
www.allitebooks.com

http://www.allitebooks.org

Praise for Effective JavaScript

“Living up to the expectation of an Effective Software Development Series pro-
gramming book, Effective JavaScript by Dave Herman is a must-read for anyone
who wants to do serious JavaScript programming. The book provides detailed
explanations of the inner workings of JavaScript, which helps readers take better
advantage of the language.”

—Erik Arvidsson, senior software engineer

“It’s uncommon to have a programming language wonk who can speak in such
comfortable and friendly language as David does. His walk through the syntax
and semantics of JavaScript is both charming and hugely insightful; reminders
of gotchas complement realistic use cases, paced at a comfortable curve. You’ll
find when you finish the book that you’ve gained a strong and comprehensive
sense of mastery.”

—Paul Irish, developer advocate, Google Chrome

“Before reading Effective JavaScript, I thought it would be just another book on
how to write better JavaScript. But this book delivers that and so much more—it
gives you a deep understanding of the language. And this is crucial. Without that
understanding you’ll know absolutely nothing whatever about the language itself.
You’ll only know how other programmers write their code.

“Read this book if you want to become a really good JavaScript developer. I, for
one, wish I had it when I first started writing JavaScript.”

—Anton Kovalyov, developer of JSHint

“If you’re looking for a book that gives you formal but highly readable insights into
the JavaScript language, look no further. Intermediate JavaScript developers will
find a treasure trove of knowledge inside, and even highly skilled JavaScripters
are almost guaranteed to learn a thing or ten. For experienced practitioners of
other languages looking to dive headfirst into JavaScript, this book is a must-
read for quickly getting up to speed. No matter what your background, though,
author Dave Herman does a fantastic job of exploring JavaScript—its beautiful
parts, its warts, and everything in between.”

—Rebecca Murphey, senior JavaScript developer, Bocoup

“Effective JavaScript is essential reading for anyone who understands that Java-
Script is no mere toy and wants to fully grasp the power it has to offer. Dave Her-
man brings users a deep, studied, and practical understanding of the language,
guiding them through example after example to help them come to the same
conclusions he has. This is not a book for those looking for shortcuts; rather, it
is hard-won experience distilled into a guided tour. It’s one of the few books on
JavaScript that I’ll recommend without hesitation.”

—Alex Russell, TC39 member, software engineer, Google

“Rarely does anyone have the opportunity to study alongside a master in their
craft. This book is just that—the JavaScript equivalent of a time-traveling philos-
opher visiting fifth century BC to study with Plato.”

—Rick Waldron, JavaScript evangelist, Bocoup

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Effective JavaScript

www.allitebooks.com

http://www.allitebooks.org

T
he Effective Software Development Series provides expert advice on

all aspects of modern software development. Books in the series are well

written, technically sound, and of lasting value. Each describes the critical

things experts always do—or always avoid—to produce outstanding software.

Scott Meyers, author of the best-selling books Effective C++ (now in its

third edition), More Effective C++, and Effective STL (all available in both

print and electronic versions), conceived of the series and acts as its

consulting editor. Authors in the series work with Meyers to create essential

reading in a format that is familiar and accessible for software developers

of every stripe.

Visit informit.com/esds for a complete list of available publications.

The Effective Software
Development Series

Scott Meyers, Consulting Editor

www.allitebooks.com

http://www.allitebooks.org

Effective JavaScript

68 SPECIFIC WAYS TO HARNESS THE POWER

OF JAVASCRIPT

David Herman

Upper Saddle River, NJ • Boston • San Francisco • New York • Toronto
Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was

aware of a trademark claim, the designations have been printed with initial capital letters or in

all capitals.

The author and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or omissions.

No liability is assumed for incidental or consequential damages in connection with or arising out

of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-

chases or special sales, which may include electronic versions and/or custom covers and content

particular to your business, training goals, marketing focus, and branding interests. For more

information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales

international@pearsoned.com

Visit us on the Web: informit.com/aw.com

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by

copyright, and permission must be obtained from the publisher prior to any prohibited repro-

duction, storage in a retrieval system, or transmission in any form or by any means, electronic,

mechanical, photocopying, recording, or likewise. To obtain permission to use material from

this work, please submit a written request to Pearson Education, Inc., Permissions Department,

One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201)

236-3290.

ISBN-13: 978-0-321-81218-6

ISBN-10: 0-321-81218-2

Text printed in the United States by RR Donnelley in Crawfordsville, Indiana.

First printing, November 2012

www.allitebooks.com

http://www.allitebooks.org

For Lisa, my love

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents

Foreword xiii

Preface xv

Acknowledgments xvii

About the Author xix

Chapter 1: Accustoming Yourself to JavaScript 1

Item 1: Know Which JavaScript You Are Using 1

Item 2: Understand JavaScript’s Floating-Point Numbers 7

Item 3: Beware of Implicit Coercions 9

Item 4: Prefer Primitives to Object Wrappers 15

Item 5: Avoid using == with Mixed Types 16

Item 6: Learn the Limits of Semicolon Insertion 19

Item 7: Think of Strings As Sequences of 16-Bit Code Units 25

Chapter 2: Variable Scope 31

Item 8: Minimize Use of the Global Object 31

Item 9: Always Declare Local Variables 34

Item 10: Avoid with 35

Item 11: Get Comfortable with Closures 39

Item 12: Understand Variable Hoisting 42

Item 13: Use Immediately Invoked Function Expressions to
Create Local Scopes 44

Item 14: Beware of Unportable Scoping of Named Function
Expressions 47

www.allitebooks.com

http://www.allitebooks.org

x Contents

Item 15: Beware of Unportable Scoping of Block-Local
Function Declarations 50

Item 16: Avoid Creating Local Variables with eval 52

Item 17: Prefer Indirect eval to Direct eval 54

Chapter 3: Working with Functions 57

Item 18: Understand the Difference between Function,
Method, and Constructor Calls 57

Item 19: Get Comfortable Using Higher-Order Functions 60

Item 20: Use call to Call Methods with a Custom Receiver 63

Item 21: Use apply to Call Functions with Different Numbers
of Arguments 65

Item 22: Use arguments to Create Variadic Functions 67

Item 23: Never Modify the arguments Object 68

Item 24: Use a Variable to Save a Reference to arguments 70

Item 25: Use bind to Extract Methods with a Fixed Receiver 72

Item 26: Use bind to Curry Functions 74

Item 27: Prefer Closures to Strings for Encapsulating Code 75

Item 28: Avoid Relying on the toString Method of Functions 77

Item 29: Avoid Nonstandard Stack Inspection Properties 79

Chapter 4: Objects and Prototypes 83

Item 30: Understand the Difference between prototype,
getPrototypeOf, and__proto__ 83

Item 31: Prefer Object.getPrototypeOf to __proto__ 87

Item 32: Never Modify __proto__ 88

Item 33: Make Your Constructors new-Agnostic 89

Item 34: Store Methods on Prototypes 92

Item 35: Use Closures to Store Private Data 94

Item 36: Store Instance State Only on Instance Objects 95

Item 37: Recognize the Implicit Binding of this 98

Item 38: Call Superclass Constructors from Subclass
Constructors 101

Item 39: Never Reuse Superclass Property Names 105

Item 40: Avoid Inheriting from Standard Classes 106

Item 41: Treat Prototypes As an Implementation Detail 109

Item 42: Avoid Reckless Monkey-Patching 110

Contents xi

Chapter 5: Arrays and Dictionaries 113

Item 43: Build Lightweight Dictionaries from Direct
Instances of Object 113

Item 44: Use null Prototypes to Prevent Prototype Pollution 116

Item 45: Use hasOwnProperty to Protect Against Prototype
Pollution 118

Item 46: Prefer Arrays to Dictionaries for Ordered Collections 123

Item 47: Never Add Enumerable Properties to
Object.prototype 125

Item 48: Avoid Modifying an Object during Enumeration 127

Item 49: Prefer for Loops to for...in Loops for Array Iteration 132

Item 50: Prefer Iteration Methods to Loops 133

Item 51: Reuse Generic Array Methods on Array-Like Objects 138

Item 52: Prefer Array Literals to the Array Constructor 140

Chapter 6: Library and API Design 143

Item 53: Maintain Consistent Conventions 143

Item 54: Treat undefined As “No Value” 144

Item 55: Accept Options Objects for Keyword Arguments 149

Item 56: Avoid Unnecessary State 153

Item 57: Use Structural Typing for Flexible Interfaces 156

Item 58: Distinguish between Array and Array-Like 160

Item 59: Avoid Excessive Coercion 164

Item 60: Support Method Chaining 167

Chapter 7: Concurrency 171

Item 61: Don’t Block the Event Queue on I/O 172

Item 62: Use Nested or Named Callbacks for Asynchronous
Sequencing 175

Item 63: Be Aware of Dropped Errors 179

Item 64: Use Recursion for Asynchronous Loops 183

Item 65: Don’t Block the Event Queue on Computation 186

Item 66: Use a Counter to Perform Concurrent Operations 190

Item 67: Never Call Asynchronous Callbacks Synchronously 194

Item 68: Use Promises for Cleaner Asynchronous Logic 197

Index 201

This page intentionally left blank

Foreword

As is well known at this point, I created JavaScript in ten days in May
1995, under duress and conflicting management imperatives—“make
it look like Java,” “make it easy for beginners,” “make it control almost
everything in the Netscape browser.”

Apart from getting two big things right (first-class functions, object
prototypes), my solution to the challenging requirements and crazy-
short schedule was to make JavaScript extremely malleable from
the start. I knew developers would have to “patch” the first few ver-
sions to fix bugs, and pioneer better approaches than what I had cob-
bled together in the way of built-in libraries. Where many languages
restrict mutability so that, for example, built-in objects cannot be
revised or extended at runtime, or standard library name bindings
cannot be overridden by assignment, JavaScript allows almost com-
plete alteration of every object.

I believe that this was a good design decision on balance. It clearly
presents challenges in certain domains (e.g., safely mixing trusted
and untrusted code within the browser’s security boundaries). But it
was critical to support so-called monkey-patching, whereby develop-
ers edited standard objects, both to work around bugs and to retro-
fit emulations of future functionality into old browsers (the so-called
polyfill library shim, which in American English would be called
“spackle”).

Beyond these sometimes mundane uses, JavaScript’s malleability
encouraged user innovation networks to form and grow along sev-
eral more creative paths. Lead users created toolkit or framework
libraries patterned on other languages: Prototype on Ruby, MochiKit
on Python, Dojo on Java, TIBET on Smalltalk. And then the jQuery
library (“New Wave JavaScript”), which seemed to me to be a relative
late-comer when I first saw it in 2007, took the JavaScript world by
storm by eschewing precedent in other languages while learning from

xiv Foreword

older JavaScript libraries, instead hewing to the “query and do” model
of the browser and simplifying it radically.

Lead users and their innovation networks thus developed a Java-
Script “home style,” which is still being emulated and simplified in
other libraries, and also folded into the modern web standardization
efforts.

In the course of this evolution, JavaScript has remained backward
(“bugward”) compatible and of course mutable by default, even with
the addition of certain methods in the latest version of the ECMAScript
standard for freezing objects against extension and sealing object
properties against being overwritten. And JavaScript’s evolutionary
journey is far from over. Just as with living languages and biologi-
cal systems, change is a constant over the long term. I still cannot
foresee a single “standard library” or coding style sweeping all others
before it.

No language is free of quirks or is so restrictive as to dictate universal
best practices, and JavaScript is far from quirk-free or restrictionist
(more nearly the opposite!). Therefore to be effective, more so than is
the case with most other programming languages, JavaScript devel-
opers must study and pursue good style, proper usage, and best prac-
tices. When considering what is most effective, I believe it’s crucial to
avoid overreacting and building rigid or dogmatic style guides.

This book takes a balanced approach based on concrete evidence
and experience, without swerving into rigidity or excessive prescrip-
tion. I think it will be a critical aid and trusty guide for many people
who seek to write effective JavaScript without sacrificing expressive-
ness and the freedom to pursue new ideas and paradigms. It’s also a
focused, fun read with terrific examples.

Finally, I have been privileged to know David Herman since 2006,
when I first made contact on behalf of Mozilla to engage him on the
Ecma standards body as an invited expert. Dave’s deep yet unpre-
tentious expertise and his enthusiasm for JavaScript shine through
every page. Bravo!

—Brendan Eich

Preface

Learning a programming language requires getting acquainted with
its syntax, the set of forms and structures that make up legal pro-
grams, and semantics, the meaning or behavior of those forms. But
beyond that, mastering a language requires understanding its prag-

matics, the ways in which the language’s features are used to build
effective programs. This latter category can be especially subtle, par-
ticularly in a language as flexible and expressive as JavaScript.

This book is concerned with the pragmatics of JavaScript. It is not an in-
troductory book; I assume you have some familiarity with Java Script
in particular and programming in general. There are many excellent
introductory books on JavaScript, such as Douglas Crockford’s Java-

Script: The Good Parts and Marijn Haverbeke’s Eloquent JavaScript.
My goal with this book is to help you deepen your understanding of
how to use JavaScript effectively to build more predictable, reliable,
and maintainable JavaScript applications and libraries.

JavaScript versus ECMAScript

It’s helpful to clarify some terminology before diving into the material
of this book. This book is about a language almost universally known
as JavaScript. Yet the official standard that defines the specification
describes a language it calls ECMAScript. The history is convoluted,
but it boils down to a matter of copyright: For legal reasons, the stan-
dards organization, Ecma International, was unable to use the name
“JavaScript” for its standard. (Adding insult to injury, the standards
organization changed its name from the original ECMA—an abbrevi-
ation for European Computer Manufacturers Association—to Ecma
International, without capitalization. By the time of the change, the
capitalized name ECMAScript was set in stone.)

Formally, when people refer to ECMAScript they are usually referring
to the “ideal” language specified by the Ecma standard. Meanwhile,

xvi Preface

the name JavaScript could mean anything from the language as it
exists in actual practice, to one vendor’s specific JavaScript engine.
In common usage, people often use the two terms interchangeably.
For the sake of clarity and consistency, in this book I will only use
ECMAScript to talk about the official standard; otherwise, I will refer
to the language as JavaScript. I also use the common abbreviation
ES5 to refer to the fifth edition of the ECMAScript standard.

On the Web

It’s hard to talk about JavaScript without talking about the web. To date,
JavaScript is the only programming language with built-in support in
all major web browsers for client-side application scripting. Moreover, in
recent years, JavaScript has become a popular language for implement-
ing server-side applications with the advent of the Node.js platform.

Nevertheless, this is a book about JavaScript, not about web pro-
gramming. At times, it’s helpful to talk about web-related examples
and applications of concepts. But the focus of this book is on the lan-
guage—its syntax, semantics, and pragmatics—rather than on the
APIs and technologies of the web platform.

A Note on Concurrency

A curious aspect of JavaScript is that its behavior in concurrent set-
tings is completely unspecified. Up to and including the fifth edition,
the ECMAScript standard says nothing about the behavior of Java-
Script programs in an interactive or concurrent environment. Chap-
ter 7 deals with concurrency and so technically describes unofficial
features of JavaScript. But in practice, all major JavaScript engines
share a common model of concurrency. And working with concurrent
and interactive programs is a central unifying concept of JavaScript
programming, despite its absence from the standard. In fact, future
editions of the ECMAScript standard may officially formalize these
shared aspects of the JavaScript concurrency model.

Acknowledgments

This book owes a great deal to JavaScript’s inventor, Brendan Eich.
I’m deeply grateful to Brendan for inviting me to participate in the
standardization of JavaScript and for his mentorship and support in
my career at Mozilla.

Much of the material in this book is inspired and informed by excellent
blog posts and online articles. I have learned a lot from posts by Ben
“cowboy” Alman, Erik Arvidsson, Mathias Bynens, Tim “ creationix”
Caswell, Michaeljohn “inimino” Clement, Angus Croll, Andrew Dupont,
Ariya Hidayat, Steven Levithan, Pan Thomakos, Jeff Walden, and
Juriy “kangax” Zaytsev. Of course, the ultimate resource for this book
is the ECMAScript specification, which has been tirelessly edited
and updated since Edition 5 by Allen Wirfs-Brock. And the Mozilla
Developer Network continues to be one of the most impressive and
high-quality online resources for JavaScript APIs and features.

I’ve had many advisors during the course of planning and writing this
book. John Resig gave me useful advice on authorship before I began.
Blake Kaplan and Patrick Walton helped me collect my thoughts and
plan out the organization of the book in the early stages. During the
course of the writing, I’ve gotten great advice from Brian Anderson,
Norbert Lindenberg, Sam Tobin-Hochstadt, Rick Waldron, and Pat-
rick Walton.

The staff at Pearson has been a pleasure to work with. Olivia Basegio,
Audrey Doyle, Trina MacDonald, Scott Meyers, and Chris Zahn have
been attentive to my questions, patient with my delays, and accom-
modating of my requests. I couldn’t imagine a more pleasant first
experience with authorship. And I am absolutely honored to contrib-
ute to this wonderful series. I’ve been a fan of Effective C++ since long
before I ever suspected I might have the privilege of writing an Effec-
tive book myself.

xviii Acknowledgments

I couldn’t believe my good fortune at finding such a dream team of
technical editors. I’m honored that Erik Arvidsson, Rebecca Mur-
phey, Rick Waldron, and Richard Worth agreed to edit this book, and
they’ve provided me with invaluable critiques and suggestions. On
more than one occasion they saved me from some truly embarrassing
errors.

Writing a book was more intimidating than I expected. I might have
lost my nerve if it weren’t for the support of friends and colleagues.
I don’t know if they knew it at the time, but Andy Denmark, Rick
Waldron, and Travis Winfrey gave me the encouragement I needed in
moments of doubt.

The vast majority of this book was written at the fabulous Java Beach
Café in San Francisco’s beautiful Parkside neighborhood. The staff
members all know my name and know what I’m going to order before
I order it. I am grateful to them for providing a cozy place to work and
keeping me fed and caffeinated.

My fuzzy little feline friend Schmoopy tried his best to contribute to
this book. At least, he kept hopping onto my lap and sitting in front of
the screen. (This might have something to do with the warmth of the
laptop.) Schmoopy has been my loyal buddy since 2006, and I can’t
imagine my life without the little furball.

My entire family has been supportive and excited about this project
from beginning to end. Sadly, my grandparents Frank and Miriam
Slamar both passed away before I could share the final product with
them. But they were excited and proud for me, and there’s a little
piece of my boyhood experiences writing BASIC programs with Frank
in this book.

Finally, I owe the love of my life, Lisa Silveria, more than could ever be
repaid in an introduction.

About the Author

David Herman is a senior researcher at Mozilla Research. He holds
a BA in computer science from Grinnell College and an MS and PhD
in computer science from Northeastern University. David serves on
Ecma TC39, the committee responsible for the standardization of
JavaScript.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

1
Accustoming

Yourself to
JavaScript

JavaScript was designed to feel familiar. With syntax reminiscent of
Java and constructs common to many scripting languages (such as
functions, arrays, dictionaries, and regular expressions), JavaScript
seems like a quick learn to anyone with a little programming experi-
ence. And for novice programmers, it’s possible to get started writing
programs with relatively little training thanks to the small number of
core concepts in the language.

As approachable as JavaScript is, mastering the language takes more
time, and requires a deeper understanding of its semantics, its idio-
syncrasies, and its most effective idioms. Each chapter of this book
covers a different thematic area of effective JavaScript. This first
chapter begins with some of the most fundamental topics.

Item 1: Know Which JavaScript You Are Using

Like most successful technologies, JavaScript has evolved over time.
Originally marketed as a complement to Java for programming inter-
active web pages, JavaScript eventually supplanted Java as the web’s
dominant programming language. JavaScript’s popularity led to its
formalization in 1997 as an international standard, known officially
as ECMAScript. Today there are many competing implementations of
JavaScript providing conformance to various versions of the ECMA-
Script standard.

The third edition of the ECMAScript standard (commonly referred
to as ES3), which was finalized in 1999, continues to be the most
widely adopted version of Java Script. The next major advancement to
the standard was Edition 5, or ES5, which was released in 2009. ES5
introduced a number of new features as well as standardizing some
widely supported but previously unspecified features. Because ES5
support is not yet ubiquitous, I will point out throughout this book
whenever a particular Item or piece of advice is specific to ES5.

2 Chapter 1 Accustoming Yourself to JavaScript

In addition to multiple editions of the standard, there are a number of
nonstandard features that are supported by some JavaScript imple-
mentations but not others. For example, many JavaScript engines
support a const keyword for defining variables, yet the ECMAScript
standard does not provide any definition for the syntax or behavior
of const. Moreover, the behavior of const differs from implementation
to implementation. In some cases, const variables are prevented from
being updated:

const PI = 3.141592653589793;

PI = "modified!";

PI; // 3.141592653589793

Other implementations simply treat const as a synonym for var:

const PI = 3.141592653589793;

PI = "modified!";

PI; // "modified!"

Given JavaScript’s long history and diversity of implementations, it
can be difficult to keep track of which features are available on which
platform. Compounding this problem is the fact that JavaScript’s pri-
mary ecosystem—the web browser—does not give programmers con-
trol over which version of JavaScript is available to execute their code.
Since end users may use different versions of different web browsers,
web programs have to be written carefully to work consistently across
all browsers.

On the other hand, JavaScript is not exclusively used for client-side
web programming. Other uses include server-side programs, browser
extensions, and scripting for mobile and desktop applications. In
some of these cases, you may have a much more specific version of
JavaScript available to you. For these cases, it makes sense to take
advantage of additional features specific to the platform’s particular
implementation of JavaScript.

This book is concerned primarily with standard features of Java-
Script. But it is also important to discuss certain widely supported
but nonstandard features. When dealing with newer standards or
nonstandard features, it is critical to understand whether your appli-
cations will run in environments that support those features. Oth-
erwise, you may find yourself in situations where your applications
work as intended on your own computer or testing infrastructure, but
fail when you deploy them to users running your application in differ-
ent environments. For example, const may work fine when tested on
an engine that supports the nonstandard feature but then fail with a

 Item 1: Know Which JavaScript You Are Using 3

syntax error when deployed in a web browser that does not recognize
the keyword.

ES5 introduced another versioning consideration with its strict mode.

This feature allows you to opt in to a restricted version of JavaScript
that disallows some of the more problematic or error-prone features
of the full language. The syntax was designed to be backward-
compatible so that environments that do not implement the strict-
mode checks can still execute strict code. Strict mode is enabled in a
program by adding a special string constant at the very beginning of
the program:

"use strict";

Similarly, you can enable strict mode in a function by placing the
directive at the beginning of the function body:

function f(x) {

"use strict";

// ...

}

The use of a string literal for the directive syntax looks a little strange,
but it has the benefit of backward compatibility: Evaluating a string
literal has no side effects, so an ES3 engine executes the directive as
an innocuous statement—it evaluates the string and then discards
its value immediately. This makes it possible to write code in strict
mode that runs in older JavaScript engines, but with a crucial lim-
itation: The old engines will not perform any of the checks of strict
mode. If you don’t test in an ES5 environment, it’s all too easy to write
code that will be rejected when run in an ES5 environment:

function f(x) {

"use strict";

var arguments = []; // error: redefinition of arguments

// ...

}

Redefining the arguments variable is disallowed in strict mode, but
an environment that does not implement the strict-mode checks
will accept this code. Deploying this code in production would then
cause the program to fail in environments that implement ES5. For
this reason you should always test strict code in fully compliant ES5
environments.

One pitfall of using strict mode is that the "use strict" directive is
only recognized at the top of a script or function, which makes it sen-
sitive to script concatenation, where large applications are developed

4 Chapter 1 Accustoming Yourself to JavaScript

in separate files that are then combined into a single file for deploying
in production. Consider one file that expects to be in strict mode:

// file1.js

"use strict";

function f() {

// ...

}

// ...

and another file that expects not to be in strict mode:

// file2.js

// no strict-mode directive

function g() {

var arguments = [];

// ...

}

// ...

How can we concatenate these two files correctly? If we start with
file1.js, then the whole combined file is in strict mode:

// file1.js

"use strict";

function f() {

// ...

}

// ...

// file2.js

// no strict-mode directive

function f() {

 var arguments = []; // error: redefinition of arguments

// ...

}

// ...

And if we start with file2.js, then none of the combined file is in
strict mode:

// file2.js

// no strict-mode directive

function g() {

var arguments = [];

// ...

}

// ...

// file1.js

 Item 1: Know Which JavaScript You Are Using 5

"use strict";

function f() { // no longer strict

// ...

}

// ...

In your own projects, you could stick to a “strict-mode only” or “non-
strict-mode only” policy, but if you want to write robust code that can
be combined with a wide variety of code, you have a few alternatives.

Never concatenate strict files and nonstrict files. This is probably the
easiest solution, but it of course restricts the amount of control you
have over the file structure of your application or library. At best, you
have to deploy two separate files, one containing all the strict files
and one containing the nonstrict files.

Concatenate files by wrapping their bodies in immediately invoked

function expressions. Item 13 provides an in-depth explanation of
immediately invoked function expressions (IIFEs), but in short, by
wrapping each file’s contents in a function, they can be independently
interpreted in different modes. The concatenated version of the above
example would look like this:

// no strict-mode directive

(function() {

 // file1.js

 "use strict";

 function f() {

// ...

 }

 // ...

})();

(function() {

 // file2.js

 // no strict-mode directive

 function f() {

 var arguments = [];

// ...

 }

 // ...

})();

Since each file’s contents are placed in a separate scope, the strict-
mode directive (or lack of one) only affects that file’s contents. For this
approach to work, however, the contents of files cannot assume that
they are interpreted at global scope. For example, var and function
declarations do not persist as global variables (see Item 8 for more on

6 Chapter 1 Accustoming Yourself to JavaScript

globals). This happens to be the case with popular module systems,

which manage files and dependencies by automatically placing each
module’s contents in a separate function. Since files are all placed in
local scopes, each file can make its own decision about whether to
use strict mode.

Write your files so that they behave the same in either mode. To write
a library that works in as many contexts as possible, you cannot
assume that it will be placed inside the contents of a function by a
script concatenation tool, nor can you assume whether the client
codebase will be strict or nonstrict. The simplest way to structure
your code for maximum compatibility is to write for strict mode but
explicitly wrap the contents of all your code in functions that enable
strict mode locally. This is similar to the previous solution, in that
you wrap each file’s contents in an IIFE, but in this case you write
the IIFE by hand instead of trusting the concatenation tool or module
system to do it for you, and explicitly opt in to strict mode:

(function() {

 "use strict";

 function f() {

// ...

 }

 // ...

})();

Notice that this code is treated as strict regardless of whether it is
concatenated in a strict or nonstrict context. By contrast, a function
that does not opt in to strict mode will still be treated as strict if it
is concatenated after strict code. So the more universally compatible
option is to write in strict mode.

Things to Remember

✦ Decide which versions of JavaScript your application supports.

✦ Be sure that any JavaScript features you use are supported by all
environments where your application runs.

✦ Always test strict code in environments that perform the strict-
mode checks.

✦ Beware of concatenating scripts that differ in their expectations
about strict mode.

 Item 2: Understand JavaScript’s Floating-Point Numbers 7

Item 2: Understand JavaScript’s Floating-Point
Numbers

Most programming languages have several types of numeric data, but
JavaScript gets away with just one. You can see this reflected in the
behavior of the typeof operator, which classifies integers and float-
ing-point numbers alike simply as numbers:

typeof 17; // "number"

typeof 98.6; // "number"

typeof -2.1; // "number"

In fact, all numbers in JavaScript are double-precision floating-point

numbers, that is, the 64-bit encoding of numbers specified by the
IEEE 754 standard—commonly known as “doubles.” If this fact
leaves you wondering what happened to the integers, keep in mind
that doubles can represent integers perfectly with up to 53 bits of
precision. All of the integers from –9,007,199,254,740,992 (–253) to
9,007,199,254,740,992 (253) are valid doubles. So it’s perfectly pos-
sible to do integer arithmetic in JavaScript, despite the lack of a dis-
tinct integer type.

Most arithmetic operators work with integers, real numbers, or a
combination of the two:

0.1 * 1.9 // 0.19

-99 + 100; // 1

21 - 12.3; // 8.7

2.5 / 5; // 0.5

21 % 8; // 5

The bitwise arithmetic operators, however, are special. Rather than
operating on their arguments directly as floating-point numbers, they
implicitly convert them to 32-bit integers. (To be precise, they are
treated as 32-bit, big-endian, two’s complement integers.) For example,
take the bitwise OR expression:

8 | 1; // 9

This simple-looking expression actually requires several steps to eval-
uate. As always, the JavaScript numbers 8 and 1 are doubles. But
they can also be represented as 32-bit integers, that is, sequences of
thirty-two 1’s and 0’s. As a 32-bit integer, the number 8 looks like this:

00000000000000000000000000001000

You can see this for yourself by using the toString method of numbers:

(8).toString(2); // "1000"

8 Chapter 1 Accustoming Yourself to JavaScript

The argument to toString specifies the radix, in this case indicating
a base 2 (i.e., binary) representation. The result drops the extra 0 bits
on the left since they don’t affect the value.

The integer 1 is represented in 32 bits as:

00000000000000000000000000000001

The bitwise OR expression combines the two bit sequences by keeping
any 1 bits found in either input, resulting in the bit pattern:

00000000000000000000000000001001

This sequence represents the integer 9. You can verify this by using
the standard library function parseInt, again with a radix of 2:

parseInt("1001", 2); // 9

(The leading 0 bits are unnecessary since, again, they don’t affect the
result.)

All of the bitwise operators work the same way, converting their
inputs to integers and performing their operations on the integer
bit patterns before converting the results back to standard Java-
Script floating-point numbers. In general, these conversions require
extra work in Java Script engines: Since numbers are stored as
floating-point, they have to be converted to integers and then back to
floating-point again. However, optimizing compilers can sometimes
infer when arithmetic expressions and even variables work exclu-
sively with integers, and avoid the extra conversions by storing the
data internally as integers.

A final note of caution about floating-point numbers: If they don’t
make you at least a little nervous, they probably should. Float-
ing-point numbers look deceptively familiar, but they are notoriously
inaccurate. Even some of the simplest-looking arithmetic can produce
inaccurate results:

0.1 + 0.2; // 0.30000000000000004

While 64 bits of precision is reasonably large, doubles can still only
represent a finite set of numbers, rather than the infinite set of real
numbers. Floating-point arithmetic can only produce approximate
results, rounding to the nearest representable real number. When
you perform a sequence of calculations, these rounding errors can
accumulate, leading to less and less accurate results. Rounding also
causes surprising deviations from the kind of properties we usu-
ally expect of arithmetic. For example, real numbers are associative,

 Item 3: Beware of Implicit Coercions 9

meaning that for any real numbers x, y, and z, it’s always the case
that (x + y) + z = x + (y + z).

But this is not always true of floating-point numbers:

(0.1 + 0.2) + 0.3; // 0.6000000000000001

0.1 + (0.2 + 0.3); // 0.6

Floating-point numbers offer a trade-off between accuracy and per-
formance. When accuracy matters, it’s critical to be aware of their
limitations. One useful workaround is to work with integer values
wherever possible, since they can be represented without rounding.
When doing calculations with money, programmers often scale num-
bers up to work with the currency’s smallest denomination so that
they can compute with whole numbers. For example, if the above cal-
culation were measured in dollars, we could work with whole num-
bers of cents instead:

(10 + 20) + 30; // 60

10 + (20 + 30); // 60

With integers, you still have to take care that all calculations fit
within the range between –253 and 253, but you don’t have to worry
about rounding errors.

Things to Remember

✦ JavaScript numbers are double-precision floating-point numbers.

✦ Integers in JavaScript are just a subset of doubles rather than a
separate datatype.

✦ Bitwise operators treat numbers as if they were 32-bit signed integers.

✦ Be aware of limitations of precisions in floating-point arithmetic.

Item 3: Beware of Implicit Coercions

JavaScript can be surprisingly forgiving when it comes to type errors.
Many languages consider an expression like

3 + true; // 4

to be an error, because boolean expressions such as true are incom-
patible with arithmetic. In a statically typed language, a program
with such an expression would not even be allowed to run. In some
dynamically typed languages, while the program would run, such an
expression would throw an exception. JavaScript not only allows the
program to run, but it happily produces the result 4!

www.allitebooks.com

http://www.allitebooks.org

10 Chapter 1 Accustoming Yourself to JavaScript

There are a handful of cases in JavaScript where providing the wrong
type produces an immediate error, such as calling a nonfunction or
attempting to select a property of null:

"hello"(1); // error: not a function

null.x; // error: cannot read property 'x' of null

But in many other cases, rather than raising an error, JavaScript
coerces a value to the expected type by following various automatic
conversion protocols. For example, the arithmetic operators -, *, /,
and % all attempt to convert their arguments to numbers before doing
their calculation. The operator + is subtler, because it is overloaded to
perform either numeric addition or string concatenation, depending
on the types of its arguments:

2 + 3; // 5

"hello" + " world"; // "hello world"

Now, what happens when you combine a number and a string? Java-
Script breaks the tie in favor of strings, converting the number to a
string:

"2" + 3; // "23"

2 + "3"; // "23"

Mixing types like this can sometimes be confusing, especially because
it’s sensitive to the order of operations. Take the expression:

1 + 2 + "3"; // "33"

Since addition groups to the left (i.e., is left-associative), this is the
same as:

(1 + 2) + "3"; // "33"

By contrast, the expression

1 + "2" + 3; // "123"

evaluates to the string "123"—again, left-associativity dictates that
the expression is equivalent to wrapping the left-hand addition in
parentheses:

(1 + "2") + 3; // "123"

The bitwise operations not only convert to numbers but to the subset
of numbers that can be represented as 32-bit integers, as discussed
in Item 2. These include the bitwise arithmetic operators (~, &, ^, and
|) and the shift operators (<<, >>, and >>>).

 Item 3: Beware of Implicit Coercions 11

These coercions can be seductively convenient—for example, for auto-
matically converting strings that come from user input, a text file, or
a network stream:

"17" * 3; // 51

"8" | "1"; // 9

But coercions can also hide errors. A variable that turns out to be
null will not fail in an arithmetic calculation, but silently convert
to 0; an undefined variable will convert to the special floating-point
value NaN (the paradoxically named “not a number” number—blame
the IEEE floating-point standard!). Rather than immediately throw-
ing an exception, these coercions cause the calculation to continue
with often confusing and unpredictable results. Frustratingly, it’s
particularly difficult even to test for the NaN value, for two reasons.
First, JavaScript follows the IEEE floating-point standard’s head-
scratching requirement that NaN be treated as unequal to itself. So
testing whether a value is equal to NaN doesn’t work at all:

var x = NaN;

x === NaN; // false

Moreover, the standard isNaN library function is not very reliable
because it comes with its own implicit coercion, converting its argu-
ment to a number before testing the value. (A more accurate name for
isNaN probably would have been coercesToNaN.) If you already know
that a value is a number, you can test it for NaN with isNaN:

isNaN(NaN); // true

But other values that are definitely not NaN, yet are nevertheless
coercible to NaN, are indistinguishable to isNaN:

isNaN("foo"); // true

isNaN(undefined); // true

isNaN({}); // true

isNaN({ valueOf: "foo" }); // true

Luckily there’s an idiom that is both reliable and concise—if some-
what unintuitive—for testing for NaN. Since NaN is the only JavaScript
value that is treated as unequal to itself, you can always test if a
value is NaN by checking it for equality to itself:

var a = NaN;

a !== a; // true

var b = "foo";

b !== b; // false

12 Chapter 1 Accustoming Yourself to JavaScript

var c = undefined;

c !== c; // false

var d = {};

d !== d; // false

var e = { valueOf: "foo" };

e !== e; // false

You can also abstract this pattern into a clearly named utility
function:

function isReallyNaN(x) {

return x !== x;

}

But testing a value for inequality to itself is so concise that it’s com-
monly used without a helper function, so it’s important to recognize
and understand.

Silent coercions can make debugging a broken program particularly
frustrating, since they cover up errors and make them harder to diag-
nose. When a calculation goes wrong, the best approach to debugging
is to inspect the intermediate results of a calculation, working back to
the last point before things went wrong. From there, you can inspect
the arguments of each operation, looking for arguments of the wrong
type. Depending on the bug, it could be a logical error, such as using
the wrong arithmetic operator, or a type error, such as passing the
undefined value instead of a number.

Objects can also be coerced to primitives. This is most commonly
used for converting to strings:

"the Math object: " + Math; // "the Math object: [object Math]"

"the JSON object: " + JSON; // "the JSON object: [object JSON]"

Objects are converted to strings by implicitly calling their toString
method. You can test this out by calling it yourself:

Math.toString(); // "[object Math]"

JSON.toString(); // "[object JSON]"

Similarly, objects can be converted to numbers via their valueOf
method. You can control the type conversion of objects by defining
these methods:

"J" + { toString: function() { return "S"; } }; // "JS"

2 * { valueOf: function() { return 3; } }; // 6

Once again, things get tricky when you consider that + is overloaded
to perform both string concatenation and addition. Specifically, when

 Item 3: Beware of Implicit Coercions 13

an object contains both a toString and a valueOf method, it’s not
obvious which method + should call: It’s supposed to choose between
concatenation and addition based on types, but with implicit coer-
cion, the types are not actually given! JavaScript resolves this ambi-
guity by blindly choosing valueOf over toString. But this means that
if someone intends to perform a string concatenation with an object,
it can behave unexpectedly:

var obj = {

 toString: function() {

return "[object MyObject]";

 },

 valueOf: function() {

return 17;

 }

};

"object: " + obj; // "object: 17"

The moral of this story is that valueOf was really only designed to
be used for objects that represent numeric values such as Number
objects. For these objects, the toString and valueOf methods return
consistent results—a string representation or numeric representation
of the same number—so the overloaded + always behaves consistently
regardless of whether the object is used for concatenation or addi-
tion. In general, coercion to strings is far more common and useful
than coercion to numbers. It’s best to avoid valueOf unless your object
really is a numeric abstraction and obj.toString() produces a string
representation of obj.valueOf().

The last kind of coercion is sometimes known as truthiness. Oper-
ators such as if, ||, and && logically work with boolean values, but
actually accept any values. JavaScript values are interpreted as bool-
ean values according to a simple implicit coercion. Most JavaScript
values are truthy, that is, implicitly coerced to true. This includes
all objects—unlike string and number coercion, truthiness does not
involve implicitly invoking any coercion methods. There are exactly
seven falsy values: false, 0, -0, "", NaN, null, and undefined. All other
values are truthy. Since numbers and strings can be falsy, it’s not
always safe to use truthiness to check whether a function argument
or object property is defined. Consider a function that takes optional
arguments with default values:

function point(x, y) {

if (!x) {

 x = 320;

 }

14 Chapter 1 Accustoming Yourself to JavaScript

if (!y) {

 y = 240;

 }

return { x: x, y: y };

}

This function ignores any falsy arguments, which includes 0:

point(0, 0); // { x: 320, y: 240 }

The more precise way to check for undefined is to use typeof:

function point(x, y) {

if (typeof x === "undefined") {

 x = 320;

 }

if (typeof y === "undefined") {

 y = 240;

 }

return { x: x, y: y };

}

This version of point correctly distinguishes between 0 and undefined:

point(); // { x: 320, y: 240 }

point(0, 0); // { x: 0, y: 0 }

Another approach is to compare to undefined:

if (x === undefined) { ... }

Item 54 discusses the implications of truthiness testing for library
and API design.

Things to Remember

✦ Type errors can be silently hidden by implicit coercions.

✦ The + operator is overloaded to do addition or string concatenation
depending on its argument types.

✦ Objects are coerced to numbers via valueOf and to strings via
toString.

✦ Objects with valueOf methods should implement a toString method
that provides a string representation of the number produced by
valueOf.

✦ Use typeof or comparison to undefined rather than truthiness to
test for undefined values.

 Item 4: Prefer Primitives to Object Wrappers 15

Item 4: Prefer Primitives to Object Wrappers

In addition to objects, JavaScript has five types of primitive values:
booleans, numbers, strings, null, and undefined. (Confusingly, the
typeof operator reports the type of null as "object", but the ECMA-
Script standard describes it as a distinct type.) At the same time, the
standard library provides constructors for wrapping booleans, num-
bers, and strings as objects. You can create a String object that wraps
a string value:

var s = new String("hello");

In some ways, a String object behaves similarly to the string value it
wraps. You can concatenate it with other values to create strings:

s + " world"; // "hello world"

You can extract its indexed substrings:

s[4]; // "o"

But unlike primitive strings, a String object is a true object:

typeof "hello"; // "string"

typeof s; // "object"

This is an important difference, because it means that you can’t
compare the contents of two distinct String objects using built-in
operators:

var s1 = new String("hello");

var s2 = new String("hello");

s1 === s2; // false

Since each String object is a separate object, it is only ever equal to
itself. The same is true for the nonstrict equality operator:

s1 == s2; // false

Since these wrappers don’t behave quite right, they don’t serve much
of a purpose. The main justification for their existence is their util-
ity methods. JavaScript makes these convenient to use with another
implicit coercion: You can extract properties and call methods of a
primitive value, and it acts as though you had wrapped the value
with its corresponding object type. For example, the String prototype
object has a toUpperCase method, which converts a string to upper-
case. You can use this method on a primitive string value:

"hello".toUpperCase(); // "HELLO"

16 Chapter 1 Accustoming Yourself to JavaScript

A strange consequence of this implicit wrapping is that you can set
properties on primitive values with essentially no effect:

"hello".someProperty = 17;

"hello".someProperty; // undefined

Since the implicit wrapping produces a new String object each time
it occurs, the update to the first wrapper object has no lasting effect.
There’s really no point to setting properties on primitive values, but
it’s worth being aware of this behavior. It turns out to be another
instance of where JavaScript can hide type errors: If you set prop-
erties on what you expect to be an object, but use a primitive value
by mistake, your program will simply silently ignore the update and
continue. This can easily cause the error to go undetected and make
it harder to diagnose.

Things to Remember

✦ Object wrappers for primitive types do not have the same behavior
as their primitive values when compared for equality.

✦ Getting and setting properties on primitives implicitly creates object
wrappers.

Item 5: Avoid using == with Mixed Types

What would you expect to be the value of this expression?

"1.0e0" == { valueOf: function() { return true; } };

These two seemingly unrelated values are actually considered equiv-
alent by the == operator because, like the implicit coercions described
in Item 3, they are both converted to numbers before being compared.
The string "1.0e0" parses as the number 1, and the object is con-
verted to a number by calling its valueOf method and converting the
result (true) to a number, which also produces 1.

It’s tempting to use these coercions for tasks like reading a field from
a web form and comparing it with a number:

var today = new Date();

if (form.month.value == (today.getMonth() + 1) &&

 form.day.value == today.getDate()) {

// happy birthday!

// ...

}

 Item 5: Avoid using == with Mixed Types 17

But it’s actually easy to convert values to numbers explicitly using the
Number function or the unary + operator:

var today = new Date();

if (+form.month.value == (today.getMonth() + 1) &&

 +form.day.value == today.getDate()) {

// happy birthday!

// ...

}

This is clearer, because it conveys to readers of your code exactly
what conversion is being applied, without requiring them to memorize
the conversion rules. An even better alternative is to use the strict

equality operator:

var today = new Date();

if (+form.month.value === (today.getMonth() + 1) && // strict

 +form.day.value === today.getDate()) { // strict

// happy birthday!

// ...

}

When the two arguments are of the same type, there’s no difference in
behavior between == and ===. So if you know that the arguments are
of the same type, they are interchangeable. But using strict equality
is a good way to make it clear to readers that there is no conversion
involved in the comparison. Otherwise, you require readers to recall
the exact coercion rules to decipher your code’s behavior.

As it turns out, these coercion rules are not at all obvious. Table 1.1
contains the coercion rules for the == operator when its arguments
are of different types. The rules are symmetric: For example, the first
rule applies to both null == undefined and undefined == null. Most of
the time, the conversions attempt to produce numbers. But the rules
get subtle when they deal with objects. The operation tries to con-
vert an object to a primitive value by calling its valueOf and toString
methods, using the first primitive value it gets. Even more subtly, Date
objects try these two methods in the opposite order.

The == operator deceptively appears to paper over different representa-
tions of data. This kind of error correction is sometimes known as “do

what I mean” semantics. But computers cannot really read your mind.
There are too many data representations in the world for JavaScript

18 Chapter 1 Accustoming Yourself to JavaScript

to know which one you are using. For example, you might hope that
you could compare a string containing a date to a Date object:

var date = new Date("1999/12/31");

date == "1999/12/31"; // false

This particular example fails because converting a Date object to a
string produces a different format than the one used in the example:

date.toString(); // "Fri Dec 31 1999 00:00:00 GMT-0800 (PST)"

But the mistake is symptomatic of a more general misunderstanding
of coercions. The == operator does not infer and unify arbitrary data
formats. It requires both you and your readers to understand its sub-
tle coercion rules. A better policy is to make the conversions explicit
with custom application logic and use the strict equality operator:

function toYMD(date) {

var y = date.getYear() + 1900, // year is 1900-indexed

 m = date.getMonth() + 1, // month is 0-indexed

 d = date.getDate();

return y

 + "/" + (m < 10 ? "0" + m : m)

 + "/" + (d < 10 ? "0" + d : d);

}

toYMD(date) === "1999/12/31"; // true

Table 1.1 Coercion Rules for the == Operator

Argument Type 1 Argument Type 2 Coercions

null undefined None; always true

null or undefined Any other than
null or undefined

None; always false

Primitive string,
number, or boolean

Date object Primitive => number, Date
object => primitive (try toString
and then valueOf)

Primitive string,
number, or boolean

Non-Date object Primitive => number, non-Date
object => primitive (try valueOf
and then toString)

Primitive string,
number, or boolean

Primitive string,
number, or boolean

Primitive => number

 Item 6: Learn the Limits of Semicolon Insertion 19

Making conversions explicit ensures that you don’t mix up the coer-
cion rules of ==, and—even better—relieves your readers from having
to look up the coercion rules or memorize them.

Things to Remember

✦ The == operator applies a confusing set of implicit coercions when
its arguments are of different types.

✦ Use === to make it clear to your readers that your comparison does
not involve any implicit coercions.

✦ Use your own explicit coercions when comparing values of different
types to make your program’s behavior clearer.

Item 6: Learn the Limits of Semicolon Insertion

One of JavaScript’s conveniences is the ability to leave off state-
ment-terminating semicolons. Dropping semicolons results in a pleas-
antly lightweight aesthetic:

function Point(x, y) {

this.x = x || 0

this.y = y || 0

}

Point.prototype.isOrigin = function() {

return this.x === 0 && this.y === 0

}

This works thanks to automatic semicolon insertion, a program pars-
ing technique that infers omitted semicolons in certain contexts,
effectively “inserting” the semicolon into the program for you auto-
matically. The ECMAScript standard precisely specifies the semicolon
insertion mechanism, so optional semicolons are portable between
JavaScript engines.

But similar to the implicit coercions of Items 3 and 5, semicolon
insertion has its pitfalls, and you simply can’t avoid learning its rules.
Even if you never omit semicolons, there are additional restrictions in
the JavaScript syntax that are consequences of semicolon insertion.
The good news is that once you learn the rules of semicolon insertion,
you may find it liberating to drop unnecessary semicolons.

The first rule of semicolon insertion is:

Semicolons are only ever inserted before a } token, after one or more

newlines, or at the end of the program input.

www.allitebooks.com

http://www.allitebooks.org

20 Chapter 1 Accustoming Yourself to JavaScript

In other words, you can only leave out semicolons at the end of a line,
block, or program. So the following are legal functions:

function square(x) {

var n = +x

return n * n

}

function area(r) { r = +r; return Math.PI * r * r }

function add1(x) { return x + 1 }

But this is not:

function area(r) { r = +r return Math.PI * r * r } // error

The second rule of semicolon insertion is:

Semicolons are only ever inserted when the next input token cannot be

parsed.

In other words, semicolon insertion is an error correction mechanism.
As a simple example, this snippet:

a = b

(f());

parses just fine as a single statement, equivalent to:

a = b(f());

That is, no semicolon is inserted. By contrast, this snippet:

a = b

f();

is parsed as two separate statements, because

a = b f();

is a parse error.

This rule has an unfortunate implication: You always have to pay
attention to the start of the next statement to detect whether you can
legally omit a semicolon. You can’t leave off a statement’s semicolon if
the next line’s initial token could be interpreted as a continuation of
the statement.

There are exactly five problematic characters to watch out for: (, [, +,
-, and /. Each one of these can act either as an expression operator
or as the prefix of a statement, depending on the context. So watch
out for statements that end with an expression, like the assignment
statement above. If the next line starts with any of the five prob-
lematic characters, no semicolon will be inserted. By far, the most
common scenario where this occurs is a statement beginning with a

 Item 6: Learn the Limits of Semicolon Insertion 21

parenthesis, like the example above. Another common scenario is an
array literal:

a = b

["r", "g", "b"].forEach(function(key) {

 background[key] = foreground[key] / 2;

});

This looks like two statements: an assignment followed by a state-
ment that calls a function on the strings "r", "g", and "b" in order.
But because the statement begins with [, it parses as a single state-
ment, equivalent to:

a = b["r", "g", "b"].forEach(function(key) {

 background[key] = foreground[key] / 2;

});

If that bracketed expression looks odd, remember that JavaScript
allows comma-separated expressions, which evaluate from left to
right and return the value of their last subexpression: in this case,
the string "b".

The +, -, and / tokens are less commonly found at the beginning of
statements, but it’s not unheard of. The case of / is particularly sub-
tle: At the start of a statement, it is actually not an entire token but
the beginning of a regular expression token:

/Error/i.test(str) && fail();

This statement tests a string with the case-insensitive regular expres-
sion /Error/i. If a match is found, the statement calls the fail func-
tion. But if this code follows an unterminated assignment:

a = b

/Error/i.test(str) && fail();

then the code parses as a single statement equivalent to:

a = b / Error / i.test(str) && fail();

In other words, the initial / token parses as the division operator!

Experienced JavaScript programmers learn to look at the line follow-
ing a statement whenever they want to leave out a semicolon, to make
sure the statement won’t be parsed incorrectly. They also take care
when refactoring. For example, a perfectly correct program with three
inferred semicolons:

a = b // semicolon inferred

var x // semicolon inferred

(f()) // semicolon inferred

22 Chapter 1 Accustoming Yourself to JavaScript

can unexpectedly change to a different program with only two inferred
semicolons:

var x // semicolon inferred

a = b // no semicolon inferred

(f()) // semicolon inferred

Even though it should be equivalent to move the var statement up
one line (see Item 12 for details of variable scope), the fact that b is
followed by a parenthesis means that the program is mis-parsed as:

var x;

a = b(f());

The upshot is that you always need to be aware of omitted semicolons
and check the beginning of the following line for tokens that disable
semicolon insertion. Alternatively, you can follow a rule of always pre-
fixing statements beginning with (, [, +, -, or / with an extra semi-
colon. For example, the previous example can be changed to protect
the parenthesized function call:

a = b // semicolon inferred

var x // semicolon on next line

;(f()) // semicolon inferred

Now it’s safe to move the var declaration to the top without fear of
changing the program:

var x // semicolon inferred

a = b // semicolon on next line

;(f()) // semicolon inferred

Another common scenario where omitted semicolons can cause prob-
lems is with script concatenation (see Item 1). Each file might consist
of a large function call expression (see Item 13 for more about imme-
diately invoked function expressions):

// file1.js

(function() {

// ...

})()

// file2.js

(function() {

// ...

})()

 Item 6: Learn the Limits of Semicolon Insertion 23

When each file is loaded as a separate program, a semicolon is auto-
matically inserted at the end, turning the function call into a state-
ment. But when the files are concatenated:

(function() {

// ...

})()

(function() {

// ...

})()

the result is treated as one single statement, equivalent to:

(function() {

// ...

})()(function() {

// ...

})();

The upshot: Omitting a semicolon from a statement requires being
aware of not only the next token in the current file, but any token that
might follow the statement after script concatenation. Similar to the
approach described above, you can protect scripts against careless
concatenation by defensively prefixing every file with an extra semi-
colon, at least if its first statement begins with one of the five vulnera-
ble characters (, [, +, -, or /:

// file1.js

;(function() {

// ...

})()

// file2.js

;(function() {

// ...

})()

This ensures that even if the preceding file omits its final semicolon,
the combined results will still be treated as separate statements:

;(function() {

// ...

})()

;(function() {

// ...

})()

24 Chapter 1 Accustoming Yourself to JavaScript

Of course, it’s better if the script concatenation process adds extra
semicolons between files automatically. But not all concatenation tools
are well written, so your safest bet is to add semicolons defensively.

At this point, you might be thinking, “This is too much to worry about.
I’ll just never omit semicolons and I’ll be fine.” Not so: There are also
cases where JavaScript will forcibly insert a semicolon even though
it might appear that there is no parse error. These are the so-called
restricted productions of the JavaScript syntax, where no newline is
allowed to appear between two tokens. The most hazardous case is
the return statement, which must not contain a newline between the
return keyword and its optional argument. So the statement:

return { };

returns a new object, whereas the code snippet:

return

{ };

parses as three separate statements, equivalent to:

return;

{ }

;

In other words, the newline following the return keyword forces an
automatic semicolon insertion, which parses as a return with no
argument followed by an empty block and an empty statement. The
other restricted productions are

 � A throw statement

 � A break or continue statement with an explicit label

 � A postfix ++ or -- operator

The purpose of the last rule is to disambiguate code snippets such as
the following:

a

++

b

Since ++ can serve as either a prefix or a suffix, but the latter cannot
be preceded by a newline, this parses as:

a; ++b;

The third and final rule of semicolon insertion is:

Semicolons are never inserted as separators in the head of a for loop or

as empty statements.

 Item 7: Think of Strings As Sequences of 16-Bit Code Units 25

This simply means that you must always explicitly include the semi-
colons in a for loop’s head. Otherwise, input such as this:

for (var i = 0, total = 1 // parse error

 i < n

 i++) {

 total *= i

}

results in a parse error. Similarly, a loop with an empty body requires
an explicit semicolon. Otherwise, leaving off the semicolon results in
a parse error:

function infiniteLoop() { while (true) } // parse error

So this is one case where the semicolon is required:

function infiniteLoop() { while (true); }

Things to Remember

✦ Semicolons are only ever inferred before a }, at the end of a line, or
at the end of a program.

✦ Semicolons are only ever inferred when the next token cannot be
parsed.

✦ Never omit a semicolon before a statement beginning with (, [, +, -,
or /.

✦ When concatenating scripts, insert semicolons explicitly between
scripts.

✦ Never put a newline before the argument to return, throw, break,
continue, ++, or --.

✦ Semicolons are never inferred as separators in the head of a for
loop or as empty statements.

Item 7: Think of Strings As Sequences of 16-Bit Code
Units

Unicode has a reputation for being complicated—despite the ubiquity
of strings, most programmers avoid learning about Unicode and hope
for the best. But at a conceptual level, there’s nothing to be afraid
of. The basics of Unicode are perfectly simple: Every unit of text of
all the world’s writing systems is assigned a unique integer between
0 and 1,114,111, known as a code point in Unicode terminology.
That’s it—hardly any different from any other text encoding, such as

26 Chapter 1 Accustoming Yourself to JavaScript

ASCII. The difference, however, is that while ASCII maps each index
to a unique binary representation, Unicode allows multiple different
binary encodings of code points. Different encodings make trade-offs
between the amount of storage required for a string and the speed of
operations such as indexing into a string. Today there are multiple
standard encodings of Unicode, the most popular of which are UTF-8,
UTF-16, and UTF-32.

Complicating the picture further, the designers of Unicode historically
miscalculated their budget for code points. It was originally thought
that Unicode would need no more than 216 code points. This made
UCS-2, the original standard 16-bit encoding, a particularly attrac-
tive choice. Since every code point could fit in a 16-bit number, there
was a simple, one-to-one mapping between code points and the ele-
ments of their encodings, known as code units. That is, UCS-2 was
made up of individual 16-bit code units, each of which corresponded
to a single Unicode code point. The primary benefit of this encod-
ing is that indexing into a string is a cheap, constant-time operation:
Accessing the nth code point of a string simply selects from the nth
16-bit element of the array. Figure 1.1 shows an example string con-
sisting only of code points in the original 16-bit range. As you can
see, the indices match up perfectly between elements of the encoding
and code points in the Unicode string.

As a result, a number of platforms at the time committed to using
a 16-bit encoding of strings. Java was one such platform, and Java-
Script followed suit: Every element of a JavaScript string is a 16-bit
value. Now, if Unicode had remained as it was in the early 1990s,
each element of a JavaScript string would still correspond to a single
code point.

This 16-bit range is quite large, encompassing far more of the world’s
text systems than ASCII or any of its myriad historical successors
ever did. Even so, in time it became clear that Unicode would outgrow

0x0068

0 1 2 3 4

'h' 'e' 'l' 'l' 'o'

0x0065 0x006c 0x006c 0x006f

Figure 1.1 A JavaScript string containing code points from the
Basic Multilingual Plane

 Item 7: Think of Strings As Sequences of 16-Bit Code Units 27

its initial range, and the standard expanded to its current range of
over 220 code points. The new increased range is organized into 17
subranges of 216 code points each. The first of these, known as the
Basic Multilingual Plane (or BMP), consists of the original 216 code
points. The additional 16 ranges are known as the supplementary

planes.

Once the range of code points expanded, UCS-2 had become obsolete:
It needed to be extended to represent the additional code points. Its
successor, UTF-16, is mostly the same, but with the addition of what
are known as surrogate pairs: pairs of 16-bit code units that together
encode a single code point 216 or greater. For example, the musical
G clef symbol (“ ”), which is assigned the code point U+1D11E—the
conventional hexadecimal spelling of code point number 119,070—is
represented in UTF-16 by the pair of code units 0xd834 and 0xdd1e.
The code point can be decoded by combining selected bits from each
of the two code units. (Cleverly, the encoding ensures that neither of
these “surrogates” can ever be confused for a valid BMP code point, so
you can always tell if you’re looking at a surrogate, even if you start
searching from somewhere in the middle of a string.) You can see an
example of a string with a surrogate pair in Figure 1.2. The first code
point of the string requires a surrogate pair, causing the indices of
code units to differ from the indices of code points.

Because each code point in a UTF-16 encoding may require either one
or two 16-byte code units, UTF-16 is a variable-length encoding: The
size in memory of a string of length n varies based on the particu-
lar code points in the string. Moreover, finding the nth code point of
a string is no longer a constant-time operation: It generally requires
searching from the beginning of the string.

But by the time Unicode expanded in size, JavaScript had already
committed to 16-bit string elements. String properties and methods
such as length, charAt, and charCodeAt all work at the level of code

0xd834

0 1 2 3 4 5 6

'�' ' ' 'c' 'l' 'e' 'f'

0xdd1e 0x0020 0x0063 0x006c 0x0065 0x0066

Figure 1.2 A JavaScript string containing a code point from a
supplementary plane

28 Chapter 1 Accustoming Yourself to JavaScript

units rather than code points. So whenever a string contains code
points from the supplementary planes, JavaScript represents each as
two elements—the code point’s UTF-16 surrogate pair—rather than
one. Simply put:

An element of a JavaScript string is a 16-bit code unit.

Internally, JavaScript engines may optimize the storage of string
contents. But as far as their properties and methods are concerned,
strings behave like sequences of UTF-16 code units. Consider the
string from Figure 1.2. Despite the fact that the string contains six
code points, JavaScript reports its length as 7:

" clef".length; // 7

"G clef".length; // 6

Extracting individual elements of the string produces code units
rather than code points:

" clef".charCodeAt(0); // 55348 (0xd834)

" clef".charCodeAt(1); // 56606 (0xdd1e)

" clef".charAt(1) === " "; // false

" clef".charAt(2) === " "; // true

Similarly, regular expressions operate at the level of code units. The
single-character pattern (“.”) matches a single code unit:

/^.$/.test(" "); // false

/^..$/.test(" "); // true

This state of affairs means that applications working with the full
range of Unicode have to work a lot harder: They can’t rely on string
methods, length values, indexed lookups, or many regular expres-
sion patterns. If you are working outside the BMP, it’s a good idea to
look for help from code point-aware libraries. It can be tricky to get
the details of encoding and decoding right, so it’s advisable to use an
existing library rather than implement the logic yourself.

While JavaScript’s built-in string datatype operates at the level of code
units, this doesn’t prevent APIs from being aware of code points and
surrogate pairs. In fact, some of the standard ECMAScript libraries cor-
rectly handle surrogate pairs, such as the URI manipulation functions
encodeURI, decodeURI, encodeURIComponent, and decodeURIComponent.
Whenever a JavaScript environment provides a library that operates
on strings—for example, manipulating the contents of a web page or
performing I/O with strings—you should consult the library’s docu-
mentation to see how it handles the full range of Unicode code points.

 Item 7: Think of Strings As Sequences of 16-Bit Code Units 29

Things to Remember

✦ JavaScript strings consist of 16-bit code units, not Unicode code
points.

✦ Unicode code points 216 and above are represented in JavaScript by
two code units, known as a surrogate pair.

✦ Surrogate pairs throw off string element counts, affecting length,
charAt, charCodeAt, and regular expression patterns such as “.”.

✦ Use third-party libraries for writing code point-aware string
manipulation.

✦ Whenever you are using a library that works with strings, con-
sult the documentation to see how it handles the full range of code
points.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

2 Variable Scope

Scope is like oxygen to a programmer. It’s everywhere. You often don’t
even think about it. But when it gets polluted . . . you choke.

The good news is that JavaScript’s core scoping rules are simple, well
designed, and incredibly powerful. But there are exceptions. Working
effectively with JavaScript requires mastering some basic concepts of
variable scope as well as the corner cases that can lead to subtle but
nasty problems.

Item 8: Minimize Use of the Global Object

JavaScript makes it easy to create variables in its global namespace.
Global variables take less effort to create, since they don’t require
any kind of declaration, and they are automatically accessible to
all code throughout the program. This convenience makes them an
easy temptation for beginners. But seasoned programmers know to
avoid global variables. Defining global variables pollutes the common
namespace shared by everyone, introducing the possibility of acci-
dental name collisions. Globals go against the grain of modularity:
They lead to unnecessary coupling between separate components of a
program. As convenient as it may be to “code now and organize later,”
the best programmers constantly pay attention to the structure of
their programs, continuously grouping related functionality and sep-
arating unrelated components as a part of the programming process.

Since the global namespace is the only real way for separate com-
ponents of a JavaScript program to interact, some uses of the global
namespace are unavoidable. A component or library has to define a
global name so that other parts of the program can use it. Otherwise,
it’s best to keep variables as local as possible. It’s certainly possible

to write a program with nothing but global variables, but it’s asking
for trouble. Even very simple functions that define their temporary

32 Chapter 2 Variable Scope

variables globally would have to worry whether any other code might
use those same variable names:

var i, n, sum; // globals

function averageScore(players) {

 sum = 0;

for (i = 0, n = players.length; i < n; i++) {

 sum += score(players[i]);

 }

return sum / n;

}

This definition of averageScore won’t work if the score function it
depends on uses any of the same global variables for its own purposes:

var i, n, sum; // same globals as averageScore!

function score(player) {

 sum = 0;

for (i = 0, n = player.levels.length; i < n; i++) {

 sum += player.levels[i].score;

 }

return sum;

}

The answer is to keep such variables local to just the portion of code
that needs them:

function averageScore(players) {

var i, n, sum;

 sum = 0;

for (i = 0, n = players.length; i < n; i++) {

 sum += score(players[i]);

 }

return sum / n;

}

function score(player) {

var i, n, sum;

 sum = 0;

for (i = 0, n = player.levels.length; i < n; i++) {

 sum += player.levels[i].score;

 }

return sum;

}

JavaScript’s global namespace is also exposed as a global object,

which is accessible at the top of a program as the initial value of the

 Item 8: Minimize Use of the Global Object 33

this keyword. In web browsers, the global object is also bound to the
global window variable. Adding or modifying global variables automat-
ically updates the global object:

this.foo; // undefined

foo = "global foo";

this.foo; // "global foo"

Similarly, updating the global object automatically updates the global
namespace:

var foo = "global foo";

this.foo = "changed";

foo; // "changed"

This means that you have two mechanisms to choose from for creat-
ing a global variable: You can declare it with var in the global scope,
or you can add it to the global object. Either works, but the var decla-
ration has the benefit of more clearly conveying the effect on the pro-
gram’s scope. Given that a reference to an unbound variable results
in a runtime error, making scope clear and simple makes it easier for
users of your code to understand what globals it declares.

While it’s best to limit your use of the global object, it does provide
one particularly indispensable use. Since the global object provides a
dynamic reflection of the global environment, you can use it to query
a running environment to detect which features are available on the
platform. For example, ES5 introduced a new global JSON object for
reading and writing the JSON data format. As a stopgap for deploying
code in environments that may or may not have yet provided the JSON
object, you can test the global object for its presence and provide an
alternate implementation:

if (!this.JSON) {

this.JSON = {

 parse: ...,

 stringify: ...

 };

}

If you are already providing an implementation of JSON, you could
of course simply use your own implementation unconditionally. But
built-in implementations provided by the host environment are almost
always preferable: They are highly tested for correctness and confor-
mance to standards, and quite often provide better performance than
a third-party implementation.

34 Chapter 2 Variable Scope

The technique of feature detection is especially important in web
browsers, where the same code may be executed by a wide variety
of browsers and browser versions. Feature detection is a relatively
easy way to make programs robust to the variations in platform fea-
ture sets. The technique applies elsewhere, too, such as for sharing
libraries that may work both in the browser and in JavaScript server
environments.

Things to Remember

✦ Avoid declaring global variables.

✦ Declare variables as locally as possible.

✦ Avoid adding properties to the global object.

✦ Use the global object for platform feature detection.

Item 9: Always Declare Local Variables

If there’s one thing more troublesome than a global variable, it’s an
unintentional global variable. Unfortunately, JavaScript’s variable
assignment rules make it all too easy to create global variables acci-
dentally. Instead of raising an error, a program that assigns to an
unbound variable simply creates a new global variable and assigns to
it. This means that forgetting to declare a local variable silently turns
it into a global variable:

function swap(a, i, j) {

 temp = a[i]; // global

 a[i] = a[j];

 a[j] = temp;

}

This program manages to execute without error, even though the
lack of a var declaration for the temp variable leads to the accidental
creation of a global variable. A proper implementation declares temp
with var:

function swap(a, i, j) {

var temp = a[i];

 a[i] = a[j];

 a[j] = temp;

}

Purposefully creating global variables is bad style, but accidentally
creating global variables can be a downright disaster. Because of
this, many programmers use lint tools, which inspect your program’s

 Item 10: Avoid with 35

source code for bad style or potential bugs, and often feature the
ability to report uses of unbound variables. Typically, a lint tool that
checks for undeclared variables takes a user-provided set of known
globals (such as those expected to exist in the host environment,
or globals defined in separate files) and then reports any references
or assignments to variables that are neither provided in the list nor
declared in the program. It’s worth taking some time to explore what
development tools are available for JavaScript. Integrating automated
checks for common errors such as accidental globals into your devel-
opment process can be a lifesaver.

Things to Remember

✦ Always declare new local variables with var.

✦ Consider using lint tools to help check for unbound variables.

Item 10: Avoid with

Poor with. There is probably no single more maligned feature in
JavaScript. Nevertheless, with came by its notoriety honestly: What-
ever conveniences it may offer, it more than makes up for them in
unreliability and inefficiency.

The motivations for with are understandable. Programs often need to
call a number of methods in sequence on a single object, and it is con-
venient to avoid repeated references to the object:

function status(info) {

var widget = new Widget();

with (widget) {

setBackground("blue");

setForeground("white");

setText("Status: " + info); // ambiguous reference

show();

 }

}

It’s also tempting to use with to “import” variables from objects serv-
ing as modules:

function f(x, y) {

with (Math) {

return min(round(x), sqrt(y)); // ambiguous references

 }

}

36 Chapter 2 Variable Scope

In both cases, with makes it temptingly easy to extract the properties
of an object and bind them as local variables in the block.

These examples look appealing. But neither actually does what it’s
supposed to. Notice how both examples have two different kinds of
variables: those that we expect to refer to properties of the with object,
such as setBackground, round, and sqrt, and those that we expect to
refer to outer variable bindings, such as info, x, and y. But nothing in
the syntax actually distinguishes these two types of variables—they
all just look like variables.

In fact, JavaScript treats all variables the same: It looks them up
in scope, starting with the innermost scope and working its way
outward. The with statement treats an object as if it represented a
variable scope, so inside the with block, variable lookup starts by
searching for a property of the given variable name. If the property
is not found in the object, then the search continues in outer scopes.

Figure 2.1 shows a diagram of a JavaScript engine’s internal repre-
sentation of the scope of the status function while executing the body
of its with statement. This is known in the ES5 specification as the
lexical environment (or scope chain in older versions of the standard).
The innermost scope of the environment is provided by the widget
object. The next scope out has bindings for the function’s local vari-
ables info and widget. At the next level is a binding for the status
function. Notice how, in a normal scope, there are exactly as many
bindings stored in that level of the environment as there are vari-
ables in that local scope. But for the with scope, the set of bindings is
dependent on whatever happens to be in the object at a given point in
time.

How confident are we that we know what properties will or won’t be
found on the object we provided to with? Every reference to an outer
variable in a with block implicitly assumes that there is no property
of the same name in the with object—or in any of its prototype objects.

Other parts of the program that create or modify the with object
and its prototypes may not share those assumptions. They certainly
should not have to read your local code to find what local variables
you happen to be using.

This conflict between variable scope and object namespaces makes
with blocks extremely brittle. For example, if the widget object in the
above example acquires an info property, then suddenly the behav-
ior of the status function will use that property instead of the status
function’s info parameter. This could happen during the evolution of
the source code if, for example, a programmer decides that all widgets

 Item 10: Avoid with 37

should have an info property. Worse, something could add an info
property to the Widget prototype object at runtime, causing the status
function to start breaking at unpredictable points:

status("connecting"); // Status: connecting

Widget.prototype.info = "[[widget info]]";

status("connected"); // Status: [[widget info]]

Similarly, the function f above could be broken if someone adds an x
or y property to the Math object:

Math.x = 0;

Math.y = 0;

f(2, 9); // 0

._background

widget

._foreground

. . .

.info

.widget

.status

.setBackground

Widget.prototype

.setForeground

.setText

.show

. . .

.hasOwnProperty

Object.prototype

.toString

.valueOf

. . .

Figure 2.1 Lexical environment (or “scope chain”) for the status
function

38 Chapter 2 Variable Scope

It might be unlikely that anyone would add x and y properties to
Math. But it’s not always easy to predict whether a particular object
might be modified, or might have properties you didn’t know about.
And as it turns out, a feature that is unpredictable for humans can
also be unpredictable for optimizing compilers. Normally, JavaScript
scopes can be represented with efficient internal data structures
and variable lookups can be performed quickly. But because a with
block requires searching an object’s prototype chain for all variables
in its body, it will typically run much more slowly than an ordinary
block.

There is no single feature of JavaScript that directly replaces with as
a better alternative. In some cases, the best alternative is simply to
bind an object to a short variable name:

function status(info) {

var w = new Widget();

 w.setBackground("blue");

 w.setForeground("white");

 w.addText("Status: " + info);

 w.show();

}

The behavior of this version is much more predictable. None of the
variable references are sensitive to the contents of the object w. So
even if some code modifies the Widget prototype, status continues to
behave as expected:

status("connecting"); // Status: connecting

Widget.prototype.info = "[[widget info]]";

status("connected"); // Status: connected

In other cases, the best approach is to bind local variables explicitly
to the relevant properties:

function f(x, y) {

var min = Math.min, round = Math.round, sqrt = Math.sqrt;

return min(round(x), sqrt(y));

}

Again, once we eliminate with, the function’s behavior becomes
predictable:

Math.x = 0;

Math.y = 0;

f(2, 9); // 2

 Item 11: Get Comfortable with Closures 39

Things to Remember

✦ Avoid using with statements.

✦ Use short variable names for repeated access to an object.

✦ Explicitly bind local variables to object properties instead of implic-
itly binding them with a with statement.

Item 11: Get Comfortable with Closures

Closures may be an unfamiliar concept to programmers coming from
languages that don’t support them. And they may seem intimidating
at first. But rest assured that making the effort to master closures
will pay for itself many times over.

Luckily, there’s really nothing to be afraid of. Understanding closures
only requires learning three essential facts. The first fact is that
JavaScript allows you to refer to variables that were defined outside of
the current function:

function makeSandwich() {

var magicIngredient = "peanut butter";

function make(filling) {

return magicIngredient + " and " + filling;

 }

return make("jelly");

}

makeSandwich(); // "peanut butter and jelly"

Notice how the inner make function refers to magicIngredient, a vari-
able defined in the outer makeSandwich function.

The second fact is that functions can refer to variables defined in
outer functions even after those outer functions have returned! If that
sounds implausible, remember that JavaScript functions are first-
class objects (see Item 19). That means that you can return an inner
function to be called sometime later on:

function sandwichMaker() {

var magicIngredient = "peanut butter";

function make(filling) {

return magicIngredient + " and " + filling;

 }

return make;

}

var f = sandwichMaker();

f("jelly"); // "peanut butter and jelly"

www.allitebooks.com

http://www.allitebooks.org

40 Chapter 2 Variable Scope

f("bananas"); // "peanut butter and bananas"

f("marshmallows"); // "peanut butter and marshmallows"

This is almost identical to the first example, except that instead
of immediately calling make("jelly") inside the outer function,
sandwichMaker returns the make function itself. So the value of f is
the inner make function, and calling f effectively calls make. But some-
how, even though sandwichMaker already returned, make remembers
the value of magicIngredient.

How does this work? The answer is that JavaScript function values
contain more information than just the code required to execute
when they’re called. They also internally store any variables they may
refer to that are defined in their enclosing scopes. Functions that
keep track of variables from their containing scopes are known as
closures. The make function is a closure whose code refers to two outer
variables: magicIngredient and filling. Whenever the make function
is called, its code is able to refer to these two variables because they
are stored in the closure.

A function can refer to any variables in its scope, including the
parameters and variables of outer functions. We can use this to make
a more general-purpose sandwichMaker:

function sandwichMaker(magicIngredient) {

function make(filling) {

return magicIngredient + " and " + filling;

 }

return make;

}

var hamAnd = sandwichMaker("ham");

hamAnd("cheese"); // "ham and cheese"

hamAnd("mustard"); // "ham and mustard"

var turkeyAnd = sandwichMaker("turkey");

turkeyAnd("Swiss"); // "turkey and Swiss"

turkeyAnd("Provolone"); // "turkey and Provolone"

This example creates two distinct functions, hamAnd and turkeyAnd.
Even though they both come from the same make definition, they are
two distinct objects: The first function stores "ham" as the value of
magicIngredient, and the second stores "turkey".

Closures are one of JavaScript’s most elegant and expressive features,
and are at the heart of many useful idioms. JavaScript even provides
a more convenient literal syntax for constructing closures, the func-

tion expression:

 Item 11: Get Comfortable with Closures 41

function sandwichMaker(magicIngredient) {

return function(filling) {

return magicIngredient + " and " + filling;

 };

}

Notice that this function expression is anonymous: It’s not even nec-
essary to name the function since we are only evaluating it to produce
a new function value, but do not intend to call it locally. Function
expressions can have names as well (see Item 14).

The third and final fact to learn about closures is that they can
update the values of outer variables. Closures actually store refer-

ences to their outer variables, rather than copying their values. So
updates are visible to any closures that have access to them. A simple
idiom that illustrates this is a box—an object that stores an internal
value that can be read and updated:

function box() {

var val = undefined;

return {

 set: function(newVal) { val = newVal; },

 get: function() { return val; },

 type: function() { return typeof val; }

 };

}

var b = box();

b.type(); // "undefined"

b.set(98.6);

b.get(); // 98.6

b.type(); // "number"

This example produces an object containing three closures: its set,
get, and type properties. Each of these closures shares access to the
val variable. The set closure updates the value of val, and subse-
quently calling get and type sees the results of the update.

Things to Remember

✦ Functions can refer to variables defined in outer scopes.

✦ Closures can outlive the function that creates them.

✦ Closures internally store references to their outer variables, and
can both read and update their stored variables.

42 Chapter 2 Variable Scope

Item 12: Understand Variable Hoisting

JavaScript supports lexical scoping: With only a few exceptions, a ref-
erence to a variable foo is bound to the nearest scope in which foo
was declared. However, JavaScript does not support block scoping:

Variable definitions are not scoped to their nearest enclosing state-
ment or block, but rather to their containing function.

Failing to understand this idiosyncrasy of JavaScript can lead to sub-
tle bugs such as this:

function isWinner(player, others) {

var highest = 0;

for (var i = 0, n = others.length; i < n; i++) {

var player = others[i];

if (player.score > highest) {

 highest = player.score;

 }

 }

return player.score > highest;

}

This program appears to declare a local variable player within
the body of a for loop. But because JavaScript variables are func-
tion-scoped rather than block-scoped, the inner declaration of player
simply redeclares a variable that was already in scope—namely, the
player parameter. Each iteration of the loop then overwrites the same
variable. As a result, the return statement sees player as the last ele-
ment of others instead of the function’s original player argument.

A good way to think about the behavior of JavaScript variable decla-
rations is to understand them as consisting of two parts: a declara-
tion and an assignment. JavaScript implicitly “hoists” the declaration
part to the top of the enclosing function and leaves the assignment in
place. In other words, the variable is in scope for the entire function,
but it is only assigned at the point where the var statement appears.
Figure 2.2 provides a visualization of hoisting.

Hoisting can also lead to confusion about variable redeclaration. It
is legal to declare the same variable multiple times within the same
function. This often comes up when writing multiple loops:

function trimSections(header, body, footer) {

for (var i = 0, n = header.length; i < n; i++) {

 header[i] = header[i].trim();

 }

 Item 12: Understand Variable Hoisting 43

for (var i = 0, n = body.length; i < n; i++) {

 body[i] = body[i].trim();

 }

for (var i = 0, n = footer.length; i < n; i++) {

 footer[i] = footer[i].trim();

 }

}

The trimSections function appears to declare six local variables (three
called i and three called n), but hoisting results in only two. In other
words, after hoisting, the trimSections function is equivalent to this
rewritten version:

function trimSections(header, body, footer) {

var i, n;

for (i = 0, n = header.length; i < n; i++) {

 header[i] = header[i].trim();

 }

for (i = 0, n = body.length; i < n; i++) {

 body[i] = body[i].trim();

 }

for (i = 0, n = footer.length; i < n; i++) {

 footer[i] = footer[i].trim();

 }

}

Because redeclarations can lead to the appearance of distinct vari-
ables, some programmers prefer to place all var declarations at the
top of their functions, effectively hoisting their variables manually, in
order to avoid ambiguity. Regardless of whether you prefer this style,
it’s important to understand the scoping rules of JavaScript, both for
writing and reading code.

function f() {

 // ...

 // ...

 {

 // ...

var x = /* ... */;

 // ...

 }

 // ...

}

function f() {

var x;

 // ...

 {

 // ...

 x = /* ... */;

 // ...

 }

 // ...

}

Figure 2.2 Variable hoisting

44 Chapter 2 Variable Scope

The one exception to JavaScript’s lack of block scoping is, appropri-
ately enough, exceptions. That is, try…catch binds a caught exception
to a variable that is scoped just to the catch block:

function test() {

var x = "var", result = [];

 result.push(x);

try {

throw "exception";

 } catch (x) {

 x = "catch";

 }

 result.push(x);

return result;

}

test(); // ["var", "var"]

Things to Remember

✦ Variable declarations within a block are implicitly hoisted to the top
of their enclosing function.

✦ Redeclarations of a variable are treated as a single variable.

✦ Consider manually hoisting local variable declarations to avoid
confusion.

Item 13: Use Immediately Invoked Function
Expressions to Create Local Scopes

What does this (buggy!) program compute?

function wrapElements(a) {

var result = [], i, n;

for (i = 0, n = a.length; i < n; i++) {

 result[i] = function() { return a[i]; };

 }

return result;

}

var wrapped = wrapElements([10, 20, 30, 40, 50]);

var f = wrapped[0];

f(); // ?

The programmer may have intended for it to produce 10, but it actu-
ally produces the undefined value.

 Item 13: Use IIFEs to Create Local Scopes 45

The way to make sense of this example is to understand the distinc-
tion between binding and assignment. Entering a scope at runtime
allocates a “slot” in memory for each variable binding in that scope.
The wrapElements function binds three local variables: result, i, and
n. So when it is called, wrapElements allocates slots for these three
variables. On each iteration of the loop, the loop body allocates a clo-
sure for the nested function. The bug in the program comes from the
fact that the programmer apparently expected the function to store
the value of i at the time the nested function was created. But in fact,
it contains a reference to i. Since the value of i changes after each
function is created, the inner functions end up seeing the final value
of i. This is the key point about closures:

Closures store their outer variables by reference, not by value.

So all the closures created by wrapElements refer to the single shared
slot for i that was created before the loop. Since each iteration of the
loop increments i until it runs off the end of the array, by the time we
actually call one of the closures, it looks up index 5 of the array and
returns undefined.

Notice that wrapElements would behave exactly the same even if we
put the var declarations in the head of the for loop:

function wrapElements(a) {

var result = [];

for (var i = 0, n = a.length; i < n; i++) {

 result[i] = function() { return a[i]; };

 }

return result;

}

var wrapped = wrapElements([10, 20, 30, 40, 50]);

var f = wrapped[0];

f(); // undefined

This version looks even a bit more deceptive, because the var declara-
tion appears to be inside the loop. But as always, the variable decla-
rations are hoisted to the top of the loop. So once again, there is only
a single slot allocated for the variable i.

The solution is to force the creation of a local scope by creating a
nested function and calling it right away:

function wrapElements(a) {

var result = [];

for (var i = 0, n = a.length; i < n; i++) {

46 Chapter 2 Variable Scope

 (function() {

var j = i;

 result[i] = function() { return a[j]; };

 })();

 }

return result;

}

This technique, known as the immediately invoked function expres-

sion, or IIFE (pronounced “iffy”), is an indispensable workaround for
JavaScript’s lack of block scoping. An alternate variation is to bind
the local variable as a parameter to the IIFE and pass its value as an
argument:

function wrapElements(a) {

var result = [];

for (var i = 0, n = a.length; i < n; i++) {

 (function(j) {

 result[i] = function() { return a[j]; };

 })(i);

 }

return result;

}

However, be careful when using an IIFE to create a local scope,
because wrapping a block in a function can introduce some subtle
changes to the block. First of all, the block cannot contain any break
or continue statements that jump outside of the block, since it is ille-
gal to break or continue outside of a function. Second, if the block
refers to this or the special arguments variable, the IIFE changes their
meaning. Chapter 3 discusses techniques for working with this and
arguments.

Things to Remember

✦ Understand the difference between binding and assignment.

✦ Closures capture their outer variables by reference, not by value.

✦ Use immediately invoked function expressions (IIFEs) to create local
scopes.

✦ Be aware of the cases where wrapping a block in an IIFE can change
its behavior.

 Item 14: Beware of Unportable Scoping of Named Function Expressions 47

Item 14: Beware of Unportable Scoping of Named
Function Expressions

JavaScript functions may look the same wherever they go, but their
meaning changes depending on the context. Take a code snippet such
as the following:

function double(x) { return x * 2; }

Depending on where it appears, this could be either a function dec-

laration or a named function expression. A declaration is familiar: It
defines a function and binds it to a variable in the current scope. At
the top level of a program, for example, the above declaration would
create a global function called double. But the same function code
can be used as an expression, where it has a very different meaning.
For example:

var f = function double(x) { return x * 2; };

According to the ECMAScript specification, this binds the function
to a variable f rather than double. Of course, we don’t have to give a
function expression a name. We could use the anonymous function
expression form:

var f = function(x) { return x * 2; };

The official difference between anonymous and named function
expressions is that the latter binds its name as a local variable within
the function. This can be used to write recursive function expressions:

var f = function find(tree, key) {

if (!tree) {

return null;

 }

if (tree.key === key) {

return tree.value;

 }

return find(tree.left, key) ||

find(tree.right, key);

};

Note that find is only in scope within the function itself. Unlike a
function declaration, a named function expression can’t be referred to
externally by its internal name:

find(myTree, "foo"); // error: find is not defined

48 Chapter 2 Variable Scope

Using named function expressions for recursion may not seem par-
ticularly useful, since it’s fine to use the outer scope’s name for the
function:

var f = function(tree, key) {

if (!tree) {

return null;

 }

if (tree.key === key) {

return tree.value;

 }

return f(tree.left, key) ||

 f(tree.right, key);

};

Or we could just use a declaration:

function find(tree, key) {

if (!tree) {

return null;

 }

if (tree.key === key) {

return tree.value;

 }

return find(tree.left, key) ||

find(tree.right, key);

}

var f = find;

The real usefulness of named function expressions, though, is for
debugging. Most modern JavaScript environments produce stack
traces for Error objects, and the name of a function expression is typ-
ically used for its entry in a stack trace. Debuggers with facilities for
inspecting the stack typically make similar use of named function
expressions.

Sadly, named function expressions have been a notorious source of
scoping and compatibility issues, due to a combination of an unfor-
tunate mistake in the history of the ECMAScript specification and
bugs in popular JavaScript engines. The specification mistake, which
existed through ES3, was that JavaScript engines were required to
represent the scope of a named function expression as an object,
much like the problematic with construct. While this scope object only
contains a single property binding the function’s name to the func-
tion, it also inherits properties from Object.prototype. This means
that just naming a function expression also brings all of the proper-
ties of Object.prototype into scope. The results can be surprising:

 Item 14: Beware of Unportable Scoping of Named Function Expressions 49

var constructor = function() { return null; };

var f = function f() {

return constructor();

};

f(); // {} (in ES3 environments)

This program looks like it should produce null, but it actually pro-
duces a new object, because the named function expression inherits
Object.prototype.constructor (i.e., the Object constructor function)
in its scope. And just like with, the scope is affected by dynamic
changes to Object.prototype. One part of a program could add or
delete properties to Object.prototype and variables within named
function expressions everywhere would be affected.

Thankfully, ES5 corrected this mistake. But some JavaScript envi-
ronments continue to use the obsolete object scoping. Worse, some
are even less standards-compliant and use objects as scopes even

for anonymous function expressions! Then, even removing the func-
tion expression’s name in the preceding example produces an object
instead of the expected null:

var constructor = function() { return null; };

var f = function() {

return constructor();

};

f(); // {} (in nonconformant environments)

The best way to avoid these problems on systems that pollute their
function expressions’ scopes with objects is to avoid ever adding new
properties to Object.prototype and avoid using local variables with
any of the names of the standard Object.prototype properties.

The next bug seen in popular JavaScript engines is hoisting named
function expressions as if they were declarations. For example:

var f = function g() { return 17; };

g(); // 17 (in nonconformant environments)

To be clear, this is not standards-compliant behavior. Worse, some
JavaScript environments even treat the two functions f and g as dis-
tinct objects, leading to unnecessary memory allocation! A reason-
able workaround for this behavior is to create a local variable of the
same name as the function expression and assign it to null:

var f = function g() { return 17; };

var g = null;

Redeclaring the variable with var ensures that g is bound even in
those environments that do not erroneously hoist the function

www.allitebooks.com

http://www.allitebooks.org

50 Chapter 2 Variable Scope

expression, and setting it to null ensures that the duplicate function
can be garbage-collected.

It would certainly be reasonable to conclude that named function
expressions are just too problematic to be worth using. A less aus-
tere response would be to use named function expressions during
development for debugging, and to run code through a preprocessor
to anonymize all function expressions before shipping. But one thing
is certain: You should always be clear about what platforms you are
shipping on (see Item 1). The worst thing you could do is to litter your
code with workarounds that aren’t even necessary for the platforms
you support.

Things to Remember

✦ Use named function expressions to improve stack traces in Error
objects and debuggers.

✦ Beware of pollution of function expression scope with Object

.prototype in ES3 and buggy JavaScript environments.

✦ Beware of hoisting and duplicate allocation of named function
expressions in buggy JavaScript environments.

✦ Consider avoiding named function expressions or removing them
before shipping.

✦ If you are shipping in properly implemented ES5 environments,
you’ve got nothing to worry about.

Item 15: Beware of Unportable Scoping of Block-Local
Function Declarations

The saga of context sensitivity continues with nested function decla-
rations. It may surprise you to know that there is no standard way to
declare functions inside a local block. Now, it’s perfectly legal and cus-
tomary to nest a function declaration at the top of another function:

function f() { return "global"; }

function test(x) {

function f() { return "local"; }

var result = [];

if (x) {

 result.push(f());

 }

Item 15: Beware of Unportable Scoping of Block-Local Function Declarations 51

 result.push(f());

return result;

}

test(true); // ["local", "local"]

test(false); // ["local"]

But it’s an entirely different story if we move f into a local block:

function f() { return "global"; }

function test(x) {

var result = [];

if (x) {

function f() { return "local"; } // block-local

 result.push(f());

 }

 result.push(f());

return result;

}

test(true); // ?

test(false); // ?

You might expect the first call to test to produce the array
["local", "global"] and the second to produce ["global"], since the
inner f appears to be local to the if block. But recall that JavaScript
is not block-scoped, so the inner f should be in scope for the whole
body of test. A reasonable second guess would be ["local", "local"]
and ["local"]. And in fact, some JavaScript environments behave
this way. But not all of them! Others conditionally bind the inner f at
runtime, based on whether its enclosing block is executed. (Not only
does this make code harder to understand, but it also leads to slow
performance, not unlike with statements.)

What does the ECMAScript standard have to say about this state of
affairs? Surprisingly, almost nothing. Until ES5, the standard did
not even acknowledge the existence of block-local function declara-
tions; function declarations are officially specified to appear only
at the outermost level of other functions or of a program. ES5 even
recommends turning function declarations in nonstandard contexts
into a warning or error, and popular JavaScript implementations
report them as an error in strict mode—a strict-mode program with a
block-local function declaration will report a syntax error. This helps
detect unportable code, and it clears a path for future versions of the

52 Chapter 2 Variable Scope

standard to specify more sensible and portable semantics for block-
local declarations.

In the meantime, the best way to write portable functions is to avoid
ever putting function declarations in local blocks or substatements.
If you want to write a nested function declaration, put it at the outer-
most level of its parent function, as shown in the original version of
the code. If, on the other hand, you need to choose between functions
conditionally, the best way to do this is with var declarations and
function expressions:

function f() { return "global"; }

function test(x) {

var g = f, result = [];

if (x) {

 g = function() { return "local"; }

 result.push(g());

 }

 result.push(g());

return result;

}

This eliminates the mystery of the scoping of the inner variable
(renamed here to g): It is unconditionally bound as a local variable,
and only the assignment is conditional. The result is unambiguous
and fully portable.

Things to Remember

✦ Always keep function declarations at the outermost level of a pro-
gram or a containing function to avoid unportable behavior.

✦ Use var declarations with conditional assignment instead of condi-
tional function declarations.

Item 16: Avoid Creating Local Variables with eval

JavaScript’s eval function is an incredibly powerful and flexible tool.
Powerful tools are easy to abuse, so they’re worth understanding.
One of the simplest ways to run afoul of eval is to allow it to interfere
with scope.

Calling eval interprets its argument as a JavaScript program, but that
program runs in the local scope of the caller. The global variables of
the embedded program get created as locals of the calling program:

 Item 16: Avoid Creating Local Variables with eval 53

function test(x) {

eval("var y = x;"); // dynamic binding

return y;

}

test("hello"); // "hello"

This example looks clear, but it behaves subtly differently than the
var declaration would behave if it were directly included in the body
of test. The var declaration is only executed when the eval function
is called. Placing an eval in a conditional context brings its variables
into scope only if the conditional is executed:

var y = "global";

function test(x) {

if (x) {

eval("var y = 'local';"); // dynamic binding

 }

return y;

}

test(true); // "local"

test(false); // "global"

Basing scoping decisions on the dynamic behavior of a program is
almost always a bad idea. The result is that simply understanding
which binding a variable refers to requires following the details of
how the program executes. This is especially tricky when the source
code passed to eval is not even defined locally:

var y = "global";

function test(src) {

eval(src); // may dynamically bind

return y;

}

test("var y = 'local';"); // "local"

test("var z = 'local';"); // "global"

This code is brittle and unsafe: It gives external callers the power to
change the internal scoping of the test function. Expecting eval to
modify its containing scope is also not safe for compatibility with ES5
strict mode, which runs eval in a nested scope to prevent this kind
of pollution. A simple way to ensure that eval does not affect outer
scopes is to run it in an explicitly nested scope:

var y = "global";

function test(src) {

 (function() { eval(src); })();

return y;

}

54 Chapter 2 Variable Scope

test("var y = 'local';"); // "global"

test("var z = 'local';"); // "global"

Things to Remember

✦ Avoid creating variables with eval that pollute the caller’s scope.

✦ If eval code might create global variables, wrap the call in a nested
function to prevent scope pollution.

Item 17: Prefer Indirect eval to Direct eval

The eval function has a secret weapon: It’s more than just a function.

Most functions have access to the scope where they are defined, and
nothing else. But eval has access to the full scope at the point where

it’s called. This is such immense power that when compiler writers
first tried to optimize JavaScript, they discovered that eval made it
difficult to make any function calls efficient, since every function call
needed to make its scope available at runtime in case the function
turned out to be eval.

As a compromise, the language standard evolved to distinguish two
different ways of calling eval. A function call involving the identifier
eval is considered a “direct” call to eval:

var x = "global";

function test() {

var x = "local";

return eval("x"); // direct eval

}

test(); // "local"

In this case, compilers are required to ensure that the executed pro-
gram has complete access to the local scope of the caller. The other
kind of call to eval is considered “indirect,” and evaluates its argu-
ment in global scope. For example, binding the eval function to a dif-
ferent variable name and calling it through the alternate name causes
the code to lose access to any local scope:

var x = "global";

function test() {

var x = "local";

var f = eval;

return f("x"); // indirect eval

}

test(); // "global"

 Item 17: Prefer Indirect eval to Direct eval 55

The exact definition of direct eval depends on the rather idiosyncratic
specification language of the ECMAScript standard. In practice, the
only syntax that can produce a direct eval is a variable with the name
eval, possibly surrounded by (any number of) parentheses. A concise
way to write an indirect call to eval is to use the expression sequenc-
ing operator (,) with an apparently pointless number literal:

(0,eval)(src);

How does this peculiar-looking function call work? The number lit-
eral 0 is evaluated but its value is ignored, and the parenthesized
sequence expression produces the eval function. So (0,eval) behaves
almost exactly the same as the plain identifier eval, with the one
important difference being that the whole call expression is treated as
an indirect eval.

The power of direct eval can be easily abused. For example, evaluat-
ing a source string coming from over the network can expose inter-
nals to untrusted parties. Item 16 talks about the dangers of eval
dynamically creating local variables; these dangers are only possible
with direct eval. Moreover, direct eval costs dearly in performance.
In general, you should assume that direct eval causes its containing
function and all containing functions up to the outermost level of the

program to be considerably slower.

There are occasionally reasons to use direct eval. But unless there’s
a clear need for the extra power of inspecting local scope, use the less
easily abused and less expensive indirect eval.

Things to Remember

✦ Wrap eval in a sequence expression with a useless literal to force
the use of indirect eval.

✦ Prefer indirect eval to direct eval whenever possible.

This page intentionally left blank

3
Working with

Functions

Functions are JavaScript’s workhorse, serving simultaneously as the
programmer’s primary abstraction facility and implementation mech-
anism. Functions alone play roles that other languages fulfill with
multiple distinct features: procedures, methods, constructors, and
even classes and modules. Once you become comfortable with the
finer points of functions, you have mastered a significant portion of
JavaScript. The flip side of the coin is that it can take some time to
learn how to use functions effectively in different contexts.

Item 18: Understand the Difference between
Function, Method, and Constructor Calls

If you’re familiar with object-oriented programming, you’re likely
accustomed to thinking of functions, methods, and class construc-
tors as three separate things. In JavaScript, these are just three dif-
ferent usage patterns of one single construct: functions.

The simplest usage pattern is the function call:

function hello(username) {

return "hello, " + username;

}

hello("Keyser Söze"); // "hello, Keyser Söze"

This does exactly what it looks like: It calls the hello function and
binds the name parameter to its given argument.

Methods in JavaScript are nothing more than object properties that
happen to be functions:

var obj = {

 hello: function() {

return "hello, " + this.username;

 },

58 Chapter 3 Working with Functions

 username: "Hans Gruber"

};

obj.hello(); // "hello, Hans Gruber"

Notice how hello refers to this to access the properties of obj. You
might be tempted to assume that this gets bound to obj because the
hello method was defined on obj. But we can copy a reference to the
same function in another object and get a different answer:

var obj2 = {

 hello: obj.hello,

 username: "Boo Radley"

};

obj2.hello(); // "hello, Boo Radley"

What really happens in a method call is that the call expression itself
determines the binding of this, also known as the call’s receiver.
The expression obj.hello() looks up the hello property of obj and
calls it with receiver obj. The expression obj2.hello() looks up the
hello property of obj2—which happens to be the same function as
obj.hello—but calls it with receiver obj2. In general, calling a method
on an object looks up the method and then uses the object as the
method’s receiver.

Since methods are nothing more than functions called on a particu-
lar object, there is no reason why an ordinary function can’t refer to
this:

function hello() {

return "hello, " + this.username;

}

This can be useful for predefining a function for sharing among mul-
tiple objects:

var obj1 = {

 hello: hello,

 username: "Gordon Gekko"

};

obj1.hello(); // "hello, Gordon Gekko"

var obj2 = {

 hello: hello,

 username: "Biff Tannen"

};

obj2.hello(); // "hello, Biff Tannen"

However, a function that uses this is not particularly useful to call as
a function rather than a method:

 Item 18: Function, Method, and Constructor Calls 59

hello(); // "hello, undefined"

Rather unhelpfully, a nonmethod function call provides the global
object as the receiver, which in this case has no property called name
and produces undefined. Calling a method as a function rarely does
anything useful if the method depends on this, since there is no rea-
son to expect the global object to match the expectations that the
method has of the object it is called on. In fact, binding to the global
object is a problematic enough default that ES5’s strict mode changes
the default binding of this to undefined:

function hello() {

"use strict";

return "hello, " + this.username;

}

hello(); // error: cannot read property "username" of undefined

This helps catch accidental misuse of methods as plain functions
by failing more quickly, since attempting to access properties of
undefined immediately throws an error.

The third use of functions is as constructors. Just like methods and
plain functions, constructors are defined with function:

function User(name, passwordHash) {

this.name = name;

this.passwordHash = passwordHash;

}

Invoking User with the new operator treats it as a constructor:

var u = new User("sfalken",

"0ef33ae791068ec64b502d6cb0191387");

u.name; // "sfalken"

Unlike function calls and method calls, a constructor call passes a
brand-new object as the value of this, and implicitly returns the new
object as its result. The constructor function’s primary role is to ini-
tialize the object.

Things to Remember

✦ Method calls provide the object in which the method property is
looked up as their receiver.

✦ Function calls provide the global object (or undefined for strict func-
tions) as their receiver. Calling methods with function call syntax is
rarely useful.

✦ Constructors are called with new and receive a fresh object as their
receiver.

60 Chapter 3 Working with Functions

Item 19: Get Comfortable Using Higher-Order
Functions

Higher-order functions used to be a shibboleth of the monks of func-
tional programming, an esoteric term for what seemed like an
advanced programming technique. Nothing could be further from the
truth. Exploiting the concise elegance of functions can often lead to
simpler and more succinct code. Over the years, scripting languages
have adopted these techniques and in the process taken much of the
mystery out of some of the best idioms of functional programming.

Higher-order functions are nothing more than functions that take
other functions as arguments or return functions as their result.
Taking a function as an argument (often referred to as a callback

function because it is “called back” by the higher-order function) is a
particularly powerful and expressive idiom, and one that JavaScript
programs use heavily.

Consider the standard sort method on arrays. In order to work on all
possible arrays, the sort method relies on the caller to determine how
to compare any two elements in an array:

function compareNumbers(x, y) {

if (x < y) {

return -1;

 }

if (x > y) {

return 1;

 }

return 0;

}

[3, 1, 4, 1, 5, 9].sort(compareNumbers); // [1, 1, 3, 4, 5, 9]

The standard library could have required the caller to pass in an
object with a compare method, but since only one method is required,
taking a function directly is simpler and more concise. In fact, the
above example can be simplified further with an anonymous function:

[3, 1, 4, 1, 5, 9].sort(function(x, y) {

if (x < y) {

return -1;

 }

if (x > y) {

return 1;

 }

return 0;

}); // [1, 1, 3, 4, 5, 9]

 Item 19: Get Comfortable Using Higher-Order Functions 61

Learning to use higher-order functions can often simplify your code
and eliminate tedious boilerplate. Many common operations on
arrays have lovely higher-order abstractions that are worth familiar-
izing yourself with. Consider the simple act of transforming an array
of strings. With a loop, we’d write:

var names = ["Fred", "Wilma", "Pebbles"];

var upper = [];

for (var i = 0, n = names.length; i < n; i++) {

 upper[i] = names[i].toUpperCase();

}

upper; // ["FRED", "WILMA", "PEBBLES"]

With the handy map method of arrays (introduced in ES5), we
can completely eliminate the loop details, implementing just the
element-by-element transformation with a local function:

var names = ["Fred", "Wilma", "Pebbles"];

var upper = names.map(function(name) {

return name.toUpperCase();

});

upper; // ["FRED", "WILMA", "PEBBLES"]

Once you get the hang of using higher-order functions, you can
start identifying opportunities to write your own. The telltale sign
of a higher-order abstraction waiting to happen is duplicate or sim-
ilar code. For example, imagine we found one part of a program con-
structing a string with the letters of the alphabet:

var aIndex = "a".charCodeAt(0); // 97

var alphabet = "";

for (var i = 0; i < 26; i++) {

 alphabet += String.fromCharCode(aIndex + i);

}

alphabet; // "abcdefghijklmnopqrstuvwxyz"

Meanwhile, another part of the program generates a string contain-
ing numeric digits:

var digits = "";

for (var i = 0; i < 10; i++) {

 digits += i;

}

digits; // "0123456789"

62 Chapter 3 Working with Functions

Still elsewhere, the program creates a random string of characters:

var random = "";

for (var i = 0; i < 8; i++) {

 random += String.fromCharCode(Math.floor(Math.random() * 26)

+ aIndex);

}

random; // "bdwvfrtp" (different result each time)

Each example creates a different string, but they all share common
logic. Each loop creates a string by concatenating the results of some
computation to create each individual segment. We can extract the
common parts and move them into a single utility function:

function buildString(n, callback) {

var result = "";

for (var i = 0; i < n; i++) {

 result += callback(i);

 }

return result;

}

Notice how the implementation of buildString contains all the com-
mon parts of each loop, but uses a parameter in place of the parts
that vary: The number of loop iterations becomes the variable n,
and the construction of each string segment becomes a call to the
callback function. We can now simplify each of the three examples to
use buildString:

var alphabet = buildString(26, function(i) {

return String.fromCharCode(aIndex + i);

});

alphabet; // "abcdefghijklmnopqrstuvwxyz"

var digits = buildString(10, function(i) { return i; });

digits; // "0123456789"

var random = buildString(8, function() {

return String.fromCharCode(Math.floor(Math.random() * 26)

 + aIndex);

});

random; // "ltvisfjr" (different result each time)

There are many benefits to creating higher-order abstractions. If
there are tricky parts of the implementation, such as getting the loop

 Item 20: Use call to Call Methods with a Custom Receiver 63

boundary conditions right, they are localized to the implementation
of the higher-order function. This allows you to fix any bugs in the
logic just once, instead of having to hunt for every instance of the cod-
ing pattern spread throughout your program. If you find you need to
optimize the efficiency of the operation, you again only have one place
where you need to change anything. Finally, giving a clear name such
as buildString to the abstraction makes it clearer to someone reading
the code what the code does, without having to decode the details of
the implementation.

Learning to reach for a higher-order function when you find your-
self repeatedly writing the same patterns leads to more concise code,
higher productivity, and improved readability. Keeping an eye out for
common patterns and moving them into higher-order utility func-
tions is an important habit to develop.

Things to Remember

✦ Higher-order functions are functions that take other functions as
arguments or return functions as their result.

✦ Familiarize yourself with higher-order functions in existing
libraries.

✦ Learn to detect common coding patterns that can be replaced by
higher-order functions.

Item 20: Use call to Call Methods with a Custom
Receiver

Ordinarily, the receiver of a function or method (i.e., the value bound
to the special keyword this) is determined by the syntax of its caller.
In particular, the method call syntax binds the object in which the
method was looked up to this. However, it is sometimes necessary
to call a function with a custom receiver, and the function may not
already be a property of the desired receiver object. It’s possible, of
course, to add the method to the object as a new property:

obj.temporary = f; // what if obj.temporary already existed?

var result = obj.temporary(arg1, arg2, arg3);

delete obj.temporary; // what if obj.temporary already existed?

But this approach is unpleasant and even dangerous. It is often unde-
sirable, and even sometimes impossible, to modify obj. Specifically,
whatever name you choose for the temporary property, you run the
risk of colliding with an existing property of obj. Moreover, some

64 Chapter 3 Working with Functions

objects can be frozen or sealed, preventing the addition of any new
properties. And more generally, it’s bad practice to go around arbi-
trarily adding properties to objects, particularly objects you didn’t
create (see Item 42).

Luckily, functions come with a built-in call method for providing a
custom receiver. Invoking a function via its call method:

f.call(obj, arg1, arg2, arg3);

behaves similarly to calling it directly:

f(arg1, arg2, arg3);

except that the first argument provides an explicit receiver object.

The call method comes in handy for calling methods that may have
been removed, modified, or overridden. Item 45 shows a useful exam-
ple, where the hasOwnProperty method can be called on an arbitrary
object, even if the object is a dictionary. In a dictionary object, looking
up hasOwnProperty produces an entry from the dictionary rather than
an inherited method:

dict.hasOwnProperty = 1;

dict.hasOwnProperty("foo"); // error: 1 is not a function

Using the call method of the hasOwnProperty method makes it pos-
sible to call the method on the dictionary even though the method is
not stored anywhere in the object:

var hasOwnProperty = {}.hasOwnProperty;

dict.foo = 1;

delete dict.hasOwnProperty;

hasOwnProperty.call(dict, "foo"); // true

hasOwnProperty.call(dict, "hasOwnProperty"); // false

The call method can also be useful when defining higher-order func-
tions. A common idiom for a higher-order function is to accept an
optional argument to provide as the receiver for calling the function.
For example, an object that represents a table of key-value bindings
might provide a forEach method:

var table = {

 entries: [],

 addEntry: function(key, value) {

this.entries.push({ key: key, value: value });

 },

 forEach: function(f, thisArg) {

var entries = this.entries;

Item 21: Use apply to Call Functions with Different Numbers of Arguments 65

for (var i = 0, n = entries.length; i < n; i++) {

var entry = entries[i];

 f.call(thisArg, entry.key, entry.value, i);

 }

 }

};

This allows consumers of the object to use a method as the callback
function f of table.forEach and provide a sensible receiver for the
method. For example, we can conveniently copy the contents of one
table into another:

table1.forEach(table2.addEntry, table2);

This code extracts the addEntry method from table2 (it could have
even extracted the method from Table.prototype or table1), and the
forEach method repeatedly calls addEntry with table2 as the receiver.
Notice that even though addEntry only expects two arguments,
forEach calls it with three: a key, value, and index. The extra index
argument is harmless since addEntry simply ignores it.

Things to Remember

✦ Use the call method to call a function with a custom receiver.

✦ Use the call method for calling methods that may not exist on a
given object.

✦ Use the call method for defining higher-order functions that allow
clients to provide a receiver for the callback.

Item 21: Use apply to Call Functions with Different
Numbers of Arguments

Imagine that someone provides us with a function that calculates the
average of any number of values:

average(1, 2, 3); // 2

average(1); // 1

average(3, 1, 4, 1, 5, 9, 2, 6, 5); // 4

average(2, 7, 1, 8, 2, 8, 1, 8); // 4.625

The average function is an example of what’s known as a variadic or
variable-arity function (the arity of a function is the number of argu-
ments it expects): It can take any number of arguments. By com-
parison, a fixed-arity version of average would probably take a single
argument containing an array of values:

66 Chapter 3 Working with Functions

averageOfArray([1, 2, 3]); // 2

averageOfArray([1]); // 1

averageOfArray([3, 1, 4, 1, 5, 9, 2, 6, 5]); // 4

averageOfArray([2, 7, 1, 8, 2, 8, 1, 8]); // 4.625

The variadic version is more concise and arguably more elegant. Vari-
adic functions have convenient syntax, at least when the caller knows
ahead of time exactly how many arguments to provide, as in the
examples above. But imagine that we have an array of values:

var scores = getAllScores();

How can we use the average function to compute their average?

average(/* ? */);

Fortunately, functions come with a built-in apply method, which is
similar to their call method, but designed just for this purpose. The
apply method takes an array of arguments and calls the function as
if each element of the array were an individual argument of the call.
In addition to the array of arguments, the apply method takes a first
argument that specifies the binding of this for the function being
called. Since the average function does not refer to this, we can sim-
ply pass it null:

var scores = getAllScores();

average.apply(null, scores);

If scores turns out to have, say, three elements, this will behave the
same as if we had written:

average(scores[0], scores[1], scores[2]);

The apply method can be used on variadic methods, too. For example,
a buffer object might contain a variadic append method for adding
entries to its internal state (see Item 22 to understand the implemen-
tation of append):

var buffer = {

 state: [],

 append: function() {

for (var i = 0, n = arguments.length; i < n; i++) {

this.state.push(arguments[i]);

 }

 }

};

The append method can be called with any number of arguments:

 Item 22: Use arguments to Create Variadic Functions 67

buffer.append("Hello, ");

buffer.append(firstName, " ", lastName, "!");

buffer.append(newline);

With the this argument of apply, we can also call append with a com-
puted array:

buffer.append.apply(buffer, getInputStrings());

Notice the importance of the buffer argument: If we passed a dif-
ferent object, the append method would attempt to modify the state
property of the wrong object.

Things to Remember

✦ Use the apply method to call variadic functions with a computed
array of arguments.

✦ Use the first argument of apply to provide a receiver for variadic
methods.

Item 22: Use arguments to Create Variadic Functions

Item 21 describes a variadic average function, which can process an
arbitrary number of arguments and produce their average value. How
can we implement a variadic function of our own? The fixed-arity ver-
sion, averageOfArray, is easy enough to implement:

function averageOfArray(a) {

for (var i = 0, sum = 0, n = a.length; i < n; i++) {

 sum += a[i];

 }

return sum / n;

}

averageOfArray([2, 7, 1, 8, 2, 8, 1, 8]); // 4.625

The definition of averageOfArray defines a single formal parameter, the
variable a in the parameter list. When consumers call averageOfArray,
they provide a single argument (sometimes called an actual argu-

ment to distinguish it clearly from the formal parameter), the array of
values.

The variadic version is almost identical, but it does not define any
explicit formal parameters. Instead, it makes use of the fact that
JavaScript provides every function with an implicit local variable
called arguments. The arguments object provides an array-like interface
to the actual arguments: It contains indexed properties for each actual
argument and a length property indicating how many arguments were

68 Chapter 3 Working with Functions

provided. This makes the variable-arity average function expressible
by looping over each element of the arguments object:

function average() {

for (var i = 0, sum = 0, n = arguments.length;

 i < n;

 i++) {

 sum += arguments[i];

 }

return sum / n;

}

Variadic functions make for flexible interfaces; different clients can
call them with different numbers of arguments. But by themselves,
they also lose a bit of convenience: If consumers want to call them
with a computed array of arguments, they have to use the apply
method described in Item 21. A good rule of thumb is that whenever
you provide a variable-arity function for convenience, you should also
provide a fixed-arity version that takes an explicit array. This is usu-
ally easy to provide, because you can typically implement the variadic
function as a small wrapper that delegates to the fixed-arity version:

function average() {

return averageOfArray(arguments);

}

This way, consumers of your functions don’t have to resort to the
apply method, which can be less readable and often carries a perfor-
mance cost.

Things to Remember

✦ Use the implicit arguments object to implement variable-arity
functions.

✦ Consider providing additional fixed-arity versions of the variadic
functions you provide so that your consumers don’t need to use the
apply method.

Item 23: Never Modify the arguments Object

The arguments object may look like an array, but sadly it does not
always behave like one. Programmers familiar with Perl and UNIX
shell scripting are accustomed to the technique of “shifting” elements
off of the beginning of an array of arguments. And JavaScript’s arrays
do in fact contain a shift method, which removes the first element of
an array and shifts all the subsequent elements over by one. But the

 Item 23: Never Modify the arguments Object 69

arguments object itself is not an instance of the standard Array type,
so we cannot directly call arguments.shift().

Thanks to the call method, you might expect to be able to extract the
shift method from an array and call it on the arguments object. This
might seem like a reasonable way to implement a function such as
callMethod, which takes an object and a method name and attempts
to call the object’s method on all the remaining arguments:

function callMethod(obj, method) {

var shift = [].shift;

 shift.call(arguments);

 shift.call(arguments);

return obj[method].apply(obj, arguments);

}

But this function does not behave even remotely as expected:

var obj = {

 add: function(x, y) { return x + y; }

};

callMethod(obj, "add", 17, 25);

// error: cannot read property "apply" of undefined

The reason why this fails is that the arguments object is not a copy
of the function’s arguments. In particular, all named arguments are
aliases to their corresponding indices in the arguments object. So obj
continues to be an alias for arguments[0] and method for arguments[1],
even after we remove elements from the arguments object via shift.
This means that while we appear to be extracting obj["add"], we are
actually extracting 17[25]! At this point, everything begins to go hay-
wire: Thanks to the automatic coercion rules of JavaScript, this pro-
motes 17 to a Number object, extracts its "25" property (which does
not exist), produces undefined, and then unsuccessfully attempts to
extract the "apply" property of undefined to call it as a method.

The moral of this story is that the relationship between the arguments
object and the named parameters of a function is extremely brittle.
Modifying arguments runs the risk of turning the named parameters
of a function into gibberish. The situation is complicated even further
by ES5’s strict mode. Function parameters in strict mode do not alias
their arguments object. We can demonstrate the difference by writing
a function that updates an element of arguments:

function strict(x) {

"use strict";

 arguments[0] = "modified";

70 Chapter 3 Working with Functions

return x === arguments[0];

}

function nonstrict(x) {

 arguments[0] = "modified";

return x === arguments[0];

}

strict("unmodified"); // false

nonstrict("unmodified"); // true

As a consequence, it is much safer never to modify the arguments
object. This is easy enough to avoid by first copying its elements to a
real array. A simple idiom for implementing the copy is:

var args = [].slice.call(arguments);

The slice method of arrays makes a copy of an array when called
without additional arguments, and its result is a true instance of the
standard Array type. The result is guaranteed not to alias anything,
and has all the normal Array methods available to it directly.

We can fix the callMethod implementation by copying arguments, and
since we only need the elements after obj and method, we can pass a
starting index of 2 to slice:

function callMethod(obj, method) {

var args = [].slice.call(arguments, 2);

return obj[method].apply(obj, args);

}

At last, callMethod works as expected:

var obj = {

 add: function(x, y) { return x + y; }

};

callMethod(obj, "add", 17, 25); // 42

Things to Remember

✦ Never modify the arguments object.

✦ Copy the arguments object to a real array using [].slice.call(arguments)
before modifying it.

Item 24: Use a Variable to Save a Reference to
arguments

An iterator is an object providing sequential access to a collection of
data. A typical API provides a next method that provides the next
value in the sequence. Imagine we wish to write a convenience

 Item 24: Use a Variable to Save a Reference to arguments 71

function that takes an arbitrary number of arguments and builds an
iterator for those values:

var it = values(1, 4, 1, 4, 2, 1, 3, 5, 6);

it.next(); // 1

it.next(); // 4

it.next(); // 1

The values function must accept any number of arguments, so we con-
struct our iterator object to iterate over the elements of the arguments
object:

function values() {

var i = 0, n = arguments.length;

return {

 hasNext: function() {

return i < n;

 },

 next: function() {

 if (i >= n) {

throw new Error("end of iteration");

 }

return arguments[i++]; // wrong arguments

 }

 };

}

But this code is broken, which becomes clear as soon as we attempt
to use an iterator object:

var it = values(1, 4, 1, 4, 2, 1, 3, 5, 6);

it.next(); // undefined

it.next(); // undefined

it.next(); // undefined

The problem is due to the fact that a new arguments variable is implic-
itly bound in the body of each function. The arguments object we are
interested in is the one associated with the values function, but the
iterator’s next method contains its own arguments variable. So when
we return arguments[i++], we are accessing an argument of it.next
instead of one of the arguments of values.

The solution is straightforward: Simply bind a new local variable in
the scope of the arguments object we are interested in, and make sure
that nested functions only refer to that explicitly named variable:

function values() {

var i = 0, n = arguments.length, a = arguments;

return {

72 Chapter 3 Working with Functions

 hasNext: function() {

return i < n;

 },

 next: function() {

if (i >= n) {

throw new Error("end of iteration");

 }

return a[i++];

 }

 };

}

var it = values(1, 4, 1, 4, 2, 1, 3, 5, 6);

it.next(); // 1

it.next(); // 4

it.next(); // 1

Things to Remember

✦ Be aware of the function nesting level when referring to arguments.

✦ Bind an explicitly scoped reference to arguments in order to refer to
it from nested functions.

Item 25: Use bind to Extract Methods with a Fixed
Receiver

With no distinction between a method and a property whose value
is a function, it’s easy to extract a method of an object and pass the
extracted function directly as a callback to a higher-order function.
But it’s also easy to forget that an extracted function’s receiver is not
bound to the object it was taken from. Imagine a little string buffer
object that stores strings in an array that can be concatenated later:

var buffer = {

 entries: [],

 add: function(s) {

this.entries.push(s);

 },

 concat: function() {

return this.entries.join("");

 }

};

It might seem possible to copy an array of strings into the buffer by
extracting its add method and calling it repeatedly on each element of
the source array using the ES5 forEach method:

 Item 25: Use bind to Extract Methods with a Fixed Receiver 73

var source = ["867", "-", "5309"];

source.forEach(buffer.add); // error: entries is undefined

But the receiver of buffer.add is not buffer. A function’s receiver is
determined by how it is called, and we are not calling it here. Instead,
we pass it to forEach, whose implementation calls it somewhere that
we can’t see. As it turns out, the implementation of forEach uses the
global object as the default receiver. Since the global object has no
entries property, this code throws an error. Luckily, forEach also
allows callers to provide an optional argument to use as the receiver
of its callback, so we can fix this example easily enough:

var source = ["867", "-", "5309"];

source.forEach(buffer.add, buffer);

buffer.join(); // "867-5309"

Not all higher-order functions offer their clients the courtesy of pro-
viding a receiver for their callbacks. What if forEach did not accept
the extra receiver argument? A good solution is to create a local func-
tion that makes sure to call buffer.add with the appropriate method
call syntax:

var source = ["867", "-", "5309"];

source.forEach(function(s) {

 buffer.add(s);

});

buffer.join(); // "867-5309"

This version creates a wrapper function that explicitly calls add as
a method of buffer. Notice how the wrapper function itself does not
refer to this at all. No matter how the wrapper function is called—as
a function, as a method of some other object, or via call—it always
makes sure to push its argument on the destination array.

Creating a version of a function that binds its receiver to a specific
object is so common that ES5 added library support for the pattern.
Function objects come with a bind method that takes a receiver object
and produces a wrapper function that calls the original function as a
method of the receiver. Using bind, we can simplify our example:

var source = ["867", "-", "5309"];

source.forEach(buffer.add.bind(buffer));

buffer.join(); // "867-5309"

Keep in mind that buffer.add.bind(buffer) creates a new function
rather than modifying the buffer.add function. The new function
behaves just like the old one, but with its receiver bound to buffer,
while the old one remains unchanged. In other words:

74 Chapter 3 Working with Functions

buffer.add === buffer.add.bind(buffer); // false

This is a subtle but crucial point: It means that bind is safe to call
even on a function that may be shared by other parts of a program. It
is especially important for methods shared on a prototype object: The
method will still work correctly when called on any of the prototype’s
descendants. (See Chapter 4 for more on objects and prototypes.)

Things to Remember

✦ Beware that extracting a method does not bind the method’s
receiver to its object.

✦ When passing an object’s method to a higher-order function, use an
anonymous function to call the method on the appropriate receiver.

✦ Use bind as a shorthand for creating a function bound to the appro-
priate receiver.

Item 26: Use bind to Curry Functions

The bind method of functions is useful for more than just binding
methods to receivers. Imagine a simple function for constructing URL
strings from components:

function simpleURL(protocol, domain, path) {

return protocol + "://" + domain + "/" + path;

}

Frequently, a program may need to construct absolute URLs from
site-specific path strings. A natural way to do this is with the ES5 map
method on arrays:

var urls = paths.map(function(path) {

return simpleURL("http", siteDomain, path);

});

Notice how the anonymous function uses the same protocol string
and the same site domain string on each iteration of map; the first two
arguments to simpleURL are fixed for each iteration, and only the third
argument is needed. We can use the bind method on simpleURL to con-
struct this function automatically:

var urls = paths.map(simpleURL.bind(null, "http", siteDomain));

The call to simpleURL.bind produces a new function that dele-
gates to simpleURL. As always, the first argument to bind provides
the receiver value. (Since simpleURL does not refer to this, we can

 Item 27: Prefer Closures to Strings for Encapsulating Code 75

use any value; null and undefined are customary.) The arguments
passed to simpleURL are constructed by concatenating the remain-
ing arguments of simpleURL.bind to any arguments provided to the
new function. In other words, when the result of simpleURL.bind
is called with a single argument path, the function delegates to
simpleURL("http", siteDomain, path).

The technique of binding a function to a subset of its arguments
is known as currying, named after the logician Haskell Curry, who
popularized the technique in mathematics. Currying can be a suc-
cinct way to implement function delegation with less boilerplate than
explicit wrapper functions.

Things to Remember

✦ Use bind to curry a function, that is, to create a delegating function
with a fixed subset of the required arguments.

✦ Pass null or undefined as the receiver argument to curry a function
that ignores its receiver.

Item 27: Prefer Closures to Strings for Encapsulating
Code

Functions are a convenient way to store code as a data structure that
can be executed later. This enables expressive higher-order abstrac-
tions such as map and forEach, and it is at the heart of JavaScript’s
asynchronous approach to I/O (see Chapter 7). At the same time, it’s
also possible to represent code as a string to pass to eval. Program-
mers are then confronted with a decision to make: Should code be
represented as a function or as a string?

When in doubt, use a function. Strings are a much less flexible repre-
sentation of code for one very important reason: They are not closures.

Consider a simple function for repeating a user-provided action mul-
tiple times:

function repeat(n, action) {

for (var i = 0; i < n; i++) {

eval(action);

 }

}

At global scope, using this function will work reasonably well,
because any variable references that occur within the string will be
interpreted by eval as global variables. For example, a script that

76 Chapter 3 Working with Functions

benchmarks the speed of a function might just use global start and
end variables to store the timings:

var start = [], end = [], timings = [];

repeat(1000,

"start.push(Date.now()); f(); end.push(Date.now())");

for (var i = 0, n = start.length; i < n; i++) {

 timings[i] = end[i] - start[i];

}

But this script is brittle. If we simply move the code into a function,
then start and end are no longer global variables:

function benchmark() {

var start = [], end = [], timings = [];

repeat(1000,

"start.push(Date.now()); f(); end.push(Date.now())");

for (var i = 0, n = start.length; i < n; i++) {

 timings[i] = end[i] - start[i];

 }

return timings;

}

This function causes repeat to evaluate references to the global vari-
ables start and end. In the best case, one of the globals will be miss-
ing, and calling benchmark will throw a ReferenceError. If we’re really
unlucky, the code will actually call push on some global objects that
happen to be bound to start and end, and the program will behave
unpredictably.

A more robust API accepts a function instead of a string:

function repeat(n, action) {

for (var i = 0; i < n; i++) {

action();

 }

}

This way, the benchmark script can safely refer to local variables
within a closure that it passes as the repeated callback:

function benchmark() {

var start = [], end = [], timings = [];

repeat(1000, function() {

 start.push(Date.now());

 f();

 Item 28: Avoid Relying on the toString Method of Functions 77

 end.push(Date.now());

 });

for (var i = 0, n = start.length; i < n; i++) {

 timings[i] = end[i] - start[i];

 }

return timings;

}

Another problem with eval is that high-performance engines typically
have a harder time optimizing code inside a string, since the source
code may not be available to the compiler early enough to optimize in
time. A function expression can be compiled at the same time as the
code it appears within, making it much more amenable to standard
compilation.

Things to Remember

✦ Never include local references in strings when sending them to APIs
that execute them with eval.

✦ Prefer APIs that accept functions to call rather than strings to eval.

Item 28: Avoid Relying on the toString Method of
Functions

JavaScript functions come with a remarkable feature—the ability to
reproduce their source code as a string:

(function(x) {

return x + 1;

}).toString(); // "function (x) {\n return x + 1;\n}"

Reflecting on the source code of a function is powerful, and clever
hackers occasionally find ingenious ways to put it to use. But there
are serious limitations to the toString method of functions.

First of all, the ECMAScript standard does not impose any require-
ments on the string that results from a function’s toString method.
This means that different JavaScript engines will produce different
strings, and may not even produce strings that bear any resemblance
to the function.

In practice, JavaScript engines do attempt to provide a faithful repre-
sentation of the source code of a function, as long as the function was
implemented in pure JavaScript. An example of where this fails is
with functions produced by built-in libraries of the host environment:

78 Chapter 3 Working with Functions

(function(x) {

return x + 1;

}).bind(16).toString(); // "function (x) {\n [native code]\n}"

Since in many host environments, the bind function is implemented
in another programming language (typically C++), it produces a com-
piled function that has no JavaScript source code for the environment
to reveal.

Because browser engines are allowed by the standard to vary in their
output from toString, it is all too easy to write a program that works
correctly in one JavaScript system but fails in another. JavaScript
implementations will even make small changes (e.g., the whitespace
formatting) that could break a program that is too sensitive to the
exact details of function source strings.

Finally, the source code produced by toString does not provide a rep-
resentation of closures that preserves the values associated with their
inner variable references. For example:

(function(x) {

return function(y) {

return x + y;

 }

})(42).toString(); // "function (y) {\n return x + y;\n}"

Notice how the resultant string still contains a variable reference to x,
even though the function is actually a closure that binds x to 42.

These limitations make it difficult to depend on extracting function
source in a manner that is both useful and reliable, and should gener-
ally be avoided. Very sophisticated uses of function source extraction
should employ carefully crafted JavaScript parsers and processing
libraries. But when in doubt, it’s safest to treat a JavaScript function
as an abstraction that should not be broken.

Things to Remember

✦ JavaScript engines are not required to produce accurate reflections
of function source code via toString.

✦ Never rely on precise details of function source, since different
engines may produce different results from toString.

✦ The results of toString do not expose the values of local variables
stored in a closure.

✦ In general, avoid using toString on functions.

 Item 29: Avoid Nonstandard Stack Inspection Properties 79

Item 29: Avoid Nonstandard Stack Inspection
Properties

Many JavaScript environments have historically provided some capa-
bilities to inspect the call stack: the chain of active functions that are
currently executing (see Item 64 for more about the call stack). In
some older host environments, every arguments object came with two
additional properties: arguments.callee, which refers to the function
that was called with arguments, and arguments.caller, which refers to
the function that called it. The former is still supported in many envi-
ronments, but it does not serve much of a purpose, short of allowing
anonymous functions to refer to themselves recursively:

var factorial = (function(n) {

return (n <= 1) ? 1 : (n * arguments.callee(n - 1));

});

But this is not particularly useful, since it’s more straightforward for
a function just to refer to itself by name:

function factorial(n) {

return (n <= 1) ? 1 : (n * factorial(n - 1));

}

The arguments.caller property is more powerful: It refers to the func-
tion that made the call with the given arguments object. This feature
has since been removed from most environments out of security con-
cerns, so it’s not reliable. Many JavaScript environments also pro-
vide a similar property of function objects—the nonstandard but
widespread caller property, which refers to the function’s most recent
caller:

function revealCaller() {

return revealCaller.caller;

}

function start() {

return revealCaller();

}

start() === start; // true

It is tempting to try to use this property to extract a stack trace: a
data structure providing a snapshot of the current call stack. Build-
ing a stack trace seems deceptively simple:

function getCallStack() {

var stack = [];

80 Chapter 3 Working with Functions

for (var f = getCallStack.caller; f; f = f.caller) {

 stack.push(f);

 }

return stack;

}

For simple call stacks, getCallStack appears to work fine:

function f1() {

return getCallStack();

}

function f2() {

return f1();

}

var trace = f2();

trace; // [f1, f2]

But getCallStack is easily broken: If a function shows up more than
once in the call stack, the stack inspection logic gets stuck in a loop!

function f(n) {

return n === 0 ? getCallStack() : f(n - 1);

}

var trace = f(1); // infinite loop

What went wrong? Since the function f calls itself recursively, its
caller property is automatically updated to refer back to f. So the
loop in getCallStack gets stuck perpetually looking at f. Even if we
tried to detect such cycles, there’s no information about what function
called f before it called itself—the information about the rest of the
call stack is lost.

Each of these stack inspection facilities is nonstandard and limited in
portability or applicability. Moreover, they are all explicitly disallowed
in ES5 strict functions; attempted accesses to the caller or callee
properties of strict functions or arguments objects throw an error:

function f() {

"use strict";

return f.caller;

}

f(); // error: caller may not be accessed on strict functions

 Item 29: Avoid Nonstandard Stack Inspection Properties 81

The best policy is to avoid stack inspection altogether. If your reason
for inspecting the stack is solely for debugging, it’s much more reli-
able to use an interactive debugger.

Things to Remember

✦ Avoid the nonstandard arguments.caller and arguments.callee,
because they are not reliably portable.

✦ Avoid the nonstandard caller property of functions, because it does
not reliably contain complete information about the stack.

This page intentionally left blank

4
Objects and
Prototypes

Objects are JavaScript’s fundamental data structure. Intuitively, an
object represents a table relating strings to values. But when you dig
deeper, there is a fair amount of machinery that goes into objects.

Like many object-oriented languages, JavaScript provides support
for implementation inheritance: the reuse of code or data through a
dynamic delegation mechanism. But unlike many conventional lan-
guages, JavaScript’s inheritance mechanism is based on prototypes
rather than classes. For many programmers, JavaScript is the first
object-oriented language they encounter without classes.

In many languages, every object is an instance of an associated class,
which provides code shared between all its instances. JavaScript, by
contrast, has no built-in notion of classes. Instead, objects inherit
from other objects. Every object is associated with some other object,
known as its prototype. Working with prototypes can be different from
classes, although many concepts from traditional object-oriented lan-
guages still carry over.

Item 30: Understand the Difference between
prototype, getPrototypeOf, and __proto__

Prototypes involve three separate but related accessors, all of which
are named with some variation on the word prototype. This unfor-
tunate overlap naturally leads to quite a bit of confusion. Let’s get
straight to the point.

 � C.prototype is used to establish the prototype of objects created
by new C().

 � Object.getPrototypeOf(obj) is the standard ES5 mechanism for
retrieving obj’s prototype object.

84 Chapter 4 Objects and Prototypes

 � obj.__proto__ is a nonstandard mechanism for retrieving obj’s
prototype object.

To understand each of these, consider a typical definition of a Java-
Script datatype. The User constructor expects to be called with the
new operator and takes a name and the hash of a password string and
stores them on its created object.

function User(name, passwordHash) {

this.name = name;

this.passwordHash = passwordHash;

}

User.prototype.toString = function() {

return "[User " + this.name + "]";

};

User.prototype.checkPassword = function(password) {

return hash(password) === this.passwordHash;

};

var u = new User("sfalken",

"0ef33ae791068ec64b502d6cb0191387");

The User function comes with a default prototype property, con-
taining an object that starts out more or less empty. In this exam-
ple, we add two methods to the User.prototype object: toString and
checkPassword. When we create an instance of User with the new oper-
ator, the resultant object u gets the object stored at User.prototype
automatically assigned as its prototype object. Figure 4.1 shows a
diagram of these objects.

Notice the arrow linking the instance object u to the prototype object
User.prototype. This link describes the inheritance relationship.
Property lookups start by searching the object’s own properties;

for example, u.name and u.passwordHash return the current values
of immediate properties of u. Properties not found directly on u are
looked up in u’s prototype. Accessing u.checkPassword, for example,
retrieves a method stored in User.prototype.

This leads us to the next item in our list. Whereas the prototype prop-
erty of a constructor function is used to set up the prototype relation-
ship of new instances, the ES5 function Object.getPrototypeOf() can
be used to retrieve the prototype of an existing object. So, for exam-
ple, after we create the object u in the example above, we can test:

Object.getPrototypeOf(u) === User.prototype; // true

Item 30: The Difference between prototype, getPrototypeOf, and __proto__ 85

User.prototype

.toString

.checkPassword

User

prototype

.prototype

Function.prototype

.apply

.bind

.call

u

.name

.passwordHash

Figure 4.1 Prototype relationships for the User constructor and
instance

86 Chapter 4 Objects and Prototypes

Some environments produce a nonstandard mechanism for retrieving
the prototype of an object via a special __proto__ property. This can
be useful as a stopgap for environments that do not support ES5’s
Object.getPrototypeOf. In such environments, we can similarly test:

u.__proto__ === User.prototype; // true

A final note about prototype relationships: JavaScript programmers
will often describe User as a class, even though it consists of little
more than a function. Classes in JavaScript are essentially the com-
bination of a constructor function (User) and a prototype object used
to share methods between instances of the class (User.prototype).

.toString

.checkPassword

User

instance

.prototype

u

.name

.passwordHash

Figure 4.2 Conceptual view of the User “class”

 Item 31: Prefer Object.getPrototypeOf to __proto__ 87

Figure 4.2 provides a good way to think about the User class concep-
tually. The User function provides a public constructor for the class,
and User.prototype is an internal implementation of the methods
shared between instances. Ordinary uses of User and u have no need
to access the prototype object directly.

Things to Remember

✦ C.prototype determines the prototype of objects created by new C().

✦ Object.getPrototypeOf(obj) is the standard ES5 function for retriev-
ing the prototype of an object.

✦ obj.__proto__ is a nonstandard mechanism for retrieving the proto-
type of an object.

✦ A class is a design pattern consisting of a constructor function and
an associated prototype.

Item 31: Prefer Object.getPrototypeOf to __proto__

ES5 introduced Object.getPrototypeOf as the standard API for
retrieving an object’s prototype, but only after a number of JavaScript
engines had long provided the special __proto__ property for the same
purpose. Not all JavaScript environments support this extension,
however, and those that do are not entirely compatible. Environments
differ, for example, on the treatment of objects with a null prototype.
In some environments, __proto__ is inherited from Object.prototype,
so an object with a null prototype has no special __proto__ property:

var empty = Object.create(null); // object with no prototype

"__proto__" in empty; // false (in some environments)

In others, __proto__ is always handled specially, regardless of an
object’s state:

var empty = Object.create(null); // object with no prototype

"__proto__" in empty; // true (in some environments)

Wherever Object.getPrototypeOf is available, it is the more stan-
dard and portable approach to extracting prototypes. Moreover, the
__proto__ property leads to a number of bugs due to its pollution of
all objects (see Item 45). JavaScript engines that currently support
the extension may choose in the future to allow programs to dis-
able it in order to avoid these bugs. Preferring Object.getPrototypeOf
ensures that code will continue to work even if __proto__ is disabled.

88 Chapter 4 Objects and Prototypes

For JavaScript environments that do not provide the ES5 API, it is
easy to implement in terms of __proto__:

if (typeof Object.getPrototypeOf === "undefined") {

 Object.getPrototypeOf = function(obj) {

var t = typeof obj;

if (!obj || (t !== "object" && t !== "function")) {

throw new TypeError("not an object");

 }

return obj.__proto__;

 };

}

This implementation is safe to include in ES5 environments, because
it avoids installing the function if Object.getPrototypeOf already
exists.

Things to Remember

✦ Prefer the standards-compliant Object.getPrototypeOf to the non-
standard __proto__ property.

✦ Implement Object.getPrototypeOf in non-ES5 environments that
support __proto__.

Item 32: Never Modify __proto__

The special __proto__ property provides an additional power that
Object.getPrototypeOf does not: the ability to modify an object’s
prototype link. While this power may seem innocuous (after all, it’s
just another property, right?), it actually has serious implications
and should be avoided. The most obvious reason to avoid modifying
__proto__ is portability: Since not all platforms support the ability to
change an object’s prototype you simply can’t write portable code that
does it.

Another reason to avoid modifying __proto__ is performance. All
modern JavaScript engines heavily optimize the act of getting and
setting object properties, since these are some of the most common
operations that JavaScript programs perform. These optimizations
are built on the engine’s knowledge of the structure of an object.
When you change the object’s internal structure, say, by adding or
removing properties to the object or an object in its prototype chain,
some of these optimizations are invalidated. Modifying __proto__
actually changes the inheritance structure itself, which is the most
destructive change possible. This can invalidate many more optimi-
zations than modifications to ordinary properties.

 Item 33: Make Your Constructors new-Agnostic 89

But the biggest reason to avoid modifying __proto__ is for main-
taining predictable behavior. An object’s prototype chain defines its
behavior by determining its set of properties and property values.
Modifying an object’s prototype link is like giving it a brain trans-
plant: It swaps the object’s entire inheritance hierarchy. It may be
possible to imagine exceptional situations where such an operation
could be helpful, but as a matter of basic sanity, an inheritance hier-
archy should remain stable.

For creating new objects with a custom prototype link, you can use
ES5’s Object.create. For environments that do not implement ES5,
Item 33 provides a portable implementation of Object.create that
does not rely on __proto__.

Things to Remember

✦ Never modify an object’s __proto__ property.

✦ Use Object.create to provide a custom prototype for new objects.

Item 33: Make Your Constructors new-Agnostic

When you create a constructor such as the User function in Item 30,
you rely on callers to remember to call it with the new operator. Notice
how the function assumes that the receiver is a brand-new object:

function User(name, passwordHash) {

this.name = name;

this.passwordHash = passwordHash;

}

If a caller forgets the new keyword, then the function’s receiver
becomes the global object:

var u = User("baravelli", "d8b74df393528d51cd19980ae0aa028e");

u; // undefined

this.name; // "baravelli"

this.passwordHash; // "d8b74df393528d51cd19980ae0aa028e"

Not only does the function uselessly return undefined, it also disas-
trously creates (or modifies, if they happen to exist already) the global
variables name and passwordHash.

If the User function is defined as ES5 strict code, then the receiver
defaults to undefined:

function User(name, passwordHash) {

"use strict";

this.name = name;

90 Chapter 4 Objects and Prototypes

this.passwordHash = passwordHash;

}

var u = User("baravelli", "d8b74df393528d51cd19980ae0aa028e");

// error: this is undefined

In this case, the faulty call leads to an immediate error: The first line
of User attempts to assign to this.name, which throws a TypeError. So,
at least with a strict constructor function, the caller can quickly dis-
cover the bug and fix it.

Still, in either case, the User function is fragile. When used with new
it works as expected, but when used as a normal function it fails. A
more robust approach is to provide a function that works as a con-
structor no matter how it’s called. An easy way to implement this is to
check that the receiver value is a proper instance of User:

function User(name, passwordHash) {

if (!(this instanceof User)) {

return new User(name, passwordHash);

 }

this.name = name;

this.passwordHash = passwordHash;

}

This way, the result of calling User is an object that inherits from
User.prototype, regardless of whether it’s called as a function or as a
constructor:

var x = User("baravelli", "d8b74df393528d51cd19980ae0aa028e");

var y = new User("baravelli",

"d8b74df393528d51cd19980ae0aa028e");

x instanceof User; // true

y instanceof User; // true

One downside to this pattern is that it requires an extra function call,
so it is a bit more expensive. It’s also hard to use for variadic func-
tions (see Items 21 and 22), since there is no straightforward analog
to the apply method for calling variadic functions as constructors. A
somewhat more exotic approach makes use of ES5’s Object.create:

function User(name, passwordHash) {

var self = this instanceof User

 ? this

 : Object.create(User.prototype);

 self.name = name;

 self.passwordHash = passwordHash;

 Item 33: Make Your Constructors new-Agnostic 91

return self;

}

Object.create takes a prototype object and returns a new object that
inherits from it. So when this version of User is called as a function,
the result is a new object inheriting from User.prototype, with the
name and passwordHash properties initialized.

While Object.create is only available in ES5, it can be approximated
in older environments by creating a local constructor and instantiat-
ing it with new:

if (typeof Object.create === "undefined") {

 Object.create = function(prototype) {

function C() { }

 C.prototype = prototype;

return new C();

 };

}

(Note that this only implements the single-argument version of
Object.create. The real version also accepts an optional second argu-
ment that describes a set of property descriptors to define on the new
object.)

What happens if someone calls this new version of User with new?
Thanks to the constructor override pattern, it behaves just like it
does with a function call. This works because JavaScript allows the
result of a new expression to be overridden by an explicit return from
a constructor function. When User returns self, the result of the new
expression becomes self, which may be a different object from the one
bound to this.

Protecting a constructor against misuse may not always be worth
the trouble, especially when you are only using a constructor locally.
Still, it’s important to understand how badly things can go wrong if a
constructor is called in the wrong way. At the very least, it’s import-
ant to document when a constructor function expects to be called
with new, especially when sharing it across a large codebase or from a
shared library.

Things to Remember

✦ Make a constructor agnostic to its caller’s syntax by reinvoking
itself with new or with Object.create.

✦ Document clearly when a function expects to be called with new.

92 Chapter 4 Objects and Prototypes

Item 34: Store Methods on Prototypes

It’s perfectly possible to program in JavaScript without prototypes. We
could implement the User class from Item 30 without defining any-
thing special in its prototype:

function User(name, passwordHash) {

this.name = name;

this.passwordHash = passwordHash;

this.toString = function() {

return "[User " + this.name + "]";

 };

this.checkPassword = function(password) {

return hash(password) === this.passwordHash;

 };

}

For most purposes, this class behaves pretty much the same as its
original implementation. But when we construct several instances of
User, an important difference emerges:

var u1 = new User(/* ... */);

var u2 = new User(/* ... */);

var u3 = new User(/* ... */);

Figure 4.3 shows what these three objects and their prototype object
look like. Instead of sharing the toString and checkPassword methods
via the prototype, each instance contains a copy of both methods, for
a total of six function objects.

By contrast, Figure 4.4 shows what these three objects and their
prototype object look like using the original definition. The toString
and checkPassword methods are created once and shared between all
instances through their prototype.

Storing methods on a prototype makes them available to all instances
without requiring multiple copies of the functions that implement
them or extra properties on each instance object. You might expect
that storing methods on instance objects could optimize the speed of
method lookups such as u3.toString(), since it doesn’t have to search
the prototype chain to find the implementation of toString. However,
modern JavaScript engines heavily optimize prototype lookups, so
copying methods onto instance objects is not necessarily guaranteed
to provide noticeable speed improvements. And instance methods are
almost certain to use more memory than prototype methods.

 Item 34: Store Methods on Prototypes 93

prototype

.toString

User.prototype

.checkPassword

.name

.passwordHash

prototype

.toString

.checkPassword

.name

.passwordHash

prototype

.toString

.checkPassword

.name

.passwordHash

Figure 4.3 Storing methods on instance objects

prototype

User.prototype

.name

.passwordHash

.toString

.checkPassword

prototype

.name

.passwordHash

prototype

.name

.passwordHash

Figure 4.4 Storing methods on a prototype object

94 Chapter 4 Objects and Prototypes

Things to Remember

✦ Storing methods on instance objects creates multiple copies of the
functions, one per instance object.

✦ Prefer storing methods on prototypes over storing them on instance
objects.

Item 35: Use Closures to Store Private Data

JavaScript’s object system does not particularly encourage or enforce
information hiding. The name of every property is a string, and any
piece of a program can get access to any of the properties of an object
simply by asking for it by name. Features such as for...in loops and
ES5’s Object.keys() and Object.getOwnPropertyNames() functions
even make it easy to learn all the property names of an object.

Often, JavaScript programmers resort to coding conventions rather
than any absolute enforcement mechanism for private properties. For
example, some programmers use naming conventions such as prefix-
ing or suffixing private property names with an underscore character
(_). This does nothing to enforce information hiding, but it suggests
to well-behaved users of an object that they should not inspect or
modify the property so that the object can remain free to change its
implementation.

Nevertheless, some programs actually call for a higher degree of hid-
ing. For example, a security-sensitive platform or application frame-
work may wish to send an object to an untrusted application without
risk of the application tampering with the internals of the object.
Another situation where enforcement of information hiding can be
useful is in heavily used libraries, where subtle bugs can crop up
when careless users accidentally depend on or interfere with imple-
mentation details.

For these situations, JavaScript does provide one very reliable mecha-
nism for information hiding: the closure.

Closures are an austere data structure. They store data in their
enclosed variables without providing direct access to those variables.
The only way to gain access to the internals of a closure is for the
function to provide access to it explicitly. In other words, objects and
closures have opposite policies: The properties of an object are auto-
matically exposed, whereas the variables in a closure are automati-
cally hidden.

We can take advantage of this to store truly private data in an object.
Instead of storing the data as properties of the object, we store it as

 Item 36: Store Instance State Only on Instance Objects 95

variables in the constructor, and turn the methods of the object into
closures that refer to those variables. Let’s revisit the User class from
Item 30 once more:

function User(name, passwordHash) {

this.toString = function() {

return "[User " + name + "]";

 };

this.checkPassword = function(password) {

return hash(password) === passwordHash;

 };

}

Notice how, unlike in other implementations, the toString and
checkPassword methods refer to name and passwordHash as variables,
rather than as properties of this. An instance of User now contains no
instance properties at all, so outside code has no direct access to the
name and password hash of an instance of User.

A downside to this pattern is that, in order for the variables of the
constructor to be in scope of the methods that use them, the methods
must be placed on the instance object. Just as Item 34 discussed,
this can lead to a proliferation of copies of methods. Nevertheless, in
situations where guaranteed information hiding is critical, it may be
worth the additional cost.

Things to Remember

✦ Closure variables are private, accessible only to local references.

✦ Use local variables as private data to enforce information hiding
within methods.

Item 36: Store Instance State Only on Instance
Objects

Understanding the one-to-many relationship between a prototype
object and its instances is crucial to implementing objects that behave
correctly. One of the ways this can go wrong is by accidentally storing
per-instance data on a prototype. For example, a class implement-
ing a tree data structure might contain an array of children for each
node. Putting the array of children on the prototype object leads to a
completely broken implementation:

function Tree(x) {

this.value = x;

}

96 Chapter 4 Objects and Prototypes

Tree.prototype = {

 children: [], // should be instance state!

 addChild: function(x) {

this.children.push(x);

 }

};

Consider what happens when we try to construct a tree with this
class:

var left = new Tree(2);

left.addChild(1);

left.addChild(3);

var right = new Tree(6);

right.addChild(5);

right.addChild(7);

var top = new Tree(4);

top.addChild(left);

top.addChild(right);

top.children; // [1, 3, 5, 7, left, right]

Each time we call addChild, we append a value to Tree.prototype
.children, which contains the nodes in the order of any calls to
addChild anywhere! This leaves the Tree objects in the incoherent
state shown in Figure 4.5.

The correct way to implement the Tree class is to create a separate
children array for each instance object:

function Tree(x) {

this.value = x;

this.children = []; // instance state

}

Tree.prototype = {

 addChild: function(x) {

this.children.push(x);

 }

};

Running the same example code above, we get the expected state,
shown in Figure 4.6.

 Item 36: Store Instance State Only on Instance Objects 97

prototype

Tree.prototype

.children

.addChild

left

2

[1, 3, 5, 7, left, right]

.value

right

6.value

top

4.value

prototypeprototype

Figure 4.5 Storing instance state on a prototype object

prototype

Tree.prototype

add.child

left

2

[1, 3]

.value

.children [5, 7].children [left, right].children

right

6.value

top

4.value

prototypeprototype

Figure 4.6 Storing instance state on instance objects

98 Chapter 4 Objects and Prototypes

The moral of this story is that stateful data can be problematic
when shared. Methods are generally safe to share between multiple
instances of a class because they are typically stateless, other than
referring to instance state via references to this. (Since the method
call syntax ensures that this is bound to the instance object even for
a method inherited from a prototype, shared methods can still access
instance state.) In general, any immutable data is safe to share on a
prototype, and stateful data can in principle be stored on a prototype,
too, so long as it’s truly intended to be shared. But methods are by far
the most common data found on prototype objects. Per-instance state,
meanwhile, must be stored on instance objects.

Things to Remember

✦ Mutable data can be problematic when shared, and prototypes are
shared between all their instances.

✦ Store mutable per-instance state on instance objects.

Item 37: Recognize the Implicit Binding of this

The CSV (comma-separated values) file format is a simple text repre-
sentation for tabular data:

Bösendorfer,1828,Vienna,Austria

Fazioli,1981,Sacile,Italy

Steinway,1853,New York,USA

We can write a simple, customizable class for reading CSV data. (For
simplicity, we’ll leave off the ability to parse quoted entries such as
"hello, world".) Despite its name, CSV comes in different varieties
allowing different characters for separators. So our constructor takes
an optional array of separator characters and constructs a custom
regular expression to use for splitting each line into entries:

function CSVReader(separators) {

this.separators = separators || [","];

this.regexp =

new RegExp(this.separators.map(function(sep) {

return "\\" + sep[0];

 }).join("|"));

}

A simple implementation of a read method can proceed in two steps:
First, split the input string into an array of individual lines; second,
split each line of the array into individual cells. The result should

 Item 37: Recognize the Implicit Binding of this 99

then be a two-dimensional array of strings. This is a perfect job for
the map method:

CSVReader.prototype.read = function(str) {

var lines = str.trim().split(/\n/);

return lines.map(function(line) {

return line.split(this.regexp); // wrong this!

 });

};

var reader = new CSVReader();

reader.read("a,b,c\nd,e,f\n"); // [["a,b,c"], ["d,e,f"]]

This seemingly simple code has a major but subtle bug: The callback
passed to lines.map refers to this, expecting to extract the regexp
property of the CSVReader object. But map binds its callback’s receiver
to the lines array, which has no such property. The result: this.regexp
produces undefined, and the call to line.split goes haywire.

This bug is the result of the fact that this is bound in a different
way from variables. As Items 18 and 25 explain, every function has
an implicit binding of this, whose value is determined when the
function is called. With a lexically scoped variable, you can always
tell where it receives its binding by looking for an explicitly named
binding occurrence of the name: for example, in a var declara-
tion list or as a function parameter. By contrast, this is implicitly
bound by the nearest enclosing function. So the binding of this in
CSVReader.prototype.read is different from the binding of this in the
callback function passed to lines.map.

Luckily, similar to the forEach example in Item 25, we can take
advantage of the fact that the map method of arrays takes an optional
second argument to use as a this-binding for the callback. So in this
case, the easiest fix is to forward the outer binding of this to the call-
back by way of the second map argument:

CSVReader.prototype.read = function(str) {

var lines = str.trim().split(/\n/);

return lines.map(function(line) {

return line.split(this.regexp);

 }, this); // forward outer this-binding to callback

};

var reader = new CSVReader();

reader.read("a,b,c\nd,e,f\n");

// [["a","b","c"], ["d","e","f"]]

100 Chapter 4 Objects and Prototypes

Now, not all callback-based APIs are so considerate. What if map did
not accept this additional argument? We would need another way to
retain access to the outer function’s this-binding so that the callback
could still refer to it. The solution is straightforward enough: Just use
a lexically scoped variable to save an additional reference to the outer
binding of this:

CSVReader.prototype.read = function(str) {

var lines = str.trim().split(/\n/);

var self = this; // save a reference to outer this-binding

return lines.map(function(line) {

return line.split(self.regexp); // use outer this

 });

};

var reader = new CSVReader();

reader.read("a,b,c\nd,e,f\n");

// [["a","b","c"], ["d","e","f"]]

Programmers commonly use the variable name self for this pattern,
signaling that the only purpose for the variable is as an extra alias to
the current scope’s this-binding. (Other popular variable names for
this pattern are me and that.) The particular choice of name is not of
great importance, but using a common name makes it easier for other
programmers to recognize the pattern quickly.

Yet another valid approach in ES5 is to use the callback function’s
bind method, similar to the approach described in Item 25:

CSVReader.prototype.read = function(str) {

var lines = str.trim().split(/\n/);

return lines.map(function(line) {

return line.split(this.regexp);

 }.bind(this)); // bind to outer this-binding

};

var reader = new CSVReader();

reader.read("a,b,c\nd,e,f\n");

// [["a","b","c"], ["d","e","f"]]

Things to Remember

✦ The scope of this is always determined by its nearest enclosing
function.

✦ Use a local variable, usually called self, me, or that, to make a
this-binding available to inner functions.

 Item 38: Call Superclass Constructors from Subclass Constructors 101

Item 38: Call Superclass Constructors from Subclass
Constructors

A scene graph is a collection of objects describing a scene in a visual
program such as a game or graphical simulation. A simple scene con-
tains a collection of all of the objects in the scene, known as actors,

a table of preloaded image data for the actors, and a reference to the
underlying graphics display, often known as the context:

function Scene(context, width, height, images) {

this.context = context;

this.width = width;

this.height = height;

this.images = images;

this.actors = [];

}

Scene.prototype.register = function(actor) {

this.actors.push(actor);

};

Scene.prototype.unregister = function(actor) {

var i = this.actors.indexOf(actor);

if (i >= 0) {

this.actors.splice(i, 1);

 }

};

Scene.prototype.draw = function() {

this.context.clearRect(0, 0, this.width, this.height);

for (var a = this.actors, i = 0, n = a.length;

 i < n;

 i++) {

 a[i].draw();

 }

};

All actors in a scene inherit from a base Actor class, which abstracts
out common methods. Every actor stores a reference to its scene
along with coordinate positions and then adds itself to the scene’s
actor registry:

function Actor(scene, x, y) {

this.scene = scene;

this.x = x;

this.y = y;

 scene.register(this);

}

102 Chapter 4 Objects and Prototypes

To enable changing an actor’s position in the scene, we provide a
moveTo method, which changes its coordinates and then redraws the
scene:

Actor.prototype.moveTo = function(x, y) {

this.x = x;

this.y = y;

this.scene.draw();

};

When an actor leaves the scene, we remove it from the scene graph’s
registry and redraw the scene:

Actor.prototype.exit = function() {

this.scene.unregister(this);

this.scene.draw();

};

To draw an actor, we look up its image in the scene graph image table.
We’ll assume that every actor has a type field that can be used to look
up its image in the image table. Once we have this image data, we
can draw it onto the graphics context, using the underlying graphics
library. (This example uses the HTML Canvas API, which provides a
drawImage method for drawing an Image object onto a <canvas> ele-
ment in a web page.)

Actor.prototype.draw = function() {

var image = this.scene.images[this.type];

this.scene.context.drawImage(image, this.x, this.y);

};

Similarly, we can determine an actor’s size from its image data:

Actor.prototype.width = function() {

return this.scene.images[this.type].width;

};

Actor.prototype.height = function() {

return this.scene.images[this.type].height;

};

We implement specific types of actors as subclasses of Actor. For
example, a spaceship in an arcade game would have a SpaceShip class
that extends Actor. Like all classes, SpaceShip is defined as a con-
structor function. But in order to ensure that instances of SpaceShip
are properly initialized as actors, the constructor must explicitly call
the Actor constructor. We do this by invoking Actor with the receiver
bound to the new object:

 Item 38: Call Superclass Constructors from Subclass Constructors 103

function SpaceShip(scene, x, y) {

 Actor.call(this, scene, x, y);

this.points = 0;

}

Calling the Actor constructor first ensures that all the instance
properties created by Actor are added to the new object. After that,
SpaceShip can define its own instance properties such as the ship’s
current points count.

In order for SpaceShip to be a proper subclass of Actor, its prototype
must inherit from Actor.prototype. The best way to do the extension
is with ES5’s Object.create:

SpaceShip.prototype = Object.create(Actor.prototype);

(Item 33 describes an implementation of Object.create for environ-
ments that do not support ES5.) If we had tried to create SpaceShip’s
prototype object with the Actor constructor, there would be several
problems. The first problem is that we don’t have any reasonable
arguments to pass to Actor:

SpaceShip.prototype = new Actor();

When we initialize the SpaceShip prototype, we haven’t yet created any
scenes to pass as the first argument. And the SpaceShip prototype
doesn’t have a useful x or y coordinate. These properties should be
instance properties of individual SpaceShip objects, not properties of
SpaceShip.prototype. More problematically, the Actor constructor adds
the object to the scene’s registry, which we definitely do not want to
do with the SpaceShip prototype. This is a common phenomenon with
subclasses: The superclass constructor should only be invoked from
the subclass constructor, not when creating the subclass prototype.

Once we’ve created the SpaceShip prototype object, we can add all the
properties that are shared by instances, including a type name for
indexing into the scene’s table of image data and methods specific to
spaceships.

SpaceShip.prototype.type = "spaceShip";

SpaceShip.prototype.scorePoint = function() {

this.points++;

};

SpaceShip.prototype.left = function() {

this.moveTo(Math.max(this.x - 10, 0), this.y);

};

104 Chapter 4 Objects and Prototypes

SpaceShip.prototype.right = function() {

var maxWidth = this.scene.width - this.width();

this.moveTo(Math.min(this.x + 10, maxWidth), this.y);

};

Figure 4.7 shows a diagram of the inheritance hierarchy for instances
of SpaceShip. Notice how the scene, x, and y properties are defined

prototype

.type

Actor.prototype

.score

.left

.right

prototype

.scene

ship

SpaceShip

.x

.y

.points

.prototype

Actor

.prototype

.moveTo

.exit

.width

.height

SpaceShip.prototype

Figure 4.7 An inheritance hierarchy with subclasses

 Item 39: Never Reuse Superclass Property Names 105

only on the instance object, rather than on any prototype object,
despite being created by the Actor constructor.

Things to Remember

✦ Call the superclass constructor explicitly from subclass construc-
tors, passing this as the explicit receiver.

✦ Use Object.create to construct the subclass prototype object to
avoid calling the superclass constructor.

Item 39: Never Reuse Superclass Property Names

Imagine that we wish to add functionality to the scene graph library
of Item 38 for collecting diagnostic information, which can be use-
ful for debugging or profiling. To do this, we’d like to give each Actor
instance a unique identification number:

function Actor(scene, x, y) {

this.scene = scene;

this.x = x;

this.y = y;

this.id = ++Actor.nextID;

 scene.register(this);

}

Actor.nextID = 0;

Now let’s do the same thing for individual instances of a subclass of
Actor—say, an Alien class representing enemies of our spaceship. In
addition to its actor identification number, we’d like each alien to have
a separate alien identification number.

function Alien(scene, x, y, direction, speed, strength) {

 Actor.call(this, scene, x, y);

this.direction = direction;

this.speed = speed;

this.strength = strength;

this.damage = 0;

this.id = ++Alien.nextID; // conflicts with actor id!

}

Alien.nextID = 0;

This code creates a conflict between the Alien class and its Actor
superclass: Both classes attempt to write to an instance property
called id. While each class may consider the property to be “private”
(i.e., only relevant and accessible to methods defined directly on that

106 Chapter 4 Objects and Prototypes

class), the fact is that the property is stored on instance objects and
named with a string. If two classes in an inheritance hierarchy refer
to the same property name, they will refer to the same property.

As a result, subclasses must always be aware of all properties used by
their superclasses, even if those properties are conceptually private.
The obvious resolution in this case is to use distinct property names
for the Actor identification number and Alien identification number:

function Actor(scene, x, y) {

this.scene = scene;

this.x = x;

this.y = y;

this.actorID = ++Actor.nextID; // distinct from alienID

 scene.register(this);

}

Actor.nextID = 0;

function Alien(scene, x, y, direction, speed, strength) {

 Actor.call(this, scene, x, y);

this.direction = direction;

this.speed = speed;

this.strength = strength;

this.damage = 0;

this.alienID = ++Alien.nextID; // distinct from actorID

}

Alien.nextID = 0;

Things to Remember

✦ Be aware of all property names used by your superclasses.

✦ Never reuse a superclass property name in a subclass.

Item 40: Avoid Inheriting from Standard Classes

The ECMAScript standard library is small, but it comes with a hand-
ful of important classes such as Array, Function, and Date. It can be
tempting to extend these with subclasses, but unfortunately their
definitions have enough special behavior that well-behaved sub-
classes are impossible to write.

A good example is the Array class. A library for operating on file sys-
tems might wish to create an abstraction of directories that inherits
all of the behavior of arrays:

 Item 40: Avoid Inheriting from Standard Classes 107

function Dir(path, entries) {

this.path = path;

for (var i = 0, n = entries.length; i < n; i++) {

this[i] = entries[i];

 }

}

Dir.prototype = Object.create(Array.prototype);

// extends Array

Unfortunately, this approach breaks the expected behavior of the
length property of arrays:

var dir = new Dir("/tmp/mysite",

 ["index.html", "script.js", "style.css"]);

dir.length; // 0

The reason this fails is that the length property operates specially
on objects that are marked internally as “true” arrays. The ECMA-
Script standard specifies this as an invisible internal property called
[[Class]]. Don’t let the name mislead you—JavaScript doesn’t secretly
have an internal class system. The value of [[Class]] is just a simple
tag: Array objects (created by the Array constructor or the [] syntax)
are stamped with the [[Class]] value "Array", functions are stamped
with the [[Class]] value "Function", and so on. Table 4.1 shows the
complete set of [[Class]] values defined by ECMAScript.

So what does this magic [[Class]] property have to do with length?
As it turns out, the behavior of length is defined specially for objects
whose [[Class]] internal property has the value "Array". For these
objects, the length property keeps itself in sync with the number of
indexed properties of the object. If you add more indexed properties
to the object, the length property increases itself automatically; if
you decrease length, it automatically deletes any indexed properties
beyond its new value.

But when we extend the Array class, instances of the subclass are not
created by new Array() or the literal [] syntax. So instances of Dir
have the [[Class]] "Object". There is even a test for this: The default
Object.prototype.toString method queries the internal [[Class]] prop-
erty of its receiver to create a generic description of an object, so you
can call it explicitly on any given object and see:

var dir = new Dir("/", []);

Object.prototype.toString.call(dir); // "[object Object]"

Object.prototype.toString.call([]); // "[object Array]"

As a result, instances of Dir do not inherit the expected special behav-
ior of the length property of arrays.

108 Chapter 4 Objects and Prototypes

A better implementation defines an instance property with the array
of entries:

function Dir(path, entries) {

this.path = path;

this.entries = entries; // array property

}

Array methods can be redefined on the prototype by delegating to the
corresponding methods of the entries property:

Dir.prototype.forEach = function(f, thisArg) {

if (typeof thisArg === "undefined") {

 thisArg = this;

 }

this.entries.forEach(f, thisArg);

};

Most of the constructors of the ECMAScript standard library have
similar problems, where certain properties or methods expect the
right [[Class]] or other special internal properties that subclasses
cannot provide. For this reason it’s advisable to avoid inheriting from

Table 4.1 Values of the [[Class]] Internal Property, As Defined by
ECMAScript

[[Class]] Construction

"Array" new Array(...), [...]

"Boolean" new Boolean(...)

"Date" new Date(...)

"Error" new Error(...), new EvalError(...), new RangeError(...),
new ReferenceError(...), new SyntaxError(...),
new TypeError(...), new URIError(...)

"Function" new Function(...), function(...) {...}

"JSON" JSON

"Math" Math

"Number" new Number(...)

"Object" new Object(...), {...}, new MyClass(...)

"RegExp" new RegExp(...), /.../

"String" new String(...)

 Item 41: Treat Prototypes As an Implementation Detail 109

any of the following standard classes: Array, Boolean, Date, Function,
Number, RegExp, or String.

Things to Remember

✦ Inheriting from standard classes tends to break due to special
internal properties such as [[Class]].

✦ Prefer delegating to properties instead of inheriting from standard
classes.

Item 41: Treat Prototypes As an Implementation Detail

An object provides a small, simple, and powerful set of operations to
its consumers. The most basic interactions a consumer has with an
object are getting its property values and calling its methods. These
operations do not particularly care where in a prototype hierarchy the
properties are stored. The implementation of an object may evolve over
time to implement a property in different places on the object’s pro-
totype chain, but as long as its value remains consistent, these basic
operations behave the same. Put simply: Prototypes are an implemen-
tation detail of an object’s behavior.

At the same time, JavaScript provides convenient introspection mech-
anisms for inspecting the details of an object. The Object.prototype
.hasOwnProperty method determines whether a property is stored
directly as an “own” property (i.e., an instance property) of an object,
ignoring the prototype hierarchy completely. The Object.getPrototypeOf
and __proto__ facilities (see Item 30) allow programs to traverse the
prototype chain of an object and look at its prototype objects individu-
ally. These are powerful and sometimes useful features.

But a good programmer knows when to respect abstraction bound-
aries. Inspecting implementation details—even without modifying
them—creates a dependency between components of a program. If the
producer of an object changes its implementation details, the con-
sumer that depends on them will break. These kinds of bugs can be
especially difficult to diagnose because they constitute action at a dis-

tance: One author changes the implementation of one component, and
another component (often written by a different programmer) breaks.

Similarly, JavaScript does not distinguish between public and private
properties of an object (see Item 35). Instead, it’s your responsibility to
rely on documentation and discipline. If a library provides an object
with properties that are undocumented or specifically documented as
internal, chances are good that those properties are best left alone by
consumers.

110 Chapter 4 Objects and Prototypes

Things to Remember

✦ Objects are interfaces; prototypes are implementations.

✦ Avoid inspecting the prototype structure of objects you don’t control.

✦ Avoid inspecting properties that implement the internals of objects
you don’t control.

Item 42: Avoid Reckless Monkey-Patching

Having inveighed against violating abstractions in Item 41, let’s
now consider the ultimate violation. Since prototypes are shared as
objects, anyone can add, remove, or modify their properties. This con-
troversial practice is commonly known as monkey-patching.

The appeal of monkey-patching lies in its power. Are arrays missing a
useful method? Just add it yourself:

Array.prototype.split = function(i) { // alternative #1

return [this.slice(0, i), this.slice(i)];

};

Voilà: Every array instance has a split method.

But problems arise when multiple libraries monkey-patch the same
prototypes in incompatible ways. Another library might monkey-patch
Array.prototype with a method of the same name:

Array.prototype.split = function() { // alternative #2

var i = Math.floor(this.length / 2);

return [this.slice(0, i), this.slice(i)];

};

Any uses of split on an array now have roughly a 50% chance of
being broken, depending on which of the two methods they expect.

At the very least, any library that modifies shared prototypes such
as Array.prototype should clearly document that it does so. This at
least gives clients adequate warning about potential conflicts between
libraries. Nevertheless, two libraries that monkey-patch prototypes in
conflicting ways cannot be used within the same program. One alter-
native is that if a library only monkey-patches prototypes as a conve-
nience, it may provide the modifications in a function that users can
choose to call or ignore:

function addArrayMethods() {

 Array.prototype.split = function(i) {

return [this.slice(0, i), this.slice(i)];

 };

};

 Item 42: Avoid Reckless Monkey-Patching 111

Of course, this approach only works if the library providing
addArrayMethods does not actually depend on Array.prototype.split.

Despite the hazards, there is one particularly reliable and invalu-
able use of monkey-patching: the polyfill. JavaScript programs and
libraries are frequently deployed on multiple platforms, such as the
different versions of web browsers made by different vendors. These
platforms can differ in how many standard APIs they implement. For
example, ES5 defines new Array methods such as forEach, map, and
filter, and some versions of browsers may not support these meth-
ods. The behavior of the missing methods is defined by a widely sup-
ported standard, and many programs and libraries may depend on
these methods. Since their behavior is standardized, providing imple-
mentations for these methods does not pose the same risk of incom-
patibility between libraries. In fact, multiple libraries can provide
implementations for the same standard methods (assuming they are
all correctly implemented), since they all implement the same stan-
dard API.

You can safely fill in these platform gaps by guarding monkey-patches
with a test:

if (typeof Array.prototype.map !== "function") {

 Array.prototype.map = function(f, thisArg) {

var result = [];

for (var i = 0, n = this.length; i < n; i++) {

 result[i] = f.call(thisArg, this[i], i);

 }

return result;

 };

}

Testing for the presence of Array.prototype.map ensures that a built-in
implementation, which is likely to be more efficient and better tested,
won’t be overwritten.

Things to Remember

✦ Avoid reckless monkey-patching.

✦ Document any monkey-patching performed by a library.

✦ Consider making monkey-patching optional by performing the mod-
ifications in an exported function.

✦ Use monkey-patching to provide polyfills for missing standard APIs.

This page intentionally left blank

5
Arrays and

Dictionaries

Objects are JavaScript’s most versatile data structure. Depending on
the situation, an object can represent a fixed record of name-value
associations, an object-oriented data abstraction with inherited meth-
ods, a dense or sparse array, or a hash table. Naturally, mastering
such a multipurpose tool demands different idioms for different needs.
In the preceding chapter we studied the use of structured objects and
inheritance. This chapter tackles the use of objects as collections:

aggregate data structures with varying numbers of elements.

Item 43: Build Lightweight Dictionaries from Direct
Instances of Object

At its heart, a JavaScript object is a table mapping string property
names to values. This makes objects pleasantly lightweight for imple-
menting dictionaries: variable-sized collections mapping strings to
values. JavaScript even provides a convenient construct for enumer-
ating the property names of an object, the for...in loop:

var dict = { alice: 34, bob: 24, chris: 62 };

var people = [];

for (var name in dict) {

 people.push(name + ": " + dict[name]);

}

people; // ["alice: 34", "bob: 24", "chris: 62"]

But every object also inherits properties from its prototype object
(see Chapter 4), and the for...in loop enumerates an object’s inher-
ited properties as well as its “own” properties. For example, what hap-
pens if we create a custom dictionary class that stores its elements as
properties of the dictionary object itself?

114 Chapter 5 Arrays and Dictionaries

function NaiveDict() { }

NaiveDict.prototype.count = function() {

var i = 0;

for (var name in this) { // counts every property

 i++;

 }

return i;

};

NaiveDict.prototype.toString = function() {

return "[object NaiveDict]";

};

var dict = new NaiveDict();

dict.alice = 34;

dict.bob = 24;

dict.chris = 62;

dict.count(); // 5

The problem is that we are using the same object to store both the
fixed properties of the NaiveDict data structure (count, toString) and
the variable entries of the specific dictionary (alice, bob, chris). So
when count enumerates the properties of a dictionary, it counts all
of these properties (count, toString, alice, bob, chris) instead of just
the entries we care about. See Item 45 for an improved Dict class that
does not store its elements as instance properties, instead provid-
ing dict.get(key) and dict.set(key, value) methods. In this Item we
focus on the pattern of using object properties as dictionary elements.

A similar mistake is to use the Array type to represent dictionaries.
This is an especially easy trap to fall into for programmers famil-
iar with languages such as Perl and PHP, where dictionaries are
commonly called “associative arrays.” Deceptively, since we can add
properties to any type of JavaScript object this usage pattern will
sometimes appear to work:

var dict = new Array();

dict.alice = 34;

dict.bob = 24;

dict.chris = 62;

dict.bob; // 24

Item 43: Build Lightweight Dictionaries from Direct Instances of Object 115

Unfortunately, this code is vulnerable to prototype pollution, where
properties on a prototype object can cause unexpected properties to
appear when enumerating dictionary entries. For example, another
library in the application may decide to add some convenience meth-
ods to Array.prototype:

Array.prototype.first = function() {

return this[0];

};

Array.prototype.last = function() {

return this[this.length – 1];

};

Now see what happens when we attempt to enumerate the elements of
our array:

var names = [];

for (var name in dict) {

 names.push(name);

}

names; // ["alice", "bob", "chris", "first", "last"]

This brings us to the primary rule of using objects as lightweight
dictionaries: Only use direct instances of Object as dictionaries—not
subclasses such as NaiveDict, and certainly not arrays. For example,
we can simply replace new Array() above with new Object() or even
an empty object literal. The result is much less susceptible to proto-
type pollution:

var dict = {};

dict.alice = 34;

dict.bob = 24;

dict.chris = 62;

var names = [];

for (var name in dict) {

 names.push(name);

}

names; // ["alice", "bob", "chris"]

Now, our new version is still not guaranteed to be safe from pollution.
Anyone could still come along and add properties to Object.prototype,

116 Chapter 5 Arrays and Dictionaries

and we’d be stuck again. But by using a direct instance of Object, we
localize the risk to Object.prototype alone.

So how is this solution any better? For one, as Item 47 explains,
nobody should ever add properties to Object.prototype that could
pollute a for...in loop. By contrast, it’s not unreasonable to add prop-
erties to Array.prototype. For example, Item 42 explains how to add
standard methods to Array.prototype in environments that don’t pro-
vide them. These properties end up polluting for...in loops. Similarly,
a user-defined class will typically have properties on its prototype.
Sticking to direct instances of Object (and always observing the rule
of Item 47) keeps your for...in loops free of pollution.

But beware! As Items 44 and 45 attest, this rule is necessary but
not sufficient for building well-behaved dictionaries. As convenient as
lightweight dictionaries are, they suffer from a number of hazards.
It’s important to study all three of these Items—or, if you prefer not to
memorize the rules, use an abstraction like the Dict class of Item 45.

Things to Remember

✦ Use object literals to construct lightweight dictionaries.

✦ Lightweight dictionaries should be direct descendants of
Object.prototype to protect against prototype pollution in for...in
loops.

Item 44: Use null Prototypes to Prevent Prototype
Pollution

One of the easiest ways to avoid prototype pollution is to just make it
impossible in the first place. But before ES5, there was no standard
way to create a new object with an empty prototype. You might be
tempted to try setting a constructor’s prototype property to null or
undefined:

function C() { }

C.prototype = null;

But instantiating this constructor still results in instances of Object:

var o = new C();

Object.getPrototypeOf(o) === null; // false

Object.getPrototypeOf(o) === Object.prototype; // true

ES5 offers the first standard way to create an object with no pro-
totype. The Object.create function is capable of dynamically con-
structing objects with a user-specified prototype link and a property

 Item 44: Use null Prototypes to Prevent Prototype Pollution 117

descriptor map, which describes the values and attributes of the new
object’s properties. By simply passing a null prototype argument and
an empty descriptor map, we can build a truly empty object:

var x = Object.create(null);

Object.getPrototypeOf(o) === null; // true

No amount of prototype pollution can affect the behavior of such an
object.

Older JavaScript environments that do not support Object.create
may support one other approach worth mentioning. In many envi-
ronments, the special property __proto__ (see Items 31 and 32) pro-
vides magic read and write access to the internal prototype link of an
object. The object literal syntax also supports initializing the proto-
type link of a new object to null:

var x = { __proto__: null };

x instanceof Object; // false (non-standard)

This syntax is equally convenient, but where Object.create is avail-
able, it is the more reliable approach. The __proto__ property is
nonstandard and not all uses of it are portable. JavaScript implemen-
tations are not guaranteed to support it in the future, so you should
stick to the standard Object.create where possible.

Sadly, while the nonstandard __proto__ can be used to solve some
problems, it also causes an additional problem of its own, prevent-
ing prototype-free objects from being a truly robust implementation of
dictionaries. Item 45 describes how in some JavaScript environments,
the property key "__proto__" itself pollutes objects even when they

have no prototype. If you can’t be sure that the string "__proto__" will
never be used as a key in your dictionary, you should consider using
the more robust Dict class described in Item 45.

Things to Remember

✦ In ES5, use Object.create(null) to create prototype-free empty
objects that are less susceptible to pollution.

✦ In older environments, consider using { __proto__: null }.

✦ But beware that __proto__ is neither standard nor entirely portable
and may be removed in future JavaScript environments.

✦ Never use the name "__proto__" as a dictionary key since some
environments treat this property specially.

118 Chapter 5 Arrays and Dictionaries

Item 45: Use hasOwnProperty to Protect Against
Prototype Pollution

Items 43 and 44 talk about property enumeration, but we haven’t
addressed the issue of prototype pollution in property lookup. It’s
tempting to use JavaScript’s native syntax for object manipulation for
all of our dictionary operations:

"alice" in dict; // membership test

dict.alice; // retrieval

dict.alice = 24; // update

But remember that JavaScript’s object operations always work with
inheritance. Even an empty object literal inherits a number of proper-
ties from Object.prototype:

var dict = {};

"alice" in dict; // false

"bob" in dict; // false

"chris" in dict; // false

"toString" in dict; // true

"valueOf" in dict; // true

Luckily, Object.prototype provides the hasOwnProperty method, which
is just the tool we need to avoid prototype pollution when testing for
dictionary entries:

dict.hasOwnProperty("alice"); // false

dict.hasOwnProperty("toString"); // false

dict.hasOwnProperty("valueOf"); // false

Similarly, we can protect property lookups against pollution by guard-
ing the lookup with a test:

dict.hasOwnProperty("alice") ? dict.alice : undefined;

dict.hasOwnProperty(x) ? dict[x] : undefined;

Unfortunately, we aren’t quite done. When we call dict.hasOwnProperty,
we’re asking to look up the hasOwnProperty method of dict. Normally
this would simply be inherited from Object.prototype. But if we store
an entry in the dictionary under the name "hasOwnProperty", the pro-
totype’s method is no longer accessible:

dict.hasOwnProperty = 10;

dict.hasOwnProperty("alice");

// error: dict.hasOwnProperty is not a function

You might be thinking that a dictionary would never store an entry
with a name as exotic as "hasOwnProperty". And of course, it’s up to

 Item 45: Use hasOwnProperty to Protect Against Prototype Pollution 119

you in the context of any given program to decide that this isn’t a sce-
nario you ever expect to happen. But it certainly can happen, espe-
cially if you’re filling the dictionary with entries from an external file,
network resource, or user interface input, where third parties beyond
your control get to decide what keys end up in the dictionary.

The safest approach is to make no assumptions. Instead of calling
hasOwnProperty as a method of the dictionary, we can use the call
method described in Item 20. First we extract the hasOwnProperty
method in advance from any well-known location:

var hasOwn = Object.prototype.hasOwnProperty;

Or more concisely:

var hasOwn = {}.hasOwnProperty;

Now that we have a local variable bound to the proper function, we
can call it on any object by using the function’s call method:

hasOwn.call(dict, "alice");

This approach works regardless of whether its receiver has overridden
its hasOwnProperty method:

var dict = {};

dict.alice = 24;

hasOwn.call(dict, "hasOwnProperty"); // false

hasOwn.call(dict, "alice"); // true

dict.hasOwnProperty = 10;

hasOwn.call(dict, "hasOwnProperty"); // true

hasOwn.call(dict, "alice"); // true

To avoid inserting this boilerplate everywhere we do a lookup, we can
abstract out this pattern into a Dict constructor that encapsulates all
of the techniques for writing robust dictionaries in a single datatype
definition:

function Dict(elements) {

// allow an optional initial table

this.elements = elements || {}; // simple Object

}

Dict.prototype.has = function(key) {

// own property only

return {}.hasOwnProperty.call(this.elements, key);

};

120 Chapter 5 Arrays and Dictionaries

Dict.prototype.get = function(key) {

// own property only

return this.has(key)

 ? this.elements[key]

 : undefined;

};

Dict.prototype.set = function(key, val) {

this.elements[key] = val;

};

Dict.prototype.remove = function(key) {

delete this.elements[key];

};

Notice that we don’t protect the implementation of Dict.prototype.set,
since adding the key to the dictionary object becomes one of the
elements object’s own properties, even if there is a property of the
same name in Object.prototype.

This abstraction is more robust than using JavaScript’s default object
syntax and almost as convenient to use:

var dict = new Dict({

 alice: 34,

 bob: 24,

 chris: 62

});

dict.has("alice"); // true

dict.get("bob"); // 24

dict.has("valueOf"); // false

Recall from Item 44 that in some JavaScript environments, the special
property name __proto__ can cause pollution problems of its own. In
some environments, the __proto__ property is simply inherited from
Object.prototype, so empty objects are (mercifully) truly empty:

var empty = Object.create(null);

"__proto__" in empty;

// false (in some environments)

var hasOwn = {}.hasOwnProperty;

hasOwn.call(empty, "__proto__");

// false (in some environments)

 Item 45: Use hasOwnProperty to Protect Against Prototype Pollution 121

In others, only the in operator reports true:

var empty = Object.create(null);

"__proto__" in empty; // true (in some environments)

var hasOwn = {}.hasOwnProperty;

hasOwn.call(empty, "__proto__"); // false (in some

environments)

But unfortunately, some environments permanently pollute all objects
with the appearance of an instance property called __proto__:

var empty = Object.create(null);

"__proto__" in empty; // true (in some environments)

var hasOwn = {}.hasOwnProperty;

hasOwn.call(empty, "__proto__"); // true (in some environments)

This means that depending on the environment, the following code
could have different results:

var dict = new Dict();

dict.has("__proto__"); // ?

For maximum portability and safety, this leaves us with no choice
but to add a special case for the "__proto__" key to each of the Dict
methods, resulting in the following more complex but safer final
implementation:

function Dict(elements) {

// allow an optional initial table

this.elements = elements || {}; // simple Object

this.hasSpecialProto = false; // has "__proto__" key?

this.specialProto = undefined; // "__proto__" element

}

Dict.prototype.has = function(key) {

if (key === "__proto__") {

return this.hasSpecialProto;

 }

// own property only

return {}.hasOwnProperty.call(this.elements, key);

};

Dict.prototype.get = function(key) {

if (key === "__proto__") {

return this.specialProto;

 }

122 Chapter 5 Arrays and Dictionaries

// own property only

return this.has(key)

 ? this.elements[key]

 : undefined;

};

Dict.prototype.set = function(key, val) {

if (key === "__proto__") {

this.hasSpecialProto = true;

this.specialProto = val;

 } else {

this.elements[key] = val;

 }

};

Dict.prototype.remove = function(key) {

if (key === "__proto__") {

this.hasSpecialProto = false;

this.specialProto = undefined;

 } else {

delete this.elements[key];

 }

};

This implementation is guaranteed to work regardless of an environ-
ment’s handling of __proto__, since it avoids ever dealing with prop-
erties of that name:

var dict = new Dict();

dict.has("__proto__"); // false

Things to Remember

✦ Use hasOwnProperty to protect against prototype pollution.

✦ Use lexical scope and call to protect against overriding of the
hasOwnProperty method.

✦ Consider implementing dictionary operations in a class that encap-
sulates the boilerplate hasOwnProperty tests.

✦ Use a dictionary class to protect against the use of "__proto__" as
a key.

 Item 46: Prefer Arrays to Dictionaries for Ordered Collections 123

Item 46: Prefer Arrays to Dictionaries for Ordered
Collections

Intuitively, a JavaScript object is an unordered collection of proper-
ties. Getting and setting different properties should work in any order,
producing the same results and roughly the same efficiency. The
ECMAScript standard does not specify any particular order of prop-
erty storage and is even largely mum on the subject of enumeration.

But here’s the catch: A for...in loop has to pick some order to enu-
merate an object’s properties. And since the standard allows Java-
Script engines the freedom to choose an order, their choice can subtly
change your program’s behavior. A common mistake is to provide an
API that requires an object representing an ordered mapping from
strings to values, such as for creating an ordered report:

function report(highScores) {

var result = "";

var i = 1;

for (var name in highScores) { // unpredictable order

 result += i + ". " + name + ": " +

 highScores[name] + "\n";

 i++;

 }

return result;

}

report([{ name: "Hank", points: 1110100 },

 { name: "Steve", points: 1064500 },

 { name: "Billy", points: 1050200 }]);

// ?

Because different environments may choose to store and enumer-
ate the properties of the object in different orders, this function can
result in different strings, potentially jumbling the order of the “high
scores” report.

Keep in mind that it may not always be obvious whether your pro-
gram depends on the order of object enumeration. If you don’t test
your program in multiple JavaScript environments, you may not even
notice that its behavior can change based on the exact ordering of a
for...in loop.

If you need to depend on the order of entries in a data structure, use
an array instead of a dictionary. The report function above would

124 Chapter 5 Arrays and Dictionaries

work completely predictably in any JavaScript environment if its API
expected an array of objects instead of a single object:

function report(highScores) {

var result = "";

for (var i = 0, n = highScores.length; i < n; i++) {

var score = highScores[i];

 result += (i + 1) + ". " +

 score.name + ": " + score.points + "\n";

 }

return result;

}

report([{ name: "Hank", points: 1110100 },

 { name: "Steve", points: 1064500 },

 { name: "Billy", points: 1050200 }]);

// "1. Hank: 1110100\n2. Steve: 1064500\n3. Billy: 1050200\n"

By accepting an array of objects, each with a name and points prop-
erty, this version predictably iterates over the elements in a precise
order: from 0 to highScores.length – 1.

A terrific source of subtle order dependencies is floating-point arith-
metic. Consider a dictionary of films that maps titles to ratings:

var ratings = {

"Good Will Hunting": 0.8,

"Mystic River": 0.7,

"21": 0.6,

"Doubt": 0.9

};

As we saw in Item 2, rounding in floating-point arithmetic can lead to
subtle dependencies on the order of operations. When combined with
undefined order of enumeration, this can lead to some unpredictable
loops:

var total = 0, count = 0;

for (var key in ratings) { // unpredictable order

 total += ratings[key];

 count++;

}

total /= count;

total; // ?

As it turns out, popular JavaScript environments do in fact per-
form this loop in different orders. For example, some environments

 Item 47: Never Add Enumerable Properties to Object.prototype 125

enumerate object keys in the order in which they are added to the
object, effectively computing:

(0.8 + 0.7 + 0.6 + 0.9) / 4 // 0.75

Others always enumerate potential array indices first before any
other keys. Since the movie 21 happens to have a name that is a via-
ble array index, it gets enumerated first, resulting in:

(0.6 + 0.8 + 0.7 + 0.9) / 4 // 0.7499999999999999

In this case, a better representation is to use integer values in the
dictionary, since integer addition can be performed in any order. This
way, the sensitive division operations are performed only at the very
end—crucially, after the loop is complete:

(8 + 7 + 6 + 9) / 4 / 10 // 0.75

(6 + 8 + 7 + 9) / 4 / 10 // 0.75

In general, you should always take care when executing a for...in loop
that the operations you perform behave the same regardless of their
order.

Things to Remember

✦ Avoid relying on the order in which for...in loops enumerate object
properties.

✦ If you aggregate data in a dictionary, make sure the aggregate oper-
ations are order-insensitive.

✦ Use arrays instead of dictionary objects for ordered collections.

Item 47: Never Add Enumerable Properties to
Object.prototype

The for...in loop is awfully convenient, but as we saw in Item 43 it
is susceptible to prototype pollution. Now, the most common use of
for...in by far is enumerating the elements of a dictionary. The impli-
cation is unavoidable: If you want to permit the use of for...in on
dictionary objects, never add enumerable properties to the shared
Object.prototype.

This rule may come as a great disappointment: What could be more
powerful than adding convenience methods to Object.prototype that
suddenly all objects can share? For example, what if we added an
allKeys method that produces an array of an object’s property names?

126 Chapter 5 Arrays and Dictionaries

Object.prototype.allKeys = function() {

var result = [];

for (var key in this) {

 result.push(key);

 }

return result;

};

Sadly, this method pollutes even its own result:

({ a: 1, b: 2, c: 3 }).allKeys(); // ["allKeys", "a", "b", "c"]

Of course, we could always improve our allKeys method to ignore
properties of Object.prototype. But with freedom comes responsibil-
ity, and our actions on a highly shared prototype object have conse-
quences on everyone who uses that object. Just by adding one single
property to Object.prototype, we force everyone everywhere to protect
his for...in loops.

It is slightly less convenient, but ultimately much more cooperative, to
define allKeys as a function rather than as a method.

function allKeys(obj) {

var result = [];

for (var key in obj) {

 result.push(key);

 }

return result;

}

But if you do want to add properties to Object.prototype, ES5 provides a
mechanism for doing it more cooperatively. The Object.defineProperty
method makes it possible to define an object property simultaneously
with metadata about the property’s attributes. For example, we can
define the above property exactly as before but make it invisible to
for...in by setting its enumerable attribute to false:

Object.defineProperty(Object.prototype, "allKeys", {

 value: function() {

var result = [];

for (var key in this) {

 result.push(key);

 }

return result;

 },

 writable: true,

 Item 48: Avoid Modifying an Object during Enumeration 127

 enumerable: false,

 configurable: true

});

Admittedly, this code is a mouthful. But this version has the distinct
advantage of not polluting every other for...in loop over every other
instance of Object.

In fact, it’s worth using this technique for other objects as well. When-
ever you need to add a property that should not be visible to for...in
loops, Object.defineProperty is your friend.

Things to Remember

✦ Avoid adding properties to Object.prototype.

✦ Consider writing a function instead of an Object.prototype method.

✦ If you do add properties to Object.prototype, use ES5’s
Object.defineProperty to define them as nonenumerable properties.

Item 48: Avoid Modifying an Object during
Enumeration

A social network has a set of members and, for each member, a regis-
tered list of friends:

function Member(name) {

this.name = name;

this.friends = [];

}

var a = new Member("Alice"),

 b = new Member("Bob"),

 c = new Member("Carol"),

 d = new Member("Dieter"),

 e = new Member("Eli"),

 f = new Member("Fatima");

a.friends.push(b);

b.friends.push(c);

c.friends.push(e);

d.friends.push(b);

e.friends.push(d, f);

Searching that network means traversing the social network graph
(see Figure 5.1). This is often implemented with a work-set, which

128 Chapter 5 Arrays and Dictionaries

starts with a single root node, and has nodes added as they are dis-
covered and removed as they are visited. It may be tempting to try to
implement this traversal with a single for...in loop:

Member.prototype.inNetwork = function(other) {

var visited = {};

var workset = {};

 workset[this.name] = this;

for (var name in workset) {

var member = workset[name];

delete workset[name]; // modified while enumerating

if (name in visited) { // don't revisit members

continue;

 }

 visited[name] = member;

if (member === other) { // found?

return true;

 }

 member.friends.forEach(function(friend) {

 workset[friend.name] = friend;

 });

 }

return false;

};

Alice Bob

Dieter

Carol

Eli Fatima

Figure 5.1 A social network graph

 Item 48: Avoid Modifying an Object during Enumeration 129

Unfortunately, in many JavaScript environments this code doesn’t
work at all:

a.inNetwork(f); // false

What happened? As it turns out, a for...in loop is not required to keep
current with modifications to the object being enumerated. In fact,
the ECMAScript standard leaves room for different JavaScript envi-
ronments to behave differently with respect to concurrent modifica-
tions. In particular, the standard states:

If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guar-
anteed to be visited in the active enumeration.

The practical consequence of this underspecification is that we can-
not rely on for...in loops to behave predictably if we modify the object
being enumerated.

Let’s give our graph traversal another try, this time managing the
loop control ourselves. While we’re at it, we should use our dictionary
abstraction to avoid prototype pollution. We can place the dictionary
in a WorkSet class that tracks the number of elements currently in the
set:

function WorkSet() {

this.entries = new Dict();

this.count = 0;

}

WorkSet.prototype.isEmpty = function() {

return this.count === 0;

};

WorkSet.prototype.add = function(key, val) {

if (this.entries.has(key)) {

return;

 }

this.entries.set(key, val);

this.count++;

};

WorkSet.prototype.get = function(key) {

return this.entries.get(key);

};

WorkSet.prototype.remove = function(key) {

if (!this.entries.has(key)) {

130 Chapter 5 Arrays and Dictionaries

return;

 }

this.entries.remove(key);

this.count--;

};

In order to pick an arbitrary element of the set, we need a new method
for the Dict class:

Dict.prototype.pick = function() {

for (var key in this.elements) {

if (this.has(key)) {

return key;

 }

 }

throw new Error("empty dictionary");

};

WorkSet.prototype.pick = function() {

return this.entries.pick();

};

Now we can implement inNetwork with a simple while loop, choos-
ing arbitrary elements one at a time and removing them from the
work-set.

Member.prototype.inNetwork = function(other) {

var visited = {};

var workset = new WorkSet();

 workset.add(this.name, this);

while (!workset.isEmpty()) {

var name = workset.pick();

var member = workset.get(name);

 workset.remove(name);

if (name in visited) { // don't revisit members

continue;

 }

 visited[name] = member;

if (member === other) { // found?

return true;

 }

 member.friends.forEach(function(friend) {

 workset.add(friend.name, friend);

 });

 }

return false;

};

 Item 48: Avoid Modifying an Object during Enumeration 131

The pick method is an example of nondeterminism: an operation that
is not guaranteed by the language semantics to produce a single, pre-
dictable result. This nondeterminism comes from the fact that the
for...in loop may choose a different order of enumeration in different
JavaScript environments (or even in different executions within the
same JavaScript environment, at least in principle). Working with
nondeterminism can be tricky, because it introduces an element of
unpredictability into your program. Tests that pass on one platform
may fail on others or even fail intermittently on the same platform.

Some sources of nondeterminism are unavoidable. A random num-
ber generator is supposed to produce unpredictable results; checking
the current date and time always gets a different answer; respond-
ing to user actions such as mouse clicks or keystrokes necessarily
behaves differently depending on the user. But it’s a good idea to be
clear about what parts of a program have a single expected result and
which parts can vary.

For these reasons, it’s worth considering using a deterministic alter-
native to a work-set algorithm: a work-list algorithm. By storing work
items in an array instead of a set, the inNetwork method always tra-
verses the graph in exactly the same order.

Member.prototype.inNetwork = function(other) {

var visited = {};

var worklist = [this];

while (worklist.length > 0) {

var member = worklist.pop();

if (member.name in visited) { // don't revisit

continue;

 }

 visited[member.name] = member;

if (member === other) { // found?

return true;

 }

 member.friends.forEach(function(friend) {

 worklist.push(friend); // add to work-list

 });

 }

return false;

};

This version of inNetwork adds and removes work items deterministi-
cally. Since the method always returns true for connected members
no matter what path it finds, the end result is the same. But this may
not be the case for other methods you might care to write, such as a

132 Chapter 5 Arrays and Dictionaries

variation on inNetwork that produces the actual path found through
the graph from member to member.

Things to Remember

✦ Make sure not to modify an object while enumerating its properties
with a for...in loop.

✦ Use a while loop or classic for loop instead of a for...in loop when
iterating over an object whose contents might change during the
loop.

✦ For predictable enumeration over a changing data structure, con-
sider using a sequential data structure such as an array instead of
a dictionary object.

Item 49: Prefer for Loops to for...in Loops for Array
Iteration

What is the value of mean in this code?

var scores = [98, 74, 85, 77, 93, 100, 89];

var total = 0;

for (var score in scores) {

 total += score;

}

var mean = total / scores.length;

mean; // ?

Did you spot the bug? If you said the answer was 88, you understood
the intention of the program but not its actual result. This program
commits the all-too-easy mistake of confusing the keys and values

of an array of numbers. A for...in loop always enumerates the keys.
A plausible next guess would be (0 + 1 + … + 6) / 7 = 21, but even
that is incorrect. Remember that object property keys are always
strings, even the indexed properties of an array. So the += operation
ends up performing string concatenation, resulting in an unintended
total of "00123456". The end result? An implausible mean value of
17636.571428571428.

The proper way to iterate over the contents of an array is to use a
classic for loop.

var scores = [98, 74, 85, 77, 93, 100, 89];

var total = 0;

for (var i = 0, n = scores.length; i < n; i++) {

 total += scores[i];

}

 Item 50: Prefer Iteration Methods to Loops 133

var mean = total / scores.length;

mean; // 88

This approach ensures that you have integer indices when you need
them and array element values when you need them, and that you
never confuse the two or trigger unexpected coercions to strings.
Moreover, it ensures that the iteration occurs in the proper order
and does not accidentally include noninteger properties stored on the
array object or in its prototype chain.

Notice the use of the array length variable n in the for loop above. If
the loop body does not modify the array, the loop behavior is identical
to simply recalculating the array length on every iteration:

for (var i = 0; i < scores.length; i++) { ... }

Still, there are a couple of small benefits to computing the array
length once ahead of the loop. First, even optimizing JavaScript com-
pilers may sometimes find it difficult to prove that it is safe to avoid
recomputing scores.length. But more importantly, it communicates
to the person reading the code that the loop’s termination condition is
simple and fixed.

Things to Remember

 � Always use a for loop rather than a for...in loop for iterating over
the indexed properties of an array.

 � Consider storing the length property of an array in a local vari-
able before a loop to avoid recomputing the property lookup.

Item 50: Prefer Iteration Methods to Loops

Good programmers hate writing the same code twice. Copying and
pasting boilerplate code duplicates bugs, makes programs harder to
change, clutters up programs with repetitive patterns, and leaves pro-
grammers endlessly reinventing the wheel. Perhaps worst of all, rep-
etition makes it too easy for someone reading a program to overlook
minor differences from one instance of a pattern to another.

JavaScript’s for loops are reasonably concise and certainly familiar
from many other languages such as C, Java, and C#, but they allow
for quite different behavior with only slight syntactic variation. Some
of the most notorious bugs in programming result from simple mis-
takes in determining the termination condition of a loop:

for (var i = 0; i <= n; i++) { ... }

// extra end iteration

for (var i = 1; i < n; i++) { ... }

// missing first iteration

134 Chapter 5 Arrays and Dictionaries

for (var i = n; i >= 0; i--) { ... }

// extra start iteration

for (var i = n - 1; i > 0; i--) { ... }

// missing last iteration

Let’s face it: Figuring out termination conditions is a drag. It’s boring
and there are just too many little ways to mess up.

Thankfully, JavaScript’s closures (see Item 11) are a convenient and
expressive way to build iteration abstractions for these patterns that
save us from having to copy and paste loop headers.

ES5 provides convenience methods for some of the most common
patterns. Array.prototype.forEach is the simplest of these. Instead of
writing:

for (var i = 0, n = players.length; i < n; i++) {

 players[i].score++;

}

we can write:

players.forEach(function(p) {

 p.score++;

});

This code is not only more concise and readable, but it also eliminates
the termination condition and any mention of array indices.

Another common pattern is to build a new array by doing something
to each element of another array. We could do this with a loop:

var trimmed = [];

for (var i = 0, n = input.length; i < n; i++) {

 trimmed.push(input[i].trim());

}

Alternatively, we could do this with forEach:

var trimmed = [];

input.forEach(function(s) {

 trimmed.push(s.trim());

});

But this pattern of building a new array from an existing array is so
common that ES5 introduced Array.prototype.map to make it simpler
and more elegant:

var trimmed = input.map(function(s) {

return s.trim();

});

 Item 50: Prefer Iteration Methods to Loops 135

Another common pattern is to compute a new array containing only
some of the elements of an existing array. Array.prototype.filter
makes this straightforward: It takes a predicate—a function that pro-
duces a truthy value if the element should be kept in the new array,
and a falsy value if the element should be dropped. For example, we
can extract from a price list only those listings that fall within a par-
ticular price range:

listings.filter(function(listing) {

return listing.price >= min && listing.price <= max;

});

Of course, these are just methods available by default in ES5. There’s
nothing stopping us from defining our own iteration abstractions. For
example, one pattern that sometimes comes up is extracting the lon-
gest prefix of an array that satisfies a predicate:

function takeWhile(a, pred) {

var result = [];

for (var i = 0, n = a.length; i < n; i++) {

if (!pred(a[i], i)) {

break;

 }

 result[i] = a[i];

 }

return result;

}

var prefix = takeWhile([1, 2, 4, 8, 16, 32], function(n) {

return n < 10;

}); // [1, 2, 4, 8]

Notice that we pass the array index i to pred, which it can choose to
use or ignore. In fact, all of the iteration functions in the standard
library, including forEach, map, and filter, pass the array index to the
user-provided function.

We could also define takeWhile as a method by adding it to
Array.prototype (see Item 42 for a discussion of the consequences of
monkey-patching standard prototypes like Array.prototype):

Array.prototype.takeWhile = function(pred) {

var result = [];

for (var i = 0, n = this.length; i < n; i++) {

if (!pred(this[i], i)) {

break;

 }

136 Chapter 5 Arrays and Dictionaries

 result[i] = this[i];

 }

return result;

};

var prefix = [1, 2, 4, 8, 16, 32].takeWhile(function(n) {

return n < 10;

}); // [1, 2, 4, 8]

There is one thing that loops tend to do better than iteration func-
tions: abnormal control flow operations such as break and continue.
For example, it would be awkward to attempt to implement takeWhile
using forEach:

function takeWhile(a, pred) {

var result = [];

 a.forEach(function(x, i) {

if (!pred(x)) {

// ?

 }

 result[i] = x;

 });

return result;

}

We could use an internal exception to implement the early termina-
tion of the loop, but this would be awkward and likely inefficient:

function takeWhile(a, pred) {

var result = [];

var earlyExit = {}; // unique value signaling loop break

try {

 a.forEach(function(x, i) {

if (!pred(x)) {

throw earlyExit;

 }

 result[i] = x;

 });

 } catch (e) {

if (e !== earlyExit) { // only catch earlyExit

throw e;

 }

 }

return result;

}

 Item 50: Prefer Iteration Methods to Loops 137

Once an abstraction becomes more verbose than the code it is replac-
ing, it’s a pretty sure sign that the cure is worse than the disease.

Alternatively, the ES5 array methods some and every can be used as
loops that may terminate early. Arguably, these methods were not
created for this purpose; they are described as predicates, applying a
callback predicate repeatedly to each element of an array. Specifically,
the some method returns a boolean indicating whether its callback
returns a truthy value for any one of the array elements:

[1, 10, 100].some(function(x) { return x > 5; }); // true

[1, 10, 100].some(function(x) { return x < 0; }); // false

Analogously, every returns a boolean indicating whether its callback
returns a truthy value for all of the elements:

[1, 2, 3, 4, 5].every(function(x) { return x > 0; }); // true

[1, 2, 3, 4, 5].every(function(x) { return x < 3; }); // false

Both methods are short-circuiting: If the callback to some ever pro-
duces a truthy value, some returns without processing any more ele-
ments; similarly, every returns immediately if its callback produces a
falsy value.

This behavior makes these methods useful as a variant of forEach
that can terminate early. For example, we can implement takeWhile
with every:

function takeWhile(a, pred) {

var result = [];

 a.every(function(x, i) {

if (!pred(x)) {

return false; // break

 }

 result[i] = x;

return true; // continue

 });

return result;

}

Things to Remember

✦ Use iteration methods such as Array.prototype.forEach and
Array.prototype.map in place of for loops to make code more read-
able and avoid duplicating loop control logic.

✦ Use custom iteration functions to abstract common loop patterns
that are not provided by the standard library.

138 Chapter 5 Arrays and Dictionaries

✦ Traditional loops can still be appropriate in cases where early exit
is necessary; alternatively, the some and every methods can be used
for early exit.

Item 51: Reuse Generic Array Methods on Array-Like
Objects

The standard methods of Array.prototype were designed to be reus-
able as methods of other objects—even objects that do not inherit
from Array. As it turns out, a number of such array-like objects crop
up in various places in JavaScript.

A good example is a function’s arguments object, described in Item
22. Unfortunately, the arguments object does not inherit from
Array.prototype, so we cannot simply call arguments.forEach to iter-
ate over each argument. Instead, we have to extract a reference to the
forEach method object and use its call method (see Item 20):

function highlight() {

 [].forEach.call(arguments, function(widget) {

 widget.setBackground("yellow");

 });

}

The forEach method is a Function object, which means it inherits
the call method from Function.prototype. This lets us call forEach
with a custom value for its internal binding of this (in our case, the
arguments object), followed by any number of arguments (in our case,
the single callback function). In other words, this code behaves just
like we want.

On the web platform, the DOM’s NodeList class is another instance of an
array-like object. Operations such as document.getElementsByTagName
that query a web page for nodes produce their search results as
NodeLists. Like the arguments object, a NodeList acts like an array but
does not inherit from Array.prototype.

So what exactly makes an object “array-like”? The basic contract of
an array object amounts to two simple rules.

 � It has an integer length property in the range 0...232 – 1.

 � The length property is greater than the largest index of the object.
An index is an integer in the range 0...232 – 2 whose string repre-
sentation is the key of a property of the object.

 Item 51: Reuse Generic Array Methods on Array-Like Objects 139

This is all the behavior an object needs to implement to be compatible
with any of the methods of Array.prototype. Even a simple object lit-
eral can be used to create an array-like object:

var arrayLike = { 0: "a", 1: "b", 2: "c", length: 3 };

var result = Array.prototype.map.call(arrayLike, function(s) {

return s.toUpperCase();

}); // ["A", "B", "C"]

Strings act like immutable arrays, too, since they can be indexed
and their length can be accessed as a length property. So the
Array.prototype methods that do not modify their array work with
strings:

var result = Array.prototype.map.call("abc", function(s) {

return s.toUpperCase();

}); // ["A", "B", "C"]

Now, simulating all the behavior of a JavaScript array is trickier,
thanks to two more aspects of the behavior of arrays.

 � Setting the length property to a smaller value n automatically
deletes any properties with an index greater than or equal to n.

 � Adding a property with an index n that is greater than or equal
to the value of the length property automatically sets the length
property to n + 1.

The second of these rules is a particularly tall order, since it requires
monitoring the addition of indexed properties in order to update
length automatically. Thankfully, neither of these two rules is nec-
essary for the purpose of using Array.prototype methods, since they
all forcibly update the length property whenever they add or remove
indexed properties.

There is just one Array method that is not fully generic: the array con-
catenation method concat. This method can be called on any array-
like receiver, but it tests the [[Class]] of its arguments. If an argument
is a true array, its contents are concatenated to the result; otherwise,
the argument is added as a single element. This means, for example,
that we can’t simply concatenate an array with the contents of an
arguments object:

function namesColumn() {

return ["Names"].concat(arguments);

}

namesColumn("Alice", "Bob", "Chris");

// ["Names", { 0: "Alice", 1: "Bob", 2: "Chris" }]

140 Chapter 5 Arrays and Dictionaries

In order to convince concat to treat an array-like object as a true
array, we have to convert it ourselves. A popular and concise idiom
for doing this conversion is to call the slice method on the array-like
object:

function namesColumn() {

return ["Names"].concat([].slice.call(arguments));

}

namesColumn("Alice", "Bob", "Chris");

// ["Names", "Alice", "Bob", "Chris"]

Things to Remember

✦ Reuse generic Array methods on array-like objects by extracting
method objects and using their call method.

✦ Any object can be used with generic Array methods if it has indexed
properties and an appropriate length property.

Item 52: Prefer Array Literals to the Array
Constructor

JavaScript’s elegance owes a lot to its concise literal syntax for the
most common building blocks of JavaScript programs: objects, func-
tions, and arrays. A literal is a lovely way to express an array:

var a = [1, 2, 3, 4, 5];

Now, you could use the Array constructor instead:

var a = new Array(1, 2, 3, 4, 5);

But even setting aside aesthetics, it turns out that the Array construc-
tor has some subtle issues. For one, you have to be sure that no one
has rebound the Array variable:

function f(Array) {

return new Array(1, 2, 3, 4, 5);

}

f(String); // new String(1)

You also have to be sure that no one has modified the global Array
variable:

Array = String;

new Array(1, 2, 3, 4, 5); // new String(1)

There’s one more special case to worry about. If you call the Array
constructor with a single numeric argument, it does something

 Item 52: Prefer Array Literals to the Array Constructor 141

completely different: It attempts to create an array with no elements
but whose length property is the given argument. This means that
["hello"] and new Array("hello") behave the same, but [17] and
new Array(17) do completely different things!

These are not necessarily difficult rules to learn, but it’s clearer and
less prone to accidental bugs to use array literals, which have more
regular, consistent semantics.

Things to Remember

✦ The Array constructor behaves differently if its first argument is a
number.

✦ Use array literals instead of the Array constructor.

This page intentionally left blank

6
Library and
API Design

Every programmer is an API designer at one time or another. Maybe you
don’t have any immediate plans to write the next popular Java Script
library. But when you program in a platform for a long enough period of
time, you build up a repertoire of solutions to common problems, and
sooner or later you start to develop reusable utilities and components.
Even if you don’t release these as independent libraries, developing your
skills as a library writer can help you write better components.

Designing libraries is a tricky business and is as much art as sci-
ence. It’s also incredibly important. APIs are a programmer’s basic
vocabulary. A well-designed API enables your users (which probably
includes yourself!) to express their programs clearly, concisely, and
unambiguously.

Item 53: Maintain Consistent Conventions

There are few decisions that affect API consumers more pervasively
than the conventions you use for names and function signatures.
These conventions have enormous influence: They establish the
basic vocabulary and idioms of the applications that use them. Users
of your library have to learn to read and write using these idioms,
and it’s your job to make that learning process as easy as possible.
Inconsistency makes it harder to remember which conventions apply
in which situations, which leads to more time spent consulting your
library’s documentation and less time spent getting real work done.

One of the key conventions is argument order. User interface libraries,
for instance, usually have functions that accept multiple measure-
ments such as width and height. Do your users a favor and make
sure these always come in the same order. And it’s worth choosing an
order that matches other libraries—nearly all libraries accept width
first, then height:

var widget = new Widget(320, 240); // width: 320, height: 240

144 Chapter 6 Library and API Design

Unless you have a really strong reason for needing to vary from uni-
versal practice, stick with what’s familiar. If your library is meant
for the web, remember that web developers routinely deal with mul-
tiple languages (HTML, CSS, and JavaScript... at a minimum). Don’t
make their lives even harder by needlessly varying from conventions
they are likely to use in their normal workflow. For example, when-
ever CSS accepts parameters describing the four sides of a rectangle,
it requires them in clockwise order starting from the top (top, right,
bottom, left). So when writing a library with an analogous API, stick
to this order. Your users will thank you. Or maybe they won’t even
notice—so much the better! But you can be sure they will notice if
you deviate from standard convention.

If your API uses options objects (see Item 55), you can avoid the depen-
dence on argument order. For standard options such as width/height
measurements, you should pick a naming convention and adhere to
it religiously. If one of your function signatures looks for width and
height options and another looks for w and h, your users are in for
a lifetime of constantly checking your documentation to remember
which is used where. Similarly, if your Widget class has methods for
setting properties, make sure you use the same naming convention
for these update methods. There’s no good reason for one class to
have a setWidth method and another class to do the same thing with
a method called width.

Every good library needs thorough documentation, but a great library
treats its documentation as training wheels. Once your users get
accustomed to your library’s conventions, they should be able to do
common tasks without ever checking the documentation. Consistent
conventions can even help users guess what properties or methods
are available without looking them up at all, or discover them at the
console and guess their behavior from the names.

Things to Remember

✦ Use consistent conventions for variable names and function
signatures.

✦ Don’t deviate from conventions your users are likely to encounter in
other parts of their development platform.

Item 54: Treat undefined As “No Value”

The undefined value is special: Whenever JavaScript has no specific
value to provide it just produces undefined. Unassigned variables
start out with the value undefined:

 Item 54: Treat undefined As “No Value” 145

var x;

x; // undefined

Accessing nonexistent properties from objects produces undefined:

var obj = {};

obj.x; // undefined

Returning without a value or falling off the end of a function body
produces the return value undefined:

function f() {

return;

}

function g() { }

f(); // undefined

g(); // undefined

Function parameters that are not provided with actual arguments
have the value undefined:

function f(x) {

return x;

}

f(); // undefined

In each of these situations, the undefined value indicates that the
operation did not result in a specific value. Of course, there’s some-
thing a little paradoxical about a value that means “no value.”
But every operation has to produce something, so JavaScript uses
undefined to fill the void (so to speak).

Treating undefined as the absence of any specific value is a conven-
tion established by the language. Using it for other purposes is a
risky proposition. For example, a library of user interface elements
might support a highlight method for changing the background color
of an element:

element.highlight(); // use the default color

element.highlight("yellow"); // use a custom color

What if we wanted to provide a way to request a random color? We
could use undefined as a special value for that purpose:

element.highlight(undefined); // use a random color

146 Chapter 6 Library and API Design

But this would be at odds with undefined’s usual meaning. This
makes it easy to get the wrong behavior when getting the value from
another source, particularly one that might not have a value to pro-
vide. For example, a program might be using a configuration object
with an optional color preference:

var config = JSON.parse(preferences);

// ...

element.highlight(config.highlightColor); // may be random

If the preferences do not specify a color, the programmer will most
likely expect to get the default, just as if no value were provided. But
by repurposing undefined, we actually caused this code to generate
a random color. A better API might use a special color name for the
random case:

element.highlight("random");

Sometimes it’s not possible for an API to choose a special string value
that’s distinguishable from the normal set of string values accepted
by the function. In these cases, there are special values other than
undefined, such as null or true. But these tend not to lead to very
readable code:

element.highlight(null);

For someone who is reading the code and may not have your library
committed to memory, this code is rather opaque. In fact, a first guess
might be that it removes highlighting. A more explicit and descriptive
option is to represent the random case as an object with a random
property (see Item 55 for more on options objects):

element.highlight({ random: true });

Another place to watch out for undefined is in the implementation
of optional arguments. In theory, the arguments object (see Item 51)
makes it possible to detect whether an argument was passed, but in
practice, testing for undefined leads to more robust APIs. For example,
a web server might take an optional host name:

var s1 = new Server(80, "example.com");

var s2 = new Server(80); // defaults to "localhost"

The Server constructor could be implemented by testing
arguments.length:

function Server(port, hostname) {

if (arguments.length < 2) {

 hostname = "localhost";

 }

 Item 54: Treat undefined As “No Value” 147

 hostname = String(hostname);

// ...

}

But this has a similar problem to the element.highlight method
above. If a program provides an explicit argument by requesting a
value from another source such as a configuration object, it might
produce undefined:

var s3 = new Server(80, config.hostname);

If there’s no hostname preference specified by config, the natural
behavior is to use the default "localhost". But the above implemen-
tation ends up with the host name "undefined". It’s better to test for
undefined, which could be produced by leaving off the argument or by
providing an argument expression that turns out to be undefined:

function Server(port, hostname) {

if (hostname === undefined) {

 hostname = "localhost";

 }

 hostname = String(hostname);

// ...

}

A reasonable alternative is to test whether hostname is truthy (see
Item 3). Logical operators make this convenient:

function Server(port, hostname) {

 hostname = String(hostname || "localhost");

// ...

}

This version uses the logical OR operator (||), which returns the first
argument if it is a truthy value and otherwise returns its second
argument. So, if hostname is undefined or an empty string, the expres-
sion (hostname || "localhost") evaluates to "localhost". As such, this
is technically testing for more than undefined—it will treat all falsy
values the same as undefined. This is probably acceptable for Server
since an empty string is not a valid host name. So, if you are happy
with a looser API that coerces all falsy values to a default value, truth-
iness testing is a concise way to implement parameter default values.

But beware: Truthiness is not always a safe test. If a function should
accept the empty string as a legal value, a truthy test will override
the empty string and replace it with the default value. Similarly, a
function that accepts a number should not use a truthy test if it
allows 0 (or NaN, although it’s less common) as an acceptable value.

148 Chapter 6 Library and API Design

For example, a function for creating a user interface element might
allow an element to have a width or height of 0, but provide a different
default value:

var c1 = new Element(0, 0); // width: 0, height: 0

var c2 = new Element(); // width: 320, height: 240

An implementation that uses truthiness would be buggy:

function Element(width, height) {

this.width = width || 320; // wrong test

this.height = height || 240; // wrong test

 // ...

}

var c1 = new Element(0, 0);

c1.width; // 320

c1.height; // 240

Instead, we have to resort to the more verbose test for undefined:

function Element(width, height) {

this.width = width === undefined ? 320 : width;

this.height = height === undefined ? 240 : height;

// ...

}

var c1 = new Element(0, 0);

c1.width; // 0

c1.height; // 0

var c2 = new Element();

c2.width; // 320

c2.height; // 240

Things to Remember

✦ Avoid using undefined to represent anything other than the absence
of a specific value.

✦ Use descriptive string values or objects with named boolean proper-
ties, rather than undefined or null, to represent application- specific
flags.

✦ Test for undefined instead of checking arguments.length to provide
parameter default values.

 Item 55: Accept Options Objects for Keyword Arguments 149

✦ Never use truthiness tests for parameter default values that should
allow 0, NaN, or the empty string as valid arguments.

Item 55: Accept Options Objects for Keyword
Arguments

Keeping consistent conventions for argument order, as Item 53 sug-
gests, is important for helping programmers remember what each
argument in a function call means. This works to a point. But it
simply doesn’t scale beyond a few arguments. Try making sense of a
function call such as the following:

var alert = new Alert(100, 75, 300, 200,

"Error", message,

"blue", "white", "black",

"error", true);

We’ve all seen APIs like this. It’s often the result of argument creep,

where a function starts out simple, but over time, as the library
expands in functionality, the signature acquires more and more
arguments.

Fortunately, JavaScript provides a simple, lightweight idiom that
works well for larger function signatures: the options object. An
options object is a single argument that provides additional argument
data through its named properties. The object literal form makes this
especially pleasant to read and write:

var alert = new Alert({

 x: 100, y: 75,

 width: 300, height: 200,

 title: "Error", message: message,

 titleColor: "blue", bgColor: "white", textColor: "black",

 icon: "error", modal: true

});

This API is a little more verbose, but noticeably easier to read. Each
argument becomes self-documenting: There’s no need for a comment
explaining its role, since its property name explains it perfectly. This
is especially helpful for boolean parameters such as modal: Someone
reading a call to new Alert might be able to infer the purpose of a
string argument from its contents, but a naked true or false is not
particularly informative.

Another benefit of options objects is that any of the arguments can
be optional, and a caller can provide any subset of the optional
arguments. With ordinary arguments (sometimes called positional

150 Chapter 6 Library and API Design

arguments, since they are distinguished not by name but by their
position in the argument list), optional arguments can often intro-
duce ambiguities. For example, if we want both the position and the
size of an Alert object to be optional, then it’s not clear how to inter-
pret a call such as this:

var alert = new Alert(app,

150, 150,

"Error", message,

"blue", "white", "black",

"error", true);

Are the first two numbers meant to specify the x and y or width and
height arguments? With an options object, there’s no question:

var alert = new Alert({

 parent: app,

 width: 150, height: 100,

 title: "Error", message: message,

 titleColor: "blue", bgColor: "white", textColor: "black",

 icon: "error", modal: true

});

Traditionally, options objects consist exclusively of optional argu-
ments, so it’s even possible to omit the object entirely:

var alert = new Alert(); // use all default parameter values

If there are one or two required arguments, it’s better to keep them
separate from the options object:

var alert = new Alert(app, message, {

 width: 150, height: 100,

 title: "Error",

 titleColor: "blue", bgColor: "white", textColor: "black",

 icon: "error", modal: true

});

Implementing a function that accepts an options object takes a little
more work. Here is a thorough implementation:

function Alert(parent, message, opts) {

 opts = opts || {}; // default to an empty options object

this.width = opts.width === undefined ? 320 : opts.width;

this.height = opts.height === undefined

 ? 240

 : opts.height;

this.x = opts.x === undefined

 ? (parent.width / 2) - (this.width / 2)

 : opts.x;

 Item 55: Accept Options Objects for Keyword Arguments 151

this.y = opts.y === undefined

 ? (parent.height / 2) - (this.height / 2)

 : opts.y;

this.title = opts.title || "Alert";

this.titleColor = opts.titleColor || "gray";

this.bgColor = opts.bgColor || "white";

this.textColor = opts.textColor || "black";

this.icon = opts.icon || "info";

this.modal = !!opts.modal;

this.message = message;

}

The implementation starts by providing a default empty options
object, using the || operator (see Item 54). The numeric arguments
test for undefined as Item 54 advises, since 0 is a valid value but not
the default. For the string parameters, we use logical OR under the
assumption that an empty string is not a valid value and should be
replaced by a default value. The modal parameter coerces its argument
to a boolean with a double negation pattern (!!).

This code is a little more verbose than it would be with positional
arguments. Now, it’s worth paying the price within the library if it
makes users’ lives easier. But we can make our own life easier with
a useful abstraction: an object extension or merging function. Many
JavaScript libraries and frameworks come with an extend function,
which takes a target object and a source object and copies the proper-
ties of the latter object into the former. One of the most useful appli-
cations of this utility is for abstracting out the logic of merging default
values and user-provided values for options objects. With the help of
extend, the Alert function looks quite a bit cleaner:

function Alert(parent, message, opts) {

 opts = extend({

 width: 320,

 height: 240

 });

 opts = extend({

 x: (parent.width / 2) - (opts.width / 2),

 y: (parent.height / 2) - (opts.height / 2),

 title: "Alert",

 titleColor: "gray",

 bgColor: "white",

 textColor: "black",

 icon: "info",

 modal: false

 }, opts);

152 Chapter 6 Library and API Design

this.width = opts.width;

this.height = opts.height;

this.x = opts.x;

this.y = opts.y;

this.title = opts.title;

this.titleColor = opts.titleColor;

this.bgColor = opts.bgColor;

this.textColor = opts.textColor;

this.icon = opts.icon;

this.modal = opts.modal;

}

This avoids constantly reimplementing the logic of checking for the
presence of each argument. Notice how we use two calls to extend,
since the default values for x and y depend on first computing the val-
ues of width and height.

We can clean this up even further if all we want to do with the options
is copy them into this:

function Alert(parent, message, opts) {

 opts = extend({

 width: 320,

 height: 240

 });

 opts = extend({

 x: (parent.width / 2) - (opts.width / 2),

 y: (parent.height / 2) - (opts.height / 2),

 title: "Alert",

 titleColor: "gray",

 bgColor: "white",

 textColor: "black",

 icon: "info",

 modal: false

 }, opts);

extend(this, opts);

}

Different frameworks provide different variations of extend, but typi-
cally the implementation works by enumerating the properties of the
source object and copying them into the target whenever they are not
undefined:

function extend(target, source) {

if (source) {

for (var key in source) {

var val = source[key];

 Item 56: Avoid Unnecessary State 153

if (typeof val !== "undefined") {

 target[key] = val;

 }

 }

 }

return target;

}

Notice that there are small differences between the original version
of Alert and the implementation using extend. For one, our condi-
tional logic in the first version avoids even computing the default val-
ues if they aren’t needed. As long as computing the defaults has no
side effects such as modifying the user interface or sending a net-
work request—which is usually the case—this isn’t really a problem.
Another difference is in the logic for determining whether a value was
provided. In our first version, we treat an empty string the same as
undefined for the various string arguments. But it’s more consistent
to treat only undefined as a missing argument; using the || operator
was more expedient but a less uniform policy for providing default
parameter values. Uniformity is a good goal in library design, because
it leads to better predictability for consumers of the API.

Things to Remember

✦ Use options objects to make APIs more readable and memorable.

✦ The arguments provided by an options object should all be treated
as optional.

✦ Use an extend utility function to abstract out the logic of extracting
values from options objects.

Item 56: Avoid Unnecessary State

APIs are sometimes classified as either stateful or stateless. A state-
less API provides functions or methods whose behavior depends only
on their inputs, not on the changing state of the program. The meth-
ods of a string are stateless: The string’s contents cannot be modified,
and the methods depend only on the contents of the string and the
arguments passed to the method. No matter what else is going on in
a program, the expression "foo".toUpperCase() will always produce
"FOO". The methods of a Date object, by contrast, are stateful: Calling
toString on the same Date object can produce different results based
on whether the Date’s properties have been modified by its various set
methods.

154 Chapter 6 Library and API Design

While state is sometimes essential, stateless APIs tend to be easier to
learn and use, more self-documenting, and less error-prone. A famous
stateful API is the web’s Canvas library, which provides user inter-
face elements with methods for drawing shapes and images onto their
surface. A program can draw text onto a canvas using the fillText
method:

c.fillText("hello, world!", 75, 25);

This method provides a string to draw and a position in the canvas.
But it doesn’t specify other attributes of the drawn text such as its
color, transparency, or text style. All of these attributes are specified
separately by changing the internal state of the canvas:

c.fillStyle = "blue";

c.font = "24pt serif";

c.textAlign = "center";

c.fillText("hello, world!", 75, 25);

A less stateful version of the API might instead look like this:

c.fillText("hello, world!", 75, 25, {

 fillStyle: "blue",

 font: "24pt serif",

 textAlign: "center"

});

Why might the latter be preferable? First of all, it’s much less frag-
ile. The stateful API requires modifying the internal state of a can-
vas in order to do anything custom, and this causes one drawing
operation to affect another one, even if they have nothing to do with
each other. For example, the default fill style is black. But you can
only count on getting the default value if you know that no one has
changed the defaults already. If you want to do a drawing operation
that uses the default color after changing it, you have to specify the
default explicitly:

c.fillText("text 1", 0, 0); // default color

c.fillStyle = "blue";

c.fillText("text 2", 0, 30); // blue

c.fillStyle = "black";

c.fillText("text 3", 0, 60); // back in black

Compare this to a stateless API, which would automatically enable
the reuse of default values:

c.fillText("text 1", 0, 0); // default color

c.fillText("text 2", 0, 30, { fillStyle: "blue" }); // blue

c.fillText("text 3", 0, 60); // default color

 Item 56: Avoid Unnecessary State 155

Notice also how each statement becomes more readable: To under-
stand what any individual call to fillText does, you don’t have to
understand all the modifications that precede it. In fact, the canvas
might even be modified in some completely separate part of the pro-
gram. This can easily lead to bugs, where one piece of code written
somewhere else changes the state of the canvas:

c.fillStyle = "blue";

drawMyImage(c); // did drawMyImage change c?

c.fillText("hello, world!", 75, 25);

To understand what happens in the last line, we have to know what
modifications drawMyImage might make to the canvas. A stateless API
leads to more modular code, which avoids bugs based on surprising
interactions between different parts of your code, while simultane-
ously making the code easier to read.

Stateful APIs are also more difficult to learn. Reading the documen-
tation for fillText, you can’t tell what aspects of the state of a canvas
affect the drawing. Even if some of them are easy to guess, it’s hard
for a nonexpert to know whether they’ve correctly initialized all of the
necessary state. It’s of course possible to provide an exhaustive list in
the documentation of fillText. And when you do need a stateful API,
you should definitely document the state dependencies carefully. But
a stateless API eliminates these implicit dependencies altogether, so
they don’t need the extra documentation in the first place.

Another benefit of stateless APIs is conciseness. A stateful API tends
to lead to a proliferation of additional statements just to set the inter-
nal state of an object before calling its methods. Consider a parser for
the popular “INI” configuration file format. For example, a simple INI
file might look like this:

[Host]

address=172.0.0.1

name=localhost

[Connections]

timeout=10000

One approach to an API for this kind of data would be to provide a
setSection method for selecting a section before looking up configura-
tion parameters with a get method:

var ini = INI.parse(src);

ini.setSection("Host");

var addr = ini.get("address");

var hostname = ini.get("name");

156 Chapter 6 Library and API Design

ini.setSection("Connection");

var timeout = ini.get("timeout");

var server = new Server(addr, hostname, timeout);

But with a stateless API, it’s not necessary to create extra variables
like addr and hostname to save the extracted data before updating the
section:

var ini = INI.parse(src);

var server = new Server(ini.Host.address,

 ini.Host.name,

 ini.Connection.timeout);

Notice how once we make the section explicit we can simply represent
the ini object as a dictionary, and each section as a dictionary, mak-
ing the API even simpler. (See Chapter 5 to learn more about dictio-
nary objects.)

Things to Remember

✦ Prefer stateless APIs where possible.

✦ When providing stateful APIs, document the relevant state that
each operation depends on.

Item 57: Use Structural Typing for Flexible Interfaces

Imagine a library for creating wikis: web sites containing content
that users can interactively create, delete, and modify. Many wikis
feature simple, text-based markup languages for creating content.
These markup languages typically provide a subset of the available
features of HTML, but with a simpler and more legible source format.
For example, text might be formatted by surrounding it with asterisks
for bold, underscores for underlining, and forward slashes for italics.
Users can enter text such as this:

This sentence contains a *bold phrase* within it.

This sentence contains an _underlined phrase_ within it.

This sentence contains an /italicized phrase/ within it.

The site would then display the content to wiki readers as:

This sentence contains a bold phrase within it.

This sentence contains an underlined phrase within it.

This sentence contains an italicized phrase within it.

 Item 57: Use Structural Typing for Flexible Interfaces 157

A flexible wiki library might provide application writers with a choice
of markup languages, since many different popular formats have
emerged over the years.

To make this work, we need to separate the functionality of extracting
the contents of user-created markup source text from the rest of the
wiki functionality, such as account management, revision history, and
content storage. The rest of the application should interact with the
extraction functionality through an interface with a well- documented
set of properties and methods. By programming strictly to the inter-
face’s documented API and ignoring the implementation details
of those methods, the rest of the application can function correctly
regardless of which source format an application chooses to use.

Let’s look a little more closely at what kind of interface is needed for
wiki content extraction. The library must be able to extract metadata
such as page title and author and to format page contents as HTML
for displaying to wiki readers. We can represent each page in the wiki
as an object that provides access to this data through page methods
such as getTitle, getAuthor, and toHTML.

Next, the library needs to provide a way to create an application with
a custom wiki formatter, as well as some built-in formatters for popu-
lar markup formats. For example, an application writer might wish to
use the MediaWiki format (the format used by Wikipedia):

var app = new Wiki(Wiki.formats.MEDIAWIKI);

The library would store this formatter function internally in the Wiki
instance object:

function Wiki(format) {

this.format = format;

}

Whenever a reader wants to view a page, the application retrieves its
source and renders an HTML page using the internal formatter:

Wiki.prototype.displayPage = function(source) {

var page = this.format(source);

var title = page.getTitle();

var author = page.getAuthor();

var output = page.toHTML();

// ...

};

How would a formatter such as Wiki.formats.MEDIAWIKI be imple-
mented? Programmers familiar with class-based programming might

158 Chapter 6 Library and API Design

be inclined to create a base Page class that represents the user-
created content and implement each different format as a subclass
of Page. The MediaWiki format would be implemented with a class
MWPage that extends Page, and MEDIAWIKI would be a “factory function”
that returns an instance of MWPage:

function MWPage(source) {

 Page.call(this, source); // call the super-constructor

// ...

}

// MWPage extends Page

MWPage.prototype = Object.create(Page.prototype);

MWPage.prototype.getTitle = /* ... */;

MWPage.prototype.getAuthor = /* ... */;

MWPage.prototype.toHTML = /* ... */;

Wiki.formats.MEDIAWIKI = function(source) {

return new MWPage(source);

};

(See Chapter 4 for more about implementing class hierarchies with
constructors and prototypes.) But what practical purpose does the
base Page class serve? Since MWPage needs its own implementation
of the methods required by the wiki application—getTitle, getAuthor,
and toHTML—there’s not necessarily any useful implementation code to
inherit. Notice, too, that the displayPage method above does not care
about the inheritance hierarchy of the page object; it only requires
the relevant methods in order to work. So implementations of wiki
formats are free to implement those methods however they like.

Where many object-oriented languages encourage structuring your
programs around classes and inheritance, JavaScript tends not to
stand on ceremony. It is often perfectly sufficient to provide an imple-
mentation for an interface like the MediaWiki page format with a sim-
ple object literal:

Wiki.formats.MEDIAWIKI = function(source) {

// extract contents from source

// ...

return {

 getTitle: function() { /* ... */ },

 getAuthor: function() { /* ... */ },

 toHTML: function() { /* ... */ }

 };

};

 Item 57: Use Structural Typing for Flexible Interfaces 159

What’s more, inheritance sometimes causes more problems than
it solves. This becomes evident when several different wiki formats
share nonoverlapping sets of functionality: There may not be any
inheritance hierarchy that makes sense. For example, imagine three
formats:

Format A: *bold*, [Link], /italics/

Format B: **bold**, [[Link]], *italics*

Format C: **bold**, [Link], *italics*

We would like to implement individual pieces of functionality for rec-
ognizing each different kind of input, but the mixing and matching of
functionality just doesn’t map to any clear hierarchical relationship
between A, B, and C (I welcome you to try it!). The right thing to do
is to implement separate functions for each kind of input matching—
single asterisks, double asterisks, slashes, brackets, and so on—and
mix and match functionality as needed for each format.

Notice that by eliminating the Page superclass, we don’t have to
replace it with anything. This is where JavaScript’s dynamic typing
really shines. Anyone who wishes to implement a new custom format
can do so without needing to “register” it somewhere. The displayPage
method works with any JavaScript object whatsoever, so long as it has
the proper structure: the expected getTitle, getAuthor, and getHTML
methods, each with the expected behavior.

This kind of interface is sometimes known as structural typing or duck

typing: Any object will do so long as it has the expected structure (if it
looks like a duck, swims like a duck, and quacks like a duck...). It’s an
elegant programming pattern and especially lightweight in dynamic
languages such as JavaScript, since it doesn’t require you to write
anything explicit. A function that calls methods on an object will
work on any object that implements the same interface. Of course,
you should list out the expectations of an object interface in your API
documentation. This way, implementers know what properties and
methods are required, and what your libraries or applications expect
of their behavior.

Another benefit of the flexibility of structural typing is for unit testing.
Our wiki library probably expects to be plugged into an HTTP server
object that implements the networking functionality of the wiki. If
we want to test the interaction sequences of the wiki without actu-
ally connecting to the network, we can implement a mock object that
pretends to behave like a live HTTP server but follows a prescribed
script instead of touching the network. This provides a repeatable
interaction with a fake server, instead of relying on the unpredictable

160 Chapter 6 Library and API Design

behavior of the network, making it possible to test the behavior of
components that interact with the server.

Things to Remember

✦ Use structural typing (also known as duck typing) for flexible object
interfaces.

✦ Avoid inheritance when structural interfaces are more flexible and
lightweight.

✦ Use mock objects, that is, alternative implementations of interfaces
that provide repeatable behavior, for unit testing.

Item 58: Distinguish between Array and Array-Like

Consider two different class APIs. The first is for bit vectors: ordered
collections of bits.

var bits = new BitVector();

bits.enable(4);

bits.enable([1, 3, 8, 17]);

bits.bitAt(4); // 1

bits.bitAt(8); // 1

bits.bitAt(9); // 0

Notice that the enable method is overloaded: You can pass it either an
index or an array of indices.

The second class API is for string sets: unordered collections of strings.

var set = new StringSet();

set.add("Hamlet");

set.add(["Rosencrantz", "Guildenstern"]);

set.add({ "Ophelia": 1, "Polonius": 1, "Horatio": 1 });

set.contains("Polonius"); // true

set.contains("Guildenstern"); // true

set.contains("Falstaff"); // false

Similar to the enable method of bit vectors, the add method is also over-
loaded, but in addition to strings and arrays of strings, it also accepts
a dictionary object.

 Item 58: Distinguish between Array and Array-Like 161

To implement BitVector.prototype.enable, we can avoid the question
of how to determine whether an object is an array by testing the other
case first:

BitVector.prototype.enable = function(x) {

if (typeof x === "number") {

this.enableBit(x);

 } else { // assume x is array-like

for (var i = 0, n = x.length; i < n; i++) {

this.enableBit(x[i]);

 }

 }

};

No problem. What about StringSet.prototype.add? Now we seem to
need to distinguish between arrays and objects. But that question
doesn’t even make sense—JavaScript arrays are objects! What we
really want to do is separate out array objects from nonarray objects.

Making this distinction is at odds with JavaScript’s flexible notion
of “array-like” objects (see Item 51). Any object can be treated as an
array as long as it obeys the right interface. And there’s no clear way
to test an object to see whether it’s intended to satisfy an interface.
We might try to guess that an object that has a length property is
intended to be an array, but this is no guarantee; what if we happen
to use a dictionary object that has the key "length" in it?

dimensions.add({

"length": 1, // implies array-like?

"height": 1,

"width": 1

});

Using imprecise heuristics to determine their interface is a recipe for
misunderstanding and misuse. Guessing whether an object imple-
ments a structural type is sometimes known as duck testing (after
the “duck types” described in Item 57), and it’s bad practice. Since
objects are not tagged with explicit information to indicate the struc-
tural types they implement, there’s no reliable, programmatic way to
detect this information.

Overloading two types means there must be a way to distinguish the
cases. And it’s not possible to detect that a value implements a struc-
tural interface. This leads to the following rule:

APIs should never overload structural types with other overlapping

types.

162 Chapter 6 Library and API Design

For StringSet, the answer is not to use the structural “array-like”
interface in the first place. We should instead choose a type that car-
ries a well-defined “tag” indicating that the user truly intends it to
be an array. An obvious but imperfect choice is to use the instanceof
operator to test whether an object inherits from Array.prototype:

StringSet.prototype.add = function(x) {

if (typeof x === "string") {

this.addString(x);

 } else if (x instanceof Array) { // too restrictive

 x.forEach(function(s) {

this.addString(s);

 }, this);

 } else {

for (var key in x) {

this.addString(key);

 }

 }

};

After all, we know for sure that anytime an object is an instance of
Array, it behaves like an array. But this time it turns out that this
is too fine a distinction. In environments where there can be multi-
ple global objects, there may be multiple copies of the standard Array
constructor and prototype object. This happens in the browser, where
each frame gets a separate copy of the standard library. When com-
municating values between frames, an array from one frame will not
inherit from the Array.prototype of another frame.

For this reason, ES5 introduced the Array.isArray function, which
tests whether a value is an array, regardless of prototype inheritance.
In ECMAScript standards-ese, this function tests whether the value
of the internal [[Class]] property of the object is "Array". When you
need to test whether an object is a true array, not just an array-like
object, Array.isArray is more reliable than instanceof.

This leads to a more robust implementation of the add method:

StringSet.prototype.add = function(x) {

if (typeof x === "string") {

this.addString(x);

 } else if (Array.isArray(x)) { // tests for true arrays

 x.forEach(function(s) {

this.addString(s);

 }, this);

 } else {

 Item 58: Distinguish between Array and Array-Like 163

for (var key in x) {

this.addString(key);

 }

 }

};

In environments that don’t support ES5, you can use the standard
Object.prototype.toString method to test whether an object is an
array:

var toString = Object.prototype.toString;

function isArray(x) {

return toString.call(x) === "[object Array]";

}

The Object.prototype.toString function uses the internal [[Class]]
property of an object to create its result string, so it too is a more
reliable method than instanceof for testing whether an object is an
array.

Notice that this version of add has different behavior that affects con-
sumers of the API. The array version of the overloaded API does not
accept arbitrary array-like objects. You can’t, for example, pass an
arguments object and expect it to be treated as an array:

function MyClass() {

this.keys = new StringSet();

// ...

}

MyClass.prototype.update = function() {

this.keys.add(arguments); // treated as a dictionary

};

Instead, the correct way to use add is to convert the object to a true
array, using the idiom described in Item 51:

MyClass.prototype.update = function() {

this.keys.add([].slice.call(arguments));

};

Callers need to do this conversion whenever they want to pass an
array-like object to an API that expects a true array. For this reason,
it’s necessary to document which of the two types your API accepts. In
the examples above, the enable method accepts numbers and array-
like objects, whereas the add method accepts strings, true arrays, and
(nonarray) objects.

164 Chapter 6 Library and API Design

Things to Remember

✦ Never overload structural types with other overlapping types.

✦ When overloading a structural type with other types, test for the
other types first.

✦ Accept true arrays instead of array-like objects when overloading
with other object types.

✦ Document whether your API accepts true arrays or array-like
values.

✦ Use ES5’s Array.isArray to test for true arrays.

Item 59: Avoid Excessive Coercion

JavaScript is notoriously lax about types (see Item 3). Many of the
standard operators and libraries automatically coerce their argu-
ments to the expected type rather than throwing exceptions for unex-
pected inputs. Without additional logic, building off of these built-in
operations inherits their coercing behavior:

function square(x) {

return x * x;

}

square("3"); // 9

Coercions can certainly be convenient. But as Item 3 points out,
they can also cause trouble, hiding errors and leading to erratic and
hard-to-diagnose behavior.

Coercions are especially confusing when working with overloaded func-
tion signatures, like the enable method of the bit vector class of Item
58. The method uses its argument’s type to determine its behavior. The
signature would become harder to understand if enable attempted to
coerce its argument to an expected type. Which type should it choose?
Coercing to a number completely breaks the overloading:

BitVector.prototype.enable = function(x) {

 x = Number(x);

if (typeof x === "number") { // always true

this.enableBit(x);

 } else { // never executed

for (var i = 0, n = x.length; i < n; i++) {

this.enableBit(x[i]);

 }

 }

};

 Item 59: Avoid Excessive Coercion 165

As a general rule, it’s wise to avoid coercing arguments whose type is
used to determine an overloaded function’s behavior. Coercions make
it harder to tell which variant you will end up with. Imagine trying to
make sense of this use:

bits.enable("100"); // number or array-like?

This use of enable is ambiguous: The caller could plausibly have
intended the argument to be treated as a number or as an array of bit
values. But our constructor was not designed for strings, so there’s no
way to know. It’s likely an indication that the caller didn’t understand
the API. In fact, if we wanted to be a little more careful in our API, we
could enforce that only numbers and objects are accepted:

BitVector.prototype.enable = function(x) {

if (typeof x === "number") {

this.enableBit(x);

 } else if (typeof x === "object" && x) {

for (var i = 0, n = x.length; i < n; i++) {

this.enableBit(x[i]);

 }

 } else {

throw new TypeError("expected number or array-like");

 }

}

This last version of enable is an example of a more cautious style known
as defensive programming, which attempts to defend against potential
errors with additional checks. In general, it’s not possible to defend
against all possible bugs. For example, we could also check to ensure
that if x is an object it also has a length property, but this wouldn’t pro-
tect against, say, an accidental use of a String object. And JavaScript
provides only very rudimentary tools for implementing these checks,
such as the typeof operator, but it’s possible to write utility functions
to guard function signatures more concisely. For example, we could
guard the BitVector constructor with a single up-front check:

function BitVector(x) {

 uint32.or(arrayLike).guard(x);

// ...

}

To make this work, we can build a utility library of guard objects
with the help of a shared prototype object that implements the guard
method:

var guard = {

 guard: function(x) {

if (!this.test(x)) {

166 Chapter 6 Library and API Design

throw new TypeError("expected " + this);

 }

 }

};

Each guard object then implements its own test method and string
description for error messages:

var uint32 = Object.create(guard);

uint32.test = function(x) {

return typeof x === "number" && x === (x >>> 0);

};

uint32.toString = function() {

return "uint32";

};

The uint32 guard uses a trick of JavaScript’s bitwise operators to per-
form a conversion to an unsigned 32-bit integer. The unsigned right

shift operator converts its first argument to an unsigned 32-bit integer
before performing a bitwise shift (see Item 2). Shifting by zero bits
then has no effect on the integer value. So uint32.test effectively com-
pares a number to the result of converting it to an unsigned 32-bit
integer.

Next we can implement the arrayLike guard object:

var arrayLike = Object.create(guard);

arrayLike.test = function(x) {

return typeof x === "object" && x && uint32.test(x.length);

};

arrayLike.toString = function() {

return "array-like object";

};

Notice that we have taken defensive programming one step further
here, ensuring that an array-like object should have an unsigned
integer length property.

Lastly, we can implement “chaining” methods (see Item 60), such as
or, as prototype methods:

guard.or = function(other) {

var result = Object.create(guard);

 Item 60: Support Method Chaining 167

var self = this;

 result.test = function(x) {

return self.test(x) || other.test(x);

 };

var description = this + " or " + other;

 result.toString = function() {

return description;

 };

return result;

};

This method combines the receiver guard object (the object bound to
this) with a second guard object (the other parameter), producing a
new guard object whose test and toString methods combine the two
input objects’ methods. Notice that we use a local self variable to save
a reference to this (see Items 25 and 37) for use inside the resultant
guard object’s test method.

These tests can help catch bugs earlier when they crop up, which
makes them significantly easier to diagnose. Nevertheless, they can
clutter a codebase and potentially affect application performance.
Whether to use defensive programming is a question of cost (the num-
ber of extra tests you have to write and execute) versus benefit (the
number of bugs you catch earlier, saving development and debugging
time).

Things to Remember

✦ Avoid mixing coercions with overloading.

✦ Consider defensively guarding against unexpected inputs.

Item 60: Support Method Chaining

Part of the power of stateless APIs (see Item 56) is their flexibility for
building compound operations out of smaller ones. A great example
is the replace method of strings. Since the result is itself a string, we
can perform multiple replacements by repeatedly calling replace on
the result of the previous method call. A common usage of this pat-
tern is for replacing special characters of a string before inserting it
into HTML:

function escapeBasicHTML(str) {

return str.replace(/&/g, "&")

 .replace(/</g, "<")

168 Chapter 6 Library and API Design

 .replace(/>/g, ">")

 .replace(/"/g, """)

 .replace(/'/g, "'");

}

The first call to replace returns a string with all instances of the spe-
cial character "&" replaced with the HTML escape sequence "&";
the second call then replaces any instances of "<" with the escape
sequence "<", and so on. This style of repeated method calls is
known as method chaining. It’s not necessary to write in this style,
but it’s much more concise than saving each intermediate result to an
intermediate variable:

function escapeBasicHTML(str1) {

var str2 = str1.replace(/&/g, "&");

var str3 = str2.replace(/</g, "<");

var str4 = str3.replace(/>/g, ">");

var str5 = str4.replace(/"/g, """);

var str6 = str5.replace(/'/g, "'");

return str6;

}

Eliminating the temporary variables makes it clearer to readers of the
code that the intermediate results are only important as a step along
the way to the final result.

Method chaining can be used whenever an API produces objects of
some interface (see Item 57) with methods that produce more objects,
often of the same interface. The array iteration methods described in
Items 50 and 51 are another great example of a “chainable” API:

var users = records.map(function(record) {

return record.username;

 })

 .filter(function(username) {

return !!username;

 })

 .map(function(username) {

return username.toLowerCase();

 });

This chained operation takes an array of objects representing user
records, extracts the username property of each record, filters out
any empty usernames, and finally converts the usernames to lower-
case strings.

This style is so flexible and expressive for consumers of an API, that
it’s worth designing your API to support it. Often, in stateless APIs,

 Item 60: Support Method Chaining 169

“chainability” falls out as a natural consequence: If your API does not
modify an object it has to return a new object. As a result, you get
an API whose methods all produce more objects with similar sets of
methods.

Method chaining is also useful to support in a stateful setting. The
trick here is for methods that update an object to return this instead
of undefined. This makes it possible to perform multiple updates on
the same object via a sequence of chained method calls:

element.setBackgroundColor("yellow")

 .setColor("red")

 .setFontWeight("bold");

Method chaining for stateful APIs is sometimes known as the fluent

style. (The term was coined by programmers simulating Smalltalk’s
“method cascades”; a built-in syntax for calling multiple methods on a
single object.) If the update methods do not return this, then the user
of the API has to repeat the name of the object each time. If the object
is simply named by a variable, this doesn’t make much difference. But
when combining stateless methods that retrieve objects with update
methods, method chaining can make for very concise and readable
code. The front-end library jQuery popularized this approach with a
set of (stateless) methods for “querying” a web page for user interface
elements and a set of (stateful) methods for updating those elements:

$("#notification") // find notification element

 .html("Server not responding.") // set notification message

 .removeClass("info") // remove one set of styling

 .addClass("error"); // add more styling

Since the stateful calls to the html, removeClass, and addClass meth-
ods support the fluent style by returning the same object, we don’t
even have to create a temporary variable for the result of the query
performed by the jQuery function ($). Of course, if users find this
style too terse, they can always introduce a variable to name the
result of the query:

var element = $("#notification");

element.html("Server not responding.");

element.removeClass("info");

element.addClass("error");

But by supporting method chaining, the API allows programmers to
decide for themselves which style they prefer. If the methods returned
undefined, users would be forced to write in the more verbose style.

170 Chapter 6 Library and API Design

Things to Remember

✦ Use method chaining to combine stateless operations.

✦ Support method chaining by designing stateless methods that pro-
duce new objects.

✦ Support method chaining in stateful methods by returning this.

7 Concurrency

JavaScript was designed as an embedded scripting language. Java-
Script programs do not run as stand-alone applications, but as
scripts in the context of a larger application. The flagship example
is, of course, the web browser. A browser can have many windows
and tabs running multiple web applications, each responding to
various inputs and stimuli: user actions via keyboard, mouse, or
touch, the arrival of data from the network, or timed alarms. These
events can occur at any point—even simultaneously—during the
lifetime of a web application. And for each kind of event, the applica-
tion may wish to be notified of information and respond with custom
behavior.

JavaScript’s approach to writing programs that respond to multiple
concurrent events is remarkably user-friendly and powerful, using a
combination of a simple execution model, sometimes known as event-

queue or event-loop concurrency, with what are known as asynchro-

nous APIs. Thanks to the effectiveness of this approach, as well as the
fact that JavaScript is standardized independently of web browsers,
JavaScript is used as the programming language for a variety of other
applications, from desktop applications to server-side frameworks
such as Node.js.

Curiously, the ECMAScript standard has, to date, never said a word
about concurrency. Consequently, this chapter deals with “de facto”
characteristics of JavaScript rather than the official standard. Never-
theless, most JavaScript environments share the same approach to
concurrency, and future versions of the standard may standardize on
this widely implemented execution model. Regardless of the standard,
working with events and asynchronous APIs is a fundamental part of
programming in JavaScript.

172 Chapter 7 Concurrency

Item 61: Don’t Block the Event Queue on I/O

JavaScript programs are structured around events: inputs that may
come in simultaneously from a variety of external sources, such as
interactions from a user (clicking a mouse button, pressing a key, or
touching a screen), incoming network data, or scheduled alarms. In
some languages, it’s customary to write code that waits for a particu-
lar input:

var text = downloadSync("http://example.com/file.txt");

console.log(text);

(The console.log API is a common utility in JavaScript platforms for
printing out debugging information to a developer console.) Func-
tions such as downloadSync are known as synchronous, or blocking:

The program stops doing any work while it waits for its input—in this
case, the result of downloading a file over the internet. Since the com-
puter could be doing other useful work while it waits for the download
to complete, such languages typically provide the programmer with
a way to create multiple threads: subcomputations that are executed
concurrently, allowing one portion of the program to stop and wait
for (“block on”) a slow input while another portion of the program can
carry on usefully doing independent work.

In JavaScript, most I/O operations are provided through asynchro-

nous, or nonblocking APIs. Instead of blocking a thread on a result,
the programmer provides a callback (see Item 19) for the system to
invoke once the input arrives:

downloadAsync("http://example.com/file.txt", function(text) {

 console.log(text);

});

Rather than blocking on the network, this API initiates the download
process and then immediately returns after storing the callback in an
internal registry. At some point later, when the download has com-
pleted, the system calls the registered callback, passing it the text of
the downloaded file as its argument.

Now, the system does not just jump right in and call the callback the
instant the download completes. JavaScript is sometimes described
as providing a run-to-completion guarantee: Any user code that is cur-
rently running in a shared context, such as a single web page in a
browser, or a single running instance of a web server, is allowed to
finish executing before the next event handler is invoked. In effect,
the system maintains an internal queue of events as they occur, and
invokes any registered callbacks one at a time.

 Item 61: Don’t Block the Event Queue on I/O 173

Figure 7.1 shows an illustration of example event queues in client-side
and server-side applications. As events occur, they are added to the
end of the application’s event queue (at the top of the diagram). The
JavaScript system executes the application with an internal event

loop, which plucks events off of the bottom of the queue—that is, in the
order in which they were received—and calls any registered Java Script
event handlers (callbacks like the one passed to downloadAsync above)
one at a time, passing the event data as arguments to the handlers.

path resolved

file read

timer

file updated

URL requested

timer

URL requested

URL requested

JavaScript engine

.

.

.

.

.

.

mouse clicked

mouse moved

file downloaded

keypressed

mouse moved

mouse moved

window resized

mouse moved

JavaScript engine

a) b)

Figure 7.1 Example event queues in a) a web client application and
b) a web server

174 Chapter 7 Concurrency

The benefit of the run-to-completion guarantee is that when your code
runs, you know that you have complete control over the application
state: You never have to worry that some variable or object property
will change out from under you due to concurrently executing code.
This has the pleasant result that concurrent programming in Java-
Script tends to be much easier than working with threads and locks
in languages such as C++, Java, or C#.

Conversely, the drawback of run-to-completion is that any and all
code you write effectively holds up the rest of the application from
proceeding. In interactive applications like the browser, a blocked
event handler prevents any other user input from being handled and
can even prevent the rendering of a page, leading to an unresponsive
user experience. In a server setting, a blocked handler can prevent
other network requests from being handled, leading to an unrespon-
sive server.

The single most important rule of concurrent JavaScript is never to
use any blocking I/O APIs in the middle of an application’s event
queue. In the browser, hardly any blocking APIs are even available,
although a few have sadly leaked into the platform over the years.
The XMLHttpRequest library, which provides network I/O similar to the
downloadAsync function above, has a synchronous version that is con-
sidered bad form. Synchronous I/O has disastrous consequences for
the interactivity of a web application, preventing the user from inter-
acting with a page until the I/O operation completes.

By contrast, asynchronous APIs are safe for use in an event-based set-
ting, because they force your application logic to continue processing
in a separate “turn” of the event loop. In the examples above, imagine
that it takes a couple of seconds to download the URL. In that time,
an enormous number of other events may occur. In the synchronous
implementation, those events would pile up in the event queue, but
the event loop would be stuck waiting for the JavaScript code to finish
executing, preventing the processing of any other events. But in the
asynchronous version, the JavaScript code registers an event handler
and returns immediately, allowing other event handlers to process
intervening events before the download completes.

In settings where the main application’s event queue is unaffected,
blocking operations are less problematic. For example, the web plat-
form provides the Worker API, which makes it possible to spawn
concurrent computations. Unlike conventional threads, workers
are executed in a completely isolated state, with no access to the
global scope or web page contents of the application’s main thread,
so they cannot interfere with the execution of code running in from

 Item 62: Use Nested or Named Callbacks for Asynchronous Sequencing 175

the main event queue. In a worker, using the synchronous variant of
XMLHttpRequest is less problematic; blocking on a download does pre-
vent the Worker from continuing, but it does not prevent the page from
rendering or the event queue from responding to events. In a server
setting, blocking APIs are unproblematic during startup, that is,
before the server begins responding to incoming requests. But when
servicing requests, blocking APIs are every bit as catastrophic as in
the event queue of the browser.

Things to Remember

✦ Asynchronous APIs take callbacks to defer processing of expensive
operations and avoid blocking the main application.

✦ JavaScript accepts events concurrently but processes event han-
dlers sequentially using an event queue.

✦ Never use blocking I/O in an application’s event queue.

Item 62: Use Nested or Named Callbacks for
Asynchronous Sequencing

Item 61 shows how asynchronous APIs perform potentially expen-
sive I/O operations without blocking the application from continu-
ing doing work and processing other input. Understanding the order
of operations of asynchronous programs can be a little confusing at
first. For example, this program prints out "starting" before it prints
"finished", even though the two actions appear in the opposite order
in the program source:

downloadAsync("file.txt", function(file) {

 console.log("finished");

});

console.log("starting");

The downloadAsync call returns immediately, without waiting for the
file to finish downloading. Meanwhile, JavaScript’s run-to-completion
guarantee ensures that the next line executes before any other event
handlers are executed. This means that "starting" is sure to print
before "finished".

The easiest way to understand this sequence of operations is to think
of an asynchronous API as initiating rather than performing an oper-
ation. The code above first initiates the download of a file and then
immediately prints out "starting". When the download completes, in
some separate turn of the event loop, the registered event handler
prints "finished".

176 Chapter 7 Concurrency

So, if placing several statements in a row only works if you need
to do something after initiating an operation how do you sequence
completed asynchronous operations? For example, what if we need
to look up a URL in an asynchronous database and then download
the contents of that URL? It’s impossible to initiate both requests
back-to-back:

db.lookupAsync("url", function(url) {

// ?

});

downloadAsync(url, function(text) { // error: url is not bound

 console.log("contents of " + url + ": " + text);

});

This can’t possibly work, because the URL resulting from the data-
base lookup is needed as the argument to downloadAsync, but it’s not
in scope. And with good reason: All we’ve done at that step is initiate
the database lookup; the result of the lookup simply isn’t available
yet.

The most straightforward answer is to use nesting. Thanks to the
power of closures (see Item 11), we can embed the second action in
the callback to the first:

db.lookupAsync("url", function(url) {

downloadAsync(url, function(text) {

 console.log("contents of " + url + ": " + text);

 });

});

There are still two callbacks, but the second is contained within the
first, creating a closure that has access to the outer callback’s vari-
ables. Notice how the second callback refers to url.

Nesting asynchronous operations is easy, but it quickly gets unwieldy
when scaling up to longer sequences:

db.lookupAsync("url", function(url) {

downloadAsync(url, function(file) {

downloadAsync("a.txt", function(a) {

downloadAsync("b.txt", function(b) {

downloadAsync("c.txt", function(c) {

// ...

 });

 });

 });

 });

});

 Item 62: Use Nested or Named Callbacks for Asynchronous Sequencing 177

One way to mitigate excessive nesting is to lift nested callbacks back
out as named functions and pass them any additional data they need
as extra arguments. The two-step example above could be rewritten as:

db.lookupAsync("url", downloadURL);

function downloadURL(url) {

downloadAsync(url, function(text) { // still nested

showContents(url, text);

 });

}

function showContents(url, text) {

 console.log("contents of " + url + ": " + text);

}

This still uses a nested callback inside downloadURL in order to com-
bine the outer url variable with the inner text variable as arguments
to showContents. We can eliminate this last nested callback with bind
(see Item 25):

db.lookupAsync("url", downloadURL);

function downloadURL(url) {

downloadAsync(url, showContents.bind(null, url));

}

function showContents(url, text) {

 console.log("contents of " + url + ": " + text);

}

This approach leads to more sequential-looking code, but at the cost
of having to name each intermediate step of the sequence and copy
bindings from step to step. This can get awkward in cases like the
longer example above:

db.lookupAsync("url", downloadURLAndFiles);

function downloadURLAndFiles(url) {

downloadAsync(url, downloadABC.bind(null, url));

}

// awkward name

function downloadABC(url, file) {

downloadAsync("a.txt",

// duplicated bindings

 downloadFiles23.bind(null, url, file));

}

178 Chapter 7 Concurrency

// awkward name

function downloadBC(url, file, a) {

downloadAsync("b.txt",

// more duplicated bindings

 downloadFile3.bind(null, url, file, a));

}

// awkward name

function downloadC(url, file, a, b) {

downloadAsync("c.txt",

// still more duplicated bindings

 finish.bind(null, url, file, a, b));

}

function finish(url, file, a, b, c) {

// ...

}

Sometimes a combination of the two approaches strikes a better bal-
ance, albeit still with some nesting:

db.lookupAsync("url", function(url) {

downloadURLAndFiles(url);

});

function downloadURLAndFiles(url) {

downloadAsync(url, downloadFiles.bind(null, url));

}

function downloadFiles(url, file) {

downloadAsync("a.txt", function(a) {

downloadAsync("b.txt", function(b) {

downloadAsync("c.txt", function(c) {

// ...

 });

 });

 });

}

Even better, this last step can be improved with an additional abstrac-
tion for downloading multiple files and storing them in an array:

function downloadFiles(url, file) {

downloadAllAsync(["a.txt", "b.txt", "c.txt"],

function(all) {

 Item 63: Be Aware of Dropped Errors 179

var a = all[0], b = all[1], c = all[2];

// ...

 });

}

Using downloadAllAsync also allows us to download multiple files
concurrently. Sequencing means that each operation cannot even
be initiated until the previous one completes. And some operations
are inherently sequential, like downloading the URL we fetched from
a database lookup. But if we have a list of filenames to download,
chances are there’s no reason to wait for each file to finish download-
ing before requesting the next. Item 66 explains how to implement
concurrent abstractions such as downloadAllAsync.

Beyond nesting and naming callbacks, it’s possible to build higher-
level abstractions to make asynchronous control flow simpler and
more concise. Item 68 describes one particularly popular approach.
Beyond that, it’s worth exploring asynchrony libraries or experiment-
ing with abstractions of your own.

Things to Remember

✦ Use nested or named callbacks to perform several asynchronous
operations in sequence.

✦ Try to strike a balance between excessive nesting of callbacks and
awkward naming of non-nested callbacks.

✦ Avoid sequencing operations that can be performed concurrently.

Item 63: Be Aware of Dropped Errors

One of the more difficult aspects of asynchronous programming to
manage is error handling. In synchronous code, it’s easy to handle
errors in one fell swoop by wrapping a section of code with a try block:

try {

f();

g();

h();

} catch (e) {

// handle any error that occurred...

}

With asynchronous code, a multistep process is usually divided into
separate turns of the event queue, so it’s not possible to wrap them
all in a single try block. In fact, asynchronous APIs cannot even

180 Chapter 7 Concurrency

throw exceptions at all, because by the time an asynchronous error
occurs, there is no obvious execution context to throw the exception
to! Instead, asynchronous APIs tend to represent errors as special
arguments to callbacks, or take additional error-handling callbacks
(sometimes referred to as errbacks). For example, an asynchronous
API for downloading a file like the one from Item 61 might take an
extra function to be called in case of a network error:

downloadAsync("http://example.com/file.txt", function(text) {

 console.log("File contents: " + text);

}, function(error) {

 console.log("Error: " + error);

});

To download several files, you can nest the callbacks as explained in
Item 62:

downloadAsync("a.txt", function(a) {

downloadAsync("b.txt", function(b) {

downloadAsync("c.txt", function(c) {

 console.log("Contents: " + a + b + c);

 }, function(error) {

 console.log("Error: " + error);

 });

 }, function(error) { // repeated error-handling logic

 console.log("Error: " + error);

 });

}, function(error) { // repeated error-handling logic

 console.log("Error: " + error);

});

Notice how in this example, each step of the process uses the same
error-handling logic, but we’ve repeated the same code in several
places. As always in programming, we should strive to avoid dupli-
cating code. It’s easy enough to abstract this out by defining an
error-handling function in a shared scope:

function onError(error) {

 console.log("Error: " + error);

}

downloadAsync("a.txt", function(a) {

downloadAsync("b.txt", function(b) {

downloadAsync("c.txt", function(c) {

 console.log("Contents: " + a + b + c);

 }, onError);

 }, onError);

}, onError);

 Item 63: Be Aware of Dropped Errors 181

Of course, if we combine multiple steps into a single compound oper-
ation with utilities such as downloadAllAsync (as Items 62 and 66 rec-
ommend), we naturally end up only needing to provide a single error
callback:

downloadAllAsync(["a.txt", "b.txt", "c.txt"], function(abc) {

 console.log("Contents: " + abc[0] + abc[1] + abc[2]);

}, function(error) {

 console.log("Error: " + error);

});

Another style of error-handling API, popularized by the Node.js plat-
form, takes only a single callback whose first argument is either an
error, if one occurred, or a falsy value such as null otherwise. For
these kinds of APIs, we can still define a common error-handling
function, but we need to guard each callback with an if statement:

function onError(error) {

 console.log("Error: " + error);

}

downloadAsync("a.txt", function(error, a) {

if (error) {

onError(error);

return;

 }

downloadAsync("b.txt", function(error, b) {

// duplicated error-checking logic

if (error) {

onError(error);

return;

 }

downloadAsync(url3, function(error, c) {

// duplicated error-checking logic

if (error) {

onError(error);

return;

 }

 console.log("Contents: " + a + b + c);

 });

 });

});

In frameworks with this style of error callback, programmers often
abandon conventions requiring if statements to span multiple lines
with braced bodies, leading to more concise, less distracting error
handling:

182 Chapter 7 Concurrency

function onError(error) {

 console.log("Error: " + error);

}

downloadAsync("a.txt", function(error, a) {

if (error) return onError(error);

downloadAsync("b.txt", function(error, b) {

if (error) return onError(error);

downloadAsync(url3, function(error, c) {

if (error) return onError(error);

 console.log("Contents: " + a + b + c);

 });

 });

});

Or, as always, combining steps with an abstraction helps eliminate
duplication:

var filenames = ["a.txt", "b.txt", "c.txt"];

downloadAllAsync(filenames, function(error, abc) {

if (error) {

 console.log("Error: " + error);

return;

 }

 console.log("Contents: " + abc[0] + abc[1] + abc[2]);

});

One of the practical differences between try...catch and typical
error-handling logic in asynchronous APIs is that try makes it eas-
ier to define “catchall” logic so that it’s difficult to forget to handle
errors in an entire region of code. With asynchronous APIs like the
one above, it’s very easy to forget to provide error handling in any of
the steps of the process. Often, this results in an error getting silently
dropped. A program that ignores errors can be very frustrating for
users: The application provides no feedback that something went
wrong (sometimes resulting in a hanging progress notification that
never clears). Similarly, silent errors are a nightmare to debug, since
they provide no clues about the source of the problem. The best cure
is prevention: Working with asynchronous APIs requires vigilance to
make sure you handle all error conditions explicitly.

 Item 64: Use Recursion for Asynchronous Loops 183

Things to Remember

✦ Avoid copying and pasting error-handling code by writing shared
error-handling functions.

✦ Make sure to handle all error conditions explicitly to avoid dropped
errors.

Item 64: Use Recursion for Asynchronous Loops

Consider a function that takes an array of URLs and tries to down-
load one at a time until one succeeds. If the API were synchronous, it
would be easy to implement with a loop:

function downloadOneSync(urls) {

for (var i = 0, n = urls.length; i < n; i++) {

try {

return downloadSync(urls[i]);

 } catch (e) { }

 }

throw new Error("all downloads failed");

}

But this approach won’t work for downloadOneAsync, because we can’t
suspend a loop and resume it in a callback. If we tried using a loop, it
would initiate all of the downloads rather than waiting for one to con-
tinue before trying the next:

function downloadOneAsync(urls, onsuccess, onerror) {

for (var i = 0, n = urls.length; i < n; i++) {

downloadAsync(urls[i], onsuccess, function(error) {

// ?

 });

// loop continues

 }

throw new Error("all downloads failed");

}

So we need to implement something that acts like a loop, but that
doesn’t continue executing until we explicitly say so. The solution is
to implement the loop as a function, so we can decide when to start
each iteration:

function downloadOneAsync(urls, onsuccess, onfailure) {

var n = urls.length;

function tryNextURL(i) {

if (i >= n) {

184 Chapter 7 Concurrency

onfailure("all downloads failed");

return;

 }

downloadAsync(urls[i], onsuccess, function() {

tryNextURL(i + 1);

 });

 }

tryNextURL(0);

}

The local tryNextURL function is recursive: Its implementation involves
a call to itself. Now, in typical JavaScript environments, a recursive
function that calls itself synchronously can fail after too many calls
to itself. For example, this simple recursive function tries to call itself
100,000 times, but in most JavaScript environments it fails with a
runtime error:

function countdown(n) {

if (n === 0) {

return "done";

 } else {

return countdown(n – 1);

 }

}

countdown(100000); // error: maximum call stack size exceeded

So how could the recursive downloadOneAsync be safe if countdown
explodes when n is too large? To answer this, let’s take a small detour
and unpack the error message provided by countdown.

JavaScript environments usually reserve a fixed amount of space in
memory, known as the call stack, to keep track of what to do next after
returning from function calls. Imagine executing this little program:

function negative(x) {

return abs(x) * -1;

}

function abs(x) {

return Math.abs(x);

}

console.log(negative(42));

 Item 64: Use Recursion for Asynchronous Loops 185

At the point in the application where Math.abs is called with the argu-
ment 42, there are several other function calls in progress, each wait-
ing for another to return. Figure 7.2 illustrates the call stack at this
point. At the point of each function call, the bullet symbol (•) depicts
the place in the program where a function call has occurred and
where that call will return to when it finishes. Like the traditional
stack data structure, this information follows a “last-in, first-out” pro-
tocol: The most recent function call that pushes information onto the
stack (represented as the bottommost frame of the stack) will be the
first to pop back off the stack. When Math.abs finishes, it returns to
the abs function, which returns to the negative function, which in
turn returns to the outermost script.

When a program is in the middle of too many function calls, it can run
out of stack space, resulting in a thrown exception. This condition is
known as stack overflow. In our example, calling countdown(100000)
requires countdown to call itself 100,000 times, each time pushing
another stack frame, as shown in Figure 7.3. The amount of space
required to store so many stack frames exhausts the space allocated
by most JavaScript environments, leading to a runtime error.

Now take another look at downloadOneAsync. Unlike countdown, which
can’t return until the recursive call returns, downloadOneAsync only
calls itself from within an asynchronous callback. Remember that
asynchronous APIs return immediately—before their callbacks are
invoked. So downloadOneAsync returns, causing its stack frame to be
popped off of the call stack, before any recursive call causes a new
stack frame to be pushed back on the stack. (In fact, the callback is
always invoked in a separate turn of the event loop, and each turn of
the event loop invokes its event handler with the call stack initially

console.log(•);(script start)

negative(42)

abs(42)

Math.abs(42)

return times(•, -1);

return •;

[built-in code]

Figure 7.2 A call stack during the execution of a simple program

186 Chapter 7 Concurrency

empty.) So downloadOneAsync never starts eating up call stack space,
no matter how many iterations it requires.

Things to Remember

✦ Loops cannot be asynchronous.

✦ Use recursive functions to perform iterations in separate turns of
the event loop.

✦ Recursion performed in separate turns of the event loop does not
overflow the call stack.

Item 65: Don’t Block the Event Queue on Computation

Item 61 explains how asynchronous APIs help to prevent a program
from clogging up an application’s event queue. But this is not the
whole story. After all, as every programmer can tell you, it’s easy
enough to stall an application without even a single function call:

while (true) { }

And it doesn’t take an infinite loop to write a sluggish program. Code
takes time to run, and inefficient algorithms or data structures can
lead to long-running computations.

console.log(•);(script start)

countdown(100000)

countdown(99999)

countdown(99998)

return countdown(•);

return countdown(•);

return countdown(•);

countdown(1)

countdown(0)

return countdown(•);

return "done";

.

.

.

Figure 7.3 A call stack during the execution of a recursive function

 Item 65: Don’t Block the Event Queue on Computation 187

Of course, efficiency is not a concern that’s unique to JavaScript. But
event-based programming does impose particular constraints. In
order to preserve a high degree of interactivity in a client application,
or to ensure that all incoming requests get adequately serviced in a
server application, it’s critical to keep each turn of the event loop as
short as possible. Otherwise, the event queue can start getting backed
up, growing at a faster rate than event handlers can be dispatched to
shrink it again. In the browser setting, expensive computations also
lead to a bad user experience, since a page’s user interface is mostly
unresponsive while JavaScript code is running.

So what can you do if your application needs to perform expensive
computations? There’s no one right answer, but there are a few com-
mon techniques available. Perhaps the simplest approach is to use
a concurrency mechanism like the web client platform’s Worker API.
This can be a good approach for games with artificial intelligence
that may need to search through a large space of possible moves. The
game might start up by spawning a dedicated worker for computing
moves:

var ai = new Worker("ai.js");

This has the effect of spawning a new concurrent thread of execution
with its own separate event queue, using the source file ai.js as the
worker’s script. The worker runs in a completely isolated state: It has
no direct access to any of the objects of the application. However, the
application and worker can communicate with each other by sending
messages to each other, in the form of strings. So whenever the game
requires the computer to make a move, it can send a message to the
worker:

var userMove = /* ... */;

ai.postMessage(JSON.stringify({

 userMove: userMove

}));

The argument to postMessage is added to the worker’s event queue as
a message. To process responses from the worker, the game registers
an event handler:

ai.onmessage = function(event) {

executeMove(JSON.parse(event.data).computerMove);

};

Meanwhile, the source file ai.js instructs the worker to listen for mes-
sages and perform the work required to compute next moves:

188 Chapter 7 Concurrency

self.onmessage = function(event) {

// parse the user move

var userMove = JSON.parse(event.data).userMove;

// generate the next computer move

var computerMove = computeNextMove(userMove);

// format the computer move

var message = JSON.stringify({

 computerMove: computerMove

 });

 self.postMessage(message);

};

function computeNextMove(userMove) {

// ...

}

Not all JavaScript platforms provide an API like Worker. And some-
times the overhead of passing messages can become too costly. A dif-
ferent approach is to break up an algorithm into multiple steps, each
consisting of a manageable chunk of work. Consider the work-list
algorithm from Item 48 for searching a social network graph:

Member.prototype.inNetwork = function(other) {

var visited = {};

var worklist = [this];

while (worklist.length > 0) {

var member = worklist.pop();

// ...

if (member === other) { // found?

return true;

 }

// ...

 }

return false;

};

If the while loop at the heart of this procedure is too expensive, the
search might block the application event queue for unacceptably long
periods of time. Even if the Worker API is available, it might be expen-
sive or inconvenient to implement, since it requires either copying the
entire state of the network graph or storing the graph state in a worker
and always using message passing to update and query the network.

 Item 65: Don’t Block the Event Queue on Computation 189

Luckily, the algorithm is defined as a sequence of individual steps:
the iterations of the while loop. We can convert inNetwork to an asyn-
chronous function by adding a callback parameter and, as described
in Item 64, replacing the while loop with an asynchronous, recursive
function:

Member.prototype.inNetwork = function(other, callback) {

var visited = {};

var worklist = [this];

function next() {

if (worklist.length === 0) {

callback(false);

return;

 }

var member = worklist.pop();

// ...

if (member === other) { // found?

callback(true);

return;

 }

// ...

setTimeout(next, 0); // schedule the next iteration

 }

setTimeout(next, 0); // schedule the first iteration

};

Let’s examine in detail how this code works. In place of the while loop,
we’ve written a local function called next, which has the responsibil-
ity of performing a single iteration of the loop and then scheduling the
next iteration to run asynchronously in the application event queue.
This allows other events that have occurred in the meantime to be
processed before continuing with the next iteration. When the search
is complete, by either finding a match or exhausting the work-list, we
call the callback with the result value and effectively complete the
loop by returning from next without scheduling anymore iterations.

To schedule iterations, we are using the common setTimeout API,
available in multiple JavaScript platforms, for registering next to run
after a minimal amount of elapsed time (0 milliseconds). This has
the effect of adding the callback to the event queue almost right away.
It’s worth noting that while setTimeout is relatively portable across
platforms, there’s often a better alternative available. In the browser
setting, for example, it’s actually throttled to a minimum timeout of
4 milliseconds, and there are alternatives using postMessage that
enqueue an event immediately.

190 Chapter 7 Concurrency

If performing only one iteration of the algorithm in each turn of the
application event queue is overkill, we can tune the algorithm to
perform a customized number of iterations per turn. This is easily
accomplished with a simple counter loop surrounding the main por-
tion of next:

Member.prototype.inNetwork = function(other, callback) {

// ...

function next() {

for (var i = 0; i < 10; i++) {

// ...

 }

setTimeout(next, 0);

 }

setTimeout(next, 0);

};

Things to Remember

✦ Avoid expensive algorithms in the main event queue.

✦ On platforms that support it, the Worker API can be used for run-
ning long computations in a separate event queue.

✦ When the Worker API is not available or is too costly, consider break-
ing up computations across multiple turns of the event loop.

Item 66: Use a Counter to Perform Concurrent
Operations

Item 63 suggested the utility function downloadAllAsync to take an
array of URLs and download them all, returning the array of file
contents, one string per URL. Besides cleaning up nested callbacks,
downloadAllAsync’s primary benefit is downloading files concurrently:

Instead of waiting for each file to finish downloading, we can initiate
all the downloads at once, in a single turn of the event loop.

Concurrent logic is subtle and easy to get wrong. Here is an imple-
mentation with a devious little flaw:

function downloadAllAsync(urls, onsuccess, onerror) {

var result = [], length = urls.length;

if (length === 0) {

setTimeout(onsuccess.bind(null, result), 0);

return;

 }

 Item 66: Use a Counter to Perform Concurrent Operations 191

 urls.forEach(function(url) {

downloadAsync(url, function(text) {

if (result) {

// race condition

 result.push(text);

if (result.length === urls.length) {

onsuccess(result);

 }

 }

 }, function(error) {

if (result) {

 result = null;

onerror(error);

 }

 });

 });

}

This function has a serious bug, but first let’s look at how it works.
We start by ensuring that if the input array is empty, the callback
is invoked with an empty result array—if we didn’t, neither of the
two callbacks would ever be invoked, since the forEach loop would
be empty. (Item 67 explains why we call setTimeout to invoke the
onsuccess callback instead of calling it directly.) Next, we iterate over
the URL array, requesting an asynchronous download for each. For
each successful download, we add the file contents to the result array;
if all URLs have been successfully downloaded, we call the onsuccess
callback with the completed result array. If any download fails, we
invoke the onerror callback with the error value. In case of multiple
failed downloads, we also set the result array to null to make sure
that onerror is only called once, for the first error that occurs.

To see what goes wrong, consider a use such as this:

var filenames = [

"huge.txt", // huge file

"tiny.txt", // tiny file

"medium.txt" // medium-sized file

];

downloadAllAsync(filenames, function(files) {

 console.log("Huge file: " + files[0].length); // tiny

 console.log("Tiny file: " + files[1].length); // medium

 console.log("Medium file: " + files[2].length); // huge

}, function(error) {

 console.log("Error: " + error);

});

192 Chapter 7 Concurrency

Since the files are downloaded concurrently, the events can occur (and
consequently be added to the application event queue) in arbitrary
orders. If, for example, tiny.txt completes first, followed by medium.txt
and then huge.txt, the callbacks installed in downloadAllAsync will
be called in a different order than the order they were created in.
But the implementation of downloadAllAsync pushes each interme-
diate result onto the end of the result array as soon as it arrives.
So downloadAllAsync produces an array containing downloaded files
stored in an unknown order. It’s almost impossible to use an API
like that correctly, because the caller has no way to figure out which
result is which. The example above, which assumes the results are
in the same order as the input array, will fail completely in this case.

Item 48 introduced the idea of nondeterminism: unspecified behavior
that programs cannot rely on without behaving unpredictably. Con-
current events are the most important source of nondeterminism in
JavaScript. Specifically, the order in which events occur is not guaran-
teed to be the same from one execution of an application to the next.

When an application depends on the particular order of events to
function correctly, the application is said to suffer from a data race:

Multiple concurrent actions can modify a shared data structure dif-
ferently depending on the order in which they occur. (Intuitively, the
concurrent operations are “racing” against one another to see who
will finish first.) Data races are truly sadistic bugs: They may not
even show up in a particular test run, since running the same pro-
gram twice may result in different behavior each time. For example,
the user of downloadAllAsync might try to reorder the files based on
which was more likely to download first:

downloadAllAsync(filenames, function(files) {

 console.log("Huge file: " + files[2].length);

 console.log("Tiny file: " + files[0].length);

 console.log("Medium file: " + files[1].length);

}, function(error) {

 console.log("Error: " + error);

});

In this case, the results might arrive in the same order most of the
time, but from time to time, due perhaps to changing server loads or
network caches, the files might not arrive in the expected order. These
tend to be the most challenging bugs to diagnose, because they’re so
difficult to reproduce. Of course, we could go back to downloading
the files sequentially, but then we lose the performance benefits of
concurrency.

 Item 66: Use a Counter to Perform Concurrent Operations 193

The solution is to implement downloadAllAsync so that it always pro-
duces predictable results regardless of the unpredictable order of
events. Instead of pushing each result onto the end of the array, we
store it at its original index:

function downloadAllAsync(urls, onsuccess, onerror) {

var length = urls.length;

var result = [];

if (length === 0) {

setTimeout(onsuccess.bind(null, result), 0);

return;

 }

 urls.forEach(function(url, i) {

downloadAsync(url, function(text) {

if (result) {

 result[i] = text; // store at fixed index

// race condition

if (result.length === urls.length) {

onsuccess(result);

 }

 }

 }, function(error) {

if (result) {

 result = null;

onerror(error);

 }

 });

 });

}

This implementation takes advantage of the forEach callback’s second
argument, which provides the array index for the current iteration.
Unfortunately, it’s still not correct. Item 51 describes the contract of
array updates: Setting an indexed property always ensures that the
array’s length property is greater than that index. Imagine a request
such as:

downloadAllAsync(["huge.txt", "medium.txt", "tiny.txt"]);

If the file tiny.txt finishes loading before one of the other files,
the result array will acquire a property at index 2, which causes
result.length to be updated to 3. The user’s success callback will
then be prematurely called with an incomplete array of results.

194 Chapter 7 Concurrency

The correct implementation uses a counter to track the number of
pending operations:

function downloadAllAsync(urls, onsuccess, onerror) {

var pending = urls.length;

var result = [];

if (pending === 0) {

setTimeout(onsuccess.bind(null, result), 0);

return;

 }

 urls.forEach(function(url, i) {

downloadAsync(url, function(text) {

if (result) {

 result[i] = text; // store at fixed index

 pending--; // register the success

if (pending === 0) {

onsuccess(result);

 }

 }

 }, function(error) {

if (result) {

 result = null;

onerror(error);

 }

 });

 });

}

Now no matter what order the events occur in, the pending counter
accurately indicates when all events have completed, and the com-
plete results are returned in the proper order.

Things to Remember

✦ Events in a JavaScript application occur nondeterministically, that
is, in unpredictable order.

✦ Use a counter to avoid data races in concurrent operations.

Item 67: Never Call Asynchronous Callbacks
Synchronously

Imagine a variation of downloadAsync that keeps a cache (implemented
as a Dict—see Item 45) to avoid downloading the same file multiple

 Item 67: Never Call Asynchronous Callbacks Synchronously 195

times. In the cases where the file is already cached, it’s tempting to
invoke the callback immediately:

var cache = new Dict();

function downloadCachingAsync(url, onsuccess, onerror) {

if (cache.has(url)) {

 onsuccess(cache.get(url)); // synchronous call

return;

 }

return downloadAsync(url, function(file) {

 cache.set(url, file);

onsuccess(file);

 }, onerror);

}

As natural as it may seem to provide data immediately if it’s available,
this violates the expectations of an asynchronous API’s clients in sub-
tle ways. First of all, it changes the expected order of operations. Item
62 showed the following example, which for a well-behaved asynchro-
nous API should always log messages in a predictable order:

downloadAsync("file.txt", function(file) {

 console.log("finished");

});

console.log("starting");

With the naïve implementation of downloadCachingAsync above, such
client code could end up logging the events in either order, depending
on whether the file has been cached:

downloadCachingAsync("file.txt", function(file) {

 console.log("finished"); // might happen first

});

console.log("starting");

The order of logging messages is one thing. More generally, the pur-
pose of asynchronous APIs is to maintain the strict separation of
turns of the event loop. As Item 61 explains, this simplifies concur-
rency by alleviating code in one turn of the event loop from having
to worry about other code changing shared data structures concur-
rently. An asynchronous callback that gets called synchronously vio-
lates this separation, causing code intended for a separate turn of the
event loop to execute before the current turn completes.

For example, an application might keep a queue of files remaining to
download and display a message to the user:

196 Chapter 7 Concurrency

downloadCachingAsync(remaining[0], function(file) {

 remaining.shift();

// ...

});

status.display("Downloading " + remaining[0] + "...");

If the callback is invoked synchronously, the display message will
show the wrong filename (or worse, "undefined" if the queue is empty).

Invoking an asynchronous callback can cause even subtler prob-
lems. Item 64 explains that asynchronous callbacks are intended to
be invoked with an essentially empty call stack, so it’s safe to imple-
ment asynchronous loops as recursive functions without any dan-
ger of accumulating unbounded call stack space. A synchronous call
negates this guarantee, making it possible for an ostensibly asyn-
chronous loop to exhaust the call stack space. Yet another issue is
exceptions: With the above implementation of downloadCachingAsync,
if the callback throws an exception, it will be thrown in the turn of
the event loop that initiated the download, rather than in a separate
turn as expected.

To ensure that the callback is always invoked asynchronously, we can
use an existing asynchronous API. Just as we did in Items 65 and 66,
we use the common library function setTimeout to add a callback to
the event queue after a minimum timeout. There may be preferable
alternatives to setTimeout for scheduling immediate events, depend-
ing on the platform.

var cache = new Dict();

function downloadCachingAsync(url, onsuccess, onerror) {

if (cache.has(url)) {

var cached = cache.get(url);

setTimeout(onsuccess.bind(null, cached), 0);

return;

 }

return downloadAsync(url, function(file) {

 cache.set(url, file);

onsuccess(file);

 }, onerror);

}

We use bind (see Item 25) to save the result as the first argument for
the onsuccess callback.

 Item 68: Use Promises for Cleaner Asynchronous Logic 197

Things to Remember

✦ Never call an asynchronous callback synchronously, even if the
data is immediately available.

✦ Calling an asynchronous callback synchronously disrupts the
expected sequence of operations and can lead to unexpected inter-
leaving of code.

✦ Calling an asynchronous callback synchronously can lead to stack
overflows or mishandled exceptions.

✦ Use an asynchronous API such as setTimeout to schedule an asyn-
chronous callback to run in another turn.

Item 68: Use Promises for Cleaner Asynchronous Logic

A popular alternative way to structure asynchronous APIs is to
use promises (sometimes known as deferreds or futures). The asyn-
chronous APIs we’ve discussed in this chapter take callbacks as
arguments:

downloadAsync("file.txt", function(file) {

 console.log("file: " + file);

});

By contrast, a promise-based API does not take callbacks as argu-
ments; instead, it returns a promise object, which itself accepts call-
backs via its then method:

var p = downloadP("file.txt");

p.then(function(file) {

 console.log("file: " + file);

});

So far this hardly looks any different from the original version. But
the power of promises is in their composability. The callback passed
to then can be used not only to cause effects (in the above example, to
print out to the console), but also to produce results. By returning a
value from the callback, we can construct a new promise:

var fileP = downloadP("file.txt");

var lengthP = fileP.then(function(file) {

return file.length;

});

198 Chapter 7 Concurrency

lengthP.then(function(length) {

 console.log("length: " + length);

});

One way to think about a promise is as an object that represents an
eventual value—it wraps a concurrent operation that may not have
completed yet, but will eventually produce a result value. The then
method allows us to take one promise object that represents one type
of eventual value and generate a new promise object that represents
another type of eventual value—whatever we return from the callback.

This ability to construct new promises from existing promises gives
them great flexibility, and enables some simple but very powerful idi-
oms. For example, it’s relatively easy to construct a utility for “joining”
the results of multiple promises:

var filesP = join(downloadP("file1.txt"),

downloadP("file2.txt"),

downloadP("file3.txt"));

filesP.then(function(files) {

 console.log("file1: " + files[0]);

 console.log("file2: " + files[1]);

 console.log("file3: " + files[2]);

});

Promise libraries also often provide a utility function called when,
which can be used similarly:

var fileP1 = downloadP("file1.txt"),

 fileP2 = downloadP("file2.txt"),

 fileP3 = downloadP("file3.txt");

when([fileP1, fileP2, fileP3], function(files) {

 console.log("file1: " + files[0]);

 console.log("file2: " + files[1]);

 console.log("file3: " + files[2]);

});

Part of what makes promises an excellent level of abstraction is that
they communicate their results by returning values from their then
methods, or by composing promises via utilities such as join, rather
than by writing to shared data structures via concurrent callbacks.
This is inherently safer because it avoids the data races discussed
in Item 66. Even the most conscientious programmer can make sim-
ple mistakes when saving the results of asynchronous operations in
shared variables or data structures:

 Item 68: Use Promises for Cleaner Asynchronous Logic 199

var file1, file2;

downloadAsync("file1.txt", function(file) {

 file1 = file;

});

downloadAsync("file2.txt", function(file) {

 file1 = file; // wrong variable

});

Promises avoid this kind of bug because the style of concisely com-
posing promises avoids modifying shared data.

Notice also that sequential chains of asynchronous logic actually
appear sequential with promises, rather than with the unwieldy nest-
ing patterns demonstrated in Item 62. What’s more, error handling is
automatically propagated through promises. When you chain a col-
lection of asynchronous operations together through promises, you
can provide a single error callback for the entire sequence, rather
than passing an error callback to every step as in the code in Item 63.

Despite this, it is sometimes useful to create certain kinds of races
purposefully, and promises provide an elegant mechanism for doing
this. For example, an application may need to try downloading the
same file simultaneously from several different servers and take
whichever one completes first. The select (or choose) utility takes
several promises and produces a promise whose value is whichever
result becomes available first. In other words, it “races” several prom-
ises against one another.

var fileP = select(downloadP("http://example1.com/file.txt"),

downloadP("http://example2.com/file.txt"),

downloadP("http://example3.com/file.txt"));

fileP.then(function(file) {

 console.log("file: " + file);

});

Another use of select is to provide timeouts to abort operations that
take too long:

var fileP = select(downloadP("file.txt"), timeoutErrorP(2000));

fileP.then(function(file) {

 console.log("file: " + file);

}, function(error) {

 console.log("I/O error or timeout: " + error);

});

200 Chapter 7 Concurrency

In that last example, we’re demonstrating the mechanism for provid-
ing error callbacks to a promise as the second argument to then.

Things to Remember

✦ Promises represent eventual values, that is, concurrent computa-
tions that eventually produce a result.

✦ Use promises to compose different concurrent operations.

✦ Use promise APIs to avoid data races.

✦ Use select (also known as choose) for situations where an inten-
tional race condition is required.

Index

Symbols
*, 10
~, 10
(, 25
!!, 151
==, 15–19
===, 17, 19
$, 169
%, 10
&, 10
&&, 13
+, 10, 12–14, 17, 25
++, 24–25
-, 10, 25
--, 24–25
., 28
<<, 10
>>, 10
>>>, 10
/, 25
;, 19–25
^, 10
|, 10
||, 13, 147, 151, 153
•, 185–186
, (expression sequencing operator), 55
[], 25, 107

A
Actors, 101
Actual argument, 67
add, 160–163
addChild, 96–97
addClass, 169
addEntry, 65
ai.js, 187–188
allKeys, 125–126

Anonymous function expressions, 41,
47–50, 60, 74

append, 66–67
apply, 65–67
Argument creep, 149
Arguments

options object, 149–153
order, 143–144
self-documenting, 149
and variadic functions, 67–72

arguments object, 3–5, 46, 67–72, 79–81,
138–140, 146, 148

Arithmetic operators, 7, 10
Array [[Class]], 107–109
Array constructor, 140–141
Array.isArray, 162
Array-like objects, 138–140, 160–164,

166
Array.prototype, 110–111
Arrays, 113–116, 123–125

associative, 114
concatenation, 139–140
every method, 137–138
filter method, 111, 135, 168
forEach method, 21, 72–73, 75, 108,

111, 128, 130–131, 134–138,
162, 191, 193–194

iteration, 132–138
literals, 140–141
map method, 61, 74–75, 98–100, 111,

134–135, 137, 139, 168
some method, 137–138
testing, 162–163

Asynchronous APIs, 171–175, 182
Asynchronous callbacks, 194–197
Asynchronous loops, 183–186
Automatic semicolon insertion, 19, 24

202 Index

B
Backward compatibility, 3
Basic Multilingual Plane (BMP), 26–28
bind, 72–75, 177
Binding occurrence, 99–100
Bit vectors, 160, 165
Bitwise arithmetic operators, 7–8, 10
Block scoping, 42
Blocking APIs, 174–175
Blocking function, 172
Block-local functions, 50–52
Boolean [[Class]], 108–109
break, 24–25
buffer, 66–67, 72–74
Bullet symbol (•), 185–186

C
Cached files, 195–197
call, 63–65, 119–122, 138–140
Call stack, 184–186
Call stack inspection, 79–81
Callback function, 60, 62, 65, 72–73,

99–100, 175–179
Chainable API, 168–169
checkPassword, 84–86, 92–93, 95
choose, 199
[[Class]] internal property, 107–109
Classes, 86–87
Closures, 39–41, 75–77, 94–95, 176
Code point, 25–29
Code unit, 26–29
Coercion, 9–14, 18, 164–167
Comma-separated values (CSV), 98–100
Comments, 149
concat, 139–140
Concatenation, 3–5, 22–23, 139–140
Concurrency

asynchronous callbacks, 194–197
counter and data race, 190–194
error handling, 179–183
event queue, 172–175, 186–190
nested callbacks, 175–179
promises, 197–200
recursion, 183–186

const, 2
constructor, 140–141
Constructors, 57–59, 91
Context (graphics), 101
continue, 24–25
Countdown, 184–186
Counter and data race, 190–194
C.prototype, 83, 87

CSV (comma-separated values),
98–100

Curry, Haskell, 75
Currying, 75

D
Data race, 192, 198
Date [[Class]], 106, 108–109
Debugging, 48, 105, 182
decodeURI, 28
decodeURIcomponent, 28
Defensive programming, 165
Deferreds, 197
Diagnostic information, 105
Dict, 118–122, 130, 195–196
Dictionaries, 113–116, 123–125
Direct eval, 54–55
displayPage, 157–159
“Do what I mean” semantics, 17
Double negation pattern (!!), 151
Double-precision floating-point, 7–9
downloadAllAsync, 178–179, 181–182,

190–194
downloadAsync, 173–178, 180–184, 195
downloadCachingAsync, 195–196
downloadFiles, 177–178
downloadOneAsync, 183–186
downloadOneSync, 183
downloadSync, 172
downloadURL, 177
Dropped errors, 179–183
Duck testing, 161
Duck typing, 159
Duplicate code, 61, 180
Dynamic typing, 159

E
ECMAScript standard, 1–2, 19, 28, 55,

77, 106–108
Edition 5 (ES5), 1, 3, 134–135, 162
enable, 160–165
encodeURI, 28
encodeURIcomponent, 28
Enumerable properties, 125–127
Enumeration, 114–117, 123–132
Error [[Class]], 108–109
Error-handling callbacks, 180–181
Errors, 179–183
Escape sequences, 168
eval function, 52–55
Event loop, 173
Event queue, 171, 172–175, 186–190

Index 203

Event-loop concurrency, 171
Eventual values, 198–200
every, 137–138
Exceptions, 44, 136, 179–180, 196–197
Expression sequencing operator (,), 55
extend function, 151–153

F
Falsy, 13–14
filter, 111, 135, 168
fillText, 154–155
Fixed-arity, 65, 67–68
Floating-point arithmetic, 124
Floating-point numbers, 7–9
Fluent style, 169
for loop, 24–25, 132–134
forEach, 21, 64–65, 72–73, 75, 108, 111,

128, 130–131, 134–138, 162, 191,
193–194

for...in loop, 113–116, 128–129, 132
Formal parameter, 67
Formatters, 157–159
Function [[Class]], 106, 108–109
Function declaration, 47
Function expression, 41, 47–50
Functions, 57–59

apply method, 65–67
arguments object, 3–5, 46, 67–72,

79–81, 138–140, 146, 148
bind method, 72–75, 177
call method, 63–65, 119–122,

138–140
call stack inspection, 79–81
closures, 75–77
higher-order, 60–63
toString method, 77–78

Futures, 197

G
Generic array methods, 138–140
getAuthor, 157–159
getCallStack, 79–80
getTitle, 157–159
Global variables, 31–34
guard, 165–167

H
hasOwnProperty, 64, 109, 115–122
Height/width, 143–144, 150
Higher-order functions, 60–63
highlight, 145–146
Hoisting, 42–44

hostname, 147
html method, 169

I
Identification number, 105–106
Image data, 102
Immediately invoked function

expressions (IIFE), 5, 6, 44–46
Implementation inheritance, 83, 109
Implicit binding, 98–100
Implicit coercions, 9–14
Index, 138–139
Indirect eval, 54–55
Inheritance, 83–85, 89, 104, 108–109,

118, 158–159
ini object, 155–156
inNetwork, 189
Instance properties, 103
Instance state, 95–98
instanceof operator, 162
Integer addition, 125
Introspection, 109
isNaN, 11
isReallyNaN, 12
Iterator, 70–71

J
join, 198
jQuery, 169
JSON [[Class]], 108
JSON data format, 33

L
Last-in, first out, 185–186
length, 132–133, 138–139, 166
Lexical environment, 36–37
Lexical scope, 42, 122
Library, 143–144
Lightweight dictionaries, 113–116
line.split, 99–100
lint tools, 34–35
Literals, 140–141
Local variables, 34–35, 52–54
Logical OR operator (||), 147, 150–151
Lookup, 118–119
Loops, 183–186

M
map, 61, 74–75, 98–100, 111, 134–135,

137, 139, 168
Math [[Class]], 108
me, 100

204 Index

MediaWiki, 157–158
Merging function, 151
Methods, 58–59

chaining, 167–170
storing on prototypes, 92–94

Mock object, 159
modal, 149–152
Module systems, 6
Monkey-patching, 110–111
moveTo, 102

N
Named function expression, 47
Naming conventions, 143–144
NaN (not a number), 11
Nested callbacks, 175–179
Nested function declaration, 52
Nested functions, 71–72
new, 59, 83, 89–91
newline, 19, 24–25
next, 189
Node.js, 181
NodeList, 138–140
Nonblocking APIs, 172
Nondeterminism, 130–132, 192
Nonstandard features, 2–3
null, 146
Number [[Class]], 108

O
Object [[Class]], 108
Object extension function, 151–153
Object introspection, 109
Objects as scopes, 49
Object wrappers, 15–16
Object.create, 89–91, 103–105, 116–117
Object.defineProperty, 126–127
Object.getPrototypeOf, 83–88, 109
Object.prototype, 115–116, 118–122,

125–127
Objects, 127–132, 138–140

hasOwnProperty method, 64, 109,
115–122

toString method, 12–14, 17–18, 107,
163

Operators
arithmetic, 7, 10, 21
bitwise, 8–9, 166
bitwise arithmetic, 10
expression sequencing (,), 55
typeof, 7, 14, 165–166

Optional arguments, 149–150

Options object, 149–153
or, 166–167
Order dependencies, 123–125
Overloading structural types, 161

P
Page class, 158–159
pick, 130–131
Pollution of objects, 87
Polyfill, 111
Positional arguments, 149–150
postMessage, 187–189
Predicates, 135, 137
Primitives, 15–18
Private data, 94–95, 106
Profiling, 105
Promises, 197–200
Property descriptor map, 116–117
Property names, 105–106
__proto__, 83–84, 86–89, 109, 117, 121
Prototype pollution, 115–122
Prototypes

C.prototype, 83, 87
as implementation detail, 109–110
instance state, 95–98
Object.getPrototypeOf, 83–88
__proto__, 83–84, 86–89, 109, 117,

121
storing methods on, 92–94

Q
Querying web pages, 169

R
Radix, 8
Receiver, 58–59, 63–65, 72–73
Recursion, 183–186
RegExp, 108–109
removeClass, 169
replace, 167–168
Restricted productions, 24
return, 24–25, 91
Run-to-completion guarantee, 172, 175

S
Scene graph, 101
Scope, 31

anonymous and named function
expressions, 47–50

block-local functions, 50–52
closures, 39–41
eval function, 52–55

Index 205

global variables, 31–34
hoisting, 42–44
immediately invoked function

expressions (IIFE), 5, 6, 44–46
local variables, 34–35
with statement, 35–39

Scope chain, 36
Security, 79, 94–95
select, 199–200
self, 90–91, 100, 167
Self-documenting arguments, 149
Semicolon, 19–25
setSection, 155–156
setTimeout, 189–191, 196
shift, 68–69
Shift operators, 10
Short-circuiting methods, 137
Single character pattern, 28
slice, 70, 140
some, 137–138
sort, 60
Source object, 151–153
split, 110
Stack inspection, 79–81
Stack overflow, 185
Stack trace, 79–81
State

instance state, 95–98
stateful API, 154–155, 169
stateless API, 153–156, 167–169

Strict equality, 17–18
Strict mode, 3–6, 51, 69–70
String, 15–16
String characters, replacing, 167–169
String [[Class]], 108–109
String literal, 3
String sets, 160–163
Strings, 75–76
Structural types, 161
Structural typing, 159
Subclass constructors, 101–105
Superclass constructors, 101–105
Superclass property names, 105–106
Supplementary plane, 27
Surrogate pair, 27–29
Synchronous function, 172

T
takeWhile, 135–137
Target object, 151–153
Termination, 133–134
Text formatting, 156, 159

that, 100
then, 197–199
32-bit integers, 7, 10
this, 58–59, 66, 98–100, 169
Threads, 172
throw, 24–25
toHTML, 157–159
Tokens, 20–22, 25
toString, 7–8, 12–14, 17–18, 77–78,

84–86, 92–95, 153, 167
trimSections, 42–43
true, 146
Truthiness, 13, 147–149
Truthy, 13, 135, 137, 147
try, 179, 182
tryNextURL, 183–184
Type errors, 9, 12
TypeError, 90, 108
typeof, 7, 14, 165–166

U
UCS-2, 26–27
uint32, 166
Unary operator, 17
undefined, 11, 14, 144–151, 169
Underscore character, 94
Unicode, 25–29
use strict, 3–6
User class, 86
User.prototype, 84–87, 90–91, 93
UTF-8, 26
UTF-16, 26–28
UTF-32, 26

V
val, 41
valueOf, 12–14, 16–18
var, 22, 32–35, 42–53
Variable hoisting, 42–44
Variable-arity function, 65–66, 68
Variable-length encoding, 27
Variadic function, 65–66, 68

W
Web development practices, 144
when, 198
while loop, 130–132, 188–189
Width/height, 143–144, 150
Wiki formatter, 157
Wiki library, 156–160
with statement, 35–39
Worker, 187–188

206 Index

Work-list, 131
Work-set, 127–131
wrapElements, 44–46

X
x and y, 38, 104, 150, 152
XMLHttpRequest library, 174–175

This page intentionally left blank

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Accustoming Yourself to JavaScript
	Item 1: Know Which JavaScript You Are Using
	Item 2: Understand JavaScript’s Floating-Point Numbers
	Item 3: Beware of Implicit Coercions
	Item 4: Prefer Primitives to Object Wrappers
	Item 5: Avoid using == with Mixed Types
	Item 6: Learn the Limits of Semicolon Insertion
	Item 7: Think of Strings As Sequences of 16-Bit Code Units

	Chapter 2: Variable Scope
	Item 8: Minimize Use of the Global Object
	Item 9: Always Declare Local Variables
	Item 10: Avoid with
	Item 11: Get Comfortable with Closures
	Item 12: Understand Variable Hoisting
	Item 13: Use Immediately Invoked Function Expressions to Create Local Scopes
	Item 14: Beware of Unportable Scoping of Named Function Expressions
	Item 15: Beware of Unportable Scoping of Block-Local Function Declarations
	Item 16: Avoid Creating Local Variables with eval
	Item 17: Prefer Indirect eval to Direct eval

	Chapter 3: Working with Functions
	Item 18: Understand the Difference between Function, Method, and Constructor Calls
	Item 19: Get Comfortable Using Higher-Order Functions
	Item 20: Use call to Call Methods with a Custom Receiver
	Item 21: Use apply to Call Functions with Different Numbers of Arguments
	Item 22: Use arguments to Create Variadic Functions
	Item 23: Never Modify the arguments Object
	Item 24: Use a Variable to Save a Reference to arguments
	Item 25: Use bind to Extract Methods with a Fixed Receiver
	Item 26: Use bind to Curry Functions
	Item 27: Prefer Closures to Strings for Encapsulating Code
	Item 28: Avoid Relying on the toString Method of Functions
	Item 29: Avoid Nonstandard Stack Inspection Properties

	Chapter 4: Objects and Prototypes
	Item 30: Understand the Difference between prototype, getPrototypeOf, and__proto__
	Item 31: Prefer Object.getPrototypeOf to __proto__
	Item 32: Never Modify __proto__
	Item 33: Make Your Constructors new-Agnostic
	Item 34: Store Methods on Prototypes
	Item 35: Use Closures to Store Private Data
	Item 36: Store Instance State Only on Instance Objects
	Item 37: Recognize the Implicit Binding of this
	Item 38: Call Superclass Constructors from Subclass Constructors
	Item 39: Never Reuse Superclass Property Names
	Item 40: Avoid Inheriting from Standard Classes
	Item 41: Treat Prototypes As an Implementation Detail
	Item 42: Avoid Reckless Monkey-Patching

	Chapter 5: Arrays and Dictionaries
	Item 43: Build Lightweight Dictionaries from Direct Instances of Object
	Item 44: Use null Prototypes to Prevent Prototype Pollution
	Item 45: Use hasOwnProperty to Protect Against Prototype Pollution
	Item 46: Prefer Arrays to Dictionaries for Ordered Collections
	Item 47: Never Add Enumerable Properties to Object.prototype
	Item 48: Avoid Modifying an Object during Enumeration
	Item 49: Prefer for Loops to for...in Loops for Array Iteration
	Item 50: Prefer Iteration Methods to Loops
	Item 51: Reuse Generic Array Methods on Array-Like Objects
	Item 52: Prefer Array Literals to the Array Constructor

	Chapter 6: Library and API Design
	Item 53: Maintain Consistent Conventions
	Item 54: Treat undefined As “No Value”
	Item 55: Accept Options Objects for Keyword Arguments
	Item 56: Avoid Unnecessary State
	Item 57: Use Structural Typing for Flexible Interfaces
	Item 58: Distinguish between Array and Array-Like
	Item 59: Avoid Excessive Coercion
	Item 60: Support Method Chaining

	Chapter 7: Concurrency
	Item 61: Don’t Block the Event Queue on I/O
	Item 62: Use Nested or Named Callbacks for Asynchronous Sequencing
	Item 63: Be Aware of Dropped Errors
	Item 64: Use Recursion for Asynchronous Loops
	Item 65: Don’t Block the Event Queue on Computation
	Item 66: Use a Counter to Perform Concurrent Operations
	Item 67: Never Call Asynchronous Callbacks Synchronously
	Item 68: Use Promises for Cleaner Asynchronous Logic

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

