
M A N N I N G

William Kennedy
 WITH Brian Ketelsen
 Erik St. Martin
FOREWORD BY Steve Francia

www.allitebooks.com

http://www.allitebooks.org

Go in Action
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Go in Action
WILLIAM KENNEDY

WITH BRIAN KETELSEN
 AND ERIK ST. MARTIN

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editor: Kim Shrier
PO Box 761 Copyeditor: Jodie Allen
Shelter Island, NY 11964 Proofreader: Katie Tennant
 Technical proofreader: Jimmy Frasché

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617291784
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

brief contents

1 ■ Introducing Go 1
2 ■ Go quick-start 9
3 ■ Packaging and tooling 39
4 ■ Arrays, slices, and maps 57
5 ■ Go’s type system 88
6 ■ Concurrency 128
7 ■ Concurrency patterns 158
8 ■ Standard library 184
9 ■ Testing and benchmarking 211
v

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xi
preface xiii
acknowledgments xiv
about this book xvi
about the cover illustration xix

1 Introducing Go 1
1.1 Solving modern programming challenges with Go 2

Development speed 3 ■ Concurrency 3 ■ Go’s type system 5
Memory management 7

1.2 Hello, Go 7
Introducing the Go Playground 8

1.3 Summary 8

2 Go quick-start 9
2.1 Program architecture 10
2.2 Main package 11
2.3 Search package 13

search.go 14 ■ feed.go 22 ■ match.go/default.go 26

2.4 RSS matcher 32
2.5 Summary 38
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
3 Packaging and tooling 39
3.1 Packages 40

Package-naming conventions 40 ■ Package main 40

3.2 Imports 42
Remote imports 42 ■ Named imports 43

3.3 init 44
3.4 Using Go tools 45
3.5 Going farther with Go developer tools 47

go vet 47 ■ Go format 48 ■ Go documentation 48

3.6 Collaborating with other Go developers 51
Creating repositories for sharing 51

3.7 Dependency management 52
Vendoring dependencies 52 ■ Introducing gb 54

3.8 Summary 56

4 Arrays, slices, and maps 57
4.1 Array internals and fundamentals 57

Internals 58 ■ Declaring and initializing 58 ■ Working with
arrays 60 ■ Multidimensional arrays 62 ■ Passing arrays
between functions 64

4.2 Slice internals and fundamentals 65
Internals 65 ■ Creating and initializing 65 ■ Working with
slices 68 ■ Multidimensional slices 79 ■ Passing slices between
functions 80

4.3 Map internals and fundamentals 81
Internals 81 ■ Creating and initializing 83 ■ Working with
maps 84 ■ Passing maps between functions 86

4.4 Summary 87

5 Go’s type system 88
5.1 User-defined types 89
5.2 Methods 92
5.3 The nature of types 96

Built-in types 96 ■ Reference types 97 ■ Struct types 98
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
5.4 Interfaces 101
Standard library 102 ■ Implementation 104 ■ Method
sets 105 ■ Polymorphism 109

5.5 Type embedding 111
5.6 Exporting and unexporting identifiers 119
5.7 Summary 127

6 Concurrency 128
6.1 Concurrency versus parallelism 129
6.2 Goroutines 132
6.3 Race conditions 139
6.4 Locking shared resources 142

Atomic functions 142 ■ Mutexes 145

6.5 Channels 147
Unbuffered channels 148 ■ Buffered channels 153

6.6 Summary 157

7 Concurrency patterns 158
7.1 Runner 158
7.2 Pooling 167
7.3 Work 177
7.4 Summary 183

8 Standard library 184
8.1 Documentation and source code 185
8.2 Logging 187

Log package 187 ■ Customized loggers 191
Conclusion 195

8.3 Encoding/Decoding 196
Decoding JSON 196 ■ Encoding JSON 201
Conclusion 202

8.4 Input and output 203
Writer and Reader interfaces 203 ■ Working together 205
Simple curl 208 ■ Conclusion 210

8.5 Summary 210
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
9 Testing and benchmarking 211
9.1 Unit testing 212

Basic unit test 212 ■ Table tests 216 ■ Mocking calls 219
Testing endpoints 223

9.2 Examples 228
9.3 Benchmarking 232
9.4 Summary 236

 index 237
Licensed to Mark Watson <nordickan@gmail.com>

foreword
In computer science, when you think of exceptional people, a few names come to
mind. Among them are Rob Pike, Robert Griesmier, and Ken Thompson, who are
responsible for UNIX, Plan 9, B, Java’s JVM HotSpot, V8, Strongtalk, Sawzall, Ed,
Acme, and UTF8, among many other creations. In 2007, they came together to experi-
ment with a very powerful idea, combining their decades of experience to create a
new systems language inspired by existing languages but truly unlike anything that
came before. They released their creation as open source and named it “Go.” If Go
continues on the course it is now on, it may indeed prove to be the most impactful of
their many notable creations.

 Humanity is at its best when people join together with the pure intention of mak-
ing the world a better place. In 2013, Brian and Erik formed the Gopher Academy
and were soon joined by Bill and a few other similar-minded people, united in the
pursuit of building a better community around the Go language. They first noticed
that the community needed a place to gather and share material online so they set up
the Go discussion board (slack) and the Gopher Academy blog. As time went on and
the community continued to grow, they established the world’s first global Go confer-
ence, GopherCon. Through their deep experience with the community, they knew
that a resource was needed to guide the many thousands of programmers into this
new language, so they began to write the book that you now hold in your hands.

 This book is a labor of love from three individuals who have given so much of their
time and talents to the Go community. I have been alongside Bill, Brian, and Erik to
witness them writing and revising over the past year as they maintained their existing
responsibilities as editors of the Gopher Academy blog, as conference organizers, in
their day jobs, and in their roles as fathers and husbands. To them this is not a book,
xi

Licensed to Mark Watson <nordickan@gmail.com>

FOREWORDxii
but a tribute to the language they love. They weren’t content with producing a “good”
book. They wrote and reviewed, rewrote and revised many drafts of each page, exam-
ple, and chapter until they had a book worthy of the language they hold so dear.

 It takes courage to leave a language of comfort and familiarity and try a language
that is not only new to you but new to the world. This road less traveled is a bumpy
one, lined with bugs that only early adopters are familiar with. It includes unexpected
errors, spotty or missing documentation, and a lack of established libraries to use.
This is the path of a trailblazer, a pioneer. If you are reading this now, you are likely on
the beginning of this journey.

 From the first chapter to the last, this book is crafted to provide you, the reader, a
concise and comprehensive guide to exploring, learning, and using Go. In all the
world, you couldn’t hope to have better guides than Bill, Brian, and Erik. I’m excited
for you to discover all the goodness that is Go and look forward to seeing you online
and at the Go meetups and conferences.

STEVE FRANCIA
GOPHER AND CREATOR OF HUGO,

COBRA, VIPER, AND SPF13-VIM
Licensed to Mark Watson <nordickan@gmail.com>

preface
Back in October 2013 after writing the GoingGo.net blog for a few months, I received
a call from Brian Ketelsen and Erik St. Martin. They were in the process of writing this
book and asked if I would be a part of it. I jumped at the opportunity and started writ-
ing. I was still very new to Go at the time, so this was a great chance to learn more
about the language, work with Brian and Erik and share what I learned at a greater
scale than the blog.

 After we finished the first four chapters, we released the book under the Manning
Early Access Program (MEAP). Soon after, we received an email from a member of
the language team. This person provided a review that contained a detailed set of
changes plus a wealth of knowledge, advice, encouragement, and support. From
there, we decided to rewrite chapter 2 from scratch and performed a major overhaul
of chapter 4. We learned that rewriting chapters was not going to be the exception
but the norm. That experience also taught us that it was going to take the help of the
community to write this book, and we needed to make that happen immediately.

 Ever since then, this book has been a community effort. We have tried to put a proper
amount of time in researching each chapter, developing code samples, and working with
the community to review, discuss, and edit the material and code. We have done our best
to make sure this book is technically correct, shows only idiomatic code, and teaches you
Go the way the community feels it should be written and thought about. We do have
some of our own thoughts, practices, and guidelines sprinkled in as well.

 We hope this book helps you learn Go and you find it a useful resource today and
for many years to come. Brian, Erik, and I are always online and available to help any-
one who reaches out to us. If you purchased the book, thank you, and don’t be shy
about saying “hi.”

 WILLIAM KENNEDY
xiii

Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
We have spent over 18 months writing this book, but none of our efforts would have
been possible without the support of many people—our families, friends, colleagues,
and mentors; the entire Go community; and our publisher, Manning.

 When you’re writing a book like this, you need an editor who will not only share
the good but help you through the bad and be there for you at all cost. Jennifer Stout,
you’re a brilliant, nurturing, and amazing friend. Thank you for everything and for
being there when we needed you the most. Thank you for making this book a reality.
Thanks also to all the other folks at Manning who worked with us during the develop-
ment and production of our book.

 You can’t know everything, so it requires a community of people to give their time
and knowledge. We thank the Go community and everyone who participated in
reviews and provided feedback on the manuscript at various stages of its development,
especially Adam McKay, Alex Basile, Alex Jacinto, Alex Vidal, Anjan Bacchu, Benoît
Benedetti, Bill Katz, Brian Hetro, Colin Kennedy, Doug Sparling, Jeffrey Lim, Jesse
Evans, Kevin Jackson, Mark Fisher, Matt Zulak, Paulo Pires, Peter Krey, Philipp K.
Janert, Sam Zaydel, and Thomas O’Rourke. Thanks also to Jimmy Frasché for his care-
ful technical review of the final manuscript shortly before it went into production.

 There are a few other people who need to be acknowledged in particular.
 Kim Shrier was there from the very beginning, providing reviews, and giving of his

time to teach. We learned so many things from you and we are grateful. The book is
better technically because of you.

 Bill Hathaway got involved heavily in the last year of writing the book, shaping
each chapter; his thoughts and opinions were invaluable. We must give Bill credit as a
coauthor of chapter 9. It would not exist without Bill’s time, talent, and effort.
xiv

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTS xv
 We would also like to recognize Cory Jacobson, Jeffery Lim, Chetan Conikee, and
Nan Xiao, who consistently provided time for reviews, opinions, and guidance.
Thanks to Gabriel Aszalos, Fatih Arslan, Kevin Gillette, and Jason Waldrip for help
with sample code and reviews. And special thanks to Steve Francia for contributing
the foreword and endorsing our work.

 We end by sincerely thanking our families and friends. Anything that takes this
level of commitment and time always has an effect on the ones you love.

WILLIAM KENNEDY

I would like to thank Lisa, my beautiful wife, and my five children: Brianna, Melissa,
Amanda, Jarrod, and Thomas. Lisa, I know you and the kids spent way too many days,
nights, and weekends without your husband and father. Thank you for letting me take
all the time I needed to work on the book: I love each and every one of you.

 I would also like to thank my business partner Ed Gonzalez, creative director Erick
Zelaya, and the entire team at Ardan Studios. Ed, thanks for supporting me from the
beginning. I could not have done this without you. You are more than just a business
partner, you are a friend and brother: thank you. Erick, thanks for everything you do
to support me and the company. Not sure what we would do without you.

BRIAN KETELSEN

I would like to thank my family for their patience during this four-year-long process of
producing a book. Christine, Nathan, Lauren, and Evelyn: thank you for putting up
with me as I wrote chapters in a lounge chair by the pool while you were swimming.
 Thank you for believing that this book could and would be published.

ERIK ST. MARTIN

I would like to thank my fiancée Abby, and my three children Halie, Wyatt, and Allie
for being so patient and understanding how much time writing a book and organizing
conferences demand. I love you all so very much and am lucky to have you.

 I would also like to thank Bill Kennedy for the tremendous effort he has poured
into this book—we asked him to help us write it, and he steered the ship most of the
way due to the demands of our jobs and organizing GopherCon. I also want to thank
the community for all their reviews and words of encouragement.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
Go is an open source programming language that makes it easy to build simple, reli-
able, and efficient software. Although it borrows ideas from existing languages, it has
a unique and simple nature that makes Go programs different in character from pro-
grams written in other languages. It balances the capabilities of a low-level systems lan-
guage with some high-level features you see in modern languages today. This creates a
programming environment that allows you to be incredibly productive, performant,
and fully in control; in Go, you can write less code and do so much more.

Who should read this book?

This book was written for an intermediate-level developer who has some experience
with other programming languages and wants to learn Go. Our goal in writing this
book is to provide you an intensive, comprehensive, and idiomatic view of the lan-
guage. We focus on both the specification and implementation of the language,
including topics that range from language syntax, Go’s type system, concurrency,
channels, testing, and more. We believe this book is perfect for anyone who wants a
jump-start in learning Go as well as for those who want a more thorough understand-
ing of the language and its internals.

Roadmap

The book consists of nine chapters, briefly described here:

 Chapter 1 is a quick introduction to what the language is, why it was created,
and the problems it solves. It also briefly introduces some of Go’s core concepts
such as concurrency.
xvi

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xvii
 Chapter 2 walks you through a complete Go program, teaching you all that Go
has to offer as a language along the way.

 Chapter 3 introduces the concept of packaging and how to best set up your Go
workspace and development environment. It also shows how to use the Go tool-
ing, including fetching and building your code.

 Chapter 4 provides a detailed view of Go’s built-in data types: arrays, slices,
and maps. It explains the implementation and mechanics behind these data
structures.

 Chapter 5 is a detailed view of Go’s type system, from struct types to named
types to interfaces and type embedding. It also covers how all these things come
together to allow you to structure and write complex software in a simpler way.

 Chapter 6 dives deeply into how the Go scheduler, concurrency, and channels
work. It teaches the mechanics behind this aspect of the language.

 Chapter 7 takes what you learn from chapter 6 and shows more practical code
around concurrency patterns. You will learn how to implement goroutine pools
to manage work and how to pool reusable resources to be shared.

 Chapter 8 explores the standard library and goes deep into three packages: log,
json, and io. The chapter focuses on some of the intricacies of these three
packages.

 Chapter 9 closes the book by showing how to use the testing and benchmarking
framework. You will learn how to write unit and table tests and benchmarks, and
how to add examples to your documentation and use the examples as tests.

About the code

All source code in the book is presented in a mono-spaced typeface like this, which
sets it off from the surrounding text. In many listings, the code is annotated to point
out key concepts, and numbered bullets are sometimes used in the text to provide
additional information about the code.

 Source code for the examples in the book is available for download from the pub-
lisher’s website at www.manning.com/books/go-in-action and from GitHub at https://
github.com/goinaction/code.

Author Online

Purchase of Go in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/books/go-in-action. This
page provides information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct on the forum.

Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/books/go-in-action
https://github.com/goinaction/code
https://github.com/goinaction/code
http://www.manning.com/books/go-in-action

ABOUT THIS BOOKxviii
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contributions to the AO remain voluntary (and unpaid). We sug-
gest you ask the authors challenging questions, lest their interest stray.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

WILLIAM KENNEDY (@goinggodotnet) is a managing partner at Ardan Studio in
Miami, Florida, a mobile, web, and systems development company. He is also the
author of the blog GoingGo.Net, and the organizer for the Go meetup in Miami. Bill
is focused on Go education through his training company, Ardan Labs. He can often
be found talking at conferences and giving workshops both locally and over hangouts.
He always finds time to work with individuals and groups who want to take their Go
knowledge, blogging, and coding skills to the next level.

BRIAN KETELSEN (@bketelsen) is the CIO and cofounder of XOR Data Exchange.
Brian is a co-organizer of GopherCon, the annual Go conference, and the founder of
GopherAcademy—a community-focused organization created for the promotion of
the Go language and the education of Go developers. He’s been using Go since 2010.

ERIK ST. MARTIN (@erikstmartin) is the Director of Software Development at XOR
Data Exchange, a big data and analytics company located in Austin, Texas, but resides
in Tampa, Florida. Erik is a long-time contributor to open source and its communities.
He’s an organizer for GopherCon, an annual Go conference, and the organizer of the
Go Tampa meetup group. He’s very passionate about Go and the community and
eager to find new ways to foster its growth.
Licensed to Mark Watson <nordickan@gmail.com>

about the cover illustration
The figure on the cover of Go in Action is captioned “Man from the East Indies.” The
illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations,
Ancient and Modern (four volumes), London, published between 1757 and 1772. The
title page states that these are hand-colored copperplate engravings, heightened with
gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George
III.” He was an English cartographer who was the leading map supplier of his day. He
engraved and printed maps for government and other official bodies and produced a
wide range of commercial maps and atlases, especially of North America. His work as
a map maker sparked an interest in local dress customs of the lands he surveyed and
mapped, and which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late eighteenth century, and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitants of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>

Introducing Go
Computers have evolved, but programming languages haven’t kept up the same
pace of evolution. The cell phones we carry might have more CPU cores than the
first computer we used. High-powered servers now have 64, 128, or even more cores,
but we’re still programming using the techniques we were using for a single core.

 The art of programming has evolved too. Most programs aren’t written by a sin-
gle developer any more: they’re written by teams of people sitting in different time
zones and working at different times of the day. Large projects are broken up into
smaller pieces and assigned to programmers who then deliver their work back to
the team in the form of a library or package that can be used across an entire suite
of applications.

 Today’s programmers and companies believe more than ever in the power of
open source software. Go is a programming language that makes sharing code easy.
Go ships with tools that make it simple to use packages written by others, and Go
makes it easy to share our own packages too.

In this chapter
 Solving modern computing challenges with Go

 Using the Go tools
1

Licensed to Mark Watson <nordickan@gmail.com>

2 CHAPTER 1 Introducing Go
 In this chapter you’ll see how Go is different from other programming languages.
Go rethinks the traditional object-oriented development you might be used to, while
still providing an efficient means for code reuse. Go makes it easier for you to effec-
tively use all of the cores on your expensive server, and it takes away the penalty of
compiling a very large project.

 As you read this chapter, you’ll get a feeling for the many decisions that shaped the
creation of Go, from its concurrency model to its lightning-fast compiler. We
mentioned it in the preface, but it bears repeating: this book has been written for an
intermediate-level developer who has some experience with other programming lan-
guages and wants to learn Go. Our goal in writing this book is to provide you an inten-
sive, comprehensive, and idiomatic view of the language. We focus on both the
specification and implementation of the language, including the wide-ranging topics
of language syntax, Go’s type system, concurrency, channels, testing, and more. We
believe this book is perfect for anyone who wants a jump-start in learning Go or who
wants a more thorough understanding of the language and its internals.

 The source code for the examples in the book is available at https://github.com/
goinaction/code.

 We hope you’ll appreciate the tools that ship with Go to make your life as a devel-
oper easier. In the end, you’ll appreciate why so many developers are choosing Go
when they start up that new project.

1.1 Solving modern programming challenges with Go
The Go team went to great lengths to solve the problems facing software developers
today. Developers have to make an uncomfortable choice between rapid development
and performance when choosing a language for their projects. Languages like C and
C++ offer fast execution, whereas languages like Ruby and Python offer rapid develop-
ment. Go bridges these competing worlds and offers a high-performance language
with features that make development fast.

 As we explore Go, you’ll find well-planned features and concise syntax. As a lan-
guage, Go is defined not only by what it includes, but by what it doesn’t include. Go
has a concise syntax with few keywords to memorize. Go has a compiler that’s so fast,
sometimes you’ll forget it’s running. As a Go developer, you’ll spend significantly less
time waiting for your project to build. Because of Go’s built-in concurrency features,
your software will scale to use the resources available without forcing you to use spe-
cial threading libraries. Go uses a simple and effective type system that takes much of
the overhead out of object-oriented development and lets you focus on code reuse.
Go also has a garbage collector, so you don’t have to manage your own memory. Let’s
look quickly at these key features.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/goinaction/code
https://github.com/goinaction/code

3Solving modern programming challenges with Go
1.1.1 Development speed

Compiling a large application in C or C++ takes more
time than getting a cup of coffee. Figure 1.1 shows an
XKCD classic excuse for messing around in the office.

 Go offers lightning-quick compiles by using a
smart compiler and simplified dependency resolu-
tion algorithms. When you build a Go program, the
compiler only needs to look at the libraries that you
directly include, rather than traversing the depen-
dencies of all the libraries that are included in the
entire dependency chain like Java, C, and C++. Con-
sequently, many Go applications compile in under a
second. The entire Go source tree compiles in under
20 seconds on modern hardware.

 Writing applications in dynamic languages makes you productive quickly because
there are no intermediate steps between writing code and executing it. The trade-off
is that dynamic languages don’t offer the type safety that static languages do and often
need a comprehensive test suite to avoid discovering incorrect type bugs at runtime.

 Imagine writing a large application in a dynamic language like JavaScript and com-
ing across a function that expects to receive a field called ID. Is that an integer, a
string, or a UUID? The way to find out is to look at the source. You could try to execute
the function with a number or a string and see what happens. In Go, you wouldn’t
spend time wondering, because the compiler will catch type differences for you.

1.1.2 Concurrency

One of the hardest things to do as a programmer is to write an application that effec-
tively uses the available resources of the hardware running it. Modern computers have
many cores, but most programming languages don’t have effective tools for utilizing
those additional resources easily. They often require a lot of thread synchronization
code, which is prone to errors.

 Go’s concurrency support is one of its strongest features. Goroutines are like
threads, but use far less memory and require less code to use. Channels are data struc-
tures that let you send typed messages between goroutines with synchronization built
in. This facilitates a programming model where you send data between goroutines,
rather than letting the goroutines fight to use the same data. Let’s look at these fea-
tures in more detail now.

GOROUTINES

Goroutines are functions that run concurrently with other goroutines, including the
entry point of your program. In other languages, you’d use threads to accomplish the
same thing, but in Go many goroutines execute on a single thread. For example, if you
write a web server and you want to handle different web requests simultaneously, you’d
have to write a lot of extra code to use threads in C or Java. In Go, the net/http library

Figure 1.1 Working hard?
(via XKCD)
Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Introducing Go
has concurrency built in using goroutines. Each inbound request automatically runs on
its own goroutine. Goroutines use less memory than threads and the Go runtime will
automatically schedule the execution of goroutines against a set of configured logical
processors. Each logical processor is bound to a single OS thread (see figure 1.2). This
makes your application much more efficient with significantly less development effort.

 If you want to execute some code concurrently while you move on to accomplish
other things, a goroutine is perfect for the job. Here’s a quick example:

func log(msg string){
... some logging code here

}

// Elsewhere in our code after we've discovered an error.
go log("something dire happened")

That keyword go is all you need to schedule the log function to run as a goroutine
and for that goroutine be run concurrently with other goroutines. This means you can
continue executing the rest of your application while the logging happens concur-
rently, which often results in greater perceived performance for your end users. As
stated before, goroutines have minimal overhead, so it isn’t uncommon to spawn tens
of thousands of them. We’ll explore goroutines and concurrency more in-depth in
chapter 6.

CHANNELS

Channels are data structures that enable safe data communication between gorou-
tines. Channels help you to avoid problems typically seen in programming languages
that allow shared memory access.

 The hardest part of concurrency is ensuring that your data isn’t unexpectedly
modified by concurrently running processes, threads, or goroutines. When multiple
threads change the same data without locks or synchronization, heartache always fol-
lows. In other languages, when you have global variables and shared memory, you’re
required to use complicated locking disciplines to prevent unsynchronized changes to
the same variables.

Goroutine

Thread

Goroutine Goroutine Goroutine GoroutineGoroutine

Thread

Goroutine

Goroutine

Thread

Goroutine

Figure 1.2 Many goroutines execute on a single OS thread
Licensed to Mark Watson <nordickan@gmail.com>

5Solving modern programming challenges with Go
Channels help to solve this problem by providing a pattern that makes data safe from
concurrent modification. Channels help to enforce the pattern that only one gorou-
tine should modify the data at any time. You can see an example of this flow in
figure 1.3, where channels are used to send data between several running goroutines.
Imagine an application where many different processes need to know about or modify
data sequentially. Using goroutines and channels, you can model this process safely.

 In figure 1.3 you see three goroutines and two unbuffered channels. The first gor-
outine passes a data value through the channel to a second goroutine that’s already
waiting. The exchange of the data between both goroutines is synchronized, and once
the hand-off occurs, both goroutines know the exchange took place. After the second
goroutine performs its tasks with the data, it then sends the data to a third goroutine
that’s waiting. That exchange is also synchronized, and both goroutines can have
guarantees the exchange has been made. This safe exchange of data between gorou-
tines requires no other locks or synchronization mechanisms.

 It’s important to note that channels don’t provide data access protection between
goroutines. If copies of data are exchanged through a channel, then each goroutine
has its own copy and can make any changes to that data safely. When pointers to the
data are being exchanged, each goroutine still needs to be synchronized if reads and
writes will be performed by the different goroutines.

1.1.3 Go’s type system

Go provides a flexible hierarchy-free type system that enables code reuse with minimal
refactoring overhead. It’s still object-oriented development, but without the tradi-
tional headaches. If you’ve ever spent a week planning your abstract classes and inter-
faces in a complex Java or C++ program, you’ll appreciate the simplicity of Go’s type
system. Go developers simply embed types to reuse functionality in a design pattern
called composition. Other languages use composition, but it’s often deeply tied to
inheritance, which can make it complicated and difficult to use. In Go, types are com-
posed of smaller types, which is in contrast to traditional inheritance-based models.

 In addition Go has a unique interface implementation that allows you to model
behavior, rather than model types. You don’t need to declare that you’re implementing

Channel

Data

Channel

Data

Goroutine

Goroutine

Goroutine

Figure 1.3 Using channels to safely
pass data between goroutines
Licensed to Mark Watson <nordickan@gmail.com>

6 CHAPTER 1 Introducing Go
an interface in Go; the compiler does the work of determining whether values of your
types satisfy the interfaces you’re using. Many interfaces in Go’s standard library are
very small, exposing only a few functions. In practice this takes some time to get used
to, especially if you’ve been writing in object-oriented languages like Java.

TYPES ARE SIMPLE

Go has built-in types like int and string as well as user-defined types. A typical user-
defined type in Go will have typed fields to store data. If you’ve seen structs in C, Go’s
user-defined types will look familiar and operate similarly. But types may also declare
methods that operate on that data. Rather than building a long inheritance struc-
ture—Client extends User extends Entity—Go developers build small types—Cus-
tomer and Admin—and embed them into larger ones. Figure 1.4 demonstrates the
difference between inheritance and composition.

GO INTERFACES MODEL SMALL BEHAVIORS

Interfaces allow you to express the behavior of a type. If a value of a type implements
an interface, it means the value has a specific set of behaviors. You don’t even need to
declare that you’re implementing an interface; you just need to write the implementa-
tion. Other languages call this duck typing—if it quacks like a duck, then it can be a
duck—and Go does it well. In Go, if your type implements the methods of an inter-
face, a value of your type can be stored in a value of that interface type. No special dec-
larations are required.

 In a strictly object-oriented language like Java, interfaces are all-encompassing.
You’re often required to think through a large inheritance chain before you’re able to
even start writing code. Here’s an example of a Java interface:

interface User {
public void login();
public void logout();

}

Implementing this interface in Java requires you to create a class that fulfills all of the
promises made in the User interface and explicitly declare that you implement the
interface. In contrast, a Go interface typically represents just a single action. One of
the most common interfaces you’ll use in Go is io.Reader. The io.Reader interface

Drive

Passengers

Cargo

Inheritance

Vehicle

Passenger vehicle

Truck

Composition

Truck

Carry cargo

Carry passengers

Drive Figure 1.4 Inheritance
versus composition
Licensed to Mark Watson <nordickan@gmail.com>

7Hello, Go
provides a simple way to declare that your type has data to be read in a way that other
functions in the standard library understand. Here’s the definition:

type Reader interface {
Read(p []byte) (n int, err error)

}

To write a type that implements the io.Reader interface, you only need to implement
a Read method that accepts a slice of bytes and returns an integer and possible error.

 This is a radical departure from the interface systems used in other object-oriented
programming languages. Go’s interfaces are smaller and more aligned with single
actions. In practice, this allows significant advantages in code reuse and composability.
You can implement an io.Reader on nearly any type that has data available, and then
pass it to any Go function that knows how to read from io.Reader.

 The entire networking library in Go is built using the io.Reader interface, because
it allows it to separate the network implementation required for each different net-
work operation from the functionality of your application. It makes interfaces fun, ele-
gant, and flexible. That same io.Reader enables simple operations with files, buffers,
sockets, and any other data source. Using a single interface allows you to operate on
data efficiently, regardless of the source.

1.1.4 Memory management

Improper memory management causes applications to crash and leak memory, and
even crash the operating system. Go has a modern garbage collector that does the
hard work for you. In other systems languages, like C or C++, you need to allocate a
piece of memory before you can use it, and then free it when you’re done. If you fail
to do either of these correctly, you’ll have program crashes or memory leaks. It isn’t
always easy to track a piece of memory when it’s no longer needed; threads and heavy
concurrency make it even harder. When you write code with garbage collection in
mind, Go’s garbage collection adds little overhead to program execution time, but
reduces development effort significantly. Go takes the tedium out of programming
and leaves the bean counting to the accountants.

1.2 Hello, Go
It’s much easier to get the feel of a programming language by seeing it in action. Let’s
look at the traditional Hello World! application written in Go:

package main

import "fmt"

func main(){
fmt.Println("Hello World!")

}

Go programs are
organized as packages.

The import statement allows you to use external
code. The fmt package provided by the standard
library allows you to format and output data.

The main function is what gets executed when
you run your application—just like in C.
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 Introducing Go
This sample program prints a familiar phrase on your screen when you run it. But how
should you run it? Without installing Go on your computer, you can use almost all that
Go provides right from your web browser.

1.2.1 Introducing the Go Playground

The Go Playground allows you to edit and run Go code from your web browser. Fire up
a web browser and navigate to http://play.golang.org. The code in the browser window
is editable right on the screen (see figure 1.5). Click Run and see what happens!

You can even change the code to make the greeting text output in a different lan-
guage. Go ahead and change the greeting inside the fmt.Println() function and hit
Run again.

SHARING GO CODE Go developers use the Playground to share code ideas, test
theories, and debug their code, as you soon will too. Every time you create a new
application on the Playground, you can click Share to get a sharable URL that
anyone else can open. Try this one: http://play.golang.org/p/EWIXicJdmz.

The Go Playground is the perfect way to demonstrate an idea to a coworker or friend
who’s trying to learn something, or to solicit help. On the Go IRC channels, Slack
group, mailing lists, and countless emails sent among Go developers, you’ll see Go
Playground programs being created, modified, and shared.

1.3 Summary
 Go is modern, fast, and comes with a powerful standard library.
 Go has concurrency built-in.
 Go uses interfaces as the building blocks of code reuse.

Figure 1.5 The Go Playground
Licensed to Mark Watson <nordickan@gmail.com>

http://play.golang.org
http://play.golang.org/p/EWIXicJdmz

Go quick-start
Go has its own elegance and programming idioms that make the language produc-
tive and fun to code in. The language designers set out to create a language that
would let them be productive without losing access to the lower-level programming
constructs they needed. This balance is achieved through a minimized set of key-
words, built-in functions, and syntax. Go also provides a comprehensive standard
library. The standard library provides all the core packages programmers need to
build real-world web- and network-based programs.

 To see this in action, we’ll review a complete Go program that implements func-
tionality that can be found in many Go programs being developed today. The pro-
gram pulls different data feeds from the web and compares the content against a
search term. The content that matches is then displayed in the terminal window.

In this chapter
 Reviewing a comprehensive Go program

 Declaring types, variables, functions, and
methods

 Launching and synchronizing goroutines

 Writing generic code using interfaces

 Handling errors as normal program logic
9

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

10 CHAPTER 2 Go quick-start
The program reads text files, makes web calls, and decodes both XML and JSON into
struct type values, and it does all of this using Go concurrency to make things fast.

 You can download and review the code in your favorite editor by navigating to the
book repository for this chapter:

https://github.com/goinaction/code/tree/master/chapter2/sample

Don’t feel that you need to understand everything you read and review in this chapter
the first, second, or even the third time. Though many of the programming concepts
you know today can be applied when learning Go, Go also has its unique idioms and
style. If you can liberate yourself from your current programming language and look
at Go with a fresh set of eyes and a clear mind, you’ll find it easier to understand and
appreciate, and you’ll see Go’s elegance.

2.1 Program architecture
Before we dive into the code, let’s review the architecture behind the program (shown
in figure 2.1) and see how searching all the different feeds is accomplished.

The program is broken into several distinct steps that run across many different
goroutines. We’ll explore the code as it flows from the main goroutine into the search-
ing and tracking goroutines and then back to the main goroutine. To start, here’s the
structure of the project.

cd $GOPATH/src/github.com/goinaction/code/chapter2

- sample
- data

data.json -- Contains a list of data feeds
- matchers

Listing 2.1 Project structure for the application

Retrieve
feeds

Perform
search

Set of feeds
to search

Track
results

Display
results

Shutdown Wait all

Main goroutine

Goroutine Channel

Search goroutines

Track results goroutine

Interface
matcher

Send
result

Report
complete

Figure 2.1 The flow of the program architecture
Licensed to Mark Watson <nordickan@gmail.com>

11Main package
rss.go -- Matcher for searching rss feeds
- search

default.go -- Default matcher for searching data
feed.go -- Support for reading the json data file
match.go -- Interface support for using different matchers
search.go -- Main program logic for performing search

main.go -- Programs entry point

The code is organized into these four folders, which are listed in alphabetical order.
The data folder contains a JSON document of data feeds the program will retrieve
and process to match the search term. The matchers folder contains the code for the
different types of feeds the program supports. Currently the program only supports
one matcher that processes RSS type feeds. The search folder contains the business
logic for using the different matchers to search content. Finally we have the parent
folder, sample, which contains the main.go code file, which is the entry point for the
program.

 Now that you’ve seen where all the code for the program is, you can begin to
explore and understand how the program works. Let’s start with the entry point for
the program.

2.2 Main package
The program’s entry point can be found in the main.go code file. Even though there
are only 21 lines of code, there are a few things going on that we have to mention.

01 package main
02
03 import (
04 "log"
05 "os"
06
07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"
09)
10
11 // init is called prior to main.
12 func init() {
13 // Change the device for logging to stdout.
14 log.SetOutput(os.Stdout)
15 }
16
17 // main is the entry point for the program.
18 func main() {
19 // Perform the search for the specified term.
20 search.Run("president")
21 }

Every Go program that produces an executable has two distinct features. One of those
features can be found on line 18. There you can see the function main declared. For

Listing 2.2 main.go
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 2 Go quick-start
the build tools to produce an executable, the function main must be declared, and it
becomes the entry point for the program. The second feature can be found on line 01
of program.

01 package main

You can see the function main is located in a package called main. If your main func-
tion doesn’t exist in package main, the build tools won’t produce an executable.

 Every code file in Go belongs to a package, and main.go is no exception. We’ll go
into much more detail about packages in chapter 3, because packages are an impor-
tant feature of Go. For now, understand that packages define a unit of compiled code
and their names help provide a level of indirection to the identifiers that are declared
inside of them, just like a namespace. This makes it possible to distinguish identifiers
that are declared with exactly the same name in the different packages you import.

 Now turn your attention to lines 03 through 09 of the main.go code file, which
declares imports.

03 import (
04 "log"
05 "os"
06
07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"
09)

Imports are just that: they import code and give you access to identifiers such as types,
functions, constants, and interfaces. In our case, the code in the main.go code file can
now reference the Run function from the search package, thanks to the import on
line 08. On lines 04 and 05, we import code from the standard library for the log and
os packages.

 All code files in a folder must use the same package name, and it’s common prac-
tice to name the package after the folder. As stated before, a package defines a unit of
compiled code, and each unit of code represents a package. If you quickly look back
at listing 2.1, you’ll see how we have a folder in this project called search that matches
the import path on line 08.

 You may have noticed that on line 07 we import the matchers package and use the
blank identifier before listing out the import path.

07 _ "github.com/goinaction/code/chapter2/sample/matchers"

Listing 2.3 main.go: line 01

Listing 2.4 main.go: lines 03–09

Listing 2.5 main.go: line 07
Licensed to Mark Watson <nordickan@gmail.com>

13Search package
This is a technique in Go to allow initialization from a package to occur, even if you
don’t directly use any identifiers from the package. To make your programs more
readable, the Go compiler won’t let you declare a package to be imported if it’s not
used. The blank identifier allows the compiler to accept the import and call any init
functions that can be found in the different code files within that package. For our
program, this is required because the rss.go code file in the matchers package con-
tains an init function to register the RSS matcher for use. We’ll come back to how all
this works later.

 The main.go code file also has an init function that’s declared on lines 12
through 15.

11 // init is called prior to main.
12 func init() {
13 // Change the device for logging to stdout.
14 log.SetOutput(os.Stdout)
15 }

All init functions in any code file that are part of the program will get called before
the main function. This init function sets the logger from the standard library to
write to the stdout device. By default, the logger is set to write to the stderr device.
In chapter 7 we’ll talk more about the log package and other important packages
from the standard library.

 Finally, let’s look at the one statement that the main function performs on line 20.

19 // Perform the search for the specified term.
20 search.Run("president")

Here you see a call to the Run function that belongs to the search package. This func-
tion contains the core business logic for the program, which requires a string for the
search term. Once the Run function returns, the program will terminate.

 Now we can look at the code that belongs to the search package.

2.3 Search package
The search package contains the framework and business logic for the program. The
package is organized into four different code files, each with a unique responsibility.
As we continue to follow the logic of the program, we’ll explore each of these differ-
ent code files.

 Let’s briefly talk about what a matcher is, since the entire program revolves around
the execution of matchers. A matcher in our program is a value that contains specific
intelligence for processing a feed type. In our program we have two matchers. The
framework implements a default matcher that has no intelligence, and in the matchers

Listing 2.6 main.go: lines 11–15

Listing 2.7 main.go: lines 19–20
Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 2 Go quick-start
package we have an implementation of an RSS matcher. The RSS matcher knows how to
get, read, and search RSS feeds. Later on we could extend the program to use matchers
that could read JSON documents or CSV files. We’ll talk more about how to implement
matchers later.

2.3.1 search.go

Following are the first nine lines of code that can be found inside the search.go code
file. This is the code file where the Run function is located.

01 package search
02
03 import (
04 "log"
05 "sync"
06)
07
08 // A map of registered matchers for searching.
09 var matchers = make(map[string]Matcher)

As you’ll see, each code file will contain the keyword package at the top with a name
for the package. Each code file in the search folder will contain search for the pack-
age name. The lines from 03 through 06 import the log and sync packages from the
standard library.

 When you import code from the standard library, you only need to reference the
name of the package, unlike when you import code from outside of the standard
library. The compiler will always look for the packages you import at the locations ref-
erenced by the GOROOT and GOPATH environment variables.

GOROOT="/Users/me/go"
GOPATH="/Users/me/spaces/go/projects"

The log package provides support for logging messages to the stdout, stderr, or even
custom devices. The sync package provides support for synchronizing goroutines,
which is required by our program. On line 09 you’ll see our first variable declaration.

08 // A map of registered matchers for searching.
09 var matchers = make(map[string]Matcher)

This variable is located outside the scope of any function and so is considered a
package-level variable. The variable is declared using the keyword var and is declared
as a map of Matcher type values with a key of type string. The declaration for the

Listing 2.8 search/search.go: lines 01–09

Listing 2.9 GOROOT and GOPATH environmental variables

Listing 2.10 search/search.go: lines 08–09
Licensed to Mark Watson <nordickan@gmail.com>

15Search package
Matcher type can be found in the match.go code file, and we’ll describe the purpose
of this type later. There’s another important aspect of this variable declaration: the
name of the variable matchers starts with a lowercase letter.

 In Go, identifiers are either exported or unexported from a package. An exported
identifier can be directly accessed by code in other packages when the respective
package is imported. These identifiers start with a capital letter. Unexported identifi-
ers start with a lowercase letter and can’t be directly accessed by code in other pack-
ages. But just because an identifier is unexported, it doesn’t mean other packages
can’t indirectly access these identifiers. As an example, a function can return a value
of an unexported type and this value is accessible by any calling function, even if the
calling function has been declared in a different package.

 This variable declaration also contains an initialization of the variable via the
assignment operator and a special built-in function called make.

make(map[string]Matcher)

A map is a reference type that you’re required to make in Go. If you don’t make the
map first and assign it to your variable, you’ll receive errors when you try to use the map
variable. This is because the zero value for a map variable is nil. In chapter 4 we’ll go
into greater detail about maps.

 In Go, all variables are initialized to their zero value. For numeric types, that value
is 0; for strings it’s an empty string; for Booleans it’s false; and for pointers, the zero
value is nil. When it comes to reference types, there are underlying data structures
that are initialized to their zero values. But variables declared as a reference type set to
their zero value will return the value of nil.

 Now let’s walk through the Run function that’s called by the main function, which
you saw earlier.

11 // Run performs the search logic.
12 func Run(searchTerm string) {
13 // Retrieve the list of feeds to search through.
14 feeds, err := RetrieveFeeds()
15 if err != nil {
16 log.Fatal(err)
17 }
18
19 // Create a unbuffered channel to receive match results.
20 results := make(chan *Result)
21
22 // Setup a wait group so we can process all the feeds.
23 var waitGroup sync.WaitGroup
24
25 // Set the number of goroutines we need to wait for while

Listing 2.11 Making a map

Listing 2.12 search/search.go: lines 11–57
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 2 Go quick-start
26 // they process the individual feeds.
27 waitGroup.Add(len(feeds))
28
29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {
31 // Retrieve a matcher for the search.
32 matcher, exists := matchers[feed.Type]
33 if !exists {
34 matcher = matchers["default"]
35 }
36
37 // Launch the goroutine to perform the search.
38 go func(matcher Matcher, feed *Feed) {
39 Match(matcher, feed, searchTerm, results)
40 waitGroup.Done()
41 }(matcher, feed)
42 }
43
44 // Launch a goroutine to monitor when all the work is done.
45 go func() {
46 // Wait for everything to be processed.
47 waitGroup.Wait()
48
49 // Close the channel to signal to the Display
50 // function that we can exit the program.
51 close(results)
52 }()
53
54 // Start displaying results as they are available and
55 // return after the final result is displayed.
56 Display(results)
57 }

The Run function contains the main control logic for the program. It’s a good repre-
sentation of how Go programs can be structured to handle the launching and syn-
chronization of goroutines that run concurrently. Let’s walk through the logic section
by section, and then explore the other code files that lend their support.

 Let’s review how the Run function is declared.

11 // Run performs the search logic.
12 func Run(searchTerm string) {

To declare a function in Go, use the keyword func followed by the function name, any
parameters, and then any return values. In the case of Run, you have a single parame-
ter called searchTerm of type string. The term the program will search against is
passed into the Run function, and if you look at the main function again, you can see
that exchange.

Listing 2.13 search/search.go: lines 11–12
Licensed to Mark Watson <nordickan@gmail.com>

17Search package

17 // main is the entry point for the program.
18 func main() {
19 // Perform the search for the specified term.
20 search.Run("president")
21 }

The first thing that the Run function does is retrieve a list of data feeds. These feeds
are used to pull content from the internet that is then matched against the specified
search term.

13 // Retrieve the list of feeds to search through.
14 feeds, err := RetrieveFeeds()
15 if err != nil {
16 log.Fatal(err)
17 }

There are a few important concepts here that we need to go through. You can see on
line 14 that we make a function call to the function RetrieveFeeds. This function
belongs to the search package and returns two values. The first return value is a slice
of Feed type values. A slice is a reference type that implements a dynamic array. You use
slices in Go to work with lists of data. Chapter 4 goes into greater detail about slices.

 The second return value is an error. On line 15, the error value is evaluated for
errors, and if an error did occur, the function Fatal from the log package is called.
The Fatal function accepts an error value and will log to the terminal window before
terminating the program.

 Though not unique to Go, you can see that our functions can have multiple return
values. It’s common to declare functions that return a value and an error value just
like the RetrieveFeeds function. If an error occurs, never trust the other values being
returned from the function. They should always be ignored, or else you run the risk of
the code generating more errors or panics.

 Let’s take a closer look at how the values being returned from the function are
being assigned to variables.

13 // Retrieve the list of feeds to search through.
14 feeds, err := RetrieveFeeds()

Here you see the use of the short variable declaration operator (:=). This operator is
used to both declare and initialize variables at the same time. The type of each value
being returned is used by the compiler to determine the type for each variable,
respectively. The short variable declaration operator is just a shortcut to streamline

Listing 2.14 main.go: lines 17–21

Listing 2.15 search/search.go: lines 13–17

Listing 2.16 search/search.go: lines 13–14
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 2 Go quick-start
your code and make the code more readable. The variable it declares is no different
than any other variable you may declare when using the keyword var.

 Now that we have our list of data feeds, we can move on to the next line of code.

19 // Create a unbuffered channel to receive match results.
20 results := make(chan *Result)

On line 20, we use the built-in function make to create an unbuffered channel. We use
the short variable declaration operator to declare and initialize the channel variable
with the call to make. A good rule of thumb when declaring variables is to use the key-
word var when declaring variables that will be initialized to their zero value, and to
use the short variable declaration operator when you’re providing extra initialization
or making a function call.

 Channels are also a reference type in Go like maps and slices, but channels imple-
ment a queue of typed values that are used to communicate data between goroutines.
Channels provide inherent synchronization mechanisms to make communication
safe. In chapter 6 we’ll go into more details about channels and goroutines.

 The next two lines of code are used later to prevent the program from terminating
before all the search processing is complete.

22 // Setup a wait group so we can process all the feeds.
23 var waitGroup sync.WaitGroup
24
25 // Set the number of goroutines we need to wait for while
26 // they process the individual feeds.
27 waitGroup.Add(len(feeds))

In Go, once the main function returns, the program terminates. Any goroutines that
were launched and are still running at this time will also be terminated by the Go run-
time. When you write concurrent programs, it’s best to cleanly terminate any gorou-
tines that were launched prior to letting the main function return. Writing programs
that can cleanly start and shut down helps reduce bugs and prevents resources from
corruption.

 Our program is using a WaitGroup from the sync package to track all the gorou-
tines we’re going to launch. A WaitGroup is a great way to track when a goroutine is
finished performing its work. A WaitGroup is a counting semaphore, and we’ll use it to
count off goroutines as they finish their work.

 On line 23 we declare a variable of type WaitGroup from the sync package. Then
on line 27 we set the value of the WaitGroup variable to match the number of gorou-
tines we’re going to launch. As you’ll soon see, we’ll process each feed concurrently
with its own goroutine. As each goroutine completes its work, it will decrement the

Listing 2.17 search/search.go: lines 19–20

Listing 2.18 search/search.go: lines 22–27
Licensed to Mark Watson <nordickan@gmail.com>

19Search package
count of the WaitGroup variable, and once the variable gets to zero, we’ll know all the
work is done.

 Next let’s look at the code that launches these goroutines for each feed.

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {
31 // Retrieve a matcher for the search.
32 matcher, exists := matchers[feed.Type]
33 if !exists {
34 matcher = matchers["default"]
35 }
36
37 // Launch the goroutine to perform the search.
38 go func(matcher Matcher, feed *Feed) {
39 Match(matcher, feed, searchTerm, results)
40 waitGroup.Done()
41 }(matcher, feed)
42 }

The code for lines 30 through 42 iterate through the list of data feeds we retrieved
earlier and launch a goroutine for each one. To iterate over the slice of feeds, we use
the keywords for range. The keyword range can be used with arrays, strings, slices,
maps, and channels. When we use for range to iterate over a slice, we get two values
back on each iteration. The first is the index position of the element we’re iterating
over, and the second is a copy of the value in that element.

 If you look closer at the for range statement on line 30, you’ll see the use of the
blank identifier again.

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {

This is the second time you see the blank identifier being used. You first saw it in
main.go when we imported the matchers package. Now it’s being used as a substitu-
tion for the variable that would be assigned to the index value for the range call.
When you have a function that returns multiple values, and you don’t have a need for
one, you can use the blank identifier to ignore those values. In our case with this
range, we won’t be using the index value, so the blank identifier allows us to ignore it.

 The first thing we do in the loop is check the map for a Matcher value that can be
used to process a feed of the specific feed type.

31 // Retrieve a matcher for the search.
32 matcher, exists := matchers[feed.Type]

Listing 2.19 search/search.go: lines 29–42

Listing 2.20 search/search.go: lines 29–30

Listing 2.21 search/search.go: lines 31–35
Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 2 Go quick-start
33 if !exists {
34 matcher = matchers["default"]
35 }

We haven’t talked about how this map gets its values yet. You’ll see later on how the
program initializes itself and populates this map. On line 32 we check the map for a
key that matches the feed type. When looking up a key in a map, you have two
options: you can assign a single variable or two variables for the lookup call. The first
variable is always the value returned for the key lookup, and the second value, if speci-
fied, is a Boolean flag that reports whether the key exists or not. When a key doesn’t
exist, the map will return the zero value for the type of value being stored in the map.
When the key does exist, the map will return a copy of the value for that key.

 On line 33 we check whether the key was located in the map, and if it’s not, we
assign the default matcher to be used. This allows the program to function without
causing any issues or interruption for feeds that the program currently doesn’t sup-
port. Then we launch a goroutine to perform the search.

37 // Launch the goroutine to perform the search.
38 go func(matcher Matcher, feed *Feed) {
39 Match(matcher, feed, searchTerm, results)
40 waitGroup.Done()
41 }(matcher, feed)

In chapter 6 we’ll go into more detail about goroutines, but for now a goroutine is a
function that’s launched to run independently from other functions in the program.
Use the keyword go to launch and schedule goroutines to run concurrently. On line
38 we use the keyword go to launch an anonymous function as a goroutine. An anony-
mous function is a function that’s declared without a name. In our for range loop, we
launch an anonymous function as a goroutine for each feed. This allows each feed to
be processed independently in a concurrent fashion.

 Anonymous functions can take parameters, which we declare for this anonymous
function. On line 38 we declare the anonymous function to accept a value of type
Matcher and the address of a value of type Feed. This means the variable feed is a
pointer variable. Pointer variables are great for sharing variables between functions.
They allow functions to access and change the state of a variable that was declared
within the scope of a different function and possibly a different goroutine.

 On line 41 the values of the matcher and feed variables are being passed into the
anonymous function. In Go, all variables are passed by value. Since the value of a
pointer variable is the address to the memory being pointed to, passing pointer vari-
ables between functions is still considered a pass by value.

 On lines 39 and 40 you see the work each goroutine is performing.

Listing 2.22 search/search.go: lines 37–41
Licensed to Mark Watson <nordickan@gmail.com>

21Search package

39 Match(matcher, feed, searchTerm, results)
40 waitGroup.Done()

The first thing the goroutine does is call a function called Match, which can be found
in the match.go code file. The Match function takes a value of type Matcher, a pointer
to a value of type Feed, the search term, and the channel where the results are written
to. We’ll look at the internals of this function later, but for now it’s enough to know
that Match will search the feed and output matches to the results channel.

 Once the function call to Match completes, we execute the code on line 40, which
is to decrement the WaitGroup count. Once every goroutine finishes calling the Match
function and the Done method, the program will know every feed has been processed.
There’s something else interesting about the method call to Done: the WaitGroup
value was never passed into the anonymous function as a parameter, yet the anony-
mous function has access to it.

 Go supports closures and you’re seeing this in action. In fact, the searchTerm and
results variables are also being accessed by the anonymous function via closures.
Thanks to closures, the function can access those variables directly without the need to
pass them in as parameters. The anonymous function isn’t given a copy of these vari-
ables; it has direct access to the same variables declared in the scope of the outer func-
tion. This is the reason why we don’t use closures for the matcher and feed variables.

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {
31 // Retrieve a matcher for the search.
32 matcher, exists := matchers[feed.Type]

The values of the feed and matcher variables are changing with each iteration of the
loop, as you can see on lines 30 and 32. If we used closures for these variables, as the
values of these variables changed in the outer function, those changes would be
reflected in the anonymous function. All the goroutines would be sharing the same
variables as the outer function thanks to closures. Unless we passed these values in as
function parameters, most of the goroutines would end up processing the same feed
using the same matcher—most likely the last one in the feeds slice.

 With all the search goroutines working, sending results on the results channel
and decrementing the waitGroup counter, we need a way to display those results and
keep the main function alive until all the processing is done.

44 // Launch a goroutine to monitor when all the work is done.
45 go func() {
46 // Wait for everything to be processed.

Listing 2.23 search/search.go: lines 39–40

Listing 2.24 search/search.go: lines 29–32

Listing 2.25 search/search.go: lines 44–57
Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 2 Go quick-start
47 waitGroup.Wait()
48
49 // Close the channel to signal to the Display
50 // function that we can exit the program.
51 close(results)
52 }()
53
54 // Start displaying results as they are available and
55 // return after the final result is displayed.
56 Display(results)
57 }

The code between lines 45 and 56 is tricky to explain until we dive deeper into some
of the other code in the search package. For now let’s describe what we see and come
back to it later to understand the mechanics. On lines 45 through 52 we launch yet
another anonymous function as a goroutine. This anonymous function takes no
parameters and uses closures to access both the WaitGroup and results variables.
This goroutine calls the method Wait on the WaitGroup value, which is causing the
goroutine to block until the count for the WaitGroup hits zero. Once that happens,
the goroutine calls the built-in function close on the channel, which as you’ll see
causes the program to terminate.

 The final piece of code in the Run function is on line 56. This is a call to the
Display function, which can be found in the match.go code file. Once this function
returns, the program terminates. This doesn’t happen until all the results in the chan-
nel are processed.

2.3.2 feed.go

Now that you’ve seen the Run function, let’s look at the code behind the function call
to RetrieveFeeds on line 14 of the search.go code file. This function reads the
data.json file and returns the slice of data feeds. These feeds drive the content that will
be searched by the different matchers. Here are the first eight lines of code that can
be found inside the feed.go code file.

01 package search
02
03 import (
04 "encoding/json"
05 "os"
06)
07
08 const dataFile = "data/data.json"

This code file exists in the search folder, and on line 01 the code file is declared to be
in package search. You can see that on lines 03 through 06 we import two packages
from the standard library. The json package provides support for encoding and
decoding JSON and the os package provides support for accessing operating system
functionality like reading files.

Listing 2.26 feed.go: lines 01–08
Licensed to Mark Watson <nordickan@gmail.com>

23Search package
 You may have noticed that to import the json package, we needed to specify a path
that includes the encoding folder. Regardless of the path we specify, the name of the
package is json. The physical location of the package from within the standard library
doesn’t change this fact. As we access functionality from the json package, we’ll use
just the name json.

 On line 08 we declare a constant named dataFile, which is assigned a string that
specifies the relative path to the data file on disk. Since the Go compiler can deduce
the type from the value on the right side of the assignment operator, specifying the
type when declaring the constant is unnecessary. We also use a lowercase letter for the
name of the constant, which means this constant is unexported and can only be
directly accessed by code within the search package.

 Next let’s look at a portion of the data.json data file.

[
{

"site" : "npr",
"link" : "http://www.npr.org/rss/rss.php?id=1001",
"type" : "rss"

},
{

"site" : "cnn",
"link" : "http://rss.cnn.com/rss/cnn_world.rss",
"type" : "rss"

},
{

"site" : "foxnews",
"link" : "http://feeds.foxnews.com/foxnews/world?format=xml",
"type" : "rss"

},
{

"site" : "nbcnews",
"link" : "http://feeds.nbcnews.com/feeds/topstories",
"type" : "rss"

}
]

The actual data file contains more than four data feeds, but listing 2.27 shows a valid
version of the data file. The data file contains an array of JSON documents. Each docu-
ment in the data file provides a name of the site we’re getting the data from, a link to
the data, and the type of data we expect to receive.

 These documents need to be decoded into a slice of struct types so we can use this
data in our program. Let’s look at the struct type that will be used to decode this data file.

10 // Feed contains information we need to process a feed.
11 type Feed struct {
12 Name string `json:"site"`

Listing 2.27 data.json

Listing 2.28 feed.go: lines 10–15
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 2 Go quick-start
13 URI string `json:"link"`
14 Type string `json:"type"`
15 }

On lines 11 through 15 we declare a struct type named Feed, which is an exported
type. This type is declared with three fields, each of which are strings that match the
fields for each document in the data file. If you look at each field declaration, tags
have been included to provide the metadata that the JSON decoding function needs
to create the slice of Feed type values. Each tag maps a field name in the struct type to
a field name in the document.

 Now we can review the RetrieveFeeds function that we called on line 14 in the
search.go code file. This is the function that reads the data file and decodes every doc-
ument into a slice of Feed type values.

17 // RetrieveFeeds reads and unmarshals the feed data file.
18 func RetrieveFeeds() ([]*Feed, error) {
19 // Open the file.
20 file, err := os.Open(dataFile)
21 if err != nil {
22 return nil, err
23 }
24
25 // Schedule the file to be closed once
26 // the function returns.
27 defer file.Close()
28
29 // Decode the file into a slice of pointers
30 // to Feed values.
31 var feeds []*Feed
32 err = json.NewDecoder(file).Decode(&feeds)
33
34 // We don't need to check for errors, the caller can do this.
35 return feeds, err
36 }

Let’s start with the declaration of the function on line 18. The function takes no
parameters and returns two values. The first return value is a slice of pointers to Feed
type values. The second return value is an error value that reports back if the function
call was successful. As you’ll continue to see, returning error values is common prac-
tice in this code example and throughout the standard library.

 Now let’s look at lines 20 through 23, where we use the os package to open the
data file. The call to the Open method takes the relative path to our data file and
returns two values. The first return value is a pointer to a value of type File, and the
second return value is an error to check if the call to Open was successful. Immediately
on line 21 we check the error value and return the error if we did have a problem
opening the file.

Listing 2.29 feed.go: lines 17–36
Licensed to Mark Watson <nordickan@gmail.com>

25Search package
 If we’re successful in opening the file, we then move to line 27. Here you see the
use of the keyword defer.

25 // Schedule the file to be closed once
26 // the function returns.
27 defer file.Close()

The keyword defer is used to schedule a function call to be executed right after a
function returns. It’s our responsibility to close the file once we’re done with it. By
using the keyword defer to schedule the call to the close method, we can guarantee
that the method will be called. This will happen even if the function panics and termi-
nates unexpectedly. The keyword defer lets us write this statement close to where the
opening of the file occurs, which helps with readability and reducing bugs.

 Now we can review the final lines of code in the function. Let’s look at lines 31
through 35.

29 // Decode the file into a slice of pointers
30 // to Feed values.
31 var feeds []*Feed
32 err = json.NewDecoder(file).Decode(&feeds)
33
34 // We don't need to check for errors, the caller can do this.
35 return feeds, err
36 }

On line 31 we declare a nil slice named feeds that contains pointers to Feed type val-
ues. Then on line 32 we make a call to the Decode method off the value returned by
the NewDecoder function from the json package. The NewDecoder function takes the
file handle we created from the method call to Open and returns a pointer to a value
of type Decoder. From that value we call the Decode method, passing the address to
the slice. The Decode method then decodes the data file and populates our slice with a
set of Feed type values.

 The Decode method can accept any type of value thanks to its declaration.

func (dec *Decoder) Decode(v interface{}) error

The parameter for the Decode method accepts a value of type interface{}. This is a
special type in Go and works with the reflection support that can be found in the
reflect package. In chapter 9 we’ll go into more detail about reflection and how this
method works.

 The last line of code on line 35 returns the slice and error values back to the call-
ing function. In this case there’s no need for the function to check the error value

Listing 2.30 feed.go: lines 25–27

Listing 2.31 feed.go: lines 29–36

Listing 2.32 Using the empty interface
Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 2 Go quick-start
after the call to Decode. The function is complete and the calling function can check
the error value and determine what to do next.

 Now it’s time to see how the search code supports different types of feed imple-
mentations by reviewing the matcher code.

2.3.3 match.go/default.go

The match.go code file contains the support for creating different types of matchers
that can be used by the search Run function. Let’s go back and look at the code from
the Run function that executes the search using the different types of matchers.

29 // Launch a goroutine for each feed to find the results.
30 for _, feed := range feeds {
31 // Retrieve a matcher for the search.
32 matcher, exists := matchers[feed.Type]
33 if !exists {
34 matcher = matchers["default"]
35 }
36
37 // Launch the goroutine to perform the search.
38 go func(matcher Matcher, feed *Feed) {
39 Match(matcher, feed, searchTerm, results)
40 waitGroup.Done()
41 }(matcher, feed)
42 }

The code on line 32 looks up a matcher value based on the feed type; that value is
then used to process a search against that specific feed. Then on line 38 through 41, a
goroutine is launched for that matcher and feed value. The key to making this code
work is the ability of this framework code to use an interface type to capture and call
into the specific implementation for each matcher value. This allows the code to han-
dle different types of matcher values in a consistent and generic way. Let’s look at the
code in match.go and see how we’re able to implement this functionality.

 Here are the first 17 lines of code for match.go.

01 package search
02
03 import (
04 "log"
05)
06
07 // Result contains the result of a search.
08 type Result struct {
09 Field string
10 Content string
11 }
12

Listing 2.33 search/search.go : lines 29 - 42

Listing 2.34 search/match.go: lines 01–17
Licensed to Mark Watson <nordickan@gmail.com>

27Search package
13 // Matcher defines the behavior required by types that want
14 // to implement a new search type.
15 type Matcher interface {
16 Search(feed *Feed, searchTerm string) ([]*Result, error)
17 }

Let’s jump to lines 15 through 17 and look at the declaration of the interface type
named Matcher. Up until now we’ve only been declaring struct types, but here you see
code that’s declaring an interface type. We’ll get into a lot more detail about inter-
faces in chapter 5, but for now know that interfaces declare behavior that’s required to
be implemented by struct or named types to satisfy the interface. The behavior of an
interface is defined by the methods that are declared within the interface type.

 In the case of the Matcher interface, there’s only one method declared, Search,
which takes a pointer to a value of type Feed and a search term of type string. The
method also returns two values: a slice of pointers to values of type Result and an
error value. The Result type is declared on lines 08 through 11.

 You follow a naming convention in Go when naming interfaces. If the interface
type contains only one method, the name of the interface ends with the er suffix. This
is the exact case for our interface, so the name of the interface is Matcher. When mul-
tiple methods are declared within an interface type, the name of the interface should
relate to its general behavior.

 For a user-defined type to implement an interface, the type in question needs to
implement all the methods that are declared within that interface type. Let’s switch to
the default.go code file and see how the default matcher implements the Matcher
interface.

01 package search
02
03 // defaultMatcher implements the default matcher.
04 type defaultMatcher struct{}
05
06 // init registers the default matcher with the program.
07 func init() {
08 var matcher defaultMatcher
09 Register("default", matcher)
10 }
11
12 // Search implements the behavior for the default matcher.
13 func (m defaultMatcher) Search(feed *Feed, searchTerm string)

([]*Result, error) {
14 return nil, nil
15 }

On line 04 we declare a struct type named defaultMatcher using an empty struct. An
empty struct allocates zero bytes when values of this type are created. They’re great
when you need a type but not any state. For the default matcher, we don’t need to
maintain any state; we only need to implement the interface.

Listing 2.35 search/default.go: lines 01–15
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 2 Go quick-start
 On lines 13 through 15 you see the implementation of the Matcher interface by
the defaultMatcher type. The implementation of the interface method Search just
returns nil for both return values. Other implementations, such as the implementa-
tion for the RSS matcher, will implement the specific business rules for processing
searches in their version of this method.

 The declaration of the Search method is declared with a value receiver of type
defaultMatcher.

13 func (m defaultMatcher) Search

The use of a receiver with any function declaration declares a method that’s bound to
the specified receiver type. In our case, the declaration of the Search method is now
bound to values of type defaultMatcher. This means we can call the method Search
from values and pointers of type defaultMatcher. Whether we use a value or pointer
of the receiver type to make the method call, the compiler will reference or derefer-
ence the value if necessary to support the call.

// Method declared with a value receiver of type defaultMatcher
func (m defaultMatcher) Search(feed *Feed, searchTerm string)

// Declare a pointer of type defaultMatch
dm := new(defaultMatch)

// The compiler will dereference the dm pointer to make the call
dm.Search(feed, "test")

// Method declared with a pointer receiver of type defaultMatcher
func (m *defaultMatcher) Search(feed *Feed, searchTerm string)

// Declare a value of type defaultMatch
var dm defaultMatch

// The compiler will reference the dm value to make the call
dm.Search(feed, "test")

It’s best practice to declare methods using pointer receivers, since many of the
methods you implement need to manipulate the state of the value being used to make
the method call. In the case of the defaultMatcher type, we want to use a value
receiver because creating values of type defaultMatcher result in values of zero allo-
cation. Using a pointer makes no sense since there’s no state to be manipulated.

 Unlike when you call methods directly from values and pointers, when you call a
method via an interface type value, the rules are different. Methods declared with
pointer receivers can only be called by interface type values that contain pointers.
Methods declared with value receivers can be called by interface type values that con-
tain both values and pointers.

Listing 2.36 search/default.go: line 13

Listing 2.37 Example of method calls
Licensed to Mark Watson <nordickan@gmail.com>

29Search package

// Method declared with a pointer receiver of type defaultMatcher
func (m *defaultMatcher) Search(feed *Feed, searchTerm string)

// Call the method via an interface type value
var dm defaultMatcher
var matcher Matcher = dm // Assign value to interface type
matcher.Search(feed, "test") // Call interface method with value

> go build
cannot use dm (type defaultMatcher) as type Matcher in assignment

// Method declared with a value receiver of type defaultMatcher
func (m defaultMatcher) Search(feed *Feed, searchTerm string)

// Call the method via an interface type value
var dm defaultMatcher
var matcher Matcher = &dm // Assign pointer to interface type
matcher.Search(feed, "test") // Call interface method with pointer

> go build
Build Successful

There’s nothing else that the defaultMatcher type needs to do to implement the
interface. From this point forward, values and pointers of type defaultMatcher satisfy
the interface and can be used as values of type Matcher. That’s the key to making this
work. Values and pointers of type defaultMatcher are now also values of type Matcher
and can be assigned or passed to functions accepting values of type Matcher.

 Let’s look at the implementation of the Match function declared in the match.go
code file. This is the function called by the Run function on line 39 in the search.go
code file.

19 // Match is launched as a goroutine for each individual feed to run
20 // searches concurrently.
21 func Match(matcher Matcher, feed *Feed, searchTerm string,

results chan<- *Result) {
22 // Perform the search against the specified matcher.
23 searchResults, err := matcher.Search(feed, searchTerm)
24 if err != nil {
25 log.Println(err)
26 return
27 }
28
29 // Write the results to the channel.
30 for _, result := range searchResults {
31 results <- result
32 }
33 }

This is the function that performs the actual search using values or pointers that
implement the Matcher interface. This function accepts values of type Matcher as the

Listing 2.38 Example of interface method call restrictions

Listing 2.39 search/match.go: lines 19–33
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

30 CHAPTER 2 Go quick-start
first parameter. Only values or pointers that implement the Matcher interface will be
accepted for this parameter. Since the defaultMatcher type now implements the
interface declared with a value receiver, values or pointers of type defaultMatcher
can be passed into this function.

 On line 23, the Search method is called from the Matcher type value that was
passed into the function. Here the specific implementation of the Search method for
the value assigned to the Matcher variable is executed. Once the Search method
returns, the error value on line 24 is checked for an error. If there’s an error, the func-
tion writes the error to the log and returns. If the search doesn’t return an error and
there are results, the results are written to the channel so that they can be picked up
by the main function that’s listening on that channel.

 The final piece of code in match.go is the Display function that’s called by the
main function on line 56. This is the function preventing the program from terminat-
ing until all the results from the search goroutines are received and logged.

35 // Display writes results to the terminal window as they
36 // are received by the individual goroutines.
37 func Display(results chan *Result) {
38 // The channel blocks until a result is written to the channel.
39 // Once the channel is closed the for loop terminates.
40 for result := range results {
41 fmt.Printf("%s:\n%s\n\n", result.Field, result.Content)
42 }
43 }

A bit of channel magic allows this function to process all of the results before return-
ing. It’s based on how channels and the keyword range behaves when a channel is
closed. Let’s briefly look at the code in the Run function again that closes the results
channel and calls the Display function.

44 // Launch a goroutine to monitor when all the work is done.
45 go func() {
46 // Wait for everything to be processed.
47 waitGroup.Wait()
48
49 // Close the channel to signal to the Display
50 // function that we can exit the program.
51 close(results)
52 }()
53
54 // Start displaying results as they are available and
55 // return after the final result is displayed.
56 Display(results)
57 }

Listing 2.40 search/match.go: lines 35–43

Listing 2.41 search/search.go: lines 44–57
Licensed to Mark Watson <nordickan@gmail.com>

31Search package
The goroutine on lines 45 through 52 waits on the waitGroup for all the search gorou-
tines to call the Done method. Once the last search goroutine calls Done, the Wait
method returns, and then the code on line 51 closes the results channel. Once the
channel is closed, the goroutine terminates and is no more.

 You saw on lines 30 through 32 in the match.go code file where the search results
were being written to the channel.

29 // Write the results to the channel.
30 for _, result := range searchResults {
31 results <- result
32 }

If we look back at the for range loop on lines 40 through 42 of the match.go code file,
we can connect the writing of the results, the closing of the channel, and the process-
ing of results all together.

38 // The channel blocks until a result is written to the channel.
39 // Once the channel is closed the for loop terminates.
40 for result := range results {
41 log.Printf("%s:\n%s\n\n", result.Field, result.Content)
42 }

The for range loop on line 40 of the match.go code file will block until a result is writ-
ten to the channel. As each search goroutine writes its results to the channel (as you
see on line 31 of the code file match.go), the for range loop wakes up and is given
those results. The results are then immediately written to the log. It seems this for
range loop is stuck in an endless loop, but it isn’t. Once the channel is closed on
line 51 of the search.go code file, the for range loop is terminated and the Display
function returns.

 Before we look at the implementation of the RSS matcher, let’s review how the dif-
ferent matchers are initialized when the program starts. To see this we need to look
back at lines 07 through 10 of the default.go code file.

06 // init registers the default matcher with the program.
07 func init() {
08 var matcher defaultMatcher
09 Register("default", matcher)
10 }

The default.go code file has a special function declared called init. You saw this
function also declared in the main.go code file, and we talked about how all the init

Listing 2.42 search/match.go: lines 29–32

Listing 2.43 search/match.go: lines 38–42

Listing 2.44 search/default.go: lines 06–10
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 Go quick-start
functions in the program would be called before the main function begins. Let’s look
at the imports again from the main.go code file.

07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"

The import to the search package on line 08 allows the compiler to find the init
function in the default.go code file. Once the compiler sees the init function, it’s
scheduled to be called prior to the main function being called.

 The init function in the default.go code file is performing a special task. It’s creat-
ing a value of the defaultMatcher type and passing that value to the Register func-
tion that can be found in the search.go code file.

59 // Register is called to register a matcher for use by the program.
60 func Register(feedType string, matcher Matcher) {
61 if _, exists := matchers[feedType]; exists {
62 log.Fatalln(feedType, "Matcher already registered")
63 }
64
65 log.Println("Register", feedType, "matcher")
66 matchers[feedType] = matcher
67 }

This function is responsible for adding the Matcher value to the map of registered
matchers. All of this registration needs to happen before the main function gets called.
Using init functions is a great way to accomplish this type of initialized registration.

2.4 RSS matcher
The last piece of code to review is the implementation of the RSS matcher. Everything
we’ve reviewed up to now was to allow the implementation of different matcher types
to run and search content within the program’s framework. The structure of the RSS
matcher is similar to the structure of the default matcher. It’s the implementation of
the interface method Search that’s different and in the end gives each matcher its
uniqueness.

 The RSS document in listing 2.47 shows you a sample of what we expect to receive
when we use any link in the data feed that’s typed as an RSS feed.

<rss xmlns:npr="http://www.npr.org/rss/" xmlns:nprml="http://api
<channel>

<title>News</title>
<link>...</link>
<description>...</description>

Listing 2.45 main.go: lines 07–08

Listing 2.46 search/search.go: lines 59–67

Listing 2.47 Expected RSS feed document
Licensed to Mark Watson <nordickan@gmail.com>

33RSS matcher
<language>en</language>
<copyright>Copyright 2014 NPR - For Personal Use

<item>

<title>
Putin Says He'll Respect Ukraine Vote But U.S.

</title>
<description>

The White House and State Department have called on the
</description>

If you take any link from listing 2.47 and put it in a browser, you’ll be able to see a
complete view of the expected RSS document. The implementation of the RSS
matcher pulls down these RSS documents, searches the title and description fields for
the search term, and sends the results over the results channel. Let’s start by looking
at the first 12 lines of code for the rss.go code file.

01 package matchers
02
03 import (
04 "encoding/xml"
05 "errors"
06 "fmt"
07 "log"
08 "net/http"
09 "regexp"
10
11 "github.com/goinaction/code/chapter2/sample/search"
12)

As with every code file, we start on line 01 with the name of the package. This code file
can be found in a folder called matchers, so the package name is matchers. Next we
have six imports from the standard library and one import to the search package.
Again, we have some packages from the standard library being imported from sub-
folders within the standard library, such as xml and http. Just like with the json pack-
age, the name of the last folder in the path represents the name of the package.

 There are four struct types that are used to decode the RSS document, so we can
use the document data in our program.

14 type (
15 // item defines the fields associated with the item tag
16 // in the rss document.
17 item struct {
18 XMLName xml.Name `xml:"item"`
19 PubDate string `xml:"pubDate"`
20 Title string `xml:"title"`
21 Description string `xml:"description"`

Listing 2.48 matchers/rss.go: lines 01–12

Listing 2.49 matchers/rss.go: lines 14–58
Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 Go quick-start
22 Link string `xml:"link"`
23 GUID string `xml:"guid"`
24 GeoRssPoint string `xml:"georss:point"`
25 }
26
27 // image defines the fields associated with the image tag
28 // in the rss document.
29 image struct {
30 XMLName xml.Name `xml:"image"`
31 URL string `xml:"url"`
32 Title string `xml:"title"`
33 Link string `xml:"link"`
34 }
35
36 // channel defines the fields associated with the channel tag
37 // in the rss document.
38 channel struct {
39 XMLName xml.Name `xml:"channel"`
40 Title string `xml:"title"`
41 Description string `xml:"description"`
42 Link string `xml:"link"`
43 PubDate string `xml:"pubDate"`
44 LastBuildDate string `xml:"lastBuildDate"`
45 TTL string `xml:"ttl"`
46 Language string `xml:"language"`
47 ManagingEditor string `xml:"managingEditor"`
48 WebMaster string `xml:"webMaster"`
49 Image image `xml:"image"`
50 Item []item `xml:"item"`
51 }
52
53 // rssDocument defines the fields associated with the rss document
54 rssDocument struct {
55 XMLName xml.Name `xml:"rss"`
56 Channel channel `xml:"channel"`
57 }
58)

If you match these structures to the RSS document from any of the feed links, you’ll
see how everything correlates. Decoding XML is identical to how we decoded JSON in
the feed.go code file. Next we can look at the declaration of the rssMatcher type.

60 // rssMatcher implements the Matcher interface.
61 type rssMatcher struct{}

Again, this looks just like how we declared the defaultMatcher type. We use an empty
struct since we don’t need to maintain any state; we just implement the Matcher inter-
face. Next we have the implementation of the matcher init function.

Listing 2.50 matchers/rss.go: lines 60–61
Licensed to Mark Watson <nordickan@gmail.com>

35RSS matcher

63 // init registers the matcher with the program.
64 func init() {
65 var matcher rssMatcher
66 search.Register("rss", matcher)
67 }

Just like you saw with the default matcher, the init function registers a value of the
rssMatcher type with the program for use. Let’s look at the import in the main.go
code file once more.

07 _ "github.com/goinaction/code/chapter2/sample/matchers"
08 "github.com/goinaction/code/chapter2/sample/search"

The code in the main.go code file doesn’t directly use any identifiers from the
matchers package. Yet we need the compiler to schedule the call to the init function
in the rss.go code file. On line 07 we accomplish this by using the blank identifier as
the alias name for the import. This allows the compiler to not produce an error for
declaring the import and to locate the init function. With all of the imports, types,
and initialization set, let’s look at the two remaining methods that support the imple-
mentation of the Matcher interface.

114 // retrieve performs a HTTP Get request for the rss feed and decodes
115 func (m rssMatcher) retrieve(feed *search.Feed)

(*rssDocument, error) {
116 if feed.URI == "" {
117 return nil, errors.New("No rss feed URI provided")
118 }
119
120 // Retrieve the rss feed document from the web.
121 resp, err := http.Get(feed.URI)
122 if err != nil {
123 return nil, err
124 }
125
126 // Close the response once we return from the function.
127 defer resp.Body.Close()
128
129 // Check the status code for a 200 so we know we have received a
130 // proper response.
131 if resp.StatusCode != 200 {
132 return nil, fmt.Errorf("HTTP Response Error %d\n",

resp.StatusCode)
133 }
134
135 // Decode the rss feed document into our struct type.

Listing 2.51 matchers/rss.go: lines 63–67

Listing 2.52 main.go: lines 07–08

Listing 2.53 matchers/rss.go: lines 114–140
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 2 Go quick-start
136 // We don't need to check for errors, the caller can do this.
137 var document rssDocument
138 err = xml.NewDecoder(resp.Body).Decode(&document)
139 return &document, err
140 }

The unexported method retrieve performs the logic for pulling the RSS document
from the web for each individual feed link. On line 121 you can see the use of the Get
method from the http package. In chapter 8 we’ll explore this package more, but for
now Go makes it really easy to make web requests using the http package. When the Get
method returns, we’ll get back a pointer to a value of type Response. After checking for
errors, we need to schedule the call to the Close method, which we do on line 127.

 On line 131 we check the StatusCode field of the Response value to verify we
received a 200. Anything other than 200 must be handled as an error and we do just
that. If the value isn’t 200, we then return a custom error using the Errorf function
from the fmt package. The last three lines of code are similar to how we decoded the
JSON data file. This time we use the xml package and call the same function named
NewDecoder, which returns a pointer to a Decoder value. With the pointer, we call the
Decode method passing the address of the local variable named document of type
rssDocument. Then the address to the rssDocument type value and the error from
the Decode method call are returned.

 The final method to look at implements the Matcher interface.

 69 // Search looks at the document for the specified search term.
 70 func (m rssMatcher) Search(feed *search.Feed, searchTerm string)

([]*search.Result, error) {
 71 var results []*search.Result
 72
 73 log.Printf("Search Feed Type[%s] Site[%s] For Uri[%s]\n",

feed.Type, feed.Name, feed.URI)
 74
 75 // Retrieve the data to search.
 76 document, err := m.retrieve(feed)
 77 if err != nil {
 78 return nil, err
 79 }
 80
 81 for _, channelItem := range document.Channel.Item {
 82 // Check the title for the search term.
 83 matched, err := regexp.MatchString(searchTerm,

channelItem.Title)
 84 if err != nil {
 85 return nil, err
 86 }
 87
 88 // If we found a match save the result.
 89 if matched {
 90 results = append(results, &search.Result{
 91 Field: "Title",
 92 Content: channelItem.Title,

Listing 2.54 matchers/rss.go: lines 69–112
Licensed to Mark Watson <nordickan@gmail.com>

37RSS matcher
 93 })
 94 }
 95
 96 // Check the description for the search term.
 97 matched, err = regexp.MatchString(searchTerm,

channelItem.Description)
 98 if err != nil {
 99 return nil, err
100 }
101
102 // If we found a match save the result.
103 if matched {
104 results = append(results, &search.Result{
105 Field: "Description",
106 Content: channelItem.Description,
107 })
108 }
109 }
110
111 return results, nil
112 }

We start on line 71 with the declaration of the results variable, which will be used to
store and return any results that may be found.

71 var results []*search.Result

We use the keyword var and declare a nil slice of pointers to Result type values. The
declaration of the Result type can be found again on line 08 of the match.go code
file. Next on line 76 we make a web call using the retrieve method we just reviewed.

75 // Retrieve the data to search.
76 document, err := m.retrieve(feed)
77 if err != nil {
78 return nil, err
79 }

The call to the retrieve method returns a pointer to a value of type rssDocument and
an error value. Then, as you’ve seen throughout the code, we check the error value
for errors and return if there was an error. If no error exists, we then iterate through
the results performing the match of the search term against the title and description
of the retrieved RSS document.

81 for _, channelItem := range document.Channel.Item {
82 // Check the title for the search term.
83 matched, err := regexp.MatchString(searchTerm,

channelItem.Title)

Listing 2.55 matchers/rss.go: line 71

Listing 2.56 matchers/rss.go: lines 75–79

Listing 2.57 matchers/rss.go: lines 81–86
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 2 Go quick-start
84 if err != nil {
85 return nil, err
86 }

Since the value of document.Channel.Item is a slice of item type values, we use a for
range loop on line 81 to iterate through all the items. On line 83 we use the Match-
String function from the regexp package to match the search term against the con-
tent in the Title field of the channelItem value. Then we check for errors on line 84.
If there are no errors, we move to lines 89 through 94 to check the results of the match.

88 // If we found a match save the result.
89 if matched {
90 results = append(results, &search.Result{
91 Field: "Title",
92 Content: channelItem.Title,
93 })
94 }

If the value of matched is true after the call to the MatchString method, we use the
built-in function append to add the search results to the results slice. The built-in
function append will grow the length and capacity of the slice as it needs to. You’ll
learn more about the built-in function append in chapter 4. The first parameter to
append is the value of the slice you want to append to, and the second parameter is the
value you want to append. In our case, we use a struct literal to declare and initialize a
value of type Result, and then we use the ampersand (&) operator to get the address
of this new value, which is stored in the slice.

 After the title is checked for matches, lines 97 through 108 perform the same logic
again for the description field. Finally, on line 111, the method returns the results to
the calling function.

2.5 Summary
 Every code file belongs to a package, and that package name should be the

same as the folder the code file exists in.
 Go provides several ways to declare and initialize variables. If the value of a

variable isn’t explicitly initialized, the compiler will initialize the variable to its
zero value.

 Pointers are a way of sharing data across functions and goroutines.
 Concurrency and synchronization are accomplished by launching goroutines

and using channels.
 Go provides built-in functions to support using Go’s internal data structures.
 The standard library contains many packages that will let you do some powerful

things.
 Interfaces in Go allow you to write generic code and frameworks.

Listing 2.58 matchers/rss.go: lines 88–94
Licensed to Mark Watson <nordickan@gmail.com>

Packaging and tooling
In chapter 2 you got an overview of the syntax and language structure of Go. Now
you’ll dive deeper into how code is organized into packages and how you interact
with those packages. Packages are a critical concept in Go. The idea is to separate
semantic units of functionality into different packages. When you do this, you
enable code reuse and control the use of the data inside each package.

 Before we get into the particulars, you should already be familiar with the com-
mand prompt or system shell, and you should have Go installed according to the
guidelines in the preface of this book. If you’re ready, let’s start by understanding
what a package is and why it’s important in the Go ecosystem.

In this chapter
 Understanding how Go code is organized

 Using the Go command

 Going farther with other Go developer tools

 Collaborating with other Go developers
39

Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 3 Packaging and tooling
3.1 Packages
All Go programs are organized into groups of files called packages, so that code has the
ability to be included into other projects as smaller reusable pieces. Let’s look at the
packages that make up Go’s http functionality in the standard library:

net/http/
cgi/
cookiejar/

testdata/
fcgi/
httptest/
httputil/
pprof/
testdata/

These directories contain a series of related files with the .go extension, and provide
clear separation of smaller units of code relating to the implementation of HTTP serv-
ers, clients, and utilities to test and profile them. For example, the cookiejar package
contains code related to storing and retrieving cookies from a web session. Each pack-
age can be imported and used individually so that developers can import only the spe-
cific functionality that they need. If you’re implementing an HTTP client, you only
need to import the http package.

 All .go files must declare the package that they belong to as the first line of the file
excluding whitespace and comments. Packages are contained in a single directory.
You may not have multiple packages in the same directory, nor may you split a pack-
age across multiple directories. This means that all .go files in a single directory must
declare the same package name.

3.1.1 Package-naming conventions

The convention for naming your package is to use the name of the directory contain-
ing it. This has the benefit of making it clear what the package name is when you
import it. If we continue with our example from the net/http package, all the files
contained within the http directory are a part of the http package. When naming
your packages and their directories, you should use short, concise, lowercase names,
because they will be typed often while you’re developing. The packages under
net/http are great examples of concise names such as cgi, httputil, and pprof.

 Keep in mind that a unique name is not required, because you import the package
using its full path. Your package name is used as the default name when your package
is imported, but it can be overridden. This is beneficial when you need to import mul-
tiple packages with the same name. We’ll discuss how this is done in section 3.2.

3.1.2 Package main

The package name main has special meaning in Go. It designates to the Go command
that this package is intended to be compiled into a binary executable. All of the exe-
cutable programs you build in Go must have a package called main.
Licensed to Mark Watson <nordickan@gmail.com>

41Packages
 When the main package is encountered by the compiler, it must also find a function
called main(); otherwise a binary executable won’t be created. The main() function is
the entry point for the program, so without one, the program has no starting point. The
name of the final binary will take the name of the directory the main package is
declared in.

COMMANDS AND PACKAGES The Go documentation uses the term command
frequently to refer to an executable program—like a command-line applica-
tion. This can be confusing for new Go developers who are reading the docu-
mentation. Remember that in Go, a command is any executable program, in
contrast to a package, which generally means an importable semantic unit of
functionality.

Go ahead and try it out. First start by creating a file called hello.go inside GOPATH/
src/hello/, and type the contents of listing 3.1 into it. This is the traditional Hello
World! application again, but as you look at it, pay attention to the package declara-
tion and import statements.

01 package main
02
03 import "fmt"
04
05 func main(){
06 fmt.Println("Hello World!")
07 }

GETTING PACKAGE DOCUMENTATION Don’t forget that you can get more details
on a package by visiting http://golang.org/pkg/fmt/ or running godoc fmt
from your terminal.

Once you’ve saved the file, you can run the command go build from within the
GOPATH/src/hello/ directory. When it completes, you should see a binary file. On
Unix, Linux, and Mac OS X this file will be named hello, whereas on Windows it will
be called hello.exe. You can now run this application and see Hello World! printed to
your console.

 Had you named the package something other than main, like hello for instance,
you’d have been telling the compiler this is just a package, not a command.

01 package hello
02
03 import "fmt"
04
05 func main(){
06 fmt.Println("Hello, World!")
07 }

Listing 3.1 Traditional Hello World! application

Listing 3.2 Invalid Go program with main function

The fmt package provides methods
for performing formatted printing.
Licensed to Mark Watson <nordickan@gmail.com>

http://golang.org/pkg/fmt/

42 CHAPTER 3 Packaging and tooling
3.2 Imports
Now that we’ve looked at the organization of code into packages, we’ll take a look at
how to import these individual packages so that you can access the code contained
within them. The import statement tells the compiler where to look on disk to find
the package you want to import. You import packages by using the keyword import,
which tells the compiler that you want to reference the code contained within the
package at that file location. If you need to import more than one package, the idio-
matic way of doing so is to wrap the import statements in an import block, as demon-
strated here.

import (
"fmt"
"strings"

)

Packages are found on disk based on their relative path to the directories referenced
by the Go environment. Packages in the standard library are found under where Go is
installed on your computer. Packages that are created by you or other Go developers
live inside the GOPATH, which is your own personal workspace for packages.

 Let’s take a look at an example. If Go was installed under /usr/local/go and your
GOPATH was set to /home/myproject:/home/mylibraries, the compiler would look for
the net/http package in the following order:

/usr/local/go/src/pkg/net/http
/home/myproject/src/net/http
/home/mylibraries/src/net/http

The compiler will stop searching once it finds a package that satisfies the import state-
ment. The important thing to remember is that the Go installation directory is the
first place the compiler looks and then each directory listed in your GOPATH in the
order that they’re listed.

 If the compiler searches your GOPATH and never finds the package that you’ve ref-
erenced, you’ll get an error when you try to run or build your program. You’ll see how
to use the go get command to fix those problems later in this chapter.

3.2.1 Remote imports

There’s a huge trend toward sharing code via distributed version control systems
(DVCS) such as sharing sites like GitHub, Launchpad, and Bitbucket. The Go tooling
has built-in support for fetching source code from these sites and others. The import
path can be used by the Go tooling to determine where the code you need fetched is
on the network.

Listing 3.3 Import statement blocks

The strings package provides many methods for searching,
replacing, and transforming strings. You can get more
details at http://golang.org/pkg/strings/ or by running
“godoc strings” from your terminal.

This is where the standard
library source code is contained.
Licensed to Mark Watson <nordickan@gmail.com>

http://golang.org/pkg/strings/

43Imports
 For example:

import "github.com/spf13/viper"

When you try to build a program with this import path, the go build command will
search the GOPATH for this package location on disk. The fact that it represents a URL
to a repository on GitHub is irrelevant as far as the go build command is concerned.
When an import path contains a URL, the Go tooling can be used to fetch the package
from the DVCS and place the code inside the GOPATH at the location that matches the
URL. This fetching is done using the go get command. go get will fetch any specified
URL or can be used to fetch the dependencies a package is importing that are go-
gettable. Since go get is recursive, it can walk down the source tree for a package and
fetch all the dependencies it finds.

3.2.2 Named imports

What happens when you need to import multiple packages with the same name? For
example, you could need a network/convert package for converting data that’s read
from a network and a file/convert package for converting data read from text files.
When this is the case, both of these packages can be imported by using named imports.
This is performed by giving one of the packages a new name to the left of the import
statement.

 As an example, let’s say you were already using the fmt package that comes as part
of the standard library. Now you need to import a package named fmt that you had
created as part of your own project. You can import your own fmt package by renam-
ing the import, as demonstrated in the next listing.

01 package main
02
03 import (
04 "fmt"
05 myfmt "mylib/fmt"
06)
07
08 func main() {
09 fmt.Println("Standard Library")
10 myfmt.Println("mylib/fmt")
11 }

The Go compiler will fail the build and output an error whenever you import a pack-
age that you don’t use. The Go team considers this a feature to eliminate code bloat
from packages that are imported but not used. Although this feature is occasionally
annoying, the Go team has put a great deal of effort into making decisions to prevent
some of the problems that you encounter in other languages. You don’t want to have
an unnecessarily large binary, filled with unused libraries, and they feel that if it’s
worth the compiler telling you about, it’s worth failing the build. Anyone who has

Listing 3.4 Renaming imports
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 3 Packaging and tooling
compiled a large C program knows just how hard it can be to pinpoint the things that
matter in a sea of compiler warnings.

 Sometimes you may need to import a package that you don’t need to reference
identifiers from. You’ll see why this might be useful in the next section. When this is
the case, you can use the blank identifier _ to rename an import.

BLANK IDENTIFIER The _ (underscore character) is known as the blank identi-
fier and has many uses within Go. It’s used when you want to throw away the
assignment of a value, including the assignment of an import to its package
name, or ignore return values from a function when you’re only interested in
the others.

3.3 init
Each package has the ability to provide as many init functions as necessary to be
invoked at the beginning of execution time. All the init functions that are discovered
by the compiler are scheduled to be executed prior to the main function being exe-
cuted. The init functions are great for setting up packages, initializing variables, or
performing any other bootstrapping you may need prior to the program running.

 An example of this is database drivers. They register themselves with the sql pack-
age when their init function is executed at startup because the sql package can’t
know about the drivers that exist when it’s compiled. Let’s look at an example of what
an init function might do.

01 package postgres
02
03 import (
04 "database/sql"
05)
06
07 func init() {
08 sql.Register("postgres", new(PostgresDriver))
09 }

This code lives inside your pretend database driver for the PostgreSQL database.
When a program imports this package, the init function will be called, causing the
database driver to be registered with Go’s sql package as an available driver.

 In the program that we write using this new database driver, we’ll use the blank
identifier to import the package so the new driver is included with the sql package. As
stated earlier, you can’t import a package that you aren’t using, so renaming the
import with the blank identifier allows the init function to be discovered and sched-
uled to run without the compiler issuing an error about unused imports.

 Now we can tell the sql.Open method to use this driver.

Listing 3.5 init function usage

Creates new instance
of the postgres driver.
We’ve intentionally
left out its definition
to focus on init().
Licensed to Mark Watson <nordickan@gmail.com>

45Using Go tools

01 package main
02
03 import (
04 "database/sql"
05
06 _ "github.com/goinaction/code/chapter3/dbdriver/postgres"
07)
08
09 func main() {
10 sql.Open("postgres", "mydb")
11 }

3.4 Using Go tools
We’ve been working with the go tool for a few chapters now, but we haven’t explored
all it can do. Let’s dive a little deeper into this diminutively named powerhouse and
explore more of its capabilities. From a shell prompt, type the go command with no
arguments:

$ go

As you can see in figure 3.1, there are a lot of features buried in the go tooling.

Listing 3.6 Blank identifier import aliasing

Import driver anonymously
to prevent compile error.

We call the Open method provided by
the sql package; this works because
the driver registered itself with the sql
package in its init function.

Figure 3.1 Output of go
command help text
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 3 Packaging and tooling
Looking through the list, you can see that there really is a compiler in there; it’s used
by the build command. The build and clean commands do exactly what you’d
expect them to do. Try them now using the source code from listing 3.2:

go build hello.go

You might not want that file hanging around when it’s time to check your code into
source control. To get rid of it, use the clean command:

go clean hello.go

After calling clean, the executable program is gone. Let’s take a closer look at some
of the features of the go tool, and ways that you can save time when you’re using it. For
the next examples, we’ll use the sample code in the following listing.

01 package main
02
03 import (
04 "fmt"
05 "io/ioutil"
06 "os"
07
08 "github.com/goinaction/code/chapter3/words"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 filename := os.Args[1]
14
15 contents, err := ioutil.ReadFile(filename)
16 if err != nil {
17 fmt.Println(err)
18 return
19 }
20
21 text := string(contents)
22
23 count := words.CountWords(text)
24 fmt.Printf("There are %d words in your text. \n", count)
25 }

If you’ve downloaded the source code for the book, this package should be at
GOPATH/src/github.com/goinaction/code/chapter3/words. Make sure you have it
there to follow along.

 Most of the commands that are part of the Go tooling take a package specifier as
an argument. Look closer at the commands we’ve just used, and you’ll see one of the
shortcuts built into the tooling. You can omit the filename of the source code file that
you want to build, and the go tool will default to the current package:

go build

Listing 3.7 Working with the io package
Licensed to Mark Watson <nordickan@gmail.com>

47Going farther with Go developer tools
Building a package is a common practice, and the package can also be specified
directly:

go build github.com/goinaction/code/chapter3/wordcount

You can also specify wildcards in your package specifiers. Three periods in your pack-
age specifier indicate a pattern matching any string. For example, the following com-
mand will build every package under the chapter3 directory:

go build github.com/goinaction/code/chapter3/...

Instead of a package specifier, you can also use a path shortcut as an argument to most
of the Go commands. For example, you could achieve the same effect with these two
commands:

go build wordcount.go

go build .

To execute this program, you need to run the wordcount or wordcount.exe program
that was created after the build. But there’s a different command that can perform
both operations in a single call:

go run wordcount.go

The go run command both builds and executes the program contained in wordcount
.go, which saves a lot on typing.

 You’ll use the go build and go run commands the most when you’re developing.
Let’s take a look at a few of the other available commands and see what they can do.

3.5 Going farther with Go developer tools
You’ve seen how to compile and run your Go programs using the convenient go tool.
But that handy little developer tool has a lot of other tricks hidden inside.

3.5.1 go vet

It won’t write code for you, but once you’ve written some code, the vet command will
check your code for common errors. Let’s look at the types of errors vet can catch:

 Bad parameters in Printf-style function calls
 Method signature errors for common method definitions
 Bad struct tags
 Unkeyed composite literals

Let’s look at a mistake many new Go developers make. The fmt.Printf function is a
great way to produce formatted output, but the function requires you to remember all
the different format specifiers. The following listing is an example.
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 3 Packaging and tooling

01 package main
02
03 import "fmt"
04
05 func main() {
06 fmt.Printf("The quick brown fox jumped over lazy dogs", 3.14)
07 }

This program inserts the floating-point number 3.14, but there’s no placeholder in
the formatted string. If you run go vet against this source code, you get the following
message:

go vet main.go

main.go:6: no formatting directive in Printf call

The go vet tool won’t keep you from making huge errors in logic, or from creating
buggy code. However, as you can see from the last example, it does catch some com-
mon errors quite nicely. It’s a great idea to get in the habit of running go vet on your
code base before you commit it to a source repository.

3.5.2 Go format

The fmt command is a favorite in the Go community. Instead of arguing about where
curly braces should go, or whether to use tabs or spaces when you indent, the fmt tool
makes these decisions moot by applying a predetermined layout to Go source code.
To invoke this code formatter, type go fmt followed by a file or package specification.
The fmt command will automatically format the source code files you specify and save
them. Here’s a before-and-after snapshot of a few lines of code run through go fmt:

if err != nil { return err }

After running go fmt on this code, you’ll get the following:

if err != nil {
return err

}

Many Go developers configure their development environment to perform a go fmt
on save or before committing to a code repository. Do yourself a favor and configure
this right now.

3.5.3 Go documentation

There’s another tool that will make your Go development process easier. Go has two
ways to deliver documentation to developers. If you’re working at a command
prompt, you can use the go doc command to print documentation directly to your ter-
minal session. You can view a quick reference for a command or package without leav-
ing your terminal. But if a browsable interface is more your speed, you can use the

Listing 3.8 Working with go vet
Licensed to Mark Watson <nordickan@gmail.com>

49Going farther with Go developer tools
godoc program to start a web server with a clickable index of Go packages. The godoc
web server gives you a fully navigable web version of the documentation for all the Go
source code installed in your system.

GETTING DOCUMENTATION AT THE COMMAND LINE

If you’re the kind of developer who has a text editor open and a terminal session open
right next to it (or a text editor open in your terminal session), then go doc is going to
be your tool of choice. The first time you need to read a Unix tar file from your Go
application, you’ll be happy that you can access the documentation for the
archive/tar package by simply typing this:

go doc tar

Running this command produces the following output, directly to the terminal:

PACKAGE DOCUMENTATION

package tar // import "archive/tar"

Package tar implements access to tar archives. It aims to cover most of the
variations, including those produced by GNU and BSD tars.

References:

http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5
http://www.gnu.org/software/tar/manual/html_node/Standard.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html

var ErrWriteTooLong = errors.New("archive/tar: write too long") ...
var ErrHeader = errors.New("archive/tar: invalid tar header")
func FileInfoHeader(fi os.FileInfo, link string) (*Header, error)
func NewReader(r io.Reader) *Reader
func NewWriter(w io.Writer) *Writer
type Header struct { ... }
type Reader struct { ... }
type Writer struct { ... }

You can skim through the documentation and find the information you need without
breaking your workflow.

BROWSING THE DOCUMENTATION

The Go documentation is also available in a browsable format. Sometimes it’s easier to
get the whole picture of a package or function when you can click around and see all
the related details. For those cases, you’ll want to use godoc as a web server. If you pre-
fer to get your documentation from a web browser in a clickable format, then this will
be your favorite way to get to the documentation.

 To start your own documentation server, type the following command into a termi-
nal session:

godoc -http=:6060

This command instructs godoc to start a web server on port 6060. If you open your web
browser and navigate to http://localhost:6060, you’ll see a web page with documenta-
tion for both the Go standard libraries and any Go source that lives in your GOPATH.
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 3 Packaging and tooling
If the documentation in figure 3.2 looks familiar to you, it’s because a slightly modi-
fied version of godoc is serving up the documentation for the Go website. To navigate
to the documentation for a specific package, just click the Packages link at the top of
the page.

 The best part of Go’s documentation tool is that it works for your code, too. If you
follow simple conventions while writing your code, it will automatically include your
comments in the Go documentation generated by godoc.

 To be included in the godoc generated documentation, your code needs to be doc-
umented by adding comments that follow a specific convention. We won’t go through
the whole convention in this chapter, but we’ll hit the highlights.

 Start by adding comments directly above the identifiers you want to document.
This works for packages, functions, types, and global variables. Comments can be
started using either two slashes, or using the slash-asterisk style.

// Retrieve connects to the configuration repository and gathers
// various connection settings, usernames, passwords. It returns a
// config struct on success, or an error.
func Retrieve() (config, error) {

// ... omitted
}

Figure 3.2 Local Go documentation
Licensed to Mark Watson <nordickan@gmail.com>

51Collaborating with other Go developers
In this example, we show the idiomatic way to document a function in Go. The docu-
mentation for the function immediately precedes the function and is written in com-
plete sentences. If you want to add a large body of text to document your package,
include a file called doc.go that declares the same package as your project, and put
your package introduction as a comment before the package declaration:

/*
Package usb provides types and functions for working with USB
devices. To connect to a USB device start by creating a new USB
connection with NewConnection
...

*/
package usb

This package documentation will be shown before any type or function documenta-
tion is displayed for your package. It also demonstrates using the slash-asterisk type of
comment. You can read more about creating good documentation for your code by
searching for golang documentation in Google.

3.6 Collaborating with other Go developers
Modern developers don’t code in a vacuum, and the Go tooling recognizes and
embraces this fact. The concept of packages extends beyond your local development
environment, thanks to the go tool. Let’s look at a few conventions to follow in order
to be a good citizen in a distributed development environment.

3.6.1 Creating repositories for sharing

Once you start cranking out awesome Go code, you’re probably going to want to share
that code with the rest of the Go community. It’s really easy as long as you follow a few
simple steps.

PACKAGE SHOULD LIVE AT THE ROOT OF THE REPOSITORY

When you’re using go get, you specify the full path to the package that should be
imported. This means that when you create a repository that you intend to share, the
package name should be the repository name, and the package’s source should be in
the root of the repository’s directory structure.

 A common mistake that new Go developers make is to create a code or src direc-
tory in their public repository. Doing so will make the package’s public import longer.
Instead, just put the package source files at the root of the public repository.

PACKAGES CAN BE SMALL

It’s common in Go to see packages that are relatively small by the standards of other
programming languages. Don’t be afraid to make a package that has a small API or
performs only a single task. That’s normal and expected.

RUN GO FMT ON THE CODE

Just like any other open source repository, people will look at your code to gauge the
quality of it before they try it out. You need to be running go fmt before checking
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 3 Packaging and tooling
anything in. It makes your code readable and puts everyone on the same page when
reading source code.

DOCUMENT THE CODE

Go developers use godoc to read documentation, and http://godoc.org to read docu-
mentation for open source packages. If you’ve followed go doc best practices in
documenting your code, your packages will appear well documented when viewed
locally or online, and people will find it easier to use.

3.7 Dependency management
The community has been hard at work since the release of Go 1.0 to provide Go tool-
ing that makes life easier for developers. Many of these tools focus on helping with
dependency management. The most popular tools today are godep by Keith Rarick,
vendor by Daniel Theophanes, and a tool by Gustavo Niemeyer called gopkg.in, which
helps package authors publish different versions of their packages.

 As a call to action, with version 1.5 the Go language team started to experiment
with new build options and features to provide better internal tooling support for
dependency management. While we wait today to see where these experiments lead,
there are existing tools that provide the ability to manage, build, and test Go code in a
reproducible way.

3.7.1 Vendoring dependencies

Community tools such as godep and vendor have solved the dependency problem by
using a technique called vendoring and import path rewriting. The idea is to copy all
the dependencies into a directory inside the project repo, and then rewrite any
import paths that reference those dependencies by providing the location inside the
project itself.

$GOPATH/src/github.com/ardanstudios/myproject
|-- Godeps
| |-- Godeps.json
| |-- Readme
| |-- _workspace
| |-- src
| |-- bitbucket.org
| |-- ww
| | |-- goautoneg
| | |-- Makefile
| | |-- README.txt
| | |-- autoneg.go
| | |-- autoneg_test.go
| |-- github.com
| |-- beorn7
| |-- perks
| |-- README.md
| |-- quantile

Listing 3.9 Project using godep
Licensed to Mark Watson <nordickan@gmail.com>

http://godoc.org

53Dependency management
| |-- bench_test.go
| |-- example_test.go
| |-- exampledata.txt
| |-- stream.go
|
|-- examples
|-- model
|-- README.md
|-- main.go

Listing 3.9 shows a typical source tree when using godep to vendor the dependencies
for a project. You can see how godep created a directory called Godeps. The source
code for the dependencies that the tooling vendored is located inside another set of
directories called _workspace/src.

 Next, if you look at the import statements that are declared inside of main.go for
these dependencies, you’ll see that some things needed to change.

01 package main
02
03 import (
04 "bitbucket.org/ww/goautoneg"
05 "github.com/beorn7/perks"
06)

01 package main
02
03 import (
04 "github.ardanstudios.com/myproject/Godeps/_workspace/src/

bitbucket.org/ww/goautoneg"
05 "github.ardanstudios.com/myproject/Godeps/_workspace/src/

github.com/beorn7/perks"
06)

Before the dependencies were vendored, the import statements used the canonical
path for the package. The code was physically located on disk within the scope of
GOPATH. After vendoring, import path rewriting became necessary to reference the
packages, which are now physically located on disk inside the project itself. You can
see these imports are very large and tedious to use.

 With vendoring, you have the ability to create reproducible builds, since all the
source code required to build the binary is housed inside the single project repo. One
other benefit of vendoring and import path rewriting is that the project repo is still
go-gettable. When go get is called against the project repo, the tooling can find each
package and store the package exactly where it needs to be inside the project itself.

Listing 3.10 Before vendoring

Listing 3.11 After vendoring
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 Packaging and tooling
3.7.2 Introducing gb

Gb is a whole new class of build tool being developed by members of the Go commu-
nity. Gb takes a different approach to solving the reproducible-build problem, which
starts with the understanding that wrapping the Go tooling is not an option.

 The philosophy behind gb stems from the idea that Go doesn’t have reproducible
builds because of the import statement. The import statement drives go get, but
import doesn’t contain sufficient information to identify which revision of a package
should be fetched any time go get is called. The possibility that go get can fetch a dif-
ferent version of code for any given package at any time makes supporting the Go
tooling in any reproducible solution complicated and tedious at best. You saw some of
this tediousness with the large import paths when using godep.

 This understanding resulted in the creation of the gb build tool. Gb doesn’t wrap
the Go tooling, nor does it use GOPATH. Gb replaces the Go tooling workspace meta-
phor with a project-based approach. This has natively allowed vendoring without the
need for rewriting import paths, which is mandated by go get and a GOPATH workspace.

 Let’s look at how the last project could be converted into a gb project.

/home/bill/devel/myproject ($PROJECT)
|-- src
| |-- cmd
| | |-- myproject
| | | |-- main.go
| |-- examples
| |-- model
| |-- README.md
|-- vendor

|-- src
|-- bitbucket.org
| |-- ww
| |-- goautoneg
| |-- Makefile
| |-- README.txt
| |-- autoneg.go
| |-- autoneg_test.go
|-- github.com

|-- beorn7
|-- perks
|-- README.md
|-- quantile
|-- bench_test.go

|-- example_test.go
|-- exampledata.txt
|-- stream.go

A gb project is simply a directory on disk that contains a subdirectory named src/. The
symbol $PROJECT refers to the root directory on disk where the src/ directory is located
and is only used as a shortcut for describing the location on disk for the project.

Listing 3.12 Example of a gb project
Licensed to Mark Watson <nordickan@gmail.com>

55Dependency management
$PROJECT is not an environmental variable that needs to be set. In fact, gb requires no
environmental variables to be set at all.

 Gb projects differentiate between the code you write and the code your code
depends on. The code your code depends on is called vendored code. A gb project
makes a clear distinction between your code and vendored code.

$PROJECT/src/

$PROJECT/vendor/src/

One of the best things about gb is that there’s no need for import path rewriting.
Look at the import statements that are declared inside of main.go—nothing needs to
change to reference the vendored dependencies.

01 package main
02
03 import (
04 "bitbucket.org/ww/goautoneg"
05 "github.com/beorn7/perks"
06)

The gb tool will look inside the $PROJECT/vendor/src/ directory for these imports if
they can’t be located inside the $PROJECT/src/ directory first. The entire source code
for the project is located within a single repo and directory on disk, split between the
src/ and vendor/src/ subdirectories. This, in conjunction with no need to rewrite
import paths and the freedom to place your project anywhere you wish on disk,
makes gb a popular tool in the community to develop projects that require reproduc-
ible builds.

 One thing to note: a gb project is not compatible with the Go tooling, including go
get. Since there’s no need for GOPATH, and the Go tooling doesn’t understand the
structure of a gb project, it can’t be used to build, test, or get. Building and testing a
gb project requires navigating to the $PROJECT directory and using the gb tool.

gb build all

Many of the same features that are supported by the Go tooling are supported in gb.
Gb also has a plugin system to allow the community to extend support. One such
plugin is called vendor, which provides conveniences to manage the dependencies in

Listing 3.13 The location for the code you write for the project

Listing 3.14 The location of vendored code

Listing 3.15 Import paths for gb projects

Listing 3.16 Building a gb project
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Packaging and tooling
the $PROJECT/vendor/src/ directory, something the Go tooling does not have today.
To learn more about gb, check out the website: getgb.io.

3.8 Summary
 Packages are the basic unit of code organization in Go.
 Your GOPATH determines on disk where Go source code is saved, compiled, and

installed.
 You can set your GOPATH for each different project, keeping all of your source

and dependencies separate.
 The go tool is your best friend when working from the command line.
 You can use packages created by other people by using go get to fetch and

install them in your GOPATH.
 It’s easy to create packages for others to use if you host them on a public source

code repository and follow a few simple rules.
 Go was designed with code sharing as a central driving feature of the language.
 It’s recommended that you use vendoring to manage dependencies.
 There are several community-developed tools for dependency management

such as godep, vendor, and gb.
Licensed to Mark Watson <nordickan@gmail.com>

Arrays, slices, and maps
It’s difficult to write programs that don’t need to store and read collections of data.
If you use databases or files, or access the web, you need a way to handle the data
you receive and send. Go has three different data structures that allow you to man-
age collections of data: arrays, slices, and maps. These data structures are baked
into the language and used throughout the standard library. Once you learn how
these data structures work, programming in Go will become fun, fast, and flexible.

4.1 Array internals and fundamentals
It makes sense to start with arrays because they form the base data structure for
both slices and maps. Understanding how arrays work will help you appreciate the
elegance and power that slices and maps provide.

In this chapter
 Array internals and fundamentals

 Managing collections of data with slices

 Working with key/value pairs using maps
57

Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 4 Arrays, slices, and maps
4.1.1 Internals

An array in Go is a fixed-length data type that contains a contiguous block of elements
of the same type. This could be a built-in type such as integers and strings, or it can be
a struct type.

 In figure 4.1 you can see the representation of an array. The elements of the array
are marked as a grey box and are connected in series to each other. Each element con-
tains the same type, in this case an integer, and can be accessed through a unique
index position.

Arrays are valuable data structures because the memory is allocated sequentially. Hav-
ing memory in a contiguous form can help to keep the memory you use stay loaded
within CPU caches longer. Using index arithmetic, you can iterate through all the ele-
ments of an array quickly. The type information for the array provides the distance in
memory you have to move to find each element. Since each element is of the same type
and follows each other sequentially, moving through the array is consistent and fast.

4.1.2 Declaring and initializing

An array is declared by specifying the type of data to be stored and the total number of
elements required, also known as the array’s length.

// Declare an integer array of five elements.
var array [5]int

Once an array is declared, neither the type of data being stored nor its length can be
changed. If you need more elements, you need to create a new array with the length
needed and then copy the values from one array to the other.

 When variables in Go are declared, they’re always initialized to their zero value for
their respective type, and arrays are no different. When an array is initialized, each
individual element that belongs to the array is initialized to its zero value. In figure 4.2,
you can see an array of integers with each element in the array initialized to 0, the zero
value for integers.

Listing 4.1 Declaring an array set to its zero value

[0] [1] [2] [3] [4]

0
Integer

20
Integer

30
Integer

40
Integer

50
Integer Figure 4.1

Array internals
Licensed to Mark Watson <nordickan@gmail.com>

59Array internals and fundamentals

A fast and easy way to create and initialize arrays is to use an array literal. Array liter-
als allow you to declare the number of elements you need and specify values for those
elements.

// Declare an integer array of five elements.
// Initialize each element with a specific value.
array := [5]int{10, 20, 30, 40, 50}

If the length is given as ..., Go will identify the length of the array based on the num-
ber of elements that are initialized.

// Declare an integer array.
// Initialize each element with a specific value.
// Capacity is determined based on the number of values initialized.
array := [...]int{10, 20, 30, 40, 50}

If you know the length of the array you need, but are only ready to initialize specific
elements, you can use this syntax.

// Declare an integer array of five elements.
// Initialize index 1 and 2 with specific values.
// The rest of the elements contain their zero value.
array := [5]int{1: 10, 2: 20}

The values for the array declared in listing 4.4 will look like figure 4.3 after the array is
declared and initialized.

Listing 4.2 Declaring an array using an array literal

Listing 4.3 Declaring an array with Go calculating size

Listing 4.4 Declaring an array initializing specific elements

0
Integer

[0]

0
Integer

[1]

0
Integer

[2]

0
Integer

[3]

0
Integer

[4]

Figure 4.2 Values of the array after the declaration of the array variable

[0] [1] [2] [3] [4]

0
Integer

10
Integer

20
Integer

0
Integer

0
Integer

Figure 4.3 Values of the array after the declaration of the array variable
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 4 Arrays, slices, and maps
4.1.3 Working with arrays

As we talked about, arrays are efficient data structures because the memory is laid out
in sequence. This gives arrays the advantage of being efficient when accessing individ-
ual elements. To access an individual element, use the [] operator.

// Declare an integer array of five elements.
// Initialize each element with a specific value.
array := [5]int{10, 20, 30, 40, 50}

// Change the value at index 2.
array[2] = 35

The values for the array declared in listing 4.5 will look like figure 4.4 after the array
operations are complete.

You can have an array of pointers. Like in chapter 2, you use the * operator to access
the value that each element pointer points to.

// Declare an integer pointer array of five elements.
// Initialize index 0 and 1 of the array with integer pointers.
array := [5]*int{0: new(int), 1: new(int)}

// Assign values to index 0 and 1.
*array[0] = 10
*array[1] = 20

The values for the array declared in listing 4.6 will look like figure 4.5 after the array
operations are complete.

Listing 4.5 Accessing array elements

Listing 4.6 Accessing array pointer elements

[0] [1] [2] [3] [4]

10
Integer

20
Integer

35
Integer

40
Integer

50
Integer

Figure 4.4 Values of the array after changing the value of index 2

addr
Integer pointer

[0]

10

addr
Integer pointer

[1]

nil
Integer pointer

[2]

nil
Integer pointer

[3]

nil
Integer pointer

[4]

20

Figure 4.5 An array of pointers that point to integers
Licensed to Mark Watson <nordickan@gmail.com>

61Array internals and fundamentals
An array is a value in Go. This means you can use it in an assignment operation. The
variable name denotes the entire array and, therefore, an array can be assigned to
other arrays of the same type.

// Declare a string array of five elements.
var array1 [5]string

// Declare a second string array of five elements.
// Initialize the array with colors.
array2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"}

// Copy the values from array2 into array1.
array1 = array2

After the copy, you have two arrays with identical values, as shown in figure 4.6.

The type of an array variable includes both the length and the type of data that can be
stored in each element. Only arrays of the same type can be assigned.

// Declare a string array of four elements.
var array1 [4]string

// Declare a second string array of five elements.
// Initialize the array with colors.
array2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"}

// Copy the values from array2 into array1.
array1 = array2

Compiler Error:
cannot use array2 (type [5]string) as type [4]string in assignment

Copying an array of pointers copies the pointer values and not the values that the
pointers are pointing to.

Listing 4.7 Assigning one array to another of the same type

Listing 4.8 Compiler error assigning arrays of different types

Red
String

Red
String

[0]

Blue
String

[1]

Green
String

[2]

Yellow
String

[3]

Pink
String

[4]

[0] [1] [2] [3] [4]

Blue
String

Green
String

Yellow
String

Pink
String

Figure 4.6 Both arrays after the copy
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 4 Arrays, slices, and maps

// Declare a string pointer array of three elements.
var array1 [3]*string

// Declare a second string pointer array of three elements.
// Initialize the array with string pointers.
array2 := [3]*string{new(string), new(string), new(string)}

// Add colors to each element
*array2[0] = "Red"
*array2[1] = "Blue"
*array2[2] = "Green"

// Copy the values from array2 into array1.
array1 = array2

After the copy, you have two arrays pointing to the same strings, as shown in figure 4.7.

4.1.4 Multidimensional arrays

Arrays are always one-dimensional, but they can be composed to create multidimen-
sional arrays. Multidimensional arrays come in handy when you need to manage data
that may have parent/child relationships or is associated with a coordinate system.

// Declare a two dimensional integer array of four elements
// by two elements.
var array [4][2]int

// Use an array literal to declare and initialize a two
// dimensional integer array.
array := [4][2]int{{10, 11}, {20, 21}, {30, 31}, {40, 41}}

// Declare and initialize index 1 and 3 of the outer array.
array := [4][2]int{1: {20, 21}, 3: {40, 41}}

// Declare and initialize individual elements of the outer
// and inner array.
array := [4][2]int{1: {0: 20}, 3: {1: 41}}

Listing 4.9 Assigning one array of pointers to another

Listing 4.10 Declaring two-dimensional arrays

addr
String pointer

[0]

addr
String pointer

[1]

addr
String pointer

Red Blue Green

addr
String pointer

addr
String pointer

addr
String pointer

[2]

[0] [1] [2] Figure 4.7 Two arrays of pointers
that point to the same strings
Licensed to Mark Watson <nordickan@gmail.com>

63Array internals and fundamentals
Figure 4.8 shows the values each array contains after declaring and initializing these
arrays.

 To access an individual element, use the [] operator again and a bit of composition.

// Declare a two dimensional integer array of two elements.
var array [2][2]int

// Set integer values to each individual element.
array[0][0] = 10
array[0][1] = 20
array[1][0] = 30
array[1][1] = 40

You can copy multidimensional arrays into each other as long as they have the same
type. The type of a multidimensional array is based on the length of each dimension
and the type of data that can be stored in each element.

// Declare two different two dimensional integer arrays.
var array1 [2][2]int
var array2 [2][2]int

// Add integer values to each individual element.
array2[0][0] = 10
array2[0][1] = 20
array2[1][0] = 30
array2[1][1] = 40

// Copy the values from array2 into array1.
array1 = array2

Listing 4.11 Accessing elements of a two-dimensional array

Listing 4.12 Assigning multidimensional arrays of the same type

Integer array

10 11
Integer array

20 21
Integer array

30 31
Integer array

40 41

array := [4][2]int{{10, 11}, {20, 21}, {30, 31}, {40, 41}}

[0] [1] [2] [3]

Integer array

0 0
Integer array

20 21
Integer array

0 0
Integer array

40 41

array := [4][2]int{1: {20, 21}, 3: {40, 41}}

[0] [1] [2] [3]

Integer array

0 0
Integer array

20 0
Integer array

0 0
Integer array

0 41

array := [4][2]int{1: {0: 20}, 3: {1: 41}}

[0] [1] [2] [3]

Figure 4.8 Two-dimensional
arrays and their outer and
inner values
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 4 Arrays, slices, and maps
Because an array is a value, you can copy individual dimensions.

// Copy index 1 of array1 into a new array of the same type.
var array3 [2]int = array1[1]

// Copy the integer found in index 1 of the outer array
// and index 0 of the interior array into a new variable of
// type integer.
var value int = array1[1][0]

4.1.5 Passing arrays between functions

Passing an array between functions can be an expensive operation in terms of mem-
ory and performance. When you pass variables between functions, they’re always
passed by value. When your variable is an array, this means the entire array, regardless
of its size, is copied and passed to the function.

 To see this in action, let’s create an array of one million elements of type int. On a
64-bit architecture, this would require eight million bytes, or eight megabytes, of mem-
ory. What happens when you declare an array of that size and pass it to a function?

// Declare an array of 8 megabytes.
var array [1e6]int

// Pass the array to the function foo.
foo(array)

// Function foo accepts an array of one million integers.
func foo(array [1e6]int) {

...
}

Every time the function foo is called, eight megabytes of memory has to be allocated
on the stack. Then the value of the array, all eight megabytes of memory, has to be
copied into that allocation. Go can handle this copy operation, but there’s a better
and more efficient way of doing this. You can pass a pointer to the array and only copy
eight bytes, instead of eight megabytes of memory on the stack.

// Allocate an array of 8 megabytes.
var array [1e6]int

// Pass the address of the array to the function foo.
foo(&array)

// Function foo accepts a pointer to an array of one million integers.
func foo(array *[1e6]int) {

...
}

Listing 4.13 Assigning multidimensional arrays by index

Listing 4.14 Passing a large array by value between functions

Listing 4.15 Passing a large array by pointer between functions
Licensed to Mark Watson <nordickan@gmail.com>

65Slice internals and fundamentals
This time the function foo takes a pointer to an array of one million elements of type
integer. The function call now passes the address of the array, which only requires
eight bytes of memory to be allocated on the stack for the pointer variable.

 This operation is much more efficient with memory and could yield better perfor-
mance. You just need to be aware that because you’re now using a pointer, changing
the value that the pointer points to will change the memory being shared. What is
really awesome is that slices inherently take care of dealing with these types of issues,
as you’ll see.

4.2 Slice internals and fundamentals
A slice is a data structure that provides a way for you to work with and manage collec-
tions of data. Slices are built around the concept of dynamic arrays that can grow and
shrink as you see fit. They’re flexible in terms of growth because they have their own
built-in function called append, which can grow a slice quickly with efficiency. You can
also reduce the size of a slice by slicing out a part of the underlying memory. Slices
give you all the benefits of indexing, iteration, and garbage collection optimizations
because the underlying memory is allocated in contiguous blocks.

4.2.1 Internals

Slices are tiny objects that abstract and manipulate an underlying array. They’re three-
field data structures that contain the metadata Go needs to manipulate the underly-
ing arrays (see figure 4.9).

The three fields are a pointer to the underlying array, the length or the number of ele-
ments the slice has access to, and the capacity or the number of elements the slice has
available for growth. The difference between length and capacity will make more
sense in a bit.

4.2.2 Creating and initializing

There are several ways to create and initialize slices in Go. Knowing the capacity you
need ahead of time will usually determine how you go about creating your slice.

addr
Pointer

3
Length

5
Capacity

Slice of integers:
Length of three integers
Capacity for five integers

10

[0]

20

[1]

30

[2]

0

[3]

0

[4]

Figure 4.9 Slice internals with underlying array
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 4 Arrays, slices, and maps
MAKE AND SLICE LITERALS

One way to create a slice is to use the built-in function make. When you use make, one
option you have is to specify the length of the slice.

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
slice := make([]string, 5)

When you just specify the length, the capacity of the slice is the same. You can also
specify the length and capacity separately.

// Create a slice of integers.
// Contains a length of 3 and has a capacity of 5 elements.
slice := make([]int, 3, 5)

When you specify the length and capacity separately, you can create a slice with avail-
able capacity in the underlying array that you don’t have access to initially. Figure 4.9
depicts what the slice of integers declared in listing 4.17 could look like after it’s ini-
tialized with some values.

 The slice in listing 4.17 has access to three elements, but the underlying array has
five elements. The two elements not associated with the length of the slice can be
incorporated so the slice can use those elements as well. New slices can also be created
to share this same underlying array and use any existing capacity.

 Trying to create a slice with a capacity that’s smaller than the length is not allowed.

// Create a slice of integers.
// Make the length larger than the capacity.
slice := make([]int, 5, 3)

Compiler Error:
len larger than cap in make([]int)

An idiomatic way of creating a slice is to use a slice literal. It’s similar to creating an
array, except you don’t specify a value inside of the [] operator. The initial length
and capacity will be based on the number of elements you initialize.

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
slice := []string{"Red", "Blue", "Green", "Yellow", "Pink"}

Listing 4.16 Declaring a slice of strings by length

Listing 4.17 Declaring a slice of integers by length and capacity

Listing 4.18 Compiler error setting capacity less than length

Listing 4.19 Declaring a slice with a slice literal
Licensed to Mark Watson <nordickan@gmail.com>

67Slice internals and fundamentals
// Create a slice of integers.
// Contains a length and capacity of 3 elements.
slice := []int{10, 20, 30}

When using a slice literal, you can set the initial length and capacity. All you need to
do is initialize the index that represents the length and capacity you need. The follow-
ing syntax will create a slice with a length and capacity of 100 elements.

// Create a slice of strings.
// Initialize the 100th element with an empty string.
slice := []string{99: ""}

Remember, if you specify a value inside the [] operator, you’re creating an array. If
you don’t specify a value, you’re creating a slice.

// Create an array of three integers.
array := [3]int{10, 20, 30}

// Create a slice of integers with a length and capacity of three.
slice := []int{10, 20, 30}

NIL AND EMPTY SLICES

Sometimes in your programs you may need to declare a nil slice. A nil slice is created
by declaring a slice without any initialization.

// Create a nil slice of integers.
var slice []int

A nil slice is the most common way you create slices in Go. They can be used with
many of the standard library and built-in functions that work with slices. They’re use-
ful when you want to represent a slice that doesn’t exist, such as when an exception
occurs in a function that returns a slice (see figure 4.10).

Listing 4.20 Declaring a slice with index positions

Listing 4.21 Declaration differences between arrays and slices

Listing 4.22 Declaring a nil slice

nil
Pointer

0
Length

0
Capacity

nil slice:
Length of zero
Capacity of zero

var slice []int

Figure 4.10 The representation of a nil slice
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 4 Arrays, slices, and maps
You can also create an empty slice by declaring a slice with initialization.

// Use make to create an empty slice of integers.
slice := make([]int, 0)

// Use a slice literal to create an empty slice of integers.
slice := []int{}

An empty slice contains a zero-element underlying array that allocates no storage.
Empty slices are useful when you want to represent an empty collection, such as when
a database query returns zero results (see figure 4.11).

Regardless of whether you’re using a nil slice or an empty slice, the built-in functions
append, len, and cap work the same.

4.2.3 Working with slices

Now that you know what a slice is and how to create them, you can learn how to use
them in your programs.

ASSIGNING AND SLICING

Assigning a value to any specific index within a slice is identical to how you do this
with arrays. To change the value of an individual element, use the [] operator.

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Change the value of index 1.
slice[1] = 25

Slices are called such because you can slice a portion of the underlying array to create
a new slice.

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

Listing 4.23 Declaring an empty slice

Listing 4.24 Declaring an array using an array literal

Listing 4.25 Taking the slice of a slice

addr
Pointer

0
Length

0
Capacity

Empty slice:
Length of zero
Capacity of zero

slice := make([]int, 0)
slice := []int{}

Figure 4.11 The representation of an empty slice
Licensed to Mark Watson <nordickan@gmail.com>

69Slice internals and fundamentals
// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[1:3]

After the slicing operation performed in listing 4.25, we have two slices that are shar-
ing the same underlying array. However, each slice views the underlying array in a dif-
ferent way (see figure 4.12).

The original slice views the underlying array as having a capacity of five elements, but
the view of newSlice is different. For newSlice, the underlying array has a capacity of
four elements. newSlice can’t access the elements of the underlying array that are
prior to its pointer. As far as newSlice is concerned, those elements don’t even exist.

 Calculating the length and capacity for any new slice is performed using the fol-
lowing formula.

For slice[i:j] with an underlying array of capacity k

Length: j - i
Capacity: k - i

If you apply this formula to newSlice you get the following.

For slice[1:3] with an underlying array of capacity 5

Length: 3 - 1 = 2
Capacity: 5 - 1 = 4

Listing 4.26 How length and capacity are calculated

Listing 4.27 Calculating the new length and capacity

10

[0]

20

[1]

30

[2]

40

[3]

50

[4]

[0] [1] [2] [3]

addr
Pointer

addr
Pointer

5
Length

5
Capacity

2
Length

4
Capacity

slice := []int{10, 20, 30, 40, 50}

newSlice := slice[1:3]

Figure 4.12 Two slices sharing the same underlying array
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

70 CHAPTER 4 Arrays, slices, and maps
Another way to look at this is that the first value represents the starting index position
of the element the new slice will start with—in this case, 1. The second value repre-
sents the starting index position (1) plus the number of elements you want to include
(2); 1 plus 2 is 3, so the second value is 3. Capacity will be the total number of ele-
ments associated with the slice.

 You need to remember that you now have two slices sharing the same underlying
array. Changes made to the shared section of the underlying array by one slice can be
seen by the other slice.

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[1:3]

// Change index 1 of newSlice.
// Change index 2 of the original slice.
newSlice[1] = 35

After the number 35 is assigned to the second element of newSlice, that change can
also be seen by the original slice in element 3 (see figure 4.13).

 A slice can only access indexes up to its length. Trying to access an element outside
of its length will cause a runtime exception. The elements associated with a slice’s
capacity are only available for growth. They must be incorporated into the slice’s
length before they can be used.

Listing 4.28 Potential consequence of making changes to a slice

10

[0]

20

[1]

30

[2]

40

[3]

50

[4]

[0] [1] [2] [3]

slice := []int{10, 20, 30, 40, 50}

newSlice := slice[1:3]

After the assignment
operation using newSlice
newSlice[1] = 35

addr
Pointer

5
Length

5
Capacity

addr
Pointer

2
Length

4
Capacity

Figure 4.13 The underlying array after the assignment operation
Licensed to Mark Watson <nordickan@gmail.com>

71Slice internals and fundamentals

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[1:3]

// Change index 3 of newSlice.
// This element does not exist for newSlice.
newSlice[3] = 45

Runtime Exception:
panic: runtime error: index out of range

Having capacity is great, but useless if you can’t incorporate it into your slice’s length.
Luckily, Go makes this easy when you use the built-in function append.

GROWING SLICES

One of the advantages of using a slice over using an array is that you can grow the
capacity of your slice as needed. Go takes care of all the operational details when you
use the built-in function append.

 To use append, you need a source slice and a value that is to be appended. When
your append call returns, it provides you a new slice with the changes. The append func-
tion will always increase the length of the new slice. The capacity, on the other hand,
may or may not be affected, depending on the available capacity of the source slice.

// Create a slice of integers.
// Contains a length and capacity of 5 elements.
slice := []int{10, 20, 30, 40, 50}

// Create a new slice.
// Contains a length of 2 and capacity of 4 elements.
newSlice := slice[1:3]

// Allocate a new element from capacity.
// Assign the value of 60 to the new element.
newSlice = append(newSlice, 60)

After the append operation in listing 4.30, the slices and the underlying array will
look like figure 4.14.

 Because there was available capacity in the underlying array for newSlice, the
append operation incorporated the available element into the slice’s length and
assigned the value. Since the original slice is sharing the underlying array, slice also
sees the changes in index 3.

Listing 4.29 Runtime error showing index out of range

Listing 4.30 Using append to add an element to a slice
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 4 Arrays, slices, and maps
When there’s no available capacity in the underlying array for a slice, the append func-
tion will create a new underlying array, copy the existing values that are being refer-
enced, and assign the new value.

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Append a new value to the slice.
// Assign the value of 50 to the new element.
newSlice := append(slice, 50)

After this append operation, newSlice is given its own underlying array, and the capac-
ity of the array is doubled from its original size (see figure 4.15).

 The append operation is clever when growing the capacity of the underlying array.
Capacity is always doubled when the existing capacity of the slice is under 1,000 ele-
ments. Once the number of elements goes over 1,000, the capacity is grown by a factor
of 1.25, or 25%. This growth algorithm may change in the language over time.

THREE INDEX SLICES

There’s a third index option we haven’t mentioned yet that you can use when you’re
slicing. This third index gives you control over the capacity of the new slice. The pur-
pose is not to increase capacity, but to restrict the capacity. As you’ll see, being able to
restrict the capacity of a new slice provides a level of protection to the underlying
array and gives you more control over append operations.

Listing 4.31 Using append to increase the length and capacity of a slice

[0] [1] [2] [3] [4]

[0] [1] [2] [3]

addr
Pointer

2
Length

4
Capacity

slice := []int{10, 20, 30, 40, 50}

newSlice := slice[1:3]

addr
Pointer

3
Length

4
Capacity

newSlice = append(newSlice, 60)

addr
Pointer

5
Length

5
Capacity

10 20 30 60 50

Figure 4.14 The underlying array after the append operation
Licensed to Mark Watson <nordickan@gmail.com>

73Slice internals and fundamentals
Let’s start with a slice of five strings that contain fruit you can find in your local super-
market.

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}

If you inspect the values for this slice of fruit, it will look something like figure 4.16.

Listing 4.32 Declaring a slice of string using a slice literal

10 20 30 40

10

slice := []int{10, 20, 30, 40}

newSlice := append(slice, 50)

20 30 40 50 0 0 0

addr
Pointer

4
Length

4
Capacity

addr
Pointer

5
Length

5
Capacity

Figure 4.15 The new underlying array after the append operation

source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}

Apple

[0]

Orange

[1]

Plum

[2]

Banana

[3]

Grape

[4]

addr
Pointer

5
Length

5
Capacity

Figure 4.16 A representation of the slice of strings
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 4 Arrays, slices, and maps
Now let’s use the third index option to perform a slicing operation.

// Slice the third element and restrict the capacity.
// Contains a length of 1 element and capacity of 2 elements.
slice := source[2:3:4]

After this slicing operation, we have a new slice that references one element from the
underlying array and has a capacity of two elements. Specifically, the new slice refer-
ences the Plum element and has capacity up to the Banana element, as shown in fig-
ure 4.17.

 We can apply the same formula that we defined before to calculate the new slice’s
length and capacity.

For slice[i:j:k] or [2:3:4]

Length: j - i or 3 - 2 = 1
Capacity: k - i or 4 - 2 = 2

Again, the first value represents the starting index position of the element the new slice
will start with—in this case, 2. The second value represents the starting index position
(2) plus the number of elements you want to include (1); 2 plus 1 is 3, so the second
value is 3. For setting capacity, you take the starting index position of 2, plus the num-
ber of elements you want to include in the capacity (2), and you get the value of 4.

Listing 4.33 Performing a three-index slice

Listing 4.34 How length and capacity are calculated

source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}

slice := source[2:3:4]

Apple

[0]

Orange

[1]

Plum

[2]

Banana

[3]

Grape

[4]

[0] [1] [2]

addr
Pointer

5
Length

5
Capacity

addr
Pointer

1
Length

2
Capacity

Figure 4.17 A representation of the new slice after the operation
Licensed to Mark Watson <nordickan@gmail.com>

75Slice internals and fundamentals
If you attempt to set a capacity that’s larger than the available capacity, you’ll get a run-
time error.

// This slicing operation attempts to set the capacity to 4.
// This is greater than what is available.
slice := source[2:3:6]

Runtime Error:
panic: runtime error: slice bounds out of range

As we’ve discussed, the built-in function append will use any available capacity first.
Once that capacity is reached, it will allocate a new underlying array. It’s easy to forget
which slices are sharing the same underlying array. When this happens, making
changes to a slice can result in random and odd-looking bugs. Suddenly changes
appear on multiple slices out of nowhere.

 By having the option to set the capacity of a new slice to be the same as the length,
you can force the first append operation to detach the new slice from the underlying
array. Detaching the new slice from its original source array makes it safe to change.

// Create a slice of strings.
// Contains a length and capacity of 5 elements.
source := []string{"Apple", "Orange", "Plum", "Banana", "Grape"}

// Slice the third element and restrict the capacity.
// Contains a length and capacity of 1 element.
slice := source[2:3:3]

// Append a new string to the slice.
slice = append(slice, "Kiwi")

Without this third index, appending Kiwi to our slice would’ve changed the value of
Banana in index 3 of the underlying array, because all of the remaining capacity would
still belong to the slice. But in listing 4.36, we restricted the capacity of the slice to 1.
When we call append for the first time on the slice, it will create a new underlying
array of two elements, copy the fruit Plum, add the new fruit Kiwi, and return a new
slice that references this underlying array, as in figure 4.18.

 With the new slice now having its own underlying array, we’ve avoided potential
problems. We can now continue to append fruit to our new slice without worrying if
we’re changing fruit to other slices inappropriately. Also, allocating the new underly-
ing array for the slice was easy and clean.

Listing 4.35 Runtime error setting capacity larger than existing capacity

Listing 4.36 Benefits of setting length and capacity to be the same
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 4 Arrays, slices, and maps
The built-in function append is also a variadic function. This means you can pass mul-
tiple values to be appended in a single slice call. If you use the ... operator, you can
append all the elements of one slice into another.

// Create two slices each initialized with two integers.
s1 := []int{1, 2}
s2 := []int{3, 4}

// Append the two slices together and display the results.
fmt.Printf("%v\n", append(s1, s2...))

Output:
[1 2 3 4]

As you can see by the output, all the values of slice s2 have been appended to slice s1.
The value of the new slice returned by the append function is then displayed by the
call to Printf.

ITERATING OVER SLICES

Since a slice is a collection, you can iterate over the elements. Go has a special keyword
called range that you use in conjunction with the keyword for to iterate over slices.

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Iterate over each element and display each value.
for index, value := range slice {

fmt.Printf("Index: %d Value: %d\n", index, value)
}

Listing 4.37 Appending to a slice from another slice

Listing 4.38 Iterating over a slice using for range

addr
Pointer

2
Length

2
Capacity

Plum Kiwi

slice := source[2:3:3]

slice = append(slice, "Kiwi")

Apple Orange Plum

[0]

Banana

[1]

Grape

[2]

[0] [1]

addr
Pointer

1
Length

1
Capacity

Figure 4.18 A representation of the new slice after the append operation
Licensed to Mark Watson <nordickan@gmail.com>

77Slice internals and fundamentals
Output:
Index: 0 Value: 10
Index: 1 Value: 20
Index: 2 Value: 30
Index: 3 Value: 40

The keyword range, when iterating over a slice, will return two values. The first value
is the index position and the second value is a copy of the value in that index position
(see figure 4.19).

It’s important to know that range is making a copy of the value, not returning a refer-
ence. If you use the address of the value variable as a pointer to each element, you’ll
be making a mistake. Let’s see why.

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Iterate over each element and display the value and addresses.
for index, value := range slice {

fmt.Printf("Value: %d Value-Addr: %X ElemAddr: %X\n",
value, &value, &slice[index])

}

Output:
Value: 10 Value-Addr: 10500168 ElemAddr: 1052E100
Value: 20 Value-Addr: 10500168 ElemAddr: 1052E104
Value: 30 Value-Addr: 10500168 ElemAddr: 1052E108
Value: 40 Value-Addr: 10500168 ElemAddr: 1052E10C

Listing 4.39 range provides a copy of each element

10

[0]

20

[1]

30

[2]

40

[3]

CopyCopy Copy Copy

slice := []int{10, 20, 30, 40}

for index, value := range slice {

0
Index

10
Value

1
Index

20
Value

2
Index

30
Value

3
Index

40
Value

addr
Pointer

4
Length

4
Capacity

Figure 4.19 Using range to iterate over a slice creates a copy of each element.
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 4 Arrays, slices, and maps
The address for the value variable is always the same because it’s a variable that con-
tains a copy. The address of each individual element can be captured using the slice
variable and the index value.

 If you don’t need the index value, you can use the underscore character to discard
the value.

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Iterate over each element and display each value.
for _, value := range slice {

fmt.Printf("Value: %d\n", value)
}

Output:
Value: 10
Value: 20
Value: 30
Value: 40

The keyword range will always start iterating over a slice from the beginning. If you
need more control iterating over a slice, you can always use a traditional for loop.

// Create a slice of integers.
// Contains a length and capacity of 4 elements.
slice := []int{10, 20, 30, 40}

// Iterate over each element starting at element 3.
for index := 2; index < len(slice); index++ {

fmt.Printf("Index: %d Value: %d\n", index, slice[index])
}

Output:
Index: 2 Value: 30
Index: 3 Value: 40

There are two special built-in functions called len and cap that work with arrays,
slices, and channels. For slices, the len function returns the length of the slice, and
the cap function returns the capacity. In listing 4.41, we used the len function to
determine when to stop iterating over the slice.

 Now that you know how to create and work with slices, you can use them to com-
pose and iterate over multidimensional slices.

Listing 4.40 Using the blank identifier to ignore the index value

Listing 4.41 Iterating over a slice using a traditional for loop
Licensed to Mark Watson <nordickan@gmail.com>

79Slice internals and fundamentals
4.2.4 Multidimensional slices

Like arrays, slices are one-dimensional, but they can be composed to create multidi-
mensional slices for the same reasons we discussed earlier.

// Create a slice of a slice of integers.
slice := [][]int{{10}, {100, 200}}

We now have an outer slice of two elements that contain an inner slice of integers.
The values for our slice of a slice of integers will look like figure 4.20.

 In figure 4.20 you can see how composition is working to embed slices into slices.
The outer slice contains two elements, each of which are slices. The slice in the first
element is initialized with the single integer 10 and the slice in the second element
contains two integers, 100 and 200.

 Composition allows you to create very complex and powerful data structures. All of
the rules you learned about the built-in function append still apply.

// Create a slice of a slice of integers.
slice := [][]int{{10}, {100, 200}}

// Append the value of 20 to the first slice of integers.
slice[0] = append(slice[0], 20)

The append function and Go are elegant in how they handle growing and assigning the
new slice of integers back into the first element of the outer slice. When the operation

Listing 4.42 Declaring a multidimensional slice

Listing 4.43 Composing slices of slices

[0] [1]

slice := [][]int{{10}, {100, 200}}

[0]

10

[0]

100

[1]

200

addr
Pointer

2
Length

2
Capacity

addr
Pointer

2
Length

2
Capacity

addr
Pointer

1
Length

1
Capacity

Figure 4.20 Values for our slice of a slice of integers
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 4 Arrays, slices, and maps
in listing 4.43 is complete, an entire new slice of integers and a new underlying array is
allocated and then copied back into index 0 of the outer slice, as shown in figure 4.21.

 Even with this simple multidimensional slice, there are a lot of layers and values
involved. Passing a data structure like this between functions could seem complicated.
But slices are cheap and passing them between functions is trivial.

4.2.5 Passing slices between functions

Passing a slice between two functions requires nothing more than passing the slice by
value. Since the size of a slice is small, it’s cheap to copy and pass between functions.
Let’s create a large slice and pass that slice by value to our function called foo.

// Allocate a slice of 1 million integers.
slice := make([]int, 1e6)

// Pass the slice to the function foo.
slice = foo(slice)

// Function foo accepts a slice of integers and returns the slice back.
func foo(slice []int) []int {

...
return slice

}

On a 64-bit architecture, a slice requires 24 bytes of memory. The pointer field
requires 8 bytes, and the length and capacity fields require 8 bytes respectively. Since
the data associated with a slice is contained in the underlying array, there are no prob-
lems passing a copy of a slice to any function. Only the slice is being copied, not the
underlying array (see figure 4.22).

Listing 4.44 Passing slices between functions

[0] [0]

Before append After append

slice := [][]int{{10}, {100, 200}}

slice[0] = append(slice[0], 20)

[0]

10

[0]

10

[1]

20

addr
Pointer

2
Length

2
Capacity

addr
Pointer

2
Length

2
Capacity

addr
Pointer

1
Length

1
Capacity

Figure 4.21 What index 0 of the outer slice looks like after the append operation
Licensed to Mark Watson <nordickan@gmail.com>

81Map internals and fundamentals
Passing the 24 bytes between functions is fast and easy. This is the beauty of slices. You
don’t need to pass pointers around and deal with complicated syntax. You just create
copies of your slices, make the changes you need, and then pass a new copy back.

4.3 Map internals and fundamentals
A map is a data structure that provides you with an unordered collection of key/value
pairs.

 You store values into the map based on a key. Figure 4.23 shows an example of a
key/value pair you may store in your maps. The strength of a map is its ability to
retrieve data quickly based on the key. A key works like an index, pointing to the value
you associate with that key.

4.3.1 Internals

Maps are collections, and you can iterate over them just like you do with arrays and
slices. But maps are unordered collections, and there’s no way to predict the order in
which the key/value pairs will be returned. Even if you store your key/value pairs in
the same order, every iteration over a map could return a different order. This is
because a map is implemented using a hash table, as shown in figure 4.24.

addr
Pointer

Main function

Foo function

Copy slice on
function call

Copy slice on
function return

1000000
Length

1000000
Capacity

addr
Pointer

1000000
Length

1000000
Capacity

slice := make([]int , 1000000)

[0]

0

[1]

0

[2]

0

[3]

0

[4]

0

slice = foo(slice)

func foo(slice []int) []int

Figure 4.22 Both slices pointing to the underlying array after the function call

Red
Key

#da1337
Value

Orange
Key

#e95a22
Value

Green
Key

#a3ff47
Value

Figure 4.23 Relationship of key/value pairs
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 4 Arrays, slices, and maps
The map’s hash table contains a collection of buckets. When you’re storing, remov-
ing, or looking up a key/value pair, everything starts with selecting a bucket. This is
performed by passing the key—specified in your map operation—to the map’s hash
function. The purpose of the hash function is to generate an index that evenly distrib-
utes key/value pairs across all available buckets.

 The better the distribution, the quicker you can find your key/value pairs as the
map grows. If you store 10,000 items in your map, you don’t want to ever look at
10,000 key/value pairs to find the one you want. You want to look at the least number
of key/value pairs possible. Looking at only 8 key/value pairs in a map of 10,000 items
is a good and balanced map. A balanced list of key/value pairs across the right num-
ber of buckets makes this possible.

 The hash key that’s generated for a Go map is a bit longer than what you see in fig-
ure 4.25, but it works the same way. In our example, the keys are strings that repre-
sents a color. Those strings are converted into a numeric value within the scope of the
number of buckets we have available for storage. The numeric value is then used to
select a bucket for storing or finding the specific key/value pair. In the case of a Go
map, a portion of the generated hash key, specifically the low order bits (LOB), is used
to select the bucket.

 If you look at figure 4.24 again, you can see what the internals of a bucket look like.
There are two data structures that contain the data for the map. First, there’s an array

Bucket

Map hash table

LOB Hash

Bucket

LOB Hash

Bucket

LOB Hash

Bucket

LOB Hash

[0]

HOB
hash

HOB
hash

HOB
hash

HOB
hash

HOB
hash

Empty Empty Empty

[1] [2] [3] [4] [5] [6] [7]

Array of the high order bits of the hash to distinguish entries

K K K K K E E E V V V V V E E E

Keys and values packed together

K = Key V = Value E = Empty

Figure 4.24 Simple representation of the internal structure of a map
Licensed to Mark Watson <nordickan@gmail.com>

83Map internals and fundamentals
with the top eight high order bits (HOB) from the same hash key that was used to select
the bucket. This array distinguishes each individual key/value pair stored in the
respective bucket. Second, there’s an array of bytes that stores the key/value pairs.
The byte array packs all the keys and then all the values together for the respective
bucket. The packing of the key/value pairs is implemented to minimize the memory
required for each bucket.

 There are a lot of other low-level implementation details about maps that are out-
side the scope of this chapter. You don’t need to understand all the internals to learn
how to create and use maps. Just remember one thing: a map is an unordered collec-
tion of key/value pairs.

4.3.2 Creating and initializing

There are several ways you can create and initialize maps in Go. You can use the built-
in function make, or you can use a map literal.

// Create a map with a key of type string and a value of type int.
dict := make(map[string]int)

// Create a map with a key and value of type string.
// Initialize the map with 2 key/value pairs.
dict := map[string]string{"Red": "#da1337", "Orange": "#e95a22"}

Using a map literal is the idiomatic way of creating a map. The initial length will be
based on the number of key/value pairs you specify during initialization.

 The map key can be a value from any built-in or struct type as long as the value can
be used in an expression with the == operator. Slices, functions, and struct types that
contain slices can’t be used as map keys. This will produce a compiler error.

Listing 4.45 Declaring a map using make

Brick red

Navy blue

Burnt orange
Hash function

Banana yellow

Sweet pink

00

04

08

12

01

05

09

13

02

06

10

14

03

07

11

15

Keys Hash key/bucket

Figure 4.25 Simple view of how hash functions work
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 4 Arrays, slices, and maps

// Create a map using a slice of strings as the key.
dict := map[[]string]int{}

Compiler Exception:
invalid map key type []string

There’s nothing stopping you from using a slice as a map value. This can come in
handy when you need a single map key to be associated with a collection of data.

// Create a map using a slice of strings as the value.
dict := map[int][]string{}

4.3.3 Working with maps

Assigning a key/value pair to a map is performed by specifying a key of the proper
type and assigning a value to that key.

// Create an empty map to store colors and their color codes.
colors := map[string]string{}

// Add the Red color code to the map.
colors["Red"] = "#da1337"

You can create a nil map by declaring a map without any initialization. A nil map
can’t be used to store key/value pairs. Trying will produce a runtime error.

// Create a nil map by just declaring the map.
var colors map[string]string

// Add the Red color code to the map.
colors["Red"] = "#da1337"

Runtime Error:
panic: runtime error: assignment to entry in nil map

Testing if a map key exists is an important part of working with maps. It allows you to
write logic that can determine if you’ve performed an operation or if you’ve cached
some particular data in the map. It can also be used to compare two maps to identify
what key/value pairs match or are missing.

 When retrieving a value from a map, you have two choices. You can retrieve the
value and a flag that explicitly lets you know if the key exists.

Listing 4.46 Declaring an empty map using a map literal

Listing 4.47 Declaring a map that stores slices of strings

Listing 4.48 Assigning values to a map

Listing 4.49 Runtime error assigned to a nil map
Licensed to Mark Watson <nordickan@gmail.com>

85Map internals and fundamentals

// Retrieve the value for the key "Blue".
value, exists := colors["Blue"]

// Did this key exist?
if exists {

fmt.Println(value)
}

The other option is to just return the value and test for the zero value to determine if
the key exists. This will only work if the zero value is not a valid value for the map.

// Retrieve the value for the key "Blue".
value := colors["Blue"]

// Did this key exist?
if value != "" {

fmt.Println(value)
}

When you index a map in Go, it will always return a value, even when the key doesn’t
exist. In this case, the zero value for the value’s type is returned.

 Iterating over a map is identical to iterating over an array or slice. You use the key-
word range; but when it comes to maps, you don’t get back the index/value, you get
back the key/value pairs.

// Create a map of colors and color hex codes.
colors := map[string]string{

"AliceBlue": "#f0f8ff",
"Coral": "#ff7F50",
"DarkGray": "#a9a9a9",
"ForestGreen": "#228b22",

}

// Display all the colors in the map.
for key, value := range colors {

fmt.Printf("Key: %s Value: %s\n", key, value)
}

If you want to remove a key/value pair from the map, you use the built-in function
delete.

// Remove the key/value pair for the key "Coral".
delete(colors, "Coral")

// Display all the colors in the map.

Listing 4.50 Retrieving a value from a map and testing existence.

Listing 4.51 Retrieving a value from a map testing the value for existence

Listing 4.52 Iterating over a map using for range

Listing 4.53 Removing an item from a map
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 4 Arrays, slices, and maps
for key, value := range colors {
fmt.Printf("Key: %s Value: %s\n", key, value)

}

This time when you iterate through the map, the color Coral would not be displayed
on the screen.

4.3.4 Passing maps between functions

Passing a map between two functions doesn’t make a copy of the map. In fact, you can
pass a map to a function and make changes to the map, and the changes will be
reflected by all references to the map.

func main() {
// Create a map of colors and color hex codes.
colors := map[string]string{

"AliceBlue": "#f0f8ff",
"Coral": "#ff7F50",
"DarkGray": "#a9a9a9",
"ForestGreen": "#228b22",

}

// Display all the colors in the map.
for key, value := range colors {

fmt.Printf("Key: %s Value: %s\n", key, value)
}

// Call the function to remove the specified key.
removeColor(colors, "Coral")

// Display all the colors in the map.
for key, value := range colors {

fmt.Printf("Key: %s Value: %s\n", key, value)
}

}

// removeColor removes keys from the specified map.
func removeColor(colors map[string]string, key string) {

delete(colors, key)
}

If you run this program, you’ll get the following output.

Key: AliceBlue Value: #F0F8FF
Key: Coral Value: #FF7F50
Key: DarkGray Value: #A9A9A9
Key: ForestGreen Value: #228B22

Key: AliceBlue Value: #F0F8FF
Key: DarkGray Value: #A9A9A9
Key: ForestGreen Value: #228B22

Listing 4.54 Passing maps between functions

Listing 4.55 Output for listing 4.54
Licensed to Mark Watson <nordickan@gmail.com>

87Summary
You can see that after the call to removeColor is complete, the color Coral is no lon-
ger present in the map referenced by main. Maps are designed to be cheap, similar
to slices.

4.4 Summary
 Arrays are the building blocks for both slices and maps.
 Slices are the idiomatic way in Go you work with collections of data. Maps are

the way you work with key/value pairs of data.
 The built-in function make allows you to create slices and maps with initial

length and capacity. Slice and map literals can be used as well and support set-
ting initial values for use.

 Slices have a capacity restriction, but can be extended using the built-in func-
tion append.

 Maps don’t have a capacity or any restriction on growth.
 The built-in function len can be used to retrieve the length of a slice or map.
 The built-in function cap only works on slices.
 Through the use of composition, you can create multidimensional arrays and

slices. You can also create maps with values that are slices and other maps. A
slice can’t be used as a map key.

 Passing a slice or map to a function is cheap and doesn’t make a copy of the
underlying data structure.
Licensed to Mark Watson <nordickan@gmail.com>

Go’s type system
Go is a statically typed programming language. What that means is the compiler
always wants to know what the type is for every value in the program. When the
compiler knows the type information ahead of time, it can help to make sure that
the program is working with values in a safe way. This helps to reduce potential
memory corruption and bugs, and provides the compiler the opportunity to pro-
duce more performant code.

 A value’s type provides the compiler with two pieces of information: first, how
much memory to allocate—the size of the value—and second, what that memory
represents. In the case of many of the built-in types, size and representation are
part of the type’s name. A value of type int64 requires 8 bytes of memory (64 bits)

In this chapter
 Declaring new user-defined types

 Adding behavior to types with methods

 Knowing when to use pointers and values

 Implementing polymorphism with interfaces

 Extending and changing types through
composition

 Exporting and unexporting identifiers
88

Licensed to Mark Watson <nordickan@gmail.com>

89User-defined types
and represents an integer value. A float32 requires 4 bytes of memory (32 bits) and
represents an IEEE-754 binary floating-point number. A bool requires 1 byte of mem-
ory (8 bits) and represents a Boolean value of true or false.

 Some types get their representation based on the architecture of the machine the
code is built for. A value of type int, for example, can either have a size of 8 bytes (64
bits) or 4 bytes (32 bits), depending on the architecture. There are other architecture-
specific types as well, such as all the reference types in Go. Luckily, you don’t need to
know this information to create or work with values. But if the compiler doesn’t know
this information, it can’t protect you from doing things that could cause harm inside
your programs and the machines they run on.

5.1 User-defined types
Go allows you the ability to declare your own types. When you declare a new type, the
declaration is constructed to provide the compiler with size and representation infor-
mation, similar to how the built-in types work. There are two ways to declare a user-
defined type in Go. The most common way is to use the keyword struct, which allows
you to create a composite type.

 Struct types are declared by composing a fixed set of unique fields. Each field in a
struct is declared with a known type, which could be a built-in type or another user-
defined type.

01 // user defines a user in the program.
02 type user struct {
03 name string
04 email string
05 ext int
06 privileged bool
07 }

In listing 5.1 you see the declaration of a struct type. The declaration starts with the
keyword type, then a name for the new type, and finally the keyword struct. This
struct type contains four fields, each based on a different built-in type. You can see
how the fields come together to compose a structure of data. Once you have a type
declared, you can create values from the type.

09 // Declare a variable of type user.
10 var bill user

On line 10 in listing 5.2, the keyword var creates a variable named bill of type user.
When you declare variables, the value that the variable represents is always initialized.
The value can be initialized with a specific value or it can be initialized to its zero
value, which is the default value for that variable’s type. For numeric types, the zero

Listing 5.1 Declaration of a struct type

Listing 5.2 Declaration of a variable of the struct type set to its zero value
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 5 Go’s type system
value would be 0; for strings it would be empty; and for Booleans it would be false. In
the case of a struct, the zero value would apply to all the different fields in the struct.

 Any time a variable is created and initialized to its zero value, it’s idiomatic to use
the keyword var. Reserve the use of the keyword var as a way to indicate that a variable
is being set to its zero value. If the variable will be initialized to something other than
its zero value, then use the short variable declaration operator with a struct literal.

12 // Declare a variable of type user and initialize all the fields.
13 lisa := user{
14 name: "Lisa",
15 email: "lisa@email.com",
16 ext: 123,
17 privileged: true,
18 }

Listing 5.3 shows how to declare a variable of type user and initialize the value to
something other than its zero value. On line 13, we provide a variable name followed
by the short variable declaration operator. This operator is the colon with the equals
sign (:=). The short variable declaration operator serves two purposes in one opera-
tion: it both declares and initializes a variable. Based on the type information on the
right side of the operator, the short variable declaration operator can determine the
type for the variable.

 Since we’re creating and initializing a struct type, we use a struct literal to perform
the initialization. The struct literal takes the form of curly brackets with the initiali-
zation declared within them.

13 user{
14 name: "Lisa",
15 email: "lisa@email.com",
16 ext: 123,
17 privileged: true,
18 }

The struct literal can take on two forms for a struct type. Listing 5.4 shows the first
form, which is to declare each field and value from the struct to be initialized on a
separate line. A colon is used to separate the two, and it requires a trailing comma.
The order of the fields doesn’t matter. The second form is without the field names
and just declares the values.

12 // Declare a variable of type user.
13 lisa := user{"Lisa", "lisa@email.com", 123, true}

Listing 5.3 Declaration of a variable of the struct type using a struct literal

Listing 5.4 Creating a struct type value using a struct literal

Listing 5.5 Creating a struct type value without declaring the field names
Licensed to Mark Watson <nordickan@gmail.com>

91User-defined types
The values can also be placed on separate lines, but traditionally values are placed on
the same line with no trailing comma when using this form. The order of the values
does matter in this case and needs to match the order of the fields in the struct decla-
ration. When declaring a struct type, you’re not limited to just the built-in types. You
can also declare fields using other user-defined types.

20 // admin represents an admin user with privileges.
21 type admin struct {
22 person user
23 level string
24 }

Listing 5.6 shows a new struct type named admin. This struct type has a field named
person of type user, and then declares a second field named level of type string.
When creating a variable of a struct type that has a field like person, initializing the
type with a struct literal changes a little.

26 // Declare a variable of type admin.
27 fred := admin{
28 person: user{
29 name: "Lisa",
30 email: "lisa@email.com",
31 ext: 123,
32 privileged: true,
33 },
34 level: "super",
35 }

In order to initialize the person field, we need to create a value of type user. This is
exactly what we do on line 28 in listing 5.7. Using the struct literal form, a value of
type user is created and assigned to the person field.

 A second way to declare a user-defined type is by taking an existing type and using
it as the type specification for the new type. These types are great when you need a
new type that can be represented by an existing type. The standard library uses this
type declaration to create high-level functionality from the built-in types.

type Duration int64

Listing 5.8 shows the declaration of a type from the time package of the standard
library. Duration is a type that represents the duration of time down to the nano-
second. The type takes its representation from the built-in type int64. In the declara-
tion of Duration, we say that int64 is the base type of Duration. Even though int64 is

Listing 5.6 Declaring fields based on other struct types

Listing 5.7 Using struct literals to create values for fields

Listing 5.8 Declaration of a new type based on an int64
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 5 Go’s type system
acting at the base type, it doesn’t mean Go considered them to be the same. Duration
and int64 are two distinct and different types.

 To better clarify what this means, look at this small program that doesn’t compile.

01 package main
02
03 type Duration int64
04
05 func main() {
06 var dur Duration
07 dur = int64(1000)
08 }

The program in listing 5.9 declares a type on line 03 called Duration. Then on line
06, a variable named dur of type Duration is declared and set to its zero value. Then
on line 07, we write code that produces the following compiler error when the pro-
gram is built.

prog.go:7: cannot use int64(1000) (type int64) as type Duration
in assignment

The compiler is clear as to what the problem is. Values of type int64 can’t be used as
values of type Duration. In other words, even though type int64 is the base type for
Duration, Duration is still its own unique type. Values of two different types can’t be
assigned to each other, even if they’re compatible. The compiler doesn’t implicitly
convert values of different types.

5.2 Methods
Methods provide a way to add behavior to user-defined types. Methods are really func-
tions that contain an extra parameter that’s declared between the keyword func and
the function name.

01 // Sample program to show how to declare methods and how the Go
02 // compiler supports them.
03 package main
04
05 import (
06 "fmt"
07)
08
09 // user defines a user in the program.
10 type user struct {
11 name string

Listing 5.9 Compiler error assigning value of different types

Listing 5.10 Actual compiler error

Listing 5.11 listing11.go
Licensed to Mark Watson <nordickan@gmail.com>

93Methods
12 email string
13 }
14
15 // notify implements a method with a value receiver.
16 func (u user) notify() {
17 fmt.Printf("Sending User Email To %s<%s>\n",
18 u.name,
19 u.email)
20 }
21
22 // changeEmail implements a method with a pointer receiver.
23 func (u *user) changeEmail(email string) {
24 u.email = email
25 }
26
27 // main is the entry point for the application.
28 func main() {
29 // Values of type user can be used to call methods
30 // declared with a value receiver.
31 bill := user{"Bill", "bill@email.com"}
32 bill.notify()
33
34 // Pointers of type user can also be used to call methods
35 // declared with a value receiver.
36 lisa := &user{"Lisa", "lisa@email.com"}
37 lisa.notify()
38
39 // Values of type user can be used to call methods
40 // declared with a pointer receiver.
41 bill.changeEmail("bill@newdomain.com")
42 bill.notify()
43
44 // Pointers of type user can be used to call methods
45 // declared with a pointer receiver.
46 lisa.changeEmail("lisa@comcast.com")
47 lisa.notify()
48 }

Lines 16 and 23 of listing 5.11 show two different methods. The parameter between
the keyword func and the function name is called a receiver and binds the function to
the specified type. When a function has a receiver, that function is called a method.
When you run the program, you get the following output.

Sending User Email To Bill<bill@email.com>
Sending User Email To Lisa<lisa@email.com>
Sending User Email To Bill<bill@newdomain.com>
Sending User Email To Lisa<lisa@comcast.com>

Let’s examine what the program is doing. On line 10, the program declares a struct
type named user and then declares a method named notify.

Listing 5.12 Output for listing11.go
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 5 Go’s type system

09 // user defines a user in the program.
10 type user struct {
11 name string
12 email string
13 }
14
15 // notify implements a method with a value receiver.
16 func (u user) notify() {
17 fmt.Printf("Sending User Email To %s<%s>\n",
18 u.name,
19 u.email)
20 }

There are two types of receivers in Go: value receivers and pointer receivers. In listing
5.13 on line 16, the notify method is declared with a value receiver.

func (u user) notify() {

The receiver for notify is declared as a value of type user. When you declare a method
using a value receiver, the method will always be operating against a copy of the value
used to make the method call. Let’s skip to line 32 of the program in listing 5.11 to see
a method call on notify.

29 // Values of type user can be used to call methods
30 // declared with a value receiver.
31 bill := user{"Bill", "bill@email.com"}
32 bill.notify()

Listing 5.15 shows a call to the notify method using a value of type user. On line 31,
a variable named bill of type user is declared and initialized with a name and email
address. Then on line 32, the notify method is called using the variable bill.

bill.notify()

The syntax looks similar to when you call a function from a package. In this case how-
ever, bill is not a package name but a variable name. When we call the notify
method in this case, the value of bill is the receiver value for the call and the notify
method is operating on a copy of this value.

 You can also call methods that are declared with a value receiver using a pointer.

Listing 5.13 listing11.go: lines 09–20

Listing 5.14 Declaration of a method with a value receiver

Listing 5.15 listing11.go: lines 29–32

Listing 5.16 Calling a method from a variable
Licensed to Mark Watson <nordickan@gmail.com>

95Methods

34 // Pointers of type user can also be used to call methods
35 // declared with a value receiver.
36 lisa := &user{"Lisa", "lisa@email.com"}
37 lisa.notify()

Listing 5.17 shows a call to the notify method using a pointer of type user. On line
36, a variable named lisa of pointer type user is declared and initialized with a name
and email address. Then on line 37, the notify method is called using the pointer
variable. To support the method call, Go adjusts the pointer value to comply with the
method’s receiver. You can imagine that Go is performing the following operation.

(*lisa).notify()

Listing 5.18 shows essentially what the Go compiler is doing to support the method
call. The pointer value is dereferenced so the method call is in compliance with the
value receiver. Once again, notify is operating against a copy, but this time a copy of
the value that the lisa pointer points to.

 You can also declare methods with pointer receivers.

22 // changeEmail implements a method with a pointer receiver.
23 func (u *user) changeEmail(email string) {
24 u.email = email
25 }

Listing 5.19 shows the declaration of the changeEmail method, which is declared with
a pointer receiver. This time, the receiver is not a value of type user but a pointer of
type user. When you call a method declared with a pointer receiver, the value used to
make the call is shared with the method.

36 lisa := &user{"Lisa", "lisa@email.com"}

44 // Pointers of type user can be used to call methods
45 // declared with a pointer receiver.
46 lisa.changeEmail("lisa@newdomain.com")

In listing 5.20 you see the declaration of the lisa pointer variable followed by the
method call to changeEmail on line 46. Once the call to changeEmail returns, any
changes to the value that the lisa pointer points to will be reflected after the call.
This is thanks to the pointer receiver. Value receivers operate on a copy of the value
used to make the method call and pointer receivers operate on the actual value.

Listing 5.17 listing11.go: lines 34–37

Listing 5.18 What Go is doing underneath the code

Listing 5.19 listing11.go: lines 22–25

Listing 5.20 listing11.go: lines 36, 44–46
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 5 Go’s type system
 You can also call methods that are declared with a pointer receiver using a value.

31 bill := user{"Bill", "bill@email.com"}

39 // Values of type user can be used to call methods
40 // declared with a pointer receiver.
41 bill.changeEmail("bill@newdomain.com")

In listing 5.21, you see the declaration of the variable bill and then a call to the
changeEmail method, which is declared with a pointer receiver. Once again, Go
adjusts the value to comply with the method’s receiver to support the call.

(&bill).notify()

Listing 5.22 shows essentially what the Go compiler is doing to support the method
call. In this case, the value is referenced so the method call is in compliance with the
receiver type. This is a great convenience Go provides, allowing method calls with val-
ues and pointers that don’t match a method’s receiver type natively.

 Determining whether to use a value or pointer receiver can sometimes be confus-
ing. There are some basic guidelines you can follow that come directly from the stan-
dard library.

5.3 The nature of types
After declaring a new type, try to answer this question before declaring methods for
the type. Does adding or removing something from a value of this type need to create
a new value or mutate the existing one? If the answer is create a new value, then use
value receivers for your methods. If the answer is mutate the value, then use pointer
receivers. This also applies to how values of this type should be passed to other parts of
your program. It’s important to be consistent. The idea is to not focus on what the
method is doing with the value, but to focus on what the nature of the value is.

5.3.1 Built-in types

Built-in types are the set of types that are provided by the language. We know them as
the set of numeric, string, and Boolean types. These types have a primitive nature to
them. Because of this, when adding or removing something from a value of one of
these types, a new value should be created. Based on this, when passing values of these
types to functions and methods, a copy of the value should be passed. Let’s look at a
function from the standard library that works with built-in values.

Listing 5.21 listing11.go: line 31

Listing 5.22 What Go is doing underneath the code
Licensed to Mark Watson <nordickan@gmail.com>

97The nature of types

620 func Trim(s string, cutset string) string {
621 if s == "" || cutset == "" {
622 return s
623 }
624 return TrimFunc(s, makeCutsetFunc(cutset))
625 }

In listing 5.23, you see the Trim function, which comes from the strings package in
the standard library. The Trim function is passed a string value to operate on and a
string value with characters to find. It then returns a new string value that’s the result
of the operation. The function operates on copies of the caller’s original string values
and returns a copy of the new string value. Strings, just like integers, floats, and Bool-
eans, are primitive data values and should be copied when passed in and out of func-
tions or methods.

 Let’s look at a second example of how the built-in types are treated as having a
primitive nature.

38 func isShellSpecialVar(c uint8) bool {
39 switch c {
40 case '*', '#', '$', '@', '!', '?', '0', '1', '2', '3', '4', '5',

'6', '7', '8', '9':
41 return true
42 }
43 return false
44 }

Listing 5.24 shows the isShellSpecialVar function from the env package. This func-
tion is passed a value of type uint8 and returns a value of type bool. Note how point-
ers aren’t being used to share the value for the parameter or return value. The caller
passes a copy of their uint8 value and receives a value of true or false.

5.3.2 Reference types

Reference types in Go are the set of slice, map, channel, interface, and function types.
When you declare a variable from one of these types, the value that’s created is called
a header value. Technically, a string is also a reference type value. All the different
header values from the different reference types contain a pointer to an underlying
data structure. Each reference type also contains a set of unique fields that are used to
manage the underlying data structure. You never share reference type values because
the header value is designed to be copied. The header value contains a pointer; there-
fore, you can pass a copy of any reference type value and share the underlying data
structure intrinsically.

Listing 5.23 golang.org/src/strings/strings.go: lines 620–625

Listing 5.24 golang.org/src/os/env.go: lines 38–44
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 5 Go’s type system
 Let’s look at a type from the net package.

32 type IP []byte

Listing 5.25 shows a type called IP which is declared as a slice of bytes. Declaring a type
like this is useful when you want to declare behavior around a built-in or reference type.
The compiler will only let you declare methods for user-defined types that are named.

329 func (ip IP) MarshalText() ([]byte, error) {
330 if len(ip) == 0 {
331 return []byte(""), nil
332 }
333 if len(ip) != IPv4len && len(ip) != IPv6len {
334 return nil, errors.New("invalid IP address")
335 }
336 return []byte(ip.String()), nil
337 }

The MarshalText method in listing 5.26 has been declared using a value receiver of
type IP. A value receiver is exactly what you expect to see since you don’t share refer-
ence type values. This also applies to passing reference type values as parameters to
functions and methods.

318 // ipEmptyString is like ip.String except that it returns
319 // an empty string when ip is unset.
320 func ipEmptyString(ip IP) string {
321 if len(ip) == 0 {
322 return ""
323 }
324 return ip.String()
325 }

In listing 5.27 you see the ipEmptyString function. This function is passed a value of
the type IP. Once again, you can see how the caller’s reference type value for this
parameter is not shared with the function. The function is passed a copy of the caller’s
reference type value. This also applies to return values. In the end, reference type val-
ues are treated like primitive data values.

5.3.3 Struct types

Struct types can represent data values that could have either a primitive or nonprimi-
tive nature. When the decision is made that a struct type value should not be mutated
when something needs to be added or removed from the value, then it should follow
the guidelines for the built-in and reference types. Let’s start with looking at a struct
implemented by the standard library that has a primitive nature.

Listing 5.25 golang.org/src/net/ip.go: line 32

Listing 5.26 golang.org/src/net/ip.go: lines 329–337

Listing 5.27 golang.org/src/net/ip.go: lines 318–325
Licensed to Mark Watson <nordickan@gmail.com>

99The nature of types

39 type Time struct {
40 // sec gives the number of seconds elapsed since
41 // January 1, year 1 00:00:00 UTC.
42 sec int64
43
44 // nsec specifies a non-negative nanosecond
45 // offset within the second named by Seconds.
46 // It must be in the range [0, 999999999].
47 nsec int32
48
49 // loc specifies the Location that should be used to
50 // determine the minute, hour, month, day, and year
51 // that correspond to this Time.
52 // Only the zero Time has a nil Location.
53 // In that case it is interpreted to mean UTC.
54 loc *Location
55 }

The Time struct in listing 5.28 comes from the time package. When you think about
time, you realize that any given point in time is not something that can change. This is
exactly how the standard library implements the Time type. Let’s look at the Now func-
tion that creates values of type Time.

781 func Now() Time {
782 sec, nsec := now()
783 return Time{sec + unixToInternal, nsec, Local}
784 }

The code in listing 5.29 shows the implementation of the Now function. This function
creates a value of type Time and returns a copy of that Time value back to the caller. A
pointer is not used to share the Time value created by the function. Next, let’s look at
a method declared against the Time type.

610 func (t Time) Add(d Duration) Time {
611 t.sec += int64(d / 1e9)
612 nsec := int32(t.nsec) + int32(d%1e9)
613 if nsec >= 1e9 {
614 t.sec++
615 nsec -= 1e9
616 } else if nsec < 0 {
617 t.sec--
618 nsec += 1e9
619 }
620 t.nsec = nsec
621 return t
622 }

Listing 5.28 golang.org/src/time/time.go: lines 39–55

Listing 5.29 golang.org/src/time/time.go: lines 781–784

Listing 5.30 golang.org/src/time/time.go: lines 610–622
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 5 Go’s type system
The method Add in listing 5.30 is a great example of how the standard library treats
the Time type as having a primitive nature. The method is declared using a value
receiver and returns a new Time value. The method is operating on its own copy of the
caller’s Time value and returns a copy of its local Time value back to the caller. It’s up
to the caller whether they want to replace their Time value with what’s returned or
declare a new Time variable to hold the result.

 In most cases, struct types don’t exhibit a primitive nature, but a nonprimitive one.
In these cases, adding or removing something from the value of the type should
mutate the value. When this is the case, you want to use a pointer to share the value
with the rest of the program that needs it. Let’s take a look at a struct type imple-
mented by the standard library that has a nonprimitive nature.

15 // File represents an open file descriptor.
16 type File struct {
17 *file
18 }
19
20 // file is the real representation of *File.
21 // The extra level of indirection ensures that no clients of os
22 // can overwrite this data, which could cause the finalizer
23 // to close the wrong file descriptor.
24 type file struct {
25 fd int
26 name string
27 dirinfo *dirInfo // nil unless directory being read
28 nepipe int32 // number of consecutive EPIPE in Write
29 }

In listing 5.31 you see the declaration of the File type from the standard library. The
nature of this type is nonprimitive. Values of this type are actually unsafe to be copied.
The comments for the unexported type make this clear. Since there’s no way to pre-
vent programmers from making copies, the implementation of the File type uses an
embedded pointer of an unexported type. We’ll talk about embedding types later in
this chapter, but this extra level of indirection provides protection from copies. Not
every struct type requires or should be implemented with this extra protection. Pro-
grammers should respect the nature of each type and use it accordingly.

 Let’s look at the implementation of the Open function.

238 func Open(name string) (file *File, err error) {
239 return OpenFile(name, O_RDONLY, 0)
240 }

The implementation of the Open function in listing 5.32 shows how a pointer is used
to share File type values with the caller of the function. Open creates a value of type

Listing 5.31 golang.org/src/os/file_unix.go: lines 15–29

Listing 5.32 golang.org/src/os/file.go: lines 238–240
Licensed to Mark Watson <nordickan@gmail.com>

101Interfaces
File and returns a pointer to that value. When a factory function returns a pointer,
it’s a good indication that the nature of the value being returned is nonprimitive.

 Even if a function or method is never going to directly change the state of a
nonprimitive value, it should still be shared.

224 func (f *File) Chdir() error {
225 if f == nil {
226 return ErrInvalid
227 }
228 if e := syscall.Fchdir(f.fd); e != nil {
229 return &PathError{"chdir", f.name, e}
230 }
231 return nil
232 }

The Chdir method in listing 5.33 shows how a pointer receiver is declared even
though no changes are made to the receiver value. Since values of type File have a
nonprimitive nature, they’re always shared and never copied.

 The decision to use a value or pointer receiver should not be based on whether the
method is mutating the receiving value. The decision should be based on the nature
of the type. One exception to this guideline is when you need the flexibility that value
type receivers provide when working with interface values. In these cases, you may
choose to use a value receiver even though the nature of the type is nonprimitive. It’s
entirely based on the mechanics behind how interface values call methods for the val-
ues stored inside of them. In the next section, you’ll learn about what interface values
are and the mechanics behind using them to call methods.

5.4 Interfaces
Polymorphism is the ability to write code that can take on different behavior through
the implementation of types. Once a type implements an interface, an entire world of
functionality can be opened up to values of that type. The standard library is a great
example of this. The io package provides an incredible set of interfaces and functions
that make streaming data easy to apply to our code. Just by implementing two inter-
faces, we can take advantage of all the engineering behind the io package.

 But a lot of details go into declaring and implementing interfaces for use in our
own programs. Even the implementation of existing interfaces requires an under-
standing of how interfaces work. Before we get into the details of how interfaces work
and how to implement them, let’s look at a quick example of the use of interfaces
from the standard library.

Listing 5.33 golang.org/src/os/file.go: lines 224–232
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 5 Go’s type system
5.4.1 Standard library

Let’s start by looking at a sample program that implements a version of a popular pro-
gram named curl.

01 // Sample program to show how to write a simple version of curl using
02 // the io.Reader and io.Writer interface support.
03 package main
04
05 import (
06 "fmt"
07 "io"
08 "net/http"
09 "os"
10)
11
12 // init is called before main.
13 func init() {
14 if len(os.Args) != 2 {
15 fmt.Println("Usage: ./example2 <url>")
16 os.Exit(-1)
17 }
18 }
19
20 // main is the entry point for the application.
21 func main() {
22 // Get a response from the web server.
23 r, err := http.Get(os.Args[1])
24 if err != nil {
25 fmt.Println(err)
26 return
27 }
28
29 // Copies from the Body to Stdout.
30 io.Copy(os.Stdout, r.Body)
31 if err := r.Body.Close(); err != nil {
32 fmt.Println(err)
33 }
34 }

Listing 5.34 shows the power of interfaces and their use in the standard library. In a
few lines of code, we have a curl program by leveraging two functions that work with
interface values. On line 23, we call the Get function from the http package. The
http.Get function returns a pointer of type http.Request after it successfully com-
municates with the server. The http.Request type contains a field named Body, which
is an interface value of type io.ReadCloser.

 On line 30, the Body field is passed into the io.Copy function as the second param-
eter. The io.Copy function accepts values of interface type io.Reader for its second
parameter, and this value represents a source of data to stream from. Luckily, the Body
field implements the io.Reader interface, so we can pass the Body field into io.Copy
and use a web server as our source.

Listing 5.34 listing34.go
Licensed to Mark Watson <nordickan@gmail.com>

103Interfaces
 The first parameter for io.Copy represents the destination and must be a value
that implements the io.Writer interface. For our destination, we pass a special inter-
face value from the os package called Stdout. This interface value represents the stan-
dard out device and already implements the io.Writer interface. When we pass the
Body and Stdout values to the io.Copy function, the function streams data from the
web server to the terminal window in small chunks. Once the last chunk is read and
written, the io.Copy function returns.

 The io.Copy function can perform this work flow for many different types that
already exist in the standard library.

01 // Sample program to show how a bytes.Buffer can also be used
02 // with the io.Copy function.
03 package main
04
05 import (
06 "bytes"
07 "fmt"
08 "io"
09 "os"
10)
11
12 // main is the entry point for the application.
13 func main() {
14 var b bytes.Buffer
15
16 // Write a string to the buffer.
17 b.Write([]byte("Hello"))
18
19 // Use Fprintf to concatenate a string to the Buffer.
20 fmt.Fprintf(&b, "World!")
21
22 // Write the content of the Buffer to stdout.
23 io.Copy(os.Stdout, &b)
24 }

Listing 5.35 shows a program that uses interfaces to concatenate and then stream data
to standard out. On line 14, a variable of type Buffer from the bytes package is cre-
ated, and then the Write method is used on line 17 to add the string Hello to the buf-
fer. On line 20, the Fprintf function from the fmt package is called to append a
second string to the buffer.

 The fmt.Fprintf function accepts an interface value of type io.Writer as its first
parameter. Since pointers of type bytes.Buffer implement the io.Writer interface,
it can be passed in and the fmt.Fprintf function performs the concatenation. Finally,
on line 23 the io.Copy function is used once again to write characters to the terminal
window. Since pointers of type bytes.Buffer also implement the io.Reader inter-
face, the io.Copy function can be used to display the contents of the buffer to the ter-
minal window.

Listing 5.35 listing35.go
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 5 Go’s type system
 These two small examples hopefully show you some of the benefits of interfaces
and how they’re used in the standard library. Next, let’s explore in greater detail how
interfaces are implemented.

5.4.2 Implementation

Interfaces are types that just declare behavior. This behavior is never implemented by
the interface type directly but instead by user-defined types via methods. When a user-
defined type implements the set of methods declared by an interface type, values of
the user-defined type can be assigned to values of the interface type. This assignment
stores the value of the user-defined type into the interface value.

 If a method call is made against an interface value, the equivalent method for the
stored user-defined value is executed. Since any user-defined type can implement any
interface, method calls against an interface value are polymorphic in nature. The user-
defined type in this relationship is often called a concrete type, since interface values have
no concrete behavior without the implementation of the stored user-defined value.

 There are rules around whether values or pointers of a user-defined type satisfy the
implementation of an interface. Not all values are created equal. These rules come
from the specification under the section called method sets. Before you begin to
investigate the details of method sets, it helps to understand what interface type values
look like and how user-defined type values are stored inside them.

 In figure 5.1 you see what the value of the interface variable looks like after the
assignment of the user type value. Interface values are two-word data structures. The
first word contains a pointer to an internal table called an iTable, which contains type
information about the stored value. The iTable contains the type of value that has
been stored and a list of methods associated with the value. The second word is a
pointer to the stored value. The combination of type information and pointer binds
the relationship between the two values.

 Figure 5.2 shows what happens when a pointer is assigned to an interface value.
In this case, the type information will reflect that a pointer of the assigned type has
been stored, and the address being assigned is stored in the second word of the
interface value.

Address
iTable

Address
user

Type(user)

User Method set

notifier
Interface value iTable

Stored value

var n notifier
n = user{"Bill"}

Figure 5.1 A simple view of an
interface value after concrete
type value assignment
Licensed to Mark Watson <nordickan@gmail.com>

105Interfaces
5.4.3 Method sets

Method sets define the rules around interface compliance. Take a look at the following
code to help you understand how method sets play an important role with interfaces.

01 // Sample program to show how to use an interface in Go.
02 package main
03
04 import (
05 "fmt"
06)
07
08 // notifier is an interface that defined notification
09 // type behavior.
10 type notifier interface {
11 notify()
12 }
13
14 // user defines a user in the program.
15 type user struct {
16 name string
17 email string
18 }
19
20 // notify implements a method with a pointer receiver.
21 func (u *user) notify() {
22 fmt.Printf("Sending user email to %s<%s>\n",
23 u.name,
24 u.email)
25 }
26
27 // main is the entry point for the application.
28 func main() {
29 // Create a value of type User and send a notification.
30 u := user{"Bill", "bill@email.com"}
31
32 sendNotification(u)
33

Listing 5.36 listing36.go

Address
iTable

Address
user

Type(*user)

User Method set

notifier
Interface value iTable

Stored value

var n notifier
n = &user{"Bill"}

Figure 5.2 A simple view of an
interface value after concrete
type pointer assignment
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 5 Go’s type system
34 // ./listing36.go:32: cannot use u (type user) as type
35 // notifier in argument to sendNotification:
36 // user does not implement notifier
37 // (notify method has pointer receiver)
38 }
39
40 // sendNotification accepts values that implement the notifier
41 // interface and sends notifications.
42 func sendNotification(n notifier) {
43 n.notify()
44 }

In listing 5.36 you see code that you would expect to compile, but it doesn’t. On line
10, we declare an interface named notifier with a single method named notify.
Then on line 15, we have the declaration of our concrete type named user and the
implementation of the notifier interface via the method declaration on line 21. The
method is implemented with a pointer receiver of type user.

40 // sendNotification accepts values that implement the notifier
41 // interface and sends notifications.
42 func sendNotification(n notifier) {
43 n.notify()
44 }

On line 42 in listing 5.37, a function named sendNotification is declared and
accepts a single value of the interface type notifier. Then the interface value is used
to call the notify method against the stored value. Any value that implements the
notifier interface can be passed into the sendNotification function. Now let’s look
at the main function.

28 func main() {
29 // Create a value of type User and send a notification.
30 u := user{"Bill", "bill@email.com"}
31
32 sendNotification(u)
33
34 // ./listing36.go:32: cannot use u (type user) as type
35 // notifier in argument to sendNotification:
36 // user does not implement notifier
37 // (notify method has pointer receiver)
38 }

In the main function, a value of the concrete type user is created and assigned to
the variable u on line 30 in listing 5.38. Then the value of u is passed to the send-
Notification function on line 32. But the call to sendNotification results in a com-
piler error.

Listing 5.37 listing36.go: lines 40–44

Listing 5.38 listing36.go: lines 28–38
Licensed to Mark Watson <nordickan@gmail.com>

107Interfaces

./listing36.go:32: cannot use u (type user) as type
notifier in argument to sendNotification:

user does not implement notifier (notify method has pointer receiver)

So why do we receive a compiler error when the user type implements the notify
method on line 21? Let’s take a look at that code again.

08 // notifier is an interface that defined notification
09 // type behavior.
10 type notifier interface {
11 notify()
12 }

21 func (u *user) notify() {
22 fmt.Printf("Sending user email to %s<%s>\n",
23 u.name,
24 u.email)
25 }

Listing 5.40 shows how the interface has been implemented, yet the compiler tells us
that a value of type user doesn’t implement the interface. If you look closer at the
compiler message, it actually tells us why.

(notify method has pointer receiver)

To understand why values of type user don’t implement the interface when an inter-
face is implemented with a pointer receiver, you need to understand what method sets
are. Method sets define the set of methods that are associated with values or pointers
of a given type. The type of receiver used will determine whether a method is associ-
ated with a value, pointer, or both.

 Let’s start with explaining the rules for method sets as it’s documented by the Go
specification.

Values Methods Receivers

T (t T)
*T (t T) and (t *T)

Listing 5.42 shows how the specification describes method sets. It says that a value of
type T only has methods declared that have a value receiver, as part of its method set.
But pointers of type T have methods declared with both value and pointer receivers, as

Listing 5.39 Compiler error storing a value of type user to the interface value

Listing 5.40 listing36.go: lines 08–12, 21–25

Listing 5.41 Closer look at compiler error

Listing 5.42 Method sets as described by the specification
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 5 Go’s type system
part of its method set. Looking at these rules from the perspective of the value is con-
fusing. Let’s look at these rules from the perspective of the receiver.

Methods Receivers Values

(t T) T and *T
(t *T) *T

Listing 5.43 shows the same rules, but from the perspective of the receiver. It says that
if you implement an interface using a pointer receiver, then only pointers of that type
implement the interface. If you implement an interface using a value receiver, then
both values and pointers of that type implement the interface. If you look at the code
in listing 5.36 again, you now have the context to understand the compiler error.

28 func main() {
29 // Create a value of type User and send a notification.
30 u := user{"Bill", "bill@email.com"}
31
32 sendNotification(u)
33
34 // ./listing36.go:32: cannot use u (type user) as type
35 // notifier in argument to sendNotification:
36 // user does not implement notifier
37 // (notify method has pointer receiver)
38 }

We implemented the interface using a pointer receiver and attempted to pass a value
of type user to the sendNotification function. Lines 30 and 32 in listing 5.44 show
this clearly. But if we pass the address of the user value instead, you’ll see that it now
compiles and works.

28 func main() {
29 // Create a value of type User and send a notification.
30 u := user{"Bill", "bill@email.com"}
31
32 sendNotification(&u)
33
34 // PASSED THE ADDRESS AND NO MORE ERROR.
35 }

In listing 5.45, we now have a program that compiles and runs. Only pointers of type
user can be passed to the sendNotification function, since a pointer receiver was
used to implement the interface.

Listing 5.43 Method sets from the perspective of the receiver type

Listing 5.44 listing36.go: lines 28–38

Listing 5.45 listing36.go: lines 28–35
Licensed to Mark Watson <nordickan@gmail.com>

109Interfaces
 The question now is why the restriction? The answer comes from the fact that it’s
not always possible to get the address of a value.

01 // Sample program to show how you can't always get the
02 // address of a value.
03 package main
04
05 import "fmt"
06
07 // duration is a type with a base type of int.
08 type duration int
09
10 // format pretty-prints the duration value.
11 func (d *duration) pretty() string {
12 return fmt.Sprintf("Duration: %d", *d)
13 }
14
15 // main is the entry point for the application.
16 func main() {
17 duration(42).pretty()
18
19 // ./listing46.go:17: cannot call pointer method on duration(42)
20 // ./listing46.go:17: cannot take the address of duration(42)
21 }

The code in listing 5.46 attempts to get the address of a value of type duration and
can’t. This shows that it’s not always possible to get the address of a value. Let’s look at
the method set rules again.

Values Methods Receivers

T (t T)
*T (t T) and (t *T)

Methods Receivers Values

(t T) T and *T
(t *T) *T

Because it’s not always possible to get the address of a value, the method set for a value
only includes methods that are implemented with a value receiver.

5.4.4 Polymorphism

Now that you understand the mechanics behind interfaces and method sets, let’s look
at one final example that shows the polymorphic behavior of interfaces.

Listing 5.46 listing46.go

Listing 5.47 Second look at the method set rules
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 5 Go’s type system

01 // Sample program to show how polymorphic behavior with interfaces.
02 package main
03
04 import (
05 "fmt"
06)
07
08 // notifier is an interface that defines notification
09 // type behavior.
10 type notifier interface {
11 notify()
12 }
13
14 // user defines a user in the program.
15 type user struct {
16 name string
17 email string
18 }
19
20 // notify implements the notifier interface with a pointer receiver.
21 func (u *user) notify() {
22 fmt.Printf("Sending user email to %s<%s>\n",
23 u.name,
24 u.email)
25 }
26
27 // admin defines a admin in the program.
28 type admin struct {
29 name string
30 email string
31 }
32
33 // notify implements the notifier interface with a pointer receiver.
34 func (a *admin) notify() {
35 fmt.Printf("Sending admin email to %s<%s>\n",
36 a.name,
37 a.email)
38 }
39
40 // main is the entry point for the application.
41 func main() {
42 // Create a user value and pass it to sendNotification.
43 bill := user{"Bill", "bill@email.com"}
44 sendNotification(&bill)
45
46 // Create an admin value and pass it to sendNotification.
47 lisa := admin{"Lisa", "lisa@email.com"}
48 sendNotification(&lisa)
49 }
50
51 // sendNotification accepts values that implement the notifier
52 // interface and sends notifications.

Listing 5.48 listing48.go
Licensed to Mark Watson <nordickan@gmail.com>

111Type embedding
53 func sendNotification(n notifier) {
54 n.notify()
55 }

In listing 5.48, we have a final example of how interfaces provide polymorphic behav-
ior. On line 10, we have the same notifier interface that we declared in previous list-
ings. Then on lines 15 through 25, we have the declaration of a struct named user
with the implementation of the notifier interface using a pointer receiver. On lines
28 through 38, we have the declaration of a struct named admin with the implementa-
tion of the notifier interface as well. We have two concrete types implementing the
notifier interface.

 On line 53, we have our polymorphic sendNotification function again that
accepts values that implement the notifier interface. Since any concrete type value
can implement the interface, this function can execute the notify method for any
concrete type value that’s passed in, thus providing polymorphic behavior.

40 // main is the entry point for the application.
41 func main() {
42 // Create a user value and pass it to sendNotification.
43 bill := user{"Bill", "bill@email.com"}
44 sendNotification(&bill)
45
46 // Create an admin value and pass it to sendNotification.
47 lisa := admin{"Lisa", "lisa@email.com"}
48 sendNotification(&lisa)
49 }

Finally, in listing 5.49 you see it all come together. A value of type user is created on
line 43 in the main function, and then the address of that value is passed into send-
Notification on line 44. This causes the notify method declared by the user type to
be executed. Then we do the same with a value of type admin on lines 47 and 48. In
the end, because sendNotification accepts interface values of type notifier, the
function can execute the behavior implemented by both user and admin.

5.5 Type embedding
Go allows you to take existing types and both extend and change their behavior. This
capability is important for code reuse and for changing the behavior of an existing
type to suit a new need. This is accomplished through type embedding. It works by
taking an existing type and declaring that type within the declaration of a new struct
type. The type that is embedded is then called an inner type of the new outer type.

 Through inner type promotion, identifiers from the inner type are promoted up
to the outer type. These promoted identifiers become part of the outer type as if they
were declared explicitly by the type itself. The outer type is then composed of every-
thing the inner type contains, and new fields and methods can be added. The outer

Listing 5.49 listing48.go: lines 40–49
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 5 Go’s type system
type can also declare the same identifiers as the inner type and override any fields or
methods it needs to. This is how an existing type can be both extended and changed.

 Let’s start with a sample program that shows the basics of type embedding.

01 // Sample program to show how to embed a type into another type and
02 // the relationship between the inner and outer type.
03 package main
04
05 import (
06 "fmt"
07)
08
09 // user defines a user in the program.
10 type user struct {
11 name string
12 email string
13 }
14
15 // notify implements a method that can be called via
16 // a value of type user.
17 func (u *user) notify() {
18 fmt.Printf("Sending user email to %s<%s>\n",
19 u.name,
20 u.email)
21 }
22
23 // admin represents an admin user with privileges.
24 type admin struct {
25 user // Embedded Type
26 level string
27 }
28
29 // main is the entry point for the application.
30 func main() {
31 // Create an admin user.
32 ad := admin{
33 user: user{
34 name: "john smith",
35 email: "john@yahoo.com",
36 },
37 level: "super",
38 }
39
40 // We can access the inner type's method directly.
41 ad.user.notify()
42
43 // The inner type's method is promoted.
44 ad.notify()
45 }

Listing 5.50 listing50.go
Licensed to Mark Watson <nordickan@gmail.com>

113Type embedding
In listing 5.50, we have a program that shows how to embed a type and access the
embedded identifiers. We start with the declaration of two struct types on lines 10
and 24.

09 // user defines a user in the program.
10 type user struct {
11 name string
12 email string
13 }

23 // admin represents an admin user with privileges.
24 type admin struct {
25 user // Embedded Type
26 level string
27 }

On line 10 in listing 5.51, we have the declaration of a struct type named user, and
then on line 24 we have the declaration of a second struct type named admin. Inside
the declaration of the admin type on line 25, we have the embedding of the user type
as an inner type of admin. To embed a type, all that needs to happen is for the type
name to be declared. One line 26, we have the declaration of a field named level.
Notice the difference between declaring a field and embedding a type.

 Once we embed the user type inside of admin, we can say that user is an inner type
of the outer type admin. The concept of having an inner and outer type makes it easier
to understand the relationship between the two.

15 // notify implements a method that can be called via
16 // a value of type user.
17 func (u *user) notify() {
18 fmt.Printf("Sending user email to %s<%s>\n",
19 u.name,
20 u.email)
21 }

Listing 5.52 shows the declaration of a method named notify using a pointer receiver
of type user. The method just displays a friendly message stating an email is being sent
to a specific user and email address. Now let’s look at the main function.

30 func main() {
31 // Create an admin user.
32 ad := admin{
33 user: user{
34 name: "john smith",
35 email: "john@yahoo.com",
36 },

Listing 5.51 listing50.go: lines 09–13, 23–27

Listing 5.52 listing50.go: lines 15–21

Listing 5.53 listing50.go: lines 30–45
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 5 Go’s type system
37 level: "super",
38 }
39
40 // We can access the inner type's method directly.
41 ad.user.notify()
42
43 // The inner type's method is promoted.
44 ad.notify()
45 }

The main function in listing 5.53 shows the mechanics behind type embedding. On
line 32, a value of type admin is created. The initialization of the inner type is per-
formed using a struct literal, and to access the inner type we just need to use the type’s
name. Something special about an inner type is that it always exists in and of itself.
This means the inner type never loses its identity and can always be accessed directly.

40 // We can access the inner type's method directly.
41 ad.user.notify()

On line 41 in listing 5.54, you see a call to the notify method. This call is made by access-
ing the user inner type directly through the admin outer type variable ad. This shows
how the inner type exists in and of itself and is always accessible. But thanks to inner type
promotion, the notify method can also be accessed directly from the ad variable.

43 // The inner type's method is promoted.
44 ad.notify()
45 }

Listing 5.55 on line 44 shows the method call to notify from the outer type variable.
Since the identifiers of the inner type are promoted up to the outer type, we can
access the inner type's identifiers through values of the outer type. Let’s change the
sample by adding an interface.

01 // Sample program to show how embedded types work with interfaces.
02 package main
03
04 import (
05 "fmt"
06)
07
08 // notifier is an interface that defined notification
09 // type behavior.
10 type notifier interface {
11 notify()

Listing 5.54 listing50.go: lines 40–41

Listing 5.55 listing50.go: lines 43–45

Listing 5.56 listing56.go
Licensed to Mark Watson <nordickan@gmail.com>

115Type embedding
12 }
13
14 // user defines a user in the program.
15 type user struct {
16 name string
17 email string
18 }
19
20 // notify implements a method that can be called via
21 // a value of type user.
22 func (u *user) notify() {
23 fmt.Printf("Sending user email to %s<%s>\n",
24 u.name,
25 u.email)
26 }
27
28 // admin represents an admin user with privileges.
29 type admin struct {
30 user
31 level string
32 }
33
34 // main is the entry point for the application.
35 func main() {
36 // Create an admin user.
37 ad := admin{
38 user: user{
39 name: "john smith",
40 email: "john@yahoo.com",
41 },
42 level: "super",
43 }
44
45 // Send the admin user a notification.
46 // The embedded inner type's implementation of the
47 // interface is "promoted" to the outer type.
48 sendNotification(&ad)
49 }
50
51 // sendNotification accepts values that implement the notifier
52 // interface and sends notifications.
53 func sendNotification(n notifier) {
54 n.notify()
55 }

The sample code in listing 5.56 uses the same code from before but with a few
changes.

08 // notifier is an interface that defined notification
09 // type behavior.
10 type notifier interface {
11 notify()
12 }

Listing 5.57 listing56.go: lines 08–12, 51–55
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 5 Go’s type system
51 // sendNotification accepts values that implement the notifier
52 // interface and sends notifications.
53 func sendNotification(n notifier) {
54 n.notify()
55 }

On line 08 in listing 5.57, we have the declaration of the notifier interface. Then on
line 53, we have the sendNotification function that accepts an interface value of
type notifier. We know from the code before that the user type has declared a
method named notify that implements the notifier interface with a pointer
receiver. Therefore, we can move on to the changes made to the main function.

35 func main() {
36 // Create an admin user.
37 ad := admin{
38 user: user{
39 name: "john smith",
40 email: "john@yahoo.com",
41 },
42 level: "super",
43 }
44
45 // Send the admin user a notification.
46 // The embedded inner type's implementation of the
47 // interface is "promoted" to the outer type.
48 sendNotification(&ad)
49 }

This is where things get interesting. On line 37 in listing 5.58, we create the admin
outer type variable ad. Then on line 48, we pass the address of the outer type variable
to the sendNotification function. The compiler accepts the assignment of the outer
type pointer as a value that implements the notifier interface. But if you look at the
entire sample program, you won’t see the admin type implement the interface.

 Thanks to inner type promotion, the implementation of the interface by the inner
type has been promoted up to the outer type. That means the outer type now imple-
ments the interface, thanks to the inner type’s implementation. When we run this
sample program, we get the following output.

Output:
Sending user email to john smith<john@yahoo.com>

20 // notify implements a method that can be called via
21 // a value of type user.
22 func (u *user) notify() {
23 fmt.Printf("Sending user email to %s<%s>\n",
24 u.name,
25 u.email)
26 }

Listing 5.58 listing56.go: lines 35–49

Listing 5.59 Output for listing56.go
Licensed to Mark Watson <nordickan@gmail.com>

117Type embedding
You can see in listing 5.59 that the inner type’s implementation of the interface was
called.

 What if the outer type doesn’t want to use the inner type’s implementation because
it needs an implementation of its own? Let’s look at another sample program that
solves that problem.

01 // Sample program to show what happens when the outer and inner
02 // types implement the same interface.
03 package main
04
05 import (
06 "fmt"
07)
08
09 // notifier is an interface that defined notification
10 // type behavior.
11 type notifier interface {
12 notify()
13 }
14
15 // user defines a user in the program.
16 type user struct {
17 name string
18 email string
19 }
20
21 // notify implements a method that can be called via
22 // a value of type user.
23 func (u *user) notify() {
24 fmt.Printf("Sending user email to %s<%s>\n",
25 u.name,
26 u.email)
27 }
28
29 // admin represents an admin user with privileges.
30 type admin struct {
31 user
32 level string
33 }
34
35 // notify implements a method that can be called via
36 // a value of type admin.
37 func (a *admin) notify() {
38 fmt.Printf("Sending admin email to %s<%s>\n",
39 a.name,
40 a.email)
41 }
42
43 // main is the entry point for the application.
44 func main() {
45 // Create an admin user.

Listing 5.60 listing60.go
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 5 Go’s type system
46 ad := admin{
47 user: user{
48 name: "john smith",
49 email: "john@yahoo.com",
50 },
51 level: "super",
52 }
53
54 // Send the admin user a notification.
55 // The embedded inner type's implementation of the
56 // interface is NOT "promoted" to the outer type.
57 sendNotification(&ad)
58
59 // We can access the inner type's method directly.
60 ad.user.notify()
61
62 // The inner type's method is NOT promoted.
63 ad.notify()
64 }
65
66 // sendNotification accepts values that implement the notifier
67 // interface and sends notifications.
68 func sendNotification(n notifier) {
69 n.notify()
70 }

The sample code in listing 5.60 uses the same code from before, but with a few more
changes.

35 // notify implements a method that can be called via
36 // a value of type admin.
37 func (a *admin) notify() {
38 fmt.Printf("Sending admin email to %s<%s>\n",
39 a.name,
40 a.email)
41 }

This code sample adds an implementation of the notifier interface by the admin type.
When the admin type’s implementation is called, it will display "Sending admin email"
as opposed to the user type’s implementation that displays "Sending user email".

 There are some more changes to the main function as well.

43 // main is the entry point for the application.
44 func main() {
45 // Create an admin user.
46 ad := admin{
47 user: user{
48 name: "john smith",
49 email: "john@yahoo.com",

Listing 5.61 listing60.go: lines 35–41

Listing 5.62 listing60.go: lines 43–64
Licensed to Mark Watson <nordickan@gmail.com>

119Exporting and unexporting identifiers
50 },
51 level: "super",
52 }
53
54 // Send the admin user a notification.
55 // The embedded inner type's implementation of the
56 // interface is NOT "promoted" to the outer type.
57 sendNotification(&ad)
58
59 // We can access the inner type's method directly.
60 ad.user.notify()
61
62 // The inner type's method is NOT promoted.
63 ad.notify()
64 }

On line 46 in listing 5.62, we have the creation of the outer type ad variable again.
On line 57 the address of the ad variable is passed to the sendNotification function,
and the value is accepted as implementing the interface. On line 60 the code calls
the notify method from accessing the user inner type directly. Finally, on line 63 the
notify method is called using the outer type variable ad. When you look at the out-
put of this sample program, you see a different story.

Sending Admin Email To john smith<john@yahoo.com>
Sending user email to john smith<john@yahoo.com>
Sending admin email to john smith<john@yahoo.com>

This time you see how the admin type’s implementation of the notifier interface
was executed both by the sendNotification function and through the use of the
outer type variable ad. This shows how the inner type’s implementation was not pro-
moted once the outer type implemented the notify method. But the inner type is
always there, in and of itself, so the code is still able to call the inner type’s imple-
mentation directly.

5.6 Exporting and unexporting identifiers
The ability to apply visibility rules to the identifiers you declare is critical for good API
design. Go supports the exporting and unexporting of identifiers from a package to
provide this functionality. In chapter 3, we talked about packaging and how to import
the identifiers from one package into another. Sometimes, you may not want identifi-
ers such as types, functions, or methods to be a part of the public API for a package. In
these cases, you need a way to declare those identifiers so they’re unknown outside
the package. You need to declare them to be unexported.

 Let’s start with a sample program that shows how to unexport identifiers from a
package.

Listing 5.63 Output for listing60.go
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 5 Go’s type system

counters/counters.go

01 // Package counters provides alert counter support.
02 package counters
03
04 // alertCounter is an unexported type that
05 // contains an integer counter for alerts.
06 type alertCounter int

listing64.go

01 // Sample program to show how the program can't access an
02 // unexported identifier from another package.
03 package main
04
05 import (
06 "fmt"
07
08 "github.com/goinaction/code/chapter5/listing64/counters"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 // Create a variable of the unexported type and initialize
14 // the value to 10.
15 counter := counters.alertCounter(10)
16
17 // ./listing64.go:15: cannot refer to unexported name
18 // counters.alertCounter
19 // ./listing64.go:15: undefined: counters.alertCounter
20
21 fmt.Printf("Counter: %d\n", counter)
22 }

In this example we have two code files. One is named counters.go and lives inside its
own package named counters. The second code file is named listing64.go and is
importing the counters package. Let’s start with the code inside the counters package.

01 // Package counters provides alert counter support.
02 package counters
03
04 // alertCounter is an unexported type that
05 // contains an integer counter for alerts.
06 type alertCounter int

Listing 5.65 isolates the code for just the counters package. The first thing you should
notice is on line 02. Up until now, all the code samples have used package main, but
here you see package counters. When you’re writing code that will live in its own

Listing 5.64 listing64/

Listing 5.65 counters/counters.go
Licensed to Mark Watson <nordickan@gmail.com>

121Exporting and unexporting identifiers
package, it’s good practice to name the package the same as the folder the code is in.
All the Go tooling expects this convention, so it’s a good practice to follow.

 In package counters, we’ve declared a single identifier named alertCounter on
line 06. This identifier is a type using int as its base type. An important aspect of this
identifier is that it has been unexported.

 When an identifier starts with a lowercase letter, the identifier is unexported or
unknown to code outside the package. When an identifier starts with an uppercase let-
ter, it’s exported or known to code outside the package. Let’s look at the code that
imports this package.

01 // Sample program to show how the program can't access an
02 // unexported identifier from another package.
03 package main
04
05 import (
06 "fmt"
07
08 "github.com/goinaction/code/chapter5/listing64/counters"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 // Create a variable of the unexported type and initialize
14 // the value to 10.
15 counter := counters.alertCounter(10)
16
17 // ./listing64.go:15: cannot refer to unexported name
18 // counters.alertCounter
19 // ./listing64.go:15: undefined: counters.alertCounter
20
21 fmt.Printf("Counter: %d\n", counter)
22 }

The code in listing64.go from listing 5.66 is declaring the main package on line 03,
and then on line 08 the counters package is imported. With the counters package
imported, we move to the main function and line 15.

13 // Create a variable of the unexported type and initialize
14 // the value to 10.
15 counter := counters.alertCounter(10)
16
17 // ./listing64.go:15: cannot refer to unexported name
18 // counters.alertCounter
19 // ./listing64.go:15: undefined: counters.alertCounter

On line 15 in listing 5.67, the code attempts to create a value of the unexported type
alertCounter. But this code produces a compiler error that states that the code at

Listing 5.66 listing64.go

Listing 5.67 listing64.go: lines 13–19
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 Go’s type system
line 15 can’t refer to the unexported identifier counters.alertCounter. This identi-
fier is undefined.

 Since the alertCounter type from the counters package was declared using a low-
ercase letter, it was unexported and therefore unknown to the code in listing64.go. If
we change the type to start with a capital letter, then the compiler error will go away.
Let’s look at a new sample program that implements a factory function for the
counters package.

counters/counters.go

01 // Package counters provides alert counter support.
02 package counters
03
04 // alertCounter is an unexported type that
05 // contains an integer counter for alerts.
06 type alertCounter int
07
08 // New creates and returns values of the unexported
09 // type alertCounter
10 func New(value int) alertCounter {
11 return alertCounter(value)
12 }

listing68.go

01 // Sample program to show how the program can access a value
02 // of an unexported identifier from another package.
03 package main
04
05 import (
06 "fmt"
07
08 "github.com/goinaction/code/chapter5/listing68/counters"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 // Create a variable of the unexported type using the exported
14 // New function from the package counters.
15 counter := counters.New(10)
16
17 fmt.Printf("Counter: %d\n", counter)
18 }

This example has been changed to use a factory function to create values of the unex-
ported alertCounter type. Let’s look at the code in the counters package first.

Listing 5.68 listing68/
Licensed to Mark Watson <nordickan@gmail.com>

123Exporting and unexporting identifiers

01 // Package counters provides alert counter support.
02 package counters
03
04 // alertCounter is an unexported type that
05 // contains an integer counter for alerts.
06 type alertCounter int
07
08 // New creates and returns values of the unexported
09 // type alertCounter.
10 func New(value int) alertCounter {
11 return alertCounter(value)
12 }

Listing 5.69 shows the changes we made to the counters package. The alertCounter
type is still unexported, but now on line 10 we have a function called New. It’s a con-
vention in Go to give factory functions the name of New. This New function does some-
thing interesting: it creates a value of the unexported type and returns that value back
to the caller. Let’s look at the main function from listing68.go.

11 // main is the entry point for the application.
12 func main() {
13 // Create a variable of the unexported type using the exported
14 // New function from the package counters.
15 counter := counters.New(10)
16
17 fmt.Printf("Counter: %d\n", counter)
18 }

On line 15 in listing 5.70, you see a call to the New function from the counters pack-
age. The value returned by the New function is then assigned to a variable named
counter. This program compiles and runs, but why? The New function is returning a
value of the unexported type alertCounter, yet main is able to accept that value and
create a variable of the unexported type.

 This is possible for two reasons. First, identifiers are exported or unexported, not
values. Second, the short variable declaration operator is capable of inferring the type
and creating a variable of the unexported type. You can never explicitly create a vari-
able of an unexported type, but the short variable declaration operator can.

 Let’s look at a new sample program that shows how fields from a struct type are
affected by these visibility rules.

entities/entities.go

01 // Package entities contains support for types of
02 // people in the system.

Listing 5.69 counters/counters.go

Listing 5.70 listing68.go

Listing 5.71 listing71/
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Go’s type system
03 package entities
04
05 // User defines a user in the program.
06 type User struct {
07 Name string
08 email string
09 }

listing71.go

01 // Sample program to show how unexported fields from an exported
02 // struct type can't be accessed directly.
03 package main
04
05 import (
06 "fmt"
07
08 "github.com/goinaction/code/chapter5/listing71/entities"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 // Create a value of type User from the entities package.
14 u := entities.User{
15 Name: "Bill",
16 email: "bill@email.com",
17 }
18
19 // ./example69.go:16: unknown entities.User field 'email' in
20 // struct literal
21
22 fmt.Printf("User: %v\n", u)
23 }

The code in listing 5.71 changed things a bit. Now we have a package called entities
that declares a struct type named User.

01 // Package entities contains support for types of
02 // people in the system.
03 package entities
04
05 // User defines a user in the program.
06 type User struct {
07 Name string
08 email string
09 }

The User type on line 06 in listing 5.72 is declared to be exported. Two fields are
declared with the User type, an exported field named Name and an unexported field
named email. Let’s look at the code in listing71.go.

Listing 5.72 entities/entities.go
Licensed to Mark Watson <nordickan@gmail.com>

125Exporting and unexporting identifiers

01 // Sample program to show how unexported fields from an exported
02 // struct type can't be accessed directly.
03 package main
04
05 import (
06 "fmt"
07
08 "github.com/goinaction/code/chapter5/listing71/entities"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 // Create a value of type User from the entities package.
14 u := entities.User{
15 Name: "Bill",
16 email: "bill@email.com",
17 }
18
19 // ./example71.go:16: unknown entities.User field 'email' in
20 // struct literal
21
22 fmt.Printf("User: %v\n", u)
23 }

The entities package is imported on line 08 in listing 5.73. On line 14 a variable
named u of the exported type User from the entities package is declared and its
fields initialized. But there’s a problem. On line 16 the code attempts to initialize the
unexported field email, and the compiler complains the field is unknown. That iden-
tifier can’t be accessed outside the entities package, since it has been unexported.

 Let’s look at one final example to show how the exporting and unexporting of
embedded types work.

entities/entities.go

01 // Package entities contains support for types of
02 // people in the system.
03 package entities
04
05 // user defines a user in the program.
06 type user struct {
07 Name string
08 Email string
09 }
10
11 // Admin defines an admin in the program.
12 type Admin struct {
13 user // The embedded type is unexported.
14 Rights int
15 }

Listing 5.73 listing71.go

Listing 5.74 listing74/
Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 5 Go’s type system
listing74.go

01 // Sample program to show how unexported fields from an exported
02 // struct type can't be accessed directly.
03 package main
04
05 import (
06 "fmt"
07
08 "github.com/goinaction/code/chapter5/listing74/entities"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 // Create a value of type Admin from the entities package.
14 a := entities.Admin{
15 Rights: 10,
16 }
17
18 // Set the exported fields from the unexported
19 // inner type.
20 a.Name = "Bill"
21 a.Email = "bill@email.com"
22
23 fmt.Printf("User: %v\n", a)
24 }

Now, in listing 5.74 the entities package contains two struct types.

01 // Package entities contains support for types of
02 // people in the system.
03 package entities
04
05 // user defines a user in the program.
06 type user struct {
07 Name string
08 Email string
09 }
10
11 // Admin defines an admin in the program.
12 type Admin struct {
13 user // The embedded type is unexported.
14 Rights int
15 }

On line 06 in listing 5.75, an unexported struct type named user is declared. It con-
tains two exported fields named Name and Email. On line 12 an exported struct type
named Admin is declared. Admin has an exported field named Rights, but it also
embeds the unexported user type. Let’s look at the code in the main function for
listing74.go.

Listing 5.75 entities/entities.go
Licensed to Mark Watson <nordickan@gmail.com>

127Summary

11 // main is the entry point for the application.
12 func main() {
13 // Create a value of type Admin from the entities package.
14 a := entities.Admin{
15 Rights: 10,
16 }
17
18 // Set the exported fields from the unexported
19 // inner type.
20 a.Name = "Bill"
21 a.Email = "bill@email.com"
22
23 fmt.Printf("User: %v\n", a)
24 }

The main function starts out on line 14 in listing 5.76 by creating a value of type Admin
from the entities package. Since the user inner type is unexported, this code can’t
access the inner type to initialize it inside the struct literal. Even though the inner type
is unexported, the fields declared within the inner type are exported. Since the identi-
fiers from the inner type are promoted to the outer type, those exported fields are
known through a value of the outer type.

 Therefore, on line 20 and 21 the Name and Email fields from the unexported inner
type can be accessed and initialized through the outer type variable a. There’s no
access to the inner type directly, since the user type is unexported.

5.7 Summary
 User-defined types can be declared using the keyword struct or by specifying

an existing type.
 Methods provide a way to add behavior to user-defined types.
 Think of types as having one of two natures, primitive or non-primitive.
 Interfaces are types that declare behavior and provide polymorphism.
 Type embedding provides the ability to extend types without the need for

inheritance.
 Identifiers are either exported or unexported from packages.

Listing 5.76 listing74.go: lines 11–24
Licensed to Mark Watson <nordickan@gmail.com>

Concurrency
Often a program can be written as one linear path of code that performs a single
task and finishes. When this is possible, always choose this option, because this type
of program is usually simple to write and maintain. But there are times when exe-
cuting multiple tasks concurrently has greater benefit. One example is with a web
service that can receive multiple requests for data on individual sockets at the same
time. Each socket request is unique and can be independently processed from any
other. Having the ability to execute requests concurrently can dramatically improve
the performance of this type of system. With this in mind, support for concurrency
has been built directly into Go’s language and runtime.

 Concurrency in Go is the ability for functions to run independent of each other.
When a function is created as a goroutine, it’s treated as an independent unit of
work that gets scheduled and then executed on an available logical processor.
The Go runtime scheduler is a sophisticated piece of software that manages all
the goroutines that are created and need processor time. The scheduler sits on

In this chapter
 Running code with goroutines

 Detecting and fixing race conditions

 Sharing data with channels
128

Licensed to Mark Watson <nordickan@gmail.com>

129Concurrency versus parallelism
top of the operating system, binding operating system’s threads to logical processors
which, in turn, execute goroutines. The scheduler controls everything related to
which goroutines are running on which logical processors at any given time.

 Concurrency synchronization comes from a paradigm called communicating sequen-
tial processes or CSP. CSP is a message-passing model that works by communicating data
between goroutines instead of locking data to synchronize access. The key data type
for synchronizing and passing messages between goroutines is called a channel. For
many developers who have never experienced writing concurrent programs using
channels, they invoke an air of awe and excitement, which you hopefully will experi-
ence as well. Using channels makes it easier to write concurrent programs and makes
them less prone to errors.

6.1 Concurrency versus parallelism
Let’s start by learning at a high level what operating system processes and threads are.
This will help you understand later on how the Go runtime scheduler works with the
operating system to run goroutines concurrently. When you run an application, such
as an IDE or editor, the operating system starts a process for the application. You can
think of a process like a container that holds all the resources an application uses and
maintains as it runs.

 Figure 6.1 shows a process that contains common resources that may be allocated
by any process. These resources include but are not limited to a memory address
space, handles to files, devices, and threads. A thread is a path of execution that’s
scheduled by the operating system to run the code that you write in your functions.
Each process contains at least one thread, and the initial thread for each process is
called the main thread. When the main thread terminates, the application terminates,
because this path of the execution is the origin for the application. The operating sys-
tem schedules threads to run against processors regardless of the process they belong
to. The algorithms that different operating systems use to schedule threads are always
changing and abstracted from the programmer.

 The operating system schedules threads to run against physical processors and the
Go runtime schedules goroutines to run against logical processors. Each logical pro-
cessor is individually bound to a single operating system thread. As of version 1.5, the
default is to allocate a logical processor for every physical processor that’s available.
Prior to version 1.5, the default was to allocate only a single logical processor. These
logical processors are used to execute all the goroutines that are created. Even with a
single logical processor, hundreds of thousands of goroutines can be scheduled to run
concurrently with amazing efficiency and performance.

 In figure 6.2, you can see the relationship between an operating system thread, a
logical processor, and the local run queue. As goroutines are created and ready to
run, they’re placed in the scheduler’s global run queue. Soon after, they’re assigned
to a logical processor and placed into a local run queue for that logical processor.
From there, a goroutine waits its turn to be given the logical processor for execution.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

130 CHAPTER 6 Concurrency

Code Data

Memory

Files

Code Code Code Code Code

Main

Devices

OS

Handles

The process maintains a memory address space, handles to files, and
devices and threads for a running application. The OS scheduler
decides which threads will receive time on any given CPU.

File system

CPU CPU

Threads

OS scheduler

Figure 6.1 A simple view of a process and its threads for a running application

Blocked
G4

The Go runtime schedules goroutines
to run in a logical processor that is bound
to a single operating system thread. When
goroutines are runnable, they are added
to a logical processor's run queue.

When a goroutine makes a blocking
syscall, the scheduler will detach the
thread from the processor and create
a new thread to service that processor.

Running
G5

Running
G4

Processor
P0

G5

G6

Thread
M2

G7

Processor
P0

G6

G7

Thread
M3

Thread
M2

Figure 6.2 How the Go scheduler manages goroutines
Licensed to Mark Watson <nordickan@gmail.com>

131Concurrency versus parallelism
Sometimes a running goroutine may need to perform a blocking syscall, such as open-
ing a file. When this happens, the thread and goroutine are detached from the logical
processor and the thread continues to block waiting for the syscall to return. In the
meantime, there’s a logical processor without a thread. So the scheduler creates a new
thread and attaches it to the logical processor. Then the scheduler will choose
another goroutine from the local run queue for execution. Once the syscall returns,
the goroutine is placed back into a local run queue, and the thread is put aside for
future use.

 If a goroutine needs to make a network I/O call, the process is a bit different. In
this case, the goroutine is detached from the logical processor and moved to the run-
time integrated network poller. Once the poller indicates a read or write operation is
ready, the goroutine is assigned back to a logical processor to handle the operation.
There’s no restriction built into the scheduler for the number of logical processors
that can be created. But the runtime limits each program to a maximum of 10,000
threads by default. This value can be changed by calling the SetMaxThreads function
from the runtime/debug package. If any program attempts to use more threads, the
program crashes.

 Concurrency is not parallelism. Parallelism can only be achieved when multiple
pieces of code are executing simultaneously against different physical processors. Par-
allelism is about doing a lot of things at once. Concurrency is about managing a lot of
things at once. In many cases, concurrency can outperform parallelism, because the
strain on the operating system and hardware is much less, which allows the system to
do more. This less-is-more philosophy is a mantra of the language.

 If you want to run goroutines in parallel, you must use more than one logical pro-
cessor. When there are multiple logical processors, the scheduler will evenly distribute
goroutines between the logical processors. This will result in goroutines running on
different threads. But to have true parallelism, you still need to run your program on
a machine with multiple physical processors. If not, then the goroutines will be run-
ning concurrently against a single physical processor, even though the Go runtime is
using multiple threads.

 Figure 6.3 shows the difference between running goroutines concurrently against
a single logical processor and concurrently in parallel against two logical processors.
It’s not recommended to blindly change the runtime default for a logical processor.
The scheduler contains intelligent algorithms that are updated and improved with
every release of Go. If you’re seeing performance issues that you believe could be
resolved by changing the number of logical processors, you have the ability to do so.
You’ll learn more about this soon.
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 6 Concurrency

6.2 Goroutines
Let’s uncover more about the behavior of the scheduler and how to create goroutines
and manage their lifespan. We’ll start with samples that run using a single logical pro-
cessor before discussing how to run goroutines in parallel. Here’s a program that cre-
ates two goroutines that display the English alphabet with lower and uppercase letters
in a concurrent fashion.

01 // This sample program demonstrates how to create goroutines and
02 // how the scheduler behaves.
03 package main
04
05 import (
06 "fmt"
07 "runtime"
08 "sync"
09)
10
11 // main is the entry point for all Go programs.
12 func main() {
13 // Allocate 1 logical processor for the scheduler to use.
14 runtime.GOMAXPROCS(1)
15
16 // wg is used to wait for the program to finish.
17 // Add a count of two, one for each goroutine.
18 var wg sync.WaitGroup
19 wg.Add(2)
20
21 fmt.Println("Start Goroutines")
22

Listing 6.1 listing01.go

Processor
P0

G5

G6

Thread
M2

Concurrency

G7
G4

Processor
P0

G6

G8

Thread
M2

G10
G4

Processor
P1

G7

G9

Thread
M3

G5

Parallelism

Figure 6.3 Difference between concurrency and parallelism
Licensed to Mark Watson <nordickan@gmail.com>

133Goroutines
23 // Declare an anonymous function and create a goroutine.
24 go func() {
25 // Schedule the call to Done to tell main we are done.
26 defer wg.Done()
27
28 // Display the alphabet three times
29 for count := 0; count < 3; count++ {
30 for char := 'a'; char < 'a'+26; char++ {
31 fmt.Printf("%c ", char)
32 }
33 }
34 }()
35
36 // Declare an anonymous function and create a goroutine.
37 go func() {
38 // Schedule the call to Done to tell main we are done.
39 defer wg.Done()
40
41 // Display the alphabet three times
42 for count := 0; count < 3; count++ {
43 for char := 'A'; char < 'A'+26; char++ {
44 fmt.Printf("%c ", char)
45 }
46 }
47 }()
48
49 // Wait for the goroutines to finish.
50 fmt.Println("Waiting To Finish")
51 wg.Wait()
52
53 fmt.Println("\nTerminating Program")
54 }

In listing 6.1 on line 14, you see a call to the GOMAXPROCS function from the runtime
package. This is the function that allows the program to change the number of logical
processors to be used by the scheduler. There’s also an environmental variable that
can be set with the same name if we don't want to make this call specifically in our
code. By passing the value of 1, we tell the scheduler to use a single logical processor
for this program.

 On lines 24 and 37, we declare two anonymous functions that display the English
alphabet. The function on line 24 displays the alphabet with lowercase letters and the
function on line 37 displays the alphabet with uppercase letters. Both of these func-
tions are created as goroutines by using the keyword go. You can see by the output in
listing 6.2 that the code inside each goroutine is running concurrently within a single
logical processor.

Create Goroutines
Waiting To Finish
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Listing 6.2 Output for listing01.go
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 6 Concurrency
a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m
n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z
Terminating Program

The amount of time it takes the first goroutine to finish displaying the alphabet is so
small that it can complete its work before the scheduler swaps it out for the second
goroutine. This is why you see the entire alphabet in capital letters first and then in
lowercase letters second. The two goroutines we created ran concurrently, one after
the other, performing their individual task of displaying the alphabet.

 Once the two anonymous functions are created as goroutines, the code in main
keeps running. This means that the main function can return before the goroutines
complete their work. If this happens, the program will terminate before the gorou-
tines have a chance to run. On line 51, the main function therefore waits for both
goroutines to complete their work by using a WaitGroup.

16 // wg is used to wait for the program to finish.
17 // Add a count of two, one for each goroutine.
18 var wg sync.WaitGroup
19 wg.Add(2)

23 // Declare an anonymous function and create a goroutine.
24 go func() {
25 // Schedule the call to Done to tell main we are done.
26 defer wg.Done()

49 // Wait for the goroutines to finish.
50 fmt.Println("Waiting To Finish")
51 wg.Wait()

A WaitGroup is a counting semaphore that can be used to maintain a record of run-
ning goroutines. When the value of a WaitGroup is greater than zero, the Wait
method will block. On line 18 a variable of type WaitGroup is created, and then on
line 19 we set the value of the WaitGroup to 2, noting two running goroutines. To dec-
rement the value of the WaitGroup and eventually release the main function, calls to
the Done method on lines 26 and 39 are made within the scope of a defer statement.

 The keyword defer is used to schedule other functions from inside the executing
function to be called when the function returns. In the case of our sample program,
we use the keyword defer to guarantee that the method call to Done is made once
each goroutine is finished with its work.

 Based on the internal algorithms of the scheduler, a running goroutine can be
stopped and rescheduled to run again before it finishes its work. The scheduler does
this to prevent any single goroutine from holding the logical processor hostage. It will
stop the currently running goroutine and give another runnable goroutine a chance
to run.

 Figure 6.4 shows this scenario from a logical processor point of view. In step 1 the
scheduler begins to execute goroutine A while goroutine B waits for its turn in the

Listing 6.3 listing01.go: lines 17–19, 23–26, 49–51
Licensed to Mark Watson <nordickan@gmail.com>

135Goroutines
run queue. Then, suddenly in step 2, the scheduler swaps out goroutine A for gorou-
tine B. Since goroutine A doesn’t finish, it’s placed back into the run queue. Then, in
step 3 goroutine B completes its work and it’s gone. This allows goroutine A to get
back to work.

 You can see this behavior by creating a goroutine that requires a longer amount of
time to complete its work.

01 // This sample program demonstrates how the goroutine scheduler
02 // will time slice goroutines on a single thread.
03 package main
04
05 import (
06 "fmt"
07 "runtime"
08 "sync"
09)
10
11 // wg is used to wait for the program to finish.
12 var wg sync.WaitGroup
13
14 // main is the entry point for all Go programs.
15 func main() {
16 // Allocate 1 logical processors for the scheduler to use.
17 runtime.GOMAXPROCS(1)
18
19 // Add a count of two, one for each goroutine.
20 wg.Add(2)
21
22 // Create two goroutines.
23 fmt.Println("Create Goroutines")

Listing 6.4 listing04.go

Processor
P0

G5
“B”

Thread
M2

Step 1

Running
G4
“A”

Processor
P0

G4
“A”

Thread
M2

Step 2

Running
G5
“B”

Processor
P0

Thread
M2

Step 3

Running
G4
“A”

Figure 6.4 Goroutines being swapped on and off the logical processor’s thread
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 6 Concurrency
24 go printPrime("A")
25 go printPrime("B")
26
27 // Wait for the goroutines to finish.
28 fmt.Println("Waiting To Finish")
29 wg.Wait()
30
31 fmt.Println("Terminating Program")
32 }
33
34 // printPrime displays prime numbers for the first 5000 numbers.
35 func printPrime(prefix string) {
36 // Schedule the call to Done to tell main we are done.
37 defer wg.Done()
38
39 next:
40 for outer := 2; outer < 5000; outer++ {
41 for inner := 2; inner < outer; inner++ {
42 if outer%inner == 0 {
43 continue next
44 }
45 }
46 fmt.Printf("%s:%d\n", prefix, outer)
47 }
48 fmt.Println("Completed", prefix)
49 }

The program in listing 6.4 creates two goroutines that print any prime numbers
between 1 and 5,000 that can be found. Finding and displaying the prime numbers
take a bit of time and will cause the scheduler to time-slice the first running goroutine
before it finishes finding all the prime numbers it’s looking for.

 When the program starts, it declares a WaitGroup variable on line 12 and then sets
the value of the WaitGroup to 2 on line 20. Two goroutines are created on lines 24 and
25 by specifying the name of the function printPrime after the keyword go. The first
goroutine is given the prefix A and the second goroutine is given the prefix B. Like
any calling function, parameters can be passed into the function being created as a
goroutine. Return parameters aren’t available when the goroutine terminates. When
you look at the output in listing 6.5, you can see the swapping of the first goroutine by
the scheduler.

Create Goroutines
Waiting To Finish
B:2
B:3
...
B:4583
B:4591
A:3 ** Goroutines Swapped
A:5
...

Listing 6.5 Output for listing04.go
Licensed to Mark Watson <nordickan@gmail.com>

137Goroutines
A:4561
A:4567
B:4603 ** Goroutines Swapped
B:4621
...
Completed B
A:4457 ** Goroutines Swapped
A:4463
...
A:4993
A:4999
Completed A
Terminating Program

Goroutine B begins to display prime numbers first. Once goroutine B prints prime
number 4591, the scheduler swaps out the goroutine for goroutine A. Goroutine A is
then given some time on the thread and swapped out for the B goroutine once again.
The B goroutine is allowed to finish all its work. Once goroutine B returns, you see
that goroutine A is given back the thread to finish its work. Every time you run this
program, the scheduler will slightly change the point where the time slice occurs.

 Both example programs in listings 6.1 and 6.4 have shown how the scheduler runs
goroutines concurrently within a single logical processor. As stated earlier, the Go
standard library has a function called GOMAXPROCS in the runtime package that allows
you to specify the number of logical processors to be used by the scheduler. This is
how you can change the runtime to allocate a logical processor for every available
physical processor. The next listing will have our goroutines running in parallel.

import "runtime"

// Allocate a logical processor for every available core.
runtime.GOMAXPROCS(runtime.NumCPU())

The runtime package provides support for changing Go runtime configuration
parameters. In listing 6.6, we use two runtime functions to change the number of log-
ical processors for the scheduler to use. The NumCPU function returns the number of
physical processors that are available; therefore, the function call to GOMAXPROCS cre-
ates a logical processor for each available physical processor. It’s important to note
that using more than one logical processor doesn’t necessarily mean better perfor-
mance. Benchmarking is required to understand how your program performs when
changing any runtime configuration parameters.

 If we give the scheduler more than one logical processor to use, we’ll see different
behavior in the output of our example programs. Let’s change the number of logical
processors to 2 and rerun the first example that printed the English alphabet.

Listing 6.6 How to change the number of logical processors
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 6 Concurrency

01 // This sample program demonstrates how to create goroutines and
02 // how the goroutine scheduler behaves with two logical processors.
03 package main
04
05 import (
06 "fmt"
07 "runtime"
08 "sync"
09)
10
11 // main is the entry point for all Go programs.
12 func main() {
13 // Allocate two logical processors for the scheduler to use.
14 runtime.GOMAXPROCS(2)
15
16 // wg is used to wait for the program to finish.
17 // Add a count of two, one for each goroutine.
18 var wg sync.WaitGroup
19 wg.Add(2)
20
21 fmt.Println("Start Goroutines")
22
23 // Declare an anonymous function and create a goroutine.
24 go func() {
25 // Schedule the call to Done to tell main we are done.
26 defer wg.Done()
27
28 // Display the alphabet three times.
29 for count := 0; count < 3; count++ {
30 for char := 'a'; char < 'a'+26; char++ {
31 fmt.Printf("%c ", char)
32 }
33 }
34 }()
35
36 // Declare an anonymous function and create a goroutine.
37 go func() {
38 // Schedule the call to Done to tell main we are done.
39 defer wg.Done()
40
41 // Display the alphabet three times.
42 for count := 0; count < 3; count++ {
43 for char := 'A'; char < 'A'+26; char++ {
44 fmt.Printf("%c ", char)
45 }
46 }
47 }()
48
49 // Wait for the goroutines to finish.
50 fmt.Println("Waiting To Finish")
51 wg.Wait()
52
53 fmt.Println("\nTerminating Program")
54 }

Listing 6.7 listing07.go
Licensed to Mark Watson <nordickan@gmail.com>

139Race conditions
The example in listing 6.7 creates two logical processors with the call to the GOMAX-
PROCS function on line 14. This will allow the goroutines to be run in parallel.

Create Goroutines
Waiting To Finish
A B C a D E b F c G d H e I f J g K h L i M j N k O l P m Q n R o S p T
q U r V s W t X u Y v Z w A x B y C z D a E b F c G d H e I f J g K h L
i M j N k O l P m Q n R o S p T q U r V s W t X u Y v Z w A x B y C z D
a E b F c G d H e I f J g K h L i M j N k O l P m Q n R o S p T q U r V
s W t X u Y v Z w x y z
Terminating Program

If you look closely at the output in listing 6.8, you’ll see that the goroutines are run-
ning in parallel. Almost immediately, both goroutines start running, and the letters in
the display are mixed. The output is based on running the program on an eight-core
machine, so each goroutine is running on its own core. Remember that goroutines
can only run in parallel if there’s more than one logical processor and there’s a physi-
cal processor available to run each goroutine simultaneously.

 You now know how to create goroutines and understand what’s happening under
the hood. Next you need to understand the potential dangers and the things to look
out for when writing concurrent programs.

6.3 Race conditions
When two or more goroutines have unsynchronized access to a shared resource and
attempt to read and write to that resource at the same time, you have what’s called a
race condition. Race conditions are the reason concurrent programming is compli-
cated and has a greater potential for bugs. Read and write operations against a
shared resource must always be atomic, or in other words, done by only one gorou-
tine at a time.

 Here’s an example program that contains a race condition.

01 // This sample program demonstrates how to create race
02 // conditions in our programs. We don't want to do this.
03 package main
04
05 import (
06 "fmt"
07 "runtime"
08 "sync"
09)
10
11 var (
12 // counter is a variable incremented by all goroutines.
13 counter int
14
15 // wg is used to wait for the program to finish.

Listing 6.8 Output for listing07.go

Listing 6.9 listing09.go
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 6 Concurrency
16 wg sync.WaitGroup
17)
18
19 // main is the entry point for all Go programs.
20 func main() {
21 // Add a count of two, one for each goroutine.
22 wg.Add(2)
23
24 // Create two goroutines.
25 go incCounter(1)
26 go incCounter(2)
27
28 // Wait for the goroutines to finish.
29 wg.Wait()
30 fmt.Println("Final Counter:", counter)
31 }
32
33 // incCounter increments the package level counter variable.
34 func incCounter(id int) {
35 // Schedule the call to Done to tell main we are done.
36 defer wg.Done()
37
38 for count := 0; count < 2; count++ {
39 // Capture the value of Counter.
40 value := counter
41
42 // Yield the thread and be placed back in queue.
43 runtime.Gosched()
44
45 // Increment our local value of Counter.
46 value++
47
48 // Store the value back into Counter.
49 counter = value
50 }
51 }

Final Counter: 2

The counter variable is read and written to four times, twice by each goroutine, but
the value of the counter variable when the program terminates is 2. Figure 6.5 pro-
vides a clue as to why this is happening.

 Each goroutine overwrites the work of the other. This happens when the goroutine
swap is taking place. Each goroutine makes its own copy of the counter variable and
then is swapped out for the other goroutine. When the goroutine is given time to exe-
cute again, the value of the counter variable has changed, but the goroutine doesn’t
update its copy. Instead it continues to increment the copy it has and set the value
back to the counter variable, replacing the work the other goroutine performed.

 Let’s walk through the code to understand what it’s doing. Two goroutines are
created from the function incCounter, which can be seen on lines 25 and 26. The

Listing 6.10 Output for listing09.go
Licensed to Mark Watson <nordickan@gmail.com>

141Race conditions
incCounter function on line 34 reads and writes to the package variable counter,
which is our shared resource in this example. Both goroutines start reading and stor-
ing a copy of the counter variable into a local variable called value on line 40. Then,
on line 46 they increment their copy of value by one and finally assign the new value
back into the counter variable on line 49. The function contains a call to the Gosched
function from the runtime package on line 43 to yield the thread and give the other
goroutine a chance to run. This is being done in the middle of the operation to force
the scheduler to swap between the two goroutines to exaggerate the effects of the
race condition.

 Go has a special tool that can detect race conditions in your code. It’s extremely
useful to find these types of bugs, especially when they’re not as obvious as our exam-
ple. Let’s run the race detector against our example code.

go build -race // Build the code using the race detector flag
./example // Run the code

==================
WARNING: DATA RACE
Write by goroutine 5:

Listing 6.11 Building and running listing09 with the race detector

Read counter
0

Counter
0

incCounter(1) incCounter(2)

Yield thread
0

Counter
0

Read counter
0

Inc counter
1

Yield thread
0

Write counter
1

Counter
1

Inc counter
1

Counter
1

Write counter
1

Read counter
1

Counter
1

Yield thread
1

Counter
1

Read counter
1

Inc counter
2

Yield thread
1

Write counter
2

Counter
2

Inc counter
2

Counter
2

Write counter
2 Figure 6.5 Visual of the race

condition in action
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 6 Concurrency
main.incCounter()
/example/main.go:49 +0x96

Previous read by goroutine 6:
main.incCounter()

/example/main.go:40 +0x66

Goroutine 5 (running) created at:
main.main()

/example/main.go:25 +0x5c

Goroutine 6 (running) created at:
main.main()

/example/main.go:26 +0x73
==================
Final Counter: 2
Found 1 data race(s)

The race detector in listing 6.11 has pointed out the following four lines of code from
our example.

Line 49: counter = value
Line 40: value := counter
Line 25: go incCounter(1)
Line 26: go incCounter(2)

Listing 6.12 shows that the race detector has told us which goroutine is causing the
data race and which two lines of code are in conflict. It’s not surprising that the code
that’s pointed out is reading from and writing to the counter variable.

 One way we can fix our example and eliminate the race condition is by using the
support Go has for synchronizing goroutines by locking down shared resources.

6.4 Locking shared resources
Go provides traditional support to synchronize goroutines by locking access to shared
resources. If you need to serialize access to an integer variable or a block of code, then
the functions in the atomic and sync packages may be a good solution. We’ll look at a
few of the atomic package functions and the mutex type from the sync package.

6.4.1 Atomic functions

Atomic functions provide low-level locking mechanisms for synchronizing access to
integers and pointers. We can use atomic functions to fix the race condition we cre-
ated in listing 6.9.

01 // This sample program demonstrates how to use the atomic
02 // package to provide safe access to numeric types.
03 package main

Listing 6.12 Lines of code called out by the race detector

Listing 6.13 listing13.go
Licensed to Mark Watson <nordickan@gmail.com>

143Locking shared resources
04
05 import (
06 "fmt"
07 "runtime"
08 "sync"
09 "sync/atomic"
10)
11
12 var (
13 // counter is a variable incremented by all goroutines.
14 counter int64
15
16 // wg is used to wait for the program to finish.
17 wg sync.WaitGroup
18)
19
20 // main is the entry point for all Go programs.
21 func main() {
22 // Add a count of two, one for each goroutine.
23 wg.Add(2)
24
25 // Create two goroutines.
26 go incCounter(1)
27 go incCounter(2)
28
29 // Wait for the goroutines to finish.
30 wg.Wait()
31
32 // Display the final value.
33 fmt.Println("Final Counter:", counter)
34 }
35
36 // incCounter increments the package level counter variable.
37 func incCounter(id int) {
38 // Schedule the call to Done to tell main we are done.
39 defer wg.Done()
40
41 for count := 0; count < 2; count++ {
42 // Safely Add One To Counter.
43 atomic.AddInt64(&counter, 1)
44
45 // Yield the thread and be placed back in queue.
46 runtime.Gosched()
47 }
48 }

Final Counter: 4

On line 43 the program is now using the AddInt64 function from the atomic package.
This function synchronizes the adding of integer values by enforcing that only one
goroutine can perform and complete this add operation at a time. When goroutines

Listing 6.14 Output for listing13.go
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 6 Concurrency
attempt to call any atomic function, they’re automatically synchronized against the
variable that’s referenced. Now we get the correct value of 4.

 Two other useful atomic functions are LoadInt64 and StoreInt64. These func-
tions provide a safe way to read and write to an integer value. Here’s an example using
LoadInt64 and StoreInt64 to create a synchronous flag that can alert multiple gorou-
tines of a special condition in a program.

01 // This sample program demonstrates how to use the atomic
02 // package functions Store and Load to provide safe access
03 // to numeric types.
04 package main
05
06 import (
07 "fmt"
08 "sync"
09 "sync/atomic"
10 "time"
11)
12
13 var (
14 // shutdown is a flag to alert running goroutines to shutdown.
15 shutdown int64
16
17 // wg is used to wait for the program to finish.
18 wg sync.WaitGroup
19)
20
21 // main is the entry point for all Go programs.
22 func main() {
23 // Add a count of two, one for each goroutine.
24 wg.Add(2)
25
26 // Create two goroutines.
27 go doWork("A")
28 go doWork("B")
29
30 // Give the goroutines time to run.
31 time.Sleep(1 * time.Second)
32
33 // Safely flag it is time to shutdown.
34 fmt.Println("Shutdown Now")
35 atomic.StoreInt64(&shutdown, 1)
36
37 // Wait for the goroutines to finish.
38 wg.Wait()
39 }
40
41 // doWork simulates a goroutine performing work and
42 // checking the Shutdown flag to terminate early.
43 func doWork(name string) {
44 // Schedule the call to Done to tell main we are done.

Listing 6.15 listing15.go
Licensed to Mark Watson <nordickan@gmail.com>

145Locking shared resources
45 defer wg.Done()
46
47 for {
48 fmt.Printf("Doing %s Work\n", name)
49 time.Sleep(250 * time.Millisecond)
50
51 // Do we need to shutdown.
52 if atomic.LoadInt64(&shutdown) == 1 {
53 fmt.Printf("Shutting %s Down\n", name)
54 break
55 }
56 }
57 }

In this example two goroutines are launched and begin to perform some work. After
every iteration of their respective loop, the goroutines check the value of the shut-
down variable by using the LoadInt64 function on line 52. This function returns a safe
copy of the shutdown variable. If the value equals 1, the goroutine breaks out of the
loop and terminates.

 The main function uses the StoreInt64 function on line 35 to safely change the
value of the shutdown variable. If any of the doWork goroutines attempt to call the
LoadInt64 function at the same time as the main function calls StoreInt64, the
atomic functions will synchronize the calls and keep all the operations safe and race
condition–free.

6.4.2 Mutexes

Another way to synchronize access to a shared resource is by using a mutex. A mutex is
named after the concept of mutual exclusion. A mutex is used to create a critical
section around code that ensures only one goroutine at a time can execute that code
section. We can also use a mutex to fix the race condition we created in listing 6.9.

01 // This sample program demonstrates how to use a mutex
02 // to define critical sections of code that need synchronous
03 // access.
04 package main
05
06 import (
07 "fmt"
08 "runtime"
09 "sync"
10)
11
12 var (
13 // counter is a variable incremented by all goroutines.
14 counter int
15
16 // wg is used to wait for the program to finish.
17 wg sync.WaitGroup

Listing 6.16 listing16.go
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 6 Concurrency
18
19 // mutex is used to define a critical section of code.
20 mutex sync.Mutex
21)
22
23 // main is the entry point for all Go programs.
24 func main() {
25 // Add a count of two, one for each goroutine.
26 wg.Add(2)
27
28 // Create two goroutines.
29 go incCounter(1)
30 go incCounter(2)
31
32 // Wait for the goroutines to finish.
33 wg.Wait()
34 fmt.Printf("Final Counter: %d\\n", counter)
35 }
36
37 // incCounter increments the package level Counter variable
38 // using the Mutex to synchronize and provide safe access.
39 func incCounter(id int) {
40 // Schedule the call to Done to tell main we are done.
41 defer wg.Done()
42
43 for count := 0; count < 2; count++ {
44 // Only allow one goroutine through this
45 // critical section at a time.
46 mutex.Lock()
47 {
48 // Capture the value of counter.
49 value := counter
50
51 // Yield the thread and be placed back in queue.
52 runtime.Gosched()
53
54 // Increment our local value of counter.
55 value++
56
57 // Store the value back into counter.
58 counter = value
59 }
60 mutex.Unlock()
61 // Release the lock and allow any
62 // waiting goroutine through.
63 }
64 }

The operations against the counter variable are now protected within a critical sec-
tion defined by the calls to Lock() and Unlock() on lines 46 and 60. The use of the
curly brackets is just to make the critical section easier to see; they’re not necessary.
Only one goroutine can enter the critical section at a time. Not until the call to the
Unlock() function is made can another goroutine enter the critical section. When the
thread is yielded on line 52, the scheduler assigns the same goroutine to continue
Licensed to Mark Watson <nordickan@gmail.com>

147Channels
running. After the program completes, we get the correct value of 4 and the race con-
dition no longer exists.

6.5 Channels
Atomic functions and mutexes work, but they don’t make writing concurrent pro-
grams easier, less error-prone, or fun. In Go you don’t have only atomic functions and
mutexes to keep shared resources safe and eliminate race conditions. You also have
channels that synchronize goroutines as they send and receive the resources they
need to share between each other.

 When a resource needs to be shared between goroutines, channels act as a conduit
between the goroutines and provide a mechanism that guarantees a synchronous
exchange. When declaring a channel, the type of data that will be shared needs to be
specified. Values and pointers of built-in, named, struct, and reference types can be
shared through a channel.

 Creating a channel in Go requires the use of the built-in function make.

// Unbuffered channel of integers.
unbuffered := make(chan int)

// Buffered channel of strings.
buffered := make(chan string, 10)

In listing 6.17 you see the use of the built-in function make to create both an unbuf-
fered and buffered channel. The first argument to make requires the keyword chan and
then the type of data the channel will allow to be exchanged. If you’re creating a buff-
ered channel, then you specify the size of the channel’s buffer as the second argument.

 Sending a value or pointer into a channel requires the use of the <- operator.

// Buffered channel of strings.
buffered := make(chan string, 10)

// Send a string through the channel.
buffered <- "Gopher"

In listing 6.18 we create a buffered channel of type string that contains a buffer of 10
values. Then we send the string “Gopher” through the channel. For another gorou-
tine to receive that string from the channel, we use the same <- operator, but this time
as a unary operator.

// Receive a string from the channel.
value := <-buffered

Listing 6.17 Using make to create a channel

Listing 6.18 Sending values into a channel

Listing 6.19 Receiving values from a channel
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 6 Concurrency
When receiving a value or pointer from a channel, the <- operator is attached to the
left side of the channel variable, as seen in listing 6.19.

 Unbuffered and buffered channels behave a bit differently. Understanding the dif-
ferences will help you determine when to prefer one over the other, so let’s look at
each type separately.

6.5.1 Unbuffered channels

An unbuffered channel is a channel with no capacity to hold any value before it’s
received. These types of channels require both a sending and receiving goroutine to
be ready at the same instant before any send or receive operation can complete. If the
two goroutines aren’t ready at the same instant, the channel makes the goroutine that
performs its respective send or receive operation first wait. Synchronization is inher-
ent in the interaction between the send and receive on the channel. One can’t hap-
pen without the other.

 In figure 6.6, you see an example of two goroutines sharing a value using an unbuf-
fered channel. In step 1 the two goroutines approach the channel, but neither have
issued a send or receive yet. In step 2 the goroutine on the left sticks its hand into the
channel, which simulates a send on the channel. At this point, that goroutine is locked

Channel

1

GR GR

Channel

2

GR

GR GR

Channel

GR GR

GR

3

Channel

GRGR

5

Channel

6

Channel

4

GR GR

Figure 6.6 Synchronization between goroutines using an unbuffered channel
Licensed to Mark Watson <nordickan@gmail.com>

149Channels
in the channel until the exchange is complete. In step 3 the goroutine on the right
places its hand into the channel, which simulates a receive on the channel. That
goroutine is now locked in the channel until the exchange is complete. In steps 4 and
5 the exchange is made and finally, in step 6, both goroutines are free to remove
their hands, which simulates the release of the locks. They both can now go on their
merry way.

 To make this more clear, let’s look at two complete examples that use an unbuf-
fered channel to synchronize the exchange of data between two goroutines.

 In the game of tennis, two players hit a ball back and forth to each other. The play-
ers are always in one of two states: either waiting to receive the ball, or sending the ball
back to the opposing player. You can simulate a game of tennis using two goroutines
and an unbuffered channel to simulate the exchange of the ball.

01 // This sample program demonstrates how to use an unbuffered
02 // channel to simulate a game of tennis between two goroutines.
03 package main
04
05 import (
06 "fmt"
07 "math/rand"
08 "sync"
09 "time"
10)
11
12 // wg is used to wait for the program to finish.
13 var wg sync.WaitGroup
14
15 func init() {
16 rand.Seed(time.Now().UnixNano())
17 }
18
19 // main is the entry point for all Go programs.
20 func main() {
21 // Create an unbuffered channel.
22 court := make(chan int)
23
24 // Add a count of two, one for each goroutine.
25 wg.Add(2)
26
27 // Launch two players.
28 go player("Nadal", court)
29 go player("Djokovic", court)
30
31 // Start the set.
32 court <- 1
33
34 // Wait for the game to finish.
35 wg.Wait()
36 }
37

Listing 6.20 listing20.go
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 6 Concurrency
38 // player simulates a person playing the game of tennis.
39 func player(name string, court chan int) {
40 // Schedule the call to Done to tell main we are done.
41 defer wg.Done()
42
43 for {
44 // Wait for the ball to be hit back to us.
45 ball, ok := <-court
46 if !ok {
47 // If the channel was closed we won.
48 fmt.Printf("Player %s Won\n", name)
49 return
50 }
51
52 // Pick a random number and see if we miss the ball.
53 n := rand.Intn(100)
54 if n%13 == 0 {
55 fmt.Printf("Player %s Missed\n", name)
56
57 // Close the channel to signal we lost.
58 close(court)
59 return
60 }
61
62 // Display and then increment the hit count by one.
63 fmt.Printf("Player %s Hit %d\n", name, ball)
64 ball++
65
66 // Hit the ball back to the opposing player.
67 court <- ball
68 }
69 }

When you run the program, you get the following output.

Player Nadal Hit 1
Player Djokovic Hit 2
Player Nadal Hit 3
Player Djokovic Missed
Player Nadal Won

In the main function on line 22, an unbuffered channel of type int is created to syn-
chronize the exchange of the ball being hit by both goroutines. Then the two gorou-
tines that will be playing the game are created on lines 28 and 29. At this point both
goroutines are locked waiting to receive the ball. On line 32 a ball is sent into the
channel, and the game is played until one of the goroutines lose.

 Inside the player function, you find an endless for loop on line 43. Within the
loop, the game is played. On line 45 the goroutine performs a receive on the channel,
waiting to receive the ball. This locks the goroutine until a send is performed on the
channel. Once the receive on the channel returns, the ok flag is checked on line 46

Listing 6.21 Output for listing20.go
Licensed to Mark Watson <nordickan@gmail.com>

151Channels
for false. A value of false indicates the channel was closed and the game is over. On
lines 53 through 60 a random number is generated to determine if the goroutine hits
or misses the ball. If the ball is hit, then on line 64 the value of the ball is incremented
by one and the ball is sent back to the other player on line 67. At this point both
goroutines are locked until the exchange is made. Eventually a goroutine misses the
ball and the channel is closed on line 58. Then both goroutines return, the call to
Done via the defer statement is performed, and the program terminates.

 Another example that uses a different pattern to synchronize goroutines with an
unbuffered channel is simulating a relay race. In a relay race, four runners take turns
running around the track. The second, third, and fourth runners can’t start running
until they receive the baton from the previous runner. The exchange of the baton is a
critical part of the race and requires synchronization to not miss a step. For this syn-
chronization to take place, both runners who are involved in the exchange need to be
ready at exactly the same time.

01 // This sample program demonstrates how to use an unbuffered
02 // channel to simulate a relay race between four goroutines.
03 package main
04
05 import (
06 "fmt"
07 "sync"
08 "time"
09)
10
11 // wg is used to wait for the program to finish.
12 var wg sync.WaitGroup
13
14 // main is the entry point for all Go programs.
15 func main() {
16 // Create an unbuffered channel.
17 baton := make(chan int)
18
19 // Add a count of one for the last runner.
20 wg.Add(1)
21
22 // First runner to his mark.
23 go Runner(baton)
24
25 // Start the race.
26 baton <- 1
27
28 // Wait for the race to finish.
29 wg.Wait()
30 }
31
32 // Runner simulates a person running in the relay race.
33 func Runner(baton chan int) {
34 var newRunner int

Listing 6.22 listing22.go
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 6 Concurrency
35
36 // Wait to receive the baton.
37 runner := <-baton
38
39 // Start running around the track.
40 fmt.Printf("Runner %d Running With Baton\n", runner)
41
42 // New runner to the line.
43 if runner != 4 {
44 newRunner = runner + 1
45 fmt.Printf("Runner %d To The Line\n", newRunner)
46 go Runner(baton)
47 }
48
49 // Running around the track.
50 time.Sleep(100 * time.Millisecond)
51
52 // Is the race over.
53 if runner == 4 {
54 fmt.Printf("Runner %d Finished, Race Over\n", runner)
55 wg.Done()
56 return
57 }
58
59 // Exchange the baton for the next runner.
60 fmt.Printf("Runner %d Exchange With Runner %d\n",
61 runner,
62 newRunner)
63
64 baton <- newRunner
65 }

When you run the program, you get the following output.

Runner 1 Running With Baton
Runner 1 Exchange With Runner 2
Runner 2 Running With Baton
Runner 2 Exchange With Runner 3
Runner 3 Running With Baton
Runner 3 Exchange With Runner 4
Runner 4 Running With Baton
Runner 4 Finished, Race Over

In the main function on line 17, an unbuffered channel of type int is created to syn-
chronize the exchange of the baton. On line 20 we add a count of 1 to the WaitGroup
so the main function can wait until the last runner is finished. The first runner takes to
the track on line 23 with the creation of a goroutine, and then on line 26 the baton is
given to the runner and the race begins. Finally, on line 29 the main function waits on
the WaitGroup for the last runner to finish.

 Inside the Runner goroutine, you can see how the baton is exchanged from runner
to runner. On line 37 the goroutine waits to receive the baton with the receive call on

Listing 6.23 Output for listing22.go
Licensed to Mark Watson <nordickan@gmail.com>

153Channels
the channel. Once the baton is received, the next runner takes his mark on line 46
unless the goroutine represents the fourth runner. On line 50 the runner runs around
the track for 100 milliseconds. On line 55 if the fourth runner just finished running,
the WaitGroup is decremented by the call to Done and the goroutine returns. If this
isn’t the fourth runner, then on line 64 the baton is passed to the next runner who is
already waiting. At this point both goroutines are locked until the exchange is made.

 In both examples we used an unbuffered channel to synchronize goroutines to
simulate a tennis game and a relay race. The flow of the code was inline with the way
these events and activities take place in the real world. This makes the code readable
and self-documenting. Now that you know how unbuffered channels work, next you
can learn how buffered channels work.

6.5.2 Buffered channels

A buffered channel is a channel with capacity to hold one or more values before they’re
received. These types of channels don’t force goroutines to be ready at the same
instant to perform sends and receives. There are also different conditions for when a
send or receive does block. A receive will block only if there’s no value in the channel
to receive. A send will block only if there’s no available buffer to place the value being
sent. This leads to the one big difference between unbuffered and buffered channels:
An unbuffered channel provides a guarantee that an exchange between two gorou-
tines is performed at the instant the send and receive take place. A buffered channel
has no such guarantee.

 In figure 6.7 you see an example of two goroutines adding and removing items
from a buffered channel independently. In step 1 the goroutine on the right is in the
process of receiving a value from the channel. In step 2 that same goroutine is able to
complete the receive independent of the goroutine on the left sending a new value

Channel

1

GR

GR

Channel

2

GR

Channel

4

GR

GR GR

Channel

3

GR GR

Figure 6.7 Synchronization between goroutines using a buffered channel
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 6 Concurrency
into the channel. In step 3 the goroutine on the left is sending a new value into the
channel while the goroutine on the right is receiving a different value. Neither of
these two operations in step 3 are in sync with each other or blocking. Finally, in step 4
all the sends and receives are complete and we have a channel with several values and
room for more.

 Let’s look at an example using a buffered channel to manage a set of goroutines to
receive and process work. Buffered channels provide a clean and intuitive way to
implement this code.

01 // This sample program demonstrates how to use a buffered
02 // channel to work on multiple tasks with a predefined number
03 // of goroutines.
04 package main
05
06 import (
07 "fmt"
08 "math/rand"
09 "sync"
10 "time"
11)
12
13 const (
14 numberGoroutines = 4 // Number of goroutines to use.
15 taskLoad = 10 // Amount of work to process.
16)
17
18 // wg is used to wait for the program to finish.
19 var wg sync.WaitGroup
20
21 // init is called to initialize the package by the
22 // Go runtime prior to any other code being executed.
23 func init() {
24 // Seed the random number generator.
25 rand.Seed(time.Now().Unix())
26 }
27
28 // main is the entry point for all Go programs.
29 func main() {
30 // Create a buffered channel to manage the task load.
31 tasks := make(chan string, taskLoad)
32
33 // Launch goroutines to handle the work.
34 wg.Add(numberGoroutines)
35 for gr := 1; gr <= numberGoroutines; gr++ {
36 go worker(tasks, gr)
37 }
38
39 // Add a bunch of work to get done.
40 for post := 1; post <= taskLoad; post++ {
41 tasks <- fmt.Sprintf("Task : %d", post)
42 }

Listing 6.24 listing24.go
Licensed to Mark Watson <nordickan@gmail.com>

155Channels
43
44 // Close the channel so the goroutines will quit
45 // when all the work is done.
46 close(tasks)
47
48 // Wait for all the work to get done.
49 wg.Wait()
50 }
51
52 // worker is launched as a goroutine to process work from
53 // the buffered channel.
54 func worker(tasks chan string, worker int) {
55 // Report that we just returned.
56 defer wg.Done()
57
58 for {
59 // Wait for work to be assigned.
60 task, ok := <-tasks
61 if !ok {
62 // This means the channel is empty and closed.
63 fmt.Printf("Worker: %d : Shutting Down\n", worker)
64 return
65 }
66
67 // Display we are starting the work.
68 fmt.Printf("Worker: %d : Started %s\n", worker, task)
69
70 // Randomly wait to simulate work time.
71 sleep := rand.Int63n(100)
72 time.Sleep(time.Duration(sleep) * time.Millisecond)
73
74 // Display we finished the work.
75 fmt.Printf("Worker: %d : Completed %s\n", worker, task)
76 }
77 }

When you run the program, you get the following output.

Worker: 1 : Started Task : 1
Worker: 2 : Started Task : 2
Worker: 3 : Started Task : 3
Worker: 4 : Started Task : 4
Worker: 1 : Completed Task : 1
Worker: 1 : Started Task : 5
Worker: 4 : Completed Task : 4
Worker: 4 : Started Task : 6
Worker: 1 : Completed Task : 5
Worker: 1 : Started Task : 7
Worker: 2 : Completed Task : 2
Worker: 2 : Started Task : 8
Worker: 3 : Completed Task : 3
Worker: 3 : Started Task : 9

Listing 6.25 Output for listing24.go
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 6 Concurrency
Worker: 1 : Completed Task : 7
Worker: 1 : Started Task : 10
Worker: 4 : Completed Task : 6
Worker: 4 : Shutting Down
Worker: 3 : Completed Task : 9
Worker: 3 : Shutting Down
Worker: 2 : Completed Task : 8
Worker: 2 : Shutting Down
Worker: 1 : Completed Task : 10
Worker: 1 : Shutting Down

Because of the random nature of the program and the Go scheduler, the output for
this program will be different every time you run it. But the use of all four goroutines
to process work from the buffered channel won’t change. You can see from the output
how each goroutine is receiving work distributed from the channel.

 In the main function on line 31, a buffered channel of type string is created with
a capacity of 10. On line 34 the WaitGroup is given the count of 4, one for each gorou-
tine that’s going to be created. Then on lines 35 through 37, four goroutines are cre-
ated and passed the channel they will be receiving the work on. On lines 40 through
42, 10 strings are sent into the channel to simulate work for the goroutines. Once the
last string is sent into the channel, the channel is closed on line 46 and the main func-
tion waits for all the work to be completed on line 49.

 Closing the channel on line 46 is an important piece of code. When a channel is
closed, goroutines can still perform receives on the channel but can no longer send
on the channel. Being able to receive on a closed channel is important because it
allows the channel to be emptied of all its values with future receives, so nothing in
the channel is ever lost. A receive on a closed and empty channel always returns imme-
diately and provides the zero value for the type the channel is declared with. If you
also request the optional flag on the channel receive, you can get information about
the state of the channel.

 Inside the worker function you find an endless for loop on line 58. Within the loop,
all of the received work is processed. Each goroutine blocks on line 60 waiting to receive
work from the channel. Once the receive returns, the ok flag is checked to see if the
channel is both empty and closed. If the value of ok is false, the goroutine terminates,
which causes the defer statement on line 56 to call Done and report back to main.

 If the ok flag is true, then the value received is valid. Lines 71 and 72 simulate
work being processed. Once the work is done, the goroutine blocks again in the
receive of the channel on line 60. Once the channel is closed, the receive on the chan-
nel returns immediately and the goroutine terminates itself.

 The examples for the unbuffered and buffered channels provided a good sam-
pling of the kind of code you can write with channels. In the next chapter we’ll look at
real-world concurrency patterns that you could use in your own projects.
Licensed to Mark Watson <nordickan@gmail.com>

157Summary
6.6 Summary
 Concurrency is the independent execution of goroutines.
 Functions are created as goroutines with the keyword go.
 Goroutines are executed within the scope of a logical processor that owns a sin-

gle operating system thread and run queue.
 A race condition is when two or more goroutines attempt to access the same

resource.
 Atomic functions and mutexes provide a way to protect against race conditions.
 Channels provide an intrinsic way to safely share data between two goroutines.
 Unbuffered channels provide a guarantee between an exchange of data. Buff-

ered channels do not.
Licensed to Mark Watson <nordickan@gmail.com>

Concurrency patterns
In chapter 6 you learned what concurrency is and how channels behave, and
reviewed code that showed concurrency in action. In this chapter you’ll extend that
knowledge by reviewing more code. We’ll review three packages that implement
different concurrency patterns that you can use in your own projects. Each package
provides a practical perspective on the use of concurrency and channels and how
they can make concurrent programs easier to write and reason about.

7.1 Runner
The purpose of the runner package is to show how channels can be used to moni-
tor the amount of time a program is running and terminate the program if it runs
too long. This pattern is useful when developing a program that will be scheduled
to run as a background task process. This could be a program that runs as a cron
job, or in a worker-based cloud environment like Iron.io.

 Let’s take a look at the runner.go code file from the runner package.

In this chapter
 Control the lifetime of programs

 Manage a pool of resources that can be reused

 Create a pool of goroutines that can process work
158

Licensed to Mark Watson <nordickan@gmail.com>

159Runner

 01 // Example provided with help from Gabriel Aszalos.
02 // Package runner manages the running and lifetime of a process.
03 package runner
04
05 import (
06 "errors"
07 "os"
08 "os/signal"
09 "time"
10)
11
12 // Runner runs a set of tasks within a given timeout and can be
13 // shut down on an operating system interrupt.
14 type Runner struct {
15 // interrupt channel reports a signal from the
16 // operating system.
17 interrupt chan os.Signal
18
19 // complete channel reports that processing is done.
20 complete chan error
21
22 // timeout reports that time has run out.
23 timeout <-chan time.Time
24
25 // tasks holds a set of functions that are executed
26 // synchronously in index order.
27 tasks []func(int)
28 }
29
30 // ErrTimeout is returned when a value is received on the timeout.
31 var ErrTimeout = errors.New("received timeout")
32
33 // ErrInterrupt is returned when an event from the OS is received.
34 var ErrInterrupt = errors.New("received interrupt")
35
36 // New returns a new ready-to-use Runner.
37 func New(d time.Duration) *Runner {
38 return &Runner{
39 interrupt: make(chan os.Signal, 1),
40 complete: make(chan error),
41 timeout: time.After(d),
42 }
43 }
44
45 // Add attaches tasks to the Runner. A task is a function that
46 // takes an int ID.
47 func (r *Runner) Add(tasks ...func(int)) {
48 r.tasks = append(r.tasks, tasks...)
49 }
50
51 // Start runs all tasks and monitors channel events.
52 func (r *Runner) Start() error {
53 // We want to receive all interrupt based signals.

Listing 7.1 runner/runner.go
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 7 Concurrency patterns
54 signal.Notify(r.interrupt, os.Interrupt)
55
56 // Run the different tasks on a different goroutine.
57 go func() {
58 r.complete <- r.run()
59 }()
60
61 select {
62 // Signaled when processing is done.
63 case err := <-r.complete:
64 return err
65
66 // Signaled when we run out of time.
67 case <-r.timeout:
68 return ErrTimeout
69 }
70 }
71
72 // run executes each registered task.
73 func (r *Runner) run() error {
74 for id, task := range r.tasks {
75 // Check for an interrupt signal from the OS.
76 if r.gotInterrupt() {
77 return ErrInterrupt
78 }
79
80 // Execute the registered task.
81 task(id)
82 }
83
84 return nil
85 }
86
87 // gotInterrupt verifies if the interrupt signal has been issued.
88 func (r *Runner) gotInterrupt() bool {
89 select {
90 // Signaled when an interrupt event is sent.
91 case <-r.interrupt:
92 // Stop receiving any further signals.
93 signal.Stop(r.interrupt)
95 return true
96
97 // Continue running as normal.
98 default:
99 return false

100 }
101 }

The program in listing 7.1 shows a concurrency pattern for task-oriented programs that
run unattended on a schedule. It’s designed with three possible termination points:

 The program can finish its work within the allotted amount of time and termi-
nate normally.

 The program doesn’t finish in time and kills itself.
Licensed to Mark Watson <nordickan@gmail.com>

161Runner
 An operating system interrupt event is received and the program attempts to
immediately shut down cleanly.

Let’s walk through the code and see how each point has been implemented.

12 // Runner runs a set of tasks within a given timeout and can be
13 // shut down on an operating system interrupt.
14 type Runner struct {
15 // interrupt channel reports a signal from the
16 // operating system.
17 interrupt chan os.Signal
18
19 // complete channel reports that processing is done.
20 complete chan error
21
22 // timeout reports that time has run out.
23 timeout <-chan time.Time
24
25 // tasks holds a set of functions that are executed
26 // synchronously in index order.
27 tasks []func(int)
28 }

Listing 7.2 starts us off with the declaration of the struct named Runner on line 14.
This type declares three channels that help manage the lifecycle of the program and a
slice of functions that represent the different tasks to run in series.

 The interrupt channel on line 17 sends and receives values of interface type
os.Signal and is used to receive interrupt events from the host operating system.

// A Signal represents an operating system signal. The usual underlying
// implementation is operating system-dependent: on Unix it is
// syscall.Signal.
type Signal interface {

String() string
Signal() // to distinguish from other Stringers

}

The declaration of the os.Signal interface is presented in listing 7.3. This interface
abstracts specific implementations for trapping and reporting events from different
operating systems.

 The second field is named complete and is a channel that sends and receives val-
ues of interface type error.

19 // complete channel reports that processing is done.
20 complete chan error

Listing 7.2 runner/runner.go: lines 12–28

Listing 7.3 golang.org/pkg/os/#Signal

Listing 7.4 runner/runner.go: lines 19–20
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 7 Concurrency patterns
This channel is called complete because it’s used by the goroutine running the tasks
to signal that the channel’s done. If an error occurs, it’s reported back via an error
interface value sent through the channel. If no error occurs, the value of nil is sent as
the error interface value.

 The third field is named timeout and receives time.Time values.

22 // timeout reports that time has run out.
23 timeout <-chan time.Time

This channel is used to manage the amount of time the process has to complete all its
tasks. If a time.Time value is ever received on this channel, the program will attempt
to shut itself down cleanly.

 The final field is named tasks and is a slice of function values.

25 // tasks holds a set of functions that are executed
26 // synchronously in index order.
27 tasks []func(int)

These function values represent functions that are run in series, one after the other. The
execution of these functions happens on a single but separate goroutine from main.

 With the Runner type declared, next we have two error interface variables.

30 // ErrTimeout is returned when a value is received on the timeout.
31 var ErrTimeout = errors.New("received timeout")
32
33 // ErrInterrupt is returned when an event from the OS is received.
34 var ErrInterrupt = errors.New("received interrupt")

The first error interface variable is named ErrTimeout. This error value is returned
by the Start method when a timeout event is received. The second error interface
variable is named ErrInterrupt. This error value is returned by the Start method
when an operating system event is received.

 Now we can look at how users can create values of type Runner.

36 // New returns a new ready-to-use Runner.
37 func New(d time.Duration) *Runner {
38 return &Runner{
39 interrupt: make(chan os.Signal, 1),
40 complete: make(chan error),

Listing 7.5 runner/runner.go: lines 22–23

Listing 7.6 runner/runner.go: lines 25–27

Listing 7.7 runner/runner.go: lines 30–34

Listing 7.8 runner/runner.go: lines 36–43
Licensed to Mark Watson <nordickan@gmail.com>

163Runner
41 timeout: time.After(d),
42 }
43 }

Listing 7.8 shows a factory function called New, which accepts a value of type
time.Duration and returns a pointer of type Runner. The function creates a value of
type Runner and initializes each of the channel fields. The tasks field is not explicitly
initialized, since the zero value for this field is a nil slice. Each channel field has a
unique initialization, so let’s explore each one in more detail.

 The interrupt channel is initialized as a buffered channel with a buffer of 1. This
guarantees at least one os.Signal value is received from the runtime. The runtime
sends this event in a nonblocking way. If a goroutine isn’t ready to receive this value,
the value is thrown away. As an example, if the user hits Ctrl+C repeatedly, the pro-
gram will receive the event only when a buffer is available in the channel and all other
events will be thrown away.

 The complete channel is initialized as an unbuffered channel. When the gorou-
tine running the tasks is finished, it sends an error value or nil error value on this
channel. Then it waits for main to receive it. Once main receives the error value, it’s
safe for the goroutine to terminate.

 The final channel, timeout, is initialized using the After function from the time
package. The After function returns a channel of type time.Time. The runtime will
send a time.Time value on this channel after the specified duration has elapsed.

 Now that you’ve seen how a Runner value is created and initialized, we can look at
the methods associated with the Runner type. The first method, Add, is used to capture
the task functions to be executed.

45 // Add attaches tasks to the Runner. A task is a function that
46 // takes an int ID.
47 func (r *Runner) Add(tasks ...func(int)) {
48 r.tasks = append(r.tasks, tasks...)
49 }

Listing 7.9 shows the Add method, which is declared with a single varadic parameter
named tasks. Varadic parameters can accept any number of values that are passed in. In
this case the value must be a function that accepts a single integer value and returns
nothing. The tasks parameter, once inside the code, becomes a slice of these func-
tion values.

 Now let’s look at the run method.

72 // run executes each registered task.
73 func (r *Runner) run() error {
74 for id, task := range r.tasks {

Listing 7.9 runner/runner.go: lines 45–49

Listing 7.10 runner/runner.go: lines 72–85
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 7 Concurrency patterns
75 // Check for an interrupt signal from the OS.
76 if r.gotInterrupt() {
77 return ErrInterrupt
78 }
79
80 // Execute the registered task.
81 task(id)
82 }
83
84 return nil
85 }

The run method on line 73 in listing 7.10 iterates over the tasks slice and executes
each function in order. Before any function is executed on line 81, the gotInterrupt
method is called on line 76 to see if there are any events to receive from the operat-
ing system.

 87 // gotInterrupt verifies if the interrupt signal has been issued.
88 func (r *Runner) gotInterrupt() bool {
89 select {
90 // Signaled when an interrupt event is sent.
91 case <-r.interrupt:
92 // Stop receiving any further signals.
93 signal.Stop(r.interrupt)
95 return true
96
97 // Continue running as normal.
98 default:
99 return false

100 }
101 }

The gotInterrupt method in listing 7.11 shows a classic use of the select statement
with a default case. On line 91, the code attempts to receive on the interrupt chan-
nel. Normally that would block if there was nothing to receive, but we have a default
case on line 98. The default case turns the attempt to receive on the interrupt chan-
nel into a nonblocking call. If there’s an interrupt to receive, then it’s received and
processed. If there’s nothing to receive, the default case is then executed.

 When an interrupt event is received, the code requests to stop receiving any future
events by calling the Stop method on line 93. Then the function returns true. If no
interrupt event is received, the method returns false on line 99. Essentially, the gotIn-
terrupt method lets the goroutine peek for interrupt events and keep processing
work if one has not been issued.

 The final method in the package is called Start.

51 // Start runs all tasks and monitors channel events.
52 func (r *Runner) Start() error {

Listing 7.11 runner/runner.go: lines 87–101

Listing 7.12 runner/runner.go: lines 51–70
Licensed to Mark Watson <nordickan@gmail.com>

165Runner
53 // We want to receive all interrupt based signals.
54 signal.Notify(r.interrupt, os.Interrupt)
55
56 // Run the different tasks on a different goroutine.
57 go func() {
58 r.complete <- r.run()
59 }()
60
61 select {
62 // Signaled when processing is done.
63 case err := <-r.complete:
64 return err
65
66 // Signaled when we run out of time.
67 case <-r.timeout:
68 return ErrTimeout
69 }
70 }

The Start method implements the main workflow for the program. In listing 7.12 on
line 52, Start sets up the ability for the gotInterrupt method to receive interrupt
events from the operating system. On lines 56 through 59, an anonymous function is
declared and created as a goroutine. This is the goroutine that executes the set of
assigned tasks for the program. On line 58, inside this goroutine, the run method is
called and the returned error interface value is sent on the complete channel. Once
the error interface value is received, the goroutine returns that value to the caller.

 With the goroutine created, Start enters into a select statement that blocks wait-
ing for one of two events to occur. If an error interface value is received on the
complete channel, then the goroutine either finished its work within the allotted
amount of time or an operating system interrupt event was received. Regardless, the
received error interface value is returned and the method terminates. If a time.Time
value is received on the timeout channel, then the goroutine didn’t finish its work
within the allotted amount of time. In this case, the program returns the ErrTimeout
variable.

 Now that you’ve seen the code for the runner package and learned how it works,
let’s review the test program in the main.go source code file.

01 // This sample program demonstrates how to use a channel to
02 // monitor the amount of time the program is running and terminate
03 // the program if it runs too long.
03 package main
04
05 import (
06 "log"
07 "time"
08
09 "github.com/goinaction/code/chapter7/patterns/runner"
10)

Listing 7.13 runner/main/main.go
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 7 Concurrency patterns
11
12 // timeout is the number of second the program has to finish.
13 const timeout = 3 * time.Second
14
15 // main is the entry point for the program.
16 func main() {
17 log.Println("Starting work.")
18
19 // Create a new timer value for this run.
20 r := runner.New(timeout)
21
22 // Add the tasks to be run.
23 r.Add(createTask(), createTask(), createTask())
24
25 // Run the tasks and handle the result.
26 if err := r.Start(); err != nil {
27 switch err {
28 case runner.ErrTimeout:
29 log.Println("Terminating due to timeout.")
30 os.Exit(1)
31 case runner.ErrInterrupt:
32 log.Println("Terminating due to interrupt.")
33 os.Exit(2)
34 }
35 }
36
37 log.Println("Process ended.")
38 }
39
40 // createTask returns an example task that sleeps for the specified
41 // number of seconds based on the id.
42 func createTask() func(int) {
43 return func(id int) {
44 log.Printf("Processor - Task #%d.", id)
45 time.Sleep(time.Duration(id) * time.Second)
46 }
47 }

The main function can be found on line 16 in listing 7.13. On line 20 the timeout
value is passed to the New function, and a pointer of type Runner is returned. Then the
createTask function is added to the Runner several times on line 23. The createTask
function, declared on line 42, is a function that just pretends to perform some work
for a specified amount of time. Once the functions have been added, the Start
method is called on line 26 and the main function waits for Start to return.

 When Start returns the returned error interface value is checked. If an error did
occur, the code uses the error interface variables to identify if the method terminated
due to a timeout event or interrupt event. If there’s no error, then the tasks finished in
time. On a timeout event, the program terminates with an error code of 1. On an
interrupt event, the program terminates with an error code of 2. In all other cases, the
program terminates normally with error code 0.
Licensed to Mark Watson <nordickan@gmail.com>

167Pooling
7.2 Pooling
The purpose of the pool package is to show how you can use a buffered channel to
pool a set of resources that can be shared and individually used by any number of
goroutines. This pattern is useful when you have a static set of resources to share,
such as database connections or memory buffers. When a goroutine needs one of
these resources from the pool, it can acquire the resource, use it, and then return it
to the pool.

 Let’s take a look at the pool.go code file from the pool package.

 01 // Example provided with help from Fatih Arslan and Gabriel Aszalos.
02 // Package pool manages a user defined set of resources.
03 package pool
04
05 import (
06 "errors"
07 "log"
08 "io"
09 "sync"
10)
11
12 // Pool manages a set of resources that can be shared safely by
13 // multiple goroutines. The resource being managed must implement
14 // the io.Closer interface.
15 type Pool struct {
16 m sync.Mutex
17 resources chan io.Closer
18 factory func() (io.Closer, error)
19 closed bool
20 }
21
22 // ErrPoolClosed is returned when an Acquire returns on a
23 // closed pool.
24 var ErrPoolClosed = errors.New("Pool has been closed.")
25
26 // New creates a pool that manages resources. A pool requires a
27 // function that can allocate a new resource and the size of
28 // the pool.
29 func New(fn func() (io.Closer, error), size uint) (*Pool, error) {
30 if size <= 0 {
31 return nil, errors.New("Size value too small.")
32 }
33
34 return &Pool{
35 factory: fn,
36 resources: make(chan io.Closer, size),
37 }, nil
38 }
39
40 // Acquire retrieves a resource from the pool.
41 func (p *Pool) Acquire() (io.Closer, error) {

Listing 7.14 pool/pool.go
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 7 Concurrency patterns
42 select {
43 // Check for a free resource.
44 case r, ok := <-p.resources:
45 log.Println("Acquire:", "Shared Resource")
46 if !ok {
47 return nil, ErrPoolClosed
48 }
49 return r, nil
50
51 // Provide a new resource since there are none available.
52 default:
53 log.Println("Acquire:", "New Resource")
54 return p.factory()
55 }
56 }
57
58 // Release places a new resource onto the pool.
59 func (p *Pool) Release(r io.Closer) {
60 // Secure this operation with the Close operation.
61 p.m.Lock()
62 defer p.m.Unlock()
63
64 // If the pool is closed, discard the resource.
65 if p.closed {
66 r.Close()
67 return
68 }
69
70 select {
71 // Attempt to place the new resource on the queue.
72 case p.resources <- r:
73 log.Println("Release:", "In Queue")
74
75 // If the queue is already at capacity we close the resource.
76 default:
77 log.Println("Release:", "Closing")
78 r.Close()
79 }
80 }
81
82 // Close will shutdown the pool and close all existing resources.
83 func (p *Pool) Close() {
84 // Secure this operation with the Release operation.
85 p.m.Lock()
86 defer p.m.Unlock()
87
88 // If the pool is already closed, don't do anything.
89 if p.closed {
90 return
91 }
92
93 // Set the pool as closed.
94 p.closed = true
95
96 // Close the channel before we drain the channel of its
Licensed to Mark Watson <nordickan@gmail.com>

169Pooling
97 // resources. If we don't do this, we will have a deadlock.
98 close(p.resources)
99

100 // Close the resources
101 for r := range p.resources {
102 r.Close()
103 }
104 }

The code for the pool package in listing 7.14 declares a struct named Pool that allows
the caller to create as many different pools as needed. Each pool can manage any type
of resource as long as the type implements the io.Closer interface. Let’s take a look
at the declaration of the Pool struct.

12 // Pool manages a set of resources that can be shared safely by
13 // multiple goroutines. The resource being managed must implement
14 // the io.Closer interface.
15 type Pool struct {
16 m sync.Mutex
17 resources chan io.Closer
18 factory func() (io.Closer, error)
19 closed bool
20 }

The Pool struct declares four fields, each of which helps manage the pool in a gorou-
tine-safe way. On line 16 the struct starts off with a field of type sync.Mutex. This
mutex is used to keep all the operations against a Pool value-safe for multigoroutine
access. The second field is named resources and is declared as a channel of interface
type io.Closer. This channel will be created as a buffered channel and will contain
the resources being shared. Because an interface type is being used, the pool can
manage any type of resource that implements the io.Closer interface.

 The factory field is of a function type. Any function that takes no parameters and
returns an io.Closer and an error interface value can be assigned to this field. The
purpose of this function is to create a new resource when the pool requires one. This
functionality is an implementation detail beyond the scope of the pool package and
needs to be implemented and supplied by the user using this package.

 The final field on line 19 is the closed field. This field is a flag that indicates the
Pool is being shut down or is already shut down. Now that you’ve seen the declaration
of the Pool struct, let’s look at the error interface variable that’s declared on line 24.

22 // ErrPoolClosed is returned when an Acquire returns on a
23 // closed pool.
24 var ErrPoolClosed = errors.New("Pool has been closed.")

Listing 7.15 pool/pool.go: lines 12–20

Listing 7.16 pool/pool.go: lines 22–24
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 7 Concurrency patterns
Creating error interface variables is a common practice in Go. This allows the caller
to identify specific returned error values from any function or method within the
package. The error interface variable in listing 7.16 has been declared to report when
the user calls the Acquire method and the Pool has been closed. Since the Acquire
method can return multiple different errors, returning this error variable when the
Pool is closed allows the caller to identify this specific error over others.

 With the Pool type and the error interface variable declared, we can start to look
at the functions and methods that are declared in the pool package. Let’s start with
the pool’s factory function, named New.

26 // New creates a pool that manages resources. A pool requires a
27 // function that can allocate a new resource and the size of
28 // the pool.
29 func New(fn func() (io.Closer, error), size uint) (*Pool, error) {
30 if size <= 0 {
31 return nil, errors.New("Size value too small.")
32 }
33
34 return &Pool{
35 factory: fn,
36 resources: make(chan io.Closer, size),
37 }, nil
38 }

The New function in listing 7.17 accepts two parameters and returns two values. The
first parameter, fn, is declared as a function type that accepts no parameters and
returns an io.Closer and an error interface value. The function parameter repre-
sents a factory function that creates values of the resource being managed by the pool.
The second parameter, size, represents the size of the buffered channel created to
hold the resources.

 On line 30 the value of size is checked to make sure it’s not less than or equal to 0.
If it is, then the code returns nil for the returned pool pointer value and then creates
an error interface value on the fly for the error. Since this is the only error being
returned from this function, it’s not necessary to create and use an error interface
variable for this error. If the size value is good, then a new Pool value is created and
initialized. On line 35 the function parameter is assigned, and on line 36 the buffered
channel is created using the size value. Everything can be created and initialized
within the scope of the return statement. So a pointer to the new Pool value and the
error interface value of nil are created and returned as the arguments.

 With the ability to create and initialize a Pool value, next let’s look at the Acquire
method. This method allows the caller to acquire a resource from the pool.

Listing 7.17 pool/pool.go: lines 26–38
Licensed to Mark Watson <nordickan@gmail.com>

171Pooling

40 // Acquire retrieves a resource from the pool.
41 func (p *Pool) Acquire() (io.Closer, error) {
42 select {
43 // Check for a free resource.
44 case r, ok := <-p.resources:
45 log.Println("Acquire:", "Shared Resource")
46 if !ok {
47 return nil, ErrPoolClosed
48 }
49 return r, nil
50
51 // Provide a new resource since there are none available.
52 default:
53 log.Println("Acquire:", "New Resource")
54 return p.factory()
55 }
56 }

Listing 7.18 contains the code for the Acquire method. This method returns a
resource from the pool if one is available, or creates a new one for the call. This imple-
mentation is accomplished by using a select / case statement to check if there’s a
resource in the buffered channel. If there is, it’s received and then returned to the
caller. This can be seen on lines 44 and 49. If there’s no resource in the buffered chan-
nel to receive, then the default case is executed. In this case, on line 54 the user’s fac-
tory function is executed and a new resource is created and returned.

 After a resource is acquired and no longer needed, it must be released back into
the pool. This is where the Release method comes in. But to understand the mechan-
ics behind the code in the Release method, we need to look at the Close method first.

 82 // Close will shutdown the pool and close all existing resources.
83 func (p *Pool) Close() {
84 // Secure this operation with the Release operation.
85 p.m.Lock()
86 defer p.m.Unlock()
87
88 // If the pool is already closed, don't do anything.
89 if p.closed {
90 return
91 }
92
93 // Set the pool as closed.
94 p.closed = true
95
96 // Close the channel before we drain the channel of its
97 // resources. If we don't do this, we will have a deadlock.
98 close(p.resources)
99

Listing 7.18 pool/pool.go: lines 40–56

Listing 7.19 pool/pool.go: lines 82–104
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 7 Concurrency patterns
100 // Close the resources
101 for r := range p.resources {
102 r.Close()
103 }
104 }

Once the program is finished with the pool, it should call the Close method. The code
for the Close method is shown in listing 7.19. The method closes and flushes the buff-
ered channel on lines 98 and 101, closing any resources that exist until the channel is
empty. All the code in this method must be executed by only one goroutine at a time.
In fact, when this code is being executed, goroutines must also be prevented from exe-
cuting code in the Release method. You’ll understand why this is important soon.

 On lines 85 and 86, the mutex is locked and then scheduled to be unlocked when
the function returns. On line 89 the closed flag is checked to see if the pool is already
closed. If it is, the method returns immediately, which releases the lock. If this is the
first time the method is called, then the flag is set to true and the resources channel
is closed and flushed.

 Now we can look at the Release method and see how it works in coordination with
the Close method.

58 // Release places a new resource onto the pool.
59 func (p *Pool) Release(r io.Closer) {
60 // Secure this operation with the Close operation.
61 p.m.Lock()
62 defer p.m.Unlock()
63
64 // If the pool is closed, discard the resource.
65 if p.closed {
66 r.Close()
67 return
68 }
69
70 select {
71 // Attempt to place the new resource on the queue.
72 case p.resources <- r:
73 log.Println("Release:", "In Queue")
74
75 // If the queue is already at capacity we close the resource.
76 default:
77 log.Println("Release:", "Closing")
78 r.Close()
79 }
80 }

The implementation of the Release method can be found in listing 7.20. The method
starts out with the locking and unlocking of a mutex on lines 61 and 62. This is the
same mutex as in the Close method. This is how both methods are prevented from
being run at the same time by different goroutines. The use of the mutex serves two

Listing 7.20 pool/pool.go: lines 58–80
Licensed to Mark Watson <nordickan@gmail.com>

173Pooling
purposes. First, it protects the read on the closed flag on line 65 from happening at
the same time as a write on this flag in the Close method. Second, we don’t want to
attempt to send on a closed channel because this will cause a panic. When the closed
field is false, we know the resources channel has been closed.

 On line 66, the Close method on the resource is called directly when the pool is
closed. This is because there’s no way to release the resource back into the pool. At
this point the pool has been both closed and flushed. The reads and writes to the
closed flag must be synchronized or else goroutines could be misled into thinking
the pool is open and attempt to perform an invalid operation on the channel.

 Now that you’ve seen the pool code and learned how it works, let’s review the test
program in the main.go source code file.

01 // This sample program demonstrates how to use the pool package
02 // to share a simulated set of database connections.
03 package main
04
05 import (
06 "log"
07 "io"
08 "math/rand"
09 "sync"
10 "sync/atomic"
11 "time"
12
13 "github.com/goinaction/code/chapter7/patterns/pool"
14)
15
16 const (
17 maxGoroutines = 25 // the number of routines to use.
18 pooledResources = 2 // number of resources in the pool
19)
20
21 // dbConnection simulates a resource to share.
22 type dbConnection struct {
23 ID int32
24 }
25
26 // Close implements the io.Closer interface so dbConnection
27 // can be managed by the pool. Close performs any resource
28 // release management.
29 func (dbConn *dbConnection) Close() error {
30 log.Println("Close: Connection", dbConn.ID)
31 return nil
32 }
33
34 // idCounter provides support for giving each connection a unique id.
35 var idCounter int32
36
37 // createConnection is a factory method that will be called by
38 // the pool when a new connection is needed.
39 func createConnection() (io.Closer, error) {

Listing 7.21 pool/main/main.go
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 7 Concurrency patterns
40 id := atomic.AddInt32(&idCounter, 1)
41 log.Println("Create: New Connection", id)
42
43 return &dbConnection{id}, nil
44 }
45
46 // main is the entry point for all Go programs.
47 func main() {
48 var wg sync.WaitGroup
49 wg.Add(maxGoroutines)
50
51 // Create the pool to manage our connections.
52 p, err := pool.New(createConnection, pooledResources)
53 if err != nil {
54 log.Println(err)
55 }
56
57 // Perform queries using connections from the pool.
58 for query := 0; query < maxGoroutines; query++ {
59 // Each goroutine needs its own copy of the query
60 // value else they will all be sharing the same query
61 // variable.
62 go func(q int) {
63 performQueries(q, p)
64 wg.Done()
65 }(query)
66 }
67
68 // Wait for the goroutines to finish.
69 wg.Wait()
70
71 // Close the pool.
72 log.Println("Shutdown Program.")
73 p.Close()
74 }
75
76 // performQueries tests the resource pool of connections.
77 func performQueries(query int, p *pool.Pool) {
78 // Acquire a connection from the pool.
79 conn, err := p.Acquire()
80 if err != nil {
81 log.Println(err)
82 return
83 }
84
85 // Release the connection back to the pool.
86 defer p.Release(conn)
87
88 // Wait to simulate a query response.
89 time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond)
90 log.Printf("QID[%d] CID[%d]\n", query, conn.(*dbConnection).ID)
91 }

The code in main.go, shown in listing 7.21, uses the pool package to manage a simu-
lated pool of database connections. The code starts out declaring two constants,
Licensed to Mark Watson <nordickan@gmail.com>

175Pooling
maxGoroutines and pooledResources, to set the number of goroutines and resources
the program is going to use. The declaration of the resource and the implementation
of the io.Closer interface follows.

21 // dbConnection simulates a resource to share.
22 type dbConnection struct {
23 ID int32
24 }
25
26 // Close implements the io.Closer interface so dbConnection
27 // can be managed by the pool. Close performs any resource
28 // release management.
29 func (dbConn *dbConnection) Close() error {
30 log.Println("Close: Connection", dbConn.ID)
31 return nil
32 }

Listing 7.22 shows the declaration of the dbConnection struct and its implementation
of the io.Closer interface. The dbConnection type simulates a struct that’s managing
a database connection and currently has one field, ID, that contains a unique ID for
each connection. The Close method just reports that the connection is being closed
and displays its ID.

 Next we have the factory function that creates values of dbConnection.

34 // idCounter provides support for giving each connection a unique id.
35 var idCounter int32
36
37 // createConnection is a factory method that will be called by
38 // the pool when a new connection is needed.
39 func createConnection() (io.Closer, error) {
40 id := atomic.AddInt32(&idCounter, 1)
41 log.Println("Create: New Connection", id)
42
43 return &dbConnection{id}, nil
44 }

Listing 7.23 shows the implementation of the createConnection function. The func-
tion generates a new and unique ID for the connection, displays that the connection is
being created, and returns a pointer to a value of type dbConnection with this unique
ID. The generation of the unique ID is performed with the atomic.AddInt32 func-
tion. It’s used to safely increment the value of the package level variable idCounter.
Now that we have our resource and the factory function, we can use it with the pool
package.

 Next, let’s look at the code inside the main function.

Listing 7.22 pool/main/main.go: lines 21–32

Listing 7.23 pool/main/main.go: lines 34–44
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 7 Concurrency patterns

48 var wg sync.WaitGroup
49 wg.Add(maxGoroutines)
50
51 // Create the pool to manage our connections.
52 p, err := pool.New(createConnection, pooledResources)
53 if err != nil {
54 log.Println(err)
55 }

The main function starts out with declaring a WaitGroup on line 48 and setting the
value of the WaitGroup to match the number of goroutines that will be created. The
new Pool is created using the New function from the pool package. The factory func-
tion and the number of resources to manage are passed in. This returns a pointer to
the Pool value and any possible error is checked. Now that we have a Pool, we can cre-
ate goroutines that can share resources being managed by the pool.

57 // Perform queries using connections from the pool.
58 for query := 0; query < maxGoroutines; query++ {
59 // Each goroutine needs its own copy of the query
60 // value else they will all be sharing the same query
61 // variable.
62 go func(q int) {
63 performQueries(q, p)
64 wg.Done()
65 }(query)
66 }

A for loop is used in listing 7.25 to create goroutines that will use the pool. Each gor-
outine calls the performQueries function once and then quits. The performQueries
function is provided a unique ID for logging and the pointer to the Pool. Once all the
goroutines are created, the main function then waits for the goroutines to complete.

68 // Wait for the goroutines to finish.
69 wg.Wait()
70
71 // Close the pool.
72 log.Println("Shutdown Program.")
73 p.Close()

In listing 7.26, the main function waits on the WaitGroup. Once all the goroutines
report they’re done, the Pool is closed and the program terminates. Next, let’s look at
the performQueries function, which uses the pool’s Acquire and Release methods.

Listing 7.24 pool/main/main.go: lines 48–55

Listing 7.25 pool/main/main.go: lines 57–66

Listing 7.26 pool/main/main.go: lines 68–73
Licensed to Mark Watson <nordickan@gmail.com>

177Work

76 // performQueries tests the resource pool of connections.
77 func performQueries(query int, p *pool.Pool) {
78 // Acquire a connection from the pool.
79 conn, err := p.Acquire()
80 if err != nil {
81 log.Println(err)
82 return
83 }
84
85 // Release the connection back to the pool.
86 defer p.Release(conn)
87
88 // Wait to simulate a query response.
89 time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond)
90 log.Printf("QID[%d] CID[%d]\n", query, conn.(*dbConnection).ID)
91 }

The implementation of the performQueries function in listing 7.27 shows the use of
the pool’s Acquire and Release methods. The function starts out by calling the
Acquire method to retrieve a dbConnection from the pool. The returned error inter-
face value is checked, and then on line 86 a defer is used to release the dbConnection
back into the pool once the function returns. On lines 89 and 90 a random amount of
sleep occurs to simulate work time using the dbConnection.

7.3 Work
The purpose of the work package is to show how you can use an unbuffered channel
to create a pool of goroutines that will perform and control the amount of work that
gets done concurrently. This is a better approach than using a buffered channel of
some arbitrary static size that acts as a queue of work and throwing a bunch of gorou-
tines at it. Unbuffered channels provide a guarantee that data has been exchanged
between two goroutines. This approach of using an unbuffered channel allows the
user to know when the pool is performing the work, and the channel pushes back
when it can’t accept any more work because it’s busy. No work is ever lost or stuck in a
queue that has no guarantee it will ever be worked on.

 Let’s take a look at the work.go code file from the work package.

01 // Example provided with help from Jason Waldrip.
02 // Package work manages a pool of goroutines to perform work.
03 package work
04
05 import "sync"
06
07 // Worker must be implemented by types that want to use
08 // the work pool.
09 type Worker interface {
10 Task()

Listing 7.27 pool/main/main.go: lines 76–91

Listing 7.28 work/work.go
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 7 Concurrency patterns
11 }
12
13 // Pool provides a pool of goroutines that can execute any Worker
14 // tasks that are submitted.
15 type Pool struct {
16 work chan Worker
17 wg sync.WaitGroup
18 }
19
20 // New creates a new work pool.
21 func New(maxGoroutines int) *Pool {
22 p := Pool{
23 tasks: make(chan Worker),
24 }
25
26 p.wg.Add(maxGoroutines)
27 for i := 0; i < maxGoroutines; i++ {
28 go func() {
29 for w := range p.work {
30 w.Task()
31 }
32 p.wg.Done()
33 }()
34 }
35
36 return &p
37 }
38
39 // Run submits work to the pool.
40 func (p *Pool) Run(w Worker) {
41 p.work <- w
42 }
43
44 // Shutdown waits for all the goroutines to shutdown.
45 func (p *Pool) Shutdown() {
46 close(p.tasks)
47 p.wg.Wait()
48 }

The work package in listing 7.28 starts off with the declaration of an interface named
Worker and a struct named Pool.

07 // Worker must be implemented by types that want to use
08 // the work pool.
09 type Worker interface {
10 Task()
11 }
12
13 // Pool provides a pool of goroutines that can execute any Worker
14 // tasks that are submitted.
15 type Pool struct {
16 work chan Worker
17 wg sync.WaitGroup
18 }

Listing 7.29 work/work.go: lines 07–18
Licensed to Mark Watson <nordickan@gmail.com>

179Work
The Worker interface on line 09 in listing 7.29 declares a single method called Task.
On line 15 a struct named Pool is declared, which is the type that implements the
pool of goroutines and will have methods that process the work. The type declares two
fields, one named work, which is a channel of the Worker interface type, and a
sync.WaitGroup named wg.

 Next let’s look at the factory function for the work package.

20 // New creates a new work pool.
21 func New(maxGoroutines int) *Pool {
22 p := Pool{
23 work: make(chan Worker),
24 }
25
26 p.wg.Add(maxGoroutines)
27 for i := 0; i < maxGoroutines; i++ {
28 go func() {
29 for w := range p.work {
30 w.Task()
31 }
32 p.wg.Done()
33 }()
34 }
35
36 return &p
37 }

Listing 7.30 shows the New function that’s used to create work pool that’s configured
with a fixed number of goroutines. The number of goroutines is passed in as a param-
eter to the New function. On line 22 a value of type Pool is created, and the work field
is initialized with an unbuffered channel.

 Then, on line 26, the WaitGroup is initialized, and on lines 27 through 34 the same
number of goroutines are created. The goroutines just receive interface values of type
Worker and call the Task method on those values.

28 go func() {
29 for w := range w.work {
30 w.Task()
31 }
32 p.wg.Done()
33 }()

The for range loop blocks until there’s a Worker interface value to receive on the
work channel. When a value is received, the Task method is called. Once the work
channel is closed, the for range loop ends and the call to Done on the WaitGroup is
called. Then the goroutine terminates.

Listing 7.30 work/work.go: lines 20–37

Listing 7.31 work/work.go: lines 28–33
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 7 Concurrency patterns
 Now that we can create a pool of goroutines that can wait for and execute work,
let’s look at how work is submitted into the pool.

39 // Run submits work to the pool.
40 func (p *Pool) Run(w Worker) {
41 w.work <- w
42 }

Listing 7.32 shows the Run method. This method is used to submit work into the
pool. It accepts an interface value of type Worker and sends that value through the
work channel. Since the work channel is an unbuffered channel, the caller must wait
for a goroutine from the pool to receive it. This is what we want, because the caller
needs the guarantee that the work being submitted is being worked on once the call
to Run returns.

 At some point, the work pool needs to be shut down. This is where the Shutdown
method comes in.

44 // Shutdown waits for all the goroutines to shutdown.
45 func (p *Pool) Shutdown() {
46 close(p.work)
47 p.wg.Wait()
48 }

The Shutdown method in listing 7.33 does two things. First, it closes the work chan-
nel, which causes all of the goroutines in the pool to shut down and call the Done
method on the WaitGroup. Then the Shutdown method calls the Wait method on the
WaitGroup, which causes the Shutdown method to wait for all the goroutines to report
they have terminated.

 Now that you’ve seen the code for the work package and learned how it works, let’s
review the test program in the main.go source code file.

01 // This sample program demonstrates how to use the work package
02 // to use a pool of goroutines to get work done.
03 package main
04
05 import (
06 "log"
07 "sync"
08 "time"
09
10 "github.com/goinaction/code/chapter7/patterns/work"
11)
12

Listing 7.32 work/work.go: lines 39–42

Listing 7.33 work/work.go: lines 44–48

Listing 7.34 work/main/main.go
Licensed to Mark Watson <nordickan@gmail.com>

181Work
13 // names provides a set of names to display.
14 var names = []string{
15 "steve",
16 "bob",
17 "mary",
18 "therese",
19 "jason",
20 }
21
22 // namePrinter provides special support for printing names.
23 type namePrinter struct {
24 name string
25 }
26
27 // Task implements the Worker interface.
28 func (m *namePrinter) Task() {
29 log.Println(m.name)
30 time.Sleep(time.Second)
31 }
32
33 // main is the entry point for all Go programs.
34 func main() {
35 // Create a work pool with 2 goroutines.
36 p := work.New(2)
37
38 var wg sync.WaitGroup
39 wg.Add(100 * len(names))
40
41 for i := 0; i < 100; i++ {
42 // Iterate over the slice of names.
43 for _, name := range names {
44 // Create a namePrinter and provide the
45 // specific name.
46 np := namePrinter{
47 name: name,
48 }
49
50 go func() {
51 // Submit the task to be worked on. When RunTask
52 // returns we know it is being handled.
53 p.Run(&np)
54 wg.Done()
55 }()
56 }
57 }
58
59 wg.Wait()
60
61 // Shutdown the work pool and wait for all existing work
62 // to be completed.
63 p.Shutdown()
64 }
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 7 Concurrency patterns
Listing 7.34 shows the test program that uses the work package to perform the display-
ing of names. The code starts out on line 14 with the declaration of a package level
variable named names, which is declared as a slice of strings. The slice is also initialized
with five names. Then a type named namePrinter is declared.

22 // namePrinter provides special support for printing names.
23 type namePrinter struct {
24 name string
25 }
26
27 // Task implements the Worker interface.
28 func (m *namePrinter) Task() {
29 log.Println(m.name)
30 time.Sleep(time.Second)
31 }

On line 23 in listing 7.35, the namePrinter type is declared and the implementation
of the Worker interface follows. The purpose of the work is to display names to the
screen. The type contains a single field, name, that will contain the name to display.
The implementation of the Worker interface uses the log.Println function to display
the name and then waits a second before returning. The second wait is just to slow the
test program down so you can see the concurrency is action.

 With the implementation of the Worker interface, we can look at the code inside
the main function.

33 // main is the entry point for all Go programs.
34 func main() {
35 // Create a work pool with 2 goroutines.
36 p := work.New(2)
37
38 var wg sync.WaitGroup
39 wg.Add(100 * len(names))
40
41 for i := 0; i < 100; i++ {
42 // Iterate over the slice of names.
43 for _, name := range names {
44 // Create a namePrinter and provide the
45 // specific name.
46 np := namePrinter{
47 name: name,
48 }
49
50 go func() {
51 // Submit the task to be worked on. When RunTask
52 // returns we know it is being handled.
53 p.Run(&np)

Listing 7.35 work/main/main.go: lines 22–31

Listing 7.36 work/main/main.go: lines 33–64
Licensed to Mark Watson <nordickan@gmail.com>

183Summary
54 wg.Done()
55 }()
56 }
57 }
58
59 wg.Wait()
60
61 // Shutdown the work pool and wait for all existing work
62 // to be completed.
63 p.Shutdown()
64 }

On line 36 in listing 7.36, the New function from the work package is called to create
the work pool. The number 2 is passed into the call, indicating the pool should only
contain two goroutines. On lines 38 and 39 a WaitGroup is declared and initialized to
each goroutine that will be created. In this case, a goroutine for each name in the
names slice will be created 100 times. This is to create a lot of goroutines competing to
submit work to the pool.

 On lines 41 and 43 inner and outer for loops are declared to create all the gorou-
tines. Inside each iteration of the inner loop, a value of type namePrinter is created
and provided with a name to print. Then, on line 50, an anonymous function is
declared and created as a goroutine. The goroutine calls the Run method against the
work pool to submit the namePrinter value to the pool. Once a goroutine from the
work pool receives the value, the call to Run returns. This in turn causes the goroutine
to decrement the WaitGroup count and terminate.

 Once all the goroutines are created, the main function calls Wait on the Wait-
Group. The function will wait until all the goroutines that were created submit their
work. Once Wait returns, the work pool is shut down by calling the Shutdown method.
This method won’t return until all the work is complete. In our case, there would be
only two outstanding pieces of work by this time.

7.4 Summary
 You can use channels to control the lifetime of programs.
 A select statement with a default case can be used to attempt a nonblocking

send or receive on a channel.
 Buffered channels can be used to manage a pool of resources that can be

reused.
 The coordination and synchronization of channels is taken care of by the

runtime.
 Create a pool of goroutines to perform work using unbuffered channels.
 Any time an unbuffered channel can be used to exchange data between two

goroutines, you have guarantees you can count on.
Licensed to Mark Watson <nordickan@gmail.com>

Standard library
What is the Go standard library and why is it important? The Go standard library is a
set of core packages that enhance and extend the language. These packages add to
the number of different types of programs you can write without the need to build
your own packages or download packages others have published. Since these pack-
ages are tied to the language, they come with some special guarantees:

 They will always exist for each minor release of the language.
 They will honor the backward-compatibility promise.
 They are part of the dev, build, and release process for Go.
 They are maintained and reviewed by Go contributors.
 They are tested and benchmarked with each new release of the language.

These guarantees make the standard library special and something you want to
leverage as much as possible. By using packages from the standard library, you

In this chapter
 Writing output and logging information

 Decoding and encoding JSON

 Working with IO and streams of data

 Interoperability between packages in the standard
library
184

Licensed to Mark Watson <nordickan@gmail.com>

185Documentation and source code
make it easier to manage your code and ensure that it’s reliable. This is because you
don’t have to worry if your program is going to break between release cycles, nor do
you have to manage third-party dependencies.

 All these benefits would be useless if the standard library didn’t contain all the great
packages that it does. Go developers in the community depend on these packages
more so than in other languages. This is because they are well designed and provide
more functionality than is normally found in traditional standard libraries. In the end,
the Go community relies on the standard library for lots of things that developers in
other languages do not, such as networking, HTTP, image processing, and cryptology.

 In this chapter we’ll take a high-level look at the current set of packages that are a
part of the standard library. Then we’ll explore in greater detail three packages that
come in handy for many different programs: log, json, and io. These packages also
show off some of the great things that Go has to offer.

8.1 Documentation and source code
The standard library is filled with so many packages that it would be impossible to
cover them all in the scope of one chapter. Currently there are well over 100 packages
organized within 38 categories.

archive bufio bytes compress container crypto database
debug encoding errors expvar flag fmt go
hash html image index io log math
mime net os path reflect regexp runtime
sort strconv strings sync syscall testing text
time unicode unsafe

Many of the categories in listing 8.1 are also packages themselves. For a detailed
description and a look at all the available packages, the Go team maintains documen-
tation on the Go website at http://golang.org/pkg/.

 The pkg section of the golang website provides the godoc documentation for each
package. Figure 8.1 shows an example of the package documentation on the golang
website for the io package.

Listing 8.1 Set of top-level folders and packages in the standard library

Figure 8.1 golang.org/pkg/io/#Writer
Licensed to Mark Watson <nordickan@gmail.com>

http://golang.org/pkg/

186 CHAPTER 8 Standard library
If you want documentation that you can interact with, Sourcegraph has indexed all
the code for the standard library and many of the public repositories that contain Go
code. Figure 8.2 shows an example of the package documentation on the Source-
graph website (https://sourcegraph.com/)for the io package.

 No matter how you installed Go, all the source code for the standard library can be
found on your development machine in the $GOROOT/src/pkg folder. Having the
source code for the standard library is important for the Go tooling to work. Tools like
godoc, gocode, and even go build read this source code to perform their functions. If
this source code is not on your machine and accessible through the $GOROOT variable,
you’ll get errors when trying to build your programs.

 The source code for the standard library is precompiled as part of your Go distri-
bution package. These precompiled files, called archive files, can be found in the
$GOROOT/pkg folder for each target platform and operating system you have installed.
In figure 8.3 you can see files with an .a extension, which are the archive files.

 These files are special static Go libraries that the Go build tools create and use
when compiling and linking your final programs together. This helps the build pro-
cess to be fast. But there’s no way to specify these files when performing a build, so
you can’t share them. The Go tooling knows when it can use an existing .a file and
when it needs to rebuild one from the source code on your machine.

 With this background in place, let’s take a look at a few of the packages in the stan-
dard library and see how you can consume them in your own programs.

Figure 8.2 sourcegraph.com/code.google.com/p/go/.GoPackage/io/.def/Writer

Figure 8.3 View of the archive files inside the pkg folder
Licensed to Mark Watson <nordickan@gmail.com>

187Logging
8.2 Logging
Your programs have bugs, even if they haven’t shown themselves yet. That’s the nature
of software development. Logging is a way to find those bugs and learn more about
how your program is functioning. Logs can be your eyes and ears, providing code trac-
ing, profiling, and analytics. With this in mind, the standard library provides a log
package that can be used with some basic configuration. You can also create custom
loggers to implement your own specific logging needs.

 Logging has a long history in UNIX, and this has carried over into the log package.
Traditional CLI (command-line interface) programs write their output to the stdout
device. This device exists on all operating systems and is the default destination for
standard text output. Terminals are configured by default to display text written to
this device. Using this single destination works great until you have a program that
needs to write both output and details about how the program is functioning. When
you want to write logging information, you want to write that to a different destination
so your output and logging won’t be mixed together.

 To solve this problem, UNIX architects added a device called stderr. This device
was created to be the default destination for logging. It allows developers to separate
their programs’ output from their logging. For a user to see both the output and the
logging when running a program, terminal consoles are configured to display what’s
written to both stdout and stderr. But if your program only writes logs, then it’s com-
mon practice to write general logging information to stdout and errors or warnings
to stderr.

8.2.1 Log package

Let’s start with the base functionality provided by the log package before you learn
how to create your own custom loggers. The purpose of logging is to get a trace of
what the program is doing, where it’s happening, and when. This is some of the infor-
mation that you can write on every log line with some configuration.

TRACE: 2009/11/10 23:00:00.000000 /tmpfs/gosandbox-/prog.go:14: message

In listing 8.2 you see a log entry produced by the log package. This log entry contains
a prefix, a datetime stamp, the full path to the source code writing to the log, the line
of code performing the write, and finally the message. Let’s look at a program that
allows you to configure the log package to write such a line.

01 // This sample program demonstrates how to use the base log package.
02 package main
03
04 import (

Listing 8.2 Sample trace line

Listing 8.3 listing03.go
Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 8 Standard library
05 "log"
06)
07
08 func init() {
09 log.SetPrefix("TRACE: ")
10 log.SetFlags(log.Ldate | log.Lmicroseconds | log.Llongfile)
11 }
12
13 func main() {
14 // Println writes to the standard logger.
15 log.Println("message")
16
17 // Fatalln is Println() followed by a call to os.Exit(1).
18 log.Fatalln("fatal message")
19
20 // Panicln is Println() followed by a call to panic().
21 log.Panicln("panic message")
22 }

If you run the program from listing 8.3, you should get something close to the same
output from listing 8.2. Let’s break down the code and see how it works.

08 func init() {
09 log.SetPrefix("TRACE: ")
10 log.SetFlags(log.Ldate | log.Lmicroseconds | log.Llongfile)
11 }

On lines 08 through 11, we have a function called init(). This function is executed
before main() as part of the program initialization. It’s common to set the log config-
uration inside of init() so the log package can be used immediately when the pro-
gram starts. In our program on line 09, we set the string to be used as a prefix for each
line. This should be a string that allows you to identify a log line over normal program
output. Traditionally this string is written in capital letters.

 There are several flags associated with the log package that control other informa-
tion that can be written on each log line. The following listing shows the flags that cur-
rently exist.

const (
// Bits or'ed together to control what's printed. There is no control
// over the order they appear (the order listed here) or the format
// they present (as described in the comments). A colon appears after
// these items:
// 2009/01/23 01:23:23.123123 /a/b/c/d.go:23: message

// the date: 2009/01/23
Ldate = 1 << iota

// the time: 01:23:23

Listing 8.4 listing03.go: lines 08–11

Listing 8.5 golang.org/src/log/log.go
Licensed to Mark Watson <nordickan@gmail.com>

189Logging
Ltime

// microsecond resolution: 01:23:23.123123. assumes Ltime
Lmicroseconds

// full file name and line number: /a/b/c/d.go:23
Llongfile

// final file name element and line number: d.go:23
// overrides Llongfile
Lshortfile

// initial values for the standard logger
LstdFlags = Ldate | Ltime

)

Listing 8.5 comes right out of the source code for the log package. These flags are
declared as constants, and the first constant in this block is called Ldate, which is
declared with special syntax.

// the date: 2009/01/23
Ldate = 1 << iota

The iota keyword has a special purpose when it comes to declaring a block of con-
stants. It instructs the compiler to duplicate the expression for every constant until the
block ends or an assignment statement is found. Another function of the iota key-
word is that the value of iota for each preceding constant gets incremented by 1, with
an initial value of 0. Let’s look at this more closely.

const (
Ldate = 1 << iota // 1 << 0 = 000000001 = 1
Ltime // 1 << 1 = 000000010 = 2
Lmicroseconds // 1 << 2 = 000000100 = 4
Llongfile // 1 << 3 = 000001000 = 8
Lshortfile // 1 << 4 = 000010000 = 16
...

)

Listing 8.7 shows what’s happening behind the scenes with the constant declarations.
The << operator performs a left bitwise shift of the bits represented by the value on
the left side of the operator. In each case the bit pattern for the value of 1 is shifted to
the left iota position. This has the effect of giving each constant its own unique bit
position, which you’ll see is perfect when working with flags.

 The LstdFlags constant shows the purpose behind giving each constant its own
unique bit position.

Listing 8.6 Declaration of the Ldate constant

Listing 8.7 Use of the keyword iota
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 8 Standard library

const (
...
LstdFlags = Ldate(1) | Ltime(2) = 00000011 = 3

)

In listing 8.8 you see the LstdFlags constant break the iota chain because of the use
of the assignment operator. The LstdFlags constant is assigned the value of 3, thanks
to the fact that the pipe operator (|) is used to or bits together. Or’ing bits is equiva-
lent to joining bits so each individually set bit is then represented in the final value.
When bits 1 and 2 are ored together, they form the value of 3.

 Let’s look again at how we set the log flags we wanted applied.

08 func init() {
09 ...
10 log.SetFlags(log.Ldate | log.Lmicroseconds | log.Llongfile)
11 }

Here we piped the Ldate, Lmicroseconds, and Llongfile flags together and passed
the value of that operation to the SetFlags function. These flags, when piped
together, represent the value 13 and bits 4, 3, and 1 (00001101). Since each constant
represents an individual bit, flags can be joined together using the pipe operator to
create a value that represents all the log options we want applied. The log package
then takes that integer value we passed and inspects which bits are set to apply the cor-
rect attributes we requested.

 With the log package initialized, you can look at main() and see how to write
messages.

13 func main() {
14 // Println writes to the standard logger.
15 log.Println("message")
16
17 // Fatalln is Println() followed by a call to os.Exit(1).
18 log.Fatalln("fatal message")
19
20 // Panicln is Println() followed by a call to panic().
21 log.Panicln("panic message")
22 }

Listing 8.10 shows how to write log messages using three different functions: Println,
Fatalln, and Panicln. These functions have a format version, as well, that end with
the letter f instead of the letters ln. The Fatal family of functions is used to write a
log message and then terminate the program using the os.Exit(1) function call. The

Listing 8.8 Declaration of the LstdFlags constant

Listing 8.9 listing03.go: lines 08–11

Listing 8.10 listing03.go: lines 13–22
Licensed to Mark Watson <nordickan@gmail.com>

191Logging
Panic family of functions is used to write a log message and then issue a panic, which
unless recovered, will cause the program to terminate and stack trace. The Print fam-
ily of functions is the standard way to write log messages.

 One nice thing about the log package is that loggers are multigoroutine-safe. This
means that multiple goroutines can call these functions from the same logger value at
the same time without the writes colliding with each other. The standard logger and
any customized logger you may create will have this attribute.

 Now that you know how to use the log package and configure it, let’s explore how
to create customized loggers so you can have different logging levels that can write
logs to different destinations.

8.2.2 Customized loggers

Creating customized loggers require that you create your own Logger type values.
Each logger you create can be configured for a unique destination and set with its
own prefix and flags. Let’s look at an example program that creates different Logger
type pointer variables to support different logging levels.

01 // This sample program demonstrates how to create customized loggers.
02 package main
03
04 import (
05 "io"
06 "io/ioutil"
07 "log"
08 "os"
09)
10
11 var (
12 Trace *log.Logger // Just about anything
13 Info *log.Logger // Important information
14 Warning *log.Logger // Be concerned
15 Error *log.Logger // Critical problem
16)
17
18 func init() {
19 file, err := os.OpenFile("errors.txt",
20 os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666)
21 if err != nil {
22 log.Fatalln("Failed to open error log file:", err)
23 }
24
25 Trace = log.New(ioutil.Discard,
26 "TRACE: ",
27 log.Ldate|log.Ltime|log.Lshortfile)
28
29 Info = log.New(os.Stdout,
30 "INFO: ",
31 log.Ldate|log.Ltime|log.Lshortfile)
32

Listing 8.11 listing11.go
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 8 Standard library
33 Warning = log.New(os.Stdout,
34 "WARNING: ",
35 log.Ldate|log.Ltime|log.Lshortfile)
36
37 Error = log.New(io.MultiWriter(file, os.Stderr),
38 "ERROR: ",
39 log.Ldate|log.Ltime|log.Lshortfile)
40 }
41
42 func main() {
43 Trace.Println("I have something standard to say")
44 Info.Println("Special Information")
45 Warning.Println("There is something you need to know about")
46 Error.Println("Something has failed")
47 }

Listing 8.11 shows a complete program that creates four different Logger type pointer
variables. They’re named Trace, Info, Warning, and Error. Each variable is config-
ured differently because of the importance each represents. Let’s break down the
code so you can learn how all this works.

 On lines 11 through 16 we declare the four Logger type pointer variables for our
different logging levels.

11 var (
12 Trace *log.Logger // Just about anything
13 Info *log.Logger // Important information
14 Warning *log.Logger // Be concerned
15 Error *log.Logger // Critical problem
16)

In listing 8.12 you see the declaration of the Logger type pointer variables. We’ve
given each logger a short but descriptive variable name. Next, let’s look at the code in
init() that creates and assigns the address of each Logger type value to each variable.

25 Trace = log.New(ioutil.Discard,
26 "TRACE: ",
27 log.Ldate|log.Ltime|log.Lshortfile)
28
29 Info = log.New(os.Stdout,
30 "INFO: ",
31 log.Ldate|log.Ltime|log.Lshortfile)
32
33 Warning = log.New(os.Stdout,
34 "WARNING: ",
35 log.Ldate|log.Ltime|log.Lshortfile)
36
37 Error = log.New(io.MultiWriter(file, os.Stderr),
38 "ERROR: ",
39 log.Ldate|log.Ltime|log.Lshortfile)

Listing 8.12 listing11.go: lines 11–16

Listing 8.13 listing11.go: lines 25–39
Licensed to Mark Watson <nordickan@gmail.com>

193Logging
To create each logger, we use the New function from the log package, which creates a
properly initialized Logger type value. The New function returns the address to the
newly created value. Before the New function can create a value, we need to pass it
some parameters.

// New creates a new Logger. The out variable sets the
// destination to which log data will be written.
// The prefix appears at the beginning of each generated log line.
// The flag argument defines the logging properties.
func New(out io.Writer, prefix string, flag int) *Logger {

return &Logger{out: out, prefix: prefix, flag: flag}
}

Listing 8.14 shows the declaration of the New function from the source code for the
log package. The first parameter is the destination we want the logger to write to. This
is provided as a value that implements the io.Writer interface. The second parame-
ter is the prefix that you saw before, and log flags comprise the final parameter.

 In our program, the Trace logger uses the Discard variable from the ioutil pack-
age as the destination to write to.

25 Trace = log.New(ioutil.Discard,
26 "TRACE: ",
27 log.Ldate|log.Ltime|log.Lshortfile)

The Discard variable has some very interesting properties.

// devNull is a named type using int as its base type.
type devNull int

// Discard is an io.Writer on which all Write calls succeed
// without doing anything.
var Discard io.Writer = devNull(0)

// Implementation of the io.Writer interface.
func (devNull) Write(p []byte) (int, error) {

return len(p), nil
}

Listing 8.16 shows the declaration of the Discard variable and the implementation
surrounding it. The Discard variable is declared to be of interface type io.Writer
and is given a value of 0 of type devNull. Anything written to this variable is discarded
based on the implementation of the Write method for the devNull type. Using the
Discard variable is a technique you can use to disable a logging level when the output
for that level is not required.

Listing 8.14 golang.org/src/log/log.go

Listing 8.15 listing11.go: lines 25–27

Listing 8.16 golang.org/src/io/ioutil/ioutil.go
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 8 Standard library
 The Info and Warning loggers both use the stdout destination.

29 Info = log.New(os.Stdout,
30 "INFO: ",
31 log.Ldate|log.Ltime|log.Lshortfile)
32
33 Warning = log.New(os.Stdout,
34 "WARNING: ",
35 log.Ldate|log.Ltime|log.Lshortfile)

The declaration of the Stdout variable is also interesting.

// Stdin, Stdout, and Stderr are open Files pointing to the standard
// input, standard output, and standard error file descriptors.
var (

Stdin = NewFile(uintptr(syscall.Stdin), "/dev/stdin")
Stdout = NewFile(uintptr(syscall.Stdout), "/dev/stdout")
Stderr = NewFile(uintptr(syscall.Stderr), "/dev/stderr")

)

os/file_unix.go

// NewFile returns a new File with the given file descriptor and name.
func NewFile(fd uintptr, name string) *File {

In listing 8.18 you can see the declaration for the three variables that represent the
standard destinations that exist on all operating systems: Stdin, Stdout, and Stderr.
All these variables are declared to be pointers of type File, which implements the
io.Writer interface. This leads us to the final logger, Error.

37 Error = log.New(io.MultiWriter(file, os.Stderr),
38 "ERROR: ",
39 log.Ldate|log.Ltime|log.Lshortfile)

In listing 8.19 you can see that the first parameter to the New function comes from a
special function called MultiWriter from the io package.

io.MultiWriter(file, os.Stderr)

Listing 8.20 isolates the call to the MultiWriter function, which returns an interface
type value of io.Writer that contains both the file that we opened and the stderr
destination. The MultiWriter function is a variadic function that accepts any number
of values that implement the io.Writer interface. The function returns a single
io.Writer value that bundles all of the io.Writer values that are passed in. This

Listing 8.17 listing11.go: lines 29–35

Listing 8.18 golang.org/src/os/file.go

Listing 8.19 listing11.go: lines 37–39

Listing 8.20 Declaration of the MultiWriter function in the io package
Licensed to Mark Watson <nordickan@gmail.com>

195Logging
allows functions like log.New to accept multiple writers within a single writer. Now
when we write a log using the Error logger, the output will be written to both the file
and stderr.

 Now that you know how to create custom loggers, let’s look at how you can use
them to write messages.

42 func main() {
43 Trace.Println("I have something standard to say")
44 Info.Println("Special Information")
45 Warning.Println("There is something you need to know about")
46 Error.Println("Something has failed")
47 }

Listing 8.21 shows the main() function from listing 8.11. On lines 43 through 46 we
write a single message for each logger that we created. Each logger variable contains a
set of methods that are identical to the set of functions that are implemented by the
log package.

func (l *Logger) Fatal(v ...interface{})
func (l *Logger) Fatalf(format string, v ...interface{})
func (l *Logger) Fatalln(v ...interface{})
func (l *Logger) Flags() int
func (l *Logger) Output(calldepth int, s string) error
func (l *Logger) Panic(v ...interface{})
func (l *Logger) Panicf(format string, v ...interface{})
func (l *Logger) Panicln(v ...interface{})
func (l *Logger) Prefix() string
func (l *Logger) Print(v ...interface{})
func (l *Logger) Printf(format string, v ...interface{})
func (l *Logger) Println(v ...interface{})
func (l *Logger) SetFlags(flag int)
func (l *Logger) SetPrefix(prefix string)

Listing 8.22 shows all the methods that have been implemented for the Logger type.

8.2.3 Conclusion

The log package has been implemented with the long history and understanding of
the purpose of logging and how it has been applied in practice. Writing output to
stdout and logging to stderr has long been the tradition of many CLI-based pro-
grams. But when your program is only outputting logs, then using stdout, stderr,
and files is perfectly acceptable.

 The log package from the standard library has everything you need for logging
and its use is recommended. You can trust the implementation not only because it’s
part of the standard library, but because it’s used widely by the community.

Listing 8.21 listing11.go: lines 42–47

Listing 8.22 Declarations of the different logging methods
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 8 Standard library
8.3 Encoding/Decoding
Many applications, whether they’re using databases, making web calls, or working
within a distributed system, need to consume and publish data. If your application is
working with either XML or JSON, the standard library has packages called xml and
json that make working with these data formats trivial. If you have your own data for-
mats that need to be encoded and decoded, the implementation of these packages is a
great road map of how to implement your own packages.

 Working with and using JSON is more common nowadays than working with XML.
This is primarily because using JSON requires less markup than working with XML.
This means less data per message needs to be sent over the network, which helps with
the overall performance of the system. Also, JSON can be transformed into BSON
(Binary JavaScript Object Notation), which reduces the size of each message even fur-
ther. In view of this, we’ll explore how to consume and publish JSON in Go applica-
tions. But working with XML is very similar.

8.3.1 Decoding JSON

The first aspect of working with JSON we’ll explore is using the NewDecoder function
and Decode method from the json package. If you’re consuming JSON from a web
response or a file, this is the function and method you want to use. Let’s look at an
example that works with the http package to perform a Get request against the
Google search API that returns results in JSON. The next listing shows what the
response looks like.

{
"responseData": {

"results": [
{

"GsearchResultClass": "GwebSearch",
"unescapedUrl": "https://www.reddit.com/r/golang",
"url": "https://www.reddit.com/r/golang",
"visibleUrl": "www.reddit.com",
"cacheUrl": "http://www.google.com/search?q=cache:W...",
"title": "r/\u003cb\u003eGolang\u003c/b\u003e - Reddit",
"titleNoFormatting": "r/Golang - Reddit",
"content": "First Open Source \u003cb\u003eGolang\u..."

},
{

"GsearchResultClass": "GwebSearch",
"unescapedUrl": "http://tour.golang.org/",
"url": "http://tour.golang.org/",
"visibleUrl": "tour.golang.org",
"cacheUrl": "http://www.google.com/search?q=cache:O...",
"title": "A Tour of Go",
"titleNoFormatting": "A Tour of Go",
"content": "Welcome to a tour of the Go programming ..."

}

Listing 8.23 Google search API sample JSON response
Licensed to Mark Watson <nordickan@gmail.com>

197Encoding/Decoding
]
}

}

Here’s the example that retrieves and decodes the response into a struct type.

01 // This sample program demonstrates how to decode a JSON response
02 // using the json package and NewDecoder function.
03 package main
04
05 import (
06 "encoding/json"
07 "fmt"
08 "log"
09 "net/http"
10)
11
12 type (
13 // gResult maps to the result document received from the search.
14 gResult struct {
15 GsearchResultClass string `json:"GsearchResultClass"`
16 UnescapedURL string `json:"unescapedUrl"`
17 URL string `json:"url"`
18 VisibleURL string `json:"visibleUrl"`
19 CacheURL string `json:"cacheUrl"`
20 Title string `json:"title"`
21 TitleNoFormatting string `json:"titleNoFormatting"`
22 Content string `json:"content"`
23 }
24
25 // gResponse contains the top level document.
26 gResponse struct {
27 ResponseData struct {
28 Results []gResult `json:"results"`
29 } `json:"responseData"`
30 }
31)
32
33 func main() {
34 uri := "http://ajax.googleapis.com/ajax/services/search/web?

v=1.0&rsz=8&q=golang"
35
36 // Issue the search against Google.
37 resp, err := http.Get(uri)
38 if err != nil {
39 log.Println("ERROR:", err)
40 return
41 }
42 defer resp.Body.Close()
43
44 // Decode the JSON response into our struct type.
45 var gr gResponse
46 err = json.NewDecoder(resp.Body).Decode(&gr)

Listing 8.24 listing24.go
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 8 Standard library
47 if err != nil {
48 log.Println("ERROR:", err)
49 return
50 }
51
52 fmt.Println(gr)
53 }

The code on line 37 in listing 8.24 shows a program that makes an HTTP Get call that
retrieves a JSON document from Google. Then, using the NewDecoder function and
Decode method on line 46, the JSON document from the response is decoded into a
variable of the struct type that’s declared on line 26. On line 52 the value of the vari-
able is written to stdout.

 If you look at the type declarations for gResponse and gResult on lines 26 and 14,
you’ll notice strings declared at the end of each field. These are called tags, and they’re
the mechanism to provide metadata about the field mapping between the JSON docu-
ment and the struct type. If tags are not present, the decoding and encoding process
will attempt to match against the field names directly in a case-insensitive way. When a
mapping can’t be made, the field in the struct value will contain its zero value.

 Thanks to the standard library, all of the technical aspects of performing HTTP Get
calls and decoding JSON into struct types are taken care of. Let’s look at the declara-
tion of both the NewDecoder function and Decode method.

// NewDecoder returns a new decoder that reads from r.
//
// The decoder introduces its own buffering and may
// read data from r beyond the JSON values requested.
func NewDecoder(r io.Reader) *Decoder

// Decode reads the next JSON-encoded value from its
// input and stores it in the value pointed to by v.
//
// See the documentation for Unmarshal for details about
// the conversion of JSON into a Go value.
func (dec *Decoder) Decode(v interface{}) error

In listing 8.25 you can see that the NewDecoder function accepts any value whose type
implements the io.Reader interface. In the next section you’ll learn more about the
io.Reader and io.Writer interfaces. For now, understand that many different types
from within the standard library implement these interfaces, including types from the
http package. When types implement these particular interfaces, you get a lot of sup-
port and functionality for free.

 The NewDecoder function returns a pointer value of type Decoder. Since Go sup-
ports compound statement calls, the return value from the NewDecoder function
can be used to call the Decode method immediately without the need to declare a

Listing 8.25 golang.org/src/encoding/json/stream.go
Licensed to Mark Watson <nordickan@gmail.com>

199Encoding/Decoding
variable first. In listing 8.25 you can see that the Decode method accepts a value of
type interface{} and returns an error.

 As described in chapter 5, the empty interface is an interface implemented by
every type. This means the Decode method can accept values of any type. Through the
use of reflection, the Decode method will inspect the type information about the value
you pass in. Then as it reads the JSON response, it will decode the response into a
value of that type. This means you don’t need to create values yourself; Decode can do
this for you.

var gr *gResponse
err = json.NewDecoder(resp.Body).Decode(&gr)

In listing 8.26 we pass the address of a pointer variable of type gResponse, with the
value of nil, to the Decode method. After the method call, the value of the pointer
variable will be assigned to a value of type gResponse and initialized based on the
JSON document being decoded.

 Sometimes the JSON documents you’re working with come to you as a string
value. In these cases, you need to convert the string into a byte slice ([]byte) and
use the Unmarshal function from the json package.

01 // This sample program demonstrates how to decode a JSON string.
02 package main
03
04 import (
05 "encoding/json"
06 "fmt"
07 "log"
08)
09
10 // Contact represents our JSON string.
11 type Contact struct {
12 Name string `json:"name"`
13 Title string `json:"title"`
14 Contact struct {
15 Home string `json:"home"`
16 Cell string `json:"cell"`
17 } `json:"contact"`
18 }
19
20 // JSON contains a sample string to unmarshal.
21 var JSON = `{
22 "name": "Gopher",
23 "title": "programmer",
24 "contact": {
25 "home": "415.333.3333",
26 "cell": "415.555.5555"

Listing 8.26 Use of the Decode method

Listing 8.27 listing27.go
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 8 Standard library
27 }
28 }`
29
30 func main() {
31 // Unmarshal the JSON string into our variable.
32 var c Contact
33 err := json.Unmarshal([]byte(JSON), &c)
34 if err != nil {
35 log.Println("ERROR:", err)
36 return
37 }
38
39 fmt.Println(c)
40 }

In listing 8.27 we have an example that takes a JSON document inside of a string vari-
able and uses the Unmarshal function to decode the JSON into a struct type value. If
you run the program, you’ll get the following output.

{Gopher programmer {415.333.3333 415.555.5555}}

Sometimes it’s not possible to declare a struct type and you need more flexibility to
work with the JSON document. In these cases you can decode or unmarshal the JSON
document into a map variable.

01 // This sample program demonstrates how to decode a JSON string.
02 package main
03
04 import (
05 "encoding/json"
06 "fmt"
07 "log"
08)
09
10 // JSON contains a sample string to unmarshal.
11 var JSON = `{
12 "name": "Gopher",
13 "title": "programmer",
14 "contact": {
15 "home": "415.333.3333",
16 "cell": "415.555.5555"
17 }
18 }`
19
20 func main() {
21 // Unmarshal the JSON string into our map variable.
22 var c map[string]interface{}
23 err := json.Unmarshal([]byte(JSON), &c)
24 if err != nil {

Listing 8.28 Output for listing27.go

Listing 8.29 listing29.go
Licensed to Mark Watson <nordickan@gmail.com>

201Encoding/Decoding
25 log.Println("ERROR:", err)
26 return
27 }
28
29 fmt.Println("Name:", c["name"])
30 fmt.Println("Title:", c["title"])
31 fmt.Println("Contact")
32 fmt.Println("H:", c["contact"].(map[string]interface{})["home"])
33 fmt.Println("C:", c["contact"].(map[string]interface{})["cell"])
34 }

In listing 8.29 we’ve changed the program from listing 8.27 to use a map variable
instead of our struct type variable. The map variable is declared as a map with a key of
type string and a value of type interface{}. This means the map can store any type of
value for any given key. Though this gives you great flexibility when working with JSON
documents, it has one minor drawback. Look at the syntax required to access the home
field from the contact subdocument.

fmt.Println("\tHome:", c["contact"].(map[string]interface{})["home"])

Because the value for each key is of type interface{}, you need to convert the value
to the proper native type in order to work with the value. Listing 8.30 shows how you
need to convert the value of the contact key to another map with a key of type string
and a value of type interface{}. This can make using maps that contain JSON docu-
ments sometimes unfriendly to work with. But if you never need to dig into the JSON
documents you’re working with or you plan to do very little manipulation, using a map
can be fast, and then there’s no need to declare new types.

8.3.2 Encoding JSON

The second aspect of working with JSON we’ll explore is using the MarshalIndent
function from the json package. This comes in handy when you want to publish a
pretty-printed JSON document from a Go map or struct type value. Marshaling is the
process of transforming data into a JSON string. Here’s an example that converts a map
type into a JSON string.

01 // This sample program demonstrates how to marshal a JSON string.
02 package main
03
04 import (
05 "encoding/json"
06 "fmt"
07 "log"
08)
09
10 func main() {

Listing 8.30 Syntax for accessing a field from an unmarshaled map

Listing 8.31 listing31.go
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 8 Standard library
11 // Create a map of key/value pairs.
12 c := make(map[string]interface{})
13 c["name"] = "Gopher"
14 c["title"] = "programmer"
15 c["contact"] = map[string]interface{}{
16 "home": "415.333.3333",
17 "cell": "415.555.5555",
18 }
19
20 // Marshal the map into a JSON string.
21 data, err := json.MarshalIndent(c, "", " ")
22 if err != nil {
23 log.Println("ERROR:", err)
24 return
25 }
26
27 fmt.Println(string(data))
28 }

Listing 8.31 shows how to use the MarshalIndent function from the json package to
convert a map to a JSON string. The MarshalIndent function returns a byte slice that
represents the JSON string and an error value. Here’s a look at the declaration of the
MarshalIndent function from the json package.

// MarshalIndent is like Marshal but applies Indent to format the output
func MarshalIndent(v interface{}, prefix, indent string)

([]byte, error) {

You can see the use of the empty interface type again as the parameter to the Marshal-
Indent function. The MarshalIndent function uses reflection to determine how to
transform the map type into a JSON string.

 If you don’t need the pretty-print formatting for your JSON encoding, the json
package also provides a function called Marshal. This function is good for producing
JSON that could be returned in a network response, like a web API. The Marshal func-
tion works the same as the MarshalIndent function, but without the parameters for
prefix and indent.

8.3.3 Conclusion

If you’re working with JSON or even XML, all the support you need to decode, unmar-
shal, and marshal data in these formats is provided to you already by the standard
library. With each new release of Go, these packages get faster and faster, making
working with JSON and XML a great choice. Thanks to the reflection package and the
support for tags, it’s easy to declare struct types and map those fields to the docu-
ment fields you need to consume and publish. Since the json and xml packages pro-
vide support for the io.Reader and io.Writer interfaces, it doesn’t matter where
your JSON and XML documents are coming from. Everything is supported to make
working with JSON and XML painless.

Listing 8.32 golang.org/src/encoding/json/encode.go
Licensed to Mark Watson <nordickan@gmail.com>

203Input and output
8.4 Input and output
One of the things that makes the UNIX-based operating systems so great is the idea
that the output of one program can be the input for another. This philosophy has cre-
ated a suite of simple programs that do only one thing and do it really well. Then, by
composing programs together, scripts can be created to do some amazing things. In
this world the stdout and stdin devices serve as the conduits to move data between
processes.

 This same idea has been extended to the io package, and the functionality that it
provides is amazing. The package supports working with streams of data very effi-
ciently, regardless of what the data is, where it’s coming from, or where it’s going.
Instead of stdout and stdin, you have two interfaces called io.Writer and
io.Reader. Values from types that implement these interfaces can be used against all
the functionality provided by the io package or any function and method in any other
package that also accepts values of these interface types. That’s the real beauty of cre-
ating functionality and APIs from interfaces types. Developers can compose on top of
existing functionality, take advantage of what exists, and focus on the business prob-
lems they’re trying to solve.

 With this in mind, let’s start by looking at the declaration for the io.Writer and
io.Reader interfaces and then examine code examples that showcase some of the
amazing functionality of the io package.

8.4.1 Writer and Reader interfaces

The io package is built around working with values from types that implement the
io.Writer and io.Reader interfaces. The functions and methods that make up the io
package have no understanding about the type of data nor how that data is physically
read and written. This is thanks to the abstraction that the io.Writer and io.Reader
interfaces provide. Let’s start by looking at the declaration of the io.Writer interface.

type Writer interface {
Write(p []byte) (n int, err error)

}

Listing 8.33 shows the declaration of the io.Writer interface. The interface declares
a single method called Write that accepts a byte slice and returns two values. The first
value is the number of bytes written, and the second value is an error. The rules for
implementing this method are as follows.

Write writes len(p) bytes from p to the underlying data stream. It
returns the number of bytes written from p (0 <= n <= len(p)) and any
error encountered that caused the write to stop early. Write must
return a non-nil error if it returns n < len(p). Write must not modify
the slice data, even temporarily.

Listing 8.33 Declaration of the io.Writer interface

Listing 8.34 Documentation for the io.Writer interface
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 8 Standard library
The rules in listing 8.34 come from the standard library. They mean that the imple-
mentation of the Write method should attempt to write the entire length of the byte
slice that’s passed in. But if that isn’t possible, then the method must return an error.
The number of bytes reported as written can be less than the length of the byte slice,
but never more. Finally, the byte slice must never be modified in any way.

 Let’s look at the declaration of the Reader interface.

type Reader interface {
Read(p []byte) (n int, err error)

}

The io.Reader interface in listing 8.35 declares a single method, Read, that accepts a
byte slice and returns two values. The first value is the number of bytes read and the
second value is an error. The rules for implementing this method are as follows.

(1) Read reads up to len(p) bytes into p. It returns the number of bytes
read (0 <= n <= len(p)) and any error encountered. Even if Read returns
n < len(p), it may use all of p as scratch space during the call. If
some data is available but not len(p) bytes, Read conventionally
returns what is available instead of waiting for more.

(2) When Read encounters an error or end-of-file condition after
successfully reading n > 0 bytes, it returns the number of bytes read.
It may return the (non-nil) error from the same call or return the
error (and n == 0) from a subsequent call. An instance of this general
case is that a Reader returning a non-zero number of bytes at the end
of the input stream may return either err == EOF or err == nil. The next
Read should return 0, EOF regardless.

(3) Callers should always process the n > 0 bytes returned before
considering the error err. Doing so correctly handles I/O errors that
happen after reading some bytes and also both of the allowed EOF
behaviors.

(4) Implementations of Read are discouraged from returning a zero byte
count with a nil error, and callers should treat that situation as a
no-op.

There are four rules listed in the standard library about implementing the Read
method. The first rule states that the implementation should attempt to read the
entire length of the byte slice that’s passed in. It’s okay to read less than the entire
length, and it shouldn’t wait to read the entire length if that much data isn’t available
at the time of the call.

 The second rule provides guidance about end of file (EOF) read conditions. When
the last byte is read, two options are available. Read either returns the final bytes with
the proper count and EOF for the error value, or returns the final bytes with the

Listing 8.35 Declaration of the io.Reader interface

Listing 8.36 Documentation for the io.Reader interface
Licensed to Mark Watson <nordickan@gmail.com>

205Input and output
proper count and nil for the error value. In the latter case, the next read must return
no bytes with the count of 0 and EOF for the error value.

 The third rule is a suggestion for those who make the Read call. Any time the Read
method returns bytes, those bytes should be processed first before checking the error
value for an EOF or other error value. Finally, the fourth rule requests that implemen-
tations of the Read method never return a 0 byte read count with an error value of
nil. Reads that result in no bytes read should always return an error.

 Now that you know what the io.Writer and io.Reader interfaces look like and
how they’re expected to behave, let’s look at some examples of how you can use these
interfaces and the io package in your programs.

8.4.2 Working together

This example shows how different packages from the standard library work together
by providing support for values from types that implement the io.Writer interface.
The example uses the bytes, fmt, and os packages to buffer, concatenate, and write a
string to stdout.

01 // Sample program to show how different functions from the
02 // standard library use the io.Writer interface.
03 package main
04
05 import (
06 "bytes"
07 "fmt"
08 "os"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 // Create a Buffer value and write a string to the buffer.
14 // Using the Write method that implements io.Writer.
15 var b bytes.Buffer
16 b.Write([]byte("Hello "))
17
18 // Use Fprintf to concatenate a string to the Buffer.
19 // Passing the address of a bytes.Buffer value for io.Writer.
20 fmt.Fprintf(&b, "World!")
21
22 // Write the content of the Buffer to the stdout device.
23 // Passing the address of a os.File value for io.Writer.
24 b.WriteTo(os.Stdout)
25 }

When you run the program in listing 8.37, you’ll get the following output.

Hello World!

Listing 8.37 listing37.go

Listing 8.38 Output for listing37.go
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 8 Standard library
This program is using three packages from the standard library to write “Hello
World!” to the terminal window. The program starts on line 15 by declaring a variable
of type Buffer from the bytes package, which is initialized to its zero value. On line
16 a byte slice is created and initialized with the string "Hello". The byte slice is
passed into the Write method and becomes the initial content for the buffer.

 Line 20 uses the Fprintf function from the fmt package to append the string
"World!" to the buffer. Let’s look at the declaration of the Fprintf function.

// Fprintf formats according to a format specifier and writes to w. It
// returns the number of bytes written and any write error encountered.
func Fprintf(w io.Writer, format string, a ...interface{})

(n int, err error)

What’s important to note is the first parameter of the Fprintf function. It accepts val-
ues from types that implement the io.Writer interface. This means that the Buffer
type from the bytes package must implement this interface since we’re able to pass
the address of a variable of that type through. In the source code for the bytes pack-
age, we should then find the Write method declared for the Buffer type.

// Write appends the contents of p to the buffer, growing the buffer
// as needed. The return value n is the length of p; err is always
// nil. If the buffer becomes too large, Write will panic with ...
func (b *Buffer) Write(p []byte) (n int, err error) {

b.lastRead = opInvalid
m := b.grow(len(p))
return copy(b.buf[m:], p), nil

}

Listing 8.40 shows the current implementation of the Write method for the Buffer
type that implements the io.Writer interface. Because of the implementation of this
method, we can pass pointers of type Buffer as the first parameter to Fprintf. We use
the Fprintf function in our example to append the string "World!" to the internal
buffer of the Buffer type variable via the implementation of the Write method.

 Let’s review the last line of listing 8.37, which writes the entire buffer to stdout.

22 // Write the content of the Buffer to the stdout device.
23 // Passing the address of a os.File value for io.Writer.
24 b.WriteTo(os.Stdout)
25 }

On line 24 of listing 8.37, the contents of the Buffer type variable are written to
stdout using the WriteTo method. This method accepts a value that implements the

Listing 8.39 golang.org/src/fmt/print.go

Listing 8.40 golang.org/src/bytes/buffer.go

Listing 8.41 listing37.go: lines 22–25
Licensed to Mark Watson <nordickan@gmail.com>

207Input and output
io.Writer interface. In our program we pass the value of the Stdout variable from
the os package.

var (
Stdin = NewFile(uintptr(syscall.Stdin), "/dev/stdin")
Stdout = NewFile(uintptr(syscall.Stdout), "/dev/stdout")
Stderr = NewFile(uintptr(syscall.Stderr), "/dev/stderr")

)

The declaration of these variables comes from the type returned by the NewFile
function.

// NewFile returns a new File with the given file descriptor and name.
func NewFile(fd uintptr, name string) *File {

fdi := int(fd)
if fdi < 0 {

return nil
}
f := &File{&file{fd: fdi, name: name}}
runtime.SetFinalizer(f.file, (*file).close)
return f

}

As you can see in listing 8.43, the NewFile function returns a pointer of type File.
This is the type of the Stdout variable. Since we can pass pointers of this type as a
parameter to the WriteTo method, it must implement the io.Writer interface. In the
source code for the os package, we should find the Write method.

// Write writes len(b) bytes to the File.
// It returns the number of bytes written and an error, if any.
// Write returns a non-nil error when n != len(b).
func (f *File) Write(b []byte) (n int, err error) {

if f == nil {
return 0, ErrInvalid

}
n, e := f.write(b)
if n < 0 {

n = 0
}
if n != len(b) {

err = io.ErrShortWrite
}

epipecheck(f, e)

if e != nil {

Listing 8.42 golang.org/src/os/file.go

Listing 8.43 golang.org/src/os/file_unix.go

Listing 8.44 golang.org/src/os/file.go
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 8 Standard library
err = &PathError{"write", f.name, e}
}
return n, err

}

Sure enough, listing 8.44 shows the implementation of the io.Writer interface for
pointers of type File. Look again at line 24 from listing 8.37.

22 // Write the content of the Buffer to the stdout device.
23 // Using the io.Writer implementation for os.File.
24 b.WriteTo(os.Stdout)
25 }

You see that the WriteTo method is able to write the contents of the buffer to stdout
which results in the string "Hello World!" being displayed on our terminal window.
The method will use the implementation of the Write method from the File type via
the interface value.

 This example shows the beauty of interfaces and the power they bring to the lan-
guage. Thanks to the implementation of the interface by both the bytes.Buffer and
os.File types, we were able to reuse functionality in the standard library and have
these types work together to implement a solution. Next let’s look at an example that’s
a bit more practical.

8.4.3 Simple curl

A command-line tool called curl can be found on both Linux and Mac OS X systems.
The tool allows you to specify a URL, and it will perform an HTTP request and save the
content. By using the http, io, and os packages, you can write your own version of
curl in just a few lines of code.

 Let’s take a look at an example that implements a basic version of curl.

01 // Sample program to show how to write a simple version of curl using
02 // the io.Reader and io.Writer interface support.
03 package main
04
05 import (
06 "io"
07 "log"
08 "net/http"
09 "os"
10)
11
12 // main is the entry point for the application.
13 func main() {
14 // r here is a response, and r.Body is an io.Reader.
15 r, err := http.Get(os.Args[1])

Listing 8.45 listing37.go: lines 22–25

Listing 8.46 listing46.go
Licensed to Mark Watson <nordickan@gmail.com>

209Input and output
16 if err != nil {
17 log.Fatalln(err)
18 }
19
20 // Create a file to persist the response.
21 file, err := os.Create(os.Args[2])
22 if err != nil {
23 log.Fatalln(err)
24 }
25 defer file.Close()
26
27 // Use MultiWriter so we can write to stdout and
28 // a file on the same write operation.
29 dest := io.MultiWriter(os.Stdout, file)
30
31 // Read the response and write to both destinations.
32 io.Copy(dest, r.Body)
33 if err := r.Body.Close(); err != nil {
34 log.Println(err)
35 }
36 }

Listing 8.46 shows a very bare-bones implementation of curl that can be used to
download, display, and save the content of any HTTP Get request. The example will
write the response to a file and to stdout at the same time. To keep the example
small, the program doesn’t check for valid command-line arguments nor provide
switches for advanced options.

 On line 15 the program takes the first argument from the command line and per-
forms an HTTP Get. If the first argument is a URL and there are no errors, the variable
r contains the response. On line 21 we open a file based on the second command-line
parameter. If we’re successful in opening the file, then on line 25 we schedule the
closing of the file with the defer statement.

 Since we want to write the content of the request to both stdout and to our file,
on line 29 we combine the file and stdout values together into a single io.Writer
value by using the MultiWriter function from the io package. On line 33 we use the
Copy function from the io package to read the content from the response body and
to write that to both destinations. With one call to Copy, thanks to the value provided
by the MultiWriter function we can use a single call that writes the content to both
destinations.

 Thanks to the support already provided by the io package and the implementa-
tion of the io.Writer and io.Reader interfaces by the http and os packages, we
don’t need to write any code to perform these lower-level functions. We can leverage
everything that already exists and just focus on the problem we’re trying to solve. If
we support these interfaces with our own types, we get a huge amount of functional-
ity for free.
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 8 Standard library
8.4.4 Conclusion

There’s an incredible amount of functionality that can be found in the io package,
and it can all be accessed through values from types that implement the io.Writer
and io.Reader interfaces. Other packages such as the http package follow a similar
pattern, declaring interfaces as part of the packages API and providing support for
using the io package as well. It’s worth your time to explore what’s provided by the
standard library and how it’s implemented—not only to save you from reinventing the
wheel, but also to learn idiomatic Go from the language designers for your own pack-
ages and APIs.

8.5 Summary
 The standard library comes with special guarantees and is widely used by the

community.
 Using packages from the standard library makes it easier to manage and trust

your code.
 Well over 100 packages are organized within 38 different categories.
 The log package from the standard library has everything you need for logging.
 The standard library has two packages called xml and json that make working

with these data formats trivial.
 The io package supports working with streams of data very efficiently.
 Interfaces allow your code to compose with existing functionality.
 Reading code from the standard library is a great way to get a feel for idiom-

atic Go.
Licensed to Mark Watson <nordickan@gmail.com>

Testing and
benchmarking
Testing your code is not something that you should wait to do until after you’re fin-
ished developing your program. With Go’s testing framework, unit testing and
benchmarking can happen during the development process. Just like the go build
command, there’s a go test command to execute explicit test code that you write.
All you need to do is follow a few guidelines, and you can integrate tests into your
project and continuous integration systems seamlessly.

In this chapter
 Writing unit tests to validate your code

 Mocking HTTP-based requests and responses
using httptest

 Documenting your packages with example code

 Examining performance with benchmarks
211

Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 9 Testing and benchmarking
9.1 Unit testing
A unit test is a function that tests a specific piece or set of code from a package or pro-
gram. The job of the test is to determine whether the code in question is working as
expected for a given scenario. One scenario may be a positive-path test, where the
test is making sure the normal execution of the code doesn’t produce an error. This
could be a test that validates that the code can insert a job record into the database
successfully.

 Other unit tests may test negative-path scenarios to make sure the code produces
not only an error, but the expected one. This could be a test that makes a query
against a database where no results are found, or performs an invalid update against a
database. In both cases, the test would validate that the error is reported and the cor-
rect error context is provided. In the end, the code you write must be predictable no
matter how it’s called or executed.

 There are several ways in Go to write unit tests. Basic tests test a specific piece of
code for a single set of parameters and result. Table tests also test a specific piece of
code, but the test validates itself against multiple parameters and results. There are
also ways to mock external resources that the test code needs, such as databases or
web servers. This helps to simulate the existence of these resources during testing
without the need for them to be available. Finally, when building your own web ser-
vices, there are ways to test calls coming in to the service without ever needing to run
the service itself.

9.1.1 Basic unit test

Let’s start with an example of a unit test.

01 // Sample test to show how to write a basic unit test.
02 package listing01
03
04 import (
05 "net/http"
06 "testing"
07)
08
09 const checkMark = "\u2713"
10 const ballotX = "\u2717"
11
12 // TestDownload validates the http Get function can download content.
13 func TestDownload(t *testing.T) {
14 url := "http://www.goinggo.net/feeds/posts/default?alt=rss"
15 statusCode := 200
16
17 t.Log("Given the need to test downloading content.")
18 {
19 t.Logf("\tWhen checking \"%s\" for status code \"%d\"",
20 url, statusCode)
21 {

Listing 9.1 listing01_test.go
Licensed to Mark Watson <nordickan@gmail.com>

213Unit testing
22 resp, err := http.Get(url)
23 if err != nil {
24 t.Fatal("\t\tShould be able to make the Get call.",
25 ballotX, err)
26 }
27 t.Log("\t\tShould be able to make the Get call.",
28 checkMark)
29
30 defer resp.Body.Close()
31
32 if resp.StatusCode == statusCode {
33 t.Logf("\t\tShould receive a \"%d\" status. %v",
34 statusCode, checkMark)
35 } else {
36 t.Errorf("\t\tShould receive a \"%d\" status. %v %v",
37 statusCode, ballotX, resp.StatusCode)
38 }
39 }
40 }
41 }

Listing 9.1 shows a unit test that’s testing the Get function from the http package. It’s
testing that the goinggo.net RSS feed can be downloaded properly from the web.
When we run this test by calling go test -v, where -v means provide verbose output, we
get the test results shown in figure 9.1.

A lot of little things are happening in this example to make this test work and display
the results as it does. It all starts with the name of the test file. If you look at the top of
listing 9.1, you’ll see that the name of the test file is listing01_test.go. The Go testing
tool will only look at files that end in _test.go. If you forget to follow this convention,
running go test inside of a package may report that there are no test files. Once the
testing tool finds a testing file, it then looks for testing functions to run.

 Let’s take a closer look at the code in the listing01_test.go test file.

01 // Sample test to show how to write a basic unit test.
02 package listing01
03

Listing 9.2 listing01_test.go: lines 01–10

Figure 9.1 Output from the basic unit test
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 9 Testing and benchmarking
04 import (
05 "net/http"
06 "testing"
07)
08
09 const checkMark = "\u2713"
10 const ballotX = "\u2717"

In listing 9.2, you can see the import of the testing package on line 06. The testing
package provides the support we need from the testing framework to report the out-
put and status of any test. Lines 09 and 10 provide two constants that contain the char-
acters for the check mark and X mark that will be used when writing test output.

 Next, let’s look at the declaration of the test function.

12 // TestDownload validates the http Get function can download content.
13 func TestDownload(t *testing.T) {

The name of the test function is TestDownload, and you can see it on line 13 in list-
ing 9.3. A test function must be an exported function that begins with the word Test.
Not only must the function start with the word Test, it must have a signature that
accepts a pointer of type testing.T and returns no value. If we don’t follow these
conventions, the testing framework won’t recognize the function as a test function
and none of the tooling will work against it.

 The pointer of type testing.T is important. It provides the mechanism for report-
ing the output and status of each test. There’s no one standard for formatting the out-
put of your tests. I like the test output to read well, which does follow the Go idioms
for writing documentation. For me, the testing output is documentation for the code.
The test output should document why the test exists, what’s being tested, and the
result of the test in clear complete sentences that are easy to read. Let’s see how I
accomplish this as we review more of the code.

14 url := "http://www.goinggo.net/feeds/posts/default?alt=rss"
15 statusCode := 200
16
17 t.Log("Given the need to test downloading content.")
18 {

You see on lines 14 and 15 in listing 9.4 that two variables are declared and initialized.
These variables contain the URL we want to test and the status we expect back from
the response. On line 17 the t.Log method is used to write a message to the test out-
put. There’s also a format version of this method called t.Logf. If the verbose option
(-v) isn’t used when calling go test, we won’t see any test output unless the test fails.

 Each test function should state why the test exists by explaining the given need of
the test. For this test, the given need is to test downloading content. After declaring

Listing 9.3 listing01_test.go: lines 12–13

Listing 9.4 listing01_test.go: lines 14–18
Licensed to Mark Watson <nordickan@gmail.com>

215Unit testing
the given need of the test, the test should then state when the code being tested would
execute, and how.

19 t.Logf("\tWhen checking \"%s\" for status code \"%d\"",
20 url, statusCode)
21 {

You see the when clause on line 19 in listing 9.5. It states specifically the values for the
test. Next, let’s look at the code being tested using these values.

22 resp, err := http.Get(url)
23 if err != nil {
24 t.Fatal("\t\tShould be able to make the Get call.",
25 ballotX, err)
26 }
27 t.Log("\t\tShould be able to make the Get call.",
28 checkMark)
29
30 defer resp.Body.Close()

The code in listing 9.6 uses the Get function from the http package to make a request
to the goinggo.net web server to pull down the RSS feed file for the blog. After the Get
call returns, the error value is checked to see if the call was successful or not. In either
case, we state what the result of the test should be. If the call failed, we write an X as well
to the test output along with the error. If the test succeeded, we write a check mark.

 If the call to Get does fail, the use of the t.Fatal method on line 24 lets the testing
framework know this unit test has failed. The t.Fatal method not only reports the
unit test has failed, but also writes a message to the test output and then stops the exe-
cution of this particular test function. If there are other test functions that haven’t run
yet, they’ll be executed. A formatted version of this method is named t.Fatalf.

 When we need to report the test has failed but don’t want to stop the execution of
the particular test function, we can use the t.Error family of methods.

32 if resp.StatusCode == statusCode {
33 t.Logf("\t\tShould receive a \"%d\" status. %v",
34 statusCode, checkMark)
35 } else {
36 t.Errorf("\t\tShould receive a \"%d\" status. %v %v",
37 statusCode, ballotX, resp.StatusCode)
38 }
39 }
40 }
41 }

Listing 9.5 listing01_test.go: lines 19–21

Listing 9.6 listing01_test.go: lines 22–30

Listing 9.7 listing01_test.go: lines 32–41
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 9 Testing and benchmarking
One line 32 in listing 9.7, the status code from the response is compared with the sta-
tus code we expect to receive. Again, we state what the result of the test should be. If
the status codes match, then we use the t.Logf method; otherwise, we use the
t.Errorf method. Since the t.Errorf method doesn’t stop the execution of the test
function, if there were more tests to conduct after line 38, the unit test would con-
tinue to be executed. If the t.Fatal or t.Error functions aren’t called by a test func-
tion, the test will be considered as passing.

 If you look at the output of the test one more time (see figure 9.2), you can see
how it all comes together.

 In figure 9.2 you see the complete documentation for the test. Given the need to
download content, when checking the URL for the statusCode (which is cut off in the
figure), we should be able to make the call and should receive a status of 200. The test-
ing output is clear, descriptive, and informative. We know what unit test was run, that
it passed, and how long it took: 435 milliseconds.

9.1.2 Table tests

When you’re testing code that can accept a set of different parameters with different
results, a table test should be used. A table test is like a basic unit test except it main-
tains a table of different values and results. The different values are iterated over and
run through the test code. With each iteration, the results are checked. This helps to
leverage a single test function to test a set of different values and conditions. Let’s look
at an example table test.

01 // Sample test to show how to write a basic unit table test.
02 package listing08
03
04 import (
05 "net/http"
06 "testing"
07)
08
09 const checkMark = "\u2713"
10 const ballotX = "\u2717"
11
12 // TestDownload validates the http Get function can download

Listing 9.8 listing08_test.go

Figure 9.2 Output from the basic unit test
Licensed to Mark Watson <nordickan@gmail.com>

217Unit testing
13 // content and handles different status conditions properly.
14 func TestDownload(t *testing.T) {
15 var urls = []struct {
16 url string
17 statusCode int
18 }{
19 {
20 "http://www.goinggo.net/feeds/posts/default?alt=rss",
21 http.StatusOK,
22 },
23 {
24 "http://rss.cnn.com/rss/cnn_topstbadurl.rss",
25 http.StatusNotFound,
26 },
27 }
28
29 t.Log("Given the need to test downloading different content.")
30 {
31 for _, u := range urls {
32 t.Logf("\tWhen checking \"%s\" for status code \"%d\"",
33 u.url, u.statusCode)
34 {
35 resp, err := http.Get(u.url)
36 if err != nil {
37 t.Fatal("\t\tShould be able to Get the url.",
38 ballotX, err)
39 }
40 t.Log("\t\tShould be able to Get the url",
41 checkMark)
42
43 defer resp.Body.Close()
44
45 if resp.StatusCode == u.statusCode {
46 t.Logf("\t\tShould have a \"%d\" status. %v",
47 u.statusCode, checkMark)
48 } else {
49 t.Errorf("\t\tShould have a \"%d\" status %v %v",
50 u.statusCode, ballotX, resp.StatusCode)
51 }
52 }
53 }
54 }
55 }

In listing 9.8, we’ve taken the basic unit test and converted it to a table test. Now we
can use a single test function to test different URLs and status codes against the
http.Get function. We don’t need to create a new test function for each URL and sta-
tus code we want to test. Let’s look at the changes.

12 // TestDownload validates the http Get function can download
13 // content and handles different status conditions properly.
14 func TestDownload(t *testing.T) {

Listing 9.9 listing08_test.go: lines 12–27
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 9 Testing and benchmarking
15 var urls = []struct {
16 url string
17 statusCode int
18 }{
19 {
20 "http://www.goinggo.net/feeds/posts/default?alt=rss",
21 http.StatusOK,
22 },
23 {
24 "http://rss.cnn.com/rss/cnn_topstbadurl.rss",
25 http.StatusNotFound,
26 },
27 }

In listing 9.9 you see the same test function, TestDownload, accepting a pointer of
type testing.T. But this version of TestDownload is slightly different. On lines 15
through 27, you see the implementation of the table. The first field of the table is a
URL to a given resource on the internet, and the second field is the status we expect to
receive when we make the request for the resource.

 Currently, we’ve configured the table with two values. The first value is the
goinggo.net URL with a status of OK, and the second value is a different URL with a sta-
tus of NotFound. The second URL has been misspelled to cause the server to return a
NotFound error. When we run this test, we get the test output shown in figure 9.3.

The output in figure 9.3 shows how the table of values is iterated over and used to con-
duct the test. The output looks the same as the basic unit test except we tested two dif-
ferent URLs this time. Once again, the test passes.

 Let’s look at the changes we made to make the table test work.

29 t.Log("Given the need to test downloading different content.")
30 {
31 for _, u := range urls {
32 t.Logf("\tWhen checking \"%s\" for status code \"%d\"",
33 u.url, u.statusCode)
34 {

Listing 9.10 listing08_test.go: lines 29–34

Figure 9.3 Output from the table test
Licensed to Mark Watson <nordickan@gmail.com>

219Unit testing
The for range loop on line 31 in listing 9.10 allows the test to iterate over the table
and run the test code for each different URL. The original code from the basic unit
test is the same except for the use of the table values.

35 resp, err := http.Get(u.url)
36 if err != nil {
37 t.Fatal("\t\tShould be able to Get the url.",
38 ballotX, err)
39 }
40 t.Log("\t\tShould be able to Get the url",
41 checkMark)
42
43 defer resp.Body.Close()
44
45 if resp.StatusCode == u.statusCode {
46 t.Logf("\t\tShould have a \"%d\" status. %v",
47 u.statusCode, checkMark)
48 } else {
49 t.Errorf("\t\tShould have a \"%d\" status %v %v",
50 u.statusCode, ballotX, resp.StatusCode)
51 }
52 }
53 }
54 }
55 }

Listing 9.11 shows how, on line 35, the code uses the u.url field for the URL to call.
On line 45 the u.statusCode field is used to compare the actual status code from the
response. In the future, new URLs and status codes can be added to the table and the
core of the test doesn’t need to change.

9.1.3 Mocking calls

The unit tests we wrote are great, but they do have a couple of flaws. First, they require
access to the internet in order for the tests to run successfully. Figure 9.4 shows what
happens when we run the basic unit test again without an internet connection—the
test fails.

Listing 9.11 listing08_test.go: lines 35–55

Figure 9.4 Failed test due to having no internet connection
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 9 Testing and benchmarking
You shouldn’t always assume the computer you have to run tests on can access the
internet. Also, it’s not good practice to have tests depend on servers that you don’t
own or operate. Both of these things can have a great impact on any automation you
put into place for continuous integration and deployment. Suddenly you can’t deploy
a new build because you lost your access to the outside world. If the tests fail, you
can’t deploy.

 To fix this situation, the standard library has a package called httptest that will let
you mock HTTP-based web calls. Mocking is a technique many developers use to simu-
late access to resources that won’t be available when tests are run. The httptest pack-
age provides you with the ability to mock requests and responses from web resources
on the internet. By mocking the http.Get response in our unit test, we can solve the
problem we saw in figure 9.4. No longer will our test fail because we don’t have an
internet connection. Yet the test can validate that our http.Get call works and han-
dles the expected response. Let’s take the basic unit test and change it to mock a call
to the goinggo.net RSS feed.

01 // Sample test to show how to mock an HTTP GET call internally.
02 // Differs slightly from the book to show more.
03 package listing12
04
05 import (
06 "encoding/xml"
07 "fmt"
08 "net/http"
09 "net/http/httptest"
10 "testing"
11)
12
13 const checkMark = "\u2713"
14 const ballotX = "\u2717"
15
16 // feed is mocking the XML document we except to receive.
17 var feed = `<?xml version="1.0" encoding="UTF-8"?>
18 <rss>
19 <channel>
20 <title>Going Go Programming</title>
21 <description>Golang : https://github.com/goinggo</description>
22 <link>http://www.goinggo.net/</link>
23 <item>
24 <pubDate>Sun, 15 Mar 2015 15:04:00 +0000</pubDate>
25 <title>Object Oriented Programming Mechanics</title>
26 <description>Go is an object oriented language.</description>
27 <link>http://www.goinggo.net/2015/03/object-oriented</link>
28 </item>
29 </channel>
30 </rss>`
31
32 // mockServer returns a pointer to a server to handle the get call.
33 func mockServer() *httptest.Server {

Listing 9.12 listing12_test.go: lines 01–41
Licensed to Mark Watson <nordickan@gmail.com>

221Unit testing
34 f := func(w http.ResponseWriter, r *http.Request) {
35 w.WriteHeader(200)
36 w.Header().Set("Content-Type", "application/xml")
37 fmt.Fprintln(w, feed)
38 }
39
40 return httptest.NewServer(http.HandlerFunc(f))
41 }

Listing 9.12 shows how we can mock a call to the goinggo.net website to simulate the
downloading of the RSS feed. On line 17 a package-level variable named feed is
declared and initialized with a literal string that represents the RSS XML document
we’ll receive from our mock server call. It’s a small snippet of the actual RSS feed doc-
ument and is enough to conduct our test. On line 32 we have the declaration of a
function named mockServer that leverages the support inside the httptest package
to simulate a call to a real server on the internet.

32 func mockServer() *httptest.Server {
33 f := func(w http.ResponseWriter, r *http.Request) {
34 w.WriteHeader(200)
35 w.Header().Set("Content-Type", "application/xml")
36 fmt.Fprintln(w, feed)
37 }
38
39 return httptest.NewServer(http.HandlerFunc(f))
40 }

The mockServer function in listing 9.13 is declared to return a pointer of type
httptest.Server. The httptest.Server value is the key to making all of this work.
The code starts out with declaring an anonymous function that has the same signature
as the http.HandlerFunc function type.

type HandlerFunc func(ResponseWriter, *Request)

The HandlerFunc type is an adapter to allow the use of ordinary
functions as HTTP handlers. If f is a function with the appropriate
signature, HandlerFunc(f) is a Handler object that calls f

This makes the anonymous function a handler function. Once the handler function is
declared, then on line 39 it’s used as a parameter for the httptest.NewServer func-
tion call to create our mock server. Then the mock server is returned via a pointer on
line 39.

 We’ll be able to use this mock server with our http.Get call to simulate hitting the
goinggo.net web server. When the http.Get call is made, the handler function is actu-
ally executed and used to mock the request and response. On line 34 the handler
function first sets the status code; then, on line 35, the content type is set; and finally,

Listing 9.13 listing12_test.go: lines 32–40

Listing 9.14 golang.org/pkg/net/http/#HandlerFunc
Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 9 Testing and benchmarking
on line 36, the XML string named feed that represents the response is returned as the
response body.

 Now, let’s look at how the mock server is integrated into the basic unit test and how
the http.Get call is able to use it.

43 // TestDownload validates the http Get function can download content
44 // and the content can be unmarshaled and clean.
45 func TestDownload(t *testing.T) {
46 statusCode := http.StatusOK
47
48 server := mockServer()
49 defer server.Close()
50
51 t.Log("Given the need to test downloading content.")
52 {
53 t.Logf("\tWhen checking \"%s\" for status code \"%d\"",
54 server.URL, statusCode)
55 {
56 resp, err := http.Get(server.URL)
57 if err != nil {
58 t.Fatal("\t\tShould be able to make the Get call.",
59 ballotX, err)
60 }
61 t.Log("\t\tShould be able to make the Get call.",
62 checkMark)
63
64 defer resp.Body.Close()
65
66 if resp.StatusCode != statusCode {
67 t.Fatalf("\t\tShould receive a \"%d\" status. %v %v",
68 statusCode, ballotX, resp.StatusCode)
69 }
70 t.Logf("\t\tShould receive a \"%d\" status. %v",
71 statusCode, checkMark)
72 }
73 }
74 }

In listing 9.15 you see the TestDownload function once more, but this time it’s using
the mock server. On lines 48 and 49 a call to the mockServer function is made, and a
call to the Close method is deferred for when the test function returns. After that, the
test code looks identical to the basic unit test except for one thing.

56 resp, err := http.Get(server.URL)

This time the URL to call is provided to by the httptest.Server value. When we use
the URL provided by the mocking server, the http.Get call runs as expected. The
http.Get call has no idea it’s not making a call over the internet. The call is made and

Listing 9.15 listing12_test.go: lines 43–74

Listing 9.16 listing12_test.go: line 56
Licensed to Mark Watson <nordickan@gmail.com>

223Unit testing
our handler function is executed underneath, resulting in a response of our RSS XML
document and a status of http.StatusOK.

 When we run the test now without an internet connection, we see the test runs and
passes, as shown in figure 9.5. This figure shows how the test is passing again. If you
look at the URL used to make the call, you can see it’s using the localhost address with
port number 52065. That port number will change every time we run the test. The
http package, in conjunction with the httptest package and our mock server, knows
to route that URL to our handler function. Now, we can test our calls to the
goinggo.net RSS feed without ever hitting the actual server.

9.1.4 Testing endpoints

If you’re building a web API, you’ll want to test all of your endpoints without the need
to start the web service. The httptest package provides a facility for doing just this.
Let’s take a look at a sample web service that implements a single endpoint, and then
you can see how to write a unit test that mocks an actual call.

01 // This sample code implement a simple web service.
02 package main
03
04 import (
05 "log"
06 "net/http"
07
08 "github.com/goinaction/code/chapter9/listing17/handlers"
09)
10
11 // main is the entry point for the application.
12 func main() {
13 handlers.Routes()
14
15 log.Println("listener : Started : Listening on :4000")
16 http.ListenAndServe(":4000", nil)
17 }

Listing 9.17 listing17.go

Figure 9.5 Successful test without having an internet connection
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 9 Testing and benchmarking
Listing 9.17 shows the code file for the entry point of the web service. Inside the main
function on line 13, the code calls the Routes function from the internal handlers
package. This function sets up the routes for the different endpoints the web service is
hosting. On lines 15 and 16 the main function displays the port the service is listening
on and starts the web service, waiting for requests.

 Now, let’s look at the code for the handlers package.

01 // Package handlers provides the endpoints for the web service.
02 package handlers
03
04 import (
05 "encoding/json"
06 "net/http"
07)
08
09 // Routes sets the routes for the web service.
10 func Routes() {
11 http.HandleFunc("/sendjson", SendJSON)
12 }
13
14 // SendJSON returns a simple JSON document.
15 func SendJSON(rw http.ResponseWriter, r *http.Request) {
16 u := struct {
17 Name string
18 Email string
19 }{
20 Name: "Bill",
21 Email: "bill@ardanstudios.com",
22 }
23
24 rw.Header().Set("Content-Type", "application/json")
25 rw.WriteHeader(200)
26 json.NewEncoder(rw).Encode(&u)
27 }

The code for the handlers package in listing 9.18 provides the implementation of the
handler function and sets up the routes for the web service. On line 10 you see the
Routes function, which uses the default http.ServeMux from inside the http package
to configure the routing between the URLs and the corresponding handler code. On
line 11 we bind the /sendjson endpoint to the SendJSON function.

 Starting on line 15, we have the implementation of the SendJSON function. The
function has the same signature as the http.HandlerFunc function type that you saw
in listing 9.14. On line 16 an anonymous struct type is declared, and a variable named
u is created with some values. On lines 24 and 25 the content type and status code for
the response is set. Finally, on line 26 the u value is encoded into a JSON document
and sent back to the client.

 If we build the web service and start the server, we see the JSON document served
up, as in figures 9.6 and 9.7.

Listing 9.18 handlers/handlers.go
Licensed to Mark Watson <nordickan@gmail.com>

225Unit testing

Now that we have a functioning web service with an endpoint, we can write a unit test
to test the endpoint.

01 // Sample test to show how to test the execution of an
02 // internal endpoint.
03 package handlers_test
04
05 import (
06 "encoding/json"
07 "net/http"
08 "net/http/httptest"
09 "testing"
10
11 "github.com/goinaction/code/chapter9/listing17/handlers"
12)
13
14 const checkMark = "\u2713"
15 const ballotX = "\u2717"
16
17 func init() {
18 handlers.Routes()
19 }
20
21 // TestSendJSON testing the sendjson internal endpoint.
22 func TestSendJSON(t *testing.T) {
23 t.Log("Given the need to test the SendJSON endpoint.")
24 {
25 req, err := http.NewRequest("GET", "/sendjson", nil)
26 if err != nil {
27 t.Fatal("\tShould be able to create a request.",
28 ballotX, err)
29 }
30 t.Log("\tShould be able to create a request.",
31 checkMark)
32
33 rw := httptest.NewRecorder()
34 http.DefaultServeMux.ServeHTTP(rw, req)
35
36 if rw.Code != 200 {
37 t.Fatal("\tShould receive \"200\"", ballotX, rw.Code)
38 }
39 t.Log("\tShould receive \"200\"", checkMark)
40

Listing 9.19 handlers/handlers_test.go

Figure 9.6 Running the
web service

Figure 9.7 Web service serving
up the JSON document
Licensed to Mark Watson <nordickan@gmail.com>

226 CHAPTER 9 Testing and benchmarking
41 u := struct {
42 Name string
43 Email string
44 }{}
45
46 if err := json.NewDecoder(rw.Body).Decode(&u); err != nil {
47 t.Fatal("\tShould decode the response.", ballotX)
48 }
49 t.Log("\tShould decode the response.", checkMark)
50
51 if u.Name == "Bill" {
52 t.Log("\tShould have a Name.", checkMark)
53 } else {
54 t.Error("\tShould have a Name.", ballotX, u.Name)
55 }
56
57 if u.Email == "bill@ardanstudios.com" {
58 t.Log("\tShould have an Email.", checkMark)
59 } else {
60 t.Error("\tShould have an Email.", ballotX, u.Email)
61 }
62 }
63 }

Listing 9.19 shows a unit test for the /sendjson endpoint. On line 03 you see the
name of the package is different from the other tests.

01 // Sample test to show how to test the execution of an
02 // internal endpoint.
03 package handlers_test

This time, as you can see in listing 9.20, the package name also ends with _test. When
the package name ends like this, the test code can only access exported identifiers.
This is true even if the test code file is in the same folder as the code being tested.

 Just like when running the service directly, the routes need to be initialized.

17 func init() {
18 handlers.Routes()
19 }

On line 17 in listing 9.21, an init function is declared to initialize the routes. If
the routes aren’t initialized before the unit tests are run, then the tests will fail with
an http.StatusNotFound error. Now we can look at the unit test for the /sendjson
endpoint.

Listing 9.20 handlers/handlers_test.go: lines 01–03

Listing 9.21 handlers/handlers_test.go: lines 17–19
Licensed to Mark Watson <nordickan@gmail.com>

227Unit testing

21 // TestSendJSON testing the sendjson internal endpoint.
22 func TestSendJSON(t *testing.T) {
23 t.Log("Given the need to test the SendJSON endpoint.")
24 {
25 req, err := http.NewRequest("GET", "/sendjson", nil)
26 if err != nil {
27 t.Fatal("\tShould be able to create a request.",
28 ballotX, err)
29 }
30 t.Log("\tShould be able to create a request.",
31 checkMark)
32
33 rw := httptest.NewRecorder()
34 http.DefaultServeMux.ServeHTTP(rw, req)

Listing 9.22 shows the declaration of the TestSendJSON test function. The test starts
off logging the given need of the test, and then on line 25 it creates an http.Request
value. The request value is configured to be a GET call against the /sendjson end-
point. Since this is a GET call, nil is passed as the third parameter for the post data.

 Then, on line 33, the httptest.NewRecorder function is called to create an
http.ResponseRecorder value. With the http.Request and http.ResponseRecorder
values, a call to the ServerHTTP method against the default server multiplexer (mux)
is made on line 34. Calling this method mocks a request to our /sendjson endpoint as
if it were being made from an external client.

 Once the ServeHTTP method call completes, the http.ResponseRecorder value con-
tains the response from our SendJSON function handler. Now we can test the response.

36 if rw.Code != 200 {
37 t.Fatal("\tShould receive \"200\"", ballotX, rw.Code)
38 }
39 t.Log("\tShould receive \"200\"", checkMark)

First, the status of the response is checked on line 36. With any successful endpoint
call, a status of 200 is expected. If the status is 200, then the JSON response is decoded
into a Go value.

41 u := struct {
42 Name string
43 Email string
44 }{}
45
46 if err := json.NewDecoder(rw.Body).Decode(&u); err != nil {
47 t.Fatal("\tShould decode the response.", ballotX)
48 }
49 t.Log("\tShould decode the response.", checkMark)

Listing 9.22 handlers/handlers_test.go: lines 21–34

Listing 9.23 handlers/handlers_test.go: lines 36–39

Listing 9.24 handlers/handlers_test.go: lines 41–49
Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 9 Testing and benchmarking
On line 41 in listing 9.24, an anonymous struct type is declared, and a variable named
u is created and initialized to its zero value. On line 46 the json package is used to
decode the JSON document from the response into the u variable. If the decode fails,
the unit test is ended; otherwise, we validate the values that were decoded.

51 if u.Name == "Bill" {
52 t.Log("\tShould have a Name.", checkMark)
53 } else {
54 t.Error("\tShould have a Name.", ballotX, u.Name)
55 }
56
57 if u.Email == "bill@ardanstudios.com" {
58 t.Log("\tShould have an Email.", checkMark)
59 } else {
60 t.Error("\tShould have an Email.", ballotX, u.Email)
61 }
62 }
63 }

Listing 9.25 shows both checks for each value we expect to receive. On line 51 we
check that the value of the Name field is "Bill", and then on line 57 the value of the
Email field is checked for "bill@ardanstudios.com". If these values match, then the
unit test passes; otherwise, the unit test fails. These two checks use the Error method
to report failure, so all the fields are checked.

9.2 Examples
Go is very focused on having proper documentation for the code you write. The godoc
tool was built to produce documentation directly from your code. In chapter 3 we
talked about the use of the godoc tool to produce package documentation. Another
feature of the godoc tool is example code. Example code adds another dimension to
both testing and documentation.

 If you use your browser to navigate to the Go documentation for the json package,
you’ll see something like figure 9.8.

Listing 9.25 handlers/handlers_test.go: lines 51–63

Figure 9.8 Listing of examples
for the json package
Licensed to Mark Watson <nordickan@gmail.com>

229Examples
The json package has five examples, and they show in the Go documentation for
the package. If you select the first example, you see a view of the example code, as in
figure 9.9.

 You can create your own examples and have them show up in the Go documenta-
tion for your packages. Let’s look at an example for the SendJSON function from our
previous example.

01 // Sample test to show how to write a basic example.
02 package handlers_test
03
04 import (
05 "encoding/json"
06 "fmt"
07 "log"

Listing 9.26 handlers_example_test.go

Figure 9.9 A view of the Decoder example in the Go documentation
Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 9 Testing and benchmarking
08 "net/http"
09 "net/http/httptest"
10)
11
12 // ExampleSendJSON provides a basic example.
13 func ExampleSendJSON() {
14 r, _ := http.NewRequest("GET", "/sendjson", nil)
15 rw := httptest.NewRecorder()
16 http.DefaultServeMux.ServeHTTP(rw, r)
17
18 var u struct {
19 Name string
20 Email string
21 }
22
23 if err := json.NewDecoder(w.Body).Decode(&u); err != nil {
24 log.Println("ERROR:", err)
25 }
26
27 // Use fmt to write to stdout to check the output.
28 fmt.Println(u)
29 // Output:
30 // {Bill bill@ardanstudios.com}
31 }

Examples are based on existing functions or methods. Instead of starting the function
with the word Test, we need to use the word Example. On line 13 in listing 9.26, the
name of the example is ExampleSendJSON.

 There’s one rule you need to follow with examples. An example is always based on
an existing exported function or method. Our example test is for the exported func-
tion SendJSON inside the handlers package. If you don’t use the name of an existing
function or method, the test won’t show in the Go documentation for the package.

 The code you write for an example is to show someone how to use the specific func-
tion or method. To determine if the test succeeds or fails, the test will compare the final
output of the function with the output listed at the bottom of the example function.

27 // Use fmt to write to stdout to check the output.
28 fmt.Println(u)
29 // Output:
30 // {Bill bill@ardanstudios.com}
31 }

On line 28 in listing 9.27, the code uses fmt.Println to write the value of u to stdout.
The value of u is initialized from making a call to the /sendjson endpoint earlier in
the function. On line 29 we have a comment with the word Output:.

 The Output: marker is used to document the output you expect to have after the
test function is run. The testing framework knows how to compare the final output

Listing 9.27 handlers_example_test.go: lines 27–31
Licensed to Mark Watson <nordickan@gmail.com>

231Examples
from stdout against this output comment. If everything matches, the test passes, and
you have an example that works inside the Go documentation for the package. If the
output doesn’t match, the test fails.

 If you start a local godoc server (godoc -http=":3000") and navigate to the
handlers package, you can see this all come together, as in figure 9.10.

 You can see in figure 9.10 that the documentation for the handlers package shows
the example for the SendJSON function. If you select the SendJSON link, the documen-
tation will show the code, as in figure 9.11.

Figure 9.10 godoc view of the
handlers package

Figure 9.11 A full view of
the example in godoc
Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 9 Testing and benchmarking
Figure 9.11 shows a complete set of documentation for the example, including the
code and the expected output. Since this is also a test, you can run the example func-
tion with the go test tool, as in figure 9.12.

 After running the test, you see the test passes. This time when the test is run, the
specific function ExampleSendJSON is specified with the -run option. The -run option
takes any regular expression to filter the test functions to run. It works with both unit
tests and example functions. When an example fails, it looks like this figure 9.13.

When an example fails, go test shows the output that was produced and what was
expected.

9.3 Benchmarking
Benchmarking is a way to test the performance of code. It’s useful when you want to test
the performance of different solutions to the same problem and see which solution per-
forms better. It can also be useful to identify CPU or memory issues for a particular piece
of code that might be critical to the performance of your application. Many developers
use benchmarking to test different concurrency patterns or to help configure work
pools to make sure they’re configured properly for the best throughput.

 Let’s look at a set of benchmark functions that reveal the fastest way to convert an
integer value to a string. In the standard library, there are three different ways to con-
vert an integer value to a string.

01 // Sample benchmarks to test which function is better for converting
02 // an integer into a string. First using the fmt.Sprintf function,
03 // then the strconv.FormatInt function and then strconv.Itoa.

Listing 9.28 listing28_test.go: lines 01–10

Figure 9.12 Running the example

Figure 9.13 Running an example that fails
Licensed to Mark Watson <nordickan@gmail.com>

233Benchmarking
04 package listing28_test
05
06 import (
07 "fmt"
08 "strconv"
09 "testing"
10)

Listing 9.28 shows the initial code for the listing28_test.go benchmarks. As with unit
test files, the file name must end in _test.go. The testing package must also be
imported. Next, let’s look at one of the benchmark functions.

12 // BenchmarkSprintf provides performance numbers for the
13 // fmt.Sprintf function.
14 func BenchmarkSprintf(b *testing.B) {
15 number := 10
16
17 b.ResetTimer()
18
19 for i := 0; i < b.N; i++ {
20 fmt.Sprintf("%d", number)
21 }
22 }

On line 14 in listing 9.29, you see the first benchmark, named BenchmarkSprintf.
Benchmark functions begin with the word Benchmark and take as their only parame-
ter a pointer of type testing.B. In order for the benchmarking framework to calcu-
late performance, it must run the code over and over again for a period of time. This
is where the for loop comes in.

19 for i := 0; i < b.N; i++ {
20 fmt.Sprintf("%d", number)
21 }
22 }

The for loop on line 19 in listing 9.30 shows how to use the b.N value. On line 20 we
have the call to the Sprintf function from the fmt package. This is the function we’re
benchmarking to convert an integer value into a string.

 By default, the benchmarking framework will call the benchmark function over
and over again for at least one second. Each time the framework calls the benchmark
function, it will increase the value of b.N. On the first call, the value of b.N will be 1.
It’s important to place all the code to benchmark inside the loop and to use the b.N
value. If this isn’t done, the results can’t be trusted.

 If we just want to run benchmark functions, we need to use the -bench option.

Listing 9.29 listing28_test.go: lines 12–22

Listing 9.30 listing28_test.go: lines 19–22
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 9 Testing and benchmarking

go test -v -run="none" -bench="BenchmarkSprintf"

In our call to go test, we specified the -run option passing the string "none" to make
sure no unit tests are run prior to running the specified benchmark function. Both of
these options take a regular expression to filter the tests to run. Since there’s no unit
test function that has none in its name, none eliminates any unit tests from running.
When we issue this command, we get the output shown in figure 9.14.

The output starts out specifying that there are no tests to run and then proceeds to
run the BenchmarkSprintf benchmark. After the word PASS, you see the result of run-
ning the benchmark function. The first number, 5000000, represents the number of
times the code inside the loop was executed. In this case, that’s five million times. The
next number represents the performance of the code based on the number of nano-
seconds per operation, so using the Sprintf function in this context takes 258 nano-
seconds on average per call.

 The final output from running the benchmark shows ok to represent the bench-
mark finished properly. Then the name of the code file that was executed is displayed,
and finally, the total time the benchmark ran. The default minimum run time for a
benchmark is 1 second. You can see how the framework still ran the test for approxi-
mately a second and a half. You can use another option called -benchtime if you want
to have the test run longer. Let’s run the test again using a bench time of three sec-
onds (see figure 9.15).

 This time the Sprintf function was run twenty million times for a period of 5.275
seconds. The performance of the function didn’t change much. This time the perfor-
mance was 256 nanoseconds per operation. Sometimes by increasing the bench time,
you can get a more accurate reading of performance. For most tests, increasing the
bench time over three seconds tends to not provide any difference for an accurate
reading. But each benchmark is different.

Listing 9.31 Running the benchmark test

Figure 9.14 Running a single benchmark

Figure 9.15 Running a single benchmark with the -benchtime option
Licensed to Mark Watson <nordickan@gmail.com>

235Benchmarking
Let’s look at the other two benchmark functions and then run all three benchmarks
together to see what’s the fastest way to convert an integer value to a string.

24 // BenchmarkFormat provides performance numbers for the
25 // strconv.FormatInt function.
26 func BenchmarkFormat(b *testing.B) {
27 number := int64(10)
28
29 b.ResetTimer()
30
31 for i := 0; i < b.N; i++ {
32 strconv.FormatInt(number, 10)
33 }
34 }
35
36 // BenchmarkItoa provides performance numbers for the
37 // strconv.Itoa function.
38 func BenchmarkItoa(b *testing.B) {
39 number := 10
40
41 b.ResetTimer()
42
43 for i := 0; i < b.N; i++ {
44 strconv.Itoa(number)
45 }
46 }

Listing 9.32 shows the other two benchmark functions. The BenchmarkFormat func-
tion benchmarks the use of the FormatInt function from the strconv package. The
BenchmarkItoa function benchmarks the use of the Itoa function from the same
strconv package. You can see the same pattern in these two other benchmark func-
tions as in the BenchmarkSprintf function. The call is inside the for loop using b.N to
control the number of iterations for each call.

 One thing we skipped over was the call to b.ResetTimer, which is used in all three
benchmark functions. This method is useful to reset the timer when initialization is
required before the code can start executing the loop. To have the most accurate
benchmark times you can, use this method.

 When we run all the benchmark functions for a minimum of three seconds, we get
the result shown in figure 9.16.

Listing 9.32 listing28_test.go: lines 24–46

Figure 9.16 Running all three benchmarks
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 9 Testing and benchmarking
The results show that the BenchmarkFormat test function runs the fastest at 45.9 nano-
seconds per operation. The BenchmarkItoa comes in a close second at 49.4 nanosec-
onds per operation. Both of those benchmarks were much faster than using the
Sprintf function.

 Another great option you can use when running benchmarks is the -benchmem
option. It will provide information about the number of allocations and bytes per allo-
cation for a given test. Let’s use that option with the benchmark (see figure 9.17).

This time with the output you see two new values: a value for B/op and one for
allocs/op. The allocs/op value represents the number of heap allocations per oper-
ation. You can see the Sprintf functions allocate two values on the heap per opera-
tion, and the other two functions allocate one value per operation. The B/op value
represents the number of bytes per operation. You can see that those two allocations
from the Sprintf function result in 16 bytes of memory being allocated per opera-
tion. The other two functions only allocated 2 bytes per operation.

 There are many different options you can use when running tests and bench-
marks. I suggest you explore all those options and leverage this testing framework to
the fullest extent when writing your packages and projects. The community expects
package authors to provide comprehensive tests when publishing packages for open
use by the community.

9.4 Summary
 Testing is built into the language and Go provides all the tooling you need.
 The go test tool is used to run tests.
 Test files always end with the _test.go file name.
 Table tests are a great way to leverage a single test function to test multiple

values.
 Examples are both tests and documentation for a package.
 Benchmarks provide a mechanism to reveal the performance of code.

Figure 9.17 Running a benchmark with the -benchmem option
Licensed to Mark Watson <nordickan@gmail.com>

 index

Symbols

_ (blank identifier) 44
:= (short variable declaration operator) 17, 90

A

AddInt64 function 143
anonymous functions 20
API, testing endpoints for 223–228
append function 38, 71–72, 79
archive files 186
arrays

accessing elements in 60
copying 61–62
declaring 58–59
internals of 58
multidimensional 62–64
of pointers 60–61
passing between functions 64–65

atomic functions 142–145

B

basic tests 212–216
-bench option 233
BenchmarkFormat function

235
benchmarking 232–236
BenchmarkItoa function 235
-benchmem option 236
-benchtime option 234
blank identifier (_) 44
bool type 88
BSON (Binary JavaScript Object Notation) 196
Buffer type 206

buffered channels 153–156
build command 41, 46
built-in types 96–97
bytes package 206

C

C/C++ 2, 6–7
chan keyword 147
channels

buffered 153–156
defined 129
overview 4–5, 147–148
unbuffered 148–153

Chdir method 101
clean command 46
CLI (command-line interface) 187
close method 25
comments 50
communicating sequential processes. See CSP
compilation 3
composition 5
concrete types 104
concurrency

channels 4–5
buffered 153–156
overview 147–148
unbuffered 148–153

goroutines 3–4, 132–139
locking shared resources

atomic functions 142–145
mutexes 145–147

overview 3
parallelism vs. 129–132
patterns for

pool package 167–177
237

Licensed to Mark Watson <nordickan@gmail.com>

238 INDEX
concurrency, patterns for (continued)
runner package 158–166
work package 177–183

race conditions 139–142
constants 23
cookiejar package 40
CSP (communicating sequential processes) 129
curl program 102, 208–209

D

data feeds example program
main package 11–13
program architecture

10–11
RSS matcher 32–38
search package

default.go file 26–32
feed.go file 22–26
match.go file 26–32
search.go file 14–22

Decode method 25, 36
decoding JSON 196–201
default case 164
defer keyword 25, 134, 151, 209
delete function 85
dependencies

gb build tool and 54–56
general discussion 52
using godep tool 52–53

distributed version control systems. See DVCS
doc command 49
documentation

of code 50
for standard library 185–186
test examples in 228–232

Done method 31
duck typing 6
Duration type 91
DVCS (distributed version control systems) 42
dynamic languages 3

E

empty slices 67–68
encoding JSON 201–202
endpoints, testing 223–228
env package 97
EOF (end of file) 204
Errorf method 36, 216
exporting identifiers 119–127

F

Fatal method 17, 215
Fatalf method 215
Fatalln method 190
File type 100
float32 type 88
fmt package 36, 48, 103, 206
for range statements 19, 31, 76, 219
Fprintf function 103, 206
func keyword 16, 92–93
functions

anonymous 20
documenting 51
passing arrays between 64–65
passing maps between 86–87
passing slices between 80–81

G

gb build tool 54–56
get command 43
Get function 102
Go

concurrency support
channels 4–5
goroutines 3–4
overview 3

development speed 3
Hello, World! example 7–8
memory management 7
overview 1–2
type system

interface system 6–7
overview 5–6
simplicity of 6

go command
doc command 49
fmt command 48
godoc command 49–51
overview 45–47
running goroutines using 4
vet command 47–48

Go Playground 8
godep tool 52–53
godoc command

example code from 228–232
overview 49–51

GOMAXPROCS function 137
GOPATH environment variable 14, 42
GOROOT environment variable 14
$GOROOT variable 186
goroutines

concurrency using 132–139
Licensed to Mark Watson <nordickan@gmail.com>

239INDEX
goroutines (continued)
defined 20
overview 3–4

H

handlers package 224
header values 97
Hello, World! example 7–8
HOB (high order bits) 82
http package 36, 102
httptest package 220–221, 223

I

import statements
gb build tool and 54
overview 42
remote packages 42–43
renaming import 43–44

init functions 13, 31, 44–45
inner types 111
int type 89
int64 type 88
interface type 25, 27
interfaces

implementing 104
method sets 105–109
overview 6–7
polymorphic behavior using 109–111
in standard library 102–104

io package 101
functions implementing Writer interface

205–208
implementing curl program using 208–209
overview 203, 210
Reader interface 204–205
Writer interface 203–204

iota keyword 189
isShellSpecialVar function 97

J

JSON (JavaScript Object Notation)
decoding 196–201
encoding 201–202

json package 23, 229

L

Ldate constant 189
LoadInt64 function 144–145
LOB (low order bits) 82

Lock function 146
locking shared resources

atomic functions 142–145
mutexes 145–147

log package
creating customized loggers 191–195
overview 14, 187–191, 195

low order bits. See LOB

M

main function 11–12, 41
main package 40–41
main thread 129
make function 15, 18, 66–67, 147
maps

converting to JSON strings 202
creating 83–84
defined 81
internals of 81–83
passing between functions 86–87
working with 84–86

MarshalIndent function 201–202
memory management 7
method sets 105–109
methods 92–96
mocks 219–223
multidimensional arrays 62–64
multidimensional slices 79–80
MultiWriter function 194, 209
mutexes 145–147

N

named imports 43
NewDecoder function 25, 36
NewRecorder function 227
nil slices 67–68
NumCPU function 137

O

Open function 100
operator 60, 63, 66–68
os package 103
outer types 111
Output: marker 230

P

package keyword 14
packages

creating repositories for sharing 51–52
Licensed to Mark Watson <nordickan@gmail.com>

240 INDEX
packages (continued)
dependencies

gb build tool and 54–56
general discussion 52
using godep tool 52–53

exporting and unexporting identifiers in
119–127

import statements
overview 42
remote packages 42–43
renaming import 43–44

init functions in 44–45
main 40–41
naming conventions 40
overview 40
standard library 185
_test suffix 226
using go command with

doc command 49
fmt command 48
godoc command 49–51
overview 45–47
vet command 47–48

Panicln function 190
parallelism 129–132
pointers, arrays of 60–61
polymorphism 101, 109–111
pool package 167–177
Println function 190
Python 2

R

race conditions 139–142
range keyword 19, 30, 76–77
Reader interface 204–205
reference types 97–98
reflect package 25
regexp package 38
remote packages 42–43
repositories, creating 51–52
ResetTimer method 235
ResponseRecorder type 227
Routes function 224
Ruby 2
run command 47
-run option 232
runner package 158–166
runtime package 133, 137

S

select statements 164–165, 171
ServeHTTP method 227

SetFlags function 190
SetMaxThreads function 131
sharing code 8
short variable declaration operator (:=) 17, 90
slices

append operations on 71–72
assigning values in 68
creating

make function 66–67
nil and empty slices 67–68

defined 65
internals of 65
iterating over 76–78
multidimensional 79–80
passing between functions 80–81
slicing 68–71
three-index slices 72–76

Sourcegraph 186
standard library

documentation 185–186
interfaces in 102–104
io package

functions implementing Writer interface
205–208

implementing curl program using 208–209
overview 203, 210
Reader interface 204–205
Writer interface 203–204

JSON
decoding 196–201
encoding 201–202

log package
creating customized loggers 191–195
overview 187–191, 195

Start method 165
stderr device 187
stdin device 203
stdout device 187, 203
Stop method 164
StoreInt64 function 144–145
strings package 97
struct keyword 89, 98–101
sync package 18

T

table tests 216–219
test command 213–214
testing

benchmarking 232–236
documentation examples 228–232
unit testing

API endpoints 223–228
basic tests 212–216
Licensed to Mark Watson <nordickan@gmail.com>

241INDEX
testing, unit testing (continued)
mocks 219–223
overview 212
table tests 216–219

testing package 214, 233
threads 129
three-index slices 72–76
time package 91, 99
Time type 99–100
Trim function 97
type embedding 111–119
type keyword 89
type system

built-in types 96–97
exporting and unexporting identifiers in

packages 119–127
interfaces 6–7

implementing 104
method sets 105–109
polymorphic behavior using 109–111
in standard library 102–104

methods 92–96
overview 5–6
reference types 97–98
simplicity of 6
struct types 98–101
type embedding 111–119
user-defined types 89–92

U

unbuffered channels 148–153
unexporting identifiers 119–127
unit testing

API endpoints 223–228
basic tests 212–216
mocks 219–223
overview 212
table tests 216–219

Unlock function 146
Unmarshal function 199–200
user-defined types 89–92

V

-v option 213–214
values 88
var keyword 14, 37, 89–90
vendored code 55
verbose output 213
vet command 47–48

W

Wait method 31
WaitGroup 18, 134
when clause 215
work package 177–183
Writer interface

functions implementing
205–208

overview 203–204
WriteTo method 206–208

X

xml package 36, 196, 202
Licensed to Mark Watson <nordickan@gmail.com>

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Java 8 in Action
Lambdas, streams, and
functional-style programming
by Raoul-Gabriel Urma, Mario Fusco,

and Alan Mycroft

ISBN: 9781617291999
424 pages
$49.99
August 2014

Groovy in Action, Second Edition
by Dierk König, Paul King,

Guillaume Laforge, Hamlet D'Arcy,
Cédric Champeau, Erik Pragt,
and Jon Skeet

ISBN: 9781935182443
912 pages
$59.99
June 2015

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/groovy-in-action-second-edition
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/groovy-in-action-second-edition
www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Elixir in Action
by Saša Jurić

ISBN: 9781617292019
376 pages
$44.99
May 2015

C# in Depth, Third Edition
by Jon Skeet

ISBN: 9781617291340
616 pages
$49.99
September 2013

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/elixir-in-action
https://www.manning.com/books/c-sharp-in-depth-third-edition
https://www.manning.com/books/elixir-in-action
https://www.manning.com/books/c-sharp-in-depth-third-edition
www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

The Well-Grounded Rubyist,
Second Edition
by David A. Black

ISBN: 9781617291692
536 pages
$44.99
June 2014

The Quick Python Book,
Second Edition
Revised edition of The Quick Python Book by
Daryl K. Harms and Kenneth M. McDonald
by Naomi R. Ceder

ISBN: 9781935182207
360 pages
$39.99
January 2010

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/the-well-grounded-rubyist-second-edition
https://www.manning.com/books/the-quick-python-book-second-edition
https://www.manning.com/books/the-well-grounded-rubyist-second-edition
https://www.manning.com/books/the-quick-python-book-second-edition
www.manning.com

Kennedy ● Ketelsen ● Martin

A
pplication development can be tricky enough even when
you aren’t dealing with complex systems programming
problems like web-scale concurrency and real-time

performance. While it’s possible to solve these common issues
with additional tools and frameworks, Go handles them right
out of the box, making for a more natural and productive
coding experience. Developed at Google, Go powers nimble
startups as well as big enterprises—companies that rely on
high-performing services in their infrastructure.

Go in Action is for any intermediate-level developer who has
experience with other programming languages and wants a
jump-start in learning Go or a more thorough understanding
of the language and its internals. This book provides an inten-
sive, comprehensive, and idiomatic view of Go. It focuses on
the specifi cation and implementation of the language, includ-
ing topics like language syntax, Go’s type system, concurrency,
channels, and testing.

What’s Inside
● Language specifi cation and implementation
● Go’s type system
● Internals of Go’s data structures
● Testing and benchmarking

This book assumes you’re a working developer profi cient with
another language like Java, Ruby, Python, C#, or C++.

William Kennedy is a seasoned software developer and author
of the blog GoingGo.Net. Brian Ketelsen and Erik St. Martin are
the organizers of GopherCon and coauthors of the Go-based
Skynet framework

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/go-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

GO IN ACTION

PROGRAMMING

M A N N I N G

“A concise and
comprehensive guide
to exploring, learning,

 and using Go.”
—From the Foreword

by Steven Francia
Creator of Hugo

“This authoritative book
is a one-stop shop for anyone
just starting out with Go.”
—Sam Zaydel, RackTop Systems

“Brilliantly written;
a comprehensive

introduction to Go.
 Highly recommended.”

—Adam McKay, SUEZ

“This book makes the
uncommon parts of
Go understandable
and digestible.”—Alex Vidal
HipChat at Atlassian

SEE INSERT

	Go in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	About the code
	Author Online
	About the authors

	about the cover illustration
	1 Introducing Go
	1.1 Solving modern programming challenges with Go
	1.1.1 Development speed
	1.1.2 Concurrency
	1.1.3 Go’s type system
	1.1.4 Memory management

	1.2 Hello, Go
	1.2.1 Introducing the Go Playground

	1.3 Summary

	2 Go quick-start
	2.1 Program architecture
	2.2 Main package
	2.3 Search package
	2.3.1 search.go
	2.3.2 feed.go
	2.3.3 match.go/default.go

	2.4 RSS matcher
	2.5 Summary

	3 Packaging and tooling
	3.1 Packages
	3.1.1 Package-naming conventions
	3.1.2 Package main

	3.2 Imports
	3.2.1 Remote imports
	3.2.2 Named imports

	3.3 init
	3.4 Using Go tools
	3.5 Going farther with Go developer tools
	3.5.1 go vet
	3.5.2 Go format
	3.5.3 Go documentation

	3.6 Collaborating with other Go developers
	3.6.1 Creating repositories for sharing

	3.7 Dependency management
	3.7.1 Vendoring dependencies
	3.7.2 Introducing gb

	3.8 Summary

	4 Arrays, slices, and maps
	4.1 Array internals and fundamentals
	4.1.1 Internals
	4.1.2 Declaring and initializing
	4.1.3 Working with arrays
	4.1.4 Multidimensional arrays
	4.1.5 Passing arrays between functions

	4.2 Slice internals and fundamentals
	4.2.1 Internals
	4.2.2 Creating and initializing
	4.2.3 Working with slices
	4.2.4 Multidimensional slices
	4.2.5 Passing slices between functions

	4.3 Map internals and fundamentals
	4.3.1 Internals
	4.3.2 Creating and initializing
	4.3.3 Working with maps
	4.3.4 Passing maps between functions

	4.4 Summary

	5 Go’s type system
	5.1 User-defined types
	5.2 Methods
	5.3 The nature of types
	5.3.1 Built-in types
	5.3.2 Reference types
	5.3.3 Struct types

	5.4 Interfaces
	5.4.1 Standard library
	5.4.2 Implementation
	5.4.3 Method sets
	5.4.4 Polymorphism

	5.5 Type embedding
	5.6 Exporting and unexporting identifiers
	5.7 Summary

	6 Concurrency
	6.1 Concurrency versus parallelism
	6.2 Goroutines
	6.3 Race conditions
	6.4 Locking shared resources
	6.4.1 Atomic functions
	6.4.2 Mutexes

	6.5 Channels
	6.5.1 Unbuffered channels
	6.5.2 Buffered channels

	6.6 Summary

	7 Concurrency patterns
	7.1 Runner
	7.2 Pooling
	7.3 Work
	7.4 Summary

	8 Standard library
	8.1 Documentation and source code
	8.2 Logging
	8.2.1 Log package
	8.2.2 Customized loggers
	8.2.3 Conclusion

	8.3 Encoding/Decoding
	8.3.1 Decoding JSON
	8.3.2 Encoding JSON
	8.3.3 Conclusion

	8.4 Input and output
	8.4.1 Writer and Reader interfaces
	8.4.2 Working together
	8.4.3 Simple curl
	8.4.4 Conclusion

	8.5 Summary

	9 Testing and benchmarking
	9.1 Unit testing
	9.1.1 Basic unit test
	9.1.2 Table tests
	9.1.3 Mocking calls
	9.1.4 Testing endpoints

	9.2 Examples
	9.3 Benchmarking
	9.4 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

