
M A N N I N G

Jeff Nickoloff

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

Docker in Action
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ii
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Docker in Action

JEFF NICKOLOFF

M A N N I N G
SHELTER ISLAND
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Robert Wenner
PO Box 761 Technical proofreader: Niek Palm
Shelter Island, NY 11964 Copyeditor: Linda Recktenwald

Proofreader: Corbin Collins
Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN: 9781633430235
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

contents
foreword xi
preface xiii
acknowledgments xv
about this book xvii
about the cover illustration xix

 PART 1 KEEPING A TIDY COMPUTER 1

1 Welcome to Docker 3
1.1 What is Docker? 4

Containers 4 ■ Containers are not virtualization 5
Running software in containers for isolation 5 ■ Shipping
containers 7

1.2 What problems does Docker solve? 7
Getting organized 8 ■ Improving portability 9 ■ Protecting
your computer 10

1.3 Why is Docker important? 11

1.4 Where and when to use Docker 11

1.5 Example: “Hello, World” 12

1.6 Summary 14

2 Running software in containers 15
2.1 Getting help with the Docker command line 15
v

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi
2.2 Controlling containers: building a website monitor 16
Creating and starting a new container 17 ■ Running
interactive containers 18 ■ Listing, stopping, restarting, and
viewing output of containers 20

2.3 Solved problems and the PID namespace 21

2.4 Eliminating metaconflicts: building a website farm 24
Flexible container identification 25 ■ Container state and
dependencies 28

2.5 Building environment-agnostic systems 30
Read-only file systems 30 ■ Environment variable
injection 32

2.6 Building durable containers 35
Automatically restarting containers 36 ■ Keeping containers
running with supervisor and startup processes 37

2.7 Cleaning up 39

2.8 Summary 40

3 Software installation simplified 41
3.1 Identifying software 42

What is a repository? 42 ■ Using tags 43

3.2 Finding and installing software 44
Docker Hub from the command line 44 ■ Docker Hub from the
website 46 ■ Using alternative registries 48 ■ Images as
files 48 ■ Installing from a Dockerfile 50

3.3 Installation files and isolation 51
Image layers in action 51 ■ Layer relationships 53
Container file system abstraction and isolation 53 ■ Benefits of
this toolset and file system structure 54 ■ Weaknesses of union
file systems 54

3.4 Summary 55

4 Persistent storage and shared state with volumes 56
4.1 Introducing volumes 57

Volumes provide container-independent data management 58
Using volumes with a NoSQL database 58

4.2 Volume types 61
Bind mount volumes 62 ■ Docker-managed volumes 64
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii
4.3 Sharing volumes 66
Host-dependent sharing 66 ■ Generalized sharing and the
volumes-from flag 67

4.4 The managed volume life cycle 69
Volume ownership 69 ■ Cleaning up volumes 70

4.5 Advanced container patterns with volumes 71
Volume container pattern 72 ■ Data-packed volume
containers 73 ■ Polymorphic container pattern 74

4.6 Summary 75

5 Network exposure 77
5.1 Networking background 78

Basics: protocols, interfaces, and ports 78 ■ Bigger picture:
networks, NAT, and port forwarding 79

5.2 Docker container networking 81
The local Docker network topology 81 ■ Four network container
archetypes 82

5.3 Closed containers 83

5.4 Bridged containers 85
Reaching out 85 ■ Custom name resolution 86 ■ Opening
inbound communication 89 ■ Inter-container
communication 91 ■ Modifying the bridge interface 92

5.5 Joined containers 94

5.6 Open containers 96

5.7 Inter-container dependencies 97
Introducing links for local service discovery 97 ■ Link
aliases 99 ■ Environment modifications 100 ■ Link nature
and shortcomings 102

5.8 Summary 103

6 Limiting risk with isolation 104
6.1 Resource allowances 105

Memory limits 105 ■ CPU 107 ■ Access to devices 109

6.2 Shared memory 109
Sharing IPC primitives between containers 110 ■ Using an
open memory container 111
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
6.3 Understanding users 112
Introduction to the Linux user namespace 112 ■ Working with
the run-as user 113 ■ Users and volumes 115

6.4 Adjusting OS feature access with capabilities 117

6.5 Running a container with full privileges 118

6.6 Stronger containers with enhanced tools 119
Specifying additional security options 120 ■ Fine-tuning with
LXC 121

6.7 Build use-case-appropriate containers 122
Applications 122 ■ High-level system services 123
Low-level system services 123

6.8 Summary 123

 PART 2 PACKAGING SOFTWARE FOR DISTRIBUTION ... 125

7 Packaging software in images 127
7.1 Building Docker images from a container 127

Packaging Hello World 128 ■ Preparing packaging for
Git 129 ■ Reviewing file system changes 129 ■ Committing
a new image 130 ■ Configurable image attributes 131

7.2 Going deep on Docker images and layers 132
An exploration of union file systems 132 ■ Reintroducing
images, layers, repositories, and tags 135 ■ Managing image
size and layer limits 138

7.3 Exporting and importing flat file systems 140

7.4 Versioning best practices 141

7.5 Summary 143

8 Build automation and advanced image considerations 145
8.1 Packaging Git with a Dockerfile 146

8.2 A Dockerfile primer 149
Metadata instructions 150 ■ File system instructions 153

8.3 Injecting downstream build-time behavior 156

8.4 Using startup scripts and multiprocess containers 159
Environmental preconditions validation 159 ■ Initialization
processes 160
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
8.5 Building hardened application images 161
Content addressable image identifiers 162 ■ User
permissions 163 ■ SUID and SGID permissions 165

8.6 Summary 166

9 Public and private software distribution 168
9.1 Choosing a distribution method 169

A distribution spectrum 169 ■ Selection criteria 170

9.2 Publishing with hosted registries 172
Publishing with public repositories: Hello World via Docker
Hub 172 ■ Publishing public projects with automated
builds 175 ■ Private hosted repositories 177

9.3 Introducing private registries 179
Using the registry image 181 ■ Consuming images from
your registry 182

9.4 Manual image publishing and distribution 183
A sample distribution infrastructure using the File Transfer
Protocol 185

9.5 Image source distribution workflows 188
Distributing a project with Dockerfile on GitHub 189

9.6 Summary 190

10 Running customized registries 192
10.1 Running a personal registry 194

Reintroducing the Image 194 ■ Introducing the V2 API 195
Customizing the Image 197

10.2 Enhancements for centralized registries 198
Creating a reverse proxy 199 ■ Configuring HTTPS (TLS) on
the reverse proxy 201 ■ Adding an authentication layer 205
Client compatibility 208 ■ Before going to production 210

10.3 Durable blob storage 212
Hosted remote storage with Microsoft’s Azure 213 ■ Hosted
remote storage with Amazon’s Simple Storage Service 214
Internal remote storage with RADOS (Ceph) 216

10.4 Scaling access and latency improvements 217
Integrating a metadata cache 217 ■ Streamline blob transfer
with storage middleware 219
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
10.5 Integrating through notifications 221

10.6 Summary 227

 PART 3 MULTI-CONTAINER AND MULTI-HOST
ENVIRONMENTS ... 229

11 Declarative environments with Docker Compose 231
11.1 Docker Compose: up and running on day one 232

Onboarding with a simple development environment 232
A complicated architecture: distribution and Elasticsearch
integration 234

11.2 Iterating within an environment 236
Build, start, and rebuild services 237 ■ Scale and remove
services 240 ■ Iteration and persistent state 242
Linking problems and the network 243

11.3 Starting a new project: Compose YAML in three samples 243
Prelaunch builds, the environment, metadata, and
networking 244 ■ Known artifacts and bind-mount
volumes 245 ■ Volume containers and extended services 246

11.4 Summary 247

12 Clusters with Machine and Swarm 248
12.1 Introducing Docker Machine 249

Building and managing Docker Machines 250 ■ Configuring
Docker clients to work with remote daemons 252

12.2 Introducing Docker Swarm 255
Building a Swarm cluster with Docker Machine 255 ■ Swarm
extends the Docker Remote API 258

12.3 Swarm scheduling 261
The Spread algorithm 261 ■ Fine-tune scheduling with
filters 263 ■ Scheduling with BinPack and Random 267

12.4 Swarm service discovery 269
Swarm and single-host networking 269 ■ Ecosystem service
discovery and stop-gap measures 271 ■ Looking forward to
multi-host networking 272

12.5 Summary 274

index 275
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

foreword
I heard about Docker for the first time in a YouTube video that was posted to Hacker
News from PyCon 2013. In his five-minute lightning talk entitled “The Future of
Linux Containers,” the creator of Docker, Solomon Hykes, was unveiling the future of
how we ship and run software to the public—not just in Linux, but on nearly all plat-
forms and architectures. Although he was abruptly silenced at the five-minute mark, it
was clear to me that this technique of running Linux applications in sandboxed
environments, with its user-friendly command-line tool and unique concepts such as
image layering, was going to change a lot of things.

 Docker vastly changed many software development and operations paradigms all
at once. The ways we architect, develop, ship, and run software before and after
Docker are vastly different. Although Docker does not prescribe a certain recipe, it
forces people to think in terms of microservices and immutable infrastructure.

 Once Docker was more widely adopted, and as people started to investigate the
low-level technologies utilized by Docker, it became clearer that the secret to Docker’s
success was not the technology itself, but the human-friendly interface, APIs, and eco-
system around the project.

 Many big companies such as Google, Microsoft, and IBM have gathered around the
Docker project and worked together to make it even better rather than creating a
competitor to it. In fact, companies like Microsoft, Joyent, Intel, and VMware have
swapped out Docker’s Linux containers implementation but kept the novel Docker
command-line interface for their own container offerings. In only two years, many
new companies have sprouted up to enhance the developer experience and fill in the
blanks of the Docker ecosystem—the sign of a healthy and enthusiastic community
around Docker.

 For my own part, I began helping Microsoft adopt and contribute to Docker by
publishing Microsoft’s first official Docker image for cross-platform ASP.NET. My next
xi

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

FOREWORDxii
contribution was porting the Docker command-line interface to Windows. This proj-
ect helped many Windows developers become familiar with Docker and laid the foun-
dation for Microsoft’s long journey of contributing to the Docker project. The
Windows porting project also skyrocketed me to the top Docker contributor spot for
more than two months. Later on, we contributed many other bits and pieces to make
sure Docker became a first-class citizen on Microsoft’s Azure cloud offering. Our next
big step is Windows Containers, a new feature in Windows Server 2016, which is fully
integrated with Docker.

 It is exciting to know that we’re still at the start of the containers revolution. The
scene moves incredibly fast, as new technologies and open source tools emerge daily.
Everything we take for granted today can and will change in the next few months. This
is an area where innovators and the greatest minds of our industry are collaborating
to build tools of mass innovation and make the problem of shipping and running soft-
ware at scale one less thing to worry about for the rest of the software industry.

 Through his many online articles about Docker and microservices, Jeff Nickoloff
has shown himself to be the champion of the nascent Docker community. His well-
written, thorough explanations of some very technical topics have allowed developers
to quickly learn and use the Docker ecosystem for all its benefits, and, equally impor-
tant, he notes its drawbacks. In this book, he goes from zero to Docker, shows prac-
tices of deploying Docker in production, and demonstrates many features of Docker
with comprehensive descriptions and comparisons of various ways of achieving the
same task.

 While reading this book, not only will you learn how to use Docker effectively,
you’ll also grasp how it works, how each detailed feature of Docker is meant to be
used, and the best practices concocted for using Docker in production. I personally
had many “Oh, that’s what this feature is for” moments while reading this book.
Although writing a book about a technology that moves at an incredible pace is very
much like trying to paint a picture of a car moving at 60 mph, Jeff has done a fantastic
job at both covering cutting-edge features in Docker and laying a solid foundation
throughout the book. This foundation builds an appreciation and understanding for
the philosophy of containers and microservices that is unlikely to change, no matter
what Docker looks like in the coming months and years.

 I hope you find this book as enjoyable and educational as I did.

 AHMET ALP BALKAN

 OPEN SOURCE SOFTWARE ENGINEER AT MICROSOFT,
DOCKER CONTRIBUTOR
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

preface
In 2011, I started working at Amazon.com. In that first week my life was changed as I
learned how to use their internal build, dependency modeling, and deployment tool-
ing. This was the kind of automated management I had always known was possible but
had never seen. I was coming from a team that would deploy quarterly and take 10
hours to do so. At Amazon I was watching rolling deployments push changes I had
made earlier that day to hundreds of machines spread all over the globe. If big tech
firms had an engineering advantage over the rest of the corporate landscape, this was it.

 Early in 2013, I wanted to work with Graphite (a metrics collection and graphing
suite). One day I sat down to install the software and start integrating a personal proj-
ect. At this point I had several years of experience working with open source applica-
tions, but few were as dependent on such large swaths of the Python ecosystem. The
installation instructions were long and murky. Over the next several hours, I discov-
ered many undocumented installation steps. These were things that might have been
more obvious to a person with deeper Python ecosystem knowledge. After pouring
over several installation guides, reading through configuration files, and fighting an
epic battle through the deepest parts of dependency hell, I threw in the towel.

 Those had been some of the least inspiring hours of my life. I wanted nothing to
do with the project. To make matters worse, I had altered my environment in a way
that was incompatible with other software that I use regularly. Reverting those changes
took an embarrassingly long time.

 I distinctly remember sitting at my desk one day in May that year. I was between
tasks when I decided to check Hacker News for new ways to grow my skillset. Articles
about a technology called Docker had made the front page a few times that week.
That evening I decided to check it out. I hit the site and had the software installed
within a few minutes. I was running Ubuntu on my desktop at home, and Docker only
had two dependencies: LXC and the Linux kernel itself.
xiii

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

PREFACExiv
 Like everyone else, I kicked the tires with a “Hello, World” example, but learned
little. Next I fired up Memcached. It was downloaded and running in under a minute.
Then I started WordPress, which came bundled with its own MySQL server. I pulled a
couple different Java images, and then Python images. Then my mind flashed back to
that terrible day with Graphite. I popped over to the Docker Index (this was before
Docker Hub) and did a quick search.

 The results came back, and there it was. Some random user had created a Graphite
image. I pulled it down and created a new container. It was running. A simple but fully
configured Graphite server was running on my machine. I had accomplished in less
than a minute of download time what I had failed to do with several hours a few
months earlier. Docker was able to demonstrate value with the simplest of examples
and minimum effort. I was sold.

 Over the next week, I tried the patience of a close friend by struggling to direct our
conversations toward Docker and containers. I explained how package management
was nice, but enforcing file system isolation as a default solved several management
problems. I rattled on about resource efficiency and provisioning latency. I repeated
this conversation with several other colleagues and fumbled through the container
story. Everyone had the same set of tired questions, “Oh, it’s like virtualization?”
and “Why do I need this if I have virtual machines?” The more questions people
asked, the more I wanted to know. Based on the popularity of the project, this is a
story shared by many.

 I began including sessions about Docker when I spoke publicly. In 2013 and 2014,
only a few people had heard of Docker, and even fewer had actually tried the software.
For the most part, the crowds consisted of a few skeptical system administrator types
and a substantial number of excited developers. People reacted in a multitude of
ways. Some were pure rejectionists who clearly preferred the status quo. Others could
see problems that they experienced daily solved in a matter of moments. Those peo-
ple reacted with an excitement similar to mine.

 In the summer of 2014, an associate publisher with Manning called me to talk
about Docker. After a bit more than an hour on the phone he asked me if there was
enough content there for a book. I suggested that there was enough for a few books.
He asked me if I was interested in writing it, and I became more excited than I had
been for some time. That fall I left Amazon.com and started work on Docker in Action.

 Today, I'm sitting in front of the finished manuscript. My goal in writing this book
was to create something that would help people of mixed backgrounds get up to
speed on Docker as quickly as possible, but in such a way that they understand the
underlying mechanisms. The hope is that with that knowledge, readers can under-
stand how Docker has been applied to certain problems, and how they might apply it
in their own use-cases.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

acknowledgments
I believe that I’ve spent enough of my life doing easy things. Before I began this book,
I knew that writing it would require a high degree of discipline and an unending
stream of motivation. I was not disappointed.

 First I’d like to acknowledge Manning Publications for the opportunity to publish
this work. I’d like to thank Ahmet Alp Baken for writing a foreword to the book, as
well as Niek Palm for giving the whole manuscript a technical proofread. Many others
reviewed the manuscript and offered comments at various stages of development,
including Robert Wenner, Jean-Pol Landrain, John Guthrie, Benoît Benedetti,
Thomas Peklak, Jeremy Gailor, Fernando Fraga Rodrigues, Gregor Zurowski, Peter
Sellars, Mike Shepard, Peter Krey, Fernando Kobayashi, and Edward Kuns.

 In this and most other difficult ventures, success is dependent on the collective
contributions of a support network. I wouldn't be here today without contributions
from the following:

■ Portia Dean, for her partnership and support over the last year. Portia, you are
my partner, my righteous and stubborn center. Without you I would have lost
my mind somewhere in this maze of a year. I’ve loved the adventure and can’t
wait for what comes next.

■ My parents, Kathy and Jeff Nickoloff, Sr., for supporting my technical curiosity
from a young age and cultivating my strong will.

■ Neil Fritz, for hacking out projects with me over the last 15 years and always
being open to getting Slices Pizza.

■ Andy Will and the strong engineers of PHX2, for welcoming me to Amazon and
always raising our technical bar. Working with them was an education in itself.

■ Nick Ciubotariu, for fighting the good fight and raising the bar for technical
leadership.
xv

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

ACKNOWLEDGMENTSxvi
■ Cartel Coffee Lab, I spent more time in your HQ than I did my own house this
year. You have one of the best roasts in the world. People in San Francisco are
missing out.

Finally, I want to acknowledge my like-minded friends around the world who’ve
shared in some part of this journey through learning, sharing, challenging, or just
listening. #nogui
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

about this book
Docker in Action’s purpose is to introduce developers, system administrators, and
other computer users of a mixed skillset to the Docker project and Linux container
concepts. Both Docker and Linux are open source projects with a wealth of online
documentation, but getting started with either can be a daunting task.

 Docker is one of the fastest-growing open source projects ever, and the ecosystem
that has grown around it is evolving at a similar pace. For these reasons, this book
focuses on the Docker toolset exclusively. This restriction of scope should both help
the material age well and help readers understand how to apply Docker features to
their specific use-cases. Readers will be prepared to tackle bigger problems and
explore the ecosystem once they develop a solid grasp of the fundamentals covered in
this book.

Roadmap

This book is split into three parts.
 Part 1 introduces Docker and container features. Reading it will help you under-

stand how to install and uninstall software distributed with Docker. You’ll learn how to
run, manage, and link different kinds of software in different container configura-
tions. Part 1 covers the basic skillset that every Docker user will need.

 Part 2 is focused on packaging and distributing software with Docker. It covers the
underlying mechanics of Docker images, nuances in file sizes, and a survey of differ-
ent packaging and distribution methods. This part wraps up with a deep dive into the
Docker Distribution project.

 Part 3 explores multi-container projects and multi-host environments. This
includes coverage of the Docker Compose, Machine, and Swarm projects. These chap-
ters walk you through building and deploying multiple real world examples that
should closely resemble large-scale server software you’d find in the wild.
xvii

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

ABOUT THIS BOOKxviii
Code conventions and downloads

This book is about a multi-purpose tool, and so there is very little “code” included
in the book. In its place are hundreds of shell commands and configuration files.
These are typically provided in POSIX-compliant syntax. Notes for Windows users
are provided where Docker exposes some Windows-specific features. Care was
taken to break up commands into multiple lines in order to improve readability
or clarify annotations. Referenced repositories are available on Docker Hub
(https://hub.docker.com/u/dockerinaction/) with sources hosted on GitHub
(https://github.com/dockerinaction). No prior knowledge of Docker Hub or
GitHub is required to run the examples.

 This book uses several open source projects to both demonstrate various features
of Docker and help the reader shift software-management paradigms. No single soft-
ware “stack” or family is highlighted other than Docker itself. Working through the
examples, the reader will use tools such as WordPress, Elasticsearch, Postgres, shell
scripts, Netcat, Flask, JavaScript, NGINX, and Java. The sole commonality is a depen-
dency on the Linux kernel.

About the author

Jeff Nickoloff builds large-scale services, writes about technology, and helps people
achieve their product goals. He has done these things at Amazon.com, Limelight Net-
works, and Arizona State University. After leaving Amazon in 2014, he founded a con-
sulting company and focused on delivering tools, training, and best practices for
Fortune 100 companies and startups alike. If you’d like to chat or work together, you
can find him at http://allingeek.com, or on Twitter as @allingeek.

Author Online

Purchase of Docker in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/docker-in-
action. This page provides information on how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the Author Online remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://allingeek.com
https://hub.docker.com/u/dockerinaction/
https://github.com/dockerinaction
http://www.manning.com/books/docker-in-action
http://www.manning.com/books/docker-in-action

about the cover illustration
The figure on the cover of Docker in Action is captioned “The Angler.” The illustration
is taken from a nineteenth-century collection of works by many artists, edited by Louis
Curmer and published in Paris in 1841. The title of the collection is Les Français peints
par eux-mêmes, which translates as The French People Painted by Themselves. Each illustra-
tion is finely drawn and colored by hand and the rich variety of drawings in the collec-
tion reminds us vividly of how culturally apart the world’s regions, towns, villages, and
neighborhoods were just 200 years ago. Isolated from each other, people spoke differ-
ent dialects and languages. In the streets or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures from collections such as this one.
xix

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ABOUT THE COVER ILLUSTRATIONxx
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Part 1

Keeping a Tidy Computer

I solation is a core concept to so many computing patterns, resource manage-
ment strategies, and general accounting practices that it is difficult to even begin
compiling a list. Someone who learns how Linux containers provide isolation for
running programs and how to use Docker to control that isolation can accom-
plish amazing feats of reuse, resource efficiency, and system simplification.

 A thorough understanding of the material in this part is a solid foundation
for every reader to take on the rapidly growing Docker and container ecosystem.
Like the Docker tool set itself, the pieces covered here provide building blocks
to solving larger problems. For that reason, I suggest that you try to resist the
urge to skip ahead. It may take some time to get to the specific question that is
on your mind, but I’m confident that you’ll have more than a few revelations
along the way.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

2 CHAPTER F
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Welcome to Docker
If you’re anything like me, you prefer to do only what is necessary to accomplish an
unpleasant or mundane task. It’s likely that you’d prefer tools that are simple to use
to great effect over those that are complex or time-consuming. If I’m right, then I
think you’ll be interested in learning about Docker.

 Suppose you like to try out new Linux software but are worried about running
something malicious. Running that software with Docker is a great first step in pro-
tecting your computer because Docker helps even the most basic software users
take advantage of powerful security tools.

 If you’re a system administrator, making Docker the cornerstone of your soft-
ware management toolset will save time and let you focus on high-value activities
because Docker minimizes the time that you’ll spend doing mundane tasks.

This chapter covers
■ What Docker is
■ An introduction to containers
■ How Docker addresses software problems that

most people tolerate
■ When, where, and why you should use Docker
■ Example: “Hello, World”
3

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

4 CHAPTER 1 Welcome to Docker
 If you write software, distributing your software with Docker will make it easier for
your users to install and run it. Writing your software in a Docker-wrapped develop-
ment environment will save you time configuring or sharing that environment,
because from the perspective of your software, every environment is the same.

 Suppose you own or manage large-scale systems or data centers. Creating build,
test, and deployment pipelines is simplified using Docker because moving any soft-
ware through such a pipeline is identical to moving any other software through.

 Launched in March 2013, Docker works with your operating system to package,
ship, and run software. You can think of Docker as a software logistics provider that will
save you time and let you focus on high-value activities. You can use Docker with net-
work applications like web servers, databases, and mail servers and with terminal appli-
cations like text editors, compilers, network analysis tools, and scripts; in some cases it’s
even used to run GUI applications like web browsers and productivity software.

NOT JUST LINUX Docker is Linux software but works well on most operating
systems.

Docker isn’t a programming language, and it isn’t a framework for building software.
Docker is a tool that helps solve common problems like installing, removing, upgrad-
ing, distributing, trusting, and managing software. It’s open source Linux software,
which means that anyone can contribute to it, and it has benefited from a variety of
perspectives. It’s common for companies to sponsor the development of open source
projects. In this case, Docker Inc. is the primary sponsor. You can find out more about
Docker Inc. at https://docker.com/company/.

1.1 What is Docker?
Docker is a command-line program, a background daemon, and a set of remote ser-
vices that take a logistical approach to solving common software problems and simpli-
fying your experience installing, running, publishing, and removing software. It
accomplishes this using a UNIX technology called containers.

1.1.1 Containers

Historically, UNIX-style operating systems have used the term jail to describe a modi-
fied runtime environment for a program that prevents that program from accessing
protected resources. Since 2005, after the release of Sun’s Solaris 10 and Solaris Con-
tainers, container has become the preferred term for such a runtime environment. The
goal has expanded from preventing access to protected resources to isolating a pro-
cess from all resources except where explicitly allowed.

 Using containers has been a best practice for a long time. But manually building
containers can be challenging and easy to do incorrectly. This challenge has put them
out of reach for some, and misconfigured containers have lulled others into a false
sense of security. We need a solution to this problem, and Docker helps. Any software
run with Docker is run inside a container. Docker uses existing container engines to
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://docker.com/company/

5What is Docker?
provide consistent containers built according to best practices. This puts stronger
security within reach for everyone.

 With Docker, users get containers at a much lower cost. As Docker and its con-
tainer engines improve, you get the latest and greatest jail features. Instead of keeping
up with the rapidly evolving and highly technical world of building strong application
jails, you can let Docker handle the bulk of that for you. This will save you a lot of time
and money and bring peace of mind.

1.1.2 Containers are not virtualization

Without Docker, businesses typically use hardware virtualization (also known as virtual
machines) to provide isolation. Virtual machines provide virtual hardware on which
an operating system and other programs can be installed. They take a long time
(often minutes) to create and require significant resource overhead because they run
a whole copy of an operating system in addition to the software you want to use.

 Unlike virtual machines, Docker containers don’t use hardware virtualization. Pro-
grams running inside Docker containers interface directly with the host’s Linux ker-
nel. Because there’s no additional layer between the program running inside the
container and the computer’s operating system, no resources are wasted by running
redundant software or simulating virtual hardware. This is an important distinction.
Docker is not a virtualization technology. Instead, it helps you use the container tech-
nology already built into your operating system.

1.1.3 Running software in containers for isolation

As noted earlier, containers have existed for decades. Docker uses Linux namespaces
and cgroups, which have been part of Linux since 2007. Docker doesn’t provide the
container technology, but it specifically makes it simpler to use. To understand what
containers look like on a system, let’s first establish a baseline. Figure 1.1 shows a basic
example running on a simplified computer system architecture.

 Notice that the command-line interface, or CLI, runs in what is called user space
memory just like other programs that run on top of the operating system. Ideally,

User space

CPU Memory
IO

Network interface

Operating system

Command line

Persistent storage Devices

Hello World program

Text editor

Figure 1.1 A basic computer stack running two programs that were started from the
command line
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

6 CHAPTER 1 Welcome to Docker
programs running in user space can’t modify kernel space memory. Broadly speaking,
the operating system is the interface between all user programs and the hardware that
the computer is running on.

 You can see in figure 1.2 that running Docker means running two programs in
user space. The first is the Docker daemon. If installed properly, this process should
always be running. The second is the Docker CLI. This is the Docker program that
users interact with. If you want to start, stop, or install software, you’ll issue a com-
mand using the Docker program.

 Figure 1.2 also shows three running containers. Each is running as a child process
of the Docker daemon, wrapped with a container, and the delegate process is running
in its own memory subspace of the user space. Programs running inside a container
can access only their own memory and resources as scoped by the container.

 The containers that Docker builds are isolated with respect to eight aspects. Part 1
of this book covers each of these aspects through an exploration of Docker container
features. The specific aspects are as follows:

■ PID namespace—Process identifiers and capabilities
■ UTS namespace—Host and domain name
■ MNT namespace—File system access and structure
■ IPC namespace—Process communication over shared memory
■ NET namespace—Network access and structure
■ USR namespace—User names and identifiers
■ chroot()—Controls the location of the file system root
■ cgroups—Resource protection

Linux namespaces and cgroups take care of containers at runtime. Docker uses another
set of technologies to provide containers for files that act like shipping containers.

User space

CPU Memory
IO

Network interface

Operating system

Command line
Docker CLI Web server

Hello World

Database

Container
space A

Container
space B

Container
space C

Docker daemon

Persistent storage Devices

Figure 1.2 Docker running three containers on a basic Linux computer system
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

7What problems does Docker solve?
1.1.4 Shipping containers

You can think of a Docker container as a physical shipping container. It’s a box where
you store and run an application and all of its dependencies. Just as cranes, trucks,
trains, and ships can easily work with shipping containers, so can Docker run, copy,
and distribute containers with ease. Docker completes the traditional container meta-
phor by including a way to package and distribute software. The component that fills
the shipping container role is called an image.

 A Docker image is a bundled snapshot of all the files that should be available to a
program running inside a container. You can create as many containers from an
image as you want. But when you do, containers that were started from the same
image don’t share changes to their file system. When you distribute software with
Docker, you distribute these images, and the receiving computers create containers
from them. Images are the shippable units in the Docker ecosystem.

 Docker provides a set of infrastructure components that simplify distributing
Docker images. These components are registries and indexes. You can use publicly avail-
able infrastructure provided by Docker Inc., other hosting companies, or your own
registries and indexes.

1.2 What problems does Docker solve?
Using software is complex. Before installation you have to consider what operating sys-
tem you’re using, the resources the software requires, what other software is already
installed, and what other software it depends on. You need to decide where it should
be installed. Then you need to know how to install it. It’s surprising how drastically
installation processes vary today. The list of considerations is long and unforgiving.
Installing software is at best inconsistent and overcomplicated.

 Most computers have more than one application installed and running. And most
applications have dependencies on other software. What happens when two or more
applications you want to use don’t play well together? Disaster. Things are only made
more complicated when two or more applications share dependencies:

■ What happens if one application needs an upgraded dependency but the other
does not?

■ What happens when you remove an application? Is it really gone?
■ Can you remove old dependencies?
■ Can you remember all the changes you had to make to install the software you

now want to remove?

The simple truth is that the more software you use, the more difficult it is to manage.
Even if you can spend the time and energy required to figure out installing and
running applications, how confident can you be about your security? Open and closed
source programs release security updates continually, and being aware of all of the
issues is often impossible. The more software you run, the greater the risk that it’s vul-
nerable to attack.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

8 CHAPTER 1 Welcome to Docker
 All of these issues can be solved with careful accounting, management of
resources, and logistics, but those are mundane and unpleasant things to deal with.
Your time would be better spent using the software that you’re trying to install,
upgrade, or publish. The people who built Docker recognized that, and thanks to
their hard work you can breeze through the solutions with minimal effort in almost
no time at all.

 It’s possible that most of these issues seem acceptable today. Maybe they feel trivial
because you’re used to them. After reading how Docker makes these issues approach-
able, you may notice a shift in your opinion.

1.2.1 Getting organized

Without Docker, a computer
can end up looking like a junk
drawer. Applications have all
sorts of dependencies. Some
applications depend on specific
system libraries for common
things like sound, networking,
graphics, and so on. Others
depend on standard libraries for
the language they’re written in.
Some depend on other applications, such as how a Java program depends on the Java
Virtual Machine or a web application might depend on a database. It’s common for a
running program to require exclusive access to some scarce resource such as a net-
work connection or a file.

 Today, without Docker, applications are spread all over the file system and end up
creating a messy web of interactions. Figure 1.3 illustrates how example applications
depend on example libraries without Docker.

 Docker keeps things organized by isolating everything with containers and images.
Figure 1.4 illustrates these same applications and their dependencies running inside

Photo-
processing

program

Web
server

Picture-
generating
program

Web service
client

program

libssi gcc libjpeg python libjson

Figure 1.3 Dependency relationships of example program

Photo-
processing

program

Container A

Web
server

libssi gcc libjpeg

Container B

libssi gcc libjson

Picture-
generating
program

Container C

libjpeg python

Web service
client

program

Container D

gcc libjson

Figure 1.4 Example programs running inside containers with copies of their dependencies
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

9What problems does Docker solve?
containers. With the links broken and each application neatly contained, understand-
ing the system is an approachable task.

1.2.2 Improving portability

Another software problem is that an application’s dependencies typically include a
specific operating system. Portability between operating systems is a major problem
for software users. Although it’s possible to have compatibility between Linux software
and Mac OS X, using that same software on Windows can be more difficult. Doing so
can require building whole ported versions of the software. Even that is only possible
if suitable replacement dependencies exist for Windows. This represents a major
effort for the maintainers of the application and is frequently skipped. Unfortunately
for users, a whole wealth of powerful software is too difficult or impossible to use on
their system.

 At present, Docker runs natively on Linux and comes with a single virtual machine
for OS X and Windows environments. This convergence on Linux means that software
running in Docker containers need only be written once against a consistent set of
dependencies. You might have just thought to yourself, “Wait a minute. You just fin-
ished telling me that Docker is better than virtual machines.” That’s correct, but they
are complementary technologies. Using a virtual machine to contain a single program
is wasteful. This is especially so when you’re running several virtual machines on the
same computer. On OS X and Windows, Docker uses a single, small virtual machine to
run all the containers. By taking this approach, the overhead of running a virtual
machine is fixed while the number of containers can scale up.

 This new portability helps users in a few ways. First, it unlocks a whole world of soft-
ware that was previously inaccessible. Second, it’s now feasible to run the same
software—exactly the same software—on any system. That means your desktop, your
development environment, your company’s server, and your company’s cloud can all
run the same programs. Running consistent environments is important. Doing so
helps minimize any learning curve associated with adopting new technologies. It helps
software developers better understand the systems that will be running their pro-
grams. It means fewer surprises. Third, when software maintainers can focus on
writing their programs for a single platform and one set of dependencies, it's a huge
time-saver for them and a great win for their customers.

 Without Docker or virtual machines, portability is commonly achieved at an indi-
vidual program level by basing the software on some common tool. For example, Java
lets programmers write a single program that will mostly work on several operating
systems because the programs rely on a program called a Java Virtual Machine (JVM).
Although this is an adequate approach while writing software, other people, at other
companies, wrote most of the software we use. For example, if there is a popular web
server that I want to use, but it was not written in Java or another similarly portable
language, I doubt that the authors would take time to rewrite it for me. In addition to
this shortcoming, language interpreters and software libraries are the very things that
create dependency problems. Docker improves the portability of every program
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

10 CHAPTER 1 Welcome to Docker
regardless of the language it was written in, the operating system it was designed for,
or the state of the environment where it’s running.

1.2.3 Protecting your computer

Most of what I've mentioned so far have been problems from the perspective of work-
ing with software and the benefits of doing so from outside a container. But contain-
ers also protect us from the software running inside a container. There are all sorts of
ways that a program might misbehave or present a security risk:

■ A program might have been written specifically by an attacker.
■ Well-meaning developers could write a program with harmful bugs.
■ A program could accidentally do the bidding of an attacker through bugs in its

input handling.

Any way you cut it, running software puts the security of your computer at risk.
Because running software is the whole point of having a computer, it’s prudent to
apply the practical risk mitigations.

 Like physical jail cells, anything inside a container can only access things that are
inside it as well. There are exceptions to this rule but only when explicitly created by
the user. Containers limit the scope of impact that a program can have on other run-
ning programs, the data it can access, and system resources. Figure 1.5 illustrates the
difference between running software outside and inside a container.

 What this means for you or your business is that the scope of any security threat
associated with running a particular application is limited to the scope of the applica-
tion itself. Creating strong application containers is complicated and a critical compo-
nent of any defense in-depth strategy. It is far too commonly skipped or implemented
in a half-hearted manner.

VIRUS

Keyboard
input

Network

Personal
or sensitive

data

Other
running

programs

Container jail

Keyboard
input

Network

Personal
or sensitive

data

Other
running

programs

VIRUS

Figure 1.5 Left: a malicious program with direct access to sensitive resources.
Right: a malicious program inside a container.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

11Where and when to use Docker
1.3 Why is Docker important?
Docker provides what is called an abstraction. Abstractions allow you to work with com-
plicated things in simplified terms. So, in the case of Docker, instead of focusing on all
the complexities and specifics associated with installing an application, all we need
consider is what software we’d like to install. Like a crane loading a shipping con-
tainer onto a ship, the process of installing any software with Docker is identical to any
other. The shape or size of the thing inside the shipping container may vary, but the
way that the crane picks up the container will always be the same. All the tooling is
reusable for any shipping container.

 This is also the case for application removal. When you want to remove software,
you simply tell Docker which software to remove. No lingering artifacts will remain
because they were all carefully contained and accounted for. Your computer will be as
clean as it was before you installed the software.

 The container abstraction and the tools Docker provides for working with contain-
ers will change the system administration and software development landscape.
Docker is important because it makes containers available to everyone. Using it saves
time, money, and energy.

 The second reason Docker is important is that there is significant push in the soft-
ware community to adopt containers and Docker. This push is so strong that compa-
nies like Amazon, Microsoft, and Google have all worked together to contribute to its
development and adopt it in their own cloud offerings. These companies, which are
typically at odds, have come together to support an open source project instead of
developing and releasing their own solutions.

 The third reason Docker is important is that it has accomplished for the computer
what app stores did for mobile devices. It has made software installation, compartmen-
talization, and removal very simple. Better yet, Docker does it in a cross-platform and
open way. Imagine if all of the major smartphones shared the same app store. That
would be a pretty big deal. It’s possible with this technology in place that the lines
between operating systems may finally start to blur, and third-party offerings will be
less of a factor in choosing an operating system.

 Fourth, we’re finally starting to see better adoption of some of the more advanced
isolation features of operating systems. This may seem minor, but quite a few people
are trying to make computers more secure through isolation at the operating system
level. It’s been a shame that their hard work has taken so long to see mass adoption.
Containers have existed for decades in one form or another. It’s great that Docker
helps us take advantage of those features without all the complexity.

1.4 Where and when to use Docker
Docker can be used on most computers at work and at home. Practically, how far
should this be taken?

 Docker can run almost anywhere, but that doesn’t mean you’ll want to do so. For
example, currently Docker can only run applications that can run on a Linux operating
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

12 CHAPTER 1 Welcome to Docker
system. This means that if you want to run an OS X or Windows native application, you
can’t yet do so through Docker.

 So, by narrowing the conversation to software that typically runs on a Linux server
or desktop, a solid case can be made for running almost any application inside a con-
tainer. This includes server applications like web servers, mail servers, databases, prox-
ies, and the like. Desktop software like web browsers, word processors, email clients,
or other tools are also a great fit. Even trusted programs are as dangerous to run as a
program you downloaded from the Internet if they interact with user-provided data or
network data. Running these in a container and as a user with reduced privileges will
help protect your system from attack.

 Beyond the added in-depth benefit of defense, using Docker for day-to-day tasks
helps keep your computer clean. Keeping a clean computer will prevent you from
running into shared resource issues and ease software installation and removal. That
same ease of installation, removal, and distribution simplifies management of com-
puter fleets and could radically change the way companies think about maintenance.

 The most important thing to remember is when containers are inappropriate. Con-
tainers won’t help much with the security of programs that have to run with full access
to the machine. At the time of this writing, doing so is possible but complicated. Con-
tainers are not a total solution for security issues, but they can be used to prevent many
types of attacks. Remember, you shouldn’t use software from untrusted sources. This is
especially true if that software requires administrative privileges. That means it’s a bad
idea to blindly run customer-provided containers in a collocated environment.

1.5 Example: “Hello, World”
I like to get people started with an example. In keeping with tradition, we’ll use “Hello,
World.” Before you begin, download and install Docker for your system. Detailed
instructions are kept up-to-date for every available system at https://docs.docker.com/
installation/. OS X and Windows users will install the full Docker suite of applications
using the Docker Toolbox. Once you have Docker installed and an active internet con-
nection, head to your command prompt and type the following:

docker run dockerinaction/hello_world

TIP Docker runs as the root user on your system. On some systems you’ll
need to execute the docker command line using sudo. Failing to do so will
result in a permissions error message. You can eliminate this requirement by
creating a “docker” group, setting that group as the owner of the docker
socket, and adding your user to that group. Consult the Docker online docu-
mentation for your distribution for detailed instructions, or try it both ways
and stick with the option that works for you. For consistency, this book will
omit the sudo prefix.

After you do so, Docker will spring to life. It will start downloading various compo-
nents and eventually print out “hello world.” If you run it again, it will just print out
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://docs.docker.com/installation/
https://docs.docker.com/installation/

13Example: “Hello, World”
“hello world.” Several things are happening in this example, and the command itself
has a few distinct parts.

 First, you use the docker run command to start a new container. This single com-
mand triggers a sequence (shown in figure 1.6) that installs, runs, and stops a pro-
gram inside a container.

 Second, the program that you tell it to run in a container is dockerinaction/
hello_world. This is called the repository (or image) name. For now, you can think of
the repository name as the name of the program you want to install or run.

NOTE This repository and several others were created specifically to support
the examples in this book. By the end of part 2 you should feel comfortable
examining these open source examples. Any suggestions you have on how
they might be improved are always welcome.

The first time you give the command, Docker has to figure out if dockerinaction/
hello_world is already installed. If it’s unable to locate it on your computer (because
it’s the first thing you do with Docker), Docker makes a call to Docker Hub. Docker
Hub is a public registry provided by Docker Inc. Docker Hub replies to Docker run-
ning on your computer where dockerinaction/hello_world can be found, and
Docker starts the download.

 Once installed, Docker creates a new container and runs a single command. In this
case, the command is simple:

echo "hello world"

After the command prints “hello world” to the terminal, it exits, and the container is
automatically stopped. Understand that the running state of a container is directly
tied to the state of a single running program inside the container. If a program is run-
ning, the container is running. If the program is stopped, the container is stopped.
Restarting a container runs the program again.

 When you give the command a second time, Docker will check again to see if
dockerinaction/hello_world is installed. This time it finds it and can build a new

Docker looks
for the image

on this
computer

docker run

The container
is running!

Docker creates
a new container

and starts
the program

Is it
installed?

The image
layers are

installed on
this computer

Docker
searches

Docker Hub
for the image

No

Yes
Docker

downloads
the image

Is it
on Docker

Hub?

Figure 1.6 What happens after running docker run
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

14 CHAPTER 1 Welcome to Docker
container and execute it right away. I want to emphasize an important detail. When
you use docker run the second time, it creates a second container from the same
repository (figure 1.7 illustrates this). This means that if you repeatedly use docker
run and create a bunch of containers, you’ll need to get a list of the containers you’ve
created and maybe at some point destroy them. Working with containers is as straight-
forward as creating them, and both topics are covered in chapter 2.

 Congratulations! You’re now an official Docker user. Take a moment to reflect on
how straightforward that was.

1.6 Summary
This chapter has been a brief introduction to Docker and the problems it helps system
administrators, developers, and other software users solve. In this chapter you learned
that:

■ Docker takes a logistical approach to solving common software problems and
simplifies your experience with installing, running, publishing, and removing
software. It’s a command-line program, a background daemon, and a set of
remote services. It’s integrated with community tools provided by Docker Inc.

■ The container abstraction is at the core of its logistical approach.
■ Working with containers instead of software creates a consistent interface and

enables the development of more sophisticated tools.
■ Containers help keep your computers tidy because software inside containers

can’t interact with anything outside those containers, and no shared dependen-
cies can be formed.

■ Because Docker is available and supported on Linux, OS X, and Windows, most
software packaged in Docker images can be used on any computer.

■ Docker doesn’t provide container technology; it hides the complexity of work-
ing directly with the container software.

Docker looks
for the image

on this
computer

docker run
The container

is running!
Is it

installed?

Docker creates
a new container

and starts
the program

Yes

Figure 1.7 Running docker run a second time. Because the image is already installed, Docker
can start the new container right away.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Running software
in containers
Before the end of this chapter you’ll understand all the basics for working with
containers and how Docker helps solve clutter and conflict problems. You’re going
to work through examples that introduce Docker features as you might encounter
them in daily use.

2.1 Getting help with the Docker command line
You’ll use the docker command-line program throughout the rest of this book. To
get you started with that, I want to show you how to get information about

This chapter covers
■ Running interactive and daemon terminal

programs with containers
■ Containers and the PID namespace
■ Container configuration and output
■ Running multiple programs in a container
■ Injecting configuration into containers
■ Durable containers and the container life cycle
■ Cleaning up
15

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

16 CHAPTER 2 Running software in containers
commands from the docker program itself. This way you’ll understand how to use the
exact version of Docker on your computer. Open a terminal, or command prompt,
and run the following command:

docker help

Running docker help will display information about the basic syntax for using the
docker command-line program as well as a complete list of commands for your version
of the program. Give it a try and take a moment to admire all the neat things you can do.

 docker help gives you only high-level information about what commands are avail-
able. To get detailed information about a specific command, include the command in
the <COMMAND> argument. For example, you might enter the following command to
find out how to copy files from a location inside a container to a location on the host
machine:

docker help cp

That will display a usage pattern for docker cp, a general description of what the com-
mand does, and a detailed breakdown of its arguments. I’m confident that you’ll have
a great time working through the commands introduced in the rest of this book now
that you know how to find help if you need it.

2.2 Controlling containers: building a website monitor
Most examples in this book will use real software. Practical examples will help intro-
duce Docker features and illustrate how you will use them in daily activities. In this
first example, you’re going to install a web server called NGINX. Web servers are
programs that make website files and programs accessible to web browsers over a net-
work. You’re not going to build a website, but you are going to install and start a web
server with Docker. If you follow the instructions in this example, the web server will
be available only to other programs on your computer.

 Suppose a new client walks into your office and makes you an outrageous offer to
build them a new website. They want a website that’s closely monitored. This particu-
lar client wants to run their own operations, so they’ll want the solution you provide to
email their team when the server is down. They’ve also heard about this popular web
server software called NGINX and have specifically requested that you use it. Having
read about the merits of working with Docker, you’ve decided to use it for this project.
Figure 2.1 shows your planned architecture for the project.

 This example uses three containers. The first will run NGINX; the second will run a
program called a mailer. Both of these will run as detached containers. Detached means
that the container will run in the background, without being attached to any input or
output stream. A third program, called an agent, will run in an interactive container.
Both the mailer and agent are small scripts created for this example. In this section
you’ll learn how to do the following:

■ Create detached and interactive containers
■ List containers on your system
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

17Controlling containers: building a website monitor
■ View container logs
■ Stop and restart containers
■ Reattach a terminal to a container
■ Detach from an attached container

Without further delay, let’s get started filling your client’s order.

2.2.1 Creating and starting a new container

When installing software with Docker, we say that we’re installing an image. There are
different ways to install an image and several sources for images. Images are covered
in depth in chapter 3. In this example we’re going to download and install an image
for NGINX from Docker Hub. Remember, Docker Hub is the public registry provided
by Docker Inc. The NGINX image is from what Docker Inc. calls a trusted repository.
Generally, the person or foundation that publishes the software controls the trusted
repositories for that software. Running the following command will download, install,
and start a container running NGINX:

docker run --detach \
 --name web nginx:latest

When you run this command, Docker will install nginx:latest from the NGINX
repository hosted on Docker Hub (covered in chapter 3) and run the software. After
Docker has installed and started running NGINX, one line of seemingly random char-
acters will be written to the terminal. It will look something like this:

7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

That blob of characters is the unique identifier of the container that was just created
to run NGINX. Every time you run docker run and create a new container, that con-
tainer will get a similar unique identifier. It’s common for users to capture this output

nginx

Port 80

A container created
from the nginx image,

which depends on
network port 80

watcher

A container created from the watcher
image, which depends on the

nginx container and the mailer container

mailer

Port 33333

A container created
from the mailer image,

which depends on
network port 33333

Figure 2.1 The three containers that you’ll build in this example

Note the detach flag
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

18 CHAPTER 2 Running software in containers
with a variable for use with other commands. You don’t need to do so for the purposes
of this example. After the identifier is displayed, it might not seem like anything has
happened. That's because you used the --detach option and started the program in
the background. This means that the program started but isn’t attached to your termi-
nal. It makes sense to start NGINX this way because we’re going to run a few different
programs.

 Running detached containers is a perfect fit for programs that sit quietly in the
background. That type of program is called a daemon. A daemon generally interacts
with other programs or humans over a network or some other communication tool.
When you launch a daemon or other program in a container that you want to run in
the background, remember to use either the --detach flag or its short form, -d.

 Another daemon that your client needs is a mailer. A mailer waits for connections
from a caller and then sends an email. The following command will install and run a
mailer that will work for this example:

docker run -d \
 --name mailer \

This command uses the short form of the --detach flag to start a new container
named mailer in the background. At this point you’ve run two commands and deliv-
ered two-thirds of the system that your client wants. The last component, called the
agent, is a good fit for an interactive container.

2.2.2 Running interactive containers

Programs that interact with users tend to feel more interactive. A terminal-based text
editor is a great example. The docker command-line tool is a perfect example of an
interactive terminal program. These types of programs might take input from the user
or display output on the terminal. Running interactive programs in Docker requires
that you bind parts of your terminal to the input or output of a running container.

 To get started working with interactive containers, run the following command:

docker run --interactive --tty \
 --link web:web \
 --name web_test \
 busybox:latest /bin/sh

The command uses two flags on the run command: --interactive (or -i) and –-tty
(or –t). First, the --interactive option tells Docker to keep the standard input
stream (stdin) open for the container even if no terminal is attached. Second, the
--tty option tells Docker to allocate a virtual terminal for the container, which will
allow you to pass signals to the container. This is usually what you want from an inter-
active command-line program. You’ll usually use both of these when you’re running
an interactive program like a shell in an interactive container.

Start detached

Create a virtual terminal
and bind stdin
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

19Controlling containers: building a website monitor
 Just as important as the interactive flags, when you started this container you speci-
fied the program to run inside the container. In this case you ran a shell program
called sh. You can run any program that’s available inside the container.

 The command in the interactive container example creates a container, starts a
UNIX shell, and is linked to the container that’s running NGINX (linking is covered in
chapter 5). From this shell you can run a command to verify that your web server is
running correctly:

wget -O - http://web:80/

This uses a program called wget to make an HTTP request to the web server (the
NGINX server you started earlier in a container) and then display the contents of the
web page on your terminal. Among the other lines, there should be a message like
“Welcome to NGINX!” If you see that message, then everything is working correctly
and you can go ahead and shut down this interactive container by typing exit. This
will terminate the shell program and stop the container.

 It’s possible to create an interactive container, manually start a process inside that
container, and then detach your terminal. You can do so by holding down the Crtl (or
Control) key and pressing P and then Q. This will work only when you’ve used the
--tty option.

 To finish the work for your client, you need to start an agent. This is a monitoring
agent that will test the web server as you did in the last example and send a message
with the mailer if the web server stops. This command will start the agent in an inter-
active container using the short-form flags:

docker run -it \
 --name agent \
 --link web:insideweb \
 --link mailer:insidemailer \
 dockerinaction/ch2_agent

When running, the container will test the web container every second and print a
message like the following:

System up.

Now that you’ve seen what it does, detach your terminal from the container. Specifi-
cally, when you start the container and it begins writing “System up,” hold the Ctrl (or
Control) key and then press P and then Q. After doing so you’ll be returned to the
shell for your host computer. Do not stop the program; otherwise, the monitor will
stop checking the web server.

 Although you’ll usually use detached or daemon containers for software that you
deploy to servers on your network, interactive containers are very useful for running
software on your desktop or for manual work on a server. At this point you’ve started
all three applications in containers that your client needs. Before you can confidently
claim completion, you should test the system.

Create a virtual terminal
and bind stdin
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

20 CHAPTER 2 Running software in containers
2.2.3 Listing, stopping, restarting, and viewing output of containers

The first thing you should do to test your current setup is check which containers are
currently running by using the docker ps command:

docker ps

Running the command will display the following information about each running
container:

■ The container ID
■ The image used
■ The command executed in the container
■ The time since the container was created
■ The duration that the container has been running
■ The network ports exposed by the container
■ The name of the container

At this point you should have three running containers with names: web, mailer, and
agent. If any is missing but you’ve followed the example thus far, it may have been mis-
takenly stopped. This isn’t a problem because Docker has a command to restart a con-
tainer. The next three commands will restart each container using the container
name. Choose the appropriate ones to restart the containers that were missing from
the list of running containers.

docker restart web
docker restart mailer
docker restart agent

Now that all three containers are running, you need to test that the system is operat-
ing correctly. The best way to do that is to examine the logs for each container. Start
with the web container:

docker logs web

That should display a long log with several lines that contain this substring:

"GET / HTTP/1.0" 200

This means that the web server is running and that the agent is testing the site. Each
time the agent tests the site, one of these lines will be written to the log. The docker
logs command can be helpful for these cases but is dangerous to rely on. Anything
that the program writes to the stdout or stderr output streams will be recorded in this
log. The problem with this pattern is that the log is never rotated or truncated, so the
data written to the log for a container will remain and grow as long as the container
exists. That long-term persistence can be a problem for long-lived processes. A better
way to work with log data uses volumes and is discussed in chapter 4.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

21Solved problems and the PID namespace
 You can tell that the agent is monitoring the web server by examining the logs for
web alone. For completeness you should examine the log output for mailer and agent
as well:

docker logs mailer
docker logs agent

The logs for mailer should look something like this:

CH2 Example Mailer has started.

The logs for agent should contain several lines like the one you watched it write when
you started the container:

System up.

TIP The docker logs command has a flag, --follow or -f, that will display
the logs and then continue watching and updating the display with changes
to the log as they occur. When you’ve finished, press Ctrl (or Command) and
the C key to interrupt the logs command.

Now that you’ve validated that the containers are running and that the agent can
reach the web server, you should test that the agent will notice when the web con-
tainer stops. When that happens, the agent should trigger a call to the mailer, and the
event should be recorded in the logs for both agent and mailer. The docker stop
command tells the program with PID #1 in the container to halt. Use it in the follow-
ing commands to test the system:

docker stop web
docker logs mailer

Look for a line at the end of the mailer logs that reads like:

“Sending email: To: admin@work Message: The service is down!”

That line means the agent successfully detected that the NGINX server in the con-
tainer named web had stopped. Congratulations! Your client will be happy, and you’ve
built your first real system with containers and Docker.

 Learning the basic Docker features is one thing, but understanding why they’re
useful and how to use them in building more comprehensive systems is another task
entirely. The best place to start learning that is with the process identifier namespace
provided by Linux.

2.3 Solved problems and the PID namespace
Every running program—or process—on a Linux machine has a unique number
called a process identifier (PID). A PID namespace is the set of possible numbers that
identify processes. Linux provides facilities to create multiple PID namespaces. Each

Stop the web server by
stopping the containerWait a couple seconds and

check the mailer logs
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

22 CHAPTER 2 Running software in containers
namespace has a complete set of possible PIDs. This means that each PID namespace
will contain its own PID 1, 2, 3, and so on. From the perspective of a process in one
namespace, PID 1 might refer to an init system process like runit or supervisord. In
a different namespace, PID 1 might refer to a command shell like bash. Creating a PID
namespace for each container is a critical feature of Docker. Run the following to see
it in action:

docker run -d --name namespaceA \
 busybox:latest /bin/sh -c "sleep 30000"
docker run -d --name namespaceB \
 busybox:latest /bin/sh -c "nc -l -p 0.0.0.0:80"

docker exec namespaceA ps
docker exec namespaceB ps

Command b above should generate a process list similar to the following:

PID USER COMMAND
 1 root /bin/sh -c sleep 30000
 5 root sleep 30000
 6 root ps

Command c above should generate a slightly different process list:

PID USER COMMAND
 1 root /bin/sh -c nc -l -p 0.0.0.0:80
 7 root nc -l -p 0.0.0.0:80
 8 root ps

In this example you use the docker exec command to run additional processes in a
running container. In this case the command you use is called ps, which shows all the
running processes and their PID. From the output it’s clear to see that each container
has a process with PID 1.

 Without a PID namespace, the processes running inside a container would share
the same ID space as those in other containers or on the host. A container would be
able to determine what other processes were running on the host machine. Worse,
namespaces transform many authorization decisions into domain decisions. That
means processes in one container might be able to control processes in other con-
tainers. Docker would be much less useful without the PID namespace. The Linux
features that Docker uses, such as namespaces, help you solve whole classes of soft-
ware problems.

 Like most Docker isolation features, you can optionally create containers without
their own PID namespace. You can try this yourself by setting the --pid flag on docker
create or docker run and setting the value to host. Try it yourself with a container
running BusyBox Linux and the ps Linux command:

docker run --pid host busybox:latest ps

b
c

Should list all processes
running on the computer
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

23Solved problems and the PID namespace

Start
sec

insta
Consider the previous web-monitoring example. Suppose you were not using Docker
and were just running NGINX directly on your computer. Now suppose you forgot that
you had already started NGINX for another project. When you start NGINX again, the
second process won’t be able to access the resources it needs because the first process
already has them. This is a basic software conflict example. You can see it in action by
trying to run two copies of NGINX in the same container:

docker run –d --name webConflict nginx:latest
docker logs webConflict
docker exec webConflict nginx -g 'daemon off;'

The last command should display output like:

2015/03/29 22:04:35 [emerg] 10#0: bind() to 0.0.0.0:80 failed (98:
Address already in use)
nginx: [emerg] bind() to 0.0.0.0:80 failed (98: Address already in use)
...

The second process fails to start properly and reports that the address it needs is
already in use. This is called a port conflict, and it’s a common issue in real-world sys-
tems where several processes are running on the same computer or multiple people
contribute to the same environment. It’s a great example of a conflict problem that
Docker simplifies and solves. Run each in a different container, like this:

docker run -d --name webA nginx:latest

docker logs webA

docker run -d --name webB nginx:latest

docker logs webB

To generalize ways that programs might conflict with each other, let’s consider a park-
ing lot metaphor. A paid parking lot has a few basic features: a payment system, a few
reserved parking spaces, and numbered spaces.

 Tying these features back to a computer system, a payment system represents some
shared resource with a specific interface. A payment system might accept cash or
credit cards or both. People who carry only cash won’t be able to use a garage with a
payment system that accepts only credit cards, and people without money to pay the
fee won’t be able to park in the garage at all.

 Similarly, programs that have a dependency on some shared component such as a
specific version of a programming language library won’t be able to run on computers
that either have a different version of that library or lack that library completely. Just
like if two people who each use a different payment method want to park in the same
garage that accepts only one method, conflict arises when you want to use two pro-
grams that require different versions of a library.

The output should
be empty

Start a second nginx process
in the same container

Start the first nginx instance

Verify that it is working,
should be empty

 the
ond
nce Verify that it is working,

should be empty
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

24 CHAPTER 2 Running software in containers
 Reserved spaces in this metaphor represent scarce resources. Imagine that the park-
ing garage attendant assigns the same reserved space to two cars. As long as only one
driver wanted to use the garage at a time, there would be no issue. But if both wanted
to use the space simultaneously, the first one in would win and the second wouldn’t be
able to park. As you’ll see in the conflict example in section 2.7, this is the same type of
conflict that happens when two programs try to bind to the same network port.

 Lastly, consider what would happen if someone changed the space numbers in the
parking lot while cars were parked. When owners return and try to locate their vehicles,
they may be unable to do so. Although this is clearly a silly example, it’s a great meta-
phor for what happens to programs when shared environment variables change. Pro-
grams often use environment variables or registry entries to locate other resources that
they need. These resources might be libraries or other programs. When programs con-
flict with each other, they might modify these variables in incompatible ways.

 Here are some common conflict problems:

■ Two programs want to bind to the same network port.
■ Two programs use the same temporary filename, and file locks are preventing

that.
■ Two programs want to use different versions of some globally installed library.
■ Two copies of the same program want to use the same PID file.
■ A second program you installed modified an environment variable that another

program uses. Now the first program breaks.

All these conflicts arise when one or more programs have a common dependency but
can’t agree to share or have different needs. Like in the earlier port conflict example,
Docker solves software conflicts with such tools as Linux namespaces, file system roots,
and virtualized network components. All these tools are used to provide isolation to
each container.

2.4 Eliminating metaconflicts: building a website farm
In the last section you saw how Docker helps you avoid software conflicts with process
isolation. But if you’re not careful, you can end up building systems that create
metaconflicts, or conflicts between containers in the Docker layer.

 Consider another example where a client has asked you to build a system where
you can host a variable number of websites for their customers. They’d also like to
employ the same monitoring technology that you built earlier in this chapter. Simply
expanding the system you built earlier would be the simplest way to get this job done
without customizing the configuration for NGINX. In this example you’ll build a sys-
tem with several containers running web servers and a monitoring agent (agent) for
each web server. The system will look like the architecture described in figure 2.2.

 One’s first instinct might be to simply start more web containers. That’s not as sim-
ple as it sounds. Identifying containers gets complicated as the number of containers
increases.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

25Eliminating metaconflicts: building a website farm
2.4.1 Flexible container identification

The best way to find out why simply creating more copies of the NGINX container you
used in the last example is a bad idea is to try it for yourself:

docker run -d --name webid nginx

docker run -d --name webid nginx

The second command here will fail with a conflict error:

FATA[0000] Error response from daemon: Conflict. The name "webid" is
already in use by container 2b5958ba6a00. You have to delete (or rename)
that container to be able to reuse that name.

Using fixed container names like web is useful for experimentation and documenta-
tion, but in a system with multiple containers, using fixed names like that can create
conflicts. By default Docker assigns a unique (human-friendly) name to each con-
tainer it creates. The --name flag simply overrides that process with a known value. If a
situation arises where the name of a container needs to change, you can always
rename the container with the docker rename command:

docker rename webid webid-old

docker run -d --name webid nginx

Renaming containers can help alleviate one-off naming conflicts but does little to
help avoid the problem in the first place. In addition to the name, Docker assigns a
unique identifier that was mentioned in the first example. These are hex-encoded
1024-bit numbers and look something like this:

7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

nginx

Port 80

watcher

nginx

Port 80

mailer

Port 33333

watcher

...
nginx

Port 80

watcher

Figure 2.2 A fleet of web server containers
and related monitoring agents

Create a container
named "webid"

Create another container
named "webid"

Rename the current web
container to "webid-old"

Create another container
named "webid"
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

26 CHAPTER 2 Running software in containers
When containers are started in detached mode, their identifier will be printed to the
terminal. You can use these identifiers in place of the container name with any com-
mand that needs to identify a specific container. For example, you could use the previ-
ous ID with a stop or exec command:

docker exec \
 7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5 \
ps

docker stop \
 7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

The high probability of uniqueness of the IDs that are generated means that it is
unlikely that there will ever be a collision with this ID. To a lesser degree it is also
unlikely that there would even be a collision of the first 12 characters of this ID on the
same computer. So in most Docker interfaces, you’ll see container IDs truncated to
their first 12 characters. This makes generated IDs a bit more user friendly. You can
use them wherever a container identifier is required. So the previous two commands
could be written like this:

docker exec 7cb5d2b9a7ea ps
docker stop 7cb5d2b9a7ea

Neither of these IDs is particularly well suited for human use. But they work very well
with scripts and automation techniques. Docker has several means of acquiring the ID
of a container to make automation possible. In these cases the full or truncated
numeric ID will be used.

 The first way to get the numeric ID of a container is to simply start or create a new
one and assign the result of the command to a shell variable. As you saw earlier, when
a new container is started in detached mode, the container ID will be written to the
terminal (stdout). You’d be unable to use this with interactive containers if this were
the only way to get the container ID at creation time. Luckily you can use another
command to create a container without starting it. The docker create command is
very similar to docker run, the primary difference being that the container is created
in a stopped state:

docker create nginx

The result should be a line like:

b26a631e536d3caae348e9fd36e7661254a11511eb2274fb55f9f7c788721b0d

If you’re using a Linux command shell like sh or bash, you can simply assign that
result to a shell variable and use it again later:

CID=$(docker create nginx:latest)
echo $CID

This will work on POSIX-
compliant shells
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

27Eliminating metaconflicts: building a website farm
Shell variables create a new opportunity for conflict, but the scope of that conflict is
limited to the terminal session or current processing environment that the script was
launched in. Those conflicts should be easily avoidable because one use or program is
managing that environment. The problem with this approach is that it won’t help if
multiple users or automated processes need to share that information. In those cases
you can use a container ID (CID) file.

 Both the docker run and docker create commands provide another flag to write
the ID of a new container to a known file:

docker create --cidfile /tmp/web.cid nginx

cat /tmp/web.cid

Like the use of shell variables, this feature increases the opportunity for conflict. The
name of the CID file (provided after --cidfile) must be known or have some known
structure. Just like manual container naming, this approach uses known names in a
global (Docker-wide) namespace. The good news is that Docker won’t create a new
container using the provided CID file if that file already exists. The command will fail
just as it does when you create two containers with the same name.

 One reason to use CID files instead of names is that CID files can be shared with
containers easily and renamed for that container. This uses a Docker feature called
volumes, which is covered in chapter 4.

TIP One strategy for dealing with CID file-naming collisions is to partition the
namespace by using known or predictable path conventions. For example, in
this scenario you might use a path that contains all web containers under a
known directory and further partition that directory by the customer ID. This
would result in a path like /containers/web/customer1/web.cid or /contain-
ers/web/customer8/web.cid.

In other cases, you can use other commands like docker ps to get the ID of a con-
tainer. For example, if you want to get the truncated ID of the last created container,
you can use this:

CID=$(docker ps --latest --quiet)
echo $CID

CID=$(docker ps -l –q)
echo $CID

TIP If you want to get the full container ID, you can use the --no-trunc
option on the docker ps command.

Automation cases are covered by the features you’ve seen so far. But even though
truncation helps, these container IDs are rarely easy to read or remember. For this rea-
son, Docker also generates human-readable names for each container.

Create a new stopped
container

Inspect the file

This will work on POSIX-
compliant shells

Run again with the
short-form flags
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

28 CHAPTER 2 Running software in containers
 The naming convention uses a personal adjective, an underscore, and the last
name of an influential scientist, engineer, inventor, or other such thought leader.
Examples of generated names are compassionate_swartz, hungry_goodall, and
distracted_turing. These seem to hit a sweet spot for readability and memory. When
you’re working with the docker tool directly, you can always use docker ps to look up
the human-friendly names.

 Container identification can be tricky, but you can manage the issue by using the
ID and name-generation features of Docker.

2.4.2 Container state and dependencies

With this new knowledge, the new system might looks something like this:

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)
WEB_CID=$(docker create nginx)

AGENT_CID=$(docker create --link $WEB_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

This snippet could be used to seed a new script that launches a new NGINX and agent
instance for each of your client’s customers. You can use docker ps to see that they’ve
been created:

docker ps

The reason neither the NGINX nor the agent was included with the output has to do
with container state. Docker containers will always be in one of four states and transi-
tion via command according to the diagram in figure 2.3.

 Neither of the new containers you started appears in the list of containers because
docker ps shows only running containers by default. Those containers were specifi-
cally created with docker create and never started (the exited state). To see all the
containers (including those in the exited state), use the -a option:

docker ps -a

Make sure mailer from
first example is running

pausedrunning

restarting
stop

restart
restart | start stop | kill

create

run

remove

unpause

pause

exited
Figure 2.3 The state
transition diagram for Docker
containers as reported by the
status column
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

29Eliminating metaconflicts: building a website farm
Now that you’ve verified that both of the containers were created, you need to start
them. For that you can use the docker start command:

docker start $AGENT_CID
docker start $WEB_CID

Running those commands will result in an error. The containers need to be started in
reverse order of their dependency chain. Because you tried to start the agent con-
tainer before the web container, Docker reported a message like this one:

Error response from daemon: Cannot start container
03e65e3c6ee34e714665a8dc4e33fb19257d11402b151380ed4c0a5e38779d0a: Cannot
link to a non running container: /clever_wright AS /modest_hopper/
insideweb

FATA[0000] Error: failed to start one or more containers

In this example, the agent container has a dependency on the web container. You
need to start the web container first:

docker start $WEB_CID
docker start $AGENT_CID

This makes sense when you consider the mechanics at work. The link mechanism
injects IP addresses into dependent containers, and containers that aren’t running
don’t have IP addresses. If you tried to start a container that has a dependency on a
container that isn’t running, Docker wouldn’t have an IP address to inject. Container
linking is covered in chapter 5, but it’s useful to demonstrate this important point in
starting containers.

 Whether you’re using docker run or docker create, the resulting containers
need to be started in the reverse order of their dependency chain. This means that cir-
cular dependencies are impossible to build using Docker container relationships.

 At this point you can put everything together into one concise script that looks like
the following:

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)

WEB_CID=$(docker run -d nginx)

AGENT_CID=$(docker run -d \
 --link $WEB_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

Now you’re confident that this script can be run without exception each time your cli-
ent needs to provision a new site. Your client has come back and thanked you for the
web and monitoring work you’ve completed so far, but things have changed.

 They’ve decided to focus on building their websites with WordPress (a popular
open source content-management and blogging program). Luckily, WordPress is pub-
lished through Docker Hub in a repository named wordpress:4. All you’ll need to
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

30 CHAPTER 2 Running software in containers
deliver is a set of commands to provision a new WordPress website that has the same
monitoring and alerting features that you’ve already delivered.

 The interesting thing about content-management systems and other stateful sys-
tems is that the data they work with makes each running program specialized. Adam’s
WordPress blog is different from Betty’s WordPress blog, even if they’re running the
same software. Only the content is different. Even if the content is the same, they’re
different because they’re running on different sites.

 If you build systems or software that know too much about their environment—
like addresses or fixed locations of dependency services—it’s difficult to change that
environment or reuse the software. You need to deliver a system that minimizes envi-
ronment dependence before the contract is complete.

2.5 Building environment-agnostic systems
Much of the work associated with installing software or maintaining a fleet of comput-
ers lies in dealing with specializations of the computing environment. These special-
izations come as global-scoped dependencies (like known host file system locations),
hard-coded deployment architectures (environment checks in code or configura-
tion), or data locality (data stored on a particular computer outside the deployment
architecture). Knowing this, if your goal is to build low-maintenance systems, you
should strive to minimize these things.

 Docker has three specific features to help build environment-agnostic systems:

■ Read-only file systems
■ Environment variable injection
■ Volumes

Working with volumes is a big subject and the topic of chapter 4. In order to learn the
first two features, consider a requirements change for the example situation used in
the rest of this chapter.

 WordPress uses a database program called MySQL to store most of its data, so it’s a
good idea to start with making sure that a container running WordPress has a read-
only file system.

2.5.1 Read-only file systems

Using read-only file systems accomplishes two positive things. First, you can have con-
fidence that the container won’t be specialized from changes to the files it contains.
Second, you have increased confidence that an attacker can’t compromise files in the
container.

 To get started working on your client’s system, create and start a container from
the WordPress image using the --read-only flag:

docker run -d --name wp --read-only wordpress:4

When this is finished, check that the container is running. You can do so using any of
the methods introduced previously, or you can inspect the container metadata
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

31Building environment-agnostic systems
directly. The following command will print true if the container named wp is running
and false otherwise.

docker inspect --format "{{.State.Running}}" wp

The docker inspect command will display all the metadata (a JSON document) that
Docker maintains for a container. The format option transforms that metadata, and in
this case it filters everything except for the field indicating the running state of the
container. This command should simply output false.

 In this case, the container isn’t running. To determine why, examine the logs for
the container:

docker logs wp

That should output something like:

error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment
variables
Did you forget to --link some_mysql_container:mysql or set an external db
with -e WORDPRESS_DB_HOST=hostname:port?

It appears that WordPress has a dependency on a MySQL database. A database is a pro-
gram that stores data in such a way that it’s retrievable and searchable later. The good
news is that you can install MySQL using Docker just like WordPress:

docker run -d --name wpdb \
 -e MYSQL_ROOT_PASSWORD=ch2demo \
 mysql:5

Once that is started, create a different WordPress container that’s linked to this new
database container (linking is covered in depth in chapter 5):

docker run -d --name wp2 \
 --link wpdb:mysql \
 -p 80 --read-only \
 wordpress:4

Check one more time that WordPress is running correctly:

docker inspect --format "{{.State.Running}}" wp2

You can tell that WordPress failed to start again. Examine the logs to determine the
cause:

docker logs wp2

There should be a line in the logs that is similar to the following:

... Read-only file system: AH00023: Couldn't create the rewrite-map mutex
(file /var/lock/apache2/rewrite-map.1)

You can tell that WordPress failed to start again, but this time the problem is that it’s
trying to write a lock file to a specific location. This is a required part of the startup

Use a unique name
Create a link
to the database
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

32 CHAPTER 2 Running software in containers
process and is not a specialization. It’s appropriate to make an exception to the read-
only file system in this case. You need to use a volume to make that exception. Use the
following to start WordPress without any issues:

Start the container with specific volumes for read only exceptions
docker run -d --name wp3 --link wpdb:mysql -p 80 \
 -v /run/lock/apache2/ \
 -v /run/apache2/ \
 --read-only wordpress:4

An updated version of the script you’ve been working on should look like this:

SQL_CID=$(docker create -e MYSQL_ROOT_PASSWORD=ch2demo mysql:5)

docker start $SQL_CID

MAILER_CID=$(docker create dockerinaction/ch2_mailer)
docker start $MAILER_CID

WP_CID=$(docker create --link $SQL_CID:mysql -p 80 \
 -v /run/lock/apache2/ -v /run/apache2/ \
 --read-only wordpress:4)

docker start $WP_CID

AGENT_CID=$(docker create --link $WP_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

docker start $AGENT_CID

Congratulations, at this point you should have a running WordPress container! By
using a read-only file system and linking WordPress to another container running a
database, you can be sure that the container running the WordPress image will never
change. This means that if there is ever something wrong with the computer running
a client’s WordPress blog, you should be able to start up another copy of that con-
tainer elsewhere with no problems.

 But there are two problems with this design. First, the database is running in a con-
tainer on the same computer as the WordPress container. Second, WordPress is using
several default values for important settings like database name, administrative user,
administrative password, database salt, and so on. To deal with this problem, you
could create several versions of the WordPress software, each with a special configura-
tion for the client. Doing so would turn your simple provisioning script into a monster
that creates images and writes files. A better way to inject that configuration would be
through the use of environment variables.

2.5.2 Environment variable injection

Environment variables are key-value pairs that are made available to programs
through their execution context. They let you change a program’s configuration
without modifying any files or changing the command used to start the program.

Create specific volumes
for writeable space
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

33Building environment-agnostic systems

Inje
environ

var
 Docker uses environment variables to communicate information about dependent
containers, the host name of the container, and other convenient information for pro-
grams running in containers. Docker also provides a mechanism for a user to inject
environment variables into a new container. Programs that know to expect important
information through environment variables can be configured at container-creation
time. Luckily for you and your client, WordPress is one such program.

 Before diving into WordPress specifics, try injecting and viewing environment vari-
ables on your own. The UNIX command env displays all the environment variables in
the current execution context (your terminal). To see environment variable injection
in action, use the following command:

docker run --env MY_ENVIRONMENT_VAR="this is a test" \
 busybox:latest \
 env

The --env flag—or -e for short—can be used to inject any environment variable. If
the variable is already set by the image or Docker, then the value will be overridden.
This way programs running inside containers can rely on the variables always being
set. WordPress observes the following environment variables:

■ WORDPRESS_DB_HOST

■ WORDPRESS_DB_USER

■ WORDPRESS_DB_PASSWORD

■ WORDPRESS_DB_NAME

■ WORDPRESS_AUTH_KEY

■ WORDPRESS_SECURE_AUTH_KEY

■ WORDPRESS_LOGGED_IN_KEY

■ WORDPRESS_NONCE_KEY

■ WORDPRESS_AUTH_SALT

■ WORDPRESS_SECURE_AUTH_SALT

■ WORDPRESS_LOGGED_IN_SALT

■ WORDPRESS_NONCE_SALT

TIP This example neglects the KEY and SALT variables, but any real produc-
tion system should absolutely set these values.

To get started, you should address the problem that the database is running in a con-
tainer on the same computer as the WordPress container. Rather than using linking to
satisfy WordPress’s database dependency, inject a value for the WORDPRESS_DB_HOST
variable:

docker create --env WORDPRESS_DB_HOST=<my database hostname> wordpress:4

This example would create (not start) a container for WordPress that will try to con-
nect to a MySQL database at whatever you specify at <my database hostname>.

ct an
ment
iable

Execute the env command
inside the container
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

34 CHAPTER 2 Running software in containers
Because the remote database isn’t likely using any default user name or password,
you’ll have to inject values for those settings as well. Suppose the database administra-
tor is a cat lover and hates strong passwords:

docker create \
 --env WORDPRESS_DB_HOST=<my database hostname> \
 --env WORDPRESS_DB_USER=site_admin \
 --env WORDPRESS_DB_PASSWORD=MeowMix42 \
 wordpress:4

Using environment variable injection this way will help you separate the physical ties
between a WordPress container and a MySQL container. Even in the case where you
want to host the database and your customer WordPress sites all on the same machine,
you’ll still need to fix the second problem mentioned earlier. All the sites are using
the same default database name. You’ll need to use environment variable injection to
set the database name for each independent site:

docker create --link wpdb:mysql \
 -e WORDPRESS_DB_NAME=client_a_wp wordpress:4

docker create --link wpdb:mysql \
 -e WORDPRESS_DB_NAME=client_b_wp wordpress:4

Now that you’ve solved these problems, you can revise the provisioning script. First,
set the computer to run only a single MySQL container:

DB_CID=$(docker run -d -e MYSQL_ROOT_PASSWORD=ch2demo mysql:5)

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)

Then the site provisioning script would be this:

if [! -n "$CLIENT_ID"]; then
 echo "Client ID not set”
 exit 1
fi

WP_CID=$(docker create \
 --link $DB_CID:mysql \
 --name wp_$CLIENT_ID \
 -p 80 \
 -v /run/lock/apache2/ -v /run/apache2/ \
 -e WORDPRESS_DB_NAME=$CLIENT_ID \
 --read-only wordpress:4)

docker start $WP_CID

AGENT_CID=$(docker create \
 --name agent_$CLIENT_ID \
 --link $WP_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

docker start $AGENT_CID

For client A

For client B

Assume $CLIENT_ID variable
is set as input to script

Create link using DB_CID
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

35Building durable containers
This new script will start an instance of WordPress and the monitoring agent for each
customer and connect those containers to each other as well as a single mailer pro-
gram and MySQL database. The WordPress containers can be destroyed, restarted,
and upgraded without any worry about loss of data. Figure 2.4 shows this architecture.

 The client should be pleased with what is being delivered. But one thing might be
bothering you. In earlier testing you found that the monitoring agent correctly noti-
fied the mailer when the site was unavailable, but restarting the site and agent
required manual work. It would be better if the system tried to automatically recover
when a failure was detected. Docker provides restart policies to help deal with that,
but you might want something more robust.

2.6 Building durable containers
There are cases where software fails in rare conditions that are temporary in nature.
Although it’s important to be made aware when these conditions arise, it’s usually at
least as important to restore the service as quickly as possible. The monitoring system
that you built in this chapter is a fine start for keeping system owners aware of prob-
lems with a system, but it does nothing to help restore service.

 When all the processes in a container have exited, that container will enter the
exited state. Remember, a Docker container can be in one of four states:

■ Running
■ Paused
■ Restarting
■ Exited (also used if the container has never been started)

A basic strategy for recovering from temporary failures is automatically restarting a
process when it exits or fails. Docker provides a few options for monitoring and
restarting containers.

wp_$CLIENT_ID agent_$CLIENT_ID

DB_CID MAILER_CID
Figure 2.4 Each WordPress and
agent container uses the same
database and mailer.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

36 CHAPTER 2 Running software in containers
2.6.1 Automatically restarting containers

Docker provides this functionality with a restart policy. Using the --restart flag at
container-creation time, you can tell Docker to do any of the following:

■ Never restart (default)
■ Attempt to restart when a failure is detected
■ Attempt for some predetermined time to restart when a failure is detected
■ Always restart the container regardless of the condition

Docker doesn’t always attempt to immediately restart a container. If it did, that would
cause more problems than it solved. Imagine a container that does nothing but print
the time and exit. If that container was configured to always restart and Docker always
immediately restarted it, the system would do nothing but restart that container.
Instead, Docker uses an exponential backoff strategy for timing restart attempts.

 A backoff strategy determines how much time should pass between successive
restart attempts. An exponential backoff strategy will do something like double the
previous time spent waiting on each successive attempt. For example, if the first time
the container needs to be restarted Docker waits 1 second, then on the second
attempt it would wait 2 seconds, 4 seconds on the third attempt, 8 on the fourth, and
so on. Exponential backoff strategies with low initial wait times are a common service-
restoration technique. You can see Docker employ this strategy yourself by building a
container that always restarts and simply prints the time:

docker run -d --name backoff-detector --restart always busybox date

Then after a few seconds use the trailing logs feature to watch it back off and restart:

docker logs -f backoff-detector

The logs will show all the times it has already been restarted and will wait until the
next time it is restarted, print the current time, and then exit. Adding this single flag
to the monitoring system and the WordPress containers you’ve been working on
would solve the recovery issue.

 The only reason you might not want to adopt this directly is that during backoff
periods, the container isn’t running. Containers waiting to be restarted are in the
restarting state. To demonstrate, try to run another process in the backoff-detector
container:

docker exec backoff-detector echo Just a Test

Running that command should result in an error message:

Cannot run exec command ... in container ...: No active container exists
with ID ...

That means you can’t do anything that requires the container to be in a running state,
like execute additional commands in the container. That could be a problem if you
need to run diagnostic programs in a broken container. A more complete strategy is
to use containers that run init or supervisor processes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

37Building durable containers
2.6.2 Keeping containers running with supervisor and startup processes

A supervisor process, or init process, is a program that’s used to launch and maintain
the state of other programs. On a Linux system, PID #1 is an init process. It starts all
the other system processes and restarts them in the event that they fail unexpectedly.
It’s a common practice to use a similar pattern inside containers to start and manage
processes.

 Using a supervisor process inside your container will keep the container running
in the event that the target process—a web server, for example—fails and is restarted.
There are several programs that might be used inside a container. The most popular
include init, systemd, runit, upstart, and supervisord. Publishing software that
uses these programs is covered in chapter 8. For now, take a look at a container that
uses supervisord.

 A company named Tutum provides software that produces a full LAMP (Linux,
Apache, MySQL PHP) stack inside a single container. Containers created this way use
supervisord to make sure that all the related processes are kept running. Start an
example container:

docker run -d -p 80:80 --name lamp-test tutum/lamp

You can see what processes are running inside this container by using the docker top
command:

docker top lamp-test

The top subcommand will show the host PID for each of the processes in the con-
tainer. You’ll see supervisord, mysql, and apache included in the list of running pro-
grams. Now that the container is running, you can test the supervisord restart
functionality by manually stopping one of the processes inside the container.

 The problem is that to kill a process inside of a container from within that con-
tainer, you need to know the PID in the container’s PID namespace. To get that list,
run the following exec subcommand:

docker exec lamp-test ps

The process list generated will have listed apache2 in the CMD column:

PID TTY TIME CMD
 1 ? 00:00:00 supervisord
433 ? 00:00:00 mysqld_safe
835 ? 00:00:00 apache2
842 ? 00:00:00 ps

The values in the PID column will be different when you run the command. Find the
PID on the row for apache2 and then insert that for <PID> in the following command:

docker exec lamp-test kill <PID>

Running this command will run the Linux kill program inside the lamp-test container
and tell the apache2 process to shut down. When apache2 stops, the supervisord
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

38 CHAPTER 2 Running software in containers
process will log the event and restart the process. The container logs will clearly show
these events:

...

... exited: apache2 (exit status 0; expected)

... spawned: 'apache2' with pid 820

... success: apache2 entered RUNNING state, process has stayed up for >
 than 1 seconds (startsecs)

A common alternative to the use of init or supervisor programs is using a startup
script that at least checks the preconditions for successfully starting the contained soft-
ware. These are sometimes used as the default command for the container. For exam-
ple, the WordPress containers that you’ve created start by running a script to validate
and set default environment variables before starting the WordPress process. You can
view this script by overriding the default command and using a command to view the
contents of the startup script:

docker run wordpress:4 cat /entrypoint.sh

Running that command will result in an error messages like:

error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment
variables
...

This failed because even though you set the command to run as cat /entrypoint.sh,
Docker containers run something called an entrypoint before executing the command.
Entrypoints are perfect places to put code that validates the preconditions of a con-
tainer. Although this is discussed in depth in part 2 of this book, you need to know how
to override or specifically set the entrypoint of a container on the command line. Try
running the last command again but this time using the --entrypoint flag to specify
the program to run and using the command section to pass arguments:

docker run --entrypoint="cat" \
 wordpress:4 /entrypoint.sh

If you run through the displayed script, you’ll see how it validates the environment
variables against the dependencies of the software and sets default values. Once the
script has validated that WordPress can execute, it will start the requested or default
command.

 Startup scripts are an important part of building durable containers and can always
be combined with Docker restart policies to take advantage of the strengths of each.
Because both the MySQL and WordPress containers already use startup scripts, it’s
appropriate to simply set the restart policy for each in an updated version of the exam-
ple script.

 With that final modification, you’ve built a complete WordPress site-provisioning
system and learned the basics of container management with Docker. It has taken

Use "cat" as the entrypoint

Pass /entrypoint.sh as
the argument to cat
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

39Cleaning up
considerable experimentation. Your computer is likely littered with several containers
that you no longer need. To reclaim the resources that those containers are using, you
need to stop them and remove them from your system.

2.7 Cleaning up
Ease of cleanup is one of the strongest reasons to use containers and Docker. The iso-
lation that containers provide simplifies any steps that you’d have to take to stop pro-
cesses and remove files. With Docker, the whole cleanup process is reduced to one of
a few simple commands. In any cleanup task, you must first identify the container that
you want to stop and/or remove. Remember, to list all of the containers on your com-
puter, use the docker ps command:

docker ps -a

Because the containers you created for the examples in this chapter won’t be used
again, you should be able to safely stop and remove all the listed containers. Make
sure you pay attention to the containers you’re cleaning up if there are any that you
created for your own activities.

 All containers use hard drive space to store logs, container metadata, and files that
have been written to the container file system. All containers also consume resources
in the global namespace like container names and host port mappings. In most cases,
containers that will no longer be used should be removed.

 To remove a container from your computer, use the docker rm command. For
example, to delete the stopped container named wp you’d run:

docker rm wp

You should go through all the containers in the list you generated by running docker
ps -a and remove all containers that are in the exited state. If you try to remove a con-
tainer that’s running, paused, or restarting, Docker will display a message like the fol-
lowing:

Error response from daemon: Conflict, You cannot remove a running container.
Stop the container before attempting removal or use -f

FATA[0000] Error: failed to remove one or more containers

The processes running in a container should be stopped before the files in the con-
tainer are removed. You can do this with the docker stop command or by using the
-f flag on docker rm. The key difference is that when you stop a process using the -f
flag, Docker sends a SIG_KILL signal, which immediately terminates the receiving pro-
cess. In contrast, using docker stop will send a SIG_HUP signal. Recipients of SIG_HUP
have time to perform finalization and cleanup tasks. The SIG_KILL signal makes for
no such allowances and can result in file corruption or poor network experiences. You
can issue a SIG_KILL directly to a container using the docker kill command. But you
should use docker kill or docker rm -f only if you must stop the container in less
than the standard 30-second maximum stop time.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

40 CHAPTER 2 Running software in containers
 In the future, if you’re experimenting with short-lived containers, you can avoid
the cleanup burden by specifying --rm on the command. Doing so will automatically
remove the container as soon as it enters the exited state. For example, the following
command will write a message to the screen in a new BusyBox container, and the con-
tainer will be removed as soon as it exits:

docker run --rm --name auto-exit-test busybox:latest echo Hello World
docker ps -a

In this case, you could use either docker stop or docker rm to properly clean up, or it
would be appropriate to use the single-step docker rm -f command. You should also
use the -v flag for reasons that will be covered in chapter 4. The docker CLI makes it is
easy to compose a quick cleanup command:

docker rm -vf $(docker ps -a -q)

This concludes the basics of running software in containers. Each chapter in the
remainder of part 1 will focus on a specific aspect of working with containers. The
next chapter focuses on installing and uninstalling images, how images relate to con-
tainers, and working with container file systems.

2.8 Summary
The primary focus of the Docker project is to enable users to run software in contain-
ers. This chapter shows how you can use Docker for that purpose. The ideas and
features covered include the following:

■ Containers can be run with virtual terminals attached to the user’s shell or in
detached mode.

■ By default, every Docker container has its own PID namespace, isolating process
information for each container.

■ Docker identifies every container by its generated container ID, abbreviated
container ID, or its human-friendly name.

■ All containers are in any one of four distinct states: running, paused, restarting,
or exited.

■ The docker exec command can be used to run additional processes inside a
running container.

■ A user can pass input or provide additional configuration to a process in a
container by specifying environment variables at container-creation time.

■ Using the --read-only flag at container-creation time will mount the container
file system as read-only and prevent specialization of the container.

■ A container restart policy, set with the --restart flag at container-creation
time, will help your systems automatically recover in the event of a failure.

■ Docker makes cleaning up containers with the docker rm command as simple
as creating them.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Software installation
simplified
Chapters 1 and 2 introduce all-new concepts and abstractions provided by Docker.
This chapter dives deeper into container file systems and software installation. It
breaks down software installation into three steps, as illustrated in figure 3.1.

This chapter covers
■ Identifying software
■ Finding and installing software with Docker Hub
■ Installing software from alternative sources
■ Understanding file system isolation
■ How images and layers work
■ Benefits of images with layers

How do I
identify

software?

Where do I
find software

to install?

What files
are installed
and how are

they isolated?

Figure 3.1 Flow of topics covered in this chapter
41

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

42 CHAPTER 3 Software installation simplified
The first step in installing any software is identifying the software you want to install.
You know that software is distributed using images, but you need to know how to tell
Docker exactly which image you want to install. I’ve already mentioned that reposito-
ries hold images, but in this chapter I show how repositories and tags are used to iden-
tify images in order to install the software you want.

 This chapter goes into detail on the three main ways to install Docker images:

■ Docker Hub and other registries
■ Using image files with docker save and docker load
■ Building images with Dockerfiles

In the course of reading this material you’ll learn how Docker isolates installed soft-
ware and you’ll be exposed to a new term, layer. Layers are an important concept when
dealing with images and have an important impact on software users. This chapter
closes with a section about how images work. That knowledge will help you evaluate
the image quality and establish a baseline skillset for part 2 of this book.

3.1 Identifying software
Suppose you want to install a program called TotallyAwesomeBlog 2.0. How would you
tell Docker what you wanted to install? You would need a way to name the program,
specify the version that you want to use, and specify the source that you want to install
it from. Learning how to identify specific software is the first step in software installa-
tion, as illustrated in figure 3.2.

You’ve learned that Docker creates containers from images. An image is a file. It holds
files that will be available to containers created from it and metadata about the image.
This metadata contains information about relationships between images, the com-
mand history for an image, exposed ports, volume definitions, and more.

 Images have identifiers, so they could be used as a name and version for the soft-
ware, but in practice it’s rare to actually work with raw image identifiers. They are
long, unique sequences of letters and numbers. Each time a change is made to an
image, the image identifier changes. Image identifiers are difficult to work with
because they’re unpredictable. Instead, users work with repositories.

3.1.1 What is a repository?

A repository is a named bucket of images. The name is similar to a URL. A repository’s
name is made up of the name of the host where the image is located, the user
account that owns the image, and a short name. For example, later in this chapter

How do I
identify

software?

Where do I
find software

to install?

What files
are installed
and how are

they isolated?
Figure 3.2 Step 1—Software
identification
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

43Identifying software
you will install an image from the repository named quay.io/dockerinaction/
ch3_hello_registry.

Just as there can be several versions of software, a repository can hold several images.
Each of the images in a repository is identified uniquely with tags. If I were to release a
new version of quay.io/dockerinaction/ch3_hello_registry, I might tag it “v2” while
tagging the old version with “v1.” If you wanted to download the old version, you
could specifically identify that image by its v1 tag.

 In chapter 2 you installed an image from the NGINX repository on Docker Hub
that was identified with the “latest” tag. A repository name and tag form a composite
key, or a unique reference made up of a combination of non-unique components. In
that example, the image was identified by nginx:latest. Although identifiers built in
this fashion may occasionally be longer than raw image identifiers, they’re predictable
and communicate the intention of the image.

3.1.2 Using tags

Tags are both an important way to uniquely identify an image and a convenient way to
create useful aliases. Whereas a tag can only be applied to a single image in a reposi-
tory, a single image can have several tags. This allows repository owners to create use-
ful versioning or feature tags.

 For example, the Java repository on Docker Hub maintains the following tags: 7,
7-jdk, 7u71, 7u71-jdk, openjdk-7, and openjdk-7u71. All these tags are applied to the
same image. But as the current minor version of Java 7 increases, and they release
7u72, the 7u71 tag will likely go away and be replaced with 7u72. If you care about
what minor version of Java 7 you’re running, you have to keep up with those tag
changes. If you just want to make sure you’re always running the most recent version
of Java 7, just use the image tagged with 7. It will always be assigned to the newest
minor revision of Java 7. These tags give users great flexibility.

 It’s also common to see different tags for images with different software configura-
tions. For example, I’ve released two images for an open source program called free-
geoip. It’s a web application that can be used to get the rough geographical location
associated with a network address. One image is configured to use the default configu-
ration for the software. It’s meant to run by itself with a direct link to the world. The
second is configured to run behind a web load balancer. Each image has a distinct tag
that allows the user to easily identify the image with the features required.

quay.io/dockerinaction/ch3_hello_registry

Registry host Short name

User name
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

44 CHAPTER 3 Software installation simplified
TIP When you’re looking for software to install, always pay careful attention
to the tags offered in a repository. If you’re not sure which one you need, you
can download all the tagged images in a repository by simply omitting the tag
qualifier when you pull from the repository. I occasionally do this by accident,
and it can be annoying. But it’s easy to clean up.

This is all there is to identifying software for use with Docker. With this knowledge,
you’re ready to start looking for and installing software with Docker.

3.2 Finding and installing software
You can identify software by a repository name, but how do you find the repositories
that you want to install? Discovering trustworthy software is complex, and it is the sec-
ond step in learning how to install software with Docker, as shown in figure 3.3.

To find repositories, you could either keep guessing until you get lucky or use an index.
Indexes are search engines that catalog repositories. There are several public Docker
indexes, but by default Docker is integrated with an index named Docker Hub.

 Docker Hub is a registry and index with a website run by Docker Inc. It’s the default
registry and index used by Docker. When you issue a docker pull or docker run com-
mand without specifying an alternative registry, Docker will default to looking for the
repository on Docker Hub. Docker Hub makes Docker more useful out of the box.

 Docker Inc. has made efforts to ensure that Docker is an open ecosystem. It pub-
lishes a public image to run your own registry, and the docker command-line tool can
be easily configured to use alternative registries. Later in this chapter I cover alternative
image installation and distribution tools included with Docker. But first, the next sec-
tion covers how to use Docker Hub so you can get the most from the default toolset.

3.2.1 Docker Hub from the command line

Almost anything worth doing with Docker can be done from the command line. This
includes searching Docker Hub for repositories.

 The docker command line will search the Docker Hub index for you and display
the results, including details like the number of times each repository has been
starred, a flag to indicate that a particular repository is official (the OFFICIAL col-
umn), and a flag to indicate if the repository is what they call a trusted image (the
TRUSTED column). The Docker Hub website allows registered users to star a repository
in a similar fashion to other community development sites like GitHub. A repository’s
star count can act as a proxy metric for image quality and popularity or trust by the

How do I
identify

software?

Where do I
find software

to install?

What files
are installed
and how are

they isolated?
Figure 3.3 Step 2—Locating
repositories
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

45Finding and installing software
community. Docker Hub also provides a set of official repositories that are maintained
by Docker Inc. or the current software maintainers. These are often called libraries.

 There are two ways that an image author can publish their images on Docker Hub:

■ Use the command line to push images that they built independently and on their own sys-
tems. Images pushed this way are considered by some to be less trustworthy
because it’s not clear how exactly they were built.

■ Make a Dockerfile publicly available and use Docker Hub’s continuous build system.
Dockerfiles are scripts for building images. Images created from these auto-
mated builds are preferred because the Dockerfile is available for examination
prior to installing the image. Images published in this second way will be
marked as trusted.

Working with private Docker Hub registries or pushing into registries that you control
on Docker Hub does require that you authenticate. In this case, you can use the
docker login command to log in to Docker Hub. Once you’ve logged in, you’ll be
able to pull from private repositories, push to any repository that you control, and tag
images in your repositories. Chapter 7 covers pushing and tagging images.

 Running docker login will prompt you for your Docker Hub credentials. Once
you’ve provided them, your command-line client will be authenticated, and you’ll be
able to access your private repositories. When you’ve finished working with your
account, you can log out with the docker logout command.

 If you want to find software to install, you’ll need to know where to begin your
search. The next example demonstrates how to search for repositories using the
docker search command. This command may take a few seconds, but it has a timeout
built in, so it will eventually return. When you run this command, it will only search
the index; nothing will be installed.

 Suppose Bob, a software developer, decided that the project he was working on
needed a database. He had heard about a popular program named Postgres. He won-
dered if it was available on Docker Hub, so he ran the following command:

docker search postgres

After a few seconds several results were returned. At the top of the list he identified a
very popular repository with hundreds of stars. He also liked that it was an official
repository, which meant that the Docker Hub maintainers had carefully selected the
owners of the repository. He used docker pull to install the image and moved on
with his project.

 This is a simple example of how to search for repositories using the docker com-
mand line. The command will search Docker Hub for any repositories with the term
postgres. Because Docker Hub is a free public service, users tend to build up lots of
public but personal copies. Docker Hub lets users star a repository, similar to a
Facebook Like. This is a reasonable proxy indicator for image quality, but you should
be careful not to use it as an indicator of trustworthy code.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

46 CHAPTER 3 Software installation simplified
 Imagine if someone builds up a repository with several hundred stars by providing
some high-quality open source software. One day a malicious hacker gains control of
their repository and publishes an image to the repository that contains a virus.
Although containers might be effective for containing malicious code, that notion
does not hold true for malicious images. If an attacker controls how an image is built
or has targeted an attack specifically to break out of a weakened image, an image can
cause serious harm. For this reason, images that are built using publicly available
scripts are considered much more trustworthy. In the search results from running
docker search, you can tell that an image was built from a public script by looking for
an [OK] in the column label AUTOMATED.

 Now you’ve seen how to find software on Docker Hub without leaving your termi-
nal. Although you can do most things from the terminal, there are some things that
you can do only through the website.

3.2.2 Docker Hub from the website

If you have yet to stumble upon it while browsing docker.com, you should take a
moment to check out https://hub.docker.com. Docker Hub lets you search for reposi-
tories, organizations, or specific users. User and organization profile pages list the
repositories that the account maintains, recent activity on the account, and the repos-
itories that the account has starred. On repository pages you can see the following:

■ General information about the image provided by the image publisher
■ A list of the tags available in the repository
■ The date the repository was created
■ The number of times it has been downloaded
■ Comments from registered users

Docker Hub is free to join, and you’ll need an account later in this book. When you’re
signed in, you can star and comment on repositories. You can create and manage your
own repositories. We will do that in part 2. For now, just get a feel for the site and what
it has to offer.

Activity: a Docker Hub scavenger hunt

It’s good to practice finding software on Docker Hub using the skills you learned in
chapter 2. This activity is designed to encourage you to use Docker Hub and practice
creating containers. You will also be introduced to three new options on the docker
run command.

In this activity you’re going to create containers from two images that are available
through Docker Hub. The first is available from the dockerinaction/ch3_ex2_hunt
repository. In that image you’ll find a small program that prompts you for a password.
You can only find the password by finding and running a container from the second
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://hub.docker.com

47Finding and installing software

mystery repository on Docker Hub. To use the programs in these images, you’ll need
to attach your terminal to the containers so that the input and output of your terminal
are connected directly to the running container. The following command demonstrates
how to do that and run a container that will be removed automatically when stopped:

docker run -it --rm dockerinaction/ch3_ex2_hunt

When you run this command, the scavenger hunt program will prompt you for the pass-
word. If you know the answer already, go ahead and enter it now. If not, just enter
anything and it will give you a hint. At this point you should have all the tools you need
to complete the activity. Figure 3.4 illustrates what you need to do from this point.

Still stuck? I can give you one more hint. The mystery repository is one that was created
for this book. Maybe you should try searching for this book’s Docker Hub repositories.
Remember, repositories are named with a username/repository pattern.

When you get the answer, pat yourself on the back and remove the images using the
docker rmi command. Concretely, the commands you run should look something
like these:

docker rmi dockerinaction/ch3_ex2_hunt
docker rmi <mystery repository>

If you were following the examples and using the --rm option on your docker run
commands, you should have no containers to clean up. You’ve learned a lot in this
example. You’ve found a new image on Docker Hub and used the docker run com-
mand in a new way. There’s a lot to know about running interactive containers. The
next section covers that in greater detail.

docker run -it --rm ????

docker run -it --rm dockerinaction/ch3_hunt

Find the mystery repository
on Docker Hub.

Pull and create a container from the
latest image in the mystery repository
to reveal the password.

The password should be
provided to the scavenger
hunt program.

Docker Hub

Figure 3.4 The steps required to complete the Docker Hub scavenger hunt. Find the mystery
repository on Docker Hub. Install the latest image from that repository and run it interactively
to get the password.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

48 CHAPTER 3 Software installation simplified
Docker Hub is by no means the only source for software. Depending on the goals and
perspective of software publishers, Docker Hub may not be an appropriate distribu-
tion point. Closed source or proprietary projects may not want to risk publishing their
software through a third party. There are three other ways to install software:

■ You can use alternative repository registries or run your own registry.
■ You can manually load images from a file.
■ You can download a project from some other source and build an image using a

provided Dockerfile.

All three of these options are viable for private projects or corporate infrastructure.
The next few subsections cover how to install software from each alternative source.

3.2.3 Using alternative registries

As mentioned earlier, Docker makes the registry software available for anyone to run.
Hosting companies have integrated it into their offerings, and companies have begun
running their own internal registries. I’m not going to cover running a registry until
chapter 8, but it’s important that you learn how to use them early.

 Using an alternative registry is simple. It requires no additional configuration. All
you need is the address of the registry. The following command will download
another “Hello World” type example from an alternative registry:

docker pull quay.io/dockerinaction/ch3_hello_registry:latest

The registry address is part of the full repository specification covered in section 3.1.
The full pattern is as follows:

[REGISTRYHOST/][USERNAME/]NAME[:TAG]

Docker knows how to talk to Docker registries, so the only difference is that you spec-
ify the registry host. In some cases, working with registries will require an authentica-
tion step. If you encounter a situation where this is the case, consult the
documentation or the group that configured the registry to find out more. When
you’re finished with the hello-registry image you installed, remove it with the follow-
ing command:

docker rmi quay.io/dockerinaction/ch3_hello_registry

Registries are powerful. They enable a user to relinquish control of image storage and
transportation. But running your own registry can be complicated and may create a
potential single point of failure for your deployment infrastructure. If running a cus-
tom registry sounds a bit complicated for your use case, and third-party distribution
tools are out of the question, you might consider loading images directly from a file.

3.2.4 Images as files

Docker provides a command to load images into Docker from a file. With this tool,
you can load images that you acquired through other channels. Maybe your company
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

49Finding and installing software
has chosen to distribute images through a central file server or some type of version-
control system. Maybe the image is small enough that your friend just sent it to you
over email or shared it via flash drive. However you came upon the file, you can load it
into Docker with the docker load command.

 You’ll need an image file to load before I can show you the docker load com-
mand. Because it’s unlikely that you have an image file lying around, I’ll show you how
to save one from a loaded image. For the purposes of this example, you’ll pull
busybox:latest. That image is small and easy to work with. To save that image to a
file, use the docker save command. Figure 3.5 demonstrates docker save by creating
a file from BusyBox.

I used the .tar filename suffix in this example because the docker save command
creates TAR archive files. You can use any filename you want. If you omit the –o flag,
the resulting file will be streamed to the terminal.

TIP Other ecosystems that use TAR archives for packing define custom file
extensions. For example, Java uses .jar, .war, and .ear. In cases like these,
using custom file extensions can help hint at the purpose and content of the
archive. Although there are no defaults set by Docker and no official guid-
ance on the matter, you may find using a custom extension useful if you work
with these files often.

After running the save command, the docker program will terminate unceremoni-
ously. Check that it worked by listing the contents of your current working directory.
If the specified file is there, use this command to remove the image from Docker:

docker rmi busybox

After removing the image, load it again from the file you created using the docker
load command. Like docker save, if you run docker load without the –i command,
Docker will use the standard input stream instead of reading the archive from a file:

docker load –i myfile.tar

docker pull busybox:latest
docker save -o myfile.tar busybox:latest

Install an image to export.
The busybox:latest image is small
and a good example.

The save command
exports an image.

Name of the image
you want to export.

Using -o you can
specify the name of

the output file.
Figure 3.5 Parts of the pull and
save subcommands
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

50 CHAPTER 3 Software installation simplified
Once you’ve run the docker load command, the image should be loaded. You can
verify this by running the docker images command again. If everything worked cor-
rectly, BusyBox should be included in the list.

 Working with images as files is as easy as working with registries, but you miss out
on all the nice distribution facilities that registries provide. If you want to build your
own distribution tools, or you already have something else in place, it should be trivial
to integrate with Docker using these commands.

 Another popular project distribution pattern uses bundles of files with installation
scripts. This approach is popular with open source projects that use public version-
control repositories for distribution. In these cases you work with a file, but the file is
not an image; it is a Dockerfile.

3.2.5 Installing from a Dockerfile

A Dockerfile is a script that describes steps for Docker to take to build a new image.
These files are distributed along with software that the author wants to be put into an
image. In this case, you’re not technically installing an image. Instead, you’re follow-
ing instructions to build an image. Working with Dockerfiles is covered in depth in
chapter 7.

 Distributing a Dockerfile is similar to distributing image files. You’re left to your
own distribution mechanisms. A common pattern is to distribute a Dockerfile with
software from common version-control systems like Git or Mercurial. If you have Git
installed, you can try this by running an example from a public repository:

git clone https://github.com/dockerinaction/ch3_dockerfile.git
docker build -t dia_ch3/dockerfile:latest ch3_dockerfile

In this example you copy the project from a public source repository onto your com-
puter and then build and install a Docker image using the Dockerfile included with
that project. The value provided to the -t option of docker build is the repository
where you want to install the image. Building images from Dockerfiles is a light way to
move projects around that fits into existing workflows. There are two disadvantages to
taking this approach. First, depending on the specifics of the project, the build pro-
cess might take some time. Second, dependencies may drift between the time when
the Dockerfile was authored and when an image is built on a user’s computer. These
issues make distributing build files less than an ideal experience for a user. But it
remains popular in spite of these drawbacks.

 When you’re finished with this example, make sure to clean up your workspace:

docker rmi dia_ch3/dockerfile
rm -rf ch3_dockerfile

After reading this section you should have a complete picture of your options to
install software with Docker. But when you install software, you should have an idea
about what changes are being made to your computer.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

51Installation files and isolation
3.3 Installation files and isolation
Understanding how images are identified, discovered, and installed is a minimum
proficiency for a Docker user. If you understand what files are actually installed and
how those files are built and isolated at runtime, you’ll be able to answer more diffi-
cult questions that come up with experience, such as these:

■ What image properties factor into download and installation speeds?
■ What are all these unnamed images that are listed when I use the docker

images command?
■ Why does output from the docker pull command include messages about pull-

ing dependent layers?
■ Where are the files that I wrote to my container’s file system?

Learning this material is the third and final step to understanding software installa-
tion with Docker, as illustrated in figure 3.6.

So far, when I’ve written about installing software, I’ve used the term image. This was to
infer that the software you were going to use was in a single image and that an image
was contained within a single file. Although this may occasionally be accurate, most of
the time what I’ve been calling an image is actually a collection of image layers. A layer
is an image that’s related to at least one other image. It is easier to understand layers
when you see them in action.

3.3.1 Image layers in action

In this example you’re going to install the two images. Both depend on Java 6. The
applications themselves are simple Hello World–style programs. What I want you to
keep an eye on is what Docker does when you install each. You should notice how long
it takes to install the first compared to the second and read what it’s printing to the
terminal. When an image is being installed, you can watch Docker determine which
dependencies it needs to download and then see the progress of the individual image
layer downloads. Java is great for this example because the layers are quite large, and
that will give you a moment to really see Docker in action.

 The two images you’re going to install are dockerinaction/ch3_myapp and
dockerinaction/ch3_myotherapp. You should just use the docker pull command
because you only need to see the images install, not start a container from them. Here
are the commands you should run:

docker pull dockerinaction/ch3_myapp
docker pull dockerinaction/ch3_myotherapp

How do I
identify

software?

Where do I
find software

to install?

What files
are installed
and how are

they isolated?

Figure 3.6 Step 3—
Understanding how
software is installed
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

52 CHAPTER 3 Software installation simplified
Did you see it? Unless your network connection is far better than mine, or you had
already installed Java 6 as a dependency of some other image, the download for
dockerinaction/ch3_myapp should have been much slower than dockerinaction/
ch3_myotherapp.

 When you installed ch3_myapp, Docker determined that it needed to install the
openjdk-6 image because it’s the direct dependency (parent layer) of the requested
image. When Docker went to install that dependency, it discovered the dependencies
of that layer and downloaded those first. Once all the dependencies of a layer are
installed, that layer is installed. Finally, openjdk-6 was installed, and then the tiny
ch3_myapp layer was installed.

 When you issued the command to install ch3_myotherapp, Docker identified that
openjdk-6 was already installed and immediately installed the image for
ch3_myotherapp. This was simpler, and because less than one megabyte of data was
transferred, it was faster. But again, to the user it was an identical process.

 From the user perspective this ability is nice to have, but you wouldn’t want to have
to try to optimize for it. Just take the benefits where they happen to work out. From
the perspective of a software or image author, this ability should play a major factor in
your image design. I cover that more in chapter 7.

 If you run docker images now, you’ll see the following repositories listed:

■ dockerinaction/ch3_myapp
■ dockerinaction/ch3_myotherapp
■ java:6

By default, the docker images command will only show you repositories. Similar to
other commands, if you specify the -a flag, the list will include every installed interme-
diate image or layer. Running docker images -a will show a list that includes several
repositories listed as <none>. The only way to refer to these is to use the value in the
IMAGE ID column.

 In this example you installed two images directly, but a third parent repository was
installed as well. You’ll need to clean up all three. You can do so more easily if you use
the condensed docker rmi syntax:

docker rmi \
 dockerinaction/ch3_myapp \
 dockerinaction/ch3_myotherapp \
 java:6

The docker rmi command allows you to specify a space-separated list of images to be
removed. This comes in handy when you need to remove a small set of images after an
example. I’ll be using this when appropriate throughout the rest of the examples in
this book.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

53Installation files and isolation
3.3.2 Layer relationships

Images maintain parent/child relationships.
In these relationships they build from their
parents and form layers. The files available to
a container are the union of all of the layers in
the lineage of the image the container was
created from. Images can have relationships
with any other image, including images in dif-
ferent repositories with different owners. The
two images in section 3.3.1 use a Java 6 image
as their parent. Figure 3.7 illustrates the full
image ancestry of both images.

 The layers shown in figure 3.7 are a sample
of the java:6 image at the time of this writing.
An image is named when its author tags and
publishes it. A user can create aliases, as you
did in chapter 2 using the docker tag command. Until an image is tagged, the only
way to refer to it is to use its unique identifier (UID) that was generated when the
image was built. In figure 3.7, the parents of the common Java 6 image are labeled
using the first 12 digits of their UID. These layers contain common libraries and
dependencies of the Java 6 software. Docker truncates the UID from 65 (base 16) dig-
its to 12 for the benefit of its human users. Internally and through API access, Docker
uses the full 65. It’s important to be aware of this when you’ve installed images along
with similar unnamed images. I wouldn’t want you to think something bad happened
or some malicious software had made it into your computer when you see these
images included when you use the docker images command.

 The Java images are sizable. At the time of this writing, the openjdk-6 image is
348 MB, and the openjdk-7 image is 590 MB. You get some space savings when you use
the runtime-only images, but even openjre-6 is 200 MB. Again, Java was chosen here
because its images are particularly large for a common dependency.

3.3.3 Container file system abstraction and isolation

Programs running inside containers know nothing about image layers. From inside a
container, the file system operates as though it’s not running in a container or operat-
ing on an image. From the perspective of the container, it has exclusive copies of the
files provided by the image. This is made possible with something called a union file
system. Docker uses a variety of union file systems and will select the best fit for your
system. The details of how the union file system works are beyond what you need to
know to use Docker effectively.

 A union file system is part of a critical set of tools that combine to create effective
file system isolation. The other tools are MNT namespaces and the chroot system call.

511136ea3c5a

f10807909bc5

f6fab3b798be

7ccc30a354ab

Java 6

My other appMy app

Figure 3.7 The full lineage of the two
Docker images used in section 3.3.1
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

54 CHAPTER 3 Software installation simplified
 The file system is used to create mount points on your host’s file system that
abstract the use of layers. The layers created are what are bundled into Docker image
layers. Likewise, when a Docker image is installed, its layers are unpacked and appro-
priately configured for use by the specific file system provider chosen for your system.

 The Linux kernel provides a namespace for the MNT system. When Docker creates
a container, that new container will have its own MNT namespace, and a new mount
point will be created for the container to the image.

 Lastly, chroot is used to make the root of the image file system the root in the con-
tainer’s context. This prevents anything running inside the container from referenc-
ing any other part of the host file system.

 Using chroot and MNT namespaces is common for container technologies. By
adding a union file system to the recipe, Docker containers have several benefits.

3.3.4 Benefits of this toolset and file system structure

The first and perhaps most important benefit of this approach is that common layers
need to be installed only once. If you install any number of images and they all depend
on some common layer, that common layer and all of its parent layers will need to be
downloaded or installed only once. This means you might be able to install several spe-
cializations of a program without storing redundant files on your computer or down-
loading redundant layers. By contrast, most virtual machine technologies will store the
same files as many times as you have redundant virtual machines on a computer.

 Second, layers provide a coarse tool for managing dependencies and separating
concerns. This is especially handy for software authors, and chapter 7 talks more
about this. From a user perspective, this benefit will help you quickly identify what
software you’re running by examining which images and layers you’re using.

 Lastly, it’s easy to create software specializations when you can layer minor changes
on top of some basic image. That’s another subject covered in detail in chapter 7. Pro-
viding specialized images helps users get exactly what they need from software with
minimal customization. This is one of the best reasons to use Docker.

3.3.5 Weaknesses of union file systems

Docker will choose the best file system for the system it’s running on, but no imple-
mentation is perfect for every workload. In fact, there are some specific use cases
when you should pause and consider using another Docker feature.

 Different file systems have different rules about file attributes, sizes, names, and
characters. Union file systems are in a position where they often need to translate
between the rules of different file systems. In the best cases they’re able to provide
acceptable translations. In the worst cases features are omitted. For example, neither
btrfs nor OverlayFS provides support for the extended attributes that make SELinux
work.

 Union file systems use a pattern called copy-on-write, and that makes implement-
ing memory-mapped files (the mmap() system call) difficult. Some union file systems
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

55Summary
provide implementations that work under the right conditions, but it may be a better
idea to avoid memory-mapping files from an image.

 The backing file system is another pluggable feature of Docker. You can determine
which file system your installation is using with the info subcommand. If you want to
specifically tell Docker which file system to use, do so with the --storage-driver or
-s option when you start the Docker daemon. Most issues that arise with writing to the
union file system can be addressed without changing the storage provider. These can
be solved with volumes, the subject of chapter 4.

3.4 Summary
The task of installing and managing software on a computer presents a unique set of
challenges. This chapter explains how you can use Docker to address them. The core
ideas and features covered by this chapter are as follows:

■ Human Docker users use repository names to communicate which software
they would like Docker to install.

■ Docker Hub is the default Docker registry. You can find software on Docker
Hub through either the website or the docker command-line program.

■ The docker command-line program makes it simple to install software that’s
distributed through alternative registries or in other forms.

■ The image repository specification includes a registry host field.
■ The docker load and docker save commands can be used to load and save

images from TAR archives.
■ Distributing a Dockerfile with a project simplifies image builds on user

machines.
■ Images are usually related to other images in parent/child relationships. These

relationships form layers. When we say that we have installed an image, we are
saying that we have installed a target image and each image layer in its lineage.

■ Structuring images with layers enables layer reuse and saves bandwidth during
distribution and storage space on your computer.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Persistent storage and
shared state with volumes
At this point in the book, you’ve installed and run a few programs. You’ve seen a
few toy examples but haven’t run anything that resembles the real world. The
difference between the examples in the first three chapters and the real world is
that in the real world, programs work with data. This chapter introduces Docker
volumes and strategies that you’ll use to manage data with containers.

 Consider what it might look like to run a database program inside a container.
You could package the software with the image, and when you start the container it

This chapter covers
■ An introduction to volumes
■ The two types of volumes
■ How to share data between the host and a

container
■ How to share data between containers
■ The volume life cycle
■ Data management and control patterns with

volumes
56

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

57Introducing volumes
might initialize an empty database. When programs connect to the database and enter
data, where is that data stored? Is it in a file inside the container? What happens to
that data when you stop the container or remove it? How would you move your data if
you wanted to upgrade the database program?

 Consider another situation where you’re running a couple of different web appli-
cations inside different containers. Where would you write log files so that they will
outlive the container? How would you get access to those logs to troubleshoot a prob-
lem? How can other programs such as log digest tools get access to those files? The
answer to all these questions involves the use of volumes.

4.1 Introducing volumes
A host or container’s directory tree is created by a set of mount points that describe
how to piece together one or more file systems. A volume is a mount point on the con-
tainer’s directory tree where a portion of the host directory tree has been mounted.
Most people are only minimally familiar with file systems and mount points and rarely
customize them. People have a more difficult time with volumes than with any other
Docker topic. That lack of familiarity with mount points is a contributing factor.

 Without volumes, container users are limited to working with the union file system
that provides image mounts. Figure 4.1 shows a program running in a container and
writing to files. The first file is written to the root file system. The operating system
directs root file system changes to the top layer of the mounted union file system. The
second file is written to a volume that has been mounted on the container’s directory
tree at /data. That change is made directly on the host’s file system through the volume.

 Although the union file system works for building and sharing images, it’s less than
ideal for working with persistent or shared data. Volumes fill those use cases and play
a critical role in containerized system design.

Program File system

Container

Write to /data

Write to /

Write to /data

Write to /

Layer

Volume

Figure 4.1 A container with a mounted volume and writeable top layer of the union file system
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

58 CHAPTER 4 Persistent storage and shared state with volumes
4.1.1 Volumes provide container-independent data management

Semantically, a volume is a tool for segmenting and sharing data that has a scope or
life cycle that’s independent of a single container. That makes volumes an important
part of any containerized system design that shares or writes files. Examples of data
that differs in scope or access from a container include the following:

■ Database software versus database data
■ Web application versus log data
■ Data processing application versus input and output data
■ Web server versus static content
■ Products versus support tools

Volumes enable separation of concerns and create modularity for architectural com-
ponents. That modularity helps you understand, build, support, and reuse parts of
larger systems more easily.

 Think about it this way: images are appropriate for packaging and distributing rel-
atively static files like programs; volumes hold dynamic data or specializations. This
distinction makes images reusable and data simple to share. This separation of rela-
tively static and dynamic file space allows application or image authors to implement
advanced patterns such as polymorphic and composable tools.

 A polymorphic tool is one that maintains a consistent interface but might have sev-
eral implementations that do different things. Consider an application such as a gen-
eral application server. Apache Tomcat, for example, is an application that provides
an HTTP interface on a network and dispatches any requests it receives to pluggable
programs. Tomcat has polymorphic behavior. Using volumes, you can inject behavior
into containers without modifying an image. Alternatively, consider a database pro-
gram like MongoDB or MySQL. The value of a database is defined by the data it con-
tains. A database program always presents the same interface but takes on a wholly
different value depending on the data that can be injected with a volume. The poly-
morphic container pattern is the subject of section 4.5.3.

 More fundamentally, volumes enable the separation of application and host con-
cerns. At some point an image will be loaded onto a host and a container created from
it. Docker knows little about the host where it’s running and can only make assertions
about what files should be available to a container. That means Docker alone has no way
to take advantage of host-specific facilities like mounted network storage or mixed spin-
ning and solid-state hard drives. But a user with knowledge of the host can use volumes
to map directories in a container to appropriate storage on that host.

 Now that you’re familiar with what volumes are and why they’re important, you
can get started with them in a real-world example.

4.1.2 Using volumes with a NoSQL database

The Apache Cassandra project provides a column database with built-in clustering,
eventual consistency, and linear write scalability. It’s a popular choice in modern
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

59Introducing volumes
system designs, and an official image is available on Docker Hub. Cassandra is like
other databases in that it stores its data in files on disk. In this section you’ll use the
official Cassandra image to create a single-node Cassandra cluster, create a keyspace,
delete the container, and then recover that keyspace on a new node in another
container.

 Get started by creating a single container that defines a volume. This is called a vol-
ume container. Volume containers are one of the advanced patterns discussed later in
this chapter:

docker run -d \
 --volume /var/lib/cassandra/data \
 --name cass-shared \
 alpine echo Data Container

The volume container will immediately stop. That is appropriate for the purposes of
this example. Don’t remove it yet. You’re going to use the volume it created when you
create a new container running Cassandra:

docker run -d \
 --volumes-from cass-shared \
 --name cass1 \
 cassandra:2.2

After Docker pulls the cassandra:2.2 image from Docker Hub, it creates a new con-
tainer and copies the volume definitions from the volume container. After that, both
containers have a volume mounted at /var/lib/cassandra/data that points to the
same location on the host’s directory tree. Next, start a container from the cassan-
dra:2.2 image, but run a Cassandra client tool and connect to your running server:

docker run –it --rm \
 --link cass1:cass \
 cassandra:2.2 cqlsh cass

Now you can inspect or modify your Cassandra database from the CQLSH command
line. First, look for a keyspace named docker_hello_world:

select *
from system.schema_keyspaces
where keyspace_name = 'docker_hello_world';

Cassandra should return an empty list. This means the database hasn’t been modified
by the example. Next, create that keyspace with the following command:

create keyspace docker_hello_world
with replication = {
 'class' : 'SimpleStrategy',
 'replication_factor': 1
};

Specify volume mount point
inside the container

Inherit volume
definitions
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

60 CHAPTER 4 Persistent storage and shared state with volumes
Now that you’ve modified the database, you should be able to issue the same query
again to see the results and verify that your changes were accepted. The following
command is the same as the one you ran earlier:

select *
from system.schema_keyspaces
where keyspace_name = 'docker_hello_world';

This time Cassandra should return a single entry with the properties you specified
when you created the keyspace. If you’re satisfied that you’ve connected to and modi-
fied your Cassandra node, quit the CQLSH program to stop the client container:

Leave and stop the current container
quit

The client container was created with the --rm flag and was automatically removed
when the command stopped. Continue cleaning up the first part of this example by
stopping and removing the Cassandra node you created:

docker stop cass1
docker rm -vf cass1

Both the Cassandra client and server you created will be deleted after running those
commands. If the modifications you made are persisted, the only place they could
remain is the volume container. If that is true, then the scope of that data has
expanded to include two containers, and its life cycle has extended beyond the con-
tainer where the data originated.

 You can test this by repeating these steps. Create a new Cassandra node, attach a
client, and query for the keyspace. Figure 4.2 illustrates the system and what you will
have built.

Volume:
/var/lib/cassandra/data

cass1 cass2cass-shared

3. Copy volume
definitions to a
new server.

1. Copy volume
definitions from
cass-shared.

4. Connect to the new server
and look for the previously
created keyspace.

2. Connect to the
server and create
a keyspace.

CQLSHCQLSH

Figure 4.2 Key steps in creating and recovering data persisted to a volume with Cassandra
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

61Volume types
The next three commands will test recovery of the data:

docker run -d \
 --volumes-from cass-shared \
 --name cass2 \
 cassandra:2.2

docker run –it --rm \
 --link cass2:cass \
 cassandra:2.2 \
 cqlsh cass

select *
from system.schema_keyspaces
where keyspace_name = 'docker_hello_world';

The last command in this set returns a single entry, and it matches the keyspace you
created in the previous container. This confirms the previous claims and demon-
strates how volumes might be used to create durable systems. Before moving on, quit
the CQLSH program and clean up your workspace. Make sure to remove that volume
container as well:

quit

docker rm -vf cass2 cass-shared

This example demonstrates one way to use volumes without going into how they work,
the patterns in use, or how to manage volume life cycle. The remainder of this chap-
ter dives deeper into each facet of volumes, starting with the different types available.

4.2 Volume types
There are two types of volume. Every volume is a mount point on the container direc-
tory tree to a location on the host directory tree, but the types differ in where that
location is on the host. The first type of volume is a bind mount. Bind mount volumes
use any user-specified directory or file on the host operating system. The second type
is a managed volume. Managed volumes use locations that are created by the Docker
daemon in space controlled by the daemon, called Docker managed space. The vol-
ume types are illustrated in figure 4.3.

Storage (hard drive)

/some/specific/directory

Docker-managed space

/var/lib/docker/vfs/dir/<some volume ID>

A container with
two volumes

/my/bind/volume Bind mount volume

Docker-managed volume/managed/volume

Figure 4.3 Docker provides both bind mount and managed volumes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

62 CHAPTER 4 Persistent storage and shared state with volumes
Each type of volume has advantages and disadvantages. Depending on your specific
use case, you may need to use one or be unable to use the other. This section explores
each type in depth.

4.2.1 Bind mount volumes

A bind mount volume is a volume that points to a user-specified location on the host
file system. Bind mount volumes are useful when the host provides some file or direc-
tory that needs to be mounted into the container directory tree at a specific point, as
shown in figure 4.4.

Bind mount volumes are useful if you want to share data with other processes running
outside a container, such as components of the host system itself. They also work if you
want to share data that lives on your host at some known location with a specific pro-
gram that runs in a container.

 For example, suppose you’re working on a document or web page on your local
computer and want to share your work with a friend. One way to do so would be to use
Docker to launch a web server and serve content that you’ve copied into the web
server image. Although that would work and might even be a best practice for produc-
tion environments, it’s cumbersome to rebuild the image every time you want to share
an updated version of the document.

 Instead, you could use Docker to launch the web server and bind mount the loca-
tion of your document into the new container at the web server’s document root. You
can try this for yourself. Create a new directory in your home directory called exam-
ple-docs. Now create a file named index.html in that directory. Add a nice message for
your friend to the file. The following command will start an Apache HTTP server
where your new directory is bind mounted to the server’s document root:

docker run -d --name bmweb \
 -v ~/example-docs:/usr/local/apache2/htdocs \

Storage (hard drive)

/some/specific/directory

Docker-managed space

/var/lib/docker/vfs/dir/<some volume ID>

A container with
two volumes

/my/bind/volume Bind mount volume

Docker-managed volume/managed/volume

Figure 4.4 A host directory as a bind mount volume
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

63Volume types
 -p 80:80 \
 httpd:latest

With this container running, you should be able to point your web browser at the IP
address where your Docker engine is running and see the file you created.

 In this example you used the -v option and a location map to create the bind
mount volume. The map is delimited with a colon (as is common with Linux-style
command-line tools). The map key (the path before the colon) is the absolute path of
a location on the host file system, and the value (the path after the colon) is the loca-
tion where it should be mounted inside the container. You must specify locations with
absolute paths.

 This example touches on an important attribute or feature of volumes. When you
mount a volume on a container file system, it replaces the content that the image pro-
vides at that location. In this example, the httpd:latest image provides some default
HTML content at /usr/local/apache2/htdocs/, but when you mounted a volume at
that location, the content provided by the image was overridden by the content on the
host. This behavior is the basis for the polymorphic container pattern discussed later
in the chapter.

 Expanding on this use case, suppose you want to make sure that the Apache HTTP
web server can’t change the contents of this volume. Even the most trusted software
can contain vulnerabilities, and it’s best to minimize the impact of an attack on your
website. Fortunately, Docker provides a mechanism to mount volumes as read-only.
You can do this by appending :ro to the volume map specification. In the example,
you should change the run command to something like the following:

docker rm -vf bmweb

docker run --name bmweb_ro \
 --volume ~/example-docs:/usr/local/apache2/htdocs/:ro \
 -p 80:80 \
 httpd:latest

By mounting the volume as read-only, you can prevent any process inside the con-
tainer from modifying the content of the volume. You can see this in action by
running a quick test:

docker run --rm \
 -v ~/example-docs:/testspace:ro \
 alpine \
 /bin/sh -c 'echo test > /testspace/test'

This command starts a container with a similar read-only bind mount as the web
server. It runs a command that tries to add the word test to a file named test in the
volume. The command fails because the volume is mounted as read-only.

 Finally, note that if you specify a host directory that doesn’t exist, Docker will cre-
ate it for you. Although this can come in handy, relying on this functionality isn’t the
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

64 CHAPTER 4 Persistent storage and shared state with volumes

"

Exa
the cre

direc
best idea. It’s better to have more control over the ownership and permissions set on a
directory.

ls ~/example-docs/absent

docker run --rm -v ~/example-docs/absent:/absent alpine:latest \
 /bin/sh -c 'mount | grep absent'

ls ~/example-docs/absent

Bind mount volumes aren’t limited to directories, though that’s how they’re fre-
quently used. You can use bind mount volumes to mount individual files. This pro-
vides the flexibility to create or link resources at a level that avoids conflict with other
resources. Consider when you want to mount a specific file into a directory that con-
tains other files. Concretely, suppose you only wanted to serve a single additional file
alongside the web content that shipped with some image. If you use a bind mount of a
whole directory over that location, the other files will be lost. By using a specific file as
a volume, you can override or inject individual files.

 The important thing to note in this case is that the file must exist on the host
before you create the container. Otherwise, Docker will assume that you wanted to use
a directory, create it on the host, and mount it at the desired location (even if that
location is occupied by a file).

 The first problem with bind mount volumes is that they tie otherwise portable
container descriptions to the file system of a specific host. If a container description
depends on content at a specific location on the host file system, then that descrip-
tion isn’t portable to hosts where the content is unavailable or available in some
other location.

 The next big problem is that they create an opportunity for conflict with other
containers. It would be a bad idea to start multiple instances of Cassandra that all use
the same host location as a volume. In that case, each of the instances would compete
for the same set of files. Without other tools such as file locks, that would likely result
in corruption of the database.

 Bind mount volumes are appropriate tools for workstations or machines with spe-
cialized concerns. It’s better to avoid these kinds of specific bindings in generalized
platforms or hardware pools. You can take advantage of volumes in a host-agnostic
and portable way with Docker-managed volumes.

4.2.2 Docker-managed volumes

Managed volumes are different from bind mount volumes because the Docker dae-
mon creates managed volumes in a portion of the host’s file system that’s owned by
Docker, as shown in figure 4.5. Using managed volumes is a method of decoupling
volumes from specialized locations on the file system.

 Managed volumes are created when you use the -v option (or --volume) on
docker run but only specify the mount point in the container directory tree. You

Verify that "absent
does not exist

Examine the volume
mount definition

mine
ated
tory
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

65Volume types
created a managed volume in the Cassandra example in section 4.1.2. The container
named cass-shared specified a volume at /var/lib/cassandra/data:

docker run -d \
 -v /var/lib/cassandra/data \
 --name cass-shared \
 alpine echo Data Container

When you created this container, the Docker daemon created directories to store the
contents of the three volumes somewhere in a part of the host file system that it con-
trols. To find out exactly where this folder is, you can use the docker inspect com-
mand filtered for the Volumes key. The important thing to take away from this output
is that Docker created each of the volumes in a directory controlled by the Docker
daemon on the host:

docker inspect -f "{{json .Volumes}}" cass-shared

The inspect subcommand will output a list of container mount points and the corre-
sponding path on the host directory tree. The output will look like this:

{"/var/lib/cassandra/data":"/mnt/sda1/var/lib/docker/vfs/dir/632fa59c..."}

The Volumes key points to a value that is itself a map. In this map each key is a mount
point in the container, and the value is the location of the directory on the host file
system. Here we’ve inspected a container with one volume. The map is sorted by the
lexicographical ordering of its keys and is independent of the ordering specified
when the container is created.

TIP VirtualBox (Docker Machine or Boot2Docker) users should keep in
mind that the host path specified in each value is relative to their virtual
machine root file system and not the root of their host. Managed volumes are
created on the machine that’s running the Docker daemon, but VirtualBox
will create bind mount volumes that reference directories or files on the host
machine.

Storage (hard drive)

/some/specific/directory

Docker-managed space

/var/lib/docker/vfs/dir/<some volume ID>

A container with
two volumes

/my/bind/volume Bind mount volume

Docker-managed volume/managed/volume

Figure 4.5 A directory in Docker-managed space mounted as a volume

Specify volume mount
point inside container
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

66 CHAPTER 4 Persistent storage and shared state with volumes

Stop
w

Docker-managed volumes may seem difficult to work with if you’re manually building
or linking tools together on your desktop, but in larger systems where specific locality
of the data is less important, managed volumes are a much more effective way to orga-
nize your data. Using them decouples volumes from other potential concerns of the
system. By using Docker-managed volumes, you’re simply stating, “I need a place to
put some data that I'm working with.” This is a requirement that Docker can fill on
any machine with Docker installed. Further, when you’re finished with a volume and
you ask Docker to clean things up for you, Docker can confidently remove any direc-
tories or files that are no longer being used by a container. Using volumes in this way
helps manage clutter. As Docker middleware or plugins evolve, managed volume users
will be able to adopt more advanced features like portable volumes.

 Sharing access to data is a key feature of volumes. If you have decoupled volumes
from known locations on the file system, you need to know how to share volumes
between containers without exposing the exact location of managed containers. The
next section describes two ways to share data between containers using volumes.

4.3 Sharing volumes
Suppose you have a web server running inside a container that logs all the requests it
receives to /logs/access. If you want to move those logs off your web server into storage
that’s more permanent, you might do that with a script inside another container. Shar-
ing volumes between containers is where their value becomes more obvious. Just as
there are two types of volume, there are two ways to share volumes between containers.

4.3.1 Host-dependent sharing

You’ve already read about the tools needed to implement host-dependent sharing.
Two or more containers are said to use host-dependent sharing when each has a bind
mount volume for a single known location on the host file system. This is the most
obvious way to share some disk space between containers. You can see it in action in
the following example:

mkdir ~/web-logs-example

docker run --name plath -d \
 -v ~/web-logs-example:/data \
 dockerinaction/ch4_writer_a

docker run --rm \
 -v ~/web-logs-example:/reader-data \
 alpine:latest \
 head /reader-data/logA

cat ~/web-logs-example/logA

docker stop plath

In this example you created two containers: one named plath that writes lines to a file
and another that views the top part of the file. These containers share a common bind

Set up a known location

Bind mount the location into
a log-writing container

Bind mount the same location
into a container for reading

View the logs from the host the
riter
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

67Sharing volumes
mount volume. Outside any container you can see the changes by listing the contents
of the directory you created or viewing the new file.

 Explore ways that containers might be linked together in this way. The next exam-
ple starts four containers—two log writers and two readers:

docker run --name woolf -d \
 --volume ~/web-logs-example:/data \
 dockerinaction/ch4_writer_a

docker run --name alcott -d \
 -v ~/web-logs-example:/data \
 dockerinaction/ch4_writer_b

docker run --rm --entrypoint head \
 -v ~/web-logs-example:/towatch:ro \
 alpine:latest \
 /towatch/logA

docker run --rm \
 -v ~/web-logs-example:/toread:ro \
 alpine:latest \
 head /toread/logB

In this example, you created four containers, each of which mounted the same direc-
tory as a volume. The first two containers are writing to different files in that volume.
The third and fourth containers mount the volume at a different location and as read-
only. This is a toy example, but it clearly demonstrates a feature that could be useful
given the variety of ways that people build images and software.

 Host-dependent sharing requires you to use bind mount volumes but—for the rea-
sons mentioned at the end of section 4.2.1—bind mount volumes and therefore host-
dependent sharing might cause problems or be too expensive to maintain if you’re
working with a large number of machines. The next section demonstrates a shortcut
to share both managed volumes and bind mount volumes with a set of containers.

4.3.2 Generalized sharing and the volumes-from flag

The docker run command provides a flag that will copy the volumes from one or
more containers to the new container. The flag --volumes-from can be set multiple
times to specify multiple source containers.

 You used this flag in section 4.1.2 to copy the managed volume defined by a vol-
ume container into each of the containers running Cassandra. The example is realis-
tic but fails to illustrate a few specific behaviors of the --volumes-from flag and
managed containers:

docker run --name fowler \
 -v ~/example-books:/library/PoEAA \
 -v /library/DSL \
 alpine:latest \
 echo "Fowler collection created."
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

68 CHAPTER 4 Persistent storage and shared state with volumes
docker run --name knuth \
 -v /library/TAoCP.vol1 \
 -v /library/TAoCP.vol2 \
 -v /library/TAoCP.vol3 \
 -v /library/TAoCP.vol4.a \
 alpine:latest \
 echo "Knuth collection created"

docker run --name reader \
 --volumes-from fowler \
 --volumes-from knuth \
 alpine:latest ls -l /library/

docker inspect --format "{{json .Volumes}}" reader

In this example you created two containers that defined Docker-managed volumes as
well as a bind mount volume. To share these with a third container without the
--volumes-from flag, you’d need to inspect the previously created containers and
then craft bind mount volumes to the Docker-managed host directories. Docker does
all this on your behalf when you use the --volumes-from flag. It copies any volume
present on a referenced source container into the new container. In this case, the con-
tainer named reader copied all the volumes defined by both fowler and knuth.

 You can copy volumes directly or transitively. This means that if you’re copying the
volumes from another container, you’ll also copy the volumes that it copied from some
other container. Using the containers created in the last example yields the following:

docker run --name aggregator \
 --volumes-from fowler \
 --volumes-from knuth \
 alpine:latest \
 echo "Collection Created."

docker run --rm \
 --volumes-from aggregator \
 alpine:latest \
 ls -l /library/

Copied volumes always have the same mount point. That means that you can’t use
--volumes-from in three situations.

 In the first situation, you can’t use --volumes-from if the container you’re build-
ing needs a shared volume mounted to a different location. It offers no tooling for
remapping mount points. It will only copy and union the mount points specified by
the specified containers. For example, if the student in the last example wanted to
mount the library to a location like /school/library, they wouldn’t be able to do so.

 The second situation occurs when the volume sources conflict with each other or a
new volume specification. If one or more sources create a managed volume with the
same mount point, then a consumer of both will receive only one of the volume
definitions:

docker run --name chomsky --volume /library/ss \
 alpine:latest echo "Chomsky collection created."

List all volumes as they were
copied into new container

Checkout volume
list for reader

Create an aggregation

Consume volumes from a
single source and list them
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

69The managed volume life cycle
docker run --name lamport --volume /library/ss \
 alpine:latest echo "Lamport collection created."

docker run --name student \
 --volumes-from chomsky --volumes-from lamport \
 alpine:latest ls -l /library/

docker inspect -f "{{json .Volumes}}" student

When you run the example, the output of docker inspect will show that the last con-
tainer has only a single volume listed at /library/ss and its value is the same as one of
the other two. Each source container defines the same mount point, and you create a
race condition by copying both to the new container. Only one of the two copy opera-
tions can succeed.

 A real-world example where this would be limiting is if you were copying the vol-
umes of several web servers into a single container for inspection. If those servers are
all running the same software or share common configuration (which is more likely
than not in a containerized system), then all those servers might use the same mount
points. In that case, the mount points would conflict, and you’d be able to access only
a subset of the required data.

 The third situation where you can’t use --volumes-from is if you need to change
the write permission of a volume. This is because --volumes-from copies the full vol-
umes definition. For example, if your source has a volume mounted with read/write
access, and you want to share that with a container that should have only read access,
using --volumes-from won’t work.

 Sharing volumes with the --volumes-from flag is an important tool for building
portable application architectures, but it does introduce some limitations. Using
Docker-managed volumes decouples containers from the data and file system struc-
ture of the host machine, and that’s critical for most production environments. The
files and directories that Docker creates for managed volumes still need to be
accounted for and maintained. To understand how Docker works with these files and
how to keep your Docker environment clean, you need to understand the managed
volume life cycle.

4.4 The managed volume life cycle
By this point in the chapter you should have quite a few containers and volumes to
clean up. I’ve omitted cleanup instructions thus far so that you have a wealth of mate-
rial to use in this section. Managed volumes have life cycles that are independent of
any container, but as of this writing you can only reference them by the containers
that use them.

4.4.1 Volume ownership

Managed volumes are second-class entities. You have no way to share or delete a spe-
cific managed volume because you have no way to identify a managed volume.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

70 CHAPTER 4 Persistent storage and shared state with volumes
Managed volumes are only created when you omit a bind mount source, and they’re
only identifiable by the containers that use them.

 The highest fidelity way to identify volumes is to define a single container for each
managed volume. In doing so, you can be very specific about which volumes you con-
sume. More importantly, doing so helps you delete specific volumes. Unless you resort
to examining volume mappings on a container and manually cleaning up the Docker-
managed space, removing volumes requires a referencing container, and that makes it
important to understand which containers own each managed volume. See figure 4.6.

 A container owns all managed volumes mounted to its file system, and multiple
containers can own a volume like in the fowler, knuth, and reader example. Docker
tracks these references on managed volumes to ensure that no currently referenced
volume is deleted.

4.4.2 Cleaning up volumes

Cleaning up managed volumes is a manual task. This default functionality prevents
accidental destruction of potentially valuable data. Docker can’t delete bind mount
volumes because the source exists outside the Docker scope. Doing so could result in
all manner of conflicts, instability, and unintentional data loss.

 Docker can delete managed volumes when deleting containers. Running the
docker rm command with the -v option will attempt to delete any managed volumes
referenced by the target container. Any managed volumes that are referenced by
other containers will be skipped, but the internal counters will be decremented. This
is a safe default, but it can lead to the problematic scenario shown in figure 4.7.

 If you delete every container that references a managed volume but fail to use the
-v flag, you’ll make that volume an orphan. Removing orphaned volumes requires
messy manual steps, but depending on the size of the volumes it may be worth the
effort. Alternatively, there are orphan volume cleanup scripts that you might consider
using. You should carefully check those before running them. You’ll need to run
those scripts as a privileged user, and if they contain malware, you could be handing
over full control of your system.

/var/lib/docker/vfs/dir/XXX

Docker-managed spaceContainer 1

/data

Container 2

/data

Figure 4.6 These two containers have an ownership relationship with a single managed volume.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

71Advanced container patterns with volumes
It’s a better idea to avoid the situation by getting into the habit of using the -v option
and using the volume container pattern discussed in section 4.5 for critical data.

 Docker creates volumes in another way that we haven’t discussed. Image metadata
can provide volume specifications. Chapter 7 includes details on this mechanism. In
these cases, you may not even be aware of the volumes created for new containers.
This is the primary reason to train yourself to use the -v option.

 Orphan volumes render disk space unusable until you’ve cleaned them up. You
can minimize this problem by remembering to clean them up and using a volume
container pattern.

CLEANUP Before reading further, take a few moments to clean up the con-
tainers that you’ve created. Use docker ps -a to get a list of those containers
and remember to use the -v flag on docker rm to prevent orphan volumes.

The following is a concrete example of removing a container from one of the earlier
examples:

docker rm -v student

Alternatively, if you’re using a POSIX-compliant shell, you can remove all stopped
containers and their volumes with the following command:

docker rm -v $(docker ps -aq)

However you accomplish the task, cleaning up volumes is an important part of resource
management. Now that you have a firm grasp on the volume life cycle, sharing mecha-
nisms, and use cases, you should be ready to learn about advanced volume patterns.

4.5 Advanced container patterns with volumes
In the real world, volumes are a used to accomplish a wide range of file system cus-
tomizations and container interactions. This section focuses on a couple of advanced
but common patterns that you may encounter or have a reason to employ in your
own systems.

/var/lib/docker/vfs/dir/XXX

Docker-managed spaceContainer 1

/data

Container 2

/data

Figure 4.7 The user created an orphan volume by deleting the two owners of that volume
without instructing Docker to remove the volumes attached to those containers.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

72 CHAPTER 4 Persistent storage and shared state with volumes
4.5.1 Volume container pattern

Sections 4.1.3 and 4.3.2 use a pattern called a volume container, which is a container
that does little more than provide a handle to volumes. This is useful if you come
across a case for sharing a set of volumes with many containers, or if you can catego-
rize a set of volumes that fit a common use case; see figure 4.8.

 A volume container doesn’t need to be running because stopped containers main-
tain their volume references. Several of the examples you’ve read so far used the
volume container pattern. The example containers cass-shared, fowler, knuth, chom-
sky, and lamport all ran a simple echo command to print something to the terminal and
then exited. Then you used the stopped containers as sources for the --volumes-from
flag when creating consumer containers.

 Volume containers are important for keeping a handle on data even in cases where
a single container should have exclusive access to some data. These handles make it
possible to easily back up, restore, and migrate data.

 Suppose you wanted to update your database software (use a new image). If your
database container writes its state to a volume and that volume was defined by a vol-
ume container, the migration would be as simple as shutting down the original data-
base container and starting the new one with the volume container as a volume
source. Backup and restore operations could be handled similarly. This, of course,
assumes that the new database software is able to read the storage format of the old
software, and it looks for the data at the same location.

TIP Using a container name prefix such as vc_ would be a great hint for
humans or scripts not to use the -v option when deleting a container. The
specific prefix is not as important as establishing some convention that peo-
ple on your team and the tools you build can rely on.

Volume containers are most useful when you control and are able to standardize on
mount point naming conventions. This is because every container that copies volumes

/var/lib/docker/vfs/dir/XXX
–volumes-from vc_data

Docker-managed spacevc_data

/data

Container 2

/data

Figure 4.8 Container 2 copied vc_data’s volume references.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

73Advanced container patterns with volumes
from a volume container inherits its mount point definitions. For example, a volume
container that defines a volume mounted at /logs will only be useful to other contain-
ers that expect to be able to access a volume mounted at /logs. In this way, a volume
and its mount point become a sort of contract between containers. For this reason,
images that have specific volume requirements should clearly communicate those in
their documentation or find a way to do so programmatically.

 An example where two containers disagree might be where a volume container
contributes a volume mounted at /logs, but the container that uses --volumes-from is
expecting to find logs at /var/logs. In this case, the consuming container would be
unable to access the material it needs, and the system would fail.

 Consider another example with a volume container named vc_data that contrib-
utes two volumes: /data and /app. A container that has a dependency on the /data
volume provided by vc_data but uses /app for something else would break if both vol-
umes were copied in this way. These two containers are incompatible, but Docker has
no way of determining intent. The error wouldn’t be discovered until after the new
container was created and failed in some way.

 The volume container pattern is more about simplicity and convention than any-
thing else. It’s a fundamental tool for working with data in Docker and can be
extended in a few interesting ways.

4.5.2 Data-packed volume containers

You can extend the volume container pattern and value added by packing containers
with data, as illustrated in figure 4.9. Once you’ve adapted your containers to use vol-
umes, you’ll find all sorts of occasions to share volumes. Volume containers are in a
unique position to seed volumes with data. The data-packed volume container exten-
sion formalizes that notion. It describes how images can be used to distribute static
resources like configuration or code for use in containers created with other images.

 A data-packed volume container is built from an image that copies static content
from its image to volumes it defines. In doing so, these containers can be used to dis-
tribute critical architecture information like configuration, key material, and code.

cp

Data-packed volume
container

Layer

/config

Data is packed and distributed in an
image that also defines a volume.

At container-creation time the data
is copied into the volume and is
accessible to any containers that
use this volume container.

Figure 4.9 A data-packed volume container that contributes and populates a volume mounted at
/config
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

74 CHAPTER 4 Persistent storage and shared state with volumes

Copy
conten

a v
You can build these by hand if you have an image that has the data you’d like to make
available by running and defining the volume and running a cp command at
container-creation time:

docker run --name dpvc \
 -v /config \
 dockerinaction/ch4_packed /bin/sh -c 'cp /packed/* /config/'

docker run --rm --volumes-from dpvc \
 alpine:latest ls /config

docker run --rm --volumes-from dpvc \
 alpine:latest cat /config/packedData

docker rm -v dpvc

The commands in this code share files distributed by a single image. You created
three containers: one data-packed volume container and two that copied its volume
and inspected the contents of the volume. Again, this is a toy example, but it demon-
strates the way that you might consider distributing configuration in your own situa-
tions. Using data-packed volume containers to inject material into a new container is
the basis for the polymorphic container pattern discussed in the next section.

4.5.3 Polymorphic container pattern

As I stated earlier in the chapter, a polymorphic tool is one that you interact with in a
consistent way but might have several implementations that do different things. Using
volumes, you can inject different behavior into containers without modifying an
image. A polymorphic container is one that provides some functionality that’s easily
substituted using volumes. For example, you may have an image that contains the
binaries for Node.JS and by default executes a command that runs the Node.JS pro-
gram located at /app/app.js. The image might contain some default implementation
that simply prints “This is a Node.JS application” to the terminal.

 You can change the behavior of containers created from this image by injecting your
own app.js implementation using a volume mounted at /app/app.js. It might make
more sense to layer that new functionality in a new image, but there are some cases
when this is the best solution. The first is during development when you might not want
to build a new image each time you iterate. The second is during operational events.

 Consider a situation where an operational issue has occurred. In order to triage the
issue, you might need tools available in an image that you had not anticipated when the
image was built. But if you mount a volume where you make additional tools available,
you can use the docker exec command to run additional processes in a container:

docker run --name tools dockerinaction/ch4_tools

docker run --rm \
 --volumes-from tools \
 alpine:latest \
 ls /operations/*

 image
t into

olume

List shared material

View shared material
Remember to use
–v when you clean up

Create data-packed volume
container with tools

List shared tools
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

75Summary

Use s
tool in ru

con
docker run -d --name important_application \
 --volumes-from tools \
 dockerinaction/ch4_ia

docker exec important_application /operations/tools/someTool

docker rm -vf important_application

docker rm -v tools

You can inject files into otherwise static containers to change all types of behavior.
Most commonly, you’ll use polymorphic containers to inject application configura-
tion. Consider a multi-state deployment pipeline where an application’s configuration
would change depending on where you deploy it. You might use data-packed volume
containers to contribute environment-specific configuration at each stage, and then
your application would look for its configuration at some known location:

docker run --name devConfig \
 -v /config \
 dockerinaction/ch4_packed_config:latest \
 /bin/sh -c 'cp /development/* /config/'

docker run --name prodConfig \
 -v /config \
 dockerinaction/ch4_packed_config:latest \
 /bin/sh -c 'cp /production/* /config/'

docker run --name devApp \
 --volumes-from devConfig \
 dockerinaction/ch4_polyapp

docker run --name prodApp \
 --volumes-from prodConfig \
 dockerinaction/ch4_polyapp

In this example, you start the same application twice but with a different configura-
tion file injected. Using this pattern you can build a simple version-controlled configu-
ration distribution system.

4.6 Summary
One of the first major hurdles in learning how to use Docker is understanding volumes
and the file system. This chapter covers volumes in depth, including the following:

■ Volumes allow containers to share files with the host or other containers.
■ Volumes are parts of the host file system that Docker mounts into containers at

specified locations.
■ There are two types of volumes: Docker-managed volumes that are located in

the Docker part of the host file system and bind mount volumes that are located
anywhere on the host file system.

■ Volumes have life cycles that are independent of any specific container, but a
user can only reference Docker-managed volumes with a container handle.

Start another container
with shared tools

hared
nning
tainer

Shut down the
application

Clean up the tools
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

76 CHAPTER 4 Persistent storage and shared state with volumes
■ The orphan volume problem can make disk space difficult to recover. Use the
-v option on docker rm to avoid the problem.

■ The volume container pattern is useful for keeping your volumes organized
and avoiding the orphan volume problem.

■ The data-packed volume container pattern is useful for distributing static con-
tent for other containers.

■ The polymorphic container pattern is a way to compose minimal functional
components and maximize reuse.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Network exposure
In the previous chapter you read about how to use volumes and work with files in a
container. This chapter deals with another common form of input and output:
network access.

 If you want to run a website, database, email server, or any software that depends
on networking, like a web browser inside a Docker container, then you need to
understand how to connect that container to the network. After reading this chap-
ter you’ll be able to create containers with network exposure appropriate for the
application you’re running, use network software in one container from another,
and understand how containers interact with the host and the host’s network.

 This chapter is focused on single-host Docker networking. Multi-host Docker is
the subject of chapter 12. That chapter describes strategies for service discovery

This chapter covers
■ Network container archetypes
■ How Docker works with the computer’s network
■ How Docker builds network containers
■ Ways to customize a container network
■ Making containers available to the network
■ Discovering other containers
77

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

78 CHAPTER 5 Network exposure
and the role container linking plays in that situation. You’ll need the information in
this chapter before any of that will make sense.

5.1 Networking background
A quick overview of relevant networking concepts will be helpful for understanding
the topics in this chapter. This section includes only high-level detail; so if you’re an
expert, feel free to skip ahead.

 Networking is all about communicating between processes that may or may not
share the same local resources. To understand the material in this chapter you only
need to consider a few basic network abstractions that are commonly used by pro-
cesses. The better understanding you have of networking, the more you’ll learn about
the mechanics at work. But a deep understanding isn’t required to use the tools pro-
vided by Docker. If anything, the material contained herein should prompt you to
independently research selected topics as they come up. Those basic abstractions used
by processes include protocols, network interfaces, and ports.

5.1.1 Basics: protocols, interfaces, and ports

A protocol with respect to communication and networking is a sort of language. Two
parties that agree on a protocol can understand what each other is communicating.
This is key to effective communication. Hypertext Transfer Protocol (HTTP) is one
popular network protocol that many people have heard of. It’s the protocol that pro-
vides the World Wide Web. A huge number of network protocols and several layers of
communication are created by those protocols. For now, it’s only important that you
know what a protocol is so that you can understand network interfaces and ports.

 A network interface has an address and represents a location. You can think of inter-
faces as analogous to real-world locations with addresses. A network interface is like a
mailbox. Messages are delivered to a mailbox for recipients at that address, and mes-
sages are taken from a mailbox to be delivered elsewhere.

 Whereas a mailbox has a postal address, a network interface has an IP address,
which is defined by the Internet Protocol. The details of IP are interesting but outside
of the scope of this book. The important thing to know about IP addresses is that they
are unique in their network and contain information about their location on their
network.

 It’s common for computers to have two kinds of interfaces: an Ethernet interface
and a loopback interface. An Ethernet interface is what you’re likely most familiar
with. It’s used to connect to other interfaces and processes. A loopback interface isn’t
connected to any other interface. At first this might seem useless, but it’s often useful
to be able to use network protocols to communicate with other programs on the same
computer. In those cases a loopback is a great solution.

 In keeping with the mailbox metaphor, a port is like a recipient or a sender. There
might be several people who receive messages at a single address. For example, a sin-
gle address might receive messages for Wendy Webserver, Deborah Database, and
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

79Networking background
Casey Cache, as illustrated in figure 5.1. Each recipient should only open his or her
own messages.

 In reality, ports are just numbers and defined as part of the Transmission Control
Protocol (TCP). Again the details of the protocol are beyond the scope of this book,
but I encourage you to read about it some time. People who created standards for pro-
tocols, or companies that own a particular product, decide what port number should
be used for specific purposes. For example, web servers provide HTTP on port 80
by default. MySQL, a database product, serves its protocol on port 3306 by default.
Memcached, a fast cache technology, provides its protocol on port 11211. Ports are
written on TCP messages just like names are written on envelopes.

 Interfaces, protocols, and ports are all immediate concerns for software and users.
By learning about these things, you develop a better appreciation for the way pro-
grams communicate and how your computer fits into the bigger picture.

5.1.2 Bigger picture: networks, NAT, and port forwarding

Interfaces are single points in larger networks. Networks are defined in the way that
interfaces are linked together, and that linkage determines an interface’s IP address.

 Sometimes a message has a recipient that an interface is not directly linked to, so
instead it’s delivered to an intermediary that knows how to route the message for
delivery. Coming back to the mail metaphor, this is similar to how real-world mail car-
riers operate.

 When you place a message in your outbox, a mail carrier picks it up and delivers it
to a local routing facility. That facility is itself an interface. It will take the message and
send it along to the next stop on the route to a destination. A local routing facility for
a mail carrier might forward a message to a regional facility, and then to a local facility
for the destination, and finally to the recipient. It’s common for network routes to

From: A web client

To: 192.168.0.1:80

From: A database client

To: 192.168.0.1:3306

From: A cache client

To: 192.168.0.1:11211

Wendy Webserver
(port 80)

Debra Database
(port 3306)

A computer interface
(address: 192.168.0.1)

Casey Cache
(port 11211)

Figure 5.1 Processes use the same interface and are uniquely identified in the same way multiple
people might use the same mailbox.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

80 CHAPTER 5 Network exposure
follow a similar pattern. Figure 5.2 illustrates the described route and draws the rela-
tionships between physical message routing and network routing.

 This chapter is concerned with interfaces that exist on a single computer, so the
networks and routes we consider won’t be anywhere near that complicated. In fact,
this chapter is about two specific networks and the way containers are attached to
them. The first network is the one that your computer is connected to. The second is
a virtual network that Docker creates to connect all of the running containers to the
network that the computer is connected to. That second network is called a bridge.

 Just as the name implies, a bridge is an interface that connects multiple networks
so that they can function as a single network, as shown in figure 5.3. Bridges work by
selectively forwarding traffic between the connected networks based on another type
of network address. To understand the material in this chapter, you only need to be
comfortable with this abstract idea.

 This has been a very rough introduction to some nuanced topics. I’ve really only
scratched the surface in order to help you understand how to use Docker and the
networking facilities that it simplifies.

Sender’s network Recipient’s network

Sender’s mailbox
(originating
interface)

Recipient’s mailbox
(destination
interface)

Other regional
addresses
/interfaces

Other regional
addresses
/interfaces

Regional message routing
facility (local network router)

Regional message routing
facility (local network router)

Trans-regional message hub
(regional network router)

Figure 5.2 The path of a message in a postal system and a computer network

Bridge
interface

Hosts in network 1 Hosts in network 2

Figure 5.3 A bridge interface connecting two distinct networks
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

81Docker container networking
5.2 Docker container networking
Docker is concerned with two types of networking: single-host virtual networks and
multi-host networks. Local virtual networks are used to provide container isolation.
Multi-host virtual networks provide an overlay where any container on a participating
host can have its own routable IP address from any other container in the network.

 This chapter covers single-host virtual networks in depth. Understanding how
Docker isolates containers on the network is critical for the security-minded. People
building networked applications need to know how containerization will impact their
deployment requirements.

 Multi-host networking is still in beta at the time of this writing. Implementing it
requires a broader understanding of other ecosystem tools in addition to understand-
ing the material covering single-host networking. Until multi-host networking settles,
it’s best to get started by understanding how Docker builds local virtual networks.

5.2.1 The local Docker network topology

Docker uses features of the underlying operating system to build a specific and cus-
tomizable virtual network topology. The virtual network is local to the machine where
Docker is installed and is made up of routes between participating containers and the
wider network where the host is attached. You can change the behavior of that net-
work structure and in some cases change the structure itself by using command-line
options for starting the Docker daemon and each container. Figure 5.4 illustrates two
containers attached to the virtual network and its components.

 Containers have their own private loopback interface and a separate Ethernet
interface linked to another virtual interface in the host’s namespace. These two linked
interfaces form a link between the host’s network stack and the stack created for each
container. Just like typical home networks, each container is assigned a unique private
IP address that’s not directly reachable from the external network. Connections are
routed through the Docker bridge interface called docker0. You can think of the

Operating system
network stack
(host interface)

Private
interface

Loopback
interface

Container 1

Container 1 virtual interface

Private
interface

Loopback
interface

Container 2

Docker bridge virtual interface (docker0)

Logical host interface

Physical network interface

Container 2 virtual interface

Figure 5.4 The default
local Docker network
topology and two
attached containers
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

82 CHAPTER 5 Network exposure
docker0 interface like your home router. Each of the virtual interfaces created for
containers is linked to docker0, and together they form a network. This bridge inter-
face is attached to the network where the host is attached.

 Using the docker command-line tool, you can customize the IP addresses used, the
host interface that docker0 is connected to, and the way containers communicate with
each other. The connections between interfaces describe how exposed or isolated any
specific network container is from the rest of the network. Docker uses kernel
namespaces to create those private virtual interfaces, but the namespace itself doesn’t
provide the network isolation. Network exposure or isolation is provided by the host’s
firewall rules (every modern Linux distribution runs a firewall). With the options pro-
vided, there are four archetypes for network containers.

5.2.2 Four network container archetypes

All Docker containers follow one of four archetypes. These archetypes define how a
container interacts with other local containers and the host’s network. Each serves a
different purpose, and you can think of each as having a different level of isolation.
When you use Docker to create a container, it’s important to carefully consider what
you want to accomplish and use the strongest possible container without compromis-
ing that goal. Figure 5.5 illustrates each archetype, where the strongest containers
(most isolated) are on the left and the weakest are on the right.

 The four are archetypes are these:

■ Closed containers
■ Bridged containers

Loopback
interface

Closed
container

Private
interface

Loopback
interface

Bridged
container A

Private
interface

Loopback
interface

Joined
container

A

Joined
container

B

Loopback
interface

Open
container

Joined container
virtual interface

Docker bridge virtual interface

Container
virtual interface

Network container archetypes from strongest to weakest

Logical host interface

Physical network interface

Operating system
network stack
(host interface)

Figure 5.5 Four container network archetypes and their interaction with the Docker network topology

■ Joined containers
■ Open containers
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

83Closed containers
Over the next four subsections I introduce each archetype. Few readers will have an
occasion to use all four. In reading about how to build them and when to use them,
you’ll be able to make that distinction yourself.

5.3 Closed containers
The strongest type of network container is one that doesn’t allow any network traffic.
These are called closed containers. Processes running in such a container will have
access only to a loopback interface. If they need to communicate only with themselves
or each other, this will be suitable. But any program that requires access to the network
or the internet won’t operate correctly in such a container. For example, if the software
needs to download updates, it won't be able to because it can't use the network.

 Most readers will be coming from a server software or web application back-
ground, and in that context it can be difficult to imagine a practical use for a con-
tainer that has no network access. There are so many ways to use Docker that it’s easy
to forget about volume containers, backup jobs, offline batch processing, or diagnos-
tic tools. The challenge you face is not justifying Docker for each feature but knowing
which features best fit the use cases that you might be taking for granted.

 Docker builds this type of container by simply skipping the step where an exter-
nally accessible network interface is created. As you can see in figure 5.6, the closed
archetype has no connection to the Docker bridge interface. Programs in these con-
tainers can talk only to themselves.

Loopback
interface

Closed
container

Private
interface

Loopback
interface

Bridged
container A

Private
interface

Loopback
interface

Joined
container

A

Joined
container

B

Loopback
interface

Open
container

Joined container
virtual interface

Docker bridge virtual interface

Container
virtual interface

Network container archetypes from strongest to weakest

Logical host interface

Physical network interface

Operating system
network stack
(host interface)

Figure 5.6 The closed container archetype and relevant components
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

84 CHAPTER 5 Network exposure
All Docker containers, including closed containers, have access to a private loopback
interface. You may have experience working with loopback interfaces already. It’s
common for people with moderate experience to have used localhost or 127.0.0.1 as
an address in a URL. In these cases you were telling a program to bind to or contact a
service bound to your computer’s loopback network interface.

 By creating private loopback interfaces for each container, Docker enables pro-
grams run inside a container to communicate through the network but without that
communication leaving the container.

 You can tell Docker to create a closed container by specifying none with the --net
flag as an argument to the docker run command:

docker run --rm \
 --net none \
 alpine:latest \
 ip addr

Running this example, you can see that the only network interface available is the
loopback interface, bound to the address 127.0.0.1. This configuration means three
things:

■ Any program running in the container can connect to or wait for connections
on that interface.

■ Nothing outside the container can connect to that interface.
■ No program running inside that container can reach anything outside the

container.

That last point is important and easily demonstrable. If you’re connected to the inter-
net, try to reach a popular service that should always be available. In this case, try to
reach Google’s public DNS service:

docker run --rm \
 --net none \
 alpine:latest \
 ping -w 2 8.8.8.8

In this example you create a closed container and try to test the speed between your
container and the public DNS server provided by Google. This attempt should fail
with a message like “ping: send-to: Network is unreachable.” This makes sense because
we know that the container has no route to the larger network.

When to use closed containers

Closed containers should be used when the need for network isolation is the highest
or whenever a program doesn’t require network access. For example, running a ter-
minal text editor shouldn’t require network access. Running a program to generate a
random password should be run inside a container without network access to prevent
the theft of that number.

Create a closed
container

List the interfaces

Create a closed
container

Ping Google
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

85Bridged containers
There aren’t many ways to customize the network configuration for a closed con-
tainer. Although this type may seem overly limiting, it’s the safest of the four options
and can be extended to be more accommodating. These are not the default for
Docker containers, but as a best practice you should try to justify using anything
weaker before doing so. Docker creates bridged containers by default.

5.4 Bridged containers
Bridged containers relax network isolation and in doing so make it simpler to get
started. This archetype is the most customizable and should be hardened as a best
practice. Bridged containers have a private loopback interface and another private
interface that’s connected to the rest of the host through a network bridge.

 This section is the longest of the chapter. Bridged containers are the most com-
mon network container archetype (see figure 5.7), and this section introduces several
new options that you can use with other archetypes. Everything covered before section
5.6 is in the context of bridged containers.

 All interfaces connected to docker0 are part of the same virtual subnet. This
means they can talk to each other and communicate with the larger network through
the docker0 interface.

5.4.1 Reaching out

The most common reason to choose a bridged container is that the process needs
access to the network. To create a bridged container you can either omit the --net

Loopback
interface

Closed
container

Private
interface

Loopback
interface

Bridged
container A

Private
interface

Loopback
interface

Joined
container

A

Joined
container

B

Loopback
interface

Open
container

Joined container
virtual interface

Docker bridge virtual interface

Container
virtual interface

Network container archetypes from strongest to weakest

Logical host interface

Physical network interface

Operating system
network stack
(host interface)

Figure 5.7 The bridged container archetype and relevant components
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

86 CHAPTER 5 Network exposure
option to the docker run command or you can set its value to bridge. I use each form
in the following examples:

docker run --rm \
 --net bridge \
 alpine:latest \
 ip addr

Just like the first example for closed containers, this command will create a new con-
tainer from the latest alpine image and list the available network interfaces. This time
it will list two interfaces: an Ethernet interface and a local loopback. The output will
include details like the IP address and subnet mask of each interface, the maximum
packet size (MTU), and various interface metrics.

 Now that you’ve verified that your container has another interface with an IP
address, try to access the network again. This time omit the --net flag to see that
bridge is the default Docker network container type:

docker run --rm \
 alpine:latest \
 ping -w 2 8.8.8.8

Pinging Google’s public DNS server from this bridged container works, and no addi-
tional options are required. After running this command you’ll see your container
run a ping test for two seconds and report on the network statistics gathered.

 Now you know that if you have some software that needs to access the internet, or
some other computer on a private network, you can use a bridged container.

5.4.2 Custom name resolution

Domain Name System (DNS) is a protocol for mapping host names to IP addresses. This
mapping enables clients to decouple from a dependency on a specific host IP and
instead depend on whatever host is referred to by a known name. One of the most basic
ways to change outbound communications is by creating names for IP addresses.

 It is typical for containers on the bridge network and other computers on your net-
work to have IP addresses that aren’t publicly routable. This means that unless you’re
running your own DNS server, you can’t refer to them by a name. Docker provides dif-
ferent options for customizing the DNS configuration for a new container.

 First, the docker run command has a --hostname flag that you can use to set the
host name of a new container. This flag adds an entry to the DNS override system
inside the container. The entry maps the provided host name to the container’s
bridge IP address:

docker run --rm \
 --hostname barker \
 alpine:latest \
 nslookup barker

This example creates a new container with the host name barker and runs a program
to look up the IP address for the same name. Running this example will generate out-
put that looks something like the following:

Join the bridge
network

List the container interfaces

Note omission of
the --net optionRun ping command

against Google

Set the container
host name

Resolve the host name
to an IP address
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

87Bridged containers
Server: 10.0.2.3
Address 1: 10.0.2.3

Name: barker
Address 1: 172.17.0.22 barker

The IP address on the last line is the bridge IP address for the new container. The IP
address provided on the line labeled Server is the address of the server that provided
the mapping.

 Setting the host name of a container is useful when programs running inside a
container need to look up their own IP address or must self-identify. Because other
containers don’t know this hostname, its uses are limited. But if you use an external
DNS server, you can share those hostnames.

 The second option for customizing the DNS configuration of a container is the
ability to specify one or more DNS servers to use. To demonstrate, the following exam-
ple creates a new container and sets the DNS server for that container to Google’s pub-
lic DNS service:

docker run --rm \
 --dns 8.8.8.8 \
 alpine:latest \
 nslookup docker.com

Using a specific DNS server can provide consistency if you’re running Docker on a lap-
top and often move between internet service providers. It’s a critical tool for people
building services and networks. There are a few important notes on setting your own
DNS server:

■ The value must be an IP address. If you think about it, the reason is obvious; the
container needs a DNS server to perform the lookup on a name.

■ The --dns=[] flag can be set multiple times to set multiple DNS servers (in case one or
more are unreachable).

■ The --dns=[] flag can be set when you start up the Docker daemon that runs in the
background. When you do so, those DNS servers will be set on every container by
default. But if you stop the daemon with containers running and change the
default when you restart the daemon, the running containers will still have
the old DNS settings. You’ll need to restart those containers for the change to
take effect.

The third DNS-related option, --dns-search=[], allows you to specify a DNS search
domain, which is like a default host name suffix. With one set, any host names that
don’t have a known top-level domain (like .com or .net) will be searched for with the
specified suffix appended.

docker run --rm \
 --dns-search docker.com \
 busybox:latest \
 nslookup registry.hub

Set primary
DNS server

Resolve IP address
of docker.com

Set search
domain

Look up shortcut for
registry.hub.docker.com
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

88 CHAPTER 5 Network exposure
This command will resolve to the IP address of registry.hub.docker.com because the
DNS search domain provided will complete the host name.

 This feature is most often used for trivialities like shortcut names for internal corpo-
rate networks. For example, your company might maintain an internal documentation
wiki that you can simply reference at http://wiki/. But this can be much more powerful.

 Suppose you maintain a single DNS server for your development and test environ-
ments. Rather than building environment-aware software (with hard-coded
environment-specific names like myservice.dev.mycompany.com), you might consider
using DNS search domains and using environment-unaware names (like myservice):

docker run --rm \
 --dns-search dev.mycompany \
 busybox:latest \
 nslookup myservice

docker run --rm \
 --dns-search test.mycompany \
 busybox:latest \
 nslookup myservice

Using this pattern, the only change is the context in which the program is running.
Like providing custom DNS servers, you can provide several custom search domains
for the same container. Simply set the flag as many times as you have search domains.
For example:

docker run --rm \
 --dns-search mycompany \
 --dns-search myothercompany ...

This flag can also be set when you start up the Docker daemon to provide defaults for
every container created. Again, remember that these options are only set for a con-
tainer when it is created. If you change the defaults when a container is running, that
container will maintain the old values.

 The last DNS feature to consider provides the ability to override the DNS system.
This uses the same system that the --hostname flag uses. The --add-host=[] flag on
the docker run command lets you provide a custom mapping for an IP address and
host name pair:

docker run --rm \
 --add-host test:10.10.10.255 \
 alpine:latest \
 nslookup test

Like --dns and --dns-search, this option can be specified multiple times. But unlike
those other options, this flag can’t be set as a default at daemon startup.

 This feature is a sort of name resolution scalpel. Providing specific name mappings
for individual containers is the most fine-grained customization possible. You can use
this to effectively block targeted host names by mapping them to a known IP address
like 127.0.0.1. You could use it to route traffic for a particular destination through a

Note dev prefix
Resolves to
myservice.dev.mycompany

Note test prefix
Resolves to
myservice.test.mycompany

Add host entry
Resolves to
10.10.10.255
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

89Bridged containers

hos
proxy. This is often used to route unsecure traffic through secure channels like an SSH
tunnel. Adding these overrides is a trick that has been used for years by web develop-
ers who run their own local copies of a web application. If you spend some time think-
ing about the interface that name-to-IP address mappings provide, I’m sure you can
come up with all sorts of uses.

 All the custom mappings live in a file at /etc/hosts inside your container. If you want
to see what overrides are in place, all you have to do is inspect that file. Rules for editing
and parsing this file can be found online and are a bit beyond the scope of this book:

docker run --rm \
 --hostname mycontainer \
 --add-host docker.com:127.0.0.1 \
 --add-host test:10.10.10.2 \
 alpine:latest \
 cat /etc/hosts

This should produce output that looks something like the following:

172.17.0.45 mycontainer
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
10.10.10.2 test
127.0.0.1 docker.com

DNS is a powerful system for changing behavior. The name-to-IP address map provides
a simple interface that people and programs can use to decouple themselves from
specific network addresses. If DNS is your best tool for changing outbound traffic
behavior, then the firewall and network topology is your best tool for controlling
inbound traffic.

5.4.3 Opening inbound communication

Bridged containers aren’t accessi-
ble from the host network by
default. Containers are protected
by your host’s firewall system. The
default network topology provides
no route from the host’s external
interface to a container interface.
That means there’s just no way to
get to a container from outside the
host. The flow of inbound network
traffic is shown in figure 5.8.

Figure 5.8 An inbound traffic
route to a bridged container

Set host name

Create
t entry

Create another
host entry

View all entries

Private
interface

Loopback
interface

Bridged
container

Container
virtual interface

Docker bridge virtual interface (docker0)

Logical host interface
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

90 CHAPTER 5 Network exposure
Containers wouldn’t be very useful if there were no way to get to them through the
network. Luckily, that’s not the case. The docker run command provides a flag, -p=[]
or --publish=[], that you can use to create a mapping between a port on the host’s
network stack and the new container’s interface. You’ve used this a few times earlier in
this book, but it’s worth mentioning again. The format of the mapping can have four
forms:

■ <containerPort>

This form binds the container port to a dynamic port on all of the host’s inter-
faces:

docker run -p 3333 ...

■ <hostPort>:<containerPort>

This form binds the specified container port to the specified port on each of
the host’s interfaces:

docker run -p 3333:3333 ...

■ <ip>::<containerPort>

This form binds the container port to a dynamic port on the interface with the
specified IP address:

docker run -p 192.168.0.32::2222 ...

■ <ip>:<hostPort>:<containerPort>

This form binds the container port to the specified port on the interface with
the specified IP address:

docker run -p 192.168.0.32:1111:1111 ...

These examples assume that your host’s IP address is 192.168.0.32. This is arbitrary
but useful to demonstrate the feature. Each of the command fragments will create a
route from a port on a host interface to a specific port on the container’s interface.
The different forms offer a range of granularity and control. This flag is another that
can be repeated as many times as you need to provide the desired set of mappings.

 The docker run command provides an alternate way to accomplish opening chan-
nels. If you can accept a dynamic or ephemeral port assignment on the host, you can
use the -P, or --publish-all, flag. This flag tells the Docker daemon to create map-
pings, like the first form of the -p option for all ports that an image reports, to expose.
Images carry a list of ports that are exposed for simplicity and as a hint to users where
contained services are listening. For example, if you know that an image like
dockerinaction/ch5_expose exposes ports 5000, 6000, and 7000, each of the follow-
ing commands do the same thing:

docker run -d --name dawson \
 -p 5000 \
 -p 6000 \
 -p 7000 \
 dockerinaction/ch5_expose

Expose all ports
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

91Bridged containers
docker run -d --name woolery \
 -P \
 dockerinaction/ch5_expose

It’s easy to see how this can save a user some typing, but it begs two questions. First,
how is this used if the image doesn’t expose the port you want to use? Second, how do
you discover which dynamic ports were assigned?

 The docker run command provides another flag, --expose, that takes a port num-
ber that the container should expose. This flag can be set multiple times, once for
each port:

docker run -d --name philbin \
 --expose 8000 \
 -P \
 dockerinaction/ch5_expose

Using --expose in this way will add port 8000 to the list of ports that should be bound
to dynamic ports using the -P flag. After running the example, you can see what these
ports were mapped to by using docker ps, docker inspect, or a new command,
docker port. The port subcommand takes either the container name or ID as an
argument and produces a simple list with one port map entry per line:

docker port philbin

Running this command should produce a list like the following:

5000/tcp -> 0.0.0.0:49164
6000/tcp -> 0.0.0.0:49165
7000/tcp -> 0.0.0.0:49166
8000/tcp -> 0.0.0.0:49163

With the tools covered in this section, you should be able to manage routing any
inbound traffic to the correct bridged container running on your host. There's one
other subtle type of communication: inter-container communication.

5.4.4 Inter-container communication

As a reminder, all the containers covered so far use the Docker bridge network to
communicate with each other and the network that the host is on. All local bridged
containers are on the same bridge network and can communicate with each other by
default. Figure 5.9 illustrates the network relationship between five containers on the
same host.

Expose relevant ports

Expose another port

Publish all ports

Docker bridge virtual interface (docker0)

Container 1
virtual interface

Container 2
virtual interface

Container 3
virtual interface

Container 4
virtual interface

Container 5
virtual interface

Figure 5.9 Five containers connected to the same Docker bridge (docker0)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

92 CHAPTER 5 Network exposure
In order to make sure that you have a full appreciation for this openness, the follow-
ing command demonstrates how containers can communicate over this network:

docker run -it --rm dockerinaction/ch5_nmap -sS -p 3333 172.17.0.0/24

This command will run a program called nmap to scan all the interfaces attached to
the bridge network. In this case it’s looking for any interface that’s accepting connec-
tions on port 3333. If you had such a service running in another container, this com-
mand would have discovered it, and you could use another program to connect to it.

 Allowing communication in this way makes it simple to build cooperating contain-
ers. No additional work needs to be done to build pipes between containers. It’s as
free as an open network. This may be tolerable but can be risky for users who are
unaware. It’s common for software to ship with low-security features like default pass-
words or disabled encryption. Naïve users may expect that the network topology or
some local firewall will protect containers from open access. This is true to some
extent, but by default any container is fully accessible from any other local container.

 When you start the Docker daemon, you can configure it to disallow network con-
nections between containers. Doing so is a best practice in multi-tenant environments.
It minimizes the points (called an attack surface) where an attacker might compro-
mise other containers. You can achieve this by setting --icc=false when you start the
Docker daemon:

docker -d --icc=false ...

When inter-container communication is disabled, any traffic from one container to
another will be blocked by the host’s firewall except where explicitly allowed. These
exceptions are covered in section 5.4.

 Disabling inter-container communication is an important step in any Docker-
enabled environment. In doing so, you create an environment where explicit depen-
dencies must be declared in order to work properly. At best, a more promiscuous
configuration allows containers to be started when their dependencies aren’t ready. At
worst, leaving inter-container communication enabled allows compromised programs
within containers to attack other local containers.

5.4.5 Modifying the bridge interface

Before moving on to the next archetype, this seems like an appropriate time to dem-
onstrate the configuration options that modify the bridge interface. Outside this sec-
tion, examples will always assume that you’re working with the default bridge
configuration.

 Docker provides three options for customizing the bridge interface that the
Docker daemon builds on first startup. These options let the user do the following:

■ Define the address and subnet of the bridge
■ Define the range of IP addresses that can be assigned to containers
■ Define the maximum transmission unit (MTU)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

93Bridged containers
To define the IP address of the bridge and the subnet range, use the --bip flag when
you start the Docker daemon. There are all sorts of reasons why you might want to use
a different IP range for your bridge network. When you encounter one of those situa-
tions, making the change is as simple as using one flag.

 Using the --bip flag (which stands for bridge IP), you can set the IP address of the
bridge interface that Docker will create and the size of the subnet using a classless
inter-domain routing (CIDR) formatted address. CIDR notation provides a way to spec-
ify an IP address and its routing prefix. See appendix B for a brief primer on CIDR
notation. There are several guides online detailing how to build CIDR formatted
addresses, but if you’re familiar with bit masking, the following example will be suffi-
cient to get you started.

 Suppose you want to set your bridge IP address to 192.168.0.128 and allocate the
last 128 addresses in that subnet prefix to the bridge network. In that case, you’d set
the value of --bip to 192.168.0.128/25. To be explicit, using this value will create the
docker0 interface, set its IP address to 192.168.0.128, and allow IP addresses that range
from 192.168.0.128 to 192.168.0.255. The command would be similar to this:

docker -d --bip "192.168.0.128" ...

With a network defined for the bridge, you can go on to customize which IP addresses
in that network can be assigned to new containers. To do so, provide a similar CIDR
notation description to the --fixed-cidr flag.

 Working from the previous situation, if you wanted to reserve only the last 64
addresses of the network assigned to the bridge interface, you would use
192.168.0.192/26. When the Docker daemon is started with this set, new containers
will receive an IP address between 192.168.0.192 and 192.168.0.255. The only caveat
with this option is that the range specified must be a subnet of the network assigned to
the bridge (if you’re confused, there’s lots of great documentation and tooling on the
internet to help):

docker -d --fixed-cidr "192.168.0.192/26"

I’m not going to spend too much effort on the last setting. Network interfaces have a
limit to the maximum size of a packet (a packet is an atomic unit of communication).
By protocol, Ethernet interfaces have a maximum packet size of 1500 bytes. This is the
configured default. In some specific instances you’ll need to change the MTU on the
Docker bridge. When you encounter such a scenario, you can use the --mtu flag to set
the size in bytes:

docker -d –mtu 1200

Users who are more comfortable with Linux networking primitives may like to know
that they can provide their own custom bridge interface instead of using the default
bridge. To do so, configure your bridge interface and then tell the Docker daemon to
use it instead of docker0 when you start the daemon. The flag to use is -b or --bridge.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

94 CHAPTER 5 Network exposure
If you’ve configured a bridge named mybridge, you’d start Docker with a command like
the following:

docker -d -b mybridge ...

docker -d --bridge mybridge ...

Building custom bridges requires a deeper understanding of Linux kernel tools than
is necessary for this book. But you should know that this ability is available if you do
the research required.

5.5 Joined containers
The next less isolated network container archetype is called a joined container. These
containers share a common network stack. In this way there’s no isolation between
joined containers. This means reduced control and security. Although this isn’t the
least secure archetype, it’s the first one where the walls of a jail have been torn down.

 Docker builds this type of container by providing access to the interfaces created
for a specific container to another new container. Interfaces are in this way shared
like managed volumes. Figure 5.10 shows the network architecture of two joined
containers.

 The easiest way to see joined containers in action is to use a special case and join it
with a new container. The first command starts a server that listens on the loopback
interface. The second command lists all the open ports. The second command lists

Loopback
interface

Closed
container

Private
interface

Loopback
interface

Bridged
container A

Private
interface

Loopback
interface

Joined
container

A

Joined
container

B

Loopback
interface

Open
container

Joined container
virtual interface

Docker bridge virtual interface

Container
virtual interface

Network container archetypes from strongest to weakest

Logical host interface

Physical network interface

Operating system
network stack
(host interface)

Figure 5.10 Two containers share the same bridge and loopback interface.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

95Joined containers
the open port created by the first command because both containers share the same
network interface:

docker run -d --name brady \
 --net none alpine:latest \
 nc -l 127.0.0.1:3333

docker run -it \
 --net container:brady \
 alpine:latest netstat –al

By running these two commands you create two containers that share the same net-
work interface. Because the first container is created as a closed container, the two
will only share that single loopback interface. The container value of the --net flag
lets you specify the container that the new container should be joined with. Either
the container name or its raw ID identifies the container that the new container
should reuse.

 Containers joined in this way will maintain other forms of isolation. They will
maintain different file systems, different memory, and so on. But they will have the
exact same network components. That may sound concerning, but this type of con-
tainer can be useful.

 In the last example you joined two containers on a network interface that has no
access to the larger network. In doing so, you expanded the usefulness of a closed con-
tainer. You might use this pattern when two different programs with access to two dif-
ferent pieces of data need to communicate but shouldn’t share direct access to the
other’s data. Alternatively, you might use this pattern when you have network services
that need to communicate but network access or service discovery mechanisms like
DNS are unavailable.

 Setting aside security concerns, using joined containers reintroduces port conflict
issues. A user should be aware of this whenever they’re joining two containers. It’s
likely if they’re joining containers that run similar services that they will create con-
flicts. Under those circumstances, the conflicts will need to be resolved using more
traditional methods like changing application configuration. These conflicts can
occur on any shared interfaces. When programs are run outside a container, they
share access to the host’s interfaces with every other program running on the com-
puter, so this specific scope increase is still an improvement on today’s status quo.

 When two containers are joined, all interfaces are shared, and conflicts might hap-
pen on any of them. At first it might seem silly to join two containers that need bridge
access. After all, they can already communicate over the Docker bridge subnet. But
consider situations where one process needs to monitor the other through otherwise
protected channels. Communication between containers is subject to firewall rules. If
one process needs to communicate with another on an unexposed port, the best
thing to do may be to join the containers.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

96 CHAPTER 5 Network exposure
Before you start talking about how insecure Docker is because it allows any new con-
tainer to join a running one, keep in mind that issuing any commands to Docker
requires privileged access. Attackers with privileged access can do whatever they want,
including attacking the code or data running in any container directly. In that con-
text, this kind of network stack manipulation is no big deal.

 In contexts where people build multi-tenant systems, it’s a huge deal. If you’re
building or considering using such a service, the first thing you should do is set up
multiple accounts and try do gain access to one from the other. If you can, think twice
about using the service for anything important. Joining another user’s network stack
or mounting their volumes is a magnificent problem.

 Joined containers are a bit weaker but are not the weakest type of network con-
tainer. That title belongs to open containers.

5.6 Open containers
Open containers are dangerous. They have no network container and have full access
to the host’s network. This includes access to critical host services. Open containers
provide absolutely no isolation and should be considered only in cases when you have
no other option. The only redeeming quality is that unprivileged containers are still
unable to actually reconfigure the network stack. Figure 5.11 shows the network archi-
tecture of an open container.

 This type of container is created when you specify host as the value of the --net
option on the docker run command:

docker run --rm \
 --net host \
 alpine:latest ip addr

Running this command will create a container from the latest alpine image and with-
out any network jail. When you execute ip addr inside that container, you can inspect
all the host machine’s network interfaces. You should see several interfaces listed,
including one named docker0. As you may have noticed, this example creates a con-
tainer that executes a discrete task and then immediately removes the container.

 Using this configuration, processes can bind to protected network ports numbered
lower than 1024.

The best reasons to use joined containers

Use joined containers when you want to use a single loopback interface for commu-
nication between programs in different containers.

Use joined containers if a program in one container is going to change the joined net-
work stack and another program is going to use that modified network.

Use joined containers when you need to monitor the network traffic for a program in
another container.

Create an open
container
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

97Inter-container dependencies
5.7 Inter-container dependencies
Now that you’ve learned what kind of network containers you can build with Docker
and how those containers interact with the network, you need to learn how to use net-
work software in one container from another. You’ve seen how containers use the
bridge network to communicate and may have started thinking about how to piece
together a small system. When you consider that the bridge network assigns IP
addresses to containers dynamically at creation time, local service discovery can seem
complicated.

 One way to solve the problem would be to use a local DNS server and a registration
hook when containers start. Another would be to write your programs to scan the
local network for IP addresses listening on known ports. Both approaches handle
dynamic environments but require a non-trivial workload and additional tooling.
Each of these approaches will fail if arbitrary inter-container communication has been
disabled. You could force all traffic out and back through the host’s interface to
known published ports. But there are several occasions when you’ll need privileged
access to a network port. Docker provides another tool that you’ve already seen to
handle this use case.

5.7.1 Introducing links for local service discovery

When you create a new container, you can tell Docker to link it to any other container.
That target container must be running when the new container is created. The reason

Loopback
interface

Closed
container

Private
interface

Loopback
interface

Bridged
container A

Private
interface

Loopback
interface

Joined
container

A

Joined
container

B

Loopback
interface

Open
container

Joined container
virtual interface

Docker bridge virtual interface

Container
virtual interface

Network container archetypes from strongest to weakest

Logical host interface

Physical network interface

Operating system
network stack
(host interface)

Figure 5.11 An open container is a container with full access to the host networking resources.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

98 CHAPTER 5 Network exposure
is simple. Containers hold their IP address only when they’re running. If they’re
stopped, they lose that lease.

 Adding a link on a new container does three things:

■ Environment variables describing the target container’s end point will be cre-
ated.

■ The link alias will be added to the DNS override list of the new container with
the IP address of the target container.

■ Most interestingly, if inter-container communication is disabled, Docker will
add specific firewall rules to allow communication between linked containers.

The first two features of links are great for basic service discovery, but the third feature
enables users to harden their local container networks without sacrificing container-
to-container communication.

 The ports that are opened for communication are those that have been exposed
by the target container. So the --expose flag provides a shortcut for only one particu-
lar type of container to host port mapping when ICC is enabled. When ICC is disabled,
--expose becomes a tool for defining firewall rules and explicit declaration of a con-
tainer’s interface on the network. In the same context, links become a more static dec-
laration of local runtime service dependencies. Here’s a simple example; these images
don’t actually exist:

docker run -d --name importantData \
 --expose 3306 \
 dockerinaction/mysql_noauth \
 service mysql_noauth start

docker run -d --name importantWebapp \
 --link imporantData:db \
 dockerinaction/ch5_web startapp.sh -db tcp://db:3306

docker run -d --name buggyProgram \
 dockerinaction/ch5_buggy

Reading through this example, you can see that I’ve started some foolishly configured
MySQL server (a popular database server). The name implies that the server has dis-
abled any authentication requirements and anyone who can connect to the server can
access the data. I then started an important web application that needs access to the
data in the importantData container. I added a link from the importantWebapp con-
tainer to the importantData container. Docker will add information to that new
container that will describe how to connect to importantData. This way, when the web
application opens a database connection to tcp://db:3306, it will connect to the
database. Lastly, I started another container that’s known to contain buggy code. It’s
running as a nonprivileged user, but it may be possible for an attacker to inspect the
bridge network if the program is compromised.

Named target
of a link

Create link and set
alias to db

This container has no
route to importantData.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

99Inter-container dependencies
 If I’m running with inter-container communication enabled, attackers could easily
steal the data from the database in the importantData container. They would be able
to do a simple network scan to identify the open port and then gain access by simply
opening a connection. Even a casual traffic observer might think this connection
appropriate because no container dependencies have been strongly modeled.

 If I were running this example with inter-container communication disabled, an
attacker would be unable to reach any other containers from the container running
the compromised software.

 This is a fairly silly example. Please don’t think that simply disabling inter-container
communication will protect resources if those resources don’t protect themselves.
With appropriately configured software, strong network rules, and declared service
dependencies, you can build systems that achieve good defense in depth.

5.7.2 Link aliases

Links are one-way network dependencies created when one container is created and
specifies a link to another. As mentioned previously, the --link flag used for this pur-
pose takes a single argument. That argument is a map from a container name or ID to
an alias. The alias can be anything as long as it’s unique in the scope of the container
being created. So, if three containers named a, b, and c already exist and are running,
then I could run the following:

docker run --link a:alias-a --link b:alias-b --link c:alias-c ...

But if I made a mistake and assigned some or all containers to the same alias, then
that alias would only contain connection information for one of the other containers.
In this case, the firewall rules would still be created but would be nearly useless with-
out that connection information.

 Link aliases create a higher-level issue. Software running inside a container needs
to know the alias of the container or host it’s connecting to so it can perform the
lookup. Similar to host names, link aliases become a symbol that multiple parties must
agree on for a system to operate correctly. Link aliases function as a contract.

 A developer may build their application to assume that a database will be have an
alias of “database” and always look for a it at tcp://database:3306 because a DNS over-
ride with that host name would exist. This expected host name approach would work
as long as the person or process building the container either creates a link aliased to
a database or uses --add-host to create the host name. Alternatively, the application
could always look for connection information from an environment variable named
DATABASE_PORT. The environment variable approach will work only when a link is cre-
ated with that alias.

 The trouble is that there are no dependency declarations or runtime dependency
checks. It’s easy for the person building the container to do so without providing the
required linkage. Docker users must either rely on documentation to communicate
these dependencies or include custom dependency checking and fail-fast behavior on
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

100 CHAPTER 5 Network exposure

T
with

l

container startup. I recommend building the dependency-checking code first. For
example, the following script is included in dockerinaction/ch5_ff to validate that a
link named “database” has been set at startup:

#!/bin/sh

if [-z ${DATABASE_PORT+x}]
then
 echo "Link alias 'database' was not set!"
 exit
else
 exec "$@"
fi

You can see this script at work by running the following:

docker run -d --name mydb --expose 3306 \
 alpine:latest nc -l 0.0.0.0:3306

docker run -it --rm \
 dockerinaction/ch5_ff echo This "shouldn't" work.

docker run -it --rm \
 --link mydb:wrongalias \
 dockerinaction/ch5_ff echo Wrong.

docker run -it --rm \
 --link mydb:database \
 dockerinaction/ch5_ff echo It worked.

docker stop mydb && docker rm mydb

This example script relies on the environment modifications made by Docker when
links are created. You’ll find these very useful when you start building your own
images in chapter 7.

5.7.3 Environment modifications

I’ve mentioned that creating a link will add connection information to a new con-
tainer. This connection information is injected in the new container by adding envi-
ronment variables and a host name mapping in the DNS override system. Let’s start
with an example to inspect the link modifications:

docker run -d --name mydb \
 --expose 2222 --expose 3333 --expose 4444/udp \
 alpine:latest nc -l 0.0.0.0:2222

docker run -it --rm \
 --link mydb:database \
 dockerinaction/ch5_ff env

docker stop mydb && docker rm mydb

Create valid
link target

est
out
ink

Test with incorrect
link alias

Test correct alias

Shut down link
target container

Create valid
link target

Create link and list
environment variables
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

101Inter-container dependencies
This should output a block of lines that include the following:

DATABASE_PORT=tcp://172.17.0.23:3333
DATABASE_PORT_3333_TCP=tcp://172.17.0.23:3333
DATABASE_PORT_2222_TCP=tcp://172.17.0.23:2222
DATABASE_PORT_4444_UDP=udp://172.17.0.23:4444
DATABASE_PORT_2222_TCP_PORT=2222
DATABASE_PORT_3333_TCP_PORT=3333
DATABASE_PORT_4444_UDP_PORT=4444
DATABASE_PORT_3333_TCP_ADDR=172.17.0.23
DATABASE_PORT_2222_TCP_ADDR=172.17.0.23
DATABASE_PORT_4444_UDP_ADDR=172.17.0.23
DATABASE_PORT_2222_TCP_PROTO=tcp
DATABASE_PORT_3333_TCP_PROTO=tcp
DATABASE_PORT_4444_UDP_PROTO=udp
DATABASE_NAME=/furious_lalande/database

These are a sample of environment variables created for a link. All the variables relat-
ing to a specific link will use the link alias as a prefix. There will always be a single vari-
able with the _NAME suffix that includes the name of the current container, a slash, and
the link alias. For each port exposed by the linked container, there will be four indi-
vidual environment variables with the exposed port in the variable name. The pat-
terns are as follows:

■ <ALIAS>_PORT_<PORT NUMBER>_<PROTOCOL TCP or UDP>_PORT

This variable will simply contain the port number. That is curious because the
value will be contained in the variable name. This could be useful if you’re fil-
tering the list of environment variables for those containing the string
TCP_PORT. Doing so would render the list of ports.

■ <ALIAS>_PORT_<PORT NUMBER>_<PROTOCOL TCP or UDP>_ADDR

The values of variables with this pattern will be the IP address of the container
serving the connection. If the alias is the same, these should all have the same
value.

■ <ALIAS>_PORT_<PORT NUMBER>_<PROTOCOL TCP or UDP>_PROTO

Like variables with the _PORT suffix, the values of these variables are actually
contained within the variable name. It’s important not to assume that the proto-
col will always be TCP. UDP is also supported.

■ <ALIAS>_PORT_<PORT NUMBER>_<PROTOCOL TCP or UDP>

Variables of this form contain all the previous information encoded in URL
form.

One additional environment variable of the form <ALIAS>_<PORT> will be created and
will contain connection information for one of the exposed ports in URL form.

 These environment variables are available for any need application developers
might have in connecting to linked containers. But if developers have the port and
protocol predetermined, then all they really need is host name resolution and they
can rely on DNS for that purpose.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

102 CHAPTER 5 Network exposure
5.7.4 Link nature and shortcomings

The nature of links is such that dependencies are directional, static, and nontransi-
tive. Nontransitive means that linked containers won’t inherit links. More explicitly, if
I link container B to container A, and then link container C to container B, there will
be no link from container C to container A. Consider the container relationship in
figure 5.12.

 Links work by determining the network information of a container (IP address and
exposed ports) and then injecting that into a new container. Because this is done at
container creation time, and Docker can’t know what a container’s IP address will
be before that container is running, links can only be built from new containers to
existing containers. This is not to say that communication is one way but rather that
discovery is one way. This also means that if a dependency stops for some reason, the
link will be broken. Remember that containers maintain IP address leases only when
they’re running. So if a container is stopped or restarted, it will lose its IP lease and
any linked containers will have stale data.

 This property has caused some to criticize the value of links. The issue is that the
deeper a dependency fails, the greater the domino effect of required container
restarts. This might be an issue for some, but you must consider the specific impact.

 If a critical service like a database fails, an availability event has already occurred.
The chosen service discovery method impacts the recovery routine. An unavailable
service might recover on the same or different IP address. Links will break only if the
IP address changes and will require restarts. This leads some to jump to more dynamic
lookup systems like DNS.

 But even DNS systems have time-to-live (TTL) values that might slow the propaga-
tion of IP address changes. If an IP address changes during recovery, it might feel eas-
ier to use DNS, but recovery would only happen more quickly if connections to the

container A

container B

Container C has no
direct dependence on A:

no IP addresses are shared

container C

Container B depends on A:
container A’s IP address

is written into container B

Container B depends on A:
container A’s IP address

is written into container B

Figure 5.12 Links are not transitive. There’s no link from container C to
container A.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

103Summary
database can fail, reconnect attempts can time out, and the DNS TTL expires in less
time than it takes to restart a container. In abandoning container linking, you’ll be
forced to enable inter-container communication.

 If your applications are slow to start and you need to handle IP address changes
on service recovery, you may want to consider DNS. Otherwise, consider the static
dependency chain that has been modeled using container links. Building a system
that restarts appropriate containers on a dependency failure would be an achievable
exercise.

 This chapter focused on single-host Docker networking, and in that scope links are
incredibly useful tools. Most environments span more than one computer. Service
portability is the idea that a service could be running on any machine, in any con-
tainer in a larger environment. It’s the idea that a system where any process might run
anywhere is more robust than systems with strict locality constraints. I think this is
true, but it’s important to show how Docker can be used in either situation.

5.8 Summary
Networking is a broad subject that would take several books to properly cover. This
chapter should help readers with a basic understanding of network fundamentals
adopt the single-host networking facilities provided by Docker. In reading this mate-
rial, you learned the following:

■ Docker provides four network container archetypes: closed containers, bridged
containers, joined containers, and open containers.

■ Docker creates a bridge network that binds participating containers to each
other and to the network that the host is attached to.

■ The bridge interface created by Docker can be replaced or customized using
docker command-line options when the Docker daemon is started.

■ Options on the docker run command can be used to expose ports on a
container’s interface, bind ports exposed by a container to the host’s network
interface, and link containers to each other.

■ Disabling arbitrary inter-container communication is simple and builds a
system with defense in depth.

■ Using links provides a low-overhead local service discovery mechanism and
maps specific container dependencies.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Limiting risk
with isolation
Containers provide isolated process contexts, not whole system virtualization. The
semantic difference may seem subtle, but the impact is drastic. Chapter 1 touches
on the differences a bit. Chapters 2 through 5 each cover a different isolation
feature set of Docker containers. This chapter covers the remaining four and also
includes information about enhancing security on your system.

 The features covered in this chapter focus on managing or limiting the risks of
running software. You will learn how to give containers resource allowances, open
access to shared memory, run programs as specific users, control the type of
changes that a container can make to your computer, and integrate with other

This chapter covers
■ Setting resource limits
■ Sharing container memory
■ Users, permissions, and administrative

privileges
■ Granting access to specific Linux features
■ Working with enhanced Linux isolation and

security tools: SELinux and AppArmor
104

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

105Resource allowances
Linux isolation tools. Some of these topics involve Linux features that are beyond the
scope of this book. In those cases I try to give you an idea about their purpose and
some basic usage examples, and you can integrate them with Docker. Figure 6.1 shows
the eight namespaces and features that are used to build Docker containers.

 One last reminder, Docker and the technology it uses are evolving projects. Once
you get the learning tools presented in this chapter, remember to check for
developments, enhancements, and new best practices when you go to build
something valuable.

6.1 Resource allowances
Physical system resources like memory and time on the CPU are scarce. If the resource
consumption of processes on a computer exceeds the available physical resources, the
processes will experience performance issues and may stop running. Part of building
a system that creates strong isolation includes providing resource allowances on indi-
vidual containers.

 If you want to make sure that a program won’t overwhelm others on your com-
puter, the easiest thing to do is set a limit on the resources that it can use. Docker pro-
vides three flags on the docker run and docker create commands for managing
three different types of resource allowances that you can set on a container. Those
three are memory, CPU, and devices.

6.1.1 Memory limits

Memory limits are the most basic restriction you can place on a container. They
restrict the amount of memory that processes inside a container can use. Memory lim-
its are useful for making sure that one container can’t overwhelm the others running
on a single system. You can put a limit in place by using the -m or --memory flag on the

NET – Network access and structure

IPC – Communication by shared memory

UTS – Host and domain name

A process
in isolation

USR – User names and identifiers

MNT – File system access and structure

PID – Process identifiers
and process capabilities

chroot() – Controls location of
file system root

Cgroups – Resource protection

Figure 6.1 Eight-sided containers
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

106 CHAPTER 6 Limiting risk with isolation
docker run or docker create commands. The flag takes a value and a unit. The for-
mat is as follows:

<number><optional unit>where unit = b, k, m or g

In the context of these commands, b refers to bytes, k to kilobytes, m to megabytes, and
g to gigabytes. Put this new knowledge to use and start up a database application that
you’ll use in other examples:

docker run -d --name ch6_mariadb \
 --memory 256m \
 --cpu-shares 1024
 --user nobody \
 --cap-drop all \
 dockerfile/mariadb

With this command you install database software called MariaDB and start a container
with a memory limit of 256 megabytes. You might have noticed a few extra flags on
this command. This chapter covers each of those, but you may already be able to guess
what they do. Something else to note is that you don’t expose any ports or bind any
ports to the host’s interfaces. It will be easiest to connect to this database by linking to
it from another container. Before we get to that, I want to make sure you have a full
understanding of what happens here and how to use memory limits.

 The most important thing to understand about memory limits is that they’re not
reservations. They don’t guarantee that the specified amount of memory will be avail-
able. They’re only a protection from overconsumption.

 Before you put a memory allowance in place, you should consider two things. First,
can the software you’re running operate under the proposed memory allowance? Sec-
ond, can the system you’re running on support the allowance?

 The first question is often difficult to answer. It’s not common to see minimum
requirements published with open source software these days. Even if it were, though,
you’d have to understand how the memory requirements of the software scale based
on the size of the data you’re asking it to handle. For better or worse, people tend to
overestimate and adjust based on trial and error. In the case of memory-sensitive tools
like databases, skilled professionals such as database administrators can make better-
educated estimates and recommendations. Even then, the question is often answered
by another: how much memory do you have? And that leads to the second question.

 Can the system you’re running on support the allowance? It’s possible to set a
memory allowance that’s bigger than the amount of available memory on the system.
On hosts that have swap space (virtual memory that extends onto disk), a container
may realize the allowance. It’s always possible to impose an allowance that’s greater
than any physical memory resource. In those cases the limitations of the system will
always cap the container.

Set a memory constraint
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

107Resource allowances
 Finally, understand that there are several ways that software can fail if it exhausts
the available memory. Some programs may fail with a memory access fault, whereas
others may start writing out-of-memory errors to their logging. Docker neither detects
this problem nor attempts to mitigate the issue. The best it can do is apply the restart
logic you may have specified using the --restart flag described in chapter 2.

6.1.2 CPU

Processing time is just as scarce as memory, but the effect of starvation is performance
degradation instead of failure. A paused process that is waiting for time on the CPU is
still working correctly. But a slow process may be worse than a failing one if it’s run-
ning some important data-processing program, a revenue-generating web application,
or a back-end service for your app. Docker lets you limit a container’s CPU resources
in two ways.

 First, you can specify the relative weight of a container. Linux uses this to deter-
mine the percentage of CPU time the container should use relative to other running
containers. That percentage is for the sum of the computing cycles of all processors
available to the container.

 To set the CPU shares of a container and establish its relative weight, both docker
run and docker create offer a --cpu-shares flag. The value provided should be an
integer (which means you shouldn’t quote it). Start another container to see how CPU
shares work:

docker run -d -P --name ch6_wordpress \
--memory 512m \
--cpu-shares 512 \
--user nobody \
--cap-drop net_raw \
--link ch6_mariadb \
wordpress:4.1

This command will download and start WordPress version 4.1. It’s written in PHP and
is a great example of software that has been challenged by adapting to security risks.
Here we’ve started it with a few extra precautions. If you’d like to see it running on
your computer, use docker port ch6_wordpress to get the port number (I’ll call it
<port>) that the service is running on and open http://localhost:<port> in your web
browser. Remember, if you’re using Boot2Docker, you’ll need to use boot2docker ip
to determine the IP address of the virtual machine where Docker is running. When
you have that, substitute that value for localhost in the preceding URL.

 When you started the MariaDB container, you set its relative weight (cpu-shares)
to 1024, and you set the relative weight of WordPress to 512. These settings create a
system where the MariaDB container gets two CPU cycles for every one WordPress
cycle. If you started a third container and set its --cpu-shares value to 2048, it would
get half of the CPU cycles, and MariaDB and WordPress would split the other half at

Set a relative process weight
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://localhost:<port>

108 CHAPTER 6 Limiting risk with isolation
the same proportions as they were before. Figure 6.2 shows how portions change
based on the total weight of the system.

 CPU shares differ from memory limits in that they’re enforced only when there is
contention for time on the CPU. If other processes and containers are idle, then the
container may burst well beyond its limits. This is preferable because it makes sure
that CPU time is not wasted and that limited processes will yield if another process
needs the CPU. The intent of this tool is to prevent one or a set of processes from over-
whelming a computer, not to hinder performance of those processes. The defaults
won’t limit the container, and it will be able to use 100% of the CPU.

 The second feature Docker exposes is the ability to assign a container to a specific
CPU set. Most modern hardware uses multi-core CPUs. Roughly speaking, a CPU can
process as many instructions in parallel as it has cores. This is especially useful when
you’re running many processes on the same computer.

 A context switch is the task of changing from executing one process to executing
another. Context switching is expensive and may cause a noticeable impact on the
performance of your system. In some cases it may make sense to try to minimize con-
text switching by making sure that some critical processes are never executed on the
same set of CPU cores. You can use the --cpuset-cpus flag on docker run or docker
create to limit a container to execute only on a specific set of CPU cores.

 You can see the CPU set restrictions in action by stressing one of your machine
cores and examining your CPU workload:

Start a container limited to a single CPU and run a load generator
docker run -d \
 --cpuset-cpus 0 \
 --name ch6_stresser dockerinaction/ch6_stresser

Start a container to watch the load on the CPU under load
docker run -it --rm dockerinaction/ch6_htop

Once you run the second command, you’ll see htop display the running processes
and the workload of the available CPUs. The ch6_stresser container will stop run-
ning after 30 seconds, so it’s important not to delay when you run this experiment.

MariaDB
@1024 or ~28%

Total shares:
3584

WordPress
@512

or ~14%

A third container
@2048 or ~57%

MariaDB
@1024 or ~66%

Total shares:
1536

WordPress
@512

or ~33%

Figure 6.2 Relative weight and CPU shares

Restrict to CPU number 0
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

109Shared memory
When you finish with htop, press Q to quit. Before moving on, remember to shut
down and remove the container named ch6_stresser:

docker rm -vf ch6_stresser

I thought this was exciting when I first used it. To get the best appreciation, repeat this
experiment a few different times using different values for the --cpuset-cpus flag. If
you do, you’ll see the process assigned to different cores or different sets of cores. The
value can be either list or range forms:

■ 0,1,2—A list including the first three cores of the CPU
■ 0-2—A range including the first three cores of the CPU

6.1.3 Access to devices

Devices are the last resource type. This control differs from memory and CPU limits in
that access to devices is not a limit. This is more like resource authorization control.

 Linux systems have all sorts of devices, including hard drives, optical drives, USB
drives, mouse, keyboard, sound devices, and webcams. Containers have access to some
of these devices by default, and Docker creates others for each container (like virtual
terminals).

 On occasion it may be important to share other devices between a host and a spe-
cific container. Consider a situation where you’re running some computer vision soft-
ware that requires access to a webcam. In that case you’ll need to grant access to the
container running your software to the webcam device attached to the system; you can
use the --device flag to specify a set of devices to mount into the new container. The
following example would map your webcam at /dev/video0 to the same location
within a new container. Running this example will work only if you have a webcam at
/dev/video0:

docker -it --rm \
 --device /dev/video0:/dev/video0 \
 ubuntu:latest ls -al /dev

The value provided must be a map between the device file on the host operating sys-
tem and the location inside the new container. The device flag can be set many times
to grant access to different devices.

 People in situations with custom hardware or proprietary drivers will find this kind
of access to devices useful. It’s preferable to resorting to modifying their host operat-
ing system.

6.2 Shared memory
Linux provides a few tools for sharing memory between processes running on the
same computer. This form of inter-process communication (IPC) performs at memory
speeds. It’s often used when the latency associated with network or pipe-based IPC
drags software performance down below requirements. The best examples of shared

Mount video0
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

110 CHAPTER 6 Limiting risk with isolation

Start
cons
memory-based IPC use are in scientific computing and some popular database tech-
nologies like PostgreSQL.

 Docker creates a unique IPC namespace for each container by default. The Linux
IPC namespace partitions share memory primitives such as named shared memory
blocks and semaphores, as well as message queues. It’s okay if you’re not sure what
these are. Just know that they’re tools used by Linux programs to coordinate process-
ing. The IPC namespace prevents processes in one container from accessing the mem-
ory on the host or in other containers.

6.2.1 Sharing IPC primitives between containers

I’ve created an image named dockerinactionch6_ipc that contains both a producer
and consumer. They communicate using shared memory. The following will help you
understand the problem with running these in separate containers:

docker -d -u nobody --name ch6_ipc_producer \
 dockerinaction/ch6_ipc -producer

docker -d -u nobody --name ch6_ipc_consumer \
 dockerinaction/ch6_ipc -consumer

These commands start two containers. The first creates a message queue and begins
broadcasting messages on it. The second should pull from the message queue and
write the messages to the logs. You can see what each is doing by using the following
commands to inspect the logs of each:

docker logs ch6_ipc_producer

docker logs ch6_ipc_consumer

Notice that something is wrong with the containers you started. The consumer never
sees any messages on the queue. Each process used the same key to identify the shared
memory resource, but they referred to different memory. The reason is that each con-
tainer has its own shared memory namespace.

 If you need to run programs that communicate with shared memory in different
containers, then you’ll need to join their IPC namespaces with the --ipc flag. The
--ipc flag has a container mode that will create a new container in the same IPC
namespace as another target container. This is just like the --net flag covered in chap-
ter 5. Figure 6.3 illustrates the relationship between containers and their namespaced
shared memory pools.

 Use the following commands to test joined IPC namespaces for yourself:

docker rm -v ch6_ipc_consumer

docker -d --name ch6_ipc_consumer \
 --ipc container:ch6_ipc_producer \
 dockerinaction/ch6_ipc -consumer

These commands rebuild the consumer container and reuse the IPC namespace of
the ch6_ipc_producer container. This time the consumer should be able to access the

Start producer

Start consumer

Remove original consumer

 new
umer Join IPC namespace
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

111Shared memory
same memory location where the server is writing. You can see this working by using
the following commands to inspect the logs of each:

docker logs ch6_ipc_producer

docker logs ch6_ipc_consumer

Remember to clean up your running containers before moving on:

■ The v option will clean up volumes.
■ The f option will kill the container if it is running.
■ The rm command takes a list of containers.

docker rm -vf ch6_ipc_producer ch6_ipc_consumer

There are obvious security implications to reusing the shared memory namespaces of
containers. But this option is available if you need it. Sharing memory between con-
tainers is a safer alternative than sharing memory with the host.

6.2.2 Using an open memory container

Memory isolation is a desirable trait. If you encounter a situation where you need to
operate in the same namespace as the rest of the host, you can do so using an open
memory container:

docker -d --name ch6_ipc_producer \
 --ipc host \
 dockerinaction/ch6_ipc –producer

docker -d --name ch6_ipc_consumer \
 --ipc host \
 dockerinaction/ch6_ipc -consumer

These containers will be able to communicate with each other and any other pro-
cesses running on the host computer immediately. As you can see in this example, you

IPC

standalone

IPC

Operating system kernel

producer
consumer

--ipc container:producer

Figure 6.3 Three containers and their shared memory pools. Producer and consumer share a
single pool.

Start a producer

Use open memory container

Start a consumer

Use open memory container
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

112 CHAPTER 6 Limiting risk with isolation
enable this feature by specifying host on the --ipc flag. You might use this in cases
when you need to communicate with a process that must run on the host, but in gen-
eral you should try to avoid this if possible.

 Feel free to check out the source code for this example. It’s an ugly but simple C
program. You can find it by checking out the source repository linked to from the
image’s page on Docker Hub.

 You can clean up the containers you created in this section using the same cleanup
command as in section 6.2.1:

docker rm -vf ch6_ipc_producer ch6_ipc_consumer

Open memory containers are a risk, but it’s a far better idea to use them than to run
those processes outside a container.

6.3 Understanding users
Docker starts containers as the root user inside that container by default. The root user
has almost full privileged access to the state of the container. Any processes running as
that user inherit those permissions. It follows that if there’s a bug in one of those pro-
cesses, they might damage the container. There are ways to limit the damage, but the
most effective way to prevent these types of issues is not to use the root user.

 There are reasonable exceptions when using the root user is the best if not only
available option. You use the root user for building images and at runtime when
there’s no other option. There are other similar situations when you want to run sys-
tem administration software inside a container. In those cases the process needs privi-
leged access not only to the container but also to the host operating system. This
section covers the range of solutions to these problems.

6.3.1 Introduction to the Linux user namespace

Linux recently released a new user (USR) namespace that allows users in one
namespace to be mapped to users in another. The new namespace operates like the
process identifier (PID) namespace.

 Docker hasn’t yet been integrated with the USR namespace. This means that a con-
tainer running with a user ID (number, not name) that’s the same as a user on the
host machine has the same host file permissions as that user. This isn’t a problem. The
file system available inside a container has been mounted in such a way that changes
that are made inside that container will stay inside that container’s file system. But this
does impact volumes.

 When Docker adopts the USR namespace, you’ll be able to map user IDs on the
host to user IDs in a container namespace. So, I could map user 1000 on my host to
user 2 in the container. This is particularly useful for resolving file permissions issues
in cases like reading and writing to volumes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

113Understanding users

Displ
of

meta

Outputs: oot)
6.3.2 Working with the run-as user

Before you create a container, it would be nice to be able to tell what username (and
user ID) is going to be used by default. The default is specified by the image. There’s
currently no way to examine an image to discover attributes like the default user. This
information is not included on Docker Hub. And there’s no command to examine
image metadata.

 The closest feature available is the docker inspect command. If you missed it in
chapter 2, the inspect subcommand displays the metadata of a specific container.
Container metadata includes the metadata of the image it was created from. Once
you’ve created a container—let’s call it bob—you can get the username that the con-
tainer is using with the following commands:

docker create --name bob busybox:latest ping localhost

docker inspect bob

docker inspect --format "{{.Config.User}}" bob

If the result is blank, the container will default to running as the root user. If it isn’t
blank, either the image author specifically named a default run-as user or you set a
specific run-as user when you created the container. The --format or -f option used
in the second command allows you to specify a template to render the output. In this
case you’ve selected the User field of the Config property of the document. The value
can be any valid GoLang template, so if you’re feeling up to it, you can get creative
with the results.

 There are problems with this approach. First, the run-as user might be changed by
whatever script the image uses to start up. These are sometimes referred to as boot, or
init, scripts. The metadata returned by docker inspect includes only the configura-
tion that the container was started with. So if the user changes, it won’t be reflected
there. Second, you have to create a container from an image in order to get the infor-
mation. That can be dangerous.

 Currently, the only way to fix both problems would be to look inside the image.
You could expand the image files after you download them and examine the metadata
and init scripts by hand, but doing so is time-consuming and easy to get wrong. For
the time being, it may be better to run a simple experiment to determine the default
user. This will solve the first problem but not the second:

docker run --rm --entrypoint "" busybox:latest whoami

docker run --rm --entrypoint "" busybox:latest id

This demonstrates two commands that you might use to determine the default user of
an image (in this case, busybox:latest). Both the whoami and id commands are com-
mon among Linux distributions, and so they’re likely to be available in any given

ay all
bob’s
data

Show only run-as user
defined by bob’s image

 root Outputs: uid=0(root) gid=0(r
groups=10(wheel)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

114 CHAPTER 6 Limiting risk with isolation
image. The second command is superior because it shows both the name and ID
details for the run-as user. Both these commands are careful to unset the entrypoint
of the container. This will make sure that the command specified after the image
name is the command that is executed by the container. These are poor substitutes for
a first-class image metadata tool, but they get the job done. Consider the brief
exchange between two root users in figure 6.4.

 You can entirely avoid the default user problem if you change the run-as user when
you create the container. The quirk with using this is that the username must exist on
the image you’re using. Different Linux distributions ship with different users pre-
defined, and some image authors reduce or augment that set. You can get a list of
available users in an image with the following command:

docker run --rm busybox:latest awk -F: '$0=$1' /etc/passwd

I won’t go into much detail here, but the Linux user database is stored in a file located
at /etc/passwd. This command will read that file and pull a list of the usernames.
Once you’ve identified the user you want to use, you can create a new container with a
specific run-as user. Docker provides the --user or -u flag on docker run and docker
create for setting the user. This will set the user to “nobody”:

docker run --rm \
 --user nobody \
 busybox:latest id

This command used the “nobody” user. That user is very common and intended for
use in restricted-privileges scenarios like running applications. That was just one

Hi there container user!
My name is root.

Oh, it’s nice to meet you root.
My name is root too!

Well I’m you, but I have a terrible
default password set. Nobody even
changed it when they downloaded

my image from the internet!

If you give me any of your files I’d
be glad to mess them up or send
them off to some hacker for you.

Anyway, have a nice day!

Wait, you’re just like me?!
You ARE me?

Stay away from me.

Figure 6.4 Root vs. root—a security drama

Set run-as user to nobody Outputs: uid=99(nobody)
gid=99(nobody)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

115Understanding users

Set run-a
to nobod

group to d
example. You can use any username defined by the image here, including root. This
only scratches the surface of what you can do with the -u or --user flag. The value
can accept any user or group pair. It can also accept user and group names or IDs.
When you use IDs instead of names, the options start to open up:

docker run --rm \
 -u nobody:default \
 busybox:latest id

docker run --rm \
 -u 10000:20000 \
 busybox:latest id

The second command starts a new container that sets the run-as user and group to a
user and group that do not exist in the container. When that happens, the IDs won’t
resolve to a user or group name, but all file permissions will work as if the user and
group did exist. Depending on how the software packaged in the container is config-
ured, changing the run-as user may cause problems. Otherwise, this is a powerful fea-
ture that can make file-permission issues simple to resolve.

 You should be very careful about which users on your systems are able to control
your Docker daemon. If a user can control your Docker daemon, that person can
effectively control the root account on your host.

 The best way to be confident in your runtime configuration is to pull images from
trusted sources or build your own. It’s entirely possible to do malicious things like
turning a default non-root user into the root user (making your attempt at safety a
trap) or opening up access to the root account without authentication. Chapter 7 cov-
ers this topic briefly. For now, I’ll wrap up with another interesting example:

docker run -it --name escalation -u nobody busybox:latest \
 /bin/sh -c "whoami; su -c whoami"

That was too easy. The official BusyBox image has no password set for root (or many
other accounts). The official Ubuntu image ships with the account locked; you’d have
to start the container with root or promote via an SUID binary (more on these in chap-
ter 7). The impact of such weak authentication is that a process running as any user
could self-promote to root in the container. The lesson here is that you might con-
sider learning to start setting passwords or disabling the root account like Ubuntu and
others. This means modifying images, so even if you’re not a software author, you’ll
benefit from reading part 2 of this book.

6.3.3 Users and volumes

Now that you’ve learned how users inside containers share the same user ID space as
the users on your host system, you need to learn how those two might interact. The
main reason for that interaction is the file permissions on files in volumes. For exam-
ple, if you’re running a Linux terminal, you should be able to use these commands

s user
y and
efault

Outputs: uid=99(nobody)
gid=1000(default)

Set UID and GID
Outputs: uid=10000 gid=20000

Outputs: “nobody”
and then “root”
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

116 CHAPTER 6 Limiting risk with isolation

Ma
readab
by its

W
import

log
directly; otherwise, you’ll need to use the boot2docker ssh command to get a shell in
your Boot2Docker virtual machine:

echo "e=mc^2" > garbage

chmod 600 garbage

sudo chown root:root garbage

docker run --rm -v "$(pwd)"/garbage:/test/garbage \
 -u nobody \
 ubuntu:latest cat /test/garbage

docker run --rm -v "$(pwd)"/garbage:/test/garbage \
 -u root ubuntu:latest cat /test/garbage
Outputs: "e=mc^2"

cleanup that garbage
sudo rm -f garbage

The second-to-last docker command should fail with an error message like “Permis-
sion denied.” But the last docker command should succeed and show you the con-
tents of the file you created in the first command. This means that file permissions on
files in volumes are respected inside the container. But this also reflects that the user
ID space is shared. Both root on the host and root in the container have user ID 0. So,
although the container’s nobody user with ID 65534 can’t access a file owned by root
on the host, the container’s root user can.

 Unless you want a file to be accessible to a container, don’t mount it into that con-
tainer with a volume.

 The good news about this example is that you’ve seen how file permissions are
respected and can solve some more mundane—but practical—operational issues. For
example, how do you handle a log file written to a volume?

 The preferred way is with volume containers, as described in chapter 4. But even
then you need to consider file ownership and permission issues. If logs are written to a
volume by a process running as user 1001 and another container tries to access that
file as user 1002, then file permissions might prevent the operation.

 One way to overcome this obstacle would be to specifically manage the user ID of
the running user. You can either edit the image ahead of time by setting the user ID
of the user you’re going to run the container with, or you can use the desired user
and group ID:

mkdir logFiles

sudo chown 2000:2000 logFiles

docker run --rm -v "$(pwd)"/logFiles:/logFiles \
 -u 2000:2000 ubuntu:latest \
 /bin/bash -c "echo This is important info > /logFiles/important.log"

Create new file
on your host

ke file
le only
owner Make file owned by root

(assuming you have sudo access)

Try to read file as nobody

Try to read file as
"container root"

Set ownership of directory
to desired user and group

rite
ant
 file

Set UID:GID to 2000:2000
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Append to
from anot

contai
117Adjusting OS feature access with capabilities

docker run --rm -v "$(pwd)"/logFiles:/logFiles \
 -u 2000:2000 ubuntu:latest \
 /bin/bash -c "echo More info >> /logFiles/important.log"

sudo rm –r logFiles

After running this example, you’ll see that the file could be written to the directory
that’s owned by user 2000. Not only that, but any container that uses a user or group
with write access to the directory could write a file in that directory or to the same file
if the permissions allow. This trick works for reading, writing, and executing files.

6.4 Adjusting OS feature access with capabilities
Docker can adjust the feature authorization of processes within containers. In Linux
these feature authorizations are called capabilities, but as native support expands to
other operating systems, other back-end implementations would need to be provided.
Whenever a process attempts to make a gated system call, the capabilities of that pro-
cess are checked for the required capability. The call will succeed if the process has
the required capability and fail otherwise.

 When you create a new container, Docker drops a specific set of capabilities by
default. This is done to further isolate the running process from the administrative
functions of the operating system. In reading this list of dropped capabilities, you
might be able to guess at the reason for their removal. At the time of this writing, this
set includes the following:

■ SETPCAP—Modify process capabilities
■ SYS_MODULE—Insert/remove kernel modules
■ SYS_RAWIO—Modify kernel memory
■ SYS_PACCT—Configure process accounting
■ SYS_NICE—Modify priority of processes
■ SYS_RESOURCE—Override resource limits
■ SYS_TIME—Modify the system clock
■ SYS_TTY_CONFIG—Configure TTY devices
■ AUDIT_WRITE—Write the audit log
■ AUDIT_CONTROL—Configure audit subsystem
■ MAC_OVERRIDE—Ignore kernel MAC policy
■ MAC_ADMIN—Configure MAC configuration
■ SYSLOG—Modify kernel print behavior
■ NET_ADMIN—Configure the network
■ SYS_ADMIN—Catchall for administrative functions

The default set of capabilities provided to Docker containers provides a reasonable
feature reduction, but there will be times when you need to add or reduce this set fur-
ther. For example, the capability NET_RAW can be dangerous. If you wanted to be a bit
more careful than the default configuration, you could drop NET_RAW from the list of

 log
her
ner

Also set UID:GID to 2000:2000
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

118 CHAPTER 6 Limiting risk with isolation
capabilities. You can drop capabilities from a container using the --cap-drop flag on
docker create or docker run.

docker run --rm -u nobody \
 ubuntu:latest \
 /bin/bash -c "capsh --print | grep net_raw"

docker run --rm -u nobody \
 --cap-drop net_raw \
 ubuntu:latest \
 /bin/bash -c "capsh --print | grep net_raw"

In Linux documentation you’ll often see capabilities named in all uppercase and pre-
fixed with CAP_, but that prefix won’t work if provided to the capability-management
options. Use unprefixed and lowercase names for the best results.

 Similar to the --cap-drop flag, the --cap-add flag will add capabilities. If you
needed to add the SYS_ADMIN capability for some reason, you’d use a command like
the following:

docker run --rm -u nobody \
 ubuntu:latest \
 /bin/bash –c "capsh --print | grep sys_admin"

docker run --rm -u nobody \
 --cap-add sys_admin \
 ubuntu:latest \
 /bin/bash –c "capsh --print | grep sys_admin"

Like other container-creation options, both --cap-add and --cap-drop can be speci-
fied multiple times to add or drop multiple capabilities. These flags can be used to
build containers that will let a process perform exactly and only what is required for
proper operation.

6.5 Running a container with full privileges
In those cases when you need to run a system administration task inside a container,
you can grant that container privileged access to your computer. Privileged containers
maintain their file system and network isolation but have full access to shared memory
and devices and possess full system capabilities. You can perform several interesting
tasks, like running Docker inside a container, with privileged containers.

 The bulk of the uses for privileged containers is administrative. Take, for example,
an environment where the root file system is read-only, or installing software outside a
container has been disallowed, or you have no direct access to a shell on the host. If
you wanted to run a program to tune the operating system (for something like load
balancing) and you had access to run a container on that host, then you could simply
run that program in a privileged container.

 If you find a situation that can be solved only with the reduced isolation of a privi-
leged container, use the --privileged flag on docker create or docker run to
enable this mode:

Drop NET_RAW
capability

SYS_ADMIN is
not included

Add SYS_ADMIN
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

119Stronger containers with enhanced tools
docker run --rm \
 --privileged \
 ubuntu:latest id

docker run --rm \
 --privileged \
 ubuntu:latest capsh –print

docker run --rm \
 --privileged \
 ubuntu:latest ls /dev

docker run --rm \
 --privileged \
 ubuntu:latest ifconfig

Privileged containers are still partially isolated. For example, the network namespace
will still be in effect. If you need to tear down that namespace, you’ll need to combine
this with --net host as well.

6.6 Stronger containers with enhanced tools
Docker uses reasonable defaults and a “batteries included” toolset to ease adoption
and promote best practices. But you can enhance the containers it builds if you bring
additional tools. Tools you can use to harden your containers include AppArmor and
SELinux. If you use the LXC container provider, you can also provide custom LXC con-
figuration and get into fine-tuning containers. If you’re using LXC, you can even use a
Linux feature called seccomp-bpf (secure computing with system call filtering).

 Whole books have been written about each of these tools. They bring their own
nuances, benefits, and required skillsets. Their use is—without question—worth the
effort. Support for each varies by Linux distribution, so you may be in for a bit of work.
But once you’ve adjusted your host configuration, the Docker integration is simpler.

Security research

The information security space is very complicated and constantly evolving. It’s easy
to feel overwhelmed when reading through open conversations between InfoSec
professionals. These are often highly skilled people with long memories and very
different contexts from developers or general users. If you can take any one thing away
from open InfoSec conversations, it is that balancing system security with user needs
is complex.

One of the best things you can do if you’re new to this space is start with articles,
papers, blogs, and books before you jump into conversations. This will give you an
opportunity to digest one perspective and gain some deeper insight before switching
to thought from a different perspective. When you’ve had an opportunity to form your
own insight and opinions, these conversations become much more valuable.

Check out our IDs

Check out our
Linux capabilities

Check out list of
mounted devices

Examine network
configuration
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

120 CHAPTER 6 Limiting risk with isolation
6.6.1 Specifying additional security options

Docker provides a single flag for specifying options for Linux Security Modules (LSM)
at container creation or runtime. LSM is a framework that Linux adopted to act as an
interface layer between the operating system and security providers.

 AppArmor and SELinux are both LSM providers. They both provide mandatory
access control (MAC—the system defines access rules) and replace the standard Linux
discretionary access control (file owners define access rules).

 The flag available on docker run and docker create is --security-opt. This flag
can be set multiple times to pass multiple values. The values can currently be one of
six formats:

■ To set a SELinux user label, use the form label:user:<USERNAME> where
<USERNAME> is the name of the user you want to use for the label.

■ To set a SELinux role label, use the form label:role:<ROLE> where <ROLE> is
the name of the role you want to apply to processes in the container.

■ To set a SELinux type label, use the form label:type:<TYPE> where <TYPE> is
the type name of the processes in the container.

■ To set a SELinux level label, use the form label:level:<LEVEL> where <LEVEL>
is the level where processes in the container should run. Levels are specified as
low-high pairs. Where abbreviated to the low level only, SELinux will interpret
the range as single level.

■ To disable SELinux label confinement for a container, use the form
label:disable.

■ To apply an AppArmor profile on the container, use the form label:apparmor:
<PROFILE> where <PROFILE> is the name of the AppArmor profile to use.

As you can guess from these options, SELinux is a labeling system. A set of labels,
called a context, is applied to every file and system object. A similar set of labels
is applied to every user and process. At runtime when a process attempts to interact

(continued)

It’s very difficult to read one paper or learn one thing and know the best possible way
to build a hardened solution. Whatever your situation, the system will evolve to include
improvements from several sources. So the best thing you can do is take each tool
and learn it by itself. Don’t be intimidated by the depth some tools require for a strong
understanding. The effort will be worth the result, and you’ll understand the systems
you use much better for it.

Docker isn’t a perfect solution. Some would argue that it’s not even a security tool.
But what improvements it provides are far better than the alternative where people
forego any isolation due to perceived cost. If you’ve read this far, maybe you’d be
willing to go further with these auxiliary topics.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

121Stronger containers with enhanced tools
with a file or system resource, the sets of labels are evaluated against a set of allowed
rules. The result of that evaluation determines whether the interaction is allowed
or blocked.

 The last option will set an AppArmor profile. AppArmor is frequently substituted
for SELinux because it works with file paths instead of labels and has a training mode
that you can use to passively build profiles based on observed application behavior.
These differences are often cited as reasons why AppArmor is easier to adopt and
maintain.

6.6.2 Fine-tuning with LXC

Docker was originally built to use software called Linux Containers (LXC). LXC is a
container runtime provider—a tool that actually works with Linux to create
namespaces and all the components that go into building a container.

 As Docker matured and portability became a concern, a new container runtime
called libcontainer was built, replacing LXC. Docker ships with libcontainer by
default, but Docker uses an interface layer so that users can change the container exe-
cution provider. LXC is a more mature library than libcontainer and provides many
additional features that diverge from the goals of Docker. If you’re running a system
where you can and want to use LXC, you can change the container provider and take
advantage of those additional features. Before investing too heavily, know that some of
those additional features will greatly reduce the portability of your containers.

 To use LXC, you need to install it and make sure the Docker daemon was started
with the LXC driver enabled. Use the --exec-driver=lxc option when you start the
Docker daemon. The daemon is usually configured to start as one of your system’s ser-
vices. Check the installation instructions on www.docker.com to find details for your
distribution.

 Once Docker is configured for LXC, you can use the --lxc-conf flag on docker
run or docker create to set the LXC configuration for a container:

docker run -d \
 --lxc-conf="lxc.cgroup.cpuset.cpus=0,1" \
 --name ch6_stresser dockerinaction/ch6_stresser

docker run -it --rm dockerinaction/ch6_htop

docker rm -vf ch6_stresser

As when you ran a similar example earlier in this chapter, when you’ve finished with
htop, press Q to quit.

 If you decide to use the LXC provider and specify LXC-specific options for your
containers, Docker won’t be aware of that configuration. Certain configurations can
be provided that conflict with the standard container changes made for every Docker
container. For this reason, you should always carefully validate the configuration
against the actual impact to a container.

Limited to two
CPU cores by LXC
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.docker.com

122 CHAPTER 6 Limiting risk with isolation
6.7 Build use-case-appropriate containers
Containers are a cross-cutting concern. There are more reasons and ways that people
could use them than I could ever enumerate. So it’s important, when you use Docker
to build containers to serve your own purposes, that you take the time to do so in a
way that’s appropriate for the software you’re running.

 The most secure tactic for doing so would be to start with the most isolated con-
tainer you can build and justify reasons for weakening those restrictions. In reality,
people tend to be a bit more reactive than proactive. For that reason I think Docker
hits a sweet spot with the default container construction. It provides reasonable
defaults without hindering the productivity of users.

 Docker containers are not the most isolated by default. Docker does not require
that you enhance those defaults. It will let you do silly things in production if you want
to. This makes Docker seem much more like a tool than a burden and something peo-
ple generally want to use rather than feel like they have to use. For those who would
rather not do silly things in production, Docker provides a simple interface to
enhance container isolation.

6.7.1 Applications

Applications are the whole reason we use computers. Most applications are programs
that other people wrote and work with potentially malicious data. Consider your web
browser.

 A web browser is a type of application that’s installed on almost every computer. It
interacts with web pages, images, scripts, embedded video, Flash documents, Java
applications, and anything else out there. You certainly didn’t create all that content,
and most people were not contributors on web browser projects. How can you trust
your web browser to handle all that content correctly?

 Some more cavalier readers might just ignore the problem. After all, what’s the
worst thing that could happen? Well, if an attacker gains control of your web browser
(or other application), they will gain all the capabilities of that application and the
permissions of the user it’s running as. They could trash your computer, delete your
files, install other malware, or even launch attacks against other computers from
yours. So, this isn’t a good thing to ignore. The question remains: how do you protect
yourself when this is a risk you need to take?

 The best approach is to isolate the risk. First, make sure the application is running
as a user with limited permissions. That way, if there’s a problem, it won’t be able to
change the files on your computer. Second, limit the system capabilities of the
browser. In doing so, you make sure your system configuration is safer. Third, set lim-
its on how much of the CPU and memory the application can use. Limits help reserve
resources to keep the system responsive. Finally, it’s a good idea to specifically whitelist
devices that it can access. That will keep snoops off your webcam, USB, and the like.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

123Summary
6.7.2 High-level system services

High-level system services are a bit different from applications. They’re not part of the
operating system, but your computer makes sure they’re started and kept running.
These tools typically sit alongside applications outside the operating system, but they
often require privileged access to the operating system to operate correctly. They pro-
vide important functionality to users and other software on a system. Examples
include cron, syslogd, dbus, sshd, and docker.

 If you’re unfamiliar with these tools (hopefully not all of them), it’s all right. They
do things like keep system logs, run scheduled commands, and provide a way to get a
secure shell on the system from the network, and docker manages containers.

 Although running services as root is common, few of them actually need full privi-
leged access. Use capabilities to tune their access for the specific features they need.

6.7.3 Low-level system services

Low-level services control things like devices or the system’s network stack. They
require privileged access to the components of the system they provide (for example,
firewall software needs administrative access to the network stack).

 It’s rare to see these run inside containers. Tasks such as file-system management,
device management, and network management are core host concerns. Most software
run in containers is expected to be portable. So machine-specific tasks like these are a
poor fit for general container use cases.

 The best exceptions are short-running configuration containers. For example, in
an environment where all deployments happen with Docker images and containers,
you’d want to push network stack changes in the same way you push software. In this
case, you might push an image with the configuration to the host and make the
changes with a privileged container. The risk in this case is reduced because you
authored the configuration to be pushed, the container is not long running, and
changes like these are simple to audit.

6.8 Summary
This chapter introduced the isolation features provided by Linux and talked about
how Docker uses those to build configurable containers. With this knowledge, you will
be able to customize that container isolation and use Docker for any use case. The fol-
lowing points were covered in this chapter:

■ Docker uses cgroups, which let a user set memory limits, CPU weight, and CPU
core restrictions and restrict access to specific devices.

■ Docker containers each have their own IPC namespace that can be shared with
other containers or the host in order to facilitate communication over shared
memory.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

124 CHAPTER 6 Limiting risk with isolation
■ Docker does not yet support the USR namespace, so user and group IDs inside a
container are equivalent to the same IDs on the host machine.

■ You can and should use the -u option on docker run and docker create to
run containers as non-root users.

■ Avoid running containers in privileged mode whenever possible.
■ Linux capabilities provide operating system feature authorization. Docker

drops certain capabilities in order to provide reasonably isolating defaults.
■ The capabilities granted to any container can be set with the --cap-add and

--cap-drop flags.
■ Docker provides tooling for integrating with enhanced isolation technologies

like SELinux and AppArmor. These are powerful tools that any serious Docker
adopter should investigate.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Part 2

Packaging Software
for Distribution

It may not be a frequent occasion, but inevitably a Docker user will need to
create an image. There are times when the software you need is not packaged in
an image. Other times you will need a feature that has not been enabled in an
available image. The four chapters in this part will help you understand how to
originate, customize, and specialize the images you intend to deploy or share
using Docker.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

126 CHAPTER F
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Packaging software
in images
The goal of this chapter is to help you understand the concerns of image design,
learn the tools for building images, and discover advanced image patterns. You will
accomplish these things by working through a thorough real-world example. Before
getting started, you should have a firm grasp on the concepts in part 1 of this book.

 You can create a Docker image by either modifying an existing image inside a
container or defining and executing a build script called a Dockerfile. This chapter
focuses on the process of manually changing an image, the fundamental mechan-
ics of image manipulation, and the artifacts that are produced. Dockerfiles and
build automation are covered in chapter 8.

7.1 Building Docker images from a container
It’s easy to get started building images if you’re already familiar with using contain-
ers. Remember, a union file system (UFS) mount provides a container’s file system.

This chapter covers
■ Manual image construction and practices
■ Images from a packaging perspective
■ Working with flat images
■ Image versioning best practices
127

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

128 CHAPTER 7 Packaging software in images

Co
chan

new i
Any changes that you make to the file system inside a container will be written as new
layers that are owned by the container that created them.

 Before you work with real software, the next section details the typical workflow
with a Hello World example.

7.1.1 Packaging Hello World

The basic workflow for building an image from a container includes three steps. First,
you need to create a container from an existing image. You will choose the image
based on what you want to be included with the new finished image and the tools you
will need to make the changes.

 The second step is to modify the file system of the container. These changes will be
written to a new layer on the union file system for the container. We’ll revisit the rela-
tionship between images, layers, and repositories later in this chapter.

 Once the changes have been made, the last step is to commit those changes. Once
the changes are committed, you’ll be able to create new containers from the resulting
image. Figure 7.1 illustrates this workflow.

 With these steps in mind, work through the following commands to create a new
image named hw_image.

docker run --name hw_container \
 ubuntu:latest \
 touch /HelloWorld

docker commit hw_container hw_image

docker rm -vf hw_container

docker run --rm \
 hw_image \
 ls -l /HelloWorld

If that seems stunningly simple, you should know that it does become a bit more
nuanced as the images you produce become more sophisticated, but the basic steps
will always be the same.

 Now that you have an idea of the workflow, you should try to build a new image
with real software. In this case, you’ll be packaging a program called Git.

Docker creates
a new container
and UFS mount

of the image

docker images
list includes “image”

exit

docker commit
container image

A new repository
named image

is created

The container is
stopped and the

user is returned to
the host terminal

The file is
copied to a

new UFS layer

docker run --name
container ... /bin/sh

touch
/HelloWorld.txt

Figure 7.1 Building an image from a container

Modify file
in container

mmit
ge to
mage

Remove changed
container

Examine file in
new container
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

129Building Docker images from a container
7.1.2 Preparing packaging for Git

Git is a popular, distributed version-control tool. Whole books have been written
about the topic. If you’re unfamiliar with it, I recommend that you spend some time
learning how to use Git. At the moment, though, you only need to know that it’s a pro-
gram you’re going to install onto an Ubuntu image.

 To get started building your own image, the first thing you’ll need is a container
created from an appropriate base image:

docker run -it --name image-dev ubuntu:latest /bin/bash

This will start a new container running the bash shell. From this prompt, you can issue
commands to customize your container. Ubuntu ships with a Linux tool for software
installation called apt-get. This will come in handy for acquiring the software that
you want to package in a Docker image. You should now have an interactive shell run-
ning with your container. Next, you need to install Git in the container. Do that by
running the following command:

apt-get –y install git

This will tell APT to download and install Git and all its dependencies on the con-
tainer’s file system. When it’s finished, you can test the installation by running the git
program:

git version
Output something like:
git version 1.9.1

Package tools like apt-get make installing and uninstalling software easier than if you
had to do everything by hand. But they provide no isolation to that software and
dependency conflicts often occur. You can be sure that other software you install out-
side this container won’t impact the version of Git you have installed.

 Now that Git has been installed on your Ubuntu container, you can simply exit the
container:

exit

The container should be stopped but still present on your computer. Git has been
installed in a new layer on top of the ubuntu:latest image. If you were to walk away from
this example right now and return a few days later, how would you know exactly what
changes were made? When you’re packaging software, it’s often useful to review the list
of files that have been modified in a container, and Docker has a command for that.

7.1.3 Reviewing file system changes

Docker has a command that shows you all the file-system changes that have been
made inside a container. These changes include added, changed, or deleted files and
directories. To review the changes that you made when you used APT to install Git, run
the diff subcommand:

docker diff image-dev
Outputs a LONG list of file changes...
Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.allitebooks.com

http://www.allitebooks.org

130 CHAPTER 7 Packaging software in images
Lines that start with an A are files that were added. Those starting with a C were
changed. Finally those with a D were deleted. Installing Git with APT in this way made
several changes. For that reason, it might be better to see this at work with a few spe-
cific examples:

docker run --name tweak-a busybox:latest touch /HelloWorld
docker diff tweak-a
Output:
A /HelloWorld

docker run --name tweak-d busybox:latest rm /bin/vi
docker diff tweak-d
Output:
C /bin
D /bin/vi

docker run --name tweak-c busybox:latest touch /bin/vi
docker diff tweak-c
Output:
C /bin
C /bin/busybox

Always remember to clean up your workspace, like this:

docker rm -vf tweak-a
docker rm -vf tweak-d
docker rm -vf tweak-c

Now that you’ve seen the changes you’ve made to the file system, you’re ready to com-
mit the changes to a new image. As with most other things, this involves a single
command that does several things.

7.1.4 Committing a new image

You use the docker commit command to create an image from a modified container.
It’s a best practice to use the -a flag that signs the image with an author string. You
should also always use the -m flag, which sets a commit message. Create and sign a
new image that you’ll name ubuntu-git from the image-dev container where you
installed Git:

docker commit -a "@dockerinaction" -m "Added git" image-dev ubuntu-git
Outputs a new unique image identifier like:
bbf1d5d430cdf541a72ad74dfa54f6faec41d2c1e4200778e9d4302035e5d143

Once you’ve committed the image, it should show up in the list of images installed on
your computer. Running docker images should include a line like this:

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu-git latest bbf1d5d430cd 5 seconds ago 226 MB

Make sure it works by testing Git in a container created from that image:

docker run --rm ubuntu-git git version

Add new file
to busybox

Remove existing
file from busybox

Change existing
file in busybox
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

131Building Docker images from a container

Clea
Now you’ve created a new image based on an Ubuntu image and installed Git. That’s
a great start, but what do you think will happen if you omit the command override?
Try it to find out:

docker run --rm ubuntu-git

Nothing appears to happen when you run that command. That’s because the com-
mand you started the original container with was committed with the new image. The
command you used to start the container that the image was created by was /bin/
bash. When you create a container from this image using the default command, it will
start a shell and immediately exit. That’s not a terribly useful default command.

 I doubt that any users of an image named ubuntu-git would expect that they’d
need to manually invoke Git each time. It would be better to set an entrypoint on the
image to git. An entrypoint is the program that will be executed when the container
starts. If the entrypoint isn’t set, the default command will be executed directly. If the
entrypoint is set, the default command and its arguments will be passed to the entry-
point as arguments.

 To set the entrypoint, you’ll need to create a new container with the --entrypoint
flag set and create a new image from that container:

docker run --name cmd-git --entrypoint git ubuntu-git

docker commit -m "Set CMD git" \
 -a "@dockerinaction" cmd-git ubuntu-git

docker rm -vf cmd-git

docker run --name cmd-git ubuntu-git version

Now that the entrypoint has been set to git, users no longer need to type the com-
mand at the end. This might seem like a marginal savings with this example, but many
tools that people use are not as succinct. Setting the entrypoint is just one thing you
can do to make images easier for people to use and integrate into their projects.

7.1.5 Configurable image attributes

When you use docker commit, you commit a new layer to an image. The file-system
snapshot isn’t the only thing included with this commit. Each layer also includes meta-
data describing the execution context. Of the parameters that can be set when a
container is created, all the following will carry forward with an image created from
the container:

■ All environment variables
■ The working directory
■ The set of exposed ports
■ All volume definitions
■ The container entrypoint
■ Command and arguments

Show standard
git help and exit

Commit new image
to same namenup

Test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

132 CHAPTER 7 Packaging software in images

Com
im

Com
im
If these values weren’t specifically set for the container, the values will be inherited
from the original image. Part 1 of this book covers each of these, so I won’t reintro-
duce them here. But it may be valuable to examine two detailed examples. First, con-
sider a container that introduces two environment variable specializations:

docker run --name rich-image-example \
 -e ENV_EXAMPLE1=Rich -e ENV_EXAMPLE2=Example \
 busybox:latest

docker commit rich-image-example rie

docker run --rm rie \
 /bin/sh -c "echo \$ENV_EXAMPLE1 \$ENV_EXAMPLE2"

Next, consider a container that introduces an entrypoint and command specialization
as a new layer on top of the previous example:

docker run --name rich-image-example-2 \
 --entrypoint "/bin/sh" \
 rie \
 -c "echo \$ENV_EXAMPLE1 \$ENV_EXAMPLE2"

docker commit rich-image-example-2 rie

docker run --rm rie

This example builds two additional layers on top of BusyBox. In neither case are files
changed, but the behavior changes because the context metadata has been altered.
These changes include two new environment variables in the first new layer. Those
environment variables are clearly inherited by the second new layer, which sets the
entrypoint and default command to display their values. The last command uses the
final image without specifying any alternative behavior, but it’s clear that the previous
defined behavior has been inherited.

 Now that you understand how to modify an image, take the time to dive deeper
into the mechanics of images and layers. Doing so will help you produce high-quality
images in real-world situations.

7.2 Going deep on Docker images and layers
By this point in the chapter, you’ve built a few images. In those examples you started
by creating a container from an image like ubuntu:latest or busybox:latest. Then you
made changes to the file system or context within that container. Finally, everything
seemed to just work when you used the docker commit command to create a new
image. Understanding how the container’s file system works and what the docker
commit command actually does will help you become a better image author. This sec-
tion dives into that subject and demonstrates the impact to authors.

7.2.1 An exploration of union file systems

Understanding the details of union file systems (UFS) is important for image authors
for two reasons:

Create environment
variable specializationmit

age

Outputs: Rich Example

Set default entrypoint

Set default command
mit
age

Different command
with same output
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

133Going deep on Docker images and layers
■ Authors need to know the impact that adding, changing, and deleting files have
on resulting images.

■ Authors need have a solid understanding of the relationship between layers and
how layers relate to images, repositories, and tags.

Start by considering a simple example. Suppose you want to make a single change to an
existing image. In this case the image is ubuntu:latest, and you want to add a file named
mychange to the root directory. You should use the following command to do this:

docker run --name mod_ubuntu ubuntu:latest touch /mychange

The resulting container (named mod_ubuntu) will be stopped but will have written
that single change to its file system. As discussed in chapters 3 and 4, the root file sys-
tem is provided by the image that the container was started from. That file system is
implemented with something called a union file system.

 A union file system is made up of layers. Each time a change is made to a union file
system, that change is recorded on a new layer on top of all of the others. The “union”
of all of those layers, or top-down view, is what the container (and user) sees when
accessing the file system. Figure 7.2 illustrates the two perspectives for this example.

Union file system mount:
Layered perspective

Union file system mount:
Perspective from the container/mychange is written to the

union file system mount
created from ubuntu:latest

Container created with:

docker run
--name mod_ubuntu
ubuntu:latest
touch /mychange

Files are read by the container
from its union file system mount

/mychange is written to a
new layer that depends

on ubuntu:latest

All reads from unchanged files
are read from the layers that
make up the original image

By looking at the union file system from the side—the perspective of its layers—you can begin to
understand the relationship between different images and how file changes impact image size.

mod_ubuntu write layer

ubuntu:latest

Container created with:

docker run
--name mod_ubuntu
ubuntu:latest
touch /mychange

/mychange

other
files

Figure 7.2 A simple file write example on a union file system from two perspectives
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

134 CHAPTER 7 Packaging software in images
When you read a file from a union file sys-
tem, that file will be read from the top-most
layer where it exists. If a file was not created
or changed on the top layer, the read will fall
through the layers until it reaches a layer
where that file does exist. This is illustrated in
figure 7.3.

 All this layer functionality is hidden by the
union file system. No special actions need to
be taken by the software running in a con-
tainer to take advantage of these features.
Understanding layers where files were added
covers one of three types of file system writes. The other two are deletions and file
changes.

 Like additions, both file changes and deletions work by modifying the top layer.
When a file is deleted, a delete record is written to the top layer, which overshadows
any versions of that file on lower layers. When a file is changed, that change is written
to the top layer, which again shadows any versions of that file on lower layers. The
changes made to the file system of a container are listed with the docker diff com-
mand you used earlier in the chapter:

docker diff mod_ubuntu

This command will produce the output:

A /mychange

The A in this case indicates that the file was added. Run the next two commands to see
how a file deletion is recorded:

docker run --name mod_busybox_delete busybox:latest rm /etc/profile
docker diff mod_busybox_delete

This time the output will have two rows:

C /etc
D /etc/profile

The D indicates a deletion, but this time the parent folder of the file was also included.
The C indicates that it was changed. The next two commands demonstrate a file
change:

docker run --name mod_busybox_change busybox:latest touch /etc/profile
docker diff mod_busybox_change

The diff subcommand will show two changes:

C /etc
C /etc/profile

Layer 0

Layer 1

Layer 2

Files visible
to a container

A

A

A

Figure 7.3 Reading files that are located
on different layers
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

135Going deep on Docker images and layers
Again, the C indicates a change, and the two items are the file and the folder where it’s
located. If a file nested five levels deep were changed, there would be a line for each
level of the tree. File-change mechanics are the most important thing to understand
about union file systems.

 Most union file systems use something called copy-on-write, which is easier to
understand if you think of it as copy-on-change. When a file in a read-only layer (not
the top layer) is modified, the whole file is first copied from the read-only layer into
the writable layer before the change is made. This has a negative impact on runtime
performance and image size. Section 7.2.3 covers the way this should influence your
image design.

 Take a moment to solidify your understanding of the system by examining how the
more comprehensive set of scenarios is illustrated in figure 7.4. In this illustration files
are added, changed, deleted, and added again over a range of three layers.

 Knowing how file system changes are recorded, you can begin to understand what
happens when you use the docker commit command to create a new image.

7.2.2 Reintroducing images, layers, repositories, and tags

You’ve created an image using the docker commit command, and you understand
that it commits the top-layer changes to an image. But we’ve yet to define commit.

 Remember, a union file system is made up of a stack of layers where new layers are
added to the top of the stack. Those layers are stored separately as collections of the
changes made in that layer and metadata for that layer. When you commit a con-
tainer’s changes to its file system, you’re saving a copy of that top layer in an identifi-
able way.

 When you commit the layer, a new ID is generated for it, and copies of all the file
changes are saved. Exactly how this happens depends on the storage engine that’s

Layer 0

Layer 1

Layer 2

Files visible to a container

A C C CD D D

AD A

A AA A A A

A DC

Figure 7.4 Various file addition, change, and deletion combinations over a three-layered image
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

136 CHAPTER 7 Packaging software in images
being used on your system. It’s less important for you to understand the details than it
is for you to understand the general approach. The metadata for a layer includes that
generated identifier, the identifier of the layer below it (parent), and the execution
context of the container that the layer was created from. Layer identities and meta-
data form the graph that Docker and the UFS use to construct images.

 An image is the stack of layers that you get by starting with a given top layer and
then following all the links defined by the parent ID in each layer’s metadata, as shown
in figure 7.5.

 Images are stacks of layers constructed by traversing the layer dependency graph
from some starting layer. The layer that the traversal starts from is the top of the stack.
This means that a layer’s ID is also the ID of the image that it and its dependencies
form. Take a moment to see this in action by committing the mod_ubuntu container
you created earlier:

docker commit mod_ubuntu

That commit subcommand will generate output that includes a new image ID like this:

6528255cda2f9774a11a6b82be46c86a66b5feff913f5bb3e09536a54b08234d

You can create a new container from this image using the image ID as it’s presented to
you. Like containers, layer IDs are large hexadecimal numbers that can be difficult for
a person to work with directly. For that reason, Docker provides repositories.

 In chapter 3, a repository is roughly defined as a named bucket of images. More spe-
cifically, repositories are location/name pairs that point to a set of specific layer

Layer bb53

Layer 78d3

Layer 1104

Layer c3d2

Layer 2044

Layer ac94

Layer 6435

Layer d012

Layer 4b23

ubuntu-git

Layers
forming an

image

Collection of all layers

Layer bb53

Layer 78d3

Layer 1104

Layer ced2

Layer 2044

Layer 49dd

Layer 4b23

ubuntu-git

Figure 7.5 An image is the collection of layers produced by traversing the parent graph from a
top layer.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

137Going deep on Docker images and layers
identifiers. Each repository contains at least one tag that points to a specific layer iden-
tifier and thus the image definition. Let’s revisit the example used in chapter 3:

This repository is located in the registry
hosted at quay.io. It’s named for the user
(dockerinaction) and a unique short
name (ch3_hello_registry). Pulling this
repository would pull all the images
defined for each tag in the repository. In
this example, there’s only one tag, lat-
est. That tag points to a layer with the
short form ID 07c0f84777ef, as illus-
trated in figure 7.6.

 Repositories and tags are created
with the docker tag, docker commit, or
docker build commands. Revisit the
mod_ubuntu container again and put it
into a repository with a tag:

docker commit mod_ubuntu myuser/myfirstrepo:mytag
Outputs:
82ec7d2c57952bf57ab1ffdf40d5374c4c68228e3e923633734e68a11f9a2b59

The generated ID that’s displayed will be different because another copy of the layer
was created. With this new friendly name, creating containers from your images
requires little effort. If you want to copy an image, you only need to create a new tag
or repository from the existing one. You can do that with the docker tag command.
Every repository contains a “latest” tag by default. That will be used if the tag is omit-
ted like in the previous command:

docker tag myuser/myfirstrepo:mytag myuser/mod_ubuntu

By this point you should have a strong understanding of basic UFS fundamentals as
well as how Docker creates and manages layers, images, and repositories. With these
in mind, let’s consider how they might impact image design.

quay.io/dockerinaction/ch3_hello_registry

Registry host Short name

User name

:latest 07c0f84777ef

dockerinaction/ch3_hello_registry

quay.io

:latest 07c0f84777ef

:latest 07c0f84777ef

dockerinaction/...

Figure 7.6 A visual representation of
repositories
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

138 CHAPTER 7 Packaging software in images

Com
im
 All layers below the writable layer created for a container are immutable, meaning
they can never be modified. This property makes it possible to share access to images
instead of creating independent copies for every container. It also makes individual
layers highly reusable. The other side of this property is that anytime you make
changes to an image, you need to add a new layer, and old layers are never removed.
Knowing that images will inevitably need to change, you need to be aware of any
image limitations and keep in mind how changes impact image size.

7.2.3 Managing image size and layer limits

If images evolved in the same way that most people manage their file systems, Docker
images would quickly become unusable. For example, suppose you wanted to make a
different version of the ubuntu-git image you created earlier in this chapter. It may
seem natural to modify that ubuntu-git image. Before you do, create a new tag for
your ubuntu-git image. You’ll be reassigning the latest tag:

docker tag ubuntu-git:latest ubuntu-git:1.9

The first thing you’ll do in building your new image is remove the version of Git you
installed:

docker run --name image-dev2 \
 --entrypoint /bin/bash \
 ubuntu-git:latest -c "apt-get remove -y git"

docker commit image-dev2 ubuntu-git:removed

docker tag -f ubuntu-git:removed ubuntu-git:latest

docker images

The image list and sizes reported will look something like the following:

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu-git latest 826c66145a59 10 seconds ago 226.6 MB
ubuntu-git removed 826c66145a59 10 seconds ago 226.6 MB
ubuntu-git 1.9 3e356394c14e 41 hours ago 226 MB
...

Notice that even though you removed Git, the image actually increased in size.
Although you could examine the specific changes with docker diff, you should be
quick to realize that the reason for the increase has to do with the union file system.

 Remember, UFS will mark a file as deleted by actually adding a file to the top layer.
The original file and any copies that existed in other layers will still be present in the
image. It’s important to minimize image size for the sake of the people and systems
that will be consuming your images. If you can avoid causing long download times and
significant disk usage with smart image creation, then your consumers will benefit.
There’s also another risk with this approach that you should be aware of.

Create new tag: 1.9

Execute bash command

Remove Git

mit
age Reassign latest tag

Examine image sizes
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

139Going deep on Docker images and layers
 The union file system on your computer may have a layer count limit. These limits
vary, but a limit of 42 layers is common on computers that use the AUFS system. This
number may seem high, but it’s not unreachable. You can examine all the layers in an
image using the docker history command. It will display the following:

■ Abbreviated layer ID
■ Age of the layer
■ Initial command of the creating container
■ Total file size of that layer

By examining the history of the ubuntu-git:removed image, you can see that three lay-
ers have already been added on the top of the original ubuntu:latest image:

docker history ubuntu-git:removed

Outputs are something like:

IMAGE CREATED CREATED BY SIZE
826c66145a59 24 minutes ago /bin/bash -c apt-get remove 662 kB
3e356394c14e 42 hours ago git 0 B
bbf1d5d430cd 42 hours ago /bin/bash 37.68 MB
b39b81afc8ca 3 months ago /bin/sh -c #(nop) CMD [/bin 0 B
615c102e2290 3 months ago /bin/sh -c sed -i 's/^#\s*\ 1.895 kB
837339b91538 3 months ago /bin/sh -c echo '#!/bin/sh' 194.5 kB
53f858aaaf03 3 months ago /bin/sh -c #(nop) ADD file: 188.1 MB
511136ea3c5a 22 months ago 0 B

You can flatten images if you export them and then reimport them with Docker. But
that’s a bad idea because you lose the change history as well as any savings customers
might get when they download images with the same lower levels. Flattening images
defeats the purpose. The smarter thing to do in this case is to create a branch.

 Instead of fighting the layer system, you can solve both the size and layer growth
problems by using the layer system to create branches. The layer system makes it trivial
to go back in the history of an image and make a new branch. You are potentially cre-
ating a new branch every time you create a container from the same image.

 In reconsidering your strategy for your new ubuntu-git image, you should simply
start from ubuntu:latest again. With a fresh container from ubuntu:latest, you could
install whatever version of Git you want. The result would be that both the original
ubuntu-git image you created and the new one would share the same parent, and the
new image wouldn’t have any of the baggage of unrelated changes.

 Branching increases the likelihood that you’ll need to repeat steps that were
accomplished in peer branches. Doing that work by hand is prone to error. Automat-
ing image builds with Dockerfiles is a better idea.

 Occasionally the need arises to build a full image from scratch. This practice can be
beneficial if your goal is to keep images small and if you’re working with technologies
that have few dependencies. Other times you may want to flatten an image to trim an
image’s history. In either case, you need a way to import and export full file systems.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

140 CHAPTER 7 Packaging software in images
7.3 Exporting and importing flat file systems
On some occasions it’s advantageous to build images by working with the files destined
for an image outside the context of the union file system or a container. To fill this need,
Docker provides two commands for exporting and importing archives of files.

 The docker export command will stream the full contents of the flattened union
file system to stdout or an output file as a tarball. The result is a tarball that contains
all the files from the container perspective. This can be useful if you need to use the
file system that was shipped with an image outside the context of a container. You can
use the docker cp command for this purpose, but if you need several files, exporting
the full file system may be more direct.

 Create a new container and use the export subcommand to get a flattened copy of
its filesystem:

docker run --name export-test \
 dockerinaction/ch7_packed:latest ./echo For Export

docker export --output contents.tar export-test

docker rm export-test

tar -tf contents.tar

This will produce a file in the current directory named contents.tar. That file should
contain two files. At this point you could extract, examine, or change those files to
whatever end. If you had omitted the --output (or -o for short), then the contents of
the file system would be streamed in tarball format to stdout. Streaming the contents
to stdout makes the export command useful for chaining with other shell programs
that work with tarballs.

 The docker import command will stream the content of a tarball into a new
image. The import command recognizes several compressed and uncompressed
forms of tarballs. An optional Dockerfile instruction can also be applied during file-
system import. Importing file systems is a simple way to get a complete minimum set
of files into an image.

 To see how useful this is, consider a statically linked Go version of Hello World.
Create an empty folder and copy the following code into a new file named hello-
world.go:

package main
import "fmt"
func main() {
 fmt.Println("hello, world!")
}

You may not have Go installed on your computer, but that’s no problem for a Docker
user. By running the next command, Docker will pull an image containing the Go
compiler, compile and statically link the code (which means it can run all by itself),
and place that program back into your folder:

docker run --rm -v "$(pwd)":/usr/src/hello \
 -w /usr/src/hello golang:1.3 go build -v

Export file
system contents

Show archive contents
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

141Versioning best practices
If everything works correctly, you should have an executable program (binary file) in
the same folder, named hello. Statically linked programs have no external file depen-
dencies at runtime. That means this statically linked version of Hello World can run in
a container with no other files. The next step is to put that program in a tarball:

tar -cf static_hello.tar hello

Now that the program has been packaged in a tarball, you can import it using the
docker import command:

docker import -c "ENTRYPOINT [\"/hello\"]" - \
 dockerinaction/ch7_static < static_hello.tar

In this command you use the -c flag to specify a Dockerfile command. The command
you use sets the entrypoint for the new image. The exact syntax of the Dockerfile com-
mand is covered in chapter 8. The more interesting argument on this command is the
hyphen (-) at the end of the first line. This hyphen indicates that the contents of the
tarball will be streamed through stdin. You can specify a URL at this position if you’re
fetching the file from a remote web server instead of from your local file system.

 You tagged the resulting image as the dockerinaction/ch7_static repository. Take a
moment to explore the results:

docker run dockerinaction/ch7_static
docker history dockerinaction/ch7_static

You’ll notice that the history for this image has only a single entry (and layer):

IMAGE CREATED CREATED BY SIZE
edafbd4a0ac5 11 minutes ago 1.824 MB

In this case, the image we produced was small for two reasons. First, the program we
produced was only just over 1.8 MB, and we included no operating system files or sup-
port programs. This is a minimalistic image. Second, there’s only one layer. There are
no deleted or unused files carried with the image in lower layers. The downside to
using single-layer (or flat) images is that your system won’t benefit from layer reuse.
That might not be a problem if all your images are small enough. But the overhead
may be significant if you use larger stacks or languages that don’t offer static linking.

 There are trade-offs to every image design decision, including whether or not to
use flat images. Regardless of the mechanism you use to build images, your users need
a consistent and predictable way to identify different versions.

7.4 Versioning best practices
Pragmatic versioning practices help users make the best use of images. The goal of an
effective versioning scheme is to communicate clearly and provide adoption flexibility.

 It’s generally insufficient to build or maintain only a single version of your software
unless it’s your first. If you’re releasing the first version of your software, you should be
mindful of your users’ adoption experience immediately. The reason why versions are

Tar file streamed
via UNIX pipe

Outputs: hello,
world!
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

142 CHAPTER 7 Packaging software in images
important is that they identify contracts that your adopters depend on. Unexpected
software changes cause problems.

 With Docker, the key to maintaining multiple versions of the same software is
proper repository tagging. The understanding that every repository contains multiple
tags and that multiple tags can reference the same image is at the core of a pragmatic
tagging scheme.

 The docker tag command is unlike the other two commands that can be used to
create tags. It’s the only one that’s applied to existing images. To understand how to
use tags and how they impact the user adoption experience, consider the two tagging
schemes for a repository shown in figure 7.7.

 There are two problems with the tagging scheme on the left side of figure 7.7.
First, it provides poor adoption flexibility. A user can choose to declare a dependency
on 1.9 or latest. When a user adopts version 1.9 and that implementation is actually
1.9.1, they may develop dependencies on behavior defined by that build version.
Without a way to explicitly depend on that build version, they will experience pain
when 1.9 is updated to point to 1.9.2.

 The best way to eliminate this problem is to define and tag versions at a level where
users can depend on consistent contracts. This is not advocating a three-tiered ver-
sioning system. It means only that the smallest unit of the versioning system you use
captures the smallest unit of contract iteration. By providing multiple tags at this level,
you can let users decide how much version drift they want to accept.

 Consider the right side of figure 7.7. A user who adopts version 1 will always use
the highest minor and build version under that major version. Adopting 1.9 will
always use the highest build version for that minor version. Adopters who need to
carefully migrate between versions of their dependencies can do so with control and
at times of their choosing.

:2.rc1 3ef810da566c

:latest

:1

013b32be9201

:1.9

:1.9.2

:1.9.1 013b32be9201

v2.rc1

v1.9.2

v1.9.1

3ef810da566c

:latest

013b32be9201

:1.9

013b32be9201

v2.rc1
Image IDImage ID TagTag

v1.9.2

v1.9.1

Figure 7.7 Two different tagging schemes (left and right) for the same repository with three
images. Dotted lines represent old relationships between a tag and an image.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

143Summary
 The second problem is related to the latest tag. On the left, latest currently
points to an image that’s not otherwise tagged, and so an adopter has no way of know-
ing what version of the software that is. In this case, it’s referring to a release candidate
for the next major version of the software. An unsuspecting user may adopt the
latest tag with the impression that it’s referring to the latest build of an otherwise
tagged version.

 There are other problems with the latest tag. It’s adopted more frequently than it
should be. This happens because it’s the default tag, and Docker has a young commu-
nity. The impact is that a responsible repository maintainer should always make sure
that its repository’s latest refers to the latest stable build of its software instead of the
true latest.

 The last thing to keep in mind is that in the context of containers, you’re version-
ing not only your software but also a snapshot of all of your software’s packaged
dependencies. For example, if you package software with a particular distribution of
Linux, like Debian, then those additional packages become part of your image’s inter-
face contract. Your users will build tooling around your images and in some cases may
come to depend on the presence of a particular shell or script in your image. If you
suddenly rebase your software on something like CentOS but leave your software
otherwise unchanged, your users will experience pain.

 In situations where the software dependencies change, or the software needs to be
distributed on top of multiple bases, then those dependencies should be included
with your tagging scheme.

 The Docker official repositories are ideal examples to follow. Consider this tag list
for the official golang repository, where each row represents a distinct image:

1.3.3, 1.3
1.3.3-onbuild, 1.3-onbuild
1.3.3-cross, 1.3-cross
1.3.3-wheezy, 1.3-wheezy
1.4.2, 1.4, 1, latest
1.4.2-onbuild, 1.4-onbuild, 1-onbuild, onbuild
1.4.2-cross, 1.4-cross, 1-cross, cross
1.4.2-wheezy, 1.4-wheezy, 1-wheezy, wheezy

The columns are neatly organized by their scope of version creep with build-level tags
on the left and major versions to the right. Each build in this case has an additional
base image component, which is annotated in the tag.

 Users know that the latest version is actually version 1.4.2. If an adopter needs the
latest image built on the debian:wheezy platform, they can use the wheezy tag. Those
who need a 1.4 image with ONBUILD triggers can adopt 1.4-onbuild. This scheme puts
the control and responsibility for upgrades in the hands of your adopters.

7.5 Summary
This is the first chapter to cover the creation of Docker images, tag management, and
other distribution concerns such as image size. Learning this material will help you
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

144 CHAPTER 7 Packaging software in images
build images and become a better consumer of images. The following are the key
points in the chapter:

■ New images are created when changes to a container are committed using the
docker commit command.

■ When a container is committed, the configuration it was started with will be
encoded into the configuration for the resulting image.

■ An image is a stack of layers that’s identified by its top layer.
■ An image’s size on disk is the sum of the sizes of its component layers.
■ Images can be exported to and imported from a flat tarball representation

using the docker export and docker import commands.
■ The docker tag command can be used to assign several tags to a single reposi-

tory.
■ Repository maintainers should keep pragmatic tags to ease user adoption and

migration control.
■ Tag your latest stable build with the latest tag.
■ Provide fine-grained and overlapping tags so that adopters have control of the

scope of their dependency version creep.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Build automation and
advanced image

considerations
A Dockerfile is a file that contains instructions for building an image. The instruc-
tions are followed by the Docker image builder from top to bottom and can be
used to change anything about an image. Building images from Dockerfiles makes
tasks like adding files to a container from your computer simple one-line instruc-
tions. This section covers the basics of working with Dockerfile builds and the best
reasons to use them, a lean overview of the instructions, and how to add future
build behavior. We’ll get started with a familiar example.

This chapter covers
■ Automated packaging with Dockerfile
■ Metadata instructions
■ File system instructions
■ Packaging for multiprocess and durable containers
■ Trusted base images
■ Working with users
■ Reducing the image attack surface
145

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

146 CHAPTER 8 Build automation and advanced image considerations
8.1 Packaging Git with a Dockerfile
Let’s start by revisiting the Git on Ubuntu example. Having previously built a similar
image by hand, you should recognize many of the details and advantages of working
with a Dockerfile.

 First, create a new directory and from that directory create a new file with your
favorite text editor. Name the new file Dockerfile. Write the following five lines and
then save the file:

An example Dockerfile for installing Git on Ubuntu
FROM ubuntu:latest
MAINTAINER "dockerinaction@allingeek.com"
RUN apt-get install -y git
ENTRYPOINT ["git"]

Before dissecting this example, build a new image from it with the docker build

command from the same directory containing the Dockerfile. Tag the new image
with auto:

docker build --tag ubuntu-git:auto .

Outputs several lines about steps and output from apt-get and will finally display a
message like this:

Successfully built 0bca8436849b

Running this command starts the build process. When it’s completed, you should
have a brand-new image that you can test. View the list of all your ubuntu-git images
and test the newest one with this command:

docker images

The new build tagged “auto” should now appear in the list:

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu-git auto 0bca8436849b 10 seconds ago 225.9 MB
ubuntu-git latest 826c66145a59 10 minutes ago 226.6 MB
ubuntu-git removed 826c66145a59 10 minutes ago 226.6 MB
ubuntu-git 1.9 3e356394c14e 41 hours ago 226 MB
...

Now you can run a Git command using the new image:

docker run --rm ubuntu-git:auto

These commands demonstrate that the image you built with the Dockerfile works and
is functionally equivalent to the one you built by hand. Examine what you did to
accomplish this:

 First, you created a Dockerfile with four instructions:

■ FROM ubuntu:latest—Tells Docker to start from the latest Ubuntu image just
as you did when creating the image manually.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

147Packaging Git with a Dockerfile
■ MAINTAINER—Sets the maintainer name and email for the image. Providing this
information helps people know whom to contact if there’s a problem with the
image. This was accomplished earlier when you invoked commit.

■ RUN apt-get install –y git—Tells the builder to run the provided com-
mand to install Git.

■ ENTRYPOINT ["git"]—Sets the entrypoint for the image to git.

Dockerfiles, like most scripts, can include comments. Any line beginning with a # will
be ignored by the builder. It’s important for Dockerfiles of any complexity to be well
documented. In addition to improving Dockerfile maintainability, comments help
people audit images that they’re considering for adoption and spread best practices.

 The only special rule about Dockerfiles is that the first instruction must be FROM. If
you’re starting from an empty image and your software has no dependencies, or you’ll
provide all the dependencies, then you can start from a special empty repository
named scratch.

 After you saved the Dockerfile, you started the build process by invoking the docker
build command. The command had one flag set and one argument. The --tag flag
(or -t for short) specifies the full repository designation that you want to use for the
resulting image. In this case you used ubuntu-git:auto. The argument that you
included at the end was a single period. That argument told the builder the location of
the Dockerfile. The period told it to look for the file in the current directory.

 The docker build command has another flag, --file (or -f for short), that lets
you set the name of the Dockerfile. Dockerfile is the default, but with this flag you
could tell the builder to look for a file named BuildScript. This flag sets only the name
of the file, not the location of the file. That must always be specified in the location
argument.

 The builder works by automating the same tasks that you’d use to create images by
hand. Each instruction triggers the creation of a new container with the specified
modification. After the modification has been made, the builder commits the layer
and moves on to the next instruction and container created from the fresh layer.

 The builder validated that the image specified by the FROM instruction was installed
as the first step of the build. If it were not, Docker would have automatically tried to
pull the image. Take a look at the output from the build command that you ran:

Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:latest
 ---> b39b81afc8ca

You can see that in this case the base image specified by the FROM instruction is
ubuntu:latest, which should have already been installed on your machine. The
abbreviated image ID of the base image is included in the output.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

148 CHAPTER 8 Build automation and advanced image considerations
 The next instruction sets the maintainer information on the image. This creates a
new container and then commits the resulting layer. You can see the result of this
operation in the output for step 1:

Step 1 : MAINTAINER "dockerinaction@allingeek.com"
 ---> Running in 938ff06bf8f4
 ---> 80a695671201
Removing intermediate container 938ff06bf8f4

The output includes the ID of the container that was created and the ID of the com-
mitted layer. That layer will be used as the top of the image for the next instruction,
RUN. The output for the RUN instruction was clouded with all the output for the com-
mand apt-get install -y git. If you’re not interested in this output, you can
invoke the docker build command with the --quiet or -q flag. Running in quiet
mode will suppress output from the intermediate containers. Without the container
output, the RUN step produces output that looks like this:

Step 2 : RUN apt-get install -y git
 ---> Running in 4438c3b2c049
 ---> 1c20f8970532
Removing intermediate container 4438c3b2c049

Although this step usually takes much longer to complete, you can see the instruction
and input as well as the ID of the container where the command was run and the ID of
the resulting layer. Finally, the ENTRYPOINT instruction performs all the same steps,
and the output is similarly unsurprising:

Step 3 : ENTRYPOINT git
 ---> Running in c9b24b0f035c
 ---> 89d726cf3514
Removing intermediate container c9b24b0f035c

A new layer is being added to the resulting image after each step in the build.
Although this means you could potentially branch on any of these steps, the more
important implication is that the builder can aggressively cache the results of each
step. If a problem with the build script occurs after several other steps, the builder can
restart from the same position after the problem has been fixed. You can see this in
action by breaking your Dockerfile.

 Add this line to the end of your Dockerfile:

RUN This will not work

Then run the build again:

docker build --tag ubuntu-git:auto .

The output will show which steps the builder was able to skip in favor of cached
results:

Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

149A Dockerfile primer
Step 0 : FROM ubuntu:latest
 ---> b39b81afc8ca
Step 1 : MAINTAINER "dockerinaction@allingeek.com"
 ---> Using cache
 ---> 80a695671201
Step 2 : RUN apt-get install -y git
 ---> Using cache
 ---> 1c20f8970532
Step 3 : ENTRYPOINT git
 ---> Using cache
 ---> 89d726cf3514
Step 4 : RUN This will not work
 ---> Running in f68f0e0418b5
/bin/sh: 1: This: not found
INFO[0001] The command [/bin/sh -c This will not work] returned a non-zero

code: 127

Steps 1 through 3 were skipped because they were already built during your last build.
Step 4 failed because there’s no program with the name This in the container. The
container output was valuable in this case because the error message informs you
about the specific problem with the Dockerfile. If you fix the problem, the same steps
will be skipped again, and the build will succeed, resulting in output like Successfully
built d7a8ee0cebd4.

 The use of caching during the build can save time if the build includes download-
ing material, compiling programs, or anything else that is time-intense. If you need a
full rebuild, you can use the --no-cache flag on docker build to disable the use of
the cache. But make sure you’re disabling the cache only when absolutely required.

 This short example uses 4 of the 14 Dockerfile instructions. The example was lim-
ited in that all the files that were added to the image were downloaded from the
network; it modified the environment in a very limited way and provided a very gen-
eral tool. The next example with a more specific purpose and local code will provide a
more complete Dockerfile primer.

8.2 A Dockerfile primer
Dockerfiles are expressive and easy to understand due to their terse syntax that allows
for comments. You can keep track of changes to Dockerfiles with any version-control
system. Maintaining multiple versions of an image is as simple as maintaining multiple
Dockerfiles. The Dockerfile build process itself uses extensive caching to aid rapid
development and iteration. The builds are traceable and reproducible. They integrate
easily with existing build systems and many continuous build and integration tools.
With all these reasons to prefer Dockerfile builds to hand-made images, it’s important
to learn how to write them.

 The examples in this section cover each of the Dockerfile instructions except for
one. The ONBUILD instruction has a specific use case and is covered in the next
section. Every instruction is covered here at an introductory level. For deep coverage
of each instruction, the best reference will always be the Docker documentation

Note use of cache
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

150 CHAPTER 8 Build automation and advanced image considerations
online at https://docs.docker.com/reference/builder/. Docker also provides a best
practices section in its documentation: http://docs.docker.com/reference/builder.

8.2.1 Metadata instructions

The first example builds a base image and two other images with distinct versions of
the mailer program you used in chapter 2. The purpose of the program is to listen for
messages on a TCP port and then send those messages to their intended recipients.
The first version of the mailer will listen for messages but only log those messages. The
second will send the message as an HTTP POST to the defined URL.

 One of the best reasons to use Dockerfile builds is that they simplify copying files
from your computer into an image. But it’s not always appropriate for certain files to
be copied to images. The first thing to do when starting a new project is to define
which files should never be copied into any images. You can do this in a file called
.dockerignore. In this example you’ll be creating three Dockerfiles, and none needs
to be copied into the resulting images.

 Use your favorite text editor to create a new file named .dockerignore and copy in
the following lines:

.dockerignore
mailer-base.df
mailer-logging.df
mailer-live.df

Save and close the file when you’ve finished. This will prevent the .dockerignore file,
or files named mailer-base.df, mailer-log.df, or mailer-live.df, from ever being copied
into an image during a build. With that bit of accounting finished, you can begin
working on the base image.

 Building a base image helps create common layers. Each of the different versions
of the mailer will be built on top of an image called mailer-base. When you create a
Dockerfile, you need to keep in mind that each Dockerfile instruction will result in a
new layer being created. Instructions should be combined whenever possible because
the builder won’t perform any optimization. Putting this in practice, create a new file
named mailer-base.df and add the following lines:

FROM debian:wheezy
MAINTAINER Jeff Nickoloff "dia@allingeek.com"
RUN groupadd -r -g 2200 example && \
 useradd -rM -g example -u 2200 example
ENV APPROOT="/app" \
 APP="mailer.sh" \
 VERSION="0.6"
LABEL base.name="Mailer Archetype" \
 base.version="${VERSION}"
WORKDIR $APPROOT
ADD . $APPROOT
ENTRYPOINT ["/app/mailer.sh"]
EXPOSE 33333
Do not set the default user in the base otherwise

This file does
not exist yet
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://docs.docker.com/reference/builder/
http://docs.docker.com/reference/builder

151A Dockerfile primer
implementations will not be able to update the image
USER example:example

Put it all together by running the docker build command from the directory where the
mailer-base file is located. The -f flag tells the builder which filename to use as input:

docker build -t dockerinaction/mailer-base:0.6 -f mailer-base.df .

Five new instructions are introduced in this Dockerfile. The first new instruction is
ENV. ENV sets environment variables for an image similar to the --env flag on docker
run or docker create. In this case, a single ENV instruction is used to set three distinct
environment variables. That could have been accomplished with three subsequent
ENV instructions, but doing so would result in the creation of three layers. You can
keep things looking well structured by using a backslash to escape the newline charac-
ter (just like shell scripting):

Step 3 : ENV APPROOT "/app" APP "mailer.sh" VERSION "0.6"
 ---> Running in 05cb87a03b1b
 ---> 054f1747aa8d
Removing intermediate container 05cb87a03b1b

Environment variables declared in the Dockerfile are made available to the resulting
image but can be used in other Dockerfile instructions as substitutions. In this Dock-
erfile the environment variable VERSION was used as a substitution in the next new
instruction, LABEL:

Step 4 : LABEL base.name "Mailer Archetype" base.version "${VERSION}"
 ---> Running in 0473087065c4
 ---> ab76b163e1d7
Removing intermediate container 0473087065c4

The LABEL instruction is used to define key/value pairs that are recorded as additional
metadata for an image or container. This mirrors the --label flag on docker run and
docker create. Like the ENV instruction before it, multiple labels can and should be
set with a single instruction. In this case, the value of the VERSION environment vari-
able was substituted for the value of the base.version label. By using an environment
variable in this way, the value of VERSION will be available to processes running inside a
container as well as recorded to an appropriate label. This increases maintainability of
the Dockerfile because it’s more difficult to make inconsistent changes when the
value is set in a single location.

 The next two instructions are WORKDIR and EXPOSE. These are similar in operation
to their corresponding flags on the docker run and docker create commands. An
environment variable was substituted for the argument to the WORKDIR command:

Step 5 : WORKDIR $APPROOT
 ---> Running in 073583e0d554
 ---> 363129ccda97
Removing intermediate container 073583e0d554
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

152 CHAPTER 8 Build automation and advanced image considerations
The result of the WORKDIR instruction will be an image with the default working direc-
tory set to /app. Setting WORKDIR to a location that doesn’t exist will create that
location just like the command-line option. Last, the EXPOSE command creates a layer
that opens TCP port 33333:

Step 7 : EXPOSE 33333
 ---> Running in a6c4f54b2907
 ---> 86e0b43f234a
Removing intermediate container a6c4f54b2907

The parts of this Dockerfile that you should recognize are the FROM, MAINTAINER, and
ENTRYPOINT instructions. In brief, the FROM instruction sets the layer stack to start from
the debian:wheezy image. Any new layers built will be placed on top of that image.
The MAINTAINER instruction sets the Author value in the image metadata. The
ENTRYPOINT instruction sets the executable to be run at container startup. Here, it’s set-
ting the instruction to exec ./mailer.sh and using the shell form of the instruction.

 The ENTRYPOINT instruction has two forms: the shell form and an exec form. The
shell form looks like a shell command with whitespace-delimited arguments. The exec
form is a string array where the first value is the command to execute and the remain-
ing values are arguments. A command specified using the shell form would be
executed as an argument to the default shell. Specifically, the command used in this
Dockerfile will be executed as /bin/sh –c 'exec ./mailer.sh' at runtime. Most
importantly, if the shell form is used for ENTRYPOINT, then all other arguments pro-
vided by the CMD instruction or at runtime as extra arguments to docker run will be
ignored. This makes the shell form of ENTRYPOINT less flexible.

 You can see from the build output that the ENV and LABEL instructions each resulted
in a single step and layer. But the output doesn’t show that the environment variable
values were substituted correctly. To verify that, you’ll need to inspect the image:

docker inspect dockerinaction/mailer-base:0.6

TIP Remember, the docker inspect command can be used to view the
metadata of either a container or an image. In this case, you used it to
inspect an image.

The relevant lines are these:

"Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "APPROOT=/app",
 "APP=mailer.sh",
 "VERSION=0.6"
],
...
"Labels": {
 "base.name": "Mailer Archetype",
 "base.version": "0.6"
},
...
"WorkingDir": "/app"
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

153A Dockerfile primer
The metadata makes it clear that the environment variable substitution works. You can
use this form of substitution in the ENV, ADD, COPY, WORKDIR, VOLUME, EXPOSE, and USER
instructions.

 The last commented line is a metadata instruction USER. It sets the user and group
for all further build steps and containers created from the image. In this case, setting
it in a base image would prevent any downstream Dockerfiles from installing software.
That would mean that those Dockerfiles would need to flip the default back and forth
for permission. Doing so would create at least two additional layers. The better
approach would be to set up the user and group accounts in the base image and let
the implementations set the default user when they’ve finished building.

 The most curious thing about this Dockerfile is that the ENTRYPOINT is set to a file
that doesn’t exist. The entrypoint will fail when you try to run a container from this
base image. But now that the entrypoint is set in the base image, that’s one less layer
that will need to be duplicated for specific implementations of the mailer. The next
two Dockerfiles build mailer.sh different implementations.

8.2.2 File system instructions

Images that include custom functionality will need to modify the file system. A
Dockerfile defines three instructions that modify the file system: COPY, VOLUME, and
ADD. The Dockerfile for the first implementation should be placed in a file named
mailer-logging.df:

FROM dockerinaction/mailer-base:0.6
COPY ["./log-impl", "${APPROOT}"]
RUN chmod a+x ${APPROOT}/${APP} && \
 chown example:example /var/log
USER example:example
VOLUME ["/var/log"]
CMD ["/var/log/mailer.log"]

In this Dockerfile you used the image generated from mailer-base as the starting
point. The three new instructions are COPY, VOLUME, and CMD. The COPY instruction will
copy files from the file system where the image is being built into the build container.
The COPY instruction takes at least two arguments. The last argument is the destina-
tion, and all other arguments are source files. This instruction has only one
unexpected feature: any files copied will be copied with file ownership set to root.
This is the case regardless of how the default user is set before the COPY instruction.
It’s better to delay any RUN instructions to change file ownership until all the files that
you need to update have been copied into the image.

 The COPY instruction will honor both shell style and exec style arguments, just like
ENTRYPOINT and other instructions. But if any of the arguments contains whitespace,
then you’ll need to use the exec form.

TIP Using the exec (or string array) form wherever possible is the best prac-
tice. At a minimum, a Dockerfile should be consistent and avoid mixing styles.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

154 CHAPTER 8 Build automation and advanced image considerations
This will make your Dockerfiles more readable and ensure that instructions
behave as you’d expect without detailed understanding of their nuances.

The second new instruction is VOLUME. This behaves exactly as you’d expect if you
understand what the --volume flag does on a call to docker run or docker create.
Each value in the string array argument will be created as a new volume definition in
the resulting layer. Defining volumes at image build time is more limiting than at run-
time. You have no way to specify a bind-mount volume or read-only volume at image
build time. This instruction will only create the defined location in the file system and
then add a volume definition to the image metadata.

 The last instruction in this Dockerfile is CMD. CMD is closely related to the
ENTRYPOINT instruction. They both take either shell or exec forms and are both used
to start a process within a container. But there are a few important differences.

 The CMD command represents an argument list for the entrypoint. The default
entrypoint for a container is /bin/sh. If no entrypoint is set for a container, then the val-
ues are passed, because the command will be wrapped by the default entrypoint. But if
the entrypoint is set and is declared using the exec form, then you use CMD to set default
arguments. This base for this Dockerfile defines the ENTRYPOINT as the mailer com-
mand. This Dockerfile injects an implementation of mailer.sh and defines a default
argument. The argument used is the location that should be used for the log file.

 Before building the image, you’ll need to create the logging version of the mailer
program. Create a directory at ./log-impl. Inside that directory create a file named
mailer.sh and copy the following script into the file:

#!/bin/sh
printf "Logging Mailer has started.\n"
while true
do
 MESSAGE=$(nc -l -p 33333)
 printf "[Message]: %s\n" "$MESSAGE" > $1
 sleep 1
done

The structural specifics of this script are unimportant. All you need to know is that this
script will start a mailer daemon on port 33333 and write each message that it receives
to the file specified in the first argument to the program. Use the following command
to build the mailer-logging image from the directory containing mailer-logging.df:

docker build -t dockerinaction/mailer-logging -f mailer-logging.df .

The results of this image build should be anti-climactic. Go ahead and start up a
named container from this new image:

docker run -d --name logging-mailer dockerinaction/mailer-logging

The logging mailer should now be built and running. Containers that link to this
implementation will have their messages logged to /var/log/mailer.log. That’s not
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

155A Dockerfile primer
very interesting or useful in a real-world situation, but it might be handy for testing.
An implementation that sends email would be better for operational monitoring.

 The next implementation example uses the Simple Email Service provided by
Amazon Web Services to send email. Get started with another Dockerfile. Name this
file mailer-live.df:

FROM dockerinaction/mailer-base:0.6
ADD ["./live-impl", "${APPROOT}"]
RUN apt-get update && \
 apt-get install -y curl python && \
 curl "https://bootstrap.pypa.io/get-pip.py" -o "get-pip.py" && \
 python get-pip.py && \
 pip install awscli && \
 rm get-pip.py && \
 chmod a+x "${APPROOT}/${APP}"
RUN apt-get install -y netcat
USER example:example
CMD ["mailer@dockerinaction.com", "pager@dockerinaction.com"]

This Dockerfile includes one new instruction, ADD. The ADD instruction operates simi-
larly to the COPY instruction with two important differences. The ADD instruction will

■ Fetch remote source files if a URL is specified
■ Extract the files of any source determined to be an archive file

The auto-extraction of archive files is the more useful of the two. Using the remote
fetch feature of the ADD instruction isn’t good practice. The reason is that although
the feature is convenient, it provides no mechanism for cleaning up unused files and
results in additional layers. Instead, you should use a chained RUN instruction like the
third instruction of mailer-live.df.

 The other instruction to note in this Dockerfile is the CMD instruction, where two
arguments are passed. Here you’re specifying the From and To fields on any emails
that are sent. This differs from mailer-logging.df, which specifies only one argument.

 Next, create a new subdirectory named live-impl under the location containing
mailer-live.df. Add the following script to a file in that directory named mailer.sh:

#!/bin/sh
printf "Live Mailer has started.\n"
while true
do
 MESSAGE=$(nc -l -p 33333)
 aws ses send-email --from $1 \
 --destination {\"ToAddresses\":[\"$2\"]} \
 --message "{\"Subject\":{\"Data\":\"Mailer Alert\"},\
 \"Body\":{\"Text\":{\"Data\":\"$MESSAGE}\"}}}"
 sleep 1
done

The key takeaway from this script is that, like the other mailer implementation, it will
wait for connections on port 33333, take action on any received messages, and then
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

156 CHAPTER 8 Build automation and advanced image considerations
sleep for a moment before waiting for another message. This time, though, the script
will send an email using the Simple Email Service command-line tool. Build and start
a container with these two commands:

docker build -t dockerinaction/mailer-live -f mailer-live.df .
docker run -d --name live-mailer dockerinaction/mailer-live

If you link a watcher to these, you’ll find that the logging mailer works as advertised. But
the live mailer seems to be having difficulty connecting to the Simple Email Service to
send the message. With a bit of investigation, you’ll eventually realize that the container
is misconfigured. The aws program requires certain environment variables to be set.

 You’ll need to set AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and
AWS_DEFAULT_REGION in order to get this example working. Discovering execution
preconditions this way can be frustrating for users. Section 8.4.1 details an image
design pattern that reduces this friction and helps adopters.

 Before you get to design patterns, you need to learn about the final Dockerfile
instruction. Remember, not all images contain applications. Some are built as plat-
forms for downstream images. Those cases specifically benefit from the ability to
inject downstream build-time behavior.

8.3 Injecting downstream build-time behavior
Only one Dockerfile instruction isn’t covered in the primer. That instruction is
ONBUILD. The ONBUILD instruction defines instructions to execute if the resulting
image is used as a base for another build. For example, you could use ONBUILD instruc-
tions to compile a program that’s provided by a downstream layer. The upstream
Dockerfile copies the contents of the build directory into a known location and then
compiles the code at that location. The upstream Dockerfile would use a set of
instructions like this:

ONBUILD COPY [".", "/var/myapp"]
ONBUILD RUN go build /var/myapp

The instructions following ONBUILD instructions aren’t executed when their contain-
ing Dockerfile is built. Instead, those instructions are recorded in the resulting
image’s metadata under ContainerConfig.OnBuild. The previous instructions would
result in the following metadata inclusions:

...
"ContainerConfig": {
...
 "OnBuild": [
 "COPY [\".\", \"/var/myapp\"]",
 "RUN go build /var/myapp"
],
 ...

This metadata is carried forward until the resulting image is used as the base for
another Dockerfile build. When a downstream Dockerfile uses the upstream image
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

157Injecting downstream build-time behavior
(the one with the ONBUILD instructions) in a FROM instruction, those ONBUILD instruc-
tions are executed after the FROM instruction and before the next instruction in a
Dockerfile.

 Consider the following example to see exactly when ONBUILD steps are injected
into a build. You need to create two Dockerfiles and execute two build commands to
get the full experience. First, create an upstream Dockerfile that defines the ONBUILD
instructions. Name the file base.df and add the following instructions:

FROM busybox:latest
WORKDIR /app
RUN touch /app/base-evidence
ONBUILD RUN ls -al /app

You can see that the image resulting from building base.df will add an empty file
named base-evidence to the /app directory. The ONBUILD instruction will list the con-
tents of the /app directory at build time, so it’s important that you not run the build
in quiet mode if you want to see exactly when changes are made to the file system.

 The next file to create is the downstream Dockerfile. When this is built, you will be
able to see exactly when the changes are made to the resulting image. Name the file
downstream.df and include the following contents:

FROM dockerinaction/ch8_onbuild
RUN touch downstream-evidence
RUN ls -al .

This Dockerfile will use an image named dockerinaction/ch8_onbuild as a base, so
that’s the repository name you’ll want to use when you build the base. Then you can
see that the downstream build will create a second file and then list the contents of
/app again.

 With these two files in place, you’re ready to start building. Run the following to
create the upstream image:

docker build -t dockerinaction/ch8_onbuild -f base.df .

The output of the build should look like this:

Sending build context to Docker daemon 3.072 kB
Sending build context to Docker daemon
Step 0 : FROM busybox:latest
---> e72ac664f4f0
Step 1 : WORKDIR /app
---> Running in 4e9a3df4cf17
---> a552ff53eedc
Removing intermediate container 4e9a3df4cf17
Step 2 : RUN touch /app/base-evidence
---> Running in 352819bec296
---> bf38c3e396b2
Removing intermediate container 352819bec296
Step 3 : ONBUILD run ls -al /app
---> Running in fd70cef7e6ca
---> 6a53dbe28364
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

158 CHAPTER 8 Build automation and advanced image considerations
Removing intermediate container fd70cef7e6ca
Successfully built 6a53dbe28364

Then build the downstream image with this command:

docker build -t dockerinaction/ch8_onbuild_down -f downstream.df .

The results clearly show when the ONBUILD instruction (from the base image) is
executed:

Sending build context to Docker daemon 3.072 kB
Sending build context to Docker daemon
Step 0 : FROM dockerinaction/ch8_onbuild
Executing 1 build triggers
Trigger 0, RUN ls -al /app
Step 0 : RUN ls -al /app
---> Running in dd33ddea1fd4
 total 8
 drwxr-xr-x 2 root root 4096 Apr 20 23:08 .
 drwxr-xr-x 30 root root 4096 Apr 20 23:08 ..
 -rw-r--r-- 1 root root 0 Apr 20 23:08 base-evidence
---> 92782cc4e1f6
Removing intermediate container dd33ddea1fd4
Step 1 : RUN touch downstream-evidence
---> Running in 076b7e110b6a
---> 92cc1250b23c
Removing intermediate container 076b7e110b6a
Step 2 : RUN ls -al .
---> Running in b3fe2daac529
 total 8
 drwxr-xr-x 2 root root 4096 Apr 20 23:08 .
 drwxr-xr-x 31 root root 4096 Apr 20 23:08 ..
 -rw-r--r-- 1 root root 0 Apr 20 23:08 base-evidence
 -rw-r--r-- 1 root root 0 Apr 20 23:08 downstream-evidence
---> 55202310df7b
Removing intermediate container b3fe2daac529
Successfully built 55202310df7b

You can see the builder registering the ONBUILD instruction with the container meta-
data in step 3 of the base build. Later, the output of the downstream image build
shows which triggers (ONBUILD instructions) it has inherited from the base image. The
builder discovers and processes the trigger immediately after step 0, the FROM instruc-
tion. The output then includes the result of the RUN instruction specified by the
trigger. The output shows that only evidence of the base build is present. Later, when
the builder moves on to instructions from the downstream Dockerfile, it lists the con-
tents of the /app directory again. The evidence of both changes is listed.

 That example is more illustrative than it is useful. You should consider browsing
Docker Hub and looking for images tagged with onbuild suffixes to get an idea about
how this is used in the wild. Here are a few of my favorites:

■ https://registry.hub.docker.com/_/python/
■ https://registry.hub.docker.com/_/golang/
■ https://registry.hub.docker.com/_/node/
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://registry.hub.docker.com/_/python/
https://registry.hub.docker.com/_/golang/
https://registry.hub.docker.com/_/node/

159Using startup scripts and multiprocess containers
8.4 Using startup scripts and multiprocess containers
Whatever tooling you choose to use, you’ll always need to consider a few image design
aspects. You’ll need to ask yourself whether the software running in your container
requires any startup assistance, supervision, monitoring, or coordination with other
in-container processes. If so, then you’ll need to include a startup script or initializa-
tion program with the image and install it as the entrypoint.

8.4.1 Environmental preconditions validation

Failure modes are difficult to communicate and can catch someone off guard if they
occur at arbitrary times. If container configuration problems always cause failures at
startup time for an image, users can be confident that a started container will keep
running.

 In software design, failing fast and precondition validation are best practices. It
makes sense that the same should hold true for image design. The preconditions that
should be evaluated are assumptions about the context.

 Docker containers have no control over the environment where they’re created.
They do, however, have control of their own execution. An image author can solidify
the user experience of their image by introducing environment and dependency vali-
dation prior to execution of the main task. A container user will be better informed
about the requirements of an image if containers built from that image fail fast and
display descriptive error messages.

 For example, WordPress requires certain environment variables to be set or
container links to be defined. Without that context, WordPress would be unable to
connect to the database where the blog data is stored. It would make no sense to start
WordPress in a container without access to the data it’s supposed to serve. WordPress
images use a script as the container entrypoint. That script validates that the container
context is set in a way that’s compatible with the contained version of WordPress. If
any required condition is unmet (a link is undefined or a variable is unset), then the
script will exit before starting WordPress, and the container will stop unexpectedly.

 This type of startup script is generally use-case specific. If you’re packaging a specific
piece of software in an image, you’ll need to write the script yourself. Your script should
validate as much of the assumed context as possible. This should include the following:

■ Presumed links (and aliases)
■ Environment variables
■ Network access
■ Network port availability
■ Root file system mount parameters (read-write or read-only)
■ Volumes
■ Current user

You can use whatever scripting or programming language you want to accomplish the
task. In the spirit of building minimal images, it’s a good idea to use a language or
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

160 CHAPTER 8 Build automation and advanced image considerations
scripting tool that’s already included with the image. Most base images ship with a
shell like /bin/sh or /bin/bash. Shell scripts are the most common for that reason.

 Consider the following shell script that might accompany a program that depends
on a web server. At container startup, this script enforces that either another
container has been linked to the web alias and has exposed port 80 or the WEB_HOST
environment variable has been defined:

#!/bin/bash
set -e

if [-n "$WEB_PORT_80_TCP"]; then
 if [-z "$WEB_HOST"]; then
 WEB_HOST='web'
 else
 echo >&2 '[WARN]: Linked container, "web" overridden by $WEB_HOST.'
 echo >&2 "===> Connecting to WEB_HOST ($WEB_HOST)"
 fi
fi

if [-z "$WEB_HOST"]; then
 echo >&2 '[ERROR]: specify a linked container, "web" or WEB_HOST environ-

ment variable'
 exit 1
fi
exec "$@" # run the default command

If you’re unfamiliar with shell scripting, this is an appropriate time to learn it. The
topic is approachable, and there are several excellent resources for self-directed learn-
ing. This specific script uses a pattern where both an environment variable and a
container link are tested. If the environment variable is set, the container link will be
ignored. Finally, the default command is executed.

 Images that use a startup script to validate configuration should fail fast if someone
uses them incorrectly, but those same containers may fail later for other reasons. You
can combine startup scripts with container restart policies to make reliable containers.
But container restart policies are not perfect solutions. Containers that have failed
and are waiting to be restarted aren’t running. This means that an operator won’t be
able to execute another process within a container that’s in the middle of a backoff
window. The solution to this problem involves making sure the container never stops.

8.4.2 Initialization processes

UNIX-based computers usually start an initialization (init) process first. That init pro-
cess is responsible for starting all the other system services, keeping them running,
and shutting them down. It’s often appropriate to use an init-style system to launch,
manage, restart, and shut down container processes with a similar tool.

 Init processes typically use a file or set of files to describe the ideal state of the ini-
tialized system. These files describe what programs to start, when to start them, and
what actions to take when they stop. Using an init process is the best way to launch
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

161Building hardened application images
multiple programs, clean up orphaned processes, monitor processes, and automati-
cally restart any failed processes.

 If you decide to adopt this pattern, you should use the init process as the entry-
point of your application-oriented Docker container. Depending on the init program
you use, you may need to prepare the environment beforehand with a startup script.

 For example, the runit program doesn’t pass environment variables to the pro-
grams it launches. If your service uses a startup script to validate the environment, it
won’t have access to the environment variables it needs. The best way to fix that
problem might be to use a startup script for the runit program. That script might
write the environment variables to some file so the startup script for your application
can access them.

 There are several open source init programs. Full-featured Linux distributions
ship with heavyweight and full-featured init systems like SysV, Upstart, and systemd.
Linux Docker images like Ubuntu, Debian, and CentOS typically have their init
programs installed but nonfunctioning out of the box. These can be complex to con-
figure and typically have hard dependencies on resources that require root access. For
that reason, the community has tended toward the use of lighter-weight init programs.

 Popular options include runit, BusyBox init, Supervisord, and DAEMON Tools.
These all attempt to solve similar problems, but each has its benefits and costs. Using
an init process is a best practice for application containers, but there’s no perfect init
program for every use case. When evaluating any init program for use in a container,
consider these factors:

■ Additional dependencies the program will bring into the image
■ File sizes
■ How the program passes signals to its child processes (or if it does)
■ Required user access
■ Monitoring and restart functionality (backoff-on-restart features are a bonus)
■ Zombie process cleanup features

Whichever init program you decide on, make sure your image uses it to boost adopter
confidence in containers created from your image. If the container needs to fail fast
to communicate a configuration problem, make sure the init program won’t hide that
failure.

 These are the tools at your disposal to build images that result in durable contain-
ers. Durability is not security, and although adopters of your durable images might
trust that they will keep running as long as they can, they shouldn’t trust your images
until they’ve been hardened.

8.5 Building hardened application images
As an image author, it’s difficult to anticipate all the scenarios where your work will be
used. For that reason, harden the images you produce whenever possible. Hardening
an image is the process of shaping it in a way that will reduce the attack surface inside
any Docker containers based on it.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

162 CHAPTER 8 Build automation and advanced image considerations
 A general strategy for hardening an application image is to minimize the software
included with it. Naturally, including fewer components reduces the number of
potential vulnerabilities. Further, building minimal images keeps image download
times short and helps adopters deploy and build containers more rapidly.

 There are three things that you can do to harden an image beyond that general
strategy. First, you can enforce that your images are built from a specific image.
Second, you can make sure that regardless of how containers are built from your
image, they will have a sensible default user. Last, you should eliminate a common
path for root user escalation.

8.5.1 Content addressable image identifiers

The image identifiers discussed so far in this book are all designed to allow an author
to update images in a transparent way to adopters. An image author chooses what
image their work will be built on top of, but that layer of transparency makes it diffi-
cult to trust that the base hasn’t changed since it was vetted for security problems.
Since Docker 1.6, the image identifier has included an optional digest component.

 An image ID that includes the digest component is called a content addressable
image identifier (CAIID). This refers to a specific layer containing specific content,
instead of simply referring to a particular and potentially changing layer.

 Now image authors can enforce a build from a specific and unchanging starting
point as long as that image is in a version 2 repository. Append an @ symbol followed
by the digest in place of the standard tag position.

 Use docker pull and observe the line labeled digest in the output to discover the
digest of an image from a remote repository. Once you have the digest, you can use it
as the identifier to FROM instructions in a Dockerfile. For example, consider the follow-
ing, which uses a specific snapshot of debian:jessie as a base:

docker pull debian:jessie
Output:
...
Digest: sha256:d5e87cfcb730...

Dockerfile:
FROM debian@sha256:d5e87cfcb730...
...

Regardless of when or how many times the Dockerfile is used to build an image, they
will all use the content identified with that CAIID as their base. This is particularly use-
ful for incorporating known updates to a base into your images and identifying the
exact build of the software running on your computer.

 Although this doesn’t directly limit the attack surface of your images, using CAIIDs
will prevent it from changing without your knowledge. The next two practices do
address the attack surface of an image.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

163Building hardened application images
8.5.2 User permissions

The known container breakout tactics all rely on having system administrator privi-
leges inside the container. Chapter 6 covers the tools used to harden containers. That
chapter includes a deep dive into user management and a brief discussion of the USR
Linux namespace. This section covers standard practices for establishing reasonable
user defaults for images.

 First, please understand that a Docker user can always override image defaults
when they create a container. For that reason, there’s no way for an image to prevent
containers from running as the root user. The best things an image author can do are
create other non-root users and establish a non-root default user and group.

 Dockerfile includes a USER instruction that sets the user and group in the same way
you would with the docker run or docker create command. The instruction itself
was covered in the Dockerfile primer. This section is about considerations and best
practices.

 The best practice and general guidance is to drop privileges as soon as possible.
You can do this with the USER instruction before any containers are ever created or
with a startup script that’s run at container boot time. The challenge for an image
author is to determine the earliest appropriate time.

 If you drop privileges too early, the active user may not have permission to
complete the instructions in a Dockerfile. For example, this Dockerfile won’t build
correctly:

FROM busybox:latest
USER 1000:1000
RUN touch /bin/busybox

Building that Dockerfile would result in step 2 failing with a message like touch:
/bin/busybox: Permission denied. File access is obviously impacted by user
changes. In this case UID 1000 doesn’t have permission to change the ownership of the
file /bin/busybox. That file is currently owned by root. Reversing the second and
third lines would fix the build.

 The second timing consideration is the permissions and capabilities needed at
runtime. If the image starts a process that requires administrative access at runtime,
then it would make no sense to drop user access to a non-root user before that point.
For example, any process that needs access to the system port range (1–1024) will
need to be started by a user with administrative (at the very least CAP_NET_ADMIN)
privileges. Consider what happens when you try to bind to port 80 as a non-root user
with Netcat. Place the following Dockerfile in a file named UserPermissionDenied.df:

FROM busybox:latest
USER 1000:1000
ENTRYPOINT ["nc"]
CMD ["-l", "-p", "80", "0.0.0.0"]
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

164 CHAPTER 8 Build automation and advanced image considerations
Build the Dockerfile and run the resulting image in a container. In this case the user
(UID 1000) will lack the required privileges, and the command will fail:

docker build \
 -t dockerinaction/ch8_perm_denied \
 -f UserPermissionDenied.df \
 .
docker run dockerinaction/ch8_perm_denied
Output:
nc: bind: Permission denied

In cases like these, you may see no benefit in changing the default user. Instead, any
startup scripts that you build should take on the responsibility of dropping permis-
sions as soon as possible. The last question is which user should be dropped into?

 Docker currently lacks support for the Linux USR namespace. This means that UID
1000 in the container is UID 1000 on the host machine. All other aspects apart from
the UID and GID are segregated, just as they would be between computers. For exam-
ple, UID 1000 on your laptop might be your username, but the username associated
with UID 1000 inside a BusyBox container is default.

 Ultimately, until Docker adopts the USR namespace, it will be difficult for image
authors to know which UID/GID is appropriate to use. The only thing we can be sure
of is that it’s inappropriate to use common or system-level UID/GIDs where doing so
can be avoided. With that in mind, it’s still burdensome to use raw UID/GID numbers.
Doing so makes scripts and Dockerfiles less readable. For that reason, it’s typical for
image authors to include RUN instructions that create users and groups used by the
image. The following is the second instruction in a Postgres Dockerfile:

add our user and group first to make sure their IDs get assigned
consistently, regardless of whatever dependencies get added
RUN groupadd -r postgres && useradd -r -g postgres postgres

This instruction simply creates a postgres user and group with automatically assigned
UID and GID. The instruction is placed early in the Dockerfile so that it will always be
cached between rebuilds, and the IDs remain consistent regardless of other users that
are added as part of the build. This user and group could then be used in a USER
instruction. That would make for a safer default. But Postgres containers require ele-
vated privileges during startup. Instead, this particular image uses a su or sudo-like
program called gosu to start the Postgres process as the postgres user. Doing so makes
sure that the process runs without administrative access in the container.

 User permissions are one of the more nuanced aspects of building Docker images.
The general rule you should follow is that if the image you’re building is designed to
run some specific application code, then the default execution should drop user per-
missions as soon as possible.

 A properly functioning system should be reasonably secure with reasonable
defaults in place. Remember, though, an application or arbitrary code is rarely perfect
and could be intentionally malicious. For that reason, you should take additional steps
to reduce the attack surface of your images.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

165Building hardened application images
8.5.3 SUID and SGID permissions

The last hardening action to cover is the mitigation of SUID or SGID permissions. The
well-known file system permissions (read, write, execute) are only a portion of the set
defined by Linux. In addition to those, two are of particular interest: SUID and SGID.

 These two are similar in nature. An executable file with the SUID bit set will always
execute as its owner. Consider a program like /usr/bin/passwd, which is owned by the
root user and has the SUID permission set. If a non-root user like bob executes passwd,
he will execute that program as the root user. You can see this in action by building an
image from the following Dockerfile:

FROM ubuntu:latest
Set the SUID bit on whoami
RUN chmod u+s /usr/bin/whoami
Create an example user and set it as the default
RUN adduser --system --no-create-home --disabled-password --disabled-login \
 --shell /bin/sh example
USER example
Set the default to compare the container user and
the effective user for whoami
CMD printf "Container running as: %s\n" $(id -u -n) && \
 printf "Effectively running whoami as: %s\n" $(whoami)

Once you’ve created the Dockerfile, you need to build an image and run the default
command in a container:

docker build -t dockerinaction/ch8_whoami .
docker run dockerinaction/ch8_whoami

Doing so prints results like these to the terminal:

Container running as: example
Effectively running whoami as: root

The output of the default command shows that even though you’ve executed the
whoami command as the example user, it’s running from the context of the root user.
The SGID works similarly. The difference is that the execution will be from the owning
group’s context, not the owning user.

 Running a quick search on your base image will give you an idea of how many and
which files have these permissions:

docker run --rm debian:wheezy find / -perm +6000 -type f

It will display a list like this:

/sbin/unix_chkpwd
/bin/ping6
/bin/su
/bin/ping
/bin/umount
/bin/mount
/usr/bin/chage
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

166 CHAPTER 8 Build automation and advanced image considerations
/usr/bin/passwd
/usr/bin/gpasswd
/usr/bin/chfn
/usr/bin/newgrp
/usr/bin/wall
/usr/bin/expiry
/usr/bin/chsh
/usr/lib/pt_chown

This command will find all of the SGID files:

docker run --rm debian:wheezy find / -perm +2000 -type f

The resulting list is much shorter:

/sbin/unix_chkpwd
/usr/bin/chage
/usr/bin/wall
/usr/bin/expiry

Each of the listed files in this particular image has the SUID or SGID permission, and a
bug in any of them could be used to compromise the root account inside a container.
The good news is that files that have either of these permissions set are typically useful
during image builds but rarely required for application use cases. If your image is
going to be running software that’s arbitrary or externally sourced, it’s a best practice
to mitigate this risk of escalation.

 Fix this problem and either delete all these files or unset their SUID and SGID per-
missions. Taking either action would reduce the image’s attack surface. The following
Dockerfile instruction will unset the SUID and GUID permissions on all files currently
in the image:

RUN for i in $(find / -type f \(-perm +6000 -o -perm +2000 \)); \
 do chmod ug-s $i; done

Hardening images will help users build hardened containers. Although it’s true that
no hardening measures will protect users from intentionally building weak containers,
those measures will help the more unsuspecting and most common type of user.

8.6 Summary
Most Docker images are built automatically from Dockerfiles. This chapter covers the
build automation provided by Docker and Dockerfile best practices. Before moving
on, make sure that you’ve understood these key points:

■ Docker provides an automated image builder that reads instructions from
Dockerfiles.

■ Each Dockerfile instruction results in the creation of a single image layer.
■ Merge instructions whenever possible to minimize the size of images and layer

count.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

167Summary
■ Dockerfiles include instructions to set image metadata like the default user,
exposed ports, default command, and entrypoint.

■ Other Dockerfile instructions copy files from the local file system or remote
location into the produced images.

■ Downstream builds inherit build triggers that are set with ONBUILD instructions
in an upstream Dockerfile.

■ Startup scripts should be used to validate the execution context of a container
before launching the primary application.

■ A valid execution context should have appropriate environment variables set,
network dependencies available, and an appropriate user configuration.

■ Init programs can be used to launch multiple processes, monitor those pro-
cesses, reap orphaned child processes, and forward signals to child processes.

■ Images should be hardened by building from content addressable image
identifiers, creating a non-root default user, and disabling or removing any
executable with SUID or SGID permissions.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Public and private
software distribution
You have your own images from software you’ve written, customized, or just pulled
from the internet. But what good is an image if nobody can install it? Docker is
different from other container management tools because it provides image distri-
bution features.

 There are several ways to get your images out to the world. This chapter
explores those distribution paradigms and provides a framework for making or
choosing one or more for your own projects.

 Hosted registries offer both public and private repositories with automated
build tools. Running a private registry lets you hide and customize your image
distribution infrastructure. Heavier customization of a distribution workflow might

This chapter covers
■ Choosing a project distribution method
■ Using hosted infrastructure
■ Running and using your own registry
■ Understanding manual image distribution

workflows
■ Distributing image sources
168

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

169Choosing a distribution method
require you to abandon the Docker image distribution facilities and build your own.
Some systems might abandon the image as the distribution unit altogether and dis-
tribute image sources.

 This chapter will teach you how to select and use a method for distributing your
images to the world or just at work.

9.1 Choosing a distribution method
The most difficult thing about choosing a distribution method is choosing the appro-
priate method for your situation. To help with this problem, each method presented
in this chapter is examined on the same set of selection criteria.

 The first thing to recognize about distributing software with Docker is that there’s
no universal solution. Distribution requirements vary for many reasons, and several
methods are available. Every method has Docker tools at its core, so it’s always possible
to migrate from one to another with minimal effort. The best way to start is by examin-
ing the full spectrum of options at a high level.

9.1.1 A distribution spectrum

The image distribution spectrum is a balance between flexibility and complexity. The
methods that provide the most flexibility can be the most complicated to use, whereas
those that are the simplest to use are generally the most restrictive. Figure 9.1 shows
the full spectrum.

 The methods included in the spectrum range from hosted registries like Docker
Hub to totally custom distribution architectures or source-distribution methods. Some
of these subjects will be covered in more detail than others. Particular focus is placed
on private registries because they provide the most balance between the two concerns.

 Having a spectrum of choices illustrates your range of options, but you need a con-
sistent set of selection criteria in order to determine which you should use.

Distribution spectrum

Complicated/flexibleSimple/restrictive

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.1 The image distribution spectrum
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

170 CHAPTER 9 Public and private software distribution
9.1.2 Selection criteria

Choosing the best distribution method for your needs may seem daunting with this
many options. In situations like these you should take the time to understand the
options, identify criteria for making a selection, and avoid the urge to make a quick
decision or settle.

 The following identified selection criteria are based on differences across the spec-
trum and on common business concerns. When making a decision, consider how
important each of these is in your situation:

■ Cost
■ Visibility
■ Transport speed or bandwidth overhead
■ Longevity control
■ Availability control
■ Access control
■ Artifact integrity
■ Artifact confidentiality
■ Requisite expertise

How each distribution method stacks up against these criteria is covered in the rele-
vant sections over the rest of this chapter.

COST

Cost is the most obvious criterion, and the distribution spectrum ranges in cost from
free to very expensive and “it’s complicated.” Lower cost is generally better, but cost is
typically the most flexible criterion. For example, most people will trade cost for arti-
fact confidentiality if the situation calls for it.

VISIBILITY

Visibility is the next most obvious criterion for a distribution method. Secret projects
or internal tools should be difficult if not impossible for unauthorized people to dis-
cover. In another case, public works or open source projects should be as visible as
possible to promote adoption.

TRANSPORTATION

Transportation speed and bandwidth overhead are the next most flexible criteria. File
sizes and image installation speed will vary between methods that leverage image lay-
ers, concurrent downloads, and prebuilt images and those that use flat image files or
rely on deployment time image builds. High transportation speeds or low installation
latency is critical for systems that use just-in-time deployment to service synchronous
requests. The opposite is true in development environments or asynchronous process-
ing systems.

LONGEVITY

Longevity control is a business concern more than a technical concern. Hosted distri-
bution methods are subject to other people’s or companies’ business concerns. An
executive faced with the option of using a hosted registry might ask, “What happens if
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

171Choosing a distribution method
they go out of business or pivot away from repository hosting?” The question reduces
to, “Will the business needs of the third party change before ours?” If this is a concern
for you, then longevity control is important. Docker makes it simple to switch between
methods, and other criteria like requisite expertise or cost may actually trump this
concern. For those reasons, longevity control is another of the more flexible criteria.

AVAILABILITY

Availability control is the ability to control the resolution of availability issues with
your repositories. Hosted solutions provide no availability control. Businesses typically
provide some service-level agreement on availability if you’re a paying customer, but
there’s nothing you can do to directly resolve an issue. On the other end of the spec-
trum, private registries or custom solutions put both the control and responsibility in
your hands.

ACCESS CONTROL

Access control protects your images from modification or access by unauthorized par-
ties. There are varying degrees of access control. Some systems provide only access
control of modifications to a specific repository, whereas others provide course con-
trol of entire registries. Still other systems may include pay walls or digital rights man-
agement controls. Projects typically have specific access control needs dictated by the
product or business. This makes access control requirements one of the least flexible
and most important to consider.

INTEGRITY

Artifact integrity and confidentiality both fall in the less-flexible and more-technical
end of the spectrum. Artifact integrity is trustworthiness and consistency of your files
and images. Violations of integrity may include man-in-the-middle attacks, where an
attacker intercepts your image downloads and replaces the content with their own.
They might also include malicious or hacked registries that lie about the payloads
they return.

CONFIDENTIALITY

Artifact confidentiality is a common requirement for companies developing trade
secrets or proprietary software. For example, if you use Docker to distribute crypto-
graphic material, then confidentiality will be a major concern. Artifact integrity and
confidentiality features vary across the spectrum. Overall, the out-of-the-box distribu-
tion security features won’t provide the tightest confidentiality or integrity. If that’s
one of your needs, an information security professional will need to implement and
review a solution.

 The last thing to consider when choosing a distribution method is the level of
expertise required. Using hosted methods can be very simple and requires little more
than a mechanical understanding of the tools. Building custom image or image
source distribution pipelines requires expertise with a suite of related technologies. If
you don’t have that expertise or don’t have access to someone who does, using more
complicated solutions will be a challenge. In that case, you may be able to reconcile
the gap at additional cost.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

172 CHAPTER 9 Public and private software distribution
 With this strong set of selection criteria, you can begin learning about and evaluat-
ing different distribution methods. The best place to start is on the far left of the spec-
trum with hosted registries.

9.2 Publishing with hosted registries
As a reminder, Docker registries are services that make repositories accessible to
Docker pull commands. A registry hosts repositories. The simplest way to distribute
your images is by using hosted registries.

 A hosted registry is a Docker registry service that’s owned and operated by a third-
party vendor. Docker Hub, Quay.io, Tutum.co, and Google Container Registry are all
examples of hosted registry providers. By default, Docker publishes to Docker Hub.
Docker Hub and most other hosted registries provide both public and private
registries, as shown in figure 9.2.

The example images used in this book are distributed with public repositories hosted
on Docker Hub and Quay.io. By the end of this section you’ll understand how to pub-
lish your own images using hosted registries and how hosted registries measure up to
the selection criteria.

9.2.1 Publishing with public repositories: Hello World via Docker Hub

The simplest way to get started with public repositories on hosted registries is to push
a repository that you own to Docker Hub. To do so, all you need is a Docker Hub
account and an image to publish. If you haven’t done so already, sign up for a Docker
Hub account now.

 Once you have your account, you need to create an image to publish. Create a new
Dockerfile named HelloWorld.df and add the following instructions:

FROM busybox:latest
CMD echo Hello World

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.2 The simplest side of the distribution spectrum and the topic of this section

From HelloWorld.df
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

173Publishing with hosted registries
Chapter 8 covers Dockerfile instructions. As a reminder, the FROM instruction tells the
Docker image builder which existing image to start the new image from. The CMD
instruction sets the default command for the new image. Containers created from
this image will display “Hello World” and exit. Build your new image with the follow-
ing command:

docker build \
 -t <insert Docker Hub username>/hello-dockerfile \
 -f HelloWorld.df \
 .

Be sure to substitute your Docker Hub username in that command. Authorization to
access and modify repositories is based on the username portion of the repository
name on Docker Hub. If you create a repository with a username other than your
own, you won’t be able to publish it.

 Publishing images on Docker Hub with the docker command-line tool requires
that you establish an authenticated session with that client. You can do that with the
login command:

docker login

This command will prompt you for your username, email address, and password. Each
of those can be passed to the command as arguments using the --username, --email,
and --password flags. When you log in, the docker client maintains a map of your cre-
dentials for the different registries that you authenticate with in a file. It will specifi-
cally store your username and an authentication token, not your password.

 You will be able to push your repository to the hosted registry once you’ve logged
in. Use the docker push command to do so:

docker push <insert Docker Hub username>/hello-dockerfile

Running that command should create output like the following:

The push refers to a repository
[dockerinaction/hello-dockerfile] (len: 1)
7f6d4eb1f937: Image already exists
8c2e06607696: Image successfully pushed
6ce2e90b0bc7: Image successfully pushed
cf2616975b4a: Image successfully pushed
Digest:
 sha256:ef18de4b0ddf9ebd1cf5805fae1743181cbf3642f942cae8de7c5d4e375b1f20

The command output includes upload statuses and the resulting repository content
digest. The push operation will create the repository on the remote registry, upload
each of the new layers, and then create the appropriate tags.

 Your public repository will be available to the world as soon as the push operation
is completed. Verify that this is the case by searching for your username and your new
repository. For example, use the following command to find the example owned by
the dockerinaction user:

docker search dockerinaction/hello-dockerfile

Insert your username

Insert your username
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

174 CHAPTER 9 Public and private software distribution
Replace the dockerinaction username with your own to find your new repository on
Docker Hub. You can also log in to the Docker Hub website and view your repositories
to find and modify your new repository.

 Having distributed your first image with Docker Hub, you should consider how
this method measures up to the selection criteria; see table 9.1.

Table 9.1 Performance of public hosted repositories

Criteria Rating Notes

Cost Best Public repositories on hosted registries are almost always free. That
price is difficult to beat. These are especially helpful when you’re get-
ting started with Docker or publishing open source software.

Visibility Best Hosted registries are well-known hubs for software distribution. A
public repository on a hosted registry is an obvious distribution choice
if you want your project to be well known and visible to the public.

Transport
speed/size

Better Hosted registries like Docker Hub are layer-aware and will work with
Docker clients to transfer only the layers that the client doesn’t
already have. Further, pull operations that require multiple reposito-
ries to be transferred will perform those transfers in parallel. For
those reasons, distributing an image from a hosted repository is fast,
and the payloads are minimal.

Availability control Worst You have no availability control over hosted registries.

Longevity control Good You have no longevity control over hosted registries. But registries will
all conform to the Docker registry API, and migrating from one host to
another should be a low-cost exercise.

Access control Better Public repositories are open to the public for read access. Write
access is still controlled by whatever mechanisms the host has put in
place. Write access to public repositories on Docker Hub is controlled
two ways. First, repositories owned by an individual may be written to
only by that individual account. Second, repositories owned by organi-
zations may be written to by any user who is part of that organization.

Artifact integrity Best The most recent version of the Docker registry API provides content-
addressable images. These let you request an image with a specific
cryptographic signature. The Docker client will validate the integrity of
the returned image by recalculating the signature and comparing it to
the one requested. Older versions of Docker that are unaware of the
V2 registry API don’t support this feature. In those cases and for
other cases where signatures are unknown, a high degree of trust
is put into the authorization and at-rest security features provided
by the host.

Secrecy Worst Hosted registries and public repositories are never appropriate for
storing and distributing cleartext secrets or sensitive code. Anyone
can access these secrets.

Requisite
experience

Best Using public repositories on hosted registries requires only that you
be minimally familiar with Docker and capable of setting up an
account through a website. This solution is within reach for any
Docker user.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

175Publishing with hosted registries
Public repositories on hosted registries are the best choice for owners of open source
projects or people who are just getting started with Docker. People should still be
skeptical of software that they download and run from the internet, and so public
repositories that don’t expose their sources can be difficult for some users to trust.
Hosted (trusted) builds solve this problem to a certain extent.

9.2.2 Publishing public projects with automated builds

A few different hosted registries offer automated builds. Automated builds are images
that are built by the registry provider using image sources that you’ve made available.
Image consumers have a higher degree of trust for these builds because the registry
owner is building the images from source that can be reviewed.

 Distributing your work with automated builds requires two components: a hosted
image repository and a hosted Git repository where your image sources are published.
Git is a popular distributed version-control system. A Git repository stores the change
history for your project. Although distributed version-control systems like Git don’t
have architectural centralization, a few popular companies provide Git repository
hosting. Docker Hub integrates with both Github.com and Bitbucket.org for auto-
mated builds.

 Both of these hosted Git repository tools provide something called webhooks. In
this context, a webhook is a way for your Git repository to notify your image repository
that a change has been made to the source. When Docker Hub receives a webhook for
your Git repository, it will start an automated build for your Docker Hub repository.
This automation is shown in figure 9.3.

 The automated build process pulls the sources for your project including a Docker-
file from your registered Git repository. The Docker Hub build fleet will use a docker
build command to build a new image from those sources, tag it in accordance with the
repository configuration, and then push it into your Docker Hub repository.

CREATING A DOCKER HUB AUTOMATED BUILD

The following example will walk you through the steps required to set up your own
Docker Hub repository as an automated build. This example uses Git. Whole books

Developer
workstation

GitHub
repository

Docker Hub
build fleet

Docker Hub
repository

1. git push ... 2. Webhook

3. Trigger build

6. docker push

5. docker build

4. git pull ...

Figure 9.3 The Docker Hub automated build workflow
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

176 CHAPTER 9 Public and private software distribution

Use
 full n
have been written about Git, and so we can’t cover it in detail here. Git ships with sev-
eral operating systems today, but if it isn’t installed on your computer or you need
general help, check the website at https://git-scm.com. For the purposes of this exam-
ple, you need accounts on both Docker Hub and Github.com.

 Log in to your Github.com account and create a new repository. Name it hello-
docker and make sure that the repository is public. Don’t initialize the repository with
a license or a .gitignore file. Once the repository has been created on GitHub, go back
to your terminal and create a new working directory named hello-docker.

 Create a new file named Dockerfile and include the following lines:

FROM busybox:latest
CMD echo Hello World

This Dockerfile will produce a simple Hello World image. The first thing you need to
do to get this built into a new repository at Docker Hub is add it to your Git repository.
The following Git commands will create a local repository, add the Dockerfile to the
repository, commit the change, and push your changes to your repository on GitHub.
Be sure to replace <your username> with your GitHub username:

git init
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
git remote add origin \
 https://github.com/<your username>/hello-docker.git

Don’t add or commit your files to your repository yet. Before you push your work to
GitHub, you should create a new automated build and repository on Docker Hub. You
must perform this step through the website at https://hub.docker.com. Once you log
in, click the Create button in the header and select Automated Build from the drop-
down menu. The website will walk you through setting up the automated build.

 The steps include authenticating with GitHub and granting Docker Hub limited
access to your account. That access is required so that Docker Hub can find your
repositories and register appropriate webhooks for you. Next, you’ll be prompted for
the GitHub repository that you’d like to use for the automated build. Select the hello-
docker repository that you just created. Once you complete the creation wizard, you
should be directed to your repository page. Now go back to your terminal to add and
push your work to your GitHub repository.

git add Dockerfile
git commit -m "first commit"
git push -u origin master

When you execute the last command, you may be prompted for your Github.com
login credentials. After you present them, your work will be uploaded to GitHub, and
you can view your Dockerfile online. Now that your image source is available online at
GitHub, a build should have been triggered for your Docker Hub repository. Head
back to the repository page and click the Build Details tab. You should see a build

Use your email address

 your
ame Use your GitHub

username
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://git-scm.com
https://hub.docker.com

177Publishing with hosted registries
listed that was triggered from your latest push to the GitHub repository. Once that is
complete, head back to the command line to search for your repository:

docker search <your username>/hello-docker

Automated builds are preferred by image consumers and simplify image maintenance
for most cases. There will be times when you don’t want to make your source available
to the general public. The good news is that most hosted repository providers offer
private repositories.

9.2.3 Private hosted repositories

Private repositories are similar to public repositories from an operational and product
perspective. Most registry providers offer both options, and any differences in provi-
sioning through their websites will be minimal. Because the Docker registry API makes
no distinction between the two types of repositories, registry providers that offer both
generally require you to provision private registries through their website, app, or API.

 The tools for working with private repositories are identical to those for working
with public repositories, with one exception. Before you can use docker pull or
docker run to install an image from a private repository, you need to have authenti-
cated with the registry where the repository is hosted. To do so, you will use the
docker login command just as you would if you were using docker push to upload
an image.

 The following commands prompt you to authenticate with the registries provided
by Docker Hub, quay.io, and tutum.co. After creating accounts and authenticating,
you’ll have full access to your public and private repositories on all three registries.
The login subcommand takes an optional server argument:

docker login
Username: dockerinaction
Password:
Email: book@dockerinaction.com
WARNING: login credentials saved in /Users/xxx/.dockercfg.
Login Succeeded

docker login tutum.co
Username: dockerinaction
Password:
Email: book@dockerinaction.com
WARNING: login credentials saved in /Users/xxx/.dockercfg.
Login Succeeded

docker login quay.io
Username: dockerinaction
Password:
Email: book@dockerinaction.com
WARNING: login credentials saved in /Users/xxx/.dockercfg.
Login Succeeded

Insert your Docker
Hub username
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

178 CHAPTER 9 Public and private software distribution
Before you decide that private hosted repositories are the distribution solution for
you, consider how they might fulfill your selection criteria; see table 9.2

Table 9.2 Performance of private hosted repositories

Criteria Rating Notes

Cost Best The cost of private repositories typically scales with the number of
repositories that you need. Plans usually range from a few dollars per
month for 5 repositories up to around $50 for 50 repositories. Price
pressure of storage and monthly virtual server hosting is a driving fac-
tor here. Users or organizations that require more than 50 repositories
may find it more appropriate to run their own private registry.

Visibility Best Private repositories are by definition private. These are typically
excluded from indexes and should require authentication before a
registry acknowledges the repository’s existence. Private repositories
are poor candidates for publicizing availability of some software or
distributing open source images. Instead they’re great tools for small
private projects or organizations that don’t want to incur the overhead
associated with running their own registry.

Transport
speed/size

Better Any hosted registry like Docker Hub will minimize the bandwidth used
to transfer an image and enable clients to transfer an image’s layers
in parallel. Ignoring potential latency introduced by transferring files
over the internet, hosted registries should always perform well against
other non-registry solutions.

Availability control Worst No hosted registry provides any availability control. Unlike public
repositories, however, using private repositories will make you a pay-
ing customer. Paying customers may have stronger SLA guarantees or
access to support personnel.

Longevity control Good You have no longevity control over hosted registries. But registries will
all conform to the Docker registry API, and migrating from one host to
another should be a low-cost exercise.

Access control Better Both read and write access to private repositories is restricted to
users with authorization.

Artifact integrity Best It’s reasonable to expect all hosted registries to support the V2 regis-
try API and content-addressable images.

Secrecy Worst Despite the privacy provided by these repositories, these are never
suitable for storing clear-text secrets or trade-secret code. Although
the registries require user authentication and authorization to
requested resources, there are several potential problems with these
mechanisms. The provider may use weak credential storage, have
weak or lost certificates, or leave your artifacts unencrypted at rest.
Finally, your secret material should not be accessible to employees of
the registry provider.

Requisite
experience

Best Just like public repositories, using private repositories on hosted
registries requires only that you be minimally familiar with Docker and
capable of setting up an account through a website. This solution is
within reach for any Docker user.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

179Introducing private registries
Individuals and small teams will find the most utility in private hosted repositories.
Their low cost and basic authorization features are friendly to low-budget projects or
private projects with minimal security requirements. Large companies or projects that
need a higher degree of secrecy and have a suitable budget may find their needs bet-
ter met by running their own private registry.

9.3 Introducing private registries
When you have a hard requirement on availability control, longevity control, or
secrecy, then running a private registry may be your best option. In doing so, you gain
control without sacrificing interoperability with Docker pull and push mechanisms or
adding to the learning curve for your environment. People can interact with a private
registry exactly as they would with a hosted registry.

 The Docker registry software (called Distribution) is open source software and dis-
tributed under the Apache 2 license. The availability of this software and permissive
license keep the engineering cost of running your own registry low. It’s available
through Docker Hub and is simple to use for non-production purposes. Figure 9.4
illustrates that private registries fall in the middle of the distribution spectrum.

Running a private registry is a great distribution method if you have special infrastruc-
ture use cases like the following:

■ Regional image caches
■ Team-specific image distribution for locality or visibility
■ Environment or deployment stage-specific image pools
■ Corporate processes for approving images
■ Longevity control of external images

Before deciding that this is the best choice for you, consider the costs detailed in the
selection criteria, shown in table 9.3.

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.4 Private registries in the image distribution spectrum
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

180 CHAPTER 9 Public and private software distribution

Table 9.3 Performance of private registries

Criteria Rating Notes

Cost Good At a minimum, a private registry adds to hardware overhead (virtual or
otherwise), support expense, and risk of failure. But the community
has already invested the bulk of the engineering effort required to
deploy a private registry by building the open source software. Cost
will scale on different dimensions than hosted registries. Whereas
the cost of hosted repositories scales with raw repository count, the
cost of private registries scales with transaction rates and storage
usage. If you build a system with high transaction rates, you’ll need to
scale up the number of registry hosts so that you can handle the
demand. Likewise, registries that serve some number of small
images will have lower storage costs than those serving the same
number of large images.

Visibility Good Private registries are as visible as you decide to make them. But even
a registry that you own and open up to the world will be less visible
than advertised popular registries like Docker Hub.

Transport
speed/size

Best Latency between any client and any registry will vary based on the dis-
tance between those two nodes on the network, the speed of the net-
work, and the congestion on the registry. Private registries may be
faster or slower than hosted registries due to variance in any of those
variables. But private registries will appeal most to people and organi-
zations that are doing so for internal infrastructure. Eliminating a
dependency on the internet or inter-datacenter networking will have a
proportional improvement on latency. Because this solution is using a
Docker registry, it will share the same parallelism gains as hosted
registry solutions.

Availability control Best You have full control over availability as the registry owner.

Longevity control Best You have full control over solution longevity as the registry owner.

Access control Good The registry software doesn’t include any authentication or authoriza-
tion features out of the box. But implementing those features can be
achieved with a minimal engineering exercise.

Artifact integrity Best Version 2 of the registry API supports content-addressable images,
and the open source software supports a pluggable storage back
end. For additional integrity protections, you can force the use of TLS
over the network and use back-end storage with encryption at rest.

Secrecy Good Private registries are the first solution on the spectrum appropriate
for storage of trade secrets or secret material. You control the authen-
tication and authorization mechanisms. You also control the network
and in-transit security mechanisms. Most importantly, you control
the at-rest storage. It’s in your power to ensure that the system is
configured in such a way that your secrets stay secret.

Requisite
experience

Good Getting started and running a local registry requires only basic Docker
experience. But running and maintaining a highly available production
private registry requires experience with several technologies. The
specific set depends on what features you want to take advantage of.
Generally, you’ll want to be familiar with NGINX to build a proxy, LDAP
or Kerberos to provide authentication, and Redis for caching.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

181Introducing private registries
The biggest trade-off going from hosted registries to private registries is gaining flexi-
bility and control while requiring greater depth and breadth of engineering experi-
ence to build and maintain the solution. The remainder of this section covers what
you need to implement all but the most complicated registry deployment designs and
highlights opportunities for customization in your environment.

9.3.1 Using the registry image

Whatever your reasons for doing so, getting started with the Docker registry software
is easy. The Distribution software is available on Docker Hub in a repository named
registry. Starting a local registry in a container can be done with a single command:

docker run -d -p 5000:5000 \
 -v "$(pwd)"/data:/tmp/registry-dev \
 --restart=always --name local-registry registry:2

The image that’s distributed through Docker Hub is configured for insecure access
from the machine running a client’s Docker daemon. When you’ve started the regis-
try, you can use it like any other registry with docker pull, run, tag, and push com-
mands. In this case, the registry location is localhost:5000. The architecture of your
system should now match that described in figure 9.5.

 Companies that want tight version control on their external image dependencies
will pull images from external sources like Docker Hub and copy them into their own

Docker
client

Local Docker
daemon

Registry
container

Local
hard disk

Docker
client

Local Docker
daemon

Virtual
machine

OR

The local Docker client communicates
with the Docker daemon that runs
inside of a local virtual machine.

The local Docker client
communicates with the
local Docker daemon.

All push/pull actions occur
between the Docker daemon
and the network API of the
registry container.

All push/pull actions
occur between the
Docker daemon and
the network API of the
registry container.

The registry uses a file
system storage backend.
The particular location that
the registry is configured to
use has been replaced by a
bind-mount volume.

The registry uses a file
system storage backend.
The particular location
that the registry is
configured to use has
been replaced by a
bind-mount volume.

Registry
container

Local
hard disk

Figure 9.5 Interactions between the docker client, daemon, local registry container, and local storage
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

182 CHAPTER 9 Public and private software distribution

Pull d
image
Docker

erable

Pull
reg
registry. To get an idea of what it’s like working with your registry, consider a workflow
for copying images from Docker Hub into your new registry:

docker pull dockerinaction/ch9_registry_bound

docker images -f "label=dia_excercise=ch9_registry_bound"

docker tag dockerinaction/ch9_registry_bound \
 localhost:5000/dockerinaction/ch9_registry_bound
docker push localhost:5000/dockerinaction/ch9_registry_bound

In running these four commands, you copy an example repository from Docker Hub
into your local repository. If you execute these commands from the same location as
where you started the registry, you’ll find that the newly created data subdirectory con-
tains new registry data.

9.3.2 Consuming images from your registry

The tight integration you get with the Docker ecosystem can make it feel like you’re
working with software that’s already installed on your computer. When internet
latency has been eliminated, such as when you’re working with a local registry, it can
feel even less like you’re working with distributed components. For that reason, the
exercise of pushing data into a local repository isn’t very exciting on its own.

 The next set of commands should impress on you that you’re working with a real
registry. These commands will remove the example repositories from the local cache
for your Docker daemon, demonstrate that they’re gone, and then reinstall them
from your personal registry:

docker rmi \
 dockerinaction/ch9_registry_bound \
 localhost:5000/dockerinaction/ch9_registry_bound

docker images -f "label=dia_excercise=ch9_registry_bound"

docker pull localhost:5000/dockerinaction/ch9_registry_bound

docker images -f "label=dia_excercise=ch9_registry_bound"

docker rm -vf local-registry

You can work with this registry locally as much as you want, but the insecure default
configuration will prevent remote Docker clients from using your registry (unless they
specifically allow insecure access). This is one of the few issues that you’ll need to
address before deploying a registry in a production environment. Chapter 10 covers
the registry software in depth.

 This is the most flexible distribution method that involves Docker registries. If you
need greater control over the transport, storage, and artifact management, you
should consider working directly with images in a manual distribution system.

emo
 from
 Hub

Verify image is discov
with label filter

Push demo image into
your private registry

Remove tagged
reference

 from
istry

again
Demonstrate that
image is back

Clean up local registry
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

183Manual image publishing and distribution
9.4 Manual image publishing and distribution
Images are files, and you can distribute them as you would any other file. It’s common
to see software available for download on websites, File Transport Protocol (FTP) serv-
ers, corporate storage networks, or via peer-to-peer networks. You could use any of
these distribution channels for image distribution. You can even use email or USB keys
in cases where you know your image recipients.

 When you work with images as files, you use Docker only to manage local images
and create files. All other concerns are left for you to implement. That void of func-
tionality makes manual image publishing and distribution the second-most flexible
but complicated distribution method. This section covers custom image distribution
infrastructure, shown on the spectrum in figure 9.6.

We’ve already covered all the methods for working with images as files. Chapter 3 covers
loading images into Docker and saving images to your hard drive. Chapter 7 covers
exporting and importing full file systems as flattened images. These techniques are the
foundation for building distribution workflows like the one shown in figure 9.7.

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.6 Docker image distribution over custom infrastructure

SFTP server /
Blob storage /
Web server /
Email server /

USB key

Local
image
cache

Upload Download

docker save
docker export

docker load
docker import

Image origin computer
Consuming computers

docker
build

Dockerfile

.tar

docker
runLocal

image
cache

.tar

Container

Figure 9.7 A typical manual distribution workflow with producer, transport, and consumers
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

184 CHAPTER 9 Public and private software distribution
The workflow illustrated in figure 9.7 is a generalization of how you’d use Docker to
create an image and prepare it for distribution. You should be familiar with using
docker build to create an image and docker save or docker export to create an
image file. You can perform each of these operations with a single command.

 You can use any file transport once you have an image in file form. One custom
component not show in figure 9.7 is the mechanism that uploads an image to the
transport. That mechanism may be a folder that is watched by a file-sharing tool like
Dropbox. It could also be a piece of custom code that runs periodically, or in response
to a new file, and uses FTP or HTTP to push the file to a remote server. Whatever the
mechanism, this general component will require some effort to integrate.

 The figure also shows how a client would ingest the image and use it to build a con-
tainer after the image has been distributed. Similar to image origins, clients require
some process or mechanism to acquire the image from a remote source. Once clients
have the image file, they can use the docker load or import commands to complete
the transfer.

 It doesn’t make sense to measure manual image distribution against individual
selection criteria. Using a non-Docker distribution channel gives you full control. It
will be up to you to determine how your options measure against the criteria shown in
table 9.4.

Table 9.4 Performance of custom image distribution infrastructure.

Criteria Rating Notes

Cost Good Distribution costs are driven by bandwidth, storage, and hardware needs.
Hosted distribution solutions like cloud storage will bundle these costs
and generally scale down price per unit as your usage increases. But
hosted solutions bundle in the cost of personnel and several other
benefits that you may not need, driving up the price compared to a
mechanism that you own.

Visibility Good Like private registries, most manual distribution methods are special and
take more effort to advertise than well-known registries. Examples might
include using popular websites or other well-known file distribution hubs.

Transport
speed/size

Good Whereas transport speed depends on the transport, file sizes are depen-
dent on your choice of using layered images or flattened images. Remem-
ber, layered images maintain the history of the image, container-creation
metadata, and old files that might have been deleted or overridden. Flat-
tened images contain only the current set of files on the file system.

Availability control Best If availability control is an important factor for your case, you can use a
transport mechanism that you own.

Longevity control Bad Using proprietary protocols, tools, or other technology that is neither
open nor under your control will impact longevity control. For example,
distributing image files with a hosted file-sharing service like Dropbox
will give you no longevity control. On the other hand, swapping USB
drives with your friend will last as long as the two of you decide to use
USB drives.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

185Manual image publishing and distribution
All the same criteria apply to manual distribution, but it’s difficult to discuss them
without the context of a specific transportation method.

9.4.1 A sample distribution infrastructure using the File
Transfer Protocol

Building a fully functioning example will help you understand exactly what goes into a
manual distribution infrastructure. This section will help you build an infrastructure
with the File Transfer Protocol.

 FTP is less popular than it used to be. The protocol provides no secrecy and
requires credentials to be transmitted over the wire for authentication. But the soft-
ware is freely available and clients have been written for most platforms. That makes
FTP a great tool for building your own distribution infrastructure. Figure 9.8 illustrates
what you’ll build.

 The example in this section uses two existing images. The first, dockerinaction/
ch9_ftpd, is a specialization of the centos:6 image where vsftpd (an FTP daemon)
has been installed and configured for anonymous write access. The second image,
dockerinaction/ch9_ftp_client, is a specialization of a popular minimal Alpine
Linux image. An FTP client named LFTP has been installed and set as the entrypoint
for the image.

Access control Bad You could use a transport with the access control features you need or
use file encryption. If you built a system that encrypted your image files
with a specific key, you could be sure that only a person or people with
the correct key could access the image.

Artifact integrity Bad Integrity validation is a more expensive feature to implement for broad
distribution. At a minimum, you’d need a trusted communication channel
for advertising cryptographic file signatures.

Secrecy Good You can implement content secrecy with cheap encryption tools. If you
need meta-secrecy (where the exchange itself is secret) as well as con-
tent secrecy, then you should avoid hosted tools and make sure that the
transport that you use provides secrecy (HTTPS, SFTP, SSH, or offline).

Requisite
experience

Good Hosted tools will typically be designed for ease of use and require a
lesser degree of experience to integrate with your workflow. But you can
use simple tools that you own as easily in most cases.

Table 9.4 Performance of custom image distribution infrastructure.

Criteria Rating Notes

Local
image
cache

FTP server.tar
docker save... Upload

Figure 9.8 An FTP publishing infrastructure
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

186 CHAPTER 9 Public and private software distribution
To prepare for the experiment, pull a known image from Docker Hub that you want
to distribute. In the example, the registry:2 image is used:

docker pull registry:2

Once you have an image to distribute, you can begin. The first step is building your
image distribution infrastructure. In this case, that means running an FTP server:

docker run -d --name ftp-transport -p 21:12 dockerinaction/ch9_ftpd

This command will start an FTP server that accepts FTP connections on TCP port 21
(the default port). Don’t use this image in any production capacity. The server is con-
figured to allow anonymous connections write access under the pub/incoming folder.
Your distribution infrastructure will use that folder as an image distribution point.

 The next thing you need to do is export an image to the file format. You can use
the following command to do so:

docker save -o ./registry.2.tar registry:2

Running this command will export the registry:2 image as a structured image file in
your current directory. The file will retain all the metadata and history associated with
the image. At this point, you could inject all sorts of phases like checksum generation
or file encryption. This infrastructure has no such requirements, and you should
move along to distribution.

 The dockerinaction/ch9_ftp_client image has an FTP client installed and can
be used to upload your new image file to your FTP server. Remember, you started the
FTP server in a container named ftp-transport. If you’re running the container on
your computer, you can use container linking to reference the FTP server from the cli-
ent; otherwise, you’ll want to use host name injection (see chapter 5), a DNS name of
the server, or an IP address:

docker run --rm --link ftp-transport:ftp_server \
 -v "$(pwd)":/data \
 dockerinaction/ch9_ftp_client \
 -e 'cd pub/incoming; put registry.2.tar; exit' ftp_server

This command creates a container with a volume bound to your local directory and
linked with your FTP server container. The command will use LFTP to upload a file
named registry.2.tar to the server located at ftp_server. You can verify that you
uploaded the image by listing the contents of the FTP server’s folder:

docker run --rm --link ftp-transport:ftp_server \
 -v "$(pwd)":/data \
 dockerinaction/ch9_ftp_client \
 -e "cd pub/incoming; ls; exit" ftp_server

The registry image is now available for download to any FTP client that knows about
the server and can access it over the network. But that file may never be overridden in
the current FTP server configuration. You’d need to come up with your own version-
ing scheme if you were going to use a similar tool in production.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

187Manual image publishing and distribution
 Advertising the availability of the image in this scenario requires clients to periodi-
cally poll the server using the last command you ran. You could alternatively build
some website or send an email notifying clients about the image, but that all happens
outside the standard FTP transfer workflow.

 Before moving on to evaluating this distribution method against the selection cri-
teria, consume the registry image from your FTP server to get an idea of how clients
would need to integrate.

 First, eliminate the registry image from your local image cache and the file from
your local directory:

rm registry.2.tar
docker rmi registry:2

Then download the image file from your FTP server:

docker run --rm --link ftp-transport:ftp_server \
 -v "$(pwd)":/data \
 dockerinaction/ch9_ftp_client \
 -e 'cd pub/incoming; get registry.2.tar; exit' ftp_server

At this point you should once again have the registry.2.tar file in your local directory.
You can reload that image into your local cache with the docker load command:

docker load -i registry.2.tar

This is a minimal example of how a manual image publishing and distribution infra-
structure might be built. With just a bit of extension you could build a production-
quality, FTP-based distribution hub. In its current configuration this example matches
against the selection criteria, as shown in table 9.5.

Table 9.5 Performance of a sample FTP-based distribution infrastructure

Criteria Rating Notes

Cost Good This is a low-cost transport. All the related software is free. Band-
width and storage costs should scale linearly with the number of
images hosted and the number of clients.

Visibility Worst The FTP server is running in an unadvertised location with a
non-standard integration workflow. The visibility of this configura-
tion is very low.

Transport
speed/size

Bad In this example, all the transport happened between containers on
the same computer, so all the commands finished quickly. If a
client connects to your FTP service over the network, then speeds
are directly impacted by your upload speeds. This distribution
method will download redundant artifacts and won’t download
components of the image in parallel. Overall, this method isn’t
bandwidth-efficient.

Availability control Best You have full availability control of the FTP server. If it becomes
unavailable, you’re the only person who can restore service.

Need to remove any
registry containers first
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

188 CHAPTER 9 Public and private software distribution
In short, there’s almost no real scenario where this transport configuration is appro-
priate. But it helps illustrate the different concerns and basic workflows that you can
create when you work with image as files. The only more flexible and potentially com-
plicated image publishing and distribution method involves distributing image
sources.

9.5 Image source distribution workflows
When you distribute image sources instead of images, you cut out all the Docker distri-
bution workflow and rely solely on the Docker image builder. As with manual image
publishing and distribution, source-distribution workflows should be evaluated
against the selection criteria in the context of a particular implementation.

 Using a hosted source control system like Git on GitHub will have very different
traits from using a file backup tool like rsync. In a way, source-distribution workflows
have a superset of the concerns of manual image publishing and distribution work-
flows. You’ll have to build your workflow but without the help of the docker save,
load, export, or import commands. Producers need to determine how they will pack-
age their sources, and consumers need to understand how those sources are packaged
as well as how to build an image from them. That expanded interface makes source-
distribution workflows the most flexible and potentially complicated distribution
method. Figure 9.9 shows image source distribution on the most complicated end of
the spectrum.

 Image source distribution is one of the most common methods, despite having the
most potential for complication. The reason is that the expanded interface has been
standardized by popular version-control software.

Longevity control Best You can use the FTP server created for this example as long as
you want.

Access control Worst This configuration provides no access control.

Artifact integrity Worst The network transportation layer does provide file integrity between
endpoints. But it’s susceptible to interception attacks, and there
are no integrity protections between file creation and upload or
between download and import.

Secrecy Worst This configuration provides no secrecy.

Requisite
experience

Good All requisite experience for implementing this solution has been
provided here. If you’re interested in extending the example for pro-
duction, you’ll need to familiarize yourself with vsftpd configura-
tion options and SFTP.

Table 9.5 Performance of a sample FTP-based distribution infrastructure

Criteria Rating Notes
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

189Image source distribution workflows
9.5.1 Distributing a project with Dockerfile on GitHub

Using Dockerfile and GitHub to distribute image sources is almost identical to setting
up automated builds on hosted Docker image repositories. All the steps for using Git
to integrate your local Git repository with a repository on GitHub are the same. The
only difference comes in that you don’t create a Docker Hub account or repository.
Instead, your image consumers will clone your GitHub repository directly and use
docker build to build your image locally.

 Supposing a producer had an existing project, Dockerfile, and GitHub repository,
their distribution workflow would look like this:

git init
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
git add Dockerfile
git add *whatever other files you need for the image*
git commit -m "first commit"
git remote add origin https://github.com/<your username>/<your repo>.git
git push -u origin master

Meanwhile, a consumer would use a general command set that looks like this:

git clone https://github.com/<your username>/<your repo>.git
cd <your-repo>
docker build -t <your username>/<your repo> .

These are all steps that a regular Git or GitHub user is familiar with, as shown in table 9.6.

Table 9.6 Performance of image source distribution via GitHub

Criteria Rating Notes

Cost Best There’s no cost if you’re using a public GitHub repository.

Visibility Best GitHub is a highly visible location for open source tools. It provides excel-
lent social and search components, making project discovery simple.

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.9 Using existing infrastructure to distribute image sources
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

190 CHAPTER 9 Public and private software distribution
Image source distribution is divorced from all Docker distribution tools. By relying
only on the image builder, you’re free to adopt any distribution toolset available. If
you’re locked into a particular toolset for distribution or source control, this may be
the only option that meets your criteria.

9.6 Summary
This chapter covers various software distribution mechanisms and the value contrib-
uted by Docker in each. A reader that has recently implemented a distribution chan-
nel, or is currently doing so, might take away additional insights into their solution.
Others will learn more about available choices. In either case, it is important to make
sure that you have gained the following insights before moving on:

■ Having a spectrum of choices illustrates your range of options.
■ You should always use a consistent set of selection criteria in order to evaluate

your distribution options and determine which method you should use.
■ Hosted public repositories provide excellent project visibility, are free, and

require very little experience to adopt.
■ Consumers will have a higher degree of trust in images generated by automated

builds because a trusted third party builds them.

Transport
speed/size

Good By distributing image sources, you can leverage other registries for base
layers. Doing so will reduce the transportation and storage burden.
GitHub also provides a content delivery network (CDN). That CDN is
used to make sure clients around the world can access projects on
GitHub with low network latency.

Availability control Worst Relying on GitHub or other hosted version-control providers eliminates
any availability control.

Longevity control Bad Although Git is a popular tool and should be around for a while, you
forego any longevity control by integrating with GitHub or other hosted
version-control providers.

Access control Good GitHub or other hosted version-control providers do provide access con-
trol tools for private repositories.

Artifact integrity Good This solution provides no integrity for the images produced as part of
the build process, or of the sources after they have been cloned to the
client machine. But integrity is the whole point of version-control sys-
tems. Any integrity problems should be apparent and easily recoverable
through standard Git processes.

Secrecy Worst Public projects provide no source secrecy.

Requisite
Experience

Good Image producers and consumers need to be familiar with Dockerfile, the
Docker builder, and the Git tooling.

Table 9.6 Performance of image source distribution via GitHub

Criteria Rating Notes
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

191Summary
■ Hosted private repositories are cost-effective for small teams and provide satis-
factory access control.

■ Running your own registry enables you to build infrastructure suitable for spe-
cial use cases without abandoning the Docker distribution facilities.

■ Distributing images as files can be accomplished with any file-sharing system.
■ Image source distribution is flexible but only as complicated as you make it.

Using popular source-distribution tools and patterns will keep things simple.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Running
customized registries
Chapter 9 covers several methods of distributing Docker images, one of them
involving running a Docker registry. A Docker registry is a flexible image distribu-
tion component that’s useful on its own or as part of larger complex systems. For
that reason, understanding how to configure your own registry will help you get the
most out of Docker.

 Someone developing software that integrates with a Docker registry may want to
run a local instance to develop against. They might also use it as a staging environ-
ment for their project. A development team might deploy their own central registry
to share their work and streamline integrations. A company may run one or more
centralized registries that are backed by durable artifact storage. These could be
used to control external image dependencies or for managing deployment artifacts.

This chapter covers
■ Working directly with the Registry API
■ Building a central registry
■ Registry authentication tools
■ Configuring a registry for scale
■ Integrating through notifications
192

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

193
Figure 10.1 illustrates these configurations. This chapter covers all these use cases, scal-
ing approaches, and an introduction to the Registry API itself. By the end of this chapter
you will be able to launch an appropriately configured registry for any use case.

 Any program that implements the Registry API is a registry. This chapter uses the
Distribution (docker/distribution) project. The project is available on Docker Hub in
the registry repository.

Local
Docker
client

Personal

Registry

Local
hard disk

Docker
clients

Centralized

Local
hard disk

Metadata
cache

Docker
clients

Centralized durable

Remote
blob storage

Middleware-enhanced
remote blob storage

Docker
clients

Fast and scalable

Registry

Proxy
Metadata

cache

Middleware-enhanced
remote blob storage

Docker
clients

Integrated

Registry

Proxy

Registry

Proxy

Registry

Proxy

Hook 3

Hook 2

Hook 1

Figure 10.1 Registry configurations ranging from personal to reliable, scalable, and integrated
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

194 CHAPTER 10 Running customized registries
10.1 Running a personal registry
Launching a personal registry is great if you’re just getting started or using your own
for development purposes. That material is introduced in chapter 9, but this section
demonstrates how to use the Registry API to access your new registry.

10.1.1 Reintroducing the Image

Over the course of this chapter you’ll launch and relaunch containers providing a
registry several times. In each instance you’re going to use specializations of the Distri-
bution project as provided by the registry:2 repository.

 A personal registry rarely requires customization. In such a use case, you can use
the official image. Pull the image and launch a personal registry to get started:

docker run -d --name personal_registry \
 -p 5000:5000 --restart=always \
 registry:2

TIP At the time of this writing, the latest tag refers to the last version of the
registry as implementing the V1 Registry API. The examples in this chapter
require the V2 API unless otherwise noted.

The Distribution project runs on port 5000, but clients make no assumptions about
locations and attempt connecting to port 80 (HTTP) by default. You could map port
80 on your host to port 5000 on the container, but in this case you should map
port 5000 directly. Anytime you connect to the registry, you’ll need to explicitly state
the port where the registry is running.

 The container you started from the registry image will store the repository data
that you send to it in a managed volume mounted at /var/lib/registry. This means
you don’t have to worry about the data being stored on the main layered file system.

 An empty registry is a bit boring, so tag and push an image into it before moving
on. Use the registry image itself, but in order to differentiate the example, use a differ-
ent repository name:

docker tag registry:2 localhost:5000/distribution:2
docker push localhost:5000/distribution:2

The push command will output a line for each image layer that’s uploaded to the reg-
istry and finally output the digest of the image. If you want, you can remove the local
tag for localhost:5000/distribution:2 and then try pulling from your registry:

docker rmi localhost:5000/distribution:2
docker pull localhost:5000/distribution:2

All these commands are covered in chapter 2 and chapter 7. The difference is that in
those chapters you’re working with hosted registries. This example highlights that
your knowledge, scripts, and automation infrastructure are portable between hosted
solutions and your custom infrastructure when run your own registry. Using the
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

195Running a personal registry
command-line tools like this is great for scripts and users, but you’ll want to use the
API directly if you’re developing software to integrate with a registry.

10.1.2 Introducing the V2 API

The V2 Registry API is RESTful. If you’re unfamiliar with RESTful APIs, it’s enough to
know that a RESTful API is a patterned use of Hypertext Transfer Protocol (HTTP) and
its primitives to access and manipulate remote resources. There are several excellent
online resources and books on the subject. In the case of a Docker registry, those
resources are tags, manifests, blobs, and blob uploads. You can find the full Registry
specification at https://docs.docker.com/registry/spec/api/.

 Because RESTful APIs use HTTP, you might take some time to familiarize yourself
with the details of that protocol. The examples in this chapter are complete, and you
won’t need any deep knowledge of HTTP in order to follow along, but you’ll get much
more from the experience if you’re comfortable with what’s happening behind
the scenes.

 In order to exercise any RESTful service you’ll need an HTTP client. The truly savvy
reader may know how to use a raw TCP connection to issue HTTP requests, but most
prefer not to bother with the low-level details of the protocol. Although web browsers
are capable of making HTTP requests, command-line tools will give you the power to
fully exercise a RESTful API.

 The examples in this chapter use the cURL command-line tool. Because this is a
book about Docker, you should use cURL from inside a container. Using cURL in this
way will also work for both Docker native and Boot2Docker users. Prepare an image
for this purpose (and practice your Dockerfile skills):

FROM gliderlabs/alpine:latest
LABEL source=dockerinaction
LABEL category=utility
RUN apk --update add curl
ENTRYPOINT ["curl"]
CMD ["--help"]

docker build -t dockerinaction/curl -f curl.df .

With your new dockerinaction/curl image, you can issue the cURL commands in the
examples without worrying about whether cURL is installed or what version is installed
on your computer. Celebrate your new image and get started with the Registry API by
making a simple request to your running registry:

docker run --rm --net host dockerinaction/curl -Is
 http://localhost:5000/v2/

That request will result in the following output:

HTTP/1.1 200 OK
Content-Length: 2
Content-Type: application/json; charset=utf-8
Docker-Distribution-Api-Version: registry/2.0

From curl.df

Note the /v2/
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://docs.docker.com/registry/spec/api/

196 CHAPTER 10 Running customized registries

unpr
This command is used to validate that the registry is running the V2 Registry API and
returns the specific API version in the HTTP response headers. The last component of
that request, /v2/, is a prefix for every resource on the V2 API.

 If you accidentally issued this request to a registry that was running the V1 API, the
output would look something like this:

HTTP/1.1 404 NOT FOUND
Server: gunicorn/19.1.1
Connection: keep-alive
Content-Type: text/html
Content-Length: 233

HTTP DETAIL This command used an HTTP HEAD request to retrieve only the
response headers. A successful GET request for this resource will return the
same headers and response body with an empty document.

Now that you’ve used cURL to validate that the registry is indeed using the V2 API, you
should do something a bit more interesting. The next command will retrieve the list
of tags in the distribution repository on your registry:

docker run --rm -u 1000:1000 --net host \
 dockerinaction/curl -s http://localhost:5000/v2/distribution/tags/list

Running that command should display a result like the following:

{"name":"distribution","tags":["2"]}

Here you can see that the registry responded to your request with a JSON document
that lists the tags in your distribution repository. In this case there’s only one, 2. A
JSON document is a structured document of key-value pairs. It uses braces to repre-
sent objects (which contain another set of key-value pairs), square brackets to
represent lists, and quoted strings to label elements and represent string values.

 Run this example again, but this time add another tag to your repository to yield a
more interesting result:

docker tag \
 localhost:5000/distribution:2 \
 localhost:5000/distribution:two

docker push localhost:5000/distribution:two

docker run --rm \
 -u 1000:1000 \
 --net host \
 dockerinaction/curl \
 -s http://localhost:5000/v2/distribution/tags/list

The curl command will return output like the following:

{"name":"distribution","tags":["2","two"]}

Creative tag name

Run as
ivileged

user

Run without
network namespace
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

197Running a personal registry
In the output you can clearly see that the repository contains both the tags that
you’ve defined. Each distinct tag that’s pushed to this repository on your registry will
be listed here.

 You can use the personal registry that you created in this section for any testing or
personal productivity needs you might have. But the uses are somewhat limited with-
out any changes to the configuration. Even if you have no plans for deploying a cen-
tralized registry, you may benefit from some customization to adopt the registry’s
notifications feature discussed in section 10.5. You’ll need to know how to customize
the registry image before you can make those changes.

10.1.3 Customizing the Image

The remainder of this chapter explains how to build upon the registry image to grow
out of the personal registry and into more advanced use cases. You’ll need to know a
bit more about the registry image itself before you can do that.

 This chapter will specialize the registry image with Dockerfiles. If you’re unfamiliar
with Dockerfile syntax and haven’t read chapter 8, then you should do so now or
review the online documentation at https://docs.docker.com/reference/builder.

 The first things you need to know about the image are the key components:

■ The base image for registry is Debian and it has updated dependencies.
■ The main program is named registry and is available on the PATH.
■ The default configuration file is config.yml.

Different project maintainers will all have different ideas about the best base image.
In the case of Docker, Debian is a frequent choice. Debian has a minimal footprint for
a fully featured distribution and takes only approximately 125 MB on your hard drive.
It also ships with a popular package manager, so installing or upgrading dependencies
should never be an issue.

 The main program is named registry and is set as the entrypoint for the image.
This means that when you start a container from this image, you can omit any com-
mand arguments to take the default behavior or add your own arguments directly to
the trailing portion of the docker run command.

 Like all Docker projects, the Distribution project aims to provide a sensible default
configuration. That default configuration is located in a file named config.yml. As the
name implies, the configuration is written in YAML. If you’re not familiar with YAML,
there’s no reason to worry. YAML is designed to maximize human readability. If you’re
interested, you’ll find several YAML resources at http://yaml.org.

 This configuration file is the real star of this chapter. There are several ways that
you might inject your own configuration in the image. You might modify the included
file directly. A bind-mount volume could be used to override the file with one that
you’ve been writing. In this case, you’ll copy in your own file to another location and
set a new default command for your new image.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://docs.docker.com/reference/builder
http://yaml.org

198 CHAPTER 10 Running customized registries
 The configuration file contains nine top-level sections. Each defines a major func-
tional component of the registry:

■ version—This is a required field and specifies the configuration version (not
software version).

■ log—The configuration in this section controls the logging output produced
by the Distribution project.

■ storage—The storage configuration controls where and how images are
stored and maintained.

■ auth—This configuration controls in-registry authentication mechanisms.
■ middleware—The middleware configuration is optional. It’s used to configure

the storage, registry, or repository middleware in use.
■ reporting—Certain reporting tools have been integrated with the Distribution

project. These include Bugsnag and NewRelic. This section configures each of
those toolsets.

■ http—This section specifies how Distribution should make itself available on
the network.

■ notifications—Webhook-style integration with other projects is configured in
the notifications section.

■ redis—Finally, configuration for a Redis cache is provided in the redis section.

With these components in mind, you should be ready to build advanced registry use
cases by customizing the registry image. Remember, the Distribution project is rapidly
evolving. If you hit a snag with the instructions in this book, you can always consult the
online documentation for reference or check out the project itself at https://
github.com/docker/distribution.

10.2 Enhancements for centralized registries
Launching a local copy of the registry image with no modifications works well for per-
sonal purposes or testing. When more than one person needs access to the same regis-
try it is called a centralized registry. This section explains how to implement a
centralized registry by customizing the official registry image. Figure 10.2 shows the
changes involved in growing from a personal registry into a centralized registry.

 For more than one person to access the registry, it will need to be available on a
network. You can accomplish that easily enough by mapping the registry container to
port 80 on the network interface of the computer it’s running on (docker run ...
-p 80:5000 ...). Introducing a dependency on the network introduces a whole set
of new vulnerabilities. From snooping to corrupting image transfers, man-in-the-
middle attacks can create several problems. Adding transport layer security will
protect your system from these and other attacks.

 Once clients can access the registry, you’ll want to make sure that only the right
users can access it. This is called authentication (covered in section 10.2.3).

 The most unavoidable issue that any service owner encounters is client compatibil-
ity. With multiple clients connecting to your registry, you need to consider what
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/docker/distribution
https://github.com/docker/distribution

199Enhancements for centralized registries
versions of Docker they’re using. Supporting multiple client versions can be tricky.
Section 10.2.4 demonstrates one way to handle the problem.

 Before moving on to the next registry type, section 10.2.5 covers best practices for
production registry configurations. These include hardening and preventive mainte-
nance steps.

 Most of these concerns are focused on interactions with clients. Although the Dis-
tribution software has some tools to meet the new needs, adding a proxy to the system
introduces the required flexibility to implement all these enhancements.

10.2.1 Creating a reverse proxy

Creating a reverse proxy is a quick task when you use the right base image and
Dockerfile to make your customizations. Figure 10.3 illustrates the relationship
between the reverse proxy and your registry.

Local
Docker
client

Personal

Local
hard disk

Docker
clients

Centralized

Local
hard disk

Going from one client to many

Introduce a proxy on the
computer running the registry

Storage can remain local to the
computer running the registry

RegistryRegistry

Proxy

Figure 10.2 Personal versus centralized Docker registry system architecture

Proxy Registry

Forward requests prefixed with /v2/
to the linked registry container

Images and metadata are
persisted somewhere on disk

Clients make requests to the
registry server on HTTP port 80

Figure 10.3 Inserting a reverse proxy between clients and a registry
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

200 CHAPTER 10 Running customized registries

Li
requi

Res
the u
Your reverse proxy configuration will involve two containers. The first will run the
NGINX reverse proxy. The second will run your registry. The reverse proxy container
will be linked to the registry container on the host alias, registry. Get started by
creating a new file named basic-proxy.conf and include the following configuration:

upstream docker-registry {
 server registry:5000;
}

server {
 listen 80;
 # Use the localhost name for testing purposes
 server_name localhost;
 # A real deployment would use the real hostname where it is deployed
 # server_name mytotallyawesomeregistry.com;

 client_max_body_size 0;
 chunked_transfer_encoding on;

 # We’re going to forward all traffic bound for the registry
 location /v2/ {
 proxy_pass http://docker-registry;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_read_timeout 900;
 }
}

As stated earlier in the book, NGINX is a sophisticated piece of software. Whole books
have been dedicated to its use, and so I won’t do it the disservice of attempting to
explain it here. The bits of this configuration that you should understand are anno-
tated. This configuration will forward all traffic on port 80 for the HTTP host localhost
and with the path prefix /v2/ on to http://registry:5000. This configuration will be
the base for other modifications you make to your reverse proxy going forward.

 Once you have your reverse proxy configuration, you’ll want to build a new image.
A minimal Dockerfile should suffice. It should start from the latest NGINX image and
include your new configuration. The base NGINX image takes care of all the standard
things like exposing ports. Create a new file named basic-proxy.df and paste in the fol-
lowing Dockerfile:

FROM nginx:latest
LABEL source=dockerinaction
LABEL category=infrastructure
COPY ./basic-proxy.conf /etc/nginx/conf.d/default.conf

TIP In production, you really should include an environment validation
script (see section 8.4.1) just to make sure that the containers have been
linked correctly. But because you're using an NGINX upstream directive, it
will verify that the host can be resolved for you.

From basic-proxy.conf
nk alias
rement

Container port
requirement

Note /v2/
prefix

olves to
pstream

From basic-proxy.df
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://registry:5000

201Enhancements for centralized registries

r

At this point you should be ready to build your image. Use the following docker
build command to do so:

docker build -t dockerinaction/basic_proxy -f basic-proxy.df .

Now you’re ready to put it all together. Your personal registry should already be run-
ning from the example in section 10.1.1. Use it again here because it should already
be primed with some content. The following commands will create your new reverse
proxy and test the connection:

docker run -d --name basic_proxy -p 80:80 \
 --link personal_registry:registry \
 dockerinaction/basic_proxy

docker run --rm -u 1000:1000 --net host \
 dockerinaction/curl \
 -s http://localhost:80/v2/distribution/tags/list

A few things are happening quickly, so before you move on, take some time to make
sure you understand what’s going on here.

 You created a personal registry earlier. It’s running in a container named
personal_registry and has exposed port 5000. You also added a few tagged images
to a repository named distribution hosted by your personal registry. The first com-
mand in this set creates a new container running a reverse proxy that listens on port
80. The reverse proxy container is linked to your registry. Any traffic that the proxy
receives on port 80 that’s also requesting a path prefixed with /v2/ will be forwarded
to port 5000 on your registry container.

 Finally, you run a curl command from the same host where your Docker daemon
is running. That command makes a request to port 80 on the localhost (in this case
you need that host name). The request is proxied to your registry (because the path
starts with /v2/), and the registry responds with a list of tags contained in the distribu-
tion repository.

NOTE This end-to-end test is very similar to what would happen if your proxy
and registry were deployed to a different host with some known name. Com-
ments in the basic-proxy.conf file explain how to set the host name for pro-
duction deployments.

The reverse proxy that you’re building here doesn’t add anything to your system
except another hop in the network and a hardened HTTP interface. The next three
sections explain how to modify this basic configuration to add TLS, authentication,
and multi-version client support.

10.2.2 Configuring HTTPS (TLS) on the reverse proxy

Transport layer security (TLS) provides endpoint identification, message integrity, and
message privacy. It’s implemented at a layer below HTTP and is what provides the S in
HTTPS. Using TLS to secure your registry is more than a best practice. The Docker

Start reverse proxy
Link to
egistry

Run cURL to query your
registry through the proxy
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

202 CHAPTER 10 Running customized registries
daemon won’t connect to a registry without TLS unless that registry is running on local-
host. That makes these steps mandatory for anyone running a centralized registry.

An HTTPS endpoint is different from the HTTP endpoint in three ways. First, it should
listen on TCP port 443. Second, it requires signed certificate and private key files. Last,
the host name of the server and the proxy configuration must match the one used to
create the certificate. In this example, you’re going to create a self-signed certificate
for the localhost name. Such a certificate won’t work well for a real registry, but there
are many guides available to help you replace that certificate with one issued by a cer-
tificate authority. Figure 10.4 illustrates the new HTTPS protection in relation to your
proxy and registry.

 The first step in making this design a reality is to generate a private and public key
pair and a self-signed certificate. Without Docker you’d need to install OpenSSL and

What about SSH tunnels?

Readers who have experience with TLS may already know that the power the public
key infrastructure provides comes with expense and complexity. A cheap and arguably
less complex way to secure your registry’s network traffic is to enable connections
only through Secure Shell (SSH).

SSH uses similar security techniques as TLS but lacks the third-party trust mechanism
that makes TLS scale to large numbers of users. But SSH does provide a protocol for
tunneling network traffic.

To secure your registry with SSH, you’d install an SSH server (OpenSSH) on the same
machine as the registry. With the SSH server in place, map the registry only to the
loopback interface (localhost) on the machine. Doing so will restrict inbound registry
traffic to what comes through the SSH server.

When clients want to use your registry in this configuration, they’ll create an SSH tun-
nel. That tunnel binds a local TCP port and forwards traffic to it over an SSH connection
between your computer and the remote SSH server and out to some destination host
and port. To put this in context, clients create a tunnel that allows them to treat your
registry as if it were running locally. A client would use a command line like this to
create the tunnel:

ssh -f -i my_key user@ssh-host -L 4000:localhost:5000 -N

With the tunnel created, the client would use the registry as if it were running locally
on port 4000.

Using SSH tunnels might work if you’re running a centralized registry for a small team.
A prerequisite to their use is user account management and authentication (so you
can solve the authentication issue at the same time). But the practice doesn’t scale
well because of account management overhead and generally requires a higher degree
of user sophistication than HTTPS.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

203Enhancements for centralized registries

No
of po

and
run three complicated commands. With Docker (and a public image created by
CenturyLink) you can do the whole thing with one command:

docker run --rm -e COMMON_NAME=localhost -e KEY_NAME=localhost \
 -v "$(pwd)":/certs centurylink/openssl

This command will generate a 4096-bit RSA key pair and store the private key file and
self-signed certificate in your current working directory. The image is publicly avail-
able and maintained with an automated build on Docker Hub. It’s fully auditable, so
the more paranoid are free to validate (or re-create) the image as needed. Of the
three files that are created, you’ll use two. The third is a certificate-signing request
(CSR) and can be removed.

 The next step is to create your proxy configuration file. Create a new file named
tls-proxy.conf and copy in the following configuration. Again, relevant lines are
annotated:

upstream docker-registry {
 server registry:5000;
}

server {
 listen 443 ssl;
 server_name localhost

 client_max_body_size 0;
 chunked_transfer_encoding on;

 ssl_certificate /etc/nginx/conf.d/localhost.crt;
 ssl_certificate_key /etc/nginx/conf.d/localhost.key;

 location /v2/ {
 proxy_pass http://docker-registry;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_read_timeout 900;
 }
}

Proxy Registry

Forward requests prefixed
with /v2/ to the linked

registry container over HTTP

Images and metadata are
persisted somewhere on disk

Clients make secure requests
to the registry server on

HTTPS port 443

Figure 10.4 Adding an HTTPS (TLS) endpoint to the proxy

From tls-proxy.conf

te use
rt 443
 “ssl”

Named localhost

Note SSL configuration
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

204 CHAPTER 10 Running customized registries

No
The differences between this configuration and the basic proxy configuration include
the following:

■ Listening on port 443
■ Registration of an SSL certificate
■ Registration of an SSL certificate key

You should note that this proxy configuration is set to use the same registry on port
5000. Running multiple proxies against the same registry is no different from the
registry’s perspective than running multiple clients.

 The last step before you put it all together is the creation of a Dockerfile. This
time, in addition to copying the proxy configuration, you’ll also need to copy the cer-
tificate and key file into the image. The following Dockerfile uses the multisource
form of the COPY directive. Doing so eliminates the need for multiple layers that you
might otherwise create as the result of multiple COPY directives. Create a new file
named tls-proxy.df and insert the following lines:

FROM nginx:latest
LABEL source=dockerinaction
LABEL category=infrastructure
COPY ["./tls-proxy.conf", \
 "./localhost.crt", \
 "./localhost.key", \
 "/etc/nginx/conf.d/"]

Build your new image with the following docker build command:

docker build -t dockerinaction/tls_proxy -f tls-proxy.df .

Now put it all together by starting your proxy and testing it with curl:

docker run -d --name tls-proxy -p 443:443 \
 --link personal_registry:registry \
 dockerinaction/tls_proxy

docker run --rm \
 --net host \
 dockerinaction/curl -ks \
 https://localhost:443/v2/distribution/tags/list

This command should list both tags for the distribution repository in your personal
registry:

{"name":"distribution","tags":["2","two"]}

The curl command in this example uses the -k option. That option will instruct curl
to ignore any certificate errors with the request endpoint. It’s required in this case
because you’re using a self-signed certificate. Aside from that nuance, you’re success-
fully making a request to your registry over HTTPS.

Copy new certificate

Copy private key

Note port 443
te link

Note “k” flag
Note “https” and “443”
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

205Enhancements for centralized registries
10.2.3 Adding an authentication layer

There are three mechanisms for authentication included with the Distribution project
itself. These are appropriately named silly, token, and htpasswd. As an alternative to
configuring authentication directly on the Distribution project, you can configure var-
ious authentication mechanisms in the reverse proxy layer (see section 10.2.2).

 The first, silly, is completely insecure and should be ignored. It exists for develop-
ment purposes only and may be removed in later versions of the software.

 The second, token, uses JSON web token (JWT) and is the same mechanism that’s
used to authenticate with Docker Hub. It’s a sophisticated approach to authentication
that enables the registry to validate that a caller has authenticated with a third-party
service without any back-end communication. The key detail to take away from this is
that users don’t authenticate with your registry directly. Using this mechanism
requires that you deploy a separate authentication service.

 There are a few open source JWT authentication services available but none that
can be recommended for production use. Until the JWT ecosystem matures, the best
course of action is to use the third authentication mechanism, htpasswd.

 htpasswd is named for an open source program that ships with the Apache Web
Server utilities. htpasswd is used to generate encoded username and password pairs
where the password has been encrypted with the bcrypt algorithm. When you adopt
the htpasswd authentication form, you should be aware that passwords are sent from
the client to your registry unencrypted. This is called HTTP basic authentication.
Because HTTP basic sends passwords over the network, it’s critical that you use this
authentication form in tandem with HTTPS.

 There are two ways to add htpasswd authentication to your registry: at the reverse
proxy layer and on the registry itself. In either case, you’ll need to create a password
file with htpasswd. If you don’t have htpasswd installed, you can do so using Docker.
Create an image from the following Dockerfile (named htpasswd.df) and build
command:

FROM debian:jessie
LABEL source=dockerinaction
LABEL category=utility
RUN apt-get update && \
 apt-get install -y apache2-utils
ENTRYPOINT ["htpasswd"]

Build your image once you have the Dockerfile:

docker build -t htpasswd -f htpasswd.df .

With your new image available, you can create a new entry for a password file like so:

docker run -it --rm htpasswd -nB <USERNAME>

It’s important to replace <USERNAME> with the username you want to create and use the
-nB flags for htpasswd. Doing so will display the output in your terminal and use
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

206 CHAPTER 10 Running customized registries

Passw
the bcrypt algorithm. The program will prompt you for your password twice and then
generate the password file entry. Copy the result into a file named registry.password.
The result should look something like this:

registryuser:$2y$05$mfQjXkprC94Tjk4IQz4vOOK6q5VxUhsxC6zajd35ys1O2J2x1aLbK

Once you have a password file, you can implement HTTP Basic authentication in
NGINX by simply adding two lines to the configuration file presented in section 10.2.2.
Create tls-authproxy.conf and add these lines:

filename: tls-auth-proxy.conf
upstream docker-registry {
 server registry:5000;
}

server {
 listen 443 ssl;
 server_name localhost

 client_max_body_size 0;
 chunked_transfer_encoding on;

 # SSL
 ssl_certificate /etc/nginx/conf.d/localhost.crt;
 ssl_certificate_key /etc/nginx/conf.d/localhost.key;

 location /v2/ {
 auth_basic "registry.localhost";
 auth_basic_user_file /etc/nginx/conf.d/registry.password;

 proxy_pass http://docker-registry;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_read_timeout 900;
 }
}

Now create a new Dockerfile named tls-auth-proxy.df:

FROM nginx:latest
LABEL source=dockerinaction
LABEL category=infrastructure
COPY ["./tls-auth-proxy.conf", \
 "./localhost.crt", \
 "./localhost.key", \
 "./registry.password", \
 "/etc/nginx/conf.d/"]

With that change, you could use the rest of the instructions in section 10.2.2 to
rebuild your registry to process HTTP basic authentication. Rather than repeat that
work, it’s more worthwhile to configure Distribution to use TLS and HTTP basic.

Authentication realm

ord file
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

207Enhancements for centralized registries
Adding TLS and basic authentication directly to your registry is useful if you want to
tighten security on your personal registry. In production it’s likely more suitable to ter-
minate the TLS connection at your proxy layer.

 The following configuration file (named tls-auth-registry.yml) adds TLS and HTTP
basic authentication to an otherwise default Distribution container:

version: 0.1
log:
 level: debug
 fields:
 service: registry
 environment: development
storage:
 filesystem:
 rootdirectory: /var/lib/registry
 cache:
 layerinfo: inmemory
 maintenance:
 uploadpurging:
 enabled: false
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 tls:
 certificate: /localhost.crt
 key: /localhost.key
 debug:
 addr: localhost:5001
auth:
 htpasswd:
 realm: registry.localhost
 path: /registry.password

The annotated text shows both sections of the configuration that have been changed.
The first is the http section. A subsection has been added named tls. The tls section
has two properties, certificate and key. The values of these properties are paths to
the certificate and key file that you generated in section 10.2.2. You’ll need to either
copy these files into the image or use volumes to mount them into the container at
runtime. It’s always a bad idea to copy key files into an image for anything other than
testing purposes.

 The second new section is auth. As you can see, the new htpasswd section uses two
properties. The first, realm, simply defines the HTTP authentication realm. It’s just a
string. The second, path, is the location of the registry.password file that you created
with htpasswd. Put all these things together with a quick Dockerfile (named tls-auth-
registry.df):

Filename: tls-auth-registry.df
FROM registry:2
LABEL source=dockerinaction
LABEL category=infrastructure
Set the default argument to specify the config file to use

TLS configuration

Authentication configuration
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

208 CHAPTER 10 Running customized registries
Setting it early will enable layer caching if the
tls-auth-registry.yml changes.
CMD ["/tls-auth-registry.yml"]
COPY ["./tls-auth-registry.yml", \
 "./localhost.crt", \
 "./localhost.key", \
 "./registry.password", \
 "/"]

Again, copying your key file into the image for production is a bad idea. Use volumes
instead. The previous Dockerfile copies all your specialization material into the root
directory for demonstration purposes. Build and launch the new secured registry with
docker build and docker run:

docker build -t dockerinaction/secure_registry -f tls-auth-registry.df .

docker run -d --name secure_registry \
 -p 5443:5000 --restart=always \
 dockerinaction/secure_registry

If you secure the registry itself with TLS, you may encounter problems when you install
a reverse proxy. The reason is that application-level proxy software (like NGINX or
Apache httpd) operates at the HTTP level. It needs to inspect request traffic in order
to know how it needs to be routed or to route traffic from a specific client consistently
to the same upstream host. Such a proxy would see encrypted traffic only if the TLS
session was terminated by the registry. A functioning solution would either terminate
the TLS session at the proxy layer (as you did earlier) or use a proxy (load-balancer)
that operates at a lower network layer (like layer 4). For more information about net-
work layers, look up information on the OSI model.

 One example where your proxy would need to inspect the request content in
order to route correctly is if you need to support multiple client versions. The Registry
API changed with the release of Docker 1.6. If you want to support both Registry APIs,
then you’ll need to implement an API-aware proxy layer.

10.2.4 Client compatibility

The registry protocol changed dramatically between version 1 and version 2. Docker
clients older than version 1.6 can’t talk to version 2 registries. Distinguishing between
version 1- and version 2-compatible clients and subsequently directing requests to
compatible registry services are simple with our proxy in place.

 For the sake of clarity, the examples in this section omit any HTTPS or authentica-
tion. But you’re encouraged to combine the relevant features to build a proxy to suit
your needs. Figure 10.5 shows the proxy and routing configuration that you’ll build to
support multiple client versions.

 Like the previous proxies that you’ve built, this modification requires three steps:

■ Create an NGINX configuration file (dual-client-proxy.conf).
■ Create a brief Dockerfile (dual-client-proxy.df).
■ Build the new image.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

209Enhancements for centralized registries

V1 up

V2 up
Start by placing the new proxy configuration in a file named dual-client-proxy.conf
and include the following:

upstream docker-registry-v2 {
 server registry2:5000;
}
upstream docker-registry-v1 {
 server registry1:5000;
}

server {
 listen 80;
 server_name localhost;

 client_max_body_size 0;
 chunked_transfer_encoding on;

 location /v1/ {
 proxy_pass http://docker-registry-v1;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_read_timeout 900;
 }

 location /v2/ {
 proxy_pass http://docker-registry-v2;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_read_timeout 900;
 }
}

The only notable difference from the basic proxy configuration is the inclusion of a
second upstream server and a second location specification for URLs starting with

Images and metadata are
persisted somewhere on diskProxy

v1
registry

Forward /v1/

Forward /v2/

v2
registry

Clients make requests to the
registry server on HTTP port 80

Figure 10.5 Routing clients based on requested Registry API version

V2 registry upstream

V1 registry upstream

V1 URL prefix

stream
routing

V2 URL prefix

stream
routing
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

210 CHAPTER 10 Running customized registries
/v1/. Next, create a new Dockerfile named dual-client-proxy.df and include the fol-
lowing directives:

FROM nginx:latest
LABEL source=dockerinaction
LABEL category=infrastructure
COPY ./dual-client-proxy.conf /etc/nginx/conf.d/default.conf

Last, create your new image:

docker build -t dual_client_proxy -f dual-client-proxy.df .

Before you can start a proxy that forwards traffic for both v1 and v2 Registry API
requests, you’ll need to have a v1 registry running. The following command will pull
the 0.9.1 registry software and start it in a container:

docker run -d --name registry_v1 registry:0.9.1

With both versions of the registry running, you can finally create your dual-API sup-
port proxy. The following commands will create the proxy and link it to both registries
and then test the v1 and v2 APIs:

docker run -d --name dual_client_proxy \
 -p 80:80 \
 --link personal_registry:registry2 \
 --link registry_v1:registry1 \
 dual_client_proxy

docker run --rm -u 1000:1000 \
 --net host \
 dockerinaction/curl -s http://localhost:80/v1/_ping

docker run --rm -u 1000:1000 \
 --net host \
 dockerinaction/curl -Is http://localhost:80/v2/

As time goes on, fewer and fewer clients will require v1 registry support. But it’s always
possible that another API change could happen in the future. Proxies are the best way
to handle those situations.

10.2.5 Before going to production

Production configurations should typically differ from development or test configura-
tions in a few specific ways. The most prominent difference is related to secret materi-
als management, followed by log tuning, debug endpoints, and reliable storage.

 Secrets such as private keys should never be committed to an image. It’s easy to move
or manipulate images in such a way that secrets can be revealed. Instead, any system that
is serious about the security of secrets should only store secrets in read-protected mem-
ory or something more robust like a software vault or hardware security module.

 The Distribution project makes use of a few different secrets:

■ TLS private key
■ SMTP username and password

Test v1 from host

Test v2 from host
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

211Enhancements for centralized registries
■ Redis secret
■ Various remote storage account ID and key pairs
■ Client state signature key

It’s important that these not be committed to your production registry configuration
or included with any image that you might create. Instead, consider injecting secret
files by bind-mounting volumes that are on mounted tmpfs or RAMDisk devices and
setting limited file permissions. Secrets that are sourced directly from the configura-
tion file can be injected using environment variables.

 Environment variables prefixed with REGISTRY_ will be used as overrides to the
configuration loaded by the Distribution project. Configuration variables are fully
qualified and underscore-delimited for indentation levels. For example, the client
state secret in the configuration file at

http:
 secret: somedefaultsecret

can be overridden using an environment variable named REGISTRY_HTTP_SECRET. If
you want to start a container running the Distribution project in production, you
should inject that secret using the -e flag on the docker run command:

docker run -d -e REGISTRY_HTTP_SECRET=<MY_SECRET> registry:2

There are a growing number of centralized secret management and secret distribu-
tion projects. You should invest some time in selecting one for your production
infrastructure.

 In production a logging configuration that’s set too sensitive can overwhelm disk
or log-handling infrastructure. Dial down the log level by setting an environment
variable. Set REGISTRY_LOG_LEVEL to error or warn:

docker run -d -e REGISTRY_LOG_LEVEL=error registry:2

The next production configuration difference is simple. Disable the debug endpoint.
This can be accomplished with environment variable configuration overriding.
Setting REGISTRY_HTTP_DEBUG to an empty string will ensure Distribution doesn’t start
a debug endpoint:

docker run -d -e REGISTRY_HTTP_DEBUG='' registry:2

When you deploy a registry to a production environment, you’ll likely need to move
storage off the local file system. The biggest issue with local file system storage is spe-
cialization. Every image stored in a registry that uses local storage specializes the com-
puter where it’s running. That specialization reduces the durability of the registry. If
the hard drive storing the registry data crashes or that one machine becomes inopera-
ble, then you may experience data loss or at best reduced availability.

 Using local storage in production is appropriate when volatility is acceptable or for
use cases involving reproducible images. Aside from those specific cases, you need
data durability, and so you’ll need a durable storage back end.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

212 CHAPTER 10 Running customized registries
10.3 Durable blob storage
Blob is short for binary large object. A registry deals in image layers (blobs) and meta-
data. The term is relevant because there are several popular blob storage services and
projects. To adopt durable blob storage, you’ll need to make a change to your regis-
try’s configuration file and build a new image. Figure 10.6 shows how to grow from a
centralized to a durable centralized registry.

 The Distribution project currently supports popular blob storage back ends in
addition to the local file system. The section of the configuration file that deals with
storage is appropriately named storage. That mapping has four conflicting proper-
ties that define the storage back end. Only one of these properties should be present
in a valid registry configuration:

■ filesystem

■ azure

■ s3

■ rados

The filesystem property is used by the default configuration and has only a single
property, rootdirectory, that specifies the base directory to use for local storage. For
example, the following is a sample from the default configuration:

storage:
 filesystem:
 rootdirectory: /var/lib/registry

Docker
clients

Centralized

Local
hard disk

Docker
clients

Centralized durable

Remote
blob storage

Adopting external and
durable blob storage

Registry

Proxy

Registry

Proxy

Figure 10.6 How to improve the durability of a centralized registry
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

213Durable blob storage
The other storage properties configure the Distribution project for integration with
various distributed blob storage services and are covered over the remainder of this
section, starting with Azure.

10.3.1 Hosted remote storage with Microsoft’s Azure

Azure is the name of Microsoft’s cloud services product family. One service in that
family is a blob storage service named Storage. If you have an Azure account, you can
use the Storage service for your registry blob storage. You can learn more about the
service on the website: http://azure.microsoft.com/services/storage/.

 In order to adopt Azure for your blob storage, you need to use the azure property
and set three subproperties: accountname, accountkey, and container. In this con-
text, container refers to an Azure Storage container, not a Linux container.

 A minimal Azure configuration file might be named azure-config.yml and include
the following configuration:

Filename: azure-config.yml
version: 0.1
log:
 level: debug
 fields:
 service: registry
 environment: development
storage:
 azure:
 accountname: <your account name>
 accountkey: <your base64 encoded account key>
 container: <your container>
 realm: core.windows.net
 cache:
 layerinfo: inmemory
 maintenance:
 uploadpurging:
 enabled: false
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001

Replace the text in angle brackets with configuration for your account. The realm
property should be set to the realm where you want to store your images. See the offi-
cial Azure Storage documentation for details. realm is not a required property and
will default to core.windows.net.

 You can pack the new configuration into a layer over the original registry image
with the following Dockerfile. You could name it azure-config.df:

Filename: azure-config.df
FROM registry:2
LABEL source=dockerinaction
LABEL category=infrastructure

Azure-specific fields
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://azure.microsoft.com/services/storage/

214 CHAPTER 10 Running customized registries
Set the default argument to specify the config file to use
Setting it early will enable layer caching if the
azure-config.yml changes.
CMD ["/azure-config.yml"]
COPY ["./azure-config.yml","/azure-config.yml"]

And you can build it with the following docker build command:

docker build -t dockerinaction/azure-registry -f azure-config.df .

With an Azure Storage back end, you can build a durable registry that scales in terms
of expense instead of technical complexity. That trade-off is one of the strong points
of hosted remote blob storage. If you’re interested in using a hosted solution, you
might consider the more mature AWS Simple Storage Service.

10.3.2 Hosted remote storage with Amazon’s Simple Storage Service

Simple Storage Service (S3) from AWS offers several features in addition to blob stor-
age. You can configure blobs to be encrypted at rest, versioned, access audited, or
made available through AWS’s content delivery network (see section 10.4.2).

 Use the s3 storage property to adopt S3 as your hosted remote blob store. There
are four required subproperties: accesskey, secretkey, region, and bucket. These
are required to authenticate your account and set the location where blob reads
and writes will happen. Other subproperties specify how the Distribution project
should use the blob store. These include encrypt, secure, v4auth, chunksize, and
rootdirectory.

 Setting the encrypt property to true will enable data at rest encryption for the
data your registry saves to S3. This is a free feature that enhances the security of your
service.

 The secure property controls the use of HTTPS for communication with S3. The
default is false and will result in the use of HTTP. If you’re storing private image
material, you should set this to true.

 The v4auth property tells the registry to use version 4 of the AWS authentication
protocol. In general this should be set to true but defaults to false.

 Files greater than 5 GB must be split into smaller files and reassembled on the ser-
vice side in S3. But chunked uploads are available to files smaller than 5 GB and
should be considered for files greater than 100 MB. File chunks can be uploaded in
parallel, and individual chunk upload failures can be retired individually. The
Distribution project and its S3 client perform file chunking automatically, but the
chunksize property sets the size beyond which files should be chunked. The mini-
mum chunk size is 5 MB.

 Finally, the rootdirectory property sets the directory within your S3 bucket where
the registry data should be rooted. This is helpful if you want to run multiple registries
from the same bucket:

Filename: s3-config.yml
version: 0.1
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

215Durable blob storage
log:
 level: debug
 fields:
 service: registry
 environment: development
storage:
 cache:
 layerinfo: inmemory
 s3:
 accesskey: <your awsaccesskey>
 secretkey: <your awssecretkey>
 region: <your bucket region>
 bucket: <your bucketname>
 encrypt: true
 secure: true
 v4auth: true
 chunksize: 5242880
 rootdirectory: /s3/object/name/prefix
 maintenance:
 uploadpurging:
 enabled: false
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001

If you’ve created a configuration file named s3-config.yml and provided your account
access key, secret, bucket name, and region, you can pack the updated registry config-
uration into a new image just like you did for Azure with the following Dockerfile:

Filename: s3-config.df
FROM registry:2
LABEL source=dockerinaction
LABEL category=infrastructure
Set the default argument to specify the config file to use
Setting it early will enable layer caching if the
s3-config.yml changes.
CMD ["/s3-config.yml"]
COPY ["./s3-config.yml","/s3-config.yml"]

And you can build it with the following docker build command:

docker build -t dockerinaction/s3-registry -f s3-config.df .

Both S3 and Azure are offered under a use-based cost model. There’s no up-front cost
to get started, and many smaller registries will be able to operate within the free tier of
either service.

 If you aren’t interested in a hosted data service and don’t hesitate in the face of
some technical complexity, then you might alternatively consider running a Ceph
storage cluster and the RADOS blob storage back end.

S3 configuration
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

216 CHAPTER 10 Running customized registries
10.3.3 Internal remote storage with RADOS (Ceph)

Reliable Autonomic Distributed Object Store (RADOS) is provided by a software proj-
ect named Ceph (http://ceph.com). Ceph is the software that you’d use to build your
own Azure Storage or AWS S3-like distributed blob storage service. If you have a bud-
get, time, and a bit of expertise, you can deploy your own Ceph cluster and save
money over the long term. More than money, running your own blob storage puts you
in control of your data.

 If you decide to go that route, you can use the rados storage property to integrate
with your own storage:

version: 0.1
log:
 level: debug
 fields:
 service: registry
 environment: development
storage:
 cache:
 layerinfo: inmemory
storage:
 rados:
 poolname: radospool
 username: radosuser
 chunksize: 4194304
 maintenance:
 uploadpurging:
 enabled: false
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001

The three subproperties are poolname, username, and chunksize. The username
property should be self-explanatory, but poolname and chunksize are interesting.

 Ceph stores blobs in pools. A pool is configured with certain redundancy, distribu-
tion, and behavior. The pool a blob is stored in will dictate how that blob is stored
across your Ceph storage cluster. The poolname property tells Distribution which pool
to use for blob storage.

 Ceph chunks are similar to but not the same as S3 chunks. Chunks are important
to Ceph’s internal data representation. An overview of the Ceph architecture can be
found here: http://ceph.com/docs/master/architecture/. The default chunk size is 4
MB, but if you need to override that value, you can do so with the chunksize property.

 Adopting a distributed blob storage system is an important part of building a dura-
ble registry. If you intend on exposing your registry to the world, you will need
enhancements for fast and scalable registries. The next section explains how to imple-
ment those enhancements.

RADOS configuration
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://ceph.com
http://ceph.com/docs/master/architecture/

217Scaling access and latency improvements
10.4 Scaling access and latency improvements
With the reverse proxy and a durable storage back end in place, you should be able to
scale your registry horizontally. But doing so introduces additional latency overhead.
If you need to scale your registry to serve thousands of transactions per second, then
you’ll need to implement a caching strategy. You may even consider using a content
delivery network like Amazon CloudFront.

 As illustrated in figure 10.7, this section introduces two new components that will
help you achieve low-latency response times.

 Most readers won’t buy additional machines for the sole purpose of running the
exercises, so these examples will let you use separate containers instead of separate
machines. If you’re reading along while implementing your multi-machine registry
and need information about linking software between hosts, consult chapter 5.

10.4.1 Integrating a metadata cache

When you need low-latency data retrieval, a cache is the first tool to reach for. The
Distribution project can cache repository metadata using either an in-memory map or
Redis. Redis (http://redis.io) is a popular, open source, key-value cache and data-
structure server.

 The in-memory map option is appropriate for smaller registries or development
purposes, but using a dedicated caching project like Redis will help improve the
reliability of your cache and reduce average latencies.

Metadata
cache

Middleware-enhanced
remote blob storage

Docker
clients

Centralized durable

Remote
blob storage

Docker
clients

Fast and scalable

Registry

Proxy

Registry

Proxy

Enhance blob storage
with middleware

Adding metadata caching
will reduce latency

Figure 10.7 The fast and scalable architecture introduces a metadata cache and middleware.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://redis.io

218 CHAPTER 10 Running customized registries
 The Distribution configuration for metadata caching is set with the cache
subproperty of the storage property. Cache has one subproperty named
blobdescriptor with two potential values, inmemory and redis. If you’re using
inmemory, then setting that value is the only configuration required, but if you’re
using Redis, you need to provide additional connection pool configuration.

 The top-level redis property has only one requisite subproperty, addr. The addr
property specifies the location of the Redis server to use for the cache. The server can
be running on the same computer or a different one, but if you use the localhost
name here, it must be running in the same container or another container with a
joined network. Using a known host alias gives you the flexibility to delegate that link-
age to a runtime configuration. In the following configuration sample, the registry
will attempt to connect to a Redis server at redis-host on port 6379:

Filename: redis-config.yml
version: 0.1
log:
 level: debug
 fields:
 service: registry
 environment: development
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001
storage:
 cache:
 blobdescriptor: redis
 s3:
 accesskey: <your awsaccesskey>
 secretkey: <your awssecretkey>
 region: <your bucket region>
 bucket: <your bucketname>
 encrypt: true
 secure: true
 v4auth: true
 chunksize: 5242880
 rootdirectory: /s3/object/name/prefix
 maintenance:
 uploadpurging:
 enabled: false
redis:
 addr: redis-host:6379
 password: asecret
 dialtimeout: 10ms
 readtimeout: 10ms
 writetimeout: 10ms
 pool:
 maxidle: 16
 maxactive: 64
 idletimeout: 300s

Cache configuration

Redis-specific details
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

219Scaling access and latency improvements
The redis configuration in this example sets several optional properties. The
password property defines the password that will be passed to the Redis AUTH com-
mand on connection. The dialtimeout, readtimeout, and writetimeout properties
specify timeout values for connecting to, reading from, or writing to the Redis server.
The last property, pool, has three subproperties that define the attributes for the
connection pool.

 The minimum pool size is specified with the maxidle property. The maximum pool
size is set with the maxactive property. Finally, the time from the last use of an active
connection to the moment it’s a candidate to be flipped into an idle state is specified
with the idletimeout property. Any connections that are flipped to idle when the
current number of idle connections has reached the maximum will be closed.

 Use dummy values in place of secrets in order to produce environment-agnostic
images. Properties like password should be overridden at runtime using environment
variables.

 The cache configuration will help reduce latency associated with serving
registry metadata, but serving image blobs remains inefficient. By integrating with
remote blob storage like S3, a registry becomes a streaming bottleneck during image
transfer. Streaming connections are tricky because the connections tend to be
long-lived relative to metadata queries. Things are made even trickier when long-
lived connections are made through the same load-balancing infrastructure as
short-lived connections.

 You can try out this configuration yourself by building a registry with this configu-
ration and linking in a Redis container:

docker run -d --name redis redis
docker build -t dockerinaction/redis-registry -f redis-config.df .
docker run -d --name redis-registry \
 --link redis:redis-host -p 5001:5000 \
 dockerinaction/redis-registry

The next section explains how you can use a content delivery network (CDN) and reg-
istry middleware to streamline blob downloads.

10.4.2 Streamline blob transfer with storage middleware

Middleware, in the Distribution project, acts like advice or decorators for a registry,
repository, or storage driver. At present, Distribution ships with a single storage mid-
dleware. It integrates your registry and S3 storage back end with AWS CloudFront.
CloudFront is a content delivery network.

 CDNs are designed for geographically aware network access to files. This makes
CloudFront a perfect solution to the remaining scale issue caused by adopting dura-
ble and distributed blob storage.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

220 CHAPTER 10 Running customized registries
Downloading a file is streamlined with the CloudFront middleware enabled and S3 in
use for your storage back end. Figure 10.8 illustrates how data flows through the inte-
grated configuration.

 Rather than streaming blobs from S3 back to your registry and subsequently back
to the requesting client, integration with CloudFront lets you redirect clients to
authenticated CloudFront URLs directly. This eliminates network overhead associated
with image download for your local network. It also offloads long-lived connections to
the appropriately designed CloudFront service.

 Enabling the CloudFront middleware is as simple as adding the appropriate con-
figuration. The following sample is complete with S3, Redis, and CloudFront:

Filename: scalable-config.conf
version: 0.1
log:
 level: debug
 fields:
 service: registry
 environment: development
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001
storage:
 cache:
 blobdescriptor: redis
 s3:
 accesskey: <your awsaccesskey>
 secretkey: <your awssecretkey>
 region: <your bucket region>
 bucket: <your bucketname>

1. Client requests a blob.

2. Registry requests an
authenticated URL.

3. AWS CloudFront
produces the signed URL.

4. Registry redirects the
client to the signed URL.

5. Client requests the blob
from the provided URL.

6. The content is streamed back to the
client directly from AWS CloudFront.

AWS S3

Registry

AWS CloudFront

Docker
client

Figure 10.8 Offloading streaming blob traffic with AWS CloudFront storage middleware
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

221Integrating through notifications
 encrypt: true
 secure: true
 v4auth: true
 chunksize: 5242880
 rootdirectory: /s3/object/name/prefix
 maintenance:
 uploadpurging:
 enabled: false
redis:
 addr: redis-host:6379
 password: asecret
 dialtimeout: 10ms
 readtimeout: 10ms
 writetimeout: 10ms
 pool:
 maxidle: 16
 maxactive: 64
 idletimeout: 300s
middleware:
 storage:
 - name: cloudfront
 options:
 baseurl: <https://my.cloudfronted.domain.com/>
 privatekey: </path/to/pem>
 keypairid: <cloudfrontkeypairid>
 duration: 3000

The middleware property and storage subproperty are a bit different from other con-
figurations you’ve seen so far. The storage subproperty contains a list of named stor-
age middleware, each with its own set of options specific to the middleware.

 In this sample, you’re using the middleware named cloudfront and setting its
baseurl, privatekey path, keypairid name, and the duration over which the
authenticated URLs are valid. Consult the CloudFront user documentation
(http://aws.amazon.com/cloudfront) for the correct settings for your account.

 Once you’ve added a configuration specific to your AWS account and CloudFront
distribution, you can bundle the configuration with a Dockerfile and deploy any num-
ber of high-performance registry containers. With the proper hardware and configu-
ration you could scale to thousands of image pulls or pushes per second.

 All that activity generates useful data. A component like your registry should be
integrated with the rest of your systems to react to events or centrally collect data. The
Distribution project makes these integrations possible with notifications.

10.5 Integrating through notifications
Launching your own registry can help you build your own distribution infrastructure,
but to do so you need to integrate it with other tools. Notifications are a simple
webhook-style integration tool. When you provide an endpoint definition in the
registry configuration file, the registry will make an HTTP request and upload a

Middleware configuration
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://aws.amazon.com/cloudfront

222 CHAPTER 10 Running customized registries
JSON-encoded event for each push or pull event on the registry. Figure 10.9 shows
how notifications integrate your system architecture.

 When Distribute is configured to send notifications, any valid push or pull event
triggers the delivery of JSON documents describing the event to configured endpoints.
This is the primary integration mechanism for the Distribute project.

 Notifications can be used to collect usage metrics, trigger deployments, trigger
image rebuilds, send email, or do anything else you can think of. You might use a noti-
fication integration to post messages to your IRC channel, regenerate user documen-
tation, or trigger an indexing service to scan the repository. In this example, the last of
the chapter, you’ll integrate the Distribution project with the Elasticsearch project
(https://github.com/elastic/elasticsearch) and a web interface to create a fully
searchable database of registry events.

 Elasticsearch is a scalable document index and database. It provides all the func-
tionality required to run your own search engine. Calaca is a popular open source web
interface for Elasticsearch. In this example, you’ll run each of these in its own con-
tainer, a small pump implemented with Node.js, and a Distribution registry config-
ured to send notifications to the pump. Figure 10.10 shows the integration you will
build in this example.

 To build this system, you’ll use the official Elasticsearch image from Docker Hub
and two images provided for this example. All this material is open source, so if you’re

Metadata
cache

Middleware-enhanced
remote blob storage

Docker
clients

Fast and scalable

Registry

Proxy
Metadata

cache

Middleware-enhanced
remote blob storage

Docker
clients

Integrated

Registry

Proxy

Hook 3

Hook 2

Hook 1

Adopt a dedicated cache fleet and notifications

Figure 10.9 Notifications, reporting, and a dedicated metadata cache
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/elastic/elasticsearch

223Integrating through notifications
interested in the mechanics at work, please inspect the repositories. Details of the
integration and Distribution configuration will be covered here. Prepare for the
example by pulling the required images from Docker Hub:

docker pull elasticsearch:1.6
docker pull dockerinaction/ch10_calaca
docker pull dockerinaction/ch10_pump

Briefly, the dockerinaction/ch10_calaca image contains a basic Calaca release that
has been configured to use an Elasticsearch node running on localhost. The name is
important in this case to comply with cross-origin resource sharing (CORS) rules. The
dockerinaction/ch10_pump image contains a small Node.js service. The service lis-
tens for notifications and forwards notifications that contain pull or push actions on
repository manifests. This represents a small subset of the types of notifications sent by
the registry.

 Every valid action on a registry results in a notification, including the following:

■ Repository manifest uploads and downloads
■ Blob metadata requests, uploads, and downloads

es-pump

Elasticsearch

es-node

web-interface

Distribute

notification-
registry

Distribute
notification
filter and

pump

Calaca

Docker
engine

Web
browser

1. Docker push uploads
an image to your
local repository.

5. The web application makes
queries against Elasticsearch
directly from the web browser.

4. The web browser loads the
Calaca-based search interface.

2. Notify.

3. Store and index.

Figure 10.10 Integrating Distribute with Elasticsearch
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

224 CHAPTER 10 Running customized registries
Notifications are delivered as JSON objects. Each notification contains a list of events.
Each event contains properties that describe the event. The following stub shows the
available properties:

{ "events": [{
 "id": "921a9db6-1703-4fe4-9dda-ea71ad0014f1",
 "timestamp": ...
 "action": "push",
 "target": {
 "mediaType": ...
 "length": ...
 "digest": ...
 "repository": ...
 "url": ...
 },
 "request": {
 "id": ...
 "addr": ...
 "host": ...
 "method": ...
 "useragent": ...
 },
 "actor": {},
 "source": {
 "addr": ...
 "instanceID": ...
 }
}]}

The service in dockerinaction/ch10_pump inspects each element in the event list and
then forwards appropriate events to the Elasticsearch node.

 Now that you have an idea of how the pump works, start up the Elasticsearch and
pump containers:

docker run -d --name elasticsearch -p 9200:9200 \
 elasticsearch:1.6 -Des.http.cors.enabled=true

docker run -d --name es-pump -p 8000 \
 --link elasticsearch:esnode \
 dockerinaction/ch10_pump

Containers created from the Elasticsearch image can be customized without creating
a whole image by passing environment variables to the Elasticsearch program itself. In
the previous command, you enable CORS headers so that you can integrate this con-
tainer with Calaca. With these components in place, any number of Distribution
instances might send notifications to the es-pump container. All the relevant data will
be stored in Elasticsearch.

 Next, create a container to run the Calaca web interface:

docker run -d --name calaca -p 3000:3000 \
 dockerinaction/ch10_calaca
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

225Integrating through notifications
Notice that the container running Calaca doesn’t need a link to the Elasticsearch con-
tainer. Calaca uses a direct connection from your web browser to the Elasticsearch
node. In this case, the provided image is configured to use the Elasticsearch node run-
ning on localhost. If you’re running VirtualBox, the next step can be tricky.

 VirtualBox users have not technically bound their elasticsearch container’s port
to localhost. Instead it’s bound to the IP address of their VirtualBox virtual machine.
You can solve this problem with the VBoxManage program included with VirtualBox.
Use the program to create port-forwarding rules between your host network and the
default virtual machine. You can create the rules you need with two commands:

VBoxManage controlvm "$(docker-machine active)" natpf1 \
 "tcp-port9200,tcp,,9200,,9200"
VBoxManage controlvm "$(docker-machine active)" natpf1 \
 "tcp-port3000,tcp,,3000,,3000"

These commands create two rules: forward port 9200 on localhost to port 9200 of the
default virtual machine, and do the same for port 3000. Now VirtualBox users can
interact with these ports in the same way that native Docker users can.

 At this point, you should be ready to configure and launch a new registry. For this
example, start from the default registry configuration and simply add a notifica-
tions section. Create a new file and copy in the following configuration:

Filename: hooks-config.yml
version: 0.1
log:
 level: debug
 formatter: text
 fields:
 service: registry
 environment: staging
storage:
 filesystem:
 rootdirectory: /var/lib/registry
 maintenance:
 uploadpurging:
 enabled: true
 age: 168h
 interval: 24h
 dryrun: false
http:
 addr: 0.0.0.0:5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001
notifications:
 endpoints:
 - name: webhookmonitor
 disabled: false
 url: http://webhookmonitor:8000/
 timeout: 500
 threshold: 5
 backoff: 1000

Notification configuration
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

226 CHAPTER 10 Running customized registries
The last section, notifications, specifies a list of endpoints to notify. The configura-
tion of each endpoint includes a name, URL, attempt timeout, attempt threshold, and
backoff time. You can also disable individual endpoints without removing the configu-
ration by setting the disabled attribute to false. In this case, you’ve defined a single
endpoint at webhookmonitor on port 8000. If you were deploying this to a distributed
environment, webhookmonitor might be set to resolve to a different host. In this
example, webhookmonitor is an alias for the container running the pump.

 Once you’ve saved the configuration file, you can start the new registry container
and see notifications in action. The following command will create a registry. It uses
the base image, injects the configuration using a bind-mount volume, and sets the
configuration file to use with the last argument. The command creates a link to the
pump and assigns it to the webhookmonitor alias. Finally, it binds the registry to port
5555 on localhost (or the Boot2Docker IP address):

docker run -d --name ch10-hooks-registry -p 5555:5000 \
 --link es-pump:webhookmonitor \
 -v "$(pwd)"/hooks-config.yml:/hooks-config.yml \
 registry:2 /hooks-config.yml

With that last component running, you’re ready to test the system. Test the Calaca
container first. Open a web browser and navigate to http://localhost:3000/. When
you do, you should see a simple web page titled calaca and a large search box. Noth-
ing that you search for will have any results at this point because no notifications
would have been sent to Elasticsearch yet. Push and pull images from your repository
to see Elasticsearch and notifications at work.

 Tag and push one of your existing images into your new registry to trigger notifica-
tions. You might consider using the dockerinaction/curl image that you created
earlier in the chapter. It’s a small image, and the test will be fast:

docker tag dockerinaction/curl localhost:5555/dockerinaction/curl
docker push localhost:5555/dockerinaction/curl

If you named the cURL image something different, you’ll need to use that name
instead of the one provided here. Otherwise, you should be ready to search. Head
back to Calaca in your web browser and type curl in the search box.

 As you finish typing curl, a single search result should appear. The results listed
here correspond to registry events. Any valid push or pull will trigger the creation of
one such event in Elasticsearch. Calaca has been configured to display the repository
name, the event type, the timestamp on the event, and finally the raw notification. If
you push the same repository again, then there should be two events. If you pull the
repository instead, there will be a third event for the curl search term, but the type
will be pull. Try it yourself:

docker pull localhost:5555/dockerinaction/curl
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://localhost:3000/

227Summary
The raw notifications are included in the search results to help you get creative with
searching the events. Elasticsearch indexes the whole document, so any field on the
event is a potential search term. Try using this example to build interesting queries:

■ Search for pull or push to see all pull or push events.
■ Search for a particular repository prefix to get a list of all events for that prefix.
■ Track activity on specific image digests.
■ Discover clients by requesting an IP address.
■ Discover all repositories accessed by a client.

This long example should reinforce the potential of a Distribution-based registry as a
key component in your release or deployment workflow. The example should also
serve as a reminder of how Docker can reduce the barrier to working with any con-
tainerized technology.

 The most complex part of setting up this example was creating containers, linking
containers, and injecting configuration with volumes. In chapter 11 you’ll learn how
to set up and iterate on this example using a simple YAML file and a single command.

10.6 Summary
This chapter dives deep into building Docker registries from the Distribution project.
This information is important both for readers who intend to deploy their own regis-
tries and for readers who want to develop a deeper understanding of the primary
image distribution channel. The specific material covered is summarized in the fol-
lowing points:

■ A Docker registry is defined by the API it exposes. The Distribution project is an
open source implementation of the Registry API v2.

■ Running your own registry is as simple as starting a container from the
registry:2 image.

■ The Distribution project is configured with a YAML file.
■ Implementing a centralized registry with several clients typically requires imple-

menting a reverse proxy, adopting TLS, and adding an authentication mecha-
nism.

■ Authentication can be offloaded to a reverse proxy or implemented by the reg-
istry itself.

■ Although other authentication mechanisms are available, HTTP basic authenti-
cation is the simplest to configure and the most popular.

■ Reverse proxy layers can help ease Registry API changes for mixed client
versions.

■ Inject secrets in production configurations with bind-mount volumes and envi-
ronment variable configuration overrides. Do not commit secrets to images.

■ Centralized registries should consider adopting remote blob storage like Azure,
S3, or Ceph.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

228 CHAPTER 10 Running customized registries
■ Distribution can be configured to scale by creating a metadata cache (Redis-
based) or adopting the Amazon Web Services CloudFront storage middleware.

■ It’s simple to integrate Distribution with the rest of your deployment, distribu-
tion, and data infrastructure using notifications.

■ Notifications push event data to configured endpoints in JSON form.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Part 3

Multi-Container and
Multi-Host Environments

If part 1 is focused on the isolation provided by containers, this part is
focused on their composition. Most valuable systems are composed of two or
more components. Simple management of multiple components is more impor-
tant than ever due to the rise of large-scale server software, service-oriented-
architectures, microservices, and now the Internet-of-Things. In building these
systems, we’ve adopted tools like cluster computing, orchestration, and service
discovery. These are difficult and nuanced problems in themselves. This final
part of Docker in Action will introduce three other Docker tools and demonstrate
how to use Docker in the wild.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

230 CHAPTER F
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Declarative environments
with Docker Compose
Have you ever joined a team with an existing project and struggled to get your
development environment set up or IDE configured? If someone asked you to pro-
vision a test environment for their project, could you enumerate all the questions
you’d need to ask to get the job done? Can you imagine how painful it is for devel-
opment teams and system administrators to resynchronize when environments
change? All of these are common and high-effort tasks. They can be time-intensive
while adding little value to a project. In the worst case, they give rise to policies or
procedures that limit developer flexibility, slow the iteration cycle, and bring paths
of least resistance to the forefront of technical decision making.

 This chapter introduces you to Docker Compose (also called Compose) and
how you can use it to solve these common problems.

This chapter covers
■ Using Docker Compose
■ Manipulating environments and iterating on

projects
■ Scaling services and cleaning up
■ Building declarative environments
231

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

232 CHAPTER 11 Declarative environments with Docker Compose
11.1 Docker Compose: up and running on day one
Compose is a tool for defining, launching, and managing services, where a service is
defined as one or more replicas of a Docker container. Services and systems of services
are defined in YAML files (http://yaml.org) and managed with the command-line
program docker-compose. With Compose you can use simple commands to accom-
plish these tasks:

■ Build Docker images
■ Launch containerized applications as services
■ Launch full systems of services
■ Manage the state of individual services in a system
■ Scale services up or down
■ View logs for the collection of containers making a service

Compose lets you stop focusing on individual containers and instead describe full
environments and service component interactions. A Compose file might describe
four or five unique services that are interrelated but should maintain isolation and
may scale independently. This level of interaction covers most of the everyday use
cases for system management. For that reason, most interactions with Docker will be
through Compose.

 By this point you’ve almost certainly installed Docker, but you may not have
installed Compose. You can find up-to-date installation instructions for your environ-
ment at https://docs.docker.com/compose/install/. Official support for Windows has
not been implemented at the time of this writing. But many users have successfully
installed Compose on Windows through pip (a Python package manager). Check the
official site for up-to-date information. You may be pleasantly surprised to find that
Compose is a single binary file and that installation instructions are quite simple. Take
the time to install Compose now.

 The best way to develop an appreciation for any tool is to use it. The rest of this
section will get you started with a few situational examples.

11.1.1 Onboarding with a simple development environment

Suppose you’ve started a new job as a software developer with a forward-looking team
that owns a mature project. If you’ve been in a similar situation before, you may antic-
ipate that you’re going to spend a few days installing and configuring your IDE and get-
ting an operational development environment running on your workstation. But on
your first day at this job, your peers give you three simple instructions to get started:

1 Install Docker.
2 Install Docker Compose.
3 Install and use Git to clone the development environment.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://yaml.org
https://docs.docker.com/compose/install/

233Docker Compose: up and running on day one

Use
wordpre

De
se

name
Rather than ask you to clone a development environment here, I’ll have you create a
new directory named wp-example and copy the following docker-compose.yml file
into that directory:

Filename: docker-compose.yml
wordpress:
 image: wordpress:4.2.2
 links:
 - db:mysql
 ports:
 - 8080:80

db:
 image: mariadb
 environment:
 MYSQL_ROOT_PASSWORD: example

As you may be able to tell from examining the file, you’re going to launch a Word-
Press service and an independent database. This is an iteration of a basic example
from chapter 2. Change to the directory where you created the docker-compose.yml
file and start it all up with the following command:

docker-compose up

This should result in output similar to the following:

Creating wpexample_db_1...
Creating wpexample_wordpress_1...
...

You should be able to open http://localhost:8080/ (or replace “localhost” with your
virtual machine’s IP address) in a web browser and discover a fresh WordPress installa-
tion. This example is fairly simple but does describe a multi-service architecture.
Imagine a typical three- or four-tier web application that consists of a web server, appli-
cation code, a database, and maybe a cache. Launching a local copy of such an envi-
ronment might typically take a few days—longer if the person doing the work is less
familiar with some of the components. With Compose, it’s as simple as acquiring the
docker-compose.yml file and running docker-compose up.

 When you’ve finished having fun with your WordPress instance, you should clean
up. You can shut down the whole environment by pressing Ctrl-C (or Control-C).
Before you remove all the containers that were created, take a moment to list them
with both the docker and docker-compose commands:

docker ps
docker-compose ps

Using docker displays a list of two (or more) containers in the standard fashion. But
listing the containers with docker-compose includes only the list of containers that are
defined by the docker-compose.yml in the current directory. This form is more

Defines service
named wordpress

s official
ss:4.2.2

image

Models link dependency
on db service

Maps port 80 on container
to port 8080 on host

fines
rvice
d db

Uses official
mariadb:latest image

Sets administrative database password
through environment variable
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://localhost:8080/

234 CHAPTER 11 Declarative environments with Docker Compose
refined and succinct. Filtering the list in this way also helps you focus on the contain-
ers that make up the environment you’re currently working on. Before moving on,
take the time to clean up your environment.

 Compose has an rm command that’s very similar to the docker rm command. The
difference is that docker-compose rm will remove all services or a specific service
defined by the environment. Another minor difference is that the -f option doesn’t
force the removal of running containers. Instead, it suppresses a verification stage.

 So, the first step in cleaning up is to stop the environment. You can use either
docker-compose stop or docker-compose kill for this purpose. Using stop is pre-
ferred to kill for reasons explained in part 1. Like other Compose commands, these
can be passed a service name to target for shutdown.

 Once you’ve stopped the services, clean up with the docker-compose rm com-
mand. Remember, if you omit the -v option, volumes may become orphaned:

docker-compose rm -v

Compose will display a list of the containers that are going to be removed and prompt
you for verification. Press the Y key to proceed. With the removal of these containers,
you’re ready to learn how Compose manages state and tips for avoiding orphan ser-
vices while iterating.

 This WordPress sample is trivial. Next, you’ll see how you might use Compose to
model a much more complicated environment.

11.1.2 A complicated architecture: distribution and Elasticsearch
integration

At the end of chapter 10, you create a much more complicated example. You launch
four related components that together provide a Docker registry that’s configured to
pump event data into an Elasticsearch instance and provide a web interface for
searching those events. See figure 11.1.

 Setting up the example required image builds and careful accounting while link-
ing containers together. You can quickly re-create the example by cloning an existing
environment from version control and launching it with Compose:

git clone https://github.com/dockerinaction/ch11_notifications.git
cd ch11_notifications
docker-compose up -d

When you run the last command, Docker will spring to life building various images
and starting containers. It differs from the first example in that you use the -d option.
This option launches the containers in detached mode. It operates exactly like the -d
option on the docker run command. When the containers are detached, the log out-
put of each of the containers will not be streamed to your terminal.

 If you need to access that data, you could use the docker logs command for a spe-
cific container, but that does not scale well if you’re running several containers.
Instead, use the docker-compose logs command to get the aggregated log stream for
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

235Docker Compose: up and running on day one
all the containers or some subset of the services managed by Compose. For example,
if you want to see all the logs for all the services, run this:

docker-compose logs

This command will automatically follow the logs, so when you’ve finished, press Ctrl-C
or Control-C to quit. If you want to see only one or more services, then name those
services:

docker-compose logs pump elasticsearch

In this example, you launched the complete environment with a single command and
viewed the output with a single command. Being able to operate at such a high level is
nice, but the more powerful fact is that you’re also in possession of the various sources
and can iterate locally with the same ease.

 Suppose you have another service that you’d like to bind on port 3000. This would
conflict with the calaca service in this example. Making the change is as simple as
changing ch11_notifications/docker-compose.yml and running docker-compose
up again. Take a look at the file:

registry:
 build: ./registry
 ports:

es-pump

Elasticsearch

es-node

web-interface

Distribute

notification-
registry

Distribute
notification
filter and

pump

Calaca

Docker
engine

Web
browser

1. Docker push uploads
an image to your
local repository.

5. The web application makes
queries against Elasticsearch
directly from the web browser.

4. The web browser loads the
Calaca-based search interface.

2. Notify.

3. Store and index.

Figure 11.1 The data flow through the four containers that make up the notification registry example
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

236 CHAPTER 11 Declarative environments with Docker Compose

Link r
to

s

Use
elastic

Us
sour

calaca s
 - "5555:5000"
links:
 - pump:webhookmonitor

pump:
 build: ./pump
 expose:
 - "8000"
 links:
 - elasticsearch:esnode

elasticsearch:
 image: elasticsearch:1.6
 ports:
 - "9200:9200"
 command: "-Des.http.cors.enabled=true"

calaca:
 build: ./calaca
 ports:
 - "3000:3000"

Change the last line where it reads 3000:3000 to 3001:3000 and save the file. With the
change made, you can rebuild the environment by simply running docker-compose
up –d again. When you do, it will stop the currently running containers, remove those
containers, create new containers, and reattach any volumes that may have been
mounted on the previous generation of the environment. When possible, Compose
will limit the scope of restarted containers to those that have been changed.

 If the sources for your services change, you can rebuild one or all of your services with
a single command. To rebuild all the services in your environment, run the following:

docker-compose build

If you only need to rebuild one or some subset of your services, then simply name the
service. This command will rebuild both the calaca and pump services:

docker-compose build calaca pump

At this point, stop and remove the containers you created for these services:

docker-compose rm -vf

By working with these examples, you’ve touched on the bulk of the development
workflow. There are a few surprises: Docker Compose lets the person or people who
define the environment worry about the details of working with Docker and frees
users or developers to focus on the contained applications.

11.2 Iterating within an environment
Learning how Compose fits into your workflow requires a rich example. This section
uses an environment similar to one you might find in a real API product. You’ll work

Map registry to
port 5555 on host

egistry
 pump
ervice

Export port 8000 to
dependent services

Link pump to
elasticsearch service

official
search
image

Map port 9200 on elasticsearch
to port 9200 on host

Pass flag to ElasticSearch that
enables cross origin calls

e local
ces for
ervice

Map port 3000 on host
to 3000 on calaca service
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

237Iterating within an environment
through scenarios and manage the full life cycle for many services. One scenario will
guide you through scaling independent services, and another will teach you about
state management. Try not to focus too much on how the environment is imple-
mented. The next section covers that.

 The environment you’re onboarding with in this section is an API for working with
coffee shop metadata. It’s the “brain child of a hot new startup catering to local entre-
preneurs and freelancers.” At least it is for the purpose of the example. The environ-
ment structure is illustrated in figure 11.2.

 Download this example from the GitHub repository:

git clone https://github.com/dockerinaction/ch11_coffee_api.git

When you run this command, Git will download the most recent copy of the example
and place it in a new directory named ch11_coffee_api under your current directory.
When you’re ready, change into that directory to start working with the environment.

11.2.1 Build, start, and rebuild services

With the sources and environment description copied from version control, start the
development workflow by building any artifacts that are declared in the environment.
You can do that with the following command:

docker-compose build

The output from the build command will include several lines indicating that specific
services have been skipped because they use an image. This environment is made up
of four components. Of those, only one requires a build step: the Coffee API. You
should see from the output that when Compose built this service, it triggered a
Dockerfile build and created an image. The build step runs a docker build
command for the referenced services.

Volume:
./data/db

Coffee
(API):

Python /
Flask /

Gunicorn

Host port 8080

db
state:

Volume
container

db:
Postgres
appliance

Proxy:
NGINX

appliance

Figure 11.2 Services and service dependencies of the example
environment in this chapter
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

238 CHAPTER 11 Declarative environments with Docker Compose
 The Coffee API’s source and Dockerfile are contained in the coffee folder. It’s a sim-
ple Flask-based Python application that listens on port 3000. The other services in the
environment are out-of-the-box components sourced from images on Docker Hub.

 With the environment built, check out the resulting images that have been loaded
into Docker. Run docker images and look for an image named ch11coffeeapi_coffee.
Compose uses labels and prefixed names to identify images and containers that were
created for a given environment. In this case the image produced for the coffee service
is prefixed with ch11coffeeapi_ because that’s the derived name for the environment.
The name comes from the directory where the docker-compose.yml file is located.

 You’ve built a local artifact for the Coffee API, but the environment may reference
images that aren’t present on your system. You can pull all those with a single Com-
pose command:

docker-compose pull

This command will pull the most recent images for the tags referenced in the environ-
ment. At this point, all the required artifacts should be available on your machine. Now
you can start services. Start with the db service and pay special attention to the logs:

docker-compose up -d db

Notice that before Compose started the db service, it started the dbstate service. This
happens because Compose is aware of all the defined services in the environment, and
the db service has a dependency on the dbstate service. When Compose starts any par-
ticular service, it will start all the services in the dependency change for that service.
This means that as you iterate, and you only need to start or restart a portion of your
environment, Compose will ensure that it comes up with all dependencies attached.

 Now that you’ve seen that Compose is aware of service dependencies, start up the
whole environment:

docker-compose up

When you use an unqualified docker-compose up command, Compose will create or
re-create every service in the environment and start them all. If Compose detects any
services that haven’t been built or services that use missing images, it will trigger a
build or fetch the appropriate image (just like docker run). In this case, you may have
noticed that this command re-created the db service even though it was already run-
ning. This is done to ensure that everything has been brought up in a functioning
state. But if you know that the dependencies of a particular service are operating cor-
rectly, you can start or restart a service without its dependencies. To do so, include the
--no-dep flag.

 Suppose, for example, that you made a minor adjustment to the configuration for
the proxy service (contained in docker-compose.yml) and wanted to restart the proxy
only. You might simply run the following:

docker-compose up --no-dep -d proxy
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

239Iterating within an environment
This command will stop any proxy containers that might be running, remove those
containers, and then create and start a new container for the proxy service. Every
other service in the system will remain unaffected. If you had omitted the --no-dep
flag, then every service would have been re-created and restarted because every
service in this environment is either a direct or transitive dependency of proxy.

 The --no-dep flag can come in handy when you’re starting systems where compo-
nents have long-running startup procedures and you’re experiencing race conditions.
In those cases, you might start those first to let them initialize before starting the rest
of the services.

 With the environment running, you can try experimenting with and iterating on
the project. Load up http://localhost:8080/api/coffeeshops (or use your virtual
machine IP address) in a web browser. If everything is working properly, you should
see a JSON document that looks something like this:

{
 "coffeeshops": []
}

This endpoint lists all coffee shops in the system. You can see that the list is empty.
Next, add some content to become a bit more familiar with the API you’re working on.
Use the following cURL command to add content to your database:

curl -H "Content-Type: application/json" \
 -X POST \
 -d '{"name":"Albina Press", "address": " 5012 Southeast Hawthorne

 Boulevard, Portland, OR", "zipcode": 97215, "price": 2,
 "max_seats": 40, "power": true, "wifi": true}' \

 http://localhost:8080/api/coffeeshops/

You may need to substitute your virtual machine IP address for “localhost.” The new
coffee shop should be in your database now. You can test by reloading
/api/coffeeshops/ in your browser. The result should look like the following response:

{
 "coffeeshops": [
 {
 "address": " 5012 Southeast Hawthorne Boulevard, Portland, OR",
 "id": 35,
 "max_seats": 40,
 "name": "Albina Press",
 "power": true,
 "price": 2,
 "wifi": true,
 "zipcode": 97215
 }
]
}

Now, as is common in the development life cycle, you should add a feature to the
Coffee API. The current implementation only lets you create and list coffee shops. It
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://localhost:8080/api/coffeeshops

240 CHAPTER 11 Declarative environments with Docker Compose
would be nice to add a basic ping handler for health checks from a load balancer.
Open http://localhost:8080/api/ping (or use your virtual machine IP address) in a
web browser to see how the current application responds.

 You’re going to add a handler for this path and have the application return the
host name where the API is running. Open ./coffee/api/api.py in your favorite editor
and add the following code to the end of the file:

@api.route('/ping')
def ping():
 return os.getenv('HOSTNAME')

If you’re having problems with the next step in the example, or if you’re not in the
mood to edit files, you can check out a feature branch on the repository where the
changes have already been made:

git checkout feature-ping

Once you’ve made the change and saved the file (or checked out the updated
branch), rebuild and re-create the service with the following commands:

docker-compose build coffee
docker-compose up -d

The first command will run a docker build command for the Coffee API again and
generate an updated image. The second command will re-create the environment.
There’s no need to worry about the coffee shop data you created. The managed vol-
ume that was created to store the database will be detached and reattached seamlessly
to the new database container. When the command is finished, refresh the web page
that you loaded for /api/ping earlier. It should display an ID of a familiar style. This is
the container ID that’s running the Coffee API. Remember, Docker injects the con-
tainer ID into the HOSTNAME environment variable.

 In this section you cloned a mature project and were able to start iterating on its
functionality with a minimal learning curve. Next you’ll scale, stop, and tear down
services.

11.2.2 Scale and remove services

One of the most impressive and useful features of Compose is the ability to scale a ser-
vice up and down. When you do, Compose creates more replicas of the containers
providing the service. Fantastically, these replicas are automatically cleaned up when
you scale down. But as you might expect, containers that are running when you stop
an environment will remain until the environment is rebuilt or cleaned up. In this sec-
tion you’ll learn how to scale up, scale down, and clean up your services.

 Continuing with the Coffee API example, you should have the environment run-
ning. You can check with the docker-compose ps command introduced earlier.
Remember, Compose commands should be executed from the directory where your
docker-compose.yml file is located. If the environment isn’t running (proxy, coffee,
and db services running), then bring it up with docker-compose up -d.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://localhost:8080/api/ping

241Iterating within an environment
 Suppose you were managing a test or production environment and needed to
increase the parallelism of the coffee service. To do so, you’d only need to point your
machine at your target environment (as you’ll see in chapter 12) and run a single com-
mand. In the parameters of this example, you’re working with your development envi-
ronment. Before scaling up, get a list of the containers providing the coffee service:

docker-compose ps coffee

The output should look something like the following:

 Name Command State Ports
--
ch11coffeeapi_coffee_1 ./entrypoint.sh Up 0.0.0.0:32807->3000/tcp

Notice the far-right column, which details the host-to-container port mapping for the
single container running the service. You can access the Coffee API served by this con-
tainer directly (without going through the proxy) by using this public port (in this
case, 32807). The port number will be different on your computer. If you load the
ping handler for this container, you’ll see the container ID running the service. Now
that you’ve established a baseline for your system, scale up the coffee service with the
following command:

docker-compose scale coffee=5

The command will log each container that it creates. Use the docker-compose ps
command again to see all the containers running the coffee service:

 Name Command State Ports
--
ch11coffeeapi_coffee_1 ./entrypoint.sh Up 0.0.0.0:32807->3000/tcp
ch11coffeeapi_coffee_2 ./entrypoint.sh Up 0.0.0.0:32808->3000/tcp
ch11coffeeapi_coffee_3 ./entrypoint.sh Up 0.0.0.0:32809->3000/tcp
ch11coffeeapi_coffee_4 ./entrypoint.sh Up 0.0.0.0:32810->3000/tcp
ch11coffeeapi_coffee_5 ./entrypoint.sh Up 0.0.0.0:32811->3000/tcp

As you can see, there are now five containers running the Coffee API. These are all
identical with the exception of their container IDs and names. These containers even
use identical host port mappings. The reason this example works is that the Coffee
API’s internal port 3000 has been mapped to the host’s ephemeral port (port 0).
When you bind to port 0, the OS will select an available port in a predefined range. If
instead it were always bound to port 3000 on the host, then only one container could
be running at a time.

 Test the ping handler on a few different containers (using the dedicated port for
the container) before moving on. This example project is used throughout the
remainder of the book. At this point, however, there’s not much else to do but scale
back down to a single instance. Issue a similar command to scale down:

docker-compose scale coffee=1 Note the 1 here
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

242 CHAPTER 11 Declarative environments with Docker Compose
The logs from the command indicate which instances are being stopped and
removed. Use the docker-compose ps command again to verify the state of your
environment:

 Name Command State Ports
--
ch11coffeeapi_coffee_1 ./entrypoint.sh Up 0.0.0.0:32807->3000/tcp

Before moving on to learning about persistent state, clean up the environment so you
can start fresh with docker-compose rm.

11.2.3 Iteration and persistent state

You’ve already learned the basics of environment state management with Compose. At
the end of the last section you stopped and removed all the services and any managed
volumes. Before that you also used Compose to re-create the environment, effectively
removing and rebuilding all the containers. This section is focused on the nuances of
the workflow and edge cases that can have some undesired effects.

 First, a note about managed volumes. Volumes are a major concern of state man-
agement. Fortunately, Compose makes working with managed volumes trivial in itera-
tive environments (see figure 11.3). When a service is rebuilt, the attached managed
volumes are not removed. Instead they are reattached to the replacing containers for
that service. This means that you’re free to iterate without losing your data. Managed
volumes are finally cleaned up when the last container is removed using docker-
compose rm and the -v flag.

 The bigger issue with state management and Compose is environment state. In
highly iterative environments you’ll be changing several things, including the environ-
ment configuration. Certain types of changes can create problems.

 For example, if you rename or remove a service definition in your docker-
compose.yml, then you lose the ability to manage it with Compose. Tying this back to
the Coffee API example, the coffee service was named api during development. The
environment was in a constant state of flux, and at some point when the api service
was running, the service was renamed to coffee. When that happened, Compose was

Volume
dbstate_1
(946caf5a)Volume

dbstate_1
(b4379ffc)

dbstate_1
(946caf5a)

Volume
dbstate_1
(b4379ffc)

Figure 11.3 A volume container will have the same managed volume reattached after being re-created.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

243Starting a new project: Compose YAML in three samples
no longer aware of the api service. Rebuilds and relaunches worked only on the new
coffee service, and the api service was orphaned.

 You can discover this state when you use docker ps to list the running containers
and notice that containers for old versions of the service are running when none
should be. Recovery is simple enough. You can either use docker commands to
directly clean up the environment or add the orphan service definition back to the
docker-compose.yml and clean up with Compose.

11.2.4 Linking problems and the network

The last thing to note about using Compose to manage systems of services is remem-
bering the impact of container-linking limitations.

 In the Coffee API sample project, the proxy service has a link dependency on the
coffee service. Remember that Docker builds container links by creating firewall
rules and injecting service discovery information into the dependent container’s envi-
ronment variables and /etc/hosts file.

 In highly iterative environments, a user may be tempted to relaunch only a specific
service. That can cause problems if another service is dependent on it. For example, if
you were to bring up the Coffee API environment and then selectively relaunch the
coffee service, the proxy service would no longer be able to reach its upstream
dependency. When containers are re-created or restarted, they come back with differ-
ent IP addresses. That change makes the information that was injected into the proxy
service stale.

 It may seem burdensome at times, but the best way to deal with this issue in envi-
ronments without dynamic service discovery is to relaunch whole environments, at a
minimum targeting services that don’t act as upstream dependencies. This is not an
issue in robust systems that use a dynamic service discovery mechanism or overlay net-
work. Multi-host networking is briefly discussed in chapter 12.

 So far, you’ve used Compose in the context of an existing project. When starting
from scratch, you have a few more things to consider.

11.3 Starting a new project: Compose YAML in
three samples
Defining an environment is no trivial task, requiring insight and forethought. As proj-
ect requirements, traffic shape, technology, financial constraints, and local expertise
change, so will the environment for your project. For that reason, maintaining clear
separation of concerns between the environment and your project is critical. Failing
to do so often means that iterating on your environment requires iterating on the
code that runs there. This section demonstrates how the features of the Compose
YAML can help you build the environments you need.

 The remainder of this section will examine portions of the docker-compose.yml
file included with the Coffee API sample. Relevant excerpts are included in the text.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

244 CHAPTER 11 Declarative environments with Docker Compose
11.3.1 Prelaunch builds, the environment, metadata, and networking

Begin by examining the coffee service. This service uses a Compose managed build,
environment variable injection, linked dependencies, and a special networking con-
figuration. The service definition for coffee follows:

coffee:
 build: ./coffee
 user: 777:777
 restart: always
 expose:
 - 3000
 ports:
 - "0:3000"
 links:
 - db:db
 environment:
 - COFFEEFINDER_DB_URI=postgresql://postgres:development@db:5432/po...
 - COFFEEFINDER_CONFIG=development
 - SERVICE_NAME=coffee
 labels:
 com.dockerinaction.chapter: "11"
 com.dockerinaction.example: "Coffee API"
 com.dockerinaction.role: "Application Logic"

When you have an environment that’s closely tied to specific image sources, you might
want to automate the build phase of those services with Compose. In the Coffee API
sample project this is done for the coffee service. But the use case extends beyond
typical development environment needs.

 If your environments use data-packed volume containers to inject environment
configuration, you might consider using a Compose managed build phase for each
environment. Whatever the reason, these are available with a simple YAML key and
structure. See b in the preceding Compose file.

 The value of the build key is the directory location of the Dockerfile to use for a
build. You can use relative paths from the location of the YAML file. You can also pro-
vide an alternative Dockerfile name using the dockerfile key.

 The Python-based application requires a few environment variables to be set so
that it can integrate with a database. Environment variables can be set for a service
with the environment key and a nested list or dictionary of key-value pairs. In c the
list form is used.

 Alternatively you can provide one or many files containing environment variable
definitions with the env_file key. Similar to environment variables, container meta-
data can be set with a nested list or dictionary for the labels key. The dictionary form
is used at d.

 Using detailed metadata can make working with your images and containers much
easier, but remains an optional practice. Compose will use labels to store metadata for
service accounting.

 Last, e shows where this service customizes networking by exposing a port, bind-
ing to a host port, and declaring a linked dependency.

Builds from Dockerfile
located under ./coffeeB

Expose and map
ports for containers

e

Set environment
to use a database

c

Label the
serviced
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

245Starting a new project: Compose YAML in three samples

Use
con

p

configu
via v
 The expose key accepts a list of container ports that should be exposed by firewall
rules. The ports key accepts a list of strings that describe port mappings in the same
format accepted by the –p option on the docker run command. The links command
accepts a list of link definitions in the format accepted by the docker run --link flag.
Working with these options should be familiar after reading chapter 5.

11.3.2 Known artifacts and bind-mount volumes

Two critical components in the Coffee API sample are provided by images down-
loaded from Docker Hub. These are the proxy service, which uses an official NGINX
repository, and the db service, which uses the official Postgres repository. Official
repositories are reasonably trustworthy, but it’s a best practice to pull and inspect
third-party images before deploying them in sensitive environments. Once you’ve
established trust in an image, you should use content-addressable images to ensure no
untrusted artifacts are deployed.

 Services can be started from any image with the image key. Both the proxy and db
services are image-based and use content-addressable images:

db:
 image: postgres@sha256:66ba100bc635be17...
 volumes_from:
 - dbstate
 environment:
 - PGDATA=/var/lib/postgresql/data/pgdata
 - POSTGRES_PASSWORD=development
 labels:
 com.dockerinaction.chapter: "11"
 com.dockerinaction.example: "Coffee API"
 com.dockerinaction.role: "Database"

proxy:
 image: nginx@sha256:a2b8bef333864317...
 restart: always
 volumes:
 - ./proxy/app.conf:/etc/nginx/conf.d/app.conf
 ports:
 - "8080:8080"
 links:
 - coffee
 labels:
 com.dockerinaction.chapter: "11"
 com.dockerinaction.example: "Coffee API"
 com.dockerinaction.role: "Load Balancer"

The Coffee API project uses both a database and load balancer with only minimal
configuration. The configuration that’s provided comes in the form of volumes.

 The proxy uses a volume to bind-mount a local configuration file into the NGINX
dynamic configuration location. This is a simple way to inject configuration without
the trouble of building completely new images.

Use content-addressable images
for trusted Postgres version

a data
tainer
attern

Use content-addressable image
for trusted NGINX version

Inject
ration
olume
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

246 CHAPTER 11 Declarative environments with Docker Compose
 The db service uses the volumes_from key to list services that define required vol-
umes. In this case db declares a dependency on the dbstate service, a volume con-
tainer service.

 In general, the YAML keys are closely related to features exposed on the docker run
command. You can find a full reference at https://docs.docker.com/compose/yml/.

11.3.3 Volume containers and extended services

Occasionally you’ll encounter a common service archetype. Examples might include a
NodeJS service, Java service, NGINX-based load balancer, or a volume container. In
these cases, it may be appropriate to manifest those archetypes as parent services and
extend and specialize those for particular instances.

 The Coffee API sample project defines a volume container archetype named data.
The archetype is a service like any other. In this case it specifies an image to start from,
a command to run, a UID to run as, and label metadata:

data:
 image: gliderlabs/alpine
 command: echo Data Container
 user: 999:999
 labels:
 com.dockerinaction.chapter: "11"
 com.dockerinaction.example: "Coffee API"
 com.dockerinaction.role: "Volume Container"

Alone, the service does nothing except define sensible defaults for a volume con-
tainer. Note that it doesn’t define any volumes. That specialization is left to each
volume container that extends the archetype:

dbstate:
 extends:
 file: docker-compose.yml
 service: data
 volumes:
 - /var/lib/postgresql/data/pgdata

The dbstate service defined a volume container that extends the data service. Service
extensions must specify both the file and service name being extended. The relevant
keys are extends and nested file and service. Service extensions work in a similar
fashion to Dockerfile builds. First the archetype container is built and then it is com-
mitted. The child is a new container built from the freshly generated layer. Just like a
Dockerfile build, these child containers inherit all the parent’s attributes including
metadata.

 The dbstate service defines the managed volume mounted at /var/lib/
postgresql/data/pgdata with the volumes key. The volumes key accepts a list of
volume specifications allowed by the docker run -v flag. See chapter 4 for informa-
tion about volume types, volume containers, and volume nuances.

Reference to parent
service in another file
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://docs.docker.com/compose/yml/

247Summary
 Docker Compose is a critical tool for anyone who has made Docker a core compo-
nent of their infrastructure. With it, you’ll be able to reduce iteration time, version
control environments, and orchestrate ad hoc service interactions with declarative
documents. Chapter 12 builds on Docker Compose use cases and introduces Docker
Machine to help with forensic and automated testing.

11.4 Summary
This chapter focuses on an auxiliary Docker client named Docker Compose. Docker
Compose provides features that relieve much of the tedium associated with command-
line management of containers. The chapter covers the following:

■ Docker Compose is a tool for defining, launching, and managing services,
where a service is defined as one or more replicas of a Docker container.

■ Compose uses environment definitions that are provided in YAML configura-
tion files.

■ Using the docker-compose command-line program, you can build images,
launch and manage services, scale services, and view logs on any host running a
Docker daemon.

■ Compose commands for managing environments and iterating on projects are
similar to docker command-line commands. Building, starting, stopping,
removing, and listing services all have equivalent container-focused counter-
parts.

■ With Docker Compose you can scale the number of containers running a
service up and down with a single command.

■ Declaring environment configuration with YAML enables environment version-
ing, sharing, iteration, and consistency.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Clusters with Machine
and Swarm
The bulk of this book is about interacting with Docker on a single machine. In the
real world, you’ll work with several machines at the same time. Docker is a great
building block for creating large-scale server software. In such environments, you
encounter all sort of new problems that aren’t addressed by the Docker engine
directly.

 How can a user launch an environment where different services run on
different hosts? How will services in such a distributed environment locate service

This chapter covers
■ Creating virtual machines running Docker with

Docker Machine
■ Integrating with and managing remote Docker

daemons
■ An introduction to Docker Swarm clusters
■ Provisioning whole Swarm clusters with Docker

Machine
■ Managing containers in a cluster
■ Swarm solutions to container scheduling and

service discovery
248

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

249Introducing Docker Machine
dependencies? How can a user quickly create and manage large sets of Docker hosts
in a provider-agnostic way? How should services be scaled for availability and failover?
With services spread all over a set of hosts, how will the system know to direct traffic
from load balancers?

 The isolation benefits that containers provide are localized to a given machine.
But as the initial shipping container metaphor prophesied, the container abstraction
makes all sorts of tooling possible. Chapter 11 talked about Docker Compose, a tool
for defining services and environments. In this chapter, you’ll read about Docker
Machine and Docker Swarm. These tools address the problems that Docker users
encounter when provisioning machines, orchestrating deployments, and running
clustered server software.

 Docker Engine and Docker Compose simplify the lives of developers and opera-
tions personnel by abstracting the host from contained software. Docker Machine and
Docker Swarm help system administrators and infrastructure engineers extend those
abstractions into clustered environments.

12.1 Introducing Docker Machine
The first step in learning about and solving distributed systems problems is building a
distributed system. Docker Machine can create and tear down whole fleets of Docker-
enabled hosts in a matter of seconds. Learning how to use this tool is essential for
anyone who wants to learn how to use Docker in distributed cloud or local virtual
environments.

Your choice of driver

Docker Machine ships with a number of drivers out of the box. Each driver integrates
Docker Machine with a different virtual machine technology or cloud-based virtual
computing provider. Every cloud platform has its advantages and disadvantages.
There’s no difference between a local host and a remote host from the perspective
of a Docker client.

Using a local virtual machine driver like VirtualBox will minimize the cost of running
the examples in this chapter, but you should consider choosing a driver for your
preferred cloud provider instead. There is something powerful about knowing that the
commands you’ll issue here are actually managing real-world resources and that the
examples you will deploy are going to be running on the internet. At that point, you’re
only a few domain-specific steps away from building real products.

If you do decide to use a cloud provider for these examples, you’ll need to configure
your environment with the provider-specific information (like access key and secret
key) as well as substitute driver-specific flags in any commands in this chapter.

You can find detailed information about the driver-specific flags by running the docker-
machine help create command or consulting online documentation.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

250 CHAPTER 12 Clusters with Machine and Swarm
12.1.1 Building and managing Docker Machines

Between the docker command line and Compose, you’ve been introduced to several
commands. This section introduces commands for the docker-machine command-
line program. Because these tools are all so similar in form and function, this section
will make the introduction through a small set of examples. If you want to learn more
about the docker-machine command line, you can always use the help command:

docker-machine help

The first and most important thing to know how to do with Docker Machine is how to
create Docker hosts. The next three commands will create three hosts using the
VirtualBox driver. Each command will create a new virtual machine on your computer:

docker-machine create --driver virtualbox host1
docker-machine create --driver virtualbox host2
docker-machine create --driver virtualbox host3

After you run these three commands (they can take a few minutes), you’ll have three
Docker hosts managed by Docker Machine. Docker Machine tracks these machines
with a set of files in your home directory (under ~/.docker/machine/). They describe
the hosts you have created, the certificate authority certificates used to establish secure
communications with the hosts, and a disk image used for VirtualBox-based hosts.

 Docker Machine can be used to list, inspect, and upgrade your fleet as well. Use
the ls subcommand to get a list of managed machines:

docker-machine ls

That command will display results similar to the following:

NAME ACTIVE DRIVER STATE URL SWARM
host1 virtualbox Running tcp://192.168.99.100:2376
host2 virtualbox Running tcp://192.168.99.101:2376
host3 virtualbox Running tcp://192.168.99.102:2376

This command will list each machine, the driver it was created with, its state, and the
URL where the Docker daemon can be reached. If you’re using Docker Machine to
run Docker locally, you’ll have another entry in this list, and that entry will likely be
marked as active. The active machine (indicated with an asterisk under the ACTIVE
column) is the one that your environment is currently configured to communicate
with. Any commands issued with the docker or docker-compose command-line inter-
face will connect with the daemon on the active machine.

 If you want to know more about a specific machine or look up a specific part of its
configuration, you can use the inspect subcommand:

docker-machine inspect host1
docker-machine inspect --format "{{.Driver.IPAddress}}" host1

JSON document describing
the machine

Just the
IP address
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

251Introducing Docker Machine
The inspect subcommand for docker-machine is very similar to the docker inspect
command. You can even use the same Go template syntax (http://golang.org/pkg/
text/template/) to transform the raw JSON document that describes the machine.
This example used a template to retrieve the IP address of the machine. If you needed
that in practice, you would use the ip subcommand:

docker-machine ip host1

Docker Machine lets you build a fleet with relative ease, and it’s important that you
can maintain that fleet with the same ease. Any managed machine can be upgraded
with the upgrade subcommand:

docker-machine upgrade host3

This command will result in output like the following:

Stopping machine to do the upgrade...
Upgrading machine host3...
Downloading ...
Starting machine back up...
Starting VM...

The upgrade procedure stops the machine, downloads an updated version of the soft-
ware, and restarts the machine. With this command, you can perform rolling
upgrades to your fleet with minimal effort.

 You will occasionally need to manipulate files on one of your machines or access
the terminal on a machine directly. It could be that you need to retrieve or prepare
the contents of a bind mount volume. Other times you may need to test the network
from the host or customize the host configuration. In those cases, you can use the ssh
and scp subcommands.

 When you create or register a machine with Docker Machine, it creates or imports
an SSH private key file. That private key can be used to authenticate as a privileged user
on the machine over the SSH protocol. The docker-machine ssh command will
authenticate with the target machine and bind your terminal to a shell on the machine.

 For example, if you wanted to create a file on the machine named host1, you could
issue the following commands:

docker-machine ssh host1
touch dog.file
exit

It seems a bit silly to use a fully bound terminal to run a single command. If you don’t
need a fully interactive terminal, you can alternatively specify the command to run as
an additional argument to the ssh subcommand. Run the following command to
write the name of a dog to the file you just created:

docker-machine ssh host1 "echo spot > dog.file"

If you have files on one machine that you need to copy elsewhere, you can use the scp
subcommand to do so securely. The scp subcommand takes two arguments: a source

Bind your terminal
to shell on host1

Exit remote shell
and stop command
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://golang.org/pkg/text/template/
http://golang.org/pkg/text/template/

252 CHAPTER 12 Clusters with Machine and Swarm
host and file and a destination host and file. Try it for yourself and copy the file you just
created from host1 to host2, and then use the ssh subcommand to view it on host2:

docker-machine scp host1:dog.file host2:dog.file
docker-machine ssh host2 "cat dog.file"

The SSH-related commands are critical for customizing configuration, retrieving vol-
ume contents, and performing other host-related maintenance. The rest of the com-
mands that you need to build and maintain fleets are predictable.

 The commands for starting, stopping (or killing), and removing a machine are just
like equivalent commands for working with containers. The docker-machine com-
mand offers four subcommands: start, stop, kill, and rm:

docker-machine stop host2
docker-machine kill host3
docker-machine start host2
docker-machine rm host1 host2 host3

This section covered the bulk of the basic mechanics for building and maintaining a
fleet with Docker Machine. The next section demonstrates how you can use Docker
Machine to configure your client environment to work with those machines and how
to access the machines directly.

12.1.2 Configuring Docker clients to work with remote daemons

Docker Machine accounts for and tracks the state of the machines that it manages.
You can use Docker Machine to upgrade Docker on remote hosts, open SSH connec-
tions, and securely copy files between hosts. But Docker clients like the docker com-
mand-line interface or docker-compose are designed to connect to a single Docker
host at a time. For that reason, one of the most important functions of Docker
Machine is producing environment configuration for an active Docker host.

 The relationship between Docker Machine, Docker clients, and the environment
is illustrated in figure 12.1.

Outputs: spot

Docker Machine
state files

Docker Machine
(CLI)

Environment
variables

Docker
(CLI)

Docker gets connection
information from
environment variables.

Docker Machine sets environment variables
for connecting to specific machines.

Docker Machine records
the state of all the
machines it manages in
a set of local files in
your home directory.

Figure 12.1 The relationship between docker, docker-machine, and relevant state sources
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

253Introducing Docker Machine

Power
configur

Ge
configur
Get started learning how to manage your Docker environment by creating a couple
new machines and activating one. Start by running create:

docker-machine create --driver virtualbox machine1
docker-machine create --driver virtualbox machine2

In order to activate this new machine, you must update your environment. Docker
Machine includes a subcommand named env. The env subcommand attempts to auto-
matically detect the user’s shell and print commands to configure the environment to
connect to a specific machine. If it can’t automatically detect the user’s shell, you can
set the specific shell with the --shell flag:

docker-machine env machine1

docker-machine env --shell powershell machine1

docker-machine env --shell cmd machine1

docker-machine env --shell fish machine1

docker-machine env --shell bash machine1

Each of these commands will print out the list of shell-specific commands that need to
be run along with a comment on how to invoke docker-machine so that these are exe-
cuted automatically. For example, to set machine1 as the active machine, you can exe-
cute the docker-machine env command in a POSIX shell:

eval "$(docker-machine env machine1)"

If you use Windows and run PowerShell, you would run a command like the following:

docker-machine env --shell=powershell machine1 | Invoke-Expression

You can validate that you’ve activated machine1 by running the active subcommand.
Alternatively, you can check the ACTIVE column on the output from the ls
subcommand:

docker-machine active
docker-machine ls

Any client that observes the
environment configuration on
your local computer will use
the Docker Remote API pro-
vided at the specified URL for
the active machine. When the
active machine is changed, so
will the targets of any Docker
client commands be changed.
The state of this environment is
illustrated in figure 12.2.

Let env autodetect
your shell

Get
Shell
ation

Get CMD configuration

t fish
ation

Get the default (POSIX)
configuration

Machine 1

Machine 2

Docker
(CLI)

Docker environment

Docker Compose
(CLI)

Figure 12.2 One of two machines created with Docker
Machine has been activated in the local environment. Docker
clients will use the Docker API provided by that machine.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

254 CHAPTER 12 Clusters with Machine and Swarm
 Create a few containers and experience for yourself how simple and subtle it is to
work with multiple machines. Start by pulling an image onto the active machine:

docker pull dockerinaction/ch12_painted

Images pulled onto an active machine will only be pulled onto that machine. This
means that if you’ll be using some common image across your fleet, you’ll need to
pull that image on each of those machines. This is important to understand if mini-
mizing container startup time is important. In those cases, you’ll want to pull on as
many machines in parallel as possible and before container-creation time. Before you
start a container with this image, change the active machine to machine2 and list
the images:

eval "$(docker-machine env machine2)"
docker images

The output from the images subcommand should be empty. This example helps illus-
trate the need to pull images on each machine independently. This machine,
machine2, has never had any images installed.

 Next, pull the image and run a container for dockerinaction/ch12_painted on
machine2:

docker run -t dockerinaction/ch12_painted \
 Tiny turtles tenderly touch tough turnips.

Now compare the list of containers on machine1 with those on machine2:

docker ps -a
eval "$(docker-machine env machine1)"
docker ps -a

Again, the list is empty because no containers have been created on machine1. This
simple example should help illustrate how easy it is to work with multiple machines. It
should also illustrate how confusing it can be to manually connect to, orchestrate, and
schedule work across a sizable fleet of machines. Unless you specifically query for the
active host, it’s difficult to keep track of where your Docker clients are directed as the
number of machines you use increases.

 Orchestration can be simplified by taking advantage of Docker Compose, but
Compose is like any other Docker client and will use only the Docker daemon that
your environment has been configured to use. If you were to launch an environment
with Compose and your current configuration where machine1 is active, all the ser-
vices described by that environment would be created on machine1. Before moving
on, clean up your environment by removing both machine1 and machine2:

docker-machine rm machine1 machine2

Replace with equivalent command
appropriate for your shell

Replace with equivalent command
appropriate for your shell
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

255Introducing Docker Swarm
Docker Machine is a great tool for building and managing machines in a Docker-
based fleet. Docker Compose provides orchestration for Docker container-based
services. The main problems that remain are scheduling containers across a fleet of
Docker machines and later discovering where those services have been deployed.
Docker Swarm will provide the solutions.

12.2 Introducing Docker Swarm
Unless you’ve worked in a distributed systems environment before or built out
dynamic deployment topologies, the problems that Docker Swarm solves will require
some effort to understand. This section dives deeply into those and explains how
Swarm addresses each from a high level.

 When people encounter the first problem, they may ask themselves, “Which
machine should I choose to run a given container?” Organizing the containers you
need to run across a fleet of machines is not a trivial task. It used to be the case that we
would deploy different pieces of software to different machines. Using the machine as
a unit of deployment made automation simpler to reason about and implement, given
existing tooling. When a machine is your unit of deployment, figuring out which
machine should run a given program is not a question you need to answer. The
answer is always “a new one.” Now, with Linux containers for isolation and Docker for
container tooling, the remaining major concerns are efficiency of resource usage, the
performance characteristics of each machine’s hardware, and network locality. Select-
ing a machine based on these concerns is called scheduling.

 After someone figures out a solution to the first problem, they’ll immediately ask,
“Now that my service has been deployed somewhere in my network, how can other
services find it?” When you delegate scheduling to an automated process, you can’t
know where services will be deployed beforehand. If you can’t know where a service
will be located, how can other services use it? Traditionally, server software uses DNS to
resolve a known name to a set of network locations. DNS provides an appropriate
lookup interface, but writing data is another problem altogether. Advertising the avail-
ability of a service at a specific location is called registration, and resolving the
location of a named service is called service discovery.

 In this chapter you learn how Swarm solves these problems by building a Swarm
cluster with Docker Machine, exploring scheduling algorithms, and deploying the
Coffee API example.

12.2.1 Building a Swarm cluster with Docker Machine

A Swarm cluster is made up of two types of machines. A machine running Swarm in
management mode is called a manager. A machine that runs a Swarm agent is called
a node.

 In all other ways, Swarm managers and nodes are just like any other Docker
machines. These programs require no special installation or privileged access to the
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

256 CHAPTER 12 Clusters with Machine and Swarm
machines. They run in Docker containers. Figure 12.3 illustrates the computing stack
of a typical Swarm manager machine. It is running the manager program, the Swarm
agent, and another container.

 Docker Machine can provision Swarm clusters as easily as standalone Docker
machines. The only difference is a small set of additional command-line parameters
that are included when you use the create subcommand.

 The first, --swarm, indicates that the machine being created should run the Swarm
agent software and join a cluster. Second, using the --swarm-master parameter will
instruct Docker Machine to configure the new machine as a Swarm manager. Third,
every type of machine in a Swarm cluster requires a way to locate and identify the clus-
ter it’s joining (or managing). The --swarm-discovery parameter takes an additional
argument that specifies the unique identifier of the cluster. Figure 12.4 illustrates a
small cluster of machines and a standalone machine for contrast.

Docker Engine
(port 2376)

Swarm Manager
(port 3376)

Swarm agent Some other
container

Init process (PID 1)

Operating system
(Linux)

Virtual hardware
(Hypervisor)

Figure 12.3 Swarm,
Swarm Manager, and
another program run in
containers on an otherwise
typical virtual machine
running the Docker engine.

Docker Engine
(port 2376)

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)Single machine

Machine 0 – manager
(No Swarm agent or

part of another cluster)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 1

Swarm discovery
subsystem

Swarm Manager nodes periodically
pull lists of registered Swarm agents,
their resource usage statistics, and
the container list from the cluster
discovery subsystem.

Swarm agents register with
the cluster discovery subsystem,
the heartbeat with resource
usage statistics, and the local
container list.

Figure 12.4 Swarm manager and agent interaction through a cluster discovery subsystem
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

257Introducing Docker Swarm

Create
local D
In this illustration you can see that the Swarm agent on each node communicates with
a Swarm discovery subsystem to advertise its membership in a cluster identified by
token://12341234. Additionally, the single machine running the Swarm manager
polls the Swarm discovery subsystem for an updated list of nodes in the cluster. Before
diving into the Swarm discovery subsystem and other mechanics at work here, use
Docker Machine to create a new Swarm cluster of your own. The next few commands
will guide you through this process.

 The first step in creating your own Swarm cluster is creating a cluster identifier. Like
most subsystems abstracted by Docker, the Swarm discovery subsystem can be changed
to fit your environment. By default, Swarm uses a free and hosted solution provided on
Docker Hub. Run the following commands to create a new cluster identifier:

docker-machine create --driver virtualbox local
eval "$(docker-machine env local)"

docker run --rm swarm create

The last command should output a hexadecimal identifier that looks like this:

b26688613694dbc9680cd149d389e279

Copy the resulting value and substitute that for <TOKEN> in the next three commands.
The following set of commands will create a three-node Swarm cluster using virtual
machines on your computer. Note that the first command uses the --swarm-master
parameter to indicate that the machine being created should manage the new Swarm
cluster:

docker-machine create \
 --driver virtualbox \
 --swarm \
 --swarm-discovery token://<TOKEN> \
 --swarm-master \
 machine0-manager

docker-machine create \
 --driver virtualbox \
 --swarm \
 --swarm-discovery token://<TOKEN> \
 machine1

docker-machine create \
 --driver virtualbox \
 --swarm \
 --swarm-discovery token://<TOKEN> \
 machine2

a new
ocker Replace with equivalent command

appropriate for your shell

Note this flag
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

258 CHAPTER 12 Clusters with Machine and Swarm
These machines can be identified as part of a Swarm cluster in output from the ls
subcommand of docker-machine. The name of the cluster manager is included in the
column labeled SWARM for any node in a cluster:

NAME ... URL SWARM
machine0-manager tcp://192.168.99.106:2376 machine0-manager (manager)
machine1 tcp://192.168.99.107:2376 machine0-manager
machine2 tcp://192.168.99.108:2376 machine0-manager

A Docker client could be configured to work with any of these machines individually.
They’re all running the Docker daemon with an exposed TCP socket (like any other
Docker machine). But when you configure your clients to use the Swarm endpoint on
the master, you can start working with the cluster like one big machine.

12.2.2 Swarm extends the Docker Remote API

Docker Swarm manager endpoints expose the Swarm API. Swarm clients can use that
API to control or inspect a cluster. More than that, though, the Swarm API is an exten-
sion to the Docker Remote API. This means that any Docker client can connect
directly to a Swarm endpoint and treat a cluster as if it were a single machine.

 Figure 12.5 illustrates how Swarm manager delegates work—specified by Docker
clients—to nodes in the cluster.

Docker Engine
(port 2376)

Swarm Manager
(port 3376)

Docker client Docker Compose

Docker Engine
(port 2376)

Swarm agent
(token://12341234)Single machine

Machine 0 – manager
(No Swarm agent or

part of another cluster)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 1

Docker clients connected
to a Swarm endpoint can
manage containers in a
cluster without knowledge
of that cluster’s architecture.

Swarm Manager chooses a target node
to run a container, connects to the
Docker Engine on that machine, and
dispatches work like any client might.

Figure 12.5 Deploying a container in a cluster requires no knowledge of the cluster because the
Swarm API extends the Docker Remote API.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

259Introducing Docker Swarm
The implementation of the Docker Remote API provided by Swarm is very different
from the Docker Engine. Depending on the specific feature, a single request from a
client may impact one or many Swarm nodes.

 Configure your environment to use the Swarm cluster that you created in the last
section. To do so, add the --swarm parameter to the docker-machine env subcom-
mand. If you’re using a POSIX-compatible shell, run the following command:

eval "$(docker-machine env --swarm machine0-manager)"

If you’re using PowerShell, the run the following:

docker-machine env --swarm machine0-master | Invoke-Expression

When your environment is configured to access a Swarm endpoint, the docker
command-line interface will use Swarm features. For example, using the docker info
command will report information for the whole cluster instead of details for one spe-
cific daemon:

docker info

That output will look similar to the following:

Containers: 4
Images: 3
Role: primary
Strategy: spread
Filters: affinity, health, constraint, port, dependency
Nodes: 3
 machine0-manager: 192.168.99.110:2376
 ? Containers: 2
 ? Reserved CPUs: 0 / 1
 ? Reserved Memory: 0 B / 1.022 GiB
 ? Labels: executiondriver=native-0.2, kernelversion=4.0.9-...
 machine1: 192.168.99.111:2376
 ? Containers: 1
 ? Reserved CPUs: 0 / 1
 ? Reserved Memory: 0 B / 1.022 GiB
 ? Labels: executiondriver=native-0.2, kernelversion=4.0.9-...
 machine2: 192.168.99.112:2376
 ? Containers: 1
 ? Reserved CPUs: 0 / 1
 ? Reserved Memory: 0 B / 1.022 GiB
 ? Labels: executiondriver=native-0.2, kernelversion=4.0.9-...
CPUs: 3
Total Memory: 3.065 GiB
Name: 942f56b2349a

Notice that this sample output includes a configuration summary for the cluster, a list
of the nodes in the cluster, and a description of the resources available on each node.
Before moving on, take a moment to reflect on what’s happening here. This is the first
evidence you’ve seen that the nodes in your cluster are advertising their endpoint and
that the manager is discovering those nodes. Further, all this information is specific to
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

260 CHAPTER 12 Clusters with Machine and Swarm
a Swarm cluster, but you were able to retrieve it through the same docker command
that you would use with a standalone machine. Next, create a container in your cluster:

docker run -t -d --name hello-swarm \
 dockerinaction/ch12_painted \
 Hello Swarm

This time you ran a ch12_painted container in detached mode. The output will be in
the logs, and the container will not have been automatically removed. You can view
the output of that container with the logs subcommand:

docker logs hello-swarm

 _ _ _ _ ____
| | | | ___| | | ___ / ___|_ ____ _ _ __ _ __ ___
| |_| |/ _ \ | |/ _ \ ___ \ \ /\ / / _` | '__| '_ ` _ \
| _ | __/ | | (_) | ___) \ V V / (_| | | | | | | | |
|_| |_|___|_|_|___/ |____/ _/_/ __,_|_| |_| |_| |_|

This command looks just like it would if you were accessing a standalone machine. In
fact, the protocol is the same, so any Docker client that can fetch logs from a Docker
Remote endpoint can retrieve logs from a Swarm endpoint. You can discover which
machine has the container with the ps subcommand. Use filtering to grab the con-
tainer named hello-swarm:

docker ps -a -f name=hello-swarm

Notice in the NAMES column that the container name is prefixed with one of the
machine names in your cluster. This could be any of the nodes. If you create a similar
container with a slightly different name like hello-world2, the cluster may schedule
that container on a different host. Before you do that, though, take a moment to
examine the cluster information again:

docker info

Notice the number of containers and images in the cluster:

Containers: 5
Images: 4

The Containers and Images numbers are a non-distinct sum for the cluster. Because
you have three nodes in the cluster, you need three agent containers and one man-
ager container. The remaining container is the hello-swarm container that you just
created. The four images are made up of the three copies of the swarm image and one
copy of dockerinaction/ch12_painted. The thing to notice here is that when you
create a container with the run command, the required image will be pulled only on
the host where the container is scheduled. That’s why there’s only one copy of the
image instead of three.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

261Swarm scheduling
 If you want to make sure that the images you use are pulled on each of the
machines in the cluster, you can use the pull subcommand. Doing so will eliminate
any warm-up latency if a container is scheduled on a node that doesn’t have the
required image:

docker pull dockerinaction/ch12_painted

This command will launch a pull operation on each node:

machine0-manager: Pulling dockerinaction/ch12_painted:latest... :
 downloaded
machine1: Pulling dockerinaction/ch12_painted:latest... : downloaded
machine2: Pulling dockerinaction/ch12_painted:latest... : downloaded

Similarly, removing containers will remove the named container from whichever
machine it is located on, and removing an image will remove it from all nodes in the
cluster. Swarm hides all this complexity from the user and in doing so frees them to
work on more interesting problems.

 Not every decision can be made in a vacuum, though. Different algorithms for
scheduling containers can have significant impact on the efficiency and performance
characteristics of your cluster. Next, you’ll learn about different algorithms and hints
the user can provide to manipulate the Swarm scheduler.

12.3 Swarm scheduling
One of the most powerful arguments for adopting Linux containers as your unit of
deployment is that you can make more efficient use of your hardware and cut hardware
and power costs. Doing that requires intelligent placement of containers on your fleet.

 Swarm provides three different scheduling algorithms. Each has its own advan-
tages and disadvantages. The scheduling algorithm is set when you create a Swarm
manager. A user can tune the scheduling algorithms for a given Swarm cluster by pro-
viding constraints for specific containers.

 Constraints can be set for each container, but because the scheduling algorithm is
set on the Swarm manager, you need to specify that setting when you create your clus-
ter. The Docker Machine create subcommand provides the --swarm-strategy
parameter for this purpose. The default selection is spread.

12.3.1 The Spread algorithm

A Swarm cluster that uses the Spread algorithm will try to schedule containers on
under-used nodes and spread a workload over all nodes equally. The algorithm specif-
ically ranks all the nodes in the fleet by their resource usage and then ranks those with
the same resource rank according to the number of containers each is running. The
machine with the most resources available and fewest containers will be selected to
run a new container. Figure 12.6 illustrates how three equal-size containers might be
scheduled in a cluster with three similar nodes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

262 CHAPTER 12 Clusters with Machine and Swarm

some
You can see in figure 12.6 that each of the three scheduled containers was placed on a
separate host. At this point, any of these three machines would be a candidate to run a
fourth container. The chosen machine will be running two containers when that
fourth container is scheduled. Scheduling a fifth container will cause the cluster to
choose between the two machines that are running only a single container. The selec-
tion rank of a machine is determined by the number of containers it’s running rela-
tive to all other machines in the cluster. Those machines running fewer containers will
have a higher rank. In the event that two machines have the same rank, one will be
chosen at random.

 The Spread algorithm will try to use your whole fleet evenly. Doing so minimizes
the potential impact of random machine failure and ties individual machine conges-
tion with fleet congestion. Consider an application that runs a large, varying number
of replica containers.

 Create a new Compose environment description in flock.json and define a sin-
gle service named bird. The bird service periodically paints bird on standard out:

bird:
 image: dockerinaction/ch12_painted
 command: bird
 restart: always

Watch Swarm distribute 10 copies of the bird service across the cluster when you use
Compose to scale up:

docker-compose -f flock.yml scale bird=10
docker ps

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 0 – manager

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

container_1 container_3container_2

Machine 1

Docker Compose

Figure 12.6 The Spread
algorithm spreads a
workload evenly across
the nodes in a cluster.

Create
 birds

Check out container
distribution
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

263Swarm scheduling
The output for the ps command will include 10 containers. The name of each con-
tainer will be prefixed with the name of the machine where it has been deployed.
These will have been evenly distributed across the nodes in the cluster. Use the follow-
ing two commands to clean up the containers in this experiment:

docker-compose -f flock.yml kill
docker-compose -f flock.yml rm –vf

This algorithm works best in situations where resource reservations have been set on
containers and there is a low degree of variance in those limits. As the resources
required by containers and the resources provided by nodes diversify, the Spread algo-
rithm can cause issues. Consider the distribution in figure 12.7.

Figure 12.7 illustrates how introducing higher variance in the resources required by
containers can cause poor performance of the Spread algorithm. In this scenario, the
new container, XXL_container, can’t be scheduled because no machine has sufficient
resources. In retrospect, it’s clear that the scheduler might have avoided this situation
if it had scheduled container_3 on either Machine0 or Machine1. You can avoid this
type of situation without changing the scheduling algorithm if you use filters.

12.3.2 Fine-tune scheduling with filters

Before the Swarm scheduler applies a scheduling algorithm, it gathers and filters a set
of candidate nodes according to the Swarm configuration and the needs of the

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 0 – manager

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

container_1 container_3

container_2

Machine 1

Docker Compose

XXL_containerInsufficient

Figure 12.7 A new container is unable to be scheduled due to a poor distribution.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

264 CHAPTER 12 Clusters with Machine and Swarm
container. Each candidate node will pass through each of the filters configured for
the cluster. The set of active filters used by a cluster can be discovered with the docker
info command. When a docker client is configured for a Swarm endpoint, output
from the info subcommand will include a line similar to the following:

Filters: affinity, health, constraint, port, dependency

A cluster with these filters enabled will reduce the set of candidate nodes to those that
have any affinity, constraint, dependency, or port required by the container being
scheduled and to those in which the node is healthy.

 An affinity is a requirement for colocation with another container or image. A con-
straint is a requirement on some machine property like kernel version, storage driver,
network speed, disk type, and so on. Although you can use a set of predefined
machines for defining constraints, you can also create constraints on any label that
has been applied to a node’s daemon. A dependency is a modeled container depen-
dency such as a link or shared volume. Finally, a port filter will reduce the set of candi-
date nodes to those with the requested host port available.

 The poor distribution described in figure 12.7 could have been avoided with
labeled nodes and a label constraint defined on the containers. Figure 12.8 illustrates
a better way to configure the system.

 In figure 12.8, both Machine0 and Machine1 were created with the label
size=small, and Machine2 was labeled size=xxl. When containers 1–3 were created,

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 0 – manager
(size=small)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2
(size=xxl)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

s_container_1

s_container_3

s_container_2

Machine 1
(size=small)

Docker Compose

xxl_containerInsufficient

Figure 12.8 Node labels and constrained containers prune the scheduling candidates to
appropriate nodes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

265Swarm scheduling
they provided an environment variable that indicated a constraint on nodes labeled
size=small. That constraint narrows the node candidate pool to Machine0 or
Machine1. Those containers are spread across those nodes as in other examples.
When the xxl_container is created with a constraint on nodes labeled size=xxl, the
candidate pool is narrowed to a single node. As long as that one node is not filtered
for any other reason, it will be scheduled on Machine2.

 You can label the nodes that you create in your cluster by setting the --engine-
label parameter of the docker-machine create command. For example, you’d use
the following command to create a new node labeled with size=small in your cluster:

docker-machine create -d virtualbox \
 --swarm \
 --swarm-discovery token://<YOUR TOKEN> \
 --engine-label size=small \
 little-machine

docker-machine create -d virtualbox \
 --swarm \
 --swarm-discovery token://<YOUR TOKEN> \
 --engine-label size=xxl \
 big-machine

In addition to whatever labels you might apply to nodes, containers can specify con-
straints on standard properties that all nodes will specify by default:

■ node—The name or ID of the node in the cluster
■ storagedriver—The name of the storage driver used by the node
■ executiondriver—The name of the execution driver used by the node
■ kernelversion—The version of the Linux kernel powering the node
■ operatingsystem—The operating system name on the node

Each node provides these values to the Swarm master. You can discover what each
node in your cluster is reporting with the docker info subcommand.

 Containers communicate their affinity and constraint requirements using environ-
ment variables. Each constraint or affinity rule is set using a separate environment
variable. A rule that the xxl_container might have applied in the previous example
would look like this:

docker run -d -e constraint:size==xxl \
 -m 4G \
 -c 512 \
 postgres

Constraint rules are specified using the prefix constraint: on the environment vari-
able. To set a container affinity rule, set an environment variable with a prefix of
affinity: and an appropriate affinity definition. For example, if you want to sched-
ule a container created from the nginx:latest image, but you want to make sure that

Apply an engine label

Apply an engine label

Constraint
environment variable
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

266 CHAPTER 12 Clusters with Machine and Swarm
the candidate node already has the image installed, you would set an environment
variable like so:

docker run -d -e affinity:image==nginx \
 -p 80:80 \
 nginx

Any node where the nginx image has been installed will be among the candidate
node set. If, alternatively, you wanted to run a similar program, like ha-proxy, for
comparison and needed to make sure that program runs on separate nodes, you
could create a negated affinity:

docker run -d -e affinity:image!=nginx \
 -p 8080:8080 \
 haproxy

This command would eliminate any node that contains the nginx image from the can-
didate node set. The two rules you’ve seen so far use different rule operators, == and
!=, but other components of the rule syntax make it highly expressive. An affinity or
constraint rule is made of a key, an operator, and a value. Whereas keys must be
known and fully qualified, values can have one of three forms:

■ Fully qualified with alphanumeric characters, dots, hyphens, and underscores
(for example, my-favorite.image-1)

■ A pattern specified in glob syntax (for example, my-favorite.image-*)
■ A full (Go-flavored) regular expression (for example, /my-[a-z]+\.image-

[0-9]+/)

The last tool for creating effective rules is the soft operator. Add a tilde to the end of
the operator when you want to make a scheduling suggestion instead of a rule. For
example, if you wanted to suggest that Swarm schedule an NGINX container on a
node where the image has already been installed but schedule it if the condition can’t
be met, then you would use a rule like the following:

docker run -d -e affinity:image==~nginx \
 -p 80:80 \
 nginx

Filters can be used to customize any of the scheduling algorithms. With foresight into
your anticipated workload and the varying properties of your infrastructure, filters
can be used to great effect.

 The Spread algorithm’s defining trait (even fleet usage by container volume) will
always be applied to the filtered set of nodes, and so it will always conflict with one
cloud feature. Automatically scaling the number of nodes in a cluster is feasible when
only some nodes become unused. Until that condition is met, the underlying technol-
ogy (be that Amazon Web Services EC2 or any other) will be unable to scale down your
cluster. This results in low utilization of an oversized fleet. Adopting the BinPack
scheduling algorithm can help in this case.

Affinity environment variable

Anti-affinity environment variable

Suggested affinity
environment variable
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

267Swarm scheduling
12.3.3 Scheduling with BinPack and Random

Two other scheduling algorithms you should understand are BinPack and Random.
The BinPack scheduling algorithm prefers to make the most efficient use of each
node before scheduling work on another. This algorithm uses the fewest number of
nodes required to support the workload. Random provides a distribution that can be
a compromise between Spread and BinPack. Each node in the candidate pool has an
equal opportunity of being selected, but that doesn’t guarantee that the distribution
will realize evenly across that pool.

 There are a few caveats worth reviewing before you adopt either algorithm over
Spread. Figure 12.9 illustrates how the BinPack algorithm might schedule three
containers.

 BinPack can make informed decisions about packing efficiency only if it knows the
resource requirements of the container being scheduled. For that reason, BinPack
makes sense only if you’re dedicated to creating resource reservations for the contain-
ers in your system. Using resource-isolation features such as memory limits, CPU
weights, and block IO weights will isolate your containers from neighboring resource
abuses. Although these limits don’t create local reservations for resources, the Swarm
scheduler will treat them as reservations to prevent overburdening any one host.

 BinPack addresses the initial problem you encountered with the Spread algorithm.
BinPack will reserve large blocks of resources on nodes by prioritizing efficient use of
each node. The algorithm takes a greedy approach, selecting the busiest node with

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 0 – manager

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

s_container_1 s_container_4

s_container_2

s_container_3

Machine 1

Docker Compose

BinPack selects the
busiest node with
available resources
for a new container.

Figure 12.9 BinPack scheduling on a new node only when the busiest node has insufficient
resources to take more work
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

268 CHAPTER 12 Clusters with Machine and Swarm
the fewest resources that are still sufficient to meet the requirements of the container
being scheduled. This is sometimes called a best fit.

 BinPack is particularly useful if the containers in your system have high variance in
resource requirements or if your project requires a minimal fleet and the option of
automatically downsizing. Whereas the Spread algorithm makes the most sense in sys-
tems with a dedicated fleet, BinPack makes the most sense in a wholly virtual machine
fleet with scale-on-demand features. This flexibility is gained at the cost of reliability.

 BinPack creates a minimal number of maximally critical nodes. This distribution
increases the likelihood of failure on the few busy nodes and increases the impact of
any such failure. This may be an acceptable trade, but it’s certainly one you should
keep in mind when building critical systems.

 The Random algorithm provides a compromise between Spread and BinPack. It
relies on probability alone for selecting from the candidate nodes. In practice, this
means it’s possible for your fleet to simultaneously contain busy nodes and idle nodes.
Figure 12.10 illustrates one possible distribution of three containers in a three-node
candidate set.

 This algorithm will probably distribute work fairly over a fleet and probably accom-
modate high variance in resource requirements in your container set. But probably
means that you have no guarantees. It’s possible that the cluster will contain hot spots
or that it will be used inefficiently and lack large resource blocks to accommodate
large containers. Entropy-focused engineers may gravitate toward this algorithm so
that the greater system must account for these possibilities.

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 0 – manager

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

s_container_1
s_container_2

s_container_3

Machine 1

Docker Compose

s_container_2 scheduled
on Machine 0, despite
resource availability

on Machine 1

Figure 12.10 The Random scheduling algorithm considers only probability in selecting a machine.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

269Swarm service discovery
As Swarm matures and more data from nodes becomes available, new scheduling
algorithms may emerge. The project itself is young, but these three provide the funda-
mental building blocks for robust systems. Scheduling lets the system choose where
your containers will run, and the last problem Swarm tackles is helping those contain-
ers locate each other with a service discovery abstraction.

12.4 Swarm service discovery
Any distributed system requires some mechanism to locate its pieces. If that distrib-
uted system is made up of several processes on the same machine, they need to agree
on some named shared memory pool or queue. If the components are designed to
interact over a network, they need to agree on names for each other and decide on a
mechanism to resolve those names. Most of the time, networked applications rely on
DNS for name-to-IP address resolution.

 Docker uses container links to inject static configuration into a container’s name-
resolution system. In doing so, contained applications need not be aware that they’re
running in a container. But a stand-alone Docker engine has no visibility into services
running on other hosts, and service discovery is limited to the containers running
locally.

 Alternatively, Docker allows a user to set the default DNS servers and search
domains for each container or every container on a host. That DNS server can be any
system that exposes a DNS interface. In the last few years, several such systems have
emerged, and a rich ecosystem has evolved to solve service discovery in a multi-host
environment.

 As those systems evolved, Docker announced the Swarm project and a common
interface for this type of system. The goal of the Swarm project is to provide a “batter-
ies included” but optional solution for clustering containers. A major milestone for
this project is abstracted service discovery in a multi-host environment. Delivering on
that milestone requires the development of several technologies and enhancements
to the Docker Engine.

 As you reach the end of this book, remember that you’re diving into the tail of an
unfinished story. These are some of the most rapidly advancing features and tools in
the system. You’ll see each of these approaches to service discovery in the wild. Just as
with most other pieces of the Docker toolset, you’re free to adopt or ignore the parts
that make sense in your situation. The remainder of this section should help you
make an informed decision.

12.4.1 Swarm and single-host networking

The Docker Engine creates local networks behind a bridge network on every machine
where it’s installed. This topic is explored in depth in chapter 5. Situated as a con-
tainer deployed on a Docker node, it’s beyond the scope of a Swarm agent to restruc-
ture that network in reaction to the discovery of other Swarm nodes and containers in
the cluster. For that reason, if a Swarm cluster is deployed on Docker machines that
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

270 CHAPTER 12 Clusters with Machine and Swarm
operate single-host networks, then containers deployed with Swarm can only discover
other containers running on the same host. Figure 12.11 illustrates how single-host
networking limits the candidate set for a scheduler.

 The dependency filter ensures that a container will never be scheduled on a host
where one of its dependencies is undiscoverable. You can try this for yourself by
deploying the Coffee API on your existing Swarm cluster.

 First, use Git to clone the Compose environment description for a rich Coffee API
example:

git clone git@github.com:dockerinaction/ch12_coffee_api.git

After you run that command, change into the new directory and make sure that your
Docker environment is pointed at your Swarm cluster:

cd ch12_coffee_api
eval "$(docker-machine env machine0-manager)"

Once you’ve set up your environment, you’re ready to launch the example using
Docker Compose. The following command will start the environment in your Swarm
cluster:

docker-compose up -d

Now use the docker CLI to view the distribution of the new containers on your cluster.
The output will be very wide due to the machine named prefixing all the container

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 1

app_1

db_1

proxy_1

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

app_2

The app service has a dependency
on the db service, and the proxy has

a dependency on the app service.
The db_1, app_1, and proxy_1 are
mutually discoverable because

they are on the same host.

If a new instance of the app service were scheduled on Machine 2,
then it would not be able to discover a container filling its

dependency on the db service. It would further be undiscoverable
by any service with a dependency on it.

Figure 12.11 A three-tiered application deployed in a cluster with single-host networking
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

271Swarm service discovery
names and aliases. For example, a container named “bob” running on machine1 will
be displayed as “machine1/bob.” You may want to redirect or copy the output to a file
for review without wrapping lines:

docker ps

If you have the less command installed, you can use the –S parameter to chop the
long lines and arrows to navigate:

docker ps | less –S

In examining the output, you’ll notice that every container is running on the same
machine even though your Swarm is configured to use the Spread algorithm. Once
the first container that’s a dependency of another was scheduled, the dependency fil-
ter excluded any other node from the candidate pool for the others.

 Now that the environment is running, you should be able to query the service.
Note the name of the machine where the environment has been deployed and substi-
tute that name for <MACHINE> in the following cURL command:

curl http://$(docker-machine ip <MACHINE>):8080/api/coffeeshops/

If you don’t have cURL on your system, you can use your web browser to make a similar
request. The output from the request should be familiar:

{
 "coffeeshops": []
}

Take time to experiment by scaling the coffee service up and down. Examine where
Swarm schedules each container. When you’ve finished with the example, shut
it down with docker-compose stop and remove the containers with docker-
compose rm -vf.

 Clustering an application is viable for some use cases in spite of this limitation, but
the most common use cases are underserved. Server software typically requires multi-
host distribution and service discovery. The community has built and adopted several
new and existing tools to fill the absence of a solution integrated with Docker.

12.4.2 Ecosystem service discovery and stop-gap measures

The primary interface for network service discovery is DNS. Although software provid-
ing DNS has been around for some time, traditional DNS server software uses heavy
caching, struggles to provide high-write throughput, and typically lacks membership
monitoring. These systems fail to scale in systems with frequent deployments. Modern
systems use distributed key-value databases that support high-write throughput, mem-
bership management, and even distributed locking facilities.

 Examples of modern software include etcd, Consul, ZooKeeper, and Serf. These
can be radically different in implementation, but they’re all excellent service discovery

The less command may not be
available on your system
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

272 CHAPTER 12 Clusters with Machine and Swarm
providers. Each tool has nuances, advantages, and disadvantages that are beyond the
scope of this book. Figure 12.12 illustrates how containers integrate directly with an
external service discovery tool over DNS or another protocol like HTTP.

 These ecosystem tools are well understood and battle-tested, but integrating this
infrastructure concern at the container layer leaks implementation details that should
remain hidden by some basic abstraction. Integrating an application inside a con-
tainer with a specific service-discovery mechanism diminishes the portability of that
application. The ideal solution would integrate service registration and discovery at
the clustering or network layer provided by Docker Engine and Docker Swarm. With
multi-host, networking-enabled Docker Engine and an overlay network technology
integrated with a pluggable key-value store, that can become a reality.

12.4.3 Looking forward to multi-host networking

The experimental branch of Docker Engine has abstracted networking facilities
behind a pluggable interface. That interface is implemented by a number of drivers

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 1

app_2

app_1

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

proxy_1

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Machine 0 – manager

db_1

Swarm agent
(token://12341234)

Service names are resolved by an external service discovery system that has been integrated
through the DNS configuration of the containers. In these topologies containers are either

left to register themselves with the external system, or a bystander watching individual
daemon event streams will handle registration of new containers.

Swarm discovery
subsystem

Key-value store
providing

service discovery

Figure 12.12 Containers on the fleet are responsible for registration and service discovery with an
external tool like etcd, Consul, ZooKeeper, or Serf.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

273Swarm service discovery
including bridge, host, and overlay. The bridge and host drivers implement the
single-host networking features you’re already familiar with. The overlay driver imple-
ments an overlay network with IP encapsulation or VXLAN. The overlay network pro-
vides routable IP addresses for every container managed by a Docker machine
configured to use the same key-value store. Figure 12.13 illustrates the interactions in
building such a network.

 With an overlay network in place, each container gets a unique IP address that’s
routable from any other container in the overlay network. The application can stop
doing work to identify or advertise its host IP address and map container ports to host
ports. All that work is performed in the infrastructure layer provided by Docker and
the integrated key-value store.

 While we wait for multi-host networking to land in the release branch of Docker
Engine and multi-host Swarm node provisioning with Docker Machine, we can get by
with direct integrations to other ecosystem projects. When this does land, it will be a
major relief to developers and system architects alike.

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 1

app_2

app_1

Docker Engine
(port 2376)

Swarm agent
(token://12341234)

Machine 2

proxy_1

Swarm Manager
(port 3376)

Docker Engine
(port 2376)

Machine 0 – manager

db_1

Swarm agent
(token://12341234)

Docker engine creates an overlay network and abstracts the service discovery mechanism from
the containers running on any one host. While the underlying mechanics of service discovery and

registration are the same, the abstraction requires less specialization of individual containers.
A Swarm cluster with multi-host networking enabled acts like a single machine.

Swarm discovery
subsystem

Key-value store
providing

service discovery

Figure 12.13 Swarm on top of Docker Engine with multi-host networking enables a cluster to
behave as a single machine and containers to act as equal members of a network.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

274 CHAPTER 12 Clusters with Machine and Swarm
12.5 Summary
Both Docker Machine and Docker Swarm provide functionality that enhances the
applications for the Docker Engine. These and other related technologies will help you
apply what you have learned in this book as you grow from using Docker on a single
computer into managing fleets of containers distributed across many computers. It is
important to have a thorough understanding of these points as you grow into this space:

■ A user can use Docker Machine to create a local virtual machine or machine in
the cloud with a single create command.

■ The Docker Machine env and config subcommands can be used to configure
Docker clients to work with remote Docker Engines that were provisioned with
Docker Machine.

■ Docker Swarm is a protocol that is backward-compatible with the Docker
Remote API and provides clustering facilities over a set of member nodes.

■ A Swarm manager program implements the Swarm API and handles container
scheduling for the cluster.

■ Docker Machine provides flags for provisioning both Swarm nodes and
managers.

■ Docker Swarm provides three different scheduling algorithms that can be
tuned through the use of filters.

■ Labels and other default attributes of a Docker Engine can be used as filtering
criteria via container scheduling constraints.

■ Container scheduling affinities can be used to place containers on the same
host as other containers or images that match a provided pattern or expression.

■ When any Docker client is configured to communicate with a Swarm endpoint,
that client will interact with the entire Swarm as if it were a single Docker
machine.

■ Docker Swarm will schedule dependent containers on the same node until
multi-host networking is released or you provide another service-discovery
mechanism and disable the dependency Swarm filter.

■ Multi-host networking will abstract container locality from the concerns of
applications within Docker containers. Each container will be a host on the
overlay network.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

index
Symbols

!= rule operator 266
- (hyphen) character 141
== rule operator 266

A

abstractions 11
access control, distribution method and 171
accesskey subproperty 214
accountkey subproperty 213
accountname subproperty 213
ACTIVE column 253
active subcommand 253
ADD instruction 153, 155
--add-host 99
addr property 218
affinity prefix 265
Amazon Web Services CloudFront storage

middleware 228
Amazon’s Simple Storage Service. See S3
Apache Cassandra project 58–61
Apache Web Server 205
apache2 37
api service 242–243
AppArmor 120
apt-get tool 129
AUDIT_CONTROL capability 117
AUDIT_WRITE capability 117
AUTH command 219
auth section 198, 207
automation. See build automatoin
availability, distribution method and 171
aws program 156

AWS Simple Storage Service 214
azure property 213
Azure Storage container 213
Azure, hosted remote storage with 213–214

B

bind mount volumes 62–64
BinPack algorithm 267–269
--bip flag 93
bird service 262
blob (binary large object) storage, durable 212–216

hosted remote storage
with Amazon’s Simple Storage Service

(S3) 214–215
with Microsoft's Azure 213–214

internal remote storage with RADOS 216
blobdescriptor subproperty 218
boot2docker ip 107
boot2docker ssh command 116
bridged containers 85–94

creating 85–86
custom name resolution 86–89
inter-container communication 91–92
modifying bridge interface 92–94
opening inbound communication 89–91

bridges 80
bucket subproperty 214
build automation 145–166

Dockerfile 149–156
file system instructions 153–156
metadata instructions 150–153
packaging Git with 146–149

hardened application images 161–166
content addressable image identifiers 162
275

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX276
build automation (continued)
SUID and SGID permissions 165–166
user permissions 163–164

injecting downstream build-time behavior
156–158

using startup scripts and multiprocess
containers 159–161
environmental preconditions validation

159–160
initialization processes 160–161

build command 237
build key 244

C

-c flag 141
cache subproperty 218
CAIID (content addressable image identifier) 162
calaca service 235–236
Calaca web interface 222
--cap-add flag 118
--cap-drop flag 118
capabilities, feature access using 117–118
Cassandra project 58–61
centralized registries, enhancements for 198–211

adding authentication layer 205–208
before going to production 210–211
client compatibility 208–210
configuring TLS on reverse proxy 201–204
creating reverse proxy 199–201

Ceph 215–216
certificate property 207
Cgroups 6
chroot() function 6
chunksize property 214, 216
chunksize subproperty 214, 216
CloudFront middleware 220
cloudfront middleware 221
CMD instruction 153–155, 173
Coffee API 237–242, 245
coffee service 238, 241–244
Compose environment 262
confidentiality, distribution method and 171–172
config subcommands 274
Configuration variables 211
constraint prefix 265
container subproperty 213
containers 15–40

bridged 85–94
creating 85–86
custom name resolution 86–89
inter-container communication 91–92
modifying bridge interface 92–94
opening inbound communication 89–91

building environment-agnostic systems 30–35
environment variable injection 32–35
read-only file systems 30–32

building images from 127–132
committing new image 130–131
configurable image attributes 131–132
packaging Hello World 128
preparing packaging for Git 129
reviewing file system changes 129–130

cleaning up 39
container file system abstraction and

isolation 53–54
container patterns using volumes 71–76

data-packed volume containers 73–74
polymorphic container pattern 74–76
volume container pattern 72–73

container-independent data management 58
creating 17–18
durable, building 35–39

automatically restarting containers 36
keeping containers running with supervisor

and startup processes 37–39
eliminating metaconflicts 24–30

container state and dependencies 28–30
flexible container identification 25–28

inter-container dependencies 97–103
environment modifications 100–101
link aliases 99–100
link nature and shortcomings 102–103
links for local service discovery 97–99

interactive, running 18–19
joined 94–96
multiprocess 159–161
networking 81–83

four network container archetypes 82–83
local Docker network topology 81–82

open 96
open memory container 111–112
output of 20–21
PID namespace and 21–24
running software in, for isolation 5–6
running with full privileges 118–119
sharing IPC primitives between 110–111
shipping containers 7
use-case-appropriate containers 122–123

applications 122
high-level system services 123
low-level system services 123

vs. virtualization 5
with enhanced tools 119–121

fine-tuning with Linux Containers (LXC) 121
specifying additional security options 120–121

Containers numbers 260
content addressable image identifier. See CAIID
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX 277
COPY instruction 153, 155, 204
core.windows.net 213
cp command 74
--cpu-shares flag 107
CPU, limits on resources 107–109
--cpuset-cpus flag 108–109
create command 274
create subcommand 256, 261
cron tool 123
cURL command 239, 271
curl command 196, 201, 204
cURL command-line tool 195
customized registries, running 192–228

centralized registries, enhancements for
198–211
adding authentication layer 205–208
before going to production 210–211
client compatibility 208–210
configuring TLS on reverse proxy 201–204
creating reverse proxy 199–201

durable blob (binary large object) storage
212–216
hosted remote storage with Amazon’s Simple

Storage Service (S3) 214–215
hosted remote storage with Microsoft's

Azure 213–214
internal remote storage with RADOS 216

integrating through notifications 221–228
personal registry 194–198

customizing image 197–198
reintroducing image 194–195
V2 Registry API 195–197

scaling access and latency improvements
217–221
integrating metadata cache 217–219
streamlining blob transfer with storage

middleware 219–221

D

-d option 234
daemons 18
data service 246
data volume container archetype 246
data-packed volume containers 73–74
DATABASE_PORT variable 99
db service 238, 245–246
dbstate service 238, 246
dbus tool 123
Debian 197
dependencies

container state and 28–30
inter-container

environment modifications 100–101

link aliases 99–100
link nature and shortcomings 102–103
links for local service discovery 97–99

--detach flag 18
--device flag 109
devices, access to 109
dialtimeout property 219
disabled attribute 226
distribution

choosing method of 169–172
distribution spectrum 169
selection criteria 170–172

image source distribution workflows 188–191
manual image publishing and distribution

183–188
private registries 179–182

consuming images from 182
using registry image 181–182

using hosted registries 172–179
private hosted repositories 177–179
public projects with automated builds

175–177
public repositories 172–175

Distribution project 193–194, 197, 205, 210, 222
Distribution registry 222
Distribution-based registry 227
DNS (Domain Name System) 86
Docker 3, 12–14

containers and 4–5
importantance of 11
overview 4–7
problems solved by 7–10

getting organized 8–9
improving portability 9–10
protecting computer 10

use of, where/when 11–12
docker build command 50, 137, 147, 151, 175,

184, 189, 201, 204, 214–215, 237, 240
docker CLI 270
docker client 264
docker command 233, 250, 260
docker command-line tool 15–16, 18, 247, 252,

259
docker commit command 130, 132, 135, 137
Docker Compose 231–247, 254

building, starting, and rebuilding services
237–240

docker-compose.yml file 243–247
iteration and persistent state 242–243
linking problems and network 243
overview 232–236
scaling and removing services 240–242

docker cp command 140
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX278
docker create command 105–106
--cap-drop flag 118
--cpu-shares flag 107
--cpuset-cpus flag 108
--lxc-conf flag 121
--privileged flag 118
--security-opt flag 120
--user (-u) flag 114
--volume flag 154

docker diff command 134
Docker Engine 269, 272
docker exec command 22, 74
docker export command 140, 184
docker history command 139
Docker Hub 13, 17, 44–48, 172, 222, 245
docker images command 51–52, 130
docker import command 140–141, 184
docker info command 259, 264
docker info subcommand 265
docker inspect command 31, 65, 69, 91, 113, 152,

251
docker kill command 39
docker load command 49, 184, 187
docker login command 45, 173, 177
docker logout command 45
docker logs command 20, 234
Docker Machine 249–255

building and managing 250–252
building Swarm cluster using 255–258
configuring Docker clients to work with remote

daemons 252–255
docker port command 91
docker ps -a 39
docker ps command 20, 28, 39, 91, 243
docker pull command 44, 51
docker push command 173
Docker Remote API 253, 258–261
docker rename command 25
docker rm -f command 39–40
docker rm command 40, 70, 234
docker rmi command 52
docker run --link flag 245
docker run -v flag 246
docker run command 44, 105–106, 197, 211, 234,

245–246
--cap-drop flag 118
--cpu-shares flag 107
--cpuset-cpus flag 108
--lxc-conf flag 121
--net option 96
--privileged flag 118
--security-opt flag 120
--user (-u) flag 114
--volume flag 154
flags of 84, 86, 88, 90–91

docker save command 49, 184
docker search command 45–46
docker start command 29
docker stop command 21, 39–40
Docker Swarm 255–261

building Swarm cluster with Docker
Machine 255–258

extension of Docker Remote API using 258–261
scheduling algorithms 261–269

BinPack algorithm 267–269
fine-tune scheduling with filters 263–266
Random algorithm 267–269
Spread algorithm 261–263

service discovery 269–274
ecosystem service discovery and stop-gap

measures 271–272
multi-host networking 272
single-host networking 269–271

docker tag command 53, 137, 142
docker top command 37
docker-compose command 233, 250
docker-compose command-line program 232, 247
docker-compose kill command 234
docker-compose logs command 234
docker-compose ps command 240–242
docker-compose rm -vf 271
docker-compose rm command 234, 242
docker-compose stop command 234, 271
docker-compose up command 233, 235, 238
docker-compose up –d command 236, 240
docker-compose.yml file 243–247
docker-machine command 251–253
docker-machine command-line program 250
docker-machine create command 265
docker-machine env command 253
docker-machine env subcommand 259
docker-machine help create command 249
docker-machine ssh command 251
Dockerfile 149–156, 200, 237–238

distributing project with, on GitHub 189
file system instructions 153–156
installing software from 50
metadata instructions 150–153
packaging Git with 146–149

dockerfile key 244
Dockerfiles 197
.dockerignore file 21–24, 150
Domain Name System. See DNS
downstream build-time behavior 156–158

E

-e flag 211
echo command 72
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX 279
ecosystem service discovery 271–272
--email flag 173
encrypt property 214
--engine-label parameter 265
--entrypoint flag 38, 131
ENTRYPOINT instruction 148, 152–154
entrypoints 38
--env (-e) flag 33, 151
ENV instruction 151–153
env subcommand 253, 274
env_file key 244
environment key 244
environment variables 211
environment-agnostic systems, building 30–35

environment variable injection 32–35
read-only file systems 30–32

es-pump container 224
Ethernet interface 78, 86
--exec-driver=lxc option 121
executiondriver 265
exporting, flat file systems 140–141
EXPOSE command 151–153
--expose flag 91, 98
expose key 245
extends key 246

F

-f flag 39
f option 111
features 117–118
--file (-f) flag 147
file key 246
file systems

changes to, reviewing 129–130
flat, importing and exporting 140–141
structure of 54

filesystem property 212
filters, fine-tune scheduling with 263–266
flat file systems 140–141
--format (-f) option 113
freegeoip program 43
FROM instruction 152, 157–158, 162, 173
FTP (File Transfer Protocol), sample distribution

infrastructure using 185–188
ftp-transport container 186
full privileges, running containers with 118–119

G

GET request 196
Git 237, 270

packaging with Dockerfile 146–149
preparing packaging for 129

GitHub, distributing project with Dockerfile
on 189

gosu program 164

H

ha-proxy program 266
hardened application images, building 161–166

content addressable image identifiers 162
SUID and SGID permissions 165–166
user permissions 163–164

Hello World, packaging 128
hello-swarm container 260
help command 250
high-level system services 123
host-dependent sharing 66–67
hosted registries, distribution 172–179

private hosted repositories 177–179
public projects with automated builds 175–177
public repositories 172–175

hosted remote storage
with Amazon's Simple Storage Service

(S3) 214–215
with Microsoft's Azure 213–214

HOSTNAME environment variable 240
--hostname flag 86, 88
Htpasswd 205
HTTP (Hypertext Transfer Protocol) 78, 195
HTTP HEAD request 196
http section, of configuration file 198
Hypertext Transfer Protocol See HTTP
hyphen (-) character 141

I

id command 113
idletimeout property 219
image key 245
image layers 51–52
image-dev container 130
images 127, 135–144

building from containers 127–132
committing new image 130–131
configurable image attributes 131–132
packaging Hello World 128
preparing packaging for Git 129
reviewing file system changes 129–130

consuming from private registries 182
exporting and importing flat file systems

140–141
hardened application images 166

content addressable image identifiers 162
SUID and SGID permissions 165–166
user permissions 163–164
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX280
images (continued)
loading as files 48–50
size of 138–139
union file systems 132–135
versioning best practices 141

Images number 260
images subcommand 254
importing, flat file systems 140–141
in flock.json 262
indexes 7
info subcommand 55, 264
InfoSec conversations 119
inmemory value 218
inspect subcommand 113, 250–251
installing software 41–55

from Dockerfile 50
identifying software 42–44
installation files and isolation 51–55

container file system abstraction and
isolation 53–54

file system structure 54
image layers 51–52
layer relationships 53
union file systems, weaknesses of 54

loading images as files 48–50
searching Docker Hub for repositories 44–48
using alternative registries 48

integrity, distribution method and 171
inter-container dependencies 97–103

environment modifications 100–101
link aliases 99–100
link nature and shortcomings 102–103
links for local service discovery 97–99

--interactive (-i) flag 18
interactive containers, running 18–19
interfaces 78–79
internal remote storage 216
IP (Internet Protocol) 78
ip subcommand 251
--ipc flag 110, 112
IPC namespace 6
isolation 104–123

containers with enhanced tools 119–121
fine-tuning with Linux Containers (LXC) 121
specifying additional security options

120–121
feature access 117–118
resource allowances 105–109

access to devices 109
CPU 107–109
memory limits 105–107

running container with full privileges 118–119
running software in containers for 5–6
shared memory 109–112

open memory container 111–112
sharing IPC primitives between

containers 110–111
use-case-appropriate containers 122–123

applications 122
high-level system services 123
low-level system services 123

users 112–117
Linux user namespace 112
run-as user 113–115
volumes and 115–117

J

Java Virtual Machine See JVM
joined containers 94–96
JSON objects 224
JVM (Java Virtual Machine) 9

K

-k option 204
kernelversion 265
key property 207
kill program 37
kill subcommand 252

L

--label flag 151
LABEL instruction 151–152
labels key 244
LAMP (Linux, Apache, MySQL PHP) stack 37
latest tag 137, 143, 194
layer relationships 53
layers 42, 135–139
less command 271
libraries 45
links

aliases for 99–100
for local service discovery 97
links for local service discovery 99
nature of 102–103
shortcomings of 102–103

links command 245
Linux containers. See LXC
Linux Security Modules. See LSM
Linux user namespace 112
Linux USR namespace 164
local tag 194
log section, of configuration file 198
logs subcommand 260
longevity, distribution method and 170–171
loopback interface 78, 86
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX 281
low-level system services 123
ls subcommand 250, 253, 258
LSM (Linux Security Modules) 120
LXC (Linux Containers) 121, 261
--lxc-conf flag 121

M

-m (--memory) flag 105, 130
MAC_ADMIN capability 117
MAC_OVERRIDE capability 117
Machine. See Docker Machine
mailer-base image 150
MAINTAINER instruction 152
maxactive property 219
maxidle property 219
Memcached technology 79
memory

limits on 105–107
shared 109–112

open memory container 111–112
sharing IPC primitives between

containers 110–111
metaconflicts, eliminating 24–30

container state and dependencies 28–30
flexible container identification 25–28

metadata cache, integrating 217–219
metadata, Dockerfile and 150–153
Microsoft’s Azure, hosted remote storage

with 213–214
middleware property 221
middleware section, of configuration file 198
mmap() function 54
MNT namespace 6
mod_ubuntu container 133, 136–137
multi-host networking 272
multiprocess containers 159–161

N

--name flag 25
NAMES column 260
NAT 79–80
-nB flags 205
--net flag 84, 110
NET namespace 6
--net option 96
NET_ADMIN capability 117
networks 77–103

bridged containers 85–94
creating 85–86
custom name resolution 86–89
inter-container communication 91–92
modifying bridge interface 92–94

opening inbound communication 89–91
closed containers 83–85
container networking 81–83

four network container archetypes 82–83
local Docker network topology 81–82

inter-container dependencies 97–103
environment modifications 100–101
link aliases 99–100
link nature and shortcomings 102–103
links for local service discovery 97–99

interfaces 78–79
joined containers 94–96
multi-host 272
NAT 79–80
open containers 96
overview 78–80
port forwarding 79–80
ports 78–79
protocols 78–79
single-host 269–271

nginx image 266
nginx:latest image 265
--no-cache flag 149
--no-dep flag 238–239
Node.js 222–223
NoSQL database, using volumes with 58–61
notifications section, of configuration file 198

O

ONBUILD instruction 149, 156–158
open containers 96
operatingsystem 265
--output (-o) 140

P

-P (--publish-all) flag 90
-p=[] (--publish=[]) flag 90
–p option 245
--password flag 173
password property 219
PATH 197
path property 207
permissions 163–166
personal registry 194–198

customizing image 197–198
reintroducing image 194–195
V2 Registry API 195–197

personal_registry container 201
PID namespace 6
polymorphic container pattern 74–76
polymorphic tools 58
pool property 219
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX282
poolname property 216
poolname subproperty 216
portability, improving 9–10
ports key 245
ports, forwarding 78–80
Postgres repository 245
private hosted repositories 177–179
private registries 179–182

consuming images from 182
using registry image 181–182

--privileged flag 118
problems solved by Docker

getting organized 8–9
improving portability 9–10
protecting computer 10

protocols 78–79
proxy service 239, 243, 245
ps command 22, 263
ps subcommand 260
public and private software distribution 168
public projects with automated builds 175–177
public repositories 172–175
pull subcommand 261
pull type 226
pump service 236
push command 194
Python package manager 232
Python-based application 244

Q

--quiet (-q) flag 148

R

RADOS (Reliable Autonomic Distributed Object
Store) 215–216

rados storage property 216
Random algorithm 267–269
read-only file systems 30–32
readtimeout property 219
realm property 207, 213
redis property 218–219
redis section, of configuration file 198
region subproperty 214
registries 7

alternative 48
hosted 172–179

private hosted repositories 177–179
public projects with automated builds 175–177
public repositories 172–175

private 179–182
consuming images from 182
using registry image 181–182

See also customized registries, running
REGISTRY program 211
registry program 197, 200
REGISTRY_HTTP_DEBUG environment

variable 211
REGISTRY_HTTP_SECRET environment

variable 211
REGISTRY_LOG_LEVEL environment

variable 211
registry:2 image 227
Reliable Autonomic Distributed Object Store. See

RADOS
remote daemons, configuring Docker clients to

work with 252–255
remote storage

hosted
with Amazon's Simple Storage Service

(S3) 214–215
with Microsoft's Azure 213–214

internal, with RADOS 216
reporting section, of configuration file 198
repositories 42–43, 135–138

private hosted 177–179
public 172–175
searching Docker Hub for 44–48

resource allowances 105–109
access to devices 109
CPU 107–109
memory limits 105–107

--restart flag 36, 107
restarting containers 36
RESTful API 195
rm command 111, 234
--rm flag 60
rm subcommand 252
rootdirectory property 212, 214
rsync tool 188
run command 260
RUN instruction 148, 153, 155, 164
run-as user 113–115

S

-s option 55
–S parameter 271
S3 (Amazon’s Simple Storage Service), hosted

remote storage with 214–215
s3 storage property 214
scheduling 255
scheduling algorithms, Docker Swarm 261–269

BinPack algorithm 267–269
fine-tune scheduling with filters 263–266
Random algorithm 267–269
Spread algorithm 261–263
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX 283
scp subcommands 251
secretkey subproperty 214
secure property 214
Secure Shell. See SSH
secure subproperty 214
--security-opt flag 120
security, InfoSec conversations 10, 119
SELinux 120
service discovery, Docker Swarm 269–274

ecosystem service discovery and stop-gap
measures 271–272

multi-host networking 272
single-host networking 269–271

service key 246
SETPCAP capability 117
SGID permission set 165–166
shared memory 109–112

open memory container 111–112
sharing IPC primitives between containers

110–111
sharing volumes 66–69

generalized sharing and volumes-from flag
67–69

host-dependent sharing 66–67
--shell flag 253
shipping containers 7
SIG_HUP signal 39
SIG_KILL signal 39
Simple Email Service example 155–156
Simple Storage Service. See S3
single-host networking 269–271
size=small label 264–265
size=xxl label 264–265
software. See installing software
solutions provided by Docker

getting organized 8–9
improving portability 9–10
protecting computer 10

Spread algorithm 261–263
spread default selection 261
SSH (Secure Shell) 202
ssh subcommand 251–252
sshd tool 123
start subcommand 252
startup process 37–39
startup scripts 159–161

environmental preconditions validation
159–160

initialization processes 160–161
stop subcommand 252
stop-gap measures 271–272
storage property 218
storage section, of configuration file 198

storage subproperty 221
--storage-driver option 55
storagedriver 265
SUID permission set 165–166
supervisor process 37–39
supervisord program 37
--swarm 256
SWARM column 258
swarm image 260
--swarm parameter 259
Swarm scheduler 267
--swarm-discovery parameter 256
--swarm-master parameter 256–257
--swarm-strategy parameter 261
Swarm. See Docker Swarm
SYS_ADMIN capability 117
SYS_MODULE capability 117
SYS_NICE capability 117
SYS_PACCT capability 117
SYS_RAWIO capability 117
SYS_RESOURCE capability 117
SYS_TIME capability 117
SYS_TTY capability 117
SYSLOG capability 117
syslogd tool 123

T

-t option, docker build 50
--tag (-t) flag 147
tags 43–44, 135–138
TCP (Transmission Control Protocol) 79
TLS (transport layer security), configuring on

reverse proxy 201–204
tls section 207
<TOKEN> 257
Transmission Control Protocol See TCP
transport layer security. See TLS
transportation, distribution method and 170
–tty (–t) flag 18

U

UFS (union file system) 54, 127
upgrade subcommand 251
use-case-appropriate containers 122–123

applications 122
high-level system services 123
low-level system services 123

--user (-u) flag 114–115
USER instruction 153, 163–164
user permissions 163–164
--username flag 173
username subproperty 216
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX284
users 112–117
Linux user namespace 112
run-as user 113–115
volumes and 115–117

USR namespace 6
UTS namespace 6

V

-v (--volume) option 63–64, 70–71
-v flag 40, 242
v option 111
/v2/ component 196
V2 Registry API 195–197, 210
v4auth property 214
version section, of configuration file 198
VERSION variable 151
versioning, best practices 141
VirtualBox 65
virtualization, vs. containers 5
visibility, distribution method and 170
--volume flag 154
VOLUME instruction 153–154
volumes 56–76

advanced container patterns using 71–76
data-packed volume containers 73–74
polymorphic container pattern 74–76
volume container pattern 72–73

container-independent data management
using 58

managed volume life cycle 69–71
cleaning up volumes 70–71
volume ownership 69–70

overview 57–61
sharing 66–69

generalized sharing and volumes-from
flag 67–69

host-dependent sharing 66–67
types of 61–66

bind mount volumes 62–64
Docker managed volumes 64–66

users and 115–117
using with NoSQL database 58–61

volumes key 246
volumes_from key 246
--volumes-from flag 67–69, 72–73

W

WEB_HOST environment variable 160
webhooks 175
wget program 19
wheezy tag 143
whoami command 113, 165
WORDPRESS_DB_HOST variable 33
WORKDIR instruction 151–153
writetimeout property 219

X

XXL_container 263
xxl_container 265

Y

YAML file 227
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Jeff Nickoloff

T
he idea behind Docker is simple. Create a tiny virtual
environment, called a container, that holds just your
application and its dependencies. The Docker engine

uses the host operating system to build and account for these
containers. They are easy to install, manage, and remove.
Applications running inside containers share resources,
making their footprints small.

Docker in Action teaches readers how to create, deploy, and
manage applications hosted in Docker containers. After start-
ing with a clear explanation of the Docker model, you will
learn how to package applications in containers, including
techniques for testing and distributing applications. You will
also learn how to run programs securely and how to manage
shared resources. Using carefully designed examples, the book
teaches you how to orchestrate containers and applications
from installation to removal. Along the way, you’ll discover
techniques for using Docker on systems ranging from
dev-and-test machines to full-scale cloud deployments.

What’s Inside
● Packaging containers for deployment
● Installing, managing, and removing containers
● Working with Docker images
● Distributing with DockerHub

Readers need only have a working knowledge of the Linux OS.
No prior knowledge of Docker is assumed.

A software engineer, Jeff Nickoloff has presented Docker and
its applications to hundreds of developers and administrators
at Desert Code Camp, Amazon.com, and technology meetups.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/docker-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

Docker IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“All there is to know about
Docker. Clear, complete,

and precise.”
—Jean-Pol Landrain

Agile Partner Luxembourg

“A compelling narrative
for real-world Docker

 solutions. A must-read!”
—John Guthrie, Pivotal, Inc.

“An indispensable guide
to understanding Docker

and how it fi ts into
 your infrastructure.”
—Jeremy Gailor, Gracenote

“Will help you transition
quickly to effective Docker
use in complex real-world

situations.”
—Peter Sellars, Fraedom

SEE INSERT

	Docker in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	About the author
	Author Online

	about the cover illustration
	Part 1 Keeping a Tidy Computer
	1 Welcome to Docker
	1.1 What is Docker?
	1.1.1 Containers
	1.1.2 Containers are not virtualization
	1.1.3 Running software in containers for isolation
	1.1.4 Shipping containers

	1.2 What problems does Docker solve?
	1.2.1 Getting organized
	1.2.2 Improving portability
	1.2.3 Protecting your computer

	1.3 Why is Docker important?
	1.4 Where and when to use Docker
	1.5 Example: “Hello, World”
	1.6 Summary

	2 Running software in containers
	2.1 Getting help with the Docker command line
	2.2 Controlling containers: building a website monitor
	2.2.1 Creating and starting a new container
	2.2.2 Running interactive containers
	2.2.3 Listing, stopping, restarting, and viewing output of containers

	2.3 Solved problems and the PID namespace
	2.4 Eliminating metaconflicts: building a website farm
	2.4.1 Flexible container identification
	2.4.2 Container state and dependencies

	2.5 Building environment-agnostic systems
	2.5.1 Read-only file systems
	2.5.2 Environment variable injection

	2.6 Building durable containers
	2.6.1 Automatically restarting containers
	2.6.2 Keeping containers running with supervisor and startup processes

	2.7 Cleaning up
	2.8 Summary

	3 Software installation simplified
	3.1 Identifying software
	3.1.1 What is a repository?
	3.1.2 Using tags

	3.2 Finding and installing software
	3.2.1 Docker Hub from the command line
	3.2.2 Docker Hub from the website
	3.2.3 Using alternative registries
	3.2.4 Images as files
	3.2.5 Installing from a Dockerfile

	3.3 Installation files and isolation
	3.3.1 Image layers in action
	3.3.2 Layer relationships
	3.3.3 Container file system abstraction and isolation
	3.3.4 Benefits of this toolset and file system structure
	3.3.5 Weaknesses of union file systems

	3.4 Summary

	4 Persistent storage and shared state with volumes
	4.1 Introducing volumes
	4.1.1 Volumes provide container-independent data management
	4.1.2 Using volumes with a NoSQL database

	4.2 Volume types
	4.2.1 Bind mount volumes
	4.2.2 Docker-managed volumes

	4.3 Sharing volumes
	4.3.1 Host-dependent sharing
	4.3.2 Generalized sharing and the volumes-from flag

	4.4 The managed volume life cycle
	4.4.1 Volume ownership
	4.4.2 Cleaning up volumes

	4.5 Advanced container patterns with volumes
	4.5.1 Volume container pattern
	4.5.2 Data-packed volume containers
	4.5.3 Polymorphic container pattern

	4.6 Summary

	5 Network exposure
	5.1 Networking background
	5.1.1 Basics: protocols, interfaces, and ports
	5.1.2 Bigger picture: networks, NAT, and port forwarding

	5.2 Docker container networking
	5.2.1 The local Docker network topology
	5.2.2 Four network container archetypes

	5.3 Closed containers
	5.4 Bridged containers
	5.4.1 Reaching out
	5.4.2 Custom name resolution
	5.4.3 Opening inbound communication
	5.4.4 Inter-container communication
	5.4.5 Modifying the bridge interface

	5.5 Joined containers
	5.6 Open containers
	5.7 Inter-container dependencies
	5.7.1 Introducing links for local service discovery
	5.7.2 Link aliases
	5.7.3 Environment modifications
	5.7.4 Link nature and shortcomings

	5.8 Summary

	6 Limiting risk with isolation
	6.1 Resource allowances
	6.1.1 Memory limits
	6.1.2 CPU
	6.1.3 Access to devices

	6.2 Shared memory
	6.2.1 Sharing IPC primitives between containers
	6.2.2 Using an open memory container

	6.3 Understanding users
	6.3.1 Introduction to the Linux user namespace
	6.3.2 Working with the run-as user
	6.3.3 Users and volumes

	6.4 Adjusting OS feature access with capabilities
	6.5 Running a container with full privileges
	6.6 Stronger containers with enhanced tools
	6.6.1 Specifying additional security options
	6.6.2 Fine-tuning with LXC

	6.7 Build use-case-appropriate containers
	6.7.1 Applications
	6.7.2 High-level system services
	6.7.3 Low-level system services

	6.8 Summary

	Part 2 Packaging Software for Distribution
	7 Packaging software in images
	7.1 Building Docker images from a container
	7.1.1 Packaging Hello World
	7.1.2 Preparing packaging for Git
	7.1.3 Reviewing file system changes
	7.1.4 Committing a new image
	7.1.5 Configurable image attributes

	7.2 Going deep on Docker images and layers
	7.2.1 An exploration of union file systems
	7.2.2 Reintroducing images, layers, repositories, and tags
	7.2.3 Managing image size and layer limits

	7.3 Exporting and importing flat file systems
	7.4 Versioning best practices
	7.5 Summary

	8 Build automation and advanced image considerations
	8.1 Packaging Git with a Dockerfile
	8.2 A Dockerfile primer
	8.2.1 Metadata instructions
	8.2.2 File system instructions

	8.3 Injecting downstream build-time behavior
	8.4 Using startup scripts and multiprocess containers
	8.4.1 Environmental preconditions validation
	8.4.2 Initialization processes

	8.5 Building hardened application images
	8.5.1 Content addressable image identifiers
	8.5.2 User permissions
	8.5.3 SUID and SGID permissions

	8.6 Summary

	9 Public and private software distribution
	9.1 Choosing a distribution method
	9.1.1 A distribution spectrum
	9.1.2 Selection criteria

	9.2 Publishing with hosted registries
	9.2.1 Publishing with public repositories: Hello World via Docker Hub
	9.2.2 Publishing public projects with automated builds
	9.2.3 Private hosted repositories

	9.3 Introducing private registries
	9.3.1 Using the registry image
	9.3.2 Consuming images from your registry

	9.4 Manual image publishing and distribution
	9.4.1 A sample distribution infrastructure using the File Transfer Protocol

	9.5 Image source distribution workflows
	9.5.1 Distributing a project with Dockerfile on GitHub

	9.6 Summary

	10 Running customized registries
	10.1 Running a personal registry
	10.1.1 Reintroducing the Image
	10.1.2 Introducing the V2 API
	10.1.3 Customizing the Image

	10.2 Enhancements for centralized registries
	10.2.1 Creating a reverse proxy
	10.2.2 Configuring HTTPS (TLS) on the reverse proxy
	10.2.3 Adding an authentication layer
	10.2.4 Client compatibility
	10.2.5 Before going to production

	10.3 Durable blob storage
	10.3.1 Hosted remote storage with Microsoft’s Azure
	10.3.2 Hosted remote storage with Amazon’s Simple Storage Service
	10.3.3 Internal remote storage with RADOS (Ceph)

	10.4 Scaling access and latency improvements
	10.4.1 Integrating a metadata cache
	10.4.2 Streamline blob transfer with storage middleware

	10.5 Integrating through notifications
	10.6 Summary

	Part 3 Multi-Container and Multi-Host Environments
	11 Declarative environments with Docker Compose
	11.1 Docker Compose: up and running on day one
	11.1.1 Onboarding with a simple development environment
	11.1.2 A complicated architecture: distribution and Elasticsearch integration

	11.2 Iterating within an environment
	11.2.1 Build, start, and rebuild services
	11.2.2 Scale and remove services
	11.2.3 Iteration and persistent state
	11.2.4 Linking problems and the network

	11.3 Starting a new project: Compose YAML in three samples
	11.3.1 Prelaunch builds, the environment, metadata, and networking
	11.3.2 Known artifacts and bind-mount volumes
	11.3.3 Volume containers and extended services

	11.4 Summary

	12 Clusters with Machine and Swarm
	12.1 Introducing Docker Machine
	12.1.1 Building and managing Docker Machines
	12.1.2 Configuring Docker clients to work with remote daemons

	12.2 Introducing Docker Swarm
	12.2.1 Building a Swarm cluster with Docker Machine
	12.2.2 Swarm extends the Docker Remote API

	12.3 Swarm scheduling
	12.3.1 The Spread algorithm
	12.3.2 Fine-tune scheduling with filters
	12.3.3 Scheduling with BinPack and Random

	12.4 Swarm service discovery
	12.4.1 Swarm and single-host networking
	12.4.2 Ecosystem service discovery and stop-gap measures
	12.4.3 Looking forward to multi-host networking

	12.5 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Docker in Action-back

