates and is no more.

You saw on lines 30 through 32 in the match.go code file where the search results
were being written to the channel.

Listing 2.42 search/match.go: lines 29-32

29 // Write the results to the channel.
30 for _, result := range searchResults {
31 results <- result

32 }

If we look back at the for range loop on lines 40 through 42 of the match.go code file,
we can connect the writing of the results, the closing of the channel, and the process-
ing of results all together.

Listing 2.43 search/match.go: lines 38-42

38 // The channel blocks until a result is written to the channel.
39 // Once the channel is closed the for loop terminates.

40 for result := range results {

41 log.Printf ("%s:\n%s\n\n", result.Field, result.Content)

42 }

The for range loop on line 40 of the match.go code file will block until a result is writ-
ten to the channel. As each search goroutine writes its results to the channel (as you
see on line 31 of the code file match.go), the for range loop wakes up and is given
those results. The results are then immediately written to the log. It seems this for
range loop is stuck in an endless loop, but it isn’t. Once the channel is closed on
line 51 of the search.go code file, the for range loop is terminated and the Display
function returns.

Before we look at the implementation of the RSS matcher, let’s review how the dif-
ferent matchers are initialized when the program starts. To see this we need to look
back at lines 07 through 10 of the default.go code file.

Listing 2.44 search/default.go: lines 06-10

06 // init registers the default matcher with the program.

07 func init() {

08 var matcher defaultMatcher
09 Register ("default", matcher)
10 3}

The default.go code file has a special function declared called init. You saw this
function also declared in the main.go code file, and we talked about how all the init

32

2.4

CHAPTER 2 Go quick-start

functions in the program would be called before the main function begins. Let’s look
at the imports again from the main.go code file.

Listing 2.45 main.go: lines 07-08

07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"

The import to the search package on line 08 allows the compiler to find the init
function in the default.go code file. Once the compiler sees the init function, it’s
scheduled to be called prior to the main function being called.

The init function in the default.go code file is performing a special task. It’s creat-
ing a value of the defaultMatcher type and passing that value to the Register func-
tion that can be found in the search.go code file.

Listing 2.46 search/search.go: lines 59-67

59 // Register is called to register a matcher for use by the program.
60 func Register (feedType string, matcher Matcher) {

61 if _, exists := matchers[feedType]; exists {

62 log.Fatalln (feedType, "Matcher already registered")
63 }

64

65 log.Println("Register", feedType, "matcher")

66 matchers|[feedType] = matcher

67 }

This function is responsible for adding the Matcher value to the map of registered
matchers. All of this registration needs to happen before the main function gets called.
Using init functions is a great way to accomplish this type of initialized registration.

RSS matcher

The last piece of code to review is the implementation of the RSS matcher. Everything
we’ve reviewed up to now was to allow the implementation of different matcher types
to run and search content within the program’s framework. The structure of the RSS
matcher is similar to the structure of the default matcher. It’s the implementation of
the interface method Search that’s different and in the end gives each matcher its
uniqueness.

The RSS document in listing 2.47 shows you a sample of what we expect to receive
when we use any link in the data feed that’s typed as an RSS feed.

Listing 2.47 Expected RSS feed document

<rss xmlns:npr="http://www.npr.org/rss/" xmlns:nprml="http://api
<channel>
<title>News</title>
<link>...</link>
<description>...</description>

RSS matcher 33

<language>en</language>
<copyright>Copyright 2014 NPR - For Personal Use

<item>
<title>
Putin Says He'll Respect Ukraine Vote But U.S.
</title>
<description>
The White House and State Department have called on the
</description>

If you take any link from listing 2.47 and put it in a browser, you’ll be able to see a
complete view of the expected RSS document. The implementation of the RSS
matcher pulls down these RSS documents, searches the title and description fields for
the search term, and sends the results over the results channel. Let’s start by looking
at the first 12 lines of code for the rss.go code file.

Listing 2.48 matchers/rss.go: lines 01-12

01 package matchers

02

03 import (

04 "encoding/xml"
05 "errors"

06 "fmt"

07 "log"

08 "net/http"

09 "regexp"

10

11 "github.com/goinaction/code/chapter2/sample/search"
12)

As with every code file, we start on line 01 with the name of the package. This code file
can be found in a folder called matchers, so the package name is matchers. Next we
have six imports from the standard library and one import to the search package.
Again, we have some packages from the standard library being imported from sub-
folders within the standard library, such as xml and http. Just like with the json pack-
age, the name of the last folder in the path represents the name of the package.

There are four struct types that are used to decode the RSS document, so we can
use the document data in our program.

Listing 2.49 matchers/rss.go: lines 14-58

14 type (

15 // item defines the fields associated with the item tag
16 // in the rss document.

17 item struct {

18 XMLName xml .Name “xml:"item"®

19 PubDate string “xml: "pubDate""

20 Title string “xml:"title"®

21 Description string “xml:"description"’

CHAPTER 2 Go quick-start

22 Link string ‘xml:"link""

23 GUID string “xml:"guid"®

24 GeoRssPoint string ‘xml:"georss:point"’

25 }

26

27 // image defines the fields associated with the image tag
28 // in the rss document.

29 image struct {

30 XMLName xml.Name 'xml:"image"'®

31 URL string ‘xml:"url"®

32 Title string ‘xml:"title"”

33 Link string ‘xml:"link"®

34 }

35

36 // channel defines the fields associated with the channel tag
37 // in the rss document.

38 channel struct {

39 XMLName xml .Name ‘xml:"channel""®

40 Title string “xml:"title"’

41 Description string “xml:"description"’

42 Link string ‘xml:"link""

43 PubDate string “xml: "pubDate""

44 LastBuildDate string “xml:"lastBuildDate""
45 TTL string ‘xml:"ttl"”

46 Language string “xml:"language"’

47 ManagingEditor string “xml: "managingEditor""
48 WebMaster string ‘xml:"webMaster""®

49 Image image “xml: "image"’

50 Item [litem “xml:"item""

51 }

52

53 // rssDocument defines the fields associated with the rss document
54 rssDocument struct {

55 XMLName xml.Name “xml:"rss"®

56 Channel channel “xml:"channel"’

57 }

58)

If you match these structures to the RSS document from any of the feed links, you'll
see how everything correlates. Decoding XML is identical to how we decoded JSON in
the feed.go code file. Next we can look at the declaration of the rssMatcher type.

Listing 2.50 matchers/rss.go: lines 60-61

60 // rssMatcher implements the Matcher interface.
61 type rssMatcher struct{}

Again, this looks just like how we declared the defaultMatcher type. We use an empty
struct since we don’t need to maintain any state; we just implement the Matcher inter-
face. Next we have the implementation of the matcher init function.

RSS matcher 35

Listing 2.51 matchers/rss.go: lines 63-67

63 // init registers the matcher with the program.

64 func init() {

65 var matcher rssMatcher

66 search.Register ("rss", matcher)
67 }

Just like you saw with the default matcher, the init function registers a value of the
rssMatcher type with the program for use. Let’s look at the import in the main.go
code file once more.

Listing 2.52 main.go: lines 07-08

07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"

The code in the main.go code file doesn’t directly use any identifiers from the
matchers package. Yet we need the compiler to schedule the call to the init function
in the rss.go code file. On line 07 we accomplish this by using the blank identifier as
the alias name for the import. This allows the compiler to not produce an error for
declaring the import and to locate the init function. With all of the imports, types,
and initialization set, let’s look at the two remaining methods that support the imple-
mentation of the Matcher interface.

Listing 2.53 matchers/rss.go: lines 114-140

114 // retrieve performs a HTTP Get request for the rss feed and decodes
115 func (m rssMatcher) retrieve(feed *search.Feed)
(*rssDocument, error) {

116 if feed.URI == "" {

117 return nil, errors.New("No rss feed URI provided")

118 }

119

120 // Retrieve the rss feed document from the web.

121 resp, err := http.Get(feed.URI)

122 if err != nil {

123 return nil, err

124 }

125

126 // Close the response once we return from the function.

127 defer resp.Body.Close()

128

129 // Check the status code for a 200 so we know we have received a

130 // proper response.

131 if resp.StatusCode != 200 {

132 return nil, fmt.Errorf ("HTTP Response Error %d\n",
resp.StatusCode)

133 }

134

135 // Decode the rss feed document into our struct type.

36

CHAPTER 2 Go quick-start

136 // We don't need to check for errors, the caller can do this.
137 var document rssDocument

138 err = xml.NewDecoder (resp.Body) .Decode (&document)

139 return &document, err

140 }

The unexported method retrieve performs the logic for pulling the RSS document
from the web for each individual feed link. On line 121 you can see the use of the Get
method from the http package. In chapter 8 we’ll explore this package more, but for
now Go makes it really easy to make web requests using the http package. When the Get
method returns, we’ll get back a pointer to a value of type Response. After checking for
errors, we need to schedule the call to the Close method, which we do on line 127.

On line 131 we check the StatusCode field of the Response value to verify we
received a 200. Anything other than 200 must be handled as an error and we do just
that. If the value isn’t 200, we then return a custom error using the Errorf function
from the fmt package. The last three lines of code are similar to how we decoded the
JSON data file. This time we use the xml package and call the same function named
NewDecoder, which returns a pointer to a Decoder value. With the pointer, we call the
Decode method passing the address of the local variable named document of type
rssDocument. Then the address to the rssDocument type value and the error from
the Decode method call are returned.

The final method to look at implements the Matcher interface.

Listing 2.54 matchers/rss.go: lines 69-112

69 // Search looks at the document for the specified search term.
70 func (m rssMatcher) Search(feed *search.Feed, searchTerm string)
([]*search.Result, error) {

71 var results []*search.Result

72

73 log.Printf ("Search Feed Typel[%s] Site[%$s] For Uri[%s]l\n",
feed.Type, feed.Name, feed.URI)

74

75 // Retrieve the data to search.

76 document, err := m.retrieve(feed)

77 if err != nil {

78 return nil, err

79 }

80

81 for _, channelltem := range document.Channel.Item {

82 // Check the title for the search term.

83 matched, err := regexp.MatchString(searchTerm,

channelItem.Title)

84 if err != nil {

85 return nil, err

86 }

87

88 // If we found a match save the result.

89 if matched {

90 results = append(results, &search.Result{

91 Field: "Title",

92 Content: channelItem.Title,

RSS matcher 37

93 1)

94 }

95

96 // Check the description for the search term.

97 matched, err regexp.MatchString (searchTerm,
channelItem.Description)

98 if err !'= nil {

99 return nil, err

100 }

101

102 // If we found a match save the result.

103 if matched {

104 results = append(results, &search.Result{

105 Field: "Description",

106 Content: channelItem.Description,

107 1)

108 }

109 }

110

111 return results, nil

112 3}

We start on line 71 with the declaration of the results variable, which will be used to
store and return any results that may be found.

Listing 2.55 matchers/rss.go: line 71

71 var results []*search.Result

We use the keyword var and declare a nil slice of pointers to Result type values. The
declaration of the Result type can be found again on line 08 of the match.go code
file. Next on line 76 we make a web call using the retrieve method we just reviewed.

Listing 2.56 matchers/rss.go: lines 75-79

75 // Retrieve the data to search.
76 document, err := m.retrieve(feed)
77 if err !'= nil {

78 return nil, err

79 }

The call to the retrieve method returns a pointer to a value of type rssDocument and
an error value. Then, as you've seen throughout the code, we check the error value
for errors and return if there was an error. If no error exists, we then iterate through
the results performing the match of the search term against the title and description
of the retrieved RSS document.

Listing 2.57 matchers/rss.go: lines 81-86

81 for _, channellItem := range document.Channel.Item {
82 // Check the title for the search term.
83 matched, err := regexp.MatchString(searchTerm,

channelItem.Title)

38

2.5

CHAPTER 2 Go quick-start

84 if err != nil {
85 return nil, err
86 }

Since the value of document.Channel.Itemis a slice of item type values, we use a for
range loop on line 81 to iterate through all the items. On line 83 we use the Match-
String function from the regexp package to match the search term against the con-
tent in the Title field of the channelItem value. Then we check for errors on line 84.
If there are no errors, we move to lines 89 through 94 to check the results of the match.

Listing 2.58 matchers/rss.go: lines 88-94

88 // If we found a match save the result.

89 if matched {

90 results = append(results, &search.Result({
91 Field: "Title",

92 Content: channelItem.Title,

93 1)

94 }

If the value of matched is true after the call to the MatchString method, we use the
built-in function append to add the search results to the results slice. The built-in
function append will grow the length and capacity of the slice as it needs to. You’ll
learn more about the builtin function append in chapter 4. The first parameter to
append is the value of the slice you want to append to, and the second parameter is the
value you want to append. In our case, we use a struct literal to declare and initialize a
value of type Result, and then we use the ampersand (&) operator to get the address
of this new value, which is stored in the slice.

After the title is checked for matches, lines 97 through 108 perform the same logic
again for the description field. Finally, on line 111, the method returns the results to
the calling function.

Summary
Every code file belongs to a package, and that package name should be the
same as the folder the code file exists in.
Go provides several ways to declare and initialize variables. If the value of a
variable isn’t explicitly initialized, the compiler will initialize the variable to its
zero value.
Pointers are a way of sharing data across functions and goroutines.
Concurrency and synchronization are accomplished by launching goroutines
and using channels.
Go provides built-in functions to support using Go’s internal data structures.
The standard library contains many packages that will let you do some powerful
things.
Interfaces in Go allow you to write generic code and frameworks.

Packaging and tooling

In this chapter

= Understanding how Go code is organized

= Using the Go command

= Going farther with other Go developer tools
= Collaborating with other Go developers

In chapter 2 you got an overview of the syntax and language structure of Go. Now
you’ll dive deeper into how code is organized into packages and how you interact
with those packages. Packages are a critical concept in Go. The idea is to separate
semantic units of functionality into different packages. When you do this, you
enable code reuse and control the use of the data inside each package.

Before we get into the particulars, you should already be familiar with the com-
mand prompt or system shell, and you should have Go installed according to the
guidelines in the preface of this book. If you're ready, let’s start by understanding
what a package is and why it’s important in the Go ecosystem.

39

40

3.1

311

3.1.2

CHAPTER 3 Packaging and tooling

Packages

All Go programs are organized into groups of files called packages, so that code has the
ability to be included into other projects as smaller reusable pieces. Let’s look at the
packages that make up Go’s http functionality in the standard library:

net/http/

cgi/

cookiejar/

testdata/

fcgi/

httptest/

httputil/

pprof/

testdata/
These directories contain a series of related files with the .go extension, and provide
clear separation of smaller units of code relating to the implementation of HTTP serv-
ers, clients, and utilities to test and profile them. For example, the cookiejar package
contains code related to storing and retrieving cookies from a web session. Each pack-
age can be imported and used individually so that developers can import only the spe-
cific functionality that they need. If you’re implementing an HTTP client, you only
need to import the http package.

All .go files must declare the package that they belong to as the first line of the file
excluding whitespace and comments. Packages are contained in a single directory.
You may not have multiple packages in the same directory, nor may you split a pack-
age across multiple directories. This means that all .go files in a single directory must
declare the same package name.

Package-naming conventions

The convention for naming your package is to use the name of the directory contain-
ing it. This has the benefit of making it clear what the package name is when you
import it. If we continue with our example from the net/http package, all the files
contained within the http directory are a part of the http package. When naming
your packages and their directories, you should use short, concise, lowercase names,
because they will be typed often while you’re developing. The packages under
net/http are great examples of concise names such as cgi, httputil, and pprof.

Keep in mind that a unique name is not required, because you import the package
using its full path. Your package name is used as the default name when your package
is imported, but it can be overridden. This is beneficial when you need to import mul-
tiple packages with the same name. We’ll discuss how this is done in section 3.2.

Package main

The package name main has special meaning in Go. It designates to the Go command
that this package is intended to be compiled into a binary executable. All of the exe-
cutable programs you build in Go must have a package called main.

Packages 41

When the main package is encountered by the compiler, it must also find a function
called main (); otherwise a binary executable won’t be created. The main () function is
the entry point for the program, so without one, the program has no starting point. The
name of the final binary will take the name of the directory the main package is
declared in.

COMMANDS AND PACKAGES The Go documentation uses the term command
frequently to refer to an executable program—Iike a command-line applica-
tion. This can be confusing for new Go developers who are reading the docu-
mentation. Remember that in Go, a command is any executable program, in
contrast to a package, which generally means an importable semantic unit of
functionality.

Go ahead and try it out. First start by creating a file called hello.go inside GOPATH/
src/hello/, and type the contents of listing 3.1 into it. This is the traditional Hello
World! application again, but as you look at it, pay attention to the package declara-
tion and import statements.

Listing 3.1 Traditional Hello World! application

01 package main

02 The fmt package provides methods
03 import "fmt" for performing formatted printing.
04

05 func main() {

06 fmt.Println("Hello World!")

07 }

GETTING PACKAGE DOCUMENTATION Don’t forget that you can get more details
on a package by visiting http://golang.org/pkg/fmt/ or running godoc fmt
from your terminal.

Once you’ve saved the file, you can run the command go build from within the
GOPATH/src/hello/ directory. When it completes, you should see a binary file. On
Unix, Linux, and Mac OS X this file will be named hello, whereas on Windows it will
be called hello.exe. You can now run this application and see Hello World! printed to
your console.

Had you named the package something other than main, like hello for instance,
you’d have been telling the compiler this is just a package, not a command.

Listing 3.2 Invalid Go program with main function

01 package hello

02

03 import "fmt"

04

05 func main() {

06 fmt.Println("Hello, World!")
07 }

http://golang.org/pkg/fmt/

42

3.2

3.21

CHAPTER 3 Packaging and tooling

Imports

Now that we’ve looked at the organization of code into packages, we’ll take a look at
how to import these individual packages so that you can access the code contained
within them. The import statement tells the compiler where to look on disk to find
the package you want to import. You import packages by using the keyword import,
which tells the compiler that you want to reference the code contained within the
package at that file location. If you need to import more than one package, the idio-
matic way of doing so is to wrap the import statements in an import block, as demon-
strated here.

Listing 3.3 Import statement blocks

import (The strings package provides many methods for searching,
"fmt " replacing, and transforming strings. You can get more
"strings" ~ details at http://golang.org/pkg/strings/ or by running

) “godoc strings” from your terminal.

Packages are found on disk based on their relative path to the directories referenced
by the Go environment. Packages in the standard library are found under where Go is
installed on your computer. Packages that are created by you or other Go developers
live inside the GOPATH, which is your own personal workspace for packages.

Let’s take a look at an example. If Go was installed under /usr/local/go and your
GOPATH was set to /home/myproject:/home/mylibraries, the compiler would look for
the net/http package in the following order:

/usr/local/go/src/pkg/net/http <1 This is where the standard
/home/myproject/src/net/http

- X library source code is contained.
/home/mylibraries/src/net/http

The compiler will stop searching once it finds a package that satisfies the import state-
ment. The important thing to remember is that the Go installation directory is the
first place the compiler looks and then each directory listed in your GOPATH in the
order that they’re listed.

If the compiler searches your GOPATH and never finds the package that you’ve ref-
erenced, you'll get an error when you try to run or build your program. You’ll see how
to use the go get command to fix those problems later in this chapter.

Remote imports

There’s a huge trend toward sharing code via distributed version control systems
(DVCS) such as sharing sites like GitHub, Launchpad, and Bitbucket. The Go tooling
has built-in support for fetching source code from these sites and others. The import
path can be used by the Go tooling to determine where the code you need fetched is
on the network.

http://golang.org/pkg/strings/

3.2.2

Imports 43

For example:

import "github.com/spfl3/viper"

When you try to build a program with this import path, the go build command will
search the GOPATH for this package location on disk. The fact that it represents a URL
to a repository on GitHub is irrelevant as far as the go build command is concerned.
When an import path contains a URL, the Go tooling can be used to fetch the package
from the DVCS and place the code inside the GOPATH at the location that matches the
URL. This fetching is done using the go get command. go get will fetch any specified
URL or can be used to fetch the dependencies a package is importing that are go-
gettable. Since go get is recursive, it can walk down the source tree for a package and
fetch all the dependencies it finds.

Named imports

What happens when you need to import multiple packages with the same name? For
example, you could need a network/convert package for converting data that’s read
from a network and a file/convert package for converting data read from text files.
When this is the case, both of these packages can be imported by using named imports.
This is performed by giving one of the packages a new name to the left of the import
statement.

As an example, let’s say you were already using the fmt package that comes as part
of the standard library. Now you need to import a package named fmt that you had
created as part of your own project. You can import your own fmt package by renam-
ing the import, as demonstrated in the next listing.

Listing 3.4 Renaming imports

01 package main

02

03 import (

04 "fmt"

05 myfmt "mylib/fmt"

06)

07

08 func main() {

09 fmt.Println("Standard Library")
10 myfmt.Println("mylib/fmt")

11 1}

The Go compiler will fail the build and output an error whenever you import a pack-
age that you don’t use. The Go team considers this a feature to eliminate code bloat
from packages that are imported but not used. Although this feature is occasionally
annoying, the Go team has put a great deal of effort into making decisions to prevent
some of the problems that you encounter in other languages. You don’t want to have
an unnecessarily large binary, filled with unused libraries, and they feel that if it’s
worth the compiler telling you about, it’s worth failing the build. Anyone who has

44

3.3

CHAPTER 3 Packaging and tooling

compiled a large C program knows just how hard it can be to pinpoint the things that
matter in a sea of compiler warnings.

Sometimes you may need to import a package that you don’t need to reference
identifiers from. You’ll see why this might be useful in the next section. When this is
the case, you can use the blank identifier _ to rename an import.

BLANK IDENTIFIER The _ (underscore character) is known as the blank identi-
fier and has many uses within Go. It’s used when you want to throw away the
assignment of a value, including the assignment of an import to its package
name, or ignore return values from a function when you’re only interested in
the others.

init
Each package has the ability to provide as many init functions as necessary to be
invoked at the beginning of execution time. All the init functions that are discovered
by the compiler are scheduled to be executed prior to the main function being exe-
cuted. The init functions are great for setting up packages, initializing variables, or
performing any other bootstrapping you may need prior to the program running.

An example of this is database drivers. They register themselves with the sql pack-
age when their init function is executed at startup because the sql package can’t

know about the drivers that exist when it’s compiled. Let’s look at an example of what
an init function might do.

Listing 3.5 init function usage

01 package postgres

02

03 import (

04 "database/sgl" Creates new instance
05) of the postgres driver.
06 We’ve intentionally
07 func init() { left out its definition
08 sgl.Register ("postgres", new(PostgresDriver)) < to focus on init().

09 1}

This code lives inside your pretend database driver for the PostgreSQL database.
When a program imports this package, the init function will be called, causing the
database driver to be registered with Go’s sqgl package as an available driver.

In the program that we write using this new database driver, we’ll use the blank
identifier to import the package so the new driver is included with the sql package. As
stated earlier, you can’t import a package that you aren’t using, so renaming the
import with the blank identifier allows the init function to be discovered and sched-
uled to run without the compiler issuing an error about unused imports.

Now we can tell the sgl.0Open method to use this driver.

Using Go tools 45

Listing 3.6 Blank identifier import aliasing

01 package main

02

03 import (Import driver anonymously
04 "database/sql" to prevent compile error.

05

06 _ "github.com/goinaction/code/chapter3/dbdriver/postgres" 5

07)

08 . We call the Open method provided by
09 func main() { the sql package; this works because
10 sql.Open ("postgres", "mydb") < the driver registered itself with the sql
11} package in its init function.

Using Go tools

We’ve been working with the go tool for a few chapters now, but we haven’t explored
all it can do. Let’s dive a little deeper into this diminutively named powerhouse and
explore more of its capabilities. From a shell prompt, type the go command with no

ergllmCHtSI
$ go

As you can see in figure 3.1, there are a lot of features buried in the go tooling.

The commands are:

build compile packages and dependencies

clean remove object files

doc show documentation for package or symbol

env print Go environment information

fix run go tool fix on packages

fmt run gofmt on package sources

generate generate Go files by processing source

get download and install packages and dependencies
install compile and install packages and dependencies
list list packages

run compile and run Go program

test test packages

tool run specified go tool

version print Go version

vet run go tool vet on packages

Use "go help [command]" for more information about a command.

Additional help topics:

c calling between Go and C

buildmode description of build modes

filetype file types

gopath GOPATH environment variable

importpath <import path syntax

packages description of package lists

testflag description of testing flags

testfunc description of testing functions

Figure 3.1 Output of go
Use "go help [topic]" for more information about that topic. command help text

46

CHAPTER 3 Packaging and tooling

Looking through the list, you can see that there really is a compiler in there; it’s used
by the build command. The build and clean commands do exactly what you'd
expect them to do. Try them now using the source code from listing 3.2:

go build hello.go

You might not want that file hanging around when it’s time to check your code into
source control. To get rid of it, use the clean command:

go clean hello.go

After calling clean, the executable program is gone. Let’s take a closer look at some
of the features of the go tool, and ways that you can save time when you’re using it. For
the next examples, we’ll use the sample code in the following listing.

Listing 3.7 Working with the io package

01 package main

02

03 import (

04 "fmt"

05 "io/ioutil"

06 "os"

07

08 "github.com/goinaction/code/chapter3/words"
09)

10

11 // main is the entry point for the application.
12 func main() {

13 filename := os.Args[1l]

14

15 contents, err := ioutil.ReadFile(filename)
16 if err != nil {

17 fmt.Println(err)

18 return

19 }

20

21 text := string(contents)

22

23 count := words.CountWords (text)

24 fmt.Printf ("There are %d words in your text. \n", count)
25 }

If you've downloaded the source code for the book, this package should be at
GOPATH /src/github.com/goinaction/code/chapter3/words. Make sure you have it
there to follow along.

Most of the commands that are part of the Go tooling take a package specifier as
an argument. Look closer at the commands we’ve just used, and you’ll see one of the
shortcuts built into the tooling. You can omit the filename of the source code file that
you want to build, and the go tool will default to the current package:

go build

3.5

3.5.1

Going farther with Go developer tools 47

Building a package is a common practice, and the package can also be specified
directly:

go build github.com/goinaction/code/chapter3/wordcount

You can also specify wildcards in your package specifiers. Three periods in your pack-
age specifier indicate a pattern matching any string. For example, the following com-
mand will build every package under the chapter3 directory:

go build github.com/goinaction/code/chapter3/...

Instead of a package specifier, you can also use a path shortcut as an argument to most
of the Go commands. For example, you could achieve the same effect with these two
commands:

go build wordcount.go

go build .

To execute this program, you need to run the wordcount or wordcount. exe program
that was created after the build. But there’s a different command that can perform
both operations in a single call:

go run wordcount.go

The go run command both builds and executes the program contained in wordcount
.go, which saves a lot on typing.

You’ll use the go build and go run commands the most when you’re developing.
Let’s take a look at a few of the other available commands and see what they can do.

Going farther with Go developer tools

You’ve seen how to compile and run your Go programs using the convenient go tool.
But that handy little developer tool has a lot of other tricks hidden inside.

£go vet

It won’t write code for you, but once you’ve written some code, the vet command will
check your code for common errors. Let’s look at the types of errors vet can catch:

= Bad parameters in Printf-style function calls

= Method signature errors for common method definitions
= Bad struct tags

= Unkeyed composite literals

Let’s look at a mistake many new Go developers make. The fmt.Printf function is a
great way to produce formatted output, but the function requires you to remember all
the different format specifiers. The following listing is an example.

48

3.5.2

3.5.3

CHAPTER 3 Packaging and tooling

Listing 3.8 Working with go vet

01 package main

02

03 import "fmt"

04

05 func main() {

06 fmt.Printf ("The quick brown fox jumped over lazy dogs", 3.14)
07 }

This program inserts the floating-point number 3.14, but there’s no placeholder in
the formatted string. If you run go vet against this source code, you get the following
message:

go vet main.go

main.go:6: no formatting directive in Printf call

The go vet tool won’t keep you from making huge errors in logic, or from creating
buggy code. However, as you can see from the last example, it does catch some com-
mon errors quite nicely. It’s a great idea to get in the habit of running go vet on your
code base before you commit it to a source repository.

Go format

The fmt command is a favorite in the Go community. Instead of arguing about where
curly braces should go, or whether to use tabs or spaces when you indent, the fmt tool
makes these decisions moot by applying a predetermined layout to Go source code.
To invoke this code formatter, type go fmt followed by a file or package specification.
The fmt command will automatically format the source code files you specify and save
them. Here’s a before-and-after snapshot of a few lines of code run through go fmt:

if err != nil { return err }

After running go fmt on this code, you’ll get the following:

if err != nil {
return err

}

Many Go developers configure their development environment to perform a go fmt
on save or before committing to a code repository. Do yourself a favor and configure
this right now.

Go documentation

There’s another tool that will make your Go development process easier. Go has two
ways to deliver documentation to developers. If you’re working at a command
prompt, you can use the go doc command to print documentation directly to your ter-
minal session. You can view a quick reference for a command or package without leav-
ing your terminal. But if a browsable interface is more your speed, you can use the

Going farther with Go developer tools 49

godoc program to start a web server with a clickable index of Go packages. The godoc
web server gives you a fully navigable web version of the documentation for all the Go
source code installed in your system.

GETTING DOCUMENTATION AT THE COMMAND LINE

If you’re the kind of developer who has a text editor open and a terminal session open
right next to it (or a text editor open in your terminal session), then go doc is going to
be your tool of choice. The first time you need to read a Unix tar file from your Go
application, you’ll be happy that you can access the documentation for the
archive/tar package by simply typing this:

go doc tar

Running this command produces the following output, directly to the terminal:

PACKAGE DOCUMENTATION
package tar // import "archive/tar"

Package tar implements access to tar archives. It aims to cover most of the
variations, including those produced by GNU and BSD tars.

References:

http://www. freebsd.org/cgi/man.cgi?query=tar&sektion=5
http://www.gnu.org/software/tar/manual/html_node/Standard.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html

var ErrWriteTooLong = errors.New("archive/tar: write too long")

var ErrHeader = errors.New("archive/tar: invalid tar header")

func FileInfoHeader (fi os.FileInfo, link string) (*Header, error)

func NewReader (r io.Reader) *Reader

func NewWriter(w io.Writer) *Writer

type Header struct { ... }
type Reader struct { ... }
type Writer struct { ... }

You can skim through the documentation and find the information you need without
breaking your workflow.

BROWSING THE DOCUMENTATION
The Go documentation is also available in a browsable format. Sometimes it’s easier to
get the whole picture of a package or function when you can click around and see all
the related details. For those cases, you’ll want to use godoc as a web server. If you pre-
fer to get your documentation from a web browser in a clickable format, then this will
be your favorite way to get to the documentation.

To start your own documentation server, type the following command into a termi-
nal session:

godoc -http=:6060

This command instructs godoc to start a web server on port 6060. If you open your web
browser and navigate to http://localhost:6060, you’ll see a web page with documenta-
tion for both the Go standard libraries and any Go source that lives in your GOPATH.

50

CHAPTER 3 Packaging and tooling

Go is an open source programming language
that makes it easy to build simple, reliable, and
efficient software.

@@@

Download Go
Binary distributions available for
Linux, Mac OS X, Windows, and more.

Featured video Featured articles
A Tour of Go « Go, Open Source, Community

[This is the text of my opening keynote at Gophercon
2015. We will add a link to the video when it is available.]

Published B July 2015
Qihoo 360 and Go

This guest blog post was written by Yang Zhou, Software
Engineer at Qihoo 360.

Published 6 July 2015

Figure 3.2 Local Go documentation

If the documentation in figure 3.2 looks familiar to you, it’s because a slightly modi-
fied version of godoc is serving up the documentation for the Go website. To navigate
to the documentation for a specific package, just click the Packages link at the top of
the page.

The best part of Go’s documentation tool is that it works for your code, too. If you
follow simple conventions while writing your code, it will automatically include your
comments in the Go documentation generated by godoc.

To be included in the godoc generated documentation, your code needs to be doc-
umented by adding comments that follow a specific convention. We won’t go through
the whole convention in this chapter, but we’ll hit the highlights.

Start by adding comments directly above the identifiers you want to document.
This works for packages, functions, types, and global variables. Comments can be
started using either two slashes, or using the slash-asterisk style.

// Retrieve connects to the configuration repository and gathers
// various connection settings, usernames, passwords. It returns a
// config struct on success, or an error.

func Retrieve() (config, error) {
// ... omitted

3.6

3.6.1

Collaborating with other Go developers 51

In this example, we show the idiomatic way to document a function in Go. The docu-
mentation for the function immediately precedes the function and is written in com-
plete sentences. If you want to add a large body of text to document your package,
include a file called doc.go that declares the same package as your project, and put
your package introduction as a comment before the package declaration:

/*
Package usb provides types and functions for working with USB
devices. To connect to a USB device start by creating a new USB
connection with NewConnection

*/

package usb

This package documentation will be shown before any type or function documenta-
tion is displayed for your package. It also demonstrates using the slash-asterisk type of
comment. You can read more about creating good documentation for your code by
searching for golang documentation in Google.

Collaborating with other Go developers

Modern developers don’t code in a vacuum, and the Go tooling recognizes and
embraces this fact. The concept of packages extends beyond your local development
environment, thanks to the go tool. Let’s look at a few conventions to follow in order
to be a good citizen in a distributed development environment.

Creating repositories for sharing

Once you start cranking out awesome Go code, you're probably going to want to share
that code with the rest of the Go community. It’s really easy as long as you follow a few
simple steps.

PACKAGE SHOULD LIVE AT THE ROOT OF THE REPOSITORY
When you’re using go get, you specify the full path to the package that should be
imported. This means that when you create a repository that you intend to share, the
package name should be the repository name, and the package’s source should be in
the root of the repository’s directory structure.

A common mistake that new Go developers make is to create a code or src direc-
tory in their public repository. Doing so will make the package’s public import longer.
Instead, just put the package source files at the root of the public repository.

PACKAGES CAN BE SMALL

It’'s common in Go to see packages that are relatively small by the standards of other
programming languages. Don’t be afraid to make a package that has a small API or
performs only a single task. That’s normal and expected.

RUN GO FMT ON THE CODE
Just like any other open source repository, people will look at your code to gauge the
quality of it before they try it out. You need to be running go fmt before checking

52

3.7.1

CHAPTER 3 Packaging and tooling

anything in. It makes your code readable and puts everyone on the same page when
reading source code.

DOCUMENT THE CODE

Go developers use godoc to read documentation, and http://godoc.org to read docu-
mentation for open source packages. If you’ve followed go doc best practices in
documenting your code, your packages will appear well documented when viewed
locally or online, and people will find it easier to use.

Dependency management

The community has been hard at work since the release of Go 1.0 to provide Go tool-
ing that makes life easier for developers. Many of these tools focus on helping with
dependency management. The most popular tools today are godep by Keith Rarick,
vendor by Daniel Theophanes, and a tool by Gustavo Niemeyer called gopkg.in, which
helps package authors publish different versions of their packages.

As a call to action, with version 1.5 the Go language team started to experiment
with new build options and features to provide better internal tooling support for
dependency management. While we wait today to see where these experiments lead,
there are existing tools that provide the ability to manage, build, and test Go code in a
reproducible way.

Vendoring dependencies

Community tools such as godep and vendor have solved the dependency problem by
using a technique called vendoring and import path rewriting. The idea is to copy all
the dependencies into a directory inside the project repo, and then rewrite any
import paths that reference those dependencies by providing the location inside the
project itself.

Listing 3.9 Project using godep

SGOPATH/src/github.com/ardanstudios/myproject
|-- Godeps
| | -- Godeps.json
| -- Readme
| -- _workspace
|-- src
| -- bitbucket.org
| -- ww
| | -- goautoneg
| |-- Makefile
| | -- README.txt
| | -- autoneg.go
| |-- autoneg_test.go
|-- github.com
| -- beorn7
| -- perks
| -- README.md
|-- quantile

http://godoc.org

Dependency management 53

| -- bench_test.go

| -- example_test.go
| -- exampledata.txt
| -- stream.go

examples
model
README . md
main.go

Listing 3.9 shows a typical source tree when using godep to vendor the dependencies
for a project. You can see how godep created a directory called Godeps. The source
code for the dependencies that the tooling vendored is located inside another set of
directories called _workspace/src.

Next, if you look at the import statements that are declared inside of main.go for
these dependencies, you’ll see that some things needed to change.

Listing 3.10 Before vendoring

01 package main

02

03 import (

04 "bitbucket.org/ww/goautoneg"
05 "github.com/beorn7/perks"

06)

Listing 3.11 After vendoring

01 package main

02
03 import (
04 "github.ardanstudios.com/myproject/Godeps/_workspace/src/
bitbucket.org/ww/goautoneg"
05 "github.ardanstudios.com/myproject/Godeps/_workspace/src/
github.com/beorn7/perks™"
06)

Before the dependencies were vendored, the import statements used the canonical
path for the package. The code was physically located on disk within the scope of
GOPATH. After vendoring, import path rewriting became necessary to reference the
packages, which are now physically located on disk inside the project itself. You can
see these imports are very large and tedious to use.

With vendoring, you have the ability to create reproducible builds, since all the
source code required to build the binary is housed inside the single project repo. One
other benefit of vendoring and import path rewriting is that the project repo is still
go-gettable. When go get is called against the project repo, the tooling can find each
package and store the package exactly where it needs to be inside the project itself.

54

3.7.2

CHAPTER 3 Packaging and tooling

Introducing gb

Gb is a whole new class of build tool being developed by members of the Go commu-
nity. Gb takes a different approach to solving the reproducible-build problem, which
starts with the understanding that wrapping the Go tooling is not an option.

The philosophy behind gb stems from the idea that Go doesn’t have reproducible
builds because of the import statement. The import statement drives go get, but
import doesn’t contain sufficient information to identify which revision of a package
should be fetched any time go get is called. The possibility that go get can fetch a dif-
ferent version of code for any given package at any time makes supporting the Go
tooling in any reproducible solution complicated and tedious at best. You saw some of
this tediousness with the large import paths when using godep.

This understanding resulted in the creation of the gb build tool. Gb doesn’t wrap
the Go tooling, nor does it use GOPATH. Gb replaces the Go tooling workspace meta-
phor with a project-based approach. This has natively allowed vendoring without the
need for rewriting import paths, which is mandated by go get and a GOPATH workspace.

Let’s look at how the last project could be converted into a gb project.

Listing 3.12 Example of a gb project

/home/bill/devel /myproject ($SPROJECT)

| |-- cmd
| | | -- myproject

| | | |-- main.go
| |-- examples

| | -- model

| | -- README.md

| -- vendor

| -- bitbucket.org

| | -- goautoneg
| |-- Makefile
| | -- README. txt
| | -- autoneg.go
| | -- autoneg_test.go
|-- github.com
| -- beorn7
| -- perks
| -- README.md
|-- quantile
| -- bench_test.go
| -- example_test.go
| -- exampledata.txt
|-- stream.go

A gb projectis simply a directory on disk that contains a subdirectory named src/. The
symbol $PROJECT refers to the root directory on disk where the src/ directory is located
and is only used as a shortcut for describing the location on disk for the project.

Dependency management 55

$PROJECT is not an environmental variable that needs to be set. In fact, gb requires no
environmental variables to be set at all.

Gb projects differentiate between the code you write and the code your code
depends on. The code your code depends on is called vendored code. A gb project
makes a clear distinction between your code and vendored code.

Listing 3.13 The location for the code you write for the project

SPROJECT/src/

Listing 3.14 The location of vendored code

SPROJECT/vendor/src/

One of the best things about gb is that there’s no need for import path rewriting.
Look at the import statements that are declared inside of main.go—nothing needs to
change to reference the vendored dependencies.

Listing 3.15 Import paths for gb projects

01 package main

02

03 import (

04 "bitbucket.org/ww/goautoneg"
05 "github.com/beorn7/perks"

06)

The gb tool will look inside the $PROJECT/vendor/src/ directory for these imports if
they can’t be located inside the $PROJECT/src/ directory first. The entire source code
for the project is located within a single repo and directory on disk, split between the
src/ and vendor/src/ subdirectories. This, in conjunction with no need to rewrite
import paths and the freedom to place your project anywhere you wish on disk,
makes gb a popular tool in the community to develop projects that require reproduc-
ible builds.

One thing to note: a gb project is not compatible with the Go tooling, including go
get. Since there’s no need for GOPATH, and the Go tooling doesn’t understand the
structure of a gb project, it can’t be used to build, test, or get. Building and testing a
gb project requires navigating to the $PROJECT directory and using the gb tool.

Listing 3.16 Building a gb project

gb build all

Many of the same features that are supported by the Go tooling are supported in gb.
Gb also has a plugin system to allow the community to extend support. One such
plugin is called vendor, which provides conveniences to manage the dependencies in

56

CHAPTER 3 Packaging and tooling

the SPROJECT/vendor/src/ directory, something the Go tooling does not have today.
To learn more about gb, check out the website: getgb.io.

3.8 Summary

Packages are the basic unit of code organization in Go.

Your GOPATH determines on disk where Go source code is saved, compiled, and
installed.

You can set your GOPATH for each different project, keeping all of your source
and dependencies separate.

The go tool is your best friend when working from the command line.

You can use packages created by other people by using go get to fetch and
install them in your GOPATH.

It’s easy to create packages for others to use if you host them on a public source
code repository and follow a few simple rules.

Go was designed with code sharing as a central driving feature of the language.
It’s recommended that you use vendoring to manage dependencies.

There are several community-developed tools for dependency management
such as godep, vendor, and gb.

4.1

Arrays, slices, and maps

In this chapter

= Array internals and fundamentals

= Managing collections of data with slices
= Working with key/value pairs using maps

It’s difficult to write programs that don’t need to store and read collections of data.
If you use databases or files, or access the web, you need a way to handle the data
you receive and send. Go has three different data structures that allow you to man-
age collections of data: arrays, slices, and maps. These data structures are baked
into the language and used throughout the standard library. Once you learn how
these data structures work, programming in Go will become fun, fast, and flexible.

Array internals and fundamentals

It makes sense to start with arrays because they form the base data structure for
both slices and maps. Understanding how arrays work will help you appreciate the
elegance and power that slices and maps provide.

57

58

4.1.1

4.1.2

CHAPTER 4 Arrays, slices, and maps

Internals

An array in Go is a fixed-length data type that contains a contiguous block of elements
of the same type. This could be a built-in type such as integers and strings, or it can be
a struct type.

In figure 4.1 you can see the representation of an array. The elements of the array
are marked as a grey box and are connected in series to each other. Each element con-
tains the same type, in this case an integer, and can be accessed through a unique
index position.

[0] [1] [2] [31] [4]
0 20 30 40 50 .
Integer Integer Integer Integer Integer Figure 4.1

Array internals

Arrays are valuable data structures because the memory is allocated sequentially. Hav-
ing memory in a contiguous form can help to keep the memory you use stay loaded
within CPU caches longer. Using index arithmetic, you can iterate through all the ele-
ments of an array quickly. The type information for the array provides the distance in
memory you have to move to find each element. Since each elementis of the same type
and follows each other sequentially, moving through the array is consistent and fast.

Declaring and initializing

An array is declared by specifying the type of data to be stored and the total number of
elements required, also known as the array’s length.

Listing 4.1 Declaring an array set to its zero value

// Declare an integer array of five elements.
var array [5]int

Once an array is declared, neither the type of data being stored nor its length can be
changed. If you need more elements, you need to create a new array with the length
needed and then copy the values from one array to the other.

When variables in Go are declared, they’re always initialized to their zero value for
their respective type, and arrays are no different. When an array is initialized, each
individual element that belongs to the array is initialized to its zero value. In figure 4.2,
you can see an array of integers with each element in the array initialized to 0, the zero
value for integers.

Array internals and fundamentals 59

[0] [11] [2] [31] [4]
0 0 0 0 0
Integer Integer Integer Integer Integer

Figure 4.2 Values of the array after the declaration of the array variable

A fast and easy way to create and initialize arrays is to use an array literal. Array liter-
als allow you to declare the number of elements you need and specify values for those
elements.

Listing 4.2 Declaring an array using an array literal

// Declare an integer array of five elements.
// Initialize each element with a specific value.
array := [5]int{10, 20, 30, 40, 50}

If the length is given as . . ., Go will identify the length of the array based on the num-
ber of elements that are initialized.

Listing 4.3 Declaring an array with Go calculating size

// Declare an integer array.

// Initialize each element with a specific value.

// Capacity is determined based on the number of values initialized.
array := [...lint{10, 20, 30, 40, 50}

If you know the length of the array you need, but are only ready to initialize specific
elements, you can use this syntax.

Listing 4.4 Declaring an array initializing specific elements

// Declare an integer array of five elements.

// Initialize index 1 and 2 with specific values.

// The rest of the elements contain their zero value.
array := [5]int{l: 10, 2: 20}

The values for the array declared in listing 4.4 will look like figure 4.3 after the array is
declared and initialized.

[0] [11] [2] [3] [4]
0 10 20 0 0
Integer Integer Integer Integer Integer

Figure 4.3 Values of the array after the declaration of the array variable

60

4.1.3

CHAPTER 4 Arrays, slices, and maps

Working with arrays

As we talked about, arrays are efficient data structures because the memory is laid out
in sequence. This gives arrays the advantage of being efficient when accessing individ-
ual elements. To access an individual element, use the [] operator.

Listing 4.5 Accessing array elements

// Declare an integer array of five elements.
// Initialize each element with a specific value.
array := [5]int{10, 20, 30, 40, 50}

// Change the value at index 2.

array[2] = 35

The values for the array declared in listing 4.5 will look like figure 4.4 after the array
operations are complete.

[0] [1] [2] [3] [4]
10 20 35 40 50
Integer Integer Integer Integer Integer

Figure 4.4 Values of the array after changing the value of index 2

You can have an array of pointers. Like in chapter 2, you use the * operator to access
the value that each element pointer points to.

Listing 4.6 Accessing array pointer elements

// Declare an integer pointer array of five elements.
// Initialize index 0 and 1 of the array with integer pointers.
array := [5]*int{0: new(int), 1: new(int)}

// Assign values to index 0 and 1.
*array[0] = 10
*array[1l] = 20

The values for the array declared in listing 4.6 will look like figure 4.5 after the array
operations are complete.

[0] [11] [2] [31] [4]
addr addr nil nil nil
Integer pointer Integer pointer Integer pointer Integer pointer Integer pointer
10 20

Figure 4.5 An array of pointers that point to integers

Array internals and fundamentals 61

An array is a value in Go. This means you can use it in an assignment operation. The
variable name denotes the entire array and, therefore, an array can be assigned to
other arrays of the same type.

Listing 4.7 Assigning one array to another of the same type

// Declare a string array of five elements.
var arrayl [5]string

// Declare a second string array of five elements.
// Initialize the array with colors.
array?2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"}

// Copy the values from array2 into arrayl.
arrayl = array?2

After the copy, you have two arrays with identical values, as shown in figure 4.6.

[0] [11] [2] [3] [4]
Red Blue Green Yellow Pink
String String String String String

[0] [11] [2] [3] [4]
Red Blue Green Yellow Pink
String String String String String

Figure 4.6 Both arrays after the copy

The type of an array variable includes both the length and the type of data that can be
stored in each element. Only arrays of the same type can be assigned.

Listing 4.8 Compiler error assigning arrays of different types

// Declare a string array of four elements.
var arrayl [4]string

// Declare a second string array of five elements.
// Initialize the array with colors.
array2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"}

// Copy the values from array2 into arrayl.

arrayl = array?2

Compiler Error:
cannot use array2 (type [5]string) as type [4]string in assignment

Copying an array of pointers copies the pointer values and not the values that the
pointers are pointing to.

62

4.1.4

CHAPTER 4 Arrays, slices, and maps

Listing 4.9 Assigning one array of pointers to another

// Declare a string pointer array of three elements.
var arrayl [3]*string

// Declare a second string pointer array of three elements.
// Initialize the array with string pointers.
array2 := [3]*string{new(string), new(string), new(string)}

// Add colors to each element

*array2[0] = "Red"
*array2[1l] = "Blue"
*array2[2] = "Green"

// Copy the values from array2 into arrayl.
arrayl = array?2

After the copy, you have two arrays pointing to the same strings, as shown in figure 4.7.

[0] [11] [2]

addr addr addr
String pointer String pointer String pointer

(e | [ewe | [Green]

addr
String pointer

addr

String pointer

addr
String pointer

[0] [1] [2]

Figure 4.7 Two arrays of pointers
that point to the same strings

Multidimensional arrays

Arrays are always one-dimensional, but they can be composed to create multidimen-
sional arrays. Multidimensional arrays come in handy when you need to manage data
that may have parent/child relationships or is associated with a coordinate system.

Listing 4.10 Declaring two-dimensional arrays

// Declare a two dimensional integer array of four elements
// by two elements.
var array [4][2]int

// Use an array literal to declare and initialize a two
// dimensional integer array.
array := [4]1[2]int{{10, 11}, {20, 21}, {30, 31}, {40, 41}}

// Declare and initialize index 1 and 3 of the outer array.
array := [4][2]1int{1l: {20, 21}, 3: {40, 41}}

// Declare and initialize individual elements of the outer
// and inner array.
array := [4][2]int{l: {0: 20}, 3: {1: 41}}

Array internals and fundamentals

63

[0] [11] [2] [31]

(o)) | (22020 | Go)zd] | (a0 ai)

Integer array Integer array Integer array Integer array

array := [4][2]int{{10, 11}, {20, 21}, {30, 31}, {40, 41}}

[0] [11] [2] [3]

LoJlo) | (o)1) | (o) o] | (a0])a1]

Integer array Integer array Integer array Integer array
array := [4][2]int{1: {20, 21}, 3: {40, 41}}
[0] [11] [2] [3]

LoJlo) | (20)lo] | (o) o] (LoJat]

Integer array Integer array Integer array Integer array Figure 4.8 TV\.lo-dimensionaI
array := [4][2]int{l: (0: 20}, 3: {1: 41}} arrays and their outer and

inner values

Figure 4.8 shows the values each array contains after declaring and initializing these
arrays.
To access an individual element, use the [] operator again and a bit of composition.

Listing 4.11 Accessing elements of a two-dimensional array

// Declare a two dimensional integer array of two elements.
var array [2][2]int

// Set integer values to each individual element.

array[0][0] = 10
array[0][1] = 20
array[1][0] = 30
array[1]1[1] = 40

You can copy multidimensional arrays into each other as long as they have the same
type. The type of a multidimensional array is based on the length of each dimension
and the type of data that can be stored in each element.

Listing 4.12 Assigning multidimensional arrays of the same type

// Declare two different two dimensional integer arrays.
[2][2]int
[2][2]int

var arrayl
var array?

// Add integer values to each individual element.

array2[0][0] = 10
array2[0][1] = 20
array2[1][0] = 30
array2[1][1] = 40

// Copy the values from array2 into arrayl.
arrayl array?2

64

4.1.5

CHAPTER 4 Arrays, slices, and maps

Because an array is a value, you can copy individual dimensions.

Listing 4.13 Assigning multidimensional arrays by index

// Copy index 1 of arrayl into a new array of the same type.
var array3 [2]int = arrayl[1l]

// Copy the integer found in index 1 of the outer array

// and index 0 of the interior array into a new variable of
// type integer.

var value int = arrayl[1l]1[0]

Passing arrays between functions

Passing an array between functions can be an expensive operation in terms of mem-
ory and performance. When you pass variables between functions, they're always
passed by value. When your variable is an array, this means the entire array, regardless
of its size, is copied and passed to the function.

To see this in action, let’s create an array of one million elements of type int. On a
64-bit architecture, this would require eight million bytes, or eight megabytes, of mem-
ory. What happens when you declare an array of that size and pass it to a function?

Listing 4.14 Passing a large array by value between functions

// Declare an array of 8 megabytes.
var array [le6]lint

// Pass the array to the function foo.
foo (array)

// Function foo accepts an array of one million integers.
func foo(array [le6]lint) {

Every time the function foo is called, eight megabytes of memory has to be allocated
on the stack. Then the value of the array, all eight megabytes of memory, has to be
copied into that allocation. Go can handle this copy operation, but there’s a better
and more efficient way of doing this. You can pass a pointer to the array and only copy
eight bytes, instead of eight megabytes of memory on the stack.

Listing 4.15 Passing a large array by pointer between functions

// Allocate an array of 8 megabytes.
var array [le6]int

// Pass the address of the array to the function foo.
foo (&array)

// Function foo accepts a pointer to an array of one million integers.
func foo(array *[le6]lint) {

4.2

4.2.1

4.2.2

Slice internals and fundamentals 65

This time the function foo takes a pointer to an array of one million elements of type
integer. The function call now passes the address of the array, which only requires
eight bytes of memory to be allocated on the stack for the pointer variable.

This operation is much more efficient with memory and could yield better perfor-
mance. You just need to be aware that because you’re now using a pointer, changing
the value that the pointer points to will change the memory being shared. What is
really awesome is that slices inherently take care of dealing with these types of issues,
as you’ll see.

Slice internals and fundamentals

A slice is a data structure that provides a way for you to work with and manage collec-
tions of data. Slices are built around the concept of dynamic arrays that can grow and
shrink as you see fit. They’re flexible in terms of growth because they have their own
built-in function called append, which can grow a slice quickly with efficiency. You can
also reduce the size of a slice by slicing out a part of the underlying memory. Slices
give you all the benefits of indexing, iteration, and garbage collection optimizations
because the underlying memory is allocated in contiguous blocks.

Internals

Slices are tiny objects that abstract and manipulate an underlying array. They’re three-
field data structures that contain the metadata Go needs to manipulate the underly-
ing arrays (see figure 4.9).

Slice of integers:
addr 3 5 Length of three integers
Pointer Length Capacity Capacity for five integers

[0] [11] [2] [3] [4]

Figure 4.9 Slice internals with underlying array

The three fields are a pointer to the underlying array, the length or the number of ele-
ments the slice has access to, and the capacity or the number of elements the slice has
available for growth. The difference between length and capacity will make more
sense in a bit.

Creating and initializing

There are several ways to create and initialize slices in Go. Knowing the capacity you
need ahead of time will usually determine how you go about creating your slice.

66

CHAPTER 4 Arrays, slices, and maps

MAKE AND SLICE LITERALS
One way to create a slice is to use the built-in function make. When you use make, one
option you have is to specify the length of the slice.

Listing 4.16 Declaring a slice of strings by length

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
slice := make([]lstring, 5)

When you just specify the length, the capacity of the slice is the same. You can also
specify the length and capacity separately.

Listing 4.17 Declaring a slice of integers by length and capacity

// Create a slice of integers.
// Contains a length of 3 and has a capacity of 5 elements.
slice := make([]int, 3, 5)

When you specify the length and capacity separately, you can create a slice with avail-
able capacity in the underlying array that you don’t have access to initially. Figure 4.9
depicts what the slice of integers declared in listing 4.17 could look like after it’s ini-
tialized with some values.

The slice in listing 4.17 has access to three elements, but the underlying array has
five elements. The two elements not associated with the length of the slice can be
incorporated so the slice can use those elements as well. New slices can also be created
to share this same underlying array and use any existing capacity.

Trying to create a slice with a capacity that’s smaller than the length is not allowed.

Listing 4.18 Compiler error setting capacity less than length

// Create a slice of integers.
// Make the length larger than the capacity.
slice := make([]int, 5, 3)

Compiler Error:
len larger than cap in make([]int)

An idiomatic way of creating a slice is to use a slice literal. It’s similar to creating an
array, except you don’t specify a value inside of the [] operator. The initial length
and capacity will be based on the number of elements you initialize.

Listing 4.19 Declaring a slice with a slice literal

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
slice := []string{"Red", "Blue", "Green", "Yellow", "Pink"}

Slice internals and fundamentals 67

// Create a slice of integers.
// Contains a length and capacity of 3 elements.
slice := []int{10, 20, 30}

When using a slice literal, you can set the initial length and capacity. All you need to
do is initialize the index that represents the length and capacity you need. The follow-
ing syntax will create a slice with a length and capacity of 100 elements.

Listing 4.20 Declaring a slice with index positions

// Create a slice of strings.
// Initialize the 100th element with an empty string.
slice := []string{99: ""}

Remember, if you specify a value inside the [] operator, you're creating an array. If
you don’t specify a value, you're creating a slice.

Listing 4.21 Declaration differences between arrays and slices

// Create an array of three integers.
array := [3]1int{10, 20, 30}

// Create a slice of integers with a length and capacity of three.
slice := []int{10, 20, 30}

NIL AND EMPTY SLICES
Sometimes in your programs you may need to declare a nil slice. Anil slice is created
by declaring a slice without any initialization.

Listing 4.22 Declaring a nil slice

// Create a nil slice of integers.
var slice []lint

A nil slice is the most common way you create slices in Go. They can be used with
many of the standard library and built-in functions that work with slices. They’re use-
ful when you want to represent a slice that doesn’t exist, such as when an exception
occurs in a function that returns a slice (see figure 4.10).

nil slice:
nil 0 0 Length of zero
Pointer Length Capacity Capacity of zero

var slice []lint

Figure 4.10 The representation of a nil slice

68

4.2.3

CHAPTER 4 Arrays, slices, and maps

You can also create an empty slice by declaring a slice with initialization.

Listing 4.23 Declaring an empty slice

// Use make to create an empty slice of integers.
slice := make([]int, 0)

// Use a slice literal to create an empty slice of integers.
slice := []int{}

An empty slice contains a zero-element underlying array that allocates no storage.
Empty slices are useful when you want to represent an empty collection, such as when
a database query returns zero results (see figure 4.11).

Empty slice:
addr 0 0 Length of zero
Pointer Length Capacity Capacity of zero
slice := make([]lint, 0)
slice := [lint{}

Figure 4.11 The representation of an empty slice

Regardless of whether you’re using a nil slice or an empty slice, the built-in functions
append, len, and cap work the same.

Working with slices

Now that you know what a slice is and how to create them, you can learn how to use
them in your programs.

ASSIGNING AND SLICING

Assigning a value to any specific index within a slice is identical to how you do this
with arrays. To change the value of an individual element, use the [] operator.

Listing 4.24 Declaring an array using an array literal

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Change the value of index 1.
slice[l] = 25

Slices are called such because you can slice a portion of the underlying array to create
a new slice.

Listing 4.25 Taking the slice of a slice

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

Slice internals and fundamentals 69

// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[1l:3]

After the slicing operation performed in listing 4.25, we have two slices that are shar-
ing the same underlying array. However, each slice views the underlying array in a dif-
ferent way (see figure 4.12).

slice := []int{10, 20, 30, 40, 50}
addr 5)
Pointer Length Capacity
[0] [11] [2] [3] [4]
‘ 10 ” 2 ” 2 ” 0 ” 5]
[0] [1] [2] [31]
addr 2 4
Pointer Length Capacity
newSlice := slice[l:3]

Figure 4.12 Two slices sharing the same underlying array

The original slice views the underlying array as having a capacity of five elements, but
the view of newSlice is different. For newSlice, the underlying array has a capacity of
four elements. newSlice can’t access the elements of the underlying array that are
prior to its pointer. As far as newSlice is concerned, those elements don’t even exist.

Calculating the length and capacity for any new slice is performed using the fol-
lowing formula.

Listing 4.26 How length and capacity are calculated

For slicel[i:j] with an underlying array of capacity k
Length: j - i
Capacity: k - i

If you apply this formula to newSlice you get the following.

Listing 4.27 Calculating the new length and capacity

For slice[l:3] with an underlying array of capacity 5

Length: 3 -1=2
Capacity: 5 - 1 = 4

vww.allitebooks.cond

http://www.allitebooks.org

70

CHAPTER 4 Arrays, slices, and maps

Another way to look at this is that the first value represents the starting index position
of the element the new slice will start with—in this case, 1. The second value repre-
sents the starting index position (1) plus the number of elements you want to include
(2); 1 plus 2 is 3, so the second value is 3. Capacity will be the total number of ele-
ments associated with the slice.

You need to remember that you now have two slices sharing the same underlying
array. Changes made to the shared section of the underlying array by one slice can be
seen by the other slice.

Listing 4.28 Potential consequence of making changes to a slice

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[l:3]

// Change index 1 of newSlice.
// Change index 2 of the original slice.
newSlice[l] = 35

After the number 35 is assigned to the second element of newSlice, that change can
also be seen by the original slice in element 3 (see figure 4.13).

A slice can only access indexes up to its length. Trying to access an element outside
of its length will cause a runtime exception. The elements associated with a slice’s
capacity are only available for growth. They must be incorporated into the slice’s
length before they can be used.

slice := []int{10, 20, 30, 40, 50}

addr 5 5

Pointer Length Capacity
[0] (11 [2] [3] [4]

\ 10 ” 2 ” 2 ” 0 ” 5 ’
(0] [1] [2] [31]
After the assignment
addr 2 4 operation using newSlice
Pointer Length Capacity newSlice[l] = 35
newSlice := slice[1l:3]

Figure 4.13 The underlying array after the assignment operation

Slice internals and fundamentals 71

Listing 4.29 Runtime error showing index out of range

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[1l:3]

// Change index 3 of newSlice.
// This element does not exist for newSlice.
newSlice([3] = 45

Runtime Exception:
panic: runtime error: index out of range

Having capacity is great, but useless if you can’t incorporate it into your slice’s length.
Luckily, Go makes this easy when you use the built-in function append.

GROWING SLICES

One of the advantages of using a slice over using an array is that you can grow the
capacity of your slice as needed. Go takes care of all the operational details when you
use the built-in function append.

To use append, you need a source slice and a value that is to be appended. When
your append call returns, it provides you a new slice with the changes. The append func-
tion will always increase the length of the new slice. The capacity, on the other hand,
may or may not be affected, depending on the available capacity of the source slice.

Listing 4.30 Using append to add an element to a slice

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[1:3]

// Allocate a new element from capacity.
// Assign the value of 60 to the new element.
newSlice = append(newSlice, 60)

After the append operation in listing 4.30, the slices and the underlying array will
look like figure 4.14.

Because there was available capacity in the underlying array for newSlice, the
append operation incorporated the available element into the slice’s length and
assigned the value. Since the original slice is sharing the underlying array, slice also
sees the changes in index 3.

72

CHAPTER 4 Arrays, slices, and maps

slice := []int{10, 20, 30, 40, 50}
‘ addr | 5 5 ’
Pointer Length Capacity
J—l
[0] (11 [2] [31] [4]
BERERERERES
[0] [1] [2] [3]

it
| |

addr 2 4 addr & 4
Pointer Length Capacity Pointer Length Capacity
newSlice := slice[1l:3] newSlice = append(newSlice, 60)

Figure 4.14 The underlying array after the append operation

When there’s no available capacity in the underlying array for a slice, the append func-
tion will create a new underlying array, copy the existing values that are being refer-
enced, and assign the new value.

Listing 4.31 Using append to increase the length and capacity of a slice

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Append a new value to the slice.
// Assign the value of 50 to the new element.
newSlice := append(slice, 50)

After this append operation, newSlice is given its own underlying array, and the capac-
ity of the array is doubled from its original size (see figure 4.15).

The append operation is clever when growing the capacity of the underlying array.
Capacity is always doubled when the existing capacity of the slice is under 1,000 ele-
ments. Once the number of elements goes over 1,000, the capacity is grown by a factor
of 1.25, or 25%. This growth algorithm may change in the language over time.

THREE INDEX SLICES

There’s a third index option we haven’t mentioned yet that you can use when you’re
slicing. This third index gives you control over the capacity of the new slice. The pur-
pose is not to increase capacity, but to restrict the capacity. As you’ll see, being able to
restrict the capacity of a new slice provides a level of protection to the underlying
array and gives you more control over append operations.

Slice internals and fundamentals 73

slice := [1int{10, 20, 30, 40}
addr 4 4
Pointer Length Capacity
‘ 10 ” 2 ” 2 ” 0 ’
newSlice := append(slice, 50)
addr 5) 5)
Pointer Length Capacity
10 | 20 | 30 | 40 || 50 0 0 0

Figure 4.15 The new underlying array after the append operation

Let’s start with a slice of five strings that contain fruit you can find in your local super-
market.

Listing 4.32 Declaring a slice of string using a slice literal

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}

If you inspect the values for this slice of fruit, it will look something like figure 4.16.

source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}
addr 5 5)
Pointer Length Capacity

[0] [11] [2] [31] [4]

| Apple | orange | Pum | Banana | Grape

Figure 4.16 A representation of the slice of strings

74

CHAPTER 4 Arrays, slices, and maps

Now let’s use the third index option to perform a slicing operation.

Listing 4.33 Performing a three-index slice

// Slice the third element and restrict the capacity.
// Contains a length of 1 element and capacity of 2 elements.
slice := source[2:3:4]

After this slicing operation, we have a new slice that references one element from the
underlying array and has a capacity of two elements. Specifically, the new slice refer-
ences the Plum element and has capacity up to the Banana element, as shown in fig-
ure 4.17.

We can apply the same formula that we defined before to calculate the new slice’s
length and capacity.

Listing 4.34 How length and capacity are calculated

For slicel[i:j:k] or [2:3:4]

Length: j-1i or 3 -2-=1
Capacity: k - i or 4 - 2 =2

Again, the first value represents the starting index position of the element the new slice
will start with—in this case, 2. The second value represents the starting index position
(2) plus the number of elements you want to include (1); 2 plus 1 is 3, so the second
value is 3. For setting capacity, you take the starting index position of 2, plus the num-
ber of elements you want to include in the capacity (2), and you get the value of 4.

source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}
addr 5 5
Pointer Length Capacity
[0] [11] [2] [31] [4]
‘ Apple ” Orange ” Plum H Banana H Grape
(0] (11 [2]
addr 1 2
Pointer Length Capacity
slice := source[2:3:4]

Figure 4.17 A representation of the new slice after the operation

Slice internals and fundamentals 75

If you attempt to set a capacity that’s larger than the available capacity, you’ll get a run-
time error.

Listing 4.35 Runtime error setting capacity larger than existing capacity

// This slicing operation attempts to set the capacity to 4.
// This is greater than what is available.
slice := source[2:3:6]

Runtime Error:
panic: runtime error: slice bounds out of range

As we’ve discussed, the built-in function append will use any available capacity first.
Once that capacity is reached, it will allocate a new underlying array. It’s easy to forget
which slices are sharing the same underlying array. When this happens, making
changes to a slice can result in random and odd-looking bugs. Suddenly changes
appear on multiple slices out of nowhere.

By having the option to set the capacity of a new slice to be the same as the length,
you can force the first append operation to detach the new slice from the underlying
array. Detaching the new slice from its original source array makes it safe to change.

Listing 4.36 Benefits of setting length and capacity to be the same

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}

// Slice the third element and restrict the capacity.
// Contains a length and capacity of 1 element.
slice := source[2:3:3]

// Append a new string to the slice.
slice = append(slice, "Kiwi")

Without this third index, appending Kiwi to our slice would’ve changed the value of
Banana in index 3 of the underlying array, because all of the remaining capacity would
still belong to the slice. But in listing 4.36, we restricted the capacity of the slice to 1.
When we call append for the first time on the slice, it will create a new underlying
array of two elements, copy the fruit Plum, add the new fruit Kiwi, and return a new
slice that references this underlying array, as in figure 4.18.

With the new slice now having its own underlying array, we’ve avoided potential
problems. We can now continue to append fruit to our new slice without worrying if
we’re changing fruit to other slices inappropriately. Also, allocating the new underly-
ing array for the slice was easy and clean.

76

CHAPTER 4 Arrays, slices, and maps

slice := source[2:3:3]
addr 1 1
Pointer Length Capacity
[0] [1] [2]
Apple " Orange " Plum ” Banana H Grape
slice = append(slice, "Kiwi") [0] [1]
addr 2 2 Plum Kiwi
Pointer Length Capacity

Figure 4.18 A representation of the new slice after the append operation

The built-in function append is also a variadic function. This means you can pass mul-
tiple values to be appended in a single slice call. If you use the ... operator, you can
append all the elements of one slice into another.

Listing 4.37 Appending to a slice from another slice

// Create two slices each initialized with two integers.
sl := [lint{1l, 2}
s2 := [lint{3, 4}

// Append the two slices together and display the results.
fmt.Printf ("%$v\n", append(sl, s2...))

Output:
[1 2 3 4]

As you can see by the output, all the values of slice s2 have been appended to slice s1.
The value of the new slice returned by the append function is then displayed by the
call to Printf.

ITERATING OVER SLICES
Since a slice is a collection, you can iterate over the elements. Go has a special keyword
called range that you use in conjunction with the keyword for to iterate over slices.

Listing 4.38 lIterating over a slice using for range

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Iterate over each element and display each value.
for index, value := range slice {
fmt.Printf ("Index: $d Value: %d\n", index, wvalue)

Output:

Index: 0 Value: 10
Index: 1 Value: 20
Index: 2 Value: 30
Index: 3 Value: 40

Slice internals and fundamentals

77

The keyword range, when iterating over a slice, will return two values. The first value
is the index position and the second value is a copy of the value in that index position
(see figure 4.19).

slice := []int{10, 20, 30, 40}
addr 4 4
Pointer Length Capacity
[0] [1] [2] [31
10 20 30 40
Copy Copy Copy Copy
0 10 1 20 2 30 3 40
Index || Value Index || Value Index || Value Index || Value
for index, value := range slice {

Figure 4.19 Using range to iterate over a slice creates a copy of each element.

It’s important to know that range is making a copy of the value, not returning a refer-
ence. If you use the address of the value variable as a pointer to each element, you'll
be making a mistake. Let’s see why.

Listing 4.39 range provides a copy of each element

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice [1int{10, 20, 30, 40}

// Iterate over each element and display the value and addresses.
for index, value range slice {
fmt.Printf("value: $d Value-Addr:

%X ElemAddr: %$X\n",

value, &value, &slicel[index])
}
Output:
Value: 10 Value-Addr: 10500168 ElemAddr: 1052E100
Value: 20 Value-Addr: 10500168 ElemAddr: 1052E104
Value: 30 Value-Addr: 10500168 ElemAddr: 1052E108
Value: 40 Value-Addr: 10500168 ElemAddr: 1052E10C

78

CHAPTER 4 Arrays, slices, and maps

The address for the value variable is always the same because it’s a variable that con-
tains a copy. The address of each individual element can be captured using the slice
variable and the index value.

If you don’t need the index value, you can use the underscore character to discard
the value.

Listing 4.40 Using the blank identifier to ignore the index value

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Iterate over each element and display each value.
for _, value := range slice {
fmt.Printf ("vValue: %$d\n", value)

Output:

Value: 10
Value: 20
Value: 30
Value: 40

The keyword range will always start iterating over a slice from the beginning. If you
need more control iterating over a slice, you can always use a traditional for loop.

Listing 4.41 Iterating over a slice using a traditional £ox loop

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Iterate over each element starting at element 3.
for index := 2; index < len(slice); index++ {
fmt.Printf ("Index: %d Value: %d\n", index, slice[index])

Output:
Index: 2 Value: 30
Index: 3 Value: 40

There are two special builtin functions called len and cap that work with arrays,
slices, and channels. For slices, the len function returns the length of the slice, and
the cap function returns the capacity. In listing 4.41, we used the len function to
determine when to stop iterating over the slice.

Now that you know how to create and work with slices, you can use them to com-
pose and iterate over multidimensional slices.

424

Slice internals and fundamentals 79

Multidimensional slices

Like arrays, slices are one-dimensional, but they can be composed to create multidi-
mensional slices for the same reasons we discussed earlier.

Listing 4.42 Declaring a multidimensional slice

// Create a slice of a slice of integers.
slice := [][]int{{10}, {100, 200}}

We now have an outer slice of two elements that contain an inner slice of integers.
The values for our slice of a slice of integers will look like figure 4.20.

In figure 4.20 you can see how composition is working to embed slices into slices.
The outer slice contains two elements, each of which are slices. The slice in the first
element is initialized with the single integer 10 and the slice in the second element
contains two integers, 100 and 200.

Composition allows you to create very complex and powerful data structures. All of
the rules you learned about the built-in function append still apply.

Listing 4.43 Composing slices of slices

// Create a slice of a slice of integers.
slice := [][]int{{10}, {100, 200}}

// Append the value of 20 to the first slice of integers.
slice[0] = append(slice[0], 20)

The append function and Go are elegant in how they handle growing and assigning the
new slice of integers back into the first element of the outer slice. When the operation

slice := []1[]lint{{10}, {100, 200}}
addr 2 2
Pointer Length Capacity
[0] [1]
addr 1 1 addr 2 2
Pointer Length Capacity Pointer Length Capacity
| |
[0] [0] [1]
IIIHII IIHH!I'I%H!I

Figure 4.20 Values for our slice of a slice of integers

80

4.2.5

CHAPTER 4 Arrays, slices, and maps

slice := [1[]lint{{10}, {100, 200}}
Before append addr 2 2 After append
Pointer Length Capacity
slice[0] = append(slice[0], 20)
[0] [0]
addr 1 1 addr 2 2
Pointer Length Capacity Pointer Length Capacity
I I
[0] [0] [1]
Il!ll IIIIIIIHII

Figure 4.21 What index O of the outer slice looks like after the append operation

in listing 4.43 is complete, an entire new slice of integers and a new underlying array is
allocated and then copied back into index 0 of the outer slice, as shown in figure 4.21.

Even with this simple multidimensional slice, there are a lot of layers and values
involved. Passing a data structure like this between functions could seem complicated.
But slices are cheap and passing them between functions is trivial.

Passing slices between functions

Passing a slice between two functions requires nothing more than passing the slice by
value. Since the size of a slice is small, it’s cheap to copy and pass between functions.
Let’s create a large slice and pass that slice by value to our function called foo.

Listing 4.44 Passing slices between functions

// Allocate a slice of 1 million integers.
slice := make([]int, 1le6)

// Pass the slice to the function foo.
slice = foo(slice)

// Function foo accepts a slice of integers and returns the slice back.
func foo(slice []int) []int {

return slice

On a 64-bit architecture, a slice requires 24 bytes of memory. The pointer field
requires 8 bytes, and the length and capacity fields require 8 bytes respectively. Since
the data associated with a slice is contained in the underlying array, there are no prob-
lems passing a copy of a slice to any function. Only the slice is being copied, not the
underlying array (see figure 4.22).

4.3

4.3.1

Map internals and fundamentals 81

Main function
slice := make([]lint , 1000000)

addr 1000000 1000000
Pointer Length Capacity
Copy slice on
function call
[0] [11] [2] [3] [4]
Co o [o o[]
slice = foo(slice)

Foo function

func foo(slice []int) []int

addr 1000000 1000000
Pointer Length Capacity

Copy slice on
function return

Figure 4.22 Both slices pointing to the underlying array after the function call

Passing the 24 bytes between functions is fast and easy. This is the beauty of slices. You
don’t need to pass pointers around and deal with complicated syntax. You just create
copies of your slices, make the changes you need, and then pass a new copy back.

Map internals and fundamentals

A map is a data structure that provides you with an unordered collection of key/value
pairs.

You store values into the map based on a key. Figure 4.23 shows an example of a
key/value pair you may store in your maps. The strength of a map is its ability to
retrieve data quickly based on the key. A key works like an index, pointing to the value
you associate with that key.

#e95a22

Value

#da1337

Value

Red
Key

Green #a3ff47
Key Value

Orange
Key

Figure 4.23 Relationship of key/value pairs

Internals

Maps are collections, and you can iterate over them just like you do with arrays and
slices. But maps are wunordered collections, and there’s no way to predict the order in
which the key/value pairs will be returned. Even if you store your key/value pairs in
the same order, every iteration over a map could return a different order. This is
because a map is implemented using a hash table, as shown in figure 4.24.

82

CHAPTER 4 Arrays, slices, and maps

Map hash table

LOB Hash LOB Hash LOB Hash LOB Hash

[Bucket H Bucket Bucket " Bucket]

[0] [11] [2] [3] [4] [5] [6] [71]

HOB | HOB | HOB | HOB | HOB

hash hash hash hash hash Empty | Empty | Empty

Array of the high order bits of the hash to distinguish entries

el el oA e[

Keys and values packed together

K = Key V = Value E = Empty

Figure 4.24 Simple representation of the internal structure of a map

The map’s hash table contains a collection of buckets. When you’re storing, remov-
ing, or looking up a key/value pair, everything starts with selecting a bucket. This is
performed by passing the key—specified in your map operation—to the map’s hash
function. The purpose of the hash function is to generate an index that evenly distrib-
utes key/value pairs across all available buckets.

The better the distribution, the quicker you can find your key/value pairs as the
map grows. If you store 10,000 items in your map, you don’t want to ever look at
10,000 key/value pairs to find the one you want. You want to look at the least number
of key/value pairs possible. Looking at only 8 key/value pairs in a map of 10,000 items
is a good and balanced map. A balanced list of key/value pairs across the right num-
ber of buckets makes this possible.

The hash key that’s generated for a Go map is a bit longer than what you see in fig-
ure 4.25, but it works the same way. In our example, the keys are strings that repre-
sents a color. Those strings are converted into a numeric value within the scope of the
number of buckets we have available for storage. The numeric value is then used to
select a bucket for storing or finding the specific key/value pair. In the case of a Go
map, a portion of the generated hash key, specifically the low order bits (LOB), is used
to select the bucket.

If you look at figure 4.24 again, you can see what the internals of a bucket look like.
There are two data structures that contain the data for the map. First, there’s an array

4.3.2

Map internals and fundamentals 83

Keys Hash key/bucket

Brick red \, [00 l ﬂl 02 l [03 l
e T v | () [[55) [e]) (o]

Banana yellow / [i]
Sweet pink /[12][13][14][15]

Burnt orange

Figure 4.25 Simple view of how hash functions work

with the top eight Aigh order bits (HOB) from the same hash key that was used to select
the bucket. This array distinguishes each individual key/value pair stored in the
respective bucket. Second, there’s an array of bytes that stores the key/value pairs.
The byte array packs all the keys and then all the values together for the respective
bucket. The packing of the key/value pairs is implemented to minimize the memory
required for each bucket.

There are a lot of other low-level implementation details about maps that are out-
side the scope of this chapter. You don’t need to understand all the internals to learn
how to create and use maps. Just remember one thing: a map is an unordered collec-
tion of key/value pairs.

Creating and initializing

There are several ways you can create and initialize maps in Go. You can use the built-
in function make, or you can use a map literal.

Listing 4.45 Declaring a map using make

// Create a map with a key of type string and a value of type int.
dict := make(map[stringlint)

// Create a map with a key and value of type string.
// Initialize the map with 2 key/value pairs.
dict := map[stringlstring{"Red": "#dal337", "Orange": "#e95a22"}

Using a map literal is the idiomatic way of creating a map. The initial length will be
based on the number of key/value pairs you specify during initialization.

The map key can be a value from any built-in or struct type as long as the value can
be used in an expression with the == operator. Slices, functions, and struct types that
contain slices can’t be used as map keys. This will produce a compiler error.

84

4.3.3

CHAPTER 4 Arrays, slices, and maps

Listing 4.46 Declaring an empty map using a map literal

// Create a map using a slice of strings as the key.
dict := map[[]lstringlint{}

Compiler Exception:
invalid map key type []string

There’s nothing stopping you from using a slice as a map value. This can come in
handy when you need a single map key to be associated with a collection of data.

Listing 4.47 Declaring a map that stores slices of strings

// Create a map using a slice of strings as the value.
dict := mapl[int][]string{}

Working with maps

Assigning a key/value pair to a map is performed by specifying a key of the proper
type and assigning a value to that key.

Listing 4.48 Assigning values to a map

// Create an empty map to store colors and their color codes.
colors := map[stringlstring{}

// Add the Red color code to the map.
colors["Red"] = "#dal337"

You can create a nil map by declaring a map without any initialization. A nil map
can’t be used to store key/value pairs. Trying will produce a runtime error.

Listing 4.49 Runtime error assighed to a nil map

// Create a nil map by just declaring the map.
var colors map[string]string

// Add the Red color code to the map.
colors["Red"] = "#dal337"

Runtime Error:
panic: runtime error: assignment to entry in nil map

Testing if a map key exists is an important part of working with maps. It allows you to
write logic that can determine if you've performed an operation or if you’ve cached
some particular data in the map. It can also be used to compare two maps to identify
what key/value pairs match or are missing.

When retrieving a value from a map, you have two choices. You can retrieve the
value and a flag that explicitly lets you know if the key exists.

Map internals and fundamentals 85

Listing 4.50 Retrieving a value from a map and testing existence.

// Retrieve the value for the key "Blue".
value, exists := colors["Blue"]

// Did this key exist?
if exists {
fmt.Println(value)

-

The other option is to just return the value and test for the zero value to determine if
the key exists. This will only work if the zero value is not a valid value for the map.

Listing 4.51 Retrieving a value from a map testing the value for existence

// Retrieve the value for the key "Blue".
value := colors["Blue"]

// Did this key exist?
if value != "" {
fmt.Println(value)

-

When you index a map in Go, it will always return a value, even when the key doesn’t
exist. In this case, the zero value for the value’s type is returned.

Iterating over a map is identical to iterating over an array or slice. You use the key-
word range; but when it comes to maps, you don’t get back the index/value, you get
back the key/value pairs.

Listing 4.52 Iterating over a map using for range

// Create a map of colors and color hex codes.

colors := map[stringlstring{
"AliceBlue": "#f0f8ff",
"Coral": "#££7F50",
"DarkGray": "#a9a9a9",
"ForestGreen": "#228b22",

}

// Display all the colors in the map.
for key, value := range colors {
fmt.Printf ("Key: %s Value: %$s\n", key, value)

-

If you want to remove a key/value pair from the map, you use the builtin function
delete.

Listing 4.53 Removing an item from a map

// Remove the key/value pair for the key "Coral".
delete(colors, "Coral")

// Display all the colors in the map.

86

4.3.4

CHAPTER 4 Arrays, slices, and maps

for key, value := range colors {
fmt.Printf ("Key: %$s Value: %s\n", key, value)
}

This time when you iterate through the map, the color Coral would not be displayed
on the screen.
Passing maps between functions

Passing a map between two functions doesn’t make a copy of the map. In fact, you can
pass a map to a function and make changes to the map, and the changes will be
reflected by all references to the map.

Listing 4.54 Passing maps between functions

func main() {
// Create a map of colors and color hex codes.
colors := mapl[stringlstring(
"AliceBlue": "#f0f8ff",
"Coral": "#££7F50",
"DarkGray": "#a9a9a9",
"ForestGreen": "#228b22",

}

// Display all the colors in the map.
for key, value := range colors {

fmt.Printf ("Key: %$s Value: %s\n", key, value)
}

// Call the function to remove the specified key.
removeColor (colors, "Coral")

// Display all the colors in the map.
for key, value := range colors {
fmt.Printf ("Key: %$s Value: %s\n", key, value)

}

// removeColor removes keys from the specified map.
func removeColor (colors map[string]lstring, key string) {
delete(colors, key)

If you run this program, you’ll get the following output.

Listing 4.55 Output for listing 4.54

Key: AliceBlue Value: #FOF8FF
Key: Coral Value: #FF7F50

Key: DarkGray Value: #A9A9A9
Key: ForestGreen Value: #228B22

Key: AliceBlue Value: #FOF8FF
Key: DarkGray Value: #A9A9A9
Key: ForestGreen Value: #228B22

4.4

Summary 87

You can see that after the call to removeColor is complete, the color Coral is no lon-

ger present in the map referenced by main. Maps are designed to be cheap, similar

to slices.

Summary

Arrays are the building blocks for both slices and maps.

Slices are the idiomatic way in Go you work with collections of data. Maps are
the way you work with key/value pairs of data.

The builtin function make allows you to create slices and maps with initial
length and capacity. Slice and map literals can be used as well and support set-
ting initial values for use.

Slices have a capacity restriction, but can be extended using the built-in func-
tion append.

Maps don’t have a capacity or any restriction on growth.

The built-in function len can be used to retrieve the length of a slice or map.
The built-in function cap only works on slices.

Through the use of composition, you can create multidimensional arrays and
slices. You can also create maps with values that are slices and other maps. A
slice can’t be used as a map key.

Passing a slice or map to a function is cheap and doesn’t make a copy of the
underlying data structure.

Go’s type sysiem

In this chapter

Declaring new user-defined types

Adding behavior to types with methods
Knowing when to use pointers and values
Implementing polymorphism with interfaces
Extending and changing types through
composition

Exporting and unexporting identifiers

Go is a statically typed programming language. What that means is the compiler
always wants to know what the type is for every value in the program. When the
compiler knows the type information ahead of time, it can help to make sure that
the program is working with values in a safe way. This helps to reduce potential
memory corruption and bugs, and provides the compiler the opportunity to pro-
duce more performant code.

A value’s type provides the compiler with two pieces of information: first, how
much memory to allocate—the size of the value—and second, what that memory
represents. In the case of many of the builtin types, size and representation are
part of the type’s name. A value of type int64 requires 8 bytes of memory (64 bits)

88

5.1

User-defined types 89

and represents an integer value. A float32 requires 4 bytes of memory (32 bits) and
represents an IEEE-754 binary floating-point number. A bool requires 1 byte of mem-
ory (8 bits) and represents a Boolean value of true or false.

Some types get their representation based on the architecture of the machine the
code is built for. A value of type int, for example, can either have a size of 8 bytes (64
bits) or 4 bytes (32 bits), depending on the architecture. There are other architecture-
specific types as well, such as all the reference types in Go. Luckily, you don’t need to
know this information to create or work with values. But if the compiler doesn’t know
this information, it can’t protect you from doing things that could cause harm inside
your programs and the machines they run on.

User-defined types

Go allows you the ability to declare your own types. When you declare a new type, the
declaration is constructed to provide the compiler with size and representation infor-
mation, similar to how the built-in types work. There are two ways to declare a user-
defined type in Go. The most common way is to use the keyword struct, which allows
you to create a composite type.

Struct types are declared by composing a fixed set of unique fields. Each field in a
struct is declared with a known type, which could be a built-in type or another user-
defined type.

Listing 5.1 Declaration of a struct type

01 // user defines a user in the program.
02 type user struct {

03 name string
04 email string
05 ext int

06 privileged bool
07 }

In listing 5.1 you see the declaration of a struct type. The declaration starts with the
keyword type, then a name for the new type, and finally the keyword struct. This
struct type contains four fields, each based on a different built-in type. You can see
how the fields come together to compose a structure of data. Once you have a type
declared, you can create values from the type.

Listing 5.2 Declaration of a variable of the struct type set to its zero value

09 // Declare a variable of type user.
10 var bill user

On line 10 in listing 5.2, the keyword var creates a variable named bill of type user.
When you declare variables, the value that the variable represents is always initialized.
The value can be initialized with a specific value or it can be initialized to its zero
value, which is the default value for that variable’s type. For numeric types, the zero

90

CHAPTER 5 Go’s type system

value would be 0; for strings it would be empty; and for Booleans it would be false. In
the case of a struct, the zero value would apply to all the different fields in the struct.

Any time a variable is created and initialized to its zero value, it’s idiomatic to use
the keyword var. Reserve the use of the keyword var as a way to indicate that a variable
is being set to its zero value. If the variable will be initialized to something other than
its zero value, then use the short variable declaration operator with a struct literal.

Listing 5.3 Declaration of a variable of the struct type using a struct literal

12 // Declare a variable of type user and initialize all the fields.

13 lisa := user({

14 name : "Lisa",

15 email: "lisa@email.com",
16 ext: 123,

17 privileged: true,

18 }

Listing 5.3 shows how to declare a variable of type user and initialize the value to
something other than its zero value. On line 13, we provide a variable name followed
by the short variable declaration operator. This operator is the colon with the equals
sign (:=). The short variable declaration operator serves two purposes in one opera-
tion: it both declares and initializes a variable. Based on the type information on the
right side of the operator, the short variable declaration operator can determine the
type for the variable.

Since we’re creating and initializing a struct type, we use a struct literal to perform
the initialization. The struct literal takes the form of curly brackets with the initiali-
zation declared within them.

Listing 5.4 Creating a struct type value using a struct literal

13 user{

14 name : "Lisa",

15 email: "lisa@email.com",
16 ext: 123,

17 privileged: true,

18 }

The struct literal can take on two forms for a struct type. Listing 5.4 shows the first
form, which is to declare each field and value from the struct to be initialized on a
separate line. A colon is used to separate the two, and it requires a trailing comma.
The order of the fields doesn’t matter. The second form is without the field names
and just declares the values.

Listing 5.5 Creating a struct type value without declaring the field names

12 // Declare a variable of type user.
13 lisa := user{"Lisa", "lisa@email.com", 123, true}

User-defined types 91

The values can also be placed on separate lines, but traditionally values are placed on
the same line with no trailing comma when using this form. The order of the values
does matter in this case and needs to match the order of the fields in the struct decla-
ration. When declaring a struct type, you’re not limited to just the builtin types. You
can also declare fields using other user-defined types.

Listing 5.6 Declaring fields based on other struct types

20 // admin represents an admin user with privileges.
21 type admin struct {

22 person user
23 level string
24}

Listing 5.6 shows a new struct type named admin. This struct type has a field named
person of type user, and then declares a second field named level of type string.
When creating a variable of a struct type that has a field like person, initializing the
type with a struct literal changes a little.

Listing 5.7 Using struct literals to create values for fields

26 // Declare a variable of type admin.
27 fred := admin{

28 person: user{

29 name: "Lisa",

30 email: "lisa@email.com",
31 ext: 123,

32 privileged: true,

33 T,

34 level: "super",

35 }

In order to initialize the person field, we need to create a value of type user. This is
exactly what we do on line 28 in listing 5.7. Using the struct literal form, a value of
type user is created and assigned to the person field.

A second way to declare a user-defined type is by taking an existing type and using
it as the type specification for the new type. These types are great when you need a
new type that can be represented by an existing type. The standard library uses this
type declaration to create high-level functionality from the built-in types.

Listing 5.8 Declaration of a new type based on an int64

type Duration int64

Listing 5.8 shows the declaration of a type from the time package of the standard
library. Duration is a type that represents the duration of time down to the nano-
second. The type takes its representation from the built-in type int64. In the declara-
tion of Duration, we say that int64 is the base type of Duration. Even though int64 is

92

5.2

CHAPTER 5 Go’s type system

acting at the base type, it doesn’t mean Go considered them to be the same. Duration
and inté64 are two distinct and different types.
To better clarify what this means, look at this small program that doesn’t compile.

Listing 5.9 Compiler error assigning value of different types

01 package main

02

03 type Duration int64
04

05 func main() {

06 var dur Duration
07 dur = int64(1000)
08 }

The program in listing 5.9 declares a type on line 03 called Duration. Then on line
06, a variable named dur of type Duration is declared and set to its zero value. Then
on line 07, we write code that produces the following compiler error when the pro-
gram is built.

Listing 5.10 Actual compiler error

prog.go:7: cannot use int64(1000) (type int64) as type Duration
in assignment

The compiler is clear as to what the problem is. Values of type int64 can’t be used as
values of type Duration. In other words, even though type int64 is the base type for
Duration, Duration is still its own unique type. Values of two different types can’t be
assigned to each other, even if they're compatible. The compiler doesn’t implicitly
convert values of different types.

Methods

Methods provide a way to add behavior to user-defined types. Methods are really func-
tions that contain an extra parameter that’s declared between the keyword func and
the function name.

Listing 5.11 listingl1.go

01 // Sample program to show how to declare methods and how the Go
02 // compiler supports them.
03 package main

04

05 import (
06 "fmt"
07)

08

09 // user defines a user in the program.
10 type user struct {
11 name string

Methods 93

12 email string

13 1}

14

15 // notify implements a method with a value receiver.
16 func (u user) notify() {

17 fmt.Printf ("Sending User Email To %s<%s>\n",
18 u.name,

19 u.email)

20 1}

21

22 // changeEmail implements a method with a pointer receiver.
23 func (u *user) changeEmail (email string) {

24 u.email = email

25 }

26

27 // main is the entry point for the application.

28 func main() {

29 // Values of type user can be used to call methods
30 // declared with a value receiver.

31 bill := user{"Bill", "bill@email.com"}

32 bill.notify ()

33

34 // Pointers of type user can also be used to call methods
35 // declared with a value receiver.

36 lisa := &user{"Lisa", "lisa@email.com"}

37 lisa.notify ()

38

39 // Values of type user can be used to call methods
40 // declared with a pointer receiver.

41 bill.changeEmail ("bill@newdomain.com")

42 bill.notify ()

43

44 // Pointers of type user can be used to call methods
45 // declared with a pointer receiver.

46 lisa.changeEmail ("lisa@comcast.com")

47 lisa.notify ()

48 }

Lines 16 and 23 of listing 5.11 show two different methods. The parameter between
the keyword func and the function name is called a receiver and binds the function to
the specified type. When a function has a receiver, that function is called a method.
When you run the program, you get the following output.

Listing 5.12 Output for listingl1.go

Sending User Email To Bill<bill@email.com>
Sending User Email To Lisa<lisa@email.com>
Sending User Email To Bill<bill@newdomain.com>
Sending User Email To Lisa<lisa@comcast.com>

Let’s examine what the program is doing. On line 10, the program declares a struct
type named user and then declares a method named notify.

94

CHAPTER 5 Go’s type system

Listing 5.13 listingl1.go: lines 09-20

09 // user defines a user in the program.
10 type user struct {

11 name string

12 email string

13 3}

14

15 // notify implements a method with a value receiver.
16 func (u user) notify () {

17 fmt.Printf ("Sending User Email To %s<%s>\n",

18 u.name,

19 u.email)

20 }

There are two types of receivers in Go: value receivers and pointer receivers. In listing
5.13 on line 16, the notify method is declared with a value receiver.

Listing 5.14 Declaration of a method with a value receiver

func (u user) notify () {

The receiver for notify is declared as a value of type user. When you declare a method
using a value receiver, the method will always be operating against a copy of the value
used to make the method call. Let’s skip to line 32 of the program in listing 5.11 to see
a method call on notify.

Listing 5.15 listingl1.go: lines 29-32

29 // Values of type user can be used to call methods
30 // declared with a value receiver.

31 bill := user{"Bill", "bill@email.com"}

32 bill.notify ()

Listing 5.15 shows a call to the notify method using a value of type user. On line 31,
a variable named bill of type user is declared and initialized with a name and email
address. Then on line 32, the notify method is called using the variable bill.

Listing 5.16 Calling a method from a variable

bill.notify ()

The syntax looks similar to when you call a function from a package. In this case how-
ever, bill is not a package name but a variable name. When we call the notify
method in this case, the value of bill is the receiver value for the call and the notify
method is operating on a copy of this value.

You can also call methods that are declared with a value receiver using a pointer.

Methods 95

Listing 5.17 listingl1.go: lines 34-37

34 // Pointers of type user can also be used to call methods
35 // declared with a value receiver.

36 lisa := &user{"Lisa", "lisa@email.com"}

37 lisa.notify ()

Listing 5.17 shows a call to the notify method using a pointer of type user. On line
36, a variable named lisa of pointer type user is declared and initialized with a name
and email address. Then on line 37, the notify method is called using the pointer
variable. To support the method call, Go adjusts the pointer value to comply with the
method’s receiver. You can imagine that Go is performing the following operation.

Listing 5.18 What Go is doing underneath the code

(*1lisa) .notify ()

Listing 5.18 shows essentially what the Go compiler is doing to support the method
call. The pointer value is dereferenced so the method call is in compliance with the
value receiver. Once again, notify is operating against a copy, but this time a copy of
the value that the 1isa pointer points to.

You can also declare methods with pointer receivers.

Listing 5.19 listingl1.go: lines 22-25

22 // changeEmail implements a method with a pointer receiver.
23 func (u *user) changeEmail (email string) {

24 u.email = email

25 }

Listing 5.19 shows the declaration of the changeEmail method, which is declared with
a pointer receiver. This time, the receiver is not a value of type user but a pointer of
type user. When you call a method declared with a pointer receiver, the value used to
make the call is shared with the method.

Listing 5.20 listingl1.go: lines 36, 44-46

36 lisa := &user{"Lisa", "lisa@email.com"}

44 // Pointers of type user can be used to call methods
45 // declared with a pointer receiver.

46 lisa.changeEmail ("lisa@newdomain.com")

In listing 5.20 you see the declaration of the lisa pointer variable followed by the
method call to changeEmail on line 46. Once the call to changeEmail returns, any
changes to the value that the lisa pointer points to will be reflected after the call.
This is thanks to the pointer receiver. Value receivers operate on a copy of the value
used to make the method call and pointer receivers operate on the actual value.

96

5.3

531

CHAPTER 5 Go’s type system

You can also call methods that are declared with a pointer receiver using a value.

Listing 5.21 listingl1.go: line 31

31 bill := user{"Bill", "bill@email.com"}

39 // Values of type user can be used to call methods
40 // declared with a pointer receiver.

41 bill.changeEmail ("bill@newdomain.com")

In listing 5.21, you see the declaration of the variable bill and then a call to the
changeEmail method, which is declared with a pointer receiver. Once again, Go
adjusts the value to comply with the method’s receiver to support the call.

Listing 5.22 What Go is doing underneath the code

(&bill) .notify ()

Listing 5.22 shows essentially what the Go compiler is doing to support the method
call. In this case, the value is referenced so the method call is in compliance with the
receiver type. This is a great convenience Go provides, allowing method calls with val-
ues and pointers that don’t match a method’s receiver type natively.

Determining whether to use a value or pointer receiver can sometimes be confus-
ing. There are some basic guidelines you can follow that come directly from the stan-
dard library.

The nature of types

After declaring a new type, try to answer this question before declaring methods for
the type. Does adding or removing something from a value of this type need to create
a new value or mutate the existing one? If the answer is create a new value, then use
value receivers for your methods. If the answer is mutate the value, then use pointer
receivers. This also applies to how values of this type should be passed to other parts of
your program. It’s important to be consistent. The idea is to not focus on what the
method is doing with the value, but to focus on what the nature of the value is.

Built-in types

Built-in types are the set of types that are provided by the language. We know them as
the set of numeric, string, and Boolean types. These types have a primitive nature to
them. Because of this, when adding or removing something from a value of one of
these types, a new value should be created. Based on this, when passing values of these
types to functions and methods, a copy of the value should be passed. Let’s look at a
function from the standard library that works with built-in values.

5.3.2

The nature of types 97

Listing 5.23 golang.org/src/strings/strings.go: lines 620-625

620 func Trim(s string, cutset string) string {

621 if s == "" || cutset == "" {

622 return s

623 }

624 return TrimFunc (s, makeCutsetFunc (cutset))
625 }

In listing 5.23, you see the Trim function, which comes from the strings package in
the standard library. The Trim function is passed a string value to operate on and a
string value with characters to find. It then returns a new string value that’s the result
of the operation. The function operates on copies of the caller’s original string values
and returns a copy of the new string value. Strings, just like integers, floats, and Bool-
eans, are primitive data values and should be copied when passed in and out of func-
tions or methods.

Let’s look at a second example of how the builtin types are treated as having a
primitive nature.

Listing 5.24 golang.org/src/os/env.go: lines 38-44

38 func isShellSpecialVar(c uint8) bool {

39 switch ¢ {

40 case '*', '"#', 's', ‘@', "tv', '2', 'Q', '1', '2*, '3", "4', '5"
'6', '7', '8', '9':

41 return true

42 }

43 return false

44 3

Listing 5.24 shows the isShellSpecialVar function from the env package. This func-
tion is passed a value of type uint8 and returns a value of type bool. Note how point-
ers aren’t being used to share the value for the parameter or return value. The caller
passes a copy of their uint8 value and receives a value of true or false.

Reference types

Reference types in Go are the set of slice, map, channel, interface, and function types.
When you declare a variable from one of these types, the value that’s created is called
a header value. Technically, a string is also a reference type value. All the different
header values from the different reference types contain a pointer to an underlying
data structure. Each reference type also contains a set of unique fields that are used to
manage the underlying data structure. You never share reference type values because
the header value is designed to be copied. The header value contains a pointer; there-
fore, you can pass a copy of any reference type value and share the underlying data
structure intrinsically.

98

5.3.3

CHAPTER 5 Go’s type system

Let’s look at a type from the net package.

Listing 5.25 golang.org/src/net/ip.go: line 32

32 type IP []byte

Listing 5.25 shows a type called IP which is declared as a slice of bytes. Declaring a type
like this is useful when you want to declare behavior around a built-in or reference type.
The compiler will only let you declare methods for user-defined types that are named.

Listing 5.26 golang.org/src/net/ip.go: lines 329-337

329 func (ip IP) MarshalText () ([lbyte, error) {

330 if len(ip) == 0 {

331 return [lbyte(""), nil

332 }

333 if len(ip) != IPvdlen && len(ip) != IPv6len {
334 return nil, errors.New("invalid IP address")
335 }

336 return []lbyte(ip.String()), nil

337 }

The MarshalText method in listing 5.26 has been declared using a value receiver of
type IP. A value receiver is exactly what you expect to see since you don’t share refer-
ence type values. This also applies to passing reference type values as parameters to
functions and methods.

Listing 5.27 golang.org/src/net/ip.go: lines 318-325

318 // ipEmptyString is like ip.String except that it returns
319 // an empty string when ip is unset.
320 func ipEmptyString(ip IP) string {

321 if len(ip) == 0 {
322 return ""

323 }

324 return ip.String()
325 }

In listing 5.27 you see the ipEmptyString function. This function is passed a value of
the type IP. Once again, you can see how the caller’s reference type value for this
parameter is not shared with the function. The function is passed a copy of the caller’s
reference type value. This also applies to return values. In the end, reference type val-
ues are treated like primitive data values.

Struct types

Struct types can represent data values that could have either a primitive or nonprimi-
tive nature. When the decision is made that a struct type value should not be mutated
when something needs to be added or removed from the value, then it should follow
the guidelines for the builtin and reference types. Let’s start with looking at a struct
implemented by the standard library that has a primitive nature.

The nature of types 99

Listing 5.28 golang.org/src/time/time.go: lines 39-55

39 type Time struct {

40 // sec gives the number of seconds elapsed since

41 // January 1, year 1 00:00:00 UTC.

42 sec inté64

43

44 // nsec specifies a non-negative nanosecond

45 // offset within the second named by Seconds.

46 // It must be in the range [0, 999999999].

47 nsec int32

48

49 // loc specifies the Location that should be used to
50 // determine the minute, hour, month, day, and year
51 // that correspond to this Time.

52 // Only the zero Time has a nil Location.

53 // In that case it is interpreted to mean UTC.

54 loc *Location

55 }

The Time struct in listing 5.28 comes from the time package. When you think about
time, you realize that any given point in time is not something that can change. This is
exactly how the standard library implements the Time type. Let’s look at the Now func-
tion that creates values of type Time.

Listing 5.29 golang.org/src/time/time.go: lines 781-784

781 func Now() Time {

782 sec, nsec := now()
783 return Time{sec + unixToInternal, nsec, Local}
784 }

The code in listing 5.29 shows the implementation of the Now function. This function
creates a value of type Time and returns a copy of that Time value back to the caller. A
pointer is not used to share the Time value created by the function. Next, let’s look at
a method declared against the Time type.

Listing 5.30 golang.org/src/time/time.go: lines 610-622

610 func (t Time) Add(d Duration) Time {

611 t.sec += int64(d / 1le9)
612 nsec := int32(t.nsec) + int32(d%1le9)
613 if nsec >= 1le9 {

614 t.sec++

615 nsec -= le9

616 } else if nsec < 0 {
617 t.sec--

618 nsec += le9

619 }

620 t.nsec = nsec

621 return t

622 }

100

CHAPTER 5 Go’s type system

The method Add in listing 5.30 is a great example of how the standard library treats
the Time type as having a primitive nature. The method is declared using a value
receiver and returns a new Time value. The method is operating on its own copy of the
caller’s Time value and returns a copy of its local Time value back to the caller. It’s up
to the caller whether they want to replace their Time value with what’s returned or
declare a new Time variable to hold the result.

In most cases, struct types don’t exhibit a primitive nature, but a nonprimitive one.
In these cases, adding or removing something from the value of the type should
mutate the value. When this is the case, you want to use a pointer to share the value
with the rest of the program that needs it. Let’s take a look at a struct type imple-
mented by the standard library that has a nonprimitive nature.

Listing 5.31 golang.org/src/os/file_unix.go: lines 15-29

15 // File represents an open file descriptor.

16 type File struct {

17 *file

18 }

19

20 // file is the real representation of *File.

21 // The extra level of indirection ensures that no clients of os
22 // can overwrite this data, which could cause the finalizer

23 // to close the wrong file descriptor.

24 type file struct {

25 fd int

26 name string

27 dirinfo *dirInfo // nil unless directory being read
28 nepipe int32 // number of consecutive EPIPE in Write
29 }

In listing 5.31 you see the declaration of the File type from the standard library. The
nature of this type is nonprimitive. Values of this type are actually unsafe to be copied.
The comments for the unexported type make this clear. Since there’s no way to pre-
vent programmers from making copies, the implementation of the File type uses an
embedded pointer of an unexported type. We’ll talk about embedding types later in
this chapter, but this extra level of indirection provides protection from copies. Not
every struct type requires or should be implemented with this extra protection. Pro-
grammers should respect the nature of each type and use it accordingly.
Let’s look at the implementation of the Open function.

Listing 5.32 golang.org/src/os/file.go: lines 238-240

238 func Open (name string) (file *File, err error) {
239 return OpenFile (name, O_RDONLY, 0)
240 }

The implementation of the Open function in listing 5.32 shows how a pointer is used
to share File type values with the caller of the function. Open creates a value of type

5.4

Interfaces 101

File and returns a pointer to that value. When a factory function returns a pointer,
it’s a good indication that the nature of the value being returned is nonprimitive.

Even if a function or method is never going to directly change the state of a
nonprimitive value, it should still be shared.

Listing 5.33 golang.org/src/os/file.go: lines 224-232

224 func (f *File) Chdir() error {

225 if £ == nil {

226 return ErrInvalid

227 }

228 if e := syscall.Fchdir(f.fd); e != nil {
229 return &PathError{"chdir", f.name, e}
230 }

231 return nil

232 }

The Chdir method in listing 5.33 shows how a pointer receiver is declared even
though no changes are made to the receiver value. Since values of type File have a
nonprimitive nature, they’re always shared and never copied.

The decision to use a value or pointer receiver should not be based on whether the
method is mutating the receiving value. The decision should be based on the nature
of the type. One exception to this guideline is when you need the flexibility that value
type receivers provide when working with interface values. In these cases, you may
choose to use a value receiver even though the nature of the type is nonprimitive. It’s
entirely based on the mechanics behind how interface values call methods for the val-
ues stored inside of them. In the next section, you’ll learn about wh