

http://www.oreilly.com/programming/newsletter

Caleb Hattingh

20 Python Libraries You
Aren’t Using (But Should)

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96792-8

[LSI]

20 Python Libraries You Aren’t Using (But Should)
by Caleb Hattingh

Copyright © 2016 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Dawn Schanafelt
Production Editor: Colleen Lobner
Copyeditor: Christina Edwards

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

August 2016: First Edition

Revision History for the First Edition
2016-08-08: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 20 Python Libra‐
ries You Aren’t Using (But Should), the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

1. Expanding Your Python Knowledge: Lesser-Known Libraries. 1
The Standard Library 2
In the Wild 15
Easier Python Packaging with flit 16
Command-Line Applications 19
Graphical User Interfaces 26
System Tools 34
Web APIs with hug 41
Dates and Times 46
General-Purpose Libraries 53
Conclusion 66

v

CHAPTER 1

Expanding Your
Python Knowledge:

Lesser-Known Libraries

The Python ecosystem is vast and far-reaching in both scope and
depth. Starting out in this crazy, open-source forest is daunting, and
even with years of experience, it still requires continual effort to
keep up-to-date with the best libraries and techniques.

In this report we take a look at some of the lesser-known Python
libraries and tools. Python itself already includes a huge number of
high-quality libraries; collectively these are called the standard
library. The standard library receives a lot of attention, but there are
still some libraries within it that should be better known. We will
start out by discussing several, extremely useful tools in the standard
library that you may not know about.

We’re also going to discuss several exciting, lesser-known libraries
from the third-party ecosystem. Many high-quality third-party
libraries are already well-known, including Numpy and Scipy,
Django, Flask, and Requests; you can easily learn more about these
libraries by searching for information online. Rather than focusing
on those standouts, this report is instead going to focus on several
interesting libraries that are growing in popularity.

Let’s start by taking a look at the standard library.

1

1 Looking for sorted container types? The excellent sorted containers package has high-
performance sorted versions of the list, dict, and set datatypes.

The Standard Library
The libraries that tend to get all the attention are the ones heavily
used for operating-system interaction, like sys, os, shutil, and to a
slightly lesser extent, glob. This is understandable because most
Python applications deal with input processing; however, the Python
standard library is very rich and includes a bunch of additional
functionality that many Python programmers take too long to dis‐
cover. In this chapter we will mention a few libraries that every
Python programmer should know very well.

collections
First up we have the collections module. If you’ve been working
with Python for any length of time, it is very likely that you have
made use of the this module; however, the batteries contained
within are so important that we’ll go over them anyway, just in case.

collections.OrderedDict

collections.OrderedDict gives you a dict that will preserve the
order in which items are added to it; note that this is not the same as
a sorted order.1

The need for an ordered dict comes up surprisingly often. A com‐
mon example is processing lines in a file where the lines (or some‐
thing within them) maps to other data. A mapping is the right
solution, and you often need to produce results in the same order in
which the input data appeared. Here is a simple example of how the
ordering changes with a normal dict:

>>> dict(zip(ascii_lowercase, range(4)))
{'a': 0, 'b': 1, 'c': 2, 'd': 3}

>>> dict(zip(ascii_lowercase, range(5)))
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}

>>> dict(zip(ascii_lowercase, range(6)))
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'f': 5, 'e': 4}

2 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/sorted-cont
http://bit.ly/py-sys
http://bit.ly/py-os
http://bit.ly/py-os
http://bit.ly/py-glob

>>> dict(zip(ascii_lowercase, range(7)))
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'g': 6, 'f': 5, 'e': 4}

See how the key "f" now appears before the "e" key in the
sequence of keys? They no longer appear in the order of inser‐
tion, due to how the dict internals manage the assignment of
hash entries.

The OrderedDict, however, retains the order in which items are
inserted:

>>> from collections import OrderedDict

>>> OrderedDict(zip(ascii_lowercase, range(5)))
OrderedDict([('a', 0), ('b', 1), ('c', 2), ('d', 3),
('e', 4)])

>>> OrderedDict(zip(ascii_lowercase, range(6)))
OrderedDict([('a', 0), ('b', 1), ('c', 2), ('d', 3),
('e', 4), ('f', 5)])

>>> OrderedDict(zip(ascii_lowercase, range(7)))
OrderedDict([('a', 0), ('b', 1), ('c', 2), ('d', 3),
('e', 4), ('f', 5), ('g', 6)])

OrderedDict: Beware creation with keyword arguments

There is an unfortunate catch with OrderedDict you
need to be aware of: it doesn’t work when you create
the OrderedDict with keyword arguments, a very
common Python idiom:

>>> collections.OrderedDict(a=1,b=2,c=3)
OrderedDict([('b', 2), ('a', 1), ('c', 3)])

This seems like a bug, but as explained in the docu‐
mentation, it happens because the keyword arguments
are first processed as a normal dict before they are
passed on to the OrderedDict.

collections.defaultdict

collections.defaultdict is another special-case dictionary: it
allows you to specify a default value for all new keys.

The Standard Library | 3

2 For instance, this example with setdefault() looks like d.setdefault(k,
[]).append(...). The default value is always evaluated, whereas with defaultdict the
default value generator is only evaluated when necessary. But there are still cases where
you’ll need setdefault(), such as when using different default values depending on
the key.

Here’s a common example:

>>> d = collections.defaultdict(list)
>>> d['a']
[]

You didn’t create this item yet? No problem! Key lookups auto‐
matically create values using the function provided when creat‐
ing the defaultdict instance.

By setting up the default value as the list constructor in the preced‐
ing example, you can avoid wordy code that looks like this:

d = {}
for k in keydata:
 if not k in d:
 d[k] = []
 d[k].append(...)

The setdefault() method of a dict can be used in a somewhat
similar way to initialize items with defaults, but defaultdict gener‐
ally results in clearer code.2

In the preceding examples, we’re saying that every new element, by
default, will be an empty list. If, instead, you wanted every new ele‐
ment to contain a dictionary, you might say defaultdict(dict).

collections.namedtuple

The next tool, collections.namedtuple, is magic in a bottle!
Instead of working with this:

tup = (1, True, "red")

You get to work with this:

>>> from collections import namedtuple
>>> A = namedtuple('A', 'count enabled color')
>>> tup = A(count=1, enabled=True, color="red")
>>> tup.count
1
>>> tup.enabled
True

4 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

>>> tup.color
"red"
>>> tup
A(count=1, enabled=True, color='red')

The best thing about namedtuple is that you can add it to existing
code and use it to progressively replace tuples: it can appear any‐
where a tuple is currently being used, without breaking existing
code, and without using any extra resources beyond what plain
tuples require. Using namedtuple incurs no extra runtime cost, and
can make code much easier to read. The most common situation
where a namedtuple is recommended is when a function returns
multiple results, which are then unpacked into a tuple. Let’s look at
an example of code that uses plain tuples, to see why such code can
be problematic:

>>> def f():
... return 2, False, "blue"
>>> count, enabled, color = f()

>>> tup = f()
>>> enabled = tup[1]

Simple function returning a tuple.

When the function is evaluated, the results are unpacked into
separate names.

Worse, the caller might access values inside the returned tuple
by index.

The problem with this approach is that this code is fragile to future
changes. If the function changes (perhaps by changing the order of
the returned items, or adding more items), the unpacking of the
returned value will be incorrect. Instead, you can modify existing
code to return a namedtuple instance:

>>> def f():
... # Return a namedtuple!
... return A(2, False, "blue")

>>> count, enabled, color = f()

Even though our function now returns a namedtuple, the same
calling code stills works.

The Standard Library | 5

You now also have the option of working with the returned
namedtuple in the calling code:

>>> tup = f()
>>> print(tup.count)
2

Being able to use attributes to access data inside the tuple is
much safer rather than relying on indexing alone; if future
changes in the code added new fields to the namedtuple, the
tup.count would continue to work.

The collections module has a few other tricks up its sleeve, and
your time is well spent brushing up on the documentation. In addi‐
tion to the classes shown here, there is also a Counter class for easily
counting occurrences, a list-like container for efficiently appending
and removing items from either end (deque), and several helper
classes to make subclassing lists, dicts, and strings easier.

contextlib
A context manager is what you use with the with statement. A very
common idiom in Python for working with file data demonstrates
the context manager:

with open('data.txt', 'r') as f:
 data = f.read()

This is good syntax because it simplifies the cleanup step where the
file handle is closed. Using the context manager means that you
don’t have to remember to do f.close() yourself: this will happen
automatically when the with block exits.

You can use the contextmanager decorator from the contextlib
library to benefit from this language feature in your own nefarious
schemes. Here’s a creative demonstration where we create a new
context manager to print out performance (timing) data.

This might be useful for quickly testing the time cost of code snip‐
pets, as shown in the following example. The numbered notes are
intentionally not in numerical order in the code. Follow the notes in
numerical order as shown following the code snippet.

from time import perf_counter
from array import array
from contextlib import contextmanager

6 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/coll-docs

@contextmanager
def timing(label: str):
 t0 = perf_counter()
 yield lambda: (label, t1 - t0)
 t1 = perf_counter()

with timing('Array tests') as total:
 with timing('Array creation innermul') as inner:
 x = array('d', [0] * 1000000)

 with timing('Array creation outermul') as outer:
 x = array('d', [0]) * 1000000

print('Total [%s]: %.6f s' % total())
print(' Timing [%s]: %.6f s' % inner())
print(' Timing [%s]: %.6f s' % outer())

The array module in the standard library has an unusual
approach to initialization: you pass it an existing sequence, such
as a large list, and it converts the data into the datatype of your
array if possible; however, you can also create an array from a
short sequence, after which you expand it to its full size. Have
you ever wondered which is faster? In a moment, we’ll create a
timing context manager to measure this and know for sure!

The key step you need to do to make your own context manager
is to use the @contextmanager decorator.

The section before the yield is where you can write code that
must execute before the body of your context manager will run.
Here we record the timestamp before the body will run.

The yield is where execution is transferred to the body of your
context manager; in our case, this is where our arrays get cre‐
ated. You can also return data: here I return a closure that will
calculate the elapsed time when called. It’s a little clever but
hopefully not excessively so: the final time t1 is captured within
the closure even though it will only be determined on the next
line.

After the yield, we write the code that will be executed when
the context manager finishes. For scenarios like file handling,
this would be where you close them. In this example, this is
where we record the final time t1.

The Standard Library | 7

Here we try the alternative array-creation strategy: first, create
the array and then increase size.

For fun, we’ll use our awesome, new context manager to also
measure the total time.

On my computer, this code produces this output:

Total [Array tests]: 0.064896 s
 Timing [Array creation innermul]: 0.064195 s
 Timing [Array creation outermul]: 0.000659 s

Quite surprisingly, the second method of producing a large array is
around 100 times faster than the first. This means that it is much
more efficient to create a small array, and then expand it, rather than
to create an array entirely from a large list.

The point of this example is not to show the best way to create an
array: rather, it is that the contextmanager decorator makes it
exceptionally easy to create your own context manager, and context
managers are a great way of providing a clean and safe means of
managing before-and-after coding tasks.

concurrent.futures
The concurrent.futures module that was introduced in Python 3
provides a convenient way to manage pools of workers. If you have
previously used the threading module in the Python standard
library, you will have seen code like this before:

import threading

def work():
 return sum(x for x in range(1000000))

thread = threading.Thread(target=work)
thread.start()
thread.join()

This code is very clean with only one thread, but with many threads
it can become quite tricky to deal with sharing work between them.
Also, in this example the result of the sum is not obtained from the
work function, simply to avoid all the extra code that would be
required to do so. There are various techniques for obtaining the
result of a work function, such as passing a queue to the function, or
subclassing threading.Thread, but we’re not going discuss them

8 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/conc-fut

any further, because the multiprocessing package provides a better
method for using pools, and the concurrent.futures module goes
even further to simplify the interface. And, similar to multiprocess‐
ing, both thread-based pools and process-based pools have the same
interface making it easy to switch between either thread-based or
process-based approaches.

Here we have a trivial example using the ThreadPoolExecutor. We
download the landing page of a plethora of popular social media
sites, and, to keep the example simple, we print out the size of
each. Note that in the results, we show only the first four to keep the
output short.

from concurrent.futures import ThreadPoolExecutor as Executor

urls = """google twitter facebook youtube pinterest tumblr
instagram reddit flickr meetup classmates microsoft apple
linkedin xing renren disqus snapchat twoo whatsapp""".split()

def fetch(url):
 from urllib import request, error
 try:
 data = request.urlopen(url).read()
 return '{}: length {}'.format(url, len(data))
 except error.HTTPError as e:
 return '{}: {}'.format(url, e)

with Executor(max_workers=4) as exe:
 template = 'http://www.{}.com'
 jobs = [exe.submit(
 fetch, template.format(u)) for u in urls]
 results = [job.result() for job in jobs]

print('\n'.join(results))

Our work function, fetch(), simply downloads the given URL.

Yes, it is rather odd nowadays to see urllib because the fantas‐
tic third-party library requests is a great choice for all your web-
access needs. However, urllib still exists and depending on
your needs, may allow you to avoid an external dependency.

We create a ThreadPoolExecutor instance, and here you can
specify how many workers are required.

The Standard Library | 9

http://bit.ly/multipr-py
http://bit.ly/py-reqs

3 CPython means the specific implementation of the Python language that is written in
the C language. There are other implementations of Python, created with various other
languages and technologies such as .NET, Java and even subsets of Python itself.

Jobs are created, one for every URL in our considerable list. The
executor manages the delivery of jobs to the four threads.

This is a simple way of waiting for all the threads to return.

This produces the following output (I’ve shortened the number of
results for brevity):

http://www.google.com: length 10560
http://www.twitter.com: length 268924
http://www.facebook.com: length 56667
http://www.youtube.com: length 437754
[snip]

Even though one job is created for every URL, we limit the number
of active threads to only four using max_workers and the results are
all captured in the results list as they become available. If you
wanted to use processes instead of threads, all that needs to change
is the first line, from this:

from concurrent.futures import ThreadPoolExecutor as Executor

To this:

from concurrent.futures import ProcessPoolExecutor as Executor

Of course, for this kind of application, which is limited by network
latency, a thread-based pool is fine. It is with CPU-bound tasks that
Python threads are problematic because of how thread safety has
been in implemented inside the CPython3 runtime interpreter, and
in these situations it is best to use a process-based pool instead.

The primary problem with using processes for parallelism is that
each process is confined to its own memory space, which makes it
difficult for multiple workers to chew on the same large chunk of
data. There are ways to get around this, but in such situations
threads provide a much simpler programming model. However, as
we shall see in “Cython” on page 59, there is a third-party package
called Cython that makes it very easy to circumvent this problem
with threads.

10 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

logging
The logging module is very well known in the web development
community, but is far less used in other domains, such as the scien‐
tific one; this is unfortunate, because even for general use, the log‐
ging module is far superior to the print() function. It doesn’t seem
that way at first, because the print() function is so simple; however,
once you initialize logging, it can look very similar. For instance,
compare these two:

print('This is output to the console')

logger.debug('This is output to the console')

The huge advantage of the latter is that, with a single change to a set‐
ting on the logger instance, you can either show or hide all your
debugging messages. This means you no longer have to go through
the process of commenting and uncommenting your print() state‐
ments in order to show or hide them. logging also gives you a few
different levels so that you can adjust the verbosity of output in your
programs. Here’s an example of different levels:

logger.debug('This is for debugging. Very talkative!')
logger.info('This is for normal chatter')
logger.warning('Warnings should almost always be seen.')
logger.error('You definitely want to see all errors!')
logger.critical('Last message before a program crash!')

Another really neat trick is that when you use logging, writing mes‐
sages during exception handling is a whole lot easier. You don’t have
to deal with sys.exc_info() and the traceback module merely for
printing out the exception message with a traceback. You can do this
instead:

try:
 1/0
except:
 logger.exception("Something failed:")

Just those four lines produces a full traceback in the output:

ERROR:root:Something failed:
Traceback (most recent call last):
 File "logtb.py", line 5, in <module>
 1/0
ZeroDivisionError: division by zero

The Standard Library | 11

Earlier I said that logging requires some setup. The documentation
for the logging module is extensive and might seem overwhelming;
here is a quick recipe to get you started:

Top of the file
import logging
logger = logging.getLogger()

All your normal code goes here
def blah():
 return 'blah'

Bottom of the file
if __name__ == '__main__':
 logging.basicConfig(level=logging.DEBUG)

Without arguments, the getLogger() function returns the root
logger, but it’s more common to create a named logger. If you’re
just starting out, exploring with the root logger is fine.

You need to call a config method; otherwise, calls to the logger
will not log anything. The config step is necessary.

In the preceding basicConfig() line, by changing only log
ging.DEBUG to, say, logging.WARNING, you can affect which mes‐
sages get processed and which don’t.

Finally, there’s a neat trick you can use for easily changing the log‐
ging level on the command line. Python scripts that are directly exe‐
cutable usually have the startup code in a conditional block
beginning with if __name__ == '__main__'. This is where
command-line parameters are handled, e.g., using the argparse
library in the Python standard library. We can create command-line
arguments specifically for the logging level:

Bottom of the file
if __name__ == '__main__':
 from argparse import ArgumentParser
 parser = ArgumentParser(description='My app which is mine')
 parser.add_argument('-ll', '--loglevel',
 type=str,
 choices=['DEBUG','INFO','WARNING','ERROR','CRITICAL'],
 help='Set the logging level')
 args = parser.parseargs()
 logging.basicConfig(level=args.loglevel)

With this setup, if you call your program with

12 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

4 Programs that automate some task, often communicating data across different network
services like Twitter, IRC, and Slack.

$ python main.py -ll DEBUG

it will run with the logging level set to DEBUG (so all logger messages
will be shown), whereas if you run it with

$ python main.py -ll WARNING

it will run at the WARNING level for logging, so all INFO and DEBUG
logger messages will be hidden.

There are many more features packed into the logging module, but
I hope I’ve convinced you to consider using it instead of using
print() for your next program. There is much more information
about the logging module online, both in the official Python docu‐
mentation and elsewhere in blogs and tutorials. The goal here is
only to convince you that the logging module is worth investigat‐
ing, and getting started with it is easy to do.

sched
There is increasing interest in the creation of bots4 and other moni‐
toring and automation applications. For these applications, a com‐
mon requirement is to perform actions at specified times or
specified intervals. This functionality is provided by the sched mod‐
ule in the standard library. There are already similar tools provided
by operating systems, such as cron on Linux and Windows Task
Scheduler, but with Python’s own sched module you can ignore
these platform differences, as well as incorporate scheduled tasks
into a program that might have many other functions.

The documentation for sched is rather terse, but hopefully these
examples will get you started. The easy way to begin is to schedule a
function to be executed after a specified delay (this is a complete
example to make sure you can run it successfully):

import sched
import time
from datetime import datetime, timedelta

scheduler = sched.scheduler(timefunc=time.time)

def saytime():

The Standard Library | 13

http://bit.ly/sched-docs

 print(time.ctime())
 scheduler.enter(10, priority=0, action=saytime)

saytime()
try:
 scheduler.run(blocking=True)
except KeyboardInterrupt:
 print('Stopped.')

A scheduler instance is created.

A work function is declared, in our case saytime(), which sim‐
ply prints out the current time.

Note that we reschedule the function inside itself, with a ten-
second delay.

The scheduler is started with run(blocking=True), and the exe‐
cution point remains here until the program is terminated or
Ctrl-C is pressed.

There are a few annoying details about using sched: you have to
pass timefunc=time.time as this isn’t set by default, and you have to
supply a priority even when not required. However, overall, the
sched module still provides a clean way to get cron-like behavior.

Working with delays can be frustrating if what you really want is for
a task to execute at specific times. In addition to enter(), a sched
instance also provides the enterabs() method with which you can
trigger an event at a specific time. We can use that method to trigger
a function, say, every whole minute:

import sched
import time
from datetime import datetime, timedelta

scheduler = sched.scheduler(timefunc=time.time)

def reschedule():
 new_target = datetime.now().replace(
 second=0, microsecond=0)
 new_target += timedelta(minutes=1)
 scheduler.enterabs(
 new_target.timestamp(), priority=0, action=saytime)

def saytime():
 print(time.ctime(), flush=True)

14 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

 reschedule()

reschedule()
try:
 scheduler.run(blocking=True)
except KeyboardInterrupt:
 print('Stopped.')

Create a scheduler instance, as before.

Get current time, but strip off seconds and microseconds to
obtain a whole minute.

The target time is exactly one minute ahead of the current
whole minute.

The enterabs() method schedules the task.

This code produces the following output:

Sat Jun 18 18:14:00 2016
Sat Jun 18 18:15:00 2016
Sat Jun 18 18:16:00 2016
Sat Jun 18 18:17:00 2016
Stopped.

With the growing interest in “Internet of Things” applications, the
built-in sched library provides a convenient way to manage repeti‐
tive tasks. The documentation provides further information about
how to cancel future tasks.

In the Wild
From here on we’ll look at some third-party Python libraries that
you might not yet have discovered. There are thousands of excellent
packages described at the Python guide.

There are quite a few guides similar to this report that you can find
online. There could be as many “favorite Python libraries” lists as
there are Python developers, and so the selection presented here is
necessarily subjective. I spent a lot of time finding and testing vari‐
ous third-party libraries in order to find these hidden gems.

In the Wild | 15

http://bit.ly/sched-docs
http://bit.ly/py-guide

My selection criteria were that a library should be:

• easy to use
• easy to install
• cross-platform
• applicable to more than one domain
• not yet super-popular, but likely to become so
• the X factor

The last two items in that list bear further explanation.

Popularity is difficult to define exactly, since different libraries tend
to get used to varying degrees within different Python communities.
For instance, Numpy and Scipy are much more heavily used within
the scientific Python community, while Django and Flask enjoy
more attention in the web development community. Furthermore,
the popularity of these libraries is such that everybody already
knows about them. A candidate for this list might have been some‐
thing like Dask, which seems poised to become an eventual succes‐
sor to Numpy, but in the medium term it is likely to be mostly
applicable to the scientific community, thus failing my applicability
test.

The X factor means that really cool things are likely to be built with
that Python library. Such a criterion is of course strongly subjective,
but I hope, in making these selections, to inspire you to experiment
and create something new!

Each of the following chapters describes a library that met all the
criteria on my list, and which I think you’ll find useful in your
everyday Python activities, no matter your specialization.

Easier Python Packaging with flit
flit is a tool that dramatically simplifies the process of submitting a
Python package to the Python Package Index (PyPI). The traditional
process begins by creating a setup.py file; simply figuring out how
to do that requires a considerable amount of work even to under‐
stand what to do. In contrast, flit will create its config file interac‐
tively, and for typical simple packages you’ll be ready to upload to
PyPI almost immediately. Let’s have a look: consider this simple
package structure:

16 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://www.numpy.org
http://www.scipy.org
https://www.djangoproject.com
http://flask.pocoo.org
http://dask.pydata.org/en/latest
http://bit.ly/flit-py
http://bit.ly/pkg-py
http://bit.ly/pkg-py

 $ tree
.
└── mypkg
 ├── __init__.py
 └── main.py

The package’s init file is a great place to add package informa‐
tion like documentation, version numbers, and author informa‐
tion.

After installing flit into your environment with pip install flit,
you can run the interactive initializer, which will create your pack‐
age configuration. It asks only five questions, most of which will
have applicable defaults once you have made your first package with
flit:

 $ flit init
Module name [mypkg]:
Author [Caleb Hattingh]:
Author email [caleb.hattingh@gmail.com]:
Home page [https://github.com/cjrh/mypkg]:
Choose a license
 1. MIT
 2. Apache
 3. GPL
 4. Skip - choose a license later
Enter 1-4 [2]: 2
Written flit.ini; edit that file to add optional extra info.

The final line tells you that a flit.ini file was created. Let’s have a look
at that:

 $ cat flit.ini
// [metadata]
module = mypkg
author = Caleb Hattingh
author-email = caleb.hattingh@gmail.com
home-page = https://github.com/cjrh/mypkg
classifiers = License :: OSI Approved :: Apache Software License

It’s pretty much what we specified in the interactive flit init
sequence. Before you can submit our package to the online PyPI,
there are two more steps that you must complete. The first is to give
your package a docstring. You add this to the mypkg/__init__.py file
at the top using triple quotes ("""). The second is that you must add
a line for the version to the same file. Your finished __init__.py file
might look like this:

Easier Python Packaging with flit | 17

5 The X.Y.Z versioning scheme shown here is known as semantic versioning (“semver”),
but an alternative scheme worth investigating further is calendar versioning, which you
can learn more about at calver.org.

file: __init__.py
""" This is the documentation for the package. """

__version__ = '1.0.0'

This documentation will be used as your package description on
PyPI.

Likewise, the version tag within your package will also be reused
for PyPI when the package is uploaded. These automatic inte‐
grations help to simplify the packaging process. It might not
seem like much is gained, but experience with Python packag‐
ing will show that too many steps (even when they’re simple),
when combined, can lead to a complex packaging experience.5

After filling in the basic description and the version, you are ready
to build a wheel and upload it to PyPI:

$ flit wheel --upload
Copying package file(s) from mypkg
Writing metadata files
Writing the record of files
Wheel built: dist/mypkg-1.0.0-py2.py3-none-any.whl
Using repository at https://pypi.python.org/pypi
Uploading dist/mypkg-1.0.0-py2.py3-none-any.whl...
Starting new HTTPS connection (1): pypi.python.org
Uploading forbidden; trying to register and upload again
Starting new HTTPS connection (1): pypi.python.org
Registered mypkg with PyPI
Uploading dist/mypkg-1.0.0-py2.py3-none-any.whl...
Starting new HTTPS connection (1): pypi.python.org
Package is at https://pypi.python.org/pypi/mypkg

Note that flit automatically registers your package if the initial
upload fails.

And that’s it! Figure 1-1 shows our package on PyPI.

18 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://calver.org

Figure 1-1. It’s alive! Our demo package on the PyPI.

flit allows you to specify more options, but for simple packages
what you see here can get you pretty far.

Command-Line Applications
If you’ve spent any time whatsoever developing Python code, you
will surely have used several command-line applications. Some
command-line programs seem much friendlier than others, and in
this chapter we show two fantastic libraries that will make it easy for
you to offer the best experience for users of your own command-
line applications. colorama allows you to use colors in your output,
while begins makes it easy to provide a rich interface for specifying
and processing command-line options.

colorama
Many of your desktop Python programs will only ever be used on
the command line, so it makes sense to do whatever you can to
improve the experience of your users as much as possible. The use
of color can dramatically improve your user interface, and colorama
makes it very easy to add splashes of color into your command-line
applications.

Let’s begin with a simple example.

Command-Line Applications | 19

from colorama import init, Fore, Back, Style
init(autoreset=True)

messages = [
 'blah blah blah',
 (Fore.LIGHTYELLOW_EX + Style.BRIGHT
 + BACK.MAGENTA + 'Alert!!!'),
 'blah blah blah'
]

for m in messages:
 print(m)

Notice in Figure 1-2 how the important message jumps right out at
you? There are other packages like curses, blessings, and prompt-
toolkit that let you do a whole lot more with the terminal screen
itself, but they also have a slightly steeper learning curve; with colo
rama the API is simple enough to be easy to remember.

Figure 1-2. Add color to your output messages with simple string con‐
catenation.

The great thing about colorama is that it also works on Windows, in
addition to Linux and Mac OS X. In the preceding example, we used
the init() function to enable automatic reset to default colors after
each print(), but even when not required, init() should always be

20 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

6 pip install colorlog

called (when your code runs on Windows, the init() call enables
the mapping from ANSI color codes to the Windows color system).

from colorama import init
init()

The preceding example is clear enough to follow, but I would be a
sorry author if I—after having emphasized the benefits of the logging
module—told you that the only way to get colors into your console
was to use print(). As usual with Python, it turns out that the hard
work has already been done for us. After installing the colorlog
package,6 you can use colors in your log messages immediately:

import colorlog

logger = colorlog.getLogger()
logger.setLevel(colorlog.colorlog.logging.DEBUG)

handler = colorlog.StreamHandler()
handler.setFormatter(colorlog.ColoredFormatter())
logger.addHandler(handler)

logger.debug("Debug message")
logger.info("Information message")
logger.warning("Warning message")
logger.error("Error message")
logger.critical("Critical message")

Obtain a logger instance, exactly as you would normally do.

Set the logging level. You can also use the constants like DEBUG
and INFO from the logging module directly.

Set the message formatter to be the ColoredFormatter provided
by the colorlog library.

This produces the output shown in Figure 1-3.

There are several other similar Python packages worth watching,
such as the fabulous command-line beautifier, which would have
made this list if it had been updated for Python 3 just a few weeks
sooner!

Command-Line Applications | 21

https://jart.github.io/fabulous

Figure 1-3. Beautiful and automatic colors for your logging messages.

begins
As far as user-interfaces go, most Python programs start out as
command-line applications, and many remain so. It makes sense to
offer your users the very best experience you can. For such pro‐
grams, options are specified with command-line arguments, and the
Python standard library offers the argparse library to help with that.

argparse is a robust, solid implementation for command-line pro‐
cessing, but it is somewhat verbose to use. For example, here we
have an extremely simple script that will add two numbers passed
on the command line:

import argparse

def main(a, b):
 """ Short script to add two numbers """
 return a + b

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description="Add two numbers")
 parser.add_argument('-a',
 help='First value',
 type=float,
 default=0)

22 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/argparse-py

 parser.add_argument('-b',
 help='Second value',
 type=float,
 default=0)
 args = parser.parse_args()
 print(main(args.a, args.b))

As one would expect, help can be obtained by passing -h to this pro‐
gram:

$ python argparsedemo.py -h
usage: argparsedemo.py [-h] [-a A] [-b B]

Add two numbers

optional arguments:
 -h, --help show this help message and exit
 -a A First value
 -b B Second value

In contrast, the begins library takes a machete to the API of arg
parse and maximally exploits features of the Python language to
simplify setting up the same command-line interface:

import begin

@begin.start(auto_convert=True)
def main(a: 'First value' = 0.0, b: 'Second value' = 0.0):
 """ Add two numbers """
 print(a + b)

There is so much happening in so few lines, yet everything is still
explicit:

• Each parameter in the main function becomes a command-line
argument.

• The function annotations are exploited to provide an inline help
description of each parameter.

• The default value of each parameter (here, 0.0) is used both as a
default value, as well as to indicate the required datatype (in this
case, a float number value).

• The auto_convert=True is used to enforce type coercion from a
string to the target parameter type.

• The docstring for the function now becomes the help documen‐
tation of the program itself.

Command-Line Applications | 23

Also, you may have noticed that this example lacks the usual if
__name__ == '__main__' boilerplate: that’s because begins is smart
enough to work with Python’s stack frames so that your target func‐
tion becomes the starting point.

For completeness, here is the help for the begins-version, produced
with -h:

$ python beginsdemo.py -h
usage: beginsdemo.py [-h] [--a A] [--b B]

Add two numbers

optional arguments:
 -h, --help show this help message and exit
 --a A, -a A First value (default: 0.0)
 --b B, -b B Second value (default: 0.0)

There are a bunch more tricks that begins makes available, and you
are encouraged to read the documentation; for instance, if the
parameters are words:

@begin.start
def main(directory: 'Target dir'):
 ...

then both -d VALUE and --directory VALUE will work for specify‐
ing the value of the directory parameter on the command line. A
sequence of positional arguments of unknown length is easily
defined with unpacking:

#demo.py
@begin.start
def main(directory: 'Target dir', *filters):
 ...

When called with:

$ python demo.py -d /home/user tmp temp TEMP

the filters argument would be the list ['tmp', 'temp', 'TEMP'].

If that were all that begins supported, it would already be sufficient
for the vast majority of simple programs; however, begins also pro‐
vides support for subcommands:

import begin

@begin.subcommand
def status(compact: 'Short or long format' = True):
 """ Report the current status. """

24 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/begins-docs

 if compact:
 print('ok.')
 else:
 print('Very well, thank-you.')

@begin.subcommand
def fetch(url: 'Data source' = 'http://google.com'):
 """ Fetch data from the URL. """
 print('Work goes here')

@begin.start(auto_convert=True)
def main(a: 'First value' = 0.0, b: 'Second value' = 0.0):
 """ Add two numbers """
 print(a + b)

The main function is the same as before, but we’ve added two sub‐
commands:

• The first, status, represents a subcommand that could be used
to provide some kind of system status message (think “git sta‐
tus”).

• The second, fetch, represents a subcommand for some kind of
work function (think “git fetch”).

Each subcommand has its own set of parameters, and the rules work
in the same way as before with the main function. For instance,
observe the updated help (obtained with the -h parameter) for the
program:

$ python beginssubdemo.py -h
usage: beginssubdemo.py [-h] [--a A] [--b B] {fetch,status} ...

Add two numbers

optional arguments:
 -h, --help show this help message and exit
 --a A, -a A First value (default: 0.0)
 --b B, -b B Second value (default: 0.0)

Available subcommands:
 {fetch,status}
 fetch Fetch data from the URL.
 status Report the current status.

Command-Line Applications | 25

We still have the same documentation for the main program, but
now additional help for the subcommands have been added. Note
that the function docstrings for status and fetch have also been
recycled into CLI help descriptions. Here is an example of how our
program might be called:

$ python beginssubdemo.py -a 7 -b 7 status --compact
14.0
ok.

$ python beginssubdemo.py -a 7 -b 7 status --no-compact
14.0
Very well, thank-you.

You can also see how boolean parameters get some special treat‐
ment: they evaluate True if present and False when no- is prefixed
to the parameter name, as shown for the parameter compact.

begins has even more tricks up its sleeve, such as automatic han‐
dling for environment variables, config files, error handling, and
logging, and I once again urge you to check out the project docu‐
mentation.

If begins seems too extreme for you, there are a bunch of other
tools for easing the creation of command-line interfaces. One par‐
ticular option that has been growing in popularity is click.

Graphical User Interfaces
Python offers a wealth of options for creating graphical user inter‐
faces (GUIs) including PyQt, wxPython, and tkinter, which is also
available directly in the standard library. In this chapter we will
describe two significant, but largely undiscovered, additions to the
lineup. The first, pyqtgraph, is much more than simply a chart-
plotting library, while pywebview gives you a full-featured web-
technology interface for your desktop Python applications.

pyqtgraph
The most popular chart-plotting library in Python is matplotlib, but
you may not yet have heard of the wonderful alternative, pyqtgraph.
Pyqtgraph is not a one-to-one replacement for matplotlib; rather, it
offers a different selection of features and in particular is excellent
for real-time and interactive visualization.

26 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/env-var
http://bit.ly/beg-config
http://bit.ly/beg-err
http://bit.ly/beg-log
http://click.pocoo.org
http://bit.ly/py-qt
https://www.wxpython.org
http://bit.ly/tkinter-py
http://matplotlib.org
http://www.pyqtgraph.org

It is very easy to get an idea of what pyqtgraph offers: simply run the
built-in examples application:

$ pip install pyqtgraph
$ python -m pyqtgraph.examples

This will install and run the examples browser. You can see a
screenshot of one of the examples in Figure 1-4.

Figure 1-4. Interactive pyqtgraph window.

This example shows an array of interactive plots. You can’t tell from
the screenshot, but when you run this example, the yellow chart on
the right is a high-speed animation. Each plot, including the anima‐
ted one (in yellow), can be panned and scaled in real-time with your
cursor. If you’ve used Python GUI frameworks in the past, and in
particular ones with free-form graphics, you would probably expect
sluggish performance. This is not the case with pyqtgraph: because
pyqtgraph uses, unsurprisingly, PyQt for the UI. This allows pyqt

Graphical User Interfaces | 27

7 Unfortunately, PyQt itself can be either trivial or very tricky to install, depending on
your platform. At the time of writing, the stable release of pyqtgraph requires PyQt4 for
which no prebuilt installer is available on PyPI; however, the development branch of
pyqtgraph works with PyQt5, for which a prebuilt, pip-installable version does exist on
PyPI. With any luck, by the time you read this a new version of pyqtgraph will have
been released!

graph itself to be a pure-python package, making installation and
distribution easy.7

By default, the style configuration for graphs in pyqtgraph uses a
black background with a white foreground. In Figure 1-4, I sneakily
used a style configuration change to reverse the colors, since dark
backgrounds look terrible in print. This information is also available
in the documentation:

import pyqtgraph as pg
Switch to using white background and black foreground
pg.setConfigOption('background', 'w')
pg.setConfigOption('foreground', 'k')

There is more on offer than simply plotting graphs: pyqtgraph also
has features for 3D visualization, widget docking, and automatic
data widgets with two-way binding. In Figure 1-5, the data-entry
and manipulation widgets were generated automatically from a
Numpy table array, and UI interaction with these widgets changes
the graph automatically.

pyqtgraph is typically used as a direct visualizer, much like how mat
plotlib is used, but with better interactivity. However, it is also
quite easy to embed pyqtgraph into another separate PyQt applica‐
tion and the documentation for this is easy to follow. pyqtgraph also
provides a few useful extras, like edit widgets that are units-aware
(kilograms, meters and so on), and tree widgets that can be built
automatically from (nested!) standard Python data structures like
lists, dictionaries, and arrays.

The author of pyqtgraph is now working with the authors of other
visualization packages on a new high-performance visualization
package: vispy. Based on how useful pyqtgraph has been for me, I’ve
no doubt that vispy is likely to become another indispensable tool
for data visualization.

28 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://vispy.org/gallery.html

Figure 1-5. Another pyqtgraph example: the data fields and widgets on
the left are automatically created from a Numpy table array.

pywebview
There are a huge number of ways to make desktop GUI applications
with Python, but in recent years the idea of using a browser-like
interface as a desktop client interface has become popular. This
approach is based around tools like cefpython (using the Chrome-
embedded framework) and Electron, which has been used to build
many popular tools such as the Atom text editor and Slack social
messaging application.

Usually, such an approach involves bundling a browser engine with
your application, but Pywebview gives you a one-line command to
create a GUI window that wraps a system native “web view” window.
By combining this with a Python web abb like Flask or Bottle, it
becomes very easy to create a local application with a GUI, while
also taking advantage of the latest GUI technologies that have been
developed in the browser space. The benefit to using the system
native browser widget is that you don’t have to distribute a poten‐
tially large application bundle to your users.

Let’s begin with an example. Since our application will be built up as
a web-page template in HTML, it might be interesting to use a
Python tool to build the HTML rather than writing it out by hand.

Graphical User Interfaces | 29

http://bit.ly/cefpy
http://bit.ly/electron-py
http://bit.ly/pywebview

from string import ascii_letters
from random import choice, randint
import webview
import dominate
from dominate.tags import *
from bottle import route, run, template

bootstrap = 'https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/'
bootswatch = 'https://maxcdn.bootstrapcdn.com/bootswatch/3.3.6/'

doc = dominate.document()

with doc.head:
 link(rel='stylesheet',
 href=bootstrap + 'css/bootstrap.min.css')
 link(rel='stylesheet',
 href=bootswatch + 'paper/bootstrap.min.css')
 script(src='https://code.jquery.com/jquery-2.1.1.min.js')
 [script(src=bootstrap + 'js/' + x)
 for x in ['bootstrap.min.js', 'bootstrap-dropdown.js']]

with doc:
 with div(cls='container'):
 with h1():
 span(cls='glyphicon glyphicon-map-marker')
 span('My Heading')
 with div(cls='row'):
 with div(cls='col-sm-6'):
 p('{{body}}')
 with div(cls='col-sm-6'):
 p('Evaluate an expression:')
 input_(id='expression', type='text')
 button('Evaluate', cls='btn btn-primary')
 div(style='margin-top: 10px;')
 with div(cls='dropdown'):
 with button(cls="btn btn-default dropdown-toggle",
 type="button", data_toggle='dropdown'):
 span('Dropdown')
 span(cls='caret')
 items = ('Action', 'Another action',
 'Yet another action')
 ul((li(a(x, href='#')) for x in items),
 cls='dropdown-menu')

 with div(cls='row'):
 h3('Progress:')
 with div(cls='progress'):
 with div(cls='progress-bar', role='progressbar',
 style='width: 60%;'):
 span('60%')

30 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

 with div(cls='row'):
 for vid in ['4vuW6tQ0218', 'wZZ7oFKsKzY', 'NfnMJMkhDoQ']:
 with div(cls='col-sm-4'):
 with div(cls='embed-responsive embed-responsive-16by9'):
 iframe(
 cls='embed-responsive-item',
 src='https://www.youtube.com/embed/' + vid,
 frameborder='0')

@route('/')
def root():
 word = lambda: ''.join(
 choice(ascii_letters) for i in range(randint(2, 10)))
 nih_lorem = ' '.join(word() for i in range(50))
 return template(str(doc), body=nih_lorem)

if __name__ == '__main__':
 import threading
 thread = threading.Thread(
 target=run, kwargs=dict(host='localhost', port=8080),
 daemon=True)
 thread.start()

 webview.create_window(
 "Not a browser, honest!", "http://localhost:8080",
 width=800, height=600, resizable=False)

webview, the star of the show!

The other star of the show. dominate lets you create HTML with
a series of nested context handlers.

The third star of the show! The bottle framework provides a
very simple interface for building a basic web app with tem‐
plates and routing.

Building up HTML in Python has the tremendous advantage of
using all the syntax tools the language has to offer.

By using Bootstrap, one of the oldest and most robust front-end
frameworks, we get access to fun things like glyph icons.

Template variables can still be entered into our HTML and sub‐
stituted later using the web framework’s tools.

Graphical User Interfaces | 31

To demonstrate that we really do have Bootstrap, here is a pro‐
gress bar widget. With pywebview, you can, of course, use any
Bootstrap widget, and indeed any other tools that would nor‐
mally be used in web browser user interfaces.

I’ve embedded a few fun videos from YouTube.

Running this program produces a great-looking interface, as shown
in Figure 1-6.

Figure 1-6. A beautiful and pleasing interface with very little effort.

For this demonstration, I’ve used the Paper Bootstrap theme, but by
changing a single word you can use an entirely different one! The
Superhero Bootstrap theme is shown in Figure 1-7.

32 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

Figure 1-7. The same application, but using the Superhero theme from
Bootswatch.

In the preceding example we also used the dominate
library, which is a handy utility for generating HTML
procedurally. It’s not only for simple tasks: this demo
shows how it can handle Bootstrap attributes and
widgets quite successfully. dominate works with nested
context managers to manage the scope of HTML tags,
while HTML attributes are assigned with keyword
arguments.
For the kind of application that Pywebview is aimed at,
it would be very interesting to think about how domi
nate could be used to make an abstraction that com‐
pletely hides browser technologies like HTML and
JavaScript, and lets you create (e.g., button-click han‐
dlers) entirely in Python without worrying about the
intermediate event processing within the JavaScript
engine. This technique is already explored in existing
tools like flexx.

Graphical User Interfaces | 33

http://bit.ly/dominate-py
http://bit.ly/flexx-py

System Tools
Python is heavily used to make tools that work closely with the
operating system, and it should be no surprise to discover that there
are excellent libraries waiting to be discovered. The psutil library
gives you all the access to operating-system and process information
you could possibly hope for, while the Watchdog library gives you
hooks into system file-event notifications. Finally, we close out this
chapter with a look at ptpython, which gives you a significantly
enriched interactive Python prompt.

psutil
Psutil provides complete access to system information. Here’s a sim‐
ple example of a basic report for CPU load sampled over 5 seconds:

import psutil

cpu = psutil.cpu_percent(interval=5, percpu=True)
print(cpu)

Output:

[21.4, 1.2, 18.0, 1.4, 15.6, 1.8, 17.4, 1.6]

It produces one value for each logical CPU: on my computer, eight.
The rest of the psutil API is as simple and clean as this example
shows, and the API also provides access to memory, disk, and net‐
work information. It is very extensive.

There is also detailed information about processes. To demonstrate,
here is a program that monitors its own memory consumption and
throws in the towel when a limit is reached:

import psutil
import os, sys, time

pid = os.getpid()
p = psutil.Process(pid)
print('Process info:')
print(' name :', p.name())
print(' exe :', p.exe())

data = []
while True:
 data += list(range(100000))
 info = p.memory_full_info()
 # Convert to MB

34 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

 memory = info.uss / 1024 / 1024
 print('Memory used: {:.2f} MB'.format(memory))
 if memory > 40:
 print('Memory too big! Exiting.')
 sys.exit()
 time.sleep(1)

The os module in the standard library provides our process ID
(PID).

psutil constructs a Process() object based on the PID. In this
case the PID is our own, but it could be any running process on
the system.

This looks bad: an infinite loop and an ever-growing list!

Output:

Process info:
 name : Python
 exe : /usr/local/Cellar/.../Python
Memory used: 11.82 MB
Memory used: 14.91 MB
Memory used: 18.77 MB
Memory used: 22.63 MB
Memory used: 26.48 MB
Memory used: 30.34 MB
Memory used: 34.19 MB
Memory used: 38.05 MB
Memory used: 41.90 MB
Memory too big! Exiting.

The full path has been shortened here to improve the appear‐
ance of the snippet. There are many more methods besides name
and exe available on psutil.Process() instances.

The type of memory shown here is the unique set size, which is the
real memory released when that process terminates. The reporting
of the unique set size is a new feature in version 4 of psutil, which
also works on Windows.

There is an extensive set of process properties you can interrogate
with psutil, and I encourage you to read the documentation. Once
you begin using psutil, you will discover more and more scenarios
in which it can make sense to capture process properties. For exam‐
ple, it might be useful, depending on your application, to capture

System Tools | 35

process information inside exception handlers so that your error
logging can include information about CPU and memory load.

Watchdog
Watchdog is a high-quality, cross-platform library for receiving noti‐
fications of changes in the file system. Such file-system notifications
is a fundamental requirement in many automation applications, and
Watchdog handles all the low-level and cross-platform details of
notifications for system events. And, the great thing about Watchdog
is that it doesn’t use polling.

The problem with polling is that having many such processes run‐
ning can sometimes consume more resources than you may be will‐
ing to part with, particularly on lower-spec systems like the
Raspberry Pi. By using the native notification systems on each plat‐
form, the operating system tells you immediately when something
has changed, rather than you having to ask. On Linux, the inotify
API is used; on Mac OS X, either kqueue or FSEvents are used; and
on Windows, the ReadDirectoryChangesW API is used. Watchdog
allows you to write cross-platform code and not worry too much
about how the sausage is made.

Watchdog has a mature API, but one way to get immediate use out of
it is to use the included watchmedo command-line utility to run a
shell command when something changes. Here are a few ideas for
inspiration:

• Compiling template and markup languages:

Compile Jade template language into HTML
$ watchmedo shell-command \
 --patterns="*.jade" \
 --command='pyjade -c jinja "${watch_src_path}"' \
 --ignore-directories

Convert an asciidoc to HTML
$ watchmedo shell-command \
 --patterns="*.asciidoc" \
 --command='asciidoctor "${watch_src_path}"' \
 --ignore-directories

Watchdog will substitute the name of the specific changed file
using this template name.

36 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

https://www.raspberrypi.org

• Maintenance tasks, like backups or mirroring:

Synchronize files to a server
$ watchmedo shell-command \
 --patterns="*" \
 --command='rsync -avz mydir/ host:/home/ubuntu"'

• Convenience tasks, like automatically running formatters, lint‐
ers, and tests:

Automatically format Python source code to PEP8(!)
$ watchmedo shell-command \
 --patterns="*.py" \
 --command='pyfmt -i "${watch_src_path}"' \
 --ignore-directories

• Calling API endpoints on the Web, or even sending emails and
SMS messages:

Mail a file every time it changes!
$ watchmedo shell-command \
 --patterns="*" \
 --command='cat "${watch_src_path}" | ↲
 mail -s "New version" me@domain.com' \
 --ignore-directories

The API of Watchdog as a library is fairly similar to the command-
line interface introduced earlier. There are the usual quirks with
thread-based programming that you have to be aware of, but the
typical idioms are sufficient:

from watchdog.observers import Observer
from watchdog.events import (
 PatternMatchingEventHandler, FileModifiedEvent,
 FileCreatedEvent)

observer = Observer()

class Handler(PatternMatchingEventHandler):
 def on_created(self, event: FileCreatedEvent):
 print('File Created: ', event.src_path)

 def on_modified(self, event: FileModifiedEvent):
 print('File Modified: %s [%s]' % (
 event.src_path, event.event_type))

observer.schedule(event_handler=Handler('*'), path='.')
observer.daemon = False
observer.start()

System Tools | 37

try:
 observer.join()
except KeyboardInterrupt:
 print('Stopped.')
 observer.stop()
 observer.join()

Create an observer instance.

You have to subclass one of the handler classes, and override the
methods for events that you want to process. Here I’ve imple‐
mented handlers for creation and modification, but there are
several other methods you can supply, as explained in the docu‐
mentation.

You schedule the event handler, and tell watchdog what it should
be watching. In this case I’ve asked for notifications on all files
(*) n the current directory (.).

Watchdog runs in a separate thread. By calling the join()
method, you can force the program flow to block at this point.

With that code running, I cunningly executed a few of these:

$ touch secrets.txt
$ touch secrets.txt
$ touch secrets.txt
[etc]

This is the console output from the running Watchdog demo:

File Created: ./secrets.txt
File Modified: . [modified]
File Modified: ./secrets.txt [modified]
File Modified: ./secrets.txt [modified]
File Modified: ./secrets.txt [modified]
File Modified: ./secrets.txt [modified]
Stopped.

Process finished with exit code 0

Here I terminated the program by pressing Ctrl-C.

As we can see, Watchdog saw all the modifications I made to a file in
the directory being watched.

38 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/watchdog-docs
http://bit.ly/watchdog-docs

ptpython
ptpython is an alternative interpreter interface, offering a beautiful
interactive Python experience. As such, ptpython is more like a tool
than a library to include in your own projects, but what a tool!
Figure 1-8 shows a screenshot showing the basic user interface.

When you need to work with blocks in the interpreter, like classes
and functions, you will find that accessing the command history is
much more convenient than the standard interpreter interface:
when you scroll to a previous command, the entire block is shown,
not only single lines, as shown in Figure 1-9.

Here, I retrieved the code for the function declaration by pressing
the up arrow (or Ctrl-p) and the entire block is shown, rather than
having to scroll through lines separately.

The additional features include vi and Emacs keys, theming support,
docstring hinting, and input validation, which checks a command
(or block) for syntax errors before allowing evaluation. To see the
full set of configurable options, press F2, as seen in Figure 1-10.

Figure 1-8. The code-completion suggestions pop up automatically as
you type.

System Tools | 39

Figure 1-9. When you scroll to previous entries, entire blocks are sug‐
gested (e.g., function f()), not only single lines.

Figure 1-10. The settings menu accessible via F2.

40 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

On the command line, ptpython offers highly productive features
that are sure to enhance your workflow. I have found that ptpython
is the fastest way to quickly test some syntax or a library call,
without having to open an editor or integrated development envi‐
ronment (IDE). And if you prefer IPython, you’ll be glad to hear that
ptpython includes an integration which you can launch with ptipy
thon. This makes available the shell integration that IPython offers,
as well as its wealth of magic commands.

Web APIs with hug
Python is famously used in a large number of web frameworks, and
an extension of this area is the web services domain in which APIs
are exposed for other users’ programs to consume. In this domain,
Django REST framework and Flask are very popular choices, but
you may not yet have heard of hug.

hug is a library that provides an extremely simple way to create
Internet APIs for web services. By exploiting some of the language
features of Python, much of the usual boilerplate normally required
when creating APIs for web services is removed.

Here is a small web service that converts between the hex value of a
color and its CSS3 name:

import hug
import webcolors

@hug.get()
def hextoname(hex: hug.types.text):
 return webcolors.hex_to_name('#' + hex)

@hug.get()
def nametohex(name: hug.types.text):
 return webcolors.name_to_hex(name)

We are also using the webcolors library here: your one-
stop shop for converting web-safe colors between vari‐
ous formats like name, hex, and rgb. Don’t forget that
you can also convert between rgb and other formats
like hsl with the colorsys library that’s already
included in the Python standard library!

Web APIs with hug | 41

http://www.django-rest-framework.org
http://flask.pocoo.org
http://www.hug.rest
http://bit.ly/w3-hex
https://webcolors.readthedocs.io
http://bit.ly/colorsys

In the hug example, we’ve done little more than wrap two functions
from the webcolors package: one to convert from hex to name and
one to do the opposite. It’s hard to believe at first, but those
@hug.get decorators are all you need to start a basic API. The server
is launched by using the included hug command-line tool
(Figure 1-11).

Figure 1-11. Hug goes a long way to make you feel welcome.

And that’s it! We can immediately test our API. You could use a web
browser for this, but it’s easy enough to use a tool like cURL. You call
the URL endpoint with the correct parameters, and hug returns the
answer:

$ curl http://localhost:8000/hextoname?hex=ff0000

"red"

$ curl http://localhost:8000/nametohex?name=lightskyblue

"#87cefa"

42 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

The function name was hextoname, and the parameter name
was hex. Note that we don’t supply the hash, #, as part of the
request data because it interferes with the parsing of the HTTP
request.

This API has a different endpoint function, nametohex, and its
parameter is called name.

It’s quite impressive to get a live web API up with so little work. And
the features don’t stop there: hug automatically generates API docu‐
mentation, which is what you get by omitting an endpoint:

$ curl http://localhost:8000/
{
 "404": "The API call you tried to make was not defined. Here's
 a definition of the API to help you get going :)",
 "documentation": {
 "handlers": {
 "/hextoname": {
 "GET": {
 "outputs": {
 "format": "JSON (Javascript Serialized
 Object Notation)",
 "content_type": "application/json"
 },
 "inputs": {
 "hex": {
 "type": "Basic text / string value"
 }
 }
 }
 },
 "/nametohex": {
 "GET": {
 "outputs": {
 "format": "JSON (Javascript Serialized
 Object Notation)",
 "content_type": "application/json"
 },
 "inputs": {
 "name": {
 "type": "Basic text / string value"
 }
 }
 }
 }
 }
 }
}

Web APIs with hug | 43

The types of the parameters we specified with hug.types.text are
used not only for the documentation, but also for type conversions.

If these were all the features provided by hug, it would already be
enough for many API tasks; however, one of hug’s best features is
that it automatically handles versions. Consider the following exam‐
ple:

import hug
import inflect
engine = inflect.engine()

@hug.get(versions=1)
def singular(word: hug.types.text):
 """ Return the singular version of the word"""
 return engine.singular_noun(word).lower()

@hug.get(versions=1)
def plural(word: hug.types.text):
 """ Return the plural version of the word"""
 return engine.plural(word).lower()

@hug.get(versions=2)
def singular(word: hug.types.text):
 """ Return the singular of word, preserving case """
 return engine.singular_noun(word)

@hug.get(versions=2)
def plural(word: hug.types.text):
 """ Return the plural of word, preserving case """
 return engine.plural(word)

This new hug API wraps the inflect package, which provides
tools for word manipulation.

The first version of the API returns lowercased results.

The second, newer version of the same API returns the result as
calculated by inflect, without any alteration.

We are also using the inflect library, which makes an
enormous number of word transformations possible,
including pluralization, gender transformation of pro‐
nouns, counting (“was no error” versus “were no
errors”), correct article selection (“a,” “an,” and “the”),
Roman numerals, and many more!

44 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/inflect-py

Imagine that we’ve created this web service to provide an API to
transform words into their singular or plural version: one apple,
many apples, and so on. For some reason that now escapes us, in the
first release we lowercased the results before returning them:

$ curl http://localhost:8000/v1/singular/?word=Silly%20Walks

"silly walk"

$ curl http://localhost:8000/v1/plural?word=Crisis

"crises"

Note: the URL now has a “v1” specifier for “version 1.”

It didn’t occur to us that some users may prefer to have the case of
input words preserved: for example, if a word at the beginning of a
sentence is being altered, it would be best to preserve the capitaliza‐
tion. Fortunately, the inflect library already does this by default,
and hug provides versioning that allows us to provide a second ver‐
sion of the API (so as not to hurt existing users who may expect the
lower-case transformation):

$ curl http://localhost:8000/v2/singular/?word=Silly%20Walks

"Silly Walk"

$ curl http://localhost:8000/v2/plural/?word=Crisis

"Crises"

These API calls use version 2 of our web service. And finally, the
documentation is also versioned, and for this example, you can see
how the function docstrings are also incorporated as usage text:

$ curl http://localhost:8000/v2/
{
 "404": "The API call you tried to make was not defined. Here's
 a definition of the API to help you get going :)",
 "documentation": {
 "version": 2,
 "versions": [
 1,
 2
],
 "handlers": {
 "/singular": {

Web APIs with hug | 45

 "GET": {
 "usage": " Return the singular of word,
 preserving case ",
 "outputs": {
 "format": "JSON (Javascript Serialized
 Object Notation)",
 "content_type": "application/json"
 },
 "inputs": {
 "word": {
 "type": "Basic text / string value"
 }
 }
 }
 },

[snip...]

Each version has separate documentation, and calling that ver‐
sion endpoint, i.e., v2, returns the documentation for that ver‐
sion.

The docstring of each function is reused as the usage text for
that API call.

hug has extensive documentation in which there are even more fea‐
tures to discover. With the exploding interest in internet-of-things
applications, it is likely that simple and powerful libraries like hug
will enjoy widespread popularity.

Dates and Times
Many Python users cite two major pain points: the first is packaging,
and for this we covered flit in an earlier chapter. The second is
working with dates and times. In this chapter we cover two libraries
that will make an enormous difference in how you deal with tempo‐
ral matters. arrow is a reimagined library for working with datetime
objects in which timezones are always present, which helps to mini‐
mize a large class of errors that new Python programmers encounter
frequently. parsedatetime is a library that lets your code parse
natural-language inputs for dates and times, which can make it
vastly easier for your users to provide such information.

46 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://www.hug.rest

arrow
Though opinions differ, there are those who have found the stan‐
dard library’s datetime module confusing to use. The module docu‐
mentation itself in the first few paragraphs explains why: it provides
both naive and aware objects to represent dates and times. The naive
ones are the source of confusion, because application developers
increasingly find themselves working on projects in which time‐
zones are critically important. The dramatic rise of cloud infrastruc‐
ture and software-as-a-service applications have contributed to the
reality that your application will frequently run in a different time‐
zone (e.g., on a server) than where developers are located, and dif‐
ferent again to where your users are located.

The naive datetime objects are the ones you typically see in demos
and tutorials:

import datetime

dt = datetime.datetime.now()
dt_utc = datetime.datetime.utcnow()
difference = (dt - dt_utc).total_seconds()

print('Total difference: %.2f seconds' % difference)

This code could not be any simpler: we create two datetime objects,
and calculate the difference. The problem is that we probably
intended both now() and utcnow() to mean now as in “this moment
in time,” but perhaps in different timezones. When the difference is
calculated, we get what seems an absurdly large result:

Total difference: 36000.00 seconds

The difference is, in fact, the timezone difference between my cur‐
rent location and UTC: +10 hours. This result is the worst kind of
“incorrect” because it is, in fact, correct if timezones are not taken
into account; and here lies the root of the problem: a misunder‐
standing of what the functions actually do. The now() and utcnow()
functions do return the current time in local and UTC timezones,
but unfortunately both results are naive datetime objects and there‐
fore lack timezone data.

Note that it is possible to create datetime objects with timezone data
attached, albeit in a subjectively cumbersome manner: you create an
aware datetime by setting the tzinfo attribute to the correct time‐
zone. In our example, we could (and should!) have created a current

Dates and Times | 47

http://bit.ly/datetime-module

datetime object in the following way, by passing the timezone into
the now() function:

dt = datetime.datetime.now(tz=datetime.timezone.utc)

Of course, if you make this change on line 3 and try to rerun the
code, the following error appears:

TypeError: can't subtract offset-naive and
offset-aware datetimes

This happens because even though the utcnow() function produces
a datetime for the UTC timezone, the result is a naive datetime
object, and Python prevents you from mixing naive and aware date
time objects. If you are suddenly scared to work with dates and
times, that’s an understandable response, but I’d rather encourage
you to instead be afraid of datetimes that lack timezone data. The
TypeError just shown is the kind of error we really do want: it forces
us to ensure that all our datetime instances are aware.

Naturally, to handle this in the general case requires some kind of
database of timezones. Unfortunately, except for UTC, the Python
standard library does not include timezone data; instead, the recom‐
mendation is to use a separately maintained library called pytz, and
if you need to work with dates and times, I strongly encourage you
to investigate that library in more detail.

Now we can finally delve into the main topic of this section, which is
arrow: a third-party library that offers a much simpler API for
working with dates and times. With arrow, everything has a time‐
zone attached (and is thus “aware”):

import arrow

t0 = arrow.now()
print(t0)

t1 = arrow.utcnow()
print(t1)

difference = (t0 - t1).total_seconds()

print('Total difference: %.2f seconds' % difference)

48 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

https://pythonhosted.org/pytz

Output:

2016-06-26T18:43:55.328561+10:00
2016-06-26T08:43:55.328630+00:00
Total difference: -0.00 seconds

As you can see, the now() function produces the current date and
time with my local timezone attached (UTC+10), while the utc
now() function also produces the current date and time, but with the
UTC timezone attached. As a consequence, the actual difference
between the two times is as it should be: zero.

And the delightful arrow library just gets better from there. The
objects themselves have convenient attributes and methods you
would expect:

>>> t0 = arrow.now()
>>> t0
<Arrow [2016-06-26T18:59:07.691803+10:00]>

>>> t0.date()
datetime.date(2016, 6, 26)

>>> t0.time()
datetime.time(18, 59, 7, 691803)

>>> t0.timestamp
1466931547

>>> t0.year
2016

>>> t0.month
6

>>> t0.day
26

>>> t0.datetime
datetime.datetime(2016, 6, 26, 18, 59, 7, 691803,
 tzinfo=tzlocal())

Note that the datetime produced from the same attribute correctly
carries the essential timezone information.

There are several other features of the module that you can read
more about in the documentation, but this last feature provides an
appropriate segue to the next section:

Dates and Times | 49

http://crsmithdev.com/arrow

>>> t0 = arrow.now()
>>> t0.humanize()
'just now'
>>> t0.humanize()
'seconds ago'

>>> t0 = t0.replace(hours=-3,minutes=10)
>>> t0.humanize()
'2 hours ago'

The humanization even has built-in support for several locales!

>>> t0.humanize(locale='ko')
'2시간 전'
>>> t0.humanize(locale='ja')
'2時間前'
>>> t0.humanize(locale='hu')
'2 órával ezelőtt'
>>> t0.humanize(locale='de')
'vor 2 Stunden'
>>> t0.humanize(locale='fr')
'il y a 2 heures'
>>> t0.humanize(locale='el')
'2 ώρες πριν'
>>> t0.humanize(locale='hi')
'2 घंटे पहले'
>>> t0.humanize(locale='zh')
'2小时前'

Alternative libraries for dates and times

There are several other excellent libraries for dealing
with dates and times in Python, and it would be worth
checking out both Delorean and the very new Pendu‐
lum library.

parsedatetime
parsedatetime is a wonderful library with a dedicated focus: pars‐
ing text into dates and times. As you’d expect, it can be obtained
with pip install parsedatetime. The official documentation is
very API-like, which makes it harder than it should be to get a quick
overview of what the library offers, but you can get a pretty good
idea of what’s available by browsing the extensive test suite.

The minimum you should expect of a datetime-parsing library is to
handle the more common formats, and the following code sample
demonstrates this:

50 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/delorean-py
http://pendulum.eustace.io
http://pendulum.eustace.io
http://bit.ly/parsedatetime
http://bit.ly/pdt-test

import parsedatetime as pdt

cal = pdt.Calendar()

examples = [
 "2016-07-16",
 "2016/07/16",
 "2016-7-16",
 "2016/7/16",
 "07-16-2016",
 "7-16-2016",
 "7-16-16",
 "7/16/16",
]

print('{:30s}{:>30s}'.format('Input', 'Result'))
print('=' * 60)
for e in examples:
 dt, result = cal.parseDT(e)
 print('{:<30s}{:>30}'.format('"' + e + '"', dt.ctime()))

This produces the following, and unsurprising, output:

Input Result
==
"2016-07-16" Sat Jul 16 16:25:20 2016
"2016/07/16" Sat Jul 16 16:25:20 2016
"2016-7-16" Sat Jul 16 16:25:20 2016
"2016/7/16" Sat Jul 16 16:25:20 2016
"07-16-2016" Sat Jul 16 16:25:20 2016
"7-16-2016" Sat Jul 16 16:25:20 2016
"7-16-16" Sat Jul 16 16:25:20 2016
"7/16/16" Sat Jul 16 16:25:20 2016

By default, if the year is given last, then month-day-year is assumed,
and the library also conveniently handles the presence or absence of
leading zeros, as well as whether hyphens (-) or slashes (/) are used
as delimiters.

Significantly more impressive, however, is how parsedatetime han‐
dles more complicated, “natural language” inputs:

import parsedatetime as pdt
from datetime import datetime

cal = pdt.Calendar()

examples = [
 "19 November 1975",
 "19 November 75",
 "19 Nov 75",

Dates and Times | 51

 "tomorrow",
 "yesterday",
 "10 minutes from now",
 "the first of January, 2001",
 "3 days ago",
 "in four days' time",
 "two weeks from now",
 "three months ago",
 "2 weeks and 3 days in the future",
]

print('Now: {}'.format(datetime.now().ctime()), end='\n\n')
print('{:40s}{:>30s}'.format('Input', 'Result'))
print('=' * 70)
for e in examples:
 dt, result = cal.parseDT(e)
 print('{:<40s}{:>30}'.format('"' + e + '"', dt.ctime()))

Incredibly, this all works just as you’d hope:

Now: Mon Jun 20 08:41:38 2016

Input Result
==
"19 November 1975" Wed Nov 19 08:41:38 1975
"19 November 75" Wed Nov 19 08:41:38 1975
"19 Nov 75" Wed Nov 19 08:41:38 1975
"tomorrow" Tue Jun 21 09:00:00 2016
"yesterday" Sun Jun 19 09:00:00 2016
"10 minutes from now" Mon Jun 20 08:51:38 2016
"the first of January, 2001" Mon Jan 1 08:41:38 2001
"3 days ago" Fri Jun 17 08:41:38 2016
"in four days' time" Fri Jun 24 08:41:38 2016
"two weeks from now" Mon Jul 4 08:41:38 2016
"three months ago" Sun Mar 20 08:41:38 2016
"2 weeks and 3 days in the future" Thu Jul 7 08:41:38 2016

The urge to combine this with a speech-to-text package like Speech‐
Recognition or watson-word-watcher (which provides confidence
values per word) is almost irresistible, but of course you don’t need
complex projects to make use of parsedatetime: even allowing a
user to type in a friendly and natural description of a date or time
interval might be much more convenient than the usual but
frequently clumsy DateTimePicker widgets we’ve become accus‐
tomed to.

52 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/speechrec
http://bit.ly/speechrec
http://bit.ly/wordwatcher

Another library featuring excellent datetime parsing
abilities is Chronyk.

General-Purpose Libraries
In this chapter we take a look at a few batteries that have not yet
been included in the Python standard library, but which would
make excellent additions.

General-purpose libraries are quite rare in the Python world because
the standard library covers most areas sufficiently well that library
authors usually focus on very specific areas. Here we discuss
boltons (a play on the word builtins), which provides a large num‐
ber of useful additions to the standard library. We also cover the
Cython library, which provides facilities for both massively speeding
up Python code, as well as bypassing Python’s famous global inter‐
preter lock (GIL) to enable true multi-CPU multi-threading.

boltons
The boltons library is a general-purpose collection of Python mod‐
ules that covers a wide range of situations you may encounter. The
library is well-maintained and high-quality; it’s well worth adding to
your toolset.

As a general-purpose library, boltons does not have a specific focus.
Instead, it contains several smaller libraries that focus on specific
areas. In this section I will describe a few of these libraries that bol
tons offers.

boltons.cacheutils

boltons.cacheutils provides tools for using a cache inside your
code. Caches are very useful for saving the results of expensive oper‐
ations and reusing those previously calculated results.

The functools module in the standard library already provides a
decorator called lru_cache, which can be used to memoize calls: this
means that the function remembers the parameters from previous
calls, and when the same parameter values appear in a new call, the
previous answer is returned directly, bypassing any calculation.

General-Purpose Libraries | 53

http://bit.ly/chronyk
http://bit.ly/functools-docs

boltons provides similar caching functionality, but with a few con‐
venient tweaks. Consider the following sample, in which we attempt
to rewrite some lyrics from Taylor Swift’s 1989 juggernaut record.
We will use tools from boltons.cacheutils to speed up processing
time:

import json
import shelve
import atexit
from random import choice
from string import punctuation
from vocabulary import Vocabulary as vb

blank_space = """
Nice to meet you, where you been?
I could show you incredible things
Magic, madness, heaven, sin
Saw you there and I thought
Oh my God, look at that face
You look like my next mistake
Love's a game, wanna play?

New money, suit and tie
I can read you like a magazine
Ain't it funny, rumors fly
And I know you heard about me
So hey, let's be friends
I'm dying to see how this one ends
Grab your passport and my hand
I can make the bad guys good for a weekend
"""

from boltons.cacheutils import LRI, LRU, cached

Persistent LRU cache for the parts of speech
cached_data = shelve.open('cached_data', writeback=True)
atexit.register(cached_data.close)

Retrieve or create the "parts of speech" cache
cache_POS = cached_data.setdefault(
 'parts_of_speech', LRU(max_size=5000))

@cached(cache_POS)
def part_of_speech(word):
 items = vb.part_of_speech(word.lower())
 if items:
 return json.loads(items)[0]['text']

Temporary LRI cache for word substitutions

54 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

cache = LRI(max_size=30)

@cached(cache)
def synonym(word):
 items = vb.synonym(word)
 if items:
 return choice(json.loads(items))['text']

@cached(cache)
def antonym(word):
 items = vb.antonym(word)
 if items:
 return choice(items['text'])

for raw_word in blank_space.strip().split(' '):
 if raw_word == '\n':
 print(raw_word)
 continue
 alternate = raw_word # default is the original word.
 # Remove punctuation
 word = raw_word.translate(
 {ord(x): None for x in punctuation})
 if part_of_speech(word) in ['noun', 'verb',
 'adjective', 'adverb']:
 alternate = choice((synonym, antonym))(word) or raw_word
 print(alternate, end=' ')

Our code detects “parts of speech” in order to know which lyrics
to change. Looking up words online is slow, so we create a small
database using the shelve module in the standard library to
save the cache data between runs.

We use the atexit module, also in the standard library, to make
sure that our “parts of speech” cache data will get saved when
the program exits.

Here we obtain the LRU cache provided by boltons.cacheutils
that we saved from a previous run.

Here we use the @cache decorator provided by boltons.cacheu
tils to enable caching of the part_of_speech() function call.
If the word argument has been used in a previous call to this
function, the answer will be obtained from the cache rather than
a slow call to the Internet.

General-Purpose Libraries | 55

For synonyms and antonyms, we used a different kind of cache,
called a least recently inserted cache (this choice is explained
later in this section). An LRI cache is not provided in the
Python Standard Library.

Here we restrict which kinds of words will be substituted.

The excellent vocabulary package is used here to pro‐
vide access to synonyms and antonyms. Install it with
pip install vocabulary.

For brevity, I’ve included only the first verse and chorus. The plan is
staggeringly unsophisticated: we’re going to simply swap words with
either a synonym or antonym, and which is decided randomly! Iter‐
ation over the words is straightforward, but we obtain synonyms
and antonyms using the vocabulary package, which internally calls
APIs on the Internet to fetch the data. Naturally, this can be slow
since the lookup is going to be performed for every word, and this is
why a cache will be used. In fact, in this code sample we use two dif‐
ferent kinds of caching strategies.

boltons.cacheutils offers two kinds of caches: the least recently
used (LRU) version, which is the same as functools.lru_cache,
and a simpler least recently inserted (LRI) version, which expires
entries based on their insertion order.

In our code, we use an LRU cache to keep a record of the parts of
speech lookups, and we even save this cache to disk so that it can be
reused in successive runs.

We also use an LRI cache to keep a record of word substitutions. For
example, if a word is to be swapped with its antonym, the replace‐
ment will be stored in the LRI cache so that it can be reused. How‐
ever, we apply a very small limit to the setting for maximum size on
the LRI cache, so that words will fall out of the cache quite regularly.
Using an LRI cache with a small maximum size means that the same
word will be replaced with the same substitution only locally, say
within the same verse; but if that same word appears later in the
song (and that word has been dropped from the LRI cache), it might
get a different substitution entirely.

56 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

The design of the caches in boltons.cacheutils is great in that it is
easy to use the same cache for multiple functions, as we do here for
the synonym() and antonym() functions. This means that once a
word substitution appears in the cache, a call to either function
returns the predetermined result from the same cache.

Here is an example of the output:

Nice to meet you, wherever you been?
I indeed conduct you astonishing things
Magic, madness, Hell sin
Saw you be and I thought
Oh my God, seek at who face
You seek same my following mistake
Love's a game, wanna play?

New financial satisfy both tie
I be able read you like a magazine
Ain't it funny, rumors fly
And gladly can you heard substantially me
So hey, let's inclination friends
I'm nascent to visit whatever that one ends
Grab your passport in addition my hand
I can take the bad guys ill in exchange for member weekend

On second thought, perhaps the original was best after all! It is
worth noting just how much functionality is possible with a tiny
amount of code, as long as the abstractions available to you are pow‐
erful enough.

boltons has many features and we cannot cover everything here;
however, we can do a whirlwind tour and pick out a few notable
APIs that solve problems frequently encountered, e.g., in StackOver‐
flow questions.

boltons.iterutils

boltons.iterutils.chunked_iter(src, size) returns pieces of
the source iterable in size-sized chunks (this example was copied
from the docs):

>>> list(chunked_iter(range(10), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

A similar requirement that often comes up is to have a moving win‐
dow (of a particular size) slide over a sequence of data, and you can
use boltons.iterutils.windowed_iter for that:

General-Purpose Libraries | 57

http://bit.ly/boltons-chunk
http://bit.ly/boltons-window

>>> list(windowed_iter(range(7), 3))
[(0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

Note that both chunked_iter() and windowed_iter() can operate
on iterables, which means that very large sequences of data can be
processed while keeping memory requirements tolerable for your
usage scenario.

boltons.fileutils
The copytree() function alleviates a particularly irritating behavior
of the standard library’s shutil.copytree() function: Boltons’ copy
tree() will not complain if some or all of the destination file-system
tree already exists.

The boltons.fileutils.AtomicSaver context manager helps to
make sure that file-writes are protected against corruption. It ach‐
ieves this by writing file data to temporary, or intermediate files, and
then using an atomic renaming function to guarantee that the data
is consistent. This is particularly valuable if there are multiple read‐
ers of a large file, and you want to ensure that the readers only ever
see a consistent state, even though you have a (single!) writer chang‐
ing the file data.

boltons.debugutils
If you’ve ever had a long-running python application, and wished
that you could drop into an interactive debugger session to see what
was happening, boltons.debugutils.pdb_on_signal() can make
that happen. By default, a KeyboardInterrupt handler is automati‐
cally set up, which means that by pressing Ctrl-C you can drop
immediately into the debugger prompt. This is a really great way to
deal with infinite loops if your application is difficult to debug from
a fresh start otherwise.

boltons.strutils

There are several functions in boltons.strutils that are enor‐
mously useful:

• slugify(): modify a string to be suitable, e.g., for use as a file‐
name, by removing characters and symbols that would be inva‐
lid in a filename.

58 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://bit.ly/boltons-copytree
http://bit.ly/boltons-atom

• ordinalize(): given a numerical value, create a string referring
to its position:

>>> print(ordinalize(1))
1st
>>> print(ordinalize(2))
2nd

• cardinalize: given a word and a count, change the word for
plurality and preserve case:

>>> cardinalize('python', 99)
'pythons'
>>> cardinalize('foot', 6)
'feet'
>>> cardinalize('Foot', 6)
'Feet'
>>> cardinalize('FOOT', 6)
'FEET'
>>> 'blind ' + cardinalize('mouse', 3)
'blind mice'

• singularize and pluralize:

>>> pluralize('theory')
'theories'
>>> singularize('mice')
'mouse'

• bytes2human: convert data sizes into friendler forms:

>>> bytes2human(1e6)
'977K'
>>> bytes2human(20)
'20B'
>>> bytes2human(1024 * 1024)
'1024K'
>>> bytes2human(2e4, ndigits=2)
'19.53K'

There are several other useful boltons libraries not mentioned here,
and I encourage you to at least skim the documentation to learn
about features you can use in your next project.

Cython
Cython is a magical tool! As with most magical devices, it is difficult
to describe exactly what it is. Cython is a tool that converts Python

General-Purpose Libraries | 59

http://bit.ly/boltons-docs
http://cython.org

source code into C source code; this new code is then compiled into
a native binary that is linked to the CPython runtime.

That sounds complicated, but basically Cython lets you convert your
Python modules into compiled extension modules. There are two
main reasons you might need to do this:

• You want to wrap a C/C++ library, and use it from Python.
• You want to speed up Python code.

The second reason is the one I’m going to focus on. By adding a few
type declarations to your Python source code, you can dramatically
speed up certain kinds of functions.

Consider the following code, which is as simple as I could possibly
make it for this example:

import array

n = int(1e8)
a = array.array('d', [0.0]) * n

for i in range(n):
 a[i] = i % 3

print(a[:5])

We’re using the built-in array module.

Set the size of our data.

Create fictional data: a sequence of double-precision numbers;
in reality your data would come from another source such as an
image for image-processing applications, or numerical data for
science or engineering applications.

A very simple loop that modifies our data.

Print the modified data; here, we only show the first five entries.

This code represents the most basic computer processing: data
comes in, is transformed, and goes out. The specific code we’re
using is quite silly, but I hope it is clear enough so that it will be easy
to understand how we implement this in Cython later.

60 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

We can run this program on the command line in the following
way:

$ time python cythondemoslow.py
array('d', [0.0, 1.0, 2.0, 0.0, 1.0])

real 0m27.622s
user 0m27.109s
sys 0m0.443s

I’ve include the time command to get some performance measure‐
ments. Here we can see that this simple program takes around 30
seconds to run.

In order to use Cython, we need to modify the code slightly to take
advantage of the Cython compiler’s features:

import array

cdef int n = int(1e8)
cdef object a = array.array('d', [0.0]) * n
cdef double[:] mv = a

cdef int i
for i in range(n):
 mv[i] = i % 3

print(a[:5])

We import the array module as before.

The variable for the data size, n, now gets a specific datatype.

This line is new: we create a memory view of the data inside the
array a. This allows Cython to generate code that can access the
data inside the array directly.

As with n, we also specify a type for the loop index i.

The work inside the loop is identical to before, except that we
manipulate elements of the memory view rather than a itself.

Having modified our source code by adding information about
native datatypes, we need to make three further departures from the
normal Python workflow necessary before running our Cython
code.

General-Purpose Libraries | 61

The first is that, by convention, we change the file extension of our
source-code file to pyx instead of py, to reflect the fact that our
source code is no longer normal Python.

The second is that we must use Cython to compile our source code
into a native machine binary file. There are many ways to do this
depending on your situation, but here we’re going to go with the
simple option and use a command-line tool provided by Cython
itself:

$ cythonize -b -i cythondemofast.pyx

Running this command produces many lines of output messages
from the compiler, but when the smoke clears you should find a new
binary file in the same place as the .pyx file:

$ ls -l cythondemofast.cpython-35m-darwin.so
-rwxr-xr-x@ calebhattingh 140228 3 Jul 15:51
 cythondemofast.cpython-35m-darwin.so

This is a native binary that Cython produced from our slightly
modified Python source code! Now we need to run it, and this
brings us to the third departure from the normal Python workflow:
by default, Cython makes native extensions (as shared libraries),
which means you have to import these in the same way you might
import other Python extensions that use shared libraries.

With the first version of our example in ordinary Python, we could
run the program easily with python cythondemoslow.py. We can
run the code in our compiled Cython version simply by importing
the native extension. As before, we include the time for measure‐
ment:

$ time python -c "import cythondemofast"
array('d', [0.0, 1.0, 2.0, 0.0, 1.0])

real 0m0.751s
user 0m0.478s
sys 0m0.270s

The Cython program gives us a speed-up over the plain Python pro‐
gram of almost 40 times! In larger numerical programs where the
time cost of start-up and other initialization is a much smaller part
of the overall execution time, the speed-up is usually more than 100
times!

In the example shown here, all our code was set out in the module
itself, but usually you would write functions and after compiling

62 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

with Cython, and then import these functions into your main
Python program. Here’s how Cython can easily integrate into your
normal Python workflow:

1. Begin your project with normal Python.
2. Benchmark your performance.
3. If you need more speed, profile your code to find the functions

that consume most of the time.
4. Convert these functions to Cython functions, and compile the

new .pyx Cython modules into native extensions.
5. Import the new Cython functions into your main Python pro‐

gram.

Multithreading with Cython
It won’t take long for a newcomer to the Python world to hear about
Python’s so-called GIL, a safety mechanism Python uses to decrease
the possibility of problems when using threads.

Threading is a tool that lets you execute different sections of code in
parallel, allowing the operating system to run each section on a sep‐
arate CPU. The “GIL problem” is that the safety lock that prevents
the interpreter state from being clobbered by parallel execution also
has the unfortunate effect of limiting the ability of threads to
actually run on different CPUs. The net effect is that Python threads
do not achieve the parallel performance one would expect based on
the availability of CPU resources.

Cython gives us a way out of this dilemma, and enables multithread‐
ing at full performance. This is because native extensions (which is
what Cython makes) are allowed to tell the main Python interpreter
that they will be well-behaved and don’t need to be protected with
the global safety lock. This means that threads containing Cython
code can run in a fully parallel way on multiple CPUs; we just need
to ask Python for permission.

In the following code snippet, we demonstrate how to use normal
Python threading to speed up the same nonsense calculation I used
in previous examples:

cython: boundscheck=False, cdivision=True
import array
import threading

General-Purpose Libraries | 63

cpdef void target(double[:] piece) nogil:
 cdef int i, n = piece.shape[0]
 with nogil:
 for i in range(n):
 piece[i] = i % 3

cdef int n = int(1e8)
cdef object a = array.array('d', [0.0]) * n

view = memoryview(a)
piece_size = int(n / 2)

thread1 = threading.Thread(
 target=target,
 args=(view[:piece_size],)
)

thread2 = threading.Thread(
 target=target,
 args=(view[piece_size:],)
)

thread1.start()
thread2.start()

thread1.join()
thread2.join()

print(a[:5])

The threading module in the standard library.

Thread objects want a target function to execute, so we wrap
our calculation inside a function. We declare (with the nogil
keyword) that our function may want to release the GIL.

The actual point where the GIL is released. The rest of the func‐
tion is identical to before.

Exactly the same as before.

We create a memory view of the data inside the array. Cython is
optimized to work with these kinds of memory views efficiently.
(Did you know that memoryview() is a built-in Python func‐
tion?)

64 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

We’re going to split up our big data array into two parts.

Create normal Python threads: we must pass both the target
function and the view section as the argument for the function.
Note how each thread gets a different part of the view!

Threads are started.

We wait for the threads to complete.

I’ve also sneakily added a few small optimization options such as
disabling bounds checking and enabling the faster “C division.”
Cython is very configurable in how it generates C code behind the
scenes and the documentation is well worth investigating.

As before, we must compile our program:

$ cythonize -b -i -a cythondemopll.pyx

Then we can test the impact of our changes:

$ time python -c "import cythondemopll"
array('d', [0.0, 1.0, 2.0, 0.0, 1.0])

real 0m0.593s
user 0m0.390s
sys 0m0.276s

The use of threading has given us around 30% improvement over
the previous, single-threaded version, and we’re about 50 times
faster than the original Python version in this example. For a longer-
running program the speedup factor would be even more significant
because the startup time for the Python interpreter would account
for a smaller portion of the time cost.

Executables with Cython
One final trick with Cython is creating executables. So far we’ve
been compiling our Cython code for use as a native extension mod‐
ule, which we then import to run. However, Cython also makes it
possible to create a native binary executable directly. The key is to
invoke cython directly with the --embed option:

$ cython --embed cythondemopll.pyx

This produces a C source file that will compile to an executable
rather than a shared library.

General-Purpose Libraries | 65

http://docs.cython.org

The next step depends on your platform because you must invoke
the C compiler directly, but the main thing you need to provide is
the path to the Python header file and linking library. This is how it
looks on my Mac:

$ gcc `python3.5-config --cflags` cythondemopll.c \
 `python3.5-config --ldflags` -o cythondemopll

Here I’ve used a utility called python3.5-config that conveniently
returns the path to the header file and the Python library, but you
could also provide the paths directly.

The compilation step using gcc produces a native binary executable
that can be run directly on the command line:

$./cythondemopll
array('d', [0.0, 1.0, 2.0, 0.0, 1.0])

There is much more to learn about Cython, and I’ve made a com‐
prehensive video series, Learning Cython (O’Reilly) that covers all
the details. Cython’s online documentation is also an excellent refer‐
ence.

awesome-python
Finally, we have awesome-python. It’s not a library, but rather a
huge, curated list of a high-quality Python libraries covering a large
number of domains. If you have not seen this list before, make sure
to reserve some time before browsing because once you begin, you’ll
have a hard time tearing yourself away!

Conclusion
There is much more to discover than what you’ve seen in this report.
One of the best things about the Python world is its enormous
repository of high-quality libraries.

You have seen a few of the very special features of the standard
library like the collections module, contextlib, the concur
rent.futures module, and the logging module. If you do not yet
use these heavily, I sincerely hope you try them out in your next
project.

In addition to those standard library modules, we also covered sev‐
eral excellent libraries that are also available to you on the PyPI.
You’ve seen how:

66 | Chapter 1: Expanding Your Python Knowledge: Lesser-Known Libraries

http://docs.cython.org/#
http://bit.ly/awesome-py

• flit makes it easy for you to create your own Python packages,
and submit them to the PyPI.

• libraries like colorama and begins improve your command-line
applications.

• tools like pyqtgraph and pywebview can save you lots of time
when creating modern user interfaces, including hug, which can
give your applications an easily created web API.

• system libraries like psutil and watchdog can give you a clean
integration with the host operating system.

• temporal libraries like arrow and parsedatetime can simplify the
tangled mess that working with dates and times often becomes.

• general-purpose libraries like boltons and Cython can further
enrich the already powerful facilities in the Python standard
library.

Hopefully you will be able to use one or more of the great libraries
in your next project, and I wish you the best of luck!

Conclusion | 67

About the Author
Caleb Hattingh is passionate about coding and has been program‐
ming for over 15 years, specializing in Python. He holds a master’s
degree in chemical engineering and has consequently written a great
deal of scientific software within chemical engineering, from
dynamic chemical reactor models all the way through to data analy‐
sis. He is very experienced with the Python scientific software stack,
CRM, financial software development in the hotels and hospitality
industry, frontend web experience using HTML, Sass, JavaScript
(loves RactiveJS), and backend experience with Django and web2py.
Caleb is a regular speaker at PyCon Australia and is actively engaged
in the community as a CoderDojo Mentor, Software Carpentry
helper, Govhacker, Djangogirls helper, and even Railsgirls helper.
Caleb is the founder of Codermoji, and posts infrequent idle rants
and half-baked ideas to his blog at pythonomicon.com.

https://codermoji.com/
http://www.pythonomicon.com

	Cover
	Programming
	Copyright
	Table of Contents
	Chapter 1. Expanding Your Python Knowledge: Lesser-Known Libraries
	The Standard Library
	collections
	contextlib
	concurrent.futures
	logging
	sched

	In the Wild
	Easier Python Packaging with flit
	Command-Line Applications
	colorama
	begins

	Graphical User Interfaces
	pyqtgraph
	pywebview

	System Tools
	psutil
	Watchdog
	ptpython

	Web APIs with hug
	Dates and Times
	arrow
	parsedatetime

	General-Purpose Libraries
	boltons
	Cython
	awesome-python

	Conclusion

	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

