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foreword
Redis was created about three years ago for practical reasons: basically, I was trying to

do the impossible with an on-disk SQL database. I was handling a large write-heavy

load with the only hardware I was able to afford—a little virtualized instance.

 My problem was conceptually simple: my server was receiving a stream of page

views from multiple websites using a small JavaScript tracker. I needed to store the lat-

est n page views for every site and show them in real time to users connected to a web

interface, while maintaining a small history.

 With a peak load of a few thousand page views per second, whatever my database

schema was, and whatever trade-offs I was willing to pick, there was no way for my SQL

store to handle the load with such poor hardware. My inability to upgrade the hard-

ware for cost concerns coupled with the feeling that to handle a capped list of values

shouldn’t have been so hard, after all, gave me the idea of creating a throw-away pro-

totype of an in-memory data store that could handle lists as a native data type, with

constant-time pop and push operations on both sides of the lists. To make a long story

short, the concept worked, I rewrote the first prototype using the C language, added a

fork-based persistence feature, and Redis was born.

 Fast-forward to the present. After three years, the project has evolved in significant

ways. We have a more robust system now, and with Redis 2.6 just released and the

major work in progress being cluster and HA features, Redis is entering its maturity

period. One of the most remarkable advancements in the Redis ecosystem, in my

opinion, is its community of users and contributors, from the redis.io website to the

Redis Google Group. Stemming from the GitHub issues system, there are thousands
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of people involved in the project, writing client libraries, contributing fixes, and help-

ing other users.

 Redis is still a community project: it’s BSD licensed. There are no closed source

add-ons or enhanced versions you need to pay for. The reference documentation is as

accurate as possible, and it’s extremely easy to get help and get in touch with Redis

developers or experts.

 Redis started in a pragmatic way, with a programmer who needed to get things

done and couldn’t find the right tool for the tasks at hand. This is why I think a theo-

retical book wouldn’t serve Redis well, and why I like Redis in Action: it’s a book for

people that want to get things done. It doesn’t limit itself to a sterile description of the

API; Redis features and data types are explored in depth using compelling examples. 

 At the same time, Redis in Action comes from the Redis community, and more spe-

cifically from someone who, before publishing this book, has already helped hun-

dreds of Redis users in many different ways—from schema designs to hardware

latency issues. The Redis Group is full of Josiah’s advice and contributions.

 The fact that system operation topics are also covered is a big plus. The reality is

that most people need to both develop the application software and handle the

deployment of the server. And I’d say that you need to understand system operations

and the fundamental limits of the hardware and the system software you’re using in

order to write an application that makes the best use of both.

 The result of these efforts is a book that will get you into Redis in a direct way,

pointing your attention in the right directions to avoid common pitfalls. I think Redis

in Action is a great addition to the Redis ecosystem and will be welcomed by the com-

munity of Redis users.

SALVATORE SANFILIPPO

CREATOR OF REDIS
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preface
In March of 2010 I began working in Beverly Hills with Chris Testa, a friend I’d met

while at Google in Santa Monica. He had hired me to be the architect of a small

startup that he was team lead/director for; I was to be the research branch.

 While talking one afternoon about how to solve an unrelated problem, Chris men-

tioned Redis as a database that I might find interesting (given my education in theoret-

ical computer science). Several weeks later, after using and patching Redis for our

purposes, I started participating on the mailing list, offering advice and a patch or two.

 As time went on, I used Redis for a wider variety of projects at our startup: search-

ing, an ad targeting engine, a Twitter analytics engine, and many pieces to connect

the different parts of our infrastructure. Each project forced me to learn more about

Redis. And as I saw others on the mailing list using Redis, asking questions, I couldn’t

help but offer more and more advice (my all-time favorite was actually a job-search

problem, which became section 7.4), becoming one of the most prolific posters on

the Redis mailing list.

 In late September 2011, while on my honeymoon in Paris, I received a call from a

Manning Publications acquisitions editor named Michael Stephens. I didn’t receive

the call immediately, because my phone doesn’t work outside the United States. And

due to bugs in my phone’s firmware, I didn’t even receive the message until the sec-

ond week of October.

 When I finally got the message and spoke to Michael, I learned that someone at

Manning had decided that it was about time to publish Redis in Action. After reading

the relevant mailing lists and asking around for suggestions as to who should write the
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book, my name came up. Luckily, Manning was still taking book proposals when

I called.

 After a few weeks of discussions and a few book proposal revisions (primarily

resulting from farming several dozen of my past Redis mailing list advice posts), Man-

ning accepted my proposal, and I started writing. It’s now around 17 months since I

first spoke with Michael, and Redis in Action is essentially complete, missing only a few

details that I’m finishing up now. I’ve spent a full year of evenings and weekends pro-

ducing a book to help others understand and utilize one of the most interesting tech-

nologies I’ve come across—more interesting than almost anything I’ve run into since

the day I sat down at my family’s first computer, 20 years ago this past Christmas.

 My only regret in all of this is not having had the foresight to invent Redis in the

first place. But at least I had the opportunity to write the book on it!
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about this book
This book covers the use of Redis, an in-memory database/data structure server, origi-

nally written by Salvatore Sanfilippo, but recently patched through the open source

process. Though you don’t necessarily need to know anything about Redis, to get the

most out of this book you should have at least a modest familiarity with the Python pro-

gramming language, since almost all of the examples use Python to interact with Redis.

 You can learn enough about Python by going through the Python language tuto-

rial for Python 2.7.x and reading the Python documentation for certain syntactical

constructs when I mention them. Though source code listings will be translated to

Java, JavaScript, and Ruby in time, they may not be as clear or concise as the code

already listed. And they may not even be available in time for the print edition of Redis

in Action.

 If you don’t already have experience with Redis, you should at least read chapters 1

and 2 before reading any other chapter (except for appendix A, which includes the

basic installation instructions). The first couple chapters will give you an idea of what

Redis is, what it does, and why you might want to use it. From there, chapter 3 is an

introduction to what each structure can do and the general concepts around them, and

chapter 4 is about Redis administration and making choices about data persistence.

 If you already have experience with Redis, you can go ahead and skip chapters 1

and 3—they’re primarily introduction-level topics for people who don’t know what

Redis is or what it does. Though chapter 2 is at the same level, it introduces a style

used throughout the rest of the book: show a problem, solve the problem, revisit the
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problem later to improve it, and point out that there are even better solutions if you

keep thinking about it.

 When we revisit a topic, I mention where we first discussed the topic or problem.

Not all of the topics require that you’ve read the earlier section to understand what’s

going on, but trust me when I say that you’ll get much more out of the section talking

about improving a solution X from a previous section Y if you read and remember the

content from Y. This will help you to recognize examples in your own code where you

can make similar improvements. But this recognition gets a lot harder if you don’t

understand the earlier example.

 If while reading a topic you think to yourself, “There’s a (better/faster/simpler)

method to solve this problem,” great! Few of the solutions listed in this book are nec-

essarily the “best” solution to a particular problem in Redis (or otherwise). The exam-

ples chosen are meant to get you thinking about solving a class of problems, and

building solutions to problems in both intuitive and non-intuitive ways.

 Remember that if you have difficulty understanding an example or how it works,

the source code for each chapter includes a test runner, which offers example uses of

almost every function and method defined in that chapter (including solutions to

most of the exercises).

Roadmap

This book is divided into three parts. Part 1 introduces the basics of what Redis is and

some examples of its use. Part 2 begins with documentation about many of the com-

mands available in Redis, and then grows to encompass Redis administration and ever

more expansive application components that Redis can support. Part 3 completes the

content with methods to help you scale Redis using memory-saving techniques, hori-

zontal sharding, and Lua scripting.

 Chapter 1 is a basic introduction to what Redis is. It introduces the five data struc-

tures that are available in Redis, compares Redis to other databases, and implements a

simple article aggregation site that allows voting on submitted articles.

 Chapter 2 picks up the pace a little bit, where we use Redis to improve application

performance and offer some basic web analytics. If you have little-to-no background

with Redis, you may want to start with chapter 2 to understand why Redis has become

so popular in recent years (simplicity and performance).

 Chapter 3 is mostly a command reference with examples of almost all of the com-

monly used commands, including basic transactions, sorting, and expiring keys.

 Chapter 4 combines the concepts of data persistence, performance, failure recov-

ery, and data loss protection. While some sections are primarily geared toward the sys-

tems administration side of things, sections 4.4 and 4.5 discuss Redis transactions and

pipelined command performance in depth, which is a must-read for beginner and

intermediate Redis users, as we revisit the problem introduced in 4.4 later in the book.

 Chapter 5 is where we discuss Redis as a database for supporting logging, counters,

IP-address-to-location lookup, and other service configuration.
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 In chapter 6, I introduce components that are very useful when dealing with grow-

ing applications, including autocomplete, locking, task queues, messaging, and even

file distribution.

 Through chapter 7, I introduce and deeply examine a class of search-based problems

and solutions that can change the way you think about data querying and filtering.

 Chapter 8 goes in depth into the construction of a full Twitter-like social network,

and includes implementations for the entire back end, including a streaming API.

 Chapter 9 discusses the major techniques for reducing memory use when using

Redis at scale, including structure sharding and the use of short structures.

 Chapter 10 discusses the horizontal sharding and slaving of Redis to offer greater

performance and access to more memory when a single Redis server can’t sustain

your needs.

 Chapter 11 discusses the use of Lua scripting as a server-side method of extending

Redis functionality, and in some cases as a way of improving performance.

 Appendix A primarily discusses basic installation of Redis, Python, and the Redis

client library for Python in Linux, OS X, and Windows.

 Appendix B is a reference to various other resources that might be useful when

using Redis. It includes documentation references to some Python language con-

structs that we use, references to other examples of Redis being used, third-party

libraries for using Redis for a variety of tasks, and more.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it

from ordinary text. Code annotations accompany many of the listings, highlighting

important concepts. In some cases, numbered bullets link to explanations that follow

the listing.

 You can download the source code for all listings from the Manning website,

www.manning.com/RedisinAction. If you would like to see translations into other pro-

gramming languages or would like to browse the Python source code online, you can

find the source code in the GitHub repository, https://github.com/josiahcarlson/

redis-in-action.

Author Online

The purchase of Redis in Action includes free access to a private web forum run by Man-

ning Publications, where you can make comments about the book, ask technical ques-

tions, and receive help from the author and from other users. To access the forum and

subscribe to it, point your web browser to www.manning.com/RedisinAction. This page

provides information on how to get on the forum once you are registered, what kind of

help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the author can take

place. It is not a commitment to any specific amount of participation on the part of

www.manning.com/RedisinAction
https://github.com/josiahcarlson/redis-in-action
https://github.com/josiahcarlson/redis-in-action
www.manning.com/RedisinAction
http://www.manning.com/WindowsStoreApp
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the author, whose contribution to the forum remains voluntary (and unpaid). We sug-

gest you try asking the author some challenging questions lest his interest stray!

 The author online forum and the archives of previous discussions will be accessible

from the publisher’s website as long as the book is in print.

About the author

After graduating college, Dr. Josiah Carlson continued his education at UC Irvine,

where he studied theoretical computer science. While applying theory in his spare

time, he worked on and off as a teaching assistant, taking up occasional contract pro-

gramming positions. Near the end of his graduate school career, Josiah found aca-

demic positions rare, so he started his professional career at Networks in Motion,

where he worked on real-time GPS navigation software and a traffic incident notifica-

tion system.

 Since leaving Networks in Motion, Josiah has worked for Google, and then later for

Adly, where he first learned about and began using Redis for content-targeting adver-

tising and Twitter analytics platforms. Several months later, Josiah was a regular partic-

ipant on the Redis mailing list, where he answered hundreds of questions about using

and configuring Redis. Shortly after leaving Adly for ChowNow, where Josiah acts as

Chief Architect and cofounder, he began working on Redis in Action, which you are

now reading.
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about the cover illustration
The figure on the cover of Redis in Action is captioned “A Man of the People.” The

illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-

volume compendium of regional dress customs published in France. Each illustration

is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds

us vividly of how culturally apart the world’s towns and regions were just 200 years ago.

Isolated from each other, people spoke different dialects and languages. On the

streets or in the countryside, it was easy to identify where they lived and what their

trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the

time, has faded away. It is now hard to tell apart the inhabitants of different conti-

nents, let alone different towns or regions. Perhaps we have traded cultural diversity

for a more varied personal life—certainly for a more varied and fast-paced technolog-

ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

Maréchal’s pictures.





Part 1

Getting started

These first two chapters are an introduction to Redis and offer some basic

use cases for Redis. After reading these chapters, you should start to get a sense

for some low-hanging optimizations that Redis might be well suited for in your

current projects.
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Getting to know Redis

Redis is an in-memory remote database that offers high performance, replication,

and a unique data model to produce a platform for solving problems. By support-

ing five different types of data structures, Redis accommodates a wide variety of

problems that can be naturally mapped into what Redis offers, allowing you to solve

your problems without having to perform the conceptual gymnastics required by

other databases. Additional features like replication, persistence, and client-side

sharding allow Redis to scale from a convenient way to prototype a system, all the

way up to hundreds of gigabytes of data and millions of requests per second.

 My first experience with Redis was at a company that needed to search a data-

base of client contacts. The search needed to find contacts by name, email address,

location, and phone number. The system was written to use a SQL database that

performed a series of queries that would take 10–15 seconds to find matches

This chapter covers

■ How Redis is like and unlike other software 

you’ve used

■ How to use Redis

■ Simple interactions with Redis using example 

Python code

■ Solving real problems with Redis

www.allitebooks.com
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among 60,000 clients. After spending a week learning the basics of what was available

in Redis, I built a search engine that could filter and sort on all of those fields and

more, returning responses within 50 milliseconds. In just a few weeks of effort involv-

ing testing and making the system production-worthy, performance improved 200

times. By reading this book, you can learn about many of the tips, tricks, and well-

known problems that have been solved using Redis.

 This chapter will help you to understand where Redis fits within the world of data-

bases, and how Redis is useful for solving problems in multiple contexts (communicat-

ing between different components and languages, and more). Remaining chapters

will show a variety of problems and their solutions using Redis.

 Now that you know a bit about how I started using Redis and what we’ll cover, let’s

talk more about what Redis is, and how it’s probably something you’ve always needed,

even though you didn’t realize it.

INSTALLING REDIS AND PYTHON Look in appendix A for quick and dirty instal-
lation instructions for both Redis and Python.

USING REDIS FROM OTHER LANGUAGES Though not included in this book, source
code for all examples possible will be provided in Ruby, Java, and JavaScript
(Node.js) shortly after all chapters have been completed. For users of the
Spring framework, the author of Spring Data’s Redis interface, Costin Leau, has
teamed up with Redis author Salvatore Sanfilippo to produce a one-hour intro-
duction for using Spring with Redis available at http://www.springsource.org/
spring-data/redis.

1.1 What is Redis?

When I say that Redis is a database, I’m only telling a partial truth. Redis is a very fast

non-relational database that stores a mapping of keys to five different types of values.

Redis supports in-memory persistent storage on disk, replication to scale read perfor-

mance, and client-side sharding1 to scale write performance. That was a mouthful, but

I’ll break it down by parts.

1.1.1 Redis compared to other databases and software

If you’re familiar with relational databases, you’ll no doubt have written SQL queries

to relate data between tables. Redis is a type of database that’s commonly referred to

as NoSQL or non-relational. In Redis, there are no tables, and there’s no database-

defined or -enforced way of relating data in Redis with other data in Redis.

 It’s not uncommon to hear Redis compared to memcached, which is a very high-

performance, key-value cache server. Like memcached, Redis can also store a mapping

of keys to values and can even achieve similar performance levels as memcached. But

1 Sharding is a method by which you partition your data into different pieces. In this case, you partition your
data based on IDs embedded in the keys, based on the hash of keys, or some combination of the two. Through
partitioning your data, you can store and fetch the data from multiple machines, which can allow a linear scal-
ing in performance for certain problem domains.

http://www.springsource.org/spring-data/redis
http://www.springsource.org/spring-data/redis


5What is Redis?

the similarities end quickly—Redis supports the writing of its data to disk automatically

in two different ways, and can store data in four structures in addition to plain string keys

as memcached does. These and other differences allow Redis to solve a wider range of

problems, and allow Redis to be used either as a primary database or as an auxiliary data-

base with other storage systems.

 In later chapters, we’ll cover examples that show Redis being used for both a pri-

mary and a secondary storage medium for data, supporting a variety of use cases and

query patterns. Generally speaking, many Redis users will choose to store data in

Redis only when the performance or functionality of Redis is necessary, using other

relational or non-relational data storage for data where slower performance is accept-

able, or where data is too large to fit in memory economically. In practice, you’ll use

your judgment as to where you want your data to be stored (primarily in Redis, or pri-

marily somewhere else with a copy in Redis), how to ensure data integrity (replication,

durability, and transactions), and whether Redis will fit your needs.

 To get an idea of how Redis fits among the variety of database and cache software

available, you can see an incomplete listing of a few different types of cache or data-

base servers that Redis’s functionality overlaps in table 1.1.

Table 1.1 Features and functionality of some databases and cache servers

Name Type Data storage options Query types Additional features

Redis In-memory 

non-relational 

database

Strings, lists, sets, 

hashes, sorted sets

Commands for each data 

type for common access 

patterns, with bulk oper-

ations, and partial trans-

action support

Publish/Subscribe, 

master/slave replica-

tion, disk persistence, 

scripting (stored proce-

dures)

memcached In-memory 

key-value 

cache

Mapping of keys to 

values

Commands for create, 

read, update, delete, 

and a few others

Multithreaded server 

for additional perfor-

mance

MySQL Relational 

database

Databases of tables 

of rows, views over 

tables, spatial and 

third-party extensions

SELECT, INSERT, 
UPDATE, DELETE, 

functions, stored 

procedures

ACID compliant (with 

InnoDB), master/slave 

and master/master 

replication

PostgreSQL Relational 

database

Databases of tables

of rows, views over 

tables, spatial and 

third-party extensions, 

customizable types

SELECT, INSERT, 
UPDATE, DELETE, 

built-in functions, cus-

tom stored procedures

ACID compliant, mas-

ter/slave replication, 

multi-master replica-

tion (third party)

MongoDB On-disk 

non-relational 

document 

store

Databases of tables 

of schema-less BSON 

documents

Commands for create, 

read, update, delete, 

conditional queries, 

and more

Supports map-reduce 

operations, master/

slave replication, shard-

ing, spatial indexes
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1.1.2 Other features

When using an in-memory database like Redis, one of the first questions that’s asked is

“What happens when my server gets turned off?” Redis has two different forms of per-

sistence available for writing in-memory data to disk in a compact format. The first

method is a point-in-time dump either when certain conditions are met (a number of

writes in a given period) or when one of the two dump-to-disk commands is called.

The other method uses an append-only file that writes every command that alters data

in Redis to disk as it happens. Depending on how careful you want to be with your

data, append-only writing can be configured to never sync, sync once per second, or

sync at the completion of every operation. We’ll discuss these persistence options in

more depth in chapter 4.

 Even though Redis is able to perform well, due to its in-memory design there are

situations where you may need Redis to process more read queries than a single Redis

server can handle. To support higher rates of read performance (along with handling

failover if the server that Redis is running on crashes), Redis supports master/slave

replication where slaves connect to the master and receive an initial copy of the full

database. As writes are performed on the master, they’re sent to all connected slaves

for updating the slave datasets in real time. With continuously updated data on the

slaves, clients can then connect to any slave for reads instead of making requests to the

master. We’ll discuss Redis slaves more thoroughly in chapter 4.

1.1.3 Why Redis?

If you’ve used memcached before, you probably know that you can add data to the

end of an existing string with APPEND. The documentation for memcached states that

APPEND can be used for managing lists of items. Great! You add items to the end of the

string you’re treating as a list. But then how do you remove items? The memcached

answer is to use a blacklist to hide items, in order to avoid read/update/write (or a

database query and memcached write). In Redis, you’d either use a LIST or a SET and

then add and remove items directly.

 By using Redis instead of memcached for this and other problems, not only can

your code be shorter, easier to understand, and easier to maintain, but it’s faster

(because you don’t need to read a database to update your data). You’ll see that there

are also many other cases where Redis is more efficient and/or easier to use than rela-

tional databases.

 One common use of databases is to store long-term reporting data as aggregates over

fixed time ranges. To collect these aggregates, it’s not uncommon to insert rows into a

reporting table and then later to scan over those rows to collect the aggregates, which

then update existing rows in an aggregation table. Rows are inserted because, for most

databases, inserting rows is a very fast operation (inserts write to the end of an on-disk

file, not unlike Redis’s append-only log). But updating an existing row in a table is fairly

slow (it can cause a random read and may cause a random write). In Redis, you’d cal-

culate the aggregates directly using one of the atomic INCR commands—random writes
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to Redis data are always fast, because data is always in memory,2 and queries to Redis

don’t need to go through a typical query parser/optimizer.

 By using Redis instead of a relational or other primarily on-disk database, you can

avoid writing unnecessary temporary data, avoid needing to scan over and delete this

temporary data, and ultimately improve performance. These are both simple exam-

ples, but they demonstrate how your choice of tool can greatly affect the way you solve

your problems.

 As you continue to read about Redis, try to remember that almost everything that we

do is an attempt to solve a problem in real time (except for task queues in chapter 6).

I show techniques and provide working code for helping you remove bottlenecks, sim-

plify your code, collect data, distribute data, build utilities, and, overall, to make your

task of building software easier. When done right, your software can even scale to levels

that would make other users of so-called web-scale technologies blush.

 We could keep talking about what Redis has, what it can do, or even why. Or I

could show you. In the next section, we’ll discuss the structures available in Redis,

what they can do, and some of the commands used to access them. 

1.2 What Redis data structures look like

As shown in table 1.1, Redis allows us to store keys that map to any one of five different

data structure types; STRINGs, LISTs, SETs, HASHes, and ZSETs. Each of the five differ-

ent structures have some shared commands (DEL, TYPE, RENAME, and others), as well as

some commands that can only be used by one or two of the structures. We’ll dig more

deeply into the available commands in chapter 3.

 Among the five structures available in Redis, STRINGs, LISTs, and HASHes should be

familiar to most programmers. Their implementation and semantics are similar to

those same structures built in a variety of other languages. Some programming lan-

guages also have a set data structure, comparable to Redis SETs in implementation

and semantics. ZSETs are somewhat unique to Redis, but are handy when we get

around to using them. A comparison of the five structures available in Redis, what

they contain, and a brief description of their semantics can be seen in table 1.2.

COMMAND LISTING As we discuss each data type in this section, you’ll find
small tables of commands. A more complete (but partial) listing of com-
mands for each type can be found in chapter 3. If you need a complete com-
mand listing with documentation, you can visit http://redis.io/commands.   

Throughout this section, you’ll see how to represent all five of these structures, and

you’ll get a chance to start using Redis commands in preparation for later chapters. In

this book, all of the examples are provided in Python. If you’ve installed Redis as

2 To be fair, memcached could also be used in this simple scenario, but with Redis, your aggregates can be
placed in structures that keep associated aggregates together for easy access; the aggregates can be a part of
a sorted sequence of aggregates for keeping a toplist in real time; and the aggregates can be integer or floating
point.

http://redis.io/commands
http://redis.io/commands
http://redis.io/commands
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described in appendix A, you should also have installed Python and the necessary

libraries to use Redis from Python as part of that process. If possible, you should have

a computer with Redis, Python, and the redis-py library installed so that you can try

everything out while reading.

REMINDER ABOUT INSTALLING REDIS AND PYTHON Before you continue, you’ll
want to install Redis and Python. Again, quick and dirty installation instructions
for both Redis and Python can be found in appendix A. Even quicker and dirt-
ier instructions for Debian-based Linux distributions are as follows: download
Redis from http://redis.io/download, extract, run make && sudo make install,
and then run sudo python -m easy_install redis hiredis (hiredis is an
optional performance-improving C library).

If you’re familiar with procedural or object-oriented programming languages, Python

should be understandable, even if you haven’t used it before. If you’re using another

language with Redis, you should be able to translate everything we’re doing with

Python to your language, though method names for Redis commands and the argu-

ments they take may be spelled (or ordered) differently.

REDIS WITH OTHER LANGUAGES Though not included in this book, all code list-
ings that can be converted have translations to Ruby, JavaScript, and Java
available for download from the Manning website or linked from this book’s
Manning forum. This translated code also includes similar descriptive annota-
tions so that you can follow along in your language of choice.

As a matter of style, I attempt to keep the use of more advanced features of Python to

a minimum, writing functions to perform operations against Redis instead of con-

structing classes or otherwise. I do this to keep the syntax of Python from interfering

Table 1.2 The five structures available in Redis

Structure type What it contains Structure read/write ability

STRING Strings, integers, or floating-

point values

Operate on the whole string, parts, increment/

decrement the integers and floats

LIST Linked list of strings Push or pop items from both ends, trim based on 

offsets, read individual or multiple items, find or 

remove items by value

SET Unordered collection of unique 

strings

Add, fetch, or remove individual items, check 

membership, intersect, union, difference, fetch 

random items

HASH Unordered hash table of keys 

to values

Add, fetch, or remove individual items, fetch the 

whole hash

ZSET (sorted set) Ordered mapping of string 

members to floating-point 

scores, ordered by score

Add, fetch, or remove individual values, fetch 

items based on score ranges or member value

http://redis.io/download


9What Redis data structures look like

with the focal point of this book, which is solving problems with Redis, and not “look

at this cool stuff we can do with Python.” For this section, we’ll use a redis-cli console

to interact with Redis. Let’s get started with the first and simplest structure available in

Redis: STRINGs.

1.2.1 Strings in Redis

In Redis, STRINGs are similar to strings that

we see in other languages or other key-value

stores. Generally, when I show diagrams that

represent keys and values, the diagrams

have the key name and the type of the value

along the top of a box, with the value inside

the box. I’ve labeled which part is which as

an example in figure 1.1, which shows a

STRING with key hello and value world.

 The operations available to STRINGs start

with what’s available in other key-value

stores. We can GET values, SET values, and DEL values. After you have installed and tested

Redis as described in appendix A, within redis-cli you can try to SET, GET, and DEL values

in Redis, as shown in listing 1.1, with the basic meanings of the functions described in

table 1.3.      

$ redis-cli
redis 127.0.0.1:6379> set hello world
OK
redis 127.0.0.1:6379> get hello
"world"
redis 127.0.0.1:6379> del hello
(integer) 1
redis 127.0.0.1:6379> get hello
(nil)
redis 127.0.0.1:6379>

Table 1.3 Commands used on STRING values

Command What it does

GET Fetches the data stored at the given key

SET Sets the value stored at the given key

DEL Deletes the value stored at the given key (works for all types)

Listing 1.1 An example showing the SET, GET, and DEL commands in Redis 

Start the redis-cli 
client up. Set the key hello to 

the value world.

If a SET command
succeeds, it returns OK,

which turns into True
on the Python side.

Now get the value
stored at the key hello.

It’s still world, like we just set it.

Let’s delete the key-value pair.

If there was a value to
delete, DEL returns the

number of items that
were deleted.

There’s no more value, so 
trying to fetch the value 
returns nil, which turns into 
None on the Python side.

Value stored

hello

world

string

Type of valueKey name

Figure 1.1 An example of a STRING, world, 

stored under a key, hello
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USING REDIS-CLI In this first chapter, I introduce Redis and some commands
using the redis-cli interactive client that comes with Redis. This allows you to
get started interacting with Redis quickly and easily.

In addition to being able to GET, SET, and DEL STRING values, there are a handful of

other commands for reading and writing parts of STRINGs, and commands that allow

us to treat strings as numbers to increment/decrement them. We’ll talk about many of

those commands in chapter 3. But we still have a lot of ground to cover, so let’s move

on to take a peek at LISTs and what we can do with them.

1.2.2 Lists in Redis

In the world of key-value stores, Redis is

unique in that it supports a linked-list

structure. LISTs in Redis store an ordered

sequence of strings, and like STRINGs, I

represent figures of LISTs as a labeled box

with list items inside. An example of a

LIST can be seen in figure 1.2.

 The operations that can be performed

on LISTs are typical of what we find in

almost any programming language. We

can push items to the front and the back

of the LIST with LPUSH/RPUSH; we can pop

items from the front and back of the list

with LPOP/RPOP; we can fetch an item at a given position with LINDEX; and we can

fetch a range of items with LRANGE. Let’s continue our Redis client interactions by fol-

lowing along with interactions on LISTs, as shown in listing 1.2. Table 1.4 gives a brief

description of the commands we can use on lists.           

redis 127.0.0.1:6379> rpush list-key item
(integer) 1
redis 127.0.0.1:6379> rpush list-key item2
(integer) 2

Table 1.4 Commands used on LIST values

Command What it does

RPUSH Pushes the value onto the right end of the list

LRANGE Fetches a range of values from the list

LINDEX Fetches an item at a given position in the list

LPOP Pops the value from the left end of the list and returns it

Listing 1.2 The RPUSH, LRANGE, LINDEX, and LPOP commands in Redis

When we push 
items onto a LIST, the 
command returns the 
current length of the list.

Key name

List of values, duplicates possible

list-key

item

item2

item

list

Type of value

Figure 1.2 An example of a LIST with three 

items under the key, list-key. Note that item

can be in the list more than once.
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redis 127.0.0.1:6379> rpush list-key item
(integer) 3
redis 127.0.0.1:6379> lrange list-key 0 -1
1) "item"
2) "item2"
3) "item"
redis 127.0.0.1:6379> lindex list-key 1
"item2"
redis 127.0.0.1:6379> lpop list-key
"item"
redis 127.0.0.1:6379> lrange list-key 0 -1
1) "item2"
2) "item"
redis 127.0.0.1:6379>

Even if that was all that we could do with LISTs, Redis would already be a useful platform

for solving a variety of problems. But we can also remove items, insert items in the mid-

dle, trim the list to be a particular size (discarding items from one or both ends), and

more. We’ll talk about many of those commands in chapter 3, but for now let’s keep

going to see what SETs can offer us.

1.2.3 Sets in Redis

In Redis, SETs are similar to LISTs in that

they’re a sequence of strings, but unlike

LISTs, Redis SETs use a hash table to keep

all strings unique (though there are no

associated values). My visual representa-

tion of SETs will be similar to LISTs, and

figure 1.3 shows an example SET with

three items.

 Because Redis SETs are unordered,

we can’t push and pop items from the

ends like we did with LISTs. Instead, we

add and remove items by value with the SADD and SREM commands. We can also find

out whether an item is in the SET quickly with SISMEMBER, or fetch the entire set with

SMEMBERS (this can be slow for large SETs, so be careful). You can follow along with list-

ing 1.3 in your Redis client console to get a feel for how SETs work, and table 1.5

describes the commands used here.        

Table 1.5 Commands used on SET values

Command What it does

SADD Adds the item to the set

SMEMBERS Returns the entire set of items

SISMEMBER Checks if an item is in the set

SREM Removes the item from the set, if it exists

When we push items 
onto a LIST, the com-
mand returns the cur-
rent length of the list.We can fetch

the entire list by
passing a range

of 0 for the start
index and -1 for
the last index.

We can fetch individual items 
from the list with LINDEX.

Popping an item from the list 
makes it no longer available.

Key name

Set of distinct values, undefined order

Type of value

set-key

item2

item

item3

set

Figure 1.3 An example of a SET with three items 

under the key, set-key
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redis 127.0.0.1:6379> sadd set-key item
(integer) 1
redis 127.0.0.1:6379> sadd set-key item2
(integer) 1
redis 127.0.0.1:6379> sadd set-key item3
(integer) 1
redis 127.0.0.1:6379> sadd set-key item
(integer) 0
redis 127.0.0.1:6379> smembers set-key
1) "item"
2) "item2"
3) "item3"
redis 127.0.0.1:6379> sismember set-key item4
(integer) 0
redis 127.0.0.1:6379> sismember set-key item
(integer) 1
redis 127.0.0.1:6379> srem set-key item2
(integer) 1
redis 127.0.0.1:6379> srem set-key item2
(integer) 0
redis 127.0.0.1:6379> smembers set-key
1) "item"
2) "item3"
redis 127.0.0.1:6379>

As you can probably guess based on the STRING and LIST sections, SETs have many

other uses beyond adding and removing items. Three commonly used operations with

SETs include intersection, union, and difference (SINTER, SUNION, and SDIFF, respec-

tively). We’ll get into more detail about SET commands in chapter 3, and over half of

chapter 7 involves problems that can be solved almost entirely with Redis SETs. But

let’s not get ahead of ourselves; we’ve still got two more structures to go. Keep reading

to learn about Redis HASHes.

1.2.4 Hashes in Redis

Whereas LISTs and SETs in Redis hold

sequences of items, Redis HASHes store a

mapping of keys to values. The values that

can be stored in HASHes are the same as

what can be stored as normal STRINGs:

strings themselves, or if a value can be

interpreted as a number, that value can be

incremented or decremented. Figure 1.4

shows a diagram of a hash with two values.

 In a lot of ways, we can think of HASHes

in Redis as miniature versions of Redis

itself. Some of the same commands that we

can perform on STRINGs, we can perform

Listing 1.3 The SADD, SMEMBERS, SISMEMBER, and SREM commands in Redis

When adding an item to a SET, 
Redis will return a 1 if the item 
is new to the set and 0 if it was 
already in the SET.

We can fetch all of the items in the SET, which 
returns them as a sequence of items, which is 
turned into a Python set from Python.

We can also ask Redis whether 
an item is in the SET, which 
turns into a Boolean in Python.

When we attempt to remove items, 
our commands return the number 
of items that were removed.

hash-key hash

Key name

Distinct keys,

undefined order

Values associated

with the keys

Type of value

sub-key1     value1

sub-key2     value2

Figure 1.4 An example of a HASH with two 

keys/values under the key hash-key



13What Redis data structures look like

on the values inside HASHes with slightly different commands. Try to follow listing 1.4 to

see some commands that we can use to insert, fetch, and remove items from HASHes.

Table 1.6 describes the commands.        

redis 127.0.0.1:6379> hset hash-key sub-key1 value1
(integer) 1
redis 127.0.0.1:6379> hset hash-key sub-key2 value2
(integer) 1
redis 127.0.0.1:6379> hset hash-key sub-key1 value1
(integer) 0
redis 127.0.0.1:6379> hgetall hash-key
1) "sub-key1"
2) "value1"
3) "sub-key2"
4) "value2"
redis 127.0.0.1:6379> hdel hash-key sub-key2
(integer) 1
redis 127.0.0.1:6379> hdel hash-key sub-key2
(integer) 0
redis 127.0.0.1:6379> hget hash-key sub-key1
"value1"
redis 127.0.0.1:6379> hgetall hash-key
1) "sub-key1"
2) "value1"

For those who are familiar with document stores or relational databases, we can con-

sider a Redis HASH as being similar to a document in a document store, or a row in a rela-

tional database, in that we can access or change individual or multiple fields at a time.

We’re now one structure from having seen all of the structures available in Redis.

Keep reading to learn what ZSETs are and a few things that we can do with them.

1.2.5 Sorted sets in Redis

Like Redis HASHes, ZSETs also hold a type of key and value. The keys (called members)

are unique, and the values (called scores) are limited to floating-point numbers. ZSETs

have the unique property in Redis of being able to be accessed by member (like a

HASH), but items can also be accessed by the sorted order and values of the scores. Fig-

ure 1.5 shows an example ZSET with two items. 

Table 1.6 Commands used on HASH values

Command What it does

HSET Stores the value at the key in the hash

HGET Fetches the value at the given hash key

HGETALL Fetches the entire hash

HDEL Removes a key from the hash, if it exists

Listing 1.4 The HSET, HGET, HGETALL, and HDEL commands in Redis

When we add items to a 
hash, again we get a return 
value that tells whether the 
item is new in the hash.

We can fetch all of the items in 
the HASH, which gets translated 
into a dictionary on the Python 
side of things.

When we delete items from the hash, 
the command returns whether the item 
was there before we tried to remove it.

We can also fetch individual 
fields from hashes.

www.allitebooks.com

http://www.allitebooks.org
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As is the case with all of the other structures, we need to be able to add, remove, and

fetch items from ZSETs. Listing 1.5 offers add, remove, and fetching commands for

ZSETs similar to those for the other structures, and table 1.7 describes the commands

that we’ll use.        

redis 127.0.0.1:6379> zadd zset-key 728 member1
(integer) 1
redis 127.0.0.1:6379> zadd zset-key 982 member0
(integer) 1
redis 127.0.0.1:6379> zadd zset-key 982 member0
(integer) 0
redis 127.0.0.1:6379> zrange zset-key 0 -1 withscores
1) "member1"
2) "728"
3) "member0"
4) "982"
redis 127.0.0.1:6379> zrangebyscore zset-key 0 800 withscores
1) "member1"
2) "728"
redis 127.0.0.1:6379> zrem zset-key member1
(integer) 1
redis 127.0.0.1:6379> zrem zset-key member1
(integer) 0
redis 127.0.0.1:6379> zrange zset-key 0 -1 withscores
1) "member0"
2) "982"

Table 1.7 Commands used on ZSET values

Command What it does

ZADD Adds member with the given score to the ZSET

ZRANGE Fetches the items in the ZSET from their positions in sorted order

ZRANGEBYSCORE Fetches items in the ZSET based on a range of scores

ZREM Removes the item from the ZSET, if it exists

Listing 1.5 The ZADD, ZRANGE, ZRANGEBYSCORE, and ZREM commands in Redis

zset-key zset

Key name

Named members,

ordered by

associated score

Scores, ordered

by numeric value

Type of value

member1 728

member0 982

Figure 1.5 An example of a ZSET with two 

members/scores under the key zset-key

When we add items to a 
ZSET, the command returns 
the number of new items.

We can fetch all of the items in 
the ZSET, which are ordered by 
the scores, and scores are 
turned into floats in Python.

We can also fetch a subsequence
of items based on their scores.

When we remove items, we again find 
the number of items that were removed.
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Now that you’ve seen ZSETs and a little of what they can do, you’ve learned the basics

of what structures are available in Redis. In the next section, we’ll combine the data

storage ability of HASHes with the built-in sorting ability of ZSETs to solve a common

problem.

1.3 Hello Redis

Now that you’re more familiar with the structures that Redis offers, it’s time to use

Redis on a real problem. In recent years, a growing number of sites have offered the

ability to vote on web page links, articles, or questions, including sites such as reddit

and Stack Overflow, as shown in figures 1.6 and 1.7. By taking into consideration the

votes that were cast, posts are ranked and displayed based on a score relating those

votes and when the link was submitted. In this section, we’ll build a Redis-based back

end for a simple version of this kind of site.  

1.3.1 Voting on articles

First, let’s start with some numbers and limitations on our problem, so we can solve the

problem without losing sight of what we’re trying to do. Let’s say that 1,000 articles are

submitted each day. Of those 1,000 articles, about 50 of them are interesting enough

that we want them to be in the top-100 articles for at least one day. All of those 50 articles

will receive at least 200 up votes. We won’t worry about down votes for this version.

Articles can be 

voted on by

clicking on up 

and down arrows.

Figure 1.6 Reddit, a site that offers the ability to vote on articles
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When dealing with scores that go down over time, we need to make the posting time,

the current time, or both relevant to the overall score. To keep things simple, we’ll say

that the score of an item is a function of the time that the article was posted, plus a

constant multiplier times the number of votes that the article has received.

 The time we’ll use the number of seconds since January 1, 1970, in the UTC time

zone, which is commonly referred to as Unix time. We’ll use Unix time because it can

be fetched easily in most programming languages and on every platform that we may

use Redis on. For our constant, we’ll take the

number of seconds in a day (86,400) divided by

the number of votes required (200) to last a full

day, which gives us 432 “points” added to the

score per vote.

 To actually build this, we need to start think-

ing of structures to use in Redis. For starters, we

need to store article information like the title,

the link to the article, who posted it, the time it

was posted, and the number of votes received. We

can use a Redis HASH to store this information,

and an example article can be seen in figure 1.8. 

Voting occurs

after you have

clicked through

to read a question

and any existing

answers.

Figure 1.7 Stack Overflow, a site that offers the ability to vote on questions

article:92617 hash

title

link

poster

time

Go to statement

considered harmful

http://goo.gl/kZUSu

user:83271

1331382699.33

528votes

Figure 1.8 An example article stored as 

a HASH for our article voting system
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USING THE COLON CHARACTER AS A SEPARATOR Throughout this and other chap-
ters, you’ll find that we use the colon character (:) as a separator between parts
of names; for example, in figure 1.8, we used it to separate article from the ID
of the article, creating a sort of namespace. The choice of : is subjective, but
common among Redis users. Other common choices include a period (.), for-
ward slash (/), and even occasionally the pipe character (|). Regardless of what
you choose, be consistent, and note how we use colons to define nested
namespaces throughout the examples in the book.

To store a sorted set of articles themselves, we’ll use a ZSET, which keeps items ordered

by the item scores. We can use our article ID as the member, with the ZSET score being

the article score itself. While we’re at it, we’ll create another ZSET with the score being

just the times that the articles were posted, which gives us an option of browsing arti-

cles based on article score or time. We can see a small example of time- and score-

ordered article ZSETs in figure 1.9.

In order to prevent users from voting for the same article more than once, we need to

store a unique listing of users who have voted for each article. For this, we’ll use a SET

for each article, and store the member IDs of all users who have voted on the given

article. An example SET of users who have voted on an article is shown in figure 1.10.

 For the sake of memory use over time, we’ll say that after a week users can no lon-

ger vote on an article and its score is fixed. After that week has passed, we’ll delete the

SET of users who have voted on the article.

 Before we build this, let’s take a look at what

would happen if user 115423 were to vote for

article 100408 in figure 1.11.  

 Now that you know what we’re going to

build, let’s build it! First, let’s handle voting.

When someone tries to vote on an article, we

first verify that the article was posted within

the last week by checking the article’s post

time with ZSCORE. If we still have time, we then

try to add the user to the article’s voted SET

A time-ordered ZSET of articles A score-ordered ZSET of articles

article:100408       1332065417.47

article:100635       1332075503.49

article:100716       1332082035.26

time: zset

article:100635       1332164063.49

article:100408       1332174713.47

article:100716       1332225027.26

score: zset

Figure 1.9 Two sorted sets representing time-ordered and score-ordered article indexes

voted:100408

user:234487

user:253378

user:364680

user:132097

user:350917

...

set

Figure 1.10 Some users who have voted 

for article 100408
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with SADD. Finally, if the user didn’t previously vote on that article, we increment the

score of the article by 432 (which we calculated earlier) with ZINCRBY (a command

that increments the score of a member), and update the vote count in the HASH with

HINCRBY (a command that increments a value in a hash). The voting code is shown

in listing 1.6.  

ONE_WEEK_IN_SECONDS = 7 * 86400
VOTE_SCORE = 432

def article_vote(conn, user, article):
cutoff = time.time() - ONE_WEEK_IN_SECONDS
if conn.zscore('time:', article) < cutoff:

return

article_id = article.partition(':')[-1]
if conn.sadd('voted:' + article_id, user):

conn.zincrby('score:', article, VOTE_SCORE)
conn.hincrby(article, 'votes', 1)

REDIS TRANSACTIONS In order to be correct, technically our SADD, ZINCRBY,
and HINCRBY calls should be in a transaction. But since we don’t cover transac-
tions until chapter 4, we won’t worry about them for now.

Listing 1.6 The article_vote() function 

Article 100408 got a new vote, so its score was increased.

article:100635       1332164063.49

article:100408       1332174713.47

article:100716       1332225027.26

score: zset

article:100635       1332164063.49

article:100408       1332175145.47

article:100716       1332225027.26

score: zset

Since user 115423 voted on the article, they are added to the voted SET.

user:234487

user:253378

user:364680

voted:100408 set

user:234487

user:115423

user:253378

user:132097

user:350917

user:364680

user:132097

... ...

voted:100408 set

Figure 1.11 What happens to our structures when user 115423 votes for article 100408

Prepare our 
constants.

Calculate the cutoff 
time for voting.

Check to see if the arti-
cle can still be voted on 
(we could use the article 
HASH here, but scores 
are returned as floats so 
we don’t have to cast it).

Get the id portion 
from the article:id 
identifier.

If the user hasn’t voted for this 
article before, increment the 
article score and vote count.
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Voting isn’t so bad, is it? But what about posting an article?

1.3.2 Posting and fetching articles

To post an article, we first create an article ID by incrementing a counter with INCR.

We then create the voted SET by adding the poster’s ID to the SET with SADD. To ensure

that the SET is removed after one week, we’ll give it an expiration time with the EXPIRE

command, which lets Redis automatically delete it. We then store the article informa-

tion with HMSET. Finally, we add the initial score and posting time to the relevant ZSETs

with ZADD. We can see the code for posting an article in listing 1.7.  

def post_article(conn, user, title, link):
article_id = str(conn.incr('article:'))        

voted = 'voted:' + article_id
conn.sadd(voted, user)
conn.expire(voted, ONE_WEEK_IN_SECONDS)

now = time.time()
article = 'article:' + article_id
conn.hmset(article, {

'title': title,
'link': link,
'poster': user,
'time': now,
'votes': 1,

})

conn.zadd('score:', article, now + VOTE_SCORE)
conn.zadd('time:', article, now)

return article_id

Okay, so we can vote, and we can post articles. But what about fetching the current

top-scoring or most recent articles? For that, we can use ZRANGE to fetch the article

IDs, and then we can make calls to HGETALL to fetch information about each article.

The only tricky part is that we must remember that ZSETs are sorted in ascending

order by their score. But we can fetch items based on the reverse order with

ZREVRANGEBYSCORE. The function to fetch a page of articles is shown in listing 1.8.  

ARTICLES_PER_PAGE = 25

def get_articles(conn, page, order='score:'):
start = (page-1) * ARTICLES_PER_PAGE
end = start + ARTICLES_PER_PAGE - 1

ids = conn.zrevrange(order, start, end)
articles = []
for id in ids:

article_data = conn.hgetall(id)

Listing 1.7 The post_article() function 

Listing 1.8 The get_articles() function 

Generate a new article id.

Start with the posting user having 
voted for the article, and set the 
article voting information to 
automatically expire in a week (we 
discuss expiration in chapter 3).

Create the 
article hash.

Add the article to the time 
and score ordered ZSETs.

Set up the start and end indexes 
for fetching the articles.

Fetch the article ids.

Get the article information 
from the list of article ids.
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article_data['id'] = id
articles.append(article_data)

return articles

DEFAULT ARGUMENTS AND KEYWORD ARGUMENTS Inside listing 1.8, we used an
argument named order, and we gave it a default value of score:. Some of the
details of default arguments and passing arguments as names (instead of by
position) can be strange to newcomers to the Python language. If you’re hav-
ing difficulty understanding what’s going on with function definition or argu-
ment passing, the Python language tutorial offers a good introduction to
what’s going on, and you can jump right to the particular section by visiting
this shortened URL: http://mng.bz/KM5x.

We can now get the top-scoring articles across the entire site. But many of these article

voting sites have groups that only deal with articles of a particular topic like cute ani-

mals, politics, programming in Java, and even the use of Redis. How could we add or

alter our code to offer these topical groups? 

1.3.3 Grouping articles

To offer groups requires two steps. The first step is to add information about which

articles are in which groups, and the second is to actually fetch articles from a group.

We’ll use a SET for each group, which stores the article IDs of all articles in that group.

In listing 1.9, we see a function that allows us to add and remove articles from groups. 

def add_remove_groups(conn, article_id, to_add=[], to_remove=[]):
article = 'article:' + article_id
for group in to_add:

conn.sadd('group:' + group, article)
for group in to_remove:

conn.srem('group:' + group, article)

At first glance, these SETs with article information may not seem that useful. So far,

you’ve only seen the ability to check whether a SET has an item. But Redis has the

capability to perform operations involving multiple SETs, and in some cases, Redis can

perform operations between SETs and ZSETs.

 When we’re browsing a specific group, we want to be able to see the scores of all of

the articles in that group. Or, really, we want them to be in a ZSET so that we can have

the scores already sorted and ready for paging over. Redis has a command called

ZINTERSTORE, which, when provided with SETs and ZSETs, will find those entries that

are in all of the SETs and ZSETs, combining their scores in a few different ways (items

in SETs are considered to have scores equal to 1). In our case, we want the maximum

score from each item (which will be either the article score or when the article was

posted, depending on the sorting option chosen).

Listing 1.9 The add_remove_groups() function 

Get the article information 
from the list of article ids.

Construct the article 
information like we 
did in post_article.

Add the article 
to groups that it 
should be a part of.

Remove the article from
groups that it should be

removed from.

http://mng.bz/KM5x
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To visualize what is going on, let’s look at figure 1.12. This figure shows an example

ZINTERSTORE operation on a small group of articles stored as a SET with the much

larger (but not completely shown) ZSET of scored articles. Notice how only those arti-

cles that are in both the SET and the ZSET make it into the result ZSET?

 To calculate the scores of all of the items in a group, we only need to make a

ZINTERSTORE call with the group and the scored or recent ZSETs. Because a group may

be large, it may take some time to calculate, so we’ll keep the ZSET around for 60 sec-

onds to reduce the amount of work that Redis is doing. If we’re careful (and we are),

we can even use our existing get_articles() function to handle pagination and arti-

cle data fetching so we don’t need to rewrite it. We can see the function for fetching a

page of articles from a group in listing 1.10.  

def get_group_articles(conn, group, page, order='score:'):
key = order + group
if not conn.exists(key):

conn.zinterstore(key,
['group:' + group, order],
aggregate='max',

)
conn.expire(key, 60)

return get_articles(conn, page, key)

On some sites, articles are typically only in one or two groups at most (“all articles”

and whatever group best matches the article). In that situation, it would make more

sense to keep the group that the article is in as part of the article’s HASH, and add one

more ZINCRBY call to the end of our article_vote() function. But in our case, we

chose to allow articles to be a part of multiple groups at the same time (maybe a pic-

ture can be both cute and funny), so to update scores for articles in multiple groups,

Listing 1.10 The get_group_articles() function 

article:92617

article:100408

article:83729

groups:programming set

article:83729         1330425826.28

article:92617         1331147511.67

article:100408       1332174713.47

score:programming zset

article:83729         1330425826.28

article:92617         1331147511.67

article:100635       1332164063.49

score: zset

article:100408       1332174713.47

article:100716       1332225027.26

...                                                ...

Figure 1.12 The newly created ZSET, score:programming, is an intersection of the SET and ZSET. 

Intersection will only keep members from SETs/ZSETs when the members exist in all of the input SETs/

ZSETs. When intersecting SETs and ZSETs, SETs act as though they have a score of 1, so when inter-

secting with an aggregate of MAX, we’re only using the scores from the score: input ZSET, because 

they’re all greater than 1.

Create a key for 
each group and 
each sort order.

If we haven’t sorted these articles 
recently, we should sort them.

Actually sort
the articles

in the group
based on
score or
recency.

Tell Redis to automatically 
expire the ZSET in 60 seconds.

Call our earlier get_articles() 
function to handle pagination 
and article data fetching.
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we’d need to increment all of those groups at the same time. For an article in many

groups, that could be expensive, so we instead occasionally perform an intersection.

How we choose to offer flexibility or limitations can change how we store and update

our data in any database, and Redis is no exception.

Now that we can get articles, post articles, vote on articles, and even have the ability to

group articles, we’ve built a back end for surfacing popular links or articles. Congratu-

lations on getting this far! If you had any difficulty in following along, understanding

the examples, or getting the solutions to work, keep reading to find out where you can

get help.

1.4 Getting help

If you’re having problems with Redis, don’t be afraid to look for or ask for help. Many

others will probably have had a similar issue. First try searching with your favorite

search engine for the particular error message you’re seeing.

 If you can’t find a solution to your problem and are having problems with an exam-

ple in this book, go ahead and ask your question on the Manning forums: http://

www.manning-sandbox.com/forum.jspa?forumID=809. Either I or someone else who’s

familiar with the book should be able to help.

 If you’re having issues with Redis or solving a problem with Redis that isn’t in this

book, please join and post your question to the Redis mailing list at https://

groups.google.com/d/forum/redis-db/. Again, either I or someone who’s familiar

with Redis should be able to help.

 And finally, if you’re having difficulties with a particular language or library, you

can also try the Redis mailing list, but you may have better luck searching the mailing

list or forum for the library you’re using.

1.5 Summary

In this chapter, we covered the basics of what Redis is, and how it’s both similar to and

different from other databases. We also talked about a few reasons why you’ll want to

use Redis in your next project. When reading through the upcoming chapters, try to

remember that we aren’t building toward a single ultimate application or tool; we’re

looking at a variety of problems that Redis can help you to solve.

Exercise: Down-voting

In our example, we only counted people who voted positively for an article. But on

many sites, negative votes can offer useful feedback to everyone. Can you think of a

way of adding down-voting support to article_vote() and post_article()? If pos-

sible, try to allow users to switch their votes. Hint: if you’re stuck on vote switching,

check out SMOVE, which I introduce briefly in chapter 3.

http://mng.bz/KM5x
http://mng.bz/KM5x
https://groups.google.com/d/forum/redis-db/
https://groups.google.com/d/forum/redis-db/
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 If there’s one concept that you should take away from this chapter, it’s that Redis is

another tool that you can use to solve problems. Redis has structures that no other

database offers, and because Redis is in-memory (making it fast), remote (making it

accessible to multiple clients/servers), persistent (giving you the opportunity to keep

data between reboots), and scalable (via slaving and sharding) you can build solutions

to a variety of problems in ways that you’re already used to.

 As you read the rest of the book, try to pay attention to how your approach to solv-

ing problems changes. You may find that your way of thinking about data-driven prob-

lems moves from “How can I bend my idea to fit into the world of tables and rows?” to

“Which structures in Redis will result in an easier-to-maintain solution?”

 In chapter 2, we’ll use Redis to solve problems that come up in the world of web appli-

cations, so keep reading to get an even bigger sense of what Redis can help you do.

www.allitebooks.com

http://www.allitebooks.org
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Anatomy of a
 Redis web application

In the first chapter, I introduced you to what Redis is about and what it’s capable of.

In this chapter, I’ll continue on that path, starting to dig into several examples that

come up in the context of some types of web applications. Though I’ve simplified

the problems quite a bit compared to what happens in the real world, each of these

pieces can actually be used with little modification directly in your applications.

This chapter is primarily meant as a practical guide to what you can do with Redis,

and chapter 3 is more of a command reference.

 To start out, let’s look at what we mean by a web application from the high level.

Generally, we mean a server or service that responds over the HTTP protocol to

This chapter covers

■ Login cookies

■ Shopping cart cookies

■ Caching generated web pages

■ Caching database rows

■ Analyzing web page visits
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requests made by web browsers. Here are the typical steps that a web server goes

through to respond to a request:

1 The server parses the request.

2 The request is forwarded to a predefined handler.

3 The handler may make requests to fetch data from a database.

4 With the retrieved data, the handler then renders a template as a response.

5 The handler returns the rendered response, which gets passed back to the client.

This list is a high-level overview of what happens in a typical web server. Web requests

in this type of situation are considered to be stateless in that the web servers themselves

don’t hold information about past requests, in an attempt to allow for easy replace-

ment of failed servers. Books have been written about how to optimize every step in

that process, and this book does similarly. How this book differs is that it explains how

to replace some queries against a typical relational database with faster queries against

Redis, and how to use Redis with access patterns that would’ve been too costly using a

relational database.

 Through this chapter, we’ll look at and solve problems that come up in the context

of Fake Web Retailer, a fairly large (fake) web store that gets about 100 million hits per

day from roughly 5 million unique users who buy more than 100,000 items per day.

These numbers are big, but if we can solve big problems easily, then small and

medium problems should be even easier. And though these solutions target a large

web retailer, all but one of them can be handled by a Redis server with no more than a

few gigabytes of memory, and are intended to improve performance of a system

responding to requests in real time.

 Each of the solutions presented (or some variant of them) has been used to solve

real problems in production environments. More specifically, by reducing traditional

database load by offloading some processing and storage to Redis, web pages were

loaded faster with fewer resources.

 Our first problem is to use Redis to help with managing user login sessions.

2.1 Login and cookie caching

Whenever we sign in to services on the internet, such as bank accounts or web mail,

these services remember who we are using cookies. Cookies are small pieces of data that

websites ask our web browsers to store and resend on every request to that service. For

login cookies, there are two common methods of storing login information in cook-

ies: a signed cookie or a token cookie.

Signed cookies typically store the user’s name, maybe their user ID, when they last

logged in, and whatever else the service may find useful. Along with this user-specific

information, the cookie also includes a signature that allows the server to verify that

the information that the browser sent hasn’t been altered (like replacing the login

name of one user with another).
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Token cookies use a series of random bytes as the data in the cookie. On the server,

the token is used as a key to look up the user who owns that token by querying a data-

base of some kind. Over time, old tokens can be deleted to make room for new

tokens. Some pros and cons for both signed cookies and token cookies for referenc-

ing information are shown in table 2.1. 

For the sake of not needing to implement signed cookies, Fake Web Retailer chose to

use a token cookie to reference an entry in a relational database table, which stores

user login information. By storing this information in the database, Fake Web Retailer

can also store information like how long the user has been browsing, or how many

items they’ve looked at, and later analyze that information to try to learn how to better

market to its users.

 As is expected, people will generally look through many different items before

choosing one (or a few) to buy, and recording information about all of the different

items seen, when the user last visited a page, and so forth, can result in substantial data-

base writes. In the long term, that data is useful, but even with database tuning, most

relational databases are limited to inserting, updating, or deleting roughly 200–2,000

individual rows every second per database server. Though bulk inserts/updates/deletes

can be performed faster, a customer will only be updating a small handful of rows for

each web page view, so higher-speed bulk insertion doesn’t help here.

 At present, due to the relatively large load through the day (averaging roughly 1,200

writes per second, close to 6,000 writes per second at peak), Fake Web Retailer has had

to set up 10 relational database servers to deal with the load during peak hours. It’s our

job to take the relational databases out of the picture for login cookies and replace them

with Redis.

 To get started, we’ll use a HASH to store our mapping from login cookie tokens to the

user that’s logged in. To check the login, we need to fetch the user based on the token

and return it, if it’s available. The following listing shows how we check login cookies.

def check_token(conn, token):
return conn.hget('login:', token)

Table 2.1 Pros and cons of signed cookies and token cookies

Cookie type Pros Cons

Signed cookie Everything needed to verify the cookie is in 

the cookie

Additional information can be included 

and signed easily

Correctly handling signatures is hard

It’s easy to forget to sign and/or verify 

data, allowing security vulnerabilities

Token cookie Adding information is easy

Very small cookie, so mobile and slow cli-

ents can send requests faster

More information to store on the server

If using a relational database, cookie load-

ing/storing can be expensive

Listing 2.1 The check_token() function

Fetch and return the 
given user, if available.



27Login and cookie caching

Checking the token isn’t very exciting, because all of the interesting stuff happens when

we’re updating the token itself. For the visit, we’ll update the login HASH for the user and

record the current timestamp for the token in the ZSET of recent users. If the user was

viewing an item, we also add the item to the user’s recently viewed ZSET and trim that

ZSET if it grows past 25 items. The function that does all of this can be seen next.

def update_token(conn, token, user, item=None):
timestamp = time.time()
conn.hset('login:', token, user)
conn.zadd('recent:', token, timestamp)
if item:

conn.zadd('viewed:' + token, item, timestamp)
conn.zremrangebyrank('viewed:' + token, 0, -26)

And you know what? That’s it. We’ve now recorded when a user with the given session

last viewed an item and what item that user most recently looked at. On a server made

in the last few years, you can record this information for at least 20,000 item views

every second, which is more than three times what we needed to perform against the

database. This can be made even faster, which we’ll talk about later. But even for this

version, we’ve improved performance by 10–100 times over a typical relational data-

base in this context.

 Over time, memory use will grow, and we’ll want to clean out old data. As a way of

limiting our data, we’ll only keep the most recent 10 million sessions.1 For our

cleanup, we’ll fetch the size of the ZSET in a loop. If the ZSET is too large, we’ll fetch

the oldest items up to 100 at a time (because we’re using timestamps, this is just the

first 100 items in the ZSET), remove them from the recent ZSET, delete the login

tokens from the login HASH, and delete the relevant viewed ZSETs. If the ZSET isn’t too

large, we’ll sleep for one second and try again later. The code for cleaning out old ses-

sions is shown next.

QUIT = False
LIMIT = 10000000

def clean_sessions(conn):
while not QUIT:

size = conn.zcard('recent:')
if size <= LIMIT:

time.sleep(1)

Listing 2.2 The update_token() function

1 Remember that these sorts of limits are meant as examples that you could use in a large-scale production
situation. Feel free to reduce these to a much smaller number in your testing and development to see that
they work.

Listing 2.3 The clean_sessions() function

Get the timestamp.

Record when 
the token was 
last seen.

Keep a mapping 
from the token to 
the logged-in user.Record

that the
user

viewed
the item.

Remove old items, keeping 
the most recent 25.

Find out how many 
tokens are known.

We’re still under our limit; 
sleep and try again.
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continue

end_index = min(size - LIMIT, 100)
tokens = conn.zrange('recent:', 0, end_index-1)

session_keys = []         
for token in tokens:

session_keys.append('viewed:' + token)

conn.delete(*session_keys)
conn.hdel('login:', *tokens)
conn.zrem('recent:', *tokens)

How could something so simple scale to handle five million users daily? Let’s check the

numbers. If we expect five million unique users per day, then in two days (if we always

get new users every day), we’ll run out of space and will need to start deleting tokens.

In one day there are 24 x 3600 = 86,400 seconds, so there are 5 million / 86,400 < 58 new

sessions every second on average. If we ran our cleanup function every second (as our

code implements), we’d clean up just under 60 tokens every second. But this code can

actually clean up more than 10,000 tokens per second across a network, and over 60,000

tokens per second locally, which is 150–1,000 times faster than we need.

WHERE TO RUN CLEANUP FUNCTIONS This and other examples in this book will
sometimes include cleanup functions like listing 2.3. Depending on the
cleanup function, it may be written to be run as a daemon process (like list-
ing 2.3), to be run periodically via a cron job, or even to be run during every
execution (section 6.3 actually includes the cleanup operation as part of an
“acquire” operation). As a general rule, if the function includes a while not
QUIT: line, it’s supposed to be run as a daemon, though it could probably be
modified to be run periodically, depending on its purpose.

PYTHON SYNTAX FOR PASSING AND RECEIVING A VARIABLE NUMBER OF

ARGUMENTS Inside listing 2.3, you’ll notice that we called three functions
with a syntax similar to conn.delete(*vtokens). Basically, we’re passing a
sequence of arguments to the underlying function without previously unpack-
ing the arguments. For further details on the semantics of how this works, you
can visit the Python language tutorial website by visiting this short url: http://
mng.bz/8I7W.

EXPIRING DATA IN REDIS As you learn more about Redis, you’ll likely discover
that some of the solutions we present aren’t the only ways to solve the prob-
lem. In this case, we could omit the recent ZSET, store login tokens as plain
key-value pairs, and use Redis EXPIRE to set a future date or time to clean out
both sessions and our recently viewed ZSETs. But using EXPIRE prevents us
from explicitly limiting our session information to 10 million users, and pre-
vents us from performing abandoned shopping cart analysis during session
expiration, if necessary in the future. 

Those familiar with threaded or concurrent programming may have seen that the pre-

ceding cleanup function has a race condition where it’s technically possible for a user

Fetch the token IDs that 
should be removed.

Prepare the key names 
for the tokens to delete.

Remove the 
oldest tokens.

http://mng.bz/8I7W
http://mng.bz/8I7W
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to manage to visit the site in the same fraction of a second when we were deleting

their information. We’re not going to worry about that here because it’s unlikely, and

because it won’t cause a significant change in the data we’re recording (aside from

requiring that the user log in again). We’ll talk about guarding against race conditions

and about how we can even speed up the deletion operation in chapters 3 and 4.

 We’ve reduced how much we’ll be writing to the database by millions of rows every

day. This is great, but it’s just the first step toward using Redis in our web application.

In the next section, we’ll use Redis for handling another kind of cookie.

2.2 Shopping carts in Redis

One of the first uses of cookies on the web was pioneered by Netscape way back in the

mid ’90s, and ultimately resulted in the login session cookies we just talked about.

Originally, cookies were intended to offer a way for a web retailer to keep a sort of

shopping cart for the user, in order to track what items they wanted to buy. Prior to

cookies, there were a few different solutions for keeping track of shopping carts, but

none were particularly easy to use.

 The use of shopping cart cookies is common, as is the storage of the entire cart

itself in the cookie. One huge advantage to storing shopping carts in cookies is that

you don’t need to write to a database to keep them. But one of the disadvantages is

that you also need to keep reparsing and validating the cookie to ensure that it has the

proper format and contains items that can actually be purchased. Yet another disad-

vantage is that cookies are passed with every request, which can slow down request

sending and processing for large cookies.

 Because we’ve had such good luck with session cookies and recently viewed items,

we’ll push our shopping cart information into Redis. Since we’re already keeping user

session cookies in Redis (along with recently viewed items), we can use the same

cookie ID for referencing the shopping cart.

 The shopping cart that we’ll use is simple: it’s a HASH that maps an item ID to the

quantity of that item that the customer would like to purchase. We’ll have the web

application handle validation for item count, so we only need to update counts in the

cart as they change. If the user wants more than 0 items, we add the item(s) to the

HASH (replacing an earlier count if it existed). If not, we remove the entry from the

hash. Our add_to_cart() function can be seen in this listing.

def add_to_cart(conn, session, item, count):
if count <= 0:

conn.hrem('cart:' + session, item)
else:

conn.hset('cart:' + session, item, count)    

While we’re at it, we’ll update our session cleanup function to include deleting old

shopping carts as clean_full_sessions() in the next listing.

Listing 2.4 The add_to_cart() function

Remove the item 
from the cart.

Add the item to the cart.
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def clean_full_sessions(conn):
while not QUIT:

size = conn.zcard('recent:')
if size <= LIMIT:

time.sleep(1)
continue

end_index = min(size - LIMIT, 100)
sessions = conn.zrange('recent:', 0, end_index-1)

session_keys = []
for sess in sessions:

session_keys.append('viewed:' + sess)
session_keys.append('cart:' + sess)   

conn.delete(*session_keys)
conn.hdel('login:', *sessions)
conn.zrem('recent:', *sessions)

We now have both sessions and the shopping cart stored in Redis, which helps to

reduce request size, as well as allows the performing of statistical calculations on visi-

tors to our site based on what items they looked at, what items ended up in their shop-

ping carts, and what items they finally purchased. All of this lets us build (if we want

to) features similar to many other large web retailers: “People who looked at this item

ended up buying this item X% of the time,” and “People who bought this item also

bought these other items.” This can help people to find other related items, which is

ultimately good for business.

 With both session and shopping cart cookies in Redis, we now have two major

pieces for performing useful data analysis. Continuing on, let’s look at how we can fur-

ther reduce our database and web front-end load with caching.

2.3 Web page caching

When producing web pages dynamically, it’s common to use a templating language to

simplify page generation. Gone are the days when each page would be written by

hand. Modern web pages are generated from page templates with headers, footers,

side menus, toolbars, content areas, and maybe even generated JavaScript.

 Despite being capable of dynamically generating content, the majority of pages

that are served on Fake Web Retailer’s website don’t change much on a regular basis.

Sure, some new items are added to the catalog, old items are removed, sometimes

there are specials, and sometimes there are even “hot items” pages. But really, only a

handful of account settings, past orders, shopping cart/checkout, and similar pages

have content that needs to be generated on every page load.

 By looking at their view numbers, Fake Web Retailer has determined that 95% of

the web pages that they serve change at most once per day, and don’t actually require

content to be dynamically generated. It’s our job to stop generating 95% of pages for

every load. By reducing the amount of time we spend generating static content, we

Listing 2.5 The clean_full_sessions() function

The required added 
line to delete the 
shopping cart for 
old sessions
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can reduce the number of servers necessary to handle the same load, and we can serve

our site faster. (Research has shown that reducing the time users spend waiting for

pages to load increases their desire to use a site and improves how they rate the site.)

 All of the standard Python application frameworks offer the ability to add layers that

can pre- or post-process requests as they’re handled. These layers are typically called

middleware or plugins. Let’s create one of these layers that calls out to our Redis caching

function. If a web request can’t be cached, we’ll generate the page and return the con-

tent. If a request can be cached, we’ll try to fetch and return the page from the cache;

otherwise we’ll generate the page, cache the result in Redis for up to 5 minutes, and

return the content. Our simple caching method can be seen in the next listing.

def cache_request(conn, request, callback):
if not can_cache(conn, request):

return callback(request)    

page_key = 'cache:' + hash_request(request)
content = conn.get(page_key)

if not content:
content = callback(request)
conn.setex(page_key, content, 300)

return content

For that 95% of content that could be cached and is loaded often, this bit of code

removes the need to dynamically generate viewed pages for 5 minutes. Depending on

the complexity of content, this one change could reduce the latency for a data-heavy

page from maybe 20–50ms, down to one round trip to Redis (under 1ms for a local

connection, under 5ms for computers close to each other in the same data center).

For pages that used to hit the database for data, this can further reduce page load

time and database load.

 Now that we’ve cut loading time for pages that don’t change often, can we keep

using Redis to cut loading time for pages that do change often? Of course we can!

Keep reading to find out how.

2.4 Database row caching

In this chapter so far, we’ve moved login and visitor sessions from our relational data-

base and web browser to Redis, we’ve taken shopping carts out of the relational data-

base and put them into Redis, and we’ve cached entire pages in Redis. This has

helped us improve performance and reduce the load on our relational database,

which has also lowered our costs.

Listing 2.6 The cache_request() function

If we can’t cache the request,
immediately call the callback. Convert the request into a 

simple string key for later 
lookups.

Fetch the cached content if 
we can, and it’s available.

Generate the content if we can’t cache 
the page, or if it wasn’t cached.

Cache the newly 
generated content 
if we can cache it.Return the content.
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 Individual product pages that we’re displaying to a user typically only load one or

two rows from the database: the user information for the user who’s logged in (with

our generated pages, we can load that with an AJAX call to keep using our cache), and

the information about the item itself. Even for pages where we may not want to cache

the whole page (customer account pages, a given user’s past orders, and so on), we

could instead cache the individual rows from our relational database.

 As an example of where caching rows like this would be useful, let’s say that Fake

Web Retailer has decided to start a new promotion to both clean out some older

inventory and get people coming back to spend money. To make this happen, we’ll

start performing daily deal sales for certain items until they run out. In the case of a

deal, we can’t cache the full page, because then someone might see a version of the

page with an incorrect count of items remaining. And though we could keep reading

the item’s row from the database, that could push our database to become over-

utilized, which would then increase our costs because we’d need to scale our data-

bases up again.

 To cache database rows in preparation for a heavy load, we’ll write a daemon func-

tion that will run continuously, whose purpose will be to cache specific database rows

in Redis, updating them on a variable schedule. The rows themselves will be JSON-

encoded dictionaries stored as a plain Redis value. We’ll map column names and row

values to the dictionary keys and values. An

example row can be seen in figure 2.1.

 In order to know when to update the cache,

we’ll use two ZSETs. Our first ZSET, the sched-

uleZSET, will use the row ID from the original

database row as the member of the ZSET. We’ll

use a timestamp for our schedule scores, which

will tell us when the row should be copied to

Redis next. Our second ZSET, the delayZSET,

will use the same row ID for the members, but

the score will be how many seconds to wait

between cache updates.

USING JSON INSTEAD OF OTHER FORMATS Our use of JSON instead of XML,
Google’s protocol buffers, Thrift, BSON, MessagePack, or other serialization
formats is a subjective one. We generally use JSON because it’s human read-
able, somewhat concise, and it has fast encoding and decoding libraries avail-
able in every language with an existing Redis client (as far as we know). If
your situation requires the use of another format, or if you’d prefer to use a
different format, then feel free to do so.

NESTED STRUCTURES One feature that users of other non-relational databases
sometime expect is the ability to nest structures. Specifically, some new users
of Redis expect that a HASH should be able to have a value that’s a ZSET or
LIST. Though conceptually this is fine, there’s a question that comes up early

Value

inv:273

{"qty":629, "name":

"GTab 7inch", "description":

"..."}

string

TypeKey

Figure 2.1 A cached database row for an 

item to be sold online
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in such a discussion that boils down to a simple example, “How do I incre-
ment a value in a HASH that’s nested five levels deep?” As a matter of keeping
the syntax of commands simple, Redis doesn’t allow nested structures. If nec-
essary, you can use key names for this (user:123 could be a HASH and
user:123:posts could be a ZSET of recent posts from that user). Or you can
explicitly store your nested structures using JSON or some other serialization
library of your choice (Lua scripting, covered in chapter 11, supports server-
side manipulation of JSON and MessagePack encoded data).

In order for rows to be cached on a regular basis by the caching function, we’ll first

add the row ID to our delay ZSET with the given delay. This is because our actual cach-

ing function will require the delay, and if it’s missing, will remove the scheduled item.

When the row ID is in the delay ZSET, we’ll then add the row ID to our schedule ZSET

with the current timestamp. If we want to stop a row from being synced to Redis and

remove it from the cache, we can set the delay to be less than or equal to 0, and our

caching function will handle it. Our function to schedule or stop caching can be seen

in the following listing.

def schedule_row_cache(conn, row_id, delay):
conn.zadd('delay:', row_id, delay)
conn.zadd('schedule:', row_id, time.time())

Now that we have the scheduling part done, how do we cache the rows? We’ll pull the

first item from the schedule ZSET with its score. If there are no items, or if the time-

stamp returned is in the future, we’ll wait 50 milliseconds and try again. When we

have an item that should be updated now, we’ll check the row’s delay. If the delay for

the next caching time is less than or equal to 0, we’ll remove the row ID from the delay

and schedule ZSETs, as well as delete the cached row and try again. Finally, for any row

that should be cached, we’ll update the row’s schedule, pull the row from the data-

base, and save a JSON-encoded version of the row to Redis. Our function for doing

this can be seen in this listing.

def cache_rows(conn):
while not QUIT:

next = conn.zrange('schedule:', 0, 0, withscores=True)
now = time.time()
if not next or next[0][1] > now:

time.sleep(.05)          
continue

row_id = next[0][0]

Listing 2.7 The schedule_row_cache() function

Listing 2.8 The cache_rows() daemon function

Set the delay for 
the item first.

Schedule the item 
to be cached now.

Find the next row that should be cached
(if any), including the timestamp, as a

list of tuples with zero or one items.

No rows can be cached now, 
so wait 50 milliseconds and 
try again.

www.allitebooks.com

http://www.allitebooks.org
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delay = conn.zscore('delay:', row_id)
if delay <= 0:

conn.zrem('delay:', row_id)
conn.zrem('schedule:', row_id)
conn.delete('inv:' + row_id)
continue

row = Inventory.get(row_id)                   
conn.zadd('schedule:', row_id, now + delay)
conn.set('inv:' + row_id, json.dumps(row.to_dict()))

With the combination of a scheduling function and a continuously running caching

function, we’ve added a repeating scheduled autocaching mechanism. With these two

functions, inventory rows can be updated as frequently as we think is reasonable. For a

daily deal with inventory counts being reduced and affecting whether someone can

buy the item, it probably makes sense to update the cached row every few seconds if

there are many buyers. But if the data doesn’t change often, or when back-ordered

items are acceptable, it may make sense to only update the cache every minute. Both

are possible with this simple method.

 Now that we’re caching individual rows in Redis, could it be possible to further

reduce our memory load by caching only some of our pages?

2.5 Web page analytics 

As people come to the websites that we build, interact with them, maybe even pur-

chase something from them, we can learn valuable information. For example, if we

only pay attention to pages that get the most views, we can try to change the way the

pages are formatted, what colors are being used, maybe even change what other links

are shown on the pages. Each one of these changes can lead to a better or worse expe-

rience on a page or subsequent pages, or even affect buying behavior.

 In sections 2.1 and 2.2, we talked about gathering information about items that a

user has looked at or added to their cart. In section 2.3, we talked about caching gen-

erated web pages in order to reduce page load times and improve responsiveness.

Unfortunately, we went overboard with our caching for Fake Web Retailer; we cached

every one of the 100,000 available product pages, and now we’re running out of mem-

ory. After some work, we’ve determined that we can only reasonably hold about 10,000

pages in the cache.

 If you remember from section 2.1, we kept a reference to every item that was vis-

ited. Though we can use that information directly to help us decide what pages to

cache, actually calculating that could take a long time to get good numbers. Instead,

let’s add one line to the update_token() function from listing 2.2, which we see next.

def update_token(conn, token, user, item=None):
timestamp = time.time()
conn.hset('login:', token, user)
conn.zadd('recent:', token, timestamp)

Listing 2.9 The updated update_token() function

Get the delay before 
the next schedule.

The item shouldn’t be cached 
anymore; remove it from the cache.

Get the database row.
Update the

schedule and set
the cache value.
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if item:
conn.zadd('viewed:' + token, item, timestamp)
conn.zremrangebyrank('viewed:' + token, 0, -26)
conn.zincrby('viewed:', item, -1)            

With this one line added, we now have a record of all of the items that are viewed.

Even more useful, that list of items is ordered by the number of times that people

have seen the items, with the most-viewed item having the lowest score, and thus hav-

ing an index of 0. Over time, some items will be seen many times and others rarely.

Obviously we only want to cache commonly seen items, but we also want to be able to

discover new items that are becoming popular, so we know when to cache them.

 To keep our top list of pages fresh, we need to trim our list of viewed items, while at

the same time adjusting the score to allow new items to become popular. You already

know how to remove items from the ZSET from section 2.1, but rescaling is new. ZSETs

have a function called ZINTERSTORE, which lets us combine one or more ZSETs and mul-

tiply every score in the input ZSETs by a given number. (Each input ZSET can be multi-

plied by a different number.) Every 5 minutes, let’s go ahead and delete any item that

isn’t in the top 20,000 items, and rescale the view counts to be half has much as they

were before. The following listing will both delete items and rescale remaining scores.

def rescale_viewed(conn):
while not QUIT:

conn.zremrangebyrank('viewed:', 20000, -1)
conn.zinterstore('viewed:', {'viewed:': .5})
time.sleep(300)                 

With the rescaling and the counting, we now have a constantly updated list of the

most-frequently viewed items at Fake Web Retailer. Now all we need to do is to update

our can_cache() function to take into consideration our new method of deciding

whether a page can be cached, and we’re done. You can see our new can_cache()

function here.

def can_cache(conn, request):
item_id = extract_item_id(request)
if not item_id or is_dynamic(request):

return False
rank = conn.zrank('viewed:', item_id)      
return rank is not None and rank < 10000

Listing 2.10 The rescale_viewed() daemon function

Listing 2.11 The can_cache() function

The line we 
need to add to 
update_token()

Remove any item not in the
top 20,000 viewed items.

Rescale all counts 
to be 1/2 of what 
they were before.

Do it again 
in 5 minutes.

Get the item ID for
the page, if any. Check whether the 

page can be statically 
cached and whether 
this is an item page.

Get the rank of the item.

Return whether the item 
has a high enough view 
count to be cached.
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And with that final piece, we’re now able to take our actual viewing statistics and only

cache those pages that are in the top 10,000 product pages. If we wanted to store even

more pages with minimal effort, we could compress the pages before storing them in

Redis, use a technology called edge side includes to remove parts of our pages, or we

could pre-optimize our templates to get rid of unnecessary whitespace. Each of these

techniques and more can reduce memory use and increase how many pages we could

store in Redis, all for additional performance improvements as our site grows.

2.6 Summary

In this chapter, we’ve covered a few methods for reducing database and web server

load for Fake Web Retailer. The ideas and methods used in these examples are cur-

rently in use in real web applications today.

 If there’s one thing that you should take away from this chapter, it’s that as you’re

building new pieces that fit within your application, you shouldn’t be afraid to revisit

and update old components that you’ve already written. Sometimes you may find that

your earlier solutions got you a few steps toward what you need now (as was the case

with both shopping cart cookies and web analytics combined with our initial login ses-

sion cookies code). As we continue through this book, we’ll keep introducing new

topics, and we’ll occasionally revisit them later to improve performance or functional-

ity, or to reuse ideas we already understand.

 Now that you’ve gotten a taste for what Redis can do as part of a real application,

the next chapter will go over a wider variety of commands available in Redis. After you

learn more about each structure and what can be done with them, you’ll be ready to

build even more useful components for other layers of your application or stack of

services. So what are you waiting for? Keep reading!



Part 2

Core concepts

Through these next several chapters, we’ll dig into standard Redis com-

mands, how they manipulate data, and how to configure Redis. In the latter chap-

ters, we’ll build ever-growing pieces of support tools and applications, until we

finally build a simple social network completely within Redis.
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Commands in Redis

In this chapter, we’ll primarily cover commands that we haven’t already covered in

chapters 1 and 2. By learning about Redis through its commands, you’ll be able to

build on the examples provided and have a better understanding of how to solve

your own problems. If you’re looking for short examples that are more than the

simple interactions I show here, you’ll find some in chapter 2.

 The commands that are highlighted in this chapter are broken down by struc-

ture or concept, and were chosen because they include 95% or more of the typical

Redis calls in a variety of applications. The examples are interactions in the con-

sole, similar to the way I introduced each of the structures in chapter 1. Where

appropriate, I’ll reference earlier or later sections that use those commands.

 In the section for each of the different data types, I’ll show commands that are

unique to the different structures, primarily focusing on what makes those struc-

tures and commands distinct. Let’s start by seeing how Redis STRINGs offer more

than just GET and SET operations.

This chapter covers

■ String, list, and set commands

■ Hash and sorted set commands

■ Publish/subscribe commands

■ Other commands
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ADDITIONAL DOCUMENTATION FOR COMMANDS NOT COVERED In this chapter, I
only cover the most commonly used commands or those commands that we’ll
use in later chapters. If you’re looking for a full command and documentation
reference, you can visit http://redis.io/commands.

REDIS 2.4 AND 2.6 As mentioned in appendix A, as of the time of this writing,
precompiled versions of Redis for Windows are from the 2.4 series. In this
and other chapters, we use features that are only available in Redis 2.6 and
later. The primary differences between Redis 2.4 and 2.6 include (but aren’t
limited to) Lua scripting (which we’ll discuss in chapter 11), millisecond-level
precision for expiration (PTTL, PEXPIRE, and PEXPIREAT, described in this
chapter), some bit operations (BITOP and BITCOUNT), and some commands
now taking multiple arguments where they previously only took one argu-
ment (RPUSH, LPUSH, SADD, SREM, HDEL, ZADD, and ZREM).

3.1 Strings

You’ll remember from chapters 1 and 2 that STRINGs hold sequences of bytes, not sig-

nificantly different from strings in many programming languages, or even C/C++–

style char arrays. In Redis, STRINGs are used to store three types of values:

■ Byte string values

■ Integer values

■ Floating-point values

Integers and floats can be incremented or decremented by an arbitrary numeric value

(integers turning into floats as necessary). Integers have ranges that are equivalent to

the platform’s long integer range (signed 32-bit integers on 32-bit platforms, and

signed 64-bit integers on 64-bit platforms), and floats have ranges and values limited

to IEEE 754 floating-point doubles. This three-way ability to look at the simplest of

Redis values can be an advantage; it offers more flexibility in data representation than

if only byte string values were allowed.

 In this section, we’ll talk about the simplest structure available to Redis, the

STRING. We’ll cover the basic numeric increment and decrement operations, followed

later by the bit and substring manipulation calls, and you’ll come to understand that

even the simplest of structures has a few surprises that can make it useful in a variety of

powerful ways.

 In table 3.1, you can see the available integer and float increment/decrement

operations available on Redis STRINGs. 

Table 3.1 Increment and decrement commands in Redis

Command Example use and description

INCR INCR key-name—Increments the value stored at the key by 1

DECR DECR key-name—Decrements the value stored at the key by 1

http://redis.io/commands
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When setting a STRING value in Redis, if that value could be interpreted as a base-10

integer or a floating-point value, Redis will detect this and allow you to manipulate the

value using the various INCR* and DECR* operations. If you try to increment or decre-

ment a key that doesn’t exist or is an empty string, Redis will operate as though that

key’s value were zero. If you try to increment or decrement a key that has a value that

can’t be interpreted as an integer or float, you’ll receive an error. In the next listing,

you can see some interactions with these commands. 

>>> conn = redis.Redis()
>>> conn.get('key')
>>> conn.incr('key')
1
>>> conn.incr('key', 15)
16
>>> conn.decr('key', 5)
11
>>> conn.get('key')
'11'
>>> conn.set('key', '13')
True
>>> conn.incr('key')
14

After reading other chapters, you may notice that we really only call incr(). Inter-

nally, the Python Redis libraries call INCRBY with either the optional second value

passed, or 1 if the value is omitted. As of this writing, the Python Redis client library

supports the full command set of Redis 2.6, and offers INCRBYFLOAT support via an

incrbyfloat() method that works the same as incr().

 Redis additionally offers methods for reading and writing parts of byte string val-

ues (integer and float values can also be accessed as though they’re byte strings,

though that use is somewhat uncommon). This can be useful if we were to use Redis

STRING values to pack structured data in an efficient fashion, which we’ll talk about in

INCRBY INCRBY key-name amount—Increments the value stored at 

the key by the provided integer value

DECRBY DECRBY key-name amount—Decrements the value stored at 

the key by the provided integer value

INCRBYFLOAT INCRBYFLOAT key-name amount—Increments the value 

stored at the key by the provided float value (available in Redis 2.6 

and later)

Listing 3.1 A sample interaction showing INCR and DECR operations in Redis

Table 3.1 Increment and decrement commands in Redis (continued)

Command Example use and description

When we fetch a key that doesn’t exist, 
we get the None value, which isn’t 
displayed in the interactive console.

We can increment keys that don’t exist, 
and we can pass an optional value to 
increment by more than 1.

Like incrementing,
decrementing

takes an optional
argument for the

amount to
decrement by.

When we fetch
the key, it acts

like a string. When we set the key, we 
can set it as a string, but still 
manipulate it like an integer.
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chapter 9. Table 3.2 shows some methods that can be used to manipulate substrings

and individual bits of STRINGs in Redis. 

GETRANGE AND SUBSTR In the past, GETRANGE was named SUBSTR, and the
Python client continues to use the substr() method name to fetch ranges from
the string. When using a version of Redis later than 2.6, you should use the get-
range() method, and use substr() for Redis versions before 2.6.

When writing to strings using SETRANGE and SETBIT, if the STRING wasn’t previously

long enough, Redis will automatically extend the STRING with nulls before updating

and writing the new data. When reading STRINGs with GETRANGE, any request for data

beyond the end of the STRING won’t be returned, but when reading bits with GETBIT,

any bit beyond the end of the STRING is considered zero. In the following listing, you

can see some uses of these STRING manipulation commands. 

>>> conn.append('new-string-key', 'hello ')
6L
>>> conn.append('new-string-key', 'world!')
12L
>>> conn.substr('new-string-key', 3, 7)
'lo wo'
>>> conn.setrange('new-string-key', 0, 'H')

Table 3.2 Substring manipulation commands available to Redis

Command Example use and description

APPEND APPEND key-name value—Concatenates the provided value to the string already 

stored at the given key

GETRANGE GETRANGE key-name start end—Fetches the substring, including all charac-

ters from the start offset to the end offset, inclusive

SETRANGE SETRANGE key-name offset value—Sets the substring starting at the pro-

vided offset to the given value

GETBIT GETBIT key-name offset—Treats the byte string as a bit string, and returns the 

value of the bit in the string at the provided bit offset

SETBIT SETBIT key-name offset value—Treats the byte string as a bit string, and 

sets the value of the bit in the string at the provided bit offset

BITCOUNT BITCOUNT key-name [start end]—Counts the number of 1 bits in the string, 

optionally starting and finishing at the provided byte offsets

BITOP BITOP operation dest-key key-name [key-name ...]—Performs one 

of the bitwise operations, AND, OR, XOR, or NOT, on the strings provided, storing the 

result in the destination key

Listing 3.2 A sample interaction showing substring and bit operations in Redis

Let’s append the string ‘hello ’ to the
previously nonexistent key ‘new-string-key’.

When appending
a value, Redis

returns the
length of the
string so far. Redis uses 0-indexing, and when 

accessing ranges, is inclusive of 
the endpoints by default.

The string ‘lo wo’ 
is from the middle 
of ‘hello world!’

Let’s set a couple
string ranges.
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12
>>> conn.setrange('new-string-key', 6, 'W')
12
>>> conn.get('new-string-key')
'Hello World!'
>>> conn.setrange('new-string-key', 11, ', how are you?')
25
>>> conn.get('new-string-key')
'Hello World, how are you?'
>>> conn.setbit('another-key', 2, 1)
0
>>> conn.setbit('another-key', 7, 1)
0
>>> conn.get('another-key')
'!'

In many other key-value databases, data is stored as a plain string with no opportuni-

ties for manipulation. Some other key-value databases do allow you to prepend or

append bytes, but Redis is unique in its ability to read and write substrings. In many

ways, even if Redis only offered STRINGs and these methods to manipulate strings,

Redis would be more powerful than many other systems; enterprising users could use

the substring and bit manipulation calls along with WATCH/MULTI/EXEC (which we’ll

briefly introduce in section 3.7.2, and talk about extensively in chapter 4) to build

arbitrary data structures. In chapter 9, we’ll talk about using STRINGs to store a type of

simple mappings that can greatly reduce memory use in some situations.

 With a little work, we can store some types of sequences, but we’re limited in the

kinds of manipulations we can perform. But if we use LISTs, we have a wider range of

commands and ways to manipulate LIST items. 

3.2 Lists

As you may remember from chapter 1, LISTs allow you to push and pop items from

both ends of a sequence, fetch individual items, and perform a variety of other opera-

tions that are expected of lists. LISTs by themselves can be great for keeping a queue

of work items, recently viewed articles, or favorite contacts.

 In this section, we’ll talk about LISTs, which store an ordered sequence of STRING

values. We’ll cover some of the most commonly used LIST manipulation commands

for pushing and popping items from LISTs. After reading this section, you’ll know

how to manipulate LISTs using the most common commands. We’ll start by looking at

table 3.3, where you can see some of the most frequently used LIST commands. 

Table 3.3 Some commonly used LIST commands

Command Example use and description

RPUSH RPUSH key-name value [value ...]—Pushes the value(s) onto the right end of the list

LPUSH LPUSH key-name value [value ...]—Pushes the value(s) onto the left end of the list

When setting a
range inside a

string, Redis also
returns the total

length of the string.

With setrange, we can
replace anywhere inside

the string, and we can
make the string longer.

Setting bits also returns
the value of the bit

before it was set.

Let’s see what we have now!

Yep, we capitalized 
our H and W.

We replace the exclamation point and 
add more to the end of the string.

If we write to a bit beyond 
the size of the string, it’s 
filled with nulls.

If you want to interpret the bits 
stored in Redis, remember that 
offsets into bits are from the 
highest-order to the lowest-order.

We set bits 2 and 7 to 1, which
gave us ‘!’, or character 33.

www.allitebooks.com

http://www.allitebooks.org
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The semantics of the LIST push commands shouldn’t be surprising, and neither

should the pop commands. We covered a couple of these, along with both LINDEX and

LRANGE, back in chapter 1. The next listing shows some uses of these push and pop

commands. 

>>> conn.rpush('list-key', 'last')
1L
>>> conn.lpush('list-key', 'first')
2L
>>> conn.rpush('list-key', 'new last')
3L
>>> conn.lrange('list-key', 0, -1)
['first', 'last', 'new last']
>>> conn.lpop('list-key')
'first'
>>> conn.lpop('list-key')
'last'
>>> conn.lrange('list-key', 0, -1)
['new last']
>>> conn.rpush('list-key', 'a', 'b', 'c')
4L
>>> conn.lrange('list-key', 0, -1)
['new last', 'a', 'b', 'c']
>>> conn.ltrim('list-key', 2, -1)
True
>>> conn.lrange('list-key', 0, -1)
['b', 'c']

The LTRIM command is new in this example, and we can combine it with LRANGE to

give us something that functions much like an LPOP or RPOP call that returns and pops

multiple items at once. We’ll talk more about how to make these kinds of composite

commands atomic1 later in this chapter, as well as dive deeper into more advanced

Redis-style transactions in chapter 4.

RPOP RPOP key-name—Removes and returns the rightmost item from the list

LPOP LPOP key-name—Removes and returns the leftmost item from the list

LINDEX LINDEX key-name offset—Returns the item at the given offset

LRANGE LRANGE key-name start end—Returns the items in the list at the offsets from start to 

end, inclusive

LTRIM LTRIM key-name start end—Trims the list to only include items at indices between 

start and end, inclusive

Listing 3.3 A sample interaction showing LIST push and pop commands in Redis

1 In Redis, when we talk about a group of commands as being atomic, we mean that no other client can read or
change data while we’re reading or changing that same data.

Table 3.3 Some commonly used LIST commands (continued)

Command Example use and description

When we push
items onto the

list, it returns the
length of the list

after the push
has completed.

We can easily push on 
both ends of the list.

Semantically, the left end of the 
list is the beginning, and the 
right end of the list is the end.

Popping off the left items repeatedly 
will return items from left to right.

We can push 
multiple items at 
the same time.

We can trim any number of items 
from the start, end, or both.
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 Among the LIST commands we didn’t introduce in chapter 1 are a few commands

that allow you to move items from one list to another, and even block while waiting for

other clients to add items to LISTs. Table 3.4 shows our blocking pop and item mov-

ing commands. 

This set of commands is particularly useful when we talk about queues in chapter 6.

The following listing shows some examples of moving items around with BRPOPLPUSH

and popping items from multiple lists with BLPOP. 

>>> conn.rpush('list', 'item1')
1
>>> conn.rpush('list', 'item2')
2
>>> conn.rpush('list2', 'item3')
1
>>> conn.brpoplpush('list2', 'list', 1)
'item3'
>>> conn.brpoplpush('list2', 'list', 1)
>>> conn.lrange('list', 0, -1)
['item3', 'item1', 'item2']
>>> conn.brpoplpush('list', 'list2', 1)
'item2'
>>> conn.blpop(['list', 'list2'], 1)
('list', 'item3')
>>> conn.blpop(['list', 'list2'], 1)
('list', 'item1')
>>> conn.blpop(['list', 'list2'], 1)
('list2', 'item2')
>>> conn.blpop(['list', 'list2'], 1)
>>>

The most common use case for using blocking pop commands as well as the pop/

push combination commands is in the development of messaging and task queues,

which we’ll cover in chapter 6.

Table 3.4 Some LIST commands for blocking LIST pops and moving items between LISTs

Command Example use and description

BLPOP BLPOP key-name [key-name ...] timeout—Pops the leftmost item from 

the first non-empty LIST, or waits the timeout in seconds for an item

BRPOP BRPOP key-name [key-name ...] timeout—Pops the rightmost item 

from the first non-empty LIST, or waits the timeout in seconds for an item

RPOPLPUSH RPOPLPUSH source-key dest-key—Pops the rightmost item from the source 

and LPUSHes the item to the destination, also returning the item to the user

BRPOPLPUSH BRPOPLPUSH source-key dest-key timeout—Pops the rightmost item 

from the source and LPUSHes the item to the destination, also returning the item to 

the user, and waiting up to the timeout if the source is empty

Listing 3.4 Blocking LIST pop and movement commands in Redis

Let’s add some 
items to a couple 
of lists to start.

Let’s move
an item from

one list to the
other, also
returning
the item.

When a list is
empty, the blocking

pop will stall for
the timeout, and

return None (which
isn’t displayed in

the interactive
console).

We popped the rightmost 
item from “list2” and 
pushed it to the left of “list”.

Blocking left-popping 
items from these will check 
lists for items in the order 
that they are passed until 
they are empty.
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One of the primary benefits of LISTs is that they can contain multiple string values,

which can allow you to group data together. SETs offer a similar feature, but with the

caveat that all items in a given SET are unique. Let’s look at how that changes what we

can do with SETs.

3.3 Sets

You’ll remember from chapter 1 that SETs hold unique items in an unordered fash-

ion. You can quickly add, remove, and determine whether an item is in the SET.

Among the many uses of SETs are storing who voted for an article and which articles

belong to a specific group, as seen in chapter 1.

 In this section, we’ll discuss some of the most frequently used commands that

operate on SETs. You’ll learn about the standard operations for inserting, removing,

and moving members between SETs, as well as commands to perform intersection,

union, and differences on SETs. When finished with this section, you’ll be better pre-

pared to fully understand how our search examples in chapter 7 work.

 Let’s take a look at table 3.5 to see some of the more commonly used set commands.  

Table 3.5 Some commonly used SET commands

Command Example use and description

SADD SADD key-name item [item ...]—Adds the items to the set and returns 

the number of items added that weren’t already present

SREM SREM key-name item [item ...]—Removes the items and returns the 

number of items that were removed

SISMEMBER SISMEMBER key-name item—Returns whether the item is in the SET

SCARD SCARD key-name—Returns the number of items in the SET

SMEMBERS SMEMBERS key-name—Returns all of the items in the SET as a Python set

SRANDMEMBER SRANDMEMBER key-name [count]—Returns one or more random items 

from the SET. When count is positive, Redis will return count distinct randomly cho-

sen items, and when count is negative, Redis will return count randomly chosen 

items that may not be distinct.

Exercise: Reducing memory use with LISTs

Back in sections 2.1 and 2.5, we used ZSETs to keep a listing of recently viewed

items. Those recently viewed items included timestamps as scores to allow us to per-

form analytics during cleanup or after purchase. But including these timestamps

takes space, and if timestamps aren’t necessary for our analytics, then using a ZSET
just wastes space. Try to replace the use of ZSETs in update_token() with LISTs,

while keeping the same semantics. Hint: If you find yourself stuck, you can skip

ahead to section 6.1.1 for a push in the right direction. 
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Some of those commands should be familiar from chapter 1, so let’s jump to the next

listing to see some of these commands in action. 

>>> conn.sadd('set-key', 'a', 'b', 'c')
3
>>> conn.srem('set-key', 'c', 'd')
True
>>> conn.srem('set-key', 'c', 'd')
False
>>> conn.scard('set-key')     
2  
>>> conn.smembers('set-key')
set(['a', 'b'])
>>> conn.smove('set-key', 'set-key2', 'a')
True
>>> conn.smove('set-key', 'set-key2', 'c')
False
>>> conn.smembers('set-key2')
set(['a'])

Using just these commands, we can keep track of unique events and items like we did

in chapter 1 with voting and article groups. But the real power of SETs is in the com-

mands that combine multiple SETs at the same time. Table 3.6 shows some of the ways

that you can relate multiple SETs to each other. 

SPOP SPOP key-name—Removes and returns a random item from the SET

SMOVE SMOVE source-key dest-key item—If the item is in the source, removes 

the item from the source and adds it to the destination, returning if the item was 

moved

Listing 3.5 A sample interaction showing some common SET commands in Redis

Table 3.6 Operations for combining and manipulating SETs in Redis

Command Example use and description

SDIFF SDIFF key-name [key-name ...]—Returns the items in the first SET
that weren’t in any of the other SETs (mathematical set difference operation)

SDIFFSTORE SDIFFSTORE dest-key key-name [key-name ...]—Stores at the 

dest-key the items in the first SET that weren’t in any of the other SETs (math-

ematical set difference operation)

SINTER SINTER key-name [key-name ...]—Returns the items that are in all of 

the SETs (mathematical set intersection operation)

Table 3.5 Some commonly used SET commands (continued)

Command Example use and description

Adding items to
the SET returns
the number of

items that
weren’t already

in the SET.

We can also
fetch the

whole SET.

Removing items from the SET 
returns whether an item was 
removed; note that the client 
is buggy in that respect—
Redis itself returns the total 
number of items removed.

We can get the number 
of items in the SET.

We can easily move items 
from one SET to another SET.

When an item doesn’t 
exist in the first set during 
a SMOVE, it isn’t added to 
the destination SET.
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This group of commands are three fundamental SET operations, with both “return

the result” and “store the result” versions. Let’s see a sample of what these commands

are able to do. 

>>> conn.sadd('skey1', 'a', 'b', 'c', 'd')
4
>>> conn.sadd('skey2', 'c', 'd', 'e', 'f')
4
>>> conn.sdiff('skey1', 'skey2')
set(['a', 'b'])
>>> conn.sinter('skey1', 'skey2')
set(['c', 'd'])
>>> conn.sunion('skey1', 'skey2')
set(['a', 'c', 'b', 'e', 'd', 'f'])

If you’re comparing with Python sets, Redis SETs offer many of the same semantics

and functionality, but are available remotely to potentially many clients. We’ll dig

more deeply into what SETs are capable of in chapter 7, where we build a type of

search engine with them.

 Coming up next, we’ll talk about commands that manipulate HASHes, which allow

us to group related keys and values together for easy fetching and updating.

3.4 Hashes

As introduced in chapter 1, HASHes in Redis allow you to store groups of key-value

pairs in a single higher-level Redis key. Functionally, the values offer some of the same

features as values in STRINGs and can be useful to group related data together. This

data grouping can be thought of as being similar to a row in a relational database or a

document in a document store.

SINTERSTORE SINTERSTORE dest-key key-name [key-name ...]—Stores at the 

dest-key the items that are in all of the SETs (mathematical set intersection 

operation)

SUNION SUNION key-name [key-name ...]—Returns the items that are in at 

least one of the SETs (mathematical set union operation)

SUNIONSTORE SUNIONSTORE dest-key key-name [key-name ...]—Stores at the 

dest-key the items that are in at least one of the SETs (mathematical set union 

operation)

Listing 3.6 A sample interaction showing SET difference, intersection, and union in Redis

Table 3.6 Operations for combining and manipulating SETs in Redis (continued)

Command Example use and description

First we’ll add a 
few items to a 
couple of SETs.

We can calculate
the result of

removing all of
the items in the

second SET from
the first SET.

And we can find out all of the items 
that are in either of the SETs.

We can also find out which 
items exist in both SETs.
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 In this section, we’ll talk about the most commonly used commands that manipu-

late HASHes. You’ll learn more about the operations for adding and removing key-

value pairs to HASHes, as well as commands to fetch all of the HASH contents along with

the ability to increment or decrement values. When finished with this section, you’ll

better understand the usefulness of storing your data in HASHes and how to do so.

Look at table 3.7 to see some commonly used HASH commands. 

Some of those commands should be familiar from chapter 1, but we have a couple of

new ones for getting and setting multiple keys at the same time. These bulk com-

mands are mostly a matter of convenience and to improve Redis’s performance by

reducing the number of calls and round trips between a client and Redis. Look at the

next listing to see some of them in action. 

>>> conn.hmset('hash-key', {'k1':'v1', 'k2':'v2', 'k3':'v3'})
True   
>>> conn.hmget('hash-key', ['k2', 'k3'])
['v2', 'v3']
>>> conn.hlen('hash-key')
3
>>> conn.hdel('hash-key', 'k1', 'k3')
True

The HMGET/HMSET commands are similar to their single-argument versions that we

introduced in chapter 1, only differing in that they take a list or dictionary for argu-

ments instead of the single entries.

 Table 3.8 shows some other bulk commands and more STRING-like operations on

HASHes. 

 With the availability of HGETALL, it may not seem as though HKEYS and HVALUES

would be that useful, but when you expect your values to be large, you can fetch the

keys, and then get the values one by one to keep from blocking other requests.

Table 3.7 Operations for adding and removing items from HASHes

Command Example use and description

HMGET HMGET key-name key [key ...]—Fetches the values at the fields in the HASH

HMSET HMSET key-name key value [key value ...]—Sets the values of the 

fields in the HASH

HDEL HDEL key-name key [key ...]—Deletes the key-value pairs in the HASH, 

returning the number of pairs that were found and deleted

HLEN HLEN key-name—Returns the number of key-value pairs in the HASH

Listing 3.7 A sample interaction showing some common HASH commands in Redis

We can add
multiple items
to the hash in

one call.

The HDEL command handles multiple arguments 
without needing an HMDEL counterpart and 
returns True if any fields were removed.

We can fetch a subset of 
the values in a single call.

The HLEN command is 
typically used for debugging 
very large HASHes.
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HINCRBY and HINCRBYFLOAT should remind you of the INCRBY and INCRBYFLOAT opera-

tions available on STRING keys, and they have the same semantics, applied to HASH val-

ues. Let’s look at some of these commands being used in the next listing. 

>>> conn.hmset('hash-key2', {'short':'hello', 'long':1000*'1'})
True
>>> conn.hkeys('hash-key2')
['long', 'short']
>>> conn.hexists('hash-key2', 'num')
False
>>> conn.hincrby('hash-key2', 'num')
1L
>>> conn.hexists('hash-key2', 'num')
True

As we described earlier, when confronted with a large value in a HASH, we can fetch the

keys and only fetch values that we’re interested in to reduce the amount of data that’s

transferred. We can also perform key checks, as we could perform member checks on

SETs with SISMEMBER. And back in chapter 1, we used HINCRBY to keep track of the

number of votes an article had received, which we just revisited.

 Let’s look at a structure that we’ll be using fairly often in the remaining chapters:

sorted sets.

3.5 Sorted sets

ZSETs offer the ability to store a mapping of members to scores (similar to the keys and

values of HASHes). These mappings allow us to manipulate the numeric scores,2 and

fetch and scan over both members and scores based on the sorted order of the scores.

In chapter 1, we showed a brief example that used ZSETs as a way of sorting submitted

Table 3.8 More bulk operations and STRING-like calls over HASHes

Command Example use and description

HEXISTS HEXISTS key-name key—Returns whether the given key exists in the HASH

HKEYS HKEYS key-name—Fetches the keys in the HASH

HVALS HVALS key-name—Fetches the values in the HASH

HGETALL HGETALL key-name—Fetches all key-value pairs from the HASH

HINCRBY HINCRBY key-name key increment—Increments the value stored at the 

given key by the integer increment

HINCRBYFLOAT HINCRBYFLOAT key-name key increment—Increments the value stored 

at the given key by the float increment

Listing 3.8 A sample interaction showing some more advanced features of Redis HASHes

2 Scores are actually stored inside Redis as IEEE 754 floating-point doubles.

Fetching keys can be useful to keep from needing to
transfer large values when we’re looking into HASHes.

We can also check the 
existence of specific keys.

Incrementing a previously nonexistent key 
in a hash behaves just like on strings; Redis 
operates as though the value had been 0.
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articles based on time and how many up-votes they had received, and in chapter 2, we

had an example that used ZSETs as a way of handling the expiration of old cookies.

 In this section, we’ll talk about commands that operate on ZSETs. You’ll learn how

to add and update items in ZSETs, as well as how to use the ZSET intersection and

union commands. When finished with this section, you’ll have a much clearer under-

standing about how ZSETs work, which will help you to better understand what we did

with them in chapter 1, and how we’ll use them in chapters 5, 6, and 7.

 Let’s look at some commonly used ZSET commands in table 3.9. 

We’ve used some of these commands in chapters 1 and 2, so they should already be

familiar to you. Let’s quickly revisit the use of some of our commands. 

>>> conn.zadd('zset-key', 'a', 3, 'b', 2, 'c', 1)
3
>>> conn.zcard('zset-key')
3
>>> conn.zincrby('zset-key', 'c', 3)
4.0
>>> conn.zscore('zset-key', 'b')
2.0
>>> conn.zrank('zset-key', 'c')
2
>>> conn.zcount('zset-key', 0, 3)
2L

Table 3.9 Some common ZSET commands

Command Example use and description

ZADD ZADD key-name score member [score member ...]—Adds members with 

the given scores to the ZSET

ZREM ZREM key-name member [member ...]—Removes the members from the 

ZSET, returning the number of members that were removed

ZCARD ZCARD key-name—Returns the number of members in the ZSET

ZINCRBY ZINCRBY key-name increment member—Increments the member in the ZSET

ZCOUNT ZCOUNT key-name min max—Returns the number of members with scores 

between the provided minimum and maximum

ZRANK ZRANK key-name member—Returns the position of the given member in the ZSET

ZSCORE ZSCORE key-name member—Returns the score of the member in the ZSET

ZRANGE ZRANGE key-name start stop [WITHSCORES]—Returns the members and 

optionally the scores for the members with ranks between start and stop

Listing 3.9 A sample interaction showing some common ZSET commands in Redis

Adding members to
ZSETs in Python has

the arguments
reversed compared to
standard Redis, which

makes the order the
same as HASHes.

By fetching the
0-indexed position of a

member, we can then
later use ZRANGE to
fetch a range of the

values easily.

Knowing how large a ZSET is can tell us in 
some cases if it’s necessary to trim our ZSET.

We can also increment 
members like we can with 
STRING and HASH values.

Fetching scores of individual 
members can be useful if we’ve 
been keeping counters or toplists.

Counting the number of items
with a given range of scores can

be quite useful for some tasks.
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>>> conn.zrem('zset-key', 'b')
True
>>> conn.zrange('zset-key', 0, -1, withscores=True)
[('a', 3.0), ('c', 4.0)]

You’ll likely remember our use of ZADD, ZREM, ZINCRBY, ZSCORE, and ZRANGE from chap-

ters 1 and 2, so their semantics should come as no surprise. The ZCOUNT command is a

little different than the others, primarily meant to let you discover the number of val-

ues whose scores are between the provided minimum and maximum scores.

 Table 3.10 shows several more ZSET commands in Redis that you’ll find useful. 

This is the first time that you’ve seen a few of these commands. If some of the ZREV*

commands are confusing, remember that they work the same as their nonreversed

counterparts, except that the ZSET behaves as if it were in reverse order (sorted by

score from high to low). You can see a few examples of their use in the next listing. 

Table 3.10 Commands for fetching and deleting ranges of data from ZSETs and offering 

                     SET-like intersections

Command Example use and description

ZREVRANK ZREVRANK key-name member—Returns the position of the member in 

the ZSET, with members ordered in reverse

ZREVRANGE ZREVRANGE key-name start stop [WITHSCORES]—Fetches the 

given members from the ZSET by rank, with members in reverse order

ZRANGEBYSCORE ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset
count]—Fetches the members between min and max

ZREVRANGEBYSCORE ZREVRANGEBYSCORE key max min [WITHSCORES] [LIMIT offset
count]—Fetches the members in reverse order between min and max

ZREMRANGEBYRANK ZREMRANGEBYRANK key-name start stop—Removes the items from 

the ZSET with ranks between start and stop

ZREMRANGEBYSCORE ZREMRANGEBYSCORE key-name min max—Removes the items from the 

ZSET with scores between min and max

ZINTERSTORE ZINTERSTORE dest-key key-count key [key ...] [WEIGHTS
weight [weight ...]] [AGGREGATE SUM|MIN|MAX]—Performs a 

SET-like intersection of the provided ZSETs

ZUNIONSTORE ZUNIONSTORE dest-key key-count key [key ...] [WEIGHTS
weight [weight ...]] [AGGREGATE SUM|MIN|MAX]—Performs a 

SET-like union of the provided ZSETs

Removing members
is as easy as adding

them.

For debugging, we usually fetch the
entire ZSET with this ZRANGE call, but real use cases

will usually fetch items a relatively small group at a time.
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>>> conn.zadd('zset-1', 'a', 1, 'b', 2, 'c', 3)     
3
>>> conn.zadd('zset-2', 'b', 4, 'c', 1, 'd', 0)
3
>>> conn.zinterstore('zset-i', ['zset-1', 'zset-2'])
2L
>>> conn.zrange('zset-i', 0, -1, withscores=True)
[('c', 4.0), ('b', 6.0)]
>>> conn.zunionstore('zset-u', ['zset-1', 'zset-2'], aggregate='min')
4L
>>> conn.zrange('zset-u', 0, -1, withscores=True)
[('d', 0.0), ('a', 1.0), ('c', 1.0), ('b', 2.0)]
>>> conn.sadd('set-1', 'a', 'd')
2
>>> conn.zunionstore('zset-u2', ['zset-1', 'zset-2', 'set-1'])
4L
>>> conn.zrange('zset-u2', 0, -1, withscores=True)
[('d', 1.0), ('a', 2.0), ('c', 4.0), ('b', 6.0)]

ZSET union and intersection can be difficult to understand at first glance, so let’s look

at some figures that show what happens during the processes of both intersection and

union. Figure 3.1 shows the intersection of the two ZSETs and the final ZSET result. In

this case, our aggregate is the default of sum, so scores are added.

 Unlike intersection, when we perform a union operation, items that exist in at

least one of the input ZSETs are included in the output. Figure 3.2 shows the result of

performing a union operation with a different aggregate function, min, which takes

the minimum score if a member is in multiple input ZSETs.

 In chapter 1, we used the fact that we can include SETs as part of ZSET union and

intersection operations. This feature allowed us to easily add and remove articles from

groups without needing to propagate scoring and insertion times into additional

ZSETs. Figure 3.3 shows a ZUNIONSTORE call that combines two ZSETs with one SET to

produce a final ZSET.

Listing 3.10 A sample interaction showing ZINTERSTORE and ZUNIONSTORE

We’ll start out by creating
a couple of ZSETs.

When performing 
ZINTERSTORE or 
ZUNIONSTORE, our 
default aggregate is 
sum, so scores of items 
that are in multiple 
ZSETs are added.

It’s easy 
to provide 
different 
aggregates, 
though 
we’re 
limited to 
sum, min, 
and max.

We can also pass SETs as inputs to ZINTERSTORE
and ZUNIONSTORE; they behave as though they

were ZSETs with all scores equal to 1.

a    1

b    2

c    3

zset-1 zset

d    0

c    1

b    4

zset-2 zset

c    4

b    6

zset-i zset

Figure 3.1 What happens when calling conn.zinterstore('zset-i', ['zset-1', 

'zset-2']); elements that exist in both zset-1 and zset-2 are added together to get zset-i
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In chapter 7, we’ll use ZINTERSTORE and ZUNIONSTORE as parts of a few different types

of search. We’ll also talk about a few different ways to combine ZSET scores with the

optional WEIGHTS parameter to further extend the types of problems that can be

solved with SETs and ZSETs.

 As you’re developing applications, you may have come upon a pattern known as

publish/subscribe, also referred to as pub/sub. Redis includes this functionality, which

we’ll cover next. 

3.6 Publish/subscribe

If you’re confused because you can’t remember reading about publish or subscribe yet,

don’t be—this is the first time we’ve talked about it. Generally, the concept of publish/

subscribe, also known as pub/sub, is characterized by listeners subscribing to channels,

with publishers sending binary string messages to channels. Anyone listening to a given

channel will receive all messages sent to that channel while they’re connected and lis-

tening. You can think of it like a radio station, where subscribers can listen to multiple

radio stations at the same time, and publishers can send messages on any radio station.

 In this section, we’ll discuss and use operations involving publish and subscribe.

When finished with this section, you’ll know how to use these commands, and why we

use other similar solutions in later chapters.

 In Redis, the pub/sub concept has been included through the use of a collection

of the five commands shown in table 3.11. 

a    1

b    2

c    3

zset-1 zset

d    0

c    1

b    4

zset-2 zset

d    0

a    1

c    1

b    2

zset-u zset

Figure 3.2 What happens when calling conn.zunionstore('zset-u', ['zset-1',

'zset-2'], aggregate='min'); elements that exist in either zset-1 or zset-2 are com-

bined with the minimum function to get zset-u

a    1

b    2

c    3

zset-1 zset

d    0

c    1

b    4

zset-2 zset

d    1

a    2

c    4

b    6  

zset-u2 zset

a    

d

set-1 set

Figure 3.3 What happens when calling conn.zunionstore('zset-u2', ['zset-1', 'zset-2',

'set-1']); elements that exist in any of zset-1, zset-2, or set-1 are combined via addition to get zset-u2
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With the way the PUBLISH and SUBSCRIBE commands are implemented on the Python

side of things, it’s easier to demonstrate the feature if we use a helper thread to handle

the PUBLISHing. You can see an example of PUBLISH/SUBSCRIBE in the next listing.3 

>>> def publisher(n):
... time.sleep(1)    
... for i in xrange(n):
... conn.publish('channel', i)     
... time.sleep(1)
...

>>> def run_pubsub():
... threading.Thread(target=publisher, args=(3,)).start()
... pubsub = conn.pubsub()
... pubsub.subscribe(['channel'])
... count = 0
... for item in pubsub.listen():
... print item        
... count += 1
... if count == 4:
... pubsub.unsubscribe()
... if count == 5:            
... break
...

>>> run_pubsub()
{'pattern': None, 'type': 'subscribe', 'channel': 'channel', 'data': 1L}

Table 3.11 Commands for handling pub/sub in Redis

Command Example use and description

SUBSCRIBE SUBSCRIBE channel [channel ...]—Subscribes to the given channels

UNSUBSCRIBE UNSUBSCRIBE [channel [channel ...]]—Unsubscribes from the pro-

vided channels, or unsubscribes all channels if no channel is given

PUBLISH PUBLISH channel message—Publishes a message to the given channel

PSUBSCRIBE PSUBSCRIBE pattern [pattern ...]—Subscribes to messages broad-

cast to channels that match the given pattern

PUNSUBSCRIBE PUNSUBSCRIBE [pattern [pattern ...]]—Unsubscribes from the pro-

vided patterns, or unsubscribes from all subscribed patterns if none are given

Listing 3.11 Using PUBLISH and SUBSCRIBE in Redis

3 If you’d like to run this code yourself, you can: I included the publisher() and run_pubsub() functions
in the source code for this chapter.

We sleep initially in the function 
to let the SUBSCRIBEr connect 
and start listening for messages.

After publishing, we’ll pause for a moment 
so that we can see this happen over time.

Let’s start 
the publisher 
thread to 
send three 
messages.

We’ll set up the 
pubsub object and 
subscribe to a channel.

We can listen
to subscription

messages by
iterating over

the result of
pubsub.listen().

We’ll print every message that we receive.

We’ll stop listening for new messages after the subscribe 
message and three real messages by unsubscribing.

When we receive the unsubscribe message, 
we need to stop receiving messages.

Actually run the 
functions to see them work.

When subscribing, we receive a
message on the listen channel.
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{'pattern': None, 'type': 'message', 'channel': 'channel', 'data': '0'}
{'pattern': None, 'type': 'message', 'channel': 'channel', 'data': '1'}
{'pattern': None, 'type': 'message', 'channel': 'channel', 'data': '2'}
{'pattern': None, 'type': 'unsubscribe', 'channel': 'channel', 'data':
0L}

The publish/subscribe pattern and its Redis implementation can be useful. If you skip

ahead and scan around other chapters, you’ll notice that we only use publish/

subscribe in one other section, section 8.5. If PUBLISH and SUBSCRIBE are so useful,

why don’t we use them very much? There are two reasons.

 One reason is because of Redis system reliability. In older versions of Redis, a client

that had subscribed to channels but didn’t read sent messages fast enough could

cause Redis itself to keep a large outgoing buffer. If this outgoing buffer grew too

large, it could cause Redis to slow down drastically or crash, could cause the operating

system to kill Redis, and could even cause the operating system itself to become unus-

able. Modern versions of Redis don’t have this issue, and will disconnect subscribed

clients that are unable to keep up with the client-output-buffer-limit pubsub

configuration option (which we’ll talk about in chapter 8).

 The second reason is for data transmission reliability. Within any sort of net-

worked system, you must operate under the assumption that your connection could

fail at some point. Typically, this is handled by one side or the other reconnecting as

a result of a connection error. Our Python Redis client will normally handle connec-

tion issues well by automatically reconnecting on failure, automatically handling con-

nection pooling (we’ll talk about this more in chapter 4), and more. But in the case

of clients that have subscribed, if the client is disconnected and a message is sent

before it can reconnect, the client will never see the message. When you’re relying on

receiving messages over a channel, the semantics of PUBLISH/SUBSCRIBE in Redis may

let you down.

 It’s for these two reasons that we write two different methods to handle reliable

message delivery in chapter 6, which works in the face of network disconnections, and

which won’t cause Redis memory to grow (even in older versions of Redis) unless you

want it to.

 If you like the simplicity of using PUBLISH/SUBSCRIBE, and you’re okay with the

chance that you may lose a little data, then feel free to use pub/sub instead of our

methods, as we also do in section 8.5; just remember to configure client-output-

buffer-limit pubsub reasonably before starting.

 At this point, we’ve covered the majority of commands that you’ll use on a regular

basis that are related to individual data types. There are a few more commands that

you’ll also likely use, which don’t fit into our nice five structures-plus-pub/sub theme.

These are the structures that
are produced as items when

we iterate over pubsub.listen().

When we unsubscribe, we receive a 
message telling us which channels we 
have unsubscribed from and the number 
of channels we are still subscribed to.
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3.7 Other commands

So far we’ve gone through the five structures that Redis provides, as well as shown a bit

of pub/sub. The commands in this section are commands that operate on multiple

types of data. We’ll first cover SORT, which can involve STRINGs, SETs or LISTs, and

HASHes all at the same time. We’ll then cover basic transactions with MULTI and EXEC,

which can allow you to execute multiple commands together as though they were just

one command. Finally, we’ll cover the variety of automatic expiration commands for

automatically deleting unnecessary data.

 After reading this section, you should have a better idea of how to combine and

manipulate multiple data types at the same time.

3.7.1 Sorting

Sorting in Redis is similar to sorting in other languages: we want to take a sequence of

items and order them according to some comparison between elements. SORT allows us

to sort LISTs, SETs, and ZSETs according to data in the LIST/SET/ZSET data stored in

STRING keys, or even data stored in HASHes. If you’re coming from a relational database

background, you can think of SORT as like the order by clause in a SQL statement that

can reference other rows and tables. Table 3.12 shows the SORT command definition. 

Some of the more basic options with SORT include the ability to order the results in

descending order rather than the default ascending order, consider items as though

they were numbers, compare as though items were binary strings (the sorted order of

the strings '110' and '12' are different than the sorted order of the numbers 110

and 12), sorting by values not included in the original sequence, and even fetching

values outside of the input LIST, SET, or ZSET.

 You can see some examples that use SORT in listing 3.12. The first few lines of the

listing show the addition of some initial data, and basic sorting (by numeric value and

by string order). The remaining parts show how we can store data to be sorted by

and/or fetched inside HASHes using a special syntax. 

>>> conn.rpush('sort-input', 23, 15, 110, 7)              
4
>>> conn.sort('sort-input')           
['7', '15', '23', '110']

Table 3.12 The SORT command definition

Command Example use and description

SORT SORT source-key [BY pattern] [LIMIT offset count] [GET pattern [GET
pattern ...]] [ASC|DESC] [ALPHA] [STORE dest-key]—Sorts the input 

LIST, SET, or ZSET according to the options provided, and returns or stores the result

Listing 3.12 A sample interaction showing some uses of SORT

Start by adding some 
items to a LIST.

We can sort the 
items numerically.
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>>> conn.sort('sort-input', alpha=True)                  
['110', '15', '23', '7']
>>> conn.hset('d-7', 'field', 5)
1L
>>> conn.hset('d-15', 'field', 1)
1L
>>> conn.hset('d-23', 'field', 9)
1L
>>> conn.hset('d-110', 'field', 3)
1L
>>> conn.sort('sort-input', by='d-*->field')
['15', '110', '7', '23']
>>> conn.sort('sort-input', by='d-*->field', get='d-*->field')
['1', '3', '5', '9']

Sorting can be used to sort LISTs, but it can also sort SETs, turning the result into a

LIST. In this example, we sorted numbers character by character (via the alpha key-

word argument), we sorted some items based on external data, and we were even able

to fetch external data to return. When combined with SET intersection, union, and

difference, along with storing data externally inside HASHes, SORT is a powerful com-

mand. We’ll spend some time talking about how to combine SET operations with SORT

in chapter 7. 

 Though SORT is the only command that can manipulate three types of data at the

same time, basic Redis transactions can let you manipulate multiple data types with a

series of commands without interruption.

3.7.2 Basic Redis transactions

Sometimes we need to make multiple calls to Redis in order to manipulate multiple

structures at the same time. Though there are a few commands to copy or move items

between keys, there isn’t a single command to move items between types (though you

can copy from a SET to a ZSET with ZUNIONSTORE). For operations involving multiple

keys (of the same or different types), Redis has five commands that help us operate on

multiple keys without interruption: WATCH, MULTI, EXEC, UNWATCH, and DISCARD. 

 For now, we’ll only talk about the simplest version of a Redis transaction, which

uses MULTI and EXEC. If you want to see an example that uses WATCH, MULTI, EXEC, and

UNWATCH, you can skip ahead to section 4.4, where I explain why you’d need to use

WATCH and UNWATCH with MULTI and EXEC. 

WHAT IS A BASIC TRANSACTION IN REDIS?

In Redis, a basic transaction involving MULTI and EXEC is meant to provide the oppor-

tunity for one client to execute multiple commands A, B, C, ... without other clients

being able to interrupt them. This isn’t the same as a relational database transaction,

which can be executed partially, and then rolled back or committed. In Redis, every

command passed as part of a basic MULTI/EXEC transaction is executed one after

And we can sort the 
items alphabetically.

We are just adding some 
additional data for SORTing 
and fetching.

We can sort our 
data by fields of 
HASHes.

And we can even fetch that data and return it
instead of or in addition to our input data.
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another until they’ve completed. After they’ve completed, other clients may execute

their commands.

 To perform a transaction in Redis, we first call MULTI, followed by any sequence

of commands we intend to execute, followed by EXEC. When seeing MULTI, Redis will

queue up commands from that same connection until it sees an EXEC, at which point

Redis will execute the queued commands sequentially without interruption. Seman-

tically, our Python library handles this by the use of what’s called a pipeline. Calling

the pipeline() method on a connection object will create a transaction, which

when used correctly will automatically wrap a sequence of commands with MULTI

and EXEC. Incidentally, the Python Redis client will also store the commands to send

until we actually want to send them. This reduces the number of round trips

between Redis and the client, which can improve the performance of a sequence

of commands.

 As was the case with PUBLISH and SUBSCRIBE, the simplest way to demonstrate the

result of using a transaction is through the use of threads. In the next listing, you can

see the result of parallel increment operations without a transaction. 

>>> def notrans():
... print conn.incr('notrans:')
... time.sleep(.1)
... conn.incr('notrans:', -1)
...
>>> if 1:
... for i in xrange(3):
... threading.Thread(target=notrans).start()
... time.sleep(.5)     
...
1
2  
3

Without transactions, each of the three threads are able to increment the notrans:

counter before the decrement comes through. We exaggerate potential issues here by

including a 100ms sleep, but if we needed to be able to perform these two calls with-

out other commands getting in the way, we’d have issues. The following listing shows

these same operations with a transaction. 

>>> def trans():
... pipeline = conn.pipeline()
... pipeline.incr('trans:')
... time.sleep(.1)

Listing 3.13 What can happen without transactions during parallel execution

Listing 3.14 What can happen with transactions during parallel execution

Increment the ‘notrans:’ 
counter and print the result.Wait for 100

milliseconds.

Decrement the 
‘notrans:’ counter.

Start three threads
to execute the

non-transactional
increment/sleep/

decrement.

Wait half a second 
for everything to 
be done.

Because there’s no transaction, each 
of the threaded commands can 
interleave freely, causing the counter 
to steadily grow in this case.

Create a
transactional

pipeline.

Queue up the ‘trans:’ 
counter increment.

Wait for 100 
milliseconds.
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... pipeline.incr('trans:', -1)

... print pipeline.execute()[0]

...
>>> if 1:
... for i in xrange(3):
... threading.Thread(target=trans).start()
... time.sleep(.5)
...
1
1
1

As you can see, by using a transaction, each thread is able to execute its entire

sequence of commands without other threads interrupting it, despite the delay

between the two calls. Again, this is because Redis waits to execute all of the provided

commands between MULTI and EXEC until all of the commands have been received

and followed by an EXEC. 

 There are both benefits and drawbacks to using transactions, which we’ll discuss

further in section 4.4. 

When writing data to Redis, sometimes the data is only going to be useful for a short

period of time. We can manually delete this data after that time has elapsed, or we can

have Redis automatically delete the data itself by using key expiration.

Queue up the ‘trans:’
counter decrement.

Execute both
commands and print

the result of the
increment operation.

Start three of the transactional
increment/sleep/decrement calls.

Wait half a 
second for 
everything 
to be done.Because each increment/sleep/decrement 

pair is executed inside a transaction, no 
other commands can be interleaved, which 
gets us a result of 1 for all of our results.

Exercise: Removing of race conditions

One of the primary purposes of MULTI/EXEC transactions is removing what are known

as race conditions, which you saw exposed in listing 3.13. It turns out that the

article_vote() function from chapter 1 has a race condition and a second related

bug. The race condition can cause a memory leak, and the bug can cause a vote to

not be counted correctly. The chances of either of them happening is very small, but

can you spot and fix them? Hint: If you’re having difficulty finding the memory leak,

check out section 6.2.5 while consulting the post_article() function.

Exercise: Improving performance

A secondary purpose of using pipelines in Redis is to improve performance (we’ll talk

more about this in sections 4.4–4.6). In particular, by reducing the number of round

trips between Redis and our client that occur over a sequence of commands, we can

significantly reduce the amount of time our client is waiting for a response. In the

get_articles() function we defined in chapter 1, there will actually be 26 round

trips between Redis and the client to fetch a full page of articles. This is a waste. Can

you change get_articles() so that it only makes two round trips?
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3.7.3 Expiring keys

When writing data into Redis, there may be a point at which data is no longer needed.

We can remove the data explicitly with DEL, or if we want to remove an entire key after

a specified timeout, we can use what’s known as expiration. When we say that a key has

a time to live, or that it’ll expire at a given time, we mean that Redis will automatically

delete the key when its expiration time has arrived.

 Having keys that will expire after a certain amount of time can be useful to handle

the cleanup of cached data. If you look through other chapters, you won’t see the use

of key expiration in Redis often (except in sections 6.2, 7.1, and 7.2). This is mostly

due to the types of structures that are used; few of the commands we use offer the abil-

ity to set the expiration time of a key automatically. And with containers (LISTs, SETs,

HASHes, and ZSETs), we can only expire entire keys, not individual items (this is also

why we use ZSETs with timestamps in a few places). 

 In this section, we’ll cover commands that are used to expire and delete keys from

Redis automatically after a specified timeout, or at a specified time. After reading this

section, you’ll be able to use expiration as a way of keeping Redis memory use low,

and for cleaning up data you no longer need.

 Table 3.13 shows the list of commands that we use to set and check the expiration

times of keys in Redis. 

You can see a few examples of using expiration times on keys in the next listing. 

>>> conn.set('key', 'value')
True
>>> conn.get('key')
'value'

Table 3.13 Commands for handling expiration in Redis

Command Example use and description

PERSIST PERSIST key-name—Removes the expiration from a key

TTL TTL key-name—Returns the amount of time remaining before a key will expire

EXPIRE EXPIRE key-name seconds—Sets the key to expire in the given number of seconds

EXPIREAT EXPIREAT key-name timestamp—Sets the expiration time as the given Unix 

timestamp

PTTL PTTL key-name—Returns the number of milliseconds before the key will expire 

(available in Redis 2.6 and later)

PEXPIRE PEXPIRE key-name milliseconds—Sets the key to expire in the given number 

of milliseconds (available in Redis 2.6 and later)

PEXPIREAT PEXPIREAT key-name timestamp-milliseconds—Sets the expiration time to 

be the given Unix timestamp specified in milliseconds (available in Redis 2.6 and later)

Listing 3.15 A sample interaction showing the use of expiration-related commands in Redis

We’re starting with a very 
simple STRING value.
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>>> conn.expire('key', 2)
True
>>> time.sleep(2)
>>> conn.get('key')
>>> conn.set('key', 'value2')
True
>>> conn.expire('key', 100); conn.ttl('key')
True
100 

3.8 Summary

In this chapter, we’ve looked at commands that typically should cover at least 95% of

your command usage in Redis. We started with each of the different datatypes, and

then discussed PUBLISH and SUBSCRIBE, followed by SORT, MULTI/EXEC transactions,

and key expiration.

 If there’s one thing that you should learn from this chapter, it’s that a wide variety

of commands can be used to manipulate Redis structures in numerous ways. Although

this chapter presents more than 70 of the most important commands, still more are

listed and described at http://redis.io/commands.

 If there’s a second thing you should take away from this chapter, it’s that I some-

times don’t offer the perfect answer to every problem. In revisiting a few of our exam-

ples from chapters 1 and 2 in the exercises (whose answers you can see in the

downloadable source code), I’m giving you an opportunity to try your hand at taking

our already pretty-good answers, and making them better overall, or making them suit

your problems better.

 One large group of commands that we didn’t cover in this chapter was configuration-

related commands. In the next chapter, we get into configuring Redis to ensure your

data stays healthy, and we give pointers on how to ensure that Redis performs well.

If we set a key to expire in the future 
and we wait long enough for the key 
to expire, when we try to fetch the 
key, it’s already been deleted.

We can also easily find 
out how long it will be 
before a key will expire.

Exercise: Replacing timestamp ZSETs with EXPIRE

In sections 2.1, 2.2, and 2.5, we used a ZSET with timestamps to keep a listing of

session IDs to clean up. By using this ZSET, we could optionally perform analytics

over our items when we cleaned sessions out. But if we aren’t interested in analytics,

we can instead get similar semantics with expiration, without needing a cleanup func-

tion. Can you update the update_token() and add_to_cart() functions to expire

keys instead of using a “recent” ZSET and cleanup function? 

http://redis.io/commands
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Keeping data safe
 and ensuring performance

In the last few chapters, you’ve learned about the variety of commands available in

Redis and how they manipulate structures, and you’ve even solved a few problems

using Redis. This chapter will prepare you for building real software with Redis by

showing you how to keep your data safe, even in the face of system failure, and I’ll

point out methods that you can use to improve Redis performance while preserv-

ing data integrity.

 We’ll start by exploring the various Redis persistence options available to you

for getting your data on disk. We’ll then talk about the use of replication to keep

up-to-date copies of your data on additional machines for both performance and

This chapter covers

■ Persisting data to disk

■ Replicating data to other machines

■ Dealing with system failures

■ Redis transactions

■ Non-transactional pipelines

■ Diagnosing performance issues
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data reliability. Combining replication and persistence, we’ll talk about trade-offs you

may need to make, and we’ll walk through a few examples of choosing persistence

and replication options to suit your needs. We’ll then talk about Redis transactions

and pipelines, and we’ll finish out the chapter by discussing how to diagnose some

performance issues.

 As we go through this chapter, our focus is understanding more about how Redis

works so that we can first ensure that our data is correct, and then work toward mak-

ing our operations on the data fast. 

 To start, let’s examine how Redis stores our information on disk so that, after

restart, it’s still there.

4.1 Persistence options

Within Redis, there are two different ways of persisting data to disk. One is a method

called snapshotting that takes the data as it exists at one moment in time and writes it to

disk. The other method is called AOF, or append-only file, and it works by copying

incoming write commands to disk as they happen. These methods can be used

together, separately, or not at all in some circumstances. Which to choose will depend

on your data and your application.

 One of the primary reasons why you’d want to store in-memory data on disk is so

that you have it later, or so that you can back it up to a remote location in the case of

failure. Additionally, the data that’s stored in Redis may have taken a long time to

compute, or may be in the process of computation, and you may want to have access

to it later without having to compute it again. For some Redis uses, “computation”

may simply involve an act of copying data from another database into Redis (as was

the case in section 2.4), but for others, Redis could be storing aggregate analytics data

from billions of log lines.

 Two different groups of configuration options control how Redis will write data

to disk. All of these configuration options with example configuration values can

be seen in the following listing. We’ll talk about them all more specifically in sec-

tions 4.1.1 and 4.1.2, but for now, we’ll just look at the options so you can get famil-

iar with them. 

save 60 1000            
stop-writes-on-bgsave-error no
rdbcompression yes
dbfilename dump.rdb

appendonly no        
appendfsync everysec
no-appendfsync-on-rewrite no
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

dir ./

Listing 4.1 Options for persistence configuration available in Redis

Snapshotting 
persistence options

Append-only file 
persistence options Shared option, 

where to store 
the snapshot or 
append-only file
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As you saw in listing 4.1, the first few options deal with basic snapshotting, like what to

name the snapshot on disk, how often to perform an automatic snapshot, whether to

compress the snapshot, and whether to keep accepting writes on failure. The second

group of options configure the AOF subsystem, telling Redis whether to use it, how

often to sync writes to disk, whether to sync during AOF compaction, and how often to

compact the AOF. In the next section, we’ll talk about using snapshots to keep our

data safe. 

4.1.1 Persisting to disk with snapshots

In Redis, we can create a point-in-time copy of in-memory data by creating a snapshot.

After creation, these snapshots can be backed up, copied to other servers to create a

clone of the server, or left for a future restart. 

 On the configuration side of things, snapshots are written to the file referenced

as dbfilename in the configuration, and stored in the path referenced as dir. Until

the next snapshot is performed, data written to Redis since the last snapshot started

(and completed) would be lost if there were a crash caused by Redis, the system, or

the hardware.

 As an example, say that we have Redis running with 10 gigabytes of data currently

in memory. A previous snapshot had been started at 2:35 p.m. and had finished. Now

a snapshot is started at 3:06 p.m., and 35 keys are updated before the snapshot com-

pletes at 3:08 p.m. If some part of the system were to crash and prevent Redis from

completing its snapshot operation between 3:06 p.m. and 3:08 p.m., any data written

between 2:35 p.m. and now would be lost. But if the system were to crash just after the

snapshot had completed, then only the updates to those 35 keys would be lost.

 There are five methods to initiate a snapshot, which are listed as follows:

■ Any Redis client can initiate a snapshot by calling the BGSAVE command. On

platforms that support BGSAVE (basically all platforms except for Windows),

Redis will fork,1 and the child process will write the snapshot to disk while the

parent process continues to respond to commands.

■ A Redis client can also initiate a snapshot by calling the SAVE command, which

causes Redis to stop responding to any/all commands until the snapshot com-

pletes. This command isn’t commonly used, except in situations where we need

our data on disk, and either we’re okay waiting for it to complete, or we don’t

have enough memory for a BGSAVE.

■ If Redis is configured with save lines, such as save 60 10000, Redis will auto-

matically trigger a BGSAVE operation if 10,000 writes have occurred within 60

seconds since the last successful save has started (using the configuration

option described). When multiple save lines are present, any time one of the

rules match, a BGSAVE is triggered. 

1 When a process forks, the underlying operating system makes a copy of the process. On Unix and Unix-like
systems, the copying process is optimized such that, initially, all memory is shared between the child and par-
ent processes. When either the parent or child process writes to memory, that memory will stop being shared. 
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■ When Redis receives a request to shut down by the SHUTDOWN command, or it

receives a standard TERM signal, Redis will perform a SAVE, blocking clients from

performing any further commands, and then shut down. 

■ If a Redis server connects to another Redis server and issues the SYNC command

to begin replication, the master Redis server will start a BGSAVE operation if one

isn’t already executing or recently completed. See section 4.2 for more informa-

tion about replication.

When using only snapshots for saving data, you must remember that if a crash were to

happen, you’d lose any data changed since the last snapshot. For some applications,

this kind of loss isn’t acceptable, and you should look into using append-only file per-

sistence, as described in section 4.1.2. But if your application can live with data loss,

snapshots can be the right answer. Let’s look at a few scenarios and how you may want

to configure Redis to get the snapshot persistence behavior you’re looking for.

DEVELOPMENT

For my personal development server, I’m mostly concerned with minimizing the over-

head of snapshots. To this end, and because I generally trust my hardware, I have a

single rule: save 900 1. The save option tells Redis that it should perform a BGSAVE

operation based on the subsequent two values. In this case, if at least one write has

occurred in at least 900 seconds (15 minutes) since the last BGSAVE, Redis will auto-

matically start a new BGSAVE.

 If you’re planning on using snapshots on a production server, and you’re going to

be storing a lot of data, you’ll want to try to run a development server with the same or

similar hardware, the same save options, a similar set of data, and a similar expected

load. By setting up an environment equivalent to what you’ll be running in produc-

tion, you can make sure that you’re not snapshotting too often (wasting resources) or

too infrequently (leaving yourself open for data loss).

AGGREGATING LOGS

In the case of aggregating log files and analysis of page views, we really only need to

ask ourselves how much time we’re willing to lose if something crashes between

dumps. If we’re okay with losing up to an hour of work, then we can use save 3600 1

(there are 3600 seconds in an hour). But how might we recover if we were process-

ing logs?

 To recover from data loss, we need to know what we lost in the first place. To

know what we lost, we need to keep a record of our progress while processing logs.

Let’s imagine that we have a function that’s called when new logs are ready to be pro-

cessed. This function is provided with a Redis connect, a path to where log files are

stored, and a callback that will process individual lines in the log file. With our func-

tion, we can record which file we’re working on and the file position information as

we’re processing. A log-processing function that records this information can be seen

in the next listing. 
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def process_logs(conn, path, callback):
current_file, offset = conn.mget(

'progress:file', 'progress:position')

pipe = conn.pipeline()

def update_progress():
pipe.mset({

'progress:file': fname,
'progress:position': offset

})
pipe.execute()

for fname in sorted(os.listdir(path)):
if fname < current_file:

continue

inp = open(os.path.join(path, fname), 'rb')
if fname == current_file:

inp.seek(int(offset, 10))
else:

offset = 0

current_file = None

for lno, line in enumerate(inp):
callback(pipe, line)
offset = int(offset) + len(line)

if not (lno+1) % 1000:
update_progress()

update_progress()

inp.close()

By keeping a record of our progress in Redis, we can pick up with processing logs if at

any point some part of the system crashes. And because we used MULTI/EXEC pipelines

as introduced in chapter 3, we ensure that the dump will only include processed log

information when it also includes progress information.

BIG DATA

When the amount of data that we store in Redis tends to be under a few gigabytes,

snapshotting can be the right answer. Redis will fork, save to disk, and finish the snap-

shot faster than you can read this sentence. But as our Redis memory use grows over

time, so does the time to perform a fork operation for the BGSAVE. In situations where

Redis is using tens of gigabytes of memory, there isn’t a lot of free memory, or if we’re

running on a virtual machine, letting a BGSAVE occur may cause the system to pause

for extended periods of time, or may cause heavy use of system virtual memory, which

could degrade Redis’s performance to the point where it’s unusable.

 This extended pausing (and how significant it is) will depend on what kind of system

we’re running on. Real hardware, VMWare virtualization, or KVM virtualization will gen-

erally allow us to create a fork of a Redis process at roughly 10–20ms per gigabyte of

Listing 4.2 The process_logs() function that keeps progress information in Redis

Our function will be provided 
with a callback that will take 
a connection and a log line, 
calling methods on the 
pipeline as necessary.

Get the current
progress.

This closure is
meant primarily to

reduce the number of
duplicated lines later.

This will execute any
outstanding log updates,
as well as actually write
our file and line number

updates to Redis.

If we’re continuing
a file, skip over the

parts that we’ve
already processed.

The enumerate function
iterates over a sequence (in

this case lines from a file),
and produces pairs

consisting of a numeric
sequence starting from 0,

and the original data.

We want to update our 
file and line number 
offsets into the log file.

Iterate over the log 
files in sorted order.

Skip over files 
that are before 
the current file.

Handle the log line.

Update our 
information 
about the offset 
into the file.

Write our progress back 
to Redis every 1000 lines, or 
when we’re done with a file.
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memory that Redis is using. If our system is running within Xen virtualization, those

numbers can be closer to 200–300ms per gigabyte of memory used by Redis, depending

on the Xen configuration. So if we’re using 20 gigabytes of memory with Redis, running

BGSAVE on standard hardware will pause Redis for 200–400 milliseconds for the fork. If

we’re using Redis inside a Xen-virtualized machine (as is the case with Amazon EC2 and

some other cloud providers), that same fork will cause Redis to pause for 4–6 seconds.

You need to decide for your application whether this pause is okay.

 To prevent forking from causing such issues, we may want to disable automatic sav-

ing entirely. When automatic saving is disabled, we then need to manually call BGSAVE

(which has all of the same potential issues as before, only now we know when they will

happen), or we can call SAVE. With SAVE, Redis does block until the save is completed,

but because there’s no fork, there’s no fork delay. And because Redis doesn’t have to

fight with itself for resources, the snapshot will finish faster.

 As a point of personal experience, I’ve run Redis servers that used 50 gigabytes of

memory on machines with 68 gigabytes of memory inside a cloud provider running

Xen virtualization. When trying to use BGSAVE with clients writing to Redis, forking

would take 15 seconds or more, followed by 15–20 minutes for the snapshot to com-

plete. But with SAVE, the snapshot would finish in 3–5 minutes. For our use, a daily

snapshot at 3 a.m. was sufficient, so we wrote scripts that would stop clients from try-

ing to access Redis, call SAVE, wait for the SAVE to finish, back up the resulting snap-

shot, and then signal to the clients that they could continue.

 Snapshots are great when we can deal with potentially substantial data loss in

Redis, but for many applications, 15 minutes or an hour or more of data loss or pro-

cessing time is too much. To allow Redis to keep more up-to-date information about

data in memory stored on disk, we can use append-only file persistence.

4.1.2 Append-only file persistence

In basic terms, append-only log files keep a record of data changes that occur by writ-

ing each change to the end of the file. In doing this, anyone could recover the entire

dataset by replaying the append-only log from the beginning to the end. Redis has

functionality that does this as well, and it’s enabled by setting the configuration option

appendonly yes, as shown in listing 4.1. Table 4.1 shows the appendfsync options and

how they affect file-write syncing to disk.

FILE SYNCING When writing files to disk, at least three things occur. The first is
writing to a buffer, and this occurs when calling file.write() or its equivalent
in other languages. When the data is in the buffer, the operating system can
take that data and write it to disk at some point in the future. We can optionally
take a second step and ask the operating system to write the data provided to
disk when it next has a chance, with file.flush(), but this is only a request.
Because data isn’t actually on disk until the operating system writes it to disk,
we can tell the operating system to “sync” the files to disk, which will block until
it’s completed. When that sync is completed, we can be fairly certain that our
data is on disk and we can read it later if the system otherwise fails. 
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If we were to set appendfsync always, every write to Redis would result in a write to

disk, and we can ensure minimal data loss if Redis were to crash. Unfortunately,

because we’re writing to disk with every write to Redis, we’re limited by disk perfor-

mance, which is roughly 200 writes/second for a spinning disk, and maybe a few tens

of thousands for an SSD (a solid-state drive).

WARNING: SSDS AND appendfsync always You’ll want to be careful if you’re
using SSDs with appendfsync always. Writing every change to disk as they
happen, instead of letting the operating system group writes together as is the
case with the other appendfsync options, has the potential to cause an
extreme form of what is known as write amplification. By writing small amounts
of data to the end of a file, you can reduce the lifetime of SSDs from years to
just a few months in some cases.

As a reasonable compromise between keeping data safe and keeping our write perfor-

mance high, we can also set appendfsync everysec. This configuration will sync the

append-only log once every second. For most common uses, we’ll likely not find sig-

nificant performance penalties for syncing to disk every second compared to not

using any sort of persistence. By syncing to disk every second, if the system were to

crash, we could lose at most one second of data that had been written or updated in

Redis. Also, in the case where the disk is unable to keep up with the write volume

that’s happening, Redis would gracefully slow down to accommodate the maximum

write rate of the drive.

 As you may guess, when setting appendfsync no, Redis doesn’t perform any

explicit file syncing, leaving everything up to the operating system. There should be

no performance penalties in this case, though if the system were to crash in one way

or another, we’d lose an unknown and unpredictable amount of data. And if we’re

using a hard drive that isn’t fast enough for our write load, Redis would perform

fine until the buffers to write data to disk were filled, at which point Redis would get

very slow as it got blocked from writing. For these reasons, I generally discourage

the use of this configuration option, and include its description and semantics here

for completeness.

 Append-only files are flexible, offering a variety of options to ensure that almost

every level of paranoia can be addressed. But there’s a dark side to AOF persistence,

and that is file size.

Table 4.1 Sync options to use with appendfsync

Option How often syncing will occur

always Every write command to Redis results in a write to disk. This 

slows Redis down substantially if used.

everysec Once per second, explicitly syncs write commands to disk.

no Lets the operating system control syncing to disk.
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4.1.3 Rewriting/compacting append-only files

After reading about AOF persistence, you’re probably wondering why snapshots exist

at all. If by using append-only files we can minimize our data losses to one second (or

essentially none at all), and minimize the time it takes to have data persisted to disk

on a regular basis, it would seem that our choice should be clear. But the choice is

actually not so simple: because every write to Redis causes a log of the command to be

written to disk, the append-only log file will continuously grow. Over time, a growing

AOF could cause your disk to run out of space, but more commonly, upon restart,

Redis will be executing every command in the AOF in order. When handling large

AOFs, Redis can take a very long time to start up.

 To solve the growing AOF problem, we can use BGREWRITEAOF, which will rewrite

the AOF to be as short as possible by removing redundant commands. BGREWRITEAOF

works similarly to the snapshotting BGSAVE: performing a fork and subsequently

rewriting the append-only log in the child. As such, all of the same limitations with

snapshotting performance regarding fork time, memory use, and so on still stand

when using append-only files. But even worse, because AOFs can grow to be many

times the size of a dump (if left uncontrolled), when the AOF is rewritten, the OS

needs to delete the AOF, which can cause the system to hang for multiple seconds

while it’s deleting an AOF of tens of gigabytes.

 With snapshots, we could use the save configuration option to enable the automatic

writing of snapshots using BGSAVE. Using AOFs, there are two configuration options that

enable automatic BGREWRITEAOF execution: auto-aof-rewrite-percentage and

auto-aof-rewrite-min-size. Using the example values of auto-aof-rewrite-

percentage 100 and auto-aof-rewrite-min-size 64mb, when AOF is enabled, Redis

will initiate a BGREWRITEAOF when the AOF is at least 100% larger than it was when Redis

last finished rewriting the AOF, and when the AOF is at least 64 megabytes in size. As a

point of configuration, if our AOF is rewriting too often, we can increase the 100 that rep-

resents 100% to something larger, though it will cause Redis to take longer to start up

if it has been a while since a rewrite happened.

 Regardless of whether we choose append-only files or snapshots, having the data

on disk is a great first step. But unless our data has been backed up somewhere else

(preferably to multiple locations), we’re still leaving ourselves open to data loss.

Whenever possible, I recommend backing up snapshots and newly rewritten append-

only files to other servers.

 By using either append-only files or snapshots, we can keep our data between sys-

tem reboots or crashes. As load increases, or requirements for data integrity become

more stringent, we may need to look to replication to help us.

4.2 Replication

Over their years of scaling platforms for higher loads, engineers and administrators

have added replication to their bag of tricks to help systems scale. Replication is a

method by which other servers receive a continuously updated copy of the data as it’s
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being written, so that the replicas can service read queries. In the relational database

world, it’s not uncommon for a single master database to send writes out to multiple

slaves, with the slaves performing all of the read queries. Redis has adopted this

method of replication as a way of helping to scale, and this section will discuss config-

uring replication in Redis, and how Redis operates during replication.

 Though Redis may be fast, there are situations where one Redis server running

isn’t fast enough. In particular, operations over SETs and ZSETs can involve dozens of

SETs/ZSETs over tens of thousands or even millions of items. When we start getting

millions of items involved, set operations can take seconds to finish, instead of milli-

seconds or microseconds. But even if single commands can complete in 10 millisec-

onds, that still limits us to 100 commands/second from a single Redis instance.

EXAMPLE PERFORMANCE FOR SUNIONSTORE As a point to consider for the
performance to expect from Redis, on a 2.4 GHz Intel Core 2 Duo, Redis
will take 7–8 milliseconds to perform a SUNIONSTORE of two 10,000-item SETs
that produces a single 20,000 item SET.

For situations where we need to scale out read queries, or where we may need to write

temporary data (we’ll talk about some of those in chapter 7), we can set up additional

slave Redis servers to keep copies of our dataset. After receiving an initial copy of the

data from the master, slaves are kept up to date in real time as clients write data to the

master. With a master/slave setup, instead of connecting to the master for reading

data, clients will connect to one of the slaves to read their data (typically choosing

them in a random fashion to try to balance the load). 

 Let’s talk about configuring Redis for master/slave operation, and how Redis

behaves during the entire process.

4.2.1 Configuring Redis for replication

As I mentioned in section 4.1.1, when a slave connects to the master, the master will

start a BGSAVE operation. To configure replication on the master side of things, we

only need to ensure that the path and filename listed under the dir and dbfilename

configuration options shown in listing 4.1 are to a path and file that are writable by

the Redis process.

 Though a variety of options control behavior of the slave itself, only one option is

really necessary to enable slaving: slaveof. If we were to set slaveof host port in

our configuration file, the Redis that’s started with that configuration will use the

provided host and port as the master Redis server it should connect to. If we have an

already running system, we can tell a Redis server to stop slaving, or even to slave to a

new or different master. To connect to a new master, we can use the SLAVEOF host

port command, or if we want to stop updating data from the master, we can use

SLAVEOF no one.

 There’s not a lot to configuring Redis for master/slave operation, but what’s inter-

esting and useful to know is what happens to Redis when it becomes a master or slave.
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4.2.2 Redis replication startup process

I briefly described what happens when a slave connects—that the master starts a snap-

shot and sends that to the slave—but that’s the simple version. Table 4.2 lists all of the

operations that occur on both the master and slave when a slave connects to a master.

With the method outlined in table 4.2, Redis manages to keep up with most loads dur-

ing replication, except in cases where network bandwidth between the master and

slave instances isn’t fast enough, or when the master doesn’t have enough memory to

fork and keep a backlog of write commands. Though it isn’t necessary, it’s generally

considered to be a good practice to have Redis masters only use about 50–65% of the

memory in our system, leaving approximately 30–45% for spare memory during

BGSAVE and command backlogs. 

 On the slave side of things, configuration is also simple. To configure the slave for

master/slave replication, we can either set the configuration option SLAVEOF host

port, or we can configure Redis during runtime with the SLAVEOF command. If we use

the configuration option, Redis will initially load whatever snapshot/AOF is currently

available (if any), and then connect to the master to start the replication process out-

lined in table 4.2. If we run the SLAVEOF command, Redis will immediately try to con-

nect to the master, and upon success, will start the replication process outlined in

table 4.2. 

DURING SYNC, THE SLAVE FLUSHES ALL OF ITS DATA Just to make sure that we’re
all on the same page (some users forget this the first time they try using slaves):
when a slave initially connects to a master, any data that had been in memory
will be lost, to be replaced by the data coming from the master.

Table 4.2 What happens when a slave connects to a master

Step Master operations Slave operations

1 (waiting for a command) (Re-)connects to the master; issues the 

SYNC command

2 Starts BGSAVE operation; keeps a backlog of 

all write commands sent after BGSAVE

Serves old data (if any), or returns errors 

to commands (depending on configuration)

3 Finishes BGSAVE; starts sending the snapshot 

to the slave; continues holding a backlog of 

write commands

Discards all old data (if any); starts load-

ing the dump as it’s received

4 Finishes sending the snapshot to the slave; 

starts sending the write command backlog to 

the slave

Finishes parsing the dump; starts 

responding to commands normally again

5 Finishes sending the backlog; starts live stream-

ing of write commands as they happen

Finishes executing backlog of write com-

mands from the master; continues execut-

ing commands as they happen
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WARNING: REDIS DOESN’T SUPPORT MASTER-MASTER REPLICATION When shown
master/slave replication, some people get the mistaken idea that because we
can set slaving options after startup using the SLAVEOF command, that means
we can get what’s known as multi-master replication by setting two Redis instances
as being SLAVEOF each other (some have even considered more than two in a
loop). Unfortunately, this does not work. At best, our two Redis instances will use
as much processor as they can, will be continually communicating back and
forth, and depending on which server we connect and try to read/write data
from/to, we may get inconsistent data or no data.

When multiple slaves attempt to connect to Redis, one of two different scenarios can

occur. Table 4.3 describes them. 

For the most part, Redis does its best to ensure that it doesn’t have to do more work

than is necessary. In some cases, slaves may try to connect at inopportune times and

cause the master to do more work. On the other hand, if multiple slaves connect at

the same time, the outgoing bandwidth used to synchronize all of the slaves initially

may cause other commands to have difficulty getting through, and could cause gen-

eral network slowdowns for other devices on the same network.

4.2.3 Master/slave chains

Some developers have found that when they need to replicate to more than a handful

of slaves, some networks are unable to keep up—especially when replication is being

performed over the internet or between data centers. Because there’s nothing partic-

ularly special about being a master or a slave in Redis, slaves can have their own slaves,

resulting in master/slave chaining.

 Operationally, the only difference in the replication process that occurs is that if a

slave X has its own slave Y, when slave X hits step 4 from table 4.2, slave X will discon-

nect slave Y, causing Y to reconnect and resync.

 When read load significantly outweighs write load, and when the number of reads

pushes well beyond what a single Redis server can handle, it’s common to keep adding

slaves to help deal with the load. As load continues to increase, we can run into situa-

tions where the single master can’t write to all of its slaves fast enough, or is over-

loaded with slaves reconnecting and resyncing. To alleviate such issues, we may want

to set up a layer of intermediate Redis master/slave nodes that can help with replica-

tion duties similar to figure 4.1. 

Table 4.3 When a slave connects to an existing master, sometimes it can reuse an existing dump file.

When additional slaves connect Master operation

Before step 3 in table 4.2 All slaves will receive the same dump and same backlogged 

write commands.

On or after step 3 in table 4.2 While the master is finishing up the five steps for earlier slaves, 

a new sequence of steps 1-5 will start for the new slave(s).
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Though the example shown in figure 4.1 may not necessarily need to be in a tree

structure, remembering and understanding that this is both possible and reasonable

for Redis replication can help you later. 

 Back in section 4.1.2, we talked about using append-only files with syncing to limit

the opportunities for us to lose data. We could prevent data loss almost entirely

(except for system or hard drive crashes) by syncing every write to disk, but then we

end up limiting performance severely. If we tell Redis to sync every second, we’re able

to get the performance we need, but we could lose up to a second of writes if bad

things happen. But by combining replication and append-only files, we can ensure

that data gets to disk on multiple machines.

 In order to ensure that data gets to disk on multiple machines, we must obviously

set up a master with slaves. By configuring our slaves (and optionally our master) with

appendonly yes and appendfsync everysec, we now have a group of machines that

will sync to disk every second. But that’s only the first part: we must wait for the write

to reach the slave(s) and check to make sure that the data reached disk before we

can continue.

4.2.4 Verifying disk writes

Verifying that the data we wrote to the master made it to the slave is easy: we merely

need to write a unique dummy value after our important data, and then check for it

on the slave. But verifying that the data made it to disk is more difficult. If we wait at

least one second, we know that our data made it to disk. But if we’re careful, we may

be able to wait less time by checking the output of INFO for the value of

aof_pending_bio_fsync, which will be 0 if all data that the server knows about has

been written to disk. To automate this check, we can use the function provided in the

next listing, which we’d call after writing our data to the master by passing both the

master and slave connections. 

Redis master

Slave-1

Slave-a Slave-b Slave-c

Slave-2 Slave-3 

Slave-d Slave-e Slave-f Slave-g Slave-h Slave-i

Figure 4.1 An example Redis master/slave replica tree with nine lowest-level slaves and three 

intermediate replication helper servers
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def wait_for_sync(mconn, sconn):
identifier = str(uuid.uuid4())
mconn.zadd('sync:wait', identifier, time.time())

while not sconn.info()['master_link_status'] != 'up':
time.sleep(.001)

while not sconn.zscore('sync:wait', identifier):
time.sleep(.001)

deadline = time.time() + 1.01     
while time.time() < deadline:

if sconn.info()['aof_pending_bio_fsync'] == 0:
break

time.sleep(.001)

mconn.zrem('sync:wait', identifier)
mconn.zremrangebyscore('sync:wait', 0, time.time()-900)

OTHER INFORMATION FROM THE INFO COMMAND The INFO command can offer a
wide range of information about the current status of a Redis server—memory
used, the number of connected clients, the number of keys in each database,
the number of commands executed since the last snapshot, and more. Gener-
ally speaking, INFO is a good source of information about the general state of
our Redis servers, and many resources online can explain more.

To ensure correct operation, this function will first verify that the slave is connected to

the master. It’ll then poll the slave, looking for the value that it had added to the sync

wait ZSET. After it has found that the value has made it to the slave, it’ll then check on

the status of the Redis write buffer, waiting for it to either say that there are no pending

syncs to disk (signaling that the change had made it to disk), or wait for up to one sec-

ond. We wait for one second under the assumption that after one second, the data had

been synced to disk, but there’s so much writing to Redis that we didn’t catch when the

data had been synced. After verifying the write to disk, we then clean up after ourselves.

 By combining replication and append-only files, we can configure Redis to be resil-

ient against system failures.

4.3 Handling system failures

In order to be able to handle system failures in Redis, we need to prepare ourselves

for the failure. The reason we’ve spent so much time talking about these topics is

because if we’re going to rely on Redis as the sole data store for our application, then

we must ensure that we never lose any data. Unlike a traditional relational database

that offers ACID2 guarantees, when choosing to architect on top of a Redis back end,

Listing 4.3 The wait_for_sync() function

2 ACID—or atomicity, consistency, isolation, and durability—is a functional description of what a database
must guarantee to offer reliable transactions over data.

Add the token 
to the master.

Wait for the slave to 
sync (if necessary).

Wait for the slave to 
receive the data change.

Wait up to one second.

Check to see if the data 
is known to be on disk.

Clean up our status and clean out older
entries that may have been left there.
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we need to do a little extra work to ensure data consistency. Redis is software, and it

runs on hardware, and even if both were designed perfectly and couldn’t fail, power

can fail, generators can run out of fuel, and batteries can run out of power. In looking

at what Redis offers, we spent a lot of time preparing for potential system failures. This

section will talk about what we can do when failure does happen.

4.3.1 Verifying snapshots and append-only files

When confronted with system failures, we have tools to help us recover when either

snapshotting or append-only file logging had been enabled. Redis includes two com-

mand-line applications for testing the status of a snapshot and an append-only file.

These commands are redis-check-aof and redis-check-dump. If we run either com-

mand without arguments, we’ll see the basic help that’s provided:

$ redis-check-aof
Usage: redis-check-aof [--fix] <file.aof>
$ redis-check-dump
Usage: redis-check-dump <dump.rdb>
$

If we provide --fix as an argument to redis-check-aof, the command will fix the

file. Its method to fix an append-only file is simple: it scans through the provided AOF,

looking for an incomplete or incorrect command. Upon finding the first bad com-

mand, it trims the file to just before that command would’ve been executed. For most

situations, this will discard the last partial write command. 

 Unfortunately, there’s no currently supported method of repairing a corrupted

snapshot. Though there’s the potential to discover where the first error had occurred,

because the snapshot itself is compressed, an error partway through the dump has the

potential to make the remaining parts of the snapshot unreadable. It’s for these rea-

sons that I’d generally recommend keeping multiple backups of important snapshots,

and calculating the SHA1 or SHA256 hashes to verify content during restoration.

(Modern Linux and Unix platforms will have available sha1sum and sha256sum com-

mand-line applications for generating and verifying these hashes.)

CHECKSUMS AND HASHES Redis versions including 2.6 and later include a
CRC64 checksum of the snapshot as part of the snapshot. The use of a CRC-
family checksum is useful to discover errors that are typical in some types of
network transfers or disk corruption. The SHA family of cryptographic hashes
is much better suited for discovering arbitrary errors. To the point, if we calcu-
lated the CRC64 of a file, then flipped any number of bits inside the file, we
could later flip a subset of the last 64 bits of the file to produce the original
checksum. There’s no currently known method for doing the same thing with
SHA1 or SHA256.

After we’ve verified that our backups are what we had saved before, and we’ve cor-

rected the last write to AOF as necessary, we may need to replace a Redis server.
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4.3.2 Replacing a failed master

When we’re running a group of Redis servers with replication and persistence, there

may come a time when some part of our infrastructure stops working for one reason

or another. Maybe we get a bad hard drive, maybe bad memory, or maybe the power

just went out. Regardless of what causes the system to fail, we’ll eventually need to

replace a Redis server. Let’s look at an example scenario involving a master, a slave,

and needing to replace the master.

 Machine A is running a copy of Redis that’s acting as the master, and machine B is

running a copy of Redis that’s acting as the slave. Unfortunately, machine A has just

lost network connectivity for some reason that we haven’t yet been able to diagnose.

But we have machine C with Redis installed that we’d like to use as the new master.

 Our plan is simple: We’ll tell machine B to produce a fresh snapshot with SAVE.

We’ll then copy that snapshot over to machine C. After the snapshot has been copied

into the proper path, we’ll start Redis on machine C. Finally, we’ll tell machine B to

become a slave of machine C.3 Some example commands to make this possible on this

hypothetical set of systems are shown in the following listing. 

user@vpn-master ~:$ ssh root@machine-b.vpn               
Last login: Wed Mar 28 15:21:06 2012 from ...
root@machine-b ~:$ redis-cli
redis 127.0.0.1:6379> SAVE
OK
redis 127.0.0.1:6379> QUIT
root@machine-b ~:$ scp \
> /var/local/redis/dump.rdb machine-c.vpn:/var/local/redis/
dump.rdb 100% 525MB 8.1MB/s 01:05
root@machine-b ~:$ ssh machine-c.vpn    
Last login: Tue Mar 27 12:42:31 2012 from ...
root@machine-c ~:$ sudo /etc/init.d/redis-server start
Starting Redis server...
root@machine-c ~:$ exit
root@machine-b ~:$ redis-cli
redis 127.0.0.1:6379> SLAVEOF machine-c.vpn 6379
OK
redis 127.0.0.1:6379> QUIT
root@machine-b ~:$ exit
user@vpn-master ~:$

Most of these commands should be familiar to those who have experience using and

maintaining Unix or Linux systems. The only interesting things in the commands

being run here are that we can initiate a SAVE on machine B by running a command,

and we later set up machine B to be a slave of machine C by running a command.

 As an alternative to creating a new master, we may want to turn the slave into a mas-

ter and create a new slave. Either way, Redis will be able to pick up where it left off,

3 Because B was originally a slave, our clients shouldn’t have been writing to B, so we won’t have any race con-
ditions with clients writing to B after the snapshot operation was started.

Listing 4.4 An example sequence of commands for replacing a failed master node

Connect to machine B 
on our VPN network.

Start up the command-
line redis client to do a 
few simple operations.

Start a SAVE, and when 
it’s done, QUIT so that 
we can continue.

Copy the snapshot over to 
the new master, machine C.

Connect to the new 
master and start Redis.

Tell machine B’s Redis 
that it should use C as 
the new master.
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and our only job from then on is to update our client configuration to read and write

to the proper servers, and optionally update the on-disk server configuration if we

need to restart Redis.

REDIS SENTINEL A relatively recent addition to the collection of tools avail-
able with Redis is Redis Sentinel. By the final publishing of this manuscript,
Redis Sentinel should be complete. Generally, Redis Sentinel pays attention
to Redis masters and the slaves of the masters and automatically handles
failover if the master goes down. We’ll discuss Redis Sentinel in chapter 10.

In the next section, we’ll talk about keeping our data from being corrupted by multiple

writers working on the same data, which is a necessary step toward keeping our data safe.

4.4 Redis transactions

Part of keeping our data correct is understanding that when other clients are working

on the same data, if we aren’t careful, we may end up with data corruption. In this sec-

tion, we’ll talk about using Redis transactions to prevent data corruption and, in some

cases, to improve performance.

 Transactions in Redis are different from transactions that exist in more traditional

relational databases. In a relational database, we can tell the database server BEGIN, at

which point we can perform a variety of read and write operations that will be consis-

tent with respect to each other, after which we can run either COMMIT to make our

changes permanent or ROLLBACK to discard our changes.

 Within Redis, there’s a simple method for handling a sequence of reads and writes

that will be consistent with each other. We begin our transaction by calling the special

command MULTI, passing our series of commands, followed by EXEC (as introduced in

section 3.7.2). The problem is that this simple transaction doesn’t actually do anything

until EXEC is called, which means that we can’t use data we read to make decisions until

after we may have needed it. This may not seem important, but there’s a class of prob-

lems that become difficult to solve because of not being able to read the data in a con-

sistent fashion, or allow for transactions to fail where they should succeed (as is the case

when we have multiple simultaneous transactions against a single object when using two-

phase commit, a common solution to the problem). One of these problems is the pro-

cess of purchasing an item from a marketplace. Let’s see an example of this in action.

DELAYED EXECUTION WITH MULTI/EXEC CAN IMPROVE PERFORMANCE Because of
Redis’s delaying execution of commands until EXEC is called when using MULTI/
EXEC, many clients (including the Python client that we’re using) will hold off
on even sending commands until all of them are known. When all of the com-
mands are known, the client will send MULTI, followed by the series of com-
mands to be executed, and EXEC, all at the same time. The client will then wait
until all of the replies from all of the commands are received. This method of
sending multiple commands at once and waiting for all of the replies is gener-
ally referred to as pipelining, and has the ability to improve Redis’s performance
when executing multiple commands by reducing the number of network round
trips that a client needs to wait for. 
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In the last few months, Fake Game Company has seen major growth in their web-

based RPG that’s played on YouTwitFace, a fictional social network. Because it pays

attention to the needs and desires of its community, it has determined that the players

need the ability to buy and sell items in a marketplace. It’s our job to design and build

a marketplace that can scale to the needs of the community.

4.4.1 Defining users and their inventory

We’ll start by showing some structures that define our users and their inventory. User

information is stored as a HASH, with keys and values that store user attributes like

name, funds, and anything else. A user’s inventory will be a SET that holds unique

identifiers for each item, which can be seen in figure 4.2.

Our requirements for the market are simple: a user can list an item for a given price,

and when another user purchases the item, the seller receives the money. We’ll also

say that the part of the market we’ll be worrying about only needs to be ordered by

selling price. In chapter 7, we’ll cover some

topics for handling other orders.

 To include enough information to sell a

given item in the market, we’ll concatenate the

item ID for the item with the user ID of the

seller and use that as a member of a market

ZSET, with the score being the item’s selling

price. By including all of this information

together, we greatly simplify our data struc-

tures and what we need to look up, and get the

benefit of being able to easily paginate

through a presorted market. A small version of

the marketplace is shown in figure 4.3. 

name      Frank

funds      43

users:17 hash

ItemM

ItemN

ItemL

inventory:17 set

name      Bill

funds      125

users:27 hash

ItemP

ItemQ

ItemO

inventory:27 set

Figure 4.2 Example user inventory and user information. Frank has 43 e-dollars and an item 

that he’s considering selling from his inventory.

market: zset

Items to be sold Prices of the items

Owners of the items

ItemA.4     35

ItemC.7    48

ItemE.2    60

ItemG.3    73

Figure 4.3 Our basic marketplace that 

includes an ItemA being sold by user 4 for 

35 e-dollars



80 CHAPTER 4 Keeping data safe and ensuring performance

Now that we know what structures our marketplace uses, let’s list items in the market.

4.4.2 Listing items in the marketplace

In the process of listing, we’ll use a Redis operation called WATCH, which we combine

with MULTI and EXEC, and sometimes UNWATCH or DISCARD. When we’ve watched keys

with WATCH, if at any time some other client replaces, updates, or deletes any keys that

we’ve WATCHed before we have performed the EXEC operation, our operations against

Redis will fail with an error message when we try to EXEC (at which point we can retry

or abort the operation). By using WATCH, MULTI/EXEC, and UNWATCH/DISCARD, we can

ensure that the data that we’re working with doesn’t change while we’re doing some-

thing important, which protects us from data corruption.

WHAT IS DISCARD? In the same way that UNWATCH will let us reset our connec-
tion if sent after WATCH but before MULTI, DISCARD will also reset the connec-
tion if sent after MULTI but before EXEC. That is to say, if we’d WATCHed a key or
keys, fetched some data, and then started a transaction with MULTI followed
by a group of commands, we could cancel the WATCH and clear out any
queued commands with DISCARD. We don’t use DISCARD here, primarily
because we know whether we want to perform a MULTI/EXEC or UNWATCH, so a
DISCARD is unnecessary for our purposes.

Let’s go about listing an item in the marketplace. To do so, we add the item to the

market ZSET, while WATCHing the seller’s inventory to make sure that the item is still

available to be sold. The function to list an item is shown here. 

def list_item(conn, itemid, sellerid, price):
inventory = "inventory:%s"%sellerid
item = "%s.%s"%(itemid, sellerid)
end = time.time() + 5
pipe = conn.pipeline()

while time.time() < end:
try:

pipe.watch(inventory)
if not pipe.sismember(inventory, itemid):

pipe.unwatch()
return None

pipe.multi()
pipe.zadd("market:", item, price)
pipe.srem(inventory, itemid)
pipe.execute()
return True

except redis.exceptions.WatchError:         
pass

return False

After some initial setup, we’ll do what we described earlier. We’ll tell Redis that we

want to watch the seller’s inventory, verify that the seller can still sell the item, and if

so, add the item to the market and remove the item from their inventory. If there’s an

Listing 4.5 The list_item() function

Watch for changes to 
the user’s inventory. Verify that the 

user still has the 
item to be listed.

If the item isn’t in the
user’s inventory, stop

watching the inventory
key and return.

Actually list
the item.

If execute returns without 
a WatchError being raised, 
then the transaction is 
complete and the inventory 
key is no longer watched.

The user’s inventory 
was changed; retry.
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update or change to the inventory while we’re looking at it, we’ll receive an error and

retry, as is shown by the while loop outside of our actual operation.

 Let’s look at the sequence of operations that are performed when Frank (user 17)

wants to sell ItemM for 97 e-dollars in figure 4.4.

Watch the inventory for any changes.

Ensure that the item to be sold is

still in Frank’s inventory.

Redis doesn’t have a way of

simultaneously removing an item

from a SET and adding it to a ZSET

while also changing the item’s name,

so we need to use two commands to

perform the operation.

watch('inventory:17')

ItemM

ItemN

ItemL

inventory:17 set

sismember('inventory:17', 'ItemM')

zadd('market:', 'ItemM.17', 97)

srem('inventory:17', 'ItemM')

ItemM

ItemN

ItemL

inventory:17 set

ItemM

ItemN

ItemL

inventory:17 set

market: zset

ItemA.4     35

ItemC.7    48

ItemE.2    60

ItemG.3    73

ItemM.17    97

Figure 4.4 list_item(conn, "ItemM", 17, 97)
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Generally, listing an item should occur without any significant issue, since only the

user should be selling their own items (which is enforced farther up the application

stack). But as I mentioned before, if a user’s inventory were to change between the

WATCH and EXEC, our attempt to list the item would fail, and we’d retry.

 Now that you know how to list an item, it’s time to purchase an item.

4.4.3 Purchasing items

To process the purchase of an item, we first WATCH the market and the user who’s buy-

ing the item. We then fetch the buyer’s total funds and the price of the item, and ver-

ify that the buyer has enough money. If they don’t have enough money, we cancel the

transaction. If they do have enough money, we perform the transfer of money

between the accounts, move the item into the buyer’s inventory, and remove the item

from the market. On WATCH error, we retry for up to 10 seconds in total. We can see

the function which handles the purchase of an item in the following listing. 

def purchase_item(conn, buyerid, itemid, sellerid, lprice):
buyer = "users:%s"%buyerid
seller = "users:%s"%sellerid
item = "%s.%s"%(itemid, sellerid)
inventory = "inventory:%s"%buyerid
end = time.time() + 10
pipe = conn.pipeline()

while time.time() < end:
try:

pipe.watch("market:", buyer)

price = pipe.zscore("market:", item)
funds = int(pipe.hget(buyer, "funds"))
if price != lprice or price > funds:

pipe.unwatch()
return None

pipe.multi()
pipe.hincrby(seller, "funds", int(price))
pipe.hincrby(buyer, "funds", int(-price))
pipe.sadd(inventory, itemid)
pipe.zrem("market:", item)
pipe.execute()
return True

except redis.exceptions.WatchError:       
pass

return False

To purchase an item, we need to spend more time preparing the data, and we need to

watch both the market and the buyer’s information. We watch the market to ensure

that the item can still be bought (or that we can notice that it has already been

bought), and we watch the buyer’s information to verify that they have enough money.

Listing 4.6 The purchase_item() function

Watch for changes to the 
market and to the buyer’s 
account information.

Check for a sold/repriced 
item or insufficient funds.

Transfer funds from the buyer 
to the seller, and transfer the 
item to the buyer.

Retry if the buyer’s account 
or the market changed.
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When we’ve verified that the item is still there, and that the buyer has enough money,

we go about actually moving the item into their inventory, as well as moving money

from the buyer to the seller.

 After seeing the available items in the market, Bill (user 27) decides that he wants

to buy ItemM from Frank through the marketplace. Let’s follow along to see how our

data changes through figures 4.5 and 4.6.  

 If either the market ZSET or Bill’s account information changes between our WATCH

and our EXEC, the purchase_item() function will either retry or abort, based on how

long it has been trying to purchase the item, as shown in listing 4.6.

WHY DOESN’T REDIS IMPLEMENT TYPICAL LOCKING? When accessing data for
writing (SELECT FOR UPDATE in SQL), relational databases will place a lock on
rows that are accessed until a transaction is completed with COMMIT or ROLL-
BACK. If any other client attempts to access data for writing on any of the same
rows, that client will be blocked until the first transaction is completed. This
form of locking works well in practice (essentially all relational databases
implement it), though it can result in long wait times for clients waiting to
acquire locks on a number of rows if the lock holder is slow.

Because there’s potential for long wait times, and because the design of Redis
minimizes wait time for clients (except in the case of blocking LIST pops),
Redis doesn’t lock data during WATCH. Instead, Redis will notify clients if some-
one else modified the data first, which is called optimistic locking (the actual
locking that relational databases perform could be viewed as pessimistic). Opti-
mistic locking also works well in practice because clients are never waiting on
the first holder of the lock; instead they retry if some other client was faster.

Watch the market and Bill’s

information for changes.

Verify that the item is 

still listed for the same 

price, and that Bill still 

has enough money.

watch('market:', 'users:27')

price = zscore('market', 'ItemM.17')

funds = int(hget('users:27', 'funds'))

price ! = 97 or price < funds?

market: zset

ItemA.4     35

ItemC.7    48

ItemE.2    60

ItemG.3    73

ItemM.17    97

name      Bill

funds      125

users:27 hash

Figure 4.5 Before the item can be purchased, we must watch the market and the buyer’s information 

to verify that the item is still available, and that the buyer has enough money.
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In this section, we’ve discussed combining WATCH, MULTI, and EXEC to handle the

manipulation of multiple types of data so that we can implement a marketplace. Given

this functionality as a basis, it wouldn’t be out of the question to make our market-

place into an auction, add alternate sorting options, time out old items in the market,

or even add higher-level searching and filtering based on techniques discussed in

chapter 7.

 As long as we consistently use transactions in Redis, we can keep our data from

being corrupted while being operated on by multiple clients. Let’s look at how we can

make our operations even faster when we don’t need to worry about other clients

altering our data.

4.5 Non-transactional pipelines

When we first introduced MULTI/EXEC in chapter 3, we talked about them as having a

“transaction” property—everything between the MULTI and EXEC commands will exe-

cute without other clients being able to do anything. One benefit to using transactions

Move the item into Bill’s inventory. Move money from Bill to Frank.

hincbry('users:27', 'funds', -97)

hincbry('users:17', 'funds', 97)

zrem('market:', 'ItemM.17')

sadd('inventory:27', 'ItemM')

market: zset

ItemA.4     35

ItemC.7    48

ItemE.2    60

ItemG.3    73

ItemM.17    97

inventory:27 set

ItemO

ItemP

ItemQ

ItemM

name      Bill

funds      28

users:27 hash

name      Bill

funds      140

users:17 hash

125

43

Figure 4.6 In order to complete the item purchase, we must actually transfer money from the buyer 

to the seller, and we must remove the item from the market while adding it to the buyer’s inventory.
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is the underlying library’s use of a pipeline, which improves performance. This section

will show how to use a pipeline without a transaction to further improve performance. 

 You’ll remember from chapter 2 that some commands take multiple arguments for

adding/updating—commands like MGET, MSET, HMGET, HMSET, RPUSH/LPUSH, SADD, ZADD,

and others. Those commands exist to streamline calls to perform the same operation

repeatedly. As you saw in chapter 2, this can result in significant performance

improvements. Though not as drastic as these commands, the use of non-transac-

tional pipelines offers many of the same performance advantages, and allows us to run

a variety of commands at the same time.

 In the case where we don’t need transactions, but where we still want to do a lot of

work, we could still use MULTI/EXEC for their ability to send all of the commands at the

same time to minimize round trips and latency. Unfortunately, MULTI and EXEC aren’t

free, and can delay other important commands from executing. But we can gain all the

benefits of pipelining without using MULTI/EXEC. When we used MULTI/EXEC in Python

in chapter 3 and in section 4.4, you may have noticed that we did the following:

pipe = conn.pipeline()

By passing True to the pipeline() method (or omitting it), we’re telling our client to

wrap the sequence of commands that we’ll call with a MULTI/EXEC pair. If instead of

passing True we were to pass False, we’d get an object that prepared and collected

commands to execute similar to the transactional pipeline, only it wouldn’t be

wrapped with MULTI/EXEC. For situations where we want to send more than one com-

mand to Redis, the result of one command doesn’t affect the input to another, and we

don’t need them all to execute transactionally, passing False to the pipeline()

method can further improve overall Redis performance. Let’s look at an example.

 Way back in sections 2.1 and 2.5, we wrote and updated a function called

update_token(), which kept a record of recent items viewed and recent pages viewed,

and kept the user’s login cookie updated. The updated code from section 2.5 is shown

in listing 4.7. Note how the function will make three or five calls to Redis for every call

of the function. As written, that will result in three or five round trips between Redis

and our client. 

def update_token(conn, token, user, item=None):
timestamp = time.time()
conn.hset('login:', token, user)
conn.zadd('recent:', token, timestamp)
if item:

conn.zadd('viewed:' + token, item, timestamp)
conn.zremrangebyrank('viewed:' + token, 0, -26)
conn.zincrby('viewed:', item, -1)

Listing 4.7 The update_token() function from section 2.5

Get the 
timestamp.Keep a mapping from the

token to the logged-in user.

Record that the user
viewed the item.

Remove old items,
keeping the most

recent 25.

Record 
when the 
token was 
last seen.

Update the number 
of times the given 
item was viewed.
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If our Redis and web servers are connected over LAN with only one or two steps, we could

expect that the round trip between the web server and Redis would be around 1–2 mil-

liseconds. With three to five round trips between Redis and the web server, we could

expect that it would take 3–10 milliseconds for update_token() to execute. At that

speed, we could only expect a single web server thread to be able to handle 100–333

requests per second. This is great, but we could do better. Let’s quickly create a non-

transactional pipeline and make all of our requests over that pipeline. You can see the

updated function in the next listing. 

def update_token_pipeline(conn, token, user, item=None):
timestamp = time.time()
pipe = conn.pipeline(False)                   
pipe.hset('login:', token, user)
pipe.zadd('recent:', token, timestamp)
if item:

pipe.zadd('viewed:' + token, item, timestamp)
pipe.zremrangebyrank('viewed:' + token, 0, -26)
pipe.zincrby('viewed:', item, -1)

pipe.execute()

By replacing our standard Redis connection with a pipelined connection, we can

reduce our number of round trips by a factor of 3–5, and reduce the expected time to

execute update_token_pipeline() to 1–2 milliseconds. At that speed, a single web

server thread could handle 500–1000 requests per second if it only had to deal with

updating item view information. Theoretically, this is great, but what about in reality?

 Let’s test both of these functions by performing a simple benchmark. We’ll test the

number of requests that can be processed per second against a copy of Redis that’s on

the same machine, across a fast and low-latency network connection, and across a slow

and higher latency connection. We’ll first start with the benchmark code that we’ll use

to test the performance of these connections. In our benchmark, we’ll call either

update_token() or update_token_pipeline() repeatedly until we reach a prespecified

timeout, and then calculate the number of requests we can service at a given time. The

following listing shows the code that we’ll use to run our two update_token commands. 

def benchmark_update_token(conn, duration):
for function in (update_token, update_token_pipeline):

count = 0
start = time.time()
end = start + duration
while time.time() < end:

count += 1
function(conn, 'token', 'user', 'item')

delta = time.time() - start
print function.__name__, count, delta, count / delta

Listing 4.8 The update_token_pipeline() function

Listing 4.9 The benchmark_update_token() function

Set up the pipeline.

Execute the commands 
in the pipeline.

Execute both the 
update_token() and the 
update_token_pipeline() 
functions.

Set up our counters
and our ending

conditions.

Call one
of the two
functions.

Calculate the duration.

Print information 
about the results.
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When we run the benchmark function across a variety of connections with the given

available bandwidth (gigabits or megabits) and latencies, we get data as shown in

table 4.4.   

Looking at the table, note that for high-latency connections, we can multiply perfor-

mance by a factor of five using pipelines over not using pipelines. Even with very low-

latency remote connections, we’re able to improve performance by almost four times.

For local connections, we actually run into the single-core performance limit of

Python sending and receiving short command sequences using the Redis protocol

(we’ll talk about this more in section 4.6).

 You now know how to push Redis to perform better without transactions. Beyond

using pipelines, are there any other standard ways of improving the performance of

Redis? 

4.6 Performance considerations

When coming from a relational database background, most users will be so happy with

improving performance by a factor of 100 times or more by adding Redis, they won’t

realize that they can make Redis perform even better. In the previous section, we intro-

duced non-transactional pipelines as a way to minimize the number of round trips

between our application and Redis. But what if we’ve already built an application, and

we know that it could perform better? How do we find ways to improve performance?

 Improving performance in Redis requires having an understanding of what to

expect in terms of performance for the types of commands that we’re sending to

Redis. To get a better idea of what to expect from Redis, we’ll quickly run a bench-

mark that’s included with Redis, redis-benchmark, as can be seen in listing 4.10. Feel

free to explore redis-benchmark on your own to discover the performance character-

istics of your server and of Redis. 

Table 4.4 Performance of pipelined and nonpipelined connections over different types of connections. 

For high-speed connections, we’ll tend to run at the limit of what a single processor can 

perform for encoding/decoding commands in Redis. For slower connections, we’ll run at the 

limit of bandwidth and/or latency.

Description Bandwidth Latency
update_table()

calls per second

update_table_

pipeline()

calls per second

Local machine, Unix 

domain socket

>1 gigabit 0.015ms 3,761 6,394

Local machine, local-

host

>1 gigabit 0.015ms 3,257 5,991

Remote machine, 

shared switch

1 gigabit 0.271ms 739 2,841

Remote machine, con-

nected through VPN

1.8 megabit 48ms 3.67 18.2
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$ redis-benchmark -c 1 -q
PING (inline): 34246.57 requests per second
PING: 34843.21 requests per second
MSET (10 keys): 24213.08 requests per second
SET: 32467.53 requests per second
GET: 33112.59 requests per second
INCR: 32679.74 requests per second
LPUSH: 33333.33 requests per second
LPOP: 33670.04 requests per second
SADD: 33222.59 requests per second
SPOP: 34482.76 requests per second
LPUSH (again, in order to bench LRANGE): 33222.59 requests per second
LRANGE (first 100 elements): 22988.51 requests per second
LRANGE (first 300 elements): 13888.89 requests per second
LRANGE (first 450 elements): 11061.95 requests per second
LRANGE (first 600 elements): 9041.59 requests per second

The output of redis-benchmark shows a group of commands that are typically used in

Redis, as well as the number of commands of that type that can be run in a single sec-

ond. A standard run of this benchmark without any options will try to push Redis to its

limit using 50 clients, but it’s a lot easier to compare performance of a single bench-

mark client against one copy of our own client, rather than many.

 When looking at the output of redis-benchmark, we must be careful not to try to

directly compare its output with how quickly our application performs. This is

because redis-benchmark doesn’t actually process the result of the commands that it

performs, which means that the results of some responses that require substantial

parsing overhead aren’t taken into account. Generally, compared to redis-benchmark

running with a single client, we can expect the Python Redis client to perform at

roughly 50–60% of what redis-benchmark will tell us for a single client and for non-

pipelined commands, depending on the complexity of the command to call.

 If you find that your commands are running at about half of what you’d expect

given redis-benchmark (about 25–30% of what redis-benchmark reports), or if you

get errors reporting “Cannot assign requested address,” you may be accidentally creat-

ing a new connection for every command.

 I’ve listed some performance numbers relative to a single redis-benchmark client

using the Python client, and have described some of the most likely causes of slow-

downs and/or errors in table 4.5.  

 This list of possible performance issues and solutions is short, but these issues

amount to easily 95% of the performance-related problems that users report on a reg-

ular basis (aside from using Redis data structures incorrectly). If we’re experiencing

slowdowns that we’re having difficulty in diagnosing, and we know it isn’t one of the

problems listed in table 4.5, we should request help by one of the ways described in

section 1.4.

Listing 4.10 Running redis-benchmark on an Intel Core-2 Duo 2.4 GHz desktop

We run with the ‘-q’ option to 
get simple output and ‘-c 1’ to 
use a single client.
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Most client libraries that access Redis offer some level of connection pooling built in.

For Python, we only need to create a single redis.Redis() for every unique Redis

server we need to connect to (we need to create a new connection for each numbered

database we’re using). The redis.Redis() object itself will handle creating connec-

tions as necessary, reusing existing connections, and discarding timed-out connections.

As written, the Python client connection pooling is both thread safe and fork() safe.

4.7 Summary

Through this chapter, we’ve covered topics that can help keep Redis performing well

while keeping your data secure against system failures. The first half of the chapter pri-

marily discussed the use of persistence and replication to prepare for failures and deal

with failures. The latter half dealt with keeping your data from being corrupted, using

pipelines to improve performance, and diagnosing potential performance problems.

 If there are two things you should take from this chapter, they are that the use of

replication and append-only files can go a long way toward keeping your data safe,

and that using WATCH/MULTI/EXEC can keep your data from being corrupted by multi-

ple clients working on the same data.

 Hopefully our discussion of WATCH/MULTI/EXEC introduced in chapter 3 has helped

you to better understand how to fully utilize transactions in Redis. In chapter 6, we’ll

revisit transactions, but now let’s move on to chapter 5, where you’ll learn more about

using Redis to help with system administration tasks.

Table 4.5 A table of general performance comparisons against a single redis-benchmark client and 

what may be causing potential slowdowns

Performance or error Likely cause Remedy

50–60% of redis-benchmark
for a single client

Expected performance without 

pipelining

N/A

25–30% of redis-benchmark
for a single client

Connecting for every com-

mand/group of commands

Reuse your Redis connections

Client error: “Cannot assign 

requested address”

Connecting for every com-

mand/group of commands

Reuse your Redis connections
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Using Redis for
 application support

In the last chapter, we spent most of our time talking about how to keep Redis up

and running as part of a larger group of systems. In this chapter, we’ll talk about

using Redis to support other parts of your environment: from gathering informa-

tion about the current state of the system with logs and counters, to discovering

information about the clients using your system, all the way to configuring your sys-

tem by using Redis as a directory.

 Overall, this chapter offers control of and insight into how your system operates

during runtime. As you read along, keep in mind that we’re looking to support the

continued running of higher-level applications—that the components we build in

this chapter aren’t the applications themselves, but will help to support those appli-

cations. This support comes by way of recording information about the applications

This chapter covers

■ Logging to Redis

■ Counters and statistics

■ Discovering city and country from IP address

■ Service discovery and configuration
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and application visitors, and a method of configuring applications. Let’s look at the first

level of monitoring that we can add through logging.

5.1 Logging to Redis

As we build applications and services, being able to discover information about the

running system becomes increasingly important. Being able to dig into that informa-

tion to diagnose problems, discover problems before they become severe, or even just

to discover information about users—these all necessitate logging.

 In the world of Linux and Unix, there are two common logging methods. The first

is logging to a file, where over time we write individual log lines to a file, and every

once in a while, we write to a new file. Many thousands of pieces of software have been

written do this (including Redis itself). But this method can run into issues because we

have many different services writing to a variety of log files, each with a different way

of rolling them over, and no common way of easily taking all of the log files and doing

something useful with them.

 Running on TCP and UDP port 514 of almost every Unix and Linux server available

is a service called syslog, the second common logging method. Syslog accepts log mes-

sages from any program that sends it a message and routes those messages to various

on-disk log files, handling rotation and deletion of old logs. With configuration, it can

even forward messages to other servers for further processing. As a service, it’s far

more convenient than logging to files directly, because all of the special log file rota-

tion and deletion is already handled for us. 

REPLACING SYSLOG Whether you end up using the logging methods
described here, you owe it to yourself to consider replacing your current sys-
log daemon (which is likely Rsyslogd) with syslog-ng. Having used and con-
figured both systems, I find that the configuration language that syslog-ng
provides for directing log messages is easier to use. And though I don’t have
the space or time to build it in this book, building a service that consumes sys-
log messages and puts them into Redis is a great way to offer a layer of indirec-
tion between what needs to happen now for processing a request, and what
can happen later (like logging or updating counters). 

Having logs available in files on a single server (thanks to syslog forwarding) is a great

long-term plan with logging (remember to back them up). In this section, we’ll talk

about using Redis as a way of keeping more time-sensitive logs, to function as a

replacement for syslog messages being stored in the short term. Our first view into

changing logs is a continuously updated stream of recent log messages.

5.1.1 Recent logs

When building a system, knowing what’s important to record can be difficult. Do you

record every time someone logs in? What about when they log out? Do you log every

time someone changes their account information? Or do you only log errors and

exceptions? I can’t answer those questions for you directly, but I can offer a method of
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keeping a recent list of log messages in Redis, which will let you get a snapshot view of

your logs at any time.

 To keep a recent list of logs, we’ll LPUSH log messages to a LIST and then trim that

LIST to a fixed size. Later, if we want to read the log messages, we can perform a sim-

ple LRANGE to fetch the messages. We’ll take a few extra steps to support different

named log message queues and to support the typical log severity levels, but you can

remove either of those in your own code if you need to. The code for writing recent

logs to Redis is shown in the next listing. 

SEVERITY = {
logging.DEBUG: 'debug',     
logging.INFO: 'info',
logging.WARNING: 'warning',
logging.ERROR: 'error',
logging.CRITICAL: 'critical',

}
SEVERITY.update((name, name) for name in SEVERITY.values())

def log_recent(conn, name, message, severity=logging.INFO, pipe=None):
severity = str(SEVERITY.get(severity, severity)).lower()
destination = 'recent:%s:%s'%(name, severity)
message = time.asctime() + ' ' + message
pipe = pipe or conn.pipeline()
pipe.lpush(destination, message)
pipe.ltrim(destination, 0, 99)
pipe.execute()

Aside from the part that handles turning the different log levels into useful strings like

info and debug, the log_recent() function is simple—a quick LPUSH followed by an

LTRIM. Now that you have a better idea of what’s going on right now, can we discover

the most common (and maybe the most important) messages?

5.1.2 Common logs

If you’ve been running log_recent(), you’ll probably discover that although it’s use-

ful for getting an idea of what’s happening right now, it’s not very good at telling you

whether any important messages were lost in the noise. By recording information

about how often a particular message appears, you could then look through the mes-

sages ordered by how often they happened to help you determine what’s important.

 A simple and useful way of knowing how often a message appears is by storing the

message as a member of a ZSET, with the score being how often the message appears.

To make sure that we only see recent common messages, we’ll rotate our record of

common messages every hour. So that we don’t lose everything, we’ll keep the previous

hour’s worth of common messages. Our code for keeping track of and rotating com-

mon log messages is shown next. 

Listing 5.1 The log_recent() function

Set up a mapping that
should help turn most

logging severity levels into
something consistent.

Actually try to
turn a logging

level into a
simple string.

Add the
current time

so that we
know when

the message
was sent.

Set up a pipeline so we 
only need one round trip.

Add the message to the 
beginning of the log list.

Create 
the key that 
messages will 
be written to.

Trim the log list to 
only include the most 
recent 100 messages.Execute the two commands.
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def log_common(conn, name, message, severity=logging.INFO, timeout=5):
severity = str(SEVERITY.get(severity, severity)).lower()
destination = 'common:%s:%s'%(name, severity)
start_key = destination + ':start'
pipe = conn.pipeline()
end = time.time() + timeout
while time.time() < end:

try:
pipe.watch(start_key)
now = datetime.utcnow().timetuple()
hour_start = datetime(*now[:4]).isoformat()

existing = pipe.get(start_key)
pipe.multi()
if existing and existing < hour_start:

pipe.rename(destination, destination + ':last')
pipe.rename(start_key, destination + ':pstart')
pipe.set(start_key, hour_start)

pipe.zincrby(destination, message)
log_recent(pipe, name, message, severity, pipe)
return

except redis.exceptions.WatchError:
continue

This logging function was more involved than the recent logging function, primarily

due to being careful when taking care of old logs. That’s why we used the WATCH/

MULTI/EXEC transaction to rename the ZSET and rewrite the key that tells us what hour

the current data is for. We also passed the pipeline through to the log_recent() func-

tion to minimize round trips to Redis while keeping track of common and recent logs.

 Now that we’ve started to gather information about running software in Redis by

storing recent and common logs, what other kinds of information would be useful to

keep in Redis?

5.2 Counters and statistics

As you saw way back in chapter 2 when I introduced the concept of counting individ-

ual page visits, having basic hit count information can (for example) change the way

we choose our caches. But our example from chapter 2 was very simple, and reality is

rarely that simple, especially when it involves a real website.

 The fact that our site received 10,000 hits in the last 5 minutes, or that the database

handled 200 writes and 600 reads in the last 5 seconds, is useful information to know.

If we add the ability to see that information over time, we can notice sudden or grad-

ual increases in traffic, predict when server upgrades are necessary, and ultimately

save ourselves from downtime due to an overloaded system.

Listing 5.2 The log_common() function

Handle the
logging

level.

We’ll watch
the start of

the hour key
for changes

that only
happen at

the beginning
of the hour.

Keep a record of the start of the 
hour for this set of messages.

Set up the destination key 
for keeping recent logs.

Get the current time.

Find the current start hour.

Set up the 
transaction.

If the current list of 
common logs is for 
a previous hour...

...move the old common log
information to the archive.

Call the
log_recent()

function to record
these, and rely on

its call to execute().

Update the start of 
the current hour for 
the common logs.

Actually increment our 
common counter.

If we got a watch error 
from someone else 
archiving, try again.
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 This section will work through two different methods for recording both counters

and statistics in Redis, and will finish by discussing how to simplify the collection of

our example statistics. Both of these examples are driven by real use cases and require-

ments. Our next stop on the road of application introspection is collecting time series

counters in Redis.

5.2.1 Storing counters in Redis

As we monitor our application, being able to gather information over time becomes

ever more important. Code changes (that can affect how quickly our site responds,

and subsequently how many pages we serve), new advertising campaigns, or new users

to our system can all radically change the number of pages that are loaded on a site.

Subsequently, any number of other performance metrics may change. But if we aren’t

recording any metrics, then it’s impossible to know how they’re changing, or whether

we’re doing better or worse.

 In an attempt to start gathering metrics to watch and analyze, we’ll build a tool to

keep named counters over time (counters with names like site hits, sales, or database que-

ries can be crucial). Each of these counters will store the most recent 120 samples at a

variety of time precisions (like 1 second, 5 seconds, 1 minute, and so on). Both the num-

ber of samples and the selection of precisions to record can be customized as necessary.

 The first step for keeping counters is actually storing the counters themselves.

UPDATING A COUNTER

In order to update counters, we’ll need to store the actual counter information. For

each counter and precision, like site hits and 5 seconds, we’ll keep a HASH that stores infor-

mation about the number of site hits that have occurred in each 5-second time slice. The

keys in the hash will be the start of the time slice, and the value will be the number of

hits. Figure 5.1 shows a selection of data from a hit counter with 5-second time slices. 

 As we start to use counters, we need to record what counters have been written to so

that we can clear out old data. For this, we need an ordered sequence that lets us iterate

one by one over its entries, and that also doesn’t allow duplicates. We could use a LIST

combined with a SET, but that would take extra code and round trips to Redis. Instead,

we’ll use a ZSET, where the members are the combinations of precisions and names that

have been written to, and the scores are all 0. By setting all scores to 0 in a ZSET, Redis

will try to sort by score, and finding them all equal, will then sort by member name. This

gives us a fixed order for a given set of members, which will make it easy to sequentially

scan them. An example ZSET of known counters can be seen in figure 5.2.

1336376410      45

1336376405      28

1336376395      17

1336376400      29

...            ...

count:5:hits hash

This counter shows that 

the site has received 17 

hits between 7:39:55 and 

7:40:00 a.m. on May 7, 2012.

Figure 5.1 A HASH

that shows the number 

of web page hits over 

5-second time slices 

around 7:40 a.m. on 

May 7, 2012
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Now that we know what our structures for counters look like, what goes on to make that

happen? For each time slice precision, we’ll add a reference to the precision and the

name of the counter to the known ZSET, and we’ll increment the appropriate time win-

dow by the count in the proper HASH. Our code for updating a counter looks like this. 

PRECISION = [1, 5, 60, 300, 3600, 18000, 86400]

def update_counter(conn, name, count=1, now=None):
now = now or time.time()
pipe = conn.pipeline()
for prec in PRECISION:

pnow = int(now / prec) * prec
hash = '%s:%s'%(prec, name)
pipe.zadd('known:', hash, 0)
pipe.hincrby('count:' + hash, pnow, count)

pipe.execute()

Updating the counter information isn’t so bad; just a ZADD and HINCRBY for each time

slice precision. And fetching the information for a named counter and a specific pre-

cision is also easy. We fetch the whole HASH with HGETALL, convert our time slices and

counters back into numbers (they’re all returned as strings), sort them by time, and

finally return the values. The next listing shows our code for fetching counter data. 

def get_counter(conn, name, precision):
hash = '%s:%s'%(precision, name)
data = conn.hgetall('count:' + hash)
to_return = []
for key, value in data.iteritems():

to_return.append((int(key), int(value)))
to_return.sort()
return to_return

Listing 5.3 The update_counter() function

Listing 5.4 The get_counter() function

1:hits      0

5:hits      0

60:hits    0

...            ...

known: zset

When scores are equal as 

they are in this ZSET, Redis 

sorts by member name.
Figure 5.2 A ZSET

that shows some 

known counters

The precision of the counters in seconds: 1 second, 5 seconds, 1
minute, 5 minutes, 1 hour, 5 hours, 1 day—adjust as necessary.

Get the current
time to know

which time slice
to increment.

Create a 
transactional 
pipeline so that 
later cleanup can 
work correctly.

Add entries for
all precisions

that we record.

Get the start of the current time slice.

Record a reference to
the counters into a

ZSET with the score 0
so we can clean up

after ourselves.

Update the counter for the given
name and time precision.

Create the 
named hash 
where this 
data will be 
stored.

Get the name of
the key where

we’ll be storing
counter data.

Fetch the counter 
data from Redis.

Convert the counter 
data into something 
more expected.

Sort our data so that 
older samples are first.
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We did exactly what we said we were going to do. We fetched the data, ordered it

sequentially based on time, and converted it back into integers. Let’s look at how we

prevent these counters from keeping too much data.

CLEANING OUT OLD COUNTERS

Now we have all of our counters written to Redis and we can fetch our counters with

ease. But as we update our counters, at some point we’re going to run out of memory

if we don’t perform any cleanup. Because we were thinking ahead, we wrote to our

known ZSET the listing of known counters. To clean out the counters, we need to iter-

ate over that listing and clean up old entries.

WHY NOT USE EXPIRE? One limitation of the EXPIRE command is that it only
applies to whole keys; we can’t expire parts of keys. And because we chose to
structure our data so that counter X of precision Y is in a single key for all
time, we have to clean out the counters periodically. If you feel ambitious, you
may want to try restructuring the counters to change the data layout to use
standard Redis expiration instead. 

As we process and clean up old counters, a few things are important to pay attention

to. The following list shows a few of the more important items that we need to be

aware of as we clean out old counters:

■ New counters can be added at any time.

■ Multiple cleanups may be occurring at the same time.

■ Trying to clean up daily counters every minute is a waste of effort.

■ If a counter has no more data, we shouldn’t try to clean it up any more.

With all of those things in mind, we’ll build a daemon function similar in operation to

the daemon functions that we wrote back in chapter 2. As before, we’ll repeatedly

loop until the system is told to quit. To help minimize load during cleanup, we’ll

attempt to clean out old counters roughly once per minute, and will also clean up old

counters at roughly the schedule that they’re creating new entries, except for coun-

ters that get new entries more often than once per minute. If a counter has a time

slice of 5 minutes, we’ll try to clean out old entries from that counter every 5 minutes.

Counters that have new entries more often (1 second and 5 seconds in our example),

we’ll clean out every minute.

 To iterate over the counters, we’ll fetch known counters one by one with ZRANGE.

To clean a counter, we’ll fetch all of the start times for a given counter, calculate which

items are before a calculated cutoff (120 samples ago), and remove them. If there’s no

more data for a given counter, we’ll remove the counter reference from the known

ZSET. Explaining what goes on is simple, but the details of the code show some corner

cases. Check out this listing to see the cleanup code in full detail. 

def clean_counters(conn):
pipe = conn.pipeline(True)
passes = 0
while not QUIT:

Listing 5.5 The clean_counters() function

Keep a record of the number of passes 
so that we can balance cleaning out 
per-second vs. per-day counters.

Keep cleaning out
counters until

we’re told to stop.
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start = time.time()
index = 0
while index < conn.zcard('known:'):

hash = conn.zrange('known:', index, index)
index += 1
if not hash:

break
hash = hash[0]
prec = int(hash.partition(':')[0])
bprec = int(prec // 60) or 1
if passes % bprec:

continue

hkey = 'count:' + hash
cutoff = time.time() - SAMPLE_COUNT * prec
samples = map(int, conn.hkeys(hkey))
samples.sort()
remove = bisect.bisect_right(samples, cutoff)

if remove:
conn.hdel(hkey, *samples[:remove])
if remove == len(samples):

try:
pipe.watch(hkey)
if not pipe.hlen(hkey):

pipe.multi()
pipe.zrem('known:', hash)
pipe.execute()
index -= 1

else:
pipe.unwatch()

except redis.exceptions.WatchError:
pass

passes += 1
duration = min(int(time.time() - start) + 1, 60) 
time.sleep(max(60 - duration, 1))

As described earlier, we iterate one by one over the ZSET of counters, looking for items

to clean out. We only clean out counters that should be cleaned in this pass, so we per-

form that check early. We then fetch the counter data and determine what (if any-

thing) should be cleaned up. After cleaning out old data as necessary, if we don’t

believe that there should be any remaining data, we verify that there’s no more data

for the counter and remove it from our ZSET of counters. Finally, after passing over all

of the counters, we calculate how long it took to perform a pass, and sleep roughly the

remainder of the minute we left for ourselves to perform the full cleanup, until the

next pass.

 Now that we have counter data, are cleaning it up, and can fetch it, it’s just a mat-

ter of building an interface for consuming the data. Sadly, that part is out of the scope

of this book, but there are a few usable JavaScript plotting libraries that can help you

Get the start time of the pass 
to calculate the total duration.

Incrementally
iterate over all

known counters.
Get the next counter to check.

Get the precision 
of the counter.

We’ll take a pass every 60
seconds or so, so we’ll try to

clean out counters at roughly
the rate that they’re written to.

Try the next counter if we aren’t
supposed to check this one on this

pass (for example, we’ve taken
three passes, but the counter has

a precision of 5 minutes).

Find the cutoff time for the earliest
sample that we should keep, given the
precision and number of samples that

we want to keep.

Remove the samples as necessary.

Watch the counter hash for changes.

Verify that the counter hash is empty, and
if so, remove it from the known counters.

The hash isn’t empty; keep it in the list of known counters.

Someone else changed the counter
hash by adding counters, which means

that it has data, so we’ll leave the
counter in the list of known counters.

Fetch the times of the samples, and
convert the strings to integers.

Determine the number of samples that should be deleted.

The data HASH 
may be empty.

If we deleted a 
counter, then we 
can use the same 
index next pass.

Sleep the remainder of the 60 seconds, or
at least 1 second, just to offer a bit of a rest.

Update our passes and
duration variables for the

next pass to clean out
counters as often as

they’re seeing updates.
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out on the web side of things (I’ve had good experiences with jqplot [http://

www.jqplot.com/], Highcharts [http://www.highcharts.com/], dygraphs [http://

dygraphs.com/], and D3 [http://d3js.org/] for personal and professional uses).

 When dealing with the depth of complexity in a real website, knowing that a page

gets hit thousands of times a day can help us to decide that the page should be

cached. But if that page takes 2 milliseconds to render, whereas another page gets one

tenth the traffic but takes 2 seconds to render, we can instead direct our attention to

optimizing the slower page. In the next section, we change our approach from keep-

ing precise counters that give us data over time, to keeping aggregate statistics to help

us make more nuanced decisions about what to optimize.

5.2.2 Storing statistics in Redis

Truth be told, I’ve personally implemented five different methods of storing statistics

in Redis. The method described here takes many of the good ideas from those meth-

ods and combines them in a way that allows for the greatest flexibility and opportunity

to scale. What are we going to build?

 We’ll build a method to store statistics that have a similar scope to our

log_common() function from section 5.1.2 (the current hour and the last hour). We’ll

collect enough information to keep track of the minimum, maximum, average value,

standard deviation, sample count, and the sum of values that we’re recording. We

record so much information because we can just about guarantee that if we aren’t

recording it, we’ll probably need it.

 For a given named context and type, we’ll store a group of values in a ZSET. We

won’t use the ZSET for its ability to sort scores, but instead for its ability to be unioned

against another ZSET, keeping only the MIN or MAX of items that intersect. The precise

information that we’ll store for that context and type is the minimum value, the maxi-

mum value, the count of values, the sum of the values, and the sum of the squares of

the values. With that information, we can calculate the average and standard devia-

tion. Figure 5.3 shows an example of a ZSET holding this information for the Pro-

filePage context with statistics on AccessTime.

 Now that we know the type of data that we’ll be storing, how do we get the data in

there? We’ll start like we did with our common logs by checking to make sure that our

current data is for the correct hour, moving the old data to an archive if it’s not for the

current hour. We’ll then construct two temporary ZSETs—one with the minimum

min 0.035

max 4.958

sumsq 194.268

sum 258.973

count      2323

stats:ProfilePage:AccessTime zset

Figure 5.3 Example access time stats for 

the profile page. Remember that ZSETs are 

sorted by score, which is why our order seems 

strange compared to our description.

http://www.jqplot.com/
http://www.jqplot.com/
http://www.jqplot.com/
http://www.jqplot.com/
http://d3js.org/
http://www.highcharts.com/
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value, the other with the maximum value—and ZUNIONSTORE them with the current

stats with an aggregate of MIN and MAX, respectively. That’ll allow us to quickly update

the data without needing to WATCH a potentially heavily updated stats key. After clean-

ing up those temporary ZSETs, we’ll then ZINCRBY the count, sum, and sumsq members

of the statsZSET. Our code for performing this operation is shown next. 

def update_stats(conn, context, type, value, timeout=5):
destination = 'stats:%s:%s'%(context, type)
start_key = destination + ':start'
pipe = conn.pipeline(True)
end = time.time() + timeout
while time.time() < end:

try:
pipe.watch(start_key)
now = datetime.utcnow().timetuple()
hour_start = datetime(*now[:4]).isoformat()

existing = pipe.get(start_key)
pipe.multi()
if existing and existing < hour_start:

pipe.rename(destination, destination + ':last')
pipe.rename(start_key, destination + ':pstart')
pipe.set(start_key, hour_start)

tkey1 = str(uuid.uuid4())
tkey2 = str(uuid.uuid4())
pipe.zadd(tkey1, 'min', value)       
pipe.zadd(tkey2, 'max', value)
pipe.zunionstore(destination,

[destination, tkey1], aggregate='min')
pipe.zunionstore(destination,

[destination, tkey2], aggregate='max')

pipe.delete(tkey1, tkey2)
pipe.zincrby(destination, 'count')
pipe.zincrby(destination, 'sum', value)
pipe.zincrby(destination, 'sumsq', value*value)

return pipe.execute()[-3:]
except redis.exceptions.WatchError:

continue

We can ignore almost all of the first half of the code listing, since it’s a verbatim copy

of the rollover code from our log_common() function from section 5.1.2. The latter

half does exactly what we described: creating temporary ZSETs, ZUNIONSTOREing them

with our destination ZSET with the proper aggregates, cleaning the temporary ZSETs,

and then adding our standard statistics information. But what about pulling the statis-

tics information back out?

Listing 5.6 The update_stats() function

Set up the destination 
statistics key.

Handle the current 
hour/last hour like 
in common_log().

Add the value to the 
temporary keys.

Union the temporary keys with the 
destination stats key, using the 
appropriate min/max aggregate.

Clean up the 
temporary keys.

Update the count,
sum, and sum of

squares members
of the ZSET.

If the hour just turned over
and the stats have already

been shuffled over, try again.

Return the base counter 
info so that the caller 
can do something 
interesting if necessary.
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 To pull the information back out, we need to pull all of the values from the ZSET

and then calculate the average and standard deviation. The average is simply the sum

member divided by the count member. But the standard deviation is more difficult.

With a bit of work, we can derive the standard deviation from the information we

have, though for the sake of brevity I won’t explain the math behind it. Our code for

fetching stats is shown here. 

def get_stats(conn, context, type):
key = 'stats:%s:%s'%(context, type)
data = dict(conn.zrange(key, 0, -1, withscores=True))
data['average'] = data['sum'] / data['count']
numerator = data['sumsq'] - data['sum'] ** 2 / data['count']
data['stddev'] = (numerator / (data['count'] - 1 or 1)) ** .5
return data

Aside from the calculation of the standard deviation, the get_stats() function isn’t

surprising. And for those who’ve spent some time on the Wikipedia page for standard

deviation, even calculating the standard deviation shouldn’t be all that surprising. But

with all of this statistical information being stored, how do we know what information

to look at? We’ll be answering that question and more in the next section.

5.2.3 Simplifying our statistics recording and discovery

Now we have our statistics stored in Redis—what next? More specifically, now that we

have information about (for example) access time on every page, how do we discover

which pages take a long time on average to generate? Or how do we know when it

takes significantly longer to generate a page than it did on previous occasions? The

simple answer is that we need to store more information in a way that lets us discover

when both situations happen, which we’ll explore in this section.

 If we want to record access times, then we need to calculate access times. We can

spend our time adding access time calculations in various places and then adding

code to record the access times, or we can implement something to help us to calcu-

late and record the access times. That same helper could then also make that informa-

tion available in (for example) a ZSET of the slowest pages to access on average, and

could even report on pages that take a long time to access compared to other times

that page was accessed. 

 To help us calculate and record access times, we’ll write a Python context man-

ager1 that will wrap our code that we want to calculate and record access times for.

Listing 5.7 The get_stats() function

1 In Python, a context manager is a specially defined function or class that will have parts of it executed before
and after a given block of code is executed. This allows, for example, the easy opening and automatic closing
of files.

Set up the key that we’re 
fetching our statistics from.

Fetch our basic 
statistics and 
package them 
as a dictionary.

Prepare the first part of the 
calculation of standard deviation.

Calculate
the average.

Finish our calculation
of standard deviation.
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This context manager will get the current time, let the wrapped code execute, and

then calculate the total time of execution, record it in Redis, and also update a ZSET of

the highest access time contexts. The next listing shows our context manager for per-

forming this set of operations. 

@contextlib.contextmanager
def access_time(conn, context):

start = time.time()
yield

delta = time.time() - start
stats = update_stats(conn, context, 'AccessTime', delta)
average = stats[1] / stats[0]

pipe = conn.pipeline(True)
pipe.zadd('slowest:AccessTime', context, average)
pipe.zremrangebyrank('slowest:AccessTime', 0, -101)
pipe.execute()

There’s some magic going on in the access_time() context manager, and it’ll proba-

bly help to see it in use to understand what’s going on. The following code shows the

access_time() context manager being used to record access times of web pages that

are served through a similar kind of callback method as part of a middleware layer or

plugin that was used in our examples from chapter 2:

def process_view(conn, callback):
with access_time(conn, request.path):

return callback()

After seeing the example, even if you don’t yet understand how to create a context

manager, you should at least know how to use one. In this example, we used the access

time context manager to calculate the total time to generate a web page. This context

manager could also be used to record the time it takes to make a database query or

the amount of time it takes to render a template. As an exercise, can you think of

other types of context managers that could record statistics that would be useful? Or

can you add reporting of access times that are more than two standard deviations

above average to the recent_log()?

GATHERING STATISTICS AND COUNTERS IN THE REAL WORLD I know that we just
spent several pages talking about how to gather fairly important statistics about
how our production systems operate, but let me remind you that there are pre-
existing software packages designed for collecting and plotting counters and

Listing 5.8 The access_time() context manager

Make this Python generator 
into a context manager.Record the

start time.

Let the block of
code that we’re

wrapping run.

Update the stats
for this context.

Add the average to a
ZSET that holds the

slowest access times.

Calculate the time that the 
block took to execute.

Calculate the average.

Keep the slowest 100 items
in the AccessTime ZSET.

This web view takes the 
Redis connection as well as a 
callback to generate content.

This is how we’d
use the access time
context manager to

wrap a block of code.

This is executed when the yield 
statement is hit from within the 
context manager.
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statistics. My personal favorite is Graphite (http://graphite.wikidot.com/),
which you should probably download and install before spending too much
time building your own data-plotting library.

Now that we’ve been recording diverse and important information about the state of

our application into Redis, knowing more about our visitors can help us to answer

other questions.

5.3 IP-to-city and -country lookup

While we’ve been collecting statistics and logs in Redis, we’ve been gathering informa-

tion about visitor behavior in our system. But we’ve been ignoring one of the most

important parts of visitor behavior—where the visitor is coming from. In this section,

we’ll build a set of functions that we can use to parse an IP-to-location database, and

we’ll write a function to look up IP addresses to determine the visitor’s city, region

(state), and country. Let’s look at an example.

 As visitors to Fake Game Company’s game have multiplied, players have been com-

ing from all over the world to visit and play. Though tools like Google Analytics have

helped Fake Game Company to understand which major countries their users are

from, they want to know cities and states to better understand their users. It’s our job

to use one of the IP address-to-city databases and combine it with Redis to discover the

locations of players.

 We use Redis instead of a typical relational database because Redis will generally be

faster for this (and other) use cases. And we use Redis over local lookup tables

because the amount of information necessary to locate users is large enough to make

loading tables on application startup a relatively expensive operation. To start using

our lookup tables, we first need to load the tables into Redis.

5.3.1 Loading the location tables

For development data, I’ve downloaded a free IP-to-city database available from http:

//dev.maxmind.com/geoip/geolite. This database contains two important files: Geo-

LiteCity-Blocks.csv, which contains information about ranges of IP addresses and city

IDs for those ranges, and GeoLiteCity-Location.csv, which contains a mapping of city

IDs to the city name, the name of the region/state/province, the name of the country,

and some other information that we won’t use.

 We’ll first construct the lookup table that allows us to take an IP address and con-

vert it to a city ID. We’ll then construct a second lookup table that allows us to take the

city ID and convert it to actual city information (city information will also include

region and country information).

 The table that allows us to find an IP address and turn it into a city ID will be con-

structed from a single ZSET, which has a special city ID as the member, and an integer

value of the IP address as the score. To allow us to map from IP address to city ID, we

convert dotted-quad format IP addresses to an integer score by taking each octet as a

byte in an unsigned 32-bit integer, with the first octet being the highest bits. Code to

perform this operation can be seen here. 

http://dev.maxmind.com/geoip/geolite
http://dev.maxmind.com/geoip/geolite
http://graphite.wikidot.com/
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def ip_to_score(ip_address):
score = 0
for v in ip_address.split('.'):

score = score * 256 + int(v, 10)
return score

After we have the score, we’ll add the IP address mapping to city IDs first. To construct

a unique city ID from each normal city ID (because multiple IP address ranges can

map to the same city ID), we’ll append a _ character followed by the number of entries

we’ve added to the ZSET already, as can be seen in the next listing. 

def import_ips_to_redis(conn, filename):
csv_file = csv.reader(open(filename, 'rb'))
for count, row in enumerate(csv_file):

start_ip = row[0] if row else ''
if 'i' in start_ip.lower():

continue
if '.' in start_ip:

start_ip = ip_to_score(start_ip)
elif start_ip.isdigit():

start_ip = int(start_ip, 10)
else:

continue

city_id = row[2] + '_' + str(count)
conn.zadd('ip2cityid:', city_id, start_ip)

When our IP addresses have all been loaded by calling import_ips_to_redis(), we’ll

create a HASH that maps city IDs to city information, as shown in the next listing. We’ll

store the city information as a list encoded with JSON, because all of our entries are of

a fixed format that won’t be changing over time.

def import_cities_to_redis(conn, filename):
for row in csv.reader(open(filename, 'rb')):

if len(row) < 4 or not row[0].isdigit():
continue

row = [i.decode('latin-1') for i in row]
city_id = row[0]
country = row[1]
region = row[2]
city = row[3]
conn.hset('cityid2city:', city_id,          

json.dumps([city, region, country]))

Now that we have all of our information in Redis, we can start looking up IP addresses.

Listing 5.9 The ip_to_score() function

Listing 5.10 The import_ips_to_redis() function

Listing 5.11 The import_cities_to_redis() function

Should be run with the location 
of the GeoLiteCity-Blocks.csv file.

Convert the IP address 
to a score as necessary.

Header row or 
malformed entry.

Add the IP address
score and city ID.

Construct the 
unique city ID.

Should be run with the location 
of the GeoLiteCity-Location.csv 
file.

 Prepare the information 
for adding to the hash.

Actually add the city 
information to Redis.
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5.3.2 Looking up cities

To support looking up IP addresses, we added integer scores to a ZSET to represent the

beginning of IP address ranges for a given city ID. In order to find a city given an IP

address, we map the IP address to a similarly calculated score and then find the city ID

that has the largest starting IP address less than or equal to the IP address we pass. We

can use ZREVRANGEBYSCORE with the optional START and NUM arguments set to 0 and 1,

respectively, to fetch this information. After we’ve discovered the city ID, we can fetch

the city information from our HASH. Our function for finding which city an IP address

is in can be seen next. 

def find_city_by_ip(conn, ip_address):
if isinstance(ip_address, str):          

ip_address = ip_to_score(ip_address)

city_id = conn.zrevrangebyscore(        
'ip2cityid:', ip_address, 0, start=0, num=1)

if not city_id:
return None

city_id = city_id[0].partition('_')[0]
return json.loads(conn.hget('cityid2city:', city_id))

We can now look up city information based on IP address and begin to analyze where

our users are coming from. This method of converting data into integers for use with

a ZSET is useful, and can greatly simplify the discovery of individual items or ranges.

We’ll talk more about these kinds of data transformations in chapter 7. But for now, let’s

look at how we can use Redis to help us find and connect to other servers and services.

5.4 Service discovery and configuration

As your use of Redis and other services grows over time, you’ll eventually come to a sit-

uation where keeping configuration information can get out of hand. It’s not a big

deal when you have one Redis server, one database server, and one web server. But

when you have a Redis master with a few slaves, or different Redis servers for different

applications, or even master and slave database servers, keeping all of that configura-

tion can be a pain.

 Typically, configuration information for connecting to different services and serv-

ers is contained in configuration files that are stored on disk. And in situations where

a machine breaks down, a network connection goes down, or something else causes us

to need to connect to a different server, we’ll usually need to update a number of con-

figuration files in one of a number of locations. In this section, we’ll talk about how we

can move much of our configuration out of files and into Redis, which will let applica-

tions almost configure themselves.

Listing 5.12 The find_city_by_ip() function

Convert the IP address to a 
score for zrevrangebyscore.

Find the 
unique city ID.

Convert the unique city 
ID to the common city ID.

Fetch the city 
information 
from the hash.
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 Let’s start with a simple live configuration to see how Redis can help us.

5.4.1 Using Redis to store configuration information

To see how generally difficult configuration management can be, we only need to

look at the simplest of configurations: a flag to tell our web servers whether we’re

under maintenance. If so, we shouldn’t make requests against the database, and

should instead return a simple “Sorry, we’re under maintenance; try again later” mes-

sage to visitors. If the site isn’t under maintenance, all of the normal web-serving

behavior should happen.

 In a typical situation, updating that single flag can force us to push updated config-

uration files to all of our web servers, and may force us to reload configurations on all

of our servers, if not force us to restart our application servers themselves.

 Instead of trying to write and maintain configuration files as our number of ser-

vices grows, let’s instead write our configuration to Redis. By putting our configura-

tion in Redis and by writing our application to fetch configuration information from

Redis, we no longer need to write tools to push out configuration information and

cause our servers and services to reload that configuration.

 To implement this simple behavior, we’ll assume that we’ve built a middleware

layer or plugin like we used for caching in chapter 2 that will return our maintenance

page if a simple is_under_maintenance() function returns True, or will handle the

request like normal if it returns False. Our actual function will check for a key called

is-under-maintenance. If the key has any value stored there, we’ll return True; other-

wise, we’ll return False. To help minimize the load to Redis under heavy web server

load (because people love to hit Refresh when they get maintenance pages), we’ll only

update our information once per second. Our function can be seen in this listing. 

LAST_CHECKED = None
IS_UNDER_MAINTENANCE = False

def is_under_maintenance(conn):
global LAST_CHECKED, IS_UNDER_MAINTENANCE

if LAST_CHECKED < time.time() - 1:
LAST_CHECKED = time.time()    
IS_UNDER_MAINTENANCE = bool(

conn.get('is-under-maintenance'))

return IS_UNDER_MAINTENANCE      

With that one function plugged into the right place in our application, we could affect

the behavior of thousands of web servers within 1 second. We chose 1 second to help

reduce load against Redis for very heavily trafficked web sites, but we can reduce or

remove that part of the function if our needs require faster updates. This seems like a

Listing 5.13 The is_under_maintenance() function

Set the two variables as globals so
we can write to them later.

Check to see if
it’s been at least

1 second since
we last checked.

Find out
whether the

system is under
maintenance.

Update the last 
checked time.

Return whether the system 
is under maintenance.
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toy example, but it demonstrates the power of keeping configuration information in a

commonly accessible location. But what about more intricate configuration options?

5.4.2 One Redis server per application component

As countless developers have discovered during our increasing use of Redis, at some

point we outgrow our first Redis server. Maybe we need to log more information,

maybe we need more space for caching, or maybe we’ve already skipped ahead and

are using one of the more advanced services described in later chapters. For whatever

reason, we’ll need more servers.

 To help with the ease of transitioning to more servers, I recommend running one

Redis server for every separate part of your application—one for logging, one for sta-

tistics, one for caching, one for cookies, and so forth. Note that you can run multiple

Redis servers on a single machine; they just need to run on different ports. Alterna-

tively, if you want to reduce your system administration load, you can also use different

“databases” in Redis. Either way, by having different data split up into different key

spaces, your transition to more or larger servers is somewhat simplified. Unfortu-

nately, as your number of servers and/or Redis databases increases, managing and dis-

tributing configuration information for all of those servers becomes more of a chore.

 In the previous section, we used Redis as our source for configuration informa-

tion about whether we should serve a maintenance page. We can again use Redis to

tell us information about other Redis servers. More specifically, let’s use a single

known Redis server as a directory of configuration information to discover how to

connect to all of the other Redis servers that provide data for different application or

service components. While we’re at it, we’ll build it in such a way that when configu-

rations change, we’ll connect to the correct servers. Our implementation will be

more generic than this example calls for, but I’m sure that after you start using this

method for getting configuration information, you’ll start using it for non-Redis serv-

ers and services.

 We’ll build a function that will fetch a JSON-encoded configuration value from a

key that’s named after the type of service and the application component that service

is for. For example, if we wanted to fetch connection information for the Redis server

that holds statistics, we’d fetch the key config:redis:statistics. The following list-

ing shows the code for setting configurations.  

def set_config(conn, type, component, config):
conn.set(

'config:%s:%s'%(type, component),
json.dumps(config))

With this set_config() function, we can set any JSON-encodable configuration that

we may want. With a slight change in semantics and a get_config() function struc-

tured similarly to our earlier is_under_maintenance() function, we could replace

is_under_maintenance(). Consult the following listing for a function that matches

Listing 5.14 The set_config() function
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set_config() and will allow us to locally cache configuration information for 1 sec-

ond, 10 seconds, or 0 seconds, depending on our needs. 

CONFIGS = {}
CHECKED = {}

def get_config(conn, type, component, wait=1):
key = 'config:%s:%s'%(type, component)

if CHECKED.get(key) < time.time() - wait:
CHECKED[key] = time.time()
config = json.loads(conn.get(key) or '{}')
config = dict((str(k), config[k]) for k in config)
old_config = CONFIGS.get(key)

if config != old_config:
CONFIGS[key] = config

return CONFIGS.get(key)

Now that we have a pair of functions for getting and setting configurations, we can go

farther. We started down this path of storing and fetching configurations in order to

set up and create connections to a variety of different Redis servers. But the first argu-

ment to almost every function that we’ve written so far is a connection argument.

Rather than needing to manually fetch connections for the variety of services that

we’re using, let’s build a method to help us automatically connect to these services.

5.4.3 Automatic Redis connection management

Manually creating and passing connections to Redis can be tough. Not only do we need

to repeatedly refer to configuration information, but if we’re using our configuration

management functions from the last section, we still need to fetch the configuration,

connect to Redis, and somehow deal with the connection when we’re done. To simplify

the management of all of these connections, we’ll write a decorator that will take care

of connecting to all of our Redis servers (except for the configuration server).

DECORATORS Within Python there’s a syntax for passing a function X into
another function Y. This function Y is called a decorator. Decorators are given
an opportunity to alter the behavior of function X. Some decorators validate
arguments, other decorators register callbacks, and even others manage con-
nections like we intend to.

Our decorator will take a named configuration as an argument, which will generate a

wrapper that, when called on the actual function, will wrap the function such that

later calls will automatically connect to the appropriate Redis server, and that connec-

tion will be passed to the wrapped function with all of the other arguments that were

later provided. The next listing has the source for our redis_connection() function.

Listing 5.15 The get_config() function

Check to see if we 
should update the 
configuration 
information about 
this component.

We can, so
update the last

time we checked
this connection.

Convert potentially Unicode
keyword arguments into

string keyword arguments.

Get the old configuration
for this component.

...update the
configuration.

If the configurations 
are different...

Fetch the configuration
for this component.
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REDIS_CONNECTIONS = {}

def redis_connection(component, wait=1):
key = 'config:redis:' + component
def wrapper(function):

@functools.wraps(function)
def call(*args, **kwargs):

old_config = CONFIGS.get(key, object())
_config = get_config(

config_connection, 'redis', component, wait)

config = {}
for k, v in _config.iteritems():

config[k.encode('utf-8')] = v

if config != old_config:
REDIS_CONNECTIONS[key] = redis.Redis(**config)

return function(
REDIS_CONNECTIONS.get(key), *args, **kwargs)

return call
return wrapper

COMBINING *args AND **kwargs Way back in chapter 1, we first looked at
default arguments in Python. But here, we’re combining two different forms
of argument passing. If you’re having difficulty understanding what’s going
on (which is essentially capturing all positional and named arguments in the
args and kwargs variables in the function definition, and passing all posi-
tional and named parameters to the called function), then you should spend
some time with the Python language tutorial via this shortened URL: http://
mng.bz/KM5x.

I know that this group of nested functions can be confusing at first, but it really isn’t

that bad. We have a function, redis_connection(), that takes the named application

component and returns a wrapper function. That wrapper function is then called with

the function we want to pass a connection to (the wrapped function), which then

returns the function caller. This caller handles all of the work of getting configuration

information, connecting to Redis, and calling our wrapped function. Though it’s a

mouthful to describe, actually using it is convenient, as you can see by applying it in

the next listing to our log_recent() function from section 5.1.1.

 .

Listing 5.16 The redis_connection() function/decorator

We pass the name of the 
application component to 
the decorator.

We cache the
configuration key

because we’ll fetch
it every time the

function is called.

Our wrapper takes a
function that it wraps
with another function.

Fetch the old
configuration, if any.

Get the new
configuration, if any.

Make the configuration usable for
creating a Redis connection.

Call and return the result
of our wrapped function,
remembering to pass the
connection and the other

matched arguments.

Copy some useful metadata 
from the original function to 
the configuration handler.

Create the actual
function that will be

managing connection
information.

If the new and old configurations don’t
match, create a new connection.

Return a function
that can wrap our

Redis function.

Return the fully 
wrapped function.

http://mng.bz/KM5x
http://mng.bz/KM5x
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@redis_connection('logs')
def log_recent(conn, app, message):

'the old log_recent() code'

log_recent('main', 'User 235 logged in')

DECORATORS In addition to the strange argument passing with *args and
**kwargs from listing 5.16, we’re also using syntax to “decorate” the log func-
tion. That is to say, we pass a function to a decorator, which performs some
manipulation on the function before returning the original function, or
something else. You can read up on the details of what’s going on and why at
http://www.python.org/dev/peps/pep-0318/.

Now that you’ve seen how to use the redis_connection() decorator on log_recent(),

it doesn’t seem so bad, does it? With this better method of handling connections and

configuration, we’ve just removed a handful of lines from almost every function that

we’ll be calling. As an exercise, try to add this decorator to the access_time() context

manager from section 5.2.3 so that we don’t need to pass a connection. Feel free to reuse

this decorator with all of the other examples in the book.

5.5 Summary

All of the topics that we’ve covered in this chapter have directly or indirectly been

written to support applications. These functions and decorators are meant to help you

start using Redis as a way of supporting different parts of your application over time.

Logging, counters, and statistics are there to offer direct insight into how your appli-

cation is performing. IP-to-location lookup can tell you where your consumers are

located. And storing service discovery and configuration can save a lot of effort

because of not needing to manually handle connections.

 Now that we have a solid foundation for supporting applications in Redis, chap-

ter 6 will continue down this path to functions that can be used as building blocks of

your application.

Listing 5.17 The decorated log_recent() function

The redis_connection() 
decorator is very easy to use.The function

definition
doesn’t change.

We no longer need to worry 
about passing the log server 
connection when calling 
log_recent().

http://www.python.org/dev/peps/pep-0318/
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Application
 components in Redis

In the last few chapters, we’ve gone through some basic use cases and tools to help

build applications in Redis. In this chapter, we’ll get into more useful tools and

techniques, working toward building bigger pieces of applications in Redis.

 We’ll begin by building autocomplete functions to quickly find users in short

and long lists of items. We’ll then take some time to carefully build two different

types of locks to reduce data contention, improve performance, prevent data cor-

ruption, and reduce wasted work. We’ll construct a delayed task queue, only to aug-

ment it later to allow for executing a task at a specific time with the use of the lock

This chapter covers

■ Building two prefix-matching autocomplete methods

■ Creating a distributed lock to improve performance

■ Developing counting semaphores to control 

concurrency

■ Two task queues for different use cases

■ Pull messaging for delayed message delivery

■ Handling file distribution



111Autocomplete

we just created. Building on the task queues, we’ll build two different messaging sys-

tems to offer point-to-point and broadcast messaging services. We’ll then reuse our

earlier IP-address-to-city/-country lookup from chapter 5, and apply it to billions of

log entries that are stored and distributed via Redis.

 Each component offers usable code and solutions for solving these specific prob-

lems in the context of two example companies. But our solutions contain techniques

that can be used for other problems, and our specific solutions can be applied to a

variety of personal, public, or commercial projects.

 To start, let’s look at a fictional web-based game company called Fake Game Com-

pany, which currently has more than a million daily players of its games on YouTwit-

Face, a fictional social network. Later we’ll look at a web/mobile startup called Fake

Garage Startup that does mobile and web instant messaging.

6.1 Autocomplete

In the web world, autocomplete is a method that allows us to quickly look up things that

we want to find without searching. Generally, it works by taking the letters that we’re

typing and finding all words that start with those letters. Some autocomplete tools

will even let us type the beginning of a phrase and finish the phrase for us. As an

example, autocomplete in Google’s search shows us that Betty White’s SNL appear-

ance is still popular, even years later (which is no surprise—she’s a firecracker). It

shows us the URLs we’ve recently visited and want to revisit when we type in the

address bar, and it helps us remember login names. All of these functions and more

are built to help us access information faster. Some of them, like Google’s search box,

are backed by many terabytes of remote information. Others, like our browser history

and login boxes, are backed by much smaller local databases. But they all get us what

we want with less work.

 We’ll build two different types of autocomplete in this section. The first uses lists to

remember the most recent 100 contacts that a user has communicated with, trying to

minimize memory use. Our second autocomplete offers better performance and scal-

ability for larger lists, but uses more memory per list. They differ in their structure, the

methods used, and the time it takes for the operations to complete. Let’s first start

with an autocomplete for recent contacts.

6.1.1 Autocomplete for recent contacts

The purpose of this autocomplete is to keep a list of the most recent users that each

player has been in contact with. To increase the social aspect of the game and to allow

people to quickly find and remember good players, Fake Game Company is looking to

create a contact list for their client to remember the most recent 100 people that each

user has chatted with. On the client side, when someone is trying to start a chat, they

can start typing the name of the person they want to chat with, and autocomplete will

show the list of users whose screen names start with the characters they’ve typed. Fig-

ure 6.1 shows an example of this kind of autocompletion.
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Because each of the millions of users on the

server will have their own list of their most

recent 100 contacts, we need to try to minimize

memory use, while still offering the ability to

quickly add and remove users from the list.

Because Redis LISTs keep the order of items

consistent, and because LISTs use minimal

memory compared to some other structures,

we’ll use them to store our autocomplete lists.

Unfortunately, LISTs don’t offer enough functionality to actually perform the autocom-

pletion inside Redis, so we’ll perform the actual autocomplete outside of Redis, but

inside of Python. This lets us use Redis to store and update these lists using a minimal

amount of memory, leaving the relatively easy filtering to Python.

 Generally, three operations need to be performed against Redis in order to deal

with the recent contacts autocomplete lists. The first operation is to add or update a

contact to make them the most recent user contacted. To perform this operation, we

need to perform these steps:

1 Remove the contact from the list if it exists.

2 Add the contact to the beginning of the list.

3 Trim the list if it now has more than 100 items.

We can perform these operations with LREM, LPUSH, and LTRIM, in that order. To make

sure that we don’t have any race conditions, we’ll use a MULTI/EXEC transaction

around our commands like I described in chapter 3. The complete function is shown

in this next listing.

def add_update_contact(conn, user, contact):
ac_list = 'recent:' + user
pipeline = conn.pipeline(True)
pipeline.lrem(ac_list, contact)
pipeline.lpush(ac_list, contact)
pipeline.ltrim(ac_list, 0, 99)
pipeline.execute()

As I mentioned, we removed the user from the LIST (if they were present), pushed

the user onto the left side of the LIST; then we trimmed the LIST to ensure that it

didn’t grow beyond our limit.

 The second operation that we’ll perform is to remove a contact if the user doesn’t

want to be able to find them anymore. This is a quick LREM call, which can be seen as

follows:

def remove_contact(conn, user, contact):
conn.lrem('recent:' + user, contact)

Listing 6.1 The add_update_contact() function

Set up the atomic 
operation.

Remove the
contact from the

list if it exists.

Remove anything
beyond the 100th item.

 Actually execute everything.

Push the item onto 
the front of the list.

jeChat with:

Jean

Jeannie

Jeff

recent contacts...

Figure 6.1 A recent contacts autocomplete 

showing users with names starting with je
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The final operation that we need to perform is to fetch the autocomplete list itself to find

the matching users. Again, because we’ll perform the actual autocomplete processing

in Python, we’ll fetch the whole LIST, and then process it in Python, as shown next.

def fetch_autocomplete_list(conn, user, prefix):
candidates = conn.lrange('recent:' + user, 0, -1)
matches = []
for candidate in candidates:

if candidate.lower().startswith(prefix):
matches.append(candidate)

return matches                    

Again, we fetch the entire autocomplete LIST, filter it by whether the name starts with

the necessary prefix, and return the results. This particular operation is simple

enough that we could even push it off to the client if we find that our server is spend-

ing too much time computing it, only requiring a refetch on update.

 This autocomplete will work fine for our specific example. It won’t work as well if the

lists grow significantly larger, because to remove an item takes time proportional to the

length of the list. But because we were concerned about space, and have explicitly lim-

ited our lists to 100 users, it’ll be fast enough. If you find yourself in need of much larger

most- or least-recently-used lists, you can use ZSETs with timestamps instead.

6.1.2 Address book autocomplete

In the previous example, Redis was used primarily to keep track of the contact list, not

to actually perform the autocomplete. This is okay for short lists, but for longer lists,

fetching thousands or millions of items to find just a handful would be a waste.

Instead, for autocomplete lists with many items, we must find matches inside Redis.

 Going back to Fake Game Company, the recent contacts chat autocomplete is one

of the most-used social features of our game. Our number-two feature, in-game mail-

ing, has been gaining momentum. To keep the momentum going, we’ll add an auto-

complete for mailing. But in our game, we only allow users to send mail to other users

that are in the same in-game social group as they are, which we call a guild. This helps

to prevent abusive and unsolicited messages between users.

 Guilds can grow to thousands of members, so we can’t use our old LIST-based auto-

complete method. But because we only need one autocomplete list per guild, we can

use more space per member. To minimize the amount of data to be transferred to cli-

ents who are autocompleting, we’ll perform the autocomplete prefix calculation

inside Redis using ZSETs.

 To store each autocomplete list will be different than other ZSET uses that you’ve

seen before. Mostly, we’ll use ZSETs for their ability to quickly tell us whether an item

is in the ZSET, what position (or index) a member occupies, and to quickly pull ranges

of items from anywhere inside the ZSET. What makes this use different is that all of our

scores will be zero. By setting our scores to zero, we use a secondary feature of ZSETs:

Listing 6.2 The fetch_autocomplete_list() function

Fetch the 
autocomplete 
list.

Check each
candidate.

We found a match. Return all of the matches.
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ZSETs sort by member names when scores are equal. When all scores are zero, all

members are sorted based on the binary ordering of the strings. In order to actually

perform the autocomplete, we’ll insert lowercased contact names. Conveniently

enough, we’ve only ever allowed users to have letters in their names, so we don’t need

to worry about numbers or symbols.

 What do we do? Let’s start by thinking of names as a sorted sequence of strings like

abc, abca, abcb, ... abd. If we’re looking for words with a prefix of abc, we’re really

looking for strings that are after abbz... and before abd. If we knew the rank of the first

item that is before abbz... and the last item after abd, we could perform a ZRANGE call

to fetch items between them. But, because we don’t know whether either of those

items are there, we’re stuck. To become unstuck, all we really need to do is to insert

items that we know are after abbz... and before abd, find their ranks, make our ZRANGE

call, and then remove our start and end members.

 The good news is that finding an item that’s before abd but still after all valid

names with a prefix of abc is easy: we concatenate a { (left curly brace) character onto

the end of our prefix, giving us abc{. Why {? Because it’s the next character in ASCII

after z. To find the start of our range for abc, we could also concatenate { to abb, get-

ting abb{, but what if our prefix was aba instead of abc? How do we find a character

before a? We take a hint from our use of the curly brace, and note that the character

that precedes a in ASCII is ` (back quote). So if our prefix is aba, our start member will

be ab`, and our end member will be aba{.

 Putting it all together, we’ll find the predecessor of our prefix by replacing the last

character of our prefix with the character that came right before it. We’ll find the suc-

cessor of our prefix by concatenating a curly brace. To prevent any issues with two pre-

fix searches happening at the same time, we’ll concatenate a curly brace onto our

prefix (for post-filtering out endpoint items if necessary). A function that will gener-

ate these types of ranges can be seen next.

valid_characters = '`abcdefghijklmnopqrstuvwxyz{'

def find_prefix_range(prefix):
posn = bisect.bisect_left(valid_characters, prefix[-1:])
suffix = valid_characters[(posn or 1) - 1]
return prefix[:-1] + suffix + '{', prefix + '{'

I know, it can be surprising to have spent so many paragraphs describing what we’re

going to do, only to end up with just a few lines that actually implement it. But if we

look at what we’re doing, we’re just finding the last character in the prefix in our pre-

sorted sequence of characters (using the bisect module), and then looking up the

character that came just before it.

Listing 6.3 The find_prefix_range() function

Set up our list of characters 
that we know about.

Find the position 
of prefix character 
in our list of 
characters.

Find the
predecessor

character. Return the range.
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CHARACTER SETS AND INTERNATIONALIZATION This method of finding the pre-
ceding and following characters in ASCII works really well for languages with
characters that only use characters a-z. But when confronted with characters
that aren’t in this range, you’ll find a few new challenges. 

First, you’ll have to find a method that turns all of your characters into bytes;
three common encodings include UTF-8, UTF-16, and UTF-32 (big-endian
and little-endian variants of UTF-16 and UTF-32 are used, but only big-endian
versions work in this situation). Second, you’ll need to find the range of char-
acters that you intend to support, ensuring that your chosen encoding leaves
at least one character before your supported range and one character after
your selected range in the encoded version. Third, you need to use these
characters to replace the back quote character ` and the left curly brace char-
acter { in our example. 

Thankfully, our algorithm doesn’t care about the native sort order of the char-
acters, only the encodings. So you can pick UTF-8 or big-endian UTF-16 or
UTF-32, use a null to replace the back quote, and use the maximum value that
your encoding and language supports to replace the left curly brace. (Some lan-
guage bindings are somewhat limited, allowing only up to Unicode code point
U+ffff for UTF-16 and Unicode code point U+2ffff for UTF-32.)

After we have the range of values that we’re looking for, we need to insert our ending

points into the ZSET, find the rank of those newly added items, pull some number of

items between them (we’ll fetch at most 10 to avoid overwhelming the user), and then

remove our added items. To ensure that we’re not adding and removing the same

items, as would be the case if two members of the same guild were trying to message

the same user, we’ll also concatenate a 128-bit randomly generated UUID to our start

and end members. To make sure that the ZSET isn’t being changed when we try to

find and fetch our ranges, we’ll use WATCH with MULTI and EXEC after we’ve inserted

our endpoints. The full autocomplete function is shown here.

def autocomplete_on_prefix(conn, guild, prefix):
start, end = find_prefix_range(prefix)
identifier = str(uuid.uuid4())
start += identifier
end += identifier
zset_name = 'members:' + guild

conn.zadd(zset_name, start, 0, end, 0)
pipeline = conn.pipeline(True)
while 1:

try:
pipeline.watch(zset_name)
sindex = pipeline.zrank(zset_name, start)
eindex = pipeline.zrank(zset_name, end)
erange = min(sindex + 9, eindex - 2)
pipeline.multi()

Listing 6.4 The autocomplete_on_prefix() function

Find the start/
end range for 
the prefix.

Add the start/
end range items

to the ZSET.

Find the ranks of
our end points.
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pipeline.zrem(zset_name, start, end)
pipeline.zrange(zset_name, sindex, erange)
items = pipeline.execute()[-1]
break

except redis.exceptions.WatchError:
continue

return [item for item in items if '{' not in item]

Most of this function is bookkeeping and setup. The first part is just getting our start

and ending points, followed by adding them to the guild’s autocomplete ZSET. When

we have everything in the ZSET, we WATCH the ZSET to ensure that we discover if some-

one has changed it, fetch the ranks of the start and end points in the ZSET, fetch items

between the endpoints, and clean up after ourselves. 

 To add and remove members from a guild is straightforward: we only need to ZADD

and ZREM the user from the guild’s ZSET. Both of these functions are shown here.

def join_guild(conn, guild, user):
conn.zadd('members:' + guild, user, 0)

def leave_guild(conn, guild, user):
conn.zrem('members:' + guild, user)

Joining or leaving a guild, at least when it comes to autocomplete, is straightforward.

We only need to add or remove names from the ZSET.

 This method of adding items to a ZSET to create a range—fetching items in the range

and then removing those added items—can be useful. Here we use it for autocomplete,

but this technique can also be used for arbitrary sorted indexes. In chapter 7, we’ll talk

about a technique for improving these kinds of operations for a few different types of

range queries, which removes the need to add and remove items at the endpoints. We’ll

wait to talk about the other method, because it only works on some types of data, whereas

this method works on range queries over any type of data.

 When we added our endpoints to the ZSET, we needed to be careful about other

users trying to autocomplete at the same time, which is why we use the WATCH com-

mand. As our load increases, we may need to retry our operations often, which can be

wasteful. The next section talks about a way to avoid retries, improve performance,

and sometimes simplify our code by reducing and/or replacing WATCH with locks.

6.2 Distributed locking

Generally, when you “lock” data, you first acquire the lock, giving you exclusive access

to the data. You then perform your operations. Finally, you release the lock to others.

This sequence of acquire, operate, release is pretty well known in the context of

shared-memory data structures being accessed by threads. In the context of Redis,

we’ve been using WATCH as a replacement for a lock, and we call it optimistic locking,

because rather than actually preventing others from modifying the data, we’re noti-

fied if someone else changes the data before we do it ourselves.

Listing 6.5 The join_guild() and leave_guild() functions

Get the values inside
our range, and clean up.

Retry if someone 
modified our 
autocomplete ZSET.Remove start/end entries if

an autocomplete was in
progress.
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 With distributed locking, we have the same sort of acquire, operate, release opera-

tions, but instead of having a lock that’s only known by threads within the same pro-

cess, or processes on the same machine, we use a lock that different Redis clients on

different machines can acquire and release. When and whether to use locks or WATCH

will depend on a given application; some applications don’t need locks to operate cor-

rectly, some only require locks for parts, and some require locks at every step.

 One reason why we spend so much time building locks with Redis instead of using

operating system–level locks, language-level locks, and so forth, is a matter of scope.

Clients want to have exclusive access to data stored on Redis, so clients need to have

access to a lock defined in a scope that all clients can see—Redis. Redis does have a

basic sort of lock already available as part of the command set (SETNX), which we use,

but it’s not full-featured and doesn’t offer advanced functionality that users would

expect of a distributed lock.

 Throughout this section, we’ll talk about how an overloaded WATCHed key can

cause performance issues, and build a lock piece by piece until we can replace WATCH

for some situations.

6.2.1 Why locks are important

In the first version of our autocomplete, we added and removed items from a LIST. We

did so by wrapping our multiple calls with a MULTI/EXEC pair. Looking all the way back

to section 4.6, we first introduced WATCH/MULTI/EXEC transactions in the context of an

in-game item marketplace. If you remember, the market is structured as a single ZSET,

with members being an object and owner ID concatenated, along with the item price

as the score. Each user has their own HASH, with columns for user name, currently

available funds, and other associated information. Figure 6.2 shows an example of the

marketplace, user inventories, and user information.

 You remember that to add an item to the marketplace, we WATCH the seller’s inven-

tory to make sure the item is still available, add the item to the market ZSET, and

ItemA.4 35

ItemC.7 48

ItemE.2 60

ItemG.3 73

market: zset

ItemM

ItemN

ItemL

inventory:17 set

name      Frank

funds      43

users:17 hash

name      Bill

funds      125

users:27 hash

ItemP

ItemQ

ItemO

inventory:27 set

Figure 6.2 The structure of our marketplace from section 4.6. There are four items in the 

market on the left—ItemA, ItemC, ItemE, and ItemG—with prices 35, 48, 60, and 73, and 

seller IDs of 4, 7, 2, and 3, respectively. In the middle we have two users, Frank and Bill, and 

their current funds, with their inventories on the right.
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remove it from the user’s inventory. The core of our earlier list_item() function

from section 4.4.2 is shown next.

def list_item(conn, itemid, sellerid, price):
#...

pipe.watch(inv)
if not pipe.sismember(inv, itemid):        

pipe.unwatch()
return None

pipe.multi()
pipe.zadd("market:", item, price)
pipe.srem(inv, itemid)
pipe.execute()
return True

#...

The short comments in this code just hide a lot of the setup and WATCH/MULTI/EXEC

handling that hide the core of what we’re doing, which is why I omitted it here. If you

feel like you need to see that code again, feel free to jump back to section 4.4.2 to

refresh your memory.

 Now, to review our purchasing of an item, we WATCH the market and the buyer’s

HASH. After fetching the buyer’s total funds and the price of the item, we verify that the

buyer has enough money. If the buyer has enough money, we transfer money between

the accounts, add the item to the buyer’s inventory, and remove the item from the

market. If the buyer doesn’t have enough money, we cancel the transaction. If a WATCH

error is caused by someone else writing to the market ZSET or the buyer HASH chang-

ing, we retry. The following listing shows the core of our earlier purchase_item()

function from section 4.4.3.

def purchase_item(conn, buyerid, itemid, sellerid, lprice):
#...

pipe.watch("market:", buyer)

price = pipe.zscore("market:", item)
funds = int(pipe.hget(buyer, 'funds'))
if price != lprice or price > funds:

pipe.unwatch()
return None

pipe.multi()
pipe.hincrby(seller, 'funds', int(price))
pipe.hincrby(buyerid, 'funds', int(-price))
pipe.sadd(inventory, itemid)
pipe.zrem("market:", item)
pipe.execute()
return True

#...

Listing 6.6 The list_item() function from section 4.4.2

Listing 6.7 The purchase_item() function from section 4.4.3

Watch for changes to 
the user’s inventory.

Verify that the user still 
has the item to be listed.

Actually list 
the item.

Watch for changes to the 
market and the buyer’s 
account information.

Check for a sold/repriced 
item or insufficient funds.

Transfer funds from the 
buyer to the seller, and 
transfer the item to 
the buyer.
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As before, we omit the setup and WATCH/MULTI/EXEC handling to focus on the core of

what we’re doing.

 To see the necessity of locks at scale, let’s take a moment to simulate the marketplace

in a few different loaded scenarios. We’ll have three different runs: one listing and one

buying process, then five listing processes and one buying process, and finally five list-

ing and five buying processes. Table 6.1 shows the result of running this simulation.

As our overloaded system pushes its limits, we go from roughly a 3-to-1 ratio of retries

per completed sale with one listing and buying process, all the way up to 250 retries

for every completed sale. As a result, the latency to complete a sale increases from

under 10 milliseconds in the moderately loaded system, all the way up to nearly 500

milliseconds in the overloaded system. This is a perfect example of why WATCH/MULTI/

EXEC transactions sometimes don’t scale at load, and it’s caused by the fact that while

trying to complete a transaction, we fail and have to retry over and over. Keeping our

data correct is important, but so is actually getting work done. To get past this limita-

tion and actually start performing sales at scale, we must make sure that we only list or

sell one item in the marketplace at any one time. We do this by using a lock.

6.2.2 Simple locks

In our first simple version of a lock, we’ll take note of a few different potential failure

scenarios. When we actually start building the lock, we won’t handle all of the failures

right away. We’ll instead try to get the basic acquire, operate, and release process

working right. After we have that working and have demonstrated how using locks can

actually improve performance, we’ll address any failure scenarios that we haven’t

already addressed.

 While using a lock, sometimes clients can fail to release a lock for one reason or

another. To protect against failure where our clients may crash and leave a lock in the

acquired state, we’ll eventually add a timeout, which causes the lock to be released

automatically if the process that has the lock doesn’t finish within the given time.

 Many users of Redis already know about locks, locking, and lock timeouts. But

sadly, many implementations of locks in Redis are only mostly correct. The problem

with mostly correct locks is that they’ll fail in ways that we don’t expect, precisely when

we don’t expect them to fail. Here are some situations that can lead to incorrect

behavior, and in what ways the behavior is incorrect:

Table 6.1 Performance of a heavily loaded marketplace over 60 seconds

Listed items Bought items Purchase retries
Average wait 

per purchase

1 lister, 1 buyer 145,000 27,000 80,000 14ms

5 listers, 1 buyer 331,000 <200 50,000 150ms

5 listers, 5 buyers 206,000 <600 161,000 498ms
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■ A process acquired a lock, operated on data, but took too long, and the lock was

automatically released. The process doesn’t know that it lost the lock, or may

even release the lock that some other process has since acquired. 

■ A process acquired a lock for an operation that takes a long time and crashed.

Other processes that want the lock don’t know what process had the lock, so can’t

detect that the process failed, and waste time waiting for the lock to be released. 

■ One process had a lock, but it timed out. Other processes try to acquire the lock

simultaneously, and multiple processes are able to get the lock. 

■ Because of a combination of the first and third scenarios, many processes now

hold the lock and all believe that they are the only holders. 

Even if each of these problems had a one-in-a-million chance of occurring, because

Redis can perform 100,000 operations per second on recent hardware (and up

to 225,000 operations per second on high-end hardware), those problems can come

up when under heavy load,1 so it’s important to get locking right.

6.2.3 Building a lock in Redis

Building a mostly correct lock in Redis is easy. Building a completely correct lock in Redis

isn’t much more difficult, but requires being extra careful about the operations we

use to build it. In this first version, we’re not going to handle the case where a lock

times out, or the case where the holder of the lock crashes and doesn’t release the

lock. Don’t worry; we’ll get to those cases in the next section, but for now, let’s just get

basic locking correct.

 The first part of making sure that no other code can run is to acquire the lock. The

natural building block to use for acquiring a lock is the SETNX command, which will

only set a value if the key doesn’t already exist. We’ll set the value to be a unique iden-

tifier to ensure that no other process can get the lock, and the unique identifier we’ll

use is a 128-bit randomly generated UUID.

 If we fail to acquire the lock initially, we’ll retry until we acquire the lock, or until a

specified timeout has passed, whichever comes first, as shown here.

def acquire_lock(conn, lockname, acquire_timeout=10):
identifier = str(uuid.uuid4())   

end = time.time() + acquire_timeout
while time.time() < end:

if conn.setnx('lock:' + lockname, identifier):       
return identifier

time.sleep(.001)

return False

1 Having tested a few available Redis lock implementations that include support for timeouts, I was able to
induce lock duplication on at least half of the lock implementations with just five clients acquiring and releas-
ing the same lock over 10 seconds.

Listing 6.8 The acquire_lock() function

A 128-bit random identifier.

Get the lock.
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As described, we’ll attempt to acquire the lock by using SETNX to set the value of the

lock’s key only if it doesn’t already exist. On failure, we’ll continue to attempt this

until we’ve run out of time (which defaults to 10 seconds).

 Now that we have the lock, we can perform our buying or selling without WATCH

errors getting in our way. We’ll acquire the lock and, just like before, check the price

of the item, make sure that the buyer has enough money, and if so, transfer the money

and item. When completed, we release the lock. The code for this can be seen next.

def purchase_item_with_lock(conn, buyerid, itemid, sellerid):
buyer = "users:%s"%buyerid
seller = "users:%s"%sellerid
item = "%s.%s"%(itemid, sellerid)
inventory = "inventory:%s"%buyerid
end = time.time() + 30

locked = acquire_lock(conn, market)
return False

pipe = conn.pipeline(True)
try:

while time.time() < end:
try:

pipe.watch(buyer)
pipe.zscore("market:", item)
pipe.hget(buyer, 'funds')
price, funds = pipe.execute()
if price is None or price > funds:

pipe.unwatch()
return None

pipe.hincrby(seller, int(price))
pipe.hincrby(buyerid, int(-price))
pipe.sadd(inventory, itemid)
pipe.zrem("market:", item)
pipe.execute()
return True

except redis.exceptions.WatchError:
pass

finally:
release_lock(conn, market, locked)

Looking through the code listing, it almost seems like we’re locking the operation. But

don’t be fooled—we’re locking the market data, and the lock must exist while we’re

operating on the data, which is why it surrounds the code performing the operation.

 To release the lock, we have to be at least as careful as when acquiring the lock.

Between the time when we acquired the lock and when we’re trying to release it,

someone may have done bad things to the lock. To release the lock, we need to WATCH

the lock key, and then check to make sure that the value is still the same as what we set

it to before we delete it. This also prevents us from releasing a lock multiple times.

The release_lock() function is shown next.

Listing 6.9 The purchase_item_with_lock() function

Get the 
lock.

Check for a sold item 
or insufficient funds.

Transfer funds from 
the buyer to the seller, 
and transfer the item 
to the buyer.

Release 
the lock.
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def release_lock(conn, lockname, identifier):
pipe = conn.pipeline(True)
lockname = 'lock:' + lockname

while True:
try:

pipe.watch(lockname)
if pipe.get(lockname) == identifier:

pipe.multi()
pipe.delete(lockname)
pipe.execute()
return True

pipe.unwatch()
break

except redis.exceptions.WatchError:          
pass

return False       

We take many of the same steps to ensure that our lock hasn’t changed as we did with

our money transfer in the first place. But if you think about our release lock function

for long enough, you’ll (reasonably) come to the conclusion that, except in very rare

situations, we don’t need to repeatedly loop. But the next version of the acquire lock

function that supports timeouts, if accidentally mixed with earlier versions (also

unlikely, but anything is possible with code), could cause the release lock transaction

to fail and could leave the lock in the acquired state for longer than necessary. So, just

to be extra careful, and to guarantee correctness in as many situations as possible,

we’ll err on the side of caution. 

 After we’ve wrapped our calls with locks, we can perform the same simulation of

buying and selling as we did before. In table 6.2, we have new rows that use the lock-

based buying and selling code, which are shown below our earlier rows. 

 Though we generally have lower total number of items that finished being listed,

we never retry, and our number of listed items compared to our number of purchased

Listing 6.10 The release_lock() function

Table 6.2 Performance of locking over 60 seconds

Listed items Bought items
Purchase

retries

Average wait 

per purchase

1 lister, 1 buyer, no lock 145,000 27,000 80,000 14ms

1 lister, 1 buyer, with lock 51,000 50,000 0 1ms

5 listers, 1 buyer, no lock 331,000 <200 50,000 150ms

5 listers, 1 buyer, with lock 68,000 13,000 <10 5ms

5 listers, 5 buyers, no lock 206,000 <600 161,000 498ms

5 listers, 5 buyers, with lock 21,000 20,500 0 14ms

Check and verify 
that we still have 
the lock.

Release the lock.

Someone else did something 
with the lock; retry.

We lost the lock.
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items is close to the ratio of number of listers to buyers. At this point, we’re running at

the limit of contention between the different listing and buying processes.

6.2.4 Fine-grained locking

When we introduced locks and locking, we only worried about providing the same

type of locking granularity as the available WATCH command—on the level of the mar-

ket key that we were updating. But because we’re constructing locks manually, and

we’re less concerned about the market in its entirety than we are with whether an item

is still in the market, we can actually lock on a finer level of detail. If we replace the

market-level lock with one specific to the item to be bought or sold, we can reduce

lock contention and increase performance.

 Let’s look at the results in table 6.3, which is the same simulation as produced

table 6.2, only with locks over just the items being listed or sold individually, and not

over the entire market. 

With fine-grained locking, we’re performing 220,000–230,000 listing and buying oper-

ations regardless of the number of listing and buying processes. We have no retries,

and even under a full load, we’re seeing less than 3 milliseconds of latency. Our listed-

to-sold ratio is again almost exactly the same as our ratio of listing-to-buying processes.

Even better, we never get into a situation like we did without locks where there’s so

much contention that latencies shoot through the roof and items are rarely sold.

 Let’s take a moment to look at our data as a few graphs so that we can see the rela-

tive scales. In figure 6.3, we can see that both locking methods result in much higher

numbers of items being purchased over all relative loads than the WATCH-based

method.

Table 6.3 Performance of fine-grained locking over 60 seconds

Listed items Bought items
Purchase 

retries

Average wait 

per purchase

1 lister, 1 buyer, no lock 145,000 27,000 80,000 14ms

1 lister, 1 buyer, with lock 51,000 50,000 0 1ms

1 lister, 1 buyer, with fine-grained lock 113,000 110,000 0 <1ms

5 listers, 1 buyer, no lock 331,000 <200 50,000 150ms

5 listers, 1 buyer, with lock 68,000 13,000 <10 5ms

5 listers, 1 buyer, with fine-grained lock 192,000 36,000 0 <2ms

5 listers, 5 buyers, no lock 206,000 <600 161,000 498ms

5 listers, 5 buyers, with lock 21,000 20,500 0 14ms

5 listers, 5 buyers, with fine-grained lock 116,000 111,000 0 <3ms
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Looking at figure 6.4, we can see that the WATCH-based method has to perform many

thousands of expensive retries in order to complete what few sales are completed. 

Items purchased (higher is better)

120,000

90,000

60,000

30,000

0

1L/1B 5L/1B 5L/5B

heavy load with lock fine-grained lock

Figure 6.3 Items purchased completed in 60 seconds. This graph has an overall V shape because the 

system is overloaded, so when we have five listing processes to only one buying process (shown as 5L/

1B in the middle samples), the ratio of listed items to bought items is roughly the same ratio, 5 to 1.

Retries (lower is better)

200,000

150,000

100,000

50,000

0

1L/1B 5L/1B 5L/5B

heavy load with lock fine-grained lock

Figure 6.4 The number of retries when trying to purchase an item in 60 seconds. 

There are no retries for either types of locks, so we can’t see the line for “with 

lock” because it’s hidden behind the line for fine-grained locks.
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And in figure 6.5, we can see that because of the WATCH contention, which caused the

huge number of retries and the low number of purchase completions, latency without

using a lock went up significantly. 

 What these simulations and these charts show overall is that when under heavy

load, using a lock can reduce retries, reduce latency, improve performance, and be

tuned at the granularity that we need.

 Our simulation is limited. One major case that it doesn’t simulate is where many

more buyers are unable to buy items because they’re waiting for others. It also doesn’t

simulate an effect known as dogpiling, when, as transactions take longer to complete,

more transactions are overlapping and trying to complete. That will increase the time

it takes to complete an individual transaction, and subsequently increase the chances

for a time-limited transaction to fail. This will substantially increase the failure and

retry rates for all transactions, but it’s especially harmful in the WATCH-based version of

our market buying and selling.

 The choice to use a lock over an entire structure, or over just a small portion of a

structure, can be easy. In our case, the critical data that we were watching was a small

piece of the whole (one item in a marketplace), so locking that small piece made

sense. There are situations where it’s not just one small piece, or when it may make

sense to lock multiple parts of structures. That’s where the decision to choose locks

over small pieces of data or an entire structure gets difficult; the use of multiple small

locks can lead to deadlocks, which can prevent any work from being performed at all.

Latency (lower is better)

600

450

300

150

0

1L/1B

heavy load with lock fine-grained lock

5L/1B 5L/5B

Figure 6.5 Average latency for a purchase; times are in milliseconds. The maximum latency for either 

kind of lock is under 14ms, which is why both locking methods are difficult to see and hugging the 

bottom—our overloaded system without a lock has an average latency of nearly 500ms.
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6.2.5 Locks with timeouts

As mentioned before, our lock doesn’t handle cases where a lock holder crashes with-

out releasing the lock, or when a lock holder fails and holds the lock forever. To han-

dle the crash/failure cases, we add a timeout to the lock.

 In order to give our lock a timeout, we’ll use EXPIRE to have Redis time it out auto-

matically. The natural place to put the EXPIRE is immediately after the lock is

acquired, and we’ll do that. But if our client happens to crash (and the worst place for

it to crash for us is between SETNX and EXPIRE), we still want the lock to eventually

time out. To handle that situation, any time a client fails to get the lock, the client will

check the expiration on the lock, and if it’s not set, set it. Because clients are going to

be checking and setting timeouts if they fail to get a lock, the lock will always have a

timeout, and will eventually expire, letting other clients get a timed-out lock.

 What if multiple clients set expiration times simultaneously? They’ll run at essen-

tially the same time, so expiration will be set for the same time.

 Adding expiration to our earlier acquire_lock() function gets us the updated

acquire_lock_with_timeout() function shown here.

def acquire_lock_with_timeout(
conn, lockname, acquire_timeout=10, lock_timeout=10):
identifier = str(uuid.uuid4())
lock_timeout = int(math.ceil(lock_timeout))

end = time.time() + acquire_timeout
while time.time() < end:

if conn.setnx(lockname, identifier):          
conn.expire(lockname, lock_timeout)
return identifier

elif not conn.ttl(lockname):       
conn.expire(lockname, lock_timeout)

time.sleep(.001)

return False

This new acquire_lock_with_timeout() handling timeouts. It ensures that locks

expire as necessary, and that they won’t be stolen from clients that rightfully have them.

Even better, we were smart with our release lock function earlier, which still works.

NOTE As of Redis 2.6.12, the SET command added options to support a com-
bination of SETNX and SETEX functionality, which makes our lock acquire
function trivial. We still need the complicated release lock to be correct.

In section 6.1.2 when we built the address book autocomplete using a ZSET, we went

through a bit of trouble to create start and end entries to add to the ZSET in order to

fetch a range. We also postprocessed our data to remove entries with curly braces

({}), because other autocomplete operations could be going on at the same time.

And because other operations could be going on at the same time, we used WATCH so

Listing 6.11 The acquire_lock_with_timeout() function

A 128-bit random 
identifier.

Only pass integers 
to our EXPIRE calls.

Get the lock and 
set the expiration.

Check and update the 
expiration time as necessary.
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that we could retry. Each of those pieces added complexity to our functions, which

could’ve been simplified if we’d used a lock instead.

 In other databases, locking is a basic operation that’s supported and performed

automatically. As I mentioned earlier, using WATCH, MULTI, and EXEC is a way of having

an optimistic lock—we aren’t actually locking data, but we’re notified and our

changes are canceled if someone else modifies it before we do. By adding explicit

locking on the client, we get a few benefits (better performance, a more familiar pro-

gramming concept, easier-to-use API, and so on), but we need to remember that Redis

itself doesn’t respect our locks. It’s up to us to consistently use our locks in addition to

or instead of WATCH, MULTI, and EXEC to keep our data consistent and correct.

 Now that we’ve built a lock with timeouts, let’s look at another kind of lock called a

counting semaphore. It isn’t used in as many places as a regular lock, but when we need

to give multiple clients access to the same information at the same time, it’s the per-

fect tool for the job.

6.3 Counting semaphores

A counting semaphore is a type of lock that allows you to limit the number of processes

that can concurrently access a resource to some fixed number. You can think of the

lock that we just created as being a counting semaphore with a limit of 1. Generally,

counting semaphores are used to limit the amount of resources that can be used at

one time.

 Like other types of locks, counting semaphores need to be acquired and released.

First, we acquire the semaphore, then we perform our operation, and then we release

it. But where we’d typically wait for a lock if it wasn’t available, it’s common to fail

immediately if a semaphore isn’t immediately available. For example, let’s say that we

wanted to allow for five processes to acquire the semaphore. If a sixth process tried to

acquire it, we’d want that call to fail early and report that the resource is busy.

 We’ll move through this section similarly to how we went through distributed lock-

ing in section 6.2. We’ll build a counting semaphore piece by piece until we have one

that’s complete and correct.

 Let’s look at an example with Fake Game Company. With the success of its market-

place continuously growing, Fake Game Company has had requests from users wanting

to access information about the marketplace from outside the game so that they can

buy and sell items without being logged into the game. The API to perform these oper-

ations has already been written, but it’s our job to construct a mechanism that limits

each account from accessing the marketplace from more than five processes at a time.

 After we’ve built our counting semaphore, we make sure to wrap incoming API

calls with a proper acquire_semaphore() and release_semaphore() pair.

6.3.1 Building a basic counting semaphore

When building a counting semaphore, we run into many of the same concerns we had

with other types of locking. We must decide who got the lock, how to handle processes

that crashed with the lock, and how to handle timeouts. If we don’t care about timeouts,
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or handling the case where semaphore holders can crash without releasing semaphores,

we could build semaphores fairly conveniently in a few different ways. Unfortunately,

those methods don’t lead us to anything useful in the long term, so I’ll describe one

method that we’ll incrementally improve to offer a full range of functionality.

 In almost every case where we want to deal with timeouts in Redis, we’ll generally

look to one of two different methods. Either we’ll use EXPIRE like we did with our

standard locks, or we’ll use ZSETs. In this case, we want to use ZSETs, because that

allows us to keep information about multiple semaphore holders in a single structure.

 More specifically, for each process that attempts to acquire the semaphore, we’ll

generate a unique identifier. This identifier will be the member of a ZSET. For the

score, we’ll use the timestamp for when the process attempted to acquire the sema-

phore. Our semaphore ZSET will look something like figure 6.6.

 When a process wants to attempt to acquire a semaphore, it first generates an iden-

tifier, and then the process adds the identifier to the ZSET using the current timestamp

as the score. After adding the identifier, the process then checks for its identifier’s rank.

If the rank returned is lower than the total allowed count (Redis uses 0-indexing on

rank), then the caller has acquired the semaphore. Otherwise, the caller doesn’t have

the semaphore and must delete its identifier from the ZSET. To handle timeouts, before

adding our identifier to the ZSET, we first clear out any entries that have timestamps

that are older than our timeout number value. The code to acquire the semaphore can

be seen next.

def acquire_semaphore(conn, semname, limit, timeout=10):
identifier = str(uuid.uuid4())
now = time.time()

pipeline = conn.pipeline(True)
pipeline.zremrangebyscore(semname, '-inf', now - timeout)
pipeline.zadd(semname, identifier, now)
pipeline.zrank(semname, identifier)
if pipeline.execute()[-1] < limit:

return identifier

conn.zrem(semname, identifier)
return None

Listing 6.12 The acquire_semaphore() function

c5a58232-0d6c-467f-976f-d577163b24f2 1326437034.113

4cec3d88-a80e-4713-832c-42ec957fb845 1326437037.511

c73f379d-6a5b-48a6-9796-b6f9bbb55402 1326437037.621

40f93169-f8c7-40d3-a342-f0ec68b17dde 1326437038.765

semaphore:remote zset

Figure 6.6 Basic 

semaphore ZSET

A 128-bit random 
identifier.Time out old

semaphore
holders.

Try to acquire 
the semaphore.Check to

see if we
have it.

We failed to get the 
semaphore; discard 
our identifier.
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Our code proceeds as I’ve already described: generating the identifier, cleaning out

any timed-out semaphores, adding its identifier to the ZSET, and checking its rank.

Not too surprising.

 Releasing the semaphore is easy: we remove the identifier from the ZSET, as can be

seen in the next listing.

def release_semaphore(conn, semname, identifier):
return conn.zrem(semname, identifier)

This basic semaphore works well—it’s simple, and it’s very fast. But relying on every

process having access to the same system time in order to get the semaphore can

cause problems if we have multiple hosts. This isn’t a huge problem for our specific

use case, but if we had two systems A and B, where A ran even 10 milliseconds faster

than B, then if A got the last semaphore, and B tried to get a semaphore within 10 mil-

liseconds, B would actually “steal” A’s semaphore without A knowing it.

 Any time we have a lock or a semaphore where such a slight difference in the system

clock can drastically affect who can get the lock, the lock or semaphore is considered

unfair. Unfair locks and semaphores can cause clients that should’ve gotten the lock or

semaphore to never get it, and this is something that we’ll fix in the next section.

6.3.2 Fair semaphores

Because we can’t assume that all system clocks are exactly the same on all systems, our

earlier basic counting semaphore will have issues where clients on systems with slower

system clocks can steal the semaphore from clients on systems with faster clocks. Any

time there’s this kind of sensitivity, locking itself becomes unfair. We want to reduce

the effect of incorrect system times on acquiring the semaphore to the point where as

long as systems are within 1 second, system time doesn’t cause semaphore theft or

early semaphore expiration.

 In order to minimize problems with inconsistent system times, we’ll add a counter

and a second ZSET. The counter creates a steadily increasing timer-like mechanism

that ensures that whoever incremented the counter first should be the one to get the

semaphore. We then enforce our requirement that clients that want the semaphore

who get the counter first also get the semaphore by using an “owner” ZSET with the

counter-produced value as the score, checking our identifier’s rank in the new ZSET to

determine which client got the semaphore. The new owner ZSET appears in figure 6.7.

 We continue to handle timeouts the same way as our basic semaphore, by remov-

ing entries from the system time ZSET. We propagate those timeouts to the new owner

ZSET by the use of ZINTERSTORE and the WEIGHTS argument.

 Bringing it all together in listing 6.14, we first time out an entry by removing old

entries from the timeout ZSET and then intersect the timeout ZSET with the owner

Listing 6.13 The release_semaphore() function

Returns True if the semaphore 
was properly released, False if 
it had timed out
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ZSET, saving to and overwriting the owner ZSET. We then increment the counter and

add our counter value to the owner ZSET, while at the same time adding our current

system time to the timeout ZSET. Finally, we check whether our rank in the owner ZSET

is low enough, and if so, we have a semaphore. If not, we remove our entries from the

owner and timeout ZSETs.

def acquire_fair_semaphore(conn, semname, limit, timeout=10):
identifier = str(uuid.uuid4())
czset = semname + ':owner'
ctr = semname + ':counter'

now = time.time()
pipeline = conn.pipeline(True)
pipeline.zremrangebyscore(semname, '-inf', now - timeout)
pipeline.zinterstore(czset, {czset: 1, semname: 0})

pipeline.incr(ctr)                    
counter = pipeline.execute()[-1]

pipeline.zadd(semname, identifier, now)        
pipeline.zadd(czset, identifier, counter)

pipeline.zrank(czset, identifier)                
if pipeline.execute()[-1] < limit:

return identifier

pipeline.zrem(semname, identifier)          
pipeline.zrem(czset, identifier)
pipeline.execute()
return None

This function has a few different pieces. We first clean up timed-out semaphores,

updating the owner ZSET and fetching the next counter ID for this item. After we’ve

added our time to the timeout ZSET and our counter value to the owner ZSET, we’re

ready to check to see whether our rank is low enough.

Listing 6.14 The acquire_fair_semaphore() function

semaphore:remote:counter

7361         

string

8f53c28e-4ec5-4dc3-ad9e-132bd7b1539b 7350

2a0a3d3c-034b-454a-bedd-da79f3284922 7353

183bd37a-6bb9-424b-aaad-34a49454687d 7354

e8bce9c2-f994-46f5-ad86-230e84b1644d 7361

semaphore:remote:owner zset

Figure 6.7 Fair semaphore owner ZSET

A 128-bit 
random 
identifier.

Time out old 
entries.

Get the counter.

Try to acquire the semaphore.

Check the rank to determine 
if we got the semaphore.

We got the semaphore.

We didn’t get the semaphore; 
clean out the bad data.
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FAIR SEMAPHORES ON 32-BIT PLATFORMS On 32-bit Redis platforms, integer
counters are limited to 231 - 1, the standard signed integer limit. An overflow
situation could occur on heavily used semaphores roughly once every 2 hours
in the worst case. Though there are a variety of workarounds, the simplest is
to switch to a 64-bit platform for any machine using any counter-based ID.

Let’s look at figure 6.8, which shows the sequence of operations that are performed

when process ID 8372 wants to acquire the semaphore at time 1326437039.100 when

there’s a limit of 5.

 Releasing the semaphore is almost as easy as before, only now we remove our iden-

tifier from both the owner and timeout ZSETs, as can be seen in this next listing.

def release_fair_semaphore(conn, semname, identifier):
pipeline = conn.pipeline(True)
pipeline.zrem(semname, identifier)
pipeline.zrem(semname + ':owner', identifier)
return pipeline.execute()[0]

Listing 6.15 The release_fair_semaphore() function

semaphore:remote:counter

No items can be timed out, so the zremrangebyscore() and zinterstore() calls do nothing.

7361 7362         

4

string

8f53c28e-4ec5-4dc3-ad9e-132bd7b1539b 7350

2a0a3d3c-034b-454a-bedd-da79f3284922 7353

183bd37a-6bb9-424b-aaad-34a49454687d 7354

e8bce9c2-f994-46f5-ad86-230e84b1644d 7361

a0d48eac-6a10-4675-8da8-8998f0f9a58b 7362

semaphore:remote:owner zset

8f53c28e-4ec5-4dc3-ad9e-132bd7b1539b 1326437034.113

2a0a3d3c-034b-454a-bedd-da79f3284922 1326437037.511

183bd37a-6bb9-424b-aaad-34a49454687d 1326437037.621

e8bce9c2-f994-46f5-ad86-230e84b1644d 1326437038.765

a0d48eac-6a10-4675-8da8-8998f0f9a58b 1326437039.100

semaphore:remote zset

incr(ctr)

zadd(semname,

identifier, now)

zadd(czset, identifier, counter)

zrank(czset, identifier)

Figure 6.8 Call sequence for acquire_fair_semaphore()

Returns True if the semaphore 
was properly released, False if 
it had timed out
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If we wanted to be lazy, in most situations we could just remove our semaphore identi-

fier from the timeout ZSET; one of our steps in the acquire sequence is to refresh the

owner ZSET to remove identifiers that are no longer in the timeout ZSET. But by only

removing our identifier from the timeout ZSET, there’s a chance (rare, but possible)

that we removed the entry, but the acquire_fair_semaphore() was between the part

where it updated the owner ZSET and when it added its own identifiers to the timeout

and owner ZSETs. If so, this could prevent it from acquiring the semaphore when it

should’ve been able to. To ensure correct behavior in as many situations as possible,

we’ll stick to removing the identifier from both ZSETs.

 Now we have a semaphore that doesn’t require that all hosts have the same system

time, though system times do need to be within 1 or 2 seconds in order to ensure that

semaphores don’t time out too early, too late, or not at all.

6.3.3 Refreshing semaphores

As the API for the marketplace was being completed, it was decided that there should

be a method for users to stream all item listings as they happen, along with a stream

for all purchases that actually occur. The semaphore method that we created only sup-

ports a timeout of 10 seconds, primarily to deal with timeouts and possible bugs on

our side of things. But users of the streaming portion of the API will want to keep con-

nected for much longer than 10 seconds, so we need a method for refreshing the

semaphore so that it doesn’t time out.

 Because we already separated the timeout ZSET from the owner ZSET, we can actu-

ally refresh timeouts quickly by updating our time in the timeout ZSET, shown in the

following listing.

def refresh_fair_semaphore(conn, semname, identifier):
if conn.zadd(semname, identifier, time.time()):

release_fair_semaphore(conn, semname, identifier)
return False

return True

As long as we haven’t already timed out, we’ll be able to refresh the semaphore. If we

were timed out in the past, we’ll go ahead and let the semaphore be lost and report to

the caller that it was lost. When using a semaphore that may be refreshed, we need to

be careful to refresh often enough to not lose the semaphore.

 Now that we have the ability to acquire, release, and refresh a fair semaphore, it’s

time to deal with our final race condition.

6.3.4 Preventing race conditions

As you saw when building locks in section 6.2, dealing with race conditions that cause

retries or data corruption can be difficult. In this case, the semaphores that we created

have race conditions that we alluded to earlier, which can cause incorrect operation.

Listing 6.16 The refresh_fair_semaphore() function

We lost our
semaphore;
report back.

Update our
semaphore.

We still have our semaphore.
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 We can see the problem in the following example. If we have two processes A and

B that are trying to get one remaining semaphore, and A increments the counter first

but B adds its identifier to the ZSETs and checks its identifier’s rank first, then B will

get the semaphore. When A then adds its identifier and checks its rank, it’ll “steal” the

semaphore from B, but B won’t know until it tries to release or renew the semaphore.

 When we were using the system clock as a way of getting a lock, the likelihood of

this kind of a race condition coming up and resulting in more than the desired num-

ber of semaphore owners was related to the difference in system times—the greater

the difference, the greater the likelihood. After introducing the counter with the

owner ZSET, this problem became less likely (just by virtue of removing the system

clock as a variable), but because we have multiple round trips, it’s still possible.

 To fully handle all possible race conditions for semaphores in Redis, we need to

reuse the earlier distributed lock with timeouts that we built in section 6.2.5. We need

to use our earlier lock to help build a correct counting semaphore. Overall, to acquire

the semaphore, we’ll first try to acquire the lock for the semaphore with a short time-

out. If we got the lock, we then perform our normal semaphore acquire operations

with the counter, owner ZSET, and the system time ZSET. If we failed to acquire the

lock, then we say that we also failed to acquire the semaphore. The code for perform-

ing this operation is shown next.

def acquire_semaphore_with_lock(conn, semname, limit, timeout=10):
identifier = acquire_lock(conn, semname, acquire_timeout=.01)
if identifier:

try:
return acquire_fair_semaphore(conn, semname, limit, timeout)

finally:
release_lock(conn, semname, identifier)

I know, it can be disappointing to come so far only to end up needing to use a lock at

the end. But that’s the thing with Redis: there are usually a few ways to solve the same

or a similar problem, each with different trade-offs. Here are some of the trade-offs

for the different counting semaphores that we’ve built:

■ If you’re happy with using the system clock, never need to refresh the sema-

phore, and are okay with occasionally going over the limit, then you can use the

first semaphore we created. 

■ If you can only really trust system clocks to be within 1 or 2 seconds, but are still

okay with occasionally going over your semaphore limit, then you can use the

second one. 

■ If you need your semaphores to be correct every single time, then you can use a

lock to guarantee correctness. 

Now that we’ve used our lock from section 6.2 to help us fix the race condition, we

have varying options for how strict we want to be with our semaphore limits. Generally

Listing 6.17 The acquire_semaphore_with_lock() function
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it’s a good idea to stick with the last, strictest version. Not only is the last semaphore

actually correct, but whatever time we may save using a simpler semaphore, we could

lose by using too many resources.

 In this section, we used semaphores to limit the number of API calls that can be run-

ning at any one time. Another common use case is to limit concurrent requests to data-

bases to reduce individual query times and to prevent dogpiling like we talked about at

the end of section 6.2.4. One other common situation is when we’re trying to download

many web pages from a server, but their robots.txt says that we can only make (for exam-

ple) three requests at a time. If we have many clients downloading web pages, we can

use a semaphore to ensure that we aren’t pushing a given server too hard.

 As we finish with building locks and semaphores to help improve performance for

concurrent execution, it’s now time to talk about using them in more situations. In

the next section, we’ll build two different types of task queues for delayed and concur-

rent task execution.

6.4 Task queues

When handling requests from web clients, sometimes operations take more time to

execute than we want to spend immediately. We can defer those operations by putting

information about our task to be performed inside a queue, which we process later.

This method of deferring work to some task processor is called a task queue. Right now

there are many different pieces of software designed specifically for task queues

(ActiveMQ, RabbitMQ, Gearman, Amazon SQS, and others), but there are also ad hoc

methods of creating task queues in situations where queues aren’t expected. If you’ve

ever had a cron job that scans a database table for accounts that have been modified/

checked before or after a specific date/time, and you perform some operation based

on the results of that query, you’ve already created a task queue.

 In this section we’ll talk about two different types of task queues. Our first queue

will be built to execute tasks as quickly as possible in the order that they were inserted.

Our second type of queue will have the ability to schedule tasks to execute at some

specific time in the future.

6.4.1 First-in, first-out queues

In the world of queues beyond task queues, normally a few different kinds of queues

are discussed—first-in, first-out (FIFO), last-in first-out (LIFO), and priority queues.

We’ll look first at a first-in, first-out queue, because it offers the most reasonable

semantics for our first pass at a queue, can be implemented easily, and is fast. Later,

we’ll talk about adding a method for coarse-grained priorities, and even later, time-

based queues.

 Let’s again look back to an example from Fake Game Company. To encourage users

to play the game when they don’t normally do so, Fake Game Company has decided to

add the option for users to opt-in to emails about marketplace sales that have com-

pleted or that have timed out. Because outgoing email is one of those internet services

that can have very high latencies and can fail, we need to keep the act of sending emails
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for completed or timed-out sales out of the typical code flow for those operations. To

do this, we’ll use a task queue to keep a record of people who need to be emailed and

why, and will implement a worker process that can be run in parallel to send multiple

emails at a time if outgoing mail servers become slow.

 The queue that we’ll write only needs to send emails out in a first-come, first-

served manner, and will log both successes and failures. As we talked about in chap-

ters 3 and 5, Redis LISTs let us push and pop items from both ends with RPUSH/

LPUSH and RPOP/LPOP. For our email queue, we’ll push emails to send onto the right

end of the queue with RPUSH, and pop them off the left end of the queue with LPOP.

(We do this because it makes sense visually for readers of left-to-right languages.)

Because our worker processes are only going to be performing this emailing opera-

tion, we’ll use the blocking version of our list pop, BLPOP, with a timeout of 30 sec-

onds. We’ll only handle item-sold messages in this version for the sake of simplicity,

but adding support for sending timeout emails is also easy.

 Our queue will simply be a list of

JSON-encoded blobs of data, which will

look like figure 6.9.

 To add an item to the queue, we’ll

get all of the necessary information

together, serialize it with JSON, and

RPUSH the result onto our email queue.

As in previous chapters, we use JSON because it’s human readable and because there

are fast libraries for translation to/from JSON in most languages. The function that

pushes an email onto the item-sold email task queue appears in the next listing.

def send_sold_email_via_queue(conn, seller, item, price, buyer):
data = {

'seller_id': seller,
'item_id': item,
'price': price,
'buyer_id': buyer,
'time': time.time()

}
conn.rpush('queue:email', json.dumps(data))

Adding a message to a LIST queue shouldn’t be surprising.

 Sending emails from the queue is easy. We use BLPOP to pull items from the email

queue, prepare the email, and finally send it. The next listing shows our function for

doing so.

def process_sold_email_queue(conn):
while not QUIT:

packed = conn.blpop(['queue:email'], 30)

Listing 6.18 The send_sold_email_via_queue() function

Listing 6.19 The process_sold_email_queue() function

Prepare 
the item.

Push the item 
onto the queue.

Try to get a 
message to send.

queue:email

{'seller_id':17, 'item_id':'ItemM', 'price':97,

'buyer_id': 27, 'time' : 1322700540.934}

...

list

Figure 6.9 A first-in, first-out queue using a LIST
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if not packed:                 
continue

to_send = json.loads(packed[1])
try:

fetch_data_and_send_sold_email(to_send)
except EmailSendError as err:

log_error("Failed to send sold email", err, to_send)
else:

log_success("Sent sold email", to_send)

Similarly, actually sending the email after pulling the message from the queue is also

not surprising. But what about executing more than one type of task?

MULTIPLE EXECUTABLE TASKS

Because Redis only gives a single caller a popped item, we can be sure that none of the

emails are duplicated and sent twice. Because we only put email messages to send in

the queue, our worker process was simple. Having a single queue for each type of mes-

sage is not uncommon for some situations, but for others, having a single queue able

to handle many different types of tasks can be much more convenient. Take the

worker process in listing 6.20: it watches the provided queue and dispatches the JSON-

encoded function call to one of a set of known registered callbacks. The item to be

executed will be of the form ['FUNCTION_NAME', [ARG1, ARG2, ...]].

def worker_watch_queue(conn, queue, callbacks):
while not QUIT:

packed = conn.blpop([queue], 30)
if not packed:                    

continue

name, args = json.loads(packed[1])
if name not in callbacks:

log_error("Unknown callback %s"%name)
continue

callbacks[name](*args)

With this generic worker process, our email sender could be written as a callback and

passed with other callbacks.

TASK PRIORITIES

Sometimes when working with queues, it’s necessary to prioritize certain operations

before others. In our case, maybe we want to send emails about sales that completed

before we send emails about sales that expired. Or maybe we want to send password

reset emails before we send out emails for an upcoming special event. Remember the

BLPOP/BRPOP commands—we can provide multiple LISTs in which to pop an item

from; the first LIST to have any items in it will have its first item popped (or last if

we’re using BRPOP).

 Let’s say that we want to have three priority levels: high, medium, and low. High-

priority items should be executed if they’re available. If there are no high-priority

Listing 6.20 The worker_watch_queue() function

No message to 
send; try again. Load the packed 

email information.

Send the email 
using our 
prewritten 
emailing 
function.

Try to get an item 
from the queue.

There’s nothing 
to work on; try again.

Unpack the work item.

The function is unknown; 
log the error and try again.

Execute the task.
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items, then items in the medium-priority level should be executed. If there are neither

high- nor medium-priority items, then items in the low-priority level should be exe-

cuted. Looking at our earlier code, we can change two lines to make that possible in

the updated listing.

def worker_watch_queues(conn, queues, callbacks):
while not QUIT:

packed = conn.blpop(queues, 30)
if not packed:

continue

name, args = json.loads(packed[1])
if name not in callbacks:

log_error("Unknown callback %s"%name)
continue

callbacks[name](*args)

By using multiple queues, priorities can be implemented easily. There are situations

where multiple queues are used as a way of separating different queue items

(announcement emails, notification emails, and so forth) without any desire to be

“fair.” In such situations, it can make sense to reorder the queue list occasionally to be

more fair to all of the queues, especially in the case where one queue can grow quickly

relative to the other queues. 

 If you’re using Ruby, you can use an open source package called Resque that was

put out by the programmers at GitHub. It uses Redis for Ruby-based queues using

lists, which is similar to what we’ve talked about here. Resque offers many additional

features over the 11-line function that we provided here, so if you’re using Ruby, you

should check it out. Regardless, there are many more options for queues in Redis, and

you should keep reading.

6.4.2 Delayed tasks

With list-based queues, we can handle single-call per queue, multiple callbacks per

queue, and we can handle simple priorities. But sometimes, we need a bit more. Fake

Game Company has decided that they’re going to add a new feature in their game:

delayed selling. Rather than putting an item up for sale now, players can tell the game

to put an item up for sale in the future. It’s our job to change or replace our task

queue with something that can offer this feature.

 There are a few different ways that we could potentially add delays to our queue

items. Here are the three most straightforward ones:

■ We could include an execution time as part of queue items, and if a worker pro-

cess sees an item with an execution time later than now, it can wait for a brief

period and then re-enqueue the item. 

■ The worker process could have a local waiting list for any items it has seen

that need to be executed in the future, and every time it makes a pass through

Listing 6.21 The worker_watch_queues() function

This is the second changed 
line to add priority support.

This is the first 
changed line to add 
priority support.
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its while loop, it could check that list for any outstanding items that need to

be executed. 

■ Normally when we talk about times, we usually start talking about ZSETs. What if,

for any item we wanted to execute in the future, we added it to a ZSET instead of

a LIST, with its score being the time when we want it to execute? We then have a

process that checks for items that should be executed now, and if there are any,

the process removes it from the ZSET, adding it to the proper LIST queue. 

We can’t wait/re-enqueue items as described in the first, because that’ll waste the

worker process’s time. We also can’t create a local waiting list as described in the sec-

ond option, because if the worker process crashes for an unrelated reason, we lose any

pending work items it knew about. We’ll instead use a secondary ZSET as described in

the third option, because it’s simple, straightforward, and we can use a lock from sec-

tion 6.2 to ensure that the move is safe.

 Each delayed item in the ZSET queue will be a JSON-encoded list of four items: a

unique identifier, the queue where the item should be inserted, the name of the call-

back to call, and the arguments to pass to the callback. We include the unique identifier

in order to differentiate all calls easily, and to allow us to add possible reporting features

later if we so choose. The score of the item will be the time when the item should be exe-

cuted. If the item can be executed immediately, we’ll insert the item into the list queue

instead. For our unique identifier, we’ll again use a 128-bit randomly generated UUID.

The code to create an (optionally) delayed task can be seen next.

def execute_later(conn, queue, name, args, delay=0):
identifier = str(uuid.uuid4())
item = json.dumps([identifier, queue, name, args])
if delay > 0:

conn.zadd('delayed:', item, time.time() + delay)
else:

conn.rpush('queue:' + queue, item)
return identifier

When the queue item is to be executed without delay, we continue to use the old list-

based queue. But if we need to delay the item, we add the item to the delayed ZSET. An

example of the delayed queue emails to be sent can be seen in figure 6.10. 

 Unfortunately, there isn’t a con-

venient method in Redis to block on

ZSETs until a score is lower than the

current Unix timestamp, so we need

to manually poll. Because delayed

items are only going into a single

queue, we can just fetch the first item

with the score. If there’s no item, or

Listing 6.22 The execute_later() function

Generate a unique identifier.

Prepare the
item for the

queue.

Delay the item.

Execute the item 
immediately.Return the identifier.

delayed:

1331850212.365

1332282209.459

'["886148f7-...", "medium",

"send_sold_email", [...]]'

'["6c66e812-...", "medium",

"send_sold_email", [...]]'

zset

Figure 6.10 A delayed task queue using a ZSET
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if the item still needs to wait, we’ll wait a brief period and try again. If there is an item,

we’ll acquire a lock based on the identifier in the item (a fine-grained lock), remove the

item from the ZSET, and add the item to the proper queue. By moving items into queues

instead of executing them directly, we only need to have one or two of these running at

any time (instead of as many as we have workers), so our polling overhead is kept low.

The code for polling our delayed queue is in the following listing.

def poll_queue(conn):
while not QUIT:

item = conn.zrange('delayed:', 0, 0, withscores=True)
if not item or item[0][1] > time.time():

time.sleep(.01)
continue

item = item[0][0]
identifier, queue, function, args = json.loads(item)

locked = acquire_lock(conn, identifier)
if not locked:                     

continue

if conn.zrem('delayed:', item):
conn.rpush('queue:' + queue, item)

release_lock(conn, identifier, locked)

As is clear from listing 6.23, because ZSETs don’t have a blocking pop mechanism like

LISTs do, we need to loop and retry fetching items from the queue. This can increase

load on the network and on the processors performing the work, but because we’re

only using one or two of these pollers to move items from the ZSET to the LIST

queues, we won’t waste too many resources. If we further wanted to reduce overhead,

we could add an adaptive method that increases the sleep time when it hasn’t seen any

items in a while, or we could use the time when the next item was scheduled to help

determine how long to sleep, capping it at 100 milliseconds to ensure that tasks sched-

uled only slightly in the future are executed in a timely fashion.

RESPECTING PRIORITIES

In the basic sense, delayed tasks have the same sort of priorities that our first-in, first-

out queue had. Because they’ll go back on their original destination queues, they’ll be

executed with the same sort of priority. But what if we wanted delayed tasks to execute

as soon as possible after their time to execute has come up?

 The simplest way to do this is to add some extra queues to make scheduled tasks

jump to the front of the queue. If we have our high-, medium-, and low-priority

queues, we can also create high-delayed, medium-delayed, and low-delayed queues,

which are passed to the worker_watch_queues() function as ["high-delayed",

"high", "medium-delayed", "medium", "low-delayed", "low"]. Each of the delayed

queues comes just before its nondelayed equivalent.

Listing 6.23 The poll_queue() function

Get the first item 
in the queue.

No item or the item is still 
to be executed in the future.

Unpack the
item so
that we

know
where it

should go.

We couldn’t
get the lock,

so skip it and
try again.

Get the lock for the item.

Move the item to the 
proper list queue.

Release the lock.
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 Some of you may be wondering, “If we’re having them jump to the front of the

queue, why not just use LPUSH instead of RPUSH?” Suppose that all of our workers are

working on tasks for the medium queue, and will take a few seconds to finish. Suppose

also that we have three delayed tasks that are found and LPUSHed onto the front of the

medium queue. The first is pushed, then the second, and then the third. But on the

medium queue, the third task to be pushed will be executed first, which violates our

expectations that things that we want to execute earlier should be executed earlier. 

 If you use Python and you’re interested in a queue like this, I’ve written a package

called RPQueue that offers delayed task execution semantics similar to the preceding

code snippets. It does include more functionality, so if you want a queue and are already

using Redis, give RPQueue a look at http://github.com/josiahcarlson/rpqueue/.

 When we use task queues, sometimes we need our tasks to report back to other

parts of our application with some sort of messaging system. In the next section, we’ll

talk about creating message queues that can be used to send to a single recipient, or

to communicate between many senders and receivers.

6.5 Pull messaging

When sending and receiving messages between two or more clients, there are two

common ways of looking at how the messages are delivered. One method, called push

messaging, causes the sender to spend some time making sure that all of the recipients

of the message receive it. Redis has built-in commands for handling push messaging

called PUBLISH and SUBSCRIBE, whose drawbacks and use we discussed in chapter 3.2

The second method, called pull messaging, requires that the recipients of the message

fetch the messages instead. Usually, messages will wait in a sort of mailbox for the

recipient to fetch them.

 Though push messaging can be useful, we run into problems when clients can’t

stay connected all the time for one reason or another. To address this limitation, we’ll

write two different pull messaging methods that can be used as a replacement for PUB-

LISH/SUBSCRIBE.

 We’ll first start with single-recipient messaging, since it shares much in common

with our first-in, first-out queues. Later in this section, we’ll move to a method where

we can have multiple recipients of a message. With multiple recipients, we can replace

Redis PUBLISH and SUBSCRIBE when we need our messages to get to all recipients,

even if they were disconnected.

6.5.1 Single-recipient publish/subscribe replacement

One common pattern that we find with Redis is that we have clients of one kind or

another (server processes, users in a chat, and so on) that listen or wait for mes-

sages on their own channel. They’re the only ones that receive those messages. Many

2 Briefly, these drawbacks are that the client must be connected at all times to receive messages, disconnections
can cause the client to lose messages, and older versions of Redis could become unusable, crash, or be killed
if there was a slow subscriber.

http://github.com/josiahcarlson/rpqueue/
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programmers will end up using Redis PUBLISH and SUBSCRIBE commands to send

messages and wait for messages, respectively. But if we need to receive messages,

even in the face of connection issues, PUBLISH and SUBSCRIBE don’t help us much.

 Breaking from our game company focus, Fake Garage Startup wants to release a

mobile messaging application. This application will connect to their web servers to

send and receive SMS/MMS-like messages (basically a text or picture messaging

replacement). The web server will be handling authentication and communication

with the Redis back end, and Redis will be handling the message routing/storage.

 Each message will only be received by a single client, which greatly simplifies our

problem. To handle messages in this way, we use a single LIST for each mobile client.

Senders cause messages to be placed in the recipient’s LIST, and any time the recipi-

ent’s client makes a request, it fetches the most recent messages. With HTTP 1.1’s abil-

ity to pipeline requests, or with more modern web socket support, our mobile client

can either make a request for all waiting messages (if any), can make requests one at a

time, or can fetch 10 and use LTRIM to remove the first 10 items.

 Because you already know how to push and pop items from lists from earlier sections,

most recently from our first-in, first-out queues from section 6.4.1, we’ll skip including

code to send messages, but an

example incoming message

queue for user jack451 is illus-

trated in figure 6.11.

 With LISTs, senders can

also be notified if the recipi-

ent hasn’t been connecting

recently, hasn’t received their previous messages, or maybe has too many pending

messages; all by checking the messages in the recipient’s LIST. If the system were lim-

ited by a recipient needing to be connected all the time, as is the case with PUBLISH/

SUBSCRIBE, messages would get lost, clients wouldn’t know if their message got

through, and slow clients could result in outgoing buffers growing potentially without

limit (in older versions of Redis) or getting disconnected (in newer versions of Redis).

 With single-recipient messaging out of the way, it’s time to talk about replacing

PUBLISH and SUBSCRIBE when we want to have multiple listeners to a given channel.

6.5.2 Multiple-recipient publish/subscribe replacement

Single-recipient messaging is useful, but it doesn’t get us far in replacing the PUBLISH

and SUBSCRIBE commands when we have multiple recipients. To do that, we need to

turn our problem around. In many ways, Redis PUBLISH/SUBSCRIBE is like group chat

where whether someone’s connected determines whether they’re in the group chat.

We want to remove that “need to be connected all the time” requirement, and we’ll

implement it in the context of chatting.

 Let’s look at Fake Garage Startup’s next problem. After quickly implementing

their user-to-user messaging system, Fake Garage Startup realized that replacing SMS

mailbox:jack451

{'sender':'jill84', 'msg':'Are you coming or not?', 'ts':133066...}

{'sender':'mom65', 'msg':'Did you hear about aunt Elly?', ...}

list

Figure 6.11 jack451 has some messages from Jill and his mother 

waiting for him.
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is good, but they’ve had many requests to add group chat functionality. Like before,

their clients may connect or disconnect at any time, so we can’t use the built-in PUB-

LISH/SUBSCRIBE method.

 Each new group chat will have a set of original recipients of the group messages,

and users can join or leave the group if they want. Information about what users are in

the chat will be stored as a ZSET with members being the usernames of the recipients,

and values being the highest message ID the user has received in the chat. Which

chats an individual user is a part of will also be stored as a ZSET, with members being

the groups that the user is a part of, and scores being the highest message ID that the

user has received in that chat. Information about some users and chats can be seen in

figure 6.12.

 As you can see, user jason22 has seen five of six chat messages sent in chat:827, in

which jason22 and jeff24 are participating.

CREATING A CHAT SESSION

The content of chat sessions themselves will be stored in ZSETs, with messages as mem-

bers and message IDs as scores. To create and start a chat, we’ll increment a global

counter to get a new chat ID. We’ll then create a ZSET with all of the users that we want

to include with seen IDs being 0, and add the group to each user’s group list ZSET.

Finally, we’ll send the initial message to the users by placing the message in the chat

ZSET. The code to create a chat is shown here.

def create_chat(conn, sender, recipients, message, chat_id=None):
chat_id = chat_id or str(conn.incr('ids:chat:'))

recipients.append(sender)
recipientsd = dict((r, 0) for r in recipients)

Listing 6.24 The create_chat() function

chat:827 zset

jason22 5

jeff24 6

seen:jason22 zset

827 5

729 10

chat:729 zset

michelle19 10

jason22 10

jenny530 11

seen:jeff24 zset

827 6

Figure 6.12 Some example chat and user data. The chat ZSETs show users and the maximum IDs 

of messages in that chat that they’ve seen. The seen ZSETs list chat IDs per user, again with the 

maximum message ID in the given chat that they’ve seen.

Get a new chat ID.

Set up a dictionary of users-to-
scores to add to the chat ZSET.
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pipeline = conn.pipeline(True)
pipeline.zadd('chat:' + chat_id, **recipientsd)
for rec in recipients:

pipeline.zadd('seen:' + rec, chat_id, 0)
pipeline.execute()

return send_message(conn, chat_id, sender, message)

About the only thing that may be surprising is our use of what’s called a generator

expression from within a call to the dict() object constructor. This shortcut lets us

quickly construct a dictionary that maps users to an initially 0-valued score, which

ZADD can accept in a single call.

GENERATOR EXPRESSIONS AND DICTIONARY CONSTRUCTION Python dictionaries
can be easily constructed by passing a sequence of pairs of values. The first item
in the pair becomes the key; the second item becomes the value. Listing 6.24
shows some code that looks odd, where we actually generate the sequence to be
passed to the dictionary in-line. This type of sequence generation is known as
a generator expression, which you can read more about at http://mng.bz/TTKb. 

SENDING MESSAGES

To send a message, we must get a new message ID, and then add the message to the

chat’s messages ZSET. Unfortunately, there’s a race condition in sending messages, but

it’s easily handled with the use of a lock from section 6.2. Our function for sending a

message using a lock is shown next.

def send_message(conn, chat_id, sender, message):
identifier = acquire_lock(conn, 'chat:' + chat_id)
if not identifier:

raise Exception("Couldn't get the lock")
try:

mid = conn.incr('ids:' + chat_id)
ts = time.time()
packed = json.dumps({

'id': mid,
'ts': ts,
'sender': sender,
'message': message,

})

conn.zadd('msgs:' + chat_id, packed, mid)
finally:

release_lock(conn, 'chat:' + chat_id, identifier)
return chat_id

Most of the work involved in sending a chat message is preparing the information to

be sent itself; actually sending the message involves adding it to a ZSET. We use locking

around the packed message construction and addition to the ZSET for the same rea-

sons that we needed a lock for our counting semaphore earlier. Generally, when we

use a value from Redis in the construction of another value we need to add to Redis,

Listing 6.25 The send_message() function

Initialize the 
seen ZSETs.

Create the set 
with the list 
of people 
participating.

Send the message.

Prepare the 
message.

Send the message 
to the chat.

http://mng.bz/TTKb
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we’ll either need to use a WATCH/MULTI/EXEC transaction or a lock to remove race con-

ditions. We use a lock here for the same performance reasons that we developed it in

the first place.

 Now that we’ve created the chat and sent the initial message, users need to find

out information about the chats they’re a part of and how many messages are pend-

ing, and they need to actually receive the messages.

FETCHING MESSAGES

To fetch all pending messages for a user, we need to fetch group IDs and message IDs

seen from the user’s ZSET with ZRANGE. When we have the group IDs and the messages

that the user has seen, we can perform ZRANGEBYSCORE operations on all of the mes-

sage ZSETs. After we’ve fetched the messages for the chat, we update the seen ZSET

with the proper ID and the user entry in the group ZSET, and we go ahead and clean

out any messages from the group chat that have been received by everyone in the

chat, as shown in the following listing.

def fetch_pending_messages(conn, recipient):
seen = conn.zrange('seen:' + recipient, 0, -1, withscores=True)

pipeline = conn.pipeline(True)

for chat_id, seen_id in seen:
pipeline.zrangebyscore(

'msgs:' + chat_id, seen_id+1, 'inf')
chat_info = zip(seen, pipeline.execute())

for i, ((chat_id, seen_id), messages) in enumerate(chat_info):
if not messages:

continue
messages[:] = map(json.loads, messages)
seen_id = messages[-1]['id']
conn.zadd('chat:' + chat_id, recipient, seen_id)

min_id = conn.zrange(
'chat:' + chat_id, 0, 0, withscores=True)

pipeline.zadd('seen:' + recipient, chat_id, seen_id)
if min_id:

pipeline.zremrangebyscore(
'msgs:' + chat_id, 0, min_id[0][1])

chat_info[i] = (chat_id, messages)
pipeline.execute()

return chat_info

Fetching pending messages is primarily a matter of iterating through all of the chats

for the user, pulling the messages, and cleaning up messages that have been seen by

all users in a chat.

JOINING AND LEAVING THE CHAT

We’ve sent and fetched messages from group chats; all that remains is joining and

leaving the group chat. To join a group chat, we fetch the most recent message ID for

Listing 6.26 The fetch_pending_messages() function

Get the last 
message IDs 
received.

Fetch all new 
messages.

Prepare 
information 
about the data 
to be returned.

Update the “chat” ZSET with the 
most recently received message.

Discover messages that have 
been seen by all users.

Clean out messages that 
have been seen by all users.

Update the 
“seen” ZSET.
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the chat, and we add the chat information to the user’s seen ZSET with the score being

the most recent message ID. We also add the user to the group’s member list, again

with the score being the most recent message ID. See the next listing for the code for

joining a group.

def join_chat(conn, chat_id, user):
message_id = int(conn.get('ids:' + chat_id))

pipeline = conn.pipeline(True)
pipeline.zadd('chat:' + chat_id, user, message_id)
pipeline.zadd('seen:' + user, chat_id, message_id)
pipeline.execute()

Joining a chat only requires adding the proper references to the user to the chat, and

the chat to the user’s seen ZSET.

 To remove a user from the group chat, we remove the user ID from the chat ZSET,

and we remove the chat from the user’s seen ZSET. If there are no more users in the

chat ZSET, we delete the messages ZSET and the message ID counter. If there are users

remaining, we’ll again take a pass and clean out any old messages that have been seen

by all users. The function to leave a chat is shown in the following listing.

def leave_chat(conn, chat_id, user):
pipeline = conn.pipeline(True)
pipeline.zrem('chat:' + chat_id, user)
pipeline.zrem('seen:' + user, chat_id)
pipeline.zcard('chat:' + chat_id)

if not pipeline.execute()[-1]:
pipeline.delete('msgs:' + chat_id)      
pipeline.delete('ids:' + chat_id)
pipeline.execute()

else:
oldest = conn.zrange(

'chat:' + chat_id, 0, 0, withscores=True)
conn.zremrangebyscore('chat:' + chat_id, 0, oldest)

Cleaning up after a user when they leave a chat isn’t that difficult, but requires taking

care of a lot of little details to ensure that we don’t end up leaking a ZSET or ID some-

where.

 We’ve now finished creating a complete multiple-recipient pull messaging system

in Redis. Though we’re looking at it in terms of chat, this same method can be used to

replace the PUBLISH/SUBSCRIBE functions when you want your recipients to be able to

receive messages that were sent while they were disconnected. With a bit of work, we

could replace the ZSET with a LIST, and we could move our lock use from sending a

message to old message cleanup. We used a ZSET instead, because it saves us from hav-

ing to fetch the current message ID for every chat. Also, by making the sender do

Listing 6.27 The join_chat() function

Listing 6.28 The leave_chat() function

Get the most 
recent message 
ID for the chat.

Add the user
to the chat

member list.

Add the chat to the user’s seen list.

Remove the user 
from the chat.

Find the number
of remaining

group members.

Delete the chat.

Find the oldest
message seen

by all users.

Delete old messages
from the chat.



146 CHAPTER 6 Application components in Redis

more work (locking around sending a message), the multiple recipients are saved

from having to request more data and to lock during cleanup, which will improve per-

formance overall.

 We now have a multiple-recipient messaging system to replace PUBLISH and SUB-

SCRIBE for group chat. In the next section, we’ll use it as a way of sending information

about key names available in Redis.

6.6 Distributing files with Redis

When building distributed software and systems, it’s common to need to copy, distrib-

ute, or process data files on more than one machine. There are a few different com-

mon ways of doing this with existing tools. If we have a single server that will always

have files to be distributed, it’s not uncommon to use NFS or Samba to mount a path

or drive. If we have files whose contents change little by little, it’s also common to use

a piece of software called Rsync to minimize the amount of data to be transferred

between systems. Occasionally, when many copies need to be distributed among

machines, a protocol called BitTorrent can be used to reduce the load on the server

by partially distributing files to multiple machines, which then share their pieces

among themselves.

 Unfortunately, all of these methods have a significant setup cost and value that’s

somewhat relative. NFS and Samba can work well, but both can have significant issues

when network connections aren’t perfect (or even if they are perfect), due to the way

both of these technologies are typically integrated with operating systems. Rsync is

designed to handle intermittent connection issues, since each file or set of files can be

partially transferred and resumed, but it suffers from needing to download complete

files before processing can start, and requires interfacing our software with Rsync in

order to fetch the files (which may or may not be a problem). And though BitTorrent

is an amazing technology, it only really helps if we’re running into limits sending from

our server, or if our network is underutilized. It also relies on interfacing our software

with a BitTorrent client that may not be available on all platforms, and which may not

have a convenient method to fetch files.

 Each of the three methods described also require setup and maintenance of users,

permissions, and/or servers. Because we already have Redis installed, running, and

available, we’ll use Redis to distribute files instead. By using Redis, we bypass issues

that some other software has: our client handles connection issues well, we can fetch

the data directly with our clients, and we can start processing data immediately (no

need to wait for an entire file).

6.6.1 Aggregating users by location

Let’s take a moment and look back at an earlier problem that we solved for Fake

Game Company. With the ability to discover where users are accessing the game from

thanks to our IP-to-city lookup in chapter 5, Fake Game Company has found itself

needing to reparse many gigabytes of log files. They’re looking to aggregate user visi-

tation patterns over time in a few different dimensions: per country, per region, per
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city, and more. Because we need this to be run in real time over new data, we’ve

already implemented callbacks to perform the aggregate operations.

 As you may remember from chapter 5, Fake Game Company has been around for

about 2 years. They have roughly 1,000,000 users per day, but they have roughly 10

events per user per day. That gives us right around 7.3 billion log lines to process. If

we were to use one of the earlier methods, we’d copy the log files to various machines

that need to process the data, and then go about processing the log files. This works,

but then we need to copy the data, potentially delaying processing, and using storage

space on every machine that processes the data, which later needs to be cleaned up.

 In this particular case, instead of copying files around, we could write a one-time

map-reduce3 process to handle all of this data. But because map-reduces are designed

to not share memory between items to be processed (each item is usually one log

line), we can end up taking more time with map-reduce than if we spent some time

writing it by hand to share memory. More specifically, if we load our IP-to-city lookup

table into memory in Python (which we’d only want to do if we had a lot of processing

to do, and we do), we can perform about 200k IP-to-city ID lookups per second, which

is faster than we could expect a single Redis instance to respond to the same queries.

Also, to scale with map-reduce, we’d have to run at least a few instances of Redis to

keep up with the map-reduces.

 With the three standard methods of handling this already discounted (NFS/

Samba, copying files, map-reduce), let’s look at some other practical pieces that we’ll

need to solve to actually perform all of our lookups.

AGGREGATING DATA LOCALLY

In order to process that many log entries efficiently, we’ll need to locally cache aggre-

gates before updating Redis in order to minimize round trips. Why? If we have

roughly 10 million log lines to process for each day, then that’s roughly 10 million

writes to Redis. If we perform the aggregates locally on a per-country basis for the

entire day (being that there are around 300 countries), we can instead write 300 val-

ues to Redis. This will significantly reduce the number of round trips between Redis,

reducing the number of commands processed, which in turn will reduce the total pro-

cessing time.

 If we don’t do anything intelligent about local caching, and we have 10 aggregates

that we want to calculate, we’re looking at around 10 days to process all of the data.

But anything on the country or region level can be aggregated completely (for the

day) before being sent to Redis. And generally because the top 10% of cities (there

are roughly 350,000 cities in our sample dataset) amount for more than 90% of our

game’s users, we can also locally cache any city-level aggregates. So by performing

local caching of aggregates, we’re not limited by Redis on aggregate throughput.

 Assuming that we’ve already cached a copy of our ZSET and HASH table for IP look-

ups from section 5.3, we only need to worry about aggregating the data. Let’s start

3 MapReduce (or Map/Reduce) is a type of distributed computation popularized by Google, which can offer
high performance and simplicity for some problems.
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with the log lines that contain an IP address, date, time, and the operation that was

performed, similar to the following snippet:

173.194.38.137 2011-10-10 13:55:36 achievement-762

Given log lines of that form, let’s aggregate those lines on a daily basis per country. To

do this, we’ll receive the line as part of a call and increment the appropriate counter.

If the log line is empty, then we’ll say that the day’s worth of data is done, and we

should write to Redis. The source code for performing this aggregate is shown next.

aggregates = defaultdict(lambda: defaultdict(int))

def daily_country_aggregate(conn, line):
if line:

line = line.split()
ip = line[0]
day = line[1]
country = find_city_by_ip_local(ip)[2]
aggregates[day][country] += 1
return

for day, aggregate in aggregates.items():
conn.zadd('daily:country:' + day, **aggregate)
del aggregates[day]

Now that we’ve written and seen one of these aggregate functions, the rest are fairly

similar and just as easy to write. Let’s move on to more interesting topics, like how

we’re going to send files through Redis.

6.6.2 Sending files

In order to get the log data to our logs processors, we’ll have two different compo-

nents operating on the data. The first is a script that will be taking the log files and

putting them in Redis under named keys, publishing the names of the keys to a chat

channel using our group chat method from section 6.5.2, and waiting for notification

when they’re complete (to not use more memory than our Redis machine has). It’ll

be waiting for a notification that a key with a name similar to the file stored in Redis

has a value equal to 10, which is our number of aggregation processes. The function

that copies logs and cleans up after itself is shown in the following listing.

def copy_logs_to_redis(conn, path, channel, count=10,
limit=2**30, quit_when_done=True):

bytes_in_redis = 0
waiting = deque()
create_chat(conn, 'source', map(str, range(count)), '', channel)
count = str(count)

Listing 6.29 A locally aggregating callback for a daily country-level aggregate

Listing 6.30 The copy_logs_to_redis() function

Prepare the 
local aggregate 
dictionary.

Extract the
information from

our log lines.

Find the 
country from 
the IP address.

Increment our
local aggregate.

The day file is done; write
our aggregate to Redis.

Create the chat that
will be used to send
messages to clients.
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for logfile in sorted(os.listdir(path)):
full_path = os.path.join(path, logfile)

fsize = os.stat(full_path).st_size
while bytes_in_redis + fsize > limit:

cleaned = _clean(conn, channel, waiting, count)
if cleaned:

bytes_in_redis -= cleaned
else:

time.sleep(.25)

with open(full_path, 'rb') as inp:           
block = ' '
while block:

block = inp.read(2**17)
conn.append(channel+logfile, block)

send_message(conn, channel, 'source', logfile)

bytes_in_redis += fsize
waiting.append((logfile, fsize))

if quit_when_done:
send_message(conn, channel, 'source', ':done')

while waiting:
cleaned = _clean(conn, channel, waiting, count)
if cleaned:

bytes_in_redis -= cleaned
else:

time.sleep(.25)

def _clean(conn, channel, waiting, count):
if not waiting:

return 0
w0 = waiting[0][0]
if conn.get(channel + w0 + ':done') == count:

conn.delete(channel + w0, channel + w0 + ':done')
return waiting.popleft()[1]

return 0

Copying logs to Redis requires a lot of detailed steps, mostly involving being careful

to not put too much data into Redis at one time and properly cleaning up after our-

selves when a file has been read by all clients. The actual aspect of notifying logs pro-

cessors that there’s a new file ready is easy, but the setup, sending, and cleanup are

pretty detailed.

6.6.3 Receiving files

The second part of the process is a group of functions and generators that will fetch

log filenames from the group chat. After receiving each name, it’ll process the log

files directly from Redis, and will update the keys that the copy process is waiting on.

This will also call our callback on each incoming line, updating our aggregates. The

next listing shows the code for the first of these functions.

Iterate over all 
of the log files.

Clean out 
finished files 
if we need 
more room.

Upload the 
file to Redis.

Notify the
listeners
that the

file is
ready.

Update our local information 
about Redis’ memory use.

We are out of files, so 
signal that it’s done.

Clean up the 
files when 
we’re done.

How we 
actually 
perform 
the cleanup 
from Redis.
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def process_logs_from_redis(conn, id, callback):
while 1:

fdata = fetch_pending_messages(conn, id)

for ch, mdata in fdata:
for message in mdata:

logfile = message['message']

if logfile == ':done':
return

elif not logfile:
continue

block_reader = readblocks
if logfile.endswith('.gz'):

block_reader = readblocks_gz

for line in readlines(conn, ch+logfile, block_reader):
callback(conn, line)

callback(conn, None)

conn.incr(ch + logfile + ':done')

if not fdata:
time.sleep(.1)

Receiving information about log files is straightforward, though we do defer a lot of

the hard work of actually reading the file from Redis to helper functions that generate

sequences of log lines. We also need to be careful to notify the file sender by incre-

menting the counter for the log file; otherwise the file sending process won’t know to

clean up finished log files.

6.6.4 Processing files

We’re deferring some of the work of decoding our files to functions that return gener-

ators over data. The readlines() function takes the connection, key, and a block-iter-

ating callback. It’ll iterate over blocks of data yielded by the block-iterating callback,

discover line breaks, and yield lines. When provided with blocks as in listing 6.32, it finds

the last line ending in the block, and then splits the lines up to that last line ending, yield-

ing the lines one by one. When it’s done, it keeps any partial lines to prepend onto the

next block. If there’s no more data, it yields the last line by itself. There are other ways

of finding line breaks and extracting lines in Python, but the rfind()/split() combi-

nation is faster than other methods.

def readlines(conn, key, rblocks):
out = ''
for block in rblocks(conn, key):

out += block
posn = out.rfind('\n')
if posn >= 0:

Listing 6.31 The process_logs_from_redis() function

Listing 6.32 The readlines() function

Fetch the 
list of files.

No more 
log files.

Choose a 
block reader.Iterate

over the
lines.

Pass each line 
to the callback.Force a flush of our

aggregate caches.

Report that we’re 
finished with the log.

Find the rightmost 
line break if any; 
rfind() returns -1 
on failure.

We found
a line

break.
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for line in out[:posn].split('\n'):
yield line + '\n'

out = out[posn+1:]
if not block:

yield out
break

For our higher-level line-generating function, we’re iterating over blocks produced by

one of two readers, which allows us to focus on finding line breaks.

GENERATORS WITH YIELD Listing 6.32 offers our first real use of Python gener-
ators with the yield statement. Generally, this allows Python to suspend and
resume execution of code primarily to allow for easy iteration over sequences
or pseudo-sequences of data. For more details on how generators work, you can
visit the Python language tutorial with this short URL: http://mng.bz/Z2b1.

Each of the two block-yielding callbacks, readblocks() and readblocks_gz(), will

read blocks of data from Redis. The first yields the blocks directly, whereas the other

automatically decompresses gzip files. We’ll use this particular layer separation in

order to offer the most useful and reusable data reading method possible. The follow-

ing listing shows the readblocks() generator.

def readblocks(conn, key, blocksize=2**17):
lb = blocksize
pos = 0
while lb == blocksize:

block = conn.substr(key, pos, pos + blocksize - 1)
yield block
lb = len(block)
pos += lb

yield ''

The readblocks() generator is primarily meant to offer an abstraction over our block

reading, which allows us to replace it later with other types of readers, like maybe a file-

system reader, a memcached reader, a ZSET reader, or in our case, a block reader that

handles gzip files in Redis. The next listing shows the readblocks_gz() generator.

def readblocks_gz(conn, key):
inp = ''
decoder = None
for block in readblocks(conn, key, 2**17):

if not decoder:
inp += block
try:

if inp[:3] != "\x1f\x8b\x08":         
raise IOError("invalid gzip data")

i = 10
flag = ord(inp[3])

Listing 6.33 The readblocks() generator

Listing 6.34 The readblocks_gz() generator

Split on all of the
line breaks. Yield each line.

Keep track of 
the trailing data.

We’re out of data.

Keep fetching 
more data as long 
as we don’t have a 
partial read.

Fetch the 
block.Prepare for 

the next pass.

Read the raw 
data from Redis.

Parse the header infor-
mation so that we can 
get the compressed data.

http://mng.bz/Z2b1
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if flag & 4:
i += 2 + ord(inp[i]) + 256*ord(inp[i+1])

if flag & 8:
i = inp.index('\0', i) + 1

if flag & 16:
i = inp.index('\0', i) + 1

if flag & 2:
i += 2

if i > len(inp):
raise IndexError("not enough data")

except (IndexError, ValueError):
continue

else:
block = inp[i:]
inp = None
decoder = zlib.decompressobj(-zlib.MAX_WBITS)
if not block:

continue

if not block:
yield decoder.flush()
break

yield decoder.decompress(block)

Much of the body of readblocks_gz() is gzip header parsing code, which is unfortu-

nately necessary. For log files (like we’re parsing), gzip can offer a reduction of 2–5

times in storage space requirements, while offering fairly high-speed decompression.

Though more modern compression methods are able to compress better (bzip2,

lzma/xz, and many others) or faster (lz4, lzop, snappy, QuickLZ, and many others),

no other method is as widely available (bzip2 comes close) or has such a useful range

of compression ratio and CPU utilization trade-off options.

6.7 Summary

In this chapter we’ve gone through six major topics, but in looking at those topics, we

actually solved nine different problems. Whenever possible, we’ve taken steps to bor-

row ideas and functionality from previous sections to keep building more useful tools,

while trying to highlight that many of the techniques that we use in one solution can

also be used to solve other problems.

 If there’s one concept that you should take away from this entire chapter, it’s that

although WATCH is a useful command, is built in, convenient, and so forth, having

access to a working distributed lock implementation from section 6.2 can make con-

current Redis programming so much easier. Being able to lock at a finer level of detail

than an entire key can reduce contention, and being able to lock around related oper-

ations can reduce operation complexity. We saw both performance improvements and

Parse the header 
information so 
that we can get the 
compressed data.

We haven’t 
read the full 
header yet.

We found the 
header; prepare 
the decompresser.

We’re out of data; 
yield the last chunk.

Yield a decompressed 
block.
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operation simplicity in our revisited marketplace example from section 4.6, and in

our delayed task queue from section 6.4.2.

 If there’s a second concept that you should remember, take to heart, and apply in

the future, it’s that with a little work, you can build reusable components with Redis.

We reused locks explicitly in counting semaphores, delayed task queues, and in our

multiple-recipient pub/sub replacement. And we reused our multiple-recipient pub/

sub replacement when we distributed files with Redis.

 In the next chapter, we’ll continue with building more advanced tools with Redis,

writing code that can be used to back entire applications from document indexing

and search with scored indexing and sorting, all the way to an ad targeting system, and

a job search system. Going forward, we’ll reuse some of these components in later

chapters, so keep an eye out, and remember that it’s not difficult to build reusable

components for Redis.
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Search-based applications

Over the last several chapters, I’ve introduced a variety of topics and problems that

can be solved with Redis. Redis is particularly handy in solving a class of problems

that I generally refer to as search-based problems. These types of problems primarily

involve the use of SET and ZSET intersection, union, and difference operations to

find items that match a specified criteria.

 In this chapter, I’ll introduce the concept of searching for content with Redis

SETs. We’ll then talk about scoring and sorting our search results based on a few

different options. After getting all of the basics out of the way, we’ll dig into creat-

ing an ad-targeting engine using Redis, based on what we know about search.

Before finishing the chapter, we’ll talk about a method for matching or exceeding

a set of requirements as a part of job searching.

 Overall, the set of problems in this chapter will show you how to search and fil-

ter data quickly and will expand your knowledge of techniques that you can use to

This chapter covers

■ Searching in Redis

■ Scoring your search results

■ Ad targeting

■ Job search
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organize and search your own information. First, let’s talk about what we mean by

searching in Redis.

7.1 Searching in Redis

In a text editor or word processor, when you want to search for a word or phrase, the

software will scan the document for that word or phrase. If you’ve ever used grep in

Linux, Unix, or OS X, or if you’ve used Windows’ built-in file search capability to find

files with words or phrases, you’ve noticed that as the number and size of documents

to be searched increases, it takes longer to search your files.

 Unlike searching our local computer, searching for web pages or other content on

the web is very fast, despite the significantly larger size and number of documents. In

this section, we’ll examine how we can change the way we think about searching

through data, and subsequently reduce search times over almost any kind of word or

keyword-based content search with Redis.

 As part of their effort to help their customers find help in solving their problems,

Fake Garage Startup has created a knowledge base of troubleshooting articles for user

support. As the number and variety of articles has increased over the last few months,

the previous database-backed search has slowed substantially, and it’s time to come up

with a method to search over these documents quickly. We’ve decided to use Redis,

because it has all of the functionality necessary to build a content search engine.

 Our first step is to talk about how it’s even possible for us to search so much faster

than scanning documents word by word.

7.1.1 Basic search theory

Searching for words in documents faster than scanning over them requires prepro-

cessing the documents in advance. This preprocessing step is generally known as

indexing, and the structures that we create are called inverted indexes. In the search

world, inverted indexes are well known and are the underlying structure for almost

every search engine that we’ve used on the internet. In a lot of ways, we can think of

this process as producing something similar to the index at the end of this book. We

create inverted indexes in Redis primarily because Redis has native structures that are

ideally suited for inverted indexes: the SET and ZSET.1

 More specifically, an inverted index of a collection of documents will take the

words from each of the documents and create tables that say which documents con-

tain what words. So if we have two documents, docA and docB, containing just the

titles lord of the rings and lord of the dance, respectively, we’ll create a SET in Redis for lord

that contains both docA and docB. This signifies that both docA and docB contain the

word lord. The full inverted index for our two documents appears in figure 7.1.

1 Though SETs and ZSETs could be emulated with a properly structured table and unique index in a relational
database, emulating a SET or ZSET intersection, union, or difference using SQL for more than a few terms is
cumbersome. 
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Tokenization

Remove stop words

Original content:

Tokenized content:

Stop words removed:

In order to construct our SETs of

documents, we must first examine

our documents for words. The

process of extracting words from

documents is known as parsing

and tokenization; we are

producing a set of tokens (or

words) that identify the document.

and are as construct document

documents examine extracting first

for from identify in is known must of

or order our parsing process

producing set sets that the to

tokenization tokens we words

construct document documents

examine extracting first identify

known order parsing process

producing set sets tokenization

tokens words

Figure 7.2 The process of tokenizing text into 

words, then removing stop words, as run on a 

paragraph from an early version of this section

Knowing that the ultimate result of our index operation is a collection of Redis SETs is

helpful, but it’s also important to know how we get to those SETs.

BASIC INDEXING

In order to construct our SETs of documents,

we must first examine our documents for

words. The process of extracting words from

documents is known as parsing and tokeniza-

tion; we’re producing a set of tokens (or

words) that identify the document.

 There are many different ways of produc-

ing tokens. The methods used for web pages

could be different from methods used for

rows in a relational database, or from docu-

ments from a document store. We’ll keep it

simple and consider words of alphabetic char-

acters and apostrophes (') that are at least

two characters long. This accounts for the

majority of words in the English language,

except for I and a, which we’ll ignore.

 One common addition to a tokenization

process is the removal of words known as stop

words. Stop words are words that occur so fre-

quently in documents that they don’t offer a

substantial amount of information, and

searching for those words returns too many

documents to be useful. By removing stop

words, not only can we improve the perfor-

mance of our searches, but we can also reduce

the size of our index. Figure 7.2 shows the pro-

cess of tokenization and stop word removal.

ind:lord

docB

docA

set

ind:the

docB

docA

set ind:rings

docA

set

ind:dance

docB

set

ind:of

docB

docA

set

Figure 7.1 The inverted index for docA and docB
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 One challenge in this process is coming up with a useful list of stop words. Every

group of documents will have different statistics on what words are most common,

which may or may not affect stop words. As part of listing 7.1, we include a list of stop

words (fetched from http://www.textfixer.com/resources/), as well as functions to

both tokenize and index a document, taking into consideration the stop words that

we want to remove.

STOP_WORDS = set('''able about across after all almost also am among
an and any are as at be because been but by can cannot could dear did
do does either else ever every for from get got had has have he her
hers him his how however if in into is it its just least let like
likely may me might most must my neither no nor not of off often on
only or other our own rather said say says she should since so some
than that the their them then there these they this tis to too twas us
wants was we were what when where which while who whom why will with
would yet you your'''.split())

WORDS_RE = re.compile("[a-z']{2,}")

def tokenize(content):
words = set()
for match in WORDS_RE.finditer(content.lower()):

word = match.group().strip("'")
if len(word) >= 2:         

words.add(word)
return words - STOP_WORDS

def index_document(conn, docid, content):
words = tokenize(content)

pipeline = conn.pipeline(True)
for word in words:      

pipeline.sadd('idx:' + word, docid)
return len(pipeline.execute())

If we were to run our earlier docA and docB examples through the updated tokeniza-

tion and indexing step in listing 7.1, instead of having the five SETs corresponding to

lord, of, the, rings, and dance, we’d only have lord, rings, and dance, because of

and the are both stop words. 

REMOVING A DOCUMENT FROM THE INDEX If you’re in a situation where your
document may have its content changed over time, you’ll want to add func-
tionality to automatically remove the document from the index prior to rein-
dexing the item, or a method to intelligently update only those inverted
indexes that the document should be added or removed from. A simple way
of doing this would be to use the SET command to update a key with a JSON-
encoded list of words that the document had been indexed under, along with
a bit of code to un-index as necessary at the start of index_document().

Listing 7.1 Functions to tokenize and index a document

We predeclare our known stop 
words; these were fetched from 
http://www.textfixer.com/resources/.

A regular expression that extracts 
words as we defined them.

Our Python
set of words
that we have
found in the

document
content.

Iterate over
all of the

words in the
content.

Return the
set of words
that remain

that are
also not

stop words.

Strip any leading or 
trailing single-quote 
characters.

Keep any words that are still 
at least two characters long.

Get the tokenized 
words for the content.

Add the documents to the 
appropriate inverted index entries.

Return the number of unique non-stop 
words that were added for the document.

http://www.textfixer.com/resources/
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Now that we have a way of generating inverted indexes for our knowledge base docu-

ments, let’s look at how we can search our documents.

BASIC SEARCHING

Searching the index for a single word is easy: we fetch the set of documents in that

word’s SET. But what if we wanted to find documents that contained two or more

words? We could fetch the SETs of documents for all of those words, and then try to

find those documents that are in all of the SETs, but as we discussed in chapter 3,

there are two commands in Redis that do this directly: SINTER and SINTERSTORE. Both

commands will discover the items that are in all of the provided SETs and, for our

example, will discover the SET of documents that contain all of the words.

 One of the amazing things about using inverted indexes with SET intersections is

not so much what we can find (the documents we’re looking for), and it’s not even

how quickly it can find the results—it’s how much information the search completely

ignores. When searching text the way a text editor does, a lot of useless data gets

examined. But with inverted indexes, we already know what documents have each

individual word, and it’s only a matter of filtering through the documents that have all

of the words we’re looking for.

 Sometimes we want to search for items with similar meanings and have them con-

sidered the same, which we call synonyms (at least in this context). To handle that sit-

uation, we could again fetch all of the document SETs for those words and find all

of the unique documents, or we could use another built-in Redis operation: SUNION

or SUNIONSTORE.

 Occasionally, there are times when we want to search for documents with certain

words or phrases, but we want to remove documents that have other words. There are

also Redis SET operations for that: SDIFF and SDIFFSTORE.

 With Redis SET operations and a bit of helper code, we can perform arbitrarily intri-

cate word queries over our documents. Listing 7.2 provides a group of helper functions

that will perform SET intersections, unions, and differences over the given words, stor-

ing them in temporary SETs with an expiration time that defaults to 30 seconds.

def _set_common(conn, method, names, ttl=30, execute=True):
id = str(uuid.uuid4())
pipeline = conn.pipeline(True) if execute else conn
names = ['idx:' + name for name in names]
getattr(pipeline, method)('idx:' + id, *names)
pipeline.expire('idx:' + id, ttl)
if execute:

pipeline.execute()
return id

Listing 7.2 SET intersection, union, and difference operation helpers

Create a new
temporary identifier.

Set up a transactional pipeline so that we have 
consistent results for each individual call.

Add
the ‘idx:’
prefix to

our terms.

Instruct Redis
to expire the

SET in the
future.

Set up the call 
for one of the 
operations.

Actually execute 
the operation.

Return the ID for the 
caller to process the 
results.
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def intersect(conn, items, ttl=30, _execute=True):
return _set_common(conn, 'sinterstore', items, ttl, _execute)

def union(conn, items, ttl=30, _execute=True):
return _set_common(conn, 'sunionstore', items, ttl, _execute)

def difference(conn, items, ttl=30, _execute=True):
return _set_common(conn, 'sdiffstore', items, ttl, _execute)

Each of the intersect(), union(), and difference() functions calls another helper

function that actually does all of the heavy lifting. This is because they all essentially

do the same thing: set up the keys, make the appropriate SET call, update the expira-

tion, and return the new SET’s ID. Another way of visualizing what happens when we

perform the three different SET operations SINTER, SUNION, and SDIFF can be seen in

figure 7.3, which shows the equivalent operations on Venn diagrams.

 This is everything necessary for programming the search engine, but what about

parsing a search query?

PARSING AND EXECUTING A SEARCH

We almost have all of the pieces necessary to perform indexing and search. We have

tokenization, indexing, and the basic functions for intersection, union, and differ-

ences. The remaining piece is to take a text query and turn it into a search operation.

Like our earlier tokenization of documents, there are many ways to tokenize search

queries. We’ll use a method that allows for searching for documents that contain all of

the provided words, supporting both synonyms and unwanted words.

 A basic search will be about finding documents that contain all of the provided

words. If we have just a list of words, that’s a simple intersect() call. In the case

where we want to remove unwanted words, we’ll say that any word with a leading

minus character (-) will be removed with difference(). To handle synonyms, we

Helper function
to perform SET

intersections.

Helper function
to perform SET

unions.
Helper function to perform SET differences.

SINTER A B SUNION A B SDIFF A B

A - BA or B
A

and

B

A

and

B

A B

Figure 7.3 The SET intersection, union, and difference calls as if they were operating 

on Venn diagrams
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need a way of saying “This word is a synonym,” which we’ll denote by the use of the

plus (+) character prefix on a word. If we see a plus character leading a word, it’s con-

sidered a synonym of the word that came just before it (skipping over any unwanted

words), and we’ll group synonyms together to perform a union() prior to the higher-

level intersect() call.

 Putting it all together where + denotes synonyms and - denotes unwanted words, the

next listing shows the code for parsing a query into a Python list of lists that describes

words that should be considered the same, and a list of words that are unwanted.

QUERY_RE = re.compile("[+-]?[a-z']{2,}")

def parse(query):
unwanted = set()
all = []
current = set()
for match in QUERY_RE.finditer(query.lower()):

word = match.group()           
prefix = word[:1]
if prefix in '+-':

word = word[1:]
else:

prefix = None

word = word.strip("'")
if len(word) < 2 or word in STOP_WORDS:

continue

if prefix == '-':
unwanted.add(word)
continue

if current and not prefix:
all.append(list(current))
current = set()

current.add(word)

if current:
all.append(list(current))

return all, list(unwanted)

To give this parsing function a bit of exercise, let’s say that we wanted to search our

knowledge base for chat connection issues. What we really want to search for is an arti-

cle with connect, connection, disconnect, or disconnection, along with chat, but

because we aren’t using a proxy, we want to skip any documents that include proxy or

proxies. Here’s an example interaction that shows the query (formatted into groups

for easier reading):

>>> parse('''
connect +connection +disconnect +disconnection
chat
-proxy -proxies''')

Listing 7.3 A function for parsing a search query

Our regular expression for 
finding wanted, unwanted, 
and synonym words.

A unique set
of unwanted

words.

Our final result of
words that we’re

looking to intersect.

The current unique set 
of words to consider 
as synonyms.

Iterate over all 
words in the 
search query.

Discover +/- 
prefixes, if any.

Strip any leading
or trailing single
quotes, and skip
anything that’s a

stop word.

If the word is unwanted, 
add it to the unwanted 
set.

Set up a new synonym set if 
we have no synonym prefix 
and we already have words.

Add the current
word to the
current set.

Add any remaining words 
to the final intersection.
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([['disconnection', 'connection', 'disconnect', 'connect'], ['chat']],
['proxies', 'proxy'])
>>>

Our parse function properly extracted the synonyms for connect/disconnect, kept

chat separate, and discovered our unwanted proxy and proxies. We aren’t going to

be passing that parsed result around (except for maybe debugging as necessary), but

instead are going to be calling our parse() function as part of a parse_and_search()

function that union()s the individual synonym lists as necessary, intersect()ing the

final list, and removing the unwanted words with difference() as necessary. The full

parse_and_search() function is shown in the next listing.

def parse_and_search(conn, query, ttl=30):
all, unwanted = parse(query)            
if not all:

return None

to_intersect = []
for syn in all:          

if len(syn) > 1:
to_intersect.append(union(conn, syn, ttl=ttl))

else:
to_intersect.append(syn[0])

if len(to_intersect) > 1:
intersect_result = intersect(conn, to_intersect, ttl=ttl)

else:
intersect_result = to_intersect[0]

if unwanted:
unwanted.insert(0, intersect_result)
return difference(conn, unwanted, ttl=ttl)

return intersect_result  

Like before, the final result will be the ID of a SET that includes the documents that

match the parameters of our search. Assuming that Fake Garage Startup has properly

indexed all of their documents using our earlier index_document() function,

parse_and_search() will perform the requested search.

 We now have a method that’s able to search for documents with a given set of crite-

ria. But ultimately, when there are a large number of documents, we want to see them

in a specific order. To do that, we need to learn how to sort the results of our searches.

7.1.2 Sorting search results

We now have the ability to arbitrarily search for words in our indexed documents. But

searching is only the first step in retrieving information that we’re looking for. After we

have a list of documents, we need to decide what’s important enough about each of the

documents to determine its position relative to other matching documents. This ques-

tion is generally known as relevance in the search world, and one way of determining

Listing 7.4 A function to parse a query and search documents

Parse the query.
If there are only
stop words, we

don’t have a result.

Iterate over each list of synonyms.

If the synonym list is
more than one word

long, perform the
union operation.

If we have more than one
word/result to intersect,

intersect them.

If we have any unwanted
words, remove them

from our earlier result
and return it.

Otherwise, use the 
individual word directly.

Otherwise, use the individual 
word/result directly.

Otherwise, return the intersection result.
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whether one article is more relevant than another is which article has been updated

more recently. Let’s see how we could include this as part of our search results.

 If you remember from chapter 3, the Redis SORT call allows us to sort the contents

of a LIST or SET, possibly referencing external data. For each article in Fake Garage

Startup’s knowledge base, we’ll also include a

HASH that stores information about the article.

The information we’ll store about the article

includes the title, the creation timestamp, the

timestamp for when the article was last

updated, and the document’s ID. An example

document appears in figure 7.4. 

 With documents stored in this format, we

can then use the SORT command to sort by one

of a few different attributes. We’ve been giving

our result SETs expiration times as a way of

cleaning them out shortly after we’ve finished

using them. But for our final SORTed result, we could keep that result around longer,

while at the same time allowing for the ability to re-sort, and even paginate over the

results without having to perform the search again. Our function for integrating this

kind of caching and re-sorting can be seen in the following listing.

def search_and_sort(conn, query, id=None, ttl=300, sort="-updated",
start=0, num=20):

desc = sort.startswith('-')
sort = sort.lstrip('-')
by = "kb:doc:*->" + sort
alpha = sort not in ('updated', 'id', 'created')

if id and not conn.expire(id, ttl):
id = None

if not id:
id = parse_and_search(conn, query, ttl=ttl)

pipeline = conn.pipeline(True)
pipeline.scard('idx:' + id)
pipeline.sort('idx:' + id, by=by, alpha=alpha,

desc=desc, start=start, num=num)
results = pipeline.execute()

return results[0], results[1], id

When searching and sorting, we can paginate over results by updating the start and

num arguments; alter the sorting attribute (and order) with the sort argument; cache

the results for longer or shorter with the ttl argument; and reference previous search

results (to save time) with the id argument.

Listing 7.5 A function to parse and search, sorting the results

We’ll optionally take a previous result ID, a way to sort
the results, and options for paginating over the results.Determine which

attribute to sort
by and whether to
sort ascending or

descending.

Perform the search if
we didn’t have a past

search ID, or if our
results expired.

We need to tell Redis whether we’re
sorting by a number or alphabetically.

If there was a 
previous result, try to 
update its expiration 
time if it still exists.

Fetch the total
number of results.

Sort the result list by
the proper column

and fetch only those
results we want.

Return the number of 
items in the results, the 
results we wanted, and the 
ID of the results so that we 
can fetch them again later.

kb:doc276

id       276

created       1324114412

updated       1327562777

title       Troubleshooting...

...                     ...

hash

Figure 7.4 An example document stored 

in a HASH
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 Though these functions won’t let us create a search engine to compete with

Google, this problem and solution are what brought me to use Redis in the first place.

Limitations on SORT lead to using ZSETs to support more intricate forms of document

sorting, including combining scores for a composite sort order. 

7.2 Sorted indexes

In the previous section, we talked primarily about searching, with the ability to sort

results by referencing data stored in HASHes. This kind of sorting works well when we

have a string or number that represents the actual sort order we’re interested in. But

what if our sort order is a composite of a few different scores? In this section, we’ll talk

about ways to combine multiple scores using SETs and ZSETs, which can offer greater

flexibility than calling SORT. 

 Stepping back for a moment, when we used SORT and fetched data to sort by from

HASHes, the HASHes behaved much like rows in a relational database. If we were to

instead pull all of the updated times for our articles into a ZSET, we could similarly

order our articles by updated times by intersecting our earlier result SET with our

update time ZSET with ZINTERSTORE, using an aggregate of MAX. This works because

SETs can participate as part of a ZSET intersection or union as though every element

has a score of 1. 

7.2.1 Sorting search results with ZSETs

As we saw in chapter 1 and talked about in chapter 3, SETs can actually be provided as

arguments to the ZSET commands ZINTERSTORE and ZUNIONSTORE. When we pass SETs

to these commands, Redis will consider the SET members to have scores of 1. For now,

we aren’t going to worry about the scores of SETs in our operations, but we will later.

 In this section, we’ll talk about using SETs and ZSETs together for a two-part search-

and-sort operation. When you’ve finished reading this section, you’ll understand why

and how we’d want to combine scores together as part of a document search.

 Let’s consider a situation in which we’ve already performed a search and have our

result SET. We can sort our results with the SORT command, but that means we can

only sort based on a single value at a time. Being able to easily sort by a single value is

one of the reasons why we started out sorting with our indexes in the first place.

 But say that we want to add the ability to vote on our knowledge base articles to

indicate if they were useful. We could put the vote count in the article hash and use

SORT as we did before. That’s reasonable. But what if we also wanted to sort based on a

combination of recency and votes? We could do as we did in chapter 1 and predefine

the score increase for each vote. But if we don’t have enough information about how

much scores should increase with each vote, then picking a score early on will force us

to have to recalculate later when we find the right number.

 Instead, we’ll keep a ZSET of the times that articles were last updated, as well as a

ZSET for the number of votes that an article has received. Both will use the article IDs

of the knowledge base articles as members of the ZSETs, with update times or vote

count as scores, respectively. We’ll also pass similar arguments to an updated
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search_and_zsort() function defined in the next listing, in order to calculate the

resulting sort order for only update times, only vote counts, or almost any relative bal-

ance between the two.

def search_and_zsort(conn, query, id=None, ttl=300, update=1, vote=0,
start=0, num=20, desc=True):

if id and not conn.expire(id, ttl):
id = None

if not id:
id = parse_and_search(conn, query, ttl=ttl)

scored_search = {
id: 0,
'sort:update': update,
'sort:votes': vote

}
id = zintersect(conn, scored_search, ttl)

pipeline = conn.pipeline(True)
pipeline.zcard('idx:' + id)     
if desc:

pipeline.zrevrange('idx:' + id, start, start + num - 1)
else:

pipeline.zrange('idx:' + id, start, start + num - 1)
results = pipeline.execute()

return results[0], results[1], id

Our search_and_zsort() works much like the earlier search_and_sort(), differing

primarily in how we sort/order our results. Rather than calling SORT, we perform a

ZINTERSTORE operation, balancing the search result SET, the updated time ZSET, and

the vote ZSET.

 As part of search_and_zsort(), we used a helper function for handling the cre-

ation of a temporary ID, the ZINTERSTORE call, and setting the expiration time of the

result ZSET. The zintersect() and zunion() helper functions are shown next.

def _zset_common(conn, method, scores, ttl=30, **kw):
id = str(uuid.uuid4())
execute = kw.pop('_execute', True)
pipeline = conn.pipeline(True) if execute else conn
for key in scores.keys():

scores['idx:' + key] = scores.pop(key)

Listing 7.6 An updated function to search and sort based on votes and updated times

Listing 7.7 Some helper functions for performing ZSET intersections and unions

Like before, we’ll optionally take a previous result
ID for pagination if the result is still available.

We’ll refresh
the search

result’s TTL
if possible. If our search result expired, 

or if this is the first time 
we’ve searched, perform 
the standard SET search.

We use the “id” key for the intersection, but 
we don’t want it to count toward weights.

Set up
the scoring

adjustments for
balancing update

time and votes.
Remember:

votes can be
adjusted to 1, 10,

100, or higher,
depending on

the sorting
result desired.

Intersect using our helper function 
that we define in listing 7.7.

Fetch the size of the result ZSET.

Handle fetching a 
“page” of results.

Return the results and 
the ID for pagination.

Create a new 
temporary 
identifier.

Allow the passing of an
argument to determine

whether we should defer
pipeline execution.

Add the ‘idx:’
prefix to our

inputs.

Set up a transactional pipe-
line so that we have consistent
results for each individual call.
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getattr(pipeline, method)('idx:' + id, scores, **kw)
pipeline.expire('idx:' + id, ttl)
if execute:

pipeline.execute()
return id

def zintersect(conn, items, ttl=30, **kw):
return _zset_common(conn, 'zinterstore', dict(items), ttl, **kw)

def zunion(conn, items, ttl=30, **kw):
return _zset_common(conn, 'zunionstore', dict(items), ttl, **kw)

These helper functions are similar to our SET-based helpers, the primary difference

being that we’re passing a dictionary through to specify scores, so we need to do more

work to properly prefix all of our input keys.

In this section, we talked about how to combine SETs and ZSETs to calculate a simple

composite score based on vote count and updated time. Though we used 2 ZSETs as

sources for scores, there’s no reason why we couldn’t have used 1 or 100. It’s all a ques-

tion of what we want to calculate. 

 If we try to fully replace SORT and HASHes with the more flexible ZSET, we run into one

problem almost immediately: scores in ZSETs must be floating-point numbers. But we

can handle this issue in many cases by converting our non-numeric data to numbers.

7.2.2 Non-numeric sorting with ZSETs

Typical comparison operations between strings will examine two strings character by

character until one character is different, one string runs out of characters, or until

they’re found to be equal. In order to offer the same sort of functionality with string

data, we need to turn strings into numbers. In this section, we’ll talk about methods of

converting strings into numbers that can be used with Redis ZSETs in order to sort

based on string prefixes. After reading this section, you should be able to sort your

ZSET search results with strings.

 Our first step in translating strings into numbers is understanding the limitations

of what we can do. Because Redis uses IEEE 754 double-precision floating-point values

to store scores, we’re limited to at most 64 bits worth of storage. Due to some subtle-

ties in the way doubles represent numbers, we can’t use all 64 bits. Technically, we

could use more than the equivalent of 63 bits, but that doesn’t buy us significantly

Set up the call
for one of the

operations.

Actually execute
the operation, unless

explicitly instructed
not to by the caller.

Helper function
to perform ZSET

intersections.

Instruct Redis to expire 
the ZSET in the future.

Return the ID for the caller 
to process the results.

Helper function to perform ZSET unions.

Exercise: Article voting

In this section, we used ZSETs to handle combining a time and a vote count for an

article. You remember that we did much the same thing back in chapter 1 without

search, though we did handle groups of articles. Can you update article_vote(),

post_articles(), get_articles(), and get_group_articles() to use this new

method so that we can update our score per vote whenever we want? 
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more than 63 bits, and for our case, we’ll only use 48 bits for the sake of simplicity.

Using 48 bits limits us to prefixes of 6 bytes on our data, which is often sufficient.

 To convert our string into an integer, we’ll trim our string down to six characters (as

necessary), converting each character into its ASCII value. We’ll then extend the values

to six entries for strings shorter than six characters. Finally, we’ll combine all of the val-

ues into an integer. Our code for converting a string into a score can be seen next.

def string_to_score(string, ignore_case=False):
if ignore_case:

string = string.lower()

pieces = map(ord, string[:6])
while len(pieces) < 6:

pieces.append(-1)

score = 0
for piece in pieces:

score = score * 257 + piece + 1

return score * 2 + (len(string) > 6)

Most of our string_to_score() function should be straightforward, except for

maybe our use of -1 as a filler value for strings shorter than six characters, and our use

of 257 as a multiplier before adding each character value to the score. For many appli-

cations, being able to differentiate between hello\\0 and hello can be important, so

we take steps to differentiate the two, primarily by adding 1 to all ASCII values (making

null 1), and using 0 (-1 + 1) as a filler value for short strings. As a bonus, we use an

extra bit to tell us whether a string is more than six characters long, which helps us

with similar six-character prefixes.2

 By mapping strings to scores, we’re able to get a prefix comparison of a little more

than the first six characters of our string. For non-numeric data, this is more or less

what we can reasonably do without performing extensive numeric gymnastics, and

without running into issues with how a non-Python library transfers large integers

(that may or may not have been converted to a double). 

 When using scores derived from strings, the scores aren’t always useful for combin-

ing with other scores and are typically only useful for defining a single sort order. Note

Listing 7.8 A function to turn a string into a numeric score

2 If we didn’t care about differentiating between hello\\0 and hello, then we wouldn’t need the filler. If we
didn’t need the filler, we could replace our multiplier of 257 with 256 and get rid of the +1 adjustment. But
with the filler, we actually use .0337 additional bits to let us differentiate short strings from strings that have
nulls. And when combined with the extra bit we used to distinguish whether we have strings longer than six
characters, we actually use 49.0337 total bits. 

We can handle 
optional case-
insensitive indexes 
easily, so we will.

Convert the first six
characters of the string

into their numeric
values, null being 0, tab
being 9, capital A being

65, and so on.

For strings that aren’t at least six characters 
long, we’ll add placeholder values to 
represent that the strings are short.

For each value in the
converted string values,

we add it to the score,
taking into consideration

that a null is different
from a placeholder.

Because we have an extra bit, we can also signify
whether the string is exactly six characters or

more, allowing us to differentiate “robber” and
“robbers”, though not “robbers” and “robbery”.
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that this is because the score that we produced from the string doesn’t really mean

anything, aside from defining a sort order. 

 Now that we can sort on arbitrary data, and you’ve seen how to use weights to

adjust and combine numeric data, you’re ready to read about how we can use Redis

SETs and ZSETs to target ads.

7.3 Ad targeting

On countless websites around the internet, we see advertisements in the form of text

snippets, images, and videos. Those ads exist as a method of paying website owners for

their service—whether it’s search results, information about travel destinations, or

even finding the definition of a word.

 In this section, we’ll talk about using SETs and ZSETs to implement an ad-targeting

engine. When you finish reading this section, you’ll have at least a basic understand-

ing of how to build an ad-serving platform using Redis. Though there are a variety of

ways to build an ad-targeting engine without Redis (custom solutions written with

C++, Java, or C# are common), building an ad-targeting engine with Redis is one of

the quickest methods to get an ad network running.

 If you’ve been reading these chapters sequentially, you’ve seen a variety of prob-

lems and solutions, almost all of which were simplified versions of much larger proj-

ects and problems. But in this section, we won’t be simplifying anything. We’ll build

an almost-complete ad-serving platform based on software that I built and ran in a

production setting for a number of months. The only major missing parts are the web

server, ads, and traffic.

Exercise: Autocompleting with strings as scores

Back in section 6.1.2, we used ZSETs with scores set to 0 to allow us to perform

prefix matching on user names. We had to add items to the ZSET and either use

WATCH/MULTI/EXEC or the lock that we covered in section 6.2 to make sure that we

fetched the correct range. But if instead we added names with scores being the result

of string_to_score() on the name itself, we could bypass the use of WATCH/

MULTI/EXEC and locks when someone is looking for a prefix of at most six characters

by using ZRANGEBYSCORE, with the endpoints we had calculated before being convert-

ed into scores as just demonstrated. Try rewriting our find_prefix_range() and

autocomplete_on_prefix() functions to use ZRANGEBYSCORE instead. 

Exercise: Autocompleting with longer strings

In this section and for the previous exercise, we converted arbitrary binary strings to

scores, which limited us to six-character prefixes. By reducing the number of valid

characters in our input strings, we don’t need to use a full 8+ bits per input character.

Try to come up with a method that would allow us to use more than a six-character

prefix if we only needed to autocomplete on lowercase alphabetic characters.
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 Before we get into building the ad server itself, let’s first talk about what an ad

server is and does.

7.3.1 What’s an ad server?

When we talk about an ad server, what we really mean is a sometimes-small, but sophis-

ticated piece of technology. Whenever we visit a web page with an ad, either the web

server itself or our web browser makes a request to a remote server for that ad. This ad

server will be provided a variety of information about how to find an ad that can earn

the most money through clicks, views, or actions (I’ll explain these shortly).

 In order to choose a specific ad, our server must be provided with targeting param-

eters. Servers will typically receive at least basic information about the viewer’s loca-

tion (based on our IP address at minimum, and occasionally based on GPS

information from our phone or computer), what operating system and web browser

we’re using, maybe the content of the page we’re on, and maybe the last few pages

we’ve visited on the current website.

 We’ll focus on building an ad-targeting platform that has a small amount of basic

information about viewer location and the content of the page visited. After we’ve

seen how to pick an ad from this information, we can add other targeting parame-

ters later.

ADS WITH BUDGETS In a typical ad-targeting platform, each ad is provided
with a budget to be spent over time. We don’t address budgeting or account-
ing here, so both need to be built. Generally, budgets should at least attempt
to be spread out over time, and as a practical approach, I’ve found that add-
ing a portion of the ad’s total budget on an hourly basis (with different ads
getting budgeted at different times through the hour) works well.

Our first step in returning ads to the user is getting the ads into our platform in the

first place.

7.3.2 Indexing ads

The process of indexing an ad is not so different from the process of indexing any

other content. The primary difference is that we aren’t looking to return a list of ads

(or search results); we want to return a single ad. There are also some secondary dif-

ferences in that ads will typically have required targeting parameters such as location,

age, or gender.

 As mentioned before, we’ll only be targeting based on location and content, so this

section will discuss how to index ads based on location and content. When you’ve seen

how to index and target based on location and content, targeting based on, for exam-

ple, age, gender, or recent behavior should be similar (at least on the indexing and

targeting side of things).

 Before we can talk about indexing an ad, we must first determine how to measure

the value of an ad in a consistent manner.
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CALCULATING THE VALUE OF AN AD

Three major types of ads are shown on web pages: cost per view, cost per click, and cost per

action (or acquisition). Cost per view ads are also known as CPM or cost per mille, and

are paid a fixed rate per 1,000 views of the ad itself. Cost per click, or CPC, ads are paid

a fixed rate per click on the ad itself. Cost per action, or CPA, ads are paid a sometimes

varying rate based on actions performed on the ad-destination site.

Making values consistent

To greatly simplify our calculations as to the value of showing a given ad, we’ll convert

all of our types of ads to have values relative to 1,000 views, generating what’s known as

an estimated CPM, or eCPM. CPM ads are the easiest because their value per thousand

views is already provided, so eCPM = CPM. But for both CPC and CPA ads, we must cal-

culate the eCPMs. 

Calculating the estimated CPM of a CPC ad

If we have a CPC ad, we start with its cost per click, say $.25. We then multiply that cost

by the click-through rate (CTR) on the ad. Click-through rate is the number of clicks that

an ad received divided by the number of views the ad received. We then multiply that

result by 1,000 to get our estimated CPM for that ad. If our ad gets .2% CTR, or .002, then

our calculation looks something like this: .25 x .002 x 1000 = $.50 eCPM. 

Calculating the estimated CPM of a CPA ad

When we have a CPA ad, the calculation is somewhat similar to the CPC value calcula-

tion. We start with the CTR of the ad, say .2%. We multiply that against the probability

that the user will perform an action on the advertiser’s destination page, maybe 10%

or .1. We then multiply that times the value of the action performed, and again multi-

ply that by 1,000 to get our estimated CPM. If our CPA is $3, our calculation would look

like this: .002 x .1 x 3 x 1000 = $.60 eCPM. 

 Two helper functions for calculating the eCPM of CPC and CPA ads are shown next.

def cpc_to_ecpm(views, clicks, cpc):
return 1000. * cpc * clicks / views

def cpa_to_ecpm(views, actions, cpa):
return 1000. * cpa * actions / views

Notice that in our helper functions we used clicks, views, and actions directly instead

of the calculated CTR. This lets us keep these values directly in our accounting system,

only calculating the eCPM as necessary. Also notice that for our uses, CPC and CPA are

similar, the major difference being that for most ads, the number of actions is signifi-

cantly lower than the number of clicks, but the value per action is typically much

larger than the value per click.

 Now that we’ve calculated the basic value of an ad, let’s index an ad in preparation

for targeting.

INSERTING AN AD INTO THE INDEX

When targeting an ad, we’ll have a group of optional and required targeting parameters.

In order to properly target an ad, our indexing of the ad must reflect the targeting

Listing 7.9 Helper functions for turning information about CPC and CPA ads into eCPM

Because click-through rate is clicks/
views, and action rate is actions/
clicks, when we multiply them 
together we get actions/views.
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requirements. Since we have two targeting options—location and content—we’ll say

that location is required (either on the city, state, or country level), but any matching

terms between the ad and the content of the page will be optional and a bonus.3

 We’ll use the same search functions we defined in sections 7.1 and 7.2, with slightly

different indexing options. We’ll also assume that you’ve taken my advice from chap-

ter 4 by splitting up your different types of services to different machines (or data-

bases) as necessary, so that your ad-targeting index doesn’t overlap with your other

content indexes.

 As in section 7.1, we’ll create inverted indexes that use SETs and ZSETs to hold ad

IDs. Our SETs will hold the required location targeting, which provides no additional

bonus. When we talk about learning from user behavior, we’ll get into how we calcu-

late our per-matched-word bonus, but initially we won’t include any of our terms for

targeting bonuses, because we don’t know how much they may contribute to the over-

all value of the ad. Our ad-indexing function is shown here.

TO_ECPM = {
'cpc': cpc_to_ecpm,
'cpa': cpa_to_ecpm,
'cpm': lambda *args:args[-1],

}

def index_ad(conn, id, locations, content, type, value):
pipeline = conn.pipeline(True)

for location in locations:
pipeline.sadd('idx:req:'+location, id)

words = tokenize(content)
for word in tokenize(content):

pipeline.zadd('idx:' + word, id, 0)

rvalue = TO_ECPM[type](
1000, AVERAGE_PER_1K.get(type, 1), value)

pipeline.hset('type:', id, type)
pipeline.zadd('idx:ad:value:', id, rvalue)
pipeline.zadd('ad:base_value:', id, value)
pipeline.sadd('terms:' + id, *list(words))
pipeline.execute()

As shown in the listing and described in the annotations, we made three important

additions to the listing. The first is that an ad can actually have multiple targeted loca-

tions. This is necessary to allow a single ad to be targeted for any one of multiple loca-

tions at the same time (like multiple cities, states, or countries).

3 If ad copy matches page content, then the ad looks like the page and will be more likely to be clicked on than
an ad that doesn’t look like the page content.

Listing 7.10 A method for indexing an ad that’s targeted on location and ad content

Set up the pipeline so
that we only need a single
round trip to perform the

full index operation.

Add the ad ID
to all of the

relevant
location SETs
for targeting.

We’ll keep a dictionary
that stores the average

number of clicks or
actions per 1000 views

on our network, for
estimating the

performance of new ads.

Index the words 
for the ad.

Record what 
type of ad 
this is.

Keep a record of the
words that could be
targeted for the ad.

Add the ad’s base 
value to a ZSET of 
all ads.

Add the ad’s 
eCPM to a ZSET 
of all ads.
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 The second is that we’ll keep a dictionary that holds information about the average

number of clicks and actions across the entire system. This lets us come up with a rea-

sonable estimate on the eCPM for CPC and CPA ads before they’ve even been seen in

the system.4

 Finally, we’ll also keep a SET of all of the terms that we can optionally target in the

ad. I include this information as a precursor to learning about user behavior a little

later.

 It’s now time to search for and discover ads that match an ad request.

7.3.3 Targeting ads

As described earlier, when we receive a request to target an ad, we’re generally look-

ing to find the highest eCPM ad that matches the viewer’s location. In addition to

matching an ad based on a location, we’ll gather and use statistics about how the con-

tent of a page matches the content of an ad, and what that can do to affect the ad’s

CTR. Using these statistics, content in an ad that matches a web page can result in

bonuses that contribute to the calculated eCPM of CPC and CPA ads, which can result

in those types of ads being shown more.

 Before showing any ads, we won’t have any bonus scoring for any of our web page

content. But as we show ads, we’ll learn about what terms in the ads help or hurt the

ad’s expected performance, which will allow us to change the relative value of each of

the optional targeting terms.

 To execute the targeting, we’ll union all of the relevant location SETs to produce an

initial group of ads that should be shown to the viewer. Then we’ll parse the content of

the page on which the ad will be shown, add any relevant bonuses, and finally calculate

a total eCPM for all ads that a viewer could be shown. After we’ve calculated those

eCPMs, we’ll fetch the ad ID for the highest eCPM ad, record some statistics about our

targeting, and return the ad itself. Our code for targeting an ad looks like this.

def target_ads(conn, locations, content):
pipeline = conn.pipeline(True)
matched_ads, base_ecpm = match_location(pipeline, locations)
words, targeted_ads = finish_scoring(

pipeline, matched_ads, base_ecpm, content)

pipeline.incr('ads:served:')
pipeline.zrevrange('idx:' + targeted_ads, 0, 0)
target_id, targeted_ad = pipeline.execute()[-2:]

4 It may seem strange to be estimating an expectation (which is arguably an estimate), but everything about
targeting ads is fundamentally predicated on statistics of one kind or another. This is one of those cases where
the basics can get us pretty far.

Listing 7.11 Ad targeting by location and page content bonuses

Finish any bonus
scoring based on

matching the
content.

Get an ID that
can be used for

reporting and
recording of

this particular
ad target. Fetch the top-eCPM ad ID.Fetch the top-eCPM ad ID.

Find all ads that fit
the location

targeting parameter,
and their eCPMs.
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if not targeted_ad:
return None, None

ad_id = targeted_ad[0]
record_targeting_result(conn, target_id, ad_id, words)

return target_id, ad_id

In this first version, we hide away the details of exactly how we’re matching based on

location and adding bonuses based on terms so that we can understand the general

flow. The only part I didn’t mention earlier is that we’ll also generate a target ID, which

is an ID that represents this particular execution of the ad targeting. This ID will allow

us to track clicks later, helping us learn about which parts of the ad targeting may have

contributed to the overall total clicks.

 As mentioned earlier, in order to match based on location, we’ll perform a SET

union over the locations (city, state, country) that the viewer is coming from. While

we’re here, we’ll also calculate the base eCPM of these ads without any bonuses

applied. The code for performing this operation is shown next.

def match_location(pipe, locations):
required = ['req:' + loc for loc in locations]
matched_ads = union(pipe, required, ttl=300, _execute=False)
return matched_ads, zintersect(pipe,

{matched_ads: 0, 'ad:value:': 1}, _execute=False)

This code listing does exactly what I said it would do: it finds ads that match the loca-

tion of the viewer, and it calculates the eCPM of all of those ads without any bonuses

based on page content applied. The only thing that may be surprising about this list-

ing is our passing of the funny _execute keyword argument to the zintersect()

function, which delays the actual execution of calculating the eCPM of the ad until

later. The purpose of waiting until later is to help minimize the number of round trips

between our client and Redis.

CALCULATING TARGETING BONUSES

The interesting part of targeting isn’t the location matching; it’s calculating the

bonuses. We’re trying to discover the amount to add to an ad’s eCPM, based on words

in the page content that matched words in the ad. We’ll assume that we’ve precalculated

a bonus for each word in each ad (as part of the learning phase), stored in ZSETs for each

word, with members being ad IDs and scores being what should be added to the eCPM.

 These word-based, per-ad eCPM bonuses have values such that the average eCPM of

the ad, when shown on a page with that word, is the eCPM bonus from the word plus

the known average CPM for the ad. Unfortunately, when more than one word in an ad

Listing 7.12 A helper function for targeting ads based on location

If there were no ads that matched the 
location targeting, return nothing.

Record the results of
our targeting efforts

as part of our
learning process.

Return the target ID and 
the ad ID to the caller.

Calculate the SET key
names for all of the
provided locations.

Calculate the SET
of matched ads

that are valid for
this location.

Return the matched ads SET ID, as well
as the ID of the ZSET that includes the

base eCPM of all of the matched ads.
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matches the content of the page, adding all of the eCPM bonuses gives us a total eCPM

bonus that probably isn’t close to reality. 

 We have eCPM bonuses based on word matching for each word that are based on

single word matching page content alone, or with any one or a number of other words

in the ad. What we really want to find is the weighted average of the eCPMs, where the

weight of each word is the number of times the word matched the page content.

Unfortunately, we can’t perform the weighted average calculation with Redis ZSETs,

because we can’t divide one ZSET by another.

 Numerically speaking, the weighted average lies between the geometric average

and the arithmetic average, both of which would be reasonable estimates of the com-

bined eCPM. But we can’t calculate either of those averages when the count of match-

ing words varies. The best estimate of the ad’s true eCPM is to find the maximum and

minimum bonuses, calculate the average of those two, and use that as the bonus for

multiple matching words.

BEING MATHEMATICALLY RIGOROUS Mathematically speaking, our method of
averaging the maximum and minimum word bonuses to determine an overall
bonus isn’t rigorous. The true mathematical expectation of the eCPM with a
collection of matched words is different than what we calculated. We chose to
use this mathematically nonrigorous method because it gets us to a reason-
able answer (the weighted average of the words is between the minimum and
maximum), with relatively little work. If you choose to use this bonus method
along with our later learning methods, remember that there are better ways
to target ads and to learn from user behavior. I chose this method because it’s
easy to write, easy to learn, and easy to improve. 

We can calculate the maximum and minimum bonuses by using ZUNIONSTORE with the

MAX and MIN aggregates. And we can calculate their average by using them as part of a

ZUNIONSTORE operation with an aggregate of SUM, and their weights each being .5. Our

function for combining bonus word eCPMs with the base eCPM of the ad can be seen

in the next listing.

def finish_scoring(pipe, matched, base, content):
bonus_ecpm = {}
words = tokenize(content)
for word in words:

word_bonus = zintersect(
pipe, {matched: 0, word: 1}, _execute=False)

bonus_ecpm[word_bonus] = 1

if bonus_ecpm:
minimum = zunion(

pipe, bonus_ecpm, aggregate='MIN', _execute=False)
maximum = zunion(

pipe, bonus_ecpm, aggregate='MAX', _execute=False)

Listing 7.13 Calculating the eCPM of ads including content match bonuses

Tokenize the content for 
matching against ads.

Find the ads that are location 
targeted that also have one 
of the words in the content.

Find the minimum 
and maximum eCPM 
bonuses for each ad.
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return words, zunion(
pipe, {base:1, minimum:.5, maximum:.5}, _execute=False)

return words, base

As before, we continue to pass the _execute parameter to delay execution of our vari-

ous ZINTERSTORE and ZUNIONSTORE operations until after the function returns to the

calling target_ads(). One thing that may be confusing is our use of ZINTERSTORE

between the location-targeted ads and the bonuses, followed by a final ZUNIONSTORE

call. Though we could perform fewer calls by performing a ZUNIONSTORE over all of

our bonus ZSETs, followed by a single ZINTERSTORE call at the end (to match loca-

tion), the majority of ad-targeting calls will perform better by performing many

smaller intersections followed by a union.

 The difference between the two methods is illustrated in figure 7.5, which shows

that essentially all of the data in all of the relevant word bonus ZSETs is examined

when we union and then intersect. Compare that with figure 7.6, which shows that

when we intersect and then union, Redis will examine far less data to produce the

same result.    

 After we have an ad targeted, we’re given a target_id and an ad_id. These IDs

would then be used to construct an ad response that includes both pieces of informa-

tion, in addition to fetching the ad copy, formatting the result, and returning the

result to the web page or client that requested it. 

Compute the total of the base, plus half of the minimum
eCPM bonus, plus half of the maximum eCPM bonus.If there were no words in the 

content to match against, 
return just the known eCPM.

Data examined

Step 1

Union all of the word bonus

ZSETs.

Step 2

Intersect the result with 

the location-matched ads.

Word bonuses A

Word bonuses B

Word bonuses C

Word bonuses D

Figure 7.5 The data that’s examined during a union-then-intersect calculation of ad-targeting 

bonuses includes all ads in the relevant word bonus ZSETs, even ads that don’t meet the location 

matching requirements.
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The only part of our target_ads() function from listing 7.11 that we haven’t defined

is record_targeting_result(), which we’ll now examine as part of the learning

phase of ad targeting.

7.3.4 Learning from user behavior

As ads are shown to users, we have the opportunity to gain insight into what can cause

someone to click on an ad. In the last section, we talked about using words as bonuses

Data examined

Step 1

Intersect the location-matched

ads with each individual

word bonus ZSETs.

Step 2

Union the results.

Word bonuses A

Word bonuses B

Word bonuses C

Word bonuses D

Figure 7.6 The data that’s examined during an intersect-then-union calculation of ad-targeting bo-

nuses only includes those ads that previously matched, which significantly cuts down on the amount 

of data that Redis will process.

Exercise: No matching content

If you pay careful attention to the flow of target_ads() through finish_scoring()
in listings 7.11 and 7.13, you’ll notice that we don’t make any effort to deal with the

case where an ad has zero matched words in the content. In that situation, the

eCPM produced will actually be the average eCPM over all calls that returned that ad

itself. It’s not difficult to see that this may result in an ad being shown that

shouldn’t. Can you alter finish_scoring() to take into consideration ads that

don’t match any content?
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to ads that have already matched the required location. In this section, we’ll talk about

how we can record information about those words and the ads that were targeted to

discover basic patterns about user behavior in order to develop per-word, per-ad-

targeting bonuses.

 A crucial question you should be asking yourself is “Why are we using words in the

web page content to try to find better ads?” The simple reason is that ad placement is

all about context. If a web page has content related to the safety of children’s toys, show-

ing an ad for a sports car probably won’t do well. By matching words in the ad with

words in the web page content, we get a form of context matching quickly and easily.

 One thing to remember during this discussion is that we aren’t trying to be perfect.

We aren’t trying to solve the ad-targeting and learning problem completely; we’re trying

to build something that will work “pretty well” with simple and straightforward methods.

As such, our note about the fact that this isn’t mathematically rigorous still applies.

RECORDING VIEWS

The first step in our learning process is recording the results of our ad targeting with

the record_targeting_result() function that we called earlier from listing 7.11.

Overall, we’ll record some information about the ad-targeting results, which we’ll

later use to help us calculate click-through rates, action rates, and ultimately eCPM

bonuses for each word. We’ll record the following:

■ Which words were targeted with the given ad

■ The total number of times that a given ad has been targeted

■ The total number of times that a word in the ad was part of the bonus calculation

To record this information, we’ll store a SET of the words that were targeted and keep

counts of the number of times that the ad and words were seen as part of a single ZSET

per ad. Our code for recording this information is shown next.

def record_targeting_result(conn, target_id, ad_id, words):
pipeline = conn.pipeline(True)

terms = conn.smembers('terms:' + ad_id)
matched = list(words & terms)
if matched:

matched_key = 'terms:matched:%s' % target_id
pipeline.sadd(matched_key, *matched)
pipeline.expire(matched_key, 900)

type = conn.hget('type:', ad_id)
pipeline.incr('type:%s:views:' % type)
for word in matched:

pipeline.zincrby('views:%s' % ad_id, word)
pipeline.zincrby('views:%s' % ad_id, '')

if not pipeline.execute()[-1] % 100:
update_cpms(conn, ad_id)

Listing 7.14 A method for recording the result after we’ve targeted an ad

Find the words in 
the content that 
matched with the 
words in the ad.

If any words in the ad matched the 
content, record that information 
and keep it for 15 minutes.

Keep a per-type count of the number 
of views that each ad received.

Record view information 
for each word in the ad, 
as well as the ad itself.

Every
100th time
that the ad
was shown,
update the
ad’s eCPM.
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That function does everything we said it would do, and you’ll notice a call to

update_cpms(). This update_cpms() function is called every 100th time the ad is

returned from a call. This function really is the core of the learning phase—it writes

back to our per-word, per-ad-targeting bonus ZSETs.

 We’ll get to updating the eCPM of an ad in a moment, but first, let’s see what hap-

pens when an ad is clicked.

RECORDING CLICKS AND ACTIONS

As we record views, we’re recording half of the data for calculating CTRs. The other

half of the data that we need to record is information about the clicks themselves, or

in the case of a cost per action ad, the action. Numerically, this is because our eCPM

calculations are based on this formula: (value of a click or action) x (clicks or actions)

/ views. Without recording clicks and actions, the numerator of our value calculation

is 0, so we can’t discover anything useful.

 When someone actually clicks on an ad, prior to redirecting them to their final

destination, we’ll record the click in the total aggregates for the type of ad, as well as

whether the ad got a click and which words matched the clicked ad. We’ll record the

same information for actions. Our function for recording clicks is shown next.

def record_click(conn, target_id, ad_id, action=False):
pipeline = conn.pipeline(True)
click_key = 'clicks:%s'%ad_id

match_key = 'terms:matched:%s'%target_id

type = conn.hget('type:', ad_id)
if type == 'cpa':

pipeline.expire(match_key, 900)
if action:

click_key = 'actions:%s' % ad_id

if action and type == 'cpa':
pipeline.incr('type:cpa:actions:' % type)
pipeline.incr('type:%s:clicks:' % type)

matched = list(conn.smembers(match_key))
matched.append('')
for word in matched:

pipeline.zincrby(click_key, word)
pipeline.execute()

update_cpms(conn, ad_id)

You’ll notice there are a few parts of the recording function that we didn’t mention

earlier. In particular, when we receive a click or an action for a CPA ad, we’ll refresh

the expiration of the words that were a part of the ad-targeting call. This will let an

action following a click count up to 15 minutes after the initial click-through to the

destination site happened.

Listing 7.15 A method for recording clicks on an ad

If the ad was a 
CPA ad, refresh 
the expiration 
time of the 
matched terms if 
it’s still available.

Record 
actions 
instead 
of clicks.

Keep a
global count

of clicks/
actions for

ads based on
the ad type.

Record clicks (or actions) 
for the ad and for all words 
that had been targeted in 
the ad.

Update the eCPM for all words 
that were seen in the ad.
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 Another change is that we’ll optionally be recording actions in this call for CPA

ads; we’ll assume that this function is called with the action parameter set to True in

that case.

 And finally, we’ll call the update_cpms() function for every click/action because

they should happen roughly once every 100–2000 views (or more), so each individual

click/action is important relative to a view.

To complete our learning process, we only need to define our final update_cpms()

function.

UPDATING ECPMS

We’ve been talking about and using the update_cpms() function for a couple of sec-

tions now, and hopefully you already have an idea of what happens inside of it.

Regardless, we’ll walk through the different parts of how we’ll update our per-word,

per-ad bonus eCPMs, as well as how we’ll update our per-ad eCPMs.

 The first part to updating our eCPMs is to know the click-through rate of an ad by

itself. Because we’ve recorded both the clicks and views for each ad overall, we have

the click-through rate by pulling both of those scores from the relevant ZSETs. By com-

bining that click-through rate with the ad’s actual value, which we fetch from the ad’s

base value ZSET, we can calculate the eCPM of the ad over all clicks and views.

 The second part to updating our eCPMs is to know the CTR of words that were

matched in the ad itself. Again, because we recorded all views and clicks involving the

ad, we have that information. And because we have the ad’s base value, we can calcu-

late the eCPM. When we have the word’s eCPM, we can subtract the ad’s eCPM from it

to determine the bonus that the word matching contributes. This difference is what’s

added to the per-word, per-ad bonus ZSETs.

 The same calculation is performed for actions as was performed for clicks, the only

difference being that we use the action count ZSETs instead of the click count ZSETs.

Our method for updating eCPMs for clicks and actions can be seen in the next listing.

def update_cpms(conn, ad_id):
pipeline = conn.pipeline(True)

Listing 7.16 A method for updating eCPMs and per-word eCPM bonuses for ads

Exercise: Changing the way we count clicks and actions

In listing 7.15, we define a record_click() function to add 1 to every word that

was targeted as part of an ad that was clicked on. Can you think of a different num-

ber to add to a word that may make more sense? Hint: You may want to consider

this number to be related to the count of matched words. Can you update

finish_scoring() and record_click() to take into consideration this new click/

action value? 



179Ad targeting

pipeline.hget('type:', ad_id)
pipeline.zscore('ad:base_value:', ad_id)
pipeline.smembers('terms:' + ad_id)
type, base_value, words = pipeline.execute()

which = 'clicks'
if type == 'cpa':

which = 'actions'

pipeline.get('type:%s:views:' % type)
pipeline.get('type:%s:%s' % (type, which))
type_views, type_clicks = pipeline.execute()
AVERAGE_PER_1K[type] = (

1000. * int(type_clicks or '1') / int(type_views or '1'))

if type == 'cpm':
return

view_key = 'views:%s' % ad_id
click_key = '%s:%s' % (which, ad_id)

to_ecpm = TO_ECPM[type]

pipeline.zscore(view_key, '')
pipeline.zscore(click_key, '')
ad_views, ad_clicks = pipeline.execute()
if (ad_clicks or 0) < 1:

ad_ecpm = conn.zscore('idx:ad:value:', ad_id)
else:

ad_ecpm = to_ecpm(ad_views or 1, ad_clicks or 0, base_value)
pipeline.zadd('idx:ad:value:', ad_id, ad_ecpm)

for word in words:
pipeline.zscore(view_key, word)            
pipeline.zscore(click_key, word)
views, clicks = pipeline.execute()[-2:]

if (clicks or 0) < 1:                  
continue

word_ecpm = to_ecpm(views or 1, clicks or 0, base_value)
bonus = word_ecpm - ad_ecpm
pipeline.zadd('idx:' + word, ad_id, bonus)

pipeline.execute()

Fetch the type and value of the ad, 
as well as all of the words in the ad.

Determine whether the eCPM 
of the ad should be based on 
clicks or actions.

Fetch the current number of 
views and clicks/actions for 
the given ad type.

Write back
to our global

dictionary
the click-

through rate
or action rate

for the ad.

If we’re processing a CPM ad, then 
we don’t update any of the eCPMs; 
they’re already updated.

Fetch the per-ad view 
and click/action scores.

Calculate
the ad’s

eCPM and
update the
ad’s value.

Use the
existing eCPM

if the ad hasn’t
received any

clicks yet.

Fetch the view and click/action 
scores for the word.

Don’t update eCPMs when the 
ad hasn’t received any clicks.Calculate the

word’s eCPM.

Calculate the word’s bonus.

Write the word’s bonus back 
to the per-word, per-ad ZSET.

Exercise: Optimizing eCPM calculations

In listing 7.16, we perform a number of round trips to Redis that’s relative to the

number of words that were targeted. More specifically, we perform the number of

words plus three round trips. In most cases, this should be relatively small (consid-

ering that most ads won’t have a lot of content or related keywords). But even so,

some of these round trips can be avoided. Can you update the update_cpms() func-

tion to perform a total of only three round trips?
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In our update_cpms() function, we updated the global per-type click-through and

action rates, the per-ad eCPMs, and the per-word, per-ad bonus eCPMs.

 With the learning portion of our ad-targeting process now complete, we’ve now

built a complete ad-targeting engine from scratch. This engine will learn over time,

adapt the ads it returns over time, and more. We can make many possible additions or

changes to this engine to make it perform even better, some of which are mentioned

in the exercises, and several of which are listed next. These are just starting points for

building with Redis:

■ Over time, the total number of clicks and views for each ad will stabilize around

a particular ratio, and subsequent clicks and views won’t alter that ratio signifi-

cantly. The real CTR of an ad will vary based on time of day, day of week, and

more. Consider degrading an ad’s click/action and view count on a regular

basis, as we did in section 2.5 with our rescale_viewed() call. This same con-

cept applies to our global expected CTRs.

■ To extend the learning ability beyond just a single count, consider keeping

counts over the last day, week, and other time slices. Also consider ways of

weighing those time slices differently, depending on their age. Can you think of

a method to learn proper weights of different ages of counts? 

■ All of the big ad networks use second-price auctions in order to charge for a

given ad placement. More specifically, rather than charging a fixed rate per

click, per thousand views, or per action, you charge a rate that’s relative to the

second-highest value ad that was targeted.

■ In most ad networks, there’ll be a set of ads that rotate through the highest-value

slot for a given set of keywords as each of them runs out of money. These ads are

there because their high value and CTR earn the top slot. This means that new

ads that don’t have sufficiently high values will never be seen, so the network will

never discover them. Rather than picking the highest-eCPM ads 100% of the

time, fetch the top 100 ads and choose ads based on the relative values of their

eCPMs anywhere from 10%-50% of the time (depending on how you want to bal-

ance learning true eCPMs and earning the most money). 

■ When ads are initially placed into the system, we know little about what to

expect in terms of eCPM. We addressed this briefly by using the average CTR of

all ads of the same type, but this is moot the moment a single click comes in.

Another method mixes the average CTR for a given ad type, along with the seen

CTR for the ad based on the number of views that the ad has seen. A simple

inverse linear or inverse sigmoid relationship between the two can be used until

the ad has had sufficient views (2,000–5,000 views is typically enough to deter-

mine a reliable CTR).

■ In addition to mixing the average CTR for a given ad type with the CTR of the

ad during the learning process, ads that are in the process of reaching an

initial 2,000–5,000 views can have their CTR/eCPM artificially boosted. This

can ensure  sufficient traffic for the system to learn the ads’ actual eCPMs.
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■ Our method of learning per-word bonuses is similar to Bayesian statistics. We

could use real Bayesian statistics, neural networks, association rule learning,

clustering, or other techniques to calculate the bonuses. These other methods

may offer more mathematically rigorous results, which may result in better

CTRs, and ultimately more money earned.

■ In our code listings, we recorded views, clicks, and actions as part of the calls

that return the ads or handle any sort of redirection. These operations may take

a long time to execute, so should be handled after the calls have returned by

being executed as an external task, as we discussed in section 6.4.

As you can see from our list, many additions and improvements can and should be

made to this platform. But as an initial pass, what we’ve provided can get you started

in learning about and building the internet’s next-generation ad-targeting platform.

 Now that you’ve learned about how to build an ad-targeting platform, let’s keep

going to see how to use search tools to find jobs that candidates are qualified for as

part of a job-search tool.

7.4 Job search

If you’re anything like me, at some point in your past you’ve spent time looking

through classifieds and online job-search pages, or have used a recruiting agency to

try to find work. One of the first things that’s checked (after location) is required

experience and/or skills.

 In this section, we’ll talk about using Redis SETs and ZSETs to find jobs for which a

candidate has all of the required skills. When you’re finished reading this section, you’ll

understand another way of thinking about your problem that fits the Redis data model.

 As a way of approaching this problem, we’ll say that Fake Garage Startup is branch-

ing out in their offerings, trying to pull their individual and group chat customers into

using their system to find work. Initially, they’re only offering the ability for users to

search for positions in which they’re qualified.

7.4.1 Approaching the problem one job at a time

At first glance, we might consider a straightforward solution to this problem. Start

with every job having its own SET, with members being the skills that the job requires.

To check whether a candidate has all of the requirements for a given job, we’d add the

candidate’s skills to a SET and then perform the SDIFF of the job and the candidate’s

skills. If there are no skills in the resulting SDIFF, then the user has all of the qualifica-

tions necessary to complete the job. The code for adding a job and checking whether

a given set of skills is sufficient for that job looks like this next listing.

def add_job(conn, job_id, required_skills):
conn.sadd('job:' + job_id, *required_skills)

def is_qualified(conn, job_id, candidate_skills):

Listing 7.17 A potential solution for finding jobs when a candidate meets all requirements

Add all required job 
skills to the job’s SET.



182 CHAPTER 7 Search-based applications

temp = str(uuid.uuid4())
pipeline = conn.pipeline(True)
pipeline.sadd(temp, *candidate_skills)
pipeline.expire(temp, 5)
pipeline.sdiff('job:' + job_id, temp)
return not pipeline.execute()[-1]

Explaining that again, we’re checking whether a job requires any skills that the candi-

date doesn’t have. This solution is okay, but it suffers from the fact that to find all of

the jobs for a given candidate, we must check each job individually. This won’t scale,

but there are solutions that will. 

7.4.2 Approaching the problem like search

In section 7.3.3, we used SETs and ZSETs as holders for additive bonuses for optional

targeting parameters. If we’re careful, we can do the same thing for groups of

required targeting parameters.

 Rather than talk about jobs with skills, we need to flip the problem around like we

did with the other search problems described in this chapter. We start with one SET

per skill, which stores all of the jobs that require that skill. In a required skills ZSET, we

store the total number of skills that a job requires. The code that sets up our index

looks like the next listing.

def index_job(conn, job_id, skills):
pipeline = conn.pipeline(True)
for skill in skills:

pipeline.sadd('idx:skill:' + skill, job_id)
pipeline.zadd('idx:jobs:req', job_id, len(set(skills)))
pipeline.execute()

This indexing function should remind you of the text indexing function we used in

section 7.1. The only major difference is that we’re providing index_job() with preto-

kenized skills, and we’re adding a member to a ZSET that keeps a record of the num-

ber of skills that each job requires.

 To perform a search for jobs that a candidate has all of the skills for, we need to

approach the search like we did with the bonuses to ad targeting in section 7.3.3.

More specifically, we’ll perform a ZUNIONSTORE operation over skill SETs to calculate a

total score for each job. This score represents how many skills the candidate has for

each of the jobs.

 Because we have a ZSET with the total number of skills required, we can then per-

form a ZINTERSTORE operation between the candidate’s ZSET and the required skills

ZSET with weights -1 and 1, respectively. Any job ID with a score equal to 0 in that final

result ZSET is a job that the candidate has all of the required skills for. The code for

implementing the search operation is shown in the following listing.

Listing 7.18 A function for indexing jobs based on the required skills

Add the candidate’s skills to a 
temporary SET with an expiration time.

Return True if there are no skills that
the candidate doesn’t have.

Calculate the SET of skills that 
the job requires that the 
candidate doesn’t have.

Add the job ID to all
appropriate skill SETs.

Add the total 
required skill 
count to the 
required 
skills ZSET.
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def find_jobs(conn, candidate_skills):
skills = {}
for skill in set(candidate_skills):

skills['skill:' + skill] = 1

job_scores = zunion(conn, skills)
final_result = zintersect(    

conn, {job_scores:-1, 'jobs:req':1})

return conn.zrangebyscore('idx:' + final_result, 0, 0)

Again, we first find the scores for each job. After we have the scores for each job, we

subtract each job score from the total score necessary to match. In that final result,

any job with a ZSET score of 0 is a job that the candidate has all of the skills for.

 Depending on the number of jobs and searches that are being performed, our job-

search system may or may not perform as fast as we need it to, especially with large

numbers of jobs or searches. But if we apply sharding techniques that we’ll discuss in

chapter 9, we can break the large calculations into smaller pieces and calculate partial

results bit by bit. Alternatively, if we first find the SET of jobs in a location to search for

jobs, we could perform the same kind of optimization that we performed with ad tar-

geting in section 7.3.3, which could greatly improve job-search performance. 

7.5 Summary

In this chapter, you’ve learned how to perform basic searching using SET operations,

and then ordered the results based on either values in HASHes, or potentially compos-

ite values with ZSETs. You continued through the steps necessary to build and update

information in an ad-targeting network, and you finished with job searching that

turned the idea of scoring search results on its head.

Listing 7.19 Find all jobs that a candidate is qualified for

Set up the dictionary 
for scoring the jobs.

Calculate
the scores

for each
of the
jobs.

Calculate how many more skills the 
job requires than the candidate has.

Return the jobs 
that the candidate 
has the skills for.

Exercise: Levels of experience

A natural extension to the simple required skills listing is an understanding that skill

levels vary from beginner to intermediate, to expert, and beyond. Can you come up

with a method using additional SETs to offer the ability, for example, for someone

who has as intermediate level in a skill to find jobs that require either beginner or

intermediate-level candidates? 

Exercise: Years of experience

Levels of expertise can be useful, but another way to look at the amount of experi-

ence someone has is the number of years they’ve used it. Can you build an alternate

version that supports handling arbitrary numbers of years of experience?
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 Though the problems introduced in this chapter may have been new, one thing

that you should’ve gotten used to by now is Redis’s ability to help you solve an unex-

pectedly wide variety of problems. With the data modeling options available in other

databases, you really only have one tool to work with. But with Redis, the five data

structures and pub/sub are an entire toolbox for you to work with.

 In the next chapter, we’ll continue to use Redis HASHes and ZSETs as building

blocks in our construction of a fully functional Twitter clone. 
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Building a
 simple social network

In this chapter, we’ll cover the data structures and concepts necessary to build a sys-

tem that offers almost all of the back-end-level functionality of Twitter. This chapter

isn’t intended to allow you to build a site that scales to the extent of Twitter, but the

methods that we cover should give you a much better understanding of how social

networking sites can be built from simple structures and data.

 We’ll begin this chapter by talking about user and status objects, which are the

basis of almost all of the information in our application. From there, we’ll discuss

the home timeline and followers/following lists, which are sequences of status mes-

sages or users. Continuing on, we’ll work through posting status messages, follow-

ing/unfollowing someone, and deleting posts, which involves manipulating those

This chapter covers

■ Users and statuses

■ Home timeline

■ Followers/following lists

■ Posting or deleting a status update

■ Streaming API
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lists. Finally, we’ll build out a fully functioning streaming API with web server to

encourage users of the social network to use and play with the data.

 In the last chapter, we spent much of our time building an ad-targeting engine that

combined user-entered data (the ads and their prices) with click behavior data in order

to optimize ad earnings. The ad-targeting engine was query-intensive, in that every

request could cause a lot of computation. In this Twitter-like platform, we’ll do our best

to perform as little work as possible when someone is interested in viewing a page.

 To get started, let’s build the basic structures that will hold much of the data that

our users are interested in.

8.1 Users and statuses

As users interact with Twitter, two types of objects hold the most important informa-

tion: users and status messages. User objects hold basic identity information, as well as

aggregate data about the number of followers, number of status messages posted, and

more. The user objects are important because they’re the starting point for every

other kind of data that’s available or interesting. Status messages are also important

because they’re how individuals express themselves and interact with each other, and

are the true content of social networks.

 In this section, we’ll talk about what data will be stored in the user and status mes-

sage objects and how we’ll store them. We’ll also look at a function to create a new

user.

 Our first step is to define and create the structure for a user.

8.1.1 User information

In a variety of online services and social networks, user objects can be the basic building

blocks from which everything else is derived. Our Twitter work-alike is no different.

 We’ll store user information inside of Redis as a HASH, similar to how we stored articles

in chapter 1. Data that we’ll store includes the username of the user, how many followers

they have, how many people they’re following, how many status messages they’ve posted,

their sign-up date, and any other meta-informa-

tion we decide to store down the line. A sample

HASH that includes this information for a user

with the username of dr_josiah (my Twitter user-

name) is shown in figure 8.1.

 From this figure, you can see that I have a

modest number of followers, along with other

information. When a new user signs up, we

only need to create an object with the follow-

ing, followers, and post count set to zero, a new

timestamp for the sign-up time, and the rele-

vant username. The function to perform this

initial creation is shown next.

user:139960061

login dr_josiah

id 139960061

name Josiah Carlson

followers 176

following 79

posts 386

signup 1272948506

hash

Figure 8.1 Example user information 

stored in a HASH
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def create_user(conn, login, name):
llogin = login.lower()
lock = acquire_lock_with_timeout(conn, 'user:' + llogin, 1)
if not lock:

return None

if conn.hget('users:', llogin):
return None

id = conn.incr('user:id:')
pipeline = conn.pipeline(True)
pipeline.hset('users:', llogin, id)
pipeline.hmset('user:%s'%id, {

'login': login,
'id': id,
'name': name,
'followers': 0,
'following': 0,
'posts': 0,
'signup': time.time(),

})
pipeline.execute()
release_lock(conn, 'user:' + llogin, lock)
return id

In our function, we perform the expected setting of the initial user information in the

user’s HASH, but we also acquire a lock around the user’s login name. This lock is nec-

essary: it guarantees that we won’t have two requests trying to create a user with the

same login at the same time. After locking, we verify that the login name hasn’t been

taken by another user. If the name hasn’t been taken, we generate a new unique ID for

the user, add the login name to the mapping of login names to user IDs, and then cre-

ate the user’s HASH.

SENSITIVE USER INFORMATION Because the user HASH will be fetched countless
times for rendering a template, or for returning directly as a response to an
API request, we don’t store sensitive user information in this HASH. For now,
we’ll assume that hashed passwords, email addresses, and more are stored at
other keys, or in a different database entirely.

We’ve finished creating the user and setting all of the necessary meta-information

about them. From here, the next step in building our Twitter work-alike is the status

message itself.

8.1.2 Status messages

As we mentioned earlier, whereas user profiles store information about an individual,

the ideas that people are trying to express are stored in status messages. As was the

case with user information, we’ll store status message information inside a HASH.

Listing 8.1 How to create a new user profile HASH

If we couldn’t get the lock, 
then someone else already 
has the same login name.

Try to acquire the lock for the
lowercased version of the

login name. This function is
defined in chapter 6.

We also store a
HASH of lowercased
login names to user

IDs, so if there’s
already a login

name that maps to
an ID, we know and

won’t give it to a
second person.

Add the
lowercased login

name to the
HASH that maps

from login names
to user IDs.

Return
the ID of
the user.

Each user is given a 
unique ID, generated 
by incrementing a 
counter.

Add the user information 
to the user’s HASH.

Release the 
lock over the 
login name.
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 In addition to the message itself, we’ll

store when the status message was

posted, the user ID and login of the user

who posted it (so that if we have a status

object, we don’t need to fetch the user

object of the poster to discover their

login name), and any additional infor-

mation that should be stored about the

status message. Figure 8.2 shows an

example status message.

 And that’s everything necessary for a

basic status message. The code to create

such a status message can be seen in the next listing.

def create_status(conn, uid, message, **data):
pipeline = conn.pipeline(True)
pipeline.hget('user:%s'%uid, 'login')
pipeline.incr('status:id:')
login, id = pipeline.execute()

if not login:
return None

data.update({
'message': message,
'posted': time.time(),
'id': id,
'uid': uid,
'login': login,

})
pipeline.hmset('status:%s'%id, data)
pipeline.hincrby('user:%s'%uid, 'posts')
pipeline.execute()
return id

There isn’t anything surprising going on in the status creation function. The function

fetches the login name of the user, gets a new ID for the status message, and then com-

bines everything together and stores it as a HASH.

 We’ll talk about making the status message visible to followers in section 8.4, so sit

tight for now, as we now examine the most commonly used view into lists of status mes-

sages: a user’s home timeline.

8.2 Home timeline

When people visit Twitter after logging in, the first view that they see is what’s referred

to as their home timeline. This is a list of status messages that have been posted by the

user and all of the people they’re following. As the primary entry point to what users

see, this data should be as easy to retrieve as possible.

Listing 8.2 How to create a status message HASH

Get the user’s 
login name from 
their user ID.

Create a
new ID for
the status
message.

Record the fact
that a status
message has
been posted.

Verify that we have a 
proper user account 
before posting.

Prepare and set 
the data for the 
status message.

Return the ID of 
the newly created 
status message.

status:223499221154799616

message My pleasure. I was amazed that...

posted 1342908431

id 223499221154799616

uid 139960061

login dr_josiah

hash

Figure 8.2 Example status message stored in a 

HASH
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 In this section, we’ll talk about the data to be stored in the home timeline and how

to fetch information to display the home timeline quickly. We’ll also talk about other

important status message timelines.

 As mentioned earlier in this chapter, we want to be able to fetch all of the data

required for a given view as quickly as possible. For the home timeline, which will store

the list of status messages that have been

posted by the people that the current user is

following, we’ll use a ZSET to store status IDs

as ZSET members, with the timestamp of

when the message was posted being used as

the score. Figure 8.3 shows an example

home timeline.

 Because the home timeline is just refer-

encing status messages—it doesn’t contain

the status messages themselves—our function

to fetch the most recently posted status mes-

sages must also fetch the status message data.

The next listing shows the code to fetch a page

of messages from the home timeline.

def get_status_messages(conn, uid, timeline='home:', page=1, count=30):
statuses = conn.zrevrange(

'%s%s'%(timeline, uid), (page-1)*count, page*count-1)

pipeline = conn.pipeline(True)
for id in statuses:

pipeline.hgetall('status:%s'%id)

return filter(None, pipeline.execute())

That function will fetch status messages in reverse chronological order from the pro-

vided timeline, which defaults to the home timeline.

 A second important timeline is the timeline of posts that a user has posted. Where

the home timeline includes posts from other people, the user’s timeline will include

only those posts from the user. These timelines can be seen when visiting a user’s pro-

file, and are the primary entry point for finding someone interesting. To fetch a page

of statuses from a given user, we can call the same get_messages() function, but we’ll

pass profile: as the timeline argument in our call.

 Now that a user can fetch the home timeline, we should discuss how to manage the

list of users that someone is following, and the list of users that are following them.

Listing 8.3 A function to fetch a page of recent status messages from a timeline

We’ll take an
optional “timeline”

argument, as well as
page size and status

message counts.

Fetch
the most

recent
status

IDs in the
timeline.

Filter will remove any “missing”
status messages that had been

previously deleted.

Actually fetch the 
status messages 
themselves.

home:139960061

...             ...

227138379358277633     1342988984

227140001668935680     1342989371

227143088878014464     1342990107

zset

Figure 8.3 When someone visits their home 

timeline on a site like Twitter, they see the 

most recently posted messages that people 

they follow have written. This information is 

stored as a ZSET of status ID/timestamp 

pairs. Timestamp information provides the sort 

order, and the status ID shows us what infor-

mation to pull in a second step.
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8.3 Followers/following lists

One of the primary services of a platform like Twitter is for users to share their

thoughts, ideas, and dreams with others. Following someone means that you’re inter-

ested in reading about what they’re saying, with the hope that others will want to fol-

low you.

 In this section, we’ll discuss how to manage the lists of users that each user follows,

and the users that follow them. We’ll also discuss what happens to a user’s home time-

line when they start or stop following someone. 

 When we looked at the home and profile timelines in the last section, we stored sta-

tus IDs and timestamps in a ZSET. To keep a list of followers and a list of those people

that a user is following, we’ll also store user IDs and timestamps in ZSETs as well, with

members being user IDs, and scores being the timestamp of when the user was followed.

Figure 8.4 shows an example of the followers and those that a user is following.

 As we start or stop following a user, there are following and followers ZSETs that

need to be updated, as well as counts in the two user profile HASHes. After those ZSETs

and HASHes have been updated, we then need to copy the newly followed user’s status

message IDs from their profile timeline into our home timeline. This is to ensure that

after we’ve followed someone, we get to see their status messages immediately. The

next listing shows the code for following someone.

HOME_TIMELINE_SIZE = 1000
def follow_user(conn, uid, other_uid):

fkey1 = 'following:%s'%uid
fkey2 = 'followers:%s'%other_uid

if conn.zscore(fkey1, other_uid):
return None

now = time.time()

pipeline = conn.pipeline(True)
pipeline.zadd(fkey1, other_uid, now)
pipeline.zadd(fkey2, uid, now)

Listing 8.4 Update the following user’s home timeline

followers:139960061

...          ...

558960079     1342915440

14502701       1342917840

14314352       1342957620

zset following:139960061

...        ...

18697326      1339286400

22867618      1339286400

558960079    1342742400

zset

Figure 8.4 To know who’s following a user, we store user ID/timestamp pairs in a ZSET. The user 

IDs are the people who’re following that user, and the timestamp is when they started following the 

user. Similarly, the users that a user is following are stored as a ZSET of user ID/timestamp pairs 

of the user ID of the person being followed, and the timestamp of when the user followed them.

Cache the following and 
followers key names.

If the other_uid 
is already being 
followed, return.

Add the uids to the proper 
following and followers ZSETs.
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pipeline.zcard(fkey1)
pipeline.zcard(fkey2)
pipeline.zrevrange('profile:%s'%other_uid,

0, HOME_TIMELINE_SIZE-1, withscores=True)
following, followers, status_and_score = pipeline.execute()[-3:]

pipeline.hset('user:%s'%uid, 'following', following)
pipeline.hset('user:%s'%other_uid, 'followers', followers)
if status_and_score:

pipeline.zadd('home:%s'%uid, **dict(status_and_score))
pipeline.zremrangebyrank('home:%s'%uid, 0, -HOME_TIMELINE_SIZE-1)

pipeline.execute()
return True

CONVERTING A LIST OF TUPLES INTO A DICTIONARY As part of our follow_user()
function, we fetched a list of status message IDs along with their timestamp
scores. Because this is a sequence of pairs, we can pass them directly to the
dict() type, which will create a dictionary of keys and values, as passed.

This function proceeds in the way we described earlier: we add the appropriate user

IDs to the following and followers ZSETs, get the size of the following and followers

ZSETs, and fetch the recent status message IDs from the followed user’s profile time-

line. After we’ve fetched all of the data, we then update counts inside the user profile

HASHes, and update the following user’s home timeline.

 After following someone and reading their status messages for a while, we may get

to a point where we decide we don’t want to follow them anymore. To stop following

someone, we perform essentially the reverse operations of what we’ve discussed:

removing UIDs from followers and following lists, removing status messages, and again

updating the followers/following counts. The code to stop following someone is

shown in the following listing.

def unfollow_user(conn, uid, other_uid):
fkey1 = 'following:%s'%uid       
fkey2 = 'followers:%s'%other_uid

if not conn.zscore(fkey1, other_uid):
return None

pipeline = conn.pipeline(True)
pipeline.zrem(fkey1, other_uid)
pipeline.zrem(fkey2, uid)
pipeline.zcard(fkey1)
pipeline.zcard(fkey2)
pipeline.zrevrange('profile:%s'%other_uid,

0, HOME_TIMELINE_SIZE-1)
following, followers, statuses = pipeline.execute()[-3:]

Listing 8.5 A function to stop following a user

Find the size of
the following
and followers

ZSETs.

Update the
known size of
the following
and followers
ZSETs in each
user’s HASH.

Fetch the most recent 
HOME_TIMELINE_SIZE status 
messages from the newly 
followed user’s profile timeline.

Return that the user 
was correctly followed.

Update the home timeline of
the following user, keeping
only the most recent 1000

status messages.

Cache the following and 
followers key names.

If the other_uid
isn’t being

followed, return.

Remove the uids from 
the proper following 
and followers ZSETs.

Find the size of 
the following and 
followers ZSETs.Fetch the most recent

HOME_TIMELINE_SIZE status
messages from the user that

we stopped following.
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pipeline.hset('user:%s'%uid, 'following', following)
pipeline.hset('user:%s'%other_uid, 'followers', followers)
if statuses:

pipeline.zrem('home:%s'%uid, *statuses)

pipeline.execute()
return True

In that function, we updated the following and followers lists, updated the followers

and following counts, and updated the home timeline to remove status messages that

should no longer be there. As of now, that completes all of the steps necessary to start

and stop following a user.  

Now that we can start or stop following a user while keeping the home timeline

updated, it’s time to see what happens when someone posts a new status update.

8.4 Posting or deleting a status update

One of the most fundamental operations on a service like Twitter is posting status mes-

sages. People post to share their ideas, and people read because they’re interested in

what’s going on with others. Section 8.1.2 showed how to create a status message as a pre-

requisite for knowing the types of data that we’ll be storing, but didn’t show how to get

that status message into a profile timeline or the home timeline of the user’s followers.

Update the
known size of

the following and
followers ZSETs in
each user’s HASH.

Update the home 
timeline, removing 
any status messages 
from the previously 
followed user.

Return that the 
unfollow executed 
successfully.

Exercise: Refilling timelines

When someone stops following another user, some number of status messages will

be removed from the former follower’s home timeline. When this happens, we can

either say that it’s okay that fewer than the desired number of status messages are

in the timeline, or we can make an effort to add status messages from the other peo-

ple that the user is still following. Can you write a function that will add status mes-

sages to the user’s timeline to keep it full? Hint: You may want to use tasks like we

defined in section 6.4 to reduce the time it takes to return from an unfollow call. 

Exercise: Lists of users

In addition to the list of users that someone follows, Twitter also supports the abil-

ity to create additional named lists of users that include the timeline of posts for

just those users. Can you update follow_user() and unfollow_user() to take

an optional “list ID” for storing this new information, create functions to create a

custom list, and fetch the custom list? Hint: Think of it like a different type of fol-

lower. Bonus points: can you also update your function from the “Refilling time-

lines” exercise?
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 In this section, we’ll discuss what happens to a status message when it’s posted so it

can find its way into the home timelines of that user’s followers. We’ll also talk about

how to delete a status message.

 You already know how to create the status message itself, but we now need to get

the status message ID into the home timeline of all of our followers. How we should

perform this operation will depend on the number of followers that the posting user

happens to have. If the user has a relatively small number of followers (say, up to 1,000

or so), we can update their home timelines immediately. But for users with larger

number of followers (like 1 million, or even the 25 million that some users have on

Twitter), attempting to perform those insertions directly will take longer than is rea-

sonable for a user to wait.

 To allow for our call to return quickly, we’ll do two things. First, we’ll add the sta-

tus ID to the home timelines of the first 1,000 followers as part of the call that posts

the status message. Based on statistics from a site like Twitter, that should handle at

least 99.9% of all users who post (Twitter-wide analytics suggest that there are

roughly 100,000–250,000 users with more than 1,000 followers, which amounts to

roughly .1% of the active user base). This means that only the top .1% of users will

need another step.

 Second, for those users with more than 1,000 followers, we’ll start a deferred task

using a system similar to what we built back in section 6.4. The next listing shows the

code for pushing status updates to followers.

def post_status(conn, uid, message, **data):
id = create_status(conn, uid, message, **data)
if not id:

return None

posted = conn.hget('status:%s'%id, 'posted')
if not posted:

return None

post = {str(id): float(posted)}
conn.zadd('profile:%s'%uid, **post)

syndicate_status(conn, uid, post)
return id

Notice that we broke our status updating into two parts. The first part calls the

create_status() function from listing 8.2 to actually create the status message, and

then adds it to the poster’s profile timeline. The second part actually adds the status

message to the timelines of the user’s followers, which can be seen next.

POSTS_PER_PASS = 1000
def syndicate_status(conn, uid, post, start=0):

Listing 8.6 Update a user’s profile timeline

Listing 8.7 Update a user’s followers’ home timelines

Create a status 
message using 
the earlier 
function.

If the creation
failed, return.

Get the time that
the message was

posted.

Add the status
message to the user’s

profile timeline.

If the post wasn’t 
found, return.

Actually push the status message 
out to the followers of the user.

Only send to 
1000 users 
per pass.
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followers = conn.zrangebyscore('followers:%s'%uid, start, 'inf',
start=0, num=POSTS_PER_PASS, withscores=True)

pipeline = conn.pipeline(False)
for follower, start in followers:

pipeline.zadd('home:%s'%follower, **post)
pipeline.zremrangebyrank(

'home:%s'%follower, 0, -HOME_TIMELINE_SIZE-1)
pipeline.execute()

if len(followers) >= POSTS_PER_PASS:
execute_later(conn, 'default', 'syndicate_status',

[conn, uid, post, start])

This second function is what actually handles pushing status messages to the first 1,000

followers’ home timelines, and starts a delayed task using the API we defined in sec-

tion 6.4 for followers past the first 1,000. With those new functions, we’ve now completed

the tools necessary to actually post a status update and send it to all of a user’s followers.

Let’s imagine that we posted a status message that we weren’t proud of; what would we

need to do to delete it?

 It turns out that deleting a status message is pretty easy. Before returning the

fetched status messages from a user’s home or profile timeline in get_messages(),

we’re already filtering “empty” status messages with the Python filter() function. So

to delete a status message, we only need to delete the status message HASH and update

the number of status messages posted for the user. The function that deletes a status

message is shown in the following listing.

def delete_status(conn, uid, status_id):
key = 'status:%s'%status_id
lock = acquire_lock_with_timeout(conn, key, 1)
if not lock:

return None

if conn.hget(key, 'uid') != str(uid):
return None

pipeline = conn.pipeline(True)
pipeline.delete(key)
pipeline.zrem('profile:%s'%uid, status_id)

Listing 8.8 A function to delete a previously posted status message

Fetch the
next group of

1000 followers,
starting at the
last person to

be updated
last time.

Add the status to
the home timelines
of all of the fetched
followers, and trim
the home timelines

so they don’t get
too big.

Iterating through the followers 
results will update the “start” 
variable, which we can later 
pass on to subsequent 
syndicate_status() calls.

If at least 1000 followers had
received an update, execute the

remaining updates in a task.

Exercise: Updating lists

In the last section, I suggested an exercise to build named lists of users. Can you

extend the syndicate_message() function to also support updating the list time-

lines from before?

Acquire a lock around the status 
object to ensure that no one else 
is trying to delete it when we are.

If we didn’t get 
the lock, return.

If the user doesn’t match the user 
stored in the status message, return.Delete

the status
message. Remove the status message id 

from the user’s profile timeline.
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pipeline.zrem('home:%s'%uid, status_id)
pipeline.hincrby('user:%s'%uid, 'posts', -1)
pipeline.execute()

release_lock(conn, key, lock)
return True

While deleting the status message and updating the status count, we also went ahead

and removed the message from the user’s home timeline and profile timeline.

Though this isn’t technically necessary, it does allow us to keep both of those timelines

a little cleaner without much effort.

Being able to post or delete status messages more or less completes the primary func-

tionality of a Twitter-like social network from a typical user’s perspective. But to com-

plete the experience, you may want to consider adding a few other features:

■ Private users, along with the ability to request to follow someone

■ Favorites (keeping in mind the privacy of a tweet)

■ Direct messaging between users

■ Replying to messages resulting in conversation flow

■ Reposting/retweeting of messages

■ The ability to @mention users or #tag ideas

■ Keeping a record of who @mentions someone

■ Spam and abuse reporting and controls

These additional features would help to round out the functionality of a site like Twit-

ter, but may not be necessary in every situation. Expanding beyond those features that

Twitter provides, some social networks have chosen to offer additional functionality

that you may want to consider:

■ Liking/+1 voting status messages

■ Moving status messages around the timeline depending on “importance”

■ Direct messaging between a prespecified group of people (like in section 6.5.2)

■ Groups where users can post to and/or follow a group timeline (public groups,

private groups, or even announcement-style groups)

Now that we’ve built the last piece of the standard functional API for actually servicing

a site like Twitter, let’s see what it’d take to build a system for processing streaming API

requests.

Reduce the number of
posted messages in the
user information HASH.

Remove the status 
message ID from the 
user’s home timeline.

Exercise: Cleaning out deleted IDs

As status messages are deleted, “zombie” status message IDs will still be in the

home timelines of all followers. Can you clean out these status IDs? Hint: Think about

how we sent the messages out in the first place. Bonus points: also handle lists.
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8.5 Streaming API

As development of our social network continues, at some point we’ll want to learn

more about what’s going on—maybe to discover how many posts are made every hour,

the most-talked-about topics, or even who’s being mentioned all the time. One way of

doing this is to make calls to gather this information. Another way is to record this

information inside the functions that perform all of the operations. The third way,

which we’ll explore in this section, is to build our functions to broadcast simple

events, which are received and processed by event listeners to analyze the data.

 In this section, I’ll describe how to build the back end for a streaming API that

functions similar to the streaming API offered by Twitter. 

 Unlike the other parts of the system that we’ve already built, the streaming API is a

different group of functionalities altogether. The functions that we built to support

the typical operations of a site like Twitter in the last several sections were meant to

execute and complete quickly. On the other hand, a streaming API request is meant to

return data over a longer period of time.

 Most modern social networks offer the ability to gather information from their sys-

tem via some sort of API. One advantage that Twitter has shown over the last several

years is that by offering real-time events to third parties, those third parties can

develop unique and interesting analyses of the data that Twitter itself may not have

had the time or interest to develop.

 The first step in building a streaming API is understanding what kind of data we’ll

be processing and producing.

8.5.1 Data to be streamed

As people perform a variety of actions within our social network, those actions are

seen at the various functions that defined our API. In particular, we spent most of our

time building out the ability to follow/unfollow users, and post/delete messages. If

we’d built other pieces of our social network, we’d also find a variety of other events

that occur as the result of user behavior. A streaming API is meant to produce a

sequence of these events over time as a way of keeping clients or other services

updated about a subset of what’s going on across the entire network.

 In the process of building a streaming API, a variety of decisions must be made,

which can be generally reduced to three major questions:

■ Which events should be exposed?

■ What access restrictions (if any) should exist?

■ What kinds of filtering options should be provided?

For now, I won’t answer the second question about access restrictions. That’s a ques-

tion that we need to answer when we’re building our social network based on expecta-

tions of privacy and system resources. But I’ll answer the other two questions.

 Because we focused on posting/deleting messages and following/unfollowing

users, we should offer at least some of those events. To keep things simple for now,
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we’ll only produce message posting and deletion events. But based on the structures

that we create and pass around, adding functionality to support follow/unfollow

events or events for other actions that we’ve added should be easy.

 The types of filtering options that we’ll provide will overlap significantly with the

API features and functionality that Twitter provides on the public side of things. In

particular, we’ll offer the ability to filter over messages with an equivalent of follow

(users), track (keywords), and location filters, in addition to a randomly selected sub-

set of messages, similar to Twitter’s firehose and sample streams.

 Now that we know what data we’ll have access to, let’s start looking at how we’ll

serve the data.

8.5.2 Serving the data

In preceding sections and chapters, when we showed functions that made calls to

Redis, we built on the assumption that we had an existing web server that would be

calling these functions at just the right time. In the case of a streaming API, the details

of streaming data to a client can be more complicated than just plugging these func-

tions into an existing web service stack. In particular, most web servers operate under

the assumption that we’ll be returning the entire response to a request at once, but

this is definitely not the case with a streaming API.

 Responses from a streaming API are received status message by status message as

they’re produced and matched. Though modern technologies like WebSockets and

SPDY can offer incremental data production, or even server-side push messages, the

protocols involved are still in the process of being finalized, and client-side support in

many programming languages is incomplete. But there is a method of producing

incremental content with an HTTP server—sending data using the chunked transfer

encoding.

 In this section, we’ll build a simple web server that supports streaming to clients

that can handle chunked HTTP responses. This is to support our later sections which

will actually implement filtering options for streamed message data.

 To build this streaming HTTP web server, we have to delve deeper into the Python

programming language. In the past, we’ve attempted to keep everything to standard

functions, and in chapter 6, we even started using generators (that was the code that

included yield). But here, we’ll have to use Python classes. This is primarily because

we don’t want to have to build an entire web server from scratch, and Python already

includes servers that we can mix together to handle all of the difficult parts of web

serving. If you’ve used classes in other languages, you’ll be comfortable with Python,

because classes in Python are similar. They’re meant to encapsulate data, with meth-

ods to manipulate the data. In our case, most of the functionality that we want to use is

already available in existing libraries; we just need to plug them together.

A STREAMING HTTP SERVER

Within Python we have a series of socket server libraries that can be mixed together to

offer varying types of functionality. To start, we’ll create a server that uses threads in



198 CHAPTER 8 Building a simple social network

order to process each incoming request separately. When the server receives a

request, the server will create a thread to execute a request handler. This request han-

dler is where we’ll perform some initial basic routing for GET and POST HTTP requests.

Both the threaded server and the request handler are shown in the next listing.

class StreamingAPIServer(
SocketServer.ThreadingMixIn,
BaseHTTPServer.HTTPServer):

daemon_threads = True

class StreamingAPIRequestHandler(
BaseHTTPServer.BaseHTTPRequestHandler):

def do_GET(self):
parse_identifier(self)
if self.path != '/statuses/sample.json':

return self.send_error(404)

process_filters(self)

def do_POST(self):
parse_identifier(self)
if self.path != '/statuses/filter.json':

return self.send_error(404)

process_filters(self)

What we didn’t write is the code that actually starts up the server, but we’ll get to that

in a moment. For now, you can see that we defined a server that created threads on

each request. Those threads execute methods on a request handler object, which

eventually lead to either do_GET() or do_POST(), which handle the two major types of

streaming API requests: filtered and sampled.

 To actually run this server, we’ll use a bit of Python magic. This magic allows us to

later import a module to use these predefined classes, or it allows us to run the mod-

ule directly in order to start up a streaming API server. The code that lets us both

import the module and run it as a daemon can be seen in the next listing.

 Before you put these two blocks of code into a file and run them, remember that

we’re still missing two functions that are called as part of the streaming API server,

parse_identifier() and process_filters(), which we’ll cover next.

Listing 8.9 Server and request handler for our streaming HTTP server

Create a new class called
“StreamingAPIServer”. This new class should have 

the ability to create new 
threads with each request, 
and should be an HTTPServer.

Tell the internals of the
threading server to shut

down all client request
threads if the main server

thread dies.

Create a new class
called “StreamingAPI-

RequestHandler”.

This new class should
be able to handle

HTTP requests.

Call a helper function that
handles the fetching of an

identifier for the client.

If the request is not a “sample” or
“firehose” streaming GET request,

return a “404 not found” error.

Create a method that is 
called do_GET(), which 
will be executed on GET 
requests performed 
against this server.

Otherwise, call a helper 
function that actually 
handles the filtering.

Call a helper
function that

handles the
fetching of an
identifier for

the client.

Otherwise, call a helper function
that actually handles the filtering.

If the request is
not a user, keyword, or
location filter, return a
‘404 not found’ error.

Create a method 
that is called 
do_POST(), which 
will be executed 
on POST requests 
performed against 
this server.
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if __name__ == '__main__':
server = StreamingAPIServer(

('localhost', 8080), StreamingAPIRequestHandler)
print 'Starting server, use <Ctrl-C> to stop'
server.serve_forever()

IDENTIFYING THE CLIENT

The first of these two functions is a way of fetching identifying information about the

client. This basic method extracts an identifier from the request query arguments. For

a production scenario, we’d want to perform some amount of client validation of the

identifier. Our simple method to parse an identifier from the request can be seen in

the next listing.

def parse_identifier(handler):
handler.identifier = None
handler.query = {}
if '?' in handler.path:

handler.path, _, query = handler.path.partition('?')
handler.query = urlparse.parse_qs(query)
identifier = handler.query.get('identifier') or [None]
handler.identifier = identifier[0]

That function shouldn’t do anything surprising; we set some initial values for the

query arguments (if we want to use them later) and the identifier, parse the query

arguments, and then store the identifier from the query if it was available.

HANDLING HTTP STREAMING

There’s one final piece to the HTTP server portion of our request—actually sending

the filtered responses. To prepare to send these filtered messages one by one, we first

need to verify the requests are valid. Assuming that everything is okay, we must then

send to the client the notification that we’ll be entering an HTTP mode called chunked

transfer encoding, which will allow us to send messages one at a time as they come in.

The function that performs this validation and the actual transfer of streamed mes-

sages to the client is shown next.

FILTERS = ('track', 'filter', 'location')
def process_filters(handler):

id = handler.identifier
if not id:

return handler.send_error(401, "identifier missing")

Listing 8.10 The code to actually start and run the streaming HTTP server

Listing 8.11 An example function to parse and store the client identifier

Listing 8.12 A function that will verify the request and stream data to the client

Run the block of code
below if this module

is being run from the
command line.

Create an instance of the streaming API
server listening on localhost port 8080,

and use the StreamingAPIRequestHandler
to process requests.

Print an
informational line.

Run the server until 
someone kills it.

Set the identifier and query 
arguments to be placeholder values.If there were query

arguments as part of the
request, process them.

Extract the query portion from
the path and update the path.

Fetch the list of query arguments
with the name “identifier.”

Parse the query.
Use the first identifier passed.

Keep a listing
of filters

that need
arguments.

Return an error if an identifier
was not provided by the client.
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method = handler.path.rsplit('/')[-1].split('.')[0]
name = None
args = None
if method == 'filter':

data = cgi.FieldStorage(
fp=handler.rfile,
headers=handler.headers,
environ={'REQUEST_METHOD':'POST',

'CONTENT_TYPE':handler.headers['Content-Type'], 
})

for name in data:
if name in FILTERS:

args = data.getfirst(name).lower().split(',')
break

if not args:
return handler.send_error(401, "no filter provided")

else:
args = handler.query

handler.send_response(200)
handler.send_header('Transfer-Encoding', 'chunked')
handler.end_headers()

quit = [False]
for item in filter_content(id, method, name, args, quit):

try:
handler.wfile.write('%X\r\n%s\r\n'%(len(item), item))

except socket.error:
quit[0] = True

if not quit[0]:
handler.wfile.write('0\r\n\r\n')

A few details in this function are tricky, but the basic idea is that we make sure that we

have an identifier for the client and fetch the filtering arguments for the specific calls.

If everything is okay, we then announce to the client that we’ll be streaming responses

and pass the actual filtering off to a generator, which will produce the sequence of

messages that match the filter criteria.

 And that’s it for the streaming HTTP server. In the next section, we’ll build the

methods that will filter messages that pass through the system. 

8.5.3 Filtering streamed messages

So far we’ve built a server to serve the streamed messages; now it’s time to filter through

the messages for streaming. We filter the messages so that a client making a request

only sees the messages they’re interested in. Though our social network may not have

a lot of traffic, sites like Twitter, Facebook, or even Google+ will see tens to hundreds of

thousands of events every second. And for both third parties and ourselves, the cost of

Fetch the method;
should be one of

“sample” or “filter”.
If this is a filtering method, we 
need to fetch the arguments.

Parse the POST request to
discover the type and

arguments to the filter.

Fetch any of the
filters provided by
the client request.

If there were no
filters specified,
return an error.

For sample requests,
pass the query

arguments as the “args”.

Use a Python list as a
holder for a pass-by-

reference variable, which
will allow us to tell the

content filter to stop
receiving messages.

If sending to the client caused an error, 
then we need to tell the subscriber to 
unsubscribe and shut down.

Finally, return a response to the client, informing them
that they will be receiving a streaming response.

Iterate over the results of the filter.

Send the pre-encoded response to the
client using the chunked encoding.

Send the “end of chunks” 
message to the client if we 
haven’t already disconnected.
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bandwidth to send all of that information can be quite high, so only sending messages

that match up is important.

 In this section, we’ll write functions and classes that will filter posted messages to

be streamed to clients. These filters will plug into the streaming web server we wrote

in section 8.5.2. As I mentioned at the beginning of section 8.5, we’ll support random

sampling of all messages and access to the full firehose, as well as filtering for specific

users, words, and the location of messages. 

 As mentioned way back in chapter 3, we’ll use Redis PUBLISH and SUBSCRIBE to

implement at least part of the streaming functionality. More specifically, when users

post messages, we’ll PUBLISH the posted message information to a channel in Redis.

Our filters will SUBSCRIBE to that same channel, receive the message, and yield mes-

sages that match the filters back to the web server for sending to the client.

UPDATING STATUS MESSAGE POSTING AND DELETION

Before we get ahead of ourselves, let’s first update our message posting function from

section 8.1.2 and message deletion function from section 8.4 to start producing mes-

sages to filter. We’ll start with posting in the next listing, which shows that we’ve added

a line to our function that sends messages out to be filtered.

def create_status(conn, uid, message, **data):
pipeline = conn.pipeline(True)
pipeline.hget('user:%s'%uid, 'login')
pipeline.incr('status:id:')
login, id = pipeline.execute()

if not login:
return None

data.update({
'message': message,
'posted': time.time(),
'id': id,
'uid': uid,
'login': login,

})
pipeline.hmset('status:%s'%id, data)
pipeline.hincrby('user:%s'%uid, 'posts')
pipeline.publish('streaming:status:', json.dumps(data))
pipeline.execute()
return id

All it took was one more line to add streaming support on the posting side. But what about

deletion? The update to status message deletion is shown in the following listing.

def delete_status(conn, uid, status_id):
key = 'status:%s'%status_id
lock = acquire_lock_with_timeout(conn, key, 1)

Listing 8.13 Updated create_status() from listing 8.2 to support streaming filters

Listing 8.14 Updated delete_status() from listing 8.8 to support streaming filters

The added line to 
send a message to 
streaming filters
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if not lock:
return None

if conn.hget(key, 'uid') != str(uid):
return None

pipeline = conn.pipeline(True)
status = conn.hgetall(key)
status['deleted'] = True
pipeline.publish('streaming:status:', json.dumps(status))
pipeline.delete(key)
pipeline.zrem('profile:%s'%uid, status_id)
pipeline.zrem('home:%s'%uid, status_id)
pipeline.hincrby('user:%s'%uid, 'posts', -1)
pipeline.execute()

release_lock(conn, key, lock)
return True

At first glance, you’re probably wondering why we’d want to send the entire status

message that’s to be deleted to the channel for filtering. Conceptually, we should only

need to send message-deleted information to clients that received the status message

when it was posted. If we perform the same filtering on deleted messages as we do on

newly posted messages, then we can always send message-deleted notifications to

those clients that would’ve received the original message. This ensures that we don’t

need to keep a record of the status IDs for messages sent to all clients, which simplifies

our server and reduces memory use.

RECEIVING STREAMED MESSAGES FOR FILTERING

Now that we’re sending information about status messages being posted and deleted to

a channel in Redis, we only need to subscribe to that channel to start receiving messages

to filter. As was the case in chapter 3, we’ll need to construct a special pubsub object in

order to subscribe to a channel. When we’ve subscribed to the channel, we’ll perform

our filtering, and produce one of two different messages depending on whether the

message was posted or deleted. The code for handling these operations is next.

@redis_connection('social-network')
def filter_content(conn, id, method, name, args, quit):

match = create_filters(id, method, name, args)

pubsub = conn.pubsub()
pubsub.subscribe(['streaming:status:'])

for item in pubsub.listen():
message = item['data']
decoded = json.loads(message)

if match(decoded):

Listing 8.15 A function to receive and process streamed messages

Fetch the status message so that 
streaming filters can perform the 
same filters to determine whether the 
deletion should be passed to the client.

Mark the status 
message as deleted.

Publish the deleted
status message to

the stream.

Use our automatic 
connection decorator 
from chapter 5.

Create the filter that
will determine whether

a message should be
sent to the client.

Prepare the
subscription.

Get the status message
information from the

subscription structure.

Receive messages from 
the subscription.

Check if the status 
message matched 
the filter.
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if decoded.get('deleted'):
yield json.dumps({

'id': decoded['id'], 'deleted': True})
else:

yield message

if quit[0]:
break

pubsub.reset()

As I said before, this function needs to subscribe to a channel in Redis in order to

receive posted/deleted notifications for status messages. But it also needs to handle

cases where the streaming client has disconnected, and it needs to properly clean up

the connection if Redis has been trying to send it too much data.

 As we covered in chapter 3, there’s a Redis server setting to determine the maxi-

mum outgoing buffer for subscriptions to support. To ensure that our Redis server

stays up even under heavy load, we’ll probably want to set client-output-buffer-

limit pubsub to lower than the default 32 megabytes per connection. Where to set

the limit will depend on how many clients we expect to support and how much other

data is in Redis.

FILTERING MESSAGES

At this point we’ve built every other layer; it now remains to actually write filtering. I

know, there was a lot of build-up, but you may be surprised to find out that actually fil-

tering messages isn’t difficult for any of our cases. To create filters, we’ll first define

our create_filters() function in listing 8.16, which will delegate off to one of a vari-

ety of filtering classes, depending on the filter that we want to build. We’ll assume that

clients are sending reasonable arguments, but if you’re considering using any of this

in a production scenario, you’ll want to add validation and verification. 

def create_filters(id, method, name, args):
if method == 'sample':

return SampleFilter(id, args)
elif name == 'track':

return TrackFilter(args)
elif name == 'follow':

return FollowFilter(args)
elif name == 'location':

return LocationFilter(args)
raise Exception("Unknown filter")

Nothing surprising there: we’re distinguishing the different kinds of filters. The first

filter we’ll create will be the sample filter, which will actually implement the function-

ality of the Twitter-style firehose, gardenhose, and spritzer access levels, and any-

thing in between. The implementation of the sampling filter is shown next.

Listing 8.16 A factory function to dispatch to the actual filter creation

For deleted messages, send a
special “deleted” placeholder

for the message.

For matched status messages
that are not deleted, send the

message itself.

If the web server no longer has 
a connection to the client, stop 
filtering messages.

Reset the Redis connection to ensure 
that the Redis server clears its outgoing 
buffers if this wasn’t fast enough.

For the “sample” method, we 
don’t need to worry about 
names, just the arguments.

For the “filter” method, we 
actually worry about which of 
the filters we want to apply, 
so return the specific filters 
for them.

If no filter 
matches, then 
raise an exception.
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def SampleFilter(id, args):
percent = int(args.get('percent', ['10'])[0], 10)
ids = range(100)
shuffler = random.Random(id)
shuffler.shuffle(ids)
keep = set(ids[:max(percent, 1)])

def check(status):
return (status['id'] % 100) in keep

return check

As you can see, we started using classes again, primarily because we need to encapsu-

late data and behavior together. This first class that defines sampling does one inter-

esting thing—it uses a random number generator seeded with the user-provided

identifier to choose the IDs of status messages that it should accept. This allows the

sampling filters to receive a deleted notification for a message, even if the client had

disconnected (as long as the client reconnected before the delete notification came

through). We use Python sets here to quickly determine whether the ID modulo 100 is

in the group that we want to accept, as Python sets offer O(1) lookup time, compared

to O(n) for a Python list.

 Continuing on, we’ll now build the track filter, which will allow users to track

words or phrases in status messages. Similar to our sample filter in listing 8.17, we’ll

use a class to encapsulate the data and filtering functionality together. The filter class

definition is shown in the following listing.

def TrackFilter(list_of_strings):
groups = []
for group in list_of_strings:

group = set(group.lower().split())
if group:

groups.append(group)

def check(status):
message_words = set(status['message'].lower().split())
for group in groups:

if len(group & message_words) == len(group):
return True

return False
return check

Listing 8.17 The function to handle firehose, gardenhose, and spritzer

Listing 8.18 A filter that matches groups of words that are posted in status messages

We’re defining a filter class called “SampleFilter”, which
is created by passing “id” and “args” parameters.

The “args” parameter is
actually a dictionary based
on the parameters passed
as part of the GET request.

We use the “id” parameter to
randomly choose a subset of

IDs, the count of which is
determined by the “percent”

argument passed.

We’ll use a Python set to allow us to 
quickly determine whether a status 
message matches our criteria.

To filter status messages, we fetch the
status ID, find its value modulo 100,

and return whether it’s in the status
IDs that we want to accept.

If we create a specially 
named method called 
“__call__” on an 
instance, it will be 
called if the instance is 
used like a function.

The filter has been provided with a list of word 
groups, and the filter matches if a message has 
all of the words in any of the groups.

We’ll only keep groups 
that have at least 1 word.

We’ll split
words in the
message on
whitespace.

Then we’ll
iterate over

all of the
groups. If all of the words in any of the

groups match, we’ll accept the
message with this filter.
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About the only interesting thing about the tracking filter is to make sure that if some-

one wants to match a group of words, the filter matches all of the words in the mes-

sage and not just some of them. We again use Python sets, which, like Redis SETs, offer

the ability to calculate intersections.

 Moving on to the follow filter, we’re trying to match status messages that were

posted by one of a group of users, or where one of the users is mentioned in the mes-

sage. The class that implements user matching is shown here.

def FollowFilter(names):
names = set()
for name in names:

names.add('@' + name.lower().lstrip('@'))

def check(status):
message_words = set(status['message'].lower().split())
message_words.add('@' + status['login'].lower())

return message_words & names
return check

As before, we continue to use Python sets as a fast way to check whether a name is in

the set of names that we’re looking for, or whether any of the names to match are also

contained in a status message.

 We finally get to the location filter. This filter is different from the others in that we

didn’t explicitly talk about adding location information to our status messages. But

because of the way we wrote our create_status() and post_status() functions to

take additional optional keyword arguments, we can add additional information with-

out altering our status creation and posting functions. The location filter for this

optional data is shown next.

def LocationFilter(list_of_boxes):
boxes = []
for start in xrange(0, len(list_of_boxes)-3, 4):

boxes.append(map(float, list_of_boxes[start:start+4]))

def check(self, status):
location = status.get('location')
if not location:

return False

lat, lon = map(float, location.split(','))
for box in self.boxes:

Listing 8.19 Messages posted by or mentioning any one of a list of users

Listing 8.20 Messages within boxes defined by ranges of latitudes and longitudes

We’ll match login names against
posters and messages.

Store all names 
consistently as 
‘@username’.

Construct a
set of words

from the
message and
the poster’s

name.

Consider the message a match if any 
of the usernames provided match 
any of the whitespace-separated 
words in the message.

We’ll create a set of boxes
that define the regions that

should return messages.

Try to fetch
“location” data from

a status message.

Otherwise, extract the
latitude and longitude of

the location.

If the message has no 
location information, then it 
can’t be inside the boxes.

To match one of the 
boxes, we need to 
iterate over all boxes.



206 CHAPTER 8 Building a simple social network

if (box[1] <= lat <= box[3] and
box[0] <= lon <= box[2]):
return True

return False
return check

About the only thing that may surprise you about this particular filter is how we’re pre-

paring the boxes for filtering. We expect that requests will provide location boxes as

comma-separated sequences of numbers, where each chunk of four numbers defines

latitude and longitude ranges (minimum longitude, minimum latitude, maximum

longitude, maximum latitude—the same order as Twitter’s API).

 With all of our filters built, a working web server, and the back-end API for every-

thing else, it’s now up to you to get traffic!

8.6 Summary

In this chapter, we’ve built the majority of functionality that makes a site like Twitter

work. Though these structures won’t scale to the extent that Twitter does, the meth-

ods used can be used to build a small social network easily. With a front end for users

to interact with, you can start your own social network with your friends!

 If there’s one thing that you should take away from this chapter, it’s that even

immensely popular websites have functionality that can be built with the tools avail-

able inside of Redis.

 In the upcoming chapters 9 through 11, we’ll look into methods to help reduce

memory use, methods to help scaling Redis read and write loads, and scripting Redis

to simplify (and sometimes help scale) applications. These things will help to scale

Redis applications, like our social network, beyond expected single-machine limits.

Our first step down this path is chapter 9, where I’ll show you how to reduce Redis’s

memory use.

If the message status location is
within the required latitude and
longitude range, then the status

message matches the filter.



Part 3

Next steps

In these final chapters, you’ll learn about common pitfalls that many Redis

users encounter (reducing memory use, scaling performance, and scripting with

Lua), as well as how to solve those issues with standard techniques.
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Reducing memory use

In this chapter, we’ll cover three important methods to help reduce your memory

use in Redis. By reducing the amount of memory you use in Redis, you can reduce

the time it takes to create or load a snapshot, rewrite or load an append-only file,

reduce slave synchronization time,1 and store more data in Redis without addi-

tional hardware.

 We’ll begin this chapter by discussing how the use of short data structures in

Redis can result in a more efficient representation of the data. We’ll then discuss

how to apply a concept called sharding to help make some larger structures small.2

Finally, we’ll talk about packing fixed-length data into STRINGs for even greater

memory savings.

This chapter covers

■ Short structures

■ Sharded structures

■ Packing bits and bytes

1 Snapshots, append-only file rewriting, and slave synchronization are all discussed in chapter 4.
2 Our use of sharding here is primarily driven to reduce memory use on a single server. In chapter 10, we’ll

apply similar techniques to allow for increased read throughput, write throughput, and memory partition-
ing across multiple Redis servers.
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 When used together, these methods helped me to reduce memory use from more

than 70 gigabytes, split across three machines, down to under 3 gigabytes on a single

machine. As we work through these methods, remember that some of our earlier

problems would lend themselves well to these optimizations, which I’ll point out when

applicable. Let’s get started with one of the first and easiest methods to reduce mem-

ory use: short structures.

9.1 Short structures

The first method of reducing memory use in Redis is simple: use short structures. For

LISTs, SETs, HASHes, and ZSETs, Redis offers a group of configuration options that

allows for Redis to store short structures in a more space-efficient manner. In this sec-

tion, we’ll discuss those configuration options, show how to verify that we’re getting

those optimizations, and discuss some drawbacks to using short structures.

 When using short LISTs, HASHes, and ZSETs, Redis can optionally store them using

a more compact storage method known as a ziplist. A ziplist is an unstructured repre-

sentation of one of the three types of objects. Rather than storing the doubly linked

list, the hash table, or the hash table plus the skiplist as would normally be the case for

each of these structures, Redis stores a serialized version of the data, which must be

decoded for every read, partially re-encoded for every write, and may require moving

data around in memory.

9.1.1 The ziplist representation

To understand why ziplists may be more efficient, we only need to look at the simplest

of our structures, the LIST. In a typical doubly linked list, we have structures called

nodes, which represent each value in the list. Each of these nodes has pointers to the

previous and next nodes in the list, as well as a pointer to the string in the node. Each

string value is actually stored as three parts: an integer representing the length, an

integer representing the number of remaining free bytes, and the string itself fol-

lowed by a null character. An example of this in figure 9.1 shows the three string val-

ues "one", "two", and "ten" as part of a larger linked list.

 Ignoring a few details (which only make linked lists look worse), each of these

three strings that are each three characters long will actually take up space for three

pointers, two integers (the length and remaining bytes in the value), plus the string

and an extra byte. On a 32-bit platform, that’s 21 bytes of overhead to store 3 actual

bytes of data (remember, this is an underestimate of what’s actually stored).

4 0 "one\0" 4 0 "two\0" 4 0 "ten\0"

Figure 9.1 How long LISTs are stored in Redis
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On the other hand, the ziplist representation will store a sequence of length, length,

string elements. The first length is the size of the previous entry (for easy scanning in

both directions), the second length is the size of the current entry, and the string is the

stored data itself. There are some other details about what these lengths really mean in

practice, but for these three example strings, the lengths will be 1 byte long, for 2 bytes

of overhead per entry in this example. By not storing additional pointers and metadata,

the ziplist can cut down overhead from 21 bytes each to roughly 2 bytes (in this example).

 Let’s see how we can ensure that we’re using the compact ziplist encoding.

USING THE ZIPLIST ENCODING

In order to ensure that these structures are only used when necessary to reduce mem-

ory, Redis includes six configuration options, shown in the following listing, for deter-

mining when the ziplist representation will be used for LISTs, HASHes, and ZSETs.

list-max-ziplist-entries 512         
list-max-ziplist-value 64

hash-max-ziplist-entries 512
hash-max-ziplist-value 64

zset-max-ziplist-entries 128           
zset-max-ziplist-value 64

The basic configuration options for LISTs, HASHes, and ZSETs are all similar, com-

posed of -max-ziplist-entries settings and -max-ziplist-value settings. Their

semantics are essentially identical in all three cases. The entries settings tell us the

maximum number of items that are allowed in the LIST, HASH, or ZSET for them to be

encoded as a ziplist. The value settings tell us how large in bytes each individual entry

can be. If either of these limits are exceeded, Redis will convert the LIST, HASH, or

ZSET into the nonziplist structure (thus increasing memory).

 If we’re using an installation of Redis 2.6 with the default configuration, Redis

should have default settings that are the same as what was provided in listing 9.1. Let’s

play around with ziplist representations of a simple LIST object by adding some items

and checking its representation, as shown in the next listing.

>>> conn.rpush('test', 'a', 'b', 'c', 'd')
4
>>> conn.debug_object('test')
{'encoding': 'ziplist', 'refcount': 1, 'lru_seconds_idle': 20,
'lru': 274841, 'at': '0xb6c9f120', 'serializedlength': 24,
'type': 'Value'}

Listing 9.1 Configuration options for the ziplist representation of different structures

Listing 9.2 How to determine whether a structure is stored as a ziplist

Limits for ziplist 
use with LISTs.

Limits for ziplist use
with HASHes (previous
versions of Redis used
a different name and

encoding for this).

Limits for ziplist 
use with ZSETs.

Let’s start by pushing
four items onto a LIST.

We can discover
information about
a particular object

with the “debug
object” command.

The information we’re
looking for is the “encoding”

information, which tells us
that this is a ziplist, which is

using 24 bytes of memory.
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>>> conn.rpush('test', 'e', 'f', 'g', 'h')
8
>>> conn.debug_object('test')
{'encoding': 'ziplist', 'refcount': 1, 'lru_seconds_idle': 0,
'lru': 274846, 'at': '0xb6c9f120', 'serializedlength': 36,
'type': 'Value'}
>>> conn.rpush('test', 65*'a')
9
>>> conn.debug_object('test')
{'encoding': 'linkedlist', 'refcount': 1, 'lru_seconds_idle': 10,
'lru': 274851, 'at': '0xb6c9f120', 'serializedlength': 30,
'type': 'Value'}
>>> conn.rpop('test')
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'
>>> conn.debug_object('test')
{'encoding': 'linkedlist', 'refcount': 1, 'lru_seconds_idle': 0,
'lru': 274853, 'at': '0xb6c9f120', 'serializedlength': 17,
'type': 'Value'}

With the new DEBUG OBJECT command at our disposal, discovering whether an object

is stored as a ziplist can be helpful to reduce memory use.

 You’ll notice that one structure is obviously missing from the special ziplist encod-

ing, the SET. SETs also have a compact representation, but different semantics and lim-

its, which we’ll cover next.

9.1.2 The intset encoding for SETs

Like the ziplist for LISTs, HASHes, and ZSETs, there’s also a compact representation

for short SETs. If our SET members can all be interpreted as base-10 integers within

the range of our platform’s signed long integer, and our SET is short enough

(we’ll get to that in a moment), Redis will store our SET as a sorted array of integers,

or intset.

 By storing a SET as a sorted array, not only do we have low overhead, but all of the

standard SET operations can be performed quickly. But how big is too big? The next

listing shows the configuration option for defining an intset’s maximum size.

set-max-intset-entries 512

As long as we keep our SETs of integers smaller than our configured size, Redis will

use the intset representation to reduce data size. The following listing shows what hap-

pens when an intset grows to the point of being too large.

Listing 9.3 Configuring the maximum size of the intset encoding for SETs

Let’s push four
more items

onto the LIST.

We still have a
ziplist, and its size

grew to 36 bytes
(which is exactly 2
bytes overhead, 1

byte data, for each
of the 4 items we

just pushed).

When we push an
item bigger than

what was allowed
for the encoding,

the LIST gets
converted from the

ziplist encoding to a
standard linked list.

While the serialized length went down, for nonziplist
encodings (except for the special encoding for SETs),
this number doesn’t represent the amount of actual

memory used by the structure.

After a ziplist is converted to a regular
structure, it doesn’t get re-encoded as a

ziplist if the structure later meets the criteria.

Limits for intset 
use with SETs
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>>> conn.sadd('set-object', *range(500))
500
>>> conn.debug_object('set-object')
{'encoding': 'intset', 'refcount': 1, 'lru_seconds_idle': 0,
'lru': 283116, 'at': '0xb6d1a1c0', 'serializedlength': 1010,
'type': 'Value'}
>>> conn.sadd('set-object', *range(500, 1000))
500
>>> conn.debug_object('set-object')
{'encoding': 'hashtable', 'refcount': 1, 'lru_seconds_idle': 0,
'lru': 283118, 'at': '0xb6d1a1c0', 'serializedlength': 2874,
'type': 'Value'}

Earlier, in the introduction to section 9.1, I mentioned that to read or update part of

an object that uses the compact ziplist representation, we may need to decode the

entire ziplist, and may need to move in-memory data around. For these reasons,

reading and writing large ziplist-encoded structures can reduce performance. Intset-

encoded SETs also have similar issues, not so much due to encoding and decoding

the data, but again because we need to move data around when performing inser-

tions and deletions. Next, we’ll examine some performance issues when operating

with long ziplists.

9.1.3 Performance issues for long ziplists and intsets

As our structures grow beyond the ziplist and intset limits, they’re automatically con-

verted into their more typical underlying structure types. This is done primarily

because manipulating the compact versions of these structures can become slow as

they grow longer.

 For a firsthand look at how this happens, let’s start by updating our setting for

list-max-ziplist-entries to 110,000. This setting is a lot larger than we’d ever use

in practice, but it does help to highlight the issue. After that setting is updated and

Redis is restarted, we’ll benchmark Redis to discover performance issues that can hap-

pen when long ziplist-encoded LISTs are used.

 To benchmark the behavior of long ziplist-encoded LISTs, we’ll write a function

that creates a LIST with a specified number of elements. After the LIST is created,

we’ll repeatedly call the RPOPLPUSH command to move an item from the right end of

the LIST to the left end. This will give us a lower bound on how expensive commands

can be on very long ziplist-encoded LISTs. This benchmarking function is shown in

the next listing.

Listing 9.4 When an intset grows to be too large, it’s represented as a hash table.

Let’s add 500
items to the set
and see that it’s
still encoded as

an intset.

When we push it over our configured
512-item limit, the intset is translated

into a hash table representation.
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def long_ziplist_performance(conn, key, length, passes, psize):
conn.delete(key)
conn.rpush(key, *range(length))
pipeline = conn.pipeline(False)

t = time.time()     
for p in xrange(passes):

for pi in xrange(psize):
pipeline.rpoplpush(key, key)

pipeline.execute()

return (passes * psize) / (time.time() - t or .001)

As mentioned before, this code creates a LIST of a given size and then executes a num-

ber of RPOPLPUSH commands in pipelines. By computing the number of calls to RPOPL-

PUSH divided by the amount of time it took, we can calculate a number of operations per

second that can be executed on ziplist-encoded LISTs of a given size. Let’s run this with

steadily increasing list sizes to see how long ziplists can reduce performance.

>>> long_ziplist_performance(conn, 'list', 1, 1000, 100)
52093.558416505381
>>> long_ziplist_performance(conn, 'list', 100, 1000, 100)
51501.154762768667
>>> long_ziplist_performance(conn, 'list', 1000, 1000, 100)
49732.490843316067
>>> long_ziplist_performance(conn, 'list', 5000, 1000, 100)
43424.056529592635
>>> long_ziplist_performance(conn, 'list', 10000, 1000, 100)
36727.062573334966
>>> long_ziplist_performance(conn, 'list', 50000, 1000, 100)
16695.140684975777
>>> long_ziplist_performance(conn, 'list', 100000, 500, 100)
553.10821080054586

At first glance, you may be thinking that this isn’t so bad even when you let a ziplist

grow to a few thousand elements. But this shows only a single example operation,

where all we’re doing is taking items off of the right end and pushing them to the left

end. The ziplist encoding can find the right or left end of a sequence quickly (though

shifting all of the items over for the insert is what slows us down), and for this small

Listing 9.5 Our code to benchmark varying sizes of ziplist-encoded LISTs

Listing 9.6 As ziplist-encoded LISTs grow, we can see performance drop

We’ll parameterize
everything so that we can
measure performance in

a variety of ways.

Start by deleting the named
key to ensure that we only

benchmark exactly what we
intend to.

Initialize the LIST by pushing
our desired count of numbers

onto the right end.

Each call will result in popping
the rightmost item from the

LIST, pushing it to the left end
of the same LIST.

Prepare a pipeline so that we are less 
affected by network round-trip times.

Start the timer We’ll perform a number of pipeline 
executions provided by passes.

Each pipeline execution 
will include psize actual 
calls to RPOPLPUSH.

Calculate the number of calls per
second that are performed.

Execute the psize 
calls to RPOPLPUSH.

With lists encoded as ziplists 
at 1000 entries or smaller, 
Redis is still able to perform 
around 50,000 operations 
per second or better.

And when we hit 100,000 entries,
ziplists are effectively unusable.

But as lists encoded 
as ziplists grow to 
5000 or more, 
performance starts 
to drop off as 
memory copy costs 
start reducing 
performance.When we hit 50,000 entries 

in a ziplist, performance has 
dropped significantly.



215Sharded structures

example we can exploit our CPU caches. But when scanning through a list for a partic-

ular value, like our autocomplete example from section 6.1, or fetching/updating

individual fields of a HASH, Redis will have to decode many individual entries, and CPU

caches won’t be as effective. As a point of data, replacing our RPOPLPUSH command

with a call to LINDEX that gets an element in the middle of the LIST shows perfor-

mance at roughly half the number of operations per second as our RPOPLPUSH call

when LISTs are at least 5,000 items long. Feel free to try it for yourself.

 If you keep your max ziplist sizes in the 500–2,000 item range, and you keep the

max item size under 128 bytes or so, you should get reasonable performance. I per-

sonally try to keep max ziplist sizes to 1,024 elements with item sizes at 64 bytes or

smaller. For many uses of HASHes that we’ve used so far, these limits should let you

keep memory use down, and performance high.

 As you develop solutions to problems outside of our examples, remember that if

you can keep your LIST, SET, HASH, and ZSET sizes small, you can help keep your mem-

ory use low, which can let you use Redis for a wider variety of problems.

KEEPING KEY NAMES SHORT One thing that I haven’t mentioned before is the
use of minimizing the length of keys, both in the key portion of all values, as
well as keys in HASHes, members of SETs and ZSETs, and entries in LISTs. The
longer all of your strings are, the more data needs to be stored. Generally
speaking, whenever it’s possible to store a relatively abbreviated piece of
information like user:joe as a key or member, that’s preferable to storing
username:joe, or even joe if user or username is implied. Though in some
cases it may not make a huge difference, if you’re storing millions or billions
of entries, those extra few megabytes or gigabytes may be useful later.

Now that you’ve seen that short structures in Redis can be used to reduce memory

use, in the next section we’ll talk about sharding large structures to let us gain the

benefits of the ziplist and intset optimizations for more problems.

9.2 Sharded structures

Sharding is a well-known technique that has been used to help many different databases

scale to larger data storage and processing loads. Basically, sharding takes your data,

partitions it into smaller pieces based on some simple rules, and then sends the data to

different locations depending on which partition the data had been assigned to.

 In this section, we’ll talk about applying the concept of sharding to HASHes, SETs,

and ZSETs to support a subset of their standard functionality, while still letting us use

the small structures from section 9.1 to reduce memory use. Generally, instead of stor-

ing value X in key Y, we’ll store X in key Y:<shardid>.

SHARDING LISTS Sharding LISTs without the use of Lua scripting is difficult,
which is why we omit it here. When we introduce scripting with Lua in chap-
ter 11, we’ll build a sharded LIST implementation that supports blocking and
nonblocking pushes and pops from both ends.
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SHARDING ZSETS Unlike sharded HASHes and SETs, where essentially all oper-
ations can be supported with a moderate amount of work (or even LISTs with
Lua scripting), commands like ZRANGE, ZRANGEBYSCORE, ZRANK, ZCOUNT, ZREM-
RANGE, ZREMRANGEBYSCORE, and more require operating on all of the shards of
a ZSET to calculate their final result. Because these operations on sharded
ZSETs violate almost all of the expectations about how quickly a ZSET should
perform with those operations, sharding a ZSET isn’t necessarily that useful,
which is why we essentially omit it here.

If you need to keep full information for a large ZSET, but you only really per-
form queries against the top- or bottom-scoring X, you can shard your ZSET in
the same way we shard HASHes in section 9.2.1: keeping auxiliary top/bottom
scoring ZSETs, which you can update with ZADD/ZREMRANGEBYRANK to keep
limited (as we’ve done previously in chapters 2 and 4–8).

You could also use sharded ZSETs as a way of reducing single-command laten-
cies if you have large search indexes, though discovering the final highest-
and lowest-scoring items would take a potentially long series of ZUNIONSTORE/
ZREMRANGEBYRANK pairs.

When sharding structures, we can make a decision to either support all of the func-

tionality of a single structure or only a subset of the standard functionality. For the

sake of simplicity, when we shard structures in this book, we’ll only implement a subset

of the functionality offered by the standard structures, because to implement the full

functionality can be overwhelming (from both computational and code-volume per-

spectives). Even though we only implement a subset of the functionality, we’ll use

these sharded structures to offer memory reductions to existing problems, or to solve

new problems more efficiently than would otherwise be possible.

 The first structure we’ll talk about sharding is the HASH.

9.2.1 HASHes

One of the primary uses for HASHes is storing simple key/value pairs in a grouped fash-

ion. Back in section 5.3, we developed a method of mapping IP addresses to locations

around the world. In addition to a ZSET that mapped from IP addresses to city IDs, we

used a single HASH that mapped from city IDs to information about the city itself. That

HASH had more than 370,000 entries using the August 2012 version of the database,

which we’ll now shard.

 To shard a HASH table, we need to choose a method of partitioning our data.

Because HASHes themselves have keys, we can use those keys as a source of information

to partition the keys. For partitioning our keys, we’ll generally calculate a hash func-

tion on the key itself that will produce a number. Depending on how many keys we

want to fit in a single shard and how many total keys we need to store, we’ll calculate

the number of shards we need, and use that along with our hash value to determine

the shard ID that the data will be stored in.
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 For numeric keys, we’ll assume that the keys will be more or less sequential and tightly

packed, and will assign them to a shard ID based on their numeric key value (keeping

numerically similar keys in the same shard). The next listing shows our function for cal-

culating a new key for a sharded HASH, given the base key and the HASH key HASH.

def shard_key(base, key, total_elements, shard_size):
if isinstance(key, (int, long)) or key.isdigit():

shard_id = int(str(key), 10) // shard_size
else:

shards = 2 * total_elements // shard_size
shard_id = binascii.crc32(key) % shards

return "%s:%s"%(base, shard_id)

In our function, you’ll notice that for non-numeric keys we calculate a CRC32 check-

sum. We’re using CRC32 in this case because it returns a simple integer without addi-

tional work, is fast to calculate (much faster than MD5 or SHA1 hashes), and because

it’ll work well enough for most situations.

BEING CONSISTENT ABOUT total_elements AND shard_size When using non-
numeric keys to shard on, you’ll notice that we use the total_elements value
to calculate the total number of shards necessary, in addition to the
shard_size that’s used for both numeric and non-numeric keys. These two
pieces of information are necessary to keep the total number of shards down.
If you were to change either of these numbers, then the number of shards
(and thus the shard that any piece of data goes to) will change. Whenever
possible, you shouldn’t change either of these values, or when you do change
them, you should have a process for moving your data from the old data
shards to the new data shards (this is generally known as resharding).

We’ll now use our shard_key() to pick shards as part of two functions that will work

like HSET and HGET on sharded hashes in the following listing.

def shard_hset(conn, base, key, value, total_elements, shard_size):
shard = shard_key(base, key, total_elements, shard_size)
return conn.hset(shard, key, value)

Listing 9.7 A function to calculate a shard key from a base key and a secondary entry key

Listing 9.8 Sharded HSET and HGET functions

We’ll call the shard_key() function with a base HASH name,
along with the key to be stored in the sharded HASH, the total

number of expected elements, and the desired shard size.

If the value is an
integer or a string that

looks like an integer,
we’ll use it directly to

calculate the shard ID.

For integers, we assume they
are sequentially assigned IDs,

so we can choose a shard ID
based on the upper “bits” of

the numeric ID itself. We also
use an explicit base here

(necessitating the str() call)
so that a key of 010 turns into

10, and not 8.

Finally, we combine the
base key with the shard

ID we calculated to
determine the shard key.

When we know the number of 
shards, we hash the key 
modulo the number of shards.

For non-integer 
keys, we first 
calculate the total 
number of shards 
desired, based 
on an expected 
total number of 
elements and 
desired shard size.

Set the value in the shard.

Calculate the 
shard to store 
our value in.
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def shard_hget(conn, base, key, total_elements, shard_size):
shard = shard_key(base, key, total_elements, shard_size)
return conn.hget(shard, key)

Nothing too complicated there; we’re finding the proper location for the data to be

stored or fetched from the HASH and either setting or getting the values. To update

our earlier IP-address-to-city lookup calls, we only need to replace one call in each of

two functions. The next listing shows just those parts of our earlier functions that

need to be updated.

TOTAL_SIZE = 320000
SHARD_SIZE = 1024

def import_cities_to_redis(conn, filename):
for row in csv.reader(open(filename)):

...
shard_hset(conn, 'cityid2city:', city_id,

json.dumps([city, region, country]),
TOTAL_SIZE, SHARD_SIZE)

def find_city_by_ip(conn, ip_address):
...
data = shard_hget(conn, 'cityid2city:', city_id,

TOTAL_SIZE, SHARD_SIZE)
return json.loads(data)

On a 64-bit machine, storing the single HASH of all of our cities takes up roughly 44

megabytes. But with these few small changes to shard our data, setting hash-max-

ziplist-entries to 1024 and hash-max-ziplist-value to 256 (the longest city/

country name in the list is a bit over 150 characters), the sharded HASHes together take

up roughly 12 megabytes. That’s a 70% reduction in data size, which would allow us to

store 3.5 times as much data as before. For shorter keys and values, you can potentially

see even greater percentage savings (overhead is larger relative to actual data stored). 

STORING STRINGS IN HASHES If you find yourself storing a lot of relatively
short strings or numbers as plain STRING values with consistently named keys
like namespace:id, you can store those values in sharded HASHes for signifi-
cant memory reduction in some cases.

We’ve just finished sharding large hashes to reduce their memory use. Next, you’ll

learn how to shard SETs.

Listing 9.9 Sharded IP lookup functions

Get the value in the shard.

Calculate the 
shard to fetch 
our value from.

We set the arguments for the sharded 
calls as global constants to ensure that 
we always pass the same information.

To set the data, we need
to pass the TOTAL_SIZE

and SHARD_SIZE
information, though in
this case TOTAL_SIZE is
unused because our IDs

are numeric.

To fetch the data, 
we need to use the 
same information 
for TOTAL_SIZE 
and SHARD_SIZE 
for general 
sharded keys.

Exercise: Adding other operations

As you saw, getting and setting values in a sharded HASH is easy. Can you add sup-

port for sharded HDEL, HINCRBY, and HINCRBYFLOAT operations? 
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9.2.2 SETs

One common use of an operation known as map-reduce (which I mentioned in chap-

ters 1 and 6) is calculating unique visitors to a website. Rather than waiting until the

end of the day to perform that calculation, we could instead keep a live updated count

of unique visitors as the day goes on. One method to calculate unique visitors in Redis

would use a SET, but a single SET storing many unique visitors would be very large.

In this section, we’ll shard SETs as a way of building a method to count unique visitors

to a website.

 To start, we’ll assume that every visitor already has a unique identifier similar to

the UUIDs that we generated in chapter 2 for our login session cookies. Though we

could use these UUIDs directly in our SET as members and as keys to shard using our

sharding function from section 9.2.1, we’d lose the benefit of the intset encoding.

Assuming that we generated our UUIDs randomly (as we’ve done in previous chap-

ters), we could instead use the first 15 hexadecimal digits from the UUID as a full key.

This should bring up two questions: First, why would we want to do this? And second,

why is this enough?

 For the first question (why we’d want to do this), UUIDs are basically 128-bit num-

bers that have been formatted in an easy-to-read way. If we were to store them, we’d be

storing roughly 16 bytes (or 36 if we stored them as-is) per unique visitor. But by only

storing the first 15 hexadecimal digits3 turned into a number, we’d only be storing 8

bytes per unique visitor. So we save space up front, which we may be able to use later

for other problems. This also lets us use the intset optimization for keeping memory

use down.

 For the second question (why this is enough), it boils down to what are called birth-

day collisions. Put simply: What are the chances of two 128-bit random identifiers match-

ing in the first 56 bits? Mathematically, we can calculate the chances exactly, and as long

as we have fewer than 250 million unique visitors in a given time period (a day in our

case), we’ll have at most a 1% chance of a single match (so if every day we have 250 mil-

lion visitors, about once every 100 days we’ll have about 1 person not counted). If we

have fewer than 25 million unique visitors, then the chance of not counting a user falls

to the point where we’d need to run the site for roughly 2,739 years before we’d miss

counting a single user.

 Now that we’ve decided to use the first 56 bits from the UUID, we’ll build a sharded

SADD function, which we’ll use as part of a larger bit of code to actually count unique

visitors. This sharded SADD function in listing 9.10 will use the same shard key calcula-

tion that we used in section 9.2.1, modified to prefix our numeric ID with a non-

numeric character for shard ID calculation, since our 56-bit IDs aren’t densely packed

(as is the assumption for numeric IDs).

3 Another good question is why 56 and not 64 bits? That’s because Redis will only use intsets for up to 64-bit
signed integers, and the extra work of turning our 64-bit unsigned integer into a signed integer isn’t worth it
in most situations. If you need the extra precision, check out the Python struct module and look at the Q
and q format codes.



220 CHAPTER 9 Reducing memory use

def shard_sadd(conn, base, member, total_elements, shard_size):
shard = shard_key(base,

'x'+str(member), total_elements, shard_size)
return conn.sadd(shard, member)

With a sharded SADD function, we can now keep unique visitor counts. When we want

to count a visitor, we’ll first calculate their shorter ID based on the first 56 bits of their

session UUID. We’ll then determine today’s date and add the ID to the sharded unique

visitor SET for today. If the ID wasn’t already in the SET, we’ll increment today’s unique

visitor count. Our code for keeping track of the unique visitor count can be seen in

the following listing.

SHARD_SIZE = 512

def count_visit(conn, session_id):
today = date.today()
key = 'unique:%s'%today.isoformat()
expected = get_expected(conn, key, today)

id = int(session_id.replace('-', '')[:15], 16)
if shard_sadd(conn, key, id, expected, SHARD_SIZE):

conn.incr(key)

That function works exactly as described, though you’ll notice that we make a call to

get_expected() to determine the number of expected daily visitors. We do this

because web page visits will tend to change over time, and keeping the same number

of shards every day wouldn’t grow as we grow (or shrink if we have significantly fewer

than a million unique visitors daily).

 To address the daily change in expected viewers, we’ll write a function that calculates

a new expected number of unique visitors for each day, based on yesterday’s count.

We’ll calculate this once for any given day, estimating that today will see at least 50%

more visitors than yesterday, rounded up to the next power of 2. Our code for calculat-

ing this can be seen next.

DAILY_EXPECTED = 1000000
EXPECTED = {}

def get_expected(conn, key, today):

Listing 9.10 A sharded SADD function we’ll use as part of a unique visitor counter

Listing 9.11 A function to keep track of the unique visitor count on a daily basis

Listing 9.12 Calculate today’s expected unique visitor count based on yesterday’s count

Actually add the
member to the shard.

Shard the member into 
one of the sharded SETs; 
remember to turn it into 
a string because it isn’t a 
sequential ID.

We stick with a typical 
shard size for the intset 
encoding for SETs.

Get today’s date and
generate the key for

the unique count.

Fetch or calculate the
expected number of
unique views today.

If the ID wasn’t in the 
sharded SET, then we 
increment our unique 
view count.

Add the ID to
the sharded SET.

Calculate the 
56-bit ID for this 
128-bit UUID.

We start with an initial expected number of
daily visits that may be a little high. Keep a local copy 

of any calculated 
expected counts.
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if key in EXPECTED:
return EXPECTED[key]

exkey = key + ':expected'
expected = conn.get(exkey)

if not expected:
yesterday = (today - timedelta(days=1)).isoformat()
expected = conn.get('unique:%s'%yesterday)
expected = int(expected or DAILY_EXPECTED)

expected = 2**int(math.ceil(math.log(expected*1.5, 2)))
if not conn.setnx(exkey, expected):

expected = conn.get(exkey)

EXPECTED[key] = int(expected)
return EXPECTED[key]

Most of that function is reading and massaging data in one way or another, but the over-

all result is that we calculate an expected number of unique views for today by taking

yesterday’s view count, increasing it by 50%, and rounding up to the next power of 2.

If the expected number of views for today has already been calculated, we’ll use that.

 Taking this exact code and adding 1 million unique visitors, Redis will use approx-

imately 9.5 megabytes to store the unique visitor count. Without sharding, Redis

would use 56 megabytes to store the same data (56-bit integer IDs in a single SET).

That’s an 83% reduction in storage with sharding, which would let us store 5.75 times

as much data with the same hardware. 

OTHER METHODS TO CALCULATE UNIQUE VISITOR COUNTS If you have numeric
visitor IDs (instead of UUIDs), and the visitor IDs have relatively low maximum
value, rather than storing your visitor information as sharded SETs, you can
store them as bitmaps using techniques similar to what we describe in the
next section. A Python library for calculating unique visitor counts and other
interesting analytics based on bitmaps can be found at https://github.com/
Doist/bitmapist.

After sharding large SETs of integers to reduce storage, it’s now time to learn how to

pack bits and bytes into STRINGs.

If we’ve already calculated or seen the expected 
number of views for today, use that number.

If someone else has already
calculated the expected

number of views for today,
use that number.

Add 50% to yesterday’s count, and
round up to the next even power
of 2, under the assumption that

view count today should be at least
50% better than yesterday.

Save our calculated expected
number of views back to Redis

for other calls if possible.

Fetch the unique count for
yesterday, or if not available,

use our default 1 million.

Keep a local copy of today’s
expected number of hits, and

return it back to the caller.

If someone else stored 
the expected count for 
today before us, use 
their count instead.

Exercise: Filling out the sharded SET API

For this example, we only needed a single SET command to determine the unique vis-

itor count for a given day. Can you add sharded SREM and SISMEMBER calls? Bonus

points: Assuming that you have two sharded SETs with the same expected total num-

ber of items, as well as the same shard size, you’ll have the same number of shards,

and identical IDs will be in the same shard IDs. Can you add sharded versions of SIN-
TERSTORE, SUNIONSTORE, and SDIFFSTORE?

https://github.com/Doist/bitmapist
https://github.com/Doist/bitmapist
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9.3 Packing bits and bytes

When we discussed sharding HASHes, I briefly mentioned that if we’re storing short

strings or counters as STRING values with keys like namespace:id, we could use

sharded HASHes as a way of reducing memory use. But let’s say that we wanted to store

a short fixed amount of information for sequential IDs. Can we use even less memory

than sharded HASHes?

 In this section, we’ll use sharded Redis STRINGs to store location information for

large numbers of users with sequential IDs, and discuss how to perform aggregate

counts over this stored data. This example shows how we can use sharded Redis

STRINGs to store, for example, location information for users on Twitter.

 Before we start storing our data, we need to revisit four commands that’ll let us

efficiently pack and update STRINGs in Redis: GETRANGE, SETRANGE, GETBIT, and SET-

BIT. The GETRANGE command lets us read a substring from a stored STRING. SETRANGE

will let us set the data stored at a substring of the larger STRING. Similarly, GETBIT will

fetch the value of a single bit in a STRING, and SETBIT will set an individual bit. With

these four commands, we can use Redis STRINGs to store counters, fixed-length

strings, Booleans, and more in as compact a format as is possible without compres-

sion. With our brief review out of the way, let’s talk about what information we’ll store.

9.3.1 What location information should we store?

When I mentioned locations, you were probably wondering what I meant. Well, we

could store a variety of different types of locations. With 1 byte, we could store country-

level information for the world. With 2 bytes, we could store region/state-level infor-

mation. With 3 bytes, we could store regional postal codes for almost every country. And

with 4 bytes, we could store latitude/longitude information down to within about 2

meters or 6 feet. 

 Which level of precision to use will depend on our given use case. For the sake of

simplicity, we’ll start with just 2 bytes for region/state-level information for countries

around the world. As a starter, listing 9.13 shows some base data for ISO3 country

codes around the world, as well as state/province information for the United States

and Canada.

COUNTRIES = '''
ABW AFG AGO AIA ALA ALB AND ARE ARG ARM ASM ATA ATF ATG AUS AUT AZE BDI
BEL BEN BES BFA BGD BGR BHR BHS BIH BLM BLR BLZ BMU BOL BRA BRB BRN BTN
BVT BWA CAF CAN CCK CHE CHL CHN CIV CMR COD COG COK COL COM CPV CRI CUB
CUW CXR CYM CYP CZE DEU DJI DMA DNK DOM DZA ECU EGY ERI ESH ESP EST ETH
FIN FJI FLK FRA FRO FSM GAB GBR GEO GGY GHA GIB GIN GLP GMB GNB GNQ GRC
GRD GRL GTM GUF GUM GUY HKG HMD HND HRV HTI HUN IDN IMN IND IOT IRL IRN
IRQ ISL ISR ITA JAM JEY JOR JPN KAZ KEN KGZ KHM KIR KNA KOR KWT LAO LBN
LBR LBY LCA LIE LKA LSO LTU LUX LVA MAC MAF MAR MCO MDA MDG MDV MEX MHL
MKD MLI MLT MMR MNE MNG MNP MOZ MRT MSR MTQ MUS MWI MYS MYT NAM NCL NER
NFK NGA NIC NIU NLD NOR NPL NRU NZL OMN PAK PAN PCN PER PHL PLW PNG POL

Listing 9.13 Base location tables we can expand as necessary 
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PRI PRK PRT PRY PSE PYF QAT REU ROU RUS RWA SAU SDN SEN SGP SGS SHN SJM
SLB SLE SLV SMR SOM SPM SRB SSD STP SUR SVK SVN SWE SWZ SXM SYC SYR TCA
TCD TGO THA TJK TKL TKM TLS TON TTO TUN TUR TUV TWN TZA UGA UKR UMI URY
USA UZB VAT VCT VEN VGB VIR VNM VUT WLF WSM YEM ZAF ZMB ZWE'''.split()

STATES = {
'CAN':'''AB BC MB NB NL NS NT NU ON PE QC SK YT'''.split(),
'USA':'''AA AE AK AL AP AR AS AZ CA CO CT DC DE FL FM GA GU HI IA ID

IL IN KS KY LA MA MD ME MH MI MN MO MP MS MT NC ND NE NH NJ NM NV NY OH
OK OR PA PR PW RI SC SD TN TX UT VA VI VT WA WI WV WY'''.split(),
}

I introduce these tables of data initially so that if/when we’d like to add additional state,

region, territory, or province information for countries we’re interested in, the format

and method for doing so should be obvious. Looking at the data tables, we initially define

them as strings. But these strings are converted into lists by being split on whitespace by

our call to the split() method on strings without any arguments. Now that we have some

initial data, how are we going to store this information on a per-user basis?

 Let’s say that we’ve determined that user 139960061 lives in California, U.S., and

we want to store this information for that user. To store the information, we first need

to pack the data into 2 bytes by first discovering the code for the United States, which

we can calculate by finding the index of the United States’ ISO3 country code in our

COUNTRIES list. Similarly, if we have state information for a user, and we also have state

information in our tables, we can calculate the code for the state by finding its index

in the table. The next listing shows the function for turning country/state informa-

tion into a 2-byte code.

def get_code(country, state):
cindex = bisect.bisect_left(COUNTRIES, country)
if cindex > len(COUNTRIES) or COUNTRIES[cindex] != country:

cindex = -1
cindex += 1

sindex = -1
if state and country in STATES:

states = STATES[country]
sindex = bisect.bisect_left(states, state)
if sindex > len(states) or states[sindex] != state:

sindex = -1
sindex += 1)

return chr(cindex) + chr(sindex)

Listing 9.14 ISO3 country codes

State information for
the United States.A table of ISO3 country codes. Calling split() will split the string 

on whitespace, turning the string into a list of country codes.

Province/territory information for Canada.

Find the offset 
for the country.

If the country isn’t found,
then set its index to be -1.

Find the offset 
for the state.

Because uninitialized
data in Redis will return

as nulls, we want “not
found” to be 0 and the

first country to be 1.

Pull the state information for
the country, if it’s available.

Handle not-found states
like we did countries.

Keep not-found states at
0 and found states > 0.

The chr() function will turn 
an integer value of 0..255 
into the ASCII character 
with that same value.
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Location code calculation isn’t that interesting or difficult; it’s primarily a matter of

finding offsets in lookup tables, and then dealing with “not found” data. Next, let’s

talk about actually storing our packed location data.

9.3.2 Storing packed data

After we have our packed location codes, we only need to store them in STRINGs with

SETRANGE. But before we do so, we have to think for a moment about how many users

we’re going to be storing information about. For example, suppose that Twitter has 750

million users today (based on the observation that recently created users have IDs

greater than 750 million); we’d need over 1.5 gigabytes of space to store location infor-

mation for all Twitter users. Though most operating systems are able to reasonably allo-

cate large regions of memory, Redis limits us to 512 megabyte STRINGs, and due to

Redis’s clearing out of data when setting a value beyond the end of an existing STRING,

setting the first value at the end of a long STRING will take more time than would be

expected for a simple SETBIT call. Instead, we can use a technique similar to what we

used in section 9.2.1, and shard our data across a collection of STRINGs. 

 Unlike when we were sharding HASHes and SETs, we don’t have to worry about

being efficient by keeping our shards smaller than a few thousand elements, since we

can access an element directly without decoding any others. Similarly, we can write to

a given offset efficiently. Instead, our concern is more along the lines of being effi-

cient at a larger scale—specifically what will balance potential memory fragmentation,

as well as minimize the number of keys that are necessary. For this example, we’ll store

location information for 220 users (just over 1 million entries) per STRING, which will

use about 2 megabytes per STRING. In the next listing, we see the code for updating

location information for a user.

USERS_PER_SHARD = 2**20

def set_location(conn, user_id, country, state):
code = get_code(country, state)

shard_id, position = divmod(user_id, USERS_PER_SHARD)
offset = position * 2

pipe = conn.pipeline(False)
pipe.setrange('location:%s'%shard_id, offset, code)

tkey = str(uuid.uuid4())
pipe.zadd(tkey, 'max', user_id)
pipe.zunionstore('location:max',

[tkey, 'location:max'], aggregate='max')
pipe.delete(tkey)

pipe.execute()

For the most part, there shouldn’t be anything surprising there. We calculate the loca-

tion code to store for a user, calculate the shard and the individual shard offset for the

user, and then store the location code in the proper location for the user. The only thing

Listing 9.15 A function for storing location data in sharded STRINGs

Set the size of 
each shard.

Get the location
code to store for

the user.

Find the shard ID and
position of the user in

the specific shard.

Set the value in the
proper sharded
location table.

Calculate the 
offset of the 
user’s data.

Update a ZSET that 
stores the maximum 
user ID seen so far.
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that’s strange and may not seem necessary is that we also update a ZSET that stores the

highest-numbered user ID that has been seen. This is primarily important when calcu-

lating aggregates over everyone we have information about (so we know when to stop). 

9.3.3 Calculating aggregates over sharded STRINGs

To calculate aggregates, we have two use cases. Either we’ll calculate aggregates over

all of the information we know about, or we’ll calculate over a subset. We’ll start by cal-

culating aggregates over the entire population, and then we’ll write code that calcu-

lates aggregates over a smaller group.

 To calculate aggregates over everyone we have information for, we’ll recycle some

code that we wrote back in section 6.6.4, specifically the readblocks() function,

which reads blocks of data from a given key. Using this function, we can perform a sin-

gle command and round trip with Redis to fetch information about thousands of

users at one time. Our function to calculate aggregates with this block-reading func-

tion is shown next.

def aggregate_location(conn):
countries = defaultdict(int)
states = defaultdict(lambda:defaultdict(int))

max_id = int(conn.zscore('location:max', 'max'))
max_block = max_id // USERS_PER_SHARD

for shard_id in xrange(max_block + 1):
for block in readblocks(conn, 'location:%s'%shard_id):

for offset in xrange(0, len(block)-1, 2):
code = block[offset:offset+2]
update_aggregates(countries, states, [code])

return countries, states

This function to calculate aggregates over country- and state-level information for

everyone uses a structure called a defaultdict, which we also first used in chapter 6

to calculate aggregates about location information before writing back to Redis.

Inside this function, we refer to a helper function that actually updates the aggregates

and decodes location codes back into their original ISO3 country codes and local state

abbreviations, which can be seen in this next listing.

def update_aggregates(countries, states, codes):
for code in codes:

if len(code) != 2:              
continue

Listing 9.16 A function to aggregate location information for everyone

Listing 9.17 Convert location codes back to country/state information

Initialize two special structures that
will allow us to update existing and

missing counters quickly.Fetch the maximum
user ID known, and

use that to calculate
the maximum shard

ID that we need
to visit.

Sequentially check
every shard...

Extract each code from
the block and look up the

original location information
(like US, CA for someone
who lives in California).

... reading each block.

Update our aggregates.

Only look up codes 
that could be valid.
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country = ord(code[0]) - 1
state = ord(code[1]) - 1

if country < 0 or country >= len(COUNTRIES):
continue

country = COUNTRIES[country]       
countries[country] += 1

if country not in STATES:
continue

if state < 0 or state >= STATES[country]:
continue

state = STATES[country][state]
states[country][state] += 1

With a function to convert location codes back into useful location information and

update aggregate information, we have the building blocks to perform aggregates

over a subset of users. As an example, say that we have location information for many

Twitter users. And also say that we have follower information for each user. To dis-

cover information about where the followers of a given user are located, we’d only

need to fetch location information for those users and compute aggregates similar to

our global aggregates. The next listing shows a function that will aggregate location

information over a provided list of user IDs.

def aggregate_location_list(conn, user_ids):
pipe = conn.pipeline(False)
countries = defaultdict(int)
states = defaultdict(lambda: defaultdict(int))

for i, user_id in enumerate(user_ids):
shard_id, position = divmod(user_id, USERS_PER_SHARD)
offset = position * 2

pipe.substr('location:%s'%shard_id, offset, offset+1)

if (i+1) % 1000 == 0:
update_aggregates(countries, states, pipe.execute())

update_aggregates(countries, states, pipe.execute())

return countries, states

This technique of storing fixed-length data in sharded STRINGs can be useful. Though

we stored multiple bytes of data per user, we can use GETBIT and SETBIT identically to

store individual bits, or even groups of bits.

Listing 9.18 A function to aggregate location information over provided user IDs

Calculate the actual offset of the 
country and state in the lookup tables.If the country is out of the

range of valid countries,
continue to the next code.

Fetch the ISO3 
country code.

Count this user
in the decoded

country.

If we don’t have 
state information 
or if the state is 
out of the range of 
valid states for the 
country, continue 
to the next code.

Fetch the state
name from the code.

Increment the
count for the state.

Set up the pipeline so 
that we aren’t making 
too many round trips 
to Redis.

Set up our base
aggregates as
we did before.

Calculate the shard ID
and offset into the shard

for this user’s location.

Send another pipelined
command to fetch the location

information for the user.

Every 1000 requests, we’ll
actually update the

aggregates using the helper
function we defined before.

Handle the last hunk of
users that we might
have missed before.

Return the aggregates.
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9.4 Summary

In this chapter, we’ve explored a number of ways to reduce memory use in Redis using

short data structures, sharding large structures to make them small again, and by

packing data directly into STRINGs.

 If there’s one thing that you should take away from this chapter, it’s that by being

careful about how you store your data, you can significantly reduce the amount of

memory that Redis needs to support your applications.

 In the next chapter, we’ll revisit a variety of topics to help Redis scale to larger

groups of machines, including read slaves, sharding data across multiple masters, and

techniques for scaling a variety of different types of queries.
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Scaling Redis

As your use of Redis grows, there may come a time when you’re no longer able to

fit all of your data into a single Redis server, or when you need to perform more

reads and/or writes than Redis can sustain. When this happens, you have a few

options to help you scale Redis to your needs. 

 In this chapter, we’ll cover techniques to help you to scale your read queries,

write queries, total memory available, and techniques for scaling a selection of

more complicated queries.

 Our first task is addressing those problems where we can store all of the data we

need, and we can handle writes without issue, but where we need to perform more

read queries in a second than a single Redis server can handle.

10.1 Scaling reads

In chapter 8 we built a social network that offered many of the same features and

functionalities of Twitter. One of these features was the ability for users to view their

home timeline as well as their profile timeline. When viewing these timelines, we’ll be

This chapter covers

■ Scaling reads

■ Scaling writes and memory capacity

■ Scaling complex queries
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fetching 30 posts at a time. For a small social network, this wouldn’t be a serious issue,

since we could still support anywhere from 3,000–10,000 users fetching timelines

every second (if that was all that Redis was doing). But for a larger social network, it

wouldn’t be unexpected to need to serve many times that number of timeline fetches

every second.

 In this section, we’ll discuss the use of read slaves to support scaling read queries

beyond what a single Redis server can handle.

 Before we get into scaling reads, let’s first review a few opportunities for improving

performance before we must resort to using additional servers with slaves to scale our

queries:

■ If we’re using small structures (as we discussed in chapter 9), first make sure

that our max ziplist size isn’t too large to cause performance penalties.

■ Remember to use structures that offer good performance for the types of que-

ries we want to perform (don’t treat LISTs like SETs; don’t fetch an entire HASH

just to sort on the client—use a ZSET; and so on).

■ If we’re sending large objects to Redis for caching, consider compressing the

data to reduce network bandwidth for reads and writes (compare lz4, gzip, and

bzip2 to determine which offers the best trade-offs for size/performance for

our uses).

■ Remember to use pipelining (with or without transactions, depending on our

requirements) and connection pooling, as we discussed in chapter 4.

When we’re doing everything that we can to ensure that reads and writes are fast, it’s

time to address the need to perform more read queries. The simplest method to

increase total read throughput available to Redis is to add read-only slave servers. If

you remember from chapter 4, we can run additional servers that connect to a master,

receive a replica of the master’s data, and be kept up to date in real time (more or

less, depending on network bandwidth). By running our read queries against one of

several slaves, we can gain additional read query capacity with every new slave.

REMEMBER: WRITE TO THE MASTER When using read slaves, and generally
when using slaves at all, you must remember to write to the master Redis
server only. By default, attempting to write to a Redis server configured as a
slave (even if it’s also a master) will cause that server to reply with an error.
We’ll talk about using a configuration option to allow for writes to slave serv-
ers in section 10.3.1, but generally you should run with slave writes disabled;
writing to slaves is usually an error. 

Chapter 4 has all the details on configuring Redis for replication to slave servers, how

it works, and some ideas for scaling to many read slaves. Briefly, we can update the

Redis configuration file with a line that reads slaveof host port, replacing host and

port with the host and port of the master server. We can also configure a slave by run-

ning the SLAVEOF host port command against an existing server. Remember: When a

slave connects to a master, any data that previously existed on the slave will be
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discarded. To disconnect a slave from a master to stop it from slaving, we can run

SLAVEOF no one.

 One of the biggest issues that arises when using multiple Redis slaves to serve data

is what happens when a master temporarily or permanently goes down. Remember that

when a slave connects, the Redis master initiates a snapshot. If multiple slaves connect

before the snapshot completes, they’ll all receive the same snapshot. Though this is

great from an efficiency perspective (no need to create multiple snapshots), sending

multiple copies of a snapshot at the same time to multiple slaves can use up the majority

of the network bandwidth available to the server. This could cause high latency to/from

the master, and could cause previously connected slaves to become disconnected.

 One method of addressing the slave resync issue is to reduce the total data volume

that’ll be sent between the master and its slaves. This can be done by setting up inter-

mediate replication servers to form a type of tree, as can be seen in figure 10.1, which

we borrow from chapter 4.

 These slave trees will work, and can be necessary if we’re looking to replicate to a

different data center (resyncing across a slower WAN link will take resources, which

should be pushed off to an intermediate slave instead of running against the root mas-

ter). But slave trees suffer from having a complex network topology that makes manu-

ally or automatically handling failover situations difficult.

 An alternative to building slave trees is to use compression across our network links

to reduce the volume of data that needs to be transferred. Some users have found that

using SSH to tunnel a connection with compression dropped bandwidth use signifi-

cantly. One company went from using 21 megabits of network bandwidth for replicat-

ing to a single slave to about 1.8 megabits (http://mng.bz/2ivv). If you use this

method, you’ll want to use a mechanism that automatically reconnects a disconnected

SSH connection, of which there are several options to choose from.

Redis master

Slave-1

Slave-a Slave-b Slave-c

Slave-2 Slave-3 

Slave-d Slave-e Slave-f Slave-g Slave-h Slave-i

Figure 10.1 An example Redis master/slave replica tree with nine lowest-level slaves and three 

intermediate replication helper servers

http://mng.bz/2ivv
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ENCRYPTION AND COMPRESSION OVERHEAD Generally, encryption overhead for
SSH tunnels shouldn’t be a huge burden on your server, since AES-128 can
encrypt around 180 megabytes per second on a single core of a 2.6 GHz Intel
Core 2 processor, and RC4 can encrypt about 350 megabytes per second on
the same machine. Assuming that you have a gigabit network link, roughly
one moderately powerful core can max out the connection with encryption.
Compression is where you may run into issues, because SSH compression
defaults to gzip. At compression level 1 (you can configure SSH to use a spe-
cific compression level; check the man pages for SSH), our trusty 2.6 GHz pro-
cessor can compress roughly 24–52 megabytes per second of a few different
types of Redis dumps (the initial sync), and 60–80 megabytes per second of a
few different types of append-only files (streaming replication). Remember
that, though higher compression levels may compress more, they’ll also use
more processor, which may be an issue for high-throughput low-processor
machines. Generally, I’d recommend using compression levels below 5 if pos-
sible, since 5 still provides a 10–20% reduction in total data size over level 1,
for roughly 2–3 times as much processing time. Compression level 9 typically
takes 5–10 times the time for level 1, for compression only 1–5% better than
level 5 (I stick to level 1 for any reasonably fast network connection). 

USING COMPRESSION WITH OPENVPN At first glance, OpenVPN’s support for
AES encryption and compression using lzo may seem like a great turnkey solu-
tion to offering transparent reconnections with compression and encryption
(as opposed to using one of the third-party SSH reconnecting scripts). Unfor-
tunately, most of the information that I’ve been able to find has suggested
that performance improvements when enabling lzo compression in OpenVPN

are limited to roughly 25–30% on 10 megabit connections, and effectively
zero improvement on faster connections. 

One recent addition to the list of Redis tools that can be used to help with replication

and failover is known as Redis Sentinel. Redis Sentinel is a mode of the Redis server

binary where it doesn’t act as a typical Redis server. Instead, Sentinel watches the

behavior and health of a number of masters and their slaves. By using PUBLISH/SUB-

SCRIBE against the masters combined with PING calls to slaves and masters, a collec-

tion of Sentinel processes independently discover information about available slaves

and other Sentinels. Upon master failure, a single Sentinel will be chosen based on

information that all Sentinels have and will choose a new master server from the exist-

ing slaves. After that slave is turned into a master, the Sentinel will move the slaves

over to the new master (by default one at a time, but this can be configured to a

higher number).

 Generally, the Redis Sentinel service is intended to offer automated failover from

a master to one of its slaves. It offers options for notification of failover, calling user-

provided scripts to update configurations, and more.

 Now that we’ve made an attempt to scale our read capacity, it’s time to look at how

we may be able to scale our write capacity as well.
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10.2 Scaling writes and memory capacity

Back in chapter 2, we built a system that could automatically cache rendered web

pages inside Redis. Fortunately for us, it helped reduce page load time and web page

processing overhead. Unfortunately, we’ve come to a point where we’ve scaled our

cache up to the largest single machine we can afford, and must now split our data

among a group of smaller machines.

SCALING WRITE VOLUME Though we discuss sharding in the context of
increasing our total available memory, these methods also work to increase
write throughput if we’ve reached the limit of performance that a single
machine can sustain. 

In this section, we’ll discuss a method to scale memory and write throughput with

sharding, using techniques similar to those we used in chapter 9.

 To ensure that we really need to scale our write capacity, we should first make sure

we’re doing what we can to reduce memory and how much data we’re writing:

■ Make sure that we’ve checked all of our methods to reduce read data volume

first.

■ Make sure that we’ve moved larger pieces of unrelated functionality to different

servers (if we’re using our connection decorators from chapter 5 already, this

should be easy).

■ If possible, try to aggregate writes in local memory before writing to Redis, as we

discussed in chapter 6 (which applies to almost all analytics and statistics calcu-

lation methods).

■ If we’re running into limitations with WATCH/MULTI/EXEC, consider using locks

as we discussed in chapter 6 (or consider using Lua, as we’ll talk about in chap-

ter 11).

■ If we’re using AOF persistence, remember that our disk needs to keep up with

the volume of data we’re writing (400,000 small commands may only be a few

megabytes per second, but 100,000 x 1 KB writes is 100 megabytes per second).

Now that we’ve done everything we can to reduce memory use, maximize perfor-

mance, and understand the limitations of what a single machine can do, it’s time to

actually shard our data to multiple machines. The methods that we use to shard our

data to multiple machines rely on the number of Redis servers used being more or

less fixed. If we can estimate that our write volume will, for example, increase 4 times

every 6 months, we can preshard our data into 256 shards. By presharding into 256

shards, we’d have a plan that should be sufficient for the next 2 years of expected

growth (how far out to plan ahead for is up to you). 

PRESHARDING FOR GROWTH When presharding your system in order to pre-
pare for growth, you may be in a situation where you have too little data to
make it worth running as many machines as you could need later. To still be
able to separate your data, you can run multiple Redis servers on a single
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machine for each of your shards, or you can use multiple Redis databases
inside a single Redis server. From this starting point, you can move to multi-
ple machines through the use of replication and configuration management
(see section 10.2.1). If you’re running multiple Redis servers on a single
machine, remember to have them listen on different ports, and make sure
that all servers write to different snapshot files and/or append-only files. 

The first thing that we need to do is to talk about how we’ll define our shard

configuration.

10.2.1 Handling shard configuration

As you may remember from chapter 5, we wrote a method to create and use named

Redis configurations automatically. This method used a Python decorator to fetch

configuration information, compare it with preexisting configuration information,

and create or reuse an existing connection. We’ll extend this idea to add support for

sharded connections. With these changes, we can use much of our code developed in

chapter 9 with minor changes.

 To get started, first let’s make a simple function that uses the same configuration

layout that we used in our connection decorator from chapter 5. If you remember, we

use JSON-encoded dictionaries to store connection information for Redis in keys of

the format config:redis:<component>. Pulling out the connection management

part of the decorator, we end up with a simple function to create or reuse a Redis con-

nection, based on a named configuration, shown here.

def get_redis_connection(component, wait=1):
key = 'config:redis:' + component
old_config = CONFIGS.get(key, object())
config = get_config(

config_connection, 'redis', component, wait)

if config != old_config:
REDIS_CONNECTIONS[key] = redis.Redis(**config)

return REDIS_CONNECTIONS.get(key)

This simple function fetches the previously known as well as the current configura-

tion. If they’re different, it updates the known configuration, creates a new connec-

tion, and then stores and returns that new connection. If the configuration hasn’t

changed, it returns the previous connection.

 When we have the ability to fetch connections easily, we should also add support

for the creation of sharded Redis connections, so even if our later decorators aren’t

useful in every situation, we can still easily create and use sharded connections. To

connect to a new sharded connection, we’ll use the same configuration methods,

though sharded configuration will be a little different. For example, shard 7 of com-

ponent logs will be stored at a key named config:redis:logs:7. This naming

Listing 10.1 A function to get a Redis connection based on a named configuration

Fetch the old 
configuration, if any.Get the new

configuration,
if any.

If the new and old
configuration don’t

match, create a new
connection.

Return the 
desired 
connection 
object.
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scheme will let us reuse the existing connection and configuration code we already

have. Our function to get a sharded connection is in the following listing.

def get_sharded_connection(component, key, shard_count, wait=1):
shard = shard_key(component, 'x'+str(key), shard_count, 2)
return get_redis_connection(shard, wait)

Now that we have a simple method of fetching a connection to a Redis server that’s

sharded, we can create a decorator like we saw in chapter 5 that creates a sharded con-

nection automatically.

10.2.2 Creating a server-sharded connection decorator

Now that we have a method to easily fetch a sharded connection, let’s use it to build a

decorator to automatically pass a sharded connection to underlying functions.

 We’ll perform the same three-level function decoration we used in chapter 5,

which will let us use the same kind of “component” passing we used there. In addition

to component information, we’ll also pass the number of Redis servers we’re going to

shard to. The following listing shows the details of our shard-aware connection deco-

rator.

def sharded_connection(component, shard_count, wait=1):
def wrapper(function):

@functools.wraps(function)
def call(key, *args, **kwargs):

conn = get_sharded_connection(
component, key, shard_count, wait)

return function(conn, key, *args, **kwargs)
return call

return wrapper

Because of the way we constructed our connection decorator, we can decorate our

count_visit() function from chapter 9 almost completely unchanged. We need to be

careful because we’re keeping aggregate count information, which is fetched and/or

updated by our get_expected() function. Because the information stored will be

used and reused on different days for different users, we need to use a nonsharded

connection for it. The updated and decorated count_visit() function as well as the

decorated and slightly updated get_expected() function are shown next.

Listing 10.2 Fetch a connection based on shard information

Listing 10.3 A shard-aware connection decorator

Return the connection.
Calculate the shard ID of the form

<component>:<shard>.

Our decorator will take a component name,
as well as the number of shards desired.

We’ll then create a
wrapper that will
actually decorate

the function.

Copy some useful
metadata from the

original function to the
configuration handler.

Fetch the sharded connection.

Return a function that can
wrap functions that need

a sharded connection.

Return the 
fully wrapped 
function.

Actually call the function,
passing the connection

and existing arguments.

Create the 
function that 
will calculate 
a shard ID for 
keys, and set up 
the connection 
manager.
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@sharded_connection('unique', 16)
def count_visit(conn, session_id):

today = date.today()
key = 'unique:%s'%today.isoformat()
conn2, expected = get_expected(key, today)

id = int(session_id.replace('-', '')[:15], 16)
if shard_sadd(conn, key, id, expected, SHARD_SIZE):

conn2.incr(key)

@redis_connection('unique')
def get_expected(conn, key, today):

'all of the same function body as before, except the last line'
return conn, EXPECTED[key]

In our example, we’re sharding our data out to 16 different machines for the unique

visit SETs, whose configurations are stored as JSON-encoded strings at keys named

config:redis:unique:0 to config:redis:unique:15. For our daily count informa-

tion, we’re storing them in a nonsharded Redis server, whose configuration informa-

tion is stored at key config:redis:unique.

MULTIPLE REDIS SERVERS ON A SINGLE MACHINE This section discusses shard-
ing writes to multiple machines in order to increase total memory available
and total write capacity. But if you’re feeling limited by Redis’s single-
threaded processing limit (maybe because you’re performing expensive
searches, sorts, or other queries), and you have more cores available for pro-
cessing, more network available for communication, and more available disk
I/O for snapshots/AOF, you can run multiple Redis servers on a single
machine. You only need to configure them to listen on different ports and
ensure that they have different snapshot/AOF configurations. 

ALTERNATE METHODS OF HANDLING UNIQUE VISIT COUNTS OVER TIME With the
use of SETBIT, BITCOUNT, and BITOP, you can actually scale unique visitor
counts without sharding by using an indexed lookup of bits, similar to what
we did with locations in chapter 9. A library that implements this in Python
can be found at https://github.com/Doist/bitmapist.

Now that we have functions to get regular and sharded connections, as well as decora-

tors to automatically pass regular and sharded connections, using Redis connections

of multiple types is significantly easier. Unfortunately, not all operations that we need

to perform on sharded datasets are as easy as a unique visitor count. In the next sec-

tion, we’ll talk about scaling search in two different ways, as well as how to scale our

social network example.

Listing 10.4 A machine and key-sharded count_visit() function

We’ll shard this to 16 different 
machines, which will automati-
cally shard to multiple keys on 
each machine.

Our
changed call to
get_expected().

Use the returned
nonsharded

connection to
increment our
unique counts.

Use a nonsharded 
connection to get_expected().

Also return the nonsharded connection 
so that count_visit() can increment our 
unique count as necessary.

https://github.com/Doist/bitmapist
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10.3 Scaling complex queries

As we scale out a variety of services with Redis, it’s not uncommon to run into situa-

tions where sharding our data isn’t enough, where the types of queries we need to exe-

cute require more work than just setting or fetching a value. In this section, we’ll

discuss one problem that’s trivial to scale out, and two problems that take more work.

 The first problem that we’ll scale out is our search engine from chapter 7, where

we have machines with enough memory to hold our index, but we need to execute

more queries than our server can currently handle.

10.3.1 Scaling search query volume

As we expand our search engine from chapter 7 with SORT, using the ZSET-based

scored search, our ad-targeting search engine (or even the job-search system), at some

point we may come to a point where a single server isn’t capable of handling the num-

ber of queries per second required. In this section, we’ll talk about how to add query

slaves to further increase our capability to serve more search requests.

 In section 10.1, you saw how to scale read queries against Redis by adding read

slaves. If you haven’t already read section 10.1, you should do so before continuing.

After you have a collection of read slaves to perform queries against, if you’re running

Redis 2.6 or later, you’ll immediately notice that performing search queries will fail.

This is because performing a search as discussed in chapter 7 requires performing

SUNIONSTORE, SINTERSTORE, SDIFFSTORE, ZINTERSTORE, and/or ZUNIONSTORE queries,

all of which write to Redis.

 In order to perform writes against Redis 2.6 and later, we’ll need to update our Redis

slave configuration. In the Redis configuration file, there’s an option to disable/enable

writing to slaves. This option is called slave-read-only, and it defaults to yes. By chang-

ing slave-read-only to no and restarting our slaves, we should now be able to perform

standard search queries against slave Redis servers. Remember that we cache the results

of our queries, and these cached results are only available on the slave that the queries

were run on. So if we intend to reuse cached results, we’ll probably want to perform

some level of session persistence (where repeated requests from a client go to the same

web server, and that web server always makes requests against the same Redis server).

 In the past, I’ve used this method to scale an ad-targeting engine quickly and eas-

ily. If you decide to go this route to scale search queries, remember to pay attention to

the resync issues discussed in section 10.1.

 When we have enough memory in one machine and our operations are read-only

(or at least don’t really change the underlying data to be used by other queries), add-

ing slaves can help us to scale out. But sometimes data volumes can exceed memory

capacity, and we still need to perform complex queries. How can we scale search when

we have more data than available memory? 

10.3.2 Scaling search index size

If there’s one thing we can expect of a search engine, it’s that the search index will

grow over time. As search indexes grow, the memory used by those search indexes also
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grows. Depending on the speed of the growth, we may or may not be able to keep buy-

ing/renting larger computers to run our index on. But for many of us, getting bigger

and bigger computers is just not possible.

 In this section, we’ll talk about how to structure our data to support sharded

search queries, and will include code to execute sharded search queries against a col-

lection of sharded Redis masters (or slaves of sharded masters, if you followed the

instructions in section 10.3.1).

 In order to shard our search queries, we must first shard our indexes so that for

each document that we index, all of the data about that document is on the same

shard. It turns out that our index_document() function from chapter 7 takes a con-

nection object, which we can shard by hand with the docid that’s passed. Or, because

index_document() takes a connection followed by the docid, we can use our auto-

matic sharding decorator from listing 10.3 to handle sharding for us.

 When we have our documents indexed across shards, we only need to perform

queries against the shards to get the results. The details of what we need to do will

depend on our type of index—whether it’s SORT-based or ZSET-based. Let’s first update

our SORT-based index for sharded searches.

SHARDING SORT-BASED SEARCH

As is the case with all sharded searches, we need a way to combine the results of the

sharded searches. In our implementation of search_and_sort() from chapter 7, we

received a total count of results and the document IDs that were the result of the

required query. This is a great building block to start from, but overall we’ll need to

write functions to perform the following steps:

1 Perform the search and fetch the values to sort on for a query against a single

shard.

2 Execute the search on all shards.

3 Merge the results of the queries, and choose the subset desired.

First, let’s look at what it takes to perform the search and fetch the values from a single

shard.

 Because we already have search_and_sort() from chapter 7, we can start by using

that to fetch the result of a search. After we have the results, we can then fetch the

data associated with each search result. But we have to be careful about pagination,

because we don’t know which shard each result from a previous search came from. So,

in order to always return the correct search results for items 91–100, we need to fetch

the first 100 search results from every shard. Our code for fetching all of the necessary

results and data can be seen in the next listing.

def search_get_values(conn, query, id=None, ttl=300, sort="-updated",
start=0, num=20):

Listing 10.5 SORT-based search that fetches the values that were sorted

We need to take all of the same parameters
to pass on to search_and_sort().
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count, docids, id = search_and_sort(
conn, query, id, ttl, sort, 0, start+num)

key = "kb:doc:%s"
sort = sort.lstrip('-')

pipe = conn.pipeline(False)
for docid in docids:

pipe.hget(key%docid, sort)
sort_column = pipe.execute()

data_pairs = zip(docids, sort_column)
return count, data_pairs, id

This function fetches all of the information necessary from a single shard in prepara-

tion for the final merge. Our next step is to execute the query on all of the shards.

 To execute a query on all of our shards, we have two options. We can either run

each query on each shard one by one, or we can execute our queries across all of our

shards simultaneously. To keep it simple, we’ll execute our queries one by one on

each shard, collecting the results together in the next listing.

def get_shard_results(component, shards, query, ids=None, ttl=300,
sort="-updated", start=0, num=20, wait=1):

count = 0
data = []
ids = ids or shards * [None]
for shard in xrange(shards):

conn = get_redis_connection('%s:%s'%(component, shard), wait)
c, d, i = search_get_values(

conn, query, ids[shard], ttl, sort, start, num)

count += c
data.extend(d)
ids[shard] = i

return count, data, ids

This function works as explained: we execute queries against each shard one at a time

until we have results from all shards. Remember that in order to perform queries against

all shards, we must pass the proper shard count to the get_shard_results() function.

Listing 10.6 A function to perform queries against all shards

First get the results 
of a search and sort.

Fetch the data 
that the results 
were sorted by.

Pair up the 
document IDs with 
the data that it was 
sorted by.

Return the count, data, and 
cache ID of the results.

In order to know what servers to connect
to, we’ll assume that all of our shard

information is kept in the standard
configuration location.

Prepare
structures to

hold all of our
fetched data.

Use cached results if
we have any;

otherwise, start over.

Get or create a
connection to the

desired shard.

Fetch the search results
and their sort values.

Combine this shard’s 
results with all of the 
other results.

Return the raw 
results from all 
of the shards.

Exercise: Run queries in parallel

Python includes a variety of methods to run calls against Redis servers in parallel.

Because most of the work with performing a query is actually just waiting for Redis

to respond, we can easily use Python’s built-in threading and queue libraries to send

requests to the sharded Redis servers and wait for a response. Can you write a version

of get_shard_results() that uses threads to fetch results from all shards in parallel?
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Now that we have all of the results from all of the queries, we only need to re-sort our

results so that we can get an ordering on all of the results that we fetched. This isn’t

terribly complicated, but we have to be careful about numeric and non-numeric sorts,

handling missing values, and handling non-numeric values during numeric sorts. Our

function for merging results and returning only the requested results is shown in the

next listing.

def to_numeric_key(data):
try:

return Decimal(data[1] or '0')
except:

return Decimal('0')

def to_string_key(data):
return data[1] or ''

def search_shards(component, shards, query, ids=None, ttl=300,
sort="-updated", start=0, num=20, wait=1):

count, data, ids = get_shard_results(
component, shards, query, ids, ttl, sort, start, num, wait)

reversed = sort.startswith('-')
sort = sort.strip('-')
key = to_numeric_key
if sort not in ('updated', 'id', 'created'):

key = to_string_key

data.sort(key=key, reverse=reversed)

results = []
for docid, score in data[start:start+num]:

results.append(docid)

return count, results, ids

In order to handle sorting properly, we needed to write two function to convert data

returned by Redis into values that could be consistently sorted against each other.

You’ll notice that we chose to use Python Decimal values for sorting numerically. This

is because we get the same sorted results with less code, and transparent support for

handling infinity correctly. From there, all of our code does exactly what’s expected:

we fetch the results, prepare to sort the results, sort the results, and then return only

those document IDs from the search that are in the requested range.

 Now that we have a version of our SORT-based search that works across sharded

Redis servers, it only remains to shard searching on ZSET-based sharded indexes.

SHARDING ZSET-BASED SEARCH

Like a SORT-based search, handling searching for ZSET-based search requires running

our queries against all shards, fetching the scores to sort by, and merging the results

Listing 10.7 A function to merge sharded search results

We’ll use the Decimal numeric type 
here because it transparently handles 
both integers and floats reasonably, 
defaulting to 0 if the value wasn’t 
numeric or was missing.

Always return a string, even 
if there was no value stored.

We need to take all
of the sharding and

searching arguments,
mostly to pass on to

lower-level functions,
but we use the sort
and search offsets.

Fetch the results
of the unsorted
sharded search.

Prepare all of 
our sorting 
options.Actually sort our

results based on
the sort parameter.

Fetch just the
page of results
that we want.

Return the results, 
including the 
sequence of cache 
IDs for each shard.
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properly. We’ll go through the same steps that we did for SORT-based search in this sec-

tion: search on one shard, search on all shards, and then merge the results.

 To search on one shard, we’ll wrap the chapter 7 search_and_zsort() function on

ZSETs, fetching the results and scores from the cached ZSET in the next listing.

def search_get_zset_values(conn, query, id=None, ttl=300, update=1,
vote=0, start=0, num=20, desc=True):

count, r, id = search_and_zsort(
conn, query, id, ttl, update, vote, 0, 1, desc)

if desc:
data = conn.zrevrange(id, 0, start + num - 1, withscores=True)

else:
data = conn.zrange(id, 0, start + num - 1, withscores=True)

return count, data, id

Compared to the SORT-based search that does similar work, this function tries to keep

things simple by ignoring the returned results without scores, and just fetches the

results with scores directly from the cached ZSET. Because we have our scores already

as floating-point numbers for easy sorting, we’ll combine the function to search on all

shards with the function that merges and sorts the results.

 As before, we’ll perform searches for each shard one at a time, combining the

results. When we have the results, we’ll sort them based on the scores that were

returned. After the sort, we’ll return the results to the caller. The function that imple-

ments this is shown next.

def search_shards_zset(component, shards, query, ids=None, ttl=300,
update=1, vote=0, start=0, num=20, desc=True, wait=1):

count = 0
data = []
ids = ids or shards * [None]
for shard in xrange(shards):

conn = get_redis_connection('%s:%s'%(component, shard), wait)
c, d, i = search_get_zset_values(conn, query, ids[shard],

ttl, update, vote, start, num, desc)

count += c
data.extend(d)
ids[shard] = i

def key(result):
return result[1]

data.sort(key=key, reversed=desc)
results = []

Listing 10.8 ZSET-based search that returns scores for each result

Listing 10.9 Sharded search query over ZSETs that returns paginated results

We need to accept
all of the standard

arguments for
search_and_zsort().

Call the underlying
search_and_zsort()
function to get the

cached result ID and
total number of results.

Fetch all of the
results we need,

including their
scores. Return the count, results 

with scores, and the cache ID.

We need to take all of
the sharding arguments

along with all of the
search arguments.

Prepare structures 
for data to be 
returned.

Use cached
results, if any;

otherwise, start
from scratch.

Fetch or create
a connection to

each shard.
Perform the search

on a shard and
fetch the scores.

Merge 
the results 
together.

Prepare the simple sort helper 
to return only information 
about the score.

Sort all of
the results

together.
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for docid, score in data[start:start+num]:
results.append(docid)

return count, results, ids

With this code, you should have a good idea of the kinds of things necessary for han-

dling sharded search queries. Generally, when confronted with a situation like this, I

find myself questioning whether it’s worth attempting to scale these queries in this

way. Given that we now have at least working sharded search code, the question is eas-

ier to answer. Note that as our number of shards increase, we’ll need to fetch more

and more data in order to satisfy our queries. At some point, we may even need to del-

egate fetching and merging to other processes, or even merging in a tree-like struc-

ture. At that point, we may want to consider other solutions that were purpose-built

for search (like Lucene, Solr, Elastic Search, or even Amazon’s Cloud Search). 

 Now that you know how to scale a second type of search, we really have only covered

one other problem in other sections that might reach the point of needing to be scaled.

Let’s take a look at what it would take to scale our social network from chapter 8.

10.3.3 Scaling a social network

As we built our social network in chapter 8, I pointed out that it wasn’t designed to

scale to the size of a social network like Twitter, but that it was primarily meant to help

you understand what structures and methods it takes to build a social network. In this

section, I’ll describe a few methods that can let us scale a social networking site with

sharding, almost without bounds (mostly limited by our budget, which is always the

case with large projects).

 One of the first steps necessary to helping a social network scale is figuring out

what data is read often, what data is written often, and whether it’s possible to separate

often-used data from rarely used data. To start, say that we’ve already pulled out our

posted message data into a separate Redis server, which has read slaves to handle the

moderately high volume of reads that occurs on that data. That really leaves two major

types of data left to scale: timelines and follower/following lists.

SCALING POSTED MESSAGE DATABASE SIZE If you actually built this system out,
and you had any sort of success, at some point you’d need to further scale the
posted message database beyond just read slaves. Because each message is
completely contained within a single HASH, these can be easily sharded onto a
cluster of Redis servers based on the key where the HASH is stored. Because
this data is easily sharded, and because we’ve already worked through how to
fetch data from multiple shards as part of our search scaling in section 10.3.2,
you shouldn’t have any difficulty here. Alternatively, you can also use Redis as
a cache, storing recently posted messages in Redis, and older (rarely read)
messages in a primarily on-disk storage server (like PostgreSQL, MySQL, Riak,
MongoDB, and so on). If you’re finding yourself challenged, please feel free
to post on the message board or on the Redis mailing list.

Return the search 
results to the caller.

Extract the document IDs from 
the results, removing the scores.
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As you may remember, we had three primary types of timelines: home timelines, pro-

file timelines, and list timelines. Timelines themselves are all similar, though both list

timelines and home timelines are limited to 1,000 items. Similarly, followers, follow-

ing, list followers, and list following are also essentially the same, so we’ll also handle

them the same. First, let’s look at how we can scale timelines with sharding.

SHARDING TIMELINES

When we say that we’re sharding timelines, it’s a bit of a bait-and-switch. Because

home and list timelines are short (1,000 entries max, which we may want to use to

inform how large to set zset-max-ziplist-size),1 there’s really no need to shard the

contents of the ZSETs; we merely need to place those timelines on different shards

based on their key names.

 On the other hand, the size that profile timelines can grow to is currently unlim-

ited. Though the vast majority of users will probably only be posting a few times a day

at most, there can be situations where someone is posting significantly more often. As

an example of this, the top 1,000 posters on Twitter have all posted more than 150,000

status messages, with the top 15 all posting more than a million messages.

 On a practical level, it wouldn’t be unreasonable to cap the number of messages

that are kept in the timeline for an individual user to 20,000 or so (the oldest being

hidden or deleted), which would handle 99.999% of Twitter users generally. We’ll

assume that this is our plan for scaling profile timelines. If not, we can use the tech-

nique we cover for scaling follower/following lists later in this section for scaling pro-

file timelines instead.

 In order to shard our timelines based on key name, we could write a set of functions

that handle sharded versions of ZADD, ZREM, and ZRANGE, along with others, all of which

would be short three-line functions that would quickly get boring. Instead, let’s write a

class that uses Python dictionary lookups to automatically create connections to shards.

 First, let’s start with what we want our API to look like by updating our

follow_user() function from chapter 8. We’ll create a generic sharded connection

object that will let us create a connection to a given shard, based on a key that we want

to access in that shard. After we have that connection, we can call all of the standard

Redis methods to do whatever we want on that shard. We can see what we want our API

to look like, and how we need to update our function, in the next listing. 

sharded_timelines = KeyShardedConnection('timelines', 8)

def follow_user(conn, uid, other_uid):
fkey1 = 'following:%s'%uid

1 Because of the way we add items to home and list timelines, they can actually grow to roughly 2,000 entries
for a short time. And because Redis doesn’t turn structures back into ziplist-encoded versions of themselves
when they’ve gotten too large, setting zset-max-ziplist-size to be a little over 2,000 entries can keep
these two timelines encoded efficiently.

Listing 10.10 An example of how we want our API for accessing shards to work

Create a connection that knows about
the sharding information for a given

component with a number of shards.
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fkey2 = 'followers:%s'%other_uid

if conn.zscore(fkey1, other_uid):
print "already followed", uid, other_uid
return None

now = time.time()

pipeline = conn.pipeline(True)
pipeline.zadd(fkey1, other_uid, now)
pipeline.zadd(fkey2, uid, now)
pipeline.zcard(fkey1)
pipeline.zcard(fkey2)
following, followers = pipeline.execute()[-2:]
pipeline.hset('user:%s'%uid, 'following', following)
pipeline.hset('user:%s'%other_uid, 'followers', followers)
pipeline.execute()

pkey = 'profile:%s'%other_uid
status_and_score = sharded_timelines[pkey].zrevrange(

pkey, 0, HOME_TIMELINE_SIZE-1, withscores=True)

if status_and_score:
hkey = 'home:%s'%uid
pipe = sharded_timelines[hkey].pipeline(True)
pipe.zadd(hkey, **dict(status_and_score))
pipe.zremrangebyrank(hkey, 0, -HOME_TIMELINE_SIZE-1)
pipe.execute()

return True

Now that we have an idea of what we want our API to look like, let’s build it. We first need

an object that takes the component and number of shards. When a key is referenced via

dictionary lookup on the object, we need to return a connection to the shard that the

provided key should be stored on. The class that implements this follows.

class KeyShardedConnection(object):
def __init__(self, component, shards):

self.component = component
self.shards = shards

def __getitem__(self, key):
return get_sharded_connection(

self.component, key, self.shards)

For simple key-based sharding, this is all that’s necessary to support almost every call

that we’d perform in Redis. All that remains is to update the remainder of

unfollow_user(), refill_timeline(), and the rest of the functions that access home

timelines and list timelines. If you intend to scale this social network, go ahead and

update those functions yourself. For those of us who aren’t scaling the social network,

we’ll continue on.

Listing 10.11 A class that implements sharded connection resolution based on key

Fetch the recent
status messages
from the profile

timeline of the now-
followed user.

Get a connection based on
the shard key provided, and

fetch a pipeline from that.

Add the statuses to the home timeline
ZSET on the shard, and then trim it.

Execute the
transaction.

The object is initialized 
with the component name 
and number of shards.

When an item is fetched
from the object, this

method is called with the
item that was requested.

Use the passed key along with the previously known
component and shards to fetch the sharded connection.
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Up next is scaling follower and following lists.

SCALING FOLLOWER AND FOLLOWING LISTS WITH SHARDING

Though our scaling of timelines is pretty straightforward, scaling followers, following,

and the equivalent “list” ZSETs is more difficult. The vast majority of these ZSETs will

be short (99.99% of users on Twitter have fewer than 1,000 followers), but there may

be a few users who are following a large number of users, or who have a large number

of followers. As a practical matter, it wouldn’t be unreasonable to limit the number of

users that a given user or list can follow to be somewhat small (perhaps up to 1,000, to

match the limits on home and list timelines), forcing them to create lists if they really

want to follow more people. But we still run into issues when the number of followers

of a given user grows substantially.

 To handle the situation where follower/following lists can grow to be very large,

we’ll shard these ZSETs across multiple shards. To be more specific, a user’s follow-

ers will be broken up into as many pieces as we have shards. For reasons we’ll get

into in a moment, we only need to implement specific sharded versions of ZADD,

ZREM, and ZRANGEBYSCORE.

 I know what you’re thinking: since we just built a method to handle sharding auto-

matically, we could use that. We will (to some extent), but because we’re sharding data

and not just keys, we can’t just use our earlier class directly. Also, in order to reduce

the number of connections we need to create and call, it makes a lot of sense to have

data for both sides of the follower/following link on the same shard, so we can’t just

shard by data like we did in chapter 9 and in section 10.2. 

 In order to shard our follower/following data such that both sides of the follower/

following relationship are on the same shard, we’ll use both IDs as part of the key to look

up a shard. Like we did for sharding timelines, let’s update follow_user() to show the

API that we’d like to use, and then we’ll create the class that’s necessary to implement

the functionality. The updated follow_user() with our desired API is next.

sharded_timelines = KeyShardedConnection('timelines', 8)
sharded_followers = KeyDataShardedConnection('followers', 16)

def follow_user(conn, uid, other_uid):
fkey1 = 'following:%s'%uid
fkey2 = 'followers:%s'%other_uid

Listing 10.12 Access follower/following ZSET shards

Exercise: Syndicating posts to home and list timelines

With the update to where data is stored for both home and list timelines, can you

update your list timeline supporting syndication task from chapter 8 to support

sharded profiles? Can you keep it almost as fast as the original version? Hint: If

you’re stuck, we include a fully updated version that supports sharded follower lists

in listing 10.15.

Create a connection that knows about
the sharding information for a given

component with a number of shards.
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sconn = sharded_followers[uid, other_uid]
if sconn.zscore(fkey1, other_uid):

return None

now = time.time()
spipe = sconn.pipeline(True)
spipe.zadd(fkey1, other_uid, now)
spipe.zadd(fkey2, uid, now)
following, followers = spipe.execute()

pipeline = conn.pipeline(True)
pipeline.hincrby('user:%s'%uid, 'following', int(following))
pipeline.hincrby('user:%s'%other_uid, 'followers', int(followers))
pipeline.execute()

pkey = 'profile:%s'%other_uid
status_and_score = sharded_timelines[pkey].zrevrange(

pkey, 0, HOME_TIMELINE_SIZE-1, withscores=True)

if status_and_score:
hkey = 'home:%s'%uid
pipe = sharded_timelines[hkey].pipeline(True)
pipe.zadd(hkey, **dict(status_and_score))
pipe.zremrangebyrank(hkey, 0, -HOME_TIMELINE_SIZE-1)
pipe.execute()

return True

Aside from a bit of rearrangement and code updating, the only difference between

this change and the change we made earlier for sharding timelines is that instead of

passing a specific key to look up the shard, we pass a pair of IDs. From these two IDs,

we’ll calculate the proper shard that data involving both IDs should be stored on. The

class that implements this API appears next.

class KeyDataShardedConnection(object):
def __init__(self, component, shards):

self.component = component
self.shards = shards

def __getitem__(self, ids):
id1, id2 = map(int, ids)
if id2 < id1:

id1, id2 = id2, id1
key = "%s:%s"%(id1, id2)
return get_sharded_connection(

self.component, key, self.shards)

The only thing different for this sharded connection generator, compared to list-

ing 10.11, is that this sharded connection generator takes a pair of IDs instead of a

key. From those two IDs, we generate a key where the lower of the two IDs is first,

and the higher is second. By constructing the key in this way, we ensure that

Listing 10.13 Sharded connection resolution based on ID pairs

Fetch the connection 
object for the uid, 
other_uid pair.Check to see if 

the other_uid is 
already followed.

Add the follower/
following information 
to the ZSETs.

Update the follower
and following

information for
both users.

The object is initialized 
with the component name 
and number of shards.

When the pair of IDs is
passed as part of the

dictionary lookup, this
method is called.

Unpack the pair of IDs, and 
ensure that they are integers.

If the second is less than
the first, swap them so that

the first ID is less than or
equal to the second.

Construct a key 
based on the 
two IDs.

Use the computed key along with the
previously known component and shards

to fetch the sharded connection.
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whenever we reference the same two IDs, regardless of initial order, we always end

up on the same shard.

 With this sharded connection generator, we can update almost all of the remain-

ing follower/following ZSET operations. The one remaining operation that’s left is to

properly handle ZRANGEBYSCORE, which we use in a few places to fetch a “page” of fol-

lowers. Usually this is done to syndicate messages out to home and list timelines when

an update is posted. When syndicating to timelines, we could scan through all of one

shard’s ZSET, and then move to the next. But with a little extra work, we could instead

pass through all ZSETs simultaneously, which would give us a useful sharded ZRANGE-

BYSCORE operation that can be used in other situations.

 As we saw in section 10.3.2, in order to fetch items 100–109 from sharded ZSETs,

we needed to fetch items 0–109 from all ZSETs and merge them together. This is

because we only knew the index that we wanted to start at. Because we have the oppor-

tunity to scan based on score instead, when we want to fetch the next 10 items with

scores greater than X, we only need to fetch the next 10 items with scores greater than

X from all shards, followed by a merge. A function that implements ZRANGEBYSCORE

across multiple shards is shown in the following listing.

def sharded_zrangebyscore(component, shards, key, min, max, num):
data = []
for shard in xrange(shards):

conn = get_redis_connection("%s:%s"%(component, shard))
data.extend(conn.zrangebyscore(

key, min, max, start=0, num=num, withscores=True))

def key(pair):
return pair[1], pair[0]

data.sort(key=key)

return data[:num]          

This function works a lot like the query/merge that we did in section 10.3.2, only we

can start in the middle of the ZSET because we have scores (and not indexes).

USING THIS METHOD FOR SHARDING PROFILE TIMELINES You’ll notice that we use
timestamps for follower/following lists, which avoided some of the drawbacks
to paginate over sharded ZSETs that we covered in section 10.3.2. If you’d
planned on using this method for sharding profile timelines, you’ll need to
go back and update your code to use timestamps instead of offsets, and you’ll
need to implement a ZREVRANGEBYSCORE version of listing 10.14, which
should be straightforward. 

Listing 10.14 A function that implements a sharded ZRANGEBYSCORE

We need to take arguments for the component
and number of shards, and we’ll limit the

arguments to be passed on to only those that’ll
ensure correct behavior in sharded situations.

Fetch the sharded 
connection for the 
current shard.

Get the data 
from Redis for 
this shard.Sort the data based 

on score, and then 
by member. Return only the number 

of items requested.
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With this new sharded ZRANGEBYSCORE function, let’s update our function that syndi-

cates posts to home and list timelines in the next listing. While we’re at it, we may as

well add support for sharded home timelines.

def syndicate_status(uid, post, start=0, on_lists=False):
root = 'followers'
key = 'followers:%s'%uid
base = 'home:%s'
if on_lists:

root = 'list:out'
key = 'list:out:%s'%uid
base = 'list:statuses:%s'

followers = sharded_zrangebyscore(root,
sharded_followers.shards, key, start, 'inf', POSTS_PER_PASS)

to_send = defaultdict(list)
for follower, start in followers:

timeline = base % follower    
shard = shard_key('timelines',

timeline, sharded_timelines.shards, 2)
to_send[shard].append(timeline)

for timelines in to_send.itervalues():
pipe = sharded_timelines[timelines[0]].pipeline(False)
for timeline in timelines:

pipe.zadd(timeline, **post)
pipe.zremrangebyrank(

timeline, 0, -HOME_TIMELINE_SIZE-1)
pipe.execute()

conn = redis.Redis()
if len(followers) >= POSTS_PER_PASS:

execute_later(conn, 'default', 'syndicate_status',
[uid, post, start, on_lists])

elif not on_lists:
execute_later(conn, 'default', 'syndicate_status',

[uid, post, 0, True])

As you can see from the code, we use the sharded ZRANGEBYSCORE function to fetch

those users who are interested in this user’s posts. Also, in order to keep the syndica-

tion process fast, we group requests that are to be sent to each home or list timeline

shard server together. Later, after we’ve grouped all of the writes together, we add the

post to all of the timelines on a given shard server with a pipeline. Though this may be

slower than the nonsharded version, this does allow us to scale our social network

much larger than before.

 All that remains is to finish updating the rest of the functions to support all of the

sharding that we’ve done in the rest of section 10.3.3. Again, if you’re going to scale

this social network, feel free to do so. But if you have some nonsharded code that you

Listing 10.15 Updated syndicate status function

Fetch the next group of
followers using the sharded

ZRANGEBYSCORE call.
Prepare a

structure that
will group profile
information on a
per-shard basis.

Calculate the key 
for the timeline.

Find the shard
where this timeline

would go.
Add the 
timeline key 
to the rest of 
the timelines 
on the same 
shard.

Get a connection to
the server for the

group of timelines,
and create a

pipeline. Add the post to 
the timeline, and 
remove any posts 
that are too old.
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want to shard, you can compare the earlier version of syndicate_status() from sec-

tion 8.4 with our new version to get an idea of how to update your code.

10.4 Summary

In this chapter, we revisited a variety of problems to look at what it’d take to scale

them to higher read volume, higher write volume, and more memory. We’ve used

read-only slaves, writable query slaves, and sharding combined with shard-aware

classes and functions. Though these methods may not cover all potential use cases for

scaling your particular problem, each of these examples was chosen to offer a set of

techniques that can be used generally in other situations.

 If there’s one concept that you should take away from this chapter, it’s that scaling

any system can be a challenge. But with Redis, you can use a variety of methods to

scale your platform (hopefully as far as you need it to scale).

 Coming up in the next and final chapter, we’ll cover Redis scripting with Lua.

We’ll revisit a few past problems to show how our solutions can be simplified and per-

formance improved with features available in Redis 2.6 and later.



Scripting Redis with Lua

Over the last several chapters, you’ve built up a collection of tools that you can use

in existing applications, while also encountering techniques you can use to solve a

variety of problems. This chapter does much of the same, but will turn some of

your expectations on their heads. As of Redis 2.6, Redis includes server-side scripting

with the Lua programming language. This lets you perform a variety of operations

inside Redis, which can both simplify your code and increase performance.

 In this chapter, we’ll start by discussing some of the advantages of Lua over per-

forming operations on the client, showing an example from the social network in

chapter 8. We’ll then go through two problems from chapters 4 and 6 to show exam-

ples where using Lua can remove the need for WATCH/MULTI/EXEC transactions.

Later, we’ll revisit our locks and semaphores from chapter 6 to show how they can be

implemented using Lua for fair multiple client access and higher performance.

Finally, we’ll build a sharded LIST using Lua that supports many (but not all) stan-

dard LIST command equivalents.

This chapter covers

■ Adding functionality without writing C

■ Rewriting locks and semaphores with Lua

■ Doing away with WATCH/MULTI/EXEC

■ Sharding LISTs with Lua
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 Let’s get started by learning about some of the things that we can do with Lua

scripting.

11.1 Adding functionality without writing C

Prior to Redis 2.6 (and the unsupported scripting branch of Redis 2.4), if we wanted

higher-level functionality that didn’t already exist in Redis, we’d either have to write

client-side code (like we have through the last 10 chapters), or we’d have to edit the C

source code of Redis itself. Though editing Redis’s source code isn’t too difficult, sup-

porting such code in a business environment, or trying to convince management that

running our own version of the Redis server is a good idea, could be challenging.

 In this section, we’ll introduce methods by which we can execute Lua inside the

Redis server. By scripting Redis with Lua, we can avoid some common pitfalls that slow

down development or reduce performance.

 The first step in executing Lua code in Redis is loading the code into Redis.

11.1.1 Loading Lua scripts into Redis

Some older (and still used) Python Redis libraries for Redis 2.6 don’t yet offer the

capability to load or execute Lua scripts directly, so we’ll spend a few moments to cre-

ate a loader for the scripts. To load scripts into Redis, there’s a two-part command

called SCRIPT LOAD that, when provided with a string that’s a Lua script, will store the

script for later execution and return the SHA1 hash of the script. Later, when we want

to execute that script, we run the Redis command EVALSHA with the hash that was

returned by Redis, along with any arguments that the script needs. 

 Our code for doing these operations will be inspired by the current Python Redis

code. (We use our method primarily because it allows for using any connection we

want without having to explicitly create new scripting objects, which can be useful

when dealing with server sharding.) When we pass a string to our script_load()

function, it’ll create a function that can later be called to execute the script in Redis.

When calling the object to execute the script, we must provide a Redis connection,

which will then call SCRIPT LOAD on its first call, followed by EVALSHA for all future

calls. The script_load() function is shown in the following listing.

def script_load(script):
sha = [None]
def call(conn, keys=[], args=[], force_eval=False):

if not force_eval:
if not sha[0]:

sha[0] = conn.execute_command(
"SCRIPT", "LOAD", script, parse="LOAD")

try:

Listing 11.1 A function that loads scripts to be called later

Store the cached SHA1 hash of the result of
SCRIPT LOAD in a list so we can change it

later from within the call() function.

When calling the loaded script,
we must provide a connection, a

set of keys that the script will
manipulate, and any other
arguments to the function.

We’ll only try
loading the script

if the SHA1 hash
isn’t cached.
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return conn.execute_command(
"EVALSHA", sha[0], len(keys), *(keys+args))

except redis.exceptions.ResponseError as msg:
if not msg.args[0].startswith("NOSCRIPT"):

raise

return conn.execute_command(
"EVAL", script, len(keys), *(keys+args))

return call

You’ll notice that in addition to our SCRIPT LOAD and EVALSHA calls, we captured an

exception that can happen if we’ve cached a script’s SHA1 hash locally, but the server

doesn’t know about it. This can happen if the server were to be restarted, if someone

had executed the SCRIPT FLUSH command to clean out the script cache, or if we pro-

vided connections to two different Redis servers to our function at different times. If

we discover that the script is missing, we execute the script directly with EVAL, which

caches the script in addition to executing it. Also, we allow clients to directly execute

the script, which can be useful when executing a Lua script as part of a transaction or

other pipelined sequence.

KEYS AND ARGUMENTS TO LUA SCRIPTS Buried inside our script loader, you
may have noticed that calling a script in Lua takes three arguments. The first
is a Redis connection, which should be standard by now. The second argu-
ment is a list of keys. The third is a list of arguments to the function.

The difference between keys and arguments is that you’re supposed to pass
all of the keys that the script will be reading or writing as part of the keys
argument. This is to potentially let other layers verify that all of the keys are
on the same shard if you were using multiserver sharding techniques like
those described in chapter 10.

When Redis cluster is released, which will offer automatic multiserver shard-
ing, keys will be checked before a script is run, and will return an error if any
keys that aren’t on the same server are accessed.

The second list of arguments has no such limitation and is meant to hold data
to be used inside the Lua call.

Let’s try it out in the console for a simple example to get started.

>>> ret_1 = script_load("return 1")
>>> ret_1(conn)
1L

Execute the command
from the cached SHA1.

If the error was unrelated
to a missing script, raise

the exception again.

If we received a script-related error, or if we
need to force-execute the script, directly

execute the script, which will automatically
cache the script on the server (with the same

SHA1 that we’ve already cached) when done.

Return the function that
automatically loads and

executes scripts when called.

Most uses will load the script and store a
reference to the returned function.

We can then call the function by
passing the connection object

and any desired arguments.

Results will be
returned and

converted into
the appropriate

Python types,
when possible.
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As you can see in this example, we created a simple script whose only purpose is to

return a value of 1. When we call it with the connection object, the script is loaded

and then executed, resulting in the value 1 being returned.

RETURNING NON-STRING AND NON-INTEGER VALUES FROM LUA

Due to limitations in how Lua allows data to be passed in and out of it, some data types

that are available in Lua aren’t allowed to be passed out, or are altered before being

returned. Table 11.1 shows how this data is altered upon return.

Because of the ambiguity that results when returning a variety of data types, you

should do your best to explicitly return strings whenever possible, and perform any

parsing manually. We’ll only be returning Booleans, strings, integers, and Lua tables

(which are turned into Python lists) for our examples.

 Now that we can load and execute scripts, let’s get started with a simple example

from chapter 8, creating a status message.

11.1.2 Creating a new status message

As we build Lua scripts to perform a set of operations, it’s good to start with a short

example that isn’t terribly complicated or structure-intensive. In this case, we’ll start

by writing a Lua script combined with some wrapper code to post a status message.

LUA SCRIPTS—AS ATOMIC AS SINGLE COMMANDS OR MULTI/EXEC As you already
know, individual commands in Redis are atomic in that they’re run one at a
time. With MULTI/EXEC, you can prevent other commands from running
while you’re executing multiple commands. But to Redis, EVAL and EVALSHA
are each considered to be a (very complicated) command, so they’re exe-
cuted without letting any other structure operations occur.

Table 11.1 Values returned from Lua and what they’re translated into

Lua value What happens during conversion to Python

true Turns into 1

false Turns into None

nil Doesn’t turn into anything, and stops remaining val-

ues in a table from being returned

1.5 (or any other float) Fractional part is discarded, turning it into an integer

1e30 (or any other large float) Is turned into the minimum integer for your version 

of Python

"strings" Unchanged

1 (or any other integer +/-253-1) Integer is returned unchanged
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LUA SCRIPTS—CAN’T BE INTERRUPTED IF THEY HAVE MODIFIED STRUCTURES When
executing a Lua script with EVAL or EVALSHA, Redis doesn’t allow any other read/
write commands to run. This can be convenient. But because Lua is a general-
purpose programming language, you can write scripts that never return, which
could stop other clients from executing commands. To address this, Redis offers
two options for stopping a script in Redis, depending on whether you’ve per-
formed a Redis call that writes.

If your script hasn’t performed any calls that write (only reads), you can exe-
cute SCRIPT KILL if the script has been executing for longer than the config-
ured lua-time-limit (check your Redis configuration file).

If your script has written to Redis, then killing the script could cause Redis to
be in an inconsistent state. In that situation, the only way you can recover is to
kill Redis with the SHUTDOWN NOSAVE command, which will cause Redis to lose
any changes that have been made since the last snapshot, or since the last
group of commands was written to the AOF.

Because of these limitations, you should always test your Lua scripts before
running them in production.

As you may remember from chapter 8, listing 8.2 showed the creation of a status mes-

sage. A copy of the original code we used for posting a status message appears next.

def create_status(conn, uid, message, **data):
pipeline = conn.pipeline(True)
pipeline.hget('user:%s' % uid, 'login')
pipeline.incr('status:id:')
login, id = pipeline.execute()

if not login:           
return None

data.update({
'message': message,
'posted': time.time(),
'id': id,
'uid': uid,
'login': login,

})
pipeline.hmset('status:%s' % id, data)
pipeline.hincrby('user:%s' % uid, 'posts')
pipeline.execute()
return id

Generally speaking, the performance penalty for making two round trips to Redis in

order to post a status message isn’t very much—twice the latency of one round trip.

But if we can reduce these two round trips to one, we may also be able to reduce the

number of round trips for other examples where we make many round trips. Fewer

round trips means lower latency for a given group of commands. Lower latency

Listing 11.2 Our function from listing 8.2 that creates a status message HASH

Get the user’s login 
name from their user ID.

Create a new ID for 
the status message.

Verify that we have a proper 
user account before posting.

Prepare and set 
the data for the 
status message.

Record the fact 
that a status 
message has 
been posted.

Return the ID of the newly 
created status message.
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means less waiting, fewer required web servers, and higher performance for the

entire system overall.

 To review what happens when we post a new status message: we look up the user’s

name in a HASH, increment a counter (to get a new ID), add data to a Redis HASH, and

increment a counter in the user’s HASH. That doesn’t sound so bad in Lua; let’s give it

a shot in the next listing, which shows the Lua script, with a Python wrapper that

implements the same API as before.

def create_status(conn, uid, message, **data):
args = [

'message', message,
'posted', time.time(),
'uid', uid,

]
for key, value in data.iteritems():

args.append(key)
args.append(value)

return create_status_lua(
conn, ['user:%s' % uid, 'status:id:'], args)

create_status_lua = script_load('''
local login = redis.call('hget', KEYS[1], 'login')
if not login then

return false
end
local id = redis.call('incr', KEYS[2])
local key = string.format('status:%s', id)

redis.call('hmset', key,
'login', login,
'id', id,
unpack(ARGV))

redis.call('hincrby', KEYS[1], 'posts', 1)

return id
''')

This function performs all of the same operations that the previous all-Python version

performed, only instead of needing two round trips to Redis with every call, it should

only need one (the first call will load the script into Redis and then call the loaded

script, but subsequent calls will only require one). This isn’t a big issue for posting sta-

tus messages, but for many other problems that we’ve gone through in previous chap-

ters, making multiple round trips can take more time than is necessary, or lend to

WATCH/MULTI/EXEC contention.

WRITING KEYS THAT AREN’T A PART OF THE KEYS ARGUMENT TO THE SCRIPT In the
note in section 11.1.1, I mentioned that we should pass all keys to be modified
as part of the keys argument of the script, yet here we’re writing a HASH based
on a key that wasn’t passed. Doing this makes this Lua script incompatible with

Listing 11.3 Creating a status message with Lua

Take all of the arguments 
as before.

Prepare the 
arguments/attributes 
to be set on the status 
message.

Call the 
script.

Fetch the user’s
login name from

their ID; remember
that tables in Lua
are 1-indexed, not

0-indexed like
Python and most
other languages.

If there’s no login, 
return that no 
login was found.

Get a new ID
for the status

message.

Prepare the
destination key for
the status message.

Set the data 
for the status 
message.

Increment 
the post 
count of 
the user.

Return the ID of 
the status message.
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the future Redis cluster. Whether this operation is still correct in a noncluster
sharded server scenario will depend on your sharding methods. I did this to
highlight that you may need to do this kind of thing, but doing so prevents you
from being able to use Redis cluster.

SCRIPT LOADERS AND HELPERS You’ll notice in this first example that we have
two major pieces. We have a Python function that handles the translation of
the earlier API into the Lua script call, and we have the Lua script that’s
loaded from our earlier script_load() function. We’ll continue this pattern
for the remainder of the chapter, since the native API for Lua scripting (KEYS
and ARGV) can be difficult to call in multiple contexts.

Since Redis 2.6 has been completed and released, libraries that support Redis script-

ing with Lua in the major languages should get better and more complete. On the

Python side of things, a script loader similar to what we’ve written is already available

in the source code repository for the redis-py project, and is currently available from

the Python Package Index. We use our script loader due to its flexibility and ease of

use when confronted with sharded network connections.

 As our volume of interactions with Redis increased over time, we switched to using

locks and semaphores to help reduce contention issues surrounding WATCH/MULTI/

EXEC transactions. Let’s take a look at rewriting locks and semaphores to see if we

might be able to further improve performance.

11.2 Rewriting locks and semaphores with Lua

When I introduced locks and semaphores in chapter 6, I showed how locks can reduce

contention compared to WATCH/MULTI/EXEC transactions by being pessimistic in heavy

traffic scenarios. But locks themselves require two to three round trips to acquire or

release a lock in the best case, and can suffer from contention in some situations.

 In this section, we’ll revisit our lock from section 6.2 and rewrite it in Lua in order

to further improve performance. We’ll then revisit our semaphore example from sec-

tion 6.3 to implement a completely fair lock while also improving performance there.

 Let’s first take a look at locks with Lua, and why we’d want to continue using locks

at all.

11.2.1 Why locks in Lua?

Let’s first deal with the question of why we would decide to build a lock with Lua.

There are two major reasons.

 Technically speaking, when executing a Lua script with EVAL or EVALSHA, the first

group of arguments after the script or hash is the keys that will be read or written

within Lua (I mentioned this in two notes in sections 11.1.1 and 11.1.2). This is pri-

marily to allow for later Redis cluster servers to reject scripts that read or write keys

that aren’t available on a particular shard. If we don’t know what keys will be read/

written in advance, we shouldn’t be using Lua (we should instead use WATCH/MULTI/

EXEC or locks). As such, any time we’re reading or writing keys that weren’t provided
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as part of the KEYS argument to the script, we risk potential incompatibility or break-

age if we transition to a Redis cluster later.

 The second reason is because there are situations where manipulating data in

Redis requires data that’s not available at the time of the initial call. One example

would be fetching some HASH values from Redis, and then using those values to access

information from a relational database, which then results in a write back to Redis. We

saw this first when we were scheduling the caching of rows in Redis back in section 2.4.

We didn’t bother locking in that situation because writing two copies of the same row

twice wouldn’t have been a serious issue. But in other caching scenarios, reading the

data to be cached multiple times can be more overhead than is acceptable, or could

even cause newer data to be overwritten by older data.

 Given these two reasons, let’s rewrite our lock to use Lua.

11.2.2 Rewriting our lock

As you may remember from section 6.2, locking involved generating an ID, condition-

ally setting a key with SETNX, and upon success setting the expiration time of the key.

Though conceptually simple, we had to deal with failures and retries, which resulted

in the original code shown in the next listing.

def acquire_lock_with_timeout(
conn, lockname, acquire_timeout=10, lock_timeout=10):
identifier = str(uuid.uuid4())
lockname = 'lock:' + lockname
lock_timeout = int(math.ceil(lock_timeout))

end = time.time() + acquire_timeout
while time.time() < end:

if conn.setnx(lockname, identifier):
conn.expire(lockname, lock_timeout)
return identifier

elif not conn.ttl(lockname):
conn.expire(lockname, lock_timeout)

time.sleep(.001)

return False

There’s nothing too surprising here if you remember how we built up to this lock in

section 6.2. Let’s go ahead and offer the same functionality, but move the core locking

into Lua.

def acquire_lock_with_timeout(
conn, lockname, acquire_timeout=10, lock_timeout=10):
identifier = str(uuid.uuid4())
lockname = 'lock:' + lockname
lock_timeout = int(math.ceil(lock_timeout))

Listing 11.4 Our final acquire_lock_with_timeout() function from section 6.2.5

Listing 11.5 A rewritten acquire_lock_with_timeout() that uses Lua

A 128-bit random 
identifier.

Only pass integers 
to our EXPIRE calls.

Get the lock and 
set the expiration.

Check and update the 
expiration time as necessary.



257Rewriting locks and semaphores with Lua

acquired = False
end = time.time() + acquire_timeout
while time.time() < end and not acquired:

acquired = acquire_lock_with_timeout_lua(
conn, [lockname], [lock_timeout, identifier]) == 'OK'

time.sleep(.001 * (not acquired))

return acquired and identifier

acquire_lock_with_timeout_lua = script_load('''
if redis.call('exists', KEYS[1]) == 0 then

return redis.call('setex', KEYS[1], unpack(ARGV))
end
''')

There aren’t any significant changes in the code, except that we change the com-

mands we use so that if a lock is acquired, it always has a timeout. Let’s also go ahead

and rewrite the release lock code to use Lua.

 Previously, we watched the lock key, and then verified that the lock still had the

same value. If it had the same value, we removed the lock; otherwise we’d say that the

lock was lost. Our Lua version of release_lock() is shown next.

def release_lock(conn, lockname, identifier):
lockname = 'lock:' + lockname
return release_lock_lua(conn, [lockname], [identifier])

release_lock_lua = script_load('''
if redis.call('get', KEYS[1]) == ARGV[1] then

return redis.call('del', KEYS[1]) or true
end
''')

Unlike acquiring the lock, releasing the lock became shorter as we no longer needed

to perform all of the typical WATCH/MULTI/EXEC steps.

 Reducing the code is great, but we haven’t gotten far if we haven’t actually improved

the performance of the lock itself. We’ve added some instrumentation to the locking

code along with some benchmarking code that executes 1, 2, 5, and 10 parallel processes

to acquire and release locks repeatedly. We count the number of attempts to acquire the

lock and how many times the lock was acquired over 10 seconds, with both our original

and Lua-based acquire and release lock functions. Table 11.2 shows the number of calls

that were performed and succeeded.

Listing 11.6 A rewritten release_lock() that uses Lua

Table 11.2 Performance of our original lock against a Lua-based lock over 10 seconds

Benchmark configuration Tries in 10 seconds Acquires in 10 seconds

Original lock, 1 client 31,359 31,359

Original lock, 2 clients 30,085 22,507

Actually acquire the lock,
checking to verify that the Lua

call completed successfully.

If the lock doesn’t 
already exist, again 
remembering that tables 
use 1-based indexing.

Set the key with the provided
expiration and identifier.

Call the Lua function 
that releases the lock.

Make sure that the 
lock matches.

Delete the lock and ensure
that we return true.
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Looking at the data from our benchmark (pay attention to the right column), one

thing to note is that Lua-based locks succeed in acquiring and releasing the lock in

cycles significantly more often than our previous lock—by more than 40% with a sin-

gle client, 87% with 2 clients, and over 100% with 5 or 10 clients attempting to acquire

and release the same locks. Comparing the middle and right columns, we can also see

how much faster attempts at locking are made with Lua, primarily due to the reduced

number of round trips.

 But even better than performance improvements, our code to acquire and release

the locks is significantly easier to understand and verify as correct. 

 Another example where we built a synchronization primitive is with semaphores;

let’s take a look at building them next.

11.2.3 Counting semaphores in Lua

As we worked through our counting semaphores in chapter 6, we spent a lot of time

trying to ensure that our semaphores had some level of fairness. In the process, we

used a counter to create a sort of numeric identifier for the client, which was then

used to determine whether the client had been successful. But because we still had

race conditions when acquiring the semaphore, we ultimately still needed to use a

lock for the semaphore to function correctly.

 Let’s look at our earlier implementation of the counting semaphore and think

about what it may take to improve it using Lua.

def acquire_semaphore(conn, semname, limit, timeout=10):
identifier = str(uuid.uuid4())
now = time.time()

pipeline = conn.pipeline(True)
pipeline.zremrangebyscore(semname, '-inf', now - timeout)
pipeline.zadd(semname, identifier, now)
pipeline.zrank(semname, identifier)
if pipeline.execute()[-1] < limit:

return identifier

Original lock, 5 clients 47,694 19,695

Original lock, 10 clients 71,917 14,361

Lua lock, 1 client 44,494 44,494

Lua lock, 2 clients 50,404 42,199

Lua lock, 5 clients 70,807 40,826

Lua lock, 10 clients 96,871 33,990

Listing 11.7 The acquire_semaphore() function from section 6.3.2

Table 11.2 Performance of our original lock against a Lua-based lock over 10 seconds (continued)

Benchmark configuration Tries in 10 seconds Acquires in 10 seconds

A 128-bit 
random 
identifier.

Time out old
semaphore

holders.

Try to acquire 
the semaphore.

Check to see if
we have it.
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conn.zrem(semname, identifier)
return None

In the process of translating this function into Lua, after cleaning out timed-out sema-

phores, it becomes possible to know whether a semaphore is available to acquire, so

we can simplify our code in the case where a semaphore isn’t available. Also, because

everything is occurring inside Redis, we don’t need the counter or the owner ZSET,

since the first client to execute their Lua function should be the one to get the sema-

phore. The Lua version of acquire_semaphore() can be seen in the next listing.

def acquire_semaphore(conn, semname, limit, timeout=10):
now = time.time()
return acquire_semaphore_lua(conn, [semname],

[now-timeout, limit, now, str(uuid.uuid4())])

acquire_semaphore_lua = script_load('''
redis.call('zremrangebyscore', KEYS[1], '-inf', ARGV[1])

if redis.call('zcard', KEYS[1]) < tonumber(ARGV[2]) then
redis.call('zadd', KEYS[1], ARGV[3], ARGV[4])
return ARGV[4]

end
''')

This updated semaphore offers the same capabilities of the lock-wrapped

acquire_fair_semaphore_with_lock(), including being completely fair. Further,

because of the simplifications we’ve performed (no locks, no ZINTERSTORE, and no

ZREMRANGEBYRANK), our new semaphore will operate significantly faster than the previ-

ous semaphore implementation, while at the same time reducing the complexity of

the semaphore itself.

 Due to our simplification, releasing the semaphore can be done using the original

release_semaphore() code from section 6.3.1. We only need to create a Lua-based

refresh semaphore function to replace the fair semaphore version from section 6.3.3,

shown next.

def refresh_semaphore(conn, semname, identifier):
return refresh_semaphore_lua(conn, [semname],

[identifier, time.time()]) != None

refresh_semaphore_lua = script_load('''
if redis.call('zscore', KEYS[1], ARGV[1]) then

return redis.call('zadd', KEYS[1], ARGV[2], ARGV[1]) or true
end
''')

Listing 11.8 The acquire_semaphore() function rewritten with Lua

Listing 11.9 A refresh_semaphore() function written with Lua

We failed to get the semaphore; 
discard our identifier.

Get the current timestamp
for handling timeouts. Pass all of the 

required arguments 
into the Lua function 
to actually acquire 
the semaphore.

Clean out all of the 
expired semaphores.

If we haven’t yet 
hit our semaphore 
limit, then acquire 
the semaphore.

Add the timestamp
to the timeout ZSET.

If Lua had returned nil
from the call (the

semaphore wasn’t
refreshed), Python will

return None instead.

If the semaphore
is still valid, then

we update the
semaphore’s

timestamp.
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With acquire and refresh semaphore rewritten with Lua, we now have a completely

fair semaphore that’s faster and easier to understand.

 Now that we’ve rewritten locks and semaphores in Lua and have seen a bit of what

they can do to improve performance, let’s try to remove WATCH/MULTI/EXEC transac-

tions and locks from two of our previous examples to see how well we can make them

perform.

11.3 Doing away with WATCH/MULTI/EXEC

In previous chapters, we used a combination of WATCH, MULTI, and EXEC in several

cases to implement a form of transaction in Redis. Generally, when there are few writ-

ers modifying WATCHed data, these transactions complete without significant conten-

tion or retries. But if operations can take several round trips to execute, if contention

is high, or if network latency is high, clients may need to perform many retries in

order to complete operations.

 In this section, we’ll revisit our autocomplete example from chapter 6 along with

our marketplace example originally covered in chapter 4 to show how we can simplify

our code and improve performance at the same time.

 First up, let’s look at one of our autocomplete examples from chapter 6.

11.3.1 Revisiting group autocomplete

Back in chapter 6, we introduced an autocomplete procedure that used a ZSET to

store user names to be autocompleted on.

 As you may remember, we calculated a pair of strings that would surround all of

the values that we wanted to autocomplete on. When we had those values, we’d insert

our data into the ZSET, and then WATCH the ZSET for anyone else making similar

changes. We’d then fetch 10 items between the two endpoints and remove them

between a MULTI/EXEC pair. Let’s take a quick look at the code that we used.

def autocomplete_on_prefix(conn, guild, prefix):
start, end = find_prefix_range(prefix)
identifier = str(uuid.uuid4())
start += identifier
end += identifier
zset_name = 'members:' + guild

conn.zadd(zset_name, start, 0, end, 0)
pipeline = conn.pipeline(True)
while 1:

try:
pipeline.watch(zset_name)
sindex = pipeline.zrank(zset_name, start)
eindex = pipeline.zrank(zset_name, end)
erange = min(sindex + 9, eindex - 2)
pipeline.multi()

Listing 11.10 Our autocomplete code from section 6.1.2

Find the start/
end range for 
the prefix.

Add the start/end 
range items to the 
ZSET.

Find the ranks 
of our end 
points.
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pipeline.zrem(zset_name, start, end)
pipeline.zrange(zset_name, sindex, erange)
items = pipeline.execute()[-1]
break

except redis.exceptions.WatchError:        
continue

return [item for item in items if '{' not in item]

If few autocomplete operations are being performed at one time, this shouldn’t cause

many retries. But regardless of retries, we still have a lot of code related to handling

hopefully rare retries—roughly 40%, depending on how we count lines. Let’s get rid

of all of that retry code, and move the core functionality of this function into a Lua

script. The result of this change is shown in the next listing.

def autocomplete_on_prefix(conn, guild, prefix):
start, end = find_prefix_range(prefix)
identifier = str(uuid.uuid4())

items = autocomplete_on_prefix_lua(conn,
['members:' + guild],
[start+identifier, end+identifier])

return [item for item in items if '{' not in item]

autocomplete_on_prefix_lua = script_load('''
redis.call('zadd', KEYS[1], 0, ARGV[1], 0, ARGV[2])
local sindex = redis.call('zrank', KEYS[1], ARGV[1])
local eindex = redis.call('zrank', KEYS[1], ARGV[2])
eindex = math.min(sindex + 9, eindex - 2)

redis.call('zrem', KEYS[1], unpack(ARGV))
return redis.call('zrange', KEYS[1], sindex, eindex)
''')

The body of the Lua script should be somewhat familiar; it’s a direct translation of the

chapter 6 code. Not only is the resulting code significantly shorter, it also executes

much faster. Using a similar benchmarking method to what we used in chapter 6, we

ran 1, 2, 5, and 10 concurrent processes that performed autocomplete requests

against the same guild as fast as possible. To keep our chart simple, we only calculated

attempts to autocomplete and successful autocompletes, over the course of 10 sec-

onds. Table 11.3 shows the results of this test.

 Looking at our table, when executing the older autocomplete function that uses

WATCH/MULTI/EXEC transactions, the probability of finishing a transaction is reduced

as we add more clients, and the total attempts over 10 seconds hit a peak limit. On the

other hand, our Lua autocomplete can attempt and finish far more times every sec-

ond, primarily due to the reduced overhead of fewer network round trips, as well as

Listing 11.11 Autocomplete on prefix using Redis scripting

Get the values 
inside our range, 
and clean up.

Retry if someone modified 
our autocomplete ZSET.

Remove start/end entries 
if an autocomplete was 
in progress.

Get the range
and identifier.

Fetch the data 
from Redis with 
the Lua script.

Filter out any
items that we

don’t want.

Find the endpoint
positions in the ZSET.

Add our place-
holder endpoints 
to the ZSET.

Calculate the proper 
range of values to fetch.

Remove the
placeholder
endpoints. Fetch and return

our results.
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not running into any WATCH errors due to contention. Looking at just the 10-client ver-

sion of both, the 10-client Lua autocomplete is able to complete more than 20 times

as many autocomplete operations as the original autocomplete.

 Now that we’ve seen how well we can do on one of our simpler examples, let’s look

at how we can improve our marketplace.

11.3.2 Improving the marketplace, again

In section 6.2, we revisited the marketplace example we introduced in section 4.4,

replacing our use of WATCH, MULTI, and EXEC with locks, and showed how using

coarse-grained and fine-grained locks in Redis can help reduce contention and

improve performance.

 In this section, we’ll again work on the marketplace, further improving perfor-

mance by removing the locks completely and moving our code into a Lua script.

 Let’s first look at our marketplace code with a lock. As a review of what goes on,

first the lock is acquired, and then we watch the buyer’s user information HASH and let

the buyer purchase the item if they have enough money. The original function from

section 6.2 appears next.

def purchase_item_with_lock(conn, buyerid, itemid, sellerid):
buyer = "users:%s" % buyerid
seller = "users:%s" % sellerid
item = "%s.%s" % (itemid, sellerid)
inventory = "inventory:%s" % buyerid
end = time.time() + 30

locked = acquire_lock(conn, 'market:')          
if not locked:

return False

pipe = conn.pipeline(True)

Table 11.3 Performance of our original autocomplete versus our Lua-based autocomplete over 10 seconds

Benchmark configuration Tries in 10 seconds Autocompletes in 10 seconds

Original autocomplete, 1 client 26,339 26,339

Original autocomplete, 2 clients 35,188 17,551

Original autocomplete, 5 clients 59,544 10,989

Original autocomplete, 10 clients 57,305 6,141

Lua autocomplete, 1 client 64,440 64,440

Lua autocomplete, 2 clients 89,140 89,140

Lua autocomplete, 5 clients 125,971 125,971

Lua autocomplete, 10 clients 128,217 128,217

Listing 11.12 The purchase item with lock function from section 6.2

Get the lock
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try:
while time.time() < end:

try:
pipe.watch(buyer)
pipe.zscore("market:", item)
pipe.hget(buyer, 'funds')
price, funds = pipe.execute()
if price is None or price > funds:

pipe.unwatch()
return None

pipe.hincrby(seller, int(price))
pipe.hincrby(buyerid, int(-price))
pipe.sadd(inventory, itemid)
pipe.zrem("market:", item)
pipe.execute()
return True

except redis.exceptions.WatchError:
pass

finally:
release_lock(conn, 'market:', locked)

Despite using a lock, we still needed to watch the buyer’s user information HASH to

ensure that enough money was available at the time of purchase. And because of that,

we have the worst of both worlds: chunks of code to handle locking, and other chunks

of code to handle the potential WATCH errors. Of all of the solutions we’ve seen so far,

this one is a prime candidate for rewriting in Lua.

 When rewriting this function in Lua, we can do away with the locking, the WATCH/

MULTI/EXEC transactions, and even timeouts. Our code becomes straightforward and

simple: make sure the item is available, make sure the buyer has enough money, trans-

fer the item to the buyer, and transfer the buyer’s money to the seller. The following

listing shows the rewritten item-purchasing function.

def purchase_item(conn, buyerid, itemid, sellerid):
buyer = "users:%s" % buyerid
seller = "users:%s" % sellerid
item = "%s.%s"%(itemid, sellerid)
inventory = "inventory:%s" % buyerid

return purchase_item_lua(conn,
['market:', buyer, seller, inventory], [item, itemid])

purchase_item_lua = script_load('''
local price = tonumber(redis.call('zscore', KEYS[1], ARGV[1]))
local funds = tonumber(redis.call('hget', KEYS[2], 'funds'))

if price and funds and funds >= price then
redis.call('hincrby', KEYS[3], 'funds', price)
redis.call('hincrby', KEYS[2], 'funds', -price)
redis.call('sadd', KEYS[4], ARGV[2])
redis.call('zrem', KEYS[1], ARGV[1])

Listing 11.13 The purchase item function rewritten with Lua

Check for a sold item 
or insufficient funds.

Transfer funds from the buyer 
to the seller, and transfer the 
item to the buyer.

Release the lock.

Prepare all of the 
keys and arguments 
for the Lua script.

Get the item
price and the

buyer’s
available funds.

If the item is still 
available and the 
buyer has enough 
money, transfer 
the item.



264 CHAPTER 11 Scripting Redis with Lua

return true
end
''')

Just comparing the two code listings, the Lua-based item-purchase code is far easier to

understand. And without the multiple round trips to complete a single purchase

(locking, watching, fetching price and available money, then the purchase, and then

the unlocking), it’s obvious that purchasing an item will be even faster than the fine-

grained locking that we used in chapter 6. But how much faster?

We now have an item-purchase function rewritten in Lua, and if you perform the exer-

cise, you’ll also have an item-listing function written in Lua. If you read the hint to our

exercise, you’ll notice that we also rewrote the item-listing function in Lua. You may

remember that at the end of section 6.2.4, we ran some benchmarks to compare the

performance of WATCH/MULTI/EXEC transactions against coarse-grained and fine-

grained locks. We reran the benchmark for five listing and five buying processes using

our newly rewritten Lua versions, to produce the last row in table 11.4.

As in other cases where we’ve moved functionality into Lua, we see a substantial per-

formance increase. Numerically, we see an improvement in listing and buying

performance of more than 4.25 times compared with fine-grained locking, and

see latencies of under 1 millisecond to execute a purchase (actual latencies were

consistently around .61 milliseconds). From this table, we can see the performance

advantages of coarse-grained locks over WATCH/MULTI/EXEC, fine-grained locks over

Table 11.4 Performance of Lua compared with no locking, coarse-grained locks, and fine-grained locks

                    over 60 seconds

Listed items Bought items Purchase retries Average wait per purchase

5 listers, 5 buyers, no 

lock

206,000 <600 161,000 498ms

5 listers, 5 buyers, 

with lock

21,000 20,500 0 14ms

5 listers, 5 buyers, 

with fine-grained lock

116,000 111,000 0 <3ms

5 listers, 5 buyers, 

using Lua

505,000 480,000 0 <1ms

Signify that the purchase 
completed successfully.

Exercise: Rewrite item listing in Lua

We rewrote the purchase-item function in Lua for our benchmarks, but can you rewrite

the original item-listing function from section 4.4.2 into Lua? Hint: The source code

for this chapter includes the answer to this exercise, just as the source code for each

of the other chapters includes the solutions to almost all of the exercises.
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coarse-grained locks, and Lua over fine-grained locks. That said, try to remember

that while Lua can offer extraordinary performance advantages (and substantial

code simplification in some cases), Lua scripting in Redis is limited to data we can

access from within Lua and Redis, whereas there are no such limits when using locks

or WATCH/MULTI/EXEC transactions.

 Now that you’ve seen some of the amazing performance advantages that are avail-

able with Lua, let’s look at an example where we can save memory with Lua.

11.4 Sharding LISTs with Lua

Back in sections 9.2 and 9.3, we sharded HASHes, SETs, and even STRINGs as a way of

reducing memory. In section 10.3, we sharded ZSETs to allow for search indexes to

grow beyond one machine’s memory and to improve performance.

 As promised in section 9.2, in this section we’ll create a sharded LIST in order to

reduce memory use for long LISTs. We’ll support pushing to both ends of the LIST,

and we’ll support blocking and nonblocking pops from both ends of the list.

 Before we get started on actually implementing these features, we’ll look at how to

structure the data itself.

11.4.1 Structuring a sharded LIST

In order to store a sharded LIST in a way that allows for pushing and popping from both

ends, we need the IDs for the first and last shard, as well as the LIST shards themselves.

 To store information about the first and last shards, we’ll keep two numbers stored

as standard Redis strings. These keys will be named <listname>:first and <list-

name>:last. Any time the sharded LIST is empty, both of these numbers will be the

same. Figure 11.1 shows the first and last shard IDs.

 Additionally, each shard will be named <listname>:<shardid>, and shards will be

assigned sequentially. More specifically, if items are popped from the left, then as

items are pushed onto the right, the last shard index will increase, and more shards

with higher shard IDs will be used. Similarly, if items are popped from the right, then

as items are pushed onto the left, the first shard index will decrease, and more shards

with lower shard IDs will be used. Figure 11.2 shows some example shards as part of

the same sharded LIST. 

 The structures that we’ll use for sharded LISTs shouldn’t seem strange. The only

interesting thing that we’re doing is splitting a single LIST into multiple pieces and

keeping track of the IDs of the first and last shards. But actually implementing our

operations? That’s where things get interesting.

slist:first

4

string slist:last

6

string

Figure 11.1 First and last shard IDs for sharded LISTs
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11.4.2 Pushing items onto the sharded LIST

It turns out that one of the simplest operations that we’ll perform will be pushing

items onto either end of the sharded LIST. Because of some small semantic changes to

the way that blocking pop operations work in Redis 2.6, we have to do some work to

ensure that we don’t accidentally overflow a shard. I’ll explain when we talk more

about the code.

 In order to push items onto either end of a sharded LIST, we must first prepare the

data for sending by breaking it up into chunks. This is because if we’re sending to a

sharded LIST, we may know the total capacity, but we won’t know if any clients are

waiting on a blocking pop from that LIST,1 so we may need to take multiple passes for

large LIST pushes.

 After we’ve prepared our data, we pass it on to the underlying Lua script. And in

Lua, we only need to find the first/last shards, and then push the item(s) onto that

LIST until it’s full, returning the number of items that were pushed. The Python and

Lua code to push items onto either end of a sharded LIST is shown in the following

listing.

1 In earlier versions of Redis, pushing to a LIST with blocking clients waiting on them would cause the item to
be pushed immediately, and subsequent calls to LLEN would tell the length of the LIST after those items had
been sent to the blocking clients. In Redis 2.6, this is no longer the case—the blocking pops are handled after
the current command has completed. In this context, that means that blocking pops are handled after the
current Lua call has finished.

This design can be used to help

compute the total length of the 

sharded LIST quickly.

When there are multiple LISTs

for a sharded LIST, the end LISTs

may not be full, but every LIST

between the ends is full.

As shown in figure 11.2, this 

sharded LIST is made of 3 shards,

slist:4 being the first (so potentially

not full), slist:5 (which is full), and

slist:6 (which also may not be full).

slist:4

7857f63f-a019

114f110a-f69b

6d0fe173-8c65

...

list

slist:5

608c2157-61a1

7a8c2b0c-6dbe

562a5690-493b

...

list

slist:6

782e0954-139c

967e695a-94dd

d986dcc4-edec

...

list

Figure 11.2 LIST

shards with data
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def sharded_push_helper(conn, key, *items, **kwargs):
items = list(items)
total = 0
while items:

pushed = sharded_push_lua(conn,
[key+':', key+':first', key+':last'],
[kwargs['cmd']] + items[:64])

total += pushed
del items[:pushed]

return total

def sharded_lpush(conn, key, *items):
return sharded_push_helper(conn, key, *items, cmd='lpush')

def sharded_rpush(conn, key, *items):
return sharded_push_helper(conn, key, *items, cmd='rpush')

sharded_push_lua = script_load('''
local max = tonumber(redis.call(

'config', 'get', 'list-max-ziplist-entries')[2])
if #ARGV < 2 or max < 2 then return 0 end

local skey = ARGV[1] == 'lpush' and KEYS[2] or KEYS[3]
local shard = redis.call('get', skey) or '0'

while 1 do
local current = tonumber(redis.call('llen', KEYS[1]..shard))
local topush = math.min(#ARGV - 1, max - current - 1)
if topush > 0 then

redis.call(ARGV[1], KEYS[1]..shard, unpack(ARGV, 2, topush+1))
return topush

end
shard = redis.call(ARGV[1] == 'lpush' and 'decr' or 'incr', skey)

end
''')

As I mentioned before, because we don’t know about whether clients are blocking on

pops, we can’t push all items in a single call, so we choose a modestly sized block of 64

at a time, though you should feel free to adjust it up or down depending on the size of

your maximum ziplist-encoded LIST configuration.

LIMITATIONS TO THIS SHARDED LIST Earlier in this chapter, I mentioned that
in order to properly check keys for sharded databases (like in the future Redis
cluster), we’re supposed to pass all of the keys that will be modified as part of
the KEYS argument to the Redis script. But since the shards we’re supposed to
write to aren’t necessarily known in advance, we can’t do that here. As a
result, this sharded LIST is only able to be contained on a single actual Redis
server, not sharded onto multiple servers.

Listing 11.14 Functions for pushing items onto a sharded LIST

Convert our sequence 
of items into a list.

While we still have
items to push... Note that we only push 

up to 64 items at a time 
here; you may want to 
adjust this up or down, 
depending on your 
maximum ziplist size.

Remove the items that 
we’ve already pushed.

...push items
onto the sharded
list by calling the

Lua script.

Count the
number of items
that we pushed.

Return the total number 
of items pushed.

Make a call to the
sharded_push_helper
function with a special
argument that tells it

to use lpush or rpush.

Determine the maximum 
size of a LIST shard.

If there’s nothing to 
push, or if our max 
ziplist LIST entries is 
too small, return 0.

Find out whether
we’re pushing onto

the left or right end of
the LIST, and get the

correct end shard.

Get the current
length of that

shard.

Calculate how many
of our current items

we can push onto the
current LIST shard
without going over

the limit, saving one
entry for later

blocking pop
purposes.

Otherwise, generate a 
new shard, and try again.

If we can push some
items, then push as

many items as we can.
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You’ll notice that for our sharded push, we may loop in order to go to another shard

when the first is full. Because no other commands can execute while the script is exe-

cuting, the loop should take at most two passes: one to notice that the initial shard is

full, the second to push items onto the empty shard.

Let’s work on popping items from the LIST next.

11.4.3 Popping items from the sharded LIST

When popping items from a sharded LIST, we technically don’t need to use Lua. Redis

already has everything we need to pop items: WATCH, MULTI, and EXEC. But like we’ve

seen in other situations, when there’s high contention (which could definitely be the

case for a LIST that grows long enough to need sharding), WATCH/MULTI/EXEC transac-

tions may be slow.

 To pop items in a nonblocking manner from a sharded LIST in Lua, we only need

to find the endmost shard, pop an item (if one is available), and if the resulting LIST

shard is empty, adjust the end shard information, as demonstrated in the next listing. 

def sharded_lpop(conn, key):
return sharded_list_pop_lua(

conn, [key+':', key+':first', key+':last'], ['lpop'])

def sharded_rpop(conn, key):
return sharded_list_pop_lua(

conn, [key+':', key+':first', key+':last'], ['rpop'])

sharded_list_pop_lua = script_load('''
local skey = ARGV[1] == 'lpop' and KEYS[2] or KEYS[3]
local okey = ARGV[1] ~= 'lpop' and KEYS[2] or KEYS[3]
local shard = redis.call('get', skey) or '0'

local ret = redis.call(ARGV[1], KEYS[1]..shard)
if not ret or redis.call('llen', KEYS[1]..shard) == '0' then

local oshard = redis.call('get', okey) or '0'

if shard == oshard then
return ret

end

local cmd = ARGV[1] == 'lpop' and 'incr' or 'decr'

Listing 11.15 The Lua script for pushing items onto a sharded LIST

Exercise: Finding the length of a sharded LIST

Now that you can create a sharded LIST, knowing how long your LIST has grown can

be useful, especially if you’re using sharded LISTs for very long task queues. Can

you write a function (with or without Lua) that can return the size of a sharded LIST?

Get the key for
the end we’ll be
popping from.

Get the key
 for the end
we won’t be

popping from.

Pop from
the shard.

Get the shard ID for
the end we didn’t

pop from.

If both ends of the
sharded LIST are

the same, then the
list is now empty
and we’re done.

Get the shard
ID that we’ll be
popping from.

If we didn’t get anything because the shard was
empty, or we have just made the shard empty,

we should clean up our shard endpoint.

Determine whether to increment or decrement the
shard ID, based on whether we were popping off

the left end or right end.
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shard = redis.call(cmd, skey)
if not ret then

ret = redis.call(ARGV[1], KEYS[1]..shard)
end

end
return ret
''')

When popping items from a sharded LIST, we need to remember that if we pop from

an empty shard, we don’t know if it’s because the whole sharded LIST is empty or just

the shard itself. In this situation, we need to verify that we still have space between the

endpoints, in order to know if we can adjust one end or the other. In the situation

where just this one shard is empty, we have an opportunity to pop an item from the

proper shard, which we do. 

 The only remaining piece for our promised API is blocking pop operations.

11.4.4 Performing blocking pops from the sharded LIST

We’ve stepped through pushing items onto both ends of a long LIST, popping items

off both ends, and even written a function to get the total length of a sharded LIST. In

this section, we’ll build a method to perform blocking pops from both ends of the

sharded LIST. In previous chapters, we’ve used blocking pops to implement messag-

ing and task queues, though other uses are also possible.

 Whenever possible, if we don’t need to actually block and wait on a request, we

should use the nonblocking versions of the sharded LIST pop methods. This is

because, with the current semantics and commands available to Lua scripting and

WATCH/MULTI/EXEC transactions, there are still some situations where we may receive

incorrect data. These situations are rare, and we’ll go through a few steps to try to pre-

vent them from happening, but every system has limitations.

 In order to perform a blocking pop, we’ll cheat somewhat. First, we’ll try to per-

form a nonblocking pop in a loop until we run out of time, or until we get an item. If

that works, then we’re done. If that doesn’t get an item, then we’ll loop over a few

steps until we get an item, or until our timeout is up.

 The specific sequence of operations we’ll perform is to start by trying the non-

blocking pop. If that fails, then we fetch information about the first and last shard IDs.

If the IDs are the same, we then perform a blocking pop on that shard ID. Well, sort of.

 Because the shard ID of the end we want to pop from could’ve changed since we

fetched the endpoints (due to round-trip latencies), we insert a pipelined Lua script

EVAL call just before the blocking pop. This script verifies whether we’re trying to pop

from the correct LIST. If we are, then it does nothing, and our blocking pop operation

occurs without issue. But if it’s the wrong LIST, then the script will push an extra

“dummy” item onto the LIST, which will then be popped with the blocking pop opera-

tion immediately following.

 There’s a potential race between when the Lua script is executed and when the

blocking pop operation is executed. If someone attempts to pop or push an item from

Adjust our shard
endpoint.

If we didn’t get a value before,
try again on the new shard.
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that same shard between when the Lua script is executed and when the blocking pop

operation is executed, then we could get bad data (the other popping client getting

our dummy item), or we could end up blocking on the wrong shard.

WHY NOT USE A MULTI/EXEC TRANSACTION? We’ve talked a lot about MULTI/
EXEC transactions as a way of preventing race conditions through the other
chapters. So why don’t we use WATCH/MULTI/EXEC to prepare information,
and then use a BLPOP/BRPOP operation as the last command before EXEC?
This is because if a BLPOP/BRPOP operation occurs on an empty LIST as part of
a MULTI/EXEC transaction, it’d block forever because no other commands can
be run in that time. To prevent such an error, BLPOP/BRPOP operations within
a MULTI/EXEC block will execute as their nonblocking LPOP/RPOP versions
(except allowing the client to pass multiple lists to attempt to pop from).

To address the issue with blocking on the wrong shard, we’ll only ever block for one

second at a time (even if we’re supposed to block forever). And to address the issue

with our blocking pop operations getting data that wasn’t actually on the end shard,

we’ll operate under the assumption that if data came in between two non-transac-

tional pipelined calls, it’s close enough to being correct. Our functions for handling

blocking pops can be seen in the next listing.

DUMMY = str(uuid.uuid4())

def sharded_bpop_helper(conn, key, timeout, pop, bpop, endp, push):
pipe = conn.pipeline(False)
timeout = max(timeout, 0) or 2**64
end = time.time() + timeout

while time.time() < end:
result = pop(conn, key)
if result not in (None, DUMMY):

return result

shard = conn.get(key + endp) or '0'
sharded_bpop_helper_lua(pipe, [key + ':', key + endp],

[shard, push, DUMMY], force_eval=True)
getattr(pipe, bpop)(key + ':' + shard, 1)

result = (pipe.execute()[-1] or [None])[-1]
if result not in (None, DUMMY):

return result

Listing 11.16 Our code to perform a blocking pop from a sharded LIST

Our defined dummy value, which we can
change to be something that we shouldn’t

expect to see in our sharded LISTs. We’ll define a helper function that will
actually perform the pop operations for
both types of blocking pop operations.

Prepare the pipeline and 
timeout information.

Try to perform a nonblocking 
pop, returning the value if it isn’t 
missing or the dummy value.

Get the shard that
we think we need

to pop from.

Run the Lua helper,
which will handle

pushing a dummy value
if we’re popping from

the wrong shard.

We use force_eval
here to ensure an

EVAL call instead of an
EVALSHA, because we

can’t afford to
perform a potentially

failing EVALSHA
inside a pipeline.

Try to block on 
popping the item 
from the LIST, using 
the proper BLPOP 
or BRPOP command 
passed in.If we got an item,

then we’re done;
otherwise, retry.
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def sharded_blpop(conn, key, timeout=0):
return sharded_bpop_helper(

conn, key, timeout, sharded_lpop, 'blpop', ':first', 'lpush')

def sharded_brpop(conn, key, timeout=0):
return sharded_bpop_helper(

conn, key, timeout, sharded_rpop, 'brpop', ':last', 'rpush')

sharded_bpop_helper_lua = script_load('''
local shard = redis.call('get', KEYS[2]) or '0'
if shard ~= ARGV[1] then

redis.call(ARGV[2], KEYS[1]..ARGV[1], ARGV[3])
end
''')

There are a lot of pieces that come together to make this actually work, but remember

that there are three basic pieces. The first piece is a helper that handles the loop to

actually fetch the item. Inside this loop, we call the second piece, which is the helper/

blocking pop pair of functions, which handles the blocking portion of the calls. The

third piece is the API that users will actually call, which handles passing all of the

proper arguments to the helper.

 For each of the commands operating on sharded LISTs, we could implement them

with WATCH/MULTI/EXEC transactions. But a practical issue comes up when there’s a

modest amount of contention, because each of these operations manipulates multiple

structures simultaneously, and will manipulate structures that are calculated as part of

the transaction itself. Using a lock over the entire structure can help somewhat, but

using Lua improves performance significantly. 

11.5 Summary

If there’s one idea that you should take away from this chapter, it’s that scripting with

Lua can greatly improve performance and can simplify the operations that you need

to perform. Though there are some limitations with Redis scripting across shards that

aren’t limitations when using locks or WATCH/MULTI/EXEC transactions in some scenar-

ios, Lua scripting is a significant win in the majority of situations.

 Sadly, we’ve come to the end of our chapters. Up next you’ll find appendixes that

offer installation instructions for three major platforms; references to potentially use-

ful software, libraries, and documentation; and an index to help you find relevant top-

ics in this or other chapters. 

These functions
prepare the

actual call to
the underlying

blocking pop
operations.

Get the actual shard 
for the end we want 
to pop from.

If we were going to
try to pop from the
wrong shard, push

an extra value.
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appendix A
Quick and dirty setup

Depending on your platform, setting up Redis can range from easy to difficult. I’ve

broken down installation instructions into sections for the three major platforms. Feel

free to skip ahead to your platform, which will also include instructions for installing

and configuring Python and the Redis client libraries for Python on your system.

A.1 Installation on Debian or Ubuntu Linux

If you’re using a Debian-derived Linux, your first instinct will be to apt-get install

redis-server, but this is probably the wrong thing to do. Depending on your version

of Debian or Ubuntu, you could be installing an old version of Redis. As an example,

if you’re using Ubuntu 10.4, you’d be downloading Redis 1.2.6, which was released

in March 2010 and doesn’t support many of the commands that we use.

 In this section, you’ll first install the build tools because you’ll compile Redis

from scratch. Then you’ll download, compile, and install Redis. After Redis is run-

ning, you’ll download the Redis client libraries for Python.

 To get started, make sure that you have all of the standard required build tools

installed by fetching and downloading make, as can be seen in the following listing.

~$ sudo apt-get update
~$ sudo apt-get install make gcc python-dev

When your build tools are installed (they were probably installed before; this was a

verification step), you’ll take these steps:

1 Download the most recent stable Redis source code from http://redis.io/

download.

2 Extract, compile, install, and start Redis.

3 Download and install the necessary Redis client libraries for Python.

Listing A.1 Installing build tools on Debian Linux

http://redis.io/download
http://redis.io/download
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The first two steps in this process are shown next.

~:$ wget -q http://redis.googlecode.com/files/redis-2.6.9.tar.gz
~:$ tar -xzf redis-2.6.9.tar.gz
~:$ cd redis-2.6.9/
~/redis-2.6.9:$ make
cd src && make all
[trimmed]
make[1]: Leaving directory `~/redis-2.6.9/src'
~/redis-2.6.9:$ sudo make install
cd src && make install
[trimmed]
make[1]: Leaving directory `~/redis-2.6.9/src'
~/redis-2.6.9:$ redis-server redis.conf
[13792] 2 Feb 17:53:16.523 * Max number of open files set to 10032
[trimmed]
[13792] 2 Feb 17:53:16.529 * The server is now ready to accept
connections on port 6379

After you have Redis installed and running, you need to install the Redis client librar-

ies for Python. You won’t bother to install Python, because Python 2.6 or 2.7 should

already be installed by default on Ubuntu or Debian releases in the last few years. But

you’ll download and install a simple helper package called setuptools, which will

help you download and install the Redis client libraries.1 This last step of installing the

Redis client libraries for Python is shown next.

~:$ wget -q http://peak.telecommunity.com/dist/ez_setup.py
~:$ sudo python ez_setup.py
Downloading http://pypi.python.org/packages/2.7/s/setuptools/...
[trimmed]
Finished processing dependencies for setuptools==0.6c11
~:$ sudo python -m easy_install redis hiredis
Searching for redis
[trimmed]
Finished processing dependencies for redis

Listing A.2 Installing Redis on Linux

1 Experienced Python users will ask “Why not pip?” which is another package for installing Python libraries.
This is because virtualenv, which is necessary for the easy download of pip, is out of the scope of these
instructions.

Listing A.3 Installing the Redis client libraries for Python on Linux

Download the most recent version of Redis
2.6 (or later): http://redis.io/download).

Extract the source code.Compile
Redis.

Install
Redis.

Start Redis
server.

Watch compilation 
messages go by; you 
shouldn’t see any errors.

Watch installation 
messages go by; you 
shouldn’t see any errors.

See the confirmation
that Redis has started.

Download the setuptools
ez_setup module.

Run the ez_setup
module to download

and install setuptools.

Run setuptools’ 
easy_install package 
to install the redis 
and hiredis packages.

The redis package
offers a somewhat

standard interface to
Redis from Python.
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Searching for hiredis
[trimmed]
Finished processing dependencies for hiredis
~:$

Now that you have the Python libraries installed, you can skip ahead to section A.4 to

test Redis from Python, which should prepare you for all of the other chapters.

A.2 Installing on OS X

As is the case with other platforms, there are a few ways to download and install Redis

and the Python Redis client library. In this section, we’ll discuss the following:

1 Downloading, installing, and running Redis on OS X.

2 Installing the Redis client library for Python.

If you read the Linux section, you’ll know that we made sure that the necessary tools

for building Redis from scratch were available, because it was easy to do so. Though

the installation of Xcode for OS X is a bit more difficult, the fact that the build tools

download is 10 times larger makes following along without a long break much more

difficult. As such, you’ll use a method to install Redis that doesn’t require a compiler.

 To install Redis in OS X without using a compiler, you’ll use a Python utility called

Rudix, which installs precompiled binaries for a variety of software. Conveniently, as of

this writing it includes an installer for the most recent version of Redis.

 To download and install Rudix and Redis, you should open a Terminal. The Ter-

minal application can be found in the Utilities group inside of Applications. After

you’ve started the terminal, please follow along with the next listing to install Redis

using Rudix. 

~:$ curl -O http://rudix.googlecode.com/hg/Ports/rudix/rudix.py
[trimmed]
~:$ sudo python rudix.py install rudix
Downloading rudix.googlecode.com/files/rudix-12.10-0.pkg
[trimmed]
installer: The install was successful.
All done
~:$ sudo rudix install redis
Downloading rudix.googlecode.com/files/redis-2.6.9-0.pkg
[trimmed]
installer: The install was successful.
All done
~:$ redis-server
[699] 6 Feb 21:18:09 # Warning: no config file specified, using the
default config. In order to specify a config file use 'redis-server
/path/to/redis.conf'
[699] 6 Feb 21:18:09 * Server started, Redis version 2.6.9

Listing A.4 Installing Redis on OS X

The hiredis package is a 
C accelerator library for 
the Python Redis library.

Download the bootstrap
script that installs Rudix.

Tell Rudix to
install itself.

Tell Rudix to
install Redis.

Start the
Redis server.

Rudix is 
downloading and 
installing itself.

Rudix is 
downloading and 
installing Redis.

Redis started
and is running

with the default
configuration.
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[699] 6 Feb 21:18:09 * The server is now ready to accept connections
on port 6379
[699] 6 Feb 21:18:09 - 0 clients connected (0 slaves), 922304 bytes
in use

Now that you’ve installed Redis, it’s time to install the Redis client library for Python.

You don’t need to install Python, because OS X versions 10.6 and 10.7 come with

either Python 2.6 or 2.7 preinstalled and available via python by default. While Redis

is running in one terminal, open up a new tab (command + T), and follow along with

the next listing to install the Python Redis library.

~:$ sudo rudix install pip
Downloading rudix.googlecode.com/files/pip-1.1-1.pkg
[trimmed]
installer: The install was successful.
All done
~:$ sudo pip install redis
Downloading/unpacking redis
[trimmed]
Cleaning up...
~:$

If you read either of the Linux or Windows install instructions, you may have noticed

that we used setuptools’s easy_install method to install the Redis client library, but

here you use pip. This is because Rudix offers a pip package, but doesn’t have a setup-

tools package, so it was easier to install pip, and then use pip to install the Redis client

library for Python instead of manually downloading and installing setuptools.

 Also, if you read the installation instructions for Linux, you may have noticed that

we installed the hiredis helper library there, but you don’t install it on OS X. This is

because, like before, you can’t guarantee that users will have Xcode installed, so you’ll

use what you have available.

 Now that you have the Redis Python library installed, you should skip ahead to sec-

tion A.4 and follow along to use Redis from Python for the first time.

A.3 Installing on Windows

Before we get into how to install Redis on Windows, I’d like to point out that running

Redis on Windows isn’t recommended, for a variety of reasons. In this section we’ll

cover these points: 

■ Reasons why you shouldn’t be running Redis on Windows.

■ How to download, install, and run a precompiled Windows binary.

■ How to download and install Python for Windows.

■ How to install the Redis client library.

Our first step is to discuss why you shouldn’t be running Redis on Windows.

Listing A.5 Installing the Redis client library for Python on OS X

Redis started
and is running

with the default
configuration.

Because you have
Rudix installed, you
can install a Python

package manager
called pip.

Rudix is 
installing 
pip.

You can now use pip 
to install the Python 
Redis client library.

Pip is installing the 
Redis client library 
for Python.
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A.3.1 Drawbacks of Redis on Windows

Windows doesn’t support the fork system call, which Redis uses in a variety of situa-

tions to dump its database to disk. Without the ability to fork, Redis is unable to per-

form some of its necessary database-saving methods without blocking clients until the

dump has completed.

 Recently, Microsoft has contributed engineering time helping to address back-

ground saving issues, using threads to write to disk instead of a forked child process.

As of this writing, Microsoft does have an alpha-stage branch of Redis 2.6, but it’s only

available as source, and Microsoft makes no guarantees as to its worthiness in produc-

tion scenarios.

 At least for the short term, there’s an unofficial port of Redis by Dusan Majkic that

offers precompiled binaries for Redis 2.4.5, but it has the previously mentioned issue

that Redis blocks when dumping the database to disk. 

COMPILING REDIS IN WINDOWS YOURSELF If you find yourself in the position of
needing the most up-to-date version of Redis on Windows as possible, you’ll
need to compile Redis yourself. Your best option is to use Microsoft’s official
port (https://github.com/MSOpenTech/redis/), which requires Microsoft
Visual Studio, though the free Express 2010 works just fine. If you choose to
go this route, be warned that Microsoft makes no guarantees as to the fitness
of their ports to Windows for anything except development and testing.

Now that you know the state of Redis on Windows, if you still want to run Redis on

Windows, let’s install it.

A.3.2 Installing Redis on Windows

You can download a moderately out-of-date precompiled version of Redis for 32-bit

and 64-bit Windows thanks to Dusan Majkic from his GitHub page: https://

github.com/dmajkic/redis/downloads. Go ahead and do that now.

 After you download Redis, you’ll need to extract the executables from the zip file.

As long as you’re using a version of Windows more recent than Windows XP, you

should be able to extract Redis without any additional software. Do that now.

 After you’ve extracted either the 32- or 64-bit version of Redis to a location of your

choice (depending on your platform and preferences; remember that 64-bit Windows

can run 32- or 64-bit Redis, but 32-bit Windows can only run 32-bit Redis), you can

start Redis by double-clicking on the redis-server executable. After Redis has

started, you should see a window similar to figure A.1.

 Now that Redis is up and running, it’s time to download and install Python.

https://github.com/MSOpenTech/redis/
https://github.com/dmajkic/redis/downloads
https://github.com/dmajkic/redis/downloads
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A.3.3 Installing Python on Windows

If you already have Python 2.6 or 2.7 installed, you’re fine. If not, you’ll want to down-

load the latest version of Python 2.7, because that’s the most recent version of Python

that has support for the Redis library. Go to http://www.python.org/download/ and

select the most recent version of the 2.7 series that’s available for Windows in either

the 32- or 64-bit version (again, depending on your platform). When Python is done

downloading, you can install it by double-clicking on the downloaded .msi file.

 Assuming that you accepted all of the default options for installing Python 2.7,

Python should be installed in C:\Python27\. From here, you only need to install the

Python Redis library to be ready to use Redis with Python. If you’re using Python 2.6,

any time the book refers to Python27, you can instead use Python26.

 To help you to install the Redis client library, you’ll use the easy_install utility

from the setuptools package. This is because you can easily download setuptools

from the command line. To get started, open a command prompt by going into the

Accessories program group in the Start menu and clicking on Command Prompt.

After you have a command prompt open, follow along with the next listing; it shows

how to download and install setuptools and the Redis client library.

C:\Users\josiah>c:\python27\python
Python 2.7.3 (default, Apr 10 2012, 23:31:26) [MSC v.1500 32 bit...
Type "help", "copyright", "credits" or "license" for more information.
>>> from urllib import urlopen
>>> data = urlopen('http://peak.telecommunity.com/dist/ez_setup.py')

Listing A.6 Installing the Redis client library for Python on Windows

Figure A.1 Redis running in Windows

Start Python
by itself in
interactive

mode.

Fetch a module that will help 
you install other packages.

Import the urlopen factory
function from the urllib module.

http://www.python.org/download/
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>>> open('ez_setup.py', 'wb').write(data.read())
>>> exit()

C:\Users\josiah>c:\python27\python ez_setup.py
Downloading http://pypi.python.org/packages/2.7/s/setuptools/...
[trimmed]
Finished processing dependencies for setuptools==0.6c11

C:\Users\josiah>c:\python27\python -m easy_install redis
Searching for redis
[trimmed]
Finished processing dependencies for redis
C:\Users\josiah>

Now that you have Python and the Redis client library installed, you should continue

with section A.4 to use Redis from Python for the first time.

A.4 Hello Redis

After Redis itself is installed, you need to ensure that Python has the proper libraries

for accessing Redis. If you followed the earlier instructions, you may still have a com-

mand prompt open. In this command prompt (you can open a new one if you closed

the old one), you’ll run Python. (Windows users can refer to how you ran Python dur-

ing the setup procedure.) Inside of the Python console, you’ll try connecting to Redis

and issue a couple commands, as shown in the next listing.

~:$ python
Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import redis
>>> conn = redis.Redis()          
>>> conn.set('hello', 'world')
True
>>> conn.get('hello')                        
'world'

RUNNING PYTHON IN OTHER WAYS Though you can run Python in a standard
terminal, there are a variety of other more “fully featured” ways to have a
Python console available. A basic editor and console called Idle ships with
Python on Windows and OS X; you can also install it on Linux (install the
idle-python2.6 or idle-python2.7 package, as relevant). In a console, you
can run python -m idlelib.idle from the command line, and Idle should
load. Idle is a fairly basic editor and Python console itself, so if you’re new to
programming, it should be a gentle introduction. Many other people have
found IPython to be the Python console of choice, offering a list of amazing

Listing A.7 Testing Redis from Python

Write the downloaded 
module to a file on disk.Quit the Python

interpreter by
running the
builtin exit()

function.

Run the ez_setup
helper module.

Use setuptools’ easy_install module 
to download and install Redis.

The ez_setup helper downloads
and installs setuptools, which will

make it easy to download and
install the Redis client library.

Start Python so
that you can verify

everything is up
and running

correctly.

Import the redis library;
it will automatically use

the hiredis C accelerator
library if it’s available.

Create a connection to Redis.

Set a value
and see that

it was set.
Get the value 
you just set.
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features too long to mention here. Whether you go basic or fully featured,
you can’t go wrong.

REDIS ON OS X AND WINDOWS Right now, precompiled versions of Redis for
Windows and OS X are from the 2.4 series. In some chapters, we use features
that are only available in the Redis 2.6 and later series. If you find that some-
thing we do doesn’t work, and you’re using Redis 2.4, it’s probably because
the feature or usage was added in Redis 2.6. See the notes in chapter 3 for
specific examples. 

CONFIGURING REDIS By default, Redis should be configured to keep your data
using either snapshots or append-only files, and as long as you execute shut-
down on a client, Redis should keep your data around. Depending on how you
started it, Redis may be keeping the on-disk version of data in the same path
as the path you’re running it from. To update that, you’ll want to edit
redis.conf and use system startup scripts appropriate for your platform
(remember to move your data to the newly configured path). More informa-
tion about configuring Redis is available in chapter 4.

IS HIREDIS AVAILABLE ON NON-LINUX PLATFORMS? For those who are using Win-
dows or OS X and peeked at the Debian/Ubuntu install instructions, you’ll
have noticed that we installed a library called hiredis to be used with Python.
This library is an accelerator that passes protocol processing to a C library.
Though this library can be compiled for OS X and Windows, binaries for
them aren’t readily downloadable on the internet. Also, because I didn’t have
you install a compiler, if you’re interested in compiling and using hiredis on
your platform, you’re on your own.

Periodically in other chapters, we’ll use the Python console to show interactions with

Redis. In other cases, we’ll show function definitions and executable statements out-

side of a console. In those cases where we’re not using the console, it’s assumed that

those functions are defined in a Python module. If you haven’t used Python before,

you should read Python’s tutorial on modules and running modules as programs in

the first part of http://docs.python.org/tutorial/modules.html, up to and including

the section “Executing modules as scripts.”

 If you’re the kind of person who can read through language documentation and

tutorials and just “get it,” and you haven’t spent a lot of time with Python in the past, you

may want to consider going through the Python language tutorial at http://

docs.python.org/tutorial/. If you’re only interested in the important stuff where you’ll

learn the most about Python’s syntax and semantics, read sections 3-7, and then 9.10

and 9.11 (which are about generators, which we use a couple of times).

 By now you’ll have Redis and a Python interpreter running. If you got here via a

reference from chapter 1, go back to really start using Redis from Python.

 If you’re having difficulty installing Redis or Python, please post your questions or

read others’ answers on the Redis in Action Manning forum: http://mng.bz/vB6c.

http://docs.python.org/tutorial/modules.html
http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
http://mng.bz/vB6c
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appendix B
Other resources
 and references

Over the last 11 chapters and appendix A, we’ve covered a variety of topics relating

to Redis. As part of the problems that we solved, we introduced ideas that you may

not have been familiar with and provided references for more information so that

you can learn more.

 This appendix gathers all of those references and more into a single location

for easy access to other software, libraries, services, and/or documentation relating

to the topics that we’ve covered, grouped by general topic.

B.1 Forums for help

These URLs will take you to forums where you can get help using Redis or with

examples in other chapters:

■ https://groups.google.com/forum/#!forum/redis-db—Redis forum

■ http://www.manning-sandbox.com/forum.jspa?forumID=809—Manning

forum for Redis in Action

B.2 Introductory topics

This list of introductory topics covers some of the basic information about Redis

and its use:

■ http://redis.io/—Main Redis web site

■ http://redis.io/commands—Full Redis command listing

■ http://redis.io/clients—Redis client listing

■ http://redis.io/documentation—Main reference page for documentation

about Lua, pub/sub, replication, persistence, and so on.

https://groups.google.com/forum/#!forum/redis-db
http://www.manning-sandbox.com/forum.jspa?forumID=809
http://redis.io/
http://redis.io/commands
http://redis.io/clients
http://redis.io/documentation
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■ http://github.com/dmajkic/redis/—Dusan Majkic’s port of Redis to Windows

■ http://github.com/MSOpenTech/redis/—Microsoft’s official port of Redis to

Windows

This list of introductory topics covers some of the basic information about Python and

its use:

■ http://www.python.org/—Main web page for the Python programming

language

■ http://docs.python.org/—Main Python documentation page

■ http://docs.python.org/tutorial/—Python tutorial for new users

■ http://docs.python.org/reference/—Python language reference for the full

details on syntax and semantics

■ http://mng.bz/TTKb—Generator expressions

■ http://mng.bz/I31v—Python loadable Module tutorial

■ http://mng.bz/9wXM—Defining functions

■ http://mng.bz/q7eo—Variable argument lists

■ http://mng.bz/1jLF—Variable arguments and keywords

■ http://mng.bz/0rmB—List comprehensions

■ http://mng.bz/uIdf—Python generators

■ http://mng.bz/1XMr—Function and method decorators

B.3 Queues and other libraries

■ http://celeryproject.org/—Python queue library that supports multiple back

ends, including Redis

■ https://github.com/josiahcarlson/rpqueue/—Python queue library for Redis

only

■ https://github.com/resque/resque—Standard Ruby + Redis queue

■ http://www.rabbitmq.com/—Queue server for multiple languages

■ http://activemq.apache.org/—Queue server for multiple languages

■ https://github.com/Doist/bitmapist—Support for powerful bitmap-enabled

analytics

B.4 Data visualization and recording

■ http://www.jqplot.com/—Open source plotting library intended to be used

with jQuery

■ http://www.highcharts.com/—Free/commercial plotting library

■ http://dygraphs.com/—Open source plotting library

■ http://d3js.org/—General open source data visualization library

■ http://graphite.wikidot.com/—Statistics gathering and visualization library

http://github.com/dmajkic/redis/
http://github.com/MSOpenTech/redis/
http://www.python.org/
http://docs.python.org/
http://docs.python.org/tutorial/
http://docs.python.org/reference/
http://mng.bz/TTKb
http://mng.bz/I31v
http://mng.bz/9wXM
http://mng.bz/q7eo
http://mng.bz/1jLF
http://mng.bz/0rmB
http://mng.bz/uIdf
http://mng.bz/1XMr
http://celeryproject.org/
https://github.com/josiahcarlson/rpqueue/
https://github.com/resque/resque
http://www.rabbitmq.com/
http://activemq.apache.org/
https://github.com/Doist/bitmapist
http://www.jqplot.com/
http://www.highcharts.com/
http://dygraphs.com/
http://d3js.org/
http://graphite.wikidot.com/
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B.5 Data sources

In chapter 5, we used a database of IP-to-location information. This list includes a ref-

erence to that data, along with alternate data sources that may or may not be as up to

date:

■ http://dev.maxmind.com/geoip/geolite—IP address-to-geographic location

information, first used in chapter 5

■ http://www.hostip.info/dl/—Freely downloadable and usable IP-to-geographic

location information database

■ http://software77.net/geo-ip/—Another free IP-to-geographic location infor-

mation database

B.6 Redis experiences and articles

■ http://mng.bz/2ivv—An example architecture for cross-data-center Redis rep-

lication with compression

■ http://mng.bz/LCgm—Real-time updates using Redis

■ http://mng.bz/UgAD—Using Redis STRINGs to store some real-time metrics

■ http://mng.bz/1OJ7—Instagram’s experience storing many key-value pairs in

Redis

■ http://mng.bz/X564—A brief summary of some problems where Redis shines,

some of which we covered in previous chapters

■ http://mng.bz/oClc—Sharding data into Redis at Craigslist

■ http://mng.bz/07kX—An example of Redis being used in multiple parts of a

stack that syncs photos between phones and desktops

■ http://mng.bz/4dgD—One way that Disqus uses Redis in production

■ http://mng.bz/21iE—Using Redis to store RSS feed information

■ http://mng.bz/L254—Early example using Redis LISTs as storage for recent

filtered Twitter messages

http://dev.maxmind.com/geoip/geolite
http://www.hostip.info/dl/
http://software77.net/geo-ip/
http://mng.bz/2ivv
http://mng.bz/LCgm
http://mng.bz/UgAD
http://mng.bz/1OJ7
http://mng.bz/X564
http://mng.bz/oClc
http://mng.bz/07kX
http://mng.bz/4dgD
http://mng.bz/21iE
http://mng.bz/L254
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sharded_connection() 234
sharded_lpop() 268
sharded_lpush() 266
sharded_push_helper() 266
sharded_rpop() 268
sharded_rpush() 266
sharded_zrangebyscore() 246
SORT 57
StreamingAPIRequestHandler 198
StreamingAPIServer 198
STRING commands 41–42



INDEX 287

examples (continued)
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search_get_values() 237
search_get_zset_values() 240
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