
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SIMPLY
JAVASCRIPT

BY KEVIN YANK
& CAMERON ADAMS

www.allitebooks.com

http://www.allitebooks.org

Simply JavaScript
by Kevin Yank and Cameron Adams

Copyright © 2007 SitePoint Pty. Ltd.

Editor: Georgina LaidlawManaging Editor: Simon Mackie

Index Editor: Max McMasterTechnical Editor: Kevin Yank

Cover Design: Alex WalkerTechnical Director: Kevin Yank

Printing History:

First Edition: June 2007

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9802858-0-2

Printed and bound in Canada

Simply JavaScriptiv

www.allitebooks.com

http://www.allitebooks.org

About Kevin Yank

As Technical Director for SitePoint, Kevin Yank keeps abreast of all that is new and exciting

in web technology. Best known for his book, Build Your Own Database Driven Website Using

PHP & MySQL,1 now in its third edition, Kevin also writes the SitePoint Tech Times,2 a free,

biweekly email newsletter that goes out to over 150,000 subscribers worldwide.

When he isn’t speaking at a conference or visiting friends and family in Canada, Kevin lives

in Melbourne, Australia, and enjoys performing improvised comedy theater with Impro

Melbourne,3 and flying light aircraft. His personal blog is Yes, I’m Canadian.4

About Cameron Adams

Cameron Adams melds a background in Computer Science with almost a decade's experience

in graphic design, resulting in a unique approach to interface design. He uses these skills to

play with the intersection between design and code, always striving to create interesting and

innovative sites and applications.

Having worked with large corporations, government departments, nonprofit organizations,

and tiny startups, he's starting to get the gist of this Internet thing. In addition to the projects

that pay his electricity bills, Cameron muses about web design on his well-respected web-

log—The Man in Blue5—and has written several books on topics ranging from JavaScript to

CSS and design.

Sometimes he's in Melbourne, other times he likes to fly around the world to talk about

design and programming with other friendly geeks. If you ever see him standing at a bar, buy

him a Baileys and say “hi.”

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

1 http://www.sitepoint.com/books/phpmysql1/
2 http://www.sitepoint.com/newsletter/
3 http://www.impromelbourne.com.au/
4 http://yesimcanadian.com/
5 http://themaninblue.com/

vSimply JavaScript

www.allitebooks.com

http://www.sitepoint.com/books/phpmysql1/
http://www.sitepoint.com/books/phpmysql1/
http://www.sitepoint.com/newsletter/
http://www.impromelbourne.com.au/
http://www.impromelbourne.com.au/
http://yesimcanadian.com/
http://themaninblue.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Without you, Lisa, this book would

never have been written. I can

only hope to return the same

amount of love and support that

you have given me.

—Cameron

To Jessica,

my partner in crime,

the lemon to my lime.

—Kevin

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface . xvii

Who Should Read this Book? . xviii

What’s Covered in this Book? . xviii

The Book’s Web Site . xx

The Code Archive . xx

Updates and Errata . xx

The SitePoint Forums . xxi

The SitePoint Newsletters . xxi

Your Feedback . xxi

Acknowledgments . xxi

Kevin Yank . xxi

Cameron Adams . xxii

Conventions Used in this Book . xxiii

Code Samples . xxiii

Tips, Notes, and Warnings . xxiv

Chapter 1 The Three Layers of the Web 1

Keep ’em Separated . 2

Three Layers . 4

HTML for Content . 6

CSS for Presentation . 8

JavaScript for Behavior . 9

The Right Way . 11

JavaScript Libraries . 11

Let’s Get Started! . 12

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 Programming with JavaScript 13

Running a JavaScript Program . 14

Statements: Bite-sized Chunks for your Browser 17

Comments: Bite-sized Chunks Just for You . 18

Variables: Storing Data for your Program . 19

Variable Types: Different Types for Different Data 23

Conditions and Loops: Controlling Program Flow 35

Conditions: Making Decisions . 36

Loops: Minimizing Repetition . 43

Functions: Writing Code for Later . 48

Arguments: Passing Data to a Function . 50

Return Statements: Outputting Data from a Function 52

Scope: Keeping your Variables Separate . 54

Objects . 55

Unobtrusive Scripting in the Real World . 58

Summary . 59

Chapter 3 Document Access . 61

The Document Object Model: Mapping your HTML 61

Text Nodes . 64

Attribute Nodes . 65

Accessing the Nodes you Want . 66

Finding an Element by ID . 67

Finding Elements by Tag Name . 70

Finding Elements by Class Name . 74

Navigating the DOM Tree . 79

Interacting with Attributes . 82

Changing Styles . 85

Changing Styles with Class . 87

Simply JavaScriptx

www.allitebooks.com

http://www.allitebooks.org

Example: Making Stripy Tables . 92

Finding All Tables with Class dataTable . 93

Getting the Table Rows for Each Table . 94

Adding the Class alt to Every Second Row 96

Putting it All Together . 96

Exploring Libraries . 99

Prototype . 99

jQuery . 100

Dojo . 102

Summary . 102

Chapter 4 Events . 105

An Eventful History . 106

Event Handlers . 107

Default Actions . 111

The this Keyword . 112

The Problem with Event Handlers . 115

Event Listeners . 116

Default Actions . 119

Event Propagation . 122

The this Keyword . 127

The Internet Explorer Memory Leak . 128

Putting it All Together . 129

Example: Rich Tooltips . 132

The Static Page . 133

Making Things Happen . 134

The Workhorse Methods . 135

The Dynamic Styles . 140

Putting it All Together . 142

xiSimply JavaScript

Example: Accordion . 144

The Static Page . 144

The Workhorse Methods . 146

The Dynamic Styles . 148

Putting it All Together . 150

Exploring Libraries . 158

Summary . 160

Chapter 5 Animation . 163

The Principles of Animation . 163

Controlling Time with JavaScript . 165

Using Variables with setTimeout . 168

Stopping the Timer . 172

Creating a Repeating Timer . 174

Stopping setInterval . 175

Revisiting Rich Tooltips . 175

Old-school Animation in a New-school Style . 176

Path-based Motion . 181

Animating in Two Dimensions . 190

Creating Realistic Movement . 192

Moving Ahead . 198

Revisiting the Accordion Control . 198

Making the Accordion Look Like it’s Animated 198

Changing the Code . 199

Exploring Libraries . 208

script.aculo.us . 208

Summary . 211

Simply JavaScriptxii

Chapter 6 Form Enhancements 213

HTML DOM Extensions . 214

Example: Dependent Fields . 216

Example: Cascading Menus . 226

Form Validation . 239

Intercepting Form Submissions . 240

Regular Expressions . 243

Example: Reusable Validation Script . 249

Custom Form Controls . 256

Example: Slider . 256

Exploring Libraries . 271

Form Validation . 272

Custom Controls . 274

Summary . 275

Chapter 7 Errors and Debugging 277

Nothing Happened! . 278

Common Errors . 282

Syntax Errors . 283

Runtime Errors . 288

Logic Errors . 292

Debugging with Firebug . 296

Summary . 303

Chapter 8 Ajax . 305

XMLHttpRequest: Chewing Bite-sized Chunks of Content 306

Creating an XMLHttpRequest Object . 307

Calling a Server . 310

Dealing with Data . 314

xiiiSimply JavaScript

A Word on Screen Readers . 316

Putting Ajax into Action . 316

Seamless Form Submission with Ajax . 329

Exploring Libraries . 337

Prototype . 339

Dojo . 340

jQuery . 341

YUI . 341

MooTools . 342

Summary . 343

Chapter 9 Looking Forward . 345

Bringing Richness to the Web . 346

Easy Exploration . 346

Easy Visualization . 347

Unique Interaction . 349

Rich Internet Applications . 352

Widgets . 355

JavaScript Off the Web . 356

Exploring Libraries . 357

Dojo . 358

Google Web Toolkit . 361

Summary . 362

Appendix A The Core JavaScript Library 363

The Object . 363

Event Listener Methods . 364

Script Bootstrapping . 375

CSS Class Management Methods . 378

Simply JavaScriptxiv

Retrieving Computed Styles . 379

The Complete Library . 379

Index . 387

xvSimply JavaScript

Preface
On the surface, JavaScript is a simple programming language that lets you make

changes to your web pages on the fly, while they’re being displayed in a web browser.

How hard could that be to learn, right? It sounds like something you could knock

over in an afternoon.

But JavaScript is bigger on the inside than it seems from the outside. If you were a

Dr. Who fan, you might call it the Tardis of programming languages. If you’re not a

Dr. Who fan, roll your eyes with me as the fanboys (and girls) geek out.

Everyone back with me? Put your Daleks away, Jimmy.

As I was saying, JavaScript sounds like it should be simple. Nevertheless, throughout

its ten year history (so far), the best ways of doing things with JavaScript have

seemed to change with the seasons. And advice on how to write good JavaScript

can be found everywhere: “Do it this way—it’ll run faster!” “Use this code—it’ll

run on more browsers!” “Stay away from that feature—it causes memory leaks!”

Too many other JavaScript books—some of them from very respected names in the

industry—will teach you a handful of simple solutions to simple problems and then

call it a day, leaving you with just enough rope with which to hang yourself when

you actually try to solve a real-world problem on your own. And when in desperation

you go looking on the Web for an example that does what you need it to, you’ll

likely be unable to make sense of the JavaScript code you find, because the book

you bought didn’t cover many of the truly useful features of the language, such as

object literals, event listeners, or closures.

This book aims to be different. From the very first page, we’ll show you the right

way to use JavaScript. By working through fully fleshed-out examples that are ready

to be plugged right into a professionally-designed web site, you’ll gain the confidence

not only to write JavaScript code of your own, but to understand code that was

written by others, and even to spot harmful, old-fashioned code that's more trouble

than it’s worth!

Throughout this book, we’ve tried to go the extra mile by giving you more than just

the basics. In particular, we’ve covered some of the new JavaScript-powered devel-

opment techniques—like Ajax—that are changing the face of the Web. We’ve also

included sections that explore the new crop of JavaScript libraries like jQuery,

Prototype, Yahoo! UI, and Dojo, making this the only beginner’s JavaScript book to

cover these powerful time-savers.

… all of which made this book a lot harder to write, but that’s why they pay us the

big bucks.

Who Should Read this Book?
Whether you’ve never seen a line of JavaScript code in your life, or you’ve seen one

too many lines that doesn’t do what you expect, this book will show you how to

make JavaScript work for you.

We assume going in that you’ve got a good handle on web design with HyperText

Markup Language (HTML) and Cascading Style Sheets (CSS). You needn’t be an

expert in these languages, but as we’ll see, JavaScript is just another piece in the

puzzle. The better you understand basic web design techniques, the more you can

enhance them with JavaScript.

If you need a refresher, we highly recommend Build Your Own Web Site The Right

Way Using HTML & CSS1 (Melbourne: SitePoint, 2006).

What’s Covered in this Book?
Chapter 1: The Three Layers of the Web

A big part of learning JavaScript is learning when it’s the right tool for the job,

and when ordinary HTML and CSS can offer a better solution. Before we dive

into learning JavaScript, we’ll take a little time to review how to build web sites

with HTML and CSS, and see just how JavaScript fits into the picture.

Chapter 2: Programming with JavaScript

JavaScript is a programming language. To work with it, then, you must get your

head around the way computer programs work—which to some extent means

learning to think like a computer. The simple concepts introduced in this

1 http://www.sitepoint.com/books/html1/

Simply JavaScriptxviii

http://www.sitepoint.com/books/html1/
http://www.sitepoint.com/books/html1/

chapter—statements, variables, expressions, loops, functions, and objects—are

the building blocks for every JavaScript program you’ll ever write.

Chapter 3: Document Access

While certain people enjoy writing JavaScript code for its own sake, you wouldn’t

want to run into them in a dark alley at night. As a well-adjusted web developer,

you’ll probably want to use JavaScript to make changes to the contents of your

web pages using the Document Object Model (DOM). Lucky for you, we wrote

a whole chapter to show you how!

Chapter 4: Events

By far the most eventful portion of this book (ha ha ha … I slay me), this chapter

shows you how to write JavaScript programs that will respond to the actions of

your users as they interact with a web page. As you’ll see, this can be done in

a number of ways, for which varying degrees of support are provided by current

browsers.

Chapter 5: Animation

Okay, okay. We can talk all day about the subtle usability enhancements that

JavaScript makes possible, but we know you won’t be satisfied until you can

make things swoosh around the page. In this chapter, you’ll get all the

swooshing you can handle.

Chapter 6: Form Enhancements

I know what you’re thinking: forms are boring. Nobody leaps out of bed in the

morning, cracks their knuckles, and shouts, “Today, I’m going to fill in some

forms!” Well, once you trick out your forms with the enhancements in this

chapter, they just might. Oh, and just to spice up this chapter a bit more, we’ll

show you how to make an element on your page draggable.

Chapter 7: Errors and Debugging

When things go wrong in other programming languages, your computer will

usually throw a steady stream of error messages at you until you fix the problem.

With JavaScript, however, your computer just folds its arms and gives you a

look that seems to say, “You were expecting, maybe, something to happen?”

No, English is not your computer’s first language. What did you expect? It was

made in Taiwan. In this chapter, we’ll show you how to fix scripts that don’t

behave the way they should.

xixSimply JavaScript

Chapter 8: Ajax

You might have heard about this thing called Ajax that makes web pages look

like desktop applications, and shaky business ventures look like solid invest-

ments. We put it into this book for both those reasons.

Chapter 9: Looking Forward

JavaScript doesn’t just have a future; JavaScript is the future! Okay, you might

think that’s taking it a bit far, but when you read this chapter and see the many

amazing things that JavaScript makes possible, you might reconsider.

Appendix A: The Core JavaScript Library

As we progress through the book, we’ll write code to solve many common

problems. Rather than making you rewrite that code every time you need it,

we’ve collected it all into a JavaScript library that you can reuse in your own

projects to save yourself a ton of typing. This appendix will provide a summary

and breakdown of all the code that’s collected in this library, with instructions

on how to use it.

The Book’s Web Site
Located at http://www.sitepoint.com/books/javascript1/, the web site that supports

this book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site2 will

provide the latest information about known typographical and code errors, and will

offer necessary updates for new releases of browsers and related standards.

2 http://www.sitepoint.com/books/javascript1/errata.php

Simply JavaScriptxx

www.allitebooks.com

http://www.sitepoint.com/books/javascript1/errata.php
http://www.allitebooks.org

The SitePoint Forums
If you’d like to communicate with other web developers about this book, you should

join SitePoint’s online community.3 The JavaScript forum,4 in particular, offers an

abundance of information above and beyond the solutions in this book, and a lot

of fun and experienced JavaScript developers hang out there. It’s a good way to

learn new tricks, get questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters includ-

ing The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design

View. Reading them will keep you up to date on the latest news, product releases,

trends, tips, and techniques for all aspects of web development. If nothing else,

you’ll get useful CSS articles and tips, but if you’re interested in learning other

technologies, you’ll find them especially valuable. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write is books@sitepoint.com. We have an email

support system set up to track your inquiries, and friendly support staff members

who can answer your questions. Suggestions for improvements as well as notices

of any mistakes you may find are especially welcome.

Acknowledgments
Kevin Yank
I’d like to thank Mark Harbottle and Luke Cuthbertson, SitePoint’s Co-founder and

General Manager, who sat me down late in 2006 and—for the second time in my

career—convinced me that stepping away from SitePoint’s day-to-day operations

to write a book wouldn’t be the worst career move ever. I also owe a beverage to

3 http://www.sitepoint.com/forums/
4 http://www.sitepoint.com/launch/jsforum/

xxiSimply JavaScript

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/jsforum/

Simon Mackie, whose idea it was in the first place. Let’s hope someone buys it,

guys!

To Jessica, for the many evenings that I stayed at the office to write long past the

hour I said I’d be home, and for the boundless support and patience with which

she greeted my eventual arrival, I owe something big and chocolaty.

And to the more than 150,000 readers of the SitePoint Tech Times newsletter,5 with

whom I shared many of the ideas that made their way into this book, and who

provided valuable and challenging feedback in return, my gratitude.

Cameron Adams
The knowledge I’ve accrued on JavaScript has been drawn from so many sources

that it would be impossible to name them all. Anything that I can pass on is only

due to the contributions of hundreds—if not thousands—of charitable individuals

who use their valuable time to lay out their knowledge for the advantage of others.

If you're ever in a position to add to those voices, try your hardest to do so. Still,

I’d like to put out an old school shout-out to the Webmonkey team, in particular

Thau and Taylor, who inspired me in the beginning. I'd also like to thank my coding

colleagues, who are always available for a quick question or an extended discussion

whenever I’m stuck: Derek Featherstone, Dustin Diaz, Jonathan Snook, Jeremy Keith,

Peter-Paul Koch, and Dan Webb.

5 http://www.sitepoint.com/newsletter/

Simply JavaScriptxxii

http://www.sitepoint.com/newsletter/

Conventions Used in this Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Any code will be displayed using a fixed-width font like so:

<h1>A perfect summer's day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code may be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

xxiiiSimply JavaScript

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure you Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Simply JavaScriptxxiv

Chapter1
The Three Layers of the Web
Once upon a time, there was … ‘A king!’ my little readers will say right away. No,

children, you are wrong. Once upon a time there was a piece of wood…

—The Adventures of Pinocchio

You can do a lot without JavaScript. Using Hypertext Markup Language (HTML),1

you can produce complex documents that intricately describe the content of a

page—and that content’s meaning—to the minutest detail. Using Cascading Style

Sheets (CSS), you can present that content in myriad ways, with variations as subtle

as a single color, as striking as replacing text with an image.

No matter how you dress it up, though, HTML and CSS can only achieve the static

beauty of the department store mannequin—or at best, an animatronic monstrosity

that wobbles precariously when something moves nearby. With JavaScript, you can

bring that awkward puppet to life, lifting you as its creator from humble shop clerk

to web design mastery!

1 Throughout this book, we’ll refer to HTML and XHTML as just HTML. Which you choose is up to you,

and doesn’t have a much to do with JavaScript. In case it matters to you, the HTML code we’ll present

in this book will be valid XHTML 1.0 Strict.

But whether your new creation has the graceful stride of a runway model, or the

shuffling gait of Dr. Frankenstein’s monster, depends as much on the quality of its

HTML and CSS origins as it does on the JavaScript code that brought it to life.

Before we learn to work miracles, therefore, let’s take a little time to review how to

build web sites that look good both inside and out, and see how JavaScript fits into

the picture.

Keep ’em Separated
Not so long ago, professional web designers would gleefully pile HTML, CSS, and

JavaScript code into a single file, name it index.html,2 and call it a web page. You

can still do this today, but be prepared for your peers to call it something rather less

polite.

Somewhere along the way, web designers realized that the code they write when

putting together a web page does three fundamental things:

2 Or default.htm, if they had been brainwashed by Microsoft.

Simply JavaScript2

■ It describes the content of the page.

■ It specifies the presentation of that content.

■ It controls the behavior of that content.

They also realized that keeping these three types of code separate, as depicted in

Figure 1.1, made their jobs easier, and helped them to make web pages that work

better under adverse conditions, such as when users have JavaScript disabled in

their browsers.

Computer geeks have known about this for years, and have even given this principle

a geeky name: the separation of concerns.

Figure 1.1. Separation of concerns

Now, realizing this is one thing, but actually doing it is another—especially if you’re

not a computer geek. I am a computer geek, and I’m tempted to do the wrong thing

all the time.

I’ll be happily editing the HTML code that describes a web page’s content, when

suddenly I’ll find myself thinking how nice that text would look if it were in a

slightly different shade of gray, if it were nudged a little to the left, and if it had that

hee-larious photocopy of my face I made at the last SitePoint office party in the

background. Prone to distraction as I am, I want to make those changes right away.

3The Three Layers of the Web

Now which is easier: opening up a separate CSS file to modify the page’s style sheet,

or just typing those style properties into the HTML code I’m already editing?

Like behaving yourself at work functions, keeping the types of code you write sep-

arate from one another takes discipline. But once you understand the benefits, you

too will be able to summon the willpower it takes to stay on the straight and narrow.

Three Layers
Keeping different kinds of code as separate as possible is a good idea in any kind

of programming. It makes it easier to reuse portions of that code in future projects,

it reduces the amount of duplicate code you end up writing, and it makes it easier

to find and fix problems months and years later.

When it comes to the Web, there’s one more reason to keep your code separate: it

lets you cater for the many different ways in which people access web pages.

Depending on your audience, the majority of your visitors may use well-appointed

desktop browsers with cutting-edge CSS and JavaScript support, but many might

be subject to corporate IT policies that force them to use older browsers, or to browse

with certain features (like JavaScript) disabled.

Visually impaired users often browse using screen reader or screen magnifier soft-

ware, and for these users your slick visual design can be more of a hindrance than

a help.

Some users won’t even visit your site, preferring to read content feeds in RSS or

similar formats if you offer them. When it comes time to build these feeds, you’ll

want to be able to send your HTML content to these users without any JavaScript

or CSS junk.

The key to accommodating the broadest possible range of visitors to your site is to

think of the Web in terms of three layers, which conveniently correspond to the

three kinds of code I mentioned earlier. These layers are illustrated in Figure 1.2.

Simply JavaScript4

Figure 1.2. The three layers of the Web

When building a site, we work through these layers from the bottom up:

1. We start by producing the content in HTML format. This is the base layer, which

any visitor using any kind of browser should be able to view.

2. With that done, we can focus on making the site look better, by adding a layer

of presentation information using CSS. The site will now look good to users able

to display CSS styles.

3. Lastly, we can use JavaScript to introduce an added layer of interactivity and

dynamic behavior, which will make the site easier to use in browsers equipped

with JavaScript.

If we keep the HTML, CSS, and JavaScript code separate, we’ll find it much easier

to make sure that the content layer remains readable in browsing environments

where the presentation and/or behavior layers are unable to operate. This “start at

the bottom” approach to web design is known in the trade as progressive enhance-

ment.

Let’s look at each of these layers in isolation to see how we can best maintain this

separation of code.

5The Three Layers of the Web

HTML for Content
Everything that’s needed to read and understand the content of a web page belongs

in the HTML code for that page—nothing more, nothing less. It’s that simple. Web

designers get into trouble when they forget the K.I.S.S. principle,3 and cram non-

content information into their HTML code, or alternatively move some of the page’s

content into the CSS or JavaScript code for the page.

A common example of non-content information that’s crammed into pages is

presentational HTML—HTML code that describes how the content should look

when it’s displayed in the browser. This can include old-fashioned HTML tags like

, <i>, <u>, <tt>, and :

<p>Whatever you do, don't
 click this link!</p>

It can take the form of inline CSS applied with the style attribute:

<p>Whatever you do, don't
 click this link!</p>

It can also include the secret shame of many well-intentioned web designers—CSS

styles applied with presentational class names:

<p>Whatever you do, don't click
 this link!</p>

Presentational Class Names?

If that last example looks okay to you, you’re not alone, but it’s definitely bad

mojo. If you later decide you want that link to be yellow, you’re either stuck up-

dating both the class name and the CSS styles that apply to it, or living with the

embarrassment of a class named “red” that is actually styled yellow. That’ll turn

your face yellow—er, red!

3 Keep It Simple, Stupid.

Simply JavaScript6

www.allitebooks.com

http://www.allitebooks.org

Rather than embedding presentation information in your HTML code, you should

focus on the reason for the action—for example, you want a link to be displayed in

a different color. Is the link especially important? Consider surrounding it with a

tag that describes the emphasis you want to give it:

<p>Whatever you do, don't click this
 link!</p>

Is the link a warning? HTML doesn’t have a tag to describe a warning, but you could

choose a CSS class name that conveys this information:

<p>Whatever you do, don't
 click this link!</p>

You can take this approach too far, of course. Some designers mistake tags like <h1>

as presentational, and attempt to remove this presentational code from their HTML:

<p class="heading">A heading with an identity crisis</p>

Really, the presentational information that you should keep out of your document

is the font, size, and color in which a heading is to be displayed. The fact that a

piece of text is a heading is part of the content, and as such should be reflected in

the HTML code. So this code is perfectly fine:

<h1>A heading at peace with itself</h1>

In short, your HTML should do everything it can to convey the meaning, or semantics

of the content in the page, while steering clear of describing how it should look.

Web standards geeks call HTML code that does this semantic markup.

Writing semantic markup allows your HTML files to stand on their own as mean-

ingful documents. People who, for whatever reason, cannot read these documents

by viewing them in a typical desktop web browser will be better able to make sense

of them this way. Visually impaired users, for example, will be able to use assistive

software like screen readers to listen to the page as it’s read aloud, and the more

clearly your HTML code describes the content’s meaning, the more sense tools like

these will be able to make of it.

7The Three Layers of the Web

Best of all, however, semantic markup lets you apply new styles (presentation) and

interactive features (behavior) without having to make many (or, in some cases,

any!) changes to your HTML code.

CSS for Presentation
Obviously, if the content of a page should be entirely contained within its HTML

code, its style—or presentation—should be fully described in the CSS code that’s

applied to the page.

With all the work you’ve done to keep your HTML free of presentational code and

rich with semantics, it would be a shame to mess up that file by filling it with

snippets of CSS.

As you probably know, CSS styles can be applied to your pages in three ways:

inline styles

Inline styles are tempting for the reasons I explained earlier: you can apply

styles to your content as you create it, without having to switch gears and edit

a separate style sheet. But as we saw in the previous section, you’ll want to

avoid inline styles like the plague if you want to keep your HTML code mean-

ingful to those who cannot see the styles.

embedded styles

<style type="text/css">
.warning {

 color: red;
 }
</style>
⋮

Embedded styles keep your markup clean, but tie your styles to a single docu-

ment. In most cases, you’ll want to share your styles across multiple pages on

your site, so it’s best to steer clear of this approach as well.

Simply JavaScript8

external styles

<link rel="stylesheet" href="styles.css" />
⋮

styles.css

.warning {
 color: red;
}

External styles are really the way to go, because they let you share your styles

between multiple documents, they reduce the amount of code browsers need

to download, and they also let you modify the look of your site without having

to get your hands dirty editing HTML.

But you knew all that, right? This is a JavaScript book, after all, so let’s talk about

the JavaScript that goes into your pages.

JavaScript for Behavior
As with CSS, you can add JavaScript to your web pages in a number of ways:

■ You can embed JavaScript code directly in your HTML content:

■ You can include JavaScript code at the top of your HTML document in a <script>

tag:

<script type="text/javascript"><!--//--><![CDATA[//><!--
JavaScript code here

//--><!]]></script>
⋮

9The Three Layers of the Web

CDATA?

If you’re wondering what all that gobbledygook is following the <script>

tag and preceding the </script> tag, that’s what it takes to legitimately embed

JavaScript in an XHTML document without confusing web browsers that don’t

understand XHTML (like Internet Explorer).

If you write your page with HTML instead of XHTML, you can get away with

this much simpler syntax:

<script type="text/javascript">
JavaScript code here

</script>

■ You can put your JavaScript code in a separate file, then link to that file from as

many HTML documents as you like:

<script type="text/javascript" src="script.js"></script>
⋮

script.js (excerpt)

JavaScript code here

Guess which method you should use.

Writing JavaScript that enhances usability without cluttering up the HTML docu-

ment(s) it is applied to, without locking out users that have JavaScript disabled in

their browsers, and without interfering with other JavaScript code that might be

applied to the same page, is called unobtrusive scripting.

Unfortunately, while many professional web developers have clued in to the benefits

of keeping their CSS code in separate files, there is still a lot of JavaScript code

mixed into HTML out there. By showing you the right way to use JavaScript in this

book, we hope to help change that.

Simply JavaScript10

The Right Way
So, how much does all this stuff really matter? After all, people have been building

web sites with HTML, CSS, and JavaScript mixed together for years, and for the

majority of people browsing the Web, those sites have worked.

Well, as you come to learn JavaScript, it’s arguably more important to get it right

than ever before. JavaScript is by far the most powerful of the three languages that

you’ll use to design web sites, and as such it gives you unprecedented freedom to

completely mess things up.

As an example, if you really, really like JavaScript, you could go so far as to put

everything—content, presentation, and behavior—into your JavaScript code. I’ve

actually seen this done, and it’s not pretty—especially when a browser with Java-

Script disabled comes along.

Even more telling is the fact that JavaScript is the only one of these three languages

that has the ability to hang the browser, making it unresponsive to the user.4

Therefore, through the rest of this book, we’ll do our darnedest to show you the

right way to use JavaScript, not just because it keeps your code tidy, but because it

helps to keep the Web working the way it’s meant to—by making content accessible

to as many people as possible, no matter which web browser they choose to use.

JavaScript Libraries
As I mentioned, one of the benefits of keeping different kinds of code separate is

that it makes it easier to take code that you’ve written for one site and reuse it on

another. Certain JavaScript maniacs (to be referred to from this point on as “people”)

have taken the time to assemble vast libraries of useful, unobtrusive JavaScript code

that you can download and use on your own web sites for free.

Throughout this book, we’ll build each of the examples from scratch—all of the

JavaScript code you need can be found right here in these pages. Since there isn’t

always time to do this in the real world, however, and because libraries are quickly

4 We’ll show you an example of this in Chapter 7.

11The Three Layers of the Web

becoming an important part of the JavaScript landscape, we’ll also look at how the

popular JavaScript libraries do things whenever the opportunity presents itself.

Here are the libraries that we’ll use in this book:

Prototype http://www.prototypejs.org/

script.aculo.us http://script.aculo.us/

Yahoo! User Interface Library

(YUI)

http://developer.yahoo.com/yui/

Dojo http://dojotoolkit.org/

jQuery http://jquery.com/

MooTools http://mootools.net/

Not All Libraries are Created Equal

Watch out for sites offering snippets of JavaScript code for you to copy and paste

into your web pages to achieve a particular effect. There is a lot of free code out

there, but not all of it is good.

In general, the good libraries come in the form of JavaScript (.js) files that you can

link into your pages unobtrusively, instead of pasting JavaScript directly into your

HTML code.

If you don’t feel confident to judge whether a particular JavaScript library is good

or bad, ask for some advice in the SitePoint Forums,5 or just stick with the libraries

mentioned in this book—they’re all very good.

Let’s Get Started!
Enough preaching—you picked up this book to learn JavaScript, right? (If you didn’t,

I’m afraid you’re in for a bit of a disappointment.) Clean HTML and CSS are nice

and all, but it’s time to take the plunge into the third layer of the Web: behavior.

Turn the page, and get ready to start using some cool (and unobtrusive) JavaScript.

5 http://www.sitepoint.com/forums/

Simply JavaScript12

http://www.sitepoint.com/forums/

Chapter2
Programming with JavaScript
Programming is all about speaking the language of computers. If you’re a robot, this

should be pretty easy for you, but if you’re unlucky enough to be a human, it might

take a bit of adjustment.

If you want to learn how to program, there are really two things you have to get

your head around. First, you have to think about reducing one big problem into

small, digestible chunks that are just right for a computer to crunch. Second, you

have to know how to translate those chunks into a language that the computer un-

derstands.

I find that the second part—the syntax—gradually becomes second nature (much

like when you learn a real second language), and experienced programmers have

very little trouble switching between different languages (like JavaScript, PHP, Ruby,

or Algol 60). Most of the thought in programming is focused on the first

part—thinking about how you can break down a problem so that the computer can

solve it.

By the time you’ve finished this book, you’ll understand most of the syntax that

JavaScript has to offer, but you’ll continue learning new ways to solve programming

problems for as long as you continue to program. We’ll tell you how to solve quite

a few problems in this book, but there are always different ways to achieve a given

task, and there will always be new problems to solve, so don’t think that your

learning will stop on the last page of this book.

Running a JavaScript Program
Before you even start writing your first JavaScript program, you’ll have to know

how to run it.

Every JavaScript program designed to run in a browser has to be attached to a doc-

ument. Most of the time this will be an HTML or XHTML document, but exciting

new uses for JavaScript emerge every day, and in the future you might find yourself

using JavaScript on XML, SVG, or something else that we haven’t even thought of

yet. We’re just going to worry about HTML in this book, because that’s what 99%

of people use JavaScript with.

To include some JavaScript on an HTML page, we have to include a <script> tag

inside the head of the document. A script doesn’t necessarily have to be JavaScript,

so we need to tell the browser what type of script we’re including by adding a type

attribute with a value of text/javascript:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en-US">
 <head>
 <title>The Running Man</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">

<script type="text/javascript">
 </script>

 </head>
</html>

You can put as much JavaScript code as you want inside that <script> tag—the

browser will execute it as soon as it has been downloaded:

Simply JavaScript14

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en-US">
 <head>
 <title>The Running Man</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">

 <script type="text/javascript">
alert("Arnie says hi!");

 </script>

 </head>
</html>

XHTML and Embedded JavaScript don’t Mix

For this one example, we’ve switched from an XHTML DOCTYPE to an HTML

DOCTYPE. As mentioned in Chapter 1, embedding JavaScript in XHTML requires

gobbledygook that few mortals can remember:

<script type="text/javascript"><!--//--><![CDATA[//><!--
 alert("Arnie says hi!");
//--><!]]></script>

For many, this is reason enough to avoid embedded JavaScript.

Even though it’s nice and easy to just type some JavaScript straight into your HTML

code, it’s preferable to include your JavaScript in an external file. This approach

provides several advantages:

■ It maintains the separation between content and behavior (HTML and JavaScript).

■ It makes it easier to maintain your web pages.

■ It allows you to easily reuse the same JavaScript programs on different pages of

your site.

To reference an external JavaScript file, you need to use the src attribute on the

<script> tag:

15Programming with JavaScript

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>The Running Man</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />

 <script type="text/javascript" src="example.js"></script>

 </head>
</html>

Any JavaScript that you might have included between your <script> and </script>

tags can now be put into that external file and the browser will download the file

and run the code.

The file can be called whatever you want, but the common practice is to include a

.js extension at the end of it.

If you’d like to try out the little program above, create a new HTML document (or

open the closest one to hand) and insert the <script> tag inside the head. Once

you’ve done that, put this snippet into a file called example.js in the same directory

or folder:

alert("Arnie says hi!");

Now, open the HTML file in your browser, and see what happens! As you read

through the rest of this chapter, you can replace the contents of example.js with each

of the simple programs that I’ll show you, and try them for yourself!

Absolute URLs Work Too

As with the src attribute of an image, you can reference a file anywhere on your

server, or anyone else’s server:

<script type="text/javascript"
 src="http://www.example.com/script.js"></script>

Simply JavaScript16

www.allitebooks.com

http://www.allitebooks.org

It’s possible to include as many external scripts on your page as you want:

<script type="text/javascript" src="library.js"></script>
<script type="text/javascript" src="more.js"></script>
<script type="text/javascript" src="example.js"></script>

This capability is what makes JavaScript libraries, where you include a standard

library file on your page alongside other code that uses the contents of that library,

possible.

Every time you load a page with JavaScript on it, the browser will interpret all of

the included JavaScript code and figure out what to do with it. If you’ve loaded a

page into your browser, and then you make some changes to that page’s JavaScript

(either on the page itself or in an external file), you’ll need to refresh the page before

those changes will be picked up by the browser.

Statements: Bite-sized Chunks
for your Browser
So now you know how to tell the browser that it needs to run some JavaScript, but

you don’t know any JavaScript for it to run. We’d better fix that!

Earlier, we were talking about reducing a problem into steps that a computer can

understand. Each small step you take in a program is called a statement, and it tells

the browser to perform an action. By building up a series of these actions, we create

a program. Statements are to programs as sentences are to books.

In JavaScript each statement has to be separated by a new line or a semicolon. So,

two statements could be written like this:

Statement one
Statement 2.0

Or they could be written like this:

Statement one;Statement 2.0;

17Programming with JavaScript

It is generally considered best practice, however, to do both—separate statements

by a semicolon and a new line:

Statement one;
Statement 2.0;

This way, each of your statements will be easy to read, and you’ll have removed

the potential for any ambiguity that might occur if two statements accidentally run

together.

There’s a whole bunch of different tasks you can achieve inside each statement; the

first one that we’ll look at shortly is creating variables.

Comments: Bite-sized Chunks Just for You
If you follow the advice in this book and keep your JavaScript code simple and well

structured, you should be able to get the gist of how it works just by looking at it.

Every once in a while, however, you’ll find yourself crafting a particularly tricky

segment of code, or some esoteric browser compatibility issue will force you to insert

a statement that might seem like nonsense if you had to come back and work on

the program later. In situations like these, you may want to insert a comment.

A comment is a note in your code that browsers will ignore completely. Unlike the

rest of the code you write, comments are there to be read by you (or other program-

mers who might later need to work on your code). In general, they explain the sur-

rounding code, making it easier to update the program in future.

JavaScript supports two types of comments. The first is a single-line comment,

which begins with two slashes (//) and runs to the end of the line:

Statement one; // I'm especially proud of this one
Statement 2.0;

As soon as the browser sees two slashes, it closes its eyes and sings a little song to

itself until it reaches the end of the line, after which it continues to read the program

as usual.

Simply JavaScript18

If you need to write a more sizable comment, you can use a multi-line comment,

starting with /* and ending with */:

/* This is my first JavaScript program. Please forgive any
 mistakes you might find here.
 If you have any suggestions, write to n00b@example.com. */
Statement one; // I'm especially proud of this one
Statement 2.0;

You’ll notice a distinct lack of comments in the code presented in this book. The

main reason for this is that all of the code is explained in the surrounding text, so

why not save a few trees? In real-world programs, you should always include a

comment if you suspect that you might not understand a piece of code when you

return to work on it later.

Variables: Storing Data for your Program
It’s possible to write a program that defines the value of every single piece of data

it uses, but that’s like driving a ski lift—you don’t really get to choose where you’re

going. If you want your program to be able to take user input, and adapt to different

pages and situations, you have to have some way of working with values that you

don’t know in advance.

As with most programming concepts, it’s very useful at this point to think of your

computer as a BGC (Big, Giant Calculator). You know where you are with a calcu-

lator, so it makes programming a bit easier to understand.

Now, we could write a program for a calculator that said:

4 + 2

But every time we run that program, we’re going to get exactly the same answer.

There’s no way that we can substitute the values in the equation for something

else—values from another calculation, data from a file, or even user input.

If we want the program to be a bit more flexible, we need to abstract some of its

components. Take a look at the equation above and ask yourself, “What does it

really do?”

19Programming with JavaScript

It adds two numbers.

If we’re getting those numbers when we run the program, we don’t know what

they’ll be when we write the program, so we need some way of referring to them

without using actual numbers. How about we give them names? Say … “x” and “y.”

Using those names, we could rewrite the program as:

x + y

Then, when we get our data values from some faraway place, we just need to make

sure it’s called x and y. Once we’ve done that, we’ve got variables.

Variables allow us to give a piece of data a name, then reference that data by its

name further along in our program. This way, we can reuse a piece of data without

having to remember what its actual value was; all we have to do is remember a

variable name.

In JavaScript, we create a variable by using the keyword var and specifying the

name we want to use:

var chameleon;

This is called declaring a variable.

Having been declared, chameleon is ready to have some data assigned to it. We can

do this using the assignment operator (=), placing the variable name on the left and

the data on the right:

var chameleon;
chameleon = "blue";

This whole process can be shortened by declaring and assigning the variable in one

go:

var chameleon = "blue";

Simply JavaScript20

In practice, this is what most JavaScript programmers do—declare a variable

whenever that variable is first assigned some data.

If you’ve never referenced a particular variable name before, you can actually assign

that variable without declaring it using var:

chameleon = "blue";

The JavaScript interpreter will detect that this variable hasn’t been declared before,

and will automatically declare it when you try to assign a value to it. At first glance,

this statement seems to do exactly the same thing as using the var keyword; however,

the variable that it declares is actually quite different, as we’ll see later in this chapter

when we discuss functions and scoping. For now, take it from me—it’s always safest

to use var.

The var keyword has to be used only when you first declare a variable. If you want

to change the value of the variable later, you do so without var:

var chameleon = "blue";
⋮
chameleon = "red";

You can use the value of a variable just by calling its name. Any occurrence of the

variable name will automatically be replaced with its value when the program is

run:

var chameleon = "blue";
alert(chameleon);

The second statement in this program tells your browser to display an alert box

with the supplied value, which in this case will be the value of the variable

chameleon, as shown in Figure 2.1.

21Programming with JavaScript

Figure 2.1. JavaScript replacing the variable name with its value

Your variable names can comprise almost any combination of letters and numbers,

though no spaces are allowed. Most punctuation and symbols have special meaning

inside JavaScript, so the dollar sign ($) and the underscore (_) are the only non-al-

phanumeric characters allowed in variable names. Variable names are also case-

sensitive, so the names chameleon, Chameleon, and CHAMELEON refer to unique

variables that could exist simultaneously.

Given those rules, these are all acceptable variable declarations:

var chameleon = "blue";
var Chameleon = "red";
var CHAMELEON = "green";
var yellow_chameleon = "yellow";
var orangeChameleon = "orange";
var chameleon$ = "greedy";

It’s standard practice to create variable names in lowercase letters, unless you’re

concatenating more than one word. And as I mentioned, variable names can’t have

spaces in them, so if you want a variable name to include more than one word, you

can separate each word with an underscore (multi_word_variable) or capitalize

the first letter of each word except for the first (multiWordVariable)—an approach

called camel casing, because the name has humps like a camel (if you squint your

eyes and tilt your head slightly … kind of).

The approach you use to name variables really comes down to personal preference,

and which name style you find more readable. I use camel casing because some

long-forgotten lecturer beat it into me with a big plank.

Simply JavaScript22

Variable Types: Different Types for Different Data
A lot of programming languages feature strictly typed variables. With these, you

have to tell the program what type of data the variable is going to hold when it’s

declared, and you can’t change a variable’s type once it has been created.

JavaScript, however, is loosely typed—the language doesn’t care what your variables

hold. A variable could start off holding a number, then change to holding a character,

a word, or anything else you want it to hold.

Even though you don’t have to declare the data type up front, it’s still vital to know

what types of data a variable can store, so that you can use and manipulate them

properly inside your own programs. In JavaScript, you can work with numbers,

strings, Booleans, arrays and objects. We’ll take a look at the first four of these types

now, but you’ll have to wait till the end of the chapter to read about objects, because

they’re a bit trickier.

Numbers
Eventually, everything inside a computer is broken down into numbers (see the Big

Giant Calculator theory we explored earlier). Numbers in JavaScript come in two

flavors: whole numbers and decimals. The technical term for a whole number is an

integer or int. A decimal is called a floating point number, or float. These terms are

used in most programming languages, including JavaScript.

To create a variable with numerical data, you just assign a number to a variable

name:

var whole = 3;
var decimal = 3.14159265;

Floating point numbers can have as many decimal places as you want:

var shortDecimal = 3.1;
var longDecimal = 3.14159265358979323846264338327950288419716939937;

And both floats and integers can have negative values if you place a minus sign (-)

in front of them:

23Programming with JavaScript

var negativeInt = -3;
var negativeFloat = -3.14159265;

Mathematical Operations

Numbers can be combined with all of the mathematical operations you’d expect:

addition (+), subtraction (-), multiplication (*), and division (/). They’re written in

fairly natural notation:

var addition = 4 + 6;
var subtraction = 6 – 4;
var multiplication = 5 * 9;
var division = 100 / 10;
var longEquation = 4 + 6 + 5 * 9 – 100 / 10;

The symbols that invoke these operations in JavaScript—+, -, *, and /—are called

operators, and as we’ll see through the rest of this chapter, JavaScript has a lot of

them!

In a compound equation like the one assigned to longEquation, each of the opera-

tions is subject to standard mathematical precedence (that is, multiplication and

division operations are calculated first, from left to right, after which the addition

and subtraction operations are calculated from left to right).

If you want to override the standard precedence of these operations, you can use

brackets, just like you learned in school. Any operations that occur inside brackets

will be calculated before any multiplication or division is done:

var unbracketed = 4 + 6 * 5;
var bracketed = (4 + 6) * 5;

Here, the value of unbracketed will be 34, because 6 * 5 is calculated first. The

value of bracketed will be 50, because (4 + 6) is calculated first.

You can freely combine integers and floats in your calculations, but the result will

always be a float:

Simply JavaScript24

var whole = 3;
var decimal = 3.14159265;
var decimal2 = decimal – whole;
var decimal3 = whole * decimal;

decimal2 now equals 0.14159265 and decimal3 equals 9.42477795.

If you divide two integers and the result is not a whole number, it will automatically

become a float:

var decimal = 5 / 4;

The value of decimal will be 1.25.

Calculations can also involve any combination of numbers or numerical variables:

var dozen = 12;
var halfDozen = dozen / 2;
var fullDozen = halfDozen + halfDozen;

A handy feature of JavaScript is the fact that you can refer to the current value of a

variable in describing a new value to be assigned to it. This capability lets you do

things like increase a variable’s value by one:

var age = 26;
age = age + 1;

In the second of these statements, the age reference on the right uses the value of

age before the calculation; the result of the calculation is then assigned to age,

which ends up being 27. This means you can keep calculating new values for the

same variable without having to create temporary variables to store the results of

those calculations.

The program above can actually be shortened using the handy += operator, which

tells your program to add and assign in one fell swoop:

var age = 26;
age += 1;

25Programming with JavaScript

Now, age will again equal 27.

It turns out that adding 1 to a variable is something that happens quite frequently

in programming (you’ll see why when we get to loops later in this chapter), and

there’s an even shorter shortcut for adding 1 to a variable:

var age = 26;
age++;

By adding the special ++ operator to the end of age, we tell the program to increment

the value of age by 1 and assign the result of this operation as the new value. After

those calculations, age again equals 27.

Before or After?

As an alternative to placing the increment operator at the end of a variable name,

you can also place it at the beginning:

var age = 26;
++age;

This achieves exactly the same end result, with one subtle difference in the pro-

cessing: the value of age is incremented before the variable’s value is read. This

has no effect in the code above, because we’re not using the variable’s value there,

but consider this code:

var age = 26;
var ageCopy = age++;

Here, ageCopy will equal 26. Now consider this:

var age = 26;
var ageCopy = ++age;

In this code, ageCopy will equal 27.

Due to the possible confusion arising from this situation, the tasks of incrementing

a variable and reading its value are not often completed in a single step. It’s safer

to increment and assign variables separately.

Simply JavaScript26

www.allitebooks.com

http://www.allitebooks.org

As well as these special incrementing operators, JavaScript also has the correspond-

ing decrementing operators, -= and --:

var age = 26;
age -= 8;

Now age will be 18, but let’s imagine we just wanted to decrease it by one:

var age = 26;
age--;

age will now be 25.

You can also perform quick assignment multiplication and division using *= and

/=, but these operators are far less common.

Strings
A string is a series of characters of any length, from zero to infinity (or as many as

you can type in your lifetime; ready … set … go!). Those characters could be letters,

numbers, symbols, punctuation marks, or spaces—basically anything you can find

on your keyboard.

To specify a string, we surround a series of characters with quote marks. These can

either be single or double straight quote marks,1 just as long as the opening quote

mark matches the closing quote mark:

var single = 'Just single quotes';
var double = "Just double quotes";
var crazyNumbers = "18 crazy numb3r5";
var crazyPunctuation = '~cr@zy_punctu&t!on';

The quote marks don’t appear in the value of the string, they just mark its boundaries.

You can prove this to yourself by putting the following code into a test JavaScript

file:

1 Some text editors will let you insert curly quotes around a string, “like this.” JavaScript will not recognize

strings surrounded by curly quotes; it only recognizes straight quotes, "like this."

27Programming with JavaScript

var single = 'Just single quotes';
alert(single);

When you load the HTML page that this file’s attached to, you’ll see the alert shown

in Figure 2.2.

Figure 2.2. The string’s value displaying without the quotes used to create the string

It’s okay to include a single quote inside a double-quoted string, or a double quote

inside a single-quoted string, but if you want to include a quote mark inside a string

that’s quoted with the same mark, you must precede the internal quote marks with

a backslash (\). This is called escaping the quote marks:

var singleEscape = 'He said \'RUN\' ever so softly.';
var doubleEscape = "She said \"hide\" in a loud voice.";

Don’t worry—those backslashes disappear when the string is actually used. Let’s

put this code into a test JavaScript file:

var doubleEscape = "She said \"hide\" in a loud voice.";
alert(doubleEscape);

When you load the HTML page the file’s attached to, you’ll see the alert box shown

in Figure 2.3.

Simply JavaScript28

Figure 2.3. The string’s value displaying without the backslashes used to escape quote marks in the string

It doesn’t matter whether you use single or double quotes for your strings—it’s just

a matter of personal preference. I tend to use double quotes, but if I’m creating a

string with a lot of double quotes in it (such as HTML code), I’ll switch to using

single quotes around that string, just so I don’t have to escape all the double quotes

it contains.

String Operations

We can’t perform as many operations on strings as we can on numbers, but a couple

of very useful operators are available to us.

If you’d like to add two strings together, or concatenate them, you use the same +

operator that you use for numbers:

var complete = "com" + "plete";

The value of complete will now be "complete".

Again, you can use a combination of strings and string variables with the + operator:

var name = "Slim Shady";
var sentence = "My name is " + name;

The value of sentence will be "My name is Slim Shady".

You can use the += operator with strings, but not the ++ operator—it doesn’t make

sense to increment strings. So the previous set of statements could be rewritten as:

29Programming with JavaScript

var name = "Slim Shady";
var sentence = "My name is ";
sentence += name;

There’s one last trick to concatenating strings: you can concatenate numbers and

strings, but the result will always end up being a string. If you try to add a number

to a string, JavaScript will automatically convert the number into a string, then

concatenate the two resulting strings:

var sentence = "You are " + 1337

sentence now contains "You are 1337". Use this trick when you want to output

sentences for your h4x0r friends.

Booleans
Boolean values are fairly simple, really—they can be either true or false. It’s

probably easiest to think of a Boolean value as a switch that can either be on or off.

They’re used mainly when we’re making decisions, as we’ll see in a few pages time.

In order to assign a Boolean value to a variable, you simply specify which state you

want it to be in. true and false are keywords in JavaScript, so you don’t need to

put any quote marks around them:

var lying = true;
var truthful = false;

If you were to surround the keywords in quote marks, they’d just be normal strings,

not Boolean values.

Arrays
Numbers, strings and Booleans are good ways to store individual pieces of data, but

what happens when you have a group of data values that you want to work with,

like a list of names or a series of numbers? You could create a whole bunch of

variables, but they still wouldn’t be grouped together, and you’d have a hard time

keeping track of them all.

Simply JavaScript30

Arrays solve this problem by providing you with an ordered structure for storing

a group of values. You can think of an array as being like a rack in which each slot

is able to hold a distinct value.

In order to create an array, we use the special array markers, which are the opening

and closing square brackets:

var rack = [];

The variable rack is now an array, but there’s nothing stored in it.

Each “slot” in an array is actually called an element, and in order to put some data

into an element you have to correctly reference which element you want to put it

in. This reference is called an index, which is a number that represents an element’s

position in an array. The first element in an array has an index of 0, which can be

a little confusing at first, but it’s just a programming quirk you have to get used to.

The second element has an index of 1, the third: 2, and so on.

To reference a particular element, we use the variable name, followed by an opening

square bracket, then the index and a closing square bracket, like this:

var rack = [];
rack[0] = "First";
rack[1] = "Second";

With that data in the array, you could imagine it looking like Figure 2.4.

Figure 2.4. An array storing data sequentially, with an index for each element, starting at 0

31Programming with JavaScript

When we want to retrieve a particular element, we use the array-index notation just

like a normal variable name. So, if we had an array like the one above, we could

create an alert box displaying the value of the second element like this:

alert(rack[1]);

The resulting alert is shown in Figure 2.5.

Figure 2.5. An alert box displaying a value retrieved from an array

It’s possible to populate an array when it’s declared. We simply insert values, sep-

arated with commas, between the square brackets:

var rack = ["First", "Second", "Third", "Fourth"];

That statement says that we should create an array—rack—that has four elements

with the values specified here. The first value will have an index of 0, the second

value an index of 1, and so on. The array that’s created will look like Figure 2.6.

Figure 2.6. The resulting array

Simply JavaScript32

Arrays can contain any data type—not just strings—so you could have an array of

numbers:

var numberArray = [1, 2, 3, 5, 8, 13, 21, 34];

You might have an array of strings:

var stringArray = ["Veni", "Vidi", "Vici"];

A mixed array, containing multiple data types, would look like this:

var mixedArray = [235, "Parramatta", "Road"];

Here’s an array of arrays:

var subArray1 = ["Paris", "Lyon", "Nice"];
var subArray2 = ["Amsterdam", "Eindhoven", "Utrecht"];
var subArray3 = ["Madrid", "Barcelona", "Seville"];

var superArray = [subArray1, subArray2, subArray3];

That last example is what we call a multi-dimensional array—it’s a two-dimensional

array, to be precise—and it’s useful if you want to create a group of groups. In order

to retrieve a value from one of the sub-arrays, you have to reference two indices,

like so:

var city = superArray[0][2];

If we translate that statement, starting from the right side, it says:

[2] Get the third element …

[0] of the first array …

superArray in superArray ...

var city = and save that value in a new variable, city.

33Programming with JavaScript

It’s possible to have arrays of arrays of arrays, and arrays of arrays of arrays of arrays,

but as you can probably tell from these descriptions, such arrangements quickly

become unmanageable, so two-dimensional arrays are normally as far as you ever

need to go.

The last thing to understand about arrays is the fact that a very useful property is

attached to them: length. Sometimes, you’ll be dealing with an unknown array—an

array you’ve obtained from somewhere else—and you won’t know how many ele-

ments it contains. In order to avoid referencing an element that doesn’t exist, you

can check the array’s length to see how many items it actually contains. We perform

this check by adding .length to the end of the array name:

var shortArray = ["First", "Second", "Third"];
var total = shortArray.length;

The value of total will now be 3 because there are three items in the array

shortArray.

It’s important to note that you can’t use array.length to get the index of the last

item in the array. Because the first item’s index is 0, the last item’s index is actually

array.length – 1:

var lastItem = shortArray[shortArray.length – 1];

This situation might seem a bit annoying, until you realize that this makes it easy

to add an element to the end of the array:

shortArray[shortArray.length] = "Fourth";

Associative Arrays
Normal arrays are great for holding big buckets of data, but they can sometimes

make it difficult to find the exact piece of data you’re looking for.

Associative arrays provide a way around this problem—they let you specify key-

value pairs. In most respects an associative array is just like an ordinary array, except

that instead of the indices being numbers, they’re strings, which can be a lot easier

to remember and reference:

Simply JavaScript34

var postcodes = [];
postcodes["Armadale"] = 3143;
postcodes["North Melbourne"] = 3051;
postcodes["Camperdown"] = 2050;
postcodes["Annandale"] = 2038;

Now that we’ve created our associative array, it’s not hard to get the postcode for

Annandale. All we have to do is specify the right key, and the value will appear:

alert(postcodes["Annandale"]);

The resulting alert is shown in Figure 2.7.

Figure 2.7. Finding a postcode using an associative array

Although the keys for an associative array have to be strings, the values can be of

any data type, including other arrays or associative arrays.

Conditions and Loops: Controlling
Program Flow
So far, we’ve seen statements that allow you to set and retrieve variables inside your

program. For a program to be really useful, however, it has to be able to make de-

cisions based on the values of those variables.

The way we make those decisions is through the use of special structures called

conditions and loops, which help to control which parts of your program will run

under particular conditions, and how many times those parts will be run.

35Programming with JavaScript

Conditions: Making Decisions
If you think of your program as being like a road map, and the browser as a car

navigating those roads, you’ll realize that the browser has to be able to take different

paths depending on where the user wants to go. Although a program might seem

like a linear path—one statement following another—conditional statements act

like intersections, allowing you to change directions on the basis of a given condition.

if Statements
The most common conditional statement is an if statement. An if statement checks

a condition, and if that condition is met, allows the program to execute some code.

If the condition isn’t met, the code is skipped.

The flow of a program through an if statement can be visualized as in Figure 2.8.

Figure 2.8. The logical flow of an if statement

Simply JavaScript36

www.allitebooks.com

http://www.allitebooks.org

Written as code, if statements take this form:

if (condition)
{
conditional code;

}

Instead of a semicolon, an if statement ends with the conditional code between

curly braces ({…}).2 It’s considered best practice to put each of these braces on its

own line, to make it as easy as possible to spot where blocks of code begin and end.

Indenting Code

It’s standard practice to indent the code that’s inside curly braces.

On each indented line, a standard number of spaces or tab characters should appear

before the first character of the statement. This helps to improve the readability

of your code and makes it easier to follow the flow of your programs.

We use two spaces as the standard indentation in this book, but you can use four

spaces, one tab—whatever looks best to you. Just be consistent. Every time you

nest curly braces (for instance, in another if statement inside a block of condi-

tional code), you should increase the indentation for the nested lines by one

standard indent.

The condition has to be contained within round brackets (also called parentheses)

and will be evaluated as a Boolean, with true meaning the code between the curly

braces will be executed and false indicating it will be skipped. However, the con-

dition doesn’t have to be an explicit Boolean value—it can be any expression that

evaluates to a value that’s able to be used as a Boolean.

Expressions

An expression is a combination of values, variable references, operators, and

function calls that, when evaluated, produce another value. Wherever a JavaScript

value (like a number or a string) is expected, you can use an expression instead.

2 If the conditional code consists of just one statement, you can choose to omit the curly braces. I find

it clearer to always include the braces, which is what we’ll do in this book.

37Programming with JavaScript

Here’s a simple expression:

4 + 6

When evaluated, it produces a value (10). We can write a statement that uses this

expression like so:

var effect = 4 + 6;

We now have in our program a variable called effect, with a value of 10.

With conditional statements, the most useful types of expressions are those that

use comparison operators to test a condition and return a Boolean value indicating

its outcome.

You might remember comparison operators such as greater than (>) and less than

(<) from some of your old mathematics classes, but there are also equality (==) and

inequality (!=) operators, and various combinations of these. Basically, each com-

parison operator compares what’s on the left of the operator with what’s on the

right, then evaluates to true or false. You can then use that result in a conditional

statement like this:

var age = 27;

if (age > 20)
{
 alert("Drink to get drunk");
}

The greater than and less than operators are really only useful with numbers, because

it feels a bit too Zen to ask “is one string greater than another?”

However, the equality operator (==) is useful with both strings and numbers:

var age = 27;

if (age == 50){
 alert("Half century");
}

Simply JavaScript38

var name = "Maximus";

if (name == "Maximus")
{
 alert("Good afternoon, General.");
}

In the first condition, age is 27 and we’re testing whether it is equal to 50; obviously,

this condition will evaluate to false, so the conditional code will not be run.

In the second condition, name is "Maximus" and we’re testing whether it is equal to

"Maximus". This condition will evaluate to true and the conditional code will be

executed.

== versus =

Be careful to use two equals signs rather than one when you intend to check for

equality. If you use only one, you’ll be assigning the value on the right to the

variable on the left, rather than comparing them, so you’ll end up losing your

original value rather than checking it!

We can reverse the equality test by using the inequality operator (!=):

var name = "Decimus";

if (name != "Maximus")
{
 alert("You are not allowed in.");
}

Now, because name is "Decimus" and we’re testing whether it isn’t equal to "Maximus"

that condition will evaluate to true and the conditional code will be run.

Table 2.1 lists the most commonly used comparison operators, and the results they’ll

return with different values:

39Programming with JavaScript

Table 2.1. Commonly Used Comparison Operators

ResultExampleOperator

true if A is greater than BA > B>

true if A is greater than or equal to BA >= B>=

true if A is less than BA < B<

true if A is less than or equal to BA <= B<=

true if A equals BA == B==

true if A does not equal BA != B!=

true if A’s Boolean value is false!A!

Multiple Conditions

Instead of using just one test as a condition, you can create a whole chain of them

using the logical operators AND (&&) and OR (||).3

Both of these operators may be used to combine conditional tests. The AND operator

specifies that both tests must evaluate to true in order for the whole expression to

evaluate to true. The OR operator specifies that only one of the tests has to evaluate

to true in order for the whole expression to evaluate to true.

Take a look at this conditional statement:

var age = 27;

if (age > 17 && age < 21)
{
 alert("Old enough to vote, too young to drink");
}

Here, age is greater than 17 but it’s not less than 21, so, since one of the tests evalu-

ated to false, the entire condition evaluates to false. This is a good way to check

if a number falls within a specific range.

On the other hand, the OR operator is good for checking whether a variable matches

one of a few values:

3 That’s two vertical bars, not lowercase Ls or number 1s.

Simply JavaScript40

var sport = "Skydiving";

if (sport == "Bungee jumping" || sport == "Cliff diving" ||
 sport == "Skydiving")
{
 alert("You're extreme!");
}

Although the first two tests in this expression evaluate to false, sport matches the

last test in the OR expression, so the whole condition will evaluate to true.

if-else Statements
An if statement allows you to execute some code when a condition is met, but

doesn’t offer any alternative code for cases when the condition isn’t met. That’s the

purpose of the else statement.

In an if-else statement, you begin just as you would for an if statement, but im-

mediately after the closing brace of the if, you include an else, which specifies

code to be executed when the condition of the if statement fails:

if (condition)
{
conditional code;

}
else
{
alternative conditional code;

}

The flow of this construct can be visualized as shown in Figure 2.9.

To provide some alternative code, all you have to do is append an else statement

to the end of the if:

var name = "Marcus";

if (name == "Maximus")
{
 alert("Good afternoon, General.");
}

41Programming with JavaScript

Figure 2.9. The logical flow of an if-else statement

else
{
 alert("You are not allowed in.");
}

This approach saves you from creating a separate if statement with a negative for-

mulation of the original condition.

else-if Statements
Technically speaking, else-if isn’t a separate type of statement from if-else, but

you should be aware of it, because it can be quite useful.

Simply JavaScript42

If you want to provide some alternative code for cases in which an if statement

fails, but you want to further assess the data in order to decide what course of action

to take, an else-if statement is what you need. Instead of just typing else, type

else if, followed by the extra condition you want to test:

var name = "Marcus";

if (name == "Maximus")
{
 alert("Good afternoon, General.");
}
else if (name == "Marcus")
{
 alert("Good afternoon, Emperor.");
}
else
{
 alert("You are not allowed in.");
}

You can chain together as many else-if statements as you want, and at the end,

you can include a normal else statement for use when everything fails (though it’s

not necessary).

Loops: Minimizing Repetition
Computers are meant to make life easier, right? Well, where are those darn robot

servants, huh?

Luckily, computers have a few capabilities that will save you thinking and typing

time when you’re programming. The most effective of these are loops, which auto-

mate repetitive tasks like modifying each element in an array.

There are a couple of different loop statements but they essentially do the same

thing: repeat a set of actions for as long as a specified condition is true.

while Loops
while is the simplest of the loops. All it needs is a condition, and some conditional

code:

43Programming with JavaScript

while (condition)
{
conditional code;

}

When the program first encounters the while loop, it checks the condition. If the

condition evaluates to true, the conditional code will be executed. When the pro-

gram reaches the end of the conditional code, it goes back up to the condition,

checks it, and if it evaluates to true, the conditional code will be executed … and

so on, as Figure 2.10 shows.

A while loop only finishes when its condition evaluates to false. This means it’s

important to have something inside the conditional code that will affect the condi-

tion, eventually making it evaluate to false. Otherwise, your program will never

escape the while loop, and will repeat the conditional code forever, causing the

browser to become unresponsive.4

Loops are extremely handy when they’re used in conjunction with arrays, because

they allow you to step sequentially through the array and perform the same operation

on each element.

To step through an array with a while loop, you need an incrementing counter that

starts at 0 and increases by one each time the loop executes. This incrementer will

keep track of the index of the element that we’re currently working with. When we

reach the end of the array, we need to make it stop—that’s where we use the array’s

length property.

In this example, we’ll multiply each element of the numbers array by two:

var numbers = [1, 2, 3, 4, 5];
var incrementer = 0;
while (incrementer < numbers.length)
{
 numbers[incrementer] *= 2;
 incrementer++;
}

4 In Firefox, the browser will eventually display a message to the user complaining that your script is

taking a long time to execute. Oh, the shame!

Simply JavaScript44

Figure 2.10. The logical flow of a while loop

The conditional code inside that while loop uses incrementer as the index for the

array. Starting at 0, this variable will reference the first element, but because we

increase it by one for each execution of the loop, it will step through all of the ele-

ments in turn. Once incrementer has the same value as numbers.length, the con-

dition will fail and the program will exit the while loop, having doubled all the

elements in the array.

i is for incrementer

The variable name incrementer is frequently shortened to i, which is a com-

monly used name for a variable that increments inside a loop. This variable is

often called a counter variable, because it counts how many times the loop has

been executed.

45Programming with JavaScript

do-while Loops
A do-while loop behaves almost identically to a while loop, with one key difference:

the conditional code is placed before the condition, so the conditional code is always

executed at least once, even if the condition is immediately false.

The conditional code is placed inside the curly braces of the do; the while statement

contains the condition right after that:

do
{
conditional code;

}
while (condition);

The flow of the program can be described as in Figure 2.11.

do-while loops aren’t used very much. In fact, I don’t think I’ve used one in ten

years of programming.5 Your friends and family will be impressed if you know

about them, though.

for Loops
for loops are my favorite kind of loops—they’re so succinct!

They’re a lot like while loops, but they offer a couple of handy shortcuts for state-

ments that we commonly use with loops. Consider this while loop:

var numbers = [1, 2, 3, 4, 5];
var i = 0;
while (i < numbers.length)
{
 numbers[i] *= 2;
 i++;
}

With a for loop, you can reduce the code above to:

5 The co-author wishes it noted that he uses them all the time … possibly just because he likes to show

off.

Simply JavaScript46

www.allitebooks.com

http://www.allitebooks.org

Figure 2.11. The logical flow of a do-while loop

var numbers = [1, 2, 3, 4, 5];

for (var i = 0; i < numbers.length; i++)
{
 numbers[i] *= 2;
}

A for loop shortens two aspects of the while loop: the declaration of a counter

variable, and the incrementing of that variable.

If you look inside the round brackets immediately after the for keyword, you’ll see

three different statements separated by semicolons. The first statement is the declar-

ation. It allows us to declare a counter variable—in this case i—and set its initial

value.

47Programming with JavaScript

The second statement is the condition that controls the loop. Just like the condition

in a while loop, this condition must evaluate to true in order for the conditional

code to be executed. It’s evaluated as soon as the program reaches the for loop (but

after the counter has been declared), so if it evaluates to false immediately, the

conditional code will never be executed.

The third statement is an action that will be executed every time the program reaches

the end of the conditional code. It is normally used to increment (or decrement) the

counter, but you could theoretically put anything in there.

A for loop can be thought to exhibit a flow similar to that shown in Figure 2.12.

Functions: Writing Code for Later
So far, all the JavaScript code we’ve seen (and you’ve perhaps tried out) executes

as soon as the page loads in your browser. It runs from top to bottom and then stops,

never to run again (at least, until the page is reloaded).

Quite often, we’ll want to execute different parts of our program at different times,

or re-run the same code quite a few times. In order to do this, you have to put your

code into functions.

Functions are like little packages of JavaScript code waiting to be called into action.

You’ve seen one function already in this chapter—the alert function we used to

pop up an alert box in the browser. alert is a function that’s native to all

browsers—that means it comes built-in with the browser’s JavaScript interpreter—but

it’s possible to create your own functions, which you can call whenever you want.

A function can essentially be seen as a wrapper for a block of code. All you need

to do is name that block, and you’ll be able to call it from other areas of your program,

whenever you like.

You can define your own functions using the function keyword. This tells the

program that you’re defining a new function, and that the code contained between

the curly braces that follow should be executed whenever that function is called:

Simply JavaScript48

Figure 2.12. The logical flow of a for loop

function warning()
{
 alert("This is your final warning");
}

49Programming with JavaScript

The name that follows the function keyword is the name that you want to give

your function (function names have the same restrictions as variable names). This

is the name you’ll call whenever you want your program to run the code inside the

function. The name must be followed by round brackets—they’re empty in this in-

stance, but as you’ll see in the next section, this will not always be the case.

In the example above, we created a new function called warning, so whenever we

make a call to this function, the statements inside the function will be executed,

causing an alert box to appear, displaying the text, “This is your final warning.”

As in the function declaration above, round brackets must appear immediately after

the function name in a function call:

warning();

These brackets serve two purposes: they tell the program that you want to execute

the function, and they contain the data—also known as arguments—that you want

to pass to the function.6 Not every function has to have arguments passed to it, but

you always have to use the brackets in a function call.

Arguments: Passing Data to a Function
If you look at the ways we used the alert function on previous pages, you’ll notice

that we always inserted a string between the brackets of the function call:

alert("Insert and play");

The string "Insert and play" is actually an argument that we’re passing to the

alert function; the alert is designed to take that argument and display it in the

browser’s alert box.

Functions can be designed to take as many arguments as you want, and those argu-

ments don’t have to be strings—they can be any sort of data that you can create in

JavaScript.

6 Some people like to call these “parameters.” Some people also like to eat sheep’s brains.

Simply JavaScript50

When you define your function, you can provide names for the arguments that are

to be passed to it. These are included in the round brackets immediately after the

function name, with a comma separating arguments in cases where there’s more

than one:

function sandwich(bread, meat)
{
 alert(bread + meat + bread);
}

Once an argument name has been defined in the function declaration, that argument

becomes a variable that’s available every time the function is run, allowing you to

use the data passed to the function inside the function itself.

As you can see in the sandwich function above, two arguments are defined: bread

and meat. These two arguments are used in a call to alert and produce a little

nonsensical message to the user.

Let’s call the function sandwich with the arguments "Rye" and "Pastrami":

sandwich("Rye", "Pastrami");

When the code for sandwich is executed, those arguments become available as the

variables bread and meat, respectively. So, as Figure 2.13 indicates, the user would

end up with a pastrami on rye.

Figure 2.13. Using a function argument as a variable

51Programming with JavaScript

The arguments Array

In addition to being available in their assigned argument names, the values that

are passed to a function are also made available inside an automatically generated

array variable named arguments.

Even if you don’t declare any argument names in your function declaration, you

can actually pass one or more arguments when you call the function. These argu-

ments will still be available in the arguments array. This can be useful for writing

functions that will accept any number of arguments.

Imagine we called a function with these arguments:

debate("affirmative", "negative");

We could access those arguments via the arguments array inside the function,

like this:

function debate()
{
 var affirmative = arguments[0];
 var negative = arguments[1];
}

Return Statements: Outputting Data from a Function
Thus far, the outcome of most of our functions has been to display an alert box to

the user with a message in it. But most of the time, you’ll want your functions to

be silent, simply passing data to other parts of your program.

A function may return data to the statement that called it. The neat thing about that

is that you can assign a function call as the value of a variable, and that variable’s

value will become whatever was returned by the function.

To get a function to return a value, we use the return keyword, followed by the

value we want it to return:

Simply JavaScript52

function sandwich(bread, meat)
{
 var assembled = bread + meat + bread;

return assembled;
}

Then, the function’s all ready to be used in an expression:

var lunch = sandwich("Rye", "Pastrami");

The lunch variable now contains the string "RyePastramiRye".

If you want to get really tricky, you’ll be pleased to hear that the return value can

even be an expression:

function sandwich(bread, meat)
{
 return bread + meat + bread;
}

The expression will be evaluated and the result will be returned, producing the

same effect as the previous version of the code.

A return statement is always the final act of a function; nothing else is processed

after a function has returned. Consider this code:

function prematureReturner()
{
 return "Too quick";

 alert("Was it good for you?");
}

The alert function wouldn’t be called, because the return statement would always

“cut off” execution of the function. This ability to “cut off” execution of a function

with a return statement can be handy when used in conjunction with a conditional

statement, where you only want the rest of the function to be executed if a certain

condition is met.

53Programming with JavaScript

Scope: Keeping your Variables Separate
Right back at the start of this chapter I mentioned that you should avoid using

variables without first declaring them using the var keyword. This will help you

prevent variable clashes in your functions.

Most of the variables we saw in this chapter weren’t declared inside a function, and

therefore reside in what’s known as global scope. Variables declared in global scope

may be accessed from any other JavaScript code running in the current web page.

This mightn’t sound too bad, and it often won’t be a problem … until you start using

common variable names inside your functions.

Take a look at this program:

function countWiis()
{
 stock = 5;
 sales = 3;

 return stock - sales;
}

stock = 0;
wiis = countWiis();

What will be the value of stock after this code has run?

You’d probably expect it still to be 0, which is what we set it to be before calling

countWiis. However, countWiis also uses a variable called stock. But because the

function doesn’t use var to declare this variable, JavaScript will go looking outside

the function—in the global scope—to see whether or not that variable already exists.

Indeed it does, so JavaScript will assign the value 5 to that global variable.

What we really intended was for countWiis to use its own separate stock variable.

To achieve this, we need to declare that variable with local scope. A variable with

local scope exists only within the confines of the function in which it was created.

It also takes precedence over variables with global scope—if a local variable and a

global variable both have the same name, a function will always use the local vari-

able, leaving the global variable untouched.

Simply JavaScript54

How do you declare a local variable? Put var in front of it.

Let’s reformulate our code with all our variables correctly declared:

function countWiis()
{
var stock = 5;
var sales = 3;

 return stock - sales;
}

var stock = 0;
var wiis = countWiis();

The stock variable declared outside the countWiis function will remain untouched

by the stock variable declared inside countWiis—our function can live in peace

and harmony with the rest of the universe!

The lesson here is that unless you intend a variable to be shared throughout your

program, always declare it with var.7

Objects
Now that we’ve looked at variables and functions, we can finally take a look at ob-

jects.

Objects are really just amorphous programming blobs. They’re an amalgam of all

the other data types, existing mainly to make life easier for programmers. Still, their

vagueness of character doesn’t mean they’re not useful.

Objects exist as a way of organizing variables and functions into logical groups. If

your program deals with bunnies and robots, it’ll make sense to have all the functions

and variables that relate to robots in one area, and all the functions and variables

7 Strictly speaking, variables created outside of functions will always be in the global scope, whether

they are declared with var or created simply by assigning a value to an undeclared variable name.

Nevertheless, declaring all your variables with var is a good habit to get into, and is considered best

practice.

55Programming with JavaScript

that relate to bunnies in another area. Objects do this by grouping together sets of

properties and methods.

Properties are variables that are only accessible via their object, and methods are

functions that are only accessible via their object. By requiring all access to properties

and methods to go through the objects that contain them, JavaScript objects make

it much easier to manage your programs.

We’ve actually played with objects already—when you create a new array, you’re

creating a new instance of the built-in Array object. The length of an array is actually

a property of that object, and arrays also have methods like push and splice, which

we’ll use later in this book.

An array is a native object, because it’s built in to the JavaScript language, but it’s

easy to create your own objects using the Object constructor:

var Robot = new Object();

Naming Conventions

Variable names start with a lowercase letter, while object names start with an

uppercase letter. That’s just the way it is. After decades of finely honed program-

ming practice, this convention helps everyone distinguish between the two.

Once you’ve instantiated your new object, you’re then free to add properties and

methods to it, to modify the values of existing properties, and to call the object’s

methods. The properties and methods of an object are both accessed using the dot

(.) syntax:

Robot.metal = "Titanium";
Robot.killAllHumans = function()
{
 alert("Exterminate!");
};

Robot.killAllHumans();

The first line of this code adds to our empty Robot object a metal property, assigning

it a value of "Titanium". Note that we don’t need to use the var keyword when

Simply JavaScript56

we’re declaring properties, since properties are always in object scope—they must

be accessed via the object that contains them.

The statement that begins on the second line adds a killAllHumans method to our

Robot object. Note that this is a little different from the syntax that we used previ-

ously to declare a standalone function; here, our method declaration takes the form

of an assignment statement (note the assignment operator, =, and the semicolon at

the end of the code block).

Alternative Syntax for Standalone Functions

As it turns out, you can also use this syntax to declare standalone functions if you

want to. Never let it be said that JavaScript doesn’t give you options! Before, we

used this function declaration:

function sandwich(bread, meat)
{
 alert(bread + meat + bread);
}

JavaScript lets you write this in the form of a variable assignment, if you prefer:

var sandwich = function(bread, meat)
{
 alert(bread + meat + bread);
};

As you might expect, there is a very subtle difference between the effects of these

two code styles: a function declared with the former syntax can be used by any

code in the file, even if it comes before the function declaration. A function de-

clared with the latter syntax can only be used by code that executes after the as-

signment statement that declares the function. If your code is well organized,

however, this difference won’t matter.

Finally, the last line of our program calls the Robot object’s killAllHumans method.

As with a lot of JavaScript, we can shortcut this whole sequence using the object

literal syntax:

57Programming with JavaScript

var Robot =
{
 metal: "Titanium",
 killAllHumans: function()
 {
 alert("Exterminate!");
 }
};

Rather than first creating an empty object and then populating it with properties

and methods using a series of assignment statements, object literal syntax lets you

create the object and its contents with a single statement.

In object literal syntax, we represent a new object with curly braces; inside those

braces, we list the properties and methods of the object, separated by commas. For

each property and method, we assign a value using a colon (:) instead of the assign-

ment operator.

Object literal syntax can be a little difficult to read once you’ve been using the

standard assignment syntax for a while, but it is slightly more succinct.

We’re going to use this object literal syntax throughout this book to create neatly

self-contained packages of functionality that you can easily transport from page to

page.

Unobtrusive Scripting in the Real World
After reading Chapter 1, you no doubt have it fairly clear in your head that HTML

is for content and JavaScript is for behavior, and never the twain shall meet. How-

ever, it’s not quite that simple in the real world.

If you have a close look at the way JavaScript is downloaded alongside the HTML

page that links to it, you should notice that sometimes—in fact most of the time—the

JavaScript will download before all of the HTML has downloaded. This presents

us with a slight problem.

Browsers execute JavaScript files as soon as the JavaScript file is downloaded—not

the HTML file. So chances are that the JavaScript will be executed before all of the

HTML has been downloaded. If your JavaScript executes and is trying to enhance

Simply JavaScript58

the HTML content with behavior before it’s ready, you’re probably going to start

seeing JavaScript errors about HTML elements not being where they’re supposed

to be.

One way around this problem is to wait until all of the HTML is ready before you

run any JavaScript that modifies or uses the HTML. Luckily, JavaScript has a way

of detecting when the web page is ready to do this. Unluckily, the code involved is

rather complicated.

To get you up to speed quickly, I’ve created a special library object, Core. This object

includes a method called start that monitors the status of the page, and lets your

JavaScript objects know when it’s safe to start playing around with the HTML. It

does this by calling your object’s init method. All you have to do is let the function

know which objects require this notification, and make sure each of those objects

has an init method that will start working with the web page when it’s called.

So, if you had a Robot object that wanted to find all the robots on your page, you’d

write the following code:

var Robot =
{
 init: function()
 {

Your HTML modifying code;
 }
};

Core.start(Robot);

By registering Robot with Core.start on the final line, you can rest assured that

Robot.init will be run only when it’s safe to do so.

Core.start uses some JavaScript voodoo that we’ll learn about in later chapters,

but if you want to know all the details now, flick to Appendix A.

Summary
If you’ve never programmed before, stepping into JavaScript can be a little daunting,

so don’t think you have to understand it straight away. Take the time to read through

59Programming with JavaScript

this chapter’s explanations again, and maybe try out some of the examples—I find

I learn best by practical experience and experimentation.

Once you’ve got a firm understanding of the concepts behind programming and the

basics of JavaScript, continue on to the next chapter, where we’ll learn how to work

with the contents of web pages and create some real-world programs.

Simply JavaScript60

Chapter3
Document Access
Without a document, JavaScript would have no way to make its presence felt. It’s

HTML that creates the tangible interface through which JavaScript can reach its

users.

This relationship makes it vital that JavaScript be able to access, create, and manip-

ulate every part of the document. To this end, the W3C created the Document Object

Model—a system through which scripts can influence the document. This system

not only allows JavaScript to make changes to the structure of the document, but

enables it to access a document’s styles and change the way it looks.

If you want to take control of your interfaces, you’ll first have to master the DOM.

The Document Object Model:
Mapping your HTML
When an HTML document is downloaded to your browser, that browser has to do

the job of turning what is essentially one long string of characters into a web page.

To do this, the browser decides which parts are paragraphs, which parts are headings,

which parts are text, and so on. In order to save poor JavaScript programmers from

having to do the exact same work, the browser stores its interpretation of the HTML

code as a structure of JavaScript objects, called the Document Object Model, or

DOM.

Within this model, each element in the HTML document becomes an object, as do

all the attributes and text. JavaScript can access each of these objects independently,

using built-in functions that make it easy to find and change what we want on the

fly.

As a result of the way in which HTML is written—as a hierarchy of nested elements

marked with start and end tags—the DOM creates a different object for each element,

but links each element object to its enclosing (or parent) element. This creates an

explicit parent-child relationship between elements, and lends the visualization of

the DOM most readily to a tree structure.

Take, for example, this HTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>DOMinating JavaScript</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 </head>
 <body>
 <h1>
 DOMinating JavaScript
 </h1>
 <p>
 If you need some help with your JavaScript, you might like
 to read articles from <a href="http://www.danwebb.net/"
 rel="external">Dan Webb,
 PPK
 and Jeremy
 Keith.
 </p>
 </body>
</html>

Simply JavaScript62

These elements, as mapped out in the DOM, can most easily be thought of as shown

in Figure 3.1.

Figure 3.1. Each element on an HTML page linking to its parent in the DOM

To create the DOM for a document, each element in the HTML is represented by

what’s known as a node. A node’s position in the DOM tree is determined by its

parent and child nodes.

An element node is distinguished by its element name (head, body, h1, etc.), but

this doesn’t have to be unique. Unless you supply some identifying characterist-

ic—like an id attribute—one paragraph node will appear much the same as another.

Technically, there’s a special node that’s always contained in a document, no matter

what that document’s content is. It always sits right at the top of the tree and it’s

called the document node. With that in mind, Figure 3.2 would be a more accurate

representation of the DOM.

63Document Access

Figure 3.2. The DOM tree, including the document node

Element nodes (that is, nodes that represent HTML elements) are one type of node,

and they define most of the structure of the DOM, but the actual content of a docu-

ment is contained in two other types of nodes: text nodes and attribute nodes.

Text Nodes
In HTML code, anything that’s not contained between angled brackets will be inter-

preted as a text node in the DOM. Structurally, text nodes are treated almost exactly

like element nodes: they sit in the same tree structure and can be reached just like

element nodes; however, they cannot have children.

If we reconsider the HTML example we saw earlier, and include the text nodes in

our visualization of the DOM, it becomes a lot bigger, as Figure 3.3 illustrates.

Simply JavaScript64

Figure 3.3. The complete DOM tree, including text nodes

Although those text nodes all look fairly similar, each node has its own value, which

stores the actual text that the node represents. So the value of the text node inside

the title element in this example would be “DOMinating JavaScript.”

Whitespace May Produce Text Nodes

As well as visible characters, text nodes contain invisible characters such as new

lines and tabs. If you indent your code to make it more readable (as we do in this

book), each of the lines and tabs that you use to separate any tags or text will be

included in a text node.

This means you may end up with text nodes in between adjacent elements, or

with extra white space at the beginning or end of a text node. Browsers handle

these whitespace nodes differently, and this variability in DOM parsing is the

reason why you have to be very careful when relying upon the number or order

of nodes in the DOM.

Attribute Nodes
With tags and text covered by element and text nodes, the only pieces of information

that remain to be accounted for in the DOM are attributes. At first glance, attributes

would appear to be part of an element—and they are, in a way—but they still occupy

their own type of nodes, handily called attribute nodes.

65Document Access

Either of the two anchor elements in the example DOM we saw earlier could be

visualized as shown in Figure 3.4 with the element’s attribute nodes.

Figure 3.4. The href and rel attributes represented as attribute nodes in the DOM

Attribute nodes are always attached to an element node, but they don’t fit into the

structure of the DOM like element and text nodes do—they’re not counted as children

of the element they’re attached to. Because of this, we use different functions to

work with attribute nodes—we’ll discuss those functions later in the chapter.

As you can see from the diagrams presented here, the DOM quickly becomes com-

plex—even with a simple document—so you’ll need some powerful ways to

identify and manipulate the parts you want. That’s what we’ll be looking at next.

Accessing the Nodes you Want
Now that we know how the DOM is structured, we’ve got a good idea of the sorts

of things we’ll want to access. Each node—be it an element, text, or attribute

node—contains information that we can use to identify it, but it’s a delicate matter

to sort through all of the nodes in a document to find those we want.

In many ways, manipulating an element via the DOM is a lot like applying element

styles via CSS. Both tasks take this general pattern:

1. Specify the element or group of elements that you want to affect.

2. Specify the effect you want to have on them.

Simply JavaScript66

Although the ways in which we manipulate elements vary greatly between the two

technologies, the processes we use to find the elements we want to work on are

strikingly similar.

Finding an Element by ID
The most direct path to an element is via its id attribute. id is an optional HTML

attribute that can be added to any element on the page, but each ID you use has to

be unique within that document:

<p id="uniqueElement">
 ⋮
</p>

If you set out to find an element by ID, you’ll need to make one big assumption:

that the element you want has an ID. Sometimes, this assumption will mean that

you need to massage your HTML code ahead of time, to make sure that the required

element has an ID; at other times, that ID will naturally appear in the HTML (as part

of the document’s semantic structure). But once an element does have an ID, it be-

comes particularly easy for JavaScript to find.

If you wanted to reference a particular element by ID in CSS, you’d use an ID selector

beginning with #:

#uniqueElement
{
 color: blue;
}

Roughly translated, that CSS says:

Find the element with the ID uniqueElement.

Make its color blue.

CSS is quite a succinct language. JavaScript is not. So, to reference an element by

ID in JavaScript, we use the getElementById method, which is available only from

the document node. It takes a string as an argument, then finds the element that has

that string as its ID. I like to think of getElementById as a sniper that can pick out

67Document Access

one element at a time—highly targeted. For instance, imagine that our document

included this HTML:

<h1>
 Sniper (1993)
</h1>
<p>
 In this cinema masterpiece,
 Tom Berenger plays
 a US soldier working in the Panamanian jungle.
</p>

We can obtain a reference to the HTML element with the ID berenger, irrespective

of what type of element it is:

var target = document.getElementById("berenger");

The variable target will now reference the DOM node for the anchor element

around Tom Berenger’s name. But let’s suppose that the ID was moved onto another

element:

<h1 id="berenger">
 Sniper (1993)
</h1>
<p>
 In this cinema masterpiece,
 Tom Berenger plays a US soldier
 working in the Panamanian jungle.
</p>

Now, if we execute the same JavaScript code, our target would reference the h1

element.

Once you have a reference to an element node, you can use lots of native methods

and properties on it to gain information about the element, or modify its contents.

You’ll explore a lot of these methods and properties as you progress through this

book.

If you’d like to try to get some information about the element we just found, you

can access one or more of the element node’s native properties. One such property

Simply JavaScript68

is nodeName, which tells you the exact tag name of the node you’re referencing. To

display the tag name of the element captured by getElementById, you could run

this code:

var target = document.getElementById("berenger");
alert(target.nodeName);

An alert dialog will pop up displaying the tag name, as shown in Figure 3.5.

Figure 3.5. Displaying an element’s tag name using the nodeName property

If an element with the particular ID you’re looking for doesn’t exist, getElementById

won’t return a reference to a node—instead, it will return the value null. null is a

special value that usually indicates some type of error. Essentially, it indicates the

absence of an object when one might normally be expected.

If you’re not sure that your document will contain an element with the particular

ID you’re looking for, it’s safest to check that getElementById actually returns a

node object, because performing most operations on a null value will cause your

program to report an error and stop running. You can perform this check easily using

a conditional statement that verifies that the reference returned from getElementById

isn’t null:

var target = document.getElementById("berenger");

if (target != null)
{
 alert(target.nodeName);
}

69Document Access

Finding Elements by Tag Name
Using IDs to locate elements is excellent if you want to modify one element at a

time, but if you want to find a group of elements, getElementsByTagName is the

method for you.

Its equivalent in CSS would be the element type selector:

li
{
 color: blue;
}

Unlike getElementById, getElementsByTagName can be executed as a method of

any element node, but it’s most commonly called on the document node.

Take a look at this document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>Tag Name Locator</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 </head>
 <body>
 <p>
 There are 3 different types of element in this body:
 </p>

 paragraph

 unordered list

 list item

Simply JavaScript70

 </body>
</html>

We can retrieve all these list item elements using one line of JavaScript:

var listItems = document.getElementsByTagName("li");

By executing that code, you’re telling your program to search through all of the

descendants of the document node, get all the nodes with a tag name of "li", and

assign that group to the listItems variable.

listItems ends up containing a collection of nodes called a node list. A node list

is a JavaScript object that contains a list of node objects in source order. In the ex-

ample we just saw, all the nodes in the node list have a tag name of "li".

Node lists behave a lot like arrays, which we saw in Chapter 2, although they lack

some of the useful methods that arrays provide. In general, however, you can treat

them the same way. Since getElementsByTagName always returns a node list in

source order, we know that the second node in the list will actually be the second

node in the HTML source, so to reference it you would use the index 1 (remember,

the first index in an array is 0):

var listItems = document.getElementsByTagName("li");
var secondItem = listItems[1];

secondItem would now be a reference to the list item containing the text “unordered

list.”

Node lists also have a length property, so you can retrieve the number of nodes in

a collection by referencing its length:

var listItems = document.getElementsByTagName("li");
var numItems = listItems.length;

Given that the document contained three list items, numItems will be 3.

71Document Access

The fact that a node list is referenced similarly to an array means that it’s easy to

use a loop to perform the same task on each of the nodes in the list. If we wanted

to check that getElementsByTagName only returned elements with the same tag

name, we could output the tag name of each of the nodes using a for loop:

var listItems = document.getElementsByTagName("li");

for (var i = 0; i < listItems.length; i++)
{
 alert(listItems[i].nodeName);
}

Unlike getElementById, getElementsByTagName will return a node list even if no

elements matched the supplied tag name. The length of this node list will be 0.

This means it’s safe to use statements that check the length of the node list, as in

the loop above, but it’s not safe to directly reference an index in the list without

first checking the length to make sure that the index will be valid. Looping through

the node list using its length property as part of the loop condition is usually the

best way to do this.

Restricting Tag Name Selection
At the start of this section, I mentioned that getElementsByTagName can be executed

from any element node, not just the document node. Calling this method from an

element node allows you to restrict the area of the DOM from which you want to

select nodes.

For instance, imagine that your document included multiple unordered lists, like

this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>Tag Name Locator</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 </head>
 <body>
 <p>

Simply JavaScript72

 There are 3 different types of element in this body:
 </p>

 paragraph

 unordered list

 list item

 <p>
 There are 2 children of html:
 </p>

 head

 body

 </body>
</html>

Now, you might want to get the list items from the second list only—not the first.

If you were to call document.getElementsByTagName("li"), you’d end up with a

collection that contained all five list items in the document, which, obviously, is

not what you want. But if you get a reference to the second list and use that reference

to call the method, it’s possible to get the list items from that list alone:

var lists = document.getElementsByTagName("ul");
var secondList = lists[1];
var secondListItems = secondList.getElementsByTagName("li");

secondListItems now contains just the two list items from the second list.

Here, we’ve used two getElementsByTagName calls to get the elements we wanted,

but there is an alternative. We could use a getElementById call to get the required

reference to the second list (if the second list had an ID) before we called

73Document Access

getElementsByTagName, to get the list items it contains. Combining multiple DOM

method calls is something you should get a feel for fairly quickly. The best approach

will often depend upon the structure of the HTML you’re dealing with.

Finding Elements by Class Name
It’s quite often very handy to find elements based on a class rather than a tag name.

Although we’re stuck with the same 91 HTML elements wherever we go, we can

readily customize our classes to create easily referenced groups of elements that

suit our purposes.

Compared to searching by tag name, using a class as a selector can be a more gran-

ular way to find elements (as it lets you get a subset of a particular tag name group)

as well as a broader way to find elements (as it lets you select a group of elements

that have a range of tag names).

Unfortunately, no built-in DOM function lets you get elements by class, so I think

it’s time we created our first real function! Once that’s done, we can add the function

to our custom JavaScript library and call it whenever we want to get all elements

with a particular class.

Starting your First Function
When you’re writing a function or a program, your first step should be to define

clearly in plain English what you want it to do. If you’re tackling a relatively simple

problem, you might be able to translate that description straight into JavaScript, but

usually you’ll need to break the task down into simple steps.

The full description of what we want to do here could be something like, “find all

elements with a particular class in the document.”

That sounds deceptively simple; let’s break it down into more logical steps:

1. Look at each element in the document.

2. For each element, perform a check that compares its class against the one we’re

looking for.

3. If the classes match, add the element to our group of elements.

Simply JavaScript74

A couple of things should jump out at you immediately from those steps. Firstly,

whenever you see the phrase “for each,” chances are that you’re going to need a

loop. Secondly, whenever there’s a condition such as “if it matches,” you’re going

to need a conditional statement. Lastly, when we talk about a “group,” that usually

means an array or node list.

With those predictions in mind, let’s turn these three steps into code.

Looking at All the Elements
First of all, we’ll need to get all the elements in the document. We do this using

getElementsByTagName, but we’re not going to look for a particular tag; instead,

we’re going to pass this method the special value "*", which tells it to return all

elements.

Unfortunately, Internet Explorer 5.x doesn’t understand that special value, so we

have to write some additional code in order to support that browser. In Internet

Explorer 5.x, Microsoft created a special object that contains all the elements in the

document, and called it document.all. document.all is basically a node list con-

taining all the elements, so it’s synonymous with calling

document.getElementsByTagName("*").

Most other browsers don’t have the document.all object, but those that do implement

it just like Internet Explorer, so our code can simply test to see whether document.all

exists. If it does, we use the Internet Explorer 5.x way of getting all the elements. If

it doesn’t, we use the normal approach:

var elementArray = [];

if (typeof document.all != "undefined")
{
 elementArray = document.all;
}
else
{
 elementArray = document.getElementsByTagName("*");
}

The conditional statement above uses the typeof operator to check for the existence

of document.all. typeof checks the data type of the value that follows it, and pro-

75Document Access

duces a string that describes the value’s type (for instance, "number", "string",

"object", etc.). Even if the value is null, it will still return a type ("object"), but

if you supply typeof with a variable or property name that hasn’t been assigned

any value whatsoever, it will return the string "undefined". This technique, called

object detection, is the safest way of testing whether an object—such as

document.all—exists. If typeof returns "undefined", we know that the browser

doesn’t implement that feature.

Whichever part of the conditional statement the browser decides to execute, we

end up correctly assigning to elementArray a node list of every element in the

document.

Checking the Class of Each Element
Now that we have a collection of elements to look at, we can check the class of each:

var pattern = new RegExp("(^|)" + theClass + "(|$)");

for (var i = 0; i < elementArray.length; i++)
{
 if (pattern.test(elementArray[i].className))
 {
 ⋮
 }
}

The value that we assign to the variable pattern on the first line will probably look

rather alien to you. In fact, this is a regular expression, which we’ll explore more

fully in Chapter 6. For now, what you need to know is that regular expressions help

us search strings for a particular pattern. In this case, our regular expression uses

the variable theClass as the class we want to match against; theClass will be passed

into our function as an argument.

Once we’ve set up our regular expression with that class name, we use a for loop

to step through each of the elements in elementArray.

Every time we move through the for loop, we use the pattern regular expression,

testing the current element’s class attribute against it. We do this by passing the

element’s className property—a string value—to the regular expression’s test

Simply JavaScript76

method. Every element node has a className property, which corresponds directly

to that element’s class attribute in the HTML.

When pattern.test is run, it checks the string argument that’s passed to it against

the regular expression. If the string matches the regular expression (that is, it contains

the specified class name), it will return true; if the string doesn’t match the regular

expression, it will return false. In this way, we can use a regular expression test

as the condition for an if statement. In this example, we use the conditional state-

ment to tell us if the current element has a class that matches the one we’re looking

for.

But why can’t we just perform a direct string comparison on the class, like this?

if (elementArray[i].className == theClass) // this won't work

The thing about dealing with an element’s className property is that it can actually

contain multiple classes, separated by spaces, like this:

<div class="article summary clicked">

For this reason, simply checking whether the class attribute’s value equals the

class that we’re interested in is not always sufficient. When checking to see

whether class contains a particular class, we need to use a more advanced method

of searching within the attribute value, which is why we used a regular expression.

Adding Matching Elements to our Group of Elements
Once we’ve decided that an element matches the criteria we’ve set, we need to add

it to our group of elements. But where’s our group? Earlier, I said that a node list is

a lot like an array. We can’t actually create our own node lists—the closest thing

we can create is an array.

Outside the for loop, we create the array that’s going to hold the group of elements,

then add each matched element to the array as we find it:

var matchedArray = [];
var pattern = new RegExp("(^|)" + theClass + "(|$)");

for (var i = 0; i < elementArray.length; i++)

77Document Access

{
 if (pattern.test(elementArray[i].className))
 {

matchedArray[matchedArray.length] = elementArray[i];
 }
}

Within the if statement we wrote in the previous step, we add any newly matched

elements to the end of matchedArray, using its current length as the index of the

new element (remember that the length of an array will always be one more than

the index of the last element).

Once the for loop has finished executing, all of the elements in the document that

have the required class will be referenced inside matchedArray. We’re almost done!

Putting it All Together
The guts of our function are now pretty much written. All we have to do it paste

them together and put them inside a function:

core.js (excerpt)

Core.getElementsByClass = function(theClass)
{
 var elementArray = [];

 if (document.all)
 {
 elementArray = document.all;
 }
 else
 {
 elementArray = document.getElementsByTagName("*");
 }

 var matchedArray = [];
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 for (var i = 0; i < elementArray.length; i++)
 {
 if (pattern.test(elementArray[i].className))
 {

Simply JavaScript78

 matchedArray[matchedArray.length] = elementArray[i];
 }
 }

return matchedArray;
};

We’ve called our new function Core.getElementsByClass, and our function

definition contains one argument—theClass—which is the class we use to construct

our regular expression. As well as placing the code inside a function block, we in-

clude a return statement that passes matchedArray back to the statement that called

Core.getElementsByClass.

Now that it’s part of our Core library, we can use this function to find a group of

elements by class from anywhere in our JavaScript code:

var elementArray = Core.getElementsByClass("dataTable");

Navigating the DOM Tree
The methods for finding DOM elements that I’ve described so far have been fairly

targeted—we’re jumping straight to a particular node in the tree without worrying

about the connections in between.

This works fine when there’s some distinguishing feature about the element in

question that allows us to identify it: an ID, a tag name, or a class. But what if you

want to get an element on the basis of its relationship with the nodes that surround

it? For instance, if we have a list item node and want to retrieve its parent ul, how

do we do that? For that matter, how do we get the next item in the list?

For each node in the tree, the DOM specifies a number of properties, and it’s these

properties that allow us to move around the tree one step at a time. Where

document.getElementById and its ilk are like direct map references (“go to S37°

47.75’, E144° 59.01’”), these DOM properties are like giving directions: “turn left

onto the Bayshore Freeway and a right onto Amphitheater Parkway.” Some people

call this process walking the DOM.

79Document Access

Finding a Parent
Every element node—except for the document node—has a parent. Consequently,

each element node has a property called parentNode. When we use this property,

we receive a reference to the target element’s parent.

Consider this HTML:

<p>
 Oliver Twist
</p>

Once we have a reference to the anchor element, we can get a reference to its parent

paragraph using parentNode like so:

var oliver = document.getElementById("oliver");
var paragraph = oliver.parentNode;

Finding Children
The parent-child relationship isn’t just one way. You can find all of the children of

an element using the childNodes property.

An element can only have one parent, but it can have many children, so childNodes

is actually a node list that contains all of the element’s children, in source order.

Take, for instance, a list like this:

<ul id="baldwins">

 Alec

 Daniel

 William

Simply JavaScript80

 Stephen

The unordered list node will have four child nodes,1 each of which matches a list

item. To get the third list item (the one containing “William”) in the list above, we’d

get the third element in the childNodes list:

var baldwins = document.getElementById("baldwins");
var william = baldwins.childNodes[2];

Two shortcut properties are available to help us get the first child or last child of

an element: the firstChild and lastChild properties, respectively.

To get the “Alec” list item, we could just use:

var alec = baldwins.firstChild;

And to get the “Stephen” list item, we can use:

var stephen = baldwins.lastChild;

I don’t think firstChild is all that much easier than typing childNodes[0], but

lastChild is definitely shorter than childNodes[childNodes.length – 1], so it’s

a shortcut that I use regularly.

Finding Siblings
As well as moving up and down the DOM tree, we can move from side to side by

getting the next or previous node on the same level. The properties we use to do so

are nextSibling and previousSibling.

If we continued on from the example we saw a moment ago, we could get to the

“Stephen” list item from “William” using nextSibling:

var stephen = william.nextSibling;

1 As noted at the start of this chapter, the number of nodes may vary depending on whether the browser

in question counts the whitespace between each of the list items.

81Document Access

We could get to the “Daniel” list item using previousSibling:

var daniel = william.previousSibling;

If we’re at the last node on a level, and try to get the nextSibling, the property will

be null. Similarly, if we’re at the first node on a level and try to get

previousSibling, that property will also be null. You should check to make sure

you have a valid node reference whenever you use either of these properties.

Figure 3.6 provides a clear visualization of where each of these DOM-walking

properties will get you to from a given node in the DOM tree.

Figure 3.6. Moving around the DOM tree using the element node’s DOM properties

Interacting with Attributes
As I mentioned when we discussed the structure of the DOM, attributes are localized

to the elements they’re associated with—they don’t have much relevance in the

larger scheme of things. Therefore, we don’t have DOM functions that will let you

find a particular attribute node, or all attributes with a certain value.

Attributes are more focused on reading and modifying the data related to an element.

As such, the DOM only offers two methods related to attributes, and both of them

can only be used once you have an element reference.

Simply JavaScript82

Getting an Attribute
With a reference to an element already in hand, you can get the value of one of its

attributes by calling the method getAttribute with the attribute name as an argu-

ment.

Let’s get the href attribute value for this link:

Let's all hug Koko

We need to create a reference to the anchor element, then use getAttribute to re-

trieve the value:

var koko = document.getElementById("koko");
var kokoHref = koko.getAttribute("href");

The value of kokoHref will now be "http://www.koko.org/".

This approach works for any of the attributes that have been set for an element:

var koko = document.getElementById("koko");
var kokoId = koko.getAttribute("id");

The value of kokoId will now be "koko".

At least, that’s how it’s supposed to work, according to the W3C. But in reality,

getAttribute is beset by problems in quite a few of the major browsers.2 Firefox

returns null for unset values when it’s supposed to return a string, as does Opera

9. Internet Explorer returns a string for most unset attributes, but returns null for

non-string attributes like onclick. When it does return a value, Internet Explorer

subtly alters a number of the attribute values it returns, making them different from

those returned by other browsers. For example, it converts href attribute values to

absolute URLs.

2 getAttribute is a bit of a mess across all browsers, but most noticeably in Internet Explorer. For

a complete rundown of what’s going on, visit http://tobielangel.com/2007/1/11/attribute-nightmare-in-ie.

83Document Access

With all of these problems currently in play, at the moment it’s safer to use the old-

style method of getting attributes, which we can do by accessing each attribute as

a dot property of an element.

In using this approach to get the href on our anchor, we’d rewrite the code as fol-

lows:

var koko = document.getElementById("koko");
var kokoHref = koko.href;

In most cases, fetching an attribute value is just a matter of appending the attribute

name to the end of the element, but in a couple of cases the attribute name is a re-

served word in JavaScript. This is why we use element.className for the class

attribute, and why, if you ever need to get the for attribute, you’ll need to use

element.htmlFor.

Setting an Attribute
As well as being readable, all HTML attributes are writable via the DOM.

To write an attribute value, we use the setAttribute method on an element, spe-

cifying both the attribute name we want to set and the value we want to set it to:

var koko = document.getElementById("koko");
koko.setAttribute("href", "/koko/");

When we run those lines of code, the href for Koko’s link will change from

http://www.koko.org/ to /koko/.

Thankfully, there are no issues with setAttribute across browsers, so we can safely

use it anywhere.

setAttribute can be used not only to change preexisting attributes, but also to add

new attributes. So if we wanted to add a title that described the link in more detail,

we could use setAttribute to specify the value of the new title attribute, which

would be added to the anchor element:

var koko = document.getElementById("koko");
koko.setAttribute("title", "Web site of the Gorilla Foundation");

Simply JavaScript84

If you were to take the browser’s internal representation of the document following

this DOM change and convert it to HTML, here’s what you’d get:

<a id="koko" href="http://www.koko.org/"
 title="Web site of the Gorilla Foundation">Let's all hug
 Koko

Changing Styles
Almost every aspect of your web page is accessible via the DOM, including the way

it looks.

Each element node has a property called style. style is a deceptively expansive

object that lets you change every aspect of an element’s appearance, from the color

of its text, to its line height, to the type of border that’s drawn around it. For every

CSS property that’s applicable to an element, style has an equivalent property that

allows us to change that property’s value.

To change the text color of an element, we’d use style.color:

var scarlet = document.getElementById("scarlet");
scarlet.style.color = "#FF0000";

To change its background color, we’d use style.backgroundColor:

var indigo = document.getElementById("indigo");
indigo.style.backgroundColor = "#000066";

We don’t have enough space here to list every property you could change, but there’s

a good rule of thumb: if you wish to access a particular CSS property, simply append

it as a property of the style object. Any properties that include hyphens (like

text-indent) should be converted to camel case (textIndent). If you leave the

hyphen in there, JavaScript will try to subtract one word from the other, which

makes about as much sense as that sentence!

Any changes to the style object will take immediate effect on the display of the

page. Using style, it’s possible to change a page like Figure 3.7 into a page like

Figure 3.8 using just three lines of code.

85Document Access

Figure 3.7. A standard page

Figure 3.8. The same page, altered using style

Here’s the code that makes all the difference:

style_object.js (excerpt)

var body = document.getElementsByTagName("body")[0];
body.style.backgroundColor = "#000000";
body.style.color = "#FFFFFF";

Simply JavaScript86

The color CSS property is inherited by child elements, so changing style.color

on the body element will also affect every element inside the body to which a spe-

cific color is not assigned.

The style object directly accesses the HTML style attribute, so the JavaScript code

we just saw is literally equivalent to this HTML:

<body style="background-color: #000000; color: #FFFFFF;">

As it is the inline style of an element, if you make a change to an element’s style

property, and that change conflicts with any of the rules in your CSS files, the style

property will take precedence (except, of course, for properties marked !important).

Changing Styles with Class
In the world of CSS, it’s considered bad practice to use inline styles to style an

element’s appearance. Equally, in JavaScript it’s considered bad practice to use the

style property as a means of styling an element’s appearance.

As we discussed in Chapter 1, you want to keep the layers separated, so HTML

shouldn’t include style information, and JavaScript shouldn’t include style inform-

ation.

The best way to change an element’s appearance with JavaScript is to change its

class. This approach has several advantages:

■ We don’t mix behavior with style.

■ We don’t have to hunt through a JavaScript file to change styles.

■ Style changes can be made by those who make the styles, not the JavaScript

programmers.

■ It’s more succinct to write styles in CSS.

Most of the time, changes to an element’s appearance can be defined as distinct

changes to its state, as described in its class. It’s these state changes that you should

be controlling through JavaScript, not specific properties of its appearance.

The only situation in which it’s okay to use the style property arises when you

need to calculate a CSS value on the fly. This often occurs when you’re moving

objects around the screen (for instance, to follow the cursor), or when you animate

87Document Access

a particular property, such as in the “yellow fade” technique (which changes an

element’s background-color by increments).

Comparing Classes
When we’re checking to see whether className contains a particular class, we need

to use a special search, like the one we used to write Core.getElementsByClass

earlier in this chapter. In fact, we can use that same regular expression to create a

function that will tell us whether or not an element has a particular class attached

to it:

core.js (excerpt)

Core.hasClass = function(target, theClass)
{
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 if (pattern.test(target.className))
 {
 return true;
 }

 return false;
};

Core.hasClass takes two arguments: an element and a class. The class is used inside

the regular expression and compared with the className of the element. If the

pattern.test method returns true, it means that the element does have the specified

class, and we can return true from the function. If pattern.test returns false,

Core.hasClass returns false by default.

Now, we can very easily use this function inside a conditional statement to execute

some code when an element has (or doesn’t have) a matching class:

var scarlet = document.getElementById("scarlet");

if (Core.hasClass(scarlet, "clicked"))
{
 ⋮
}

Simply JavaScript88

Adding a Class
When we’re adding a class, we have to take the same amount of care as we did when

comparing it. The main thing we have to be careful about here is to not overwrite

an element’s existing classes. Also, to make it easy to remove a class, we shouldn’t

add a class to an element that already has that class. To make sure we don’t, we’ll

use Core.hasClass inside Core.addClass:

core.js (excerpt)

Core.addClass = function(target, theClass)
{
 if (!Core.hasClass(target, theClass))
 {
 if (target.className == "")
 {
 target.className = theClass;
 }
 else
 {
 target.className += " " + theClass;
 }
 }
};

The first conditional statement inside Core.addClass uses Core.hasClass to check

whether or not the target element already has the class we’re trying to add. If it

does, there’s no need to add the class again.

If the target doesn’t have the class, we have to check whether that element has

any classes at all. If it has none (that is, the className is an empty string), it’s safe

to assign theClass directly to target.className. But if the element has some

preexisting classes, we have to follow the syntax for multiple classes, whereby each

class is separated by a space. Thus, we add a space to the end of className, followed

by theClass. Then we’re done.

Now that Core.addClass performs all these checks for us, it’s easy to use it

whenever we want to add a new class to an element:

89Document Access

class.js (excerpt)

var body = document.getElementsByTagName("body")[0];
Core.addClass(body, "unreadable");

Then, we specify some CSS rules for that class in our CSS file:

class.css

.unreadable
{
 background-image: url(polka_dots.gif);
 background-repeat: 15px 15px;
 color: #FFFFFF;
}

The visuals for our page will swap from those shown in Figure 3.9 to those depicted

in Figure 3.10.

Figure 3.9. The page before we start work

Simply JavaScript90

Figure 3.10. The display after we change the class of the body element

Removing a Class
When we want to remove a class from an element, we use that same regular expres-

sion (it’s a pretty handy one, huh?), but with a slightly different twist:

core.js (excerpt)

Core.removeClass = function(target, theClass)
{
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 target.className = target.className.replace(pattern, "$1");
 target.className = target.className.replace(/ $/, "");
};

In Core.removeClass, instead of using the regular expression to check whether or

not the target element has the class, we assume that it does have the class, and in-

stead use the regular expression to replace the class with an empty string, effectively

removing it from className.

91Document Access

To do this, we use a built-in string method called replace. This method takes a

regular expression and a replacement string, then replaces the occurrences that

match the regular expression with the replacement string. In this case, we’re using

an empty string as the replacement, so any matches will be erased. If the class exists

inside className, it will disappear.

The second call to replace just tidies up className, removing any extraneous

spaces that might be hanging around after the class was removed (some browsers

will choke if any spaces are present at the start of className). Since we assign both

these operations back to className, the target element’s class will be updated

with the changes straight away, and we can return from the function without fuss.

Example: Making Stripy Tables
Earlier in this chapter, we made our first real function, Core.getElementsByClass,

but now I think you’re ready to make your first real program, and a useful one it is

too!

In my days as an HTML jockey, there was one task I dreaded more than any other,

and that was making stripy tables. On static pages, you had to hand code tables so

that every odd row had a special class like alt, but I just knew that as soon as I

finished classing 45 different rows my manager was going to come along and tell

me he wanted to add one more row right at the top. Every odd row would become

even and every even row would become odd. Then I’d have to remove 45 classes

and add them to 45 other rows. Argh!

Of course, that was before I knew about JavaScript. With JavaScript and the magic

of the for loop, you can include one JavaScript file in your page, sit back, and

change tables to your heart’s delight. Obviously we’re going to be using JavaScript

to add a class to every second row in this example. But it might help to break down

the desired outcome into a series of simple steps again.

In order to achieve stripy tables, we’ll want to:

1. Find all tables with a class of dataTable in the document.

2. For each table, get the table rows.

3. For every second row, add the class alt.

Simply JavaScript92

By now, glancing at that list should cause a few key ideas to spring to mind. On the

programming structure side of the equation, you should be thinking about loops,

and plenty of them. But on the DOM side you should be thinking about

getElementsByTagName, className, and maybe even our own custom function,

Core.getElementsByClass. If you found yourself muttering any of those names

under your breath while you read through the steps in that list, give yourself a pat

on the back.

Finding All Tables with Class dataTable
This first step’s pretty simple, since we did most of the related work mid-chapter.

We don’t want to apply striping to every table in the document (just in case

someone’s been naughty and used one for layout), so we’ll apply it only to the tables

marked with a class of dataTable. To do this, all we have to do is dust off

Core.getElementsByClass—it will be able to go and find all the dataTable elements:

stripy_tables.js (excerpt)

var tables = Core.getElementsByClass("dataTable");

Done. You can’t beat your own custom library!

Remember to Load your Library

Remember to add a <script> tag to your HTML document to load the Core library

of functions (core.js) before the <script> tag that runs your program, as shown

in the code below. Otherwise, your program won’t be able to find

Core.getElementsByClass, and your browser will report a JavaScript error.

stripy_tables.html (excerpt)

<script type="text/javascript" src="core.js"></script>
<script type="text/javascript" src="stripy_tables.js">
</script>

93Document Access

Getting the Table Rows for Each Table
There’s that phrase “for each” again. Inside the variable tables we have the collec-

tion of tables waiting to be striped—we just need to iterate through each of them

using a for loop.

Every time we move through the for loop, we’ll want to get the rows for that partic-

ular table. This sounds okay, but it’s not that simple. Let’s look at the markup for a

nicely semantic and accessible table:

stripy_tables.html (excerpt)

<table class="dataTable">
 <thead>
 <tr>
 <th scope="col">
 Web Luminary
 </th>
 <th scope="col">
 Height
 </th>
 <th scope="col">
 Hobbies
 </th>
 <th scope="col">
 Digs microformats?
 </th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>
 John Allsopp
 </td>
 <td class="number">
 6’1”
 </td>
 <td>
 Surf lifesaving, skateboarding, b-boying
 </td>
 <td class="yesno">

 </td>

Simply JavaScript94

 </tr>
 ⋮
 </tbody>
</table>

There’s one row in there that we don’t want to be susceptible to striping—the row

inside the thead.

To avoid affecting this row through our row striping shenanigans, we need to get

only the rows that are inside a tbody. This means we must add a step to our

code—we need to get all of the tbody elements in the table (HTML allows more

than one to exist), then get all the rows inside each tbody. This process will actually

require two for loops—one to step through each of the table elements in the docu-

ment, and another inside that to step through each of the tbody elements—but that’s

fine; it just means more work for the computer. Since the variable name i is used

for the counter in the outer for loop, we’ll name the counter variable in our inner

for loop j:

stripy_tables.js (excerpt)

for (var i = 0; i < tables.length; i++)
{
 var tbodys = tables[i].getElementsByTagName("tbody");

 for (var j = 0; j < tbodys.length; j++)
 {
 var rows = tbodys[j].getElementsByTagName("tr");
 ⋮
 }
}

The results for both uses of getElementsByTagName in the code above will be limited

to the current table, because we’re using it as a method of a particular element, not

the entire document. The variable rows now contains a collection of all the tr ele-

ments that exist inside a tbody element of the current table.

95Document Access

Adding the Class alt to Every Second Row
“For every” is equivalent to “for each” here, so we know that we’re going to use yet

another for loop. It will be a slightly different for loop though, because we only

want to modify every second row.

To do this, we’ll start the counter on the second index of the collection and increment

it by two, not one:

stripy_tables.js (excerpt)

for (var i = 0; i < tables.length; i++)
{
 var tbodys = tables[i].getElementsByTagName("tbody");

 for (var j = 0; j < tbodys.length; j++)
 {
 var rows = tbodys[j].getElementsByTagName("tr");

for (var k = 1; k < rows.length; k += 2)
 {
 Core.addClass(rows[k], "alt");
 }
 }
}

We’re already using the variables i and j as the counters for the outer for loops,

and we don’t want to overwrite their values, so we create a new counter variable

called k. k starts at 1 (the second index), and for every execution of this inner loop

we increase its value by 2.

The conditional code for this inner loop is just one line that uses our pre-rolled

Core.addClass function to add the class alt to the current row. Once the inner for

loop finishes, every second row will be marked with this class, and once the outer

for loops finish, every data table will be stripy.

Putting it All Together
The main code for our function is now complete; we just have to wrap it inside a

self-contained object:

Simply JavaScript96

stripy_tables.js (excerpt)

var StripyTables =
{
 init: function()
 {
 var tables = Core.getElementsByClass("dataTable");

 for (var i = 0; i < tables.length; i++)
 {
 var tbodys = tables[i].getElementsByTagName("tbody");

 for (var j = 0; j < tbodys.length; j++)
 {
 var rows = tbodys[j].getElementsByTagName("tr");

 for (var k = 1; k < rows.length; k += 2)
 {
 Core.addClass(rows[k], "alt");
 }
 }
 }
}

};

Kick-start it when the page loads, using Core.start:

stripy_tables.js (excerpt)

Core.start(StripyTables);

Now, whenever you include this script file (and the Core library) on your page,

StripyTables will go into action to automatically stripe all your tables:

stripy_tables.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>Stripy Tables</title>
 <meta http-equiv="Content-Type"

97Document Access

Figure 3.11. Hard-to-scan table content without stripes

Figure 3.12. Using a script to produce stripy tables and improve the usability of the document

 content="text/html; charset=utf-8" />
 <link rel="stylesheet" type="text/css"
 href="stripy_tables.css" />

<script type="text/javascript" src="core.js"></script>
 <script type="text/javascript"
 src="stripy_tables.js"></script>

You can style the alt class however you want with a simple CSS rule:

stripy_tables.css (excerpt)

tr.alt
{
 background-color: #EEEEEE;
}

Simply JavaScript98

You can turn a plain, hard-to-follow table like the one in Figure 3.11 into something

that’s much more usable—like that pictured in Figure 3.12—with very little effort.

This type of script is a great example of progressive enhancement. Users who browse

with JavaScript disabled will still be able to access the table perfectly well; however,

the script provides a nice improvement for those who can run it.

Exploring Libraries
Most of the available JavaScript libraries have little helper functions that can help

you expand the functionality of the DOM. These range from neat little shortcuts to

entirely different ways of finding and manipulating elements.

Prototype
Prototype was one of the first libraries to swap the painful-to-type

document.getElementById for the ultra-compact $.

The $ function in Prototype not only acts as a direct substitute for

document.getElementById, it also expands upon it. You can get a reference to a

single element by ID, so this normal code:

var money = document.getElementById("money");

would become:

var money = $("money");

But you don’t have stop at getting just one element; you can specify a whole list of

element IDs that you want, and $ will return them all as part of an array. So this

normal code:

var elementArray = [];
elementArray[0] = document.getElementById("kroner");
elementArray[1] = document.getElementById("dollar");
elementArray[2] = document.getElementById("yen");

becomes considerably shorter:

99Document Access

var elementArray = $("kroner", "dollar", "yen");

Earlier in this chapter we created our own library function to get elements by class.

Prototype has a similar function, which is slightly more powerful. It creates an ex-

tension to the document node, called getElementsByClassName. Like our function

Core.getElementsByClass, this method allows us to retrieve an array of elements

that have a particular class:

var tables = document.getElementsByClassName("dataTable");

It also takes an optional second argument, which allows us to specify a parent ele-

ment under which to search. Only elements that are descendants of the specified

element, and have a particular class, will be included in the array:

var tables =
 document.getElementsByClassName("dataTable", $("content"));

The variable tables will now be an array containing elements that are descendants

of the element with ID content, and that have a class of dataTable.

Prototype also replicates all of the class functions that we created for our own library.

These functions take exactly the same arguments that ours did, but the functions

themselves are methods of Prototype’s Element object. So Prototype offers

Element.hasClassName, Element.addClassName, and Element.removeClassName:

var body = document.getElementsByTagName("body")[0];
Element.addClassName(body, "unreadable");

if (Element.hasClassName(body, "unreadable"))
{
 Element.removeClassName(body, "unreadable");
}

jQuery
jQuery was one of the first libraries to support an entirely different way of finding

elements with JavaScript: it allows us to find groups of elements using CSS selectors.

Simply JavaScript100

The main function in jQuery is also called $, but because it uses CSS selectors, this

function is much more powerful than Prototype’s version, and manages to roll a

number of Prototype’s functions into one.3

If you wanted to use jQuery to get an element by ID, you’d type the following:

var money = $("#money");

indicates an ID selector in CSS, so $("#money") is the equivalent of typing

document.getElementById("money").

To get a group of elements by tag name, you’d pass $ a CSS element type selector:

var paragraphs = $("p");

And to get a group of elements by class, you’d use a class selector:

var tables = $(".dataTable");

And, as with CSS, you can combine all these simple selector types in, say, a des-

cendant selector:

var tables = $("#content table.dataTable");

tables is now an array of table elements that are descendants of the element with

ID content, and that have a class of dataTable.

The CSS rule parsing in jQuery is really quite spectacular, and it supports the ma-

jority of selectors from CSS1, CSS2, and CSS3, as well as XPath.4 This makes it

possible for us to use selectors like this:

var complex = $("form > fieldset:only-child input[@type=radio]");

3 In fact, based on the popularity of this feature in jQuery, Prototype went on to include similar function-

ality in a function named $$.
4 XPath is a zany language for selecting nodes from XML documents (including XHTML documents).

While XPath is extremely powerful, the process of learning it is likely to give you a facial tick.

101Document Access

Once you break it down, that query finds all radio button input elements inside

fieldsets that are direct children of form elements, but only where the fieldset

is the only child of the form. Phew!

Dojo
Dojo follows the previous two libraries closely in how they deal with the DOM.

It has its own shortcut to document.getElementById, but it doesn’t expand upon

the DOM’s native functionality:

var money = Dojo.byId("money");

It also has its own getElementsByClass function inside the html module:

var tables = dojo.html.getElementsByClass("dataTable");

This function allows you to get elements by class under a particular parent:

var tables = Dojo.html.getElementsByClass("dataTable",
 dojo.byId("content"));

For completeness, it has the usual class handling functions, which take the same

form as our own Core functions:

var body = document.getElementsByTagName("body")[0];
Dojo.html.addClass(body, "unreadable");

if (Dojo.html.hasClass(body, "unreadable"))
{
 Dojo.html.removeClass(body, "unreadable");
}

Summary
An understanding of the DOM is central to using JavaScript, which is why the use

of JavaScript on the Web is sometimes referred to as “DOM scripting.”

Simply JavaScript102

As you delve further into this book, and we begin to look at more complex interfaces,

our manipulation of the DOM will also become more complex, so your familiarity

with the basics presented in this chapter is vital.

In the next chapter, we take a look at events, which allow your JavaScript programs

to respond to users’ interactions with your web pages. Dynamic interfaces, here we

come!

103Document Access

Chapter4
Events
When we started out in Chapter 2, every script that we looked at would be loaded

by the browser and executed right away. Since then, we’ve learned how to wait

until the HTML document has finished loading before unleashing the awesome

power of JavaScript. In every case, however, the script will work its magic (for in-

stance, making the rows of your tables stripy), then fizzle out, leaving behind an

enhanced—but still very static—page.

You don’t need to suffer with scripts that peak too quickly! With the simple tech-

niques we’ll explore in this chapter, you’ll learn to take control, write scripts that

last longer, and become a superstar … well, in your favorite JavaScript chat room,

anyway.

Don’t get me wrong—scripts that enhance web pages the instant they’re loaded (let’s

call them “quickies”) have their place, but there are limits to how much they can

improve the user experience of a site. JavaScript really gets interesting when you

start to write scripts that are triggered by events that occur during the user’s inter-

action with the page, like clicking a hyperlink, scrolling the browser’s viewport, or

typing a value into a form field.

An Eventful History
Thanks to the wide adoption of the Document Object Model (DOM) standard, ac-

cessing HTML elements in your JavaScript code works very similarly in every

browser. If only the same could be said for every aspect of JavaScript! As it happens,

running JavaScript code in response to an event stands out as one of the few remain-

ing features that are implemented in wildly varying ways in current browsers.

The news isn’t all bad. There is a certain amount of common ground. For as long

as they’ve supported JavaScript, browsers have had a simple model for dealing with

events—using event handlers—and all current browsers provide compatible support

for these handlers, despite the fact that a complete standard was never written for

them.1 As we’ll see, these techniques come with limitations that you’ll want to

avoid when you can, but they offer a good fallback option.

DOM Level 0

The first version of the W3C DOM specification was called Document Object

Model Level 1. Since event handlers (along with a number of other nonstandard

JavaScript features) predate this specification, developers like to call them Docu-

ment Object Model Level 0.

Stepping into the 21st century, the World Wide Web Consortium (W3C) has de-

veloped the DOM Level 2 Events standard,2 which provides a more powerful means

of dealing with events, called event listeners. Almost all browsers now support this

standard, the notable exception being Internet Explorer up to and including IE 7.0.

Internet Explorer has its own way of doing things, and though its approach is almost

as powerful, it’s also sufficiently different to force us to write extra code to cater for

this popular browser.

It’s interesting to note that Microsoft participated in the development of the DOM

Level 2 Events specification within the W3C, but when it came time to release IE

5.5, Microsoft chose not to support the specification in that browser. In the two

1 The HTML 4 specification briefly discusses them under the heading Intrinsic Events

[http://www.w3.org/TR/html4/interact/scripts.html#h-18.2.3].
2 http://www.w3.org/TR/DOM-Level-2-Events/

Simply JavaScript106

http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/html4/interact/scripts.html#h-18.2.3

major releases of Internet Explorer since then (IE 6.0 and 7.0), there has been no

sign of Microsoft adding support for this standard.

Thankfully, we don’t have to wait for Microsoft. The benefits of using event listeners,

be they the W3C standard version or Internet Explorer’s peculiar alternative, are so

great that legions of dedicated geeks have investigated the incompatibilities and

come up with reasonable solutions. With a little work, we can build these solutions

into our Core library so that we can use event listeners freely, without encountering

browser compatibility issues.

Event Handlers
The simplest way to run JavaScript code in response to an event is to use an event

handler. Event handlers have been around for as long as browsers have supported

JavaScript, and predate the DOM standard. An event handler is a JavaScript function

that’s “plugged into” a node in the DOM so that it’s called automatically when a

particular event occurs in relation to that element. Figure 4.1 illustrates this concept.

Figure 4.1. Plugging in a single event handler function to respond to a particular event

Let’s start with an obvious example—the user clicking on a link like this:

linkhandler.html (excerpt)

<p>The first captain of the USS Enterprise NCC-1701 was
 Christopher
 Pike.</p>

107Events

When a user clicks on a link like this one, the browser generates a click event. By

default, the browser will respond to that click event by navigating to the URL

specified by the link. But before this happens, we can plug in our own event

handler to respond to the event.

Let’s say you want to display an alert to notify users that they’re leaving your site.

An event handler is just a JavaScript function, so we can write a function to present

the alert. As usual, we don’t want to interfere with other scripts, so we’ll wrap this

function in an object with a unique name:

linkhandler.js (excerpt)

var wikipediaLink =
{
 clickHandler: function()
 {
 alert("Don't believe everything you read on Wikipedia!");
 }
};

Setting up a function as an event handler is easy. All you need is a reference to the

DOM element for which you want to handle events. Then, you set the element’s

onevent property, where event is the type of event you want to handle:

element.onevent = eventHandler;

To handle click events for the wikipedia link above with our clickHandler

function (which is a method of our wikipediaLink object), we write this code:

linkhandler.js (excerpt)

var link = document.getElementById("wikipedia");
link.onclick = wikipediaLink.clickHandler;

But there’s a catch: we can’t assign an event handler to our element until the element

has loaded. Thankfully, we already know how to write code that’s executed only

after the entire document is loaded:

Simply JavaScript108

linkhandler.js

var wikipediaLink =
{
init: function()

 {
 var link = document.getElementById("wikipedia");
 link.onclick = wikipediaLink.clickHandler;
 },

 clickHandler: function()
 {
 alert("Don't believe everything you read on Wikipedia!");
 }
};

Core.start(wikipediaLink);

The code for this example is deceptively simple. As Figure 4.2 reveals, our code is

actually executed in three stages:

Figure 4.2. The three stages of script execution

1. The browser encounters the <script> tag in the HTML document’s header and

loads the JavaScript file. Our code declares the wikipediaLink object, then

109Events

calls Core.start to request that the object’s init method be called when the

whole document has loaded.

2. The page finishes loading, and the wikipediaLink object’s init method is

called. This method finds the wikipedia link and sets up the clickHandler

method as its click event handler.

3. The user clicks the link, which generates a click event. The browser calls

clickHandler, the link’s click event handler, which displays the alert shown

in Figure 4.3.

Figure 4.3. The event handler in action

Once the user clicks the OK button to dismiss the alert, the browser follows the link

as normal.

Event Handlers as HTML Attributes

If you go looking, you’ll find that a lot of sites set up JavaScript event handlers

using HTML attributes, like this:

…

As I mentioned in Chapter 1, this is the JavaScript equivalent of assigning CSS

properties to your elements using the HTML style attribute. It’s messy, it violates

the principle of keeping code for dynamic behavior separate from your document

content, and it’s so 1998.

Simply JavaScript110

Default Actions
As we’ve just seen, event handlers let you respond to user actions by running any

JavaScript code you like. But often, the browser still gets the last word. Take the

example we just saw: no matter how creative and amazing the code in our event

handler, when it’s done, the browser will take over and follow the link as normal.

I don’t know about you, but I call that being a slave to the Man, and I won’t take it.

Browsers take all sorts of actions like this:

■ They follow links that users click.

■ They submit forms when users click a Submit button, or hit Enter.

■ They move keyboard focus around the page when the user hits Tab.

These are called default actions—things the browser normally does in response to

events. In most cases you’ll want the browser to do these things, but sometimes

you’ll want to prevent them from occurring.

The easiest way to stop the browser from performing a default action in response

to an event is to create for that event an event handler that returns false. For ex-

ample, we can modify the link click event handler we created above to ask the

user for confirmation before the link is followed:

clickprompt.js (excerpt)

clickHandler: function()
{
if (!confirm("Are you sure you want to leave this site?"))

 {
 return false;
 }
}

The confirm function used in this code is built into the browser, just like alert.

And it displays a message to the user just like alert does, except that it offers the

user two buttons to click: OK and Cancel. If the user clicks OK, the function returns

true. If the user clicks Cancel, the function returns false. We then use the ! operator

introduced in Table 2.1 to reverse that value so that the body of the if statement is

executed when the user clicks Cancel.

111Events

As shown in Figure 4.4, this new code prompts the user with the message “Are you

sure you want to leave this site?” and causes our clickHandler method to return

false if the user clicks Cancel. This, in turn, prevents the browser from performing

the default action for the click event, so the browser does not follow the link.

Figure 4.4. The user choosing whether or not to take the default action

Cutting Down on Code

If you’re feeling especially zen, you might have spotted the fact that confirm re-

turns false when we want clickHandler to return false. Since these values

match, you can simplify the code of clickHandler if you want to:

clickHandler: function()
{
return confirm(

 "Are you sure you want to leave this site?");
}

This version of the code simply returns whatever confirm returns, which turns

out to be exactly what we want.

The this Keyword
So far, we’ve created one event handler that handles one particular event occurring

on one particular HTML element—pretty pathetic, if you ask me. The real fun is in

writing an event handler that can handle events for many HTML elements!

Simply JavaScript112

Now, while assigning an event handler to many different elements is relatively

straightforward, making it do something sensible for each element can be tricky,

and that’s where the this keyword comes into play.

A popular request from web development clients is for links to external sites to

open in a new browser window or tab. However you feel about this in principle,

the way a link opens is considered a part of the behavior of the page, and thus should

be controlled by your JavaScript code (if at all).3

To open a URL in a new window or tab, simply use JavaScript’s built-in open

function:4

open(URL);

Writing a click event handler that opens a particular URL in a new window is

therefore trivial:

clickHandler: function()
{
 open("http://en.wikipedia.org/wiki/Christopher_Pike");
 return false;
}

But how do we do this for every external link in the page? We definitely don’t want

to write a separate click handler for every external link.

The solution is to write a single handler that can retrieve the URL of the link that

has just been clicked, using the this keyword:

3 In past versions of the HTML standard, you could set the target attribute of a link to control how it

would open. This attribute was deprecated in HTML 4 in favor of JavaScript alternatives.
4 You’ll see this referred to as window.open in many other books and online tutorials, because tech-

nically, all built-in functions are actually methods of the global window object. But you don’t see them

talking about window.alert, do you?

113Events

newwindow.js (excerpt)

clickHandler: function()
{
 open(this.href);
 return false;
}

this is a special JavaScript keyword that behaves like a variable, except that you

can’t assign it a value—its value is the object upon which the currently-executing

function was invoked as a method. In other words, if you call object.method(),

then within the code of method, the this keyword will refer to object. When the

code currently being executed is not within a function, or when the function was

not called as a method of an object, then this points to the global object that contains

all global variables and functions.

Since the browser calls an event handler as a method of the element on which the

event occurred, you can use this within an event handler to get a reference to that

element. In the above code, we use this to get a reference to the link that the user

has clicked, then use its href property to obtain the URL to which the link points.

By using this to retrieve from the element itself the information we need in order

to respond to an event, we have created an event handler that can be assigned to

all of the external links on the page. We just need to identify them with a class in

our HTML code, and use that in our script’s init method:

newwindow.js

var externalLinks =
{
 init: function()
 {
 var extLinks = Core.getElementsByClass("external");

 for (var i = 0; i < extLinks.length; i++)
 {
 extLinks[i].onclick = externalLinks.clickHandler;
 }
 },

Simply JavaScript114

 clickHandler: function()
 {
 open(this.href);
 return false;
 }
};

Core.start(externalLinks);

The Problem with Event Handlers
Many JavaScript developers like event handlers because they’re simple to use, and

they work in all browsers. Unfortunately, they come with one big, honking limitation:

you can only assign one event handler to a given event on a given HTML element.

In simple terms, you can’t easily make more than one thing happen when an event

occurs. Consider this code:

element.onclick = script1.clickHandler;
element.onclick = script2.clickHandler;

Only the clickHandler in script2 will be executed when a click occurs on element,

because assigning the second event handler replaces the first.

You might wonder if we really need to assign more than one event handler. After

all, how often are you going to want more than one script to respond to the click

event of a link? And as long as we were just talking about click events, you’d be

right to wonder.

But there are all sorts of events that you can respond to, and for some of them it

would be extremely useful to have multiple handlers. As we’ll see in Chapter 6, for

example, a form’s submit event often requires multiple scripts to check that the

various form fields have been filled out correctly.

The commonly used workaround to this problem is to assign as the event handler

a function that calls multiple event handling functions:

115Events

element.onclick = function()
{
script1.clickHandler();
script2.clickHandler();

}

But all sorts of things are wrong with this approach:

■ this will no longer point to the element within the clickHandler methods.

■ If either clickHandler method returns false, it will not cancel the default action

for the event.

■ Instead of assigning event handlers neatly inside a script’s init method, you

have to perform these assignments in a separate script, since you have to reference

both script1 and script2.

There are solutions to all of these problems, of course, but they involve complicated

and twisty code5 that you really shouldn’t have to deal with to accomplish something

as basic as responding to events.

In addition to the simple event handlers we’ve just looked at, most browsers today

have built-in support for a more advanced way of handling events: event listeners,

which do not suffer from the one-handler-only restriction.

Event Listeners
The good news is that event listeners are just like event handlers, except that you

can assign as many event listeners as you like to a particular event on a particular

element, and there is a W3C specification that explains how they should work.6

The bad news is that Internet Explorer has its own completely different, and

somewhat buggy version of event listeners that you also need to support if you want

your scripts to work in that browser. Oh, and sometimes Safari likes to do things

slightly differently, too.

5 http://dean.edwards.name/weblog/2005/10/add-event/
6 http://www.w3.org/TR/DOM-Level-2-Events/

Simply JavaScript116

http://dean.edwards.name/weblog/2005/10/add-event/
http://dean.edwards.name/weblog/2005/10/add-event/
http://www.w3.org/TR/DOM-Level-2-Events/

Like an event handler, an event listener is just a JavaScript function that is “plugged

into” a DOM node. Where you could only plug in one event handler at a time,

however, you can plug multiple listeners in, as Figure 4.5 illustrates.

Figure 4.5. Plugging in only one handler, but many listeners

The code that sets up an event listener is quite different from that used to set up an

event handler, but it’s still fairly easy:

element.addEventListener("event", eventListener, false);

In browsers that support W3C-standard event listeners, the addEventListener

method is available on every object that supports events. This method takes three

arguments: the name of the event to which you want to assign the listener (e.g.

"click"), the listener function itself, and a Boolean value that you’ll usually want

to set to false (more on this last argument in the section called “Event Propagation”).

To set up an event listener in Internet Explorer, however, you need to use a method

called attachEvent. This method works a lot like addEventListener, but it takes

slightly different arguments:

element.attachEvent("onevent", eventListener);

Spot the differences? The first argument—the name of the event you’re interested

in—must be prefixed with on (for example, "onclick"), and there is no mysterious

third argument.

117Events

Any script that uses event listeners will need to use addEventListener for all

browsers that support it, and attachEvent for Internet Explorer browsers that don’t.

Ensuring that your script uses the right method is a simple matter of using an if-else

statement that checks if the addEventListener or attachEvent methods exist in

the current browser:

if (typeof element.addEventListener != "undefined")
{
element.addEventListener("event", eventListener, false);

}
else if (typeof element.attachEvent != "undefined")
{
element.attachEvent("onevent", eventListener);

}

This is another example of the object detection technique that we first saw at work

in Chapter 3.

Let’s employ this technique to display an alert in response to the click event of a

particular link, as we did using event handlers earlier in this chapter:

linklistener.js (excerpt)

var wikipediaLink =
{
 init: function()
 {
 var link = document.getElementById("wikipedia");

if (typeof link.addEventListener != "undefined")
 {
 link.addEventListener(
 "click", wikipediaLink.clickListener, false);
 }
 else if (typeof link.attachEvent != "undefined")
 {
 link.attachEvent("onclick", wikipediaLink.clickListener);
 }
 },

 clickListener: function()
 {

Simply JavaScript118

 alert("Don't believe everything you read on Wikipedia!");
 }
};

Core.start(wikipediaLink);

It’s not as simple as setting up an event handler, of course, but this code isn’t too

complex, and it allows for another script to add its own click event listener to the

link without dislodging the one we’ve set up here.

Although you’ll usually just add event listeners to your DOM nodes and forget about

them, you can “unplug” an event listener from a DOM node if you need to. In the

W3C’s standard event listener model, we use the removeEventListener method to

achieve this, whereas in Internet Explorer, we use detachEvent. In either case, we

pass the method the same arguments we passed when adding the listener:

if (typeof element.removeEventListener != "undefined")
{
element.removeEventListener("event", eventListener, false);

}
else if (typeof element.detachEvent != "undefined")
{
element.detachEvent("onevent", eventListener);

}

Default Actions
You’ll remember that you can simply return false from an event handler in order

to prevent the browser from carrying out the default action for an event, such as

following a clicked hyperlink. Event listeners let you do this too, but in a slightly

different way.

In the W3C standard event listener model, the browser will always pass an event

object to the event listener function. The event object’s properties contain information

about the event (for instance, the position of the cursor when the event occurred),

while its methods let us control how the event is processed by the browser.

In order to prevent the browser from performing the default action for an event, we

simply call the event object’s preventDefault method:

119Events

clickListener: function(event)
{
 if (!confirm("Are you sure you want to leave this site?"))
 {

event.preventDefault();
 }
}

If multiple listeners are associated with an event, any one of those listeners calling

preventDefault is enough to stop the default action from occurring.

Internet Explorer’s event model is, of course, similar but different. In Internet Ex-

plorer, the event object isn’t passed to the event listener as an argument; it’s available

as a global variable named event. Also, the event object doesn’t have a

preventDefault method; instead, it has a property named returnValue that we

can set to false in order to prevent the default action from taking place:

clickListener: function()
{
 if (!confirm("Are you sure you want to leave this site?"))
 {

event.returnValue = false;
 }
}

Again, using the technique of object detection to figure out which event model the

current browser supports, we can write an event listener that’s able to cancel the

default action in either event model:

clickpromptlistener.js (excerpt)

clickListener: function(event)
{
if (typeof event == "undefined")

 {
 event = window.event;
 }

 if (!confirm("Are you sure you want to leave this site?"))
 {

if (typeof event.preventDefault != "undefined")

Simply JavaScript120

 {
 event.preventDefault();
 }
 else
 {
 event.returnValue = false;
 }
 }
}

At the start of this listener, we check if we’ve actually been passed an event object

as an argument according to the W3C event model. If we haven’t, we set our event

variable to window.event, which is Internet Explorer’s global event object. We refer

to it as window.event instead of just event because our function already has its own

variable named event.

Then, when it comes time to cancel the default action, we check to see whether or

not the event object has a preventDefault method. If it does, we call it. If it doesn’t,

we set the object’s returnValue property to false instead. Either way, the default

action is prevented.

Preventing Default Actions in Safari 2.0.3 and Earlier

Although it did an admirable job of supporting the rest of the DOM 2 Events

standard, prior to version 2.0.4 the Safari browser could not stop a default action

from occurring in an event listener. The preventDefault method was there; it

just didn’t do anything.

As I write this, a lot of Mac users are still using Safari 1.2, which is affected by

this issue. If you need to support Safari version 2.0.3 or earlier, the only way to

cancel a default action is to use an old-style event handler. If you’re lucky enough

to be working on a script that will always cancel the default event, you can use

an event listener in combination with an event handler that simply returns false:

element.onevent = function()
{
 return false;
}

121Events

Event Propagation
Obviously, if you stick a click event listener on a hyperlink, then click on that link,

the listener will be executed. But if, instead, you assign the click listener to the

paragraph containing the link, or even the document node at the top of the DOM

tree, clicking the link will still trigger the listener. That’s because events don’t just

affect the target element that generated the event—they travel through the tree

structure of the DOM. This is known as event propagation, and I should warn you:

it’s not sexy or exciting.

The W3C event model is very specific about how event propagation works. As illus-

trated in Figure 4.6, an event propagates in three phases:

1. In the capture phase, the event travels down through the DOM tree, visiting

each of the target element’s ancestors on its way to the target element. For ex-

ample, if the user clicked a hyperlink, that click event would pass through

the document node, the html element, the body element, and the paragraph

containing the link.

At each stop along the way, the browser checks for capturing event listeners

for that type of event, and runs them.

What’s that? You don’t know what a capturing event listener is? Remember

when I mentioned the third argument of the addEventListener method and I

told you that you’d usually want to set it to false? Well, if you set it to true,

you’ll create a capturing event listener.

You’ll also recall that Internet Explorer’s attachEvent method doesn’t support

a third argument. That’s because Internet Explorer’s event model doesn’t have

a capture phase. Consequently, most developers avoid using capturing event

listeners.

2. In the target phase, the browser looks for event listeners that have been assigned

to the target of the event, and runs them. The target is the DOM node on which

the event is focused. For example, if the user clicks a hyperlink, the target node

is the hyperlink.7

7 This is the case except in Safari, where the target is actually the text node inside the hyperlink. The

W3C events specification is ambiguous about which behavior is correct, but in practice it doesn’t make

Simply JavaScript122

3. In the bubbling phase, the event travels back up the DOM tree, again visiting

the element’s ancestors one by one until it reaches the document node. At each

stop along the way, the browser checks for event listeners that are not capturing

event listeners, and runs them.

Figure 4.6. Standard event propagation

Not All Events Bubble

All events go through the capture and target phases, but certain events skip the

bubbling phase. Specifically, focus and blur events, which occur when keyboard

focus is given to and removed from an element, respectively, do not bubble. In

most cases, this isn’t a detail you need to lose much sleep over, but as we’ll see

a big difference, since an event listener that’s assigned to the hyperlink itself will still be triggered in

the bubbling phase.

123Events

in the section called “Example: Accordion” later in this chapter, it’ll make your

life more difficult every once in a while.

So why am I boring you with all these details on event propagation? After all, you

can assign an event listener to an element on which you expect an event to occur,

and your listener will run when that event occurs. Does it have to be any more

complicated than that? In most cases, no—it doesn’t. But sometimes you want to

get a little more creative, and creativity inevitably breeds complexity. Stay with me,

here.

Let’s say you were an especially helpful sort of person—I’m talking about the kind

of helpful that most people find annoying. You might want to display a “helpful”

message if a user were to accidentally click on a part of your page that wasn’t a hy-

perlink:

strayclickcatcher.js (excerpt)

strayClickListener: function(event)
{
 alert("Did you mean to click a link? " +
 "It's that blue, underlined text.");
},

In order to catch clicks anywhere in the document, you can just assign this as a

click listener for the document node. The listener will be triggered in the bubbling

phase of every click event, no matter where in the document the target element is

located.

But how do you keep the message from appearing when the user does click a link?

What you need to do is prevent those click events from bubbling up to trigger your

event listener. To do this, you need to set up another event listener that stops the

propagation of those events.

To stop the propagation of an event in the W3C event model, you call the

stopPropagation method of the event object that’s passed to your event listener.

In Internet Explorer’s event model there’s no such method; instead, you need to set

the cancelBubble property of the event object to true. Here’s what the resulting

listener looks like:

Simply JavaScript124

strayclickcatcher.js (excerpt)

linkClickListener: function(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

if (typeof event.stopPropagation != "undefined")
 {
 event.stopPropagation();
 }
 else
 {
 event.cancelBubble = true;
 }
}

Just assign this second listener function to every link in your document, and it will

stop the propagation of click events when they reach a link. This prevents those

clicks from bubbling up to the document element to trigger the first event listener.

Figure 4.7 shows what happens when you click on a part of the document that

doesn’t link to anything. If you click on a link, however, the browser will follow it

without complaint.

Figure 4.7. A stray click producing a helpful/annoying message

Here’s the complete, and very helpful/annoying script:

125Events

strayclickcatcher.js

var strayClickCatcher =
{
 init: function()
 {
 var links = document.getElementsByTagName("a");

 if (typeof document.addEventListener != "undefined")
 {
 document.addEventListener("click",
 strayClickCatcher.strayClickListener, false);
 for (var i = 0; i < links.length; i++)
 {
 links[i].addEventListener("click",
 strayClickCatcher.linkClickListener, false);
 }
 }
 else if (typeof document.attachEvent != "undefined")
 {
 document.attachEvent("onclick",
 strayClickCatcher.strayClickListener);
 for (var i = 0; i < links.length; i++)
 {
 links[i].attachEvent("onclick",
 strayClickCatcher.linkClickListener);
 }
 }
 },

 strayClickListener: function(event)
 {
 alert("Did you mean to click a link? " +
 "It's that blue, underlined text.");
 },

 linkClickListener: function(event)
 {
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 if (typeof event.stopPropagation != "undefined")

Simply JavaScript126

 {
 event.stopPropagation();
 }
 else
 {
 event.cancelBubble = true;
 }
 }
};

Core.start(strayClickCatcher);

The this Keyword
Earlier in this chapter, we grappled with the problem of how to write a single event

handler that could be applied to many different elements. We learned that we could

use this to reference the element to which the handler was assigned, and retrieve

from it information that we could use to control how the handler would respond.

It would be nice if we could do the same with our event listeners … so, can we?

Keep in mind that the value of this within a JavaScript function is determined by

the way in which a function is called. If it’s called as a method of an object, this

refers to that object. If it’s called as a standalone function, this refers to the global

object that contains all global variables and functions. The question is, how are

event listeners called by the browser?

Surprisingly, the W3C event model standard has nothing to say on the subject, so

it’s left up to each browser to decide which object this refers to when it’s used

within an event listener. Thankfully, every browser that supports the W3C event

model calls an event listener as a method of the element to which it was assigned,

so this refers to that element, just like it does in an event handler.

Less surprisingly, Internet Explorer went a different way with its event listeners:

Internet Explorer event listeners are called as standalone functions, so this points

to the relatively useless global object.

So far, we’ve been able to deal with every incompatibility between the two event

listener models by using simple object detection to run the code required by each

127Events

browser. When it comes to solving the issue with this, however, things aren’t so

simple. In case you’re curious, here’s the solution:

if (typeof element.addEventListener != "undefined")
{
element.addEventListener("event", eventListener, false);

}
else if (typeof element.attachEvent != "undefined")
{
var thisListener = function()

 {
 var event = window.event;
 if (Function.prototype.call)
 {

eventListener.call(element, event);
 }
 else
 {
 target._currentListener = eventListener;
 target._currentListener(event);
 target._currentListener = null;
 }
 };
element.attachEvent("onevent", thisListener);

}

Now, leaving aside for the moment the details of how this code works, can you

imagine having to type out that entire monstrosity every time you want to set up

an event listener? I don’t mind telling you that I wouldn’t be sitting here writing

this book if that’s how JavaScript made us do things.

There’s a way to make life easier for yourself, and I’ll show it to you in the section

called “Putting it All Together.”

The Internet Explorer Memory Leak
When it comes to making your life difficult, Internet Explorer has one more trick

up its sleeve. If the disaster surrounding the this keyword wasn’t enough to make

you want to give up on Internet Explorer’s event model, this will.

In Internet Explorer, if you set up for an element an event listener that contains a

reference to that element (or indeed, any other node in the DOM), the memory oc-

Simply JavaScript128

cupied by that listener and the associated DOM nodes will not be released when

the user navigates to another page. I’ll grant you that this is pretty technical stuff,

but what it comes down to is that certain types of event listeners can cause Internet

Explorer to leak memory, thereby causing users’ computers to slow down until

those users are forced to restart their browsers.

The solution to this issue is to set up a special event listener for the unload event

of the global window object, which represents the browser window containing the

page. When the user navigates to another page, the unload event will occur and the

special event listener will be triggered. Within this event listener, you can take the

opportunity to remove all of the event listeners that you set up in your document,

thereby preventing them from causing memory leaks.

While this solution is quite elegant, the JavaScript code to make it happen is not.

For the moment, I’ll spare you the details, because as we’ll see in the next section,

you shouldn’t have to worry about them.

Putting it All Together
Have you been keeping track of all the cross-browser compatibility issues that we

need to deal with when using event listeners? That’s okay—I have:

■ Internet Explorer uses attachEvent/detachEvent to add and remove event

listeners, instead of addEventListener/removeEventListener.

■ Internet Explorer uses an "onevent" naming style for its events, instead of just

"event".

■ Internet Explorer uses a global event variable instead of passing the event object

to the listener as an argument.

■ To prevent a default action from taking place, Internet Explorer requires you to

set the event object’s returnValue property, instead of calling its preventDefault

method.

■ Internet Explorer doesn’t support the capture phase of event propagation.

■ To stop an event from propagating, Internet Explorer requires you to set the event

object’s cancelBubble property, instead of calling its stopPropagation method.

129Events

■ Internet Explorer calls event listeners as standalone functions, rather than as

methods, requiring the developer to jump through hoops to get a reference to

the target element, instead of just using this.

■ When using event listeners in a certain way, Internet Explorer leaks memory

unless you go to great lengths to clean up all of your event listeners.

… and that’s without even getting into the differences when it comes to retrieving

the details of keyboard and mouse events.8

These problems have led some developers to throw in the towel and just use event

handlers. In fact, some experts have gone so far as to write their own event listener

systems using event handlers as a foundation.9 While there is certainly a case to be

made for such an approach, I believe in embracing the support for event listeners

that’s built into most browsers, and saving the complex code for the browser that

really needs it—Internet Explorer.

To that end, the core.js library that you’ll find in the code archive for this book in-

cludes four methods that enable you to use event listeners without worrying about

any of the issues I listed above. Here’s how they work:

Core.addEventListener

This method sets up an event listener function for a particular event type on a

particular element. It works just like the standard addEventListener method,

except that we pass the element as the first argument of the method. It doesn’t

support the creation of capturing event listeners, and therefore doesn’t take a

final Boolean argument:

Core.addEventListener(element, "event", eventListener);

In Internet Explorer, this method sets up the event listener so that the event

object is passed to the listener function as an argument (just as it is in the

standard event model), and so that the listener is called as a method of the ele-

ment to which it is assigned (so that we can use this to refer to that element).

8 For complete coverage of these headaches, and some of the solutions that are available, pick up a copy

of The JavaScript Anthology (Melbourne: SitePoint, 2006).
9 http://dean.edwards.name/weblog/2005/10/add-event/

Simply JavaScript130

http://dean.edwards.name/weblog/2005/10/add-event/
http://dean.edwards.name/weblog/2005/10/add-event/

It also takes care of automatically cleaning up the listener when the document

is unloaded, so that it does not cause memory leaks in Internet Explorer.

Core.removeEventListener

This method removes an event listener that was previously added to an element.

It works just like the standard removeEventListener method, except that we

pass the element as the first argument of the method, and like

Core.addEventListener, it takes no final Boolean argument:

Core.removeEventListener(element, "event", eventListener);

Core.preventDefault

This method prevents the default action associated with an event from occurring.

It works just like the standard preventDefault method, except that we pass the

event object as an argument of the method:

Core.preventDefault(event);

Core.stopPropagation

This method stops the event from propagating further, and potentially triggering

event listeners assigned to ancestors of the element to which the current event

listener is assigned:

Core.stopPropagation(event);

And just like that, all your event listener compatibility headaches vanish! Through

the rest of this book, whenever we deal with event listeners, we’ll use these methods.

In fact, if you’ve been following along up until this point, you’ll already have used

one of these methods without knowing it! The Core.start method that we used to

start running a script only once the document had finished loading relies on

Core.addEventListener. Take a look for yourself:

131Events

core.js (excerpt)

Core.start = function(runnable)
{
 Core.addEventListener(window, "load", runnable.init);
};

As you can see, Core.start simply sets up the init method of the script you pass

it as an event listener for the load event of the window object, which represents the

browser window that contains the current page.

Now, you might be feeling a little uneasy about trusting those four methods to handle

all of your event listening tasks without having seen how they work. If you aren’t,

you should be! As you can imagine, a lot of developers have put their minds to

solving these problems, and the solutions they’ve produced have not always been

particularly good. How do you know that this solution is the one you should be

using?

Before drinking the Kool-Aid,10 you should take a look at Appendix A, in which

the inner workings of the four methods are described in detail. Some of the code

involved is rather advanced, and uses features of JavaScript that we won’t talk about

until later in this book—if at all. But if nothing else, the discussion there should let

you rest assured that we’ve done our homework.

Now that we have these shiny, new event listener methods in hand, let’s use them

for something more exciting than displaying an alert box when the user clicks on

the page.

Example: Rich Tooltips
In some browsers, when the user mouses over, or gives keyboard focus to a link (for

instance, when Tabbing to it), a tooltip will appear, displaying the value of the

link’s title attribute. In many browsers, however, this attribute is never displayed

to the user, or is limited to a brief, one-line description. In any case, plain-text

10 The closest that many geeks will come to making a pop culture reference, “drinking the Kool-Aid”

refers to the all-too-common practice of enthusiastically embracing a library or other programming aid

without understanding how it works (or doesn’t work, as the case may be).

Simply JavaScript132

tooltips look fairly boring, and tend to be overlooked by users even when they are

displayed. But, as shown in Figure 4.8, we can use JavaScript—with a healthy dose

of event listeners—to produce our own, more eye-catching tooltips.

Figure 4.8. A rich tooltip

The Static Page
Let’s start by looking at the HTML code for this example. We want the browser’s

standard tooltips to display if the user has JavaScript disabled for some reason, so

we’ll code our hyperlinks with the tooltip text in the title attribute as usual:

tooltips.html (excerpt)

<p>James
 Tiberius Kirk (2233 - 2293/2371), played by William Shatner,
 is the leading character in the original Star Trek TV series and
 the films based on it. Captain Kirk commanded the starship
 Enterprise (<a class="federation" title="Read more …"
 href="…">NCC-1701 and later <a class="federation"

title="Read more …" href="…">NCC-1701-A).</p>

133Events

Making Things Happen
With a finely-crafted static page all ready to go, we can look at setting up some event

listeners to make the changes we want to occur in response to user events.

For each link that has a title attribute, we want to show a rich tooltip in two

situations: when the cursor hovers over the link (a mouseover event), or the link

receives keyboard focus (a focus event). When the mouse is moved away (a mouseout

event), or keyboard focus is removed (a blur event), we want to hide that tooltip.

You should be getting fairly good at belting out the init method for a script like

this:

tooltips.js (excerpt)

var Tooltips =
{
 init: function()
 {
 var links = document.getElementsByTagName("a");

 for (var i = 0; i < links.length; i++)
 {
 var title = links[i].getAttribute("title");

 if (title && title.length > 0)
 {
 Core.addEventListener(links[i], "mouseover",
 Tooltips.showTipListener);
 Core.addEventListener(links[i], "focus",
 Tooltips.showTipListener);
 Core.addEventListener(links[i], "mouseout",
 Tooltips.hideTipListener);
 Core.addEventListener(links[i], "blur",
 Tooltips.hideTipListener);
 }
 }
 },

As you can see, this code uses getElementsByTagName to obtain a list of all the a

elements in the page, and get the value of the title attribute for each one. If the

title attribute exists, and has a value longer than zero characters (if (title &&

Simply JavaScript134

title.length > 0)), we set up event listeners for the four different events that

we’re interested in.

Although we’ve registered four event listeners on each of our links, you can see that

there are actually only two event listener methods: showTipListener, which will

display a tooltip in response to either a mouseover or focus event, and

hideTipListener, which hides the tooltip in response to a mouseout or a blur.

Now, we could write the code that actually shows and hides tooltips directly inside

these two methods, but I prefer to implement the “actions” in my scripts in separate

methods, so that the code that controls what happens in response to an event is

separate from the code that controls how it happens. Our event listener methods,

therefore, tend to be relatively simple:

tooltips.js (excerpt)

showTipListener: function(event)
{
 Tooltips.showTip(this);
 Core.preventDefault(event);
},

hideTipListener: function(event)
{
 Tooltips.hideTip(this);
}

showTipListener calls showTip, the method that will actually display the tooltip,

passing it a reference to the hyperlink that has been moused-over, or given keyboard

focus. It then calls preventDefault to keep the browser from displaying a tooltip

of its own in response to the event.

hideTip method is even simpler: it just calls hideTip, which will do the work of

hiding the tooltip.

The Workhorse Methods
We’ve put it off as long as we can, but the time has come to write the code that will

actually create our rich tooltips.

135Events

Until this point, every script we’ve written has either displayed a message box of

some sort, or modified the style of an existing element in the page. To actually dis-

play something new, however—to dynamically add content to the page on the fly—is

a very different trick.

There are two ways to modify the HTML content of a page using JavaScript:

■ via the DOM API

■ through the nonstandard innerHTML property

In this book, we’ll only use the first option. As we learned in Chapter 3, the DOM

API is a W3C standard that is likely to be supported in all web browsers for the

foreseeable future, and its document modification features are up to almost any

task. The innerHTML property, by contrast, is not described in any standard, and

indeed browsers like Firefox have on occasion struggled to implement it consistently

in combination with new standards like XHTML. That said, there is an argument

to be made for innerHTML, and if you’re curious you can read more about this altern-

ative in The innerHTML Option, at the end of this section.

In Chapter 3, we concentrated on how to access and modify existing elements in

an HTML document, but the DOM also lets us create and add new content to the

page. Web developers who secretly wish they had the biceps of bricklayers call this

DOM building.

To display a tooltip on the page, we’ll add a span element that contains the text of

the tooltip just inside the relevant link. Here’s what the markup would look like if

the tooltip were coded right into the document:

Link textTooltip text

To create this element via the DOM, we’ll use the createElement method of the

document node:

tooltips.js (excerpt)

var tip = document.createElement("span");

Once we’ve created the span, we can set its class attribute:

Simply JavaScript136

tooltips.js (excerpt)

tip.className = "tooltip";

Next, we need to put the tooltip text inside the span. In the DOM, this will be a text

node, which we can create with the document node’s createTextNode method. We

need to pass this method the text that we want the node to contain; we can grab it

using the link’s title property:

tooltips.js (excerpt)

var tipText = document.createTextNode(link.title);

To put our new text node inside our new span, we need to use the span’s

appendChild method:

tooltips.js (excerpt)

tip.appendChild(tipText);

Every element in the DOM tree supports the appendChild method, which you can

use to add any node as the last child of the element upon which you are calling the

method. It’s the DOM builder’s best friend! To show you what I mean, we’ll use it

again—to add the tooltip to the document as a child of the link:

tooltips.js (excerpt)

link.appendChild(tip);

That’s our DOM building done, and with just a few finishing touches, we have our

showTip method:

tooltips.js (excerpt)

showTip: function(link)
{
Tooltips.hideTip(link);

137Events

 var tip = document.createElement("span");
 tip.className = "tooltip";
 var tipText = document.createTextNode(link.title);
 tip.appendChild(tipText);
 link.appendChild(tip);

link._tooltip = tip;
 link.title = "";

 // Fix for Safari2/Opera9 repaint issue
 document.documentElement.style.position = "relative";
},

Before building a new tooltip, this method calls hideTip to make sure that any ex-

isting tooltip has been removed, so that we don’t end up with two (which might

happen if the user hovered the cursor over a link that already had keyboard focus).

Once the new tooltip has been built and inserted, this method stores a reference to

the tooltip as a property of the link named _tooltip.11 This will make it easier for

hideTip to remove the tooltip later, using only the reference to the link that it gets

as an argument. Finally, the method sets the link’s title property to an empty

string, so the document doesn’t contain the tooltip text twice. Cleanliness is next

to godliness, they say!

Finally, both Safari 2 and Opera 9 have difficulty with some dynamically-inserted

content like our tooltip, and won’t refresh the page display fully. We can force these

browsers to fully refresh the page display by changing the value of the CSS position

property on the html element (document.documentElement).

That takes care of the creation and inserting of new DOM nodes, but to hide the

tooltip you need to be able to remove content from the page. Predictably, the DOM

provides a method to do this: removeChild. To see how it works, take a look at the

code for hideTip:

11 The underscore (_) at the start of this property name indicates that it’s a “private” property—a property

that isn’t meant to be used by other scripts. It doesn’t actually prevent other scripts from accessing it,

but it’s a clear indication to other developers that it’s not a standard DOM property, which will make

them think twice about using it.

Simply JavaScript138

tooltips.js (excerpt)

hideTip: function(link)
{
 if (link._tooltip)
 {
 link.title = link._tooltip.childNodes[0].nodeValue;
 link.removeChild(link._tooltip);
 link._tooltip = null;

 // Fix for Safari2/Opera9 repaint issue
 document.documentElement.style.position = "static";
 }
},

Before removing the tooltip, this method needs to check if there is actually a tooltip

to remove. Since we stored a reference to the currently displayed tooltip in the

link’s _tooltip property, we just have to check if the property has a value.

With the certain knowledge that a tooltip is currently displayed, we need to retrieve

from it the tooltip text and store it in the link’s title property. You can get the text

stored in a text node using its nodeValue property, and since the text node is the

first child node of the tooltip element, we can access this as link._tooltip.child-

Nodes[0].nodeValue. It’s a little long-winded, but it works.

With the tooltip text safely tucked away, we can remove the tooltip using

removeChild. Since the tooltip is a child of the link, we call removeChild on the

link, and pass it a reference to the node that we want to remove from the docu-

ment—the tooltip.

And last of all, to indicate that there is no longer a tooltip displayed for this link,

we set its _tooltip property to null.

As with showTip, we need to cap this method off with the fix for the repainting bugs

in Safari 2 and Opera 9. Since we set position to relative when showing the

tooltip, we can just set it back to static when hiding the tooltip to force another

repaint.

139Events

The innerHTML Option

Although it’s not a part of any W3C standard, every major browser supports an

innerHTML on every DOM element node. The value of this property is the HTML

code of the content that it currently contains, and by changing that value, you can

change the content of that element.

The biggest advantage offered by innerHTML is performance. If you’re creating

or modifying complex document structures, it can be a lot quicker for the browser

to make document modifications in bulk using innerHTML than by stepping

through a series of separate DOM modifications. In some cases, very complex

JavaScript applications must use innerHTML to achieve reasonable performance.

Additionally, many developers quickly tire of writing the verbose JavaScript code

that DOM manipulation requires, and the “one stop shop” that innerHTML offers

is a tempting alternative. As a result, most of the major JavaScript libraries contain

utilities for making DOM manipulation more convenient, and a number of mini-

libraries like Dan Webb’s DOM Builder have even sprung up to tackle this issue

specifically.12

The Dynamic Styles
Having written all the JavaScript code required to add and remove tooltips on cue,

all that’s left for us to do is to write the CSS code that will make these ordinary

spans really grab users’ attention.

To begin with, we need to make sure our tooltips sit on top of the surrounding

document content. Since our tooltips are generated inside hyperlinks, we can apply

the necessary styles to our links. First, we set the positioning mode of all links to

relative:

tooltips.css (excerpt)

a:link, a:visited {
 position: relative;
}

12 http://www.webstandards.org/2006/04/13/dom-builder/

Simply JavaScript140

http://www.webstandards.org/2006/04/13/dom-builder/
http://www.webstandards.org/2006/04/13/dom-builder/

This alone does nothing to the appearance of our links, but it does enable us to

modify the z-index property of these links when we need to—specifically, when

the link is hovered or has keyboard focus:

tooltips.css (excerpt)

a:hover, a:focus, a:active {
 ⋮
 z-index: 1;
}

That takes care of displaying the tooltips on top of the surrounding elements. Now

let’s look at the tooltips themselves:

tooltips.css (excerpt)

/* Tooltips (dynamic styles) */

.tooltip {
 display: block;
 font-size: smaller;
 left: 0;
 padding: 5px;
 position: absolute;
 text-decoration: none;
 top: 1.7em;
 width: 15em;
}

Here’s a breakdown of the various property declarations in this rule:

text-decoration: none; removes the underline from the text that is inherited

from the link in some browsers

display: block; displays the tooltip as a block 15 ems wide

width: 15em;

position: absolute; positions the box just below the link, in alignment

with its left edgetop: 1.7em;

left: 0;

141Events

font-size: smaller; tweaks the appearance of the tooltip to more clearly

set it apart from the main document contentpadding: 5px;

Those declarations look after the basic appearance of a tooltip. We can now play

with details like text color, background, and border to get the effect we want. In this

example, I’ve put together a couple of different tooltip styles, based on the class of

the link to which the tooltip refers:

tooltips.css (excerpt)

.federation .tooltip {
 background: #C0C0FF url(starfleet.png) top left no-repeat;
 color: #2E2E33;
 min-height: 54px;
 padding-left: 64px;
}

.klingon .tooltip {
 background: #BF0000 url(klingonempire.png) top left no-repeat;
 color: #FFF;
 min-height: 54px;
 padding-left: 64px;
}

Putting it All Together
That’s all you need to produce great looking tooltips! Here’s the complete JavaScript

code for easy reference:

tooltips.js

var Tooltips =
{
 init: function()
 {
 var links = document.getElementsByTagName("a");

 for (var i = 0; i < links.length; i++)
 {
 var title = links[i].getAttribute("title");

 if (title && title.length > 0)

Simply JavaScript142

 {
 Core.addEventListener(
 links[i], "mouseover", Tooltips.showTipListener);
 Core.addEventListener(
 links[i], "focus", Tooltips.showTipListener);
 Core.addEventListener(
 links[i], "mouseout", Tooltips.hideTipListener);
 Core.addEventListener(
 links[i], "blur", Tooltips.hideTipListener);
 }
 }
 },

 showTip: function(link)
 {
 Tooltips.hideTip(link);

 var tip = document.createElement("span");
 tip.className = "tooltip";
 var tipText = document.createTextNode(link.title);
 tip.appendChild(tipText);
 link.appendChild(tip);

 link._tooltip = tip;
 link.title = "";

 // Fix for Safari2/Opera9 repaint issue
 document.documentElement.style.position = "relative";
 },

 hideTip: function(link)
 {
 if (link._tooltip)
 {
 link.title = link._tooltip.childNodes[0].nodeValue;
 link.removeChild(link._tooltip);
 link._tooltip = null;

 // Fix for Safari2/Opera9 repaint issue
 document.documentElement.style.position = "static";
 }
 },

 showTipListener: function(event)

143Events

 {
 Tooltips.showTip(this);
 Core.preventDefault(event);
 },

 hideTipListener: function(event)
 {
 Tooltips.hideTip(this);
 }
};

Core.start(Tooltips);

Example: Accordion
As shown in Figure 4.9, an accordion control collapses content to save space on

the page, allowing the user to expand one “fold” of content at a time to read it.

This sort of interface enhancement is a great example of how JavaScript can improve

the user experience on a page that works just fine without it. Making such enhance-

ments work smoothly not just for mouse users, but for visitors who navigate using

the keyboard (not to mention users of assistive technologies like screen readers),

requires careful thought, and extensive use of event listeners.

The Static Page
As usual, we’ll start by creating a static page with clean HTML and CSS code before

we add any JavaScript. The accordion is essentially a collapsible list, so we’ll use

a ul element of class accordion to represent it:

accordion.html (excerpt)

<ul class="accordion">
 <li id="archer">
 <h2>Jonathan Archer</h2>
 <p>Vessel registry: NX-01</p>
 <p>Assumed command: 2151</p>
 <div class="links">
 <h3>Profiles</h3>

Simply JavaScript144

Figure 4.9. An accordion control

 Memory Alpha
 Wikipedia

 </div>

 <li id="pike">
 ⋮

 ⋮

Note that we’ve applied an ID to each list item, and linked to that ID from the

heading just inside the item. Although we’re focused on creating a sensible HTML

document at this stage, you can also look for opportunities to add meaningful

structure that will help you to script the dynamic behaviour you want.

In this case, we can predict that we’ll want users to be able to click on a heading in

order to expand the corresponding fold of the accordion. Although we could imple-

ment this functionality by adding a click event listener directly to the heading,

using a link makes it easier to support keyboard users. Links can be tabbed to and

“clicked” using the browser’s built-in keyboard support, whereas extra JavaScript

code would be necessary to make a clickable heading accessible from the keyboard.

145Events

The next step is to write the CSS code that will style the static version of the page,

so that it looks nice even in browsers where JavaScript is not available. Since this

isn’t a CSS book, I’ll spare you the code and just show you the result in Figure 4.10.

You can always check out the code in the code archive if you’re curious.

Figure 4.10. The styled page as it will appear without JavaScript

The Workhorse Methods
With a perfectly good page in hand, we can now write a script to enhance it. We’ll

start with our usual script skeleton:

accordion.js (excerpt)

var Accordion =
{
 init: function()
 {
 ⋮
 },
 ⋮
};

Core.start(Accordion);

Simply JavaScript146

This script will be concerned primarily with expanding and collapsing the folds of

our accordion list, so let’s begin by writing the methods that will accomplish this

task.

As we learned in Chapter 3, the best approach for modifying the appearance of

elements on the fly is to assign CSS classes to them, and then define the actual ap-

pearance of each of those classes in our style sheet. So let’s assign the expanded

and collapsed folds the class names expanded and collapsed, respectively. With

this decision made, writing a method that collapses a given fold couldn’t be simpler:

accordion.js (excerpt)

collapse: function(fold)
{
 Core.removeClass(fold, "expanded");
 Core.addClass(fold, "collapsed");
},

Now feel free to go a different way on this point, but personally, I want to allow

only one fold of the accordion to be expanded at a time. Expanding a fold, therefore,

should also collapse all the other folds on the page. Because collapsing all the folds

on the page is a useful thing to be able to do in any case, we’ll write a separate

method to accomplish this:

accordion.js (excerpt)

collapseAll: function(accordion)
{
 var folds = accordion.childNodes;
 for (var i = 0; i < folds.length; i++)
 {

if (folds[i].nodeType == 1)
 {
 Accordion.collapse(folds[i]);

}
 }
},

147Events

This method takes as an argument a reference to the accordion element you want

to collapse completely, so logically the very first thing we want to do is get a list of

the children of that element—the li elements of the list that represent the folds of

the accordion.

This code uses a new trick in the DOM access department: the if statement that

checks the nodeType property of each of those list items. We need to do this because

there’s no guarantee that all the child nodes of the list will be element nodes (that

is, list items). Depending on the browser in which our accordion is being used,13

the whitespace between the list items in our code may be represented as text nodes,

which will be listed as children of the ul element as well. The nodeType property

of a node tells you whether you’re dealing with an element node, a text node, or an

attribute node. Since we’re only interested in elements (the list items in the list),

we check for a nodeType value of 1.

Other than this new trick, the method is fairly straightforward. It gets a list of all

the folds in the accordion, then calls Accordion.collapse to collapse each one.

We now have what we need to write our expand method:

accordion.js (excerpt)

expand: function(fold)
{
Accordion.collapseAll(fold.parentNode);

 Core.removeClass(fold, "collapsed");
 Core.addClass(fold, "expanded");
},

The Dynamic Styles
Now that we have the methods responsible for changing the appearance of our ac-

cordion, let’s switch gears and write the CSS code that will control exactly what

those appearance changes are.

13 Safari is particularly prone to interpreting whitespace as a text node when you least expect it.

Simply JavaScript148

The appearance changes that we need for an accordion are really simple. With the

exception of the heading of each fold, which should always remain visible, we need

to hide the contents of a collapsed fold (an li element of class collapsed).

Now, we could naively achieve this by setting the display property to none or block

where appropriate:

ul.accordion li.collapsed * {
 display: none;
}

ul.accordion li.collapsed h2, ul.accordion li.expanded h2,
ul.accordion li.collapsed h2 a:link,
ul.accordion li.collapsed h2 a:visited,
ul.accordion li.expanded h2 a:link,
ul.accordion li.expanded h2 a:visited {
 display: block;
}

… but doing it this way would effectively prevent users of screen readers from ac-

cessing the contents of our accordion. Screen readers don’t read content that's hidden

with display: none, even when it is later revealed. If there’s another way to show

and hide content dynamically in your JavaScript projects, you should use it.

In this case, there is definitely another way to hide the contents of the accordion.

It’s a technique called offleft positioning, which is just a fancy way of saying “hide

stuff by positioning it off the left-hand side of the page:”

accordion.css (excerpt)

/* Accordion styles (dynamic) */

ul.accordion li.collapsed * {
 position: absolute;
 left: -10000px;
}

ul.accordion li.collapsed h2, ul.accordion li.expanded h2,
ul.accordion li.collapsed h2 a:link,
ul.accordion li.collapsed h2 a:visited,
ul.accordion li.expanded h2 a:link,

149Events

ul.accordion li.expanded h2 a:visited {
 position: static;
}

Offleft positioning is a great boon to screen reader users, because the screen reader

software will read the hidden content just as if it were visible on the page.

The inconvenient side-effect of this approach is that the content also remains a part

of the page for keyboard users, who will be forced to Tab through any links or form

elements within that hidden content, even though the content isn’t visible to them.

In this particular example, however, we can make that work to our advantage, so

offleft positioning is the best choice.

The work we’ve done so far takes care of the essentials, but for a little added spice,

we can change the background color of the header of a fold that is either expanded,

has the cursor over it, or has keyboard focus:

accordion.css (excerpt)

ul.accordion li.collapsed h2 a:hover,
ul.accordion li.collapsed h2 a:focus,
ul.accordion li.collapsed h2 a:active,
ul.accordion li.expanded h2 a:link,
ul.accordion li.expanded h2 a:visited {
 background-color: #F0A000;
}

Putting it All Together
Back in the world of JavaScript, we can now write the code that makes things happen,

setting up the event listeners that will respond to user actions. Since we want to

set up our event listeners as soon as the document has finished loading, we turn

our attention to our script’s init method.

Let’s break down the tasks we want to achieve in this method:

1. Find the accordion list(s) in the page.

2. For each accordion, collapse each of the folds it contains.

Simply JavaScript150

3. When the user clicks on the link in the title of an accordion fold, expand it, or

collapse it if it’s already expanded.

That’s not a bad start, so let’s convert these plans into JavaScript code. If you’re

feeling confident, try doing this yourself before looking at the following code—you

can implement each of those steps using only the techniques and features of

JavaScript that we have already seen in this book:

accordion.js (excerpt)

init: function()
{
 var accordions = Core.getElementsByClass("accordion");

 for (var i = 0; i < accordions.length; i++)
 {
 var folds = accordions[i].childNodes;
 for (var j = 0; j < folds.length; j++)
 {
 if (folds[j].nodeType == 1)
 {
 Accordion.collapse(folds[j]);
 var foldLinks = folds[j].getElementsByTagName("a");
 var foldTitleLink = foldLinks[0];
 Core.addEventListener(foldTitleLink, "click",
 Accordion.clickListener);

This code gets a list of all elements with a class of accordion and uses a for loop

to process them one at a time. For each accordion list, it retrieves the list of its child

nodes (its folds) and again uses a for loop to step through them one at time.

After confirming that each node in the list is in fact an element node, it calls the

collapse method to collapse the fold.

It then obtains a reference to the first link in the fold (which will be the one inside

the fold’s title), and adds to it an event listener that will respond to the user clicking

on it. Here’s that event listener:

151Events

accordion.js (excerpt)

clickListener: function(event)
{
 var fold = this.parentNode.parentNode;
 if (Core.hasClass(fold, "collapsed"))
 {
 Accordion.expand(fold);
 }
 else
 {
 Accordion.collapse(fold);
 }
 Core.preventDefault(event);
},

Again, things here are relatively straightforward. The listener obtains a reference

to the fold, which is the parent node of the parent node of the link that has just been

clicked. It then checks the fold’s current CSS class to determine if the fold is col-

lapsed or not. If it's collapsed, the code expands it. If it’s expanded, the code col-

lapses it.

The listener ends with a call to Core.preventDefault, which keeps the browser

from attempting to follow the link. Although it wouldn’t be disastrous if the browser

did follow the link (after all, it just links to the fold itself), this could cause the page

to scroll to the fold, when what we’re after is a slick, seamless effect.

With the code we’ve seen so far, the accordion will work exactly the way we want

it to for mouse and screen reader users, but we still have to solve the problem that

offleft positioning causes for keyboard users. Remember, even though the contents

of collapsed folds are hidden off the left of the screen, keyboard users will still find

themselves Tabbing through the contents of those folds.

On the surface, this seems like a no-win situation, but let’s try a strategy in use at

most major software companies: what if we think of this as feature and not a bug?

If we can’t keep keyboard users from Tabbing into hidden folds, why not make

something useful happen when they do? Specifically, we can expand a fold when

the user Tabs into it!

Simply JavaScript152

In an ideal world, an easy way to do this would be to add a focus event listener to

each fold and catch the focus events as they bubbled up from the specific element

within the fold that has received focus, but as we learned earlier in this chapter,

focus events do not bubble.14

Instead, we need to attach a focus event listener to every element within our accor-

dion that we expect might receive keyboard focus. For this example, we’ll limit

ourselves to hyperlinks, but if you were to add form elements to an accordion, you’d

want to set them up with this listener as well:15

accordion.js (excerpt)

init: function()
{
 var accordions = Core.getElementsByClass("accordion");

 for (var i = 0; i < accordions.length; i++)
 {
 var folds = accordions[i].childNodes;
 for (var j = 0; j < folds.length; j++)
 {
 if (folds[j].nodeType == 1)
 {
 Accordion.collapse(folds[j]);
 var foldLinks = folds[j].getElementsByTagName("a");
 var foldTitleLink = foldLinks[0];
 Core.addEventListener(foldTitleLink, "click",
 Accordion.clickListener);

for (var k = 1; k < foldLinks.length; k++)
 {
 Core.addEventListener(foldLinks[k], "focus",
 Accordion.focusListener);
 }
 }
 }

14 If you want to get picky, they do bubble in Mozilla browsers like Firefox, but this behavior is in direct

violation of the W3C standard for events, so I wouldn’t be surprised to see it changed in future versions

of these browsers.
15 If you wanted to be especially thorough, you could add this listener to every element within your ac-

cordion, but the sheer number of listeners this might entail could put a real drag on the browser’s per-

formance, so I recommend the lighter—if riskier—approach we’ve used here.

153Events

Here’s the focus event listener:

accordion.js (excerpt)

focusListener: function(event)
{
 var element = this;
 while (element.parentNode)
 {
 if (element.parentNode.className == "accordion")
 {
 Accordion.expand(element);
 return;
 }
 element = element.parentNode;
 }
}

This code showcases a common way of using the parentNode property to reach up

through the DOM tree. Since all we know is that this is an element somewhere

inside a fold of an accordion, you need to use a while loop to climb up through

parent nodes of parent nodes until you find an element whose parent node has a

class of accordion. That tells you that you’ve found the fold element, which you

can promptly expand in the usual way.

As a finishing touch to our menu, let’s add a bonus feature that takes advantage of

the fact that, in the HTML code of the page, each of our folds has a unique ID:

accordion.html (excerpt)

<ul class="accordion">
 <li id="archer">
 ⋮

 <li id="pike">
 ⋮

 ⋮

Simply JavaScript154

If a link on another page points to a specific fold of our accordion (e.g.), it would be nice to automatically expand that fold

when the page is loaded. All this effect takes is a brief addition to our init method:

accordion.js (excerpt)

init: function()
{
 var accordions = Core.getElementsByClass("accordion");

 for (var i = 0; i < accordions.length; i++)
 {
 ⋮

 if (location.hash.length > 1)
 {
 var activeFold = document.getElementById(
 location.hash.substring(1));
 if (activeFold && activeFold.parentNode == accordions[i])
 {
 Accordion.expand(activeFold);
 }
 }
 }
},

The global location variable is an object that contains information about the URL

of the current page. Its hash property contains the fragment identifier portion of

that URL (e.g. "#pike"), which we can use to identify and expand the requested

fold.

First, we obtain a reference to the element with the specified ID. Since the ID we’re

after is the fragment identifier minus the leading # character, we can use the

substring method that’s built into every JavaScript string value to fetch a portion

of the fragment identifier, starting at the second character (location.hash.sub-

string(1)):

accordion.js (excerpt)

var activeFold = document.getElementById(
 location.hash.substring(1));

155Events

Before expanding the element, we need to check if that ID actually corresponds to

an element in the page, and if the parent of that element is the accordion that we’re

currently setting up:

accordion.js (excerpt)

if (activeFold && activeFold.parentNode == accordions[i])
{
 Accordion.expand(activeFold);
}

And there you have it: a robust and accessible accordion control that you can easily

plug into any web page you like. Load it up in your favorite browser and take it for

a spin. Be sure to try using the keyboard to Tab through the accordion and its con-

tents to see how a little extra code can go a long way toward making your site work

well for a wider audience.

Here’s the complete JavaScript code:

accordion.js

var Accordion =
{
 init: function()
 {
 var accordions = Core.getElementsByClass("accordion");

 for (var i = 0; i < accordions.length; i++)
 {
 var folds = accordions[i].childNodes;
 for (var j = 0; j < folds.length; j++)
 {
 if (folds[j].nodeType == 1)
 {
 Accordion.collapse(folds[j]);
 var foldLinks = folds[j].getElementsByTagName("a");
 var foldTitleLink = foldLinks[0];
 Core.addEventListener(
 foldTitleLink, "click", Accordion.clickListener);

 for (var k = 1; k < foldLinks.length; k++)
 {

Simply JavaScript156

 Core.addEventListener(
 foldLinks[k], "focus", Accordion.focusListener);
 }
 }
 }

 if (location.hash.length > 1)
 {
 var activeFold = document.getElementById(
 location.hash.substring(1));
 if (activeFold && activeFold.parentNode == accordions[i])
 {
 Accordion.expand(activeFold);
 }
 }
 }
 },

 collapse: function(fold)
 {
 Core.removeClass(fold, "expanded");
 Core.addClass(fold, "collapsed");
 },

 collapseAll: function(accordion)
 {
 var folds = accordion.childNodes;
 for (var i = 0; i < folds.length; i++)
 {
 if (folds[i].nodeType == 1)
 {
 Accordion.collapse(folds[i]);
 }
 }
 },

 expand: function(fold)
 {
 Accordion.collapseAll(fold.parentNode);
 Core.removeClass(fold, "collapsed");
 Core.addClass(fold, "expanded");
 },

 clickListener: function(event)

157Events

 {
 var fold = this.parentNode.parentNode;
 if (Core.hasClass(fold, "collapsed"))
 {
 Accordion.expand(fold);
 }
 else
 {
 Accordion.collapse(fold);
 }
 Core.preventDefault(event);
 },

 focusListener: function(event)
 {
 var element = this;
 while (element.parentNode)
 {
 if (element.parentNode.className == "accordion")
 {
 Accordion.expand(element);
 return;
 }
 element = element.parentNode;
 }
 }
};

Core.start(Accordion);

Exploring Libraries
Most JavaScript libraries contain solutions to the browser compatibility issues sur-

rounding event listeners that we tackled in this chapter. Although we believe the

Core library that we have developed for this book to be well worth using, depending

on your preferences, you may find these alternatives slightly more convenient, effi-

cient, or confusing.

The Prototype library, for example, offers cross-browser alternatives for the standard

addEventListener and removeEventListenermethods, called Event.observe and

Event.stopObserving, respectively:

Simply JavaScript158

Event.observe(element, "event", eventListener);

Event.stopObserving(element, "event", eventListener);

These methods work much like our own Core.addEventListener and

Core.removeEventListener methods, in that they transparently call the correct

methods to add and remove event listeners in the current browser, and ensure that

the necessary cleanup is done to avoid listener-related memory leaks in Internet

Explorer.

These methods leave a couple of issues unresolved, however—the inconsistency

surrounding the value of this within the listener function, for example. Instead of

automatically ensuring that this refers to the element to which the event listener

was applied, Prototype lets you specify exactly which object you’d like this to refer

to by adding a bindAsEventListener method to every function.

Therefore, the correct way to set up an event listener in Prototype is as follows:

Event.observe(element, "event",
eventListener.bindAsEventListener(element));

I’ve assumed here that we want this to refer to the element to which the listener

was added, but we can pass any object we like as an argument to

bindAsEventListener, and it will be used as the value of this when the event

listener function is called.

Calling bindAsEventListener also resolves the remaining cross-browser compatib-

ility issues, for example, ensuring that the event object is passed to the listener

function as an argument, even in Internet Explorer.

Unfortunately, this approach complicates the process of removing an event listener

slightly. As we need to pass the same arguments to Event.stopObserving in order

for it to work, we need to store the result of calling bindAsEventListener:

var myEventListener = eventListener.bindAsEventListener(element);
Event.observe(element, "event", myEventListener);
⋮
Event.stopObserving(element, "event", myEventListener);

159Events

If Prototype makes registering event listeners a little complicated, it simplifies the

control of event propagation and default actions. Instead of separate preventDefault

and stopPropagation methods, Prototype gives you a single method that does both:

Event.stop(event);

At the opposite end of the spectrum in terms of complexity is the jQuery library,

which makes the code for managing event listeners extremely simple. It has ex-

tremely easy-to-use bind and unbind methods that take care of all the cross-browser

compatibility headaches associated with adding and removing event listeners:

$("#id").bind("event", eventListener);

$("#id").unbind("event", eventListener);

jQuery also provides for each event type a convenient method that lets us set up an

event listener for that event with even less code than the above. For example, the

click method lets us set up a click event listener:

$("#id").click(clickListener);

Note that we can call any of these methods on a jQuery node list in order to add

the listener to every node in the list. For example, we can add a click listener to

every link in the document with just one statement:

$("a[href]").click(clickListener);

Nestled halfway between Prototype and jQuery in terms of complexity is the Yahoo!

UI Library, which works almost exactly like our own Core.addEventListener and

Core.removeEventListener methods.

Summary
You’ve taken a huge step in this chapter! Instead of just running JavaScript code as

the page is loaded, painting a pretty picture for the user to gaze at in vague disap-

pointment, you can now attach your code to events, following the user’s lead like

a practiced dance partner, adjusting and responding to his or her every whim.

Simply JavaScript160

But in some ways, this can still be quite limiting. After all, just because the user

stops dancing doesn’t mean your code should have to!

In Chapter 5, we’ll finally set JavaScript free! We’ll explore the secrets of animation,

and learn how to produce effects that take place over a period of time, independent

of the user’s interaction with the page. We’ll also learn how this freedom can be

used to further improve the examples we created in this chapter.

161Events

Chapter5
Animation
Are you ready for your journey into the … fourth dimension!? (Cue spooky

theramin music.)

Animation is all about time—stopping time, starting time, and bending time to

produce the effect you want: movement. You don’t actually have to learn much new

JavaScript in order to create web page animation—just two little functions. One and

a half, really. What are they? You’ll have to read on to find out!

But first, let’s take a look at exactly what animation is, and how we can best go

about producing it on a computer screen.

The Principles of Animation
If, like me, you’re a connoisseur of Saturday morning cartoons, you’ll probably be

familiar with the basic principles of animation. As illustrated in Figure 5.1, what

we see on the TV screen isn’t actually Astroboy jetting around, but a series of images

played rapidly, with minute changes between each one, producing the illusion that

Astroboy can move.

Standard TV displays between 25 and 30 pictures (or frames) per second, but we

don’t perceive each picture individually—we see them as one continuous, moving

image. Animation differs from live TV only in the way it is produced. The actual

display techniques are identical—a series of rapidly displayed images that fools

our brains into seeing continuous movement.

Figure 5.1. Creating the illusion of movement using a series of progressively changing images

Adding animation to your interfaces is no different from animating something for

TV, although it may seem somewhat less artistic. If you want a drop-down menu

to actually drop down, you start it closed, end it open, and include a whole bunch

of intermediate steps that make it look like it moved.

The faster you want to move it, the fewer steps you put in between the starting and

finishing frames. As it is, a drop-down menu without animation is akin to teleport-

ation—the menu moves directly from point A to point B, without any steps in

between. If you add just one step, it’s not quite teleportation, but it’s still faster than

you can blink. Add ten steps and the menu begins to look like it’s moving smoothly.

Add 50 and it’s probably behaving a bit too much like a tortoise. It’s really up to

Simply JavaScript164

you to find the optimal intervals that give you that nice, pleasing feeling of the menu

opening.

Controlling Time with JavaScript
The most intuitive way of thinking about animations is as slices of time. We’re

capturing and displaying discrete moments in time so that they look like one con-

tinuous experience. But, given the way we handle animation in JavaScript, it’s

probably more accurate to think of ourselves as inserting the pauses—putting gaps

between the slices, as is illustrated in Figure 5.2.

Figure 5.2. An animation running at 25 frames per second, in which the gap between each “slice” of time is 40 milliseconds

In normal program flow a browser will execute JavaScript as quickly as it can,

pumping instructions to the CPU whenever they can be processed. This means that

your entire, 5,000-line program could execute faster than you can take a breath.

That’s great if you’re performing long calculations, but it’s useless if you’re creating

165Animation

animation. Watching Snow White and the Seven Dwarfs in 7.3 seconds might be

efficient, but it doesn’t do much for the storyline.

To create smooth, believable animation we need to be able to control when each

frame is displayed. In traditional animation, the frame rate (that is, the number of

images displayed per second) is fixed. Decisions about how you slice the intervals,

where you slice them, and what you slice, are all up to you, but they’re displayed

at the same, measured pace all the time.

In JavaScript, you can create the same slices and control the same aspects, but you’re

also given control of the pauses—how long it takes for one image to be displayed

after another. You can vary the pauses however you like, slowing time down,

speeding it up, or stopping it entirely (though most of the time you’ll want to keep

it steady). We control time in JavaScript using setTimeout.

Instead of allowing your program to execute each statement as quickly as it can,

setTimeout tells your program to wait awhile—to take a breather. The function

takes two arguments: the statement you want it to run next, and the time that the

program should wait before executing that statement (in milliseconds).

In order to stop the statement inside the setTimeout call from being evaluated im-

mediately, we must make it into a string. So if we wanted to display an alert after

one second, the setTimeout call would look like this:

setTimeout("alert('Was it worth the wait?')", 1000);

From the moment this statement is executed, our program will wait 1000 milli-

seconds (one second) before it executes the code inside the string, and produces

the popup shown in Figure 5.3.

Technically speaking, what happens when setTimeout is called is that the browser

adds the statement to a “to-do list” of sorts, while the rest of your program continues

to run without pausing. Once it finishes what it’s currently doing (for instance, ex-

ecuting an event listener), the browser consults its to-do list and executes any tasks

it finds scheduled there.

Simply JavaScript166

Figure 5.3. Using setTimeout to execute code after a specified number of milliseconds have elapsed

Usually, when you call a function from inside another function, the execution of

the outer function halts until the inner function has finished executing. So a function

like the one shown here actually executes as depicted in Figure 5.4:

function fabric()
{
 ⋮
 alert("Stop that man!");
 ⋮
}

Figure 5.4. Calling a function inside another function

But what happens if you have a setTimeout call in the middle of your code?

function fabric()
{
 ⋮

167Animation

 setTimeout("alert('Was it worth the wait?');", 1000);
 ⋮
}

In this case, the execution of the statement passed to setTimeout is deferred, while

the rest of fabric executes immediately. The scheduled task waits until the specified

time has elapsed, and the browser has finished what it’s doing, before executing.

Figure 5.5 illustrates this concept.

Strictly speaking, the delay that you specify when calling setTimeout will be the

minimum amount of time that must elapse before the scheduled task will occur. If

the browser is still tied up doing other things when that time arrives, your task will

be put off until all others have been completed, as Figure 5.6 indicates.1

Using Variables with setTimeout
Statements passed to setTimeout are run in global scope. We talked about scope

in Chapter 2, so if you’d like to refresh your memory, flick back to that chapter. The

effect that scope has here is that the code run by setTimeout will not have access

to any variables that are local to the function from which setTimeout was called.

Take a look at this example:

function periscope()
{
 var message = "Prepare to surface!";

 setTimeout("alert(message);", 2000);
}

Here, the variable message is local to periscope, but the code passed to the

setTimeout will be run with global scope, entirely separately from periscope.

Therefore, it won’t have access to message when it runs, and we’ll receive the error

shown in Figure 5.7.

1 If you specify a delay of zero milliseconds when you call setTimeout, the browser will execute the

task as soon as it’s finished what it’s currently doing.

Simply JavaScript168

Figure 5.5. Calling setTimeout schedules a task to be run after a delay

Figure 5.6. setTimeout waits until JavaScript is free before running the newly specified task

Figure 5.7. The error that occurs when we try to use a locally scoped variable as part of setTimeout code

There are three ways around this problem.

169Animation

The first is to make message a global variable. This isn’t that great an idea, because

it’s not good practice to have variables floating around, cluttering up the global

namespace, and causing possible clashes with other scripts. But if we were to go

down this path, we could just leave the var keyword off our variable declaration:

function periscope()
{
 message = "Prepare to surface!";

 setTimeout("alert(message)", 2000);
}

message would be a global variable that’s accessible from any function, including

the code passed to setTimeout.

The second option is available when the variable we’re using is a string. In this

case, we can encode the value of the variable directly into the setTimeout code

simply by concatenating the variable into the string:

function periscope()
{
 message = "Prepare to surface!";

 setTimeout("alert('" + message + "')", 2000);
}

Since we want the string to be interpreted as a string—not a variable name—we

have to include single quote marks inside the setTimeout code string, and in between

those marks, insert the value of the variable. Though the above code is equivalent

to the code below, we have the advantage of being able to use dynamically assigned

text with the variable:

setTimeout("alert('Prepare to surface!')", 2000);

Troublesome Quotes

Of course, if the variable’s string value happens to contain one or more single

quotes, this approach will fall to pieces unless you go to the trouble of escaping

Simply JavaScript170

each of the single quotes with a backslash. And while that is certainly possible,

the code involved isn’t much fun.

The final option, and the one that’s used more regularly in complex scripts, is to

use a closure. A closure is a tricky JavaScript concept that allows any function that’s

defined inside another function to access the outer function’s local variables, regard-

less of when it’s run. Put another way, functions have access to the context in which

they’re defined, even if that context is a function that’s no longer executing. So,

even though the outer function may have finished executing minutes ago, functions

that were declared while it was executing will still be able to access its local vari-

ables.

How does this help us given the fact that setTimeout takes a string as its first argu-

ment? Well, it can also take a function:

function periscope()
{
 var message = "Prepare to surface!";

 var theFunction = function()
 {
 alert(message);
 };

 setTimeout(theFunction, 2000);
}

Or, more briefly:

function periscope()
{
 var message = "Prepare to surface!";

 setTimeout(function(){alert(message);}, 2000);
}

When you pass a function to setTimeout, setTimeout doesn’t execute it then and

there; it executes the function after the specified delay. Since that function was

declared within periscope, the function creates a closure, giving it access to

periscope’s local variables (in this case, message).

171Animation

Even though periscope will have finished executing when the inner function is

run in two seconds’ time, message will still be available, and the call to alert will

bring up the right message.

The concept of closures is difficult to get your head around, so for the moment, you

can be satisfied if you’ve just got a general feel for them.

Stopping the Timer
When setTimeout is executed, it creates a timer that “counts down” to the moment

when the specified code should be executed. The setTimeout function returns the

ID of this timer so that you can access it later in your script. So far, we’ve been

calling setTimeout without bothering about its return value, but if you ever want

to intervene in a timer’s countdown, you have to pay attention to this value.

To stop a timer before its countdown has finished, we need to capture the timer’s

ID inside a variable and pass it to a function called clearTimeout. clearTimeout

will immediately cancel the countdown of the associated timer, and the scheduled

task will never occur:

var timer = setTimeout("alert('This will never appear')", 3000);
clearTimeout(timer);

The alert in the code above will never be displayed, because we stop the setTimeout

call immediately using clearTimeout.

Let’s consider something that’s a little more useful. Suppose we create a page that

displays two buttons:

clear_timeout.html (excerpt)

<button id="start">Start</button>
<button id="stop">Stop</button>

We can add some behavior to those buttons with a short program:

Simply JavaScript172

clear_timeout.js

var ClearTimer =
{
 init: function()
 {
 var start = document.getElementById("start");
 Core.addEventListener(start, "click", ClearTimer.clickStart);

 var stop = document.getElementById("stop");
 Core.addEventListener(stop, "click", ClearTimer.clickStop);
 },
 clickStart: function()
 {
 ClearTimer.timer = setTimeout("alert('Launched')", 2000);
 },
 clickStop: function()
 {
 if (ClearTimer.timer)
 {
 clearTimeout(ClearTimer.timer);
 }

 alert("Aborted");
 }
};

Core.start(ClearTimer);

This program begins by running ClearTimer.init via Core.start, which initializes

the page by adding a click event listener to each of the buttons. When the Start

button is clicked, ClearTimer.clickStart will be called, and when the Stop button

is clicked, ClearTimer.clickStop will be called.

ClearTimer.clickStart uses setTimeout to schedule an alert, but we store the ID

to that scheduled alert inside the variable ClearTimer.timer. Whenever

ClearTimer.clickStop is pressed we pass ClearTimer.timer to clearTimeout,

and the timer will be stopped.

So, once you click Start you will have two seconds to click Stop; otherwise, the alert

dialog will appear, displaying the message “Launched.” This simple example

173Animation

provides a good illustration of what’s involved in controlling timers via user inter-

action; we’ll look at how it can be used in a more complex interface later in this

chapter.

Creating a Repeating Timer
There’s another timing function that’s very similar to setTimeout, but which allows

you to schedule a repeating piece of code. This function is called setInterval.

setInterval takes exactly the same arguments as setTimeout, and when it’s ex-

ecuted, it waits in exactly the same way. But the fun doesn’t stop once the scheduled

code has finished executing—setInterval schedules the code again, and again,

and again, and again, until you tell it to stop. If you tell it to wait 1,000 milliseconds,

setInterval will schedule the code to run once every 1,000 milliseconds.

Each interval is scheduled as a separate task, so if a particular occurrence of the

scheduled code takes longer to run than the interval time, the next occurrence will

execute immediately after it finishes, as the browser scrambles to catch up.

At the start of this chapter I mentioned that there were really one and a half functions

that could be used to control time in JavaScript. That’s because setInterval isn’t

used very often.

As setInterval relentlessly schedules tasks at the specified interval no matter how

long those tasks actually take, long-running tasks can generate an undesirable

backlog that causes fast-running tasks to run instantly, with no pause between them.

In an animation, this can be disastrous, as the pause between each frame is crucial

to generating that illusion of motion.

When it comes to animation, it’s usually best to rely on chained setTimeout calls,

including at the end of your scheduled code a setTimeout call to that same piece

of code. This approach ensures that you only have one task scheduled at any one

time, and that the crucial pauses between frames are maintained throughout the

animation. You’ll see examples of this technique in each of the animation programs

we write in this chapter.

Simply JavaScript174

Stopping setInterval
Just like setTimeout, setInterval returns a timer ID. To stop setInterval from

executing any more scheduled code, we pass this ID to clearInterval:

var timer = setInterval("alert('Do this over and over!')", 3000);
clearInterval(timer);

Done! No more timer.

Revisiting Rich Tooltips
It’s probably easiest to get a feel for working with setTimeout if we start

simply—using it to put in a short delay on an action. I’ll demonstrate this by

modifying the Rich Tooltips script from Chapter 4, so that the tooltips behave more

like regular tooltips and appear after the user has hovered the mouse over the element

for a moment. We won’t need to change much of the program—just the two event

listeners that handle the mouseover/focus and mouseout/blur events.

Let’s think about how the delay should work. We want the tooltip to pop up about

500 milliseconds after the mouseover or focus event occurs. In our original script,

the event listener showTipListener immediately made a call to Tooltips.showTip.

But in the delayed script, we want to move that call into a setTimeout:

tooltips_delay.js (excerpt)

showTipListener: function(event)
{
var link = this;

 this._timer = setTimeout(function()
 {
 Tooltips.showTip(link);
 }, 500);
 Core.preventDefault(event);
},

In order to pass showTip a reference to the link in question, we need to store that

reference in a local variable called link. We can then make use of a closure by

passing setTimeout a newly created function. That new function will have access

175Animation

to showTipListener’s local variables, and when it’s run, it will be able to pass the

link to showTip.

The other point to note about this setTimeout call is that we assign the ID it returns

to a custom property of the anchor element, called _timer. We store this value so

that if a user mouses off the anchor before the tooltip has appeared, we can stop the

showTip call from going ahead. To cancel the method call, we update

hideTipListener with a clearTimeout call:

tooltip_delay.js (excerpt)

hideTipListener: function(event)
{
clearTimeout(this._timer);

 Tooltips.hideTip(this);
}

The ID of the setTimeout call is passed to clearTimeout every time that

hideTipListener is executed, and this will prevent premature “tooltipification.”

And that’s it: our Rich Tooltips script has now been modified into a moderately

less annoying Rich Delayed Tooltips script.

Old-school Animation in a New-school Style
To demonstrate how to create a multi-stepped animation sequence in JavaScript

we’re going to do something novel, though you probably wouldn’t implement it on

a real web page. We’re going to re-create a film reel in HTML.

First of all, we need a strip of film—or a graphic that looks almost like a real piece

of film. As you can see in Figure 5.8, our reel contains a series of progressively

changing images that are joined together in one long strip.

Simply JavaScript176

Figure 5.8. The “reel” we’ll use to create animation

If you had a real reel, you’d pass it through

a projector, and the frames would be projec-

ted individually onto the screen, one after

the other. For this virtual film reel, our

projector will be an empty div:

robot_animation.html (excerpt)

<div id="robot"></div>

The div will be styled to the exact dimen-

sions of a frame (150x150px), so that we can

show exactly one frame inside it:

robot_animation.css (excerpt)

#robot {
 width: 150px;
 height: 150px;

If we use the strip of robots as a background

image, we can change the

background-position CSS property to

move the image around and display differ-

ent parts of the strip:

robot_animation.css (excerpt)

#robot {
 width: 150px;
 height: 150px;
background-image:

 url(../images/robot_strip.gif);
 background-repeat: no-repeat;
 background-position: 0 0;
}

177Animation

Getting the idea now? You can think of the div as a little window inside which

we’re moving the strip around, as Figure 5.9 illustrates.

Figure 5.9. Changing the position of the background image to specify which frame is in view

So, we know how to make any one frame appear inside the div window, but the

page is still static—there’s no animation. That’s what that ol’ JavaScript magic is

for!

In order to create a fluid animation, we’re going to need to change the

background-position at a regular interval, flicking through the frames so that they

look like one fluid, moving image. With all the talk of setTimeout in this chapter,

Simply JavaScript178

you could probably take a guess that the function is the key to it all. And you’d be

wrong. Sorry, right:

robot_animation.js

var Robot =
{
 init: function()
 {
 Robot.div = document.getElementById("robot");
 Robot.frameHeight = 150;
 Robot.frames = 10;
 Robot.offsetY = 0;

 Robot.animate();
 },
 animate: function()
 {
 Robot.offsetY -= Robot.frameHeight;

 if (Robot.offsetY <= -Robot.frameHeight * Robot.frames)
 {
 Robot.offsetY = 0;
 }

 Robot.div.style.backgroundPosition =
 "0 " + Robot.offsetY + "px";

 setTimeout(Robot.animate, 75);
 }
};

Core.start(Robot);

The Robot object contains two methods. Robot.init is included mainly to declare

some variables and kick-start the animation. I include the variables here, rather than

in Robot.animate, because Robot.animate will be called a lot, and it’s more efficient

to declare the variables just once than to have them declared for each frame of our

animation.

179Animation

Here are the highlights of this script:

The initialized variables include a reference to the div element we’re modifying,

as well as two constant properties— frameHeight and frames—which tell the

program that each frame is 150 pixels high, and that there are ten frames in

total. These values will remain fixed throughout an animation, but by declaring

them up front, you’ll find it easier to modify the frame dimensions and the

number of frames later if you need to. If you create your own animation, you

should modify these variables according to your needs.

The other variable, Robot.offsetY, is the only variable we’ll be updating dy-

namically. It’s set to 0 initially, but it’s used to record the current vertical pos-

ition of the animation image, just so we know which frame we’re up to.

After the init method does its thing, we step into our first iteration of

Robot.animate.

If you look to the end of the function, you’ll see that the function calls itself

with a setTimeout delay. This lets you know that we’re setting up a timed,

repeating task.

The first statement in the function reduces Robot.offsetY by the height of one

frame. What we’re calculating here is the vertical background-position re-

quired to view the next frame. However, our animation graphic isn’t infinitely

long; if we just kept reducing the value of Robot.offsetY, we’d eventually run

out of frames and end up with an empty box. To avoid this, we need to return

to the beginning of the strip at the right moment.

Next up is an if statement that checks whether the new Robot.offsetY value

is outside the range of our animation strip. If it is, we set it back to 0.

With our new offset value in hand, we’re ready to update the position of the

image. To do so, we modify the div’s style.backgroundPosition property,

using Robot.offsetY for the vertical coordinate and 0 for the horizontal co-

ordinate (because we don’t need to move the image horizontally at all).

Simply JavaScript180

Units Required

Remember to include units at the end of all non-zero CSS values, otherwise

your changes will be ignored. We’re using pixels in this case, so we add px

to the end of the value.

Changing the style of the div commits the new frame to the browser for the

user to see. Once that’s done, we have to schedule the next change using

setTimeout. The wait until the next frame change is 75 milliseconds, which

will produce a frame rate of approximately 13 frames per second. You might

want to tweak this rate depending on how fast or smooth you want your anim-

ation to be. The most pleasing results are often reached by trial and error.

Once the program has made a few passes through Robot.animate, you have yourself

an animation. Since there’s nothing in our code to stop the repeated calls to that

method, the animation will keep going forever. If you wanted to, you could provide

start and stop buttons as we did previously in this chapter to allow users to stop

and restart the animation. Alternatively, you could limit the number of cycles that

the animation goes through by including a counter variable that’s incremented each

time Robot.offsetY returns to 0.

Path-based Motion
The JavaScript techniques we used to animate our digital film reel can be applied

whenever you want to make a series of progressive changes to the display over time.

All you have to do is replace background-position with the attribute you want to

modify: color, width, height, position, opacity—anything you can think of.

In our next example, we’re going to look at moving an HTML element along a linear

path. So, instead of changing the background-position of the target element, we

change its actual position.

In cases where you want to move an element, you usually know where it is now

(that is, its starting location), and where you want it to be (its end location), as Fig-

ure 5.10 shows.

181Animation

Figure 5.10. Visualizing a path from the object’s starting location to the point where you want it to end up

Once you’ve defined the two end points of the path, it’s the job of the animation

program to figure out all the steps that must occur to let the animated element move

smoothly from point A to point B, as shown in Figure 5.11.

Figure 5.11. Calculating the steps required to move an element from point A to point B

Given that the movement is going to be automated by an animation function, all we

really have to identify at the moment is:

Simply JavaScript182

■ the element we want to move

■ where we want to move it to

■ how long we want it to take to reach its destination

We’ll use the soccer ball and grassy background as the basis for a working example.

The HTML for this document is fairly simple:

path-based_motion.html (excerpt)

<div id="grass">
 <div id="soccerBall"></div>
</div>

There are a number of ways we could position the soccer ball, but for this example

I’ve chosen to use absolute positioning:

path-based_motion.css (excerpt)

#soccerBall {
 background-image: url(soccer_ball.png);
 background-repeat: no-repeat;
 height: 125px;
left: 0;

 margin-top: 25px;
position: absolute;

 top: 75px;
 width: 125px;
}

Positioning and Animation

If you’re going to animate an element’s movement, the element will need to be

positioned relatively or absolutely; otherwise, changing its left and top properties

won’t have any effect.

The JavaScript we used to animate our previous film reel example makes a fairly

good template for any animation, so we’ll use its structure to help us define the

movement we need in this new animation. Inside init, we declare some of the

variables we’ll need, then start the actual animation:

183Animation

path-based_motion.js (excerpt)

var SoccerBall =
{
 init: function()
 {
 SoccerBall.frameRate = 25;
 SoccerBall.duration = 2;
 SoccerBall.div = document.getElementById("soccerBall");
 SoccerBall.targetX = 600;
 SoccerBall.originX = parseInt(
 Core.getComputedStyle(SoccerBall.div, "left"), 10);
 SoccerBall.increment =
 (SoccerBall.targetX - SoccerBall.originX) /
 (SoccerBall.duration * SoccerBall.frameRate);
 SoccerBall.x = SoccerBall.originX;

 SoccerBall.animate();
 },
 ⋮
};

The first two variables control the speed of the animation.

SoccerBall.frameRate specifies the number of frames per second at which

we want the animation to move. This property is used when we set the delay

time for the setTimeout call, and determines the “smoothness” of the soccer

ball’s movement. SoccerBall.duration determines how long the animation

should take to complete (in seconds) and affects the speed with which the ball

appears to move.

SoccerBall.div is self-explanatory.

SoccerBall.targetX specifies the location to which we’re moving the soccer

ball. Once it reaches this point, the animation should stop.

In order to support an arbitrary starting position for the soccer ball,

SoccerBall.originX is actually calculated from the browser’s computed style

for the div.

The computed style of an element is its style information after all CSS rules and

inline styles have been applied to it. So, if an element’s left position has been

Simply JavaScript184

specified inside an external style sheet, obtaining the element’s computed style will

let you access that property value.

Unfortunately, there are differences between the way that Internet Explorer imple-

ments computed style and the way that other browsers implement it. Internet Ex-

plorer exposes a currentStyle property on every element. This properties has ex-

actly the same properties as style, so you could ascertain an element’s computed

left position using element.currentStyle.left. Other browsers require you to

retrieve a computed style object using the method

document.defaultView.getComputedStyle. This method takes two arguments—the

first is the element you require the styles for; the second must always be null—then

returns a style object that has the same structure as Internet Explorer’s currentStyle

property.

To get around these browser differences, we’ll create a new Core library function

that will allow us to get a particular computed style property from an element:

core.js (excerpt)

Core.getComputedStyle = function(element, styleProperty)
{
 var computedStyle = null;

 if (typeof element.currentStyle != "undefined")
 {
 computedStyle = element.currentStyle;
 }
 else
 {
 computedStyle =
 document.defaultView.getComputedStyle(element, null);
 }

 return computedStyle[styleProperty];
};

Core.getComputedStyle does a little object detection to check which way we should

retrieve the computed style, then passes back the value for the appropriate property.

Using method, we can get the correct starting point for SoccerBall.originX without

requiring a hard-coded value in our script.

185Animation

Let’s return to our init method above:

With SoccerBall.originX and SoccerBall.targetX in hand, we can calculate

the increment by which we’ll need to move the soccer ball in each frame so

that it ends up at the target location within the duration specified for the anim-

ation. This is a simple matter of finding the distance to be traveled

(SoccerBall.targetX – SoccerBall.originX) and dividing it by the total

number of frames in the animation (SoccerBall.duration *

SoccerBall.frameRate). Calculating this figure during initialization—rather

than inside the actual animating function—reduces the number of calculations

that we’ll have to complete for each step of the animation.

The last variable we declare is SoccerBall.x. It acts similarly to Robot.offsetY,

keeping track of the horizontal position of the element. It would be possible

to keep track of the soccer ball’s position using its actual style.left value,

however, that value has to be an integer, whereas SoccerBall.x can be a

floating point number. This approach produces more accurate calculations and

smoother animation.

After SoccerBall.init has finished declaring all the object properties, we

start the animation by calling SoccerBall.animate.

Here’s the code for this method:

path-based_motion.js (excerpt)

animate: function()
{
 SoccerBall.x += SoccerBall.increment;

 if ((SoccerBall.targetX > SoccerBall.originX &&
 SoccerBall.x > SoccerBall.targetX) ||
 (SoccerBall.targetX <= SoccerBall.originX &&
 SoccerBall.x <= SoccerBall.targetX))
 {
 SoccerBall.x = SoccerBall.targetX;
 }
 else
 {
 setTimeout(SoccerBall.animate, 1000 / SoccerBall.frameRate)
 }

Simply JavaScript186

 SoccerBall.div.style.left = Math.round(SoccerBall.x) + "px";
}

The similarities between this animate method and Robot.animate, which we saw

in the previous example, are striking. The process for both is basically:

1. Calculate the new position.

2. Check whether the new position exceeds the limit.

3. Apply the new position to the element.

4. Repeat the process with a delay.

In this case, we’re calculating a new position by adding to the current position one

“slice” of the total distance to be traveled:

path-based_motion.js (excerpt)

SoccerBall.x += SoccerBall.increment;

Then, we check whether that new position goes beyond the end point of the anim-

ation:

path-based_motion.js (excerpt)

if ((SoccerBall.targetX > SoccerBall.originX &&
 SoccerBall.x >= SoccerBall.targetX) ||
 (SoccerBall.targetX < SoccerBall.originX &&
 SoccerBall.x <= SoccerBall.targetX))

That condition looks a little daunting, but we can break it down into smaller chunks.

There are actually two possible states represented here, separated by an OR operator.

The first of these states (SoccerBall.targetX > SoccerBall.originX &&

SoccerBall.x >= SoccerBall.targetX) checks whether SoccerBall.targetX is

greater than SoccerBall.originX. If it is, we know that the soccer ball is moving

187Animation

to the right. If that’s the case, the soccer ball will be beyond the end point if

SoccerBall.x is greater than SoccerBall.targetX.

In the second state (SoccerBall.targetX < SoccerBall.originX && SoccerBall.x

<= SoccerBall.targetX), if SoccerBall.targetX is less than SoccerBall.originX,

the soccer ball will be moving to the left, and it will be beyond the end point if

SoccerBall.x is less than SoccerBall.targetX. By including these two separate

states inside the condition, we allow the soccer ball to move in any direction without

having to modify the code.

If the newly calculated position for the soccer ball exceeds the end point, we auto-

matically set the new position to be the end point:

path-based_motion.js (excerpt)

if ((SoccerBall.targetX > SoccerBall.originX &&
 SoccerBall.x >= SoccerBall.targetX) ||
 (SoccerBall.targetX < SoccerBall.originX &&
 SoccerBall.x <= SoccerBall.targetX))
{
SoccerBall.x = SoccerBall.targetX;

}

Otherwise, the soccer ball needs to keep moving, so we schedule another animation

frame:

path-based_motion.js (excerpt)

else
{
 setTimeout(SoccerBall.animate, 1000 / SoccerBall.frameRate)
}

Notice that the delay for the setTimeout is specified as 1000 milliseconds (one

second) divided by the specified frame rate. This calculation transforms the frame

rate into the millisecond format that’s required for the delay.

Simply JavaScript188

The last thing we need to do for each frame is apply the newly calculated position

to the style.left property of the soccer ball. This step causes the browser to display

the update:

path-based_motion.js (excerpt)

SoccerBall.div.style.left = Math.round(SoccerBall.x) + "px";

That statement converts SoccerBall.x to an integer using Math.round, which rounds

any number up or down to the nearest integer. We need to do this because

SoccerBall.x might be a floating point number, and CSS pixel values can’t be

decimals.

The last two statements (the setTimeout and the style change) would normally be

written in the reverse of the order shown here, but the setTimeout is placed inside

the else statement for code efficiency. If we were to place it after the style assign-

ment, setTimeout would require an additional conditional check. By doing it this

way, we can avoid adversely affecting the performance of our script.

Once we assemble both the init and animate functions inside the one object, which

we initialize using Core.start, we have our finished program. We’re all set to roll

that soccer ball over a lush, green field:

path-based_motion.js

var SoccerBall =
{
 init: function()
 {
 SoccerBall.frameRate = 25;
 SoccerBall.duration = 2;
 SoccerBall.div = document.getElementById("soccerBall");
 SoccerBall.targetX = 600;
 SoccerBall.originX = parseInt(
 Core.getComputedStyle(SoccerBall.div, "left"), 10);
 SoccerBall.increment =
 (SoccerBall.targetX - SoccerBall.originX) /
 (SoccerBall.duration * SoccerBall.frameRate);
 SoccerBall.x = SoccerBall.originX;

189Animation

 SoccerBall.animate();
 },

 animate: function()
 {
 SoccerBall.x += SoccerBall.increment;

 if ((SoccerBall.targetX > SoccerBall.originX &&
 SoccerBall.x >= SoccerBall.targetX) ||
 (SoccerBall.targetX < SoccerBall.originX &&
 SoccerBall.x <= SoccerBall.targetX))
 {
 SoccerBall.x = SoccerBall.targetX;
 }
 else
 {
 setTimeout(SoccerBall.animate, 1000 / SoccerBall.frameRate)
 }

 SoccerBall.div.style.left = Math.round(SoccerBall.x) + "px";
 }
};

Core.start(SoccerBall);

Animating in Two Dimensions
The example above only animated the soccer ball horizontally, but it’s quite easy

to modify our program to deal with vertical movement as well:

path-based_motion2.js

var SoccerBall =
{
 init: function()
 {
 SoccerBall.frameRate = 25;
 SoccerBall.duration = 2;
 SoccerBall.div = document.getElementById("soccerBall");
 SoccerBall.targetX = 600;

SoccerBall.targetY = 150;
 SoccerBall.originX = parseInt(

Simply JavaScript190

 Core.getComputedStyle(SoccerBall.div, "left"), 10);
SoccerBall.originY = parseInt(

 Core.getComputedStyle(SoccerBall.div, "top"), 10);
 SoccerBall.incrementX =
 (SoccerBall.targetX - SoccerBall.originX) /
 (SoccerBall.duration * SoccerBall.frameRate);

SoccerBall.incrementY =
 (SoccerBall.targetY - SoccerBall.originY) /
 (SoccerBall.duration * SoccerBall.frameRate);
 SoccerBall.x = SoccerBall.originX;

SoccerBall.y = SoccerBall.originY;

 SoccerBall.animate();
 },
 animate: function()
 {
 SoccerBall.x += SoccerBall.incrementX;

SoccerBall.y += SoccerBall.incrementY;

 if ((SoccerBall.targetX > SoccerBall.originX &&
 SoccerBall.x >= SoccerBall.targetX) ||
 (SoccerBall.targetX < SoccerBall.originX &&
 SoccerBall.x <= SoccerBall.targetX))
 {
 SoccerBall.x = SoccerBall.targetX;

SoccerBall.y = SoccerBall.targetY;
 }
 else
 {
 setTimeout(SoccerBall.animate, 1000 / SoccerBall.frameRate)
 }

 SoccerBall.div.style.left = Math.round(SoccerBall.x) + "px";
SoccerBall.div.style.top = Math.round(SoccerBall.y) + "px";

 }
};

Core.start(SoccerBall);

For every instance in which we performed a calculation with the x coordinate, we

add an equivalent statement for the y coordinate. So, SoccerBall.init ends up

with a vertical end-point in SoccerBall.targetY, a vertical origin in

191Animation

SoccerBall.originY, and a vertical position tracker in SoccerBall.y. These vari-

ables are used by SoccerBall.animate to increment the vertical position and write

it to the style.top property.

The only other change we need to make is a small tweak to the starting position of

the ball:

path-based_motion2.css (excerpt)

#soccerBall {
 ⋮
 top: 0;
 ⋮
}

Once that’s done, we’ve got a ball that moves in both dimensions, as Figure 5.12

illustrates.

Figure 5.12. Adding vertical movement to the animation

Creating Realistic Movement
The animation that we’ve created so far treats the movement of the soccer ball ho-

mogeneously—each frame moves the ball by the same amount, and the ball stops

without any deceleration. But this isn’t how objects move in the real world: they

Simply JavaScript192

speed up, they slow down, they bounce. It’s possible for us to mimic this type of

behavior by using different algorithms to calculate the movement of our soccer ball.

If we wanted to get our soccer ball to slow to a halt, there are just a few minor tweaks

we’d have to make to our program:

path-based_motion3.js

var SoccerBall =
{
 init: function()
 {
 SoccerBall.frameRate = 25;

SoccerBall.deceleration = 10;
 SoccerBall.div = document.getElementById("soccerBall");
 SoccerBall.targetX = 600;
 SoccerBall.targetY = 150;
 SoccerBall.originX = parseInt(
 Core.getComputedStyle(SoccerBall.div, "left"), 10);
 SoccerBall.originY = parseInt(
 Core.getComputedStyle(SoccerBall.div, "top"), 10);
 SoccerBall.x = SoccerBall.originX;
 SoccerBall.y = SoccerBall.originY;

 SoccerBall.animate();
 },

 animate: function()
 {

SoccerBall.x += (SoccerBall.targetX - SoccerBall.x) /
 SoccerBall.deceleration;
 SoccerBall.y += (SoccerBall.targetY - SoccerBall.y) /
 SoccerBall.deceleration;

 if ((SoccerBall.targetX > SoccerBall.originX &&
Math.round(SoccerBall.x) >= SoccerBall.targetX) ||

 (SoccerBall.targetX < SoccerBall.originX &&
Math.round(SoccerBall.x) <= SoccerBall.targetX))

 {
 SoccerBall.x = SoccerBall.targetX;
 SoccerBall.y = SoccerBall.targetY;
 }
 else
 {

193Animation

 setTimeout(SoccerBall.animate, 1000 / SoccerBall.frameRate)
 }

 SoccerBall.div.style.left = Math.round(SoccerBall.x) + "px";
 SoccerBall.div.style.top = Math.round(SoccerBall.y) + "px";
 }
};

Core.start(SoccerBall);

In this code, we’ve replaced SoccerBall.duration with

SoccerBall.deceleration—a deceleration factor that’s applied to our new position

calculation inside animate. This time, instead of dividing the total distance into

neat little increments, the position calculator takes the distance remaining to the

end-point, and divides it by the deceleration factor. In this way, the steps start out

being big, but as the ball moves closer to its goal, the steps become smaller and

smaller. The ball travels a smaller distance between frames, creating the sense that

it’s slowing down, or decelerating.

One pitfall that you need to watch out for when you’re using an equation like this

is that, if left to its own devices, SoccerBall.x will never reach the end point. The

animation function will continually divide the remaining distance into smaller and

smaller steps, producing an infinite loop. To counteract this (and stop the animation

from going forever), we round SoccerBall.x to the nearest integer, using Math.round,

before checking whether it has reached the end point. As soon as SoccerBall.x is

within 0.5 pixels of the end point—which is close enough for the ball to reach its

goal when its position is expressed in pixels—the rounding will cause the animation

to end.

Using this deceleration algorithm, the movement of the ball looks more like that

depicted in Figure 5.13.

Simply JavaScript194

Figure 5.13. Modeling realistic deceleration by changing the algorithm that moves the soccer ball

If you want the ball to move more slowly—gliding more smoothly to its final posi-

tion—increase the deceleration factor. If you want the ball to reach its destination

more quickly—coming to a more sudden stop—decrease the deceleration factor.

Setting the factor to 1 causes the ball to jump directly to its destination.

Faster!
If you wanted to accelerate the soccer ball—make it start off slow and get faster—then

you’d have to reverse the algorithm we used for deceleration:

path-based_motion4.js (excerpt)

var SoccerBall =
{
 init: function()
 {

 SoccerBall.frameRate = 25;
SoccerBall.acceleration = 2;

 SoccerBall.threshold = 0.5;
 SoccerBall.div = document.getElementById("soccerBall");
 SoccerBall.targetX = 600;
 SoccerBall.targetY = 150;
 SoccerBall.originX = parseInt(
 Core.getComputedStyle(SoccerBall.div, "left"));

195Animation

 SoccerBall.originY = parseInt(
 Core.getComputedStyle(SoccerBall.div, "top"));

if (SoccerBall.targetX < SoccerBall.originX)
 {
 SoccerBall.x = SoccerBall.originX - SoccerBall.threshold;
 }
 else
 {
 SoccerBall.x = SoccerBall.originX + SoccerBall.threshold;
 }

 SoccerBall.distanceY = SoccerBall.targetY - SoccerBall.originY;

 SoccerBall.animate();
 },

 animate: function()
 {

SoccerBall.x += (SoccerBall.x - SoccerBall.originX) /
 SoccerBall.acceleration;
 var movementRatio = (SoccerBall.x - SoccerBall.originX) /
 (SoccerBall.targetX - SoccerBall.originX);
 var y = SoccerBall.originY + SoccerBall.distanceY *
 movementRatio;

 if ((SoccerBall.targetX > SoccerBall.originX &&
 SoccerBall.x >= SoccerBall.targetX) ||
 (SoccerBall.targetX < SoccerBall.originX &&
 SoccerBall.x <= SoccerBall.targetX))
 {
 SoccerBall.x = SoccerBall.targetX;
 y = SoccerBall.targetY;
 }
 else
 {
 setTimeout(SoccerBall.animate, 1000 / SoccerBall.frameRate)
 }

 SoccerBall.div.style.left = Math.round(SoccerBall.x) + "px";
SoccerBall.div.style.top = Math.round(y) + "px";

 }

Simply JavaScript196

};

Core.start(SoccerBall);

Here, the SoccerBall.deceleration variable has been replaced by

SoccerBall.acceleration, and the value has been lowered to give us a quicker

start. The algorithm that calculates the increments now uses the distance to the start

point to determine them, so as the ball gets further from the start point the increments

get bigger, making the ball move faster.

As this algorithm uses SoccerBall.x – SoccerBall.originX as the basis for its

calculations, we need SoccerBall.x to initially be offset slightly from

SoccerBall.originX, otherwise the ball would never move. SoccerBall.x must

be offset in the direction of the destination point, so during initialization we check

the direction in which the destination lies from the origin, and add or subtract a

small value—SoccerBall.threshold—as appropriate. For a more accurate model,

you could reduce SoccerBall.threshold below 0.5, but you won’t see much dif-

ference.

The other difference between this algorithm and the decelerating one is the way in

which the vertical positions are calculated. Since we use a fixed value for accelera-

tion, if it was calculated separately, the acceleration in either dimension would be

the same—the y position would increase in speed at the same rate as the x position.

If your y destination coordinate is closer than your x destination coordinate, the

soccer ball would reach its final y position faster than it reached its final x position,

producing some strange (non-linear) movement.

In order to prevent this eventuality, we calculate the y position of the soccer ball

based on the value of its x position. After the new x position has been calculated,

the ratio between the distance traveled and the total distance is calculated and

placed in the variable movementRatio. This figure is multiplied by the total vertical

distance between the origin and the target, and gives us an accurate y position for

the soccer ball, producing movement in a straight line.

As the y position is calculated in terms of the x position, we no longer need

SoccerBall.y, so this property has been removed from the object. Instead, we just

197Animation

calculate a normal y variable inside the animate function. As a quick reference for

the vertical distance, SoccerBall.distanceY is calculated upon initialization.

Moving Ahead
You can give countless different types of movements to an object. Deceleration and

acceleration are just two of the more simple options; there’s also bouncing, circular

movements, elastic movements—the list goes on. If you’d like to learn the mathem-

atics behind other types of object movement, I highly recommend visiting Robert

Penner’s site.2 He created the movement calculations for the Flash environment,

so I’m pretty sure he knows his stuff.

Revisiting the Accordion Control
Well, you learned to make an accordion control in Chapter 4, and I’m sure you were

clicking around it, collapsing and expanding the different sections, but thinking,

“This isn’t quite there; it needs some more … snap!” Well, it’s now time to make it

snap, move, and jiggle. Because we’re going to add some animation to that accordion.

After all, what’s an accordion without moving parts, and a little monkey in a fez?

This upgrade will take a little more effort than the modifications we made to our

Rich Tooltips script, but the effect is well worth it—we’ll wind up with an animated

accordion that gives the user a much better sense of what’s going on, and looks very,

very slick.

Making the Accordion Look Like it’s Animated
Before we dive into the updated code, let’s take a look at how we’re going to animate

the accordion. To produce the effect of the content items collapsing and expanding,

we have to modify the height of an element that contains all of that content. In this

case, the list items in the menu are the most likely candidates.

Normally, if no height is specified for a block-level element, it will expand to show

all of the content that it contains. But if you do specify a height for a block-level

element, it will always appear at that specified height, and any content that doesn’t

fit inside the container will spill out, or overflow, as shown in Figure 5.14.

2 http://www.robertpenner.com/easing/

Simply JavaScript198

http://www.robertpenner.com/easing/
http://www.robertpenner.com/easing/

Figure 5.14. Content overflowing the bounds of a block-level element for which height is specified

Now, we don’t want the content to overflow when we’re animating our accordion;

we want the parent element to hide any content that would ordinarily overflow.

The way to do this is to adjust the CSS on the parent container, and specify the

property overflow: hidden. When this is done, and a height (or a width) is specified,

any overflowing content will be hidden from view, as illustrated in Figure 5.15.

Figure 5.15. Specifying overflow: hidden on the block-level element causing content that doesn’t fit inside it to be

hidden

Once we’ve made sure that the overflowing content is being hidden correctly, we

can start to animate the container. To do this, we’ll gradually change its height to

make it look like it’s expanding or collapsing.

Changing the Code
Now that you’ve got the general idea of how we’re going to animate our accordion,

our first stop is the initialization method:

accordion_animated.js (excerpt)

init: function()
{
Accordion.frameRate = 25;

 Accordion.duration = 0.5;

199Animation

 var accordions = Core.getElementsByClass("accordion");

 for (var i = 0; i < accordions.length; i++)
 {
 var folds = accordions[i].childNodes;
 for (var j = 0; j < folds.length; j++)
 {
 if (folds[j].nodeType == 1)
 {

var accordionContent = document.createElement("div");
 accordionContent.className = "accordionContent";

 for (var k = 0; k < folds[j].childNodes.length; k++)
 {
 if (folds[j].childNodes[k].nodeName.toLowerCase() !=
 "h2")
 {
 accordionContent.appendChild(folds[j].childNodes[k]);
 k--;
 }
 }

 folds[j].appendChild(accordionContent);
 folds[j]._accordionContent = accordionContent;

 Accordion.collapse(folds[j]);
 var foldLinks = folds[j].getElementsByTagName("a");
 var foldTitleLink = foldLinks[0];
 Core.addEventListener(foldTitleLink, "click",
 Accordion.clickListener);

 for (var k = 1; k < foldLinks.length; k++)
 {
 Core.addEventListener(foldLinks[k], "focus",
 Accordion.focusListener);
 }
 }
 }

 if (location.hash.length > 1)
 {
 var activeFold =
 document.getElementById(location.hash.substring(1));
 if (activeFold && activeFold.parentNode == accordions[i])

Simply JavaScript200

 {
 Accordion.expand(activeFold);
 }
 }
 }
}

In this code, we’ve added two familiar animation constants, as well as a whole new

block of code that modifies the HTML of the menu. Why?

One point you should note about using the overflow: hidden CSS property is that

it can produce some weird visual effects in Internet Explorer 6. Given the way we’ve

set up the accordion headings, if we applied overflow: hidden to those list items,

they’d look completely warped in IE. To circumvent this pitfall, we separate the

heading (the part that the user clicks on) from the rest of the content in a given fold

of the accordion by putting that content inside its own div element. It’s also a lot

easier to deal with the animation if we can collapse the container to zero height,

rather than having to worry about leaving enough height for the heading.

But that’s no reason to go in and modify your HTML by hand! We can easily make

these changes with JavaScript, as the code above shows:

Inside init, we create a new div and assign it a class of accordionContent.

Next, we have to move the current contents of the list item into this new con-

tainer. We do so using a for loop that iterates through each of the list item’s

childNodes.

We don’t want to move the h2 into that new container, because that’s the

clickable part of the accordion, so we do a check for that, skip it, and include

everything else.

You can move an element from one parent to another simply by appending

the element to the new parent. The DOM will automatically complete the

process of removing and adding the element in the position you’re identified.

One trick with that for loop is that it decrements the counter every time a child

element is moved. The reason for this is that the counter automatically incre-

201Animation

ments every time the loop executes, but if we remove an element from

childNodes, its next sibling moves down to take its index, so if we actually

incremented the index, we’d start to skip elements. Decrementing cancels out

this effect.

Once all the existing content has been moved into the new container, we’re

able to append that container into the list item, completing our modification

of the DOM. Now our list item contains only two elements—the title and the

content—and no one’s the wiser!

Finally, as a shortcut for later, we store a reference to the accordionContent

element as a property of the list item: _accordionContent.

Another advantage of adding the accordionContent div is that it simplifies the

CSS. For example, the CSS code that hides the contents of collapsed folds can be

distilled down to this:

accordion_animated.css (excerpt)

.accordionContent {
 overflow: hidden;
 ⋮
}

li.collapsed .accordionContent {
 position: absolute;
 left: -9999px;
}

/* Fixes Safari bug that prevents expanded content from displaying.
 See http://betech.virginia.edu/bugs/safari-stickyposition.html */
li.collapsed .accordionContent p {
 position: relative;
}

Thanks to this code, overflow: hidden will always be specified on elements with

the class accordionContent, enabling us to animate them properly.

Simply JavaScript202

In the original script, our expand function changed some classes to make the selected

accordion item pop open, but in animating the accordion, we need to use expand

to do a little setup first:

accordion_animated.js (excerpt)

expand: function(fold)
{
var content = fold._accordionContent;

 Accordion.collapseAll(fold.parentNode);
if (!Core.hasClass(fold, "expanded"))

 {
 content.style.height = "0";
 content._height = 0;
 Core.removeClass(fold, "collapsed");
 Core.addClass(fold, "expanded");

content._increment = content.scrollHeight /
 (Accordion.frameRate * Accordion.duration);
 Accordion.expandAnimate(content);
 }
},

The content variable is just a shortcut to the fold._accordionContent property

we created earlier—it saves plenty of typing. The collapseAll method is then

called to reset the accordion menu items, and we can focus our attention on

the currently selected content.

Although previously it didn’t matter if expand was called on an already-expan-

ded fold (for example, in response to the keyboard focus moving from link to

link within an expanded fold), we’ve changed this method so that it kicks off

an animation. As such, we need this if statement to avoid animating already-

expanded folds.

Before we change its classes to make it visible, we set content’s style.height

to 0. This step ensures that when the class change switches the content from

collapsed to expanded, it will remain invisible, because it will have no height.

To keep track of the actual calculated height of the content, we create the

variable _height as a property of content. As in the previous animation ex-

203Animation

amples, this property allows us to keep an accurate calculation of the accordi-

on’s movement. Once the height has been reset, we can remove the “collapsed”

class and add the “expanded” class.

We’re almost ready to perform the animation, but before we do that, we need

to check the height to which we’re going to expand the accordion item. As

we’ll be increasing the height of the item from zero, we have to know when all

the content is displayed, so we can work out when to stop. The scrollHeight

property lets us do this—it calculates the height of the content irrespective of

whether we cut it off with an explicit height and overflow: hidden.

We can save a bit of repetitive calculation within the animating function by

calculating in advance the movement increment that we’ll apply in each step

of the animation. This is determined by dividing the total height of the content

(content.scrollHeight) by the total number of frames (Accordion.frameRate

* Accordion.duration). The result of this calculation is assigned to the

_increment property of content.

After all that setup, we can call expandAnimate, our new method that’s designed

to animate the expansion of an accordion item.

Let’s take a look at that animation method:

accordion_animated.js (excerpt)

expandAnimate: function(content)
{
 var newHeight = content._height + content._increment;

 if (newHeight > content.scrollHeight)
 {
 newHeight = content.scrollHeight;
 }
 else
 {
 content._timer = setTimeout(function()
 {
 Accordion.expandAnimate(content);
 }, 1000 / Accordion.frameRate);
 }

Simply JavaScript204

 content._height = newHeight;
 content.style.height = Math.round(newHeight) + "px";
 content.scrollTop = 0;
},

expandAnimate starts off by calculating the new height of the content:

content._height + content._increment.

This newHeight variable is used inside a conditional test to detect whether the

animation should finish.

If newHeight is larger than content.scrollHeight, we change newHeight to

equal the height of the content, and we don’t schedule any more animation

cycles.

But if newHeight is less than the content’s height, we schedule another

setTimeout call to the same function. This step produces the iterative animation

we’re looking for. The setTimeout ID is assigned to the _timer property of the

content element, so that if another accordion item is clicked mid-animation,

we can stop the expansion animation from continuing.

After we’ve figured out what the new height of the content should be, we use

that new height to update the element’s _height property, then change its ap-

pearance using a rounded value for style.height. One frame of the animation

is now complete.

In certain browsers, if keyboard focus moves to a hyperlink inside a collapsed

fold of the accordion, the browser will make a misguided attempt to scroll that

collapsed content in order to make the link visible. If left this way, the content,

once expanded, will not display properly. Thankfully, the fix is easy—after

each frame of the animation, we reset the content’s scrollTop property to

zero, which resets its vertical scrolling position.

With those two methods, you can see how animation works—the event listener is

fired only once, and sets up the initial values for the animation. Then the iterative

function is called via setTimeout to produce the visual changes needed to get to

the final state.

205Animation

Collapsing an item works in much the same fashion:

accordion_animated.js (excerpt)

collapse: function(fold)
{
var content = fold._accordionContent;

 content._height = parseInt(content.style.height, 10);
 content._increment = content._height /
 (Accordion.frameRate * Accordion.duration);

 if (Core.hasClass(fold, "expanded"))
 {
 clearTimeout(fold._accordionContent._timer);
 Accordion.collapseAnimate(fold._accordionContent);
 }
 else
 {
 Core.addClass(fold, "collapsed");
}

},

For the collapse method, we have to move the class changes into the animation

method because we need the item to remain expanded until the animation has fin-

ished (otherwise it will disappear immediately, before the animation has had a

chance to take place). To kick off the animation, we check whether the current item

has the class expanded, and if it does, we send the browser off to execute

collapseAnimate, but not before we cancel any expansion animation that’s currently

taking place. If we didn’t cancel the expansion first, the collapsing animation might

coincide with an expansion animation that was already in progress, in which case

we’d end up with a stuck accordion (never a pretty sight—or sound).

If an element doesn’t have the expanded class on it when a collapse is initiated, we

simply add the collapsed class and forego the animation. This takes care of the

circumstance in which the page first loads and we need to hide all the menu items.

Simply JavaScript206

collapseAnimate is a lot like expandAnimate, but in reverse:

accordion_animated.js (excerpt)

collapseAnimate: function(content)
{
 var newHeight = content._height - content._increment;

 if (newHeight < 0)
 {
 newHeight = 0;
 Core.removeClass(content.parentNode, "expanded");
 Core.addClass(content.parentNode, "collapsed");
 }
 else
 {
 content._timer = setTimeout(function()
 {
 Accordion.collapseAnimate(content);
 }, 1000 / Accordion.frameRate);
 }

 content._height = newHeight;
 content.style.height = Math.round(newHeight) + "px";
}

We’re aiming to get the height of the content element to 0, so instead of adding

the increment, we subtract it.

The if-else statement that’s used when we reach our target height is slightly

different than the one we saw above, because we have to change the classes

on the current item. Otherwise, it’s identical to expandAnimate.

With animation occurring in both directions, we now have a fully functioning an-

imated accordion. Of course, you’ll get the best view of its effect if you check out

the demo in the example files, but Figure 5.16 shows what happens when you click

to open a new accordion item.

207Animation

Figure 5.16. The progression of our animated accordion as one item collapses and another expands

Exploring Libraries
Quite a few of the main JavaScript libraries don’t tackle animation; instead, they

focus on core tasks like DOM manipulation and styling. However, around these

have sprung up a number of little libraries devoted to animation tasks, and they do

the job quite well.

The animation libraries are a lot more generalized than the scripts we’ve written

here, so it’s possible to use them to apply a range of effects to almost any element,

depending on how adventurous you’re feeling.

script.aculo.us
script.aculo.us is probably the most well-known effects library available. It’s actually

an add-on to Prototype, which it uses for its DOM access and architecture capabil-

ities, so if you want to run script.aculo.us, you’ll also need to include Prototype.

script.aculo.us comes with a host of effects that have become popular in the so-

called Web 2.0 age: fading, highlighting, shrinking, and many other transitions. It

has also more recently included larger pieces of functionality such as drag-and-drop

and slider widgets. Here, we’ll focus on the effects.

All of the effects in script.aculo.us are available through the Effect object, which

will be available in your programs if you include the scriptaculous.js file on your

page.

Let’s imagine that we have a paragraph of text that we want to highlight:

Simply JavaScript208

scriptaculous_highlight.html (excerpt)

<p id="introduction">
 Industrial Light & Magic (ILM) is a motion picture visual
 effects company, founded in May 1975 by George Lucas and owned
 by Lucasfilm Ltd. Lucas created the company when he discovered
 that the special effects department at Twentieth Century Fox was
 shut down after he was given the green light for his production
 of Star Wars.
</p>

We can do so by passing the ID string to Effect.Highlight:

new Effect.Highlight("introduction");

As soon as you make this call, the effect will be applied to the element, as shown

in Figure 5.17.

Figure 5.17. Creating a yellow fade effect with script.aculo.us

Effect.Highlight also allows you to pass it a DOM node reference, so you could

apply the effect to the paragraph like this:

new Effect.Highlight(document.getElementsByTagName("p")[0]);

Most of the effects in script.aculo.us have optional parameters that allow you to

customize various aspects of the effect. These parameters are specified as properties

inside an object literal, which itself is passed as an argument to the effect.

For instance, by default, Effect.Highlight fades the background from yellow to

white, but it’s possible to specify the start color and the end color, so we could make

a particularly lurid fade from red to blue like this:

new Effect.Highlight("introduction",
 {startcolor: "#FF0000", endcolor: "#0000FF"});

209Animation

These optional parameters will differ from effect to effect, so you’ll have to read

through the script.aculo.us documentation if you wish to customize a particular

effect.

Most of the effects have a duration parameter, which lets you specify how quickly

you want the effect to occur. This parameter is specified in seconds, so if you wanted

a two-second, lurid red-blue fade, you’d include all these parameters:

scriptaculous_highlight.js (excerpt)

new Effect.Highlight("introduction",
 {startcolor: "#FF0000", endcolor: "#0000FF",
 duration: 2});

script.aculo.us also has a nice little event model that allows you to trigger functions

while effects are happening, or after they have finished. These events are again

specified as parameters in the object literal, and take a function name as a value.

That function will be called when the event is fired:

function effectFinished()
{
 alert("The introduction has been effected");
}

new Effect.Highlight("introduction",
 {afterFinish: effectFinished});

That code pops up an alert dialog once the fade has finished, to tell us it’s done.

script.aculo.us is certainly a powerful and flexible effects library. Its popularity has

largely been fueled by its ease of integration and execution. In case these benefits

weren’t already apparent, I’ll leave you with this nugget: using script.aculo.us, we

could have animated our soccer ball with just one line of code:

new Effect.MoveBy("soccerBall", 150, 600);

But that wouldn’t have been half as much fun, would it?

Simply JavaScript210

Summary
HTML was designed to be a static medium, but using JavaScript, we can bring it to

life.

There’s no doubt that animation can add a lot of polish to an interface—it doesn’t

have to be mere eye candy! Animation provides real benefits in guiding users around

and providing them with visual cues as to functionality and state. I’m sure quite a

few useful ideas have sprung into your mind while you’ve been reading. This chapter

has given you a taste of what you can do with time-based processing, but there’s so

much more to explore once you’ve learned the basics.

Next up, we’ll delve deeper into a subject that’s central to the development of web

applications: forms.

211Animation

Chapter6
Form Enhancements
HTML hasn’t changed much in the past ten years. Since browsers implemented the

changes in HTML 4 around 1997, the collection of tags and attributes that we use

on the web has essentially stayed the same. Thanks to ongoing improvements to

CSS support in browsers, we have been able to create richer, more intricate designs

with that limited markup. Like the designer fashions that are paraded down the

runway each season, the styles are always fresh and new, even if the models under-

neath look eerily alike.

But there is one aspect of web design for which CSS can’t hide the stagnation of

HTML: forms. No matter how we dress them up, HTML has for the past decade

supported only this limited set of form controls:

■ text input fields

■ checkboxes

■ radio buttons

■ drop-down menus and lists

■ multi-line text areas

■ buttons

Since this selection is so limited, forms were one of the first parts of HTML to receive

the attention of developers experimenting with JavaScript enhancements.

In this chapter, we’ll build a number of useful, reusable form enhancements of our

own. This will give you an opportunity to apply many of the skills you’ve gathered

in the book so far, and to learn a new trick or two.

HTML DOM Extensions
Form controls aren’t your everyday HTML elements. They offer built-in behavior

and interactivity far beyond that which can be described with events like click,

mouseover, mouseout, focus, and blur, and properties like id, and className.

Consequently, in addition to the standard DOM properties, methods, and events

that we’ve already played with in this book, form-related elements support a bunch

of extra properties and methods that are defined in a separate section of the DOM

standard.1 The most useful of these properties and methods are listed in Table 6.2

and Table 6.1, respectively. Form controls also support a handful of extra events,

which are listed in Table 6.3.

Table 6.1. Additional DOM Methods for HTML Form Controls

DescriptionElement(s)Method

removes keyboard focus from this form controlinput

select

textarea

blur

simulates a mouse click on this controlinputclick

gives keyboard focus to this form controlinput

select

textarea

focus

restores all of this form’s controls to their default valuesformreset

selects the text contents of this controlinput

textarea

select

submits the form without triggering a submit eventformsubmit

1 http://www.w3.org/TR/DOM-Level-2-HTML/

Simply JavaScript214

http://www.w3.org/TR/DOM-Level-2-HTML/
http://www.w3.org/TR/DOM-Level-2-HTML/

In the next two examples, we’ll play with some—but not all—of these form-specific

DOM features. Once you’ve got a feel for the extra functionality that JavaScript can

provide, come back to these tables and think about other ways you can use these

tools to enhance your forms.

Table 6.2. Additional DOM Properties for HTML Form Controls

DescriptionElement(s)Property

a node list containing all of the form controls in the formformelements

for inputs of type checkbox and radio, this property’s

value is true if the control is selected

inputchecked

when true, the control is unavailable to the userbutton

input

optgroup

option

select

textarea

disabled

a reference to the form element that contains this controlbutton

input

option

select

textarea

form

the index of this option within the select element that

contains it (0 for the first)

optionindex

a node list containing all of the option elements in this menuselectoptions

true if this option is currently selected, false if notoptionselected

the index of the currently-selected option in the list (0 for the

first)

selectselectedIndex

the current value of this control, as it would be submitted to the

server

button

input

option

select

textarea

value

215Form Enhancements

Table 6.3. Additional DOM Events for HTML Form Controls

Triggered when…Element(s)Event

the control has lost focus after its value has been changedinput

select

textarea

change

the user has selected some text in the fieldinput

textarea

select

the user has requested that the form be submittedformsubmit

Example: Dependent Fields
You don’t always need your users to fill in every field in a form. Sometimes, the

value a user enters into one form field renders another field irrelevant. Instead of

relying on the user to figure out which fields are relevant, why not use the disabled

property mentioned in Table 6.2 to disable the fields that the user can safely ignore?

In Figure 6.1, the checkbox following the second radio button is only relevant if

that radio button is selected. We can use JavaScript to disable it in all other cases.

Figure 6.1. The checkbox is relevant only if the user selects the second radio button

The best way to implement dependent fields will depend (so to speak) on the spe-

cific logic of your form, but for the purposes of this example we can take an approach

that’s general enough to make the script useful in many situations. To this end,

we’ll make the following assumptions:

Simply JavaScript216

■ Each form will have only one level of dependency (a dependent field cannot be

dependent on another dependent field).

■ Dependent fields can only be input elements of type text, password, checkbox,

or radio.

■ Dependent fields can only depend on input elements of these types.

■ Dependent fields will immediately follow the fields on which they depend in

the document.

■ Dependent fields will be contained within label elements.

Here’s how we’ll mark up a form field (in this case, a radio button), and another

field (a checkbox) that’s dependent on it:

dependentfields.html (excerpt)

<div>
 <label for="ncc1701">
 <input type="radio" name="whichenterprise"
 value="ncc1701" id="ncc1701" />
 USS Enterprise NCC-1701 (Constitution class)
 </label>
 <label for="ncc1701refit" class="secondary">
 <input type="checkbox" class="dependent"
 name="ncc1701refit" id="ncc1701refit"
 value="ncc1701refit" />
 Post-refit
 </label>
</div>

Note that the checkbox has a class of dependent—that’s how we indicate that the

checkbox is dependent on the field that precedes it. If the radio button had more

than one dependent field, each one would have a class of dependent.

When this markup is given to a browser in which JavaScript is disabled, the form’s

dependent fields will simply remain enabled at all times.

We’ll put our script in an object called DependentFields:

217Form Enhancements

dependentfields.js (excerpt)

var DependentFields =
{
 init: function()
 {
 ⋮
 },
 ⋮
};

Core.init(DependentFields);

Let’s start our script by writing the workhorse functions, which will actually enable

and disable form fields as needed:

dependentfields.js (excerpt)

disable: function(field)
{
 field.disabled = true;
 Core.addClass(field, "disabled");
 Core.addClass(field.parentNode, "disabled");
},

enable: function(field)
{
 field.disabled = false;
 Core.removeClass(field, "disabled");
 Core.removeClass(field.parentNode, "disabled");
},

That’s simple enough, right? Both functions start by setting the field’s disabled

property. The first function then applies the disabled class on both the field itself

and the element that contains it (the field’s label); the second function removes

this class from the field and its containing element. We’ll use the disabled class

to style disabled fields (and their labels):

Simply JavaScript218

dependentfields.css (excerpt)

label.disabled {
 color: #A0A0A0;
}

If you prefer, you can actually use a technique like offleft positioning (which I de-

scribed in Chapter 4) to hide disabled fields entirely!

Now, we can approach the code in a number of ways that will actually call the

disable and enable methods we’ve just seen. The most obvious approach would

be to add event listeners to each input element that had one or more dependent

fields, and have those listeners enable or disable the relevant dependent fields.

Having attempted this, I can tell you now that this approach, though obvious, is

problematic. For example, a radio button won’t always produce a useful event when

it’s deselected. Sometimes, the only hint that JavaScript gets that a radio button has

been deselected is a click event from the radio button next to it.

Another option is to add a couple of event listeners to each form on the page. These

event listeners will watch for click and change events bubbling up from any of the

fields in the form, and update the state of all the dependent fields in that form after

every such event:

dependentfields.js (excerpt)

init: function()
{
 var forms = document.getElementsByTagName("form");

 for (var i = 0; i < forms.length; i++)
 {

Core.addEventListener(
 forms[i], "change", DependentFields.changeListener);
 Core.addEventListener(
 forms[i], "click", DependentFields.clickListener);

219Form Enhancements

To make the jobs of these listeners easier (after all, they’ll be running quite often),

the init method will also scan each form to build a list of the dependent fields it

contains, and to store for each one a reference to the field upon which it depends:

dependentfields.js (excerpt)

var fields = forms[i].getElementsByTagName("input");
var lastIndependentField = null;
forms[i]._dependents = [];
for (var j = 0; j < fields.length; j++)
{
 if (!Core.hasClass(fields[j], "dependent"))
 {
 lastIndependentField = fields[j];
 }
 else
 {
 if (lastIndependentField)
 {
 forms[i]._dependents[forms[i]._dependents.length] =
 fields[j];
 fields[j]._master = lastIndependentField;
 }
 }
}

This code may seem a little convoluted at first glance, so let me break it down for

you:

We get a list of all the input elements in the form.

We create for the form a custom property named _dependents, in which we’ll

store a list of all the dependent fields in the form. To start with, however, we

initialize it with an empty array.

For each field in the form, we perform a check to see if it’s a dependent field

or not.

If it’s an independent field, we store a reference to it in a variable called

lastIndependentField.

Simply JavaScript220

If it’s a dependent field, we double-check that we’ve already got a reference to

the field on which it will depend.

We then add to the form’s _dependents array a reference to this dependent

field.

Finally, we store in a custom property named _master a reference to the field

upon which the dependent field depends.

What this code gives us is a list of all the dependent fields in each form

(form._dependents), as well as a link from each dependent field to the field upon

which it depends (dependentField._master).

The last thing our init method will do for each form is set the initial states of all

the dependent fields. Since this is a fairly complex process, we’ll write a separate

method, called updateDependents, to achieve it:

dependentfields.js (excerpt)

 DependentFields.updateDependents(forms[i]);
 }
},

Both of our event listeners will kick off the same process of updating the dependent

field states, so both listeners will call this same method:

dependentfields.js (excerpt)

changeListener: function(event)
{
 DependentFields.updateDependents(this);
},

clickListener: function(event)
{
 DependentFields.updateDependents(this);
}

221Form Enhancements

All that’s left is to write that all-important updateDependents method, which will

either enable or disable each dependent field in a form on the basis of the state of

the field on which it depends:

dependentfields.js (excerpt)

updateDependents: function(form)
{
 var dependents = form._dependents;
 if (!dependents)
 {
 return;
 }

 for (var i = 0; i < dependents.length; i++)
 {
 var disabled = true;
 var master = dependents[i]._master;

 if (master.type == "text" || master.type == "password")
 {
 if (master.value.length > 0)
 {
 disabled = false;
 }
 }
 else if (master.type == "checkbox" ||
 master.type == "radio")
 {
 if (master.checked)
 {
 disabled = false;
 }
 }

 if (disabled)
 {
 DependentFields.disable(dependents[i]);
 }
 else
 {
 DependentFields.enable(dependents[i]);

Simply JavaScript222

 }
 }
},

Again, let’s take this one step at a time:

We start by fetching the list of the form’s dependent fields that was compiled

by the init method.

We loop through this list, one dependent field at a time.

For each field, we start by assuming it will be disabled, then set out to determine

whether that assumption is wrong.

To find out, we need to look at the field upon which this field depends—in-

formation that we can obtain from the _master property that we created in the

init method.

If the master field is a text or password field, we check the length of its value

property. If it’s greater than zero, this dependent field should not be disabled.

If the master field is of type checkbox or radio, we look to see if it’s checked.

If it is, this dependent field should not be disabled.

Now that we know for sure whether this dependent field should or should not

be disabled, we can call the disable or enable methods as required to set the

appropriate state.

And there you have it! Our script has used a number of the HTML DOM extensions:

■ We set up an event listener for the change event generated by some form controls.

■ We used the disabled property, which is supported by all form controls, to

disable dependent fields when appropriate.

■ We used the type, checked, and value properties of various form controls to

determine whether a field had been filled in, and thus whether we should enable

its dependent fields.

223Form Enhancements

Although our example only contains one dependent field, you can reuse this script

on any page with any number of dependent fields, as long as the assumptions we

stated at the start of this section are met. Here’s the complete JavaScript code:

dependentfields.js (excerpt)

var DependentFields =
{
 init: function()
 {
 var forms = document.getElementsByTagName("form");

 for (var i = 0; i < forms.length; i++)
 {
 Core.addEventListener(forms[i], "change",
 DependentFields.changeListener);
 Core.addEventListener(forms[i], "click",
 DependentFields.clickListener);

 var fields = forms[i].getElementsByTagName("input");
 var lastIndependentField = null;
 forms[i]._dependents = [];
 for (var j = 0; j < fields.length; j++)
 {
 if (!Core.hasClass(fields[j], "dependent"))
 {
 lastIndependentField = fields[j];
 }
 else
 {
 if (lastIndependentField)
 {
 forms[i]._dependents[
 forms[i]._dependents.length] = fields[j];
 fields[j]._master = lastIndependentField;
 }
 }
 }
 DependentFields.updateDependents(forms[i]);
 }
 },

 disable: function(field)
 {

Simply JavaScript224

 field.disabled = true;
 Core.addClass(field, "disabled");
 Core.addClass(field.parentNode, "disabled");
 },

 enable: function(field)
 {
 field.disabled = false;
 Core.removeClass(field, "disabled");
 Core.removeClass(field.parentNode, "disabled");
 },

 updateDependents: function(form)
 {
 var dependents = form._dependents;
 if (!dependents)
 {
 return;
 }

 for (var i = 0; i < dependents.length; i++)
 {
 var disabled = true;
 var master = dependents[i]._master;

 if (master.type == "text" || master.type == "password")
 {
 if (master.value.length > 0)
 {
 disabled = false;
 }
 }
 else if (master.type == "checkbox" ||
 master.type == "radio")
 {
 if (master.checked)
 {
 disabled = false;
 }
 }

 if (disabled)
 {
 DependentFields.disable(dependents[i]);

225Form Enhancements

 }
 else
 {
 DependentFields.enable(dependents[i]);
 }
 }
 },

 changeListener: function(event)
 {
 DependentFields.updateDependents(this);
 },

 clickListener: function(event)
 {
 DependentFields.updateDependents(this);
 }
};

Core.start(DependentFields);

Example: Cascading Menus
Another situation in which it can be useful to tie multiple form fields together with

JavaScript arises when you have a complex select menu like that shown in Fig-

ure 6.2.

Figure 6.2. A two-level menu made up of optgroups and options

Simply JavaScript226

Here we have a select containing a number of optgroup elements, each of which

contains a number of option elements. In effect, we have two levels of menus

here—the user must first find the right option group, then select the desired option.

Why not make it easier on the user by splitting this into two menus, as shown in

Figure 6.3?

Figure 6.3. Splitting the single menu into a pair of cascading menus to improve usability

When the user selects an option from the first menu, our JavaScript code will swing

into action, updating the list of options in the second menu. This saves users from

having to scroll through menu choices that aren’t in the group they’re interested in.

Of course, our form must still work when JavaScript is disabled, so we’ll write the

HTML code for our form using the single select, then split it into the two menus

during the initialization of our script. To make our script reusable, however, we

need to make sure that the single menu contains all the information that’s needed

to produce the two cascaded menus:

cascadingmenu.html (excerpt)

<label for="crewselect">
 Who is your favorite Star Trek crewmember?
</label>
<select id="crewselect" name="crewselect"
 class="cascading" title="Assignments">
 <optgroup title="Crew" label="Enterprise NX-01">
 <option value="1">Jonathan Archer</option>
 <option value="2">T'Pol</option>
 <option value="3">Charles Tucker III</option>
 <option value="4">Malcolm Reed</option>
 <option value="5">Hoshi Sato</option>
 <option value="6">Travis Mayweather</option>

227Form Enhancements

 <option value="7">Phlox</option>
 </optgroup>
 <optgroup title="Crew" label="Enterprise NCC-1701(-A)">
 ⋮
 </optgroup>
 ⋮
</select>

Notice in particular the title attributes that are highlighted in bold. The title de-

scribes the items that are listed in each element—the select contains a list of as-

signments, and each optgroup contains a crew listing. As you can see in Figure 6.3,

these attribute values will become the labels for the menus that our script will

create.

This transformation from one menu into two will form the bulk of the work that

the init method of our script will complete. As Figure 6.4 shows, we’re making a

fairly drastic change to the document’s structure.

We can break the process into a number of steps to make it more manageable:

1. Find within the page every select with a class of cascading.

2. For each one, convert the single select’s label into a fieldset that surrounds

the select, with the former label’s content contained in the fieldset’s legend.

3. Create a new “master” select before the existing select. Give it the same title

as the existing select, but new name and id attributes. Fill it with options

based on the optgroups of the existing select, then change the existing select’s

title to match the optgroups’ titles before removing all the contents of the

existing select.

4. Just before each of the two selects that now exist, create a label containing

the text from the select’s title attribute.

5. Fill the now-empty second select with the options that correspond to the

currently-selected option in the new master select. Repeat this process

whenever the selection in the master select changes.

We can use this breakdown as a blueprint for our script’s init method:

Simply JavaScript228

Figure 6.4. Before and after: the required alterations to the DOM structure

229Form Enhancements

cascadingmenu.js (excerpt)

var CascadingMenu =
{
 init: function()
 {
 var menus = Core.getElementsByClass("cascading");

 for (var i = 0; i < menus.length; i++)
 {
 CascadingMenu.convertLabelToFieldset(menus[i]);
 var masterMenu = CascadingMenu.extractMasterMenu(menus[i]);
 CascadingMenu.createLabelFromTitle(masterMenu);
 CascadingMenu.createLabelFromTitle(menus[i]);

 CascadingMenu.updateSlaveMenu(masterMenu);
 Core.addEventListener(
 masterMenu, "change", CascadingMenu.changeListener);
 }
 },
 ⋮
};

Core.start(CascadingMenu);

The rest of the work simply consists of implementing the methods in this code:

convertLabelToFieldset, extractMasterMenu, createLabelFromTitle,

updateSlaveMenu, and changeListener. No sweat, right?

Let’s start with an easy one: convertLabelToFieldset needs to find the label for

the select element that it’s given, and convert it into a fieldset and legend that

will surround the select:

cascadingmenu.js (excerpt)

convertLabelToFieldset: function(menu)
{
 var menuId = menu.id;
 var labels = document.getElementsByTagName("label");

 for (var i = 0; i < labels.length; i++)
 {

Simply JavaScript230

 if (labels[i].getAttribute("for") == menuId)
 {
 var label = labels[i];
 label.parentNode.removeChild(label);

 var legend = document.createElement("legend");
 while (label.hasChildNodes())
 {
 legend.appendChild(label.firstChild);
 }

 var fieldset = document.createElement("fieldset");
 fieldset.appendChild(legend);

 menu.parentNode.replaceChild(fieldset, menu);
 fieldset.appendChild(menu);

 return;
 }
 }
},

This method demonstrates the process of transplanting DOM nodes from one element

to another with a while loop and the hasChildNodes method. It also shows how to

replace one element with another, using the replaceChild method. Both these

processes are new to us, so let’s break the code down:

In order to find the label that belongs to this field, we fetch a list of all the

label elements in the document and loop through them with a for loop as

usual.

For each label, we compare the for attribute to the ID of the specified select

menu. When we find a match, we’ll have found the label that we need to

convert to a fieldset and legend.

We start by removing the label from its parent node, effectively removing it

from the document. This also removes it from the node set labels, which is

why we first created the variable label to store a reference to the element.

231Form Enhancements

Next, we’ll create the legend element, into which we need to move all the

child nodes of the label.

Moving DOM nodes from one element to another is surprisingly easy. Simply

create a while loop that uses the hasChildNodes method to check if the source

element has any more child nodes, and as long as it does, keeps appending the

first of its child nodes to the target element. Since a node can only exist in one

location at a time, adding it to the target element automatically removes it from

the source element.

We can now create the fieldset element, and add to it the legend that we’ve

just created

Replacing the select menu with the newly created fieldset is easy, thanks

to the replaceChild method, which will insert the fieldset in place of the

select in the select’s parent node. Once that’s done, we can insert the select

into the fieldset.

Since we’ve found and dealt with the label we were looking for, we can return

from the convertLabelToFieldset method immediately, rather than letting

the for loop continue searching through the document.

Next up is the extractMasterMenu method, which will create and return a new

select menu that contains as options the optgroups from the original menu:

cascadingmenu.js (excerpt)

extractMasterMenu: function(menu)
{
 var masterMenu = document.createElement("select");
 masterMenu.id = menu.id + "master";
 masterMenu.setAttribute("name", masterMenu.id);
 masterMenu.setAttribute("title", menu.getAttribute("title"));
 masterMenu._slave = menu;

 while (menu.hasChildNodes())
 {
 var optgroup = menu.firstChild;
 if (optgroup.nodeType == 1)
 {
 var masterOption = document.createElement("option");

Simply JavaScript232

 masterOption.appendChild(document.createTextNode(
 optgroup.getAttribute("label")));
 masterMenu.appendChild(masterOption);

 var slaveOptions = [];
 while (optgroup.hasChildNodes())
 {
 var option = optgroup.firstChild;
 slaveOptions[slaveOptions.length] = option;
 optgroup.removeChild(option);
 }
 masterOption._slaveOptions = slaveOptions;

 menu.setAttribute("title",
 optgroup.getAttribute("title"));
 }
 menu.removeChild(optgroup);
 }

 menu.parentNode.insertBefore(masterMenu, menu);

 return masterMenu;
},

It’s a doozy, but there’s almost nothing in there that you haven’t seen before. Never-

theless, let me break down the major steps of this method:

We start by creating a new select element for the new menu. We set its id

property and name attribute to match the ID of the existing select, but we ap-

pend the word “master” to it. We grab the title directly from the existing

select.

Since we’ll need to update the contents of the existing “slave” menu every

time the user makes a selection from the new master menu, we store a reference

to the slave in a custom property of the master, called _slave.

Now we need to create in the master menu an option for each optgroup in the

slave menu. As we did in the convertLabelToFieldset method, we’ll use a

while loop with the hasChildNodes method, grabbing the first optgroup from

233Form Enhancements

the slave menu, then removing it from that menu in preparation for the next

time we cycle through the loop.

Since the menu’s child nodes may include whitespace text nodes, we need to

check the nodeType of each child to make sure we’re dealing with one of the

optgroup elements.

For each optgroup in the slave menu, we’ll create an option that we’ll insert

into the master menu. The text for each option will be taken from the label

attribute of the corresponding optgroup.

So that we can fill the slave menu with the options that correspond to the se-

lection in the master menu, we’ll bundle up the relevant option elements into

an array, which we’ll store in a custom _slaveOptions property of the option

element within the master menu.

As we process each optgroup, we grab its title attribute and set the title of

the slave menu to that value. We assume here that each optgroup has the same

title, so the fact that the final title of the slave menu will be taken from the

last optgroup that’s processed isn’t a problem.

Finally, we remove the optgroup from the slave menu in preparation for the

next cycle of the while loop.

Now that we’ve filled the master menu with its options, we can insert it into

the document, right before the existing menu, using the insertBefore meth-

od—yet another useful DOM method that we haven’t seen before. Like

appendChild, it adds the first node passed to it as a child of the element upon

which it is called. Unlike appendChild, however, it doesn’t place this child at

the end of the element; it places it before the second node that’s passed to it.

At last, we return a reference to the new master menu so that init can perform

additional setup tasks on the menu.

Compared to the last method, createLabelFromTitle is dead simple:

Simply JavaScript234

cascadingmenu.js (excerpt)

createLabelFromTitle: function(menu)
{
 var title = menu.getAttribute("title");
 menu.setAttribute("title", "");

 var label = document.createElement("label");
 label.setAttribute("for", menu.id);
 label.appendChild(document.createTextNode(title));

 menu.parentNode.insertBefore(label, menu);
},

This method takes the title from the select element it was given, builds for the

select a label element that contains that text, then inserts it into the document

before the select. There’s nothing to it!

updateSlaveMenu, which fills the slave menu with the options corresponding to

the current master menu selection is almost as straightforward:

cascadingmenu.js (excerpt)

updateSlaveMenu: function(masterMenu)
{
 var selectedOption =
 masterMenu.options[masterMenu.selectedIndex];

 while (masterMenu._slave.hasChildNodes())
 {
 masterMenu._slave.removeChild(masterMenu._slave.firstChild);
 }

 for (var i = 0; i < selectedOption._slaveOptions.length; i++)
 {
 masterMenu._slave.appendChild(
 selectedOption._slaveOptions[i]);
 }
 masterMenu._slave.selectedIndex = 0;
},

This method does what you’d expect:

235Form Enhancements

It finds the selected option in the master menu using its selectedIndex

property.

Using a while loop with hasChildNodes, it empties the slave menu, which it

finds using the custom _slave property that we created for the master menu

in extractMasterMenu.

It inserts into the slave menu the array of options that corresponds to the se-

lected option in the master menu. Again, this task is made simple by the custom

_slaveOptions property that we set up in extractMasterMenu.

Finally, it sets the slave menu’s selectedIndex property to 0, which selects

the first option in the list.

As usual, since we’re doing all the work in our workhorse methods, our event

listener is as simple as they come:

cascadingmenu.js (excerpt)

changeListener: function(event)
{
 CascadingMenu.updateSlaveMenu(this);
}

That does it! Fire the example up in your browser and take it for a spin. Also, be

sure to try disabling JavaScript to check that the single menu works just fine in that

environment. Here’s the completed script:

cascadingmenu.js

var CascadingMenu =
{
 init: function()
 {
 var menus = Core.getElementsByClass("cascading");

 for (var i = 0; i < menus.length; i++)
 {
 CascadingMenu.convertLabelToFieldset(menus[i]);
 var masterMenu = CascadingMenu.extractMasterMenu(menus[i]);
 CascadingMenu.createLabelFromTitle(masterMenu);

Simply JavaScript236

 CascadingMenu.createLabelFromTitle(menus[i]);

 CascadingMenu.updateSlaveMenu(masterMenu);
 Core.addEventListener(
 masterMenu, "change", CascadingMenu.changeListener);
 }
 },

 convertLabelToFieldset: function(menu)
 {
 var menuId = menu.id;
 var labels = document.getElementsByTagName("label");

 for (var i = 0; i < labels.length; i++)
 {
 if (labels[i].getAttribute("for") == menuId)
 {
 var label = labels[i];
 label.parentNode.removeChild(label);

 var legend = document.createElement("legend");
 while (label.hasChildNodes())
 {
 legend.appendChild(label.firstChild);
 }

 var fieldset = document.createElement("fieldset");
 fieldset.appendChild(legend);

 menu.parentNode.replaceChild(fieldset, menu);
 fieldset.appendChild(menu);

 return;
 }
 }
 },

 extractMasterMenu: function(menu)
 {
 var masterMenu = document.createElement("select");
 masterMenu.id = menu.id + "master";
 masterMenu.setAttribute("name", masterMenu.id);
 masterMenu.setAttribute(
 "title", menu.getAttribute("title"));

237Form Enhancements

 masterMenu._slave = menu;

 while (menu.hasChildNodes())
 {
 var optgroup = menu.firstChild;
 if (optgroup.nodeType == 1)
 {
 var masterOption = document.createElement("option");
 masterOption.appendChild(document.createTextNode(
 optgroup.getAttribute("label")));
 masterMenu.appendChild(masterOption);

 var slaveOptions = [];
 while (optgroup.hasChildNodes())
 {
 var option = optgroup.firstChild;
 slaveOptions[slaveOptions.length] = option;
 optgroup.removeChild(option);
 }
 masterOption._slaveOptions = slaveOptions;

 menu.setAttribute("title",
 optgroup.getAttribute("title"));
 }
 menu.removeChild(optgroup);
 }

 menu.parentNode.insertBefore(masterMenu, menu);

 return masterMenu;
 },

 createLabelFromTitle: function(menu)
 {
 var title = menu.getAttribute("title");
 menu.setAttribute("title", "");

 var label = document.createElement("label");
 label.setAttribute("for", menu.id);
 label.appendChild(document.createTextNode(title));

 menu.parentNode.insertBefore(label, menu);
 },

Simply JavaScript238

 updateSlaveMenu: function(masterMenu)
 {
 var selectedOption =
 masterMenu.options[masterMenu.selectedIndex];

 while (masterMenu._slave.hasChildNodes())
 {
 masterMenu._slave.removeChild(masterMenu._slave.firstChild);
 }

 for (var i = 0; i < selectedOption._slaveOptions.length; i++)
 {
 masterMenu._slave.appendChild(
 selectedOption._slaveOptions[i]);
 }
 masterMenu._slave.selectedIndex = 0;
 },

 changeListener: function(event)
 {
 CascadingMenu.updateSlaveMenu(this);
 }
};

Core.start(CascadingMenu);

Form Validation
Usability tweaks like those we’ve seen so far in this chapter are all well and good,

but by far the most common use of JavaScript when dealing with forms is client-

side validation.

Now let me make one thing clear: every web site that accepts user input of any kind

needs a program on the receiving end—the server side—to make sure that input is

provided in the expected format, and is safe to use. That’s server-side validation,

and it’s an absolute must, no matter what you do with JavaScript in the browser.

Client-side validation, on the other hand, is merely an early warning system. It does

the same job as server-side validation—and does it much faster—but you can’t rely

on it to work every time.

239Form Enhancements

Client-side validation takes place in the browser, before the user input is submitted

for processing. The advantage here is that the user doesn’t have to wait for the request

to be transferred to the server, for validation to occur there, and for the response to

come back in the form of a new page. With JavaScript, you can tell the user more

or less instantly if there is something wrong with the values that are about to be

submitted.

Of course, the user can always disable JavaScript to circumvent your client-side

validation, so it’s important that you also have server-side validation in place to

intercept any invalid submissions.

Intercepting Form Submissions
The key to client-side validation is the submit event that I mentioned in Table 6.3.

Whenever the user attempts to submit a form (whether by clicking a submit button

or just by hitting Enter in a text field), a submit event is triggered on the correspond-

ing form element. The default action for that event is to submit the form, but as we

learned in Chapter 4, you can use JavaScript to cancel the default action for an event

if you want to.

The basic technique for client-side validation, then, is to set up either an event

handler or an event listener for the form’s submit event, and cancel the default action

if the form’s contents are not acceptable. Here’s roughly what this process looks

like, using an event handler:

form.onsubmit = function()
{
 if (form input is not valid)
 {

notify the user
 return false;
 }
};

Here’s how it looks if you’re using an event listener:

Core.addEventListener(form, "submit", function(event)
{
 if (form input is not valid)

Simply JavaScript240

 {
notify the user

 Core.preventDefault(event);
 }
});

As usual, I recommend that you stick with using an event listener so that you can

enjoy the benefits I described in Chapter 4, but remember that Safari versions 2.0.3

and earlier do not support the cancelling of default actions from event listeners. If

you need to support client-side validation in those older Safari versions, look in

the code archive for the JavaScript files whose names end in -dom0.js. These use

event handlers instead of event listeners for each of the examples that follow.

As a trivial example, we could verify that the user had filled in a value for a partic-

ular text field:

requiredfield.js (excerpt)

var RequiredField =
{
 init: function()
 {
 var requiredField = document.getElementById("requiredfield");
 var theForm = requiredField.form;

 Core.addEventListener(
 theForm, "submit", RequiredField.submitListener);
 },

 submitListener: function(event)
 {
 var requiredField = document.getElementById("requiredfield");

 if (requiredField.value == "")
 {
 requiredField.focus();
 alert("Please fill in a value for this required field.");
 Core.preventDefault(event);
 }
 }

241Form Enhancements

};

Core.start(RequiredField);

Most of this code should come pretty naturally to you by now, but here’s a run-

down of the highlights:

Because the submit event’s target is the form element, not any single form

control, we need to use the required field’s form property to obtain a reference

to the form that contains it before we can register our event listener.

We can check the value of a text field with its value property.

Once we’ve identified a problem with a field, we call its focus method to give

it keyboard focus and help the user find and correct the mistake.

We display a helpful message to let the user know what he or she did wrong,

as shown in Figure 6.5.

We prevent the form from submitting by cancelling the submit event’s default

action.

Figure 6.5. A helpful error message

Of course, sometimes it’s not enough for a field just to be filled in; sometimes, the

value has to conform to a particular format. That’s where regular expressions come

in handy.

Simply JavaScript242

Regular Expressions
We use regular expressions to search for and replace patterns of text. They’re

available in many different programming languages and environments, and are es-

pecially prevalent in web development languages like JavaScript.

The popularity of regular expressions has everything to do with how useful they

are, and absolutely nothing to do with how easy they are to use—they’re not easy

at all. In fact, to most people who encounter them for the first time, regular expres-

sions look like something that might eventuate if you fell asleep with your face on

the keyboard.

Here, for example, is a relatively simple (yes, really!) regular expression that will

match any string that might be a valid email address:

^[\w\.\-]+@([\w\-]+\.)+[a-zA-Z]+$

Scary, huh? By the end of this section, you’ll actually be able to make sense of that.

To create a regular expression in JavaScript, use forward slashes (/) around the ex-

pression as you would use single or double quotes around a string:

var regex = /pattern/;

Escape the Forward Slash!

To include a forward slash as part of a regular expression, you must escape it with

a preceding backslash (\/); otherwise, it will be interpreted as marking the end

of the pattern.

Alternatively, if you need to build a regular expression dynamically (say, using the

value of a variable), you can use this alternative syntax to create the regular expres-

sion from a string:

var regex = new RegExp("pat" + variable + "tern");

243Form Enhancements

Essentially, a regular expression represents a pattern specified with ordinary and

special characters. For instance, if you wanted a pattern that matched the string

“JavaScript,” your regular expression pattern could be:

JavaScript

However, by including special characters, your pattern could also be:

^Java.*

The caret (^), the dot (.), and the asterisk (*) are all special characters that have a

specific meaning inside a regular expression. Specifically, the caret means “the start

of the string,” the dot means “any character,” and the asterisk means “zero or more

of the preceding character.”

Therefore, the pattern ^Java.* matches not only the string “JavaScript,” but

“Javascript,” “JavaHouse,” “Java, the most populous island in the world,” and any

other string beginning with “Java.”

Here are some of the most commonly used regular expression special characters

(try not to lose too much sleep attempting to memorize these):

. (dot) This is the wildcard character. It matches any single

character except line break characters (\r and \n).

* (asterisk) An asterisk requires that the preceding character ap-

pear zero or more times.

When matching, the asterisk will be greedy, including

as many characters as possible. For example, for the

string “a word here, a word there,” the pattern

"a.*word" will match “a word here, a word.” In order

to make a minimal match (just “a word”), use the

question mark character (explained below).

+ (plus) This character requires that the preceding character

appears one or more times. When matching, the plus

will be greedy (just like the asterisk, described above)

Simply JavaScript244

unless you use the question mark character (explained

below).

? (question mark) This character makes the preceding character optional.

If placed after a plus or an asterisk, it instead dictates

that the match for this preceding symbol will be a

minimal match, including as few characters as pos-

sible.

^ (caret) The caret matches the start of the string. This does

not include any characters—it considers merely the

position itself.

$ (dollar) A dollar character matches the end of the string. This

does not include any characters—it considers merely

the position itself.

| (pipe) The pipe causes the regular expression to match either

the pattern on the left of the pipe, or the pattern on

the right.

(…) (round brackets) Round brackets define a group of characters that must

occur together, to which you can then apply a modi-

fier like *, +, or ? by placing it after the closing

bracket.

You can also refer to a bracketed portion of a regular

expression later to obtain the portion of the string that

it matched.

[…] (square brackets) Square brackets define a character class. A character

class matches one character out of those listed within

the square brackets.

A character class can include an explicit list of char-

acters (for instance, [aqz], which is the same as

(a|q|z)), or a range of characters (such as [a-z],

which is the same as (a|b|c|…|z).

245Form Enhancements

A character class can also be defined so that it matches

one character that’s not listed in the brackets. To do

this, simply insert a caret (^) after the opening square

bracket (so [^a] will match any single character ex-

cept “a”).

If you want to use one of these special characters as a literal character to be matched

by the regular expression pattern, escape it by placing a backslash (\) before it (for

example, 1\+1=2 will match “1+1=2”).

There are also a number of so-called escape sequences that will match a character

that either is not easily typed, or is a certain type of character:

\n This sequence matches a newline character.

\r This matches a carriage return character.

\t This matches a tab character.

\s This sequence matches any whitespace character; it’s the same as [\n\r\t].

\S This matches any non-whitespace character, and is the same as [^ \n\r\t].

\d This matches any digit; it’s the same as [0-9].

\D This sequence matches anything but a digit, and is the same as [^0-9].

\w This matches any “word” character. It’s the same as [a-zA-Z0-9_].

\W This sequence matches any “non-word” character, and is the same as [^a-zA-

Z0-9_].

\b This code is a little special because it doesn’t actually match a character. In-

stead, it matches a word boundary—the start or end of a word.

\B Like \b, this doesn’t actually match a character. Rather, it matches a position

in the string that is not a word boundary.

\\ Matches an actual backslash character. So if you want to match the string “\n”

exactly, your regular expression would be \\n, not \n (which matches a newline

Simply JavaScript246

character). Similarly, if you wanted to match the string “\\” exactly, your

regular expression would be \\\\.

We now have everything we need to be able to understand the email address regular

expression I showed you at the start of this section:

^[\w\.\-]+@([\w\-]+\.)+[a-zA-Z]+$

^ We start by matching the beginning of the string, to make sure

that nothing appears before the email address.

[\w\.\-]+ The name portion of the email address is made up of one or more

(+) characters that are either “word” characters, dots, or hyphens

([\w\.\-]).

@ The name is followed by the @ character.

([\w\-]+\.)+ Then we have one or more (+) subdomains (such as “sitepoint.”),

each of which is one or more “word” characters or hyphens ([\w\-

]+) followed by a dot (\.).

[a-zA-Z]+ Next, there’s the top-level domain (for example, “com”), which

is simply one or more letters ([a-zA-Z]+).

$ Finally, we match the end of the string, to make sure that nothing

appears after the email address.

Got all that? If you’re feeling anything like I was when I first learned regular expres-

sions, you’re probably a little nervous. Okay, you can follow along with a breakdown

of a regular expression that someone else wrote for you, but can you really come

up with this gobbledygook yourself? Don’t sweat it: in the following example, we’ll

look at a bunch more regular expressions, and before you know it you’ll be writing

expressions of your own with confidence.

But hang on a minute … I’ve told you all about the syntax of regular expressions,

but we still need to see how to actually use them in JavaScript! In fact, there are a

number of different ways to do this, but the simplest—and the one we’ll be using

the most in this book—is the test method that’s supported by all regular expressions:

247Form Enhancements

regex.test(string)

The test method will return true if the regular expression it’s called on matches

the string that you pass to it as an argument.

For a simple example of this method in action, we can return to the hasClass

method that we created back in Chapter 3:

core.js (excerpt)

Core.hasClass = function(target, theClass)
{
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 if (pattern.test(target.className))
 {
 return true;
 }

 return false;
};

This method determines if a particular class appears in the class attribute of a

given HTML element. Remember that this attribute is a space-delimited list of classes

(for example, classa classb classc).

First, this method builds a regular expression containing the class name that

we’re searching for, of the form (^|)theClass(|$). This expression should

be fairly easy for you to decipher by now: it starts by matching either the start

of the string or a space ((^|)), then the class name, and finally, either a space

or the end of the string ((|$)).

Next, the method tests if the value of the element’s class attribute

(target.className) matches the pattern. If it does, the method returns true.

Otherwise, it returns false.

Not too bad, eh? Let’s dive into a bigger example and see how we go. In the mean-

time, if you want a more extensive listing of regular expression syntax, visit regu-

Simply JavaScript248

http://www.regularexpressions.info/

larexpressions.info,2 and for more information on regular expressions in JavaScript,

see my article Regular Expressions in JavaScript on SitePoint.3

Example: Reusable Validation Script
Before we got distracted by the bewildering glory of regular expressions, I seem to

remember this chapter being about forms. How about we try to combine the two by

using regular expressions to validate forms?

Regular expressions are great for validating forms, because we can express quite a

complex set of requirements for a field in just a single regular expression. For ex-

ample, we can test if a field has been filled in with a very simple expression:

.

That right, it’s just a dot (.). Since this will match any character, the only string

that won’t match this is the empty string ("").

Of course, a user could just type a space character into the field and satisfy this

pattern, so how about we require at least one non-whitespace character in the field?

Again, this is an easy expression to write:

\S

Let’s make things a little more complicated. How about a field that requires a positive

whole number, and nothing else?

^\d*[1-9]\d*$

This pattern checks that the string contains at least one digit between 1 and 9 (that

is, not 0), which can be preceded and/or followed by any number of digits (including

0). The start-string (^) and end-string ($) characters ensure there is nothing else in

the string.

2 http://www.regularexpressions.info/
3 http://www.sitepoint.com/article/expressions-javascript/

249Form Enhancements

http://www.regularexpressions.info/
http://www.sitepoint.com/article/expressions-javascript/

If we were happy to allow zero as a value, we could simplify the pattern to this:

^\d+$

Want to allow negative numbers too? Easy! Just add an optional minus sign:

^-?\d+$

How about decimal numbers like 12.345? Easy enough:

^-?\d+(\.\d+)?$

This pattern allows for an optional decimal point (\.) followed by one or more digits.

Let’s get a little trickier and check for a valid phone number. Phone number formats

vary from country to country, but in general they consist of an optional country

code (+1 for North America, or +61 for Australia), an optional area code that may

or may not be enclosed in parentheses, then one or more groups of numbers. Each

of these elements may be separated by spaces, dashes, or nothing at all.

Here’s the expression we’ll need:

^(\+\d+)?(|\-)?(\(?\d+\)?)?(|\-)?(\d+(|\-)?)*\d+$

If you can get that expression straight in your head, you can safely claim to have

mastered the basics of regular expressions. Good luck! For an added challenge, try

adapting the pattern to allow phone numbers that are spelled out in letters, such as

“1-800-YOU-RULE.”

To build a reusable form validation script, we can bundle all of the regular expres-

sions we’ve seen so far into a JavaScript object:

formvalidation.js (excerpt)

var FormValidation =
{
 ⋮
 rules:
 {

Simply JavaScript250

 required: /./,
 requiredNotWhitespace: /\S/,
 positiveInteger: /^\d*[1-9]\d*$/,
 positiveOrZeroInteger: /^\d+$/,
 integer: /^-?\d+$/,
 decimal: /^-?\d+(\.\d+)?$/,
 email: /^[\w\.\-]+@([\w\-]+\.)+[a-zA-Z]+$/,
 telephone:
 /^(\+\d+)?(|\-)?(\(?\d+\)?)?(|\-)?(\d+(|\-)?)*\d+$/
 },

For each pattern, we can also store an error message for display when the pattern

is not satisfied:

formvalidation.js (excerpt)

errors:
{
 required: "Please fill in this required field.",
 requiredNotWhitespace: "Please fill in this required field.",
 positiveInteger:
 "This field may only contain a positive whole number.",
 positiveOrZeroInteger: "This field may only contain a " +
 "non-negative whole number.",
 integer: "This field may only contain a whole number.",
 decimal: "This field may only contain a number.",
 email: "Please enter a valid email address into this field.",
 telephone:
 "Please enter a valid telephone number into this field."
},

We can then mark the fields in our form with the labels we defined in the code

above. For example, a required field would have its class set to required:

formvalidation.html (excerpt)

<input type="text" class="required" id="username" name="username"
 />

251Form Enhancements

Similarly, here’s a field that must contain a valid email address:

formvalidation.html (excerpt)

<input type="text" class="email" id="email" name="email" />

All that’s left is to write the JavaScript required to test the fields of a form with the

specified regular expressions before allowing submission to proceed.

The init method is simple enough. All we need to do is add a submit event

listener to every form on the page:

formvalidation.js (excerpt)

init: function()
{
 var forms = document.getElementsByTagName("form");

 for (var i = 0; i < forms.length; i++)
 {
 Core.addEventListener(
 forms[i], "submit", FormValidation.submitListener);
 }
},

In fact, the only tricky part of this script is in that submit event listener:

formvalidation.js (excerpt)

submitListener: function(event)
{
 var fields = this.elements;

 for (var i = 0; i < fields.length; i++)
 {
 var className = fields[i].className;
 var classRegExp = /(^|)(\S+)(|$)/g;
 var classResult;

 while (classResult = classRegExp.exec(className))
 {

Simply JavaScript252

 var oneClass = classResult[2];
 var rule = FormValidation.rules[oneClass];
 if (typeof rule != "undefined")
 {
 if (!rule.test(fields[i].value))
 {
 fields[i].focus();
 alert(FormValidation.errors[oneClass]);
 Core.preventDefault(event);
 return;
 }
 }
 }
 }
}

Thanks to the power of regular expressions, that’s all the code we need to write in

order to validate a form—any form—with the regular expressions that we declared

earlier. Thanks to the complexity of regular expressions, this code is particularly

difficult to understand at a glance. Let me walk you through it:

First, we obtain a list of all the fields in the form, using the elements property

of the form element described in Table 6.2. We can then loop through the list

with a for loop.

For each field, we obtain the class attribute value, which we’ll use to ascertain

which of the regular expressions we’ll test its value against. But remember that

the class attribute can contain a list of multiple class names, so we need to do

some work to break this value up into individual class names, and check them

one at a time.

This regular expression will find one particular class name in a space-delimited

list such as the class attribute value. It looks for the start of the string or a

space, followed by one or more non-whitespace characters, and then a space

or the end of the string. But, since we want to find not just one class name, but

all of the class names in the attribute value, we need to apply the global mod-

ifier to this expression. See the g following the closing forward slash that marks

the end of the regular expression? That’s the global modifier, and it sets the

253Form Enhancements

regular expression up so that we can use it to find all the matches in a given

string, not just the first one.

Most of the time, the test method is all that’s needed to use a regular expres-

sion. But when you’re working with the global modifier, you’re better off using

a more advanced method: exec. This method works just like test, except that

it returns information about the portion of the string that it matched. When

exec is applied to a regular expression that includes the global modifier, and

it finds a match, it returns an array, which we store in the classResult variable.

The first element of that array (with array index 0) contains the portion of the

string that was matched by the entire regular expression; in this case, the portion

of the string may contain spaces before or after the class name, so it’s no good

to us. The second element in the array (array index 1) contains the portion of

the string that was matched by the first parenthesized portion of the regular

expression (in this case, the space before the class name, if any). The third

element in the array (array index 2) contains the portion of the string matched

by the second parenthesized portion of the expression, which in this case is

the actual class name—exactly what we’re after!

When called repeatedly, the exec method will search for successive matches

in the string, which is the reason why we can use it in a while loop in this

way. During the first cycle of the loop, classResult[2] will contain the first

class name in the class attribute; the second time through, classResult[2]

will contain the second class name, and so on, until all the class names in the

attribute have been found. At this point, exec will return null and the while

loop will end.

Now that we have an individual class name, we can check if we have a regular

expression for validating fields with that class.

Remember that we’ve stored all of our validation expressions as properties of

the FormValidation.rules object. Usually, you access the property of an object

using a dot and the property name (for example,

FormValidation.rules.required), but we can’t do that if the name of the

property is stored as a string in a variable, as it is now. If we typed

FieldValidation.rules.oneClass, JavaScript would actually look for a

Simply JavaScript254

property named oneClass, rather than using the name stored in the oneClass

variable.

The trick to accessing a property using a property name that’s stored in a vari-

able is to treat the object like an array, and use the property name as the array

index. So we can fetch the regular expression for a particular class using

FormValidation.rules[oneClass]. This doesn’t exactly make sense, but it’s

just one of those odd things about JavaScript that you learn from experience.

Because we may or may not have a regular expression that corresponds to a

given class name, we need to check that we actually got a value back for the

rule variable.

Finally, we can use the test method to check if our regular expression matches

the value that the user has supplied for the field.

If it doesn’t match, then the value is not valid, so we assign keyboard focus to

the field so that the user can correct it.

We then display the error message corresponding to the class name, again using

the trick of treating the FormValidation.errors object like an array.

Because the field’s value is invalid, we cancel the default action for the submit

event, so that the form isn’t submitted.

And finally, we return immediately, so that the user is only notified of one

error per submission attempt. If we left this step out, the user would be notified

of each and every invalid field in the form one after another, which I think

would be a little harsh if, for example, the user had simply submitted the form

by accident before filling it in.

And there you have it—a reusable form validation script in just 66 lines of code.

Try it out on the simple example page we’ve included in the code archive, then

take it for a spin on some forms of your own! Finally, try adding some more regular

expressions (and the corresponding error messages) of your own devising to make

this library even more useful!

255Form Enhancements

Annoyed by Alerts?

If, like many people, you find alert boxes annoying, you might like to have your

validation errors displayed within the page, next to the form fields themselves,

instead of in popup message boxes. This technique is demonstrated in the SitePoint

book The JavaScript Anthology (Melbourne: SitePoint, 2006).

Custom Form Controls
Linking multiple fields together and performing client-side validation are both

useful ways to enhance the rather limited form controls that are currently available

in HTML, but to truly rise above the limitations of those controls, you need to create

entirely new controls of your own!

Creating fully realized user interface elements using only the capabilities of HTML,

CSS, and JavaScript is a tall order. The built-in form controls have a lot of subtle

features that are difficult, if not impossible to achieve using JavaScript. Consider

the right-click menu—not to mention all the keyboard shortcuts—that even a basic

text field supports!

However, by setting realistic goals, and by taking advantage of the existing form

controls where appropriate, you can produce some truly useful user interface ele-

ments. Let’s look at one, shall we?

Example: Slider
A slider control can give your users a very intuitive way to select a value over a

given range. The control immediately gives the user a sense of the position of the

current value within the available range of values, and also allows the user to

manipulate that value easily, and see the changes in real time.

Figure 6.6. A typical slider control

Simply JavaScript256

A plain text field can store the same values as a slider, so in order to keep the page

accessible to users who browse with JavaScript disabled, we will convert any text

input field that has a class of slider into a slider control:

slider.html (excerpt)

<label for="percent">Percentage
 <input id="percent" name="percent" type="text" value="0"

class="slider from0 to100 scale4" />
</label>

Notice the other classes that have been applied to this field: from0, to100, and

scale4. These classes control various aspects of the slider control that will be created

from this text field:

from0 The minimum value that you will be able to select using the slider will

be 0.

to100 The maximum value that you will be able to select using the slider will

be 100.

scale4 For every change of 1 in the value of the field, the slider will move four

pixels.

Together, these classes describe a slider that’s 400 pixels wide, and allows you to

select values ranging from 0 to 100.

Before we tackle the script that will make the control work, let’s figure out the HTML

document structures and CSS styles that will get the browser to display the control.

We’ll start by creating an image for the “track” of the slider—the labelled horizontal

bar that represents the range of values from which the user can choose. To match

the values specified in the code, the slider’s track should be exactly 400 pixels long,

but the image’s actual width and height are up to you. For example, the image may

be wider than 400 pixels if you want to add decorative elements to either end of

the track. Figure 6.7 shows the background image I created, which is 430 pixels

wide and 72 pixels high.

257Form Enhancements

Figure 6.7. The image for the slider track

We also need a separate image for the draggable portion of the slider control—the

“thumb.” The one I’ve created is 20 pixels wide and 35 pixels high, and is shown

in Figure 6.8.

Figure 6.8. The image for the slider thumb

Now, keeping in mind that we want to keep the text field visible and usable for both

keyboard and screen reader users, what do we need in terms of additional DOM

structure and CSS styles to produce this control? Well, I’m thinking something like

this would work well:

<label for="percent">Percentage

 <input id="percent" name="percent" type="text"
 value="0" class="slider from0 to100 scale4" />

<label>

Remember: this isn’t code you’ll actually add to your HTML—we’ll use JavaScript

to generate these new elements.

I’ve used spans because they’re legal wherever an input is allowed in HTML. The

sliderControl span provides a container for us to position the different elements

of the slider control, the track span is what we’ll use to display the track image,

and the thumb span will display the thumb image for us. I’ve also put the existing

input inside the sliderControl span because that gives us the freedom to position

the field in relation to the elements of the slider control.

Here’s the CSS that will style all this:

Simply JavaScript258

slider.css (excerpt)

span.sliderControl {
 display: block;
 height: 79px;
 position: relative;
}

span.sliderTrack {
 background: url(slider_scale.jpg);
 display: block;
 height: 72px;
 left: 0;
 position: absolute;
 top: 7px;
 width: 430px;
}

span.sliderControl span.sliderThumb {
 background-image: url(slider_thumb.gif);
 cursor: w-resize;
 height: 35px;
 position: absolute;
 top: 0;
 width: 20px;
}

span.sliderControl input.slider {
 margin-left: 430px;
}

This isn’t a book on CSS layout, but let me quickly sum up what each of these rules

does:

The span that contains all the elements that make up the slider will be displayed

as a block, with a height sufficient to accommodate the slider control (specific-

ally, the track background image, and any space you want to allow around it).

Setting position: relative lets you position all the elements it contains rel-

ative to its top-left corner.

The sliderTrack span is really just a canvas on which to display the slider

track as a background image. It’s displayed as a block of the required dimen-

259Form Enhancements

sions, and is positioned so that when the thumb is positioned at the left edge

of the sliderControl container, it appears at the left end of the track.

The sliderThumb span is similarly set up to adopt the exact dimensions needed

to display the thumb image as its background. Notice, however, that it doesn’t

have a value set for its left property, because its horizontal position will be

controlled dynamically by our JavaScript code. It does, however, display the

horizontal-resize cursor to assist the user in discovering how to use the control.

This final rule positions the text input field within the sliderControl container.

In this case, I’ve given it sufficient left margin to place it just to the right of the

slider control.

I’ve highlighted in bold the values in this code that are likely to change if you create

a slider of your own with different dimensions and images.

Okay, the groundwork is done—let’s get scripting! As usual, we start with an init

method that searches the document for the elements that we want to enhance—in

this case, elements of class slider:

slider.js (excerpt)

var Slider =
{
 init: function()
 {
 var sliderFields = Core.getElementsByClass("slider");

 for (var i = 0; i < sliderFields.length; i++)
 {

The first thing we need to do to each of these elements is extract the “from,” “to,”

and “scale” values from its class attribute. This is, of course, a job for regular ex-

pressions:

slider.js (excerpt)

 var fromMatch = /(^|)from(\d+)(|$)/.exec(
 sliderFields[i].className);
 var from = parseInt(fromMatch[2], 10);

Simply JavaScript260

 var toMatch = /(^|)to(\d+)(|$)/.exec(
 sliderFields[i].className);
 var to = parseInt(toMatch[2], 10);

 var scaleMatch = /(^|)scale(\d+)(|$)/.exec(
 sliderFields[i].className);
 var scale = parseInt(scaleMatch[2], 10);

Because we’re extracting values using regular expressions, we’re using the more

advanced exec method that we learned about in the section called “Example: Re-

usable Validation Script”. In each regular expression, the number that we’re inter-

ested in extracting is in the second parenthesized section of the expression, which

we can grab out of the third element of the array returned by exec.

Now, regular expressions deal with strings, and what we actually need are numbers,

so we need to convert each string value to a JavaScript number. JavaScript has a

built-in function called parseInt that does exactly that; we’ve used it in the code.

parseInt looks at the start of a string (the first argument), and returns any number

it finds there. The second argument specifies the base of the number. Since we

usually deal with decimal numbers, which are base 10, you can make a habit of al-

ways passing 10 as this function’s second argument.

Now it’s time to begin creating the DOM structure we looked at earlier. You should

be very used to this sort of thing by now:

slider.js (excerpt)

 var slider = document.createElement("span");
 slider.id = sliderFields[i].id + "slider";
 slider.className = "sliderControl";

 var track = document.createElement("span");
 track.id = sliderFields[i].id + "track";
 track.className = "sliderTrack";

 var thumb = document.createElement("span");
 thumb.id = sliderFields[i].id + "thumb";
 thumb.className = "sliderThumb";

261Form Enhancements

To each of the three span elements that we create, we assign both an ID and a class

to facilitate styling. The class lets you apply general style properties shared by all

sliders on the page, while the ID lets you apply properties specific to an individual

slider control.

Since the user will actually interact with the slider thumb (by dragging it), we’ll

take the opportunity to store all of the values that our event listeners will need in

custom properties of the thumb element:

slider.js (excerpt)

 thumb._input = sliderFields[i];
 thumb._from = from;
 thumb._to = to;
 thumb._scale = scale;

The user may still choose to enter values directly into the text field, however, and

since we’ll need to update the position of the thumb in response to such changes,

we’ll store a reference to the thumb in the text field element:

slider.js (excerpt)

 sliderFields[i]._thumb = thumb;

With all the elements created, we can now add them to the document to produce

the required structure:

slider.js (excerpt)

 slider.appendChild(track);
 slider.appendChild(thumb);
 sliderFields[i].parentNode.replaceChild(
 slider, sliderFields[i]);
 slider.appendChild(sliderFields[i]);

The final step in building the slider is to position the thumb so that it corresponds

to the current value of the text field:

Simply JavaScript262

slider.js (excerpt)

 var value = parseInt(sliderFields[i].value, 10);
 thumb.style.left = ((value - from) * scale) + "px";

The first line above obtains a number based on the string value of the text field. The

second line calculates the difference between that value and the minimum value

of the slider, multiplies that difference by the scale of the slider, then positions the

thumb that number of pixels from the left-hand side of the slider.

That’s our slider created. Now all we need are the event listeners to make it go:

slider.js (excerpt)

 Core.addEventListener(sliderFields[i], "change",
 Slider.changeListener);
 Core.addEventListener(thumb, "mousedown",
 Slider.mousedownListener);
 }
 },

When the user changes the value of the text field, our change event listener will

update the slider accordingly. Conversely, when the user clicks on the slider thumb,

our mousedown event listener will handle the dragging operation, and will update

the text field’s value.

Let’s start with the change event listener, as we’ve dealt with this type of event be-

fore:

slider.js (excerpt)

changeListener: function(event)
{
 var thumb = this._thumb;
 var value = parseInt(this.value, 10);

 if (value < thumb._from)
 {
 value = thumb._from;
 }

263Form Enhancements

 else if (value > thumb._to)
 {
 value = thumb._to;
 }

 thumb.style.left =
 ((value - thumb._from) * thumb._scale) + "px";
 this.value = value;
},

While the code here is relatively straightforward, let me explain exactly what it’s

doing:

Since we’re responding to an event targeted on the text field, we can obtain a

reference to the slider thumb using the custom _thumb property that we created

in init.

We check the value that was entered by the user against the limits that have

been specified for the slider. If the value is too big, we reduce it to the maximum

allowed value. If it’s too small, we increase it to the minimum allowed value.

Once we’ve settled on an acceptable value, we move the thumb to the corres-

ponding position.

Finally, we take the value that we settled on and write it back into the form

field, so that any adjustment that occurred due to the limits of the slider are

reflected in the field’s value.

And now for the part you’ve been waiting for: the code that makes the slider thumb

draggable. Every drag operation involves three kinds of events:

1. A mousedown event indicates that the user has pushed down a mouse button

while the cursor was positioned over the draggable element.

2. A series of mousemove events is generated as the user moves the cursor around

the page.

3. A mouseup event signals that the user has released the mouse button, completing

the drag operation.

Simply JavaScript264

We’ve already registered a mousedown event listener on the slider thumb in init,

so let’s take a look at it:

slider.js (excerpt)

mousedownListener: function(event)
{
 this._valueorigin =
 parseInt(this.style.left, 10) / this._scale - this._from;
 this._dragorigin = event.clientX;
 document._currentThumb = this;

 Core.addEventListener(
 document, "mousemove", Slider.mousemoveListener);
 Core.addEventListener(
 document, "mouseup", Slider.mouseupListener);
 Core.preventDefault(event);
},

This listener is responsible for kicking off the drag operation:

We begin by recording a number of values that will be needed throughout the

drag operation, the first of which is the value indicated by the slider when the

drag began. In subsequent steps, we’ll track how far the mouse has moved from

its starting position, and use that figure to determine how much the slider’s

value should change from this starting value.

Obviously, then, we also need to record the mouse pointer’s starting position.

The clientX property of the event object for any event gives you the horizontal

position of the pointer within the browser window when that event occurred.

As we’ll see in a moment, we’ll also need a convenient way to access the thumb

throughout the drag operation, so we’ll store in a custom property of the

document object a reference to that element.

Now that a drag operation has begun, we need to respond to every mousemove

event in the document—whether the cursor remains positioned over the thumb

element or not. We therefore add a mousemove event listener to the document

node. This listener will catch events that bubble up from any element in the

document.

265Form Enhancements

Similarly, we need to know when the user releases the mouse button, no matter

where the cursor is located when that happens, so we add a mouseup event

listener to the document object.

Because these two event listeners are registered on the document and not the

thumb, they won’t be able to access the thumb element using this. That’s why

we recorded the reference to the thumb element in the document we just cre-

ated.

Finally, we prevent the browser from taking any default action—such as begin-

ning a text selection—in response to the mouse button being pressed.

As the user drags the cursor around the page with the mouse button held down,

we’ll respond to every mousemove event by dynamically updating the position of

the thumb and the value in the text field:

slider.js (excerpt)

mousemoveListener: function(event)
{
 var thumb = document._currentThumb;
 var value = thumb._valueorigin +
 (event.clientX - thumb._dragorigin) / thumb._scale;

 if (value < thumb._from)
 {
 value = thumb._from;
 }
 else if (value > thumb._to)
 {
 value = thumb._to;
 }

 thumb.style.left =
 ((value - thumb._from) * thumb._scale) + "px";
 thumb._input.value = value;

 Core.preventDefault(event);
},

Simply JavaScript266

This listener works a lot like changeListener, which we saw earlier, except that

instead of fetching the updated value from a form field, it needs to calculate that

value on the basis of the mouse pointer’s position in relation to its starting location,

and the original value when the drag operation began:

We’re responding to a mousemove event that has bubbled up to the document

node, but all the information we need is locked away in the thumb element.

Thankfully, we stored a reference to that element in the custom _currentThumb

property of the document object.

Here, we calculate the slider value corresponding to the current mouse position.

We start with the value of the slider before the drag started (thumb._valueori-

gin), then add to it the difference between the current mouse position

(event.clientX) and the starting mouse position (thumb._dragorigin) divided

by the scale of the slider (thumb._scale).

As with changeListener, we limit the value that we just calculated so that it

falls within the range allowed by the slider.

To produce the illusion that the user is actually dragging the slider thumb, we

adjust its position based on the value that we have just calculated. Again, this

code works just like the corresponding code in changeListener.

We also update the value of the text field on the fly.

Finally, we prevent the browser from doing anything it might normally do in

response to the movement of the mouse.

As the French might say, le tour est joué!—we’ve pulled it off! The user can now

click and drag the slider, and see the field’s value update in real time. All that’s left

is to complete the drag operation when the user releases the mouse button:

slider.js (excerpt)

mouseupListener: function(event)
{
 document._currentThumb = null;
 Core.removeEventListener(document, "mousemove",
 Slider.mousemoveListener);

267Form Enhancements

 Core.removeEventListener(document, "mouseup",
 Slider.mouseupListener);
}

This code is pretty self-explanatory. It removes the reference to the thumb that we

stored in the document object, and it removes the mousemove and mouseup listeners,

leaving the mousedown listener in place to start the next drag.

As you can probably tell, creating draggable elements on the Web is a bit of a black

art, and things get even more complicated when you want to allow the user to drop

the draggable element on one or more target elements.4

For now, however, we’ve managed to make dragging an element seem natural with

an intricate mesh of listeners that finely control how the browser responds to the

relevant mouse events. This demonstrates just how much you can achieve with

JavaScript if you’re willing to take matters into your own hands. Figure 6.9 shows

what the finished slider control should look like.

Figure 6.9. The finished slider control

Here’s the complete JavaScript code for the slider control. Considering what it can

add to the usability of a form, I’d say it’s refreshingly brief!

4 This is covered at great length in the SitePoint book The JavaScript Anthology (Melbourne: SitePoint,

2006).

Simply JavaScript268

slider.js

var Slider =
{
 init: function()
 {
 var sliderFields = Core.getElementsByClass("slider");

 for (var i = 0; i < sliderFields.length; i++)
 {
 var fromMatch = /(^|)from(\d+)(|$)/.exec(
 sliderFields[i].className);
 var from = parseInt(fromMatch[2], 10);

 var toMatch = /(^|)to(\d+)(|$)/.exec(
 sliderFields[i].className);
 var to = parseInt(toMatch[2], 10);

 var scaleMatch = /(^|)scale(\d+)(|$)/.exec(
 sliderFields[i].className);
 var scale = parseInt(scaleMatch[2], 10);

 var slider = document.createElement("span");
 slider.id = sliderFields[i].id + "slider";
 slider.className = "sliderControl";

 var track = document.createElement("span");
 track.id = sliderFields[i].id + "track";
 track.className = "sliderTrack";

 var thumb = document.createElement("span");
 thumb.id = sliderFields[i].id + "thumb";
 thumb.className = "sliderThumb";
 thumb._input = sliderFields[i];
 thumb._from = from;
 thumb._to = to;
 thumb._scale = scale;

 sliderFields[i]._thumb = thumb;

 slider.appendChild(track);
 slider.appendChild(thumb);
 sliderFields[i].parentNode.replaceChild(
 slider, sliderFields[i]);

269Form Enhancements

 slider.appendChild(sliderFields[i]);

 var value = parseInt(sliderFields[i].value, 10);
 thumb.style.left = ((value - from) * scale) + "px";

 Core.addEventListener(
 sliderFields[i], "change", Slider.changeListener);
 Core.addEventListener(
 thumb, "mousedown", Slider.mousedownListener);
 }
 },

 changeListener: function(event)
 {
 var thumb = this._thumb;
 var value = parseInt(this.value, 10);

 if (value < thumb._from)
 {
 value = thumb._from;
 }
 else if (value > thumb._to)
 {
 value = thumb._to;
 }

 thumb.style.left =
 ((value - thumb._from) * thumb._scale) + "px";
 this.value = value;
 },

 mousedownListener: function(event)
 {
 this._valueorigin =
 parseInt(this.style.left, 10) / this._scale - this._from;
 this._dragorigin = event.clientX;
 document._currentThumb = this;

 Core.addEventListener(
 document, "mousemove", Slider.mousemoveListener);
 Core.addEventListener(
 document, "mouseup", Slider.mouseupListener);
 Core.preventDefault(event);
 },

Simply JavaScript270

 mousemoveListener: function(event)
 {
 var thumb = document._currentThumb;
 var value = thumb._valueorigin +
 (event.clientX - thumb._dragorigin) / thumb._scale;

 if (value < thumb._from)
 {
 value = thumb._from;
 }
 else if (value > thumb._to)
 {
 value = thumb._to;
 }

 thumb.style.left =
 ((value - thumb._from) * thumb._scale) + "px";
 thumb._input.value = value;

 Core.preventDefault(event);
 },

 mouseupListener: function(event)
 {
 document._currentThumb = null;
 Core.removeEventListener(
 document, "mousemove", Slider.mousemoveListener);
 Core.removeEventListener(
 document, "mouseup", Slider.mouseupListener);
 }
};

Core.start(Slider);

Exploring Libraries
A little surprisingly, none of the major JavaScript libraries currently does the kinds

of simple form enhancements that we looked at earlier in this chapter—dependent

fields, cascading menus, and so on. However, many of these libraries do have features

that can make building these sorts of enhancements yourself a little easier.

271Form Enhancements

That said, the two other types of form enhancements that we’ve looked at in this

chapter—client-side validation and custom controls—are well served by one library

or another.

Form Validation
One of the Dojo library’s main strengths is its library of widgets, many of which are

enhanced versions of the basic HTML form controls. Some of these widgets provide

built-in validation features. For example, with Dojo loaded, you can create a text

field that only accepts whole numbers (integers) like this:

<input type="text" name="name" class="dojo-IntegerTextbox" />

This code invokes Dojo’s IntegerTextbox widget, which automatically displays an

error message when the user types anything that isn’t a whole number into the field.

As of this writing, however, Dojo’s validation widgets aren’t well documented, and

the requirement that all the fields of a form are valid before the user is allowed to

submit the form still necessitates your writing some JavaScript code of your own.

In short, figuring out just how to use Dojo to automate your form validation can

take a lot longer than writing your own validation library, as we did in this chapter.

That said, if you’re willing to look beyond the major JavaScript libraries, you’ll find

a couple of well-developed mini-libraries that do client-side validation very well

indeed.

wForms is an actively-developed library that works very much like the reusable

form validation script that we developed in this chapter.5 Like our library, it applies

reusable validation rules to your form fields based on the class attribute. Here’s a

list of the class names that it recognizes, and the corresponding checks that it carries

out:

required The field cannot be left empty. By setting this

class name on an element that contains a number

of form fields, you can require the user to fill in

at least one of those fields.

5 http://www.formassembly.com/wForms/

Simply JavaScript272

http://www.formassembly.com/wForms/

validate-alpha This class allows only alphabetic characters in

the value of the field.

validate-alphanum This class allows only numbers and alphabetic

characters.

validate-date This class allows a date to be entered in any

format that’s recognized by the browser.

validate-email This class allows an email address, or several

email addresses separated by commas, spaces, or

semicolons.

validate-integer This class allows only a whole number.

validate-float This class allows only decimal numbers.

validate-custom /regex/ This class allows any value that matches the spe-

cified regular expression.

allrequired By setting this class name on an element that

contains a number of form fields, you can require

that all of the fields be filled in.

Forms also offers extensive control over the error messages that are displayed when

validation fails. Error messages can appear in an alert box, within the page, or both.

This library is full of all sorts of other useful features, including support for depend-

ent fields that’s similar to what we developed at the start of this chapter. wForms

calls them “conditional sections.”

Another library that’s worth checking out is Really Easy Field Validation, which

was developed by a fellow named Andrew Tetlaw. It works very much like wForms,

except that it’s based on the Prototype JavaScript library (so you need to load Pro-

toype, and then this library, on your page). You can read all about—and down-

load—Really Easy Field Validation at the developer’s web site.6

6 http://tetlaw.id.au/view/javascript/really-easy-field-validation

273Form Enhancements

http://tetlaw.id.au/view/javascript/really-easy-field-validation

Custom Controls
As I mentioned earlier, one of the main areas of focus for the Dojo library has been

the creation of rich widgets to supplement the user interface elements that plain

HTML has to offer. Among these is an extensive collection of Form Widgets that

work in the same way as the slider control that we developed in this chapter,

providing a rich, JavaScript-powered user interface that sits atop a standard HTML

form field.

Here’s a quick list of some of Dojo’s Form Widgets:

Button an advanced version of the HTML button element

Checkbox like a standard HTML checkbox, but uses customizable

images for the checkbox

ColorPalette displays a grid of color swatches from which the user can

choose

ComboBox like a standard text field, but pops up a list of suggested

values in response to user input

DatePicker displays an interactive calendar for selecting a date

TimePicker displays a rich interface for selecting a time of day

Editor2 (RichText) a WYSIWYG HTML editor that lets the user input and

format rich text that’s submitted as HTML

HslColorPicker displays a rich interface for selecting a color value

Select an advanced version of the HTML select element

Slider a graphical slider control, much like the one we built in

this chapter

Spinner an input field that lets you select a number by clicking

up and down arrows to adjust the value

Again, as of this writing, Dojo’s widgets are sparsely documented, so trying to use

them without advanced JavaScript experience can be frustrating.

Simply JavaScript274

The Yahoo! UI Library (YUI) offers a less extensive collection of controls,7 but those

that it does provide are richly documented with plenty of beginner-friendly ex-

amples. Here’s a list of the form-related YUI Controls as of this writing:

AutoComplete a text field that can pop up a list of suggested values in response

to user input

Calendar a rich interface for selecting a date

Slider a graphical slider control, much like the one we built in this

chapter

By all means, take some time to play with these widget libraries, and pay special

attention to how well (or how badly, as is more often the case) they handle issues

like keyboard navigation, screen reader accessibility, and semantically meaningful

HTML code. While it can be tempting to trust these widget libraries implicitly, I

believe you’ll find there is definitely still a lot of value in the do-it-yourself option.

Whatever you decide, it’s important to go in with your eyes open, and by under-

standing—at least in principle—how to build custom form controls yourself, you’ll

be better equipped to evaluate prepackaged options like these.

Summary
Back when JavaScript support was first added to web browsers, practically the only

thing anyone could think to use it for was to enhance HTML forms. The tasks we’ve

seen in this chapter—interlinking form fields, performing client-side validation of

form submissions, and creating new types of form controls—are the things JavaScript

does best, if only because it has been doing them for such a long time.

Although these form enhancements may not be as shiny and new as some of the

other examples in this book, the techniques we’ve used to implement them—pro-

gressive enhancement, DOM manipulation, and unobtrusive scripting—certainly

are. If the JavaScript pioneers that first set out to enhance HTML forms had had

these techniques at their disposal, the JavaScript-enhanced forms that appear all

over the Web today would work a lot better than they do.

7 http://developer.yahoo.com/yui/#elements

275Form Enhancements

http://developer.yahoo.com/yui/#elements

Chapter7
Errors and Debugging
A truth that many JavaScript books won’t tell you is that JavaScript is a tough lan-

guage to get right the first time.

By now you should have a fairly solid feel for JavaScript as a language, and how to

use things like event listeners and the DOM API to enrich the web sites you build.

But if you’ve actually tried to write an original script of your own, chances are that

you came away feeling humbled, and maybe even a little angry.

That frustration’s probably due, in part at least, to the fact that JavaScript, like all

languages that run in the browser, is designed to fail silently by default. When things

go wrong in the code you write, there’s no point in shouting about it to your hapless

visitors, so browsers just quietly set aside broken scripts and ignore them. The in-

structions in this chapter will show you how to get the browser to speak up, so you

can find out about JavaScript errors as they happen.

However, even once you can see the error messages, you’ll likely find that most

JavaScript errors aren’t all that helpful—especially if you’re new to the language.

Most of them are written in “programmer-ese,” or complain about a perfectly good

part of the code when the problem is actually elsewhere. So we’ll spend some time

in this chapter deciphering the most common error messages you’re likely to en-

counter, and what they really mean.

With those tools tucked in your belt, you should be able track down problems that

the browser can detect for you. But you might still have occasion to wonder why

on earth your carefully scripted code (which is perfectly fine, as far as the browser

is concerned) is behaving the way it is. With the right tools, you can track a problem

in your code to its source, even stepping through your JavaScript code a line at a

time if necessary.

Nothing Happened!
It isn’t very encouraging to spend two hours piecing together the ultimate script

full of whizz-bang effects only to fire up your browser and have nothing happen;

but when you’re first writing a new script, that’s usually your first hint that some-

thing has gone wrong—nothing happens.

The good news is that, if you’ve done your job right, the fact that the JavaScript fails

silently means that your plain HTML/CSS can work on its own, and a user need

never know that your code isn’t working right. See? The browser’s just looking after

your reputation! This isn’t much help when you’re trying to find out why the script

isn’t working, though.

When you’re working on your JavaScript code, then, you should configure your

browser of choice to let you know about JavaScript errors when they happen. De-

pending on which browser you’re dealing with (and of course, you will eventually

need to test as many as possible), the procedure is different.

Firefox has a very nice error console that you can access by selecting Tools > Error

Console. This opens the window shown in Figure 7.1. The console displays not only

JavaScript errors, but errors in your CSS code, and even so-called chrome errors

generated internally by the browser (usually after you’ve installed a buggy browser

extension).

Simply JavaScript278

Figure 7.1. The Firefox Error Console

As you can see, the Firefox error console displays more than just errors:

Errors problems with your code that prevented the browser from continuing

to run the script

Warnings problems with your code that the browser was able to work around,

but which may indicate that the script isn’t doing what you expect it

to

Messages notes from your code that tell you what it’s doing, usually only used

as a debugging tool by browser extension developers—you won’t see

many of these

For each entry in the console, the specific file and line number that generated the

notification will be displayed. Depending on the nature of the entry, the error console

may even show you the line in question, with a little arrow pointing to the exact

code that generated the entry.

When you’re trying to track down a problem in your code, you’ll usually start by

opening the error console and clicking the Clear button to empty out the backlog of

entries that may be displayed. Then you can reload the page in your main browser

window and note the notifications that appear in the error console. If there are a

lot of notifications, you might start by clicking the Errors button to see only the most

severe errors, and concentrate on fixing them first, before returning to the All view

to fix the less serious issues.

279Errors and Debugging

Opera’s error console, shown in Figure 7.2, works very much like Firefox’s. You

can get to it by clicking Tools > Advanced > Error Console.

Figure 7.2. The Opera Error Console

The two drop-down menus at the bottom of this window are the key to seeing just

the notifications that interest you. The first controls the source of the notifications

that will be displayed, and you can choose JavaScript from this menu if you want to

filter out things like HTML and CSS errors while working on a script. The second

drop-down works much like the notification filtering buttons in Firefox’s error

console, enabling you to set the severity of the entries that are displayed in the

console. The default selection, Messages, will allow messages, warnings, and errors

to be displayed.

Useful error messages are harder to find in Internet Explorer. To see them, you need

to open the Internet Options window (Tools > Internet Options), then, on the Advanced

tab, look for the Display a notification about every script error option, under Browsing.

Make sure it’s checked, as shown in Figure 7.3.

Simply JavaScript280

Figure 7.3. Enabling JavaScript errors in Internet Explorer

Once this option is set, you’ll be notified the moment a JavaScript error has occurred,

with a remarkably unhelpful message box similar to that shown in Figure 7.4.

Figure 7.4. A JavaScript error notification in Internet Explorer

281Errors and Debugging

The only part of this window that you should really pay attention to is the line that

begins with Error:. All the other information in this dialog (including the line and

character numbers) is usually wrong. Heck, as of Internet Explorer 7, even the

message at the top of this window was wrong! If you uncheck the Always display this

message when a page contains errors checkbox, the warning icon in the status bar that

it mentions will not actually be displayed.

As you can see, finding and fixing JavaScript errors in Internet Explorer is not easy.

There are tools that can make it a little easier,1 but because most JavaScript problems

will affect all browsers, you’re usually better off doing your JavaScript development

in a different browser, and using Internet Explorer’s JavaScript error reporting as a

last resort for problems specific to that browser.

To access Safari’s error console, you need to enable a hidden feature of that browser.

Open a Terminal window and type:

defaults write com.apple.Safari IncludeDebugMenu 1

Press Enter, then quit the Terminal application. When you next launch Safari, you’ll

see a new Debug menu next to the Help menu. Make sure the Log JavaScript Exceptions

option is checked in the menu, as shown in Figure 7.5, then click Show JavaScript

Console to bring up the error console shown in Figure 7.6.

You’ll note that, of the four browsers we’ve discussed in this section, Safari provides

the tersest and least helpful error messages. It generally gets the file name and line

number right, at least.

Now that you can see JavaScript error messages, you need to learn how to interpret

them.

Common Errors
Every browser has its own particular dialect for JavaScript error messages. Almost

invariably, Firefox produces the most sensible and helpful messages of current

browsers, so your best bet when faced with a confusing message is to open your

page in Firefox to see what its error console says.

1 http://blogs.msdn.com/ie/archive/2004/10/26/247912.aspx

Simply JavaScript282

http://blogs.msdn.com/ie/archive/2004/10/26/247912.aspx

Figure 7.5. Safari’s hidden Debug menu

Figure 7.6. Safari’s Error Console

Three kinds of errors can occur in JavaScript:

■ syntax errors

■ runtime errors

■ logic errors

Only the first two produce error messages.

Syntax Errors
A syntax error is caused when your code violates the fundamental rules (or syntax)

of the JavaScript language. It’s the browser’s way of saying, “Whatchoo talkin’ ’bout,

283Errors and Debugging

http://www.imdb.com/title/tt0077003/quotes

Willis?”2 Of the errors that the browser will tell you about, syntax errors are the

easiest to fix, but the hardest to spot in your code.

Here’s a simple script that contains a number of syntax errors:

syntax.js

 1 // This script contains four syntax errors
 2 var MyScript = {
 3 init: function
 4 {
 5 MyScript.doSomething();
 6 }
 7 doSomething: function()
 8 {
 9 alert("Hold onto your "hat"!");
10 \\ something happens
11 }
12 };
13
14 Core.start(MyScript);

If you load a page that links to this script (like syntax.html in the code archive) in

Firefox, the error console will display the error message shown in Figure 7.7.

Figure 7.7. The first syntax error

2 http://www.imdb.com/title/tt0077003/quotes

Simply JavaScript284

http://www.imdb.com/title/tt0077003/quotes

Because the browser gives up on trying to make sense of your script when it runs

into a syntax error, you’ll only ever be notified about the first syntax error in a given

script. As you can see, the error message in this case is “missing (before formal

parameters,” and the browser ran into this error when it hit the opening brace ({)

on line four of syntax.js.

Looking back at the script, it may not be immediately obvious to you what the

problem is. The brace is certainly in the right place, and is required to mark the

start of the init method’s body, so why is the browser complaining about it? And

what are “formal parameters” anyway?

The real problem here occurs on the previous line: the parentheses that must follow

the function keyword were left out! These parentheses enclose the list of arguments

for the function (also known as formal parameters), and are required. Here’s what

the corrected code looks like:

 3 init: function()
 4 {
 5 MyScript.doSomething();

It turns out that most syntax errors occur when the browser was expecting one thing,

but ran into something else instead. In this case, it was expecting an opening paren-

thesis ((), and encountered an opening brace ({) instead. That’s why the error mes-

sage points to the innocent-looking brace.

Usually, the error message will tell you what the browser expected to find instead

(in this case, it complains about the “missing (”), but if the message doesn’t make

sense to you, a good tactic is to look at what immediately precedes the place in your

code where the error occurred, and try to identify what you might’ve left out.

If you fix this error and reload the page, you’ll have an excellent opportunity to try

out this technique when you see the error message shown in Figure 7.8.

Can you find the problem? Again, the browser is complaining about a missing

character—in this case a closing brace (})—but if you look at the line before the error,

there’s a closing brace there already!

285Errors and Debugging

Figure 7.8. Another syntax error

syntax.js (excerpt)

 6 }
 7 doSomething: function()

Why is the browser complaining about a missing closing brace? Well, because it

thinks you need another closing brace. Now why would it think something like

that?

The error message says “missing } after property list” because what we’re doing at

this point in our code is building an object (MyScript) by providing a list of its

properties and methods. At the end of that list, we’d normally end the object declar-

ation with a closing brace, but judging by the error message, JavaScript thinks we

meant the object to end right here, on line seven.

Looking at the code in this light, you can probably spot what’s wrong: because the

first method (init) isn’t followed by a comma (,), the browser doesn’t know that

we want to declare a second, and falsely assumes that this is the end of the object

declaration. To fix this error, we must add the missing comma:

 6 },
 7 doSomething: function()

This case highlights the fact that error messages are often just the browser’s best

guess at what you meant to say with your code. In an ideal world, the message

would have said something like “missing } after property list, unless you’re declaring

Simply JavaScript286

another property, in which case you’re missing a comma,” but unfortunately browsers

just aren’t that smart (yet). It’s up to you to notice when an error message is based

on a false assumption on the browser’s part, and act accordingly.

If you fix this error and reload the page, you’ll see another example error, as depicted

in Figure 7.9. This is an easy one, so see if you can figure it out before reading on.

Figure 7.9. Yet another syntax error

From the error message, when the browser reached the “h” in “hat,” it actually ex-

pected a closing parenthesis ()), because it thought it had reached the end of the

argument list for the alert function call. Why would it think that in the middle of

an argument?

Again, look at the code that immediately precedes the error for an explanation. Just

before the “h” is a double quote ("), which the browser interprets as the end of the

string "Hold onto your "—the first argument in your alert function call. After

this argument, it expects either a comma (,) followed by the next argument, or a

closing parenthesis to complete the list of arguments. The error message assumes

you meant to choose the latter option.

Of course, in this case, you meant neither—you don’t actually want that double

quote to signal the end of the first argument! To fix this, escape the double quotes

in the string with backslashes:

 9 alert("Hold onto your \"hat\"!");

Figure 7.10 shows the final error that the browser will trip over in this script.

287Errors and Debugging

Figure 7.10. Guess what! (Yes—it’s another syntax error)

Okay, I threw you a bone with this one. Just to show you that it does happen now

and then, this error message says exactly what it means. The backslash at the start

of the line is termed an illegal character, which is a fancy way of saying “Get a

grip—you’re not even allowed to type a backslash here!”

The problem, of course, is that comments must be preceded by a double slash, not

a double backslash:

10 // something happens

As you can see, once you’ve figured out where you went wrong, syntax errors are

easy to fix, but the error messages that the browser displays can often be misleading.

Usually it comes down to a forgotten character or two, or accidentally using one

type of bracket when you meant to use another.

The good news is that the more JavaScript you write, the more familiar you’ll become

with the nitty-gritty details of the language, and the fewer syntax errors you’ll be

likely to run into.

Runtime Errors
Runtime errors occur when a perfectly valid piece of JavaScript code tries to do

something that it’s not allowed to do, or that is flat out impossible. These errors are

so named because they occur while the script is actually running. Unlike syntax

error messages, the messages produced by runtime errors tend to be right on the

money. The trick is figuring out why the error occurred.

Simply JavaScript288

This script contains a number of runtime errors:

runtime.js

 1 // This script contains three runtime errors
 2 var MyScript = {
 3 init: function()
 4 {
 5 var example = document.getElementsById("example");
 6
 7 for (var i = 0; i < example.length; i++)
 8 {
 9 Core.addEventListener(example[i], "click", doSomething);
10 }
11
12 var links = documents.getElementsByTagName("a");
13 var firstLink = links[0];
14
15 if (firstLink && firstLink.className == "")
16 {
17 alert("The first link has no class assigned to it!");
18 }
19 },
20 doSomething: function(event)
21 {
22 alert("Hold onto your \"hat\"!");
23 }
24 };
25
26 Core.start(MyScript);

Once again, fire up Firefox and load the corresponding HTML file (runtime.html) to

see the first error produced by this script—it’s shown in Figure 7.11.

As you can see, runtime errors look just like syntax errors, except that the error

console doesn’t show the line of code that caused a runtime error.

An “is not a function” error usually indicates that you’ve misspelled the name of

the function or method that you’re trying to call, or that the function or method that

you’re trying to call simply doesn’t exist.

289Errors and Debugging

Figure 7.11. A runtime error … how novel!

As a newcomer to JavaScript, you’ll probably see this message a lot—especially if

you aren’t used to the case-sensitive nature of JavaScript. Attempting to call Alert

instead of alert, for example, will produce this error message. But it can happen

in more subtle cases too, like calling a string method like toLowerCase on a text

node (which isn’t a string), rather than the nodeValue of the text node (which is).

In this example, the cause is far simpler: the developer has tried to call a method

called getElementsById when there is no such method. The method the developer

was probably thinking of is getElementById (without the “s”). Since you can only

have one element with a given ID in a document, it wouldn’t make sense for there

to be a method called getElementsById.

The fix in this case is trivial:

 5 var example = document.getElementById("example");

But it turns out that fixing this problem actually causes another runtime error, shown

in Figure 7.12.

A “has no properties” error means that you’re trying to treat something that isn’t

an object as if it were an object, by trying to access a property or method on some-

thing that has neither.

The most common cause of this error is a method that normally returns an object

(like getElementById) returning null, JavaScript’s special “no object” value. If your

code assumes that an object would be returned and treats the returned value as

such, you’ll end up with an error like this.

Simply JavaScript290

Figure 7.12. A runtime error that’s slightly less clear

In this case, the error is being caused by the following line of code:

runtime.js (excerpt)

 7 for (var i = 0; i < example.length; i++)

If you check runtime.html, you’ll see that there isn’t actually an element with ID

example, so the getElementById call we just fixed above returns null, and when

this for loop tries to read the length property of that null value, it produces the

error message we’re looking at now.

Apparently, whoever wrote this script assumed that the fictitious getElementsById

method would return an empty array if it didn’t find any elements with the specified

ID. Since getElementById returns either a single element node or null, we need to

replace the for loop with an if statement:

 3 init: function()
 4 {
 5 var example = document.getElementsById("example");
 6
 7 if (example)
 8 {
 9 Core.addEventListener(example, "click", doSomething);
10 }

With that fixed, Figure 7.13 shows the last runtime error in this script.

291Errors and Debugging

Figure 7.13. A runtime error that’s easy to fix

An “is not defined” error is about as easy an error to fix as there is. Like the “is not

a function” error we saw earlier, it usually results from a simple typing mistake,

but rather than a misspelled function or method name, “is not defined” indicates

you’ve tried to use a variable or property that doesn’t exist.

In this case, the error is really straightforward:

runtime.js (excerpt)

12 var links = documents.getElementsByTagName("a");

As you can see, the developer has simply misspelled document as documents.

Fix this error, and the script will successfully display the alert message, “The first

link has no class assigned to it!”

Logic Errors
Logic errors aren’t so much errors as they are bugs in your script. The code runs

fine as it was written—it just doesn’t behave the way you expected it to when you

wrote it. These kinds of errors can be devilishly difficult to find because as far as

the browser’s concerned the script is working just fine, so you never see an error

message.

Since every logic error is different, each one presents a new challenge. Just in case

you’re not entirely clear what a logic error is, here’s a script with a few logic errors

in it:

Simply JavaScript292

logic.js

 1 // This script contains three logic errors
 2 var MyScript = {
 3 init: function()
 4 {
 5 var links = document.getElementsByTagName("a");
 6 var exampleLinks = [];
 7 for (var i = 0; i < links.length; i++)
 8 {
 9 if (links[i].className = "Example")
10 {
11 Core.addEventListener(
12 links[i], "click", MyScript.doSomething);
13 exampleLinks[exampleLinks.length] = links[i];
14 i--;
15 }
16 }
17 },
18 doSomething: function(event)
19 {
20 alert("Hold onto your \"hat\"!");
21 }
22 };
23
24 Core.start(MyScript);

This script is supposed to find and build an array that contains all links in the

document that have a class attribute of example, and assign to each one the

doSomething method as a click event listener.

Due to what could be described as a perfect storm of logic errors, this script actually

attempts to set the class attribute of every link in the document to Example, but

only gets as far as setting the first one in the document before going into an infinite

loop that hangs the browser. Nice, huh?

If it’s any consolation, you’d have to be pretty unlucky to innocently produce a

script with so serious a combination of logic errors as this. However, taken in isola-

tion, each of the logic errors in this script is a reasonably common bug of the type

you may run into when writing your own scripts.

293Errors and Debugging

The most serious problem in the script is the infinite loop, which is just about as

bad a problem as you’ll ever create with a logic error. Older browsers would become

completely unresponsive, and would have to be forcibly terminated by the user in

the event of an infinite loop. These days, browsers will detect when a script has

been running for a long time, and will display a message like the one shown in

Figure 7.14, which offers to stop the script and return control to the user.

Figure 7.14. The prompt an infinite loop will produce (eventually)

Let’s start by fixing this problem. Here’s the code responsible for the infinite loop:

logic.js (excerpt)

12 exampleLinks[exampleLinks.length] = links[i];
13 i--;

When the script has discovered a link that it wants to add to the exampleLinks array,

it does so with the first of these two statements. Unfortunately, the developer seems

to have suffered a brain fart, and assumed that adding a reference to the link to the

end of the exampleLinks array would remove it from the node list stored in links.

In an effort to compensate for this imagined loss of an item from links, the developer

has decremented the counter variable with the second statement (i--;).

In fact, the link remains in the links node list, and all the decrementing i achieves

is to cause the for loop to process the same link over and over again—our infinite

loop.

We can avoid the infinite loop simply by removing the second statement:

 7 for (var i = 0; i != links.length; i++)
 8 {
 9 if (links[i].className = "Example")

Simply JavaScript294

10 {
11 Core.addEventListener(
12 links[i], "click", MyScript.doSomething);
13 exampleLinks[exampleLinks.length] = links[i];
14 }
15 }

Run this corrected code, and the next thing you’ll discover is that the click event

listener is assigned to every link in the document. Behind the scenes, the

exampleLinks array is also filled with all the links in the page. What’s causing this

issue?

The source of this bug is an extremely common mistake made by JavaScript begin-

ners, who will often confuse the assignment operator (=) with the equality operator

(==). See it now?

logic.js (excerpt)

 9 if (links[i].className = "Example")

The condition in this if statement is supposed to be checking if the className

property has a value equal to "Example", but the developer has mistakenly used

the assignment operator (=) here, causing this code to set the value of className to

"Example". An assignment statement used as a condition like this evaluates to the

assigned value ("Example"), and since any non-empty string is considered “true,”

the if statement will execute for every link it processes. The solution, of course, is

to use the correct operator:

 9 if (links[i].className == "Example")

Run this modified code, however, and you’ll suddenly find that the event listener

isn’t assigned to any of the links in the page—not even the first one in this paragraph:

logic.html (excerpt)

 <p>This is an <a href="http://www.example.com/"
 class="example">example, but this
 is not.</p>

295Errors and Debugging

This one’s pretty obvious. The if statement is looking for a className of "Example"

(capital “E”), but the class attribute of the link is example (lowercase “e”). Class

names are case-sensitive, so we need to make sure the script matches the actual

class value in the document:

 9 if (links[i].className == "example")

Now be honest: how many of those errors could you have spotted without my help,

based only on the behavior of the browser? And if you thought spotting logic errors

in someone else’s code was difficult, just wait till you’re sitting in front of your own

code armed only with the absolute conviction that your code is perfect in every

way!

In the absence of error messages, you need a specialized tool to help you track down

logic errors like the ones we’ve just seen.

Debugging with Firebug
In the past, the most common approach to resolving logic errors in JavaScript code

was liberal use of the alert function. If you’re expecting a for loop to run five

times, you can stick an alert on the first line inside the loop and see if the browser

displays five alert boxes when you load the page. If it does, you move the alert

call somewhere else, to test another theory about why your script might be misbe-

having.

Sound tedious? It is.

At the time of writing, a much more powerful (not to mention sane) approach is to

use a JavaScript debugger, and by far the best debugger around is Firebug. Firebug

is a free extension for Firefox that adds to the browser a panel containing a rich set

of tools for diagnosing problems with your HTML, CSS, and JavaScript. You can

download and install it from the Firebug web site,3 shown in Figure 7.15.

3 http://www.getfirebug.com/

Simply JavaScript296

http://www.getfirebug.com/

Figure 7.15. Getting Firebug

Let me show you how to use Firebug to track down the infinite loop that we fixed

in the previous section:

1. Open the page in your browser, and wait for the “Unresponsive Script” warning.

Click Stop script.

2. Hit F12, or click the new Firebug status icon at the bottom of the browser win-

dow to open the Firebug panel, shown in Figure 7.16, at the bottom of your

browser.

297Errors and Debugging

Figure 7.16. The Firebug panel

3. Since Firebug slows your browser’s performance, it’s disabled by default. Click

either of the Enable Firebug links to enable Firebug. The first thing you’ll see is

the Console tab pictured in Figure 7.17.

Figure 7.17. The Console tab

Like Firefox’s error console, Firebug’s Console tab will display JavaScript and

CSS errors. It will also display useful information about Ajax requests, which

you’ll learn about in the next chapter, if you select Show XMLHttpRequests on

the Options menu. You can type any JavaScript statement or expression into

Simply JavaScript298

the command line at the bottom of the tab, and Firebug will execute it in the

currently displayed page and display the result in the console.

4. To fix the infinite loop in this page, however, we need something more

powerful than the Console tab. Click the Script tab to see Firebug’s JavaScript

debugger, which is depicted in Figure 7.18.

Figure 7.18. The Script tab

5. The debugger lets you pause the execution of your scripts and step through

them one line at a time, observing the values of variables and the structure of

the DOM as you go. Since the problem is likely to be in the logic.js file, start by

selecting it from the drop-down menu at the top of the Firebug tab, as shown

in Figure 7.19.

6. Firebug now displays the code of the logic.js file. We can tell by the way the

browser is hanging that we’re dealing with an infinite loop, and the only loop

in the code is the for loop on line 7, so click in the gutter next to that line

number, as shown in Figure 7.20. This sets a breakpoint, represented by a red

circle, which tells the debugger to pause the execution of your script when it

reaches that line.

7. With your breakpoint in place, reload the page. As Figure 7.21 indicates, a

yellow arrow will appear on top of the breakpoint to indicate that execution of

the script has been paused at that line. The Watch tab in the debugger’s right-

299Errors and Debugging

Figure 7.19. Selecting the file to debug

Figure 7.20. Setting a breakpoint

hand pane will also show the local variables that exist on that line, and their

current values.

While the debugger is paused, you can click one of the four buttons at the top

of the Firebug panel to control the execution of your script. The blue arrow re-

sumes normal execution of the script, which will continue until it reaches the

next breakpoint, if any. The three gold arrows let you step through your script

one statement at a time. The first, Step Over, simply executes the current state-

ment and pauses execution again on the next line of the current code listing.

The second, Step Into works just like Step Over, except when the current state-

Simply JavaScript300

Figure 7.21. Pausing execution

ment contains a function or method call. In such cases, the debugger will step

into the call, pausing execution on the first line inside the function/method.

The third arrow, Step Out, allows the script to finish executing the current

function, and pauses execution on the next line of the code that called it.

8. Click Step Over once to move to the first line inside the for loop.

9. Now, it would be nice to know about the current link being processed by the

for loop, links[i]. You can eyeball it by looking at the value of i in the Watch

pane, then expanding the links variable in that pane to find the corresponding

element of the array. Alternatively, you can click the area labeled New watch

expression…, type links[i], and press Enter to add the expression to the list

of local variables in the Watch pane, as shown in Figure 7.22.

So we can tell that the first time through the loop, links[i] is pointing to the

hyperlink to logic.html.

10. Click the yellow arrow in the gutter to set another breakpoint, this time on line

9.

11. Click the blue arrow to resume execution of the script. The for loop finishes

its first iteration and starts its second. Execution pauses at the new breakpoint

on line 9. Already, as shown in Figure 7.23, you can spot a number of clues

about what’s going wrong:

301Errors and Debugging

Figure 7.22. Adding a custom watch expression

Figure 7.23. Examining the clues

■ i still has a value of 0, even though we’re in the second iteration of the loop.

■ links[i] still refers to the link to logic.html, except that it now has a class

of Example.

■ The links node list still contains all three of the links in our document.

At this point, a perceptive developer would be looking very hard at that if statement

and the i--; inside it. If you needed more to go on, you could step through the

body of the for loop line by line to see exactly what’s going on.

Simply JavaScript302

Firebug has tons of other cool stuff in it. Spend some time reading the Firebug web

site to learn about the other features that it offers to aid you in your quest for the

answer to the eternal question, “Why is the browser doing that?” And if you like

what you see, think about donating a few bucks to the development of this incredible

tool—I have.

Summary
That’s it! You can go out and brag to your friends that you know JavaScript now.

From here on in, we’ll look at extra browser features and other software that can

make JavaScript do more.

In the next chapter, we’ll delve into the mysteries of Ajax, whose sheer buzzword

power may well be the reason you bought this book. If so, you’ll be pleased to know

that the long wait is over. Turn the page, and bask in the buzz.

303Errors and Debugging

Chapter8
Ajax
It’s probably not an understatement to say that Ajax has revitalized the Web. It’s

certainly one of the reasons for a resurgent interest in JavaScript and it might even

be the reason that you’re reading this book.

Irrespective of the hyperbole surrounding Ajax, the technology has dramatically

affected the way in which people can interact with a web page. The ability to update

individual parts of a page with information from a remote server mightn’t sound

like a revolutionary change, but it has facilitated a seamless type of interaction that

has been missing from HTML documents since their inception.

This ability to create a fluidly updating web page has captured the imaginations of

developers and interaction designers alike; they’ve flocked to Ajax in droves, using

it to create the next generation of web applications, as well as annoy the heck out

of the average user. As with any new technology, there’s a temptation to overuse

Ajax; but when it’s used sensibly, it can definitely create more helpful, more respons-

ive, and more enjoyable interfaces for users to explore.

Although quite a few of the JavaScript libraries out there will offer you a complete

“Ajax experience” in a box, there is really no substitute for the freedom that comes

with knowing how it works from the ground up. So let’s dive in!

XMLHttpRequest: Chewing Bite-sized
Chunks of Content
The main concept of Ajax is that you’re instructing the browser to fetch small pieces

of content instead of big ones; instead of a page you might request a single paragraph.

Although cross-browser Ajax-type functionality was hacked together previously

with iframes, the current Ajax movement was sparked when XMLHttpRequest be-

came available in more than just Internet Explorer.

XMLHttpRequest is a browser feature that allows JavaScript to make a call to a

server without going through the normal browser page-request mechanism. This

means that JavaScript can make additional server requests behind the scenes while

a page is being viewed. In effect, this allows us to pull down extra data from the

server, then manipulate the page using the DOM—replacing sections, adding sections,

or deleting sections depending on the data we receive. The distinction between

normal and Ajax requests is illustrated in Figure 8.1.

Figure 8.1. Comparing a normal page request (replacing the whole page) with an Ajax request (replacing part of the

page)

Communications with the server that don’t use the page-request mechanism are

called asynchronous requests, because they can be made without interrupting the

user’s page interaction. A normal page request is synchronous, in that the browser

waits for a response from the server before any more interaction is allowed.

Simply JavaScript306

XMLHttpRequest is really the only aspect of Ajax that’s truly new. Every other part

of an Ajax interaction—the event listener that triggers it, the DOM manipulation

that updates the page, and so on—has been covered in previous chapters of this

book already. So, once you know how to make an asynchronous request, you’re

ready to go.

Creating an XMLHttpRequest Object
Internet Explorer 5 and 6 were the first browsers to implement XMLHttpRequest,

and they did so using an ActiveX object:1

var requester = new ActiveXObject("Microsoft.XMLHTTP");

Every other browser that supports XMLHttpRequest (including Internet Explorer 7)

does so without using ActiveX. A request object for these browsers looks like this:

var requester = new XMLHttpRequest();

ActiveX is Unreliable

The way that XMLHttpRequest is implemented in Internet Explorer 6 and earlier

means that if a user has disabled trusted ActiveX controls, XMLHttpRequest will

be unavailable to you even if JavaScript is enabled. Many people disable untrusted

ActiveX controls, but disabling trusted ActiveX controls is less common.

We can easily reconcile the differences between the two methods of object creation

using a try-catch statement, which will automatically detect the correct way to

create an XMLHttpRequest object:

try-catch_test.js (excerpt)

try
{
 var requester = new XMLHttpRequest();
}

1 An ActiveX object is Microsoft’s term for a reusable software component that provides encapsulated,

reusable functionality. In Internet Explorer, such objects normally give client-side scripting access to

operating system facilities like the file system, or in the case of XMLHttpRequest, the network layer.

307Ajax

catch (error)
{
 try
 {
 var requester = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (error)
 {
 var requester = null;
 }
}

A try statement allows you to try out a block of code, but if anything inside that

block causes an error, the program won’t stop execution entirely; instead, it moves

onto the catch statement and runs the code inside that. As you can see in Figure 8.2,

the whole structure is like an if-else statement, except the branch taken is condi-

tional on any errors occurring.

We need to use a try-catch statement to create ActiveX objects because an object

detection test will indicate that ActiveX controls are still available even if a user

has disabled them (though your script will throw an error when you actually try to

create an ActiveX object).

The Damage Done

If an error occurs inside a try statement, the program will not revert to the state

it had before the try statement was executed—instead, it will switch immediately

to the catch statement. Thus, any variables that were created before the error

occurred will still exist. However, if an error occurs while a variable is being as-

signed, that variable will not be created at all.

Here’s what happens in the code above:

We try to create an XMLHttpRequest object using the cross-browser method. If

our attempt is successful, the variable requester will be a new XMLHttpRequest

object. But if XMLHttpRequest is unavailable, the code will cause an error. We

can try out a different method inside the catch statement.

Simply JavaScript308

Figure 8.2. The logical structure or a try-catch statement

catch statements “catch” the exception that caused the try statement to fail.

This exception is identified by the variable name that appears in brackets after

catch, and it’s mandatory to give that exception a name (even if we’re not going

to use it). You can give the exception any name you like, but I think error is

nicely descriptive.

Inside the catch, we try to create an XMLHttpRequest object via ActiveX. If

that attempt is successful, requester will be a valid XMLHttpRequest object,

but if we still can’t create the object, the second catch statement sets requester

to null. This makes it easy to test whether the current user agent supports

XMLHttpRequest, and to fork to some non-Ajax fallback code (such as that

which submits a form normally):

309Ajax

if (requester == null)
{
code for non-Ajax clients

}
else
{
code for Ajax-enabled clients

}

Thankfully, the significant differences between browser implementations of

XMLHttpRequest end with its creation. All of the basic data communication methods

can be called using the same syntax, irrespective of the browser in which they’re

running.

Calling a Server
Once we’ve created an XMLHttpRequest object, we must call two separate meth-

ods—open and send—in order to get it to retrieve data from a server.

open initializes the connection and takes two required arguments, with several op-

tionals. The first argument is the type of HTTP request you want to send (GET,

POST, DELETE, etc.); the second is the location from which you want to request

data. For instance, if we wanted to use a GET request to access feed.xml in the root

directory of a web site, we’d initialize the XMLHttpRequest object like this:

requester.open("GET", "/feed.xml", true);

The URL can be either relative or absolute, but due to cross-domain security concerns

the target must reside on the same domain as the page that’s requesting it.

HTTP Only

Quite a few browsers will only allow XMLHttpRequest calls via http:// and

https:// URLs, so if you’re viewing your site locally via a URL beginning with

file://, your XMLHttpRequest call may not be allowed.

The third argument of open is a Boolean that specifies whether the request is made

asynchronously (true) or synchronously (false). A synchronous request will freeze

Simply JavaScript310

the browser until the request has completed, disallowing user interaction in the

interim. An asynchronous request occurs in the application’s background, allowing

other scripts to run and the user to access the browser at the same time. I recommend

you use asynchronous requests; otherwise, you run the risk of users’ browsers

locking up while they wait for a request that has gone awry. open also has optional

fourth and fifth arguments that specify the user’s name and password for authentic-

ation purposes when a password-protected URL is requested.

Once open has been used to initialize a connection, the send method activates that

connection and makes the request. send takes one argument that allows you to send

encoded data along with a POST request, in the same format as a form submission:

requester.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
requester.open("POST", "/query.php", true);
requester.send("name=Clark&email=superman@justiceleague.xmp");

Content-Type Required

Opera requires you to set the Content-Type header of a POST request using the

setRequestHeader method. Other browsers don’t require it, but it’s the safest

approach to take to allow for all browsers.

To simulate a form submission using a GET request, you need to hard-code the

names and values into the open URL, then execute send with a null value:

requester.open("GET",
 "query.php?name=Clark&email=superman@justiceleague.xmp", true);
requester.send(null);

Internet Explorer doesn’t require you to pass any value to send, but Mozilla browsers

will return an error if no value is passed; that’s why null is included in the above

code.

Once you’ve called send, XMLHttpRequest will contact the server and retrieve the

data that you requested. In the case of an asynchronous request, the function that

created the connection will likely finish executing while the retrieval takes place.

311Ajax

In terms of program flow, making an XMLHttpRequest call is a lot like setTimeout,

which you’ll remember from Chapter 5.

We use an event handler to notify us that the server has returned a response. In this

particular case, we’ll need to handle changes in the value of the XMLHttpRequest

object’s readyState property, which specifies the status of the object’s connection,

and can take any of these values:

0 uninitialized

1 loading

2 loaded

3 interactive

4 complete

We can monitor changes in the readyState property by handling readystatechange

events, which are triggered each time the property’s value changes:

requester.onreadystatechange = readystatechangeHandler;

function readystatechangeHandler()
{
code to handle changes in XMLHttpRequest readystate

}

readyState increments from 0 to 4, and the readystatechange event is triggered

for each increment. However, we only really want to know when the connection

has completed (that is, readyState equals 4), so our handling function needs to

check for this value.

Upon the connection’s completion, we also have to check whether the

XMLHttpRequest object successfully retrieved the data, or was given an HTTP error

code such as 404 (page not found). You can determine this from the request object’s

status property, which contains an integer value. A value of 200 is a fulfilled re-

quest; you should check for it—along with 304 (not modified)—as these values in-

dicate successfully retrieved data. However, status can take as a value any of the

HTTP codes that servers are able to return, so you may want to write some conditions

Simply JavaScript312

that will handle some other codes. In general, however, you’ll need to specify a

course of action for your program to take if the request is not successful:

requester.onreadystatechange = readystatechangeHandler;

function readystatechangeHandler()
{
 if (requester.readyState == 4)
 {
 if (requester.status == 200 || requester.status == 304)
 {

code to handle successful request
 }
 else
 {

code to handle failed request
 }
 }
}

Instead of assigning a function that’s defined elsewhere as the readystatechange

event handler, you can declare a new, anonymous (unnamed) function inline:

requester.onreadystatechange = function()
{
 if (requester.readyState == 4)
 {
 if (requester.status == 200 || requester.status == 304)
 {

code to handle successful request
 }
 else
 {

code to handle failed request
 }
 }
}

The advantage of specifying the readystatechange callback function inline like

this is that the requester object will be available inside that function via a closure.

If the readystatechange handler function is declared separately, you’ll need to

313Ajax

jump through hoops to obtain a reference to the requester object inside the handling

function.

XMLHttpRequest is Non-recyclable

Even though an XMLHttpRequest object allows you to call the open method

multiple times, each object can effectively only be used for one call, as the

readystatechange event refuses to fire again once readyState changes to 4

(in Mozilla browsers). Therefore, you will have to create a new XMLHttpRequest

object every time you want to retrieve new data from the server.

Dealing with Data
If you’ve made a successful request, the next logical step is to read the server’s re-

sponse. Two properties of the XMLHttpRequest object can be used for this purpose:

responseXML This property stores a DOM tree representing the retrieved data,

but only if the server indicated a content-type of text/xml for

the response. This DOM tree can be explored and modified using

the standard JavaScript DOM access methods and properties we

explored in Chapter 3, such as getElementsByTagName,

childNodes, and parentNode.

responseText This property stores the response data as a single string. If the

content-type of the data supplied by the server was text/plain

or text/html, this is the only property that will contain data. In

the case of a text/xml response, this property will also contain

the XML code as a text string, providing an alternative to

responseXML.

In simple cases, plain text works perfectly well as a means of transmitting and

handling the response, so the XMLHttpRequest object doesn’t exactly live up to its

name. When we’re dealing with more complex data structures, however, XML can

provide a convenient way to express those structures:

<?xml version="1.0" ?>
<user>
 <name>Doctor Who</name>

Simply JavaScript314

 <email>thedoctor@tardis.biz</email>
</user>
<user>
 <name>The Master</name>
 <email>themaster@gallifrey.org</email>
</user>

responseXML allows us to access different parts of the data using all the DOM features

with which we’re familiar from our dealings with HTML documents. Remember

that data contained between tags is considered to be a text node inside the element

in question. With that in mind, extracting a single value from a responseXML

structure is reasonably easy:

var nameNode =
 requester.responseXML.getElementsByTagName("name")[0];
var nameTextNode = nameNode.childNodes[0];
var name = nameTextNode.nodeValue;

The name variable will now take as its value the first user’s name: "Doctor Who".

Whitespace Generates Text Nodes

As in HTML documents, be aware that whitespace between tags in XML will often

be interpreted as a text node. If in doubt, remember that you can check if a given

node is an element by looking at its nodeType property, as described in Chapter 4.

We can use the data contained in the XML to modify or create new HTML content,

updating the interface on the fly in the manner that has become synonymous with

Ajax.

The main downside of using XML with JavaScript is that a fair amount of work can

be involved in parsing XML structures and accessing the information we want.

However, an alternative way to use the XMLHttpRequest object is to remove this

data processing layer and allow the server to return HTML code, all ready to insert

into your page. This approach is taken by libraries such as Prototype, in which

HTML is delivered with a MIME type of text/html and the value of responseText

is automatically inserted into the document using innerHTML, overwriting the con-

tents of an existing element.

315Ajax

As with any use of innerHTML, this technique suffers from the disadvantages we

discussed in Chapter 3, but it can certainly be a viable option if your circumstances

require it.

A Word on Screen Readers
Until now, we’ve always taken time to make sure our JavaScript enhancements do

not prevent users of assistive technologies—like screen readers—from using our

sites. Unfortunately, when you add Ajax to the equation, this goal becomes extremely

difficult, if not impossible to achieve for screen reader users in particular.

Most, if not all of the current screen readers are unable to handle in a sensible (let

alone useful) way the on-the-fly page updates that typify Ajax development. Screen

readers either will not pick up those changes at all, or they’ll pick them up at the

most untimely of moments.

In some very specific cases, developers have begun to produce experimental solutions

that start to address these issues, but we’re a long way from having reliable, best-

practice techniques in hand. The prevailing wisdom suggests that any real solution

will have to be developed at least in part by the screen reader vendors themselves.

This leaves web developers like you and me with a tough decision: do we abandon

Ajax and the amazing usability enhancements that it makes possible, or do we shut

out screen reader users and take full advantage of Ajax? Of course, if you can justify

asking screen reader users to disable JavaScript when visiting your site, you can

offer these users the same fallback experience as other non-JavaScript users, which

can work just fine. But you’ll need to make sure these users can find out enough

about your site to decide if it’s worth disabling JavaScript to proceed. And consider

making it even easier—a link that said “Disable user interface features on this site

that are not compatible with screen readers,” for example, would not be out of the

question.

Putting Ajax into Action
Now you know the basics of Ajax—how to create and use an XMLHttpRequest object.

But it’s probably easier to understand how Ajax fits into a JavaScript program if you

try out a simple example.

Simply JavaScript316

In this example, we’ll retrieve information that’s relevant to the selections users

make from the widget shown in Figure 8.3. This tool allows users to choose any of

three cities; each selection will update the widget’s display with the weather for

that location.

Figure 8.3. In our weather widget, the user is asked to select a particular city

The HTML for the widget looks like this:

weather_widget.html (excerpt)

<div id="weatherWidget">
 <h2>Weather</h2>
 <p>Please select a city:</p>

 London

 New York

 Melbourne

</div>

317Ajax

We’ll override those anchors with our Ajax code, but it’s important to note that the

href attribute of each anchor points to a valid location. This means that users who

have JavaScript or XMLHttpRequest turned off will still be able to get the information;

they just won’t be gobsmacked by our cool use of Ajax to retrieve it.

When creating Ajax functionality, you can generally follow this pattern:

1. Initialize event listeners.

2. Handle event triggers.

3. Create an XMLHttpRequest connection.

4. Parse data.

5. Modify the page.

To handle the behavior of this weather widget, we’ll create a WeatherWidget object.

Its initialization function will start by adding event listeners to those anchor tags,

which will capture any clicks that the user makes:

weather_widget.js (excerpt)

var WeatherWidget =
{
 init: function()
 {
 var weatherWidget = document.getElementById("weatherWidget");
 var anchors = weatherWidget.getElementsByTagName("a");

 for (var i = 0; i < anchors.length; i++)
 {
 Core.addEventListener(anchors[i], "click",
 WeatherWidget.clickListener);
 }
 },
 ⋮
};

Each of those anchors now has a click event listener, but what happens when the

event is fired? Let’s fill out the listener method, clickListener:

Simply JavaScript318

clickListener: function(event)
{
 try
 {
 var requester = new XMLHttpRequest();
 }
 catch (error)
 {
 try
 {
 var requester = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (error)
 {
 var requester = null;
 }
 }

 if (requester != null)
 {
 var widgetLink = this;
 widgetLink._timer = setTimeout(function()
 {
 requester.abort();

 WeatherWidget.writeError(
 "The server timed out while making your request.");
 }, 10000);

 var city = this.firstChild.nodeValue;

 requester.open("GET", "ajax_weather.php?city=" +
 encodeURIComponent(city), true);
 requester.onreadystatechange = function()
 {
 if (requester.readyState == 4)
 {
 clearTimeout(widgetLink._timer);

 if (requester.status == 200 || requester.status == 304)
 {
 WeatherWidget.writeUpdate(requester.responseXML);
 }
 else

319Ajax

 {
 WeatherWidget.writeError(
 "The server was unable to be contacted.");
 }
 }
 };
 requester.send(null);

 Core.preventDefault(event);
 }
}

The start of this function is occupied by the standard XMLHttpRequest creation

code that we looked at earlier in this chapter.

Once that has been executed, the real logic of clickListener is contained inside

the conditional statement if (requester != null). By using this condition,

we ensure that the Ajax code is only executed if the XMLHttpRequest object is

available. Otherwise, the event handling function will exit normally, allowing

the browser to navigate to the href location, just as it would if JavaScript wasn’t

enabled. This approach provides an accessible alternative for users without

Ajax capability.

This is a real-world Ajax application that’s subject to the unreliability of net-

work traffic, so before the actual Ajax call is made, it’s a good idea to place a

time limit on the transaction to ensure that the user won’t be sitting around

waiting forever if the server fails to respond. To establish this limit, we assign

a setTimeout call as a custom property of the link that was clicked

(widgetLink), with a ten-second delay. If the Ajax request takes longer than

ten seconds, the function supplied to setTimeout will be called, canceling the

request via the abort method, and supplying the user with a sensible error

message. Just like the readystatechange listener, the timeout function is spe-

cified inline, so requester will be available via a closure. We’ll have to remem-

ber to stop this timeout later, if and when the Ajax request is actually completed.

In the first line of code after the timeout function, we determine which city

was selected. To do so, we get the value of the text from the anchor that was

clicked. We assume that the link contains a text node—so that will be the first

child node of the anchor—and the city name itself will be the nodeValue of

Simply JavaScript320

that text node. We can pass this value to our server-side script in order to access

the weather data for that particular city.

Once the requested city has been identified, we begin our Ajax connection.

For this example we’re using a GET request, and the server-side script we’re

trying to access is at ajax_weather.php. Since we’re using GET, the request

variables have to be encoded directly into the URL. To do so, we append a

question mark (?) to the script location, followed by the variables specified as

name=value pairs. If you want to pass multiple variables (we don’t in this case),

each pair must be separated by an ampersand (&).

In this example, we’re passing the city as a request variable called city; its

value is the city name we extracted from the link. The actual value is generated

by the built-in escapeURIComponent function, which will encode values so

that they don’t cause errors when being used as part of a URL. You should en-

code any string values that you attach to a URL this way.

Once the requester object has been initialized with requester.open, we set

up our readystatechange event handler as an anonymous inline function.

The code inside this handler is almost identical to the template that we outlined

earlier in this chapter, except that we have filled in the actions that are to be

taken for successful and unsuccessful requests. You should also note that once

a response has been received from the server, a clearTimeout call is executed

to cancel the setTimeout call we made earlier. This ensures that the user won’t

receive an error message about the server timing out when it hasn’t actually

done so.

Directly after the onreadystatechange function declaration, we fire off the

requester’s send method. The Ajax call is now in action.

We don’t want any clicks on our Ajax links to take the user to a new page (that

would defeat the links’ purposes!), so the last line of clickListener stops the

browser from performing the link’s default action.

What actually occurs on the server after we make our Ajax request isn’t the concern

of our JavaScript. In our code, we’ve referred to a PHP script that will return inform-

ation on the basis of the value of the city we passed it, but we could equally refer

321Ajax

to a JSP script, a Ruby on Rails action, or a .NET controller. Whatever technology

is used, we simply need it to return some correctly formatted XML.

If a successful request occurred, we call our writeUpdate method, and pass it the

responseXML data returned by the server. If there was an unsuccessful request, we

call writeError and give it a suitable error message.

When writeUpdate is called, we know that we’ve got some XML data waiting to be

parsed and added to our HTML. In order to use it, we need to extract particular data

points from the XML, then insert them into appropriate elements in our page.

When you’re liaising with a custom server-side script, you’ll have to agree on a

format for the XML, so that the server-side script can write it correctly and the

JavaScript can read it correctly. For this example, we’re going to assume that the

XML has a form like this:

melbourne.xml

<?xml version="1.0" ?>
<city>
 <name>Melbourne</name>
 <temperature>18</temperature>
 <description>Fine, partly cloudy</description>
 <description_class>partlyCloudy</description_class>
</city>

Knowing this structure makes it easy for us to write writeUpdate to extract the

pertinent data:

weather_widget.js (excerpt)

writeUpdate: function(responseXML)
{
 var nameNode = responseXML.getElementsByTagName("name")[0];
 var nameTextNode = nameNode.firstChild;
 var name = nameTextNode.nodeValue;

 var temperatureNode =
 responseXML.getElementsByTagName("temperature")[0];
 var temperatureTextNode = temperatureNode.firstChild;
 var temperature = temperatureTextNode.nodeValue;

Simply JavaScript322

 var descriptionNode =
 responseXML.getElementsByTagName("description")[0];
 var descriptionTextNode = descriptionNode.firstChild;
 var description = descriptionTextNode.nodeValue;

 var descriptionClassNode =
 responseXML.getElementsByTagName("description_class")[0];
 var descriptionClassTextNode = descriptionClassNode.firstChild;
 var descriptionClass = descriptionClassTextNode.nodeValue;

 var weatherWidget = document.getElementById("weatherWidget");
 while (weatherWidget.hasChildNodes())
 {
 weatherWidget.removeChild(weatherWidget.firstChild);
 }

 var h2 = document.createElement("h2");
 h2.appendChild(document.createTextNode(name + " Weather"));
 weatherWidget.appendChild(h2);

 var div = document.createElement("div");
 div.setAttribute("id", "forecast");
 div.className = descriptionClass;
 weatherWidget.appendChild(div);

 var paragraph = document.createElement("p");
 paragraph.setAttribute("id", "temperature");
 paragraph.appendChild(
 document.createTextNode(temperature + "\u00B0C"));
 div.appendChild(paragraph);

 var paragraph2 = document.createElement("p");
 paragraph2.appendChild(document.createTextNode(description));
 div.appendChild(paragraph2);
}

The first four paragraphs of code inside writeUpdate parse the XML to get a

particular tag value. As you can see, parsing XML can be quite tedious, but

because we know the syntax of the data, we can go directly to the elements we

need and extract their values fairly easily.

323Ajax

Right after we’ve finished parsing the data, we get a reference to the widget

container and clean out its contents by removing all of its child nodes. This

gives us an empty element into which we can insert our new data.

Using this clean slate, we can go about creating the new HTML elements that

are going to represent the weather report. We’ll use the data from the XML to

create the relevant content.

If you have a sharp eye, you’ll have noticed the peculiar text that we specified

for the contents of paragraph. What the heck does "\u00B0C" mean, anyway?

In fact, that will be displayed as °C (as in “It’s a lovely 20°C outside”). The

code \u00B0 is a JavaScript character code for Unicode character number 00B0,

which is the degree symbol (°).

In an HTML document, you could just type the ° character verbatim, assuming

you’re hip to the whole Unicode thing and your HTML is written in UTF-8, or

you could use the HTML character entity °. JavaScript strings, on the

other hand, only support Latin-1 (ISO-8859-1) characters in older browsers,

and they don’t support HTML character entities at all.

So whenever you need to include in a JavaScript string a character that you

can’t easily type on an English keyboard (which means it may not be within

the Latin-1 character set), your best bet is to look up its Unicode character

number (using a tool like Character Map, which is built into Windows, or Mac

OS X’s Character Palette) and replace it with a \uXXXX code.

After we finish manipulating the DOM, the HTML of the weather widget will look

roughly like this:

<div id="weatherWidget">
 <h1>
 Melbourne Weather
 </h1>
 <div id="forecast" class="partlyCloudy">
 <p id="temperature">
 18°C
 </p>
 <p>
 Fine, partly cloudy

Simply JavaScript324

 </p>
 </div>
</div>

The class on the forecast element enables us to style the weather forecast with a

little icon, producing an updated widget that looks like Figure 8.4.

Figure 8.4. The weather widget with its updated content

Our little Ajax program is almost finished. All that’s left is to handle the error that

will be returned if our server doesn’t return proper data:

weather_widget.js (excerpt)

 writeError: function(errorMsg)
 {
 alert(errorMsg);
 }
};

That one’s really simple: the error message supplied to writeError is popped up

in an alert box, letting the user know that something went wrong.

With the methods written, all we have to do is throw them together into one object,

and initialize it with Core.start:

325Ajax

weather_widget.js

var WeatherWidget =
{
 init: function()
 {
 var weatherWidget = document.getElementById("weatherWidget");
 var anchors = weatherWidget.getElementsByTagName("a");

 for (var i = 0; i < anchors.length; i++)
 {
 Core.addEventListener(anchors[i], "click",
 WeatherWidget.clickListener);
 }
 },
 clickListener: function(event)
 {
 try
 {
 var requester = new XMLHttpRequest();
 }
 catch (error)
 {
 try
 {
 var requester = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (error)
 {
 var requester = null;
 }
 }

 if (requester != null)
 {
 var widgetLink = this;
 widgetLink._timer = setTimeout(function()
 {
 requester.abort();

 WeatherWidget.writeError(
 "The server timed out while making your request.");
 }, 10000);

Simply JavaScript326

 var city = this.firstChild.nodeValue;

 requester.open("GET", "ajax_weather.php?city=" +
 encodeURIComponent(city), true);
 requester.onreadystatechange = function()
 {
 if (requester.readyState == 4)
 {
 clearTimeout(widgetLink._timer);

 if (requester.status == 200 || requester.status == 304)
 {
 WeatherWidget.writeUpdate(requester.responseXML);
 }
 else
 {
 WeatherWidget.writeError(
 "The server was unable to be contacted.");
 }
 }
 };
 requester.send(null);

 Core.preventDefault(event);
 }
 },
 writeUpdate: function(responseXML)
 {
 var nameNode = responseXML.getElementsByTagName("name")[0];
 var nameTextNode = nameNode.firstChild;
 var name = nameTextNode.nodeValue;

 var temperatureNode =
 responseXML.getElementsByTagName("temperature")[0];
 var temperatureTextNode = temperatureNode.firstChild;
 var temperature = temperatureTextNode.nodeValue;

 var descriptionNode =
 responseXML.getElementsByTagName("description")[0];
 var descriptionTextNode = descriptionNode.firstChild;
 var description = descriptionTextNode.nodeValue;

 var descriptionClassNode =
 responseXML.getElementsByTagName("description_class")[0];

327Ajax

 var descriptionClassTextNode = descriptionClassNode.firstChild;
 var descriptionClass = descriptionClassTextNode.nodeValue;

 var weatherWidget = document.getElementById("weatherWidget");
 while (weatherWidget.hasChildNodes())
 {
 weatherWidget.removeChild(weatherWidget.firstChild);
 }

 var h2 = document.createElement("h2");
 h2.appendChild(document.createTextNode(name + " Weather"));
 weatherWidget.appendChild(h2);

 var div = document.createElement("div");
 div.setAttribute("id", "forecast");
 div.className = descriptionClass;
 weatherWidget.appendChild(div);

 var paragraph = document.createElement("p");
 paragraph.setAttribute("id", "temperature");
 paragraph.appendChild(
 document.createTextNode(temperature + "\u00B0C"));
 div.appendChild(paragraph);

 var paragraph2 = document.createElement("p");
 paragraph2.appendChild(document.createTextNode(description));
 div.appendChild(paragraph2);
 },
 writeError: function(errorMsg)
 {
 alert(errorMsg);
 }
};

Core.start(WeatherWidget);

And there you have it: a little Ajax weather widget that you could pop into the

sidebar of one of your sites to let users instantly check the weather without leaving

your page. Ajax offers endless possibilities; all you have to do is remember the

pattern I described at the start of this example, and you’ll have even the most com-

plex interactions within your reach.

Simply JavaScript328

Seamless Form Submission with Ajax
As we saw in Chapter 6, forms are integral to the user experience provided by most

web sites. One of the things Ajax allows us to do is to streamline the form submission

process by transmitting the contents of a form to the server without having to load

an entirely new page into the browser.

It’s fairly simple to extend the Ajax code that we used in the previous example so

that it can submit a form. Consider the contact form pictured in Figure 8.5, which

uses this code:

contact_form.html (excerpt)

<form id="contactForm" action="form_mailer.php" method="POST">
 <fieldset>
 <legend>
 Contact Form
 </legend>
 <label for="contactName">
 Name
 </label>
 <input id="contactName" name="contactName" type="text" />
 <label for="contactEmail">
 Email Address
 </label>
 <input id="contactEmail" name="contactEmail" type="text" />
 <label for="contactType">
 Message Type
 </label>
 <select id="contactType" name="contactType">
 <option value="1">Enquiry</option>
 <option value="2">Spam</option>
 <option value="3">Wedding proposal</option>
 </select>
 <label for="contactMessage">
 Message
 </label>
 <textarea id="contactMessage" name="contactMessage"></textarea>
 <input id="contactNewsletter" name="contactNewsletter"
 type="checkbox" value="1" />
 <label for="contactNewsletter">
 I'd like to receive your hourly newsletter
 </label>

329Ajax

Figure 8.5. The example form to which we’ll apply Ajax submission techniques

 <fieldset>
 <legend>
 Reply by
 </legend>
 <input id="contactMethodA" name="contactMethod" type="radio"
 value="1" />
 <label for="contactMethodA">
 Email
 </label>
 <input id="contactMethodB" name="contactMethod" type="radio"
 value="2" />
 <label for="contactMethodB">
 Pony messenger
 </label>
 </fieldset>
 <input type="hidden" name="id" value="SS56789" />
 <input type="submit" value="submit" />
 </fieldset>
</form>

Simply JavaScript330

In order to submit the form’s contents using Ajax, we need to do a couple of things:

1. Override the default form submission behavior.

2. Get the form data.

3. Submit the form data to the server.

4. Check for the success or failure of submission.

We’ll create this functionality inside an object called ContactForm. The only thing

we need to do when we initialize the object is to override the form’s default submis-

sion action. This can easily be done by intercepting the form’s submit event with

an event listener:

contact_form.js (excerpt)

var ContactForm =
{
 init: function()
 {
 var contactForm = document.getElementById("contactForm");
 Core.addEventListener(contactForm, "submit",
 ContactForm.submitListener);
 },

Ajax and Form Validation

Adding multiple event listeners to a given element for a given event can be risky

business, because you have no control over the order in which they will be in-

voked. Thus, it isn’t safe to assign an Ajax form submitter and a client-side form

validator separately. If you do so, the submitter may be executed before the valid-

ator, and you might end up sending invalid data to the server. Link your validator

and your submitter together to ensure that validation takes place before the form

is submitted.

Now, before the form is submitted, the submitListener method will be run. It’s

inside this function that we collect the form data, send off an Ajax request, and

cancel the normal form submission:

331Ajax

contact_form.js (excerpt)

submitListener: function(event)
{
 var form = this;

 try
 {
 var requester = new XMLHttpRequest();
 }
 catch (error)
 {
 try
 {
 var requester = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (error)
 {
 var requester = null;
 }
 }

 if (requester != null)
 {
 form._timer = setTimeout(function()
 {
 requester.abort();

 ContactForm.writeError(
 "The server timed out while making your request.");
 }, 10000);

 var parameters = "submitby=ajax";
 var formElements = [];

 var textareas = form.getElementsByTagName("textarea");

 for (var i = 0; i < textareas.length; i++)
 {
 formElements[formElements.length] = textareas[i];
 }

 var selects = form.getElementsByTagName("select");

Simply JavaScript332

 for (var i = 0; i < selects.length; i++)
 {
 formElements[formElements.length] = selects[i];
 }

 var inputs = form.getElementsByTagName("input");

 for (var i = 0; i < inputs.length; i++)
 {
 var inputType = inputs[i].getAttribute("type");

 if (inputType == null || inputType == "text" ||
 inputType == "hidden" ||
 (typeof inputs[i].checked != "undefined" &&
 inputs[i].checked == true))
 {
 formElements[formElements.length] = inputs[i];
 }
 }

 for (var i = 0; i < formElements.length; i++)
 {
 var elementName = formElements[i].getAttribute("name");

 if (elementName != null && elementName != "")
 {
 parameters += "&" + elementName + "=" +
 encodeURIComponent(formElements[i].value);
 }
 }

 requester.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 requester.open("POST", form.getAttribute("action"), true);
 requester.onreadystatechange = function()
 {
 clearTimeout(form._timer);

 if (requester.readyState == 4)
 {
 if (requester.status == 200 || requester.status == 304)
 {
 ContactForm.writeSuccess(form);
 }

333Ajax

 else
 {
 ContactForm.writeError(
 "The server was unable to be contacted.");
 }
 }
 };
 requester.send(parameters);

 Core.preventDefault(event);
 }
},

One of the most important parts of the submitForm method is the variable

parameters. This variable is used to store the serialized contents of the

form—all of the field names and values combined into one long string that’s

suitable for sending in a POST request. We start this string off with the value

"submitby=ajax", which effectively adds to the form a variable named submitby

with a value of ajax. The server can use this variable to identify form submis-

sions that are transmitted via Ajax—as opposed to a standard form submis-

sion—and respond differently to them (for example, by sending the response

in XML format rather than as a full HTML page).

A form can contain a number of different elements, and we have to deal with

all of them in order to produce a properly serialized version of the form’s

contents. There are three essential element types—input, select, and

textarea—but input elements can have different types with different behaviors,

so we have to cater for those as well. In order to minimize code repetition, we

use the DOM to get node lists of each of the three element types, then we

combine them into one big array—formElements—through which we can iterate

in one fell swoop.

All of the textareas and selects can be added to formElements straight away,

because those elements are always of the same type.

When it comes to input elements, we have to distinguish between text inputs,

hidden inputs, checkboxes, and radio buttons. Text inputs and hidden inputs

can always be submitted with the form, because they don’t have an on/off

Simply JavaScript334

toggle. However, we need to test whether checkboxes and radio buttons are

checked or not before we add them to the list of submitted elements. We don’t

want to submit a value for a checkbox that wasn’t checked, or for the wrong

radio button in a group.

Inside the for loop that iterates over the inputs node list, we use a combination

of each input’s type and its checked property to determine whether it should

be added to formElements. The if statement uses a number of OR conditions

to perform this check, and the logic reads like this:

1. IF the type of the input is null (it will be a text input by default)

2. OR the type of the input is text

3. OR the type of the input is hidden

4. OR the input’s checked property exists AND it is true

5. THEN add the input to formElements

The fourth point above catches both checkboxes and radio buttons. Any

checkbox that’s checked should have its value submitted, and only one radio

button in a radio button group will ever have checked set to true, so it’s safe

to submit that one as well.

Once all the valid elements have been added to formElements, we have to

write out their name/value pairs in a serialized fashion. This process is

identical for all form element types, which is why we can minimize code repe-

tition by building the formElements array in advance.

As we add each form element to the serialized string, we have to check

whether a name is assigned to it.

If it does have a name, we’ll want to send its value to the server, so we take the

name, followed by "=", followed by the value, and add the whole thing to the

end of parameters. Each of the name/value pairs in parameters is separated

by an ampersand ("&").

335Ajax

You’ll notice that, again, we encode the names and values of our form elements

using encodeURIComponent, to make sure that the request data remains valid

no matter which special characters the user types into the form.

We’re now ready to submit our serialized form data string to the server. The

XMLHttpRequest code should be pretty familiar to you by now:

Remember that we have to set the content-type in the header of a POST request

so that the request will work in Opera.

This time, when we open our XMLHttpRequest object, we’ll use the "POST"

method. The URL for the server request is pulled directly from the action of

the form itself, which increases the reusability of this script.

In the readystatechange handler, all we’re doing is waiting for a success code

from the server. We don’t actually care what data it gives us, so long as we

know that it received the contact information. Once we’ve received that con-

firmation (in the form of a successful status code), we can execute

ContactForm.writeSuccess, which will let the user know that the action was

successful:

contact_form.js (excerpt)

writeSuccess: function(form)
{
 var newP = document.createElement("p");
 newP.setAttribute("id", "success");
 newP.appendChild(document.createTextNode(
 "Your message was submitted successfully."));
 form.parentNode.replaceChild(newP, form);
},

For this example, the success handler replaces the contact form with a paragraph

that reads “Your message was submitted successfully,” as shown in Figure 8.6.

Similarly, if the server does not successfully receive the contact information,

ContactForm.writeError can handle the error in any manner it chooses—with

a simple alert telling the user to try again, an error message, or even by shaking

the browser window violently from side to side—whatever suits your applica-

Simply JavaScript336

Figure 8.6. The message that appears when the form has been submitted successfully

tion best. For reasons of simplicity, and because it’s highly visible to the user,

this example uses an alert box:

contact_form.js (excerpt)

writeError: function(errorMsg)
{
 alert(errorMsg);
}

With that last method in place, the readystatechange handler is ready to do

its work, and submitListener is free to fire off the Ajax request. Since this is

a POST request, we pass parameters to the send method, rather than including

them in the URL itself (as we would for a GET request).

The very last command in submitListener is a Core.preventDefault call,

which stops the browser from submitting the form (as we just did it ourselves

via Ajax). And that’s why we call this program “seamless form submission.”

We’ve generalized the code that handles form elements, which means that it’s really

easy to take this code and use it in other applications you might work on. Just

modify the init method to reference the correct form, and away you go!

Exploring Libraries
Obviously, in this age of buzzwords, every JavaScript library must support Ajax in

its own special way. As a result, almost every library out there has its own abstraction

of the XMLHttpRequest object, which saves you from writing your own try-catch

statements, supplying request variables in the right way depending on the type of

request, and wiring up functions to handle different success and error conditions.

Some of them even have handy shortcuts for common Ajax interactions, which can

save you from writing code.

337Ajax

For each of the Prototype, Dojo, jQuery, YUI, and MooTools libraries, we’ll translate

this low-level Ajax code into the equivalent library syntax:

try
{
 var requester = new XMLHttpRequest();
}
catch (error)
{
 try
 {
 var requester = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (error)
 {
 var requester = null;
 }
}

requester.open("GET", "library.php?dewey=005", true);
requester.onreadystatechange = readystatchangeHandler;
requester.send(null);

function readystatchangeHandler()
{
 if (requester.readyState == 4)
 {
 if (requester.status == 200 || requester.status == 304)
 {
 writeUpdate(requester);
 }
 }
}

function writeUpdate(requestObject)
{
 document.getElementById("container").childNodes[0].nodeValue =
 requestObject.reponseText;
}

That code steps through a fairly standard Ajax program:

1. Create a new XMLHttpRequest object.

Simply JavaScript338

2. Set up a GET connection to a server-side script.

3. Attach a request variable to the server call.

4. Send the data to the server.

5. Monitor the request for completion.

6. Insert the returned data into an HTML element (by setting the nodeValue of the

text node it contains).

This program’s standard functionality should give you a fair indication of the way

that each library handles Ajax connections and interactions.

Prototype
Prototype’s approach to handling Ajax calls basically represents the archetype for

other libraries. It gives you access to an Ajax object, which offers a couple of

methods with which to make requests.

We start a basic Ajax request by calling new Ajax.Request and passing it a number

of parameters in the form of an object literal. When you specify an onComplete

function, it will automatically be called once the server call has successfully com-

pleted:

var requester = new Ajax.Request("library.php",
 {
 method: "get",
 parameters: "dewey=005",
 onComplete: writeUpdate;
 });

function writeUpdate(requestObject)
{
 document.getElementById("container").childNodes[0].nodeValue =
 requestObject.reponseText;
}

That code can be further shortened by replacing Ajax.Request with Ajax.Updater.

The second method assumes that you will place the contents of responseText dir-

ectly inside an HTML element (the most common Ajax operation), and allows you

339Ajax

to specify the ID of that element. Thus, it circumvents the need for you to create

your own callback function:

var requester = new Ajax.Updater("container", "library.php",
 {
 method: "get",
 parameters: "dewey=005",
 });

That’s very succinct!

Dojo
To use Dojo’s Ajax handler, we just call dojo.io.bind with an object literal that

contains the appropriate parameters:

dojo.io.bind(
 {
 url: "library.php?dewey=005",
 load: writeUpdate,
 mimetype: "text/plain"
 });

function writeUpdate(type, data, event)
{
 document.getElementById("container").childNodes[0].nodeValue =
 data;
}

There are a couple of tricks with the Dojo Ajax implementation. Specifying mimetype

inside the object literal determines what type of data Dojo will pass to your load

function when the request is completed (text or XML). The load function receives

three arguments:

type a superfluous variable that always has a value of "load"

data the only variable you’ll actually use, as it contains the data from the server’s

response

Simply JavaScript340

event contains a reference to the low-level transport object that was used to per-

form the server communication (For the moment, it will inevitably be the

XMLHttpRequest object.)

jQuery
As with everything in jQuery, Ajax functionality is available as part of the $ object.

$.ajax lets you specify an all-too-familiar object literal with the particular config-

uration you require for the call:

$.ajax(
 {
 type: "GET",
 url: "library.php",
 data: "dewey=005",
 success: writeUpdate
 });

function writeUpdate(data)
{
 document.getElementById("container").childNodes[0].nodeValue =
 data;
}

Again, with jQuery, as with Dojo, either responseXML or responseText will be

passed directly to the success function—the property that’s passed will depend

upon the MIME type of the data returned from the server.

YUI
In true Yahoo! UI style, the name that Yahoo! has given to its Ajax object (which it

calls a Connection Manager) is rather verbose, but in most other respects it’s similar

to what we’ve seen so far:

var handlers = {
 success: writeUpdate
}

YAHOO.util.Connect.asyncRequest(
 "GET",
 "library.php",

341Ajax

 handlers,
 "dewey=005"
);

function writeUpdate(requestObject)
{
 document.getElementById("container").childNodes[0].nodeValue =
 requestObject.reponseText;
}

The handlers variable allows you to specify both the handler function for a success-

ful Ajax request, and the function to be called when an error occurs. These functions

are passed a full XMLHttpRequest object, rather than just the data.

MooTools
MooTools based its Ajax handler on the one that comes with Prototype, so both

handlers have similar syntax. MooTools’ handler even has the shortcut for placing

the returned data directly into an element without specifying a callback function:

var requester = new Ajax("library.php?dewey=005",
 {
 method: "get",
 onComplete: writeUpdate;
 });

requester.request();

function writeUpdate(requestObject)
{
 document.getElementById("container").childNodes[0].nodeValue =
 requestObject.reponseText;
}

The one difference between these two libraries is that the MooTools object doesn’t

automatically send the request once it has been initialized; you have to call request

when you want to send it.

If you wish to use the element insertion shortcut, the code looks like this:

Simply JavaScript342

var requester = new Ajax("library.php?dewey=005",
 {
 method: "get",
 update: "container";
 });

requester.request();

The update property takes the ID of the element whose contents you wish to update.

Summary
Ajax is definitely here to stay, and as users and developers become accustomed to

its behavior, the number of ways in which it will be used to enhance web interfaces

will only increase.

As you’ve seen in this chapter, the actual communication mechanism of Ajax is

relatively straightforward. The pattern of initialize-retrieve-modify draws heavily

on all the techniques that you’ve picked up as you’ve worked your way through the

preceding seven chapters, so Ajax is the perfect finishing point for all the practical

work in this book. But read on to find out where the future of JavaScript might lead

you…

343Ajax

Chapter9
Looking Forward
When you first picked up this book, you were undoubtedly aware of JavaScript’s

meteoric rise in (or return to) popularity over the past couple of years. Interest in

JavaScript—and its usage on the Web—is now at its highest point ever, and it’s only

going to keep rising.

However, for all its popularity, JavaScript is still very immature—a truth that applies

to many aspects of the Web. New things are being learned about JavaScript each

day, and new ideas are springing up from every corner of the globe. JavaScript is a

language that’s yet to reach its full potential.

It wasn’t so long ago that developers could forget about being unobtrusive! Everything

was obtrusive: we used inline event handlers in our HTML, content was being in-

serted with document.write, and we had to provide a different version of our code

for every browser. How quickly we’ve moved on, created new rules, and almost

invented a new language. The JavaScript you’ve learned in this book looks very

different from the JavaScript that was written only a few years ago.

Some people might see this immaturity as a bad thing, but I embrace it. Why? Be-

cause it’s exciting. JavaScript is on the edge. With JavaScript, you can do things

that people have never done before. There are countless new ideas to be explored,

and new pages to be forged.

Hopefully, all the reading you’ve done so far has made you as excited as I am, and

you’ve got a million and one ideas buzzing around inside your head. You should

be thinking of all the ways you can use JavaScript on your pages to create a usable

and fun experience for your users.

But if, by some strange eventuality, your JavaScript juices aren’t quite flowing yet,

this peek at the future is sure to get them going like the Niagara.

Bringing Richness to the Web
Maybe you thought Flash brought richness to the Web. It certainly did its bit,

changing the Internet from a static, page-based paradigm to a morphing, transitioning,

all-singing, all-dancing “experience.” But it tends to throw out the benefits of HTML,

while introducing some of its own disadvantages.

JavaScript—with HTML as its foundation—manages to strike a happy medium

between the interactivity of Flash and the accessibility of HTML, especially if you

follow the tenets of progressive enhancement that we’ve been advocating in this

book. If you think of JavaScript as an add-on to HTML, it makes the transition from

a page-based development model to a more interactive model much less turbulent.

Although a lot of the recent focus of interaction design has been placed on Ajax,

it’s not the only way in which you can create a more usable interface. Sometimes,

you just need to think about how you can represent your interface in a different

manner.

Easy Exploration
Take, for example, the Travelocity site.1 Its creators recognize that when you’re

looking for accommodation, there are normally one or two variables that you want

to use to narrow down your options. To let you get feedback quickly on the effect

that your choices have made, they implemented the variables as JavaScript sliders,

1 http://www.travelocity.com/

Simply JavaScript346

http://www.travelocity.com/

as shown in Figure 9.1. These sliders allow you very easily to specify your accepted

range for the variables, and immediately see how many hotels meet your criteria.

Figure 9.1. The JavaScript sliders on Travelocity providing immediate feedback

If you wanted to implement this sort of feature using nothing but server-side calcu-

lation, obtaining the correct data would take an impractical number of form submis-

sions. The site’s users would probably either give up before discovering exactly

what they wanted, or settle for accommodation that wasn’t really what they wanted.

By having this easy-to-use interface element, the site actually encourages users to

explore all of the options, making them much happier throughout the experience,

and giving them a greater chance of finding ideal accommodation matches.

Easy Visualization
Among all of the Ajax voodoo used on Flickr,2 one of my favorite pieces of function-

ality is the inline editing capability shown in Figure 9.2. This type of interaction

tool serves two purposes. Firstly, the use of an Ajax call to update information

2 http://www.flickr.com/

347Looking Forward

http://www.flickr.com/

means that users’ changes are applied to pages very quickly. Helping this impression

of speed, only small amounts of data are being sent (which is important on Flickr’s

sometimes slow-loading pages), and the Gallery view makes it easy to make bulk

changes to multiple photos.

Figure 9.2. Inline editing areas eliminating full page loads on Flickr

The other great thing about inline editing is that you can be browsing your photo

gallery pages, spot something that you want to change (like the typo in Figure 9.3),

and change it right there and then. You get to see the data exactly as it appears to

users, rather than in a form that’s not at all connected with the way the data will

be finally presented. Thus the usual disconnect between administration and

presentation vanishes.

Simply JavaScript348

Figure 9.3. Editing data inline, just as it appears on your pages

Unique Interaction
You can perform a million and one usability tweaks with JavaScript, but they still

essentially function like static HTML—with a bit less waiting. By far the most for-

ward-thinking—and, let’s face it, sexier—examples are those that use the interactive

capabilities of JavaScript to create something that’s not possible using traditional

client-server techniques.

One of my favorite examples of this is Meebo, which is shown in Figure 9.4.3 It (and

its web-based IM brethren) take the originally desktop-based instant messaging ap-

plications and move them onto a freely available web-based platform, thereby

multiplying their usefulness by a factor of approximately 15.4

With IM available through your browser, maintaining contact with your friends

becomes as easy as blinking. Having an entirely browser-based chat client means

3 http://www.meebo.com/
4 Note: author’s personal estimation only. Real results may differ from those shown on the pack. —Ed.

349Looking Forward

http://www.meebo.com/

you don’t have to install any software (an impossibility on many corporate systems),

and you can switch workstations and still use the service—without having to

transfer your IM account details. These services are also pretty good at beating

firewalls that are set up to block IM ports. (I’m not sure whether this is counted as

a good thing for employers, though!) Without JavaScript, this type of complex inter-

face would be impossible—it would simply take too long using a normal page request

architecture.

Figure 9.4. Meebo’s JavaScript- and Ajax-based, in-browser instant messaging client

If you want to take a bigger step into the future, it’s possible to combine JavaScript

with emerging vector-rendering standards that allow you to create you own really

customized interfaces. Brand new at the time this book was written was the Yahoo!

Pipes service shown in Figure 9.5.5 It uses the canvas element (which is available

in quite a few browsers) to create a unique interface that’s best suited to its own

particular functionality: wiring together an unlimited number of data modules.

5 http://www.pipes.yahoo.com

Simply JavaScript350

http://www.pipes.yahoo.com
http://www.pipes.yahoo.com

Figure 9.5. Yahoo! Pipes’s intuitive and unique interface

canvas and its cousin SVG give designers the ability to create lightweight, highly

adaptable vector graphics for use in web interfaces. Combined with the interactivity

of JavaScript, these technologies are finally giving web applications the power that

their desktop cousins have enjoyed for so many years, thereby removing one of the

biggest barriers to the proliferation of a totally web-based application system.

And of course it’s not all business suits and briefcases on the side of JavaScript;

there’s the potential to let your mind wander and produce some frivolous but fun

entertainment of the kind for which Flash has earned a reputation—my Bunny Hunt

game is a case in point.6 The sky’s the limit!

6 http://www.themaninblue.com/experiment/BunnyHunt/

351Looking Forward

http://www.themaninblue.com/experiment/BunnyHunt/

Figure 9.6. Bunny Hunt, a game whose style you’d normally associate with Flash

Rich Internet Applications
As you might have noticed as you read the previous section, the introduction of

JavaScript and other new technologies is promoting a shift in the Web’s focus. Pre-

viously, web sites were largely restricted to storing information, and offered very

little interactivity, apart from the ubiquitous form fields.

As JavaScript makes more and more desktop-style interactions possible, we’re be-

ginning to see the Web transformed into an extension of the desktop. And eventually,

who knows? We may lose the desktop altogether.

These next-generation web applications are distinguished from their static ancestors

by the name Rich Internet Applications (RIAs). The important distinction here is

made by the term rich, which refers to the styles of interaction that are available

through these applications: expanding/collapsing, seamlessly updating, auto-com-

pletion, drag-and-drop, customized gestures—the list goes on.

In RIAs, most user interface actions are driven from the client side, which makes

them much more responsive and flexible, because no time-consuming communica-

tion has to be performed with the server to complete these types of operations. Ex-

amples of RIAs include most of Google’s recent applications7 (Maps, Mail, Calen-

7 http://www.google.com/intl/en/options/

Simply JavaScript352

http://www.google.com/intl/en/options/

dar—shown in Figure 9.7—and Docs & Spreadsheets), Meebo,8 Netvibes,9 and Zim-

bra.10

Many of these applications focus on taking functionality that currently exists on

your desktop and moving it onto the Web, literally making your data available to

you wherever you may be in the world. But as RIA development matures, we’ll begin

to see more applications that have no desktop counterpart—and never will—such

as Yahoo! Pipes.

Figure 9.7. The Google Calendar interface

The main problem with RIAs is that they’re extremely complex to develop—probably

even more complex than their desktop equivalents. This complexity is the result

of three factors, which have a lot to do with the nature of the Web itself:

■ The interface is subject to display in a browser, which entails all the browser

quirks and incompatibilities that are normally associated with web development.

8 http://www.meebo.com/
9 http://www.netvibes.com/
10 http://www.zimbra.com/

353Looking Forward

http://www.meebo.com/
http://www.netvibes.com/
http://www.zimbra.com/
http://www.zimbra.com/

■ The behaviors required to perform much of the interaction don’t natively exist

on the Web or in a browser; they have to be created from the ground up using

JavaScript. So if you want drag-and-drop capabilities, you’ll have to include a

script that creates this functionality.

■ The Web was designed to be stateless, yet this clashes with the way a lot of ap-

plications are designed to work. Applications often rely upon a certain sequence

of events occurring in a given order, but this order can’t be guaranteed on the

Web—a place where users can jump in or out at any point they choose, and can

modify data without the server knowing.

One fundamental issue underlies all of these problems: the Web wasn’t designed

to support applications.

This fact is highlighted by the way that current accessibility technology handles

RIAs: badly. Since assistive technology has been designed to work with a page-based

model, the new micro-updates that lie at the heart of an RIA throw tools like screen

readers into confusion—they don’t know when the page has been updated, and

even if they did, they wouldn’t know how best to alert a user to those updates.

The blame can’t be laid solely on the screen reader manufacturers, though. The

structure that they’re trying to translate has some inherent accessibility flaws when

it comes to describing applications—flaws that can’t just be patched. The thing is,

browsers that render HTML have become so ubiquitous that it makes sense to create

applications that take advantage of them. We just have to hack our way around all

the challenges somehow. At least, that’s one point of view. The other is to remodel

or even recreate HTML with more application-oriented functionality.

canvas is one of the first steps in this direction. Introduced by the Web Hypertext

Application Technology Working Group (WhatWG)—a community organized towards

the development of a more coherent web application standard—canvas is just a

small part of a greater plan that aims to create a developer-friendly, user-advantage-

ous system of application delivery. However, its full potential is yet to be realized,

and even after all the standards have been locked in, the standard’s roll-out to a

majority of browsers will take time.

For the moment, it looks like we’re stuck using the sometimes clunky, always

complex combination of HTML, CSS, and JavaScript for web application develop-

Simply JavaScript354

ment. It’s with this fact in mind that quite a few people are trying to find the most

viable way of easing the pressure.

If JavaScript follows the path of most other programming languages—which, judging

from the rise in libraries, it most likely will—it seems inevitable that popular applic-

ation functionality will become invested in a few frameworks that will help ease

the burden of the first two points outlined above. It remains to be seen whether or

not the third problem can be solved.

Widgets
A number of common themes run through the design of a lot of applications. On

the desktop, these functional commonalities include tasks like file handling and

window control, and tools such as dialog boxes, toolbars, and menus. You can use

a range of these standard components to build desktop applications, so you don’t

have to reinvent the wheel every time you create a new application. By using these

components, you take advantage of established conventions that aid usability—users

already know what a menu looks like, how a dialog box works, and what they should

do with a button.

Parallels are starting to be drawn in application design on the Web. A few interac-

tions are now becoming sufficiently common to warrant the creation of reusable

components, or widgets, that, when dropped into a page, just work. Whereas previ-

ously these widgets might have been offered piecemeal across a dozen sites spread

over the Web, now they’re beginning to be aggregated in large libraries, to become

what you might call component frameworks.

These frameworks don’t provide just a bit of abstracting code that addresses specific

browser differences; they offer an entirely new mode of development. Instead of

writing all the HTML, all the styles, and all the JavaScript for a particular piece of

functionality, you can just include a widget—maybe just one line of code—and your

application will automatically boast the functionality that you once had to write

hundreds of lines of code to achieve.

Frameworks don’t just make coding easier, however; they also have an effect upon

the language itself. If you start substituting one line of Dojo for a hundred lines of

JavaScript, are you writing JavaScript, or are you writing Dojo?

355Looking Forward

JavaScript Off the Web
As the popularity of web development techniques continues to surge, JavaScript

has become quite a powerful force in software development. The separation of

structure, style, and behavior that is so strictly expressed in web standards is actually

an ideal platform for the development of applications and widgets both on the Web,

and off it.

With the introduction of Dashboard Widgets, a sampling of which is shown in Fig-

ure 9.8, Apple’s Mac OS X brought the combination of HTML, CSS, and JavaScript

onto the desktop, making it a much easier proposition for people to create their own

native applications. The masses of people who had cut their development teeth on

the pages of the Web were now able to port those skills directly to the desktop. And

the growth in the number of widgets has revealed the ease with which this skills

transfer can be achieved.

Figure 9.8. Creating mini-applications using HTML, CSS, and JavaScript with MacOS X widgets

Simply JavaScript356

Alongside MacOS X, Yahoo! released its own desktop widget tool; they’ve just been

joined by the latest incarnation of Windows—Vista—which supports similar items,

called “gadgets.”

Aside from widgets, it’s possible to create entire applications using JavaScript. One

of the browsers with the fastest growing market share—Firefox—was built entirely

with JavaScript; an application development language called XUL was used to

provide the user interface elements. Again, the separation of structure, style, and

behavior here allows the application to easily be skinned via CSS, and invites the

addition of new functionality—contained in Firefox extensions—via JavaScript.

Exploring Libraries
The number of JavaScript libraries available on the Web is gradually being whittled

down predominantly on the basis of how much they’re used, but their endurance

is also affected by factors such as functionality, ease of integration, and available

documentation.

To my mind, a library can go in two directions—small and light, or big and heavy.

There are some advantages to keeping a library small—especially on the Web, where

download time is still an issue, along with client-side processing power and code

complexity. Libraries such as jQuery11 and moo.fx12 fill that niche neatly, providing

an efficient pocket knife of JavaScript functions that will help you get the job done.

At the other end of the scale, the big libraries are becoming even bigger. More and

more functionality is being absorbed into their bellies, in an effort to encompass

any and all types of interaction that can be imagined to take place in a browser.

These libraries are becoming less like libraries from which you can pick and choose

the elements you want, and more like frameworks, where the library becomes the

language, and your programs become distilled into minimalistic lines of API code.

The various styles of these large frameworks differ. Some try to maintain the separ-

ation of layers that has characterized web development for some time, while others

attempt to abstract the web layer entirely, by creating a translation between server-

side logic and browser implementation. To cover the specifics of each of these

11 http://jquery.com/
12 http://moofx.mad4milk.net/

357Looking Forward

http://jquery.com/
http://moofx.mad4milk.net/

frameworks would take many more pages than we have available, but I’ll try to give

you a tiny taste of how they function here.

Dojo
We’ve taken a decent look at Dojo throughout this book, but only as a library, not

a framework.13 Dojo offers more than just helper functions to shortcut common

scripting actions—it actually provides an entire system for developing interfaces

using common widgets.

The widgets currently available in Dojo number well over a hundred and include

such items as accordion menus, combo boxes, date pickers, fish-eye lists, progress

bars, sliders, and tree menus. The framework also has its own layout system, which

allows you to create panes with related dimensions (such as equal heights) and

adjustable dimensions—something that’s quite common in desktop application

design.

We can implement widgets in Dojo in two ways: structurally and programmatically.

If you use the structural method, you must modify the HTML structure of your page

in order to include the Dojo widgets you want to use. To achieve this, you tack non-

standard attributes onto particular HTML elements—a big no-no if web standards

are an important consideration to you.

The programmatic creation of Dojo widgets is most useful when you want to create

new interface elements on the fly, or you don’t want to dirty your HTML with attrib-

utes that aren’t meant to be there. You create the new widget inside your JavaScript,

then include it on the page via the DOM.

Following the tenets of progressive enhancement, a lot of Dojo widgets try to use

HTML elements that provide the same functionality, then transform them into more

complex objects. For example, a select box can be turned into a combo box (a box

that allows you to type and receive suggestions) with the addition of some extra

attributes:

<select dojoType="ComboBox" dataUrl="example.php" name="state">
</select>

13 http://dojotoolkit.org/

Simply JavaScript358

http://dojotoolkit.org/
http://dojotoolkit.org/

Next, include that element on an HTML page along with the Dojo library and

ComboBox module:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>ComboBox</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />

<script type="text/javascript" src="dojo.js"></script>
 <script type="text/javascript">
 dojo.require("dojo.widget.ComboBox");
 </script>
 ⋮

The result is a custom form element that provides users with suggestions as they

type, like the one shown in Figure 9.9.

Figure 9.9. Using the Dojo ComboBox widget to transform a select element into a field that auto-completes as users

type

When the page is parsed by Dojo, the dojoType attribute is used to determine which

elements are to be transformed into widgets. Then, the Dojo engine will go about

changing the page to include the specified widgets.

If you wanted to include the ComboBox programmatically, you could write a script

that creates a ComboBox widget, then adds it to the page:

359Looking Forward

var comboBox = dojo.widget.createWidget("ComboBox",
 {
 dataUrl: "../../tests/widget/comboBoxData.js"
 });
document.getElementsByTagName("body")[0].appendChild(
 comboBox.domNode);

New widgets are created using the dojo.widget.createWidget method, which

takes the name of the widget, followed by a set of options expressed as an object

literal. In this case, the only option we’re supplying to the ComboBox widget is the

dataUrl location.

Once that widget has been created, we’ll have a reference to the widget as a JavaScript

object, but in order to include it on the page, we’ll have to use its domNode property,

which acts as the HTML interface for the actual object. And once that’s done, we’ll

have a working ComboBox widget in our interface.

In the example above, the ComboBox is actually Ajax-driven—it will use the URL

specified by the dataUrl property to retrieve listings that match what the user types.

However, this explanation highlights a flaw in the way that this widget uses pro-

gressive enhancement.

When using a select box, users without JavaScript would expect to click on the

box, and receive a number of options from which they can choose. The only way

that this can be done is if all the options are included in the HTML. One of the

aims of the ComboBox is to reduce the amount of data transferred between client and

server by only retrieving the data that matches what the user is typing. However,

leaving the select box empty initially renders it useless to users who don’t have

JavaScript enabled. This is not progressive enhancement. Then again, if we included

all the options for the select box in the HTML, we’d be removing one of the main

advantages of the ComboBox.

Maybe a ComboBox could be thought of more like a plain text field (although Dojo’s

ComboBox widget doesn’t work with text fields, so this is a purely academic argu-

ment). Non-JavaScript users would be able to type whatever value they wanted into

the field, but they wouldn’t get a list of possible values.

Simply JavaScript360

These questions highlight some of the problems that are being caused by Rich Inter-

net Applications. JavaScript and HTML give us a great deal of flexibility to create

whatever we want, but sometimes that flexibility comes at the cost of accessibility.

Is there a better answer? Only time will tell.

Google Web Toolkit
The Google Web Toolkit (GWT) uses Java as the basis for its engine.14 You never

have to write JavaScript, HTML, or CSS if you don’t want to. Using GWT’s API, you

can create entire applications in Java. The GWT compiler translates all of the Java

into browser code (HTML, CSS, and JavaScript) for inclusion in your web site.

This style of framework makes web application development similar to traditional

application development—all the code is written by the developer, then compiled

for execution. In GWT’s case, compilation includes the creation of HTML and

JavaScript files that will help run your application in a browser.

This framework is radically different from anything we’ve looked at in this book,

but as an example, this Java class is used to create a page with a button that launches

an alert box saying, “Hello, JavaScript:”

public class Hello implements EntryPoint {

 public void onModuleLoad() {
 Button b = new Button("Click me", new ClickListener() {
 public void onClick(Widget sender) {
 Window.alert("Hello, JavaScript");
 }
 });

 RootPanel.get().add(b);
 }

}

As well as being a very quick way for Java developers to create web applications,

GWT is also extremely inaccessible. No static HTML is provided as the structure

for the application, and every interface element is created via JavaScript. Therefore,

14 http://code.google.com/webtoolkit/

361Looking Forward

http://code.google.com/webtoolkit/

there is essentially no document for the browser to fall back on if JavaScript is not

available. The unlucky user gets zip, nada, nothing. If this isn’t a worry for you, you

might want to give GWT a try. But, personally, it scares the pants off me.

Summary
The future is bright for JavaScript. Its dominance as the client-side language of

choice on the Web has been unchallenged for well over ten years, and as long as

HTML (or something like it) exists, JavaScript will be there to partner it.

Yet the question remains, what will the future hold for JavaScript? It’s flexible

enough to adapt to a range of environments—as we’ve discussed in this chapter—and

its ultimate form will largely be dependent upon which technology makes its as-

cendance. But no matter which one rises to the top of the heap, I’m pretty certain

that JavaScript will be there right alongside it, making it do all the really cool stuff.

Simply JavaScript362

Appendix A: The Core JavaScript Library
Most of the examples in this book have relied on a small library of useful methods

contained in a file named core.js. This library enabled us to set aside the messy details

of some of the common tasks you need to perform in most scripts, and focus on the

more unique aspects of each example.

In some cases, this library’s methods were a little too complicated to explain in

detail at the moment we first needed them. This appendix, therefore, contains a

complete description of the Core library, and how each of its methods works.

The Object
Like most of the scripts in this book, the Core library encloses all of its functions

within a JavaScript object, making them methods of that object. In the past, we have

always enclosed functions within a JavaScript object using an object literal:

var Core = {
method1: function(…)

 {
 ⋮
 },
 method2: function(…)
 {
 ⋮
 },
 ⋮
};

While the Core library has the same basic structure as the code shown above, the

code that we’ve used to define the object and its methods uses different syntax:

var Core = {};

MyObject.method1 = function(…)
{
 ⋮
};
MyObject.method2 = function(…)

{
 ⋮
};

The object that’s produced here is identical to the first; the syntax is just a little

more verbose.

The reason we use this alternative style for the Core library is that it gives us the

freedom to define different versions of each method based on the browser in which

the script is running—essential for compatibility mine-fields like event listeners:

core.js (excerpt)

var Core = {};

// W3C DOM 2 Events model
if (document.addEventListener)
{
 Core.addEventListener = function(target, type, listener)
 {
 ⋮ W3C DOM 2 Events implementation
 };
 ⋮
}
// Internet Explorer Events model
else if (document.attachEvent)
{
 Core.addEventListener = function(target, type, listener)
 {
 ⋮ Internet Explorer Events implementation
 };
 ⋮
}

Event Listener Methods
As we saw in Chapter 4, there are two very different models for implementing event

listeners in current browsers: the Internet Explorer Events model, supported by IE

browsers up to and including version 7, and the W3C DOM 2 Events model, suppor-

Simply JavaScript364

ted by every other browser out there. The Core library bridges the gap by providing

a set of methods that will work in both of these models:

Core.addEventListener(target, type, listener)

For the object target (usually a DOM element node), this method assigns the

function/method listener as an event listener for events of type type. For example:

Core.addEventListener(theLink, "click", MyScript.clickListener);

Core.removeEventListener(target, type, listener)

For the object target (usually a DOM element node), this method removes the

function/method listener, previously added as an event listener for events of

type type. Here’s an example:

Core.addEventListener(theLink, "click", MyScript.clickListener);

Core.preventDefault(event)

This method prevents the browser from performing the default action associated

with the event represented by event, an event object passed as an argument to

an event listener.

Core.stopPropagation(event)

This method prevent event listeners attached to elements higher up in the DOM

tree from being triggered in response to the event represented by event, an event

object passed as an argument to an event listener.

Thanks to the code structure discussed in the previous section, we are able to im-

plement these event listener methods separately for each of the two event models.

The W3C DOM 2 versions of the event listeners are trivial wrappers around the

standard methods:

core.js (excerpt)

// W3C DOM 2 Events model
if (document.addEventListener)
{
 Core.addEventListener = function(target, type, listener)
 {

365Appendix A: The Core JavaScript Library

 target.addEventListener(type, listener, false);
 };

 Core.removeEventListener = function(target, type, listener)
 {
 target.removeEventListener(type, listener, false);
 };

 Core.preventDefault = function(event)
 {
 event.preventDefault();
 };

 Core.stopPropagation = function(event)
 {
 event.stopPropagation();
 };
}

The Internet Explorer versions are much more complicated, so we’ll look at them

one at a time. Fundamentally, however, these functions make the following enhance-

ments to Internet Explorer’s built-in event listener functionality:

■ Prevent the same function/method from being assigned as a listener for the same

event on the same element more than once.

■ Pass Internet Explorer’s global event object as an argument to the event listener.

■ Call event listeners in such a way that, within the listener, this represents the

object to which the listener was assigned.

■ Clean up all registered event listeners when the document is unloaded, so as to

prevent memory leaks in Internet Explorer.

The code for these functions is based upon a script presented in the book JavaScript:

The Definitive Guide, 5th Edition.1

addEventListener is the most complex of the methods, so let’s take it one step at

a time:

1 David Flanagan, JavaScript: The Definitive Guide, 5th Edition (Sebastopol: O’Reilly, 2006).

Simply JavaScript366

core.js (excerpt)

 Core.addEventListener = function(target, type, listener)
 {
 // prevent adding the same listener twice, since DOM 2 Events
 // ignores duplicates like this
 if (Core._findListener(target, type, listener) != -1) return;

We start by checking if the specified combination of target object, event type, and

listener function has already been registered in this document. To do this, we use

a private method named _findListener, the implementation of which we’ll look

at shortly. If the listener has already been registered, we simply do nothing, and

return from this method immediately.

Now, we can’t go using the listener function that was passed to addEventListener

as is. If we did, Internet Explorer wouldn’t pass it the event object as an argument,

and this would refer to the global context within the function, rather than referring

to target. To resolve these issues, we can wrap the supplied listener inside a

function that makes the necessary changes:

core.js (excerpt)

 // listener2 calls listener as a method of target in one of
 // two ways, depending on what this version of IE supports,
 // and passes it the global event object as an argument
 var listener2 = function()
 {
 var event = window.event;

 if (Function.prototype.call)
 {
 listener.call(target, event);
 }
 else
 {
 target._currentListener = listener;
 target._currentListener(event)
 target._currentListener = null;
 }
 };

367Appendix A: The Core JavaScript Library

As you can see, listener2 is a function that starts by retrieving the global

event object. It then calls listener in such a way as to make target the value

of this, and passes the event object to it as an argument. This is done in one

of two ways, depending on the version of Internet Explorer that’s running the

script.

In Internet Explorer 5.5 or later, all functions support a method named call,

which allows the function to be called as if it were a method of a specified

object. If this function is available (which we can test by checking for the

presence of Function.prototype.call), we can use it to call listener as a

method of target, and with event as an argument.

In previous versions of Internet Explorer, the call method is not available, so

instead we store listener in a temporary property of target named

_currentListener, which enables us to call listener as a method of target.

Again, we pass event as an argument. Once that’s done, we set

_currentListener to null.

Now that we’ve got our pimped-out listener2, we can use Internet Explorer’s

attachEvent method to register it as an event listener:

core.js (excerpt)

 // add listener2 using IE's attachEvent method
 target.attachEvent("on" + type, listener2);

Next, we need to do a little bookkeeping to ensure that the _findListener method

we called at the top of addEventListener can tell that this listener has been re-

gistered. We’ll create an object that contains all the pertinent information about the

listener that we have just added:

core.js (excerpt)

 // create an object describing this listener so we can clean
 // it up later
 var listenerRecord =
 {
 target: target,
 type: type,

Simply JavaScript368

 listener: listener,
 listener2: listener2
 };

For _findListener to do its job, we could just add this object to an array stored as

a property of target. But as long as we’re keeping records of our event listeners,

let’s set things up so that it’s easy to clean up all the listeners in the document when

the page is unloaded. To this end, we’ll store our listenerRecord in an object that’s

shared by all the listeners in the document:

core.js (excerpt)

 // get a reference to the window object containing target
 var targetDocument = target.document || target;
 var targetWindow = targetDocument.parentWindow;

 // create a unique ID for this listener
 var listenerId = "l" + Core._listenerCounter++;

 // store a record of this listener in the window object
 if (!targetWindow._allListeners)
 targetWindow._allListeners = {};
 targetWindow._allListeners[listenerId] = listenerRecord;

Since we want to have one object containing all the listeners in the window,

we need to get a reference to that window. To do that reliably, we need to start

by getting a reference to the current document.

Now, target may be either an element in the document or the document itself,

so if target.document exists we’ll use that as our document; otherwise, we

can just assume that target is the document, and use that. We can then get a

reference to the window using the document’s parentWindow property.

Since our listener records will be stored in an object, not an array, we need a

unique property name for each listener record. This unique listener ID will be

the letter “l” followed by a counter that is incremented each time we register

a new listener. This counter’s initial value is declared after all the other event

listener methods in this script:

369Appendix A: The Core JavaScript Library

core.js (excerpt)

 Core._listenerCounter = 0;

The object that will contain records of all the listeners in this window will be

stored in a property of the window, named _allListeners. If the property

doesn’t yet exist, we create it here as an empty object.

Lastly, we store our listener record in the _allListeners object. As we learned

in Chapter 6, when we have a property name stored in a variable, we need to

use array-like syntax to access it, even though we’re dealing with an object.

Since all our listeners are stored in a single object, it will be really easy to clean

them up when the document is unloaded. However, it might take a long time for

our _findListener method to determine if a particular listener had been assigned

to a particular event on a particular element—the method will need to search through

this potentially massive object. To make this search more efficient, we’ll store the

unique ID of the listener in an array attached to target:

core.js (excerpt)

 // store this listener's ID in target
 if (!target._listeners) target._listeners = [];
 target._listeners[target._listeners.length] = listenerId;

Lastly, we need to make sure that our script is notified when the document is un-

loaded, so that we can clean up all the listeners:

core.js (excerpt)

 // set up Core._removeAllListeners to clean up all listeners
 // on unload
 if (!targetWindow._unloadListenerAdded)
 {
 targetWindow._unloadListenerAdded = true;
 targetWindow.attachEvent(
 "onunload", Core._removeAllListeners);
 }
 };

Simply JavaScript370

And that’s addEventListener taken care of! We’ll get to the method that actually

removes all the listeners, _removeAllListeners, in a moment.

Thanks to a lot of the bookkeeping we did in addEventListener,

removeEventListener is relatively straightforward:

core.js (excerpt)

 Core.removeEventListener = function(target, type, listener)
 {
 // find out if the listener was actually added to target
 var listenerIndex =
 Core._findListener(target, type, listener);
 if (listenerIndex == -1) return;

 // get a reference to the window object containing target
 var targetDocument = target.document || target;
 var targetWindow = targetDocument.parentWindow;

 // obtain the record of the listener from the window object
 var listenerId = target._listeners[listenerIndex];
 var listenerRecord = targetWindow._allListeners[listenerId];

 // remove the listener, and remove its ID from target
 target.detachEvent("on" + type, listenerRecord.listener2);
 target._listeners.splice(listenerIndex, 1);

 // remove the record of the listener from the window object
 delete targetWindow._allListeners[listenerId];
 };

Our first task is to find out if the specified combination of target, type, and

listener actually corresponds to a registered event listener. We can use the

same _findListener method that we used at the top of addEventListener to

do this. This method returns the index of the listener in target’s _listeners

array, or -1 if no such listener has been registered.

Having confirmed that the specified listener was registered, we need to get at

the “listener record” object that we stored in the global _allListeners object

for that listener. As in addEventListener, we start by getting a reference to the

window.

371Appendix A: The Core JavaScript Library

We get the unique ID of the listener out of target’s _listeners array (using

the listenerIndex that we got from _findListener), then use it to access the

listener record in _allListeners.

With the listener record in hand, we can use Internet Explorer’s detachEvent

method to unregister the listener. Remember that, since we enhanced listener

by wrapping it in a new function, the listener that we need to pass to

detachEvent is the listener2 property of the listenerRecord, not listener

itself.

With the listener unregistered, we now need to remove our own records of its

existence. First, we remove the relevant item from target’s _listeners array.

To do so, we use a method that’s supported by all JavaScript arrays: splice.

We pass to this method the index of the first element that we want to remove

from the array, and the number of elements to remove (in this case, 1).

Finally, we remove the property from the global _allListeners object that

contains the listener record. To do so, we make use of the rarely seen JavaScript

delete statement, which deletes properties from objects.

Did you get all that? Don’t worry too much if you’re not able to follow all the code

that goes into addEventListener and removeEventListener—it’s fairly advanced,

and when it comes right down to it, you really shouldn’t have to understand

JavaScript of this level of complexity to do something as simple as adding and re-

moving event listeners. That’s why we decided to hide this code at the back of this

book, and why we badmouth the Internet Explorer Events model whenever we have

the chance.

By comparison, the Internet Explorer versions of preventDefault and

stopPropagation are simple:

core.js (excerpt)

 Core.preventDefault = function(event)
 {
 event.returnValue = false;
 };

 Core.stopPropagation = function(event)

Simply JavaScript372

 {
 event.cancelBubble = true;
 };

In order to prevent the default action associated with an event in IE, we simply set

the event object’s returnValue property to false. Similarly, in order to stop the

propagation of an event in IE, we set its cancelBubble property to true. And that’s

all these methods need to do.

That takes care of the Internet Explorer versions of our four methods, but we still

need to look at the two helper methods that they rely on—_findListener and

_removeAllListeners:

core.js (excerpt)

 Core._findListener = function(target, type, listener)
 {
 // get the array of listener IDs added to target
 var listeners = target._listeners;
 if (!listeners) return -1;

 // get a reference to the window object containing target
 var targetDocument = target.document || target;
 var targetWindow = targetDocument.parentWindow;

 // searching backward (to speed up onunload processing),
 // find the listener
 for (var i = listeners.length - 1; i >= 0; i--)
 {
 // get the listener's ID from target
 var listenerId = listeners[i];

 // get the record of the listener from the window object
 var listenerRecord = targetWindow._allListeners[listenerId];

 // compare type and listener with the retrieved record
 if (listenerRecord.type == type &&
 listenerRecord.listener == listener)
 {
 return i;
 }

373Appendix A: The Core JavaScript Library

 }
 return -1;
 };

_findListener looks through the specified target’s _listeners array, retrieving

for of the each listener IDs it contains the corresponding listener record from the

global _allListeners object. If it finds a listener record that matches the target,

type, and listener specified, it returns the index of that listener’s ID in target’s

_listeners array. If it doesn’t find a matching record, it returns -1.

core.js (excerpt)

 Core._removeAllListeners = function()
 {
 var targetWindow = this;

 for (id in targetWindow._allListeners)
 {
 var listenerRecord = targetWindow._allListeners[id];
 listenerRecord.target.detachEvent(
 "on" + listenerRecord.type, listenerRecord.listener2);
 delete targetWindow._allListeners[id];
 }
 };

_removeAllListeners does something we haven’t actually had to do anywhere else

in this book—step through the properties of an object one at a time. Specifically, it

steps through the listener records stored as properties in the _allListeners object.

To step through the properties of an object, we use a for-in loop of this form:

for (propertyName in object)
{
 ⋮ access each property as object[propertyName]
}

Aside from that extra spoonful of syntactic sugar, _removeAllListeners is self-ex-

planatory. Within the for-in loop, this method retrieves each of the listener record

objects, uses Internet Explorer’s detachEvent method to remove the corresponding

listener, and then deletes the property from _allListeners.

Simply JavaScript374

Script Bootstrapping
From almost the very first script we saw in this book, we’ve used the Core library’s

start method to run a script’s init method as soon as the document has finished

loading.

Core.start(runnable)

This method runs the init method of the given script object (runnable) as soon

as the document has finished loading.

As we’ve seen many times in this book, here’s how we use Core.start to initialize

an object once the page has loaded:

var MyScript =
{
 init: function()
 {
 ⋮
 },
 ⋮
};

Core.start(MyScript);

As we saw in Chapter 4, this method simply calls the addEventListener method

to register the script’s init method as a load event listener for the window:

core.js (excerpt)

Core.start = function(runnable)
{
 Core.addEventListener(window, "load", runnable.init);
};

This is a nice, simple approach to starting up a script (a process known as bootstrap-

ping), but it has one important drawback: the load event that it depends on is not

triggered until the page and all linked resources (such as images) have loaded. The

practical consequence of this is that the page will sit there in its static form, with

no added JavaScript functionality, while all the images load up. Finally, once all

375Appendix A: The Core JavaScript Library

the static content is in play, your JavaScript will be triggered and the dynamic

functionality will snap into existence. If the user started to read the page while the

images were loaded, this sudden (and potentially dramatic) change can be disori-

enting—and annoying.

Ideally, JavaScript code should start running the moment the element(s) of the

document that it requires have been loaded, and are available for scripting. Exactly

how element availability can be detected, and just what JavaScript is allowed to do

at the various stages of the page loading process, is another swirling morass of vague

standards and cross-browser incompatibility.

In the absence of clear standards for early bootstrapping, we have elected to stick

with the standard, reliable load event throughout this book.

That said, there is an approach that works reliably in Firefox and Opera (version 9

or later) browsers: the DOMContentLoaded event. This is a nonstandard event that

these browsers generate as soon as the HTML content of the document has finished

loading (that is, before the images and other external resources). If this event were

supported by all browsers, we could re-implement the Core library’s start method

as follows:

Core.start = function(runnable)
{
 Core.addEventListener(document, "DOMContentLoaded",
 runnable.init);
};

Normally, we’d shy away from a nonstandard solution like this, but the benefit to

the user is so significant that it’s worth taking some time to think about how this

solution could be made to work cross-browser.

It would be nice to detect if the browser supported the DOMContentLoaded event,

and have the start method use it if it’s available, but fall back on the load event

if it’s not. Unfortunately, there is no reliable and future-proof way to detect events

like this.

Instead, what we can do is register the listener for both events, and do a little extra

work to make sure that browsers that do support DOMContentLoaded don’t end up

calling the script’s init method twice:

Simply JavaScript376

Core.start = function(runnable)
{
 var initOnce = function()
 {
 if (arguments.callee.done) return;
 arguments.callee.done = true;
 runnable.init();
 };

 Core.addEventListener(document, "DOMContentLoaded", initOnce);
 Core.addEventListener(window, "load", initOnce);
};

This version of the method starts by creating a new function called initOnce. The

first time this function is called, it will call the init method of the given script. If

it’s called again, however, it will do nothing. How does this work? The function

sets a property named done on itself (a function’s code can access the function itself

as arguments.callee) the first time it’s called, and checks for that property to stop

execution and immediately return to the code that called the method on subsequent

calls.

We can now register this initOnce function as a listener for both the document’s

DOMContentLoaded event, and the window’s load event. In Firefox and Opera,

initOnce will be called for both events, but will only run the script’s init method

on the first event. Other browsers will only call initOnce once—when the load

event occurs.

Despite its nonstandard status, this approach is reliable enough to be recommended

for production use. In the spirit of progressive enhancement, it starts with an ap-

proach that works just fine in standards-compliant browsers (the load event), then

adds to it an enhancement (the DOMContentLoaded event) that will improve the user

experience where it is supported. If you’d like your scripts to start up sooner in

Firefox and Opera browsers, feel free to replace the Core library’s start method

with the final version above.

Can anything be done for other browsers—like, say, Internet Explorer? Well, some

high-flying members of the JavaScript community have met with some success by

toying with IE’s support for the defer attribute of the <script> tag. Others have

tried things like repeatedly checking for the presence of a required DOM element

377Appendix A: The Core JavaScript Library

(an approach known as polling) and launching the script as soon as it appears. A

number of the major JavaScript libraries, such as jQuery, MooTools, and the Yahoo!

UI Library, have even adopted different combinations of these solutions.

The short answer, however, is that—especially since the release of Internet Explorer

7, which apparently introduces some new bugs related to these solutions—there is

no single solution that is 100% reliable. For this reason, we recommend sticking

with the simple approach given above.

If you’re interested in the full story on the JavaScript community’s attempts to solve

the early bootstrapping problem, the most complete and up-to-date article on the

subject at the time of this writing is Peter Michaux’s The window.onload problem

(still).2

CSS Class Management Methods
The next four methods in the Core library have to do with manipulating the CSS

classes that are applied to elements in your HTML documents:

Core.addClass(target, theClass)

This method adds to the className property of target the specified CSS class

(theClass), without removing any classes that may already have been applied

to target.

Core.getElementsByClass(theClass)

This method returns an array of all elements in the document that have the

specified CSS class (theClass) applied to them.

Core.hasClass(target, theClass)

This method returns true if target has the specified CSS class (theClass) applied

to it, and false if not.

Core.removeClass(target, theClass)

This method removes from the className property of target the specified CSS

class (theClass), without removing any of the other classes that may also have

been applied to target.

2 http://peter.michaux.ca/article/553

Simply JavaScript378

http://peter.michaux.ca/article/553
http://peter.michaux.ca/article/553

These methods are fully described in Chapter 3. For completeness, you can find

the code for these methods reproduced along with the rest of the library in the section

called “The Complete Library” below.

Retrieving Computed Styles
The final method in our core library is getComputedStyle:

Core.getComputedStyle(element, styleProperty)

This method retrieves the effective value of the CSS property indicated by

styleProperty once all the various sources of CSS styles (linked style sheets,

embedded styles, inline styles, and dynamically-applied styles) have all been

applied to element.

This method is fully described in Chapter 5; however, the complete code for this

method is also reproduced along with the rest of the library in the following section.

The Complete Library
Here it is—the complete code for the Core JavaScript library.

core.js

var Core = {};

// W3C DOM 2 Events model
if (document.addEventListener)
{
 Core.addEventListener = function(target, type, listener)
 {
 target.addEventListener(type, listener, false);
 };

 Core.removeEventListener = function(target, type, listener)
 {
 target.removeEventListener(type, listener, false);
 };

 Core.preventDefault = function(event)
 {
 event.preventDefault();

379Appendix A: The Core JavaScript Library

 };

 Core.stopPropagation = function(event)
 {
 event.stopPropagation();
 };
}
// Internet Explorer Events model
else if (document.attachEvent)
{
 Core.addEventListener = function(target, type, listener)
 {
 // prevent adding the same listener twice, since DOM 2
 // Events ignores duplicates like this
 if (Core._findListener(target, type, listener) != -1)
 return;

 // listener2 calls listener as a method of target in one of
 // two ways, depending on what this version of IE supports,
 // and passes it the global event object as an argument
 var listener2 = function()
 {
 var event = window.event;

 if (Function.prototype.call)
 {
 listener.call(target, event);
 }
 else
 {
 target._currentListener = listener;
 target._currentListener(event)
 target._currentListener = null;
 }
 };

 // add listener2 using IE's attachEvent method
 target.attachEvent("on" + type, listener2);

 // create an object describing this listener so we can
 // clean it up later
 var listenerRecord =
 {
 target: target,

Simply JavaScript380

 type: type,
 listener: listener,
 listener2: listener2
 };

 // get a reference to the window object containing target
 var targetDocument = target.document || target;
 var targetWindow = targetDocument.parentWindow;

 // create a unique ID for this listener
 var listenerId = "l" + Core._listenerCounter++;

 // store a record of this listener in the window object
 if (!targetWindow._allListeners)
 targetWindow._allListeners = {};
 targetWindow._allListeners[listenerId] = listenerRecord;

 // store this listener's ID in target
 if (!target._listeners) target._listeners = [];
 target._listeners[target._listeners.length] = listenerId;

 // set up Core._removeAllListeners to clean up all
 // listeners on unload
 if (!targetWindow._unloadListenerAdded)
 {
 targetWindow._unloadListenerAdded = true;
 targetWindow.attachEvent(
 "onunload", Core._removeAllListeners);
 }
 };

 Core.removeEventListener = function(target, type, listener)
 {
 // find out if the listener was actually added to target
 var listenerIndex = Core._findListener(
 target, type, listener);
 if (listenerIndex == -1) return;

 // get a reference to the window object containing target
 var targetDocument = target.document || target;
 var targetWindow = targetDocument.parentWindow;

 // obtain the record of the listener from the window object
 var listenerId = target._listeners[listenerIndex];

381Appendix A: The Core JavaScript Library

 var listenerRecord =
 targetWindow._allListeners[listenerId];

 // remove the listener, and remove its ID from target
 target.detachEvent("on" + type, listenerRecord.listener2);
 target._listeners.splice(listenerIndex, 1);

 // remove the record of the listener from the window object
 delete targetWindow._allListeners[listenerId];
 };

 Core.preventDefault = function(event)
 {
 event.returnValue = false;
 };

 Core.stopPropagation = function(event)
 {
 event.cancelBubble = true;
 };

 Core._findListener = function(target, type, listener)
 {
 // get the array of listener IDs added to target
 var listeners = target._listeners;
 if (!listeners) return -1;

 // get a reference to the window object containing target
 var targetDocument = target.document || target;
 var targetWindow = targetDocument.parentWindow;

 // searching backward (to speed up onunload processing),
 // find the listener
 for (var i = listeners.length - 1; i >= 0; i--)
 {
 // get the listener's ID from target
 var listenerId = listeners[i];

 // get the record of the listener from the window object
 var listenerRecord =
 targetWindow._allListeners[listenerId];

 // compare type and listener with the retrieved record
 if (listenerRecord.type == type &&

Simply JavaScript382

 listenerRecord.listener == listener)
 {
 return i;
 }
 }
 return -1;
 };

 Core._removeAllListeners = function()
 {
 var targetWindow = this;

 for (id in targetWindow._allListeners)
 {
 var listenerRecord = targetWindow._allListeners[id];
 listenerRecord.target.detachEvent(
 "on" + listenerRecord.type, listenerRecord.listener2);
 delete targetWindow._allListeners[id];
 }
 };

 Core._listenerCounter = 0;
}

Core.addClass = function(target, theClass)
{
 if (!Core.hasClass(target, theClass))
 {
 if (target.className == "")
 {
 target.className = theClass;
 }
 else
 {
 target.className += " " + theClass;
 }
 }
};

Core.getElementsByClass = function(theClass)
{
 var elementArray = [];

 if (document.all)

383Appendix A: The Core JavaScript Library

 {
 elementArray = document.all;
 }
 else
 {
 elementArray = document.getElementsByTagName("*");
 }

 var matchedArray = [];
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 for (var i = 0; i < elementArray.length; i++)
 {
 if (pattern.test(elementArray[i].className))
 {
 matchedArray[matchedArray.length] = elementArray[i];
 }
 }

 return matchedArray;
};

Core.hasClass = function(target, theClass)
{
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 if (pattern.test(target.className))
 {
 return true;
 }

 return false;
};

Core.removeClass = function(target, theClass)
{
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 target.className = target.className.replace(pattern, "$1");
 target.className = target.className.replace(/ $/, "");
};

Core.getComputedStyle = function(element, styleProperty)
{

Simply JavaScript384

 var computedStyle = null;

 if (typeof element.currentStyle != "undefined")
 {
 computedStyle = element.currentStyle;
 }
 else
 {
 computedStyle =
 document.defaultView.getComputedStyle(element, null);
 }

 return computedStyle[styleProperty];
};

Core.start = function(runnable)
{
 Core.addEventListener(window, "load", runnable.init);
};

385Appendix A: The Core JavaScript Library

Index

Symbols
$ function, 99, 101

A
absolute positioning, 183

acceleration (animation), 195–197

accommodation

looking for, 346

"accordianContent", 201–202

accordion control, 144–158, 198

animation, 198–199

changing the code, 199–207

collapsing, 206–207

expanding, 203–205

initialization method, 199–201

collapsing a fold, 147–148

content overflow, 198

dynamic styles, 148–150

expanding a fold, 148

offleft positioning, 149

putting it all together, 150–158

static page, 144–146

workhorse methods, 146–148

ActiveX

unreliability of, 307

ActiveX objects

creating, 308

add and assign operator (+=), 25

use with strings, 29

addEventListener, 366, 368, 371

addEventListener method, 117, 118, 122,

129, 130, 158

adding 1 to a variable, 26

adding a class, 89–91

adding two strings together, 29

addition operator (+), 24

use with strings, 29

Ajax, 305–343

and form validation, 331

and screen readers, 316

calling a server, 310–314

chewing bite-sized chunks of content,

306–316

dealing with data, 314–316

libraries, 337–343

putting it into action, 316–328

seamless form submission, 329–337

XMLHttpRequest, 306–316

Ajax request, 306

Ajax weather widget, 317–328

Ajax.Request, 339

Ajax.Updater, 339

alert boxes, 32, 48, 256, 325

alert function, 48, 50, 296

_allListeners property, 370

"alt" class, 96, 98

AND operator, 40

animate method, 186, 187

animation, 163–211

accordion control, 198–207

along a linear path, 181–190

and positioning, 183

controlling time with JavaScript, 165–

175

libraries, 208–210

movements to an object, 198

old-style using a film reel, 176–181

path-based motion, 181–198

principles, 163–165

setTimeout use, 188

slowing it down, 193–194

Soccerball

creating realistic movement, 192–

198

in two dimensions, 190–192

linear path, 181–190

speeding it up, 195–197

stopping it from going forever, 194

two dimensional, 190–192

appendChild method, 137, 234

argument names, 51

arguments, 50–52

arguments array, 52

array-index notation, 32

array markers [], 31

array of arrays, 33

arrays, 30–34

adding elements to the end of, 34

and node lists, 77

associative, 34

data types in, 33

elements, 31

index, 31

length, 34, 56, 78

multi-dimensional, 33

populating, 32

while loops use with, 44

assignment operator (=), 20, 57, 295

assignment statement, 57

associative arrays, 34

asterisk (*), 244

astIndependentField., 220

asynchronous requests, 306, 311

attachEvent method, 117, 118, 122, 129,

368

attribute nodes, 64, 65

getting, 83–84

interacting with, 82–85

setting, 84

B
background color, 85, 142

background-position property, 177, 181

changing at regular intervals, 178

changing using setTimeout, 178

behavior of content, 3

using JavaScript, 5, 9–10, 58

bind method, 160

bindAsEventListener method, 159

blur events, 123, 175

blur method, 214

body element, 87

Boolean values, 30, 37

bootstrapping, 375–378

border, 142

brackets (mathematical operations), 24

browsers, 4, 14, 17

alert functions in, 48

and DOM Level 2 Events standard,

106

and event handlers, 107–116

configuring to show JavaScript errors,

278

default actions, 111–112, 119–121

document.all object, 75

execution of JavaScript and HTML, 58

getAttribute problems, 83

ignoring comments, 18

interpreting HTML, 61

Simply JavaScript388

page-request mechanism, 306

responding to statements, 17

supporting XMLHttpRequest, 307

bubbling phase, 123

Bunny Hunt game, 351

buttons, 213

C
calling a server, 310–314

camel casing, 22

Cancel button, 111

cancelBubble property, 124, 129, 373

canvas element, 350, 354

capture phase, 122

capturing event listeners, 122

caret (^), 245

cascading menus, 226–239

complete JavaScript, 236–239

creating from single menus, 227

process steps, 228

to improve uability, 227

catch statement, 308, 309

CDATA, 10

change event, 216

checkboxes, 213, 216, 334

dependence on previous field, 217

checked property, 215

childNodes, 80, 81

chrome errors, 278

chunking, 13

class attribute, 77, 136

adding a class, 89–91

changing styles with, 87–92

comparing classes, 88

removing a class, 91

class name

to find elements, 74–79

className property, 76, 88, 92

multiple classes within, 77

classResult variable, 254

clearTimeout, 172, 176

click event listener, 318

click events, 108

preventing from bubbling, 124, 125

click method, 214

clickHandler function, 108, 110, 112, 113

clickListener, 318, 320, 321

client-side validation, 239, 240

using an event handler, 240

using an event listener, 240

closures, 171

collapseAll method, 203

collapseAnimate, 206, 207

color, 85, 87, 142

ComboBox widget, 359–361

comments, 18

beginning with slashes (//), 18

multi-line, 19

comparison operators, 38, 40

component frameworks, 355

computed style, 184

concatenating numbers and strings, 30

concatenating strings, 29

conditional statements, 36–43

comparison operators, 38

else-if statements, 42

if statements, 36–39

multiple conditions, 40

if-else statement, 41–42

use with return statements, 53

ContactForm, 331

389Simply JavaScript

ContactForm.writeError, 336

ContactForm.writeSuccess, 336

content of the page, 3

in HTML format, 5, 6–8, 58

content overflow, 199

Content-Type header, 311, 336

convertLabelToFieldset method, 230,

233

Core, 59

Core JavaScript library, 363–385

complete library, 379–385

CSS class management methods, 378

event listener methods, 364–374

object, 363–364

retrieving computed styles, 379

script bootstrapping, 375–378

Core.addClass, 89, 96, 378

Core.addEventListener, 130, 131, 159,

160, 365

Core.getComputedStyle, 185, 379

Core.getElementsByClass, 79, 88, 92,

100, 378

Core.hasClass, 88, 89, 248, 378

Core.js library, 79

(see also Core JavaScript library)

core.js library, 130

Core.preventDefault, 131, 152, 337, 365

Core.removeClass, 91, 378

Core.removeEventListener, 131, 159,

160, 365

Core.start method, 59, 131, 173, 189

Core.stopPropagation, 131, 365

counter variable, 45

createElement method, 136

createLabelFromTitle method, 230, 234

CSS

element type selector, 70, 101

for presentation, 5

for web pages, 2, 4, 8–9

ID selector, 67

CSS class management methods, 378

CSS class names, 7

CSS styles

applied to presentational class names,

6

embedded styles, 8

external styles, 9

inline styles, 6, 8

slider control, 258–260

CSS support, 4

currentStyle property, 185

custom form controls, 256–271

library, 274–275

D
Dashboard Widgets, 356

"dataTable", 92, 101

Debug menu (Safari), 282

debugging with Firebug, 296–303

deceleration, 193–194

decimals, 23, 25

validation, 250

declaring a variable, 20

declaring and assigning variables, 20

decrementing operators (-= and --), 27

default actions (event handlers), 111–112

default actions (event listeners), 119–121

preventing, 119

default.htm, 2

dependent fields (form control), 216–226

Simply JavaScript390

adding event listeners to each form on

the page, 219, 220

assumptions, 216

complete JavaScript code, 224–226

disabling and enabling, 218, 222–223

scanning a form to build a list of, 220

setting initial states, 221

DependentFields, 217

desktop browsers, 4

detachEvent method, 119, 129, 372, 374

disable method, 222, 223

disabled property, 215, 216, 218

display property, 149

div element, 177, 202

styled to the exact dimensions of a

frame, 177

division and assign operator (/=), 27

division operator (/), 24

document access, 61–103

document node, 63, 136

to reference getElementById, 67

to reference getElementsByTagName,

70, 72

Document Object Model (DOM), 61–66

attribute nodes, 65

changing styles, 85–92

combining multiple methods, 74

element nodes, 66–79

Level 0, 106

Level 1, 106

Level 2 Events standard, 106

linking each element on an HTML

page to its parent, 63

nodes, 63–66

accessing the ones you want, 66–85

text nodes, 64

tree structure, 62, 64, 65, 79–82

walking the, 79

document.all object, 75

use of typeof operator to check for ex-

istence of, 75

document.getElementById, 99, 102

Dojo library, 102, 272, 358–361

Ajax handler, 340

custom controls, 274–275

Form Widgets, 274–275

validation widgets, 272

widgets, 358–361

dollar character ($)

in regular expressions, 245

dollar function ($), 99, 101

dollar sign ($)

in variable names, 22

DOM

(see also Docment Object Model)

DOM building, 136

DOM events

for HTML form controls, 216

DOM methods

for HTML form controls, 214

DOM nodes

transplanting from one element to an-

other, 231

DOM properties

for HTML form controls, 215

DOM tree, 62, 63

finding a parent, 80

finding children, 80–81

finding siblings, 81

including document nodes, 64

including text nodes, 65

391Simply JavaScript

moving around using element node’s

DOM properties, 82

navigating, 79–82

DOMContentLoaded event, 376–377

dot (.), 244, 249

double quotes (strings), 27, 29

do-while loop, 46

logical flow through, 47

draggable slider thumb, 264–268

drop-down menus and lists, 213

E
Effect object, 208

Effect.Highlight, 209–210

element classes, 76–77

element nodes, 63, 64, 66

execution of getElementByTagName,

70, 72

finding by class name, 74–79

adding matching elements to our

group of elements, 77

checking the class of each element,

76–77

looking at all the elements, 75

putting it all together, 78–79

starting your first function, 74

finding by ID, 67–69

finding by tag name, 70–74

native properties, 68

searching by class name versus tag

name, 74

Element object, 100

Element.addClassName, 100

Element.hasClassName, 100

Element.removeClassName, 100

elementArray (variable), 76

elements (arrays), 31

adding to the end of an array, 34

retrieving, 32

elements (HTML)

computed style, 184

moving along a linear path, 181–190

steps required to move an element

from point A to point B, 182

elements property, 215

else-if statements, 42

embedded JavaScript

and XHTML, 15

embedded JavaScript code, 9

embedded styles, 8

Enable Firebug, 298

enable method, 222, 223

encodeURIComponent, 336

Enter button, 111, 240

equality operators (==), 38, 295

versus equal sign (=), 39

Error Console (Firefox), 278

Error Console (Opera), 280

Error Console (Safari), 282

error messages, 255, 277

Firefox, 278

Internet Explorer, 280–282

logic errors, 292–296

Opera, 280

runtime errors, 288–292

Safari, 282

syntax errors, 283–288

weather widget, 325

when the pattern is not satisfied, 251

Errors (Firefox), 279

escape sequences, 246–247

escapeURIComponent function, 321

Simply JavaScript392

escaping the quote marks, 28

event handlers, 107–116

as HTML attributes, 110

assigning multiple handlers, 115

default actions, 111–112

definition, 107

for client-sided validation, 240

plugging into DOM node, 107

problem with, 115–116

script execution, 109

setting up functions as, 108

using this Keyword, 112–114

event listeners, 116–132

adding to each form on a page, 219,

220

adding to slider controls, 263–264

applications, 116

code for, 117

core.js library, 130–131

default actions, 119–121

definition, 117

event propagation, 122–127

for client-side validation, 240, 241–

242

methods, 364–374

plugging into DOM node, 117

putting it all together, 129–132

unplugging from a DOM node, 119

using this Keyword, 127–128

W3C DOM 2 versions, 365–366

event objects, 119

event propagation, 122–127

bubbling phase, 123

capture phase, 122

target phase, 122

Event.observe method, 158

Event.stopObserving method, 158

events, 105

and JavaScript, 106

exec method, 261

expand function, 203

expandAnimate, 204, 205

exploration through sliders, 346

expressions, 37

external JavaScript file, 15

external styles, 9

extractMasterMenu method, 230, 232

F
fieldset element, 102, 230

film strip (in HTML), 176–181

changing position of background im-

age to specify which frame is in

view, 178

moving the image around and display-

ing different parts of the strip,

177

using div to display frame at a time,

177

_findListener method, 367, 368, 373, 374

Firebug

adding a custom watch expression,

299, 302

console tab, 298

downloading and installing, 296

enabling, 298

examining the clues, 302

for debugging, 296–303

pausing execution, 301

Script tab, 299

selecting the file to debug, 300

setting a breakpoint, 299

393Simply JavaScript

to track an infinite loop, 297–302

Firefox, 357

DOMContentLoaded event, 376

getAttribute problems, 83

Firefox error console, 278, 282

errors, warnings and messages dis-

played, 279

syntax errors, 284, 286, 288

firstChild property, 81

Flash, 346, 351

Flickr

inline editing capability, 348

floating point numbers (float), 23, 24

focus events, 123, 134, 153, 175

focus method, 214

for loops, 46–48, 76, 77, 94

functioning, 47

logical flow through, 49

form controls, 213

(see also HTML form controls)

cascading menus, 226–239

dependent fields, 216–226

sliders, 256–271

form enhancements, 213–275

form fields

disabled, 218

enabled, 218

form property, 215

form submissions

intercepting, 240–242

verifying a user had filled in a value

for a particular field, 241–242

with Ajax, 329–337

success/failure message, 336

form validation, 239–256

and Ajax, 331

client-side validation, 239

error messages, 251

intercepting form submission, 240–

242

libraries, 272–273

reusable validation script, 249–256

server-side validation, 239

formal parameters, 285

formElements, 334

FormValidation.errors, 255

FormValidation.rules, 254

forward slashes (/)

to create regular expressions, 243

frame rate, 166

frameHeight property, 180

frames, 177

frames poperty, 180

from0 (slider control), 257

function argument as a variable, 51

function call, 50

function declaration, 51, 57

function keyword, 48

function names, 50

functions, 48–55

arguments, 50–52

defining your own, 48

keeping your variables separate, 54–

55

outputting data from, 52–53

passing data to, 50–52

return statements, 52–53

scope, 54–55

G
GET request, 311

getAttribute method, 83

Simply JavaScript394

getComputedStyle method, 379

getElementById method, 67, 69, 73

checking that it isn't null, 69

getElementsByClass, 102

getElementsById method, 290, 291

getElementsByTagName method, 70–72,

93, 95, 134

returning all elements by using “*",

75

returns node lists in source order, 71

getting an attribute, 83–84

global modifiers, 253

global scope, 54

global variables, 54, 170

Google Calendar interface, 353

Google Web Toolkit (GWT), 361

greater than (>) operators, 38

H
hasChildNodes method, 231, 233

hasClass method, 248

head, 14

hideTip method, 135, 138

hideTipListener, 135, 176

href attribute, 83, 318, 320

href property, 114

HTML

and Document Object Model (DOM),

62–66

applications, 1

editing, 4

for content, 5, 6–8, 58

for web pages, 2

presentational, 6

semantics of the content of the page,

7

HTML DOM extensions, 214–216

HTML form controls

DOM events, 216

DOM methods, 214

DOM properties, 215

HTML forms, 213

HTTP error codes, 312

hyphens, 85

I
id attribute (elements), 67

IDs

to find elements, 67–69

if statements, 36–39

conditional code, 37

expressions, 37

form, 37

indenting code, 37

logical flow of, 36

multiple conditions, 40

if-else statements, 41–42

logical flow, 41

illegal characters, 288

in-browser instant messaging client, 350

increment operator (++), 26, 29

placement, 26

_increment property, 204

incrementer (i), 44

indenting code, 37

index (arrays), 31

index property, 215

index.html, 2

inequality operators (!=), 38, 39

infinite loop, 294–295

tracking with Firebug, 297–302

395Simply JavaScript

init (method), 59, 114, 132, 134, 180,

183, 186, 220, 221, 223, 228, 260,

377

initOnce function, 377

inline editing, 347

inline styles, 6, 8

innerHTML property, 136, 140

input element, 219, 220

integers (int), 23, 24

IntegerTextbox widget, 272

interactive capabilities, 349–351

Internet Explorer

and event listeners, 116, 117, 119,

127, 128, 129

computed style, 185

error messages, 280–282

Events model, 364, 366–374

GET requests, 311

getAttribute probems, 83

memory leak, 128

non-acceptance of DOM Level 2

Events standard, 106

preventing default action, 120

support for XMLHttpRequest, 307

Internet Explorer 5.x, 75

J
JavaScript, 1

adding to web pages, 9

and events, 106

bringing richness to the Web, 346–351

combining with vector-rendering

standards, 350

executing before HTML, 58

for behavior of content, 5, 9–10, 58

for web pages, 2

in a <script> tag, 9

in a separate file, 10

interactive capabilities, 349–351

looking forward, 345–362

off the Web, 356–357

placement in external file, 15

relationship with HTML, 61

replacing variable name with its value,

22

time controls, 165–175

using it the right way, 11

using with HTML, 14

JavaScript code

nothing happened!, 278–282

JavaScript code snippets, 12

JavaScript errors, 277

JavaScript libraries, 11, 17, 99–102, 158–

160, 357–362

Ajax code, 337–343

Core library, 363–385

custom form controls, 274–275

Dojo, 102, 272, 274–275, 340, 358–361

form validation, 272–273

jQuery, 100–102, 160, 341

MooTools, 342–343

Prototype, 99–100, 158, 273, 339

Yahoo! UI, 341

JavaScript object, 363–364

JavaScript programming, 13–60

comments, 18

conditional statements, 36–43

functions, 48–55

loops, 43–48

objects, 55–58

statements, 17

variable types, 23–35

Simply JavaScript396

variables, 19–22

JavaScript programs

running, 14–17

JavaScript support, 4

JavaScript.js files, 12, 16

jQuery library, 100–102

Ajax calls, 341

.js file extension, 16

K
K.I.S.S. principle, 6

L
lastChild property, 81

legend element, 230

length of arrays, 34, 56, 78

length of node, 72

less than (<) operators, 38

libraries (JavaScript), 11, 17, 99–102,

158, 271–275, 337–343, 357–362,

363–385

libraries (non-JavaScript), 208

script.aculo.us, 208–210

linear path (animation), 181–190

steps required to move from point A

to point B, 182

listenerIndex, 372

listenerRecord, 369, 372

load event, 132, 375

load function, 340

local scope, 54

local variables, 54

logic errors, 292–296

looking forward, 345–362

easy exploration with sliders, 346

easy visualization, 347–348

Rich Internet Applications, 352–355

unique interaction, 349–351

widgets, 355

loops, 43–48

do-while loop, 46

for loops, 46–48, 76, 77, 94

while loops, 43–45, 231

loosely typed variables, 23

M
MacOS X widgets, 356

_master property, 223

matchedArray (variable), 78, 79

Math.round, 189, 194

mathematical operations, 24–27

brackets in, 24

order of operations, 24

Meebo

instant messaging applications, 349

Messages (Firefox), 279

Messages (Opera), 280

methods (objects), 56, 59

mimetype property, 340

minimal match, 245

mixed arrays, 33

MooTools library

Ajax handler, 342–343

mousedown event, 264

mousedown event listener, 263, 265, 268

mousemove event listener, 268

mousemove events, 264

mouseover event, 134, 175

mouseup event listener, 268

mouseup events, 264

movementRatio, 197

Mozilla browsers, 311

397Simply JavaScript

multi-dimensional arrays, 33

retrieving data from, 33

multi-line text areas, 213

multiplication and assign operator (+=),

27

multiplication operator (*), 24

multi-word variable names, 22

N
naming conventions, 56

negative values (numbers), 23

new Ajax.Request, 339

newHeight, 205

nextSibling property, 81

node lists, 71, 75

similarity to arrays, 77

nodeName property, 69

nodes, 63

accessing the ones you want, 66–85

attribute, 64, 65

document, 63

element, 63, 64

text, 64

whitespace, 65

nodeType property, 148

nodeValue, 290, 320

non-content information

in web pages, 6

normal page request, 306

numbers

as variables, 23

combining with mathematical opera-

tions, 24–27

in arrays, 33

validation, 249

numerical data

as variables, 23

O
object constructor, 56

object detection, 76, 118

object literal syntax, 58

object names

naming conventions, 56

object scope, 57

objects, 55–58

(see also Document Object Model

(DOM))

methods, 56, 59

properties, 56

standalone functions alternative syn-

tax, 57

offleft positioning, 149, 219

OK button, 111

onclick attribute, 83

oneClass variable, 255

onreadystatechange, 321

open function, 113

open method, 310, 311

Opera

DOMContentLoaded event, 376

setting Content-Type header, 311, 336

Opera error console, 280

operators, 24

(see also specific types, eg. equality

operators)

optgroup elements, 227, 233

option elements, 227

options property, 215

OR operator, 40

order of operations (mathematics), 24

Simply JavaScript398

overflowing content, 198

P
page-request mechanisms, 306

parameters variable, 334

parent-child relationship between ele-

ments (DOM), 62

parentNode property, 80, 154

parentWindow property, 369

parseInt function, 261

path-based motion, 181–198

linear path, 181–190

pattern variable, 76

pattern.test method, 88

pauses, 166

phone numbers

validation, 250

photo gallery pages

inline editing, 347–348

plus (+)

in regular expressions, 244

polling, 378

positioning

and animation, 183

POST request, 311, 336

presentation of content, 3

using CSS, 5, 8–9

presentational class names, 6

presentational HTML, 6

preventDefault method, 119, 121, 129,

131, 135, 160, 372

preventing default action, 119

in Internet Explorer, 120

in Safari 2.0.3 and earlier, 121

previousSibling property, 81

programming

breaking programs into bite-size

chunks, 13

define clearly in plain English what

you want to do, 74

syntax, 13

programming with JavaScript, 13–60

comments, 18

conditional statements, 36–43

functions, 48–55

loops, 43–48

objects, 55–58

statements, 17

variable types, 23–35

variables, 19

programs, 17

progressive enhancement, 5

properties (objects), 56

Prototype library, 99–100, 158, 273

Ajax calls, 339

push, 56

Q
Query library, 160

question mark (?), 245

quote marks (strings), 27, 29

escaping, 28

R
radio buttons, 213, 216, 219, 335

readyState property, 312

monitoring changes in, 312

readystatechange callback function

specifying inline, 313

readystatechange event handler, 313,

321, 336, 337

399Simply JavaScript

readystatechange events, 312

Really Easy Field Validation library, 273

regular expressions, 76, 243–248

alternative syntax, 243

creating, 243

escape sequences, 246–247

for form validation, 249–256

special characters, 244–246

to validate script, 249–251

relative code, 140

relative positioning, 183

_removeAllListeners method, 373, 374

removeEventListener method, 119, 129,

131, 158, 371

removing a class, 91

repeating timer, 174

replaceChild method, 231

requester variable, 308

requester.open, 321

reset method, 214

responseText property, 314, 339

responseXML property, 314, 315, 322

return assembled, 53

return keyword, 52

return matchedArray, 79

return statements, 52–53

placement, 53

use with conditional statements, 53

return values, 52

returnValue property, 120, 121, 129, 373

reusable validation script, 249–256

based on regular expressions, 249–251

error messages when pattern is not

satisfied, 251

Rich Internet Applications (RIAs), 352–

355

client-side, 352

complex nature of, 353

examples, 352

Rich Tooltips (see tooltips)

robot animation, 177–181

Robot.animate, 179, 187

Robot.offsetY, 180

round brackets (...), 245

RSS format, 4

running a JavaScript program, 14–17

runtime errors, 288–292

S
Safari

Debug menu, 282

error console, 282

scale4 (slider control), 257

scope, 54–55

global, 54

local, 54

object, 57

screen readers, 316

script bootstrapping, 375–378

<script> tags, 9, 14

numbers permitted on a page, 17

src attribute, 15, 16

script.aculo.us library, 208–210

scrollHeight property, 204

scrollTop property, 205

seamless form submission with Ajax,

329–337

select elements, 227, 228, 230

select event, 216

select menu, 226

select method, 214

selected property, 215

Simply JavaScript400

selectedIndex property, 215, 236

semantic markup, 7

semantics (of the content of a page), 7

send method, 310, 311

separation of code, 3

importance of, 4, 5

separation of concerns (web pages), 3

serialized contents of the form, 334

servers

calling, 310–314

reading their response, 314

retrieving data from, 310

server-side validation, 239

setAttribute method, 84

setInterval, 174

stopping, 175

setRequestHeader method, 311

setTimeout, 166–168, 312, 320

creating a repeat timer, 174

in the middle of your code, 167

operation of, 166

stopping the timer, 172–174

to change background-position, 178

use in animation, 188

use with tooltips, 175

using variables with, 168–172

closure use, 171

concatenating the variable into the

string, 170

global variables, 170

setting an attribute, 84

showTip method, 135, 137, 175

showTipListener, 135, 175

single menus, 226, 227

single quotes (strings), 27, 29

slashes (//)

used with comments, 18

slider control, 256–271

code for, 260–261

complete JavaScript, 268–271

creating, 262

CSS approach, 258–260

event llsteners, 263–264

exploration applications, 346

finished version, 268

slider thumb, 262, 265

image of, 258

making it draggable, 264–268

slider track

image of, 258

Soccerball animation

creating realistic movement, 192–198

in two dimensions, 190–192

linear path, 181–190

slowing the ball down, 193–195

speeding the ball up, 195–197

stopping it from going forever, 194

span elements, 136, 258, 262

special characters (regular expressions),

244–246

splice, 56

square brackets [...], 245

src attribute, 15, 16

standalone functions, 127

declaring, 57

start (method), 59

"start at the bottom approach", 5

Start button, 173

statements, 17

static page (accordion control), 144–146

static page (toolkit), 133

401Simply JavaScript

status property, 312

Stop button, 173

stopping setInterval, 175

stopping the propagation of an event,

124

stopping the timer, 172–174

stopPropagation method, 124, 129, 160,

372

stray click producing a helpful/annoying

message, 124, 125

strictly typed variables, 23

string operations, 29

strings, 27–29

concatenating, 29

definition, 27

in arrays, 33

specifying using quote marks, 27

stripy tables

making (example), 92–99

StripyTables, 97

style attribute, 87, 110

style changes, 85–92

adding a class, 89–91

comparing classes, 88

removing a class, 91

with class, 87–92

style property, 85

style.backgroundColor code, 85

style.backgroundPosition, 180

style.color code, 85, 87

style.height proprety, 203, 205

style.left property, 186, 189

style.top property, 192

Submit button, 111

submit event, 216, 331

submit event listener, 252

submit method, 214

submitForm method, 334

submitListener method, 331–334

subtraction operator (-), 24

syntax, 13

syntax errors, 283–288

T
Tab, 111, 132, 152, 156

tables

stripy, 92–99

adding class "alt" to every second

row, 96

finding all tables with class "data-

Table", 93

getting the table rows for each table,

94–95

putting it all together, 96–99

tables (variable name), 94, 100, 101

tabling, 132, 152

tag name

restricting selection, 72–74

to find elements, 70–74

target, 369

target phase, 122

target.document, 369

tbody element, 95

teleportation, 164

text input fields, 213

text nodes, 64

invisible characters in, 65

thead element, 95

theClass (variable), 76, 79, 89

this Keyword

use with event handlers, 112–114

use with event listeners, 127–128

Simply JavaScript402

value of, 127

three layers of the Web, 4–5

behavior in JavaScript, 5, 9–10

content in HTML format, 5, 6–8

presentation in CSS, 5, 8–9

time controls, 165–175

creating a repeating timer, 174

setTimeout, 166–168

stopping the timer, 172–174

using variables with setTimeout, 168–

172

timers

repeating, 174

stopping, 172–174

title attribute, 132, 133, 228

title poperty, 137

to100 (slider control), 257

tooltips, 132–144

adding to a document as a child of the

link, 137

displaying on a page, 136

displaying on top of surrounding

document content, 140

dynamic styles, 140–142

ensuring there is no tip to display, 139

making things happen, 134–135

putting in a short delay on an action,

175

putting it all together, 142–144

removing, 138–139

static page, 133

style property declarations, 141

workhorse methods, 135–139

tr elements, 95

Travelocity

use of JavaScript sliders, 347

try-catch statement, 307–308, 337

logical structure, 309

try statement, 308, 309

two dimensional animation, 190–192

type attribute, 14

typeof operator, 75

U
unbind method, 160

underscore (_)

in variable names, 22

Unicode character numbers, 324

unload event, 129

unobtrusive scripting, 10

updateDependents method, 221, 222

updateSlaveMenu method, 230, 235

URL calls, 310

URLs

referenced in src attribute, 16

V
validation errors, 251, 255, 256

value property, 215

var (keyword), 20, 21, 54

variable assignment, 57

variable names, 22

multi word, 22

naming conventions, 56

no spaces allowed in, 22

symbols in, 22

variable types, 23–35

arrays, 30–34

Boolean values, 30

numbers, 23

mathematical operations, 24–27

strings, 27–29

403Simply JavaScript

string operations, 29

variables, 19–22

assigning, 20

associative arrays, 34

counter, 45

declaring, 20, 54

global, 54

local, 54

loosely typed, 23

strictly typed, 23

use with setTimeout, 168–172

vector-rendering standards, 350

visualization, 347–348

visually impaired users, 4

W
walking the DOM, 79

Warnings (Firefox), 279

weather widget, 317–328

Ajax functionality, 318–322

complete code, 325–328

error handling if server doesn't return

proper data, 325

extracting the pertinent data, 322–324

HTML code, 317, 324

updated content, 325

XML code, 322

XMLHttpRequest connection, 318, 320

Web

not designed to support applications,

354

web application standard, 354

web design

mixed codes used in, 2

Web Hypertext Application Technology

Working Group (WhatWG), 354

web pages

functions, 2

mix codes used, 2

separation of concerns, 3

wForms library, 272

while loops, 43–45, 46, 231

finishing, 44

logical flow through, 45

use with arrays, 44

whitespace nodes, 65, 315

whole numbers, 23

widgets, 355, 356

Dojo library, 358–361

window object, 129, 132

window.event, 121

Windows Vista

supporting "gadgets", 357

writeError, 325

writeUpdate method, 322, 323

X
XHTML

and embedded JavaScript, 15

XMLHttpRequest, 306–316

retrieving data from the server, 311

XMLHttpRequest object

check to see if data successfully re-

ceived, 312

course of action for unsuccessful re-

quests, 313

creating, 307–310

using cross-browser method, 308

libraries, 337–343

reading the server’s response, 314–316

readyState property, 312

returns HTTP error code, 312

Simply JavaScript404

single call use only, 314

status property, 312

use of event handler to notify that

server has returned a response,

312

xtractMasterMenu method, 236

Y
Yahoo!

widget tool, 357

Yahoo! Pipes intuitive and interactive

interface, 351

Yahoo! UI Library, 160

Ajax object, 341

Z
z-index property, 141

405Simply JavaScript

	Simply JavaScript
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s Covered in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgments
	Kevin Yank
	Cameron Adams

	Conventions Used in this Book
	Code Samples
	Tips, Notes, and Warnings

	1. The Three Layers of the Web
	Keep ’em Separated
	Three Layers
	HTML for Content
	CSS for Presentation
	JavaScript for Behavior

	The Right Way
	JavaScript Libraries
	Let’s Get Started!

	2. Programming with JavaScript
	Running a JavaScript Program
	Statements: Bite-sized Chunks for your Browser
	Comments: Bite-sized Chunks Just for You
	Variables: Storing Data for your Program
	Variable Types: Different Types for Different Data
	Numbers
	Mathematical Operations

	Strings
	String Operations

	Booleans
	Arrays
	Associative Arrays

	Conditions and Loops: Controlling Program Flow
	Conditions: Making Decisions
	if Statements
	Multiple Conditions

	if-else Statements
	else-if Statements

	Loops: Minimizing Repetition
	while Loops
	do-while Loops
	for Loops

	Functions: Writing Code for Later
	Arguments: Passing Data to a Function
	Return Statements: Outputting Data from a Function
	Scope: Keeping your Variables Separate

	Objects
	Unobtrusive Scripting in the Real World
	Summary

	3. Document Access
	The Document Object Model: Mapping your HTML
	Text Nodes
	Attribute Nodes

	Accessing the Nodes you Want
	Finding an Element by ID
	Finding Elements by Tag Name
	Restricting Tag Name Selection

	Finding Elements by Class Name
	Starting your First Function
	Looking at All the Elements
	Checking the Class of Each Element
	Adding Matching Elements to our Group of Elements
	Putting it All Together

	Navigating the DOM Tree
	Finding a Parent
	Finding Children
	Finding Siblings

	Interacting with Attributes
	Getting an Attribute
	Setting an Attribute

	Changing Styles
	Changing Styles with Class
	Comparing Classes
	Adding a Class
	Removing a Class

	Example: Making Stripy Tables
	Finding All Tables with Class dataTable
	Getting the Table Rows for Each Table
	Adding the Class alt to Every Second Row
	Putting it All Together

	Exploring Libraries
	Prototype
	jQuery
	Dojo

	Summary

	4. Events
	An Eventful History
	Event Handlers
	Default Actions
	The this Keyword
	The Problem with Event Handlers

	Event Listeners
	Default Actions
	Event Propagation
	The this Keyword
	The Internet Explorer Memory Leak
	Putting it All Together

	Example: Rich Tooltips
	The Static Page
	Making Things Happen
	The Workhorse Methods
	The Dynamic Styles
	Putting it All Together

	Example: Accordion
	The Static Page
	The Workhorse Methods
	The Dynamic Styles
	Putting it All Together

	Exploring Libraries
	Summary

	5. Animation
	The Principles of Animation
	Controlling Time with JavaScript
	Using Variables with setTimeout
	Stopping the Timer
	Creating a Repeating Timer
	Stopping setInterval

	Revisiting Rich Tooltips
	Old-school Animation in a New-school Style
	Path-based Motion
	Animating in Two Dimensions
	Creating Realistic Movement
	Faster!

	Moving Ahead

	Revisiting the Accordion Control
	Making the Accordion Look Like it’s Animated
	Changing the Code

	Exploring Libraries
	script.aculo.us

	Summary

	6. Form Enhancements
	HTML DOM Extensions
	Example: Dependent Fields
	Example: Cascading Menus

	Form Validation
	Intercepting Form Submissions
	Regular Expressions
	Example: Reusable Validation Script

	Custom Form Controls
	Example: Slider

	Exploring Libraries
	Form Validation
	Custom Controls

	Summary

	7. Errors and Debugging
	Nothing Happened!
	Common Errors
	Syntax Errors
	Runtime Errors
	Logic Errors

	Debugging with Firebug
	Summary

	8 .Ajax
	XMLHttpRequest: Chewing Bite-sized Chunks of Content
	Creating an XMLHttpRequest Object
	Calling a Server
	Dealing with Data

	A Word on Screen Readers
	Putting Ajax into Action
	Seamless Form Submission with Ajax
	Exploring Libraries
	Prototype
	Dojo
	jQuery
	YUI
	MooTools

	Summary

	9. Looking Forward
	Bringing Richness to the Web
	Easy Exploration
	Easy Visualization
	Unique Interaction

	Rich Internet Applications
	Widgets

	JavaScript Off the Web
	Exploring Libraries
	Dojo
	Google Web Toolkit

	Summary

	Appendix A: The Core JavaScript Library
	The Object
	Event Listener Methods
	Script Bootstrapping
	CSS Class Management Methods
	Retrieving Computed Styles
	The Complete Library

	Index

