
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Early Praise for Async JavaScript

Async JavaScript is the first full book I’ve seen dedicated to a key topic in Java-

Script development today: how to deal with concurrency and concurrent tasks

without going crazy! For the sake of your sanity, check this out.

➤ Peter Cooper, editor of JavaScript Weekly

Trevor delivers a concise guide to writing asynchronous JavaScript with a perfect

balance of browser and server-side examples. Part guide, part overview, wholly

engaging, this book is a must-read for any JavaScript developer looking to level

up.

➤ Wynn Netherland, co-host of The Changelog

This is a complete guide to the asynchronous realm of JavaScript. The concepts

and tools covered by this book are essential to anyone willing to build full-blown,

well-structured and efficient JavaScript applications.

➤ Julien Biezemans, Ruby/JavaScript developer, author of Cucumber.js

www.allitebooks.com

http://www.allitebooks.org

Async JavaScript
Build More Responsive Apps with Less Code

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)

Kim Wimpsett (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-27-7

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—November 2012

www.allitebooks.com

http://pragprog.com
http://www.allitebooks.org

Dedicated to Steve Jobs and to the generation

of entrepreneurs he inspired.

www.allitebooks.com

http://www.allitebooks.org

Contents

Acknowledgments ix

Introduction xi

1. Understanding JavaScript Events 1

Scheduling Events 11.1

1.2 Types of Async Functions 4

1.3 Writing Async Functions 7

1.4 Handling Async Errors 12

1.5 Un-nesting Callbacks 17

1.6 What We’ve Learned 18

2. Distributing Events 19

PubSub 202.1

2.2 Evented Models 24

2.3 Custom jQuery Events 26

2.4 What We’ve Learned 28

3. Promises and Deferreds 31

A Very Brief History of Promises 323.1

3.2 Making Promises 33

3.3 Passing Data to Callbacks 37

3.4 Progress Notifications 38

3.5 Combining Promises 39

3.6 Binding to the Future with pipe 41

3.7 jQuery vs. Promises/A 43

3.8 Replacing Callbacks with Promises 44

3.9 What We’ve Learned 45

4. Flow Control with Async.js 47

The Async Ordering Problem 484.1

4.2 Async Collection Methods 49

www.allitebooks.com

http://www.allitebooks.org

4.3 Organizing Tasks with Async.js 53

4.4 Dynamic Async Queuing 54

4.5 Minimalist Flow Control with Step 58

4.6 What We’ve Learned 59

5. Multithreading with Workers 61

5.1 Web Workers 62

5.2 Node Workers with cluster 64

5.3 What We’ve Learned 67

6. Async Script Loading 69

Limitations and Caveats 706.1

6.2 Reintroducing the <script> Tag 70

6.3 Programmatic Loading 74

6.4 What We’ve Learned 79

A1. Tools for Taming JavaScript 81

A1.1 TameJS 81

A1.2 StratifiedJS 81

A1.3 Kaffeine 82

A1.4 Streamline.js 82

A1.5 Node-Fibers 83

A1.6 The Future of JavaScript: Generators 83

Contents • viii

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

It was not love at first sight with me and JavaScript. Yet today, it’s one of my

two favorite programming languages. The other? Its little brother, CoffeeScript.

The story of how I learned to stop worrying and love JavaScripting is a story

shared by tens of thousands of programmers. I’d like to thank those who took

JavaScript seriously from the start, shaping the rich development ecosystem

the language enjoys today: John Resig, for creating the browser’s de facto

standard library, jQuery; Jeremy Ashkenas, for producing CoffeeScript and

the rich yet minimalistic Backbone.js framework; Ryan Dahl, for giving the

language a robust server environment; and all the other programmers who’ve

proven through their work that JavaScript is a first-class language after all.

Of course, love alone didn’t write this book. I’d like to thank the Pragmatic

Bookshelf team for helping me thoroughly renovate my original KickStarted

manuscript and raise it to the standard of quality that PragProg is famous

for. Particular thanks go to managing editor Susannah Pfalzer, head honchos

Dave Thomas and Andy Hunt, and most of all my editor, Jackie Carter. Their

savvy and motivation have been invaluable.

Thanks also to my technical reviewers for this edition: Julien Biezemans,

Christophe Porteneuve, Michael Ficarra, Travis Swicegood, and Lon Ingram.

Special thanks to Karl Stolley for going above and beyond in multiple reviews.

I’d also like to thank Stan Angeloff and Roly Fentanes for reviewing the original

manuscript. Any remaining errors are entirely my fault.

Thanks, finally, to my employer, HubSpot, for supporting me as I brought

this book to completion. After years of nomadic freelancing, I’ve finally found

a home.

Trevor Burnham

trevorburnham@gmail.com
November 2012

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

Introduction

Originally devised to enhance web pages in Netscape 2.0, JavaScript is now

faced with being a single-threaded language in a multimedia, multitasking,

multicore world. Yet JavaScript has not only persevered since 1995, it’s

thrived. One after the other, potential rivals in the browser—Flash, Silverlight,

and Java applets, to name a few—have come and (more or less) gone.

Meanwhile, when a programmer named Ryan Dahl wanted to build a new

framework for event-driven servers, he searched the far reaches of computer

science for a language that was both dynamic and single-threaded before

realizing that the answer was right in front of him. And so, Node.js was born,

and JavaScript became a force to be reckoned with in the server world.

How did this happen? As recently as 2001, Paul Graham wrote the following

in his essay “The Other Road Ahead”:1

I would not even use JavaScript, if I were you… Most of the JavaScript I see on

the Web isn’t necessary, and much of it breaks.

Today, Graham is the lead partner at Y Combinator, the investment group

behind Dropbox, Heroku, and hundreds of other start-ups—nearly all of which

use JavaScript. As he put it in a revised version of the essay, “JavaScript now

works.”

When did JavaScript become a respectable language? Some say the turning

point was Gmail (2004), which showed the world that with a heavy dose of

Ajax you could run a first-class email client in the browser. Others say that

it was jQuery (2006), which abstracted the rival browser APIs of the time to

create a de facto standard. (As of 2011, 48 percent of the top 17,000 websites

use jQuery.2)

1. A revised version of this essay can be found at http://paulgraham.com/road.html. The original

footnote can be found in the book Hackers & Painters.

2. http://appendto.com/jquery-overtakes-flash

report erratum • discusswww.allitebooks.com

http://paulgraham.com/road.html
http://appendto.com/jquery-overtakes-flash
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

Whatever the reason, JavaScript is here to stay. Apple got behind JavaScript

with WebKit and Safari. Microsoft is getting behind JavaScript with Metro.

Even Adobe is getting behind JavaScript with tools to generate HTML5 instead

of Flash. What began as a humble browser feature has become arguably the

most important programming language in the world.

Thanks to the ubiquity of web browsers, JavaScript has come closer than

any other language to fulfilling Java’s old promise of “write once, run any-

where.” In 2007, Jeff Atwood coined Atwood’s law:

Any application that can be written in JavaScript will eventually be written in

JavaScript.3

Trouble in Paradise

JavaScript was conceived to be a single-threaded language where asyn-

chronous tasks are handled with events. When there are only a few potential

events, event-based code is much simpler than multithreaded code. It’s con-

ceptually elegant, and it eliminates the need to wrap up data in mutexes and

semaphores to make it thread-safe. But when a number of events are

expected, with state that needs to be carried from one event to the next, that

simplicity often gives way to a code structure so terrifying that it’s been dubbed

the Pyramid of Doom.

step1(function(result1) {
step2(function(result2) {
step3(function(result3) {

// and so on...
});

});
});

“I love async, but I can’t code like this,” one developer famously complained

on the Node.js Google Group.4 But the problem isn’t with the language itself;

it’s with the way programmers use the language. Dealing with complex sets

of events in an elegant way is still frontier territory in JavaScript.

So, let’s push the frontier forward! Let’s prove to the world that even the most

complex problems can be tackled with clean, maintainable JavaScript code.

3. http://www.codinghorror.com/blog/2007/07/the-principle-of-least-power.html
4. https://groups.google.com/forum/#!topic/nodejs/wzSUdkPICWg

Introduction • xii

report erratum • discuss

http://www.codinghorror.com/blog/2007/07/the-principle-of-least-power.html
https://groups.google.com/forum/#!topic/nodejs/wzSUdkPICWg
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Who Is This Book For?

This book is aimed at intermediate JavaScripters. You should know how

variables are scoped. Keywords like typeof, arguments, and this shouldn’t faze

you. Perhaps most importantly, you should understand that

func(function(arg) { return next(arg); });

is just a needlessly verbose way of writing

func(next);

except in rare cases. (See Reg Braithwaite’s excellent article “Captain Obvious

on JavaScript” for more examples of small but important functional idioms.)5

What you don’t need to know is how asynchronous events are scheduled in

JavaScript. We’ll cover that in the next chapter.

Resources for Learning JavaScript

As JavaScript has become the lingua franca of the Web (not to mention mobile

devices), a vast number of informative books, courses, and sites devoted to

it have appeared. Here are a few that I recommend:

• If you’re new to programming altogether, check out the interactive tutorial

site Codecademy.6

• If you’re coming from another language and want to get up and running

with JavaScript as a language for scripting the browser, take the interac-

tive jQuery Air courses on CodeSchool.7

• If you want a more formal introduction to the JavaScript language, absorb

Marijn Haverbeke’s Eloquent JavaScript.8

• If you’re a JavaScript beginner who wants to level up and avoid common

pitfalls, spend some time in the JavaScript Garden.9

Where to Turn for Help?

When pondering questions like “Should I use typeof or instanceof here?” steer

clear of the dated W3Schools site (which, regrettably, tends to be favored by

Google searches). Instead, head to the Mozilla Developer Network (MDN).10

5. https://github.com/raganwald/homoiconic/blob/master/2012/01/captain-obvious-on-javascript.md
6. http://www.codecademy.com/
7. http://www.codeschool.com/
8. http://eloquentjavascript.net/
9. http://javascriptgarden.info/
10. https://developer.mozilla.org/

report erratum • discuss

Who Is This Book For? • xiii

https://github.com/raganwald/homoiconic/blob/master/2012/01/captain-obvious-on-javascript.md
http://www.codecademy.com/
http://www.codeschool.com/
http://eloquentjavascript.net/
http://javascriptgarden.info/
https://developer.mozilla.org/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

The Mozilla Foundation (you may have heard of its browser, Firefox) is headed

up by Brendan Eich, the creator of JavaScript. The foundation knows its

stuff.

If you can’t find your answer among MDN’s pages, take your question to Stack

Overflow.11 The site has fostered an amazingly helpful developer community,

and it’s a safe bet that any coherent question tagged JavaScript will receive a

punctual response.

Running the Code Examples

This book is a bit unusual, in that I discuss both client-side (browser) and

server-side (Node.js) code. That reflects the uniquely portable nature of

JavaScript. The central concepts apply to all JavaScript environments, but

certain examples are aimed at one or the other.

Even if you have no interest in writing Node applications, I hope you’ll follow

along by running these code snippets locally. See Running Code in Node.js,

on page xiv for directions.

Which Examples Are Runnable?

When you see a code snippet with a filename, that means it’s self-contained

and can be run without modification. Here’s an example:

Preface/stringConstructor.js

console.log('str'.constructor.name);

The surrounding context should make it clear whether the code is runnable

in the browser, in Node.js, or in both.

When a code snippet doesn’t have a filename, that means it’s not self-con-

tained. It may be part of a larger example, or it may be a hypothetical. Here’s

an example:

var tenSeconds = 10 * 1e3;
setTimeout(launchSatellite, tenSeconds);

These examples are meant to be read, not run.

Running Code in Node.js

Node is very easy to install and use: just head to http://nodejs.org/, click Download,

and run the Windows or OS X installer (or build from source on *nix). You

can then run node from the command line to open a JavaScript REPL (analo-

gous to Ruby’s irb environment).

11. http://stackoverflow.com/

Introduction • xiv

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Preface/stringConstructor.js
http://nodejs.org/
http://stackoverflow.com/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

$ node
> Math.pow(5, 6)
15625

You can run a JavaScript file by giving its name as an argument to the node
command.

$ echo "console.log(typeof NaN)" > foo.js
$ node foo.js
number

Running Code in the Browser

Every modern browser provides a nice little REPL that lets you run JavaScript

code in the context of the current page. But for playing with multiline code

examples, you’re better off using a web sandbox like jsFiddle.12

With jsFiddle, you can enter JavaScript, HTML, and CSS, and then click Run

(or press Ctrl+Enter) to see the result. (console output will go to your developer

console.) You can bring in a framework like jQuery by choosing it in the left

sidebar. And you can save your work, giving you a shareable URL.

Code Style in This Book

JavaScript has no official style guide, but maintaining a consistent style

within a project is important. For this book, I’ve adopted the following (very

common) conventions:

• Two-space indentation

• camelCase identifiers

• Semicolons at the end of every expression, except function definitions

More esoterically, I’ve adopted a special convention for indentation in a chain

of function calls, based on a proposal by Reg Braithwaite. The rule is, essen-

tially, that two function calls in a chain have the same indentation level if

and only if they return the same object. So, for instance, I might write the

following:

$('#container > ul li.inactive')
.slideUp();

jQuery’s slideUp method returns the same object that it was called on. Thus,

it isn’t indented. By contrast:

var $paragraphClone = $('p:last')
.clone();

12. http://jsfiddle.net/

report erratum • discuss

Code Style in This Book • xv

http://jsfiddle.net/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Here, the clone method is indented because it returns a different object.

The advantage of this convention is that it clarifies what each function in a

chain is returning. Here’s a more complex example:

$('h1')
.first()
.addClass('first')

.end()
.last()
.addClass('last');

jQuery’s first and last filter a set down to its first and last elements, while end
undoes the last filter. So, end is unindented because it returns the same value

as $('h1'). (last is allowed to occupy the same indentation level as first because

the chain was reset.)

This approach to indentation is especially useful when we’re doing functional

programming, as we’ll see in Chapter 4, Flow Control with Async.js, on page

47.

[1, 2, 3, 4, 5]
.filter(function(int) { return int % 2 === 1; })
.forEach(function(odd) { console.log(odd); })

A Word on altJS

A number of languages compile to JavaScript, making code easier to write.

(You can find a fairly comprehensive list at http://altjs.org.) This book isn’t about

them. It’s about writing the best JavaScript code we can without the use of

a precompiler. I have nothing against altJS (see the next section), but I believe

it’s important to understand the underlying language.

Some altJS languages are aimed specifically at “taming” async callbacks by

allowing them to be written in a more synchronous style. I’ve included an

overview of these languages in Appendix 1, Tools for Taming JavaScript, on

page 81.

CoffeeScript

It’s no secret that I ♥ CoffeeScript, a beautiful and expressive language that

compiles to JavaScript. I use it extensively in my day-to-day work at HubSpot.

I’ve given talks on it at conferences like Railsconf and Øredev. And it was the

subject of my first book, CoffeeScript: Accelerated JavaScript Development.13

13. http://pragprog.com/book/tbcoffee/coffeescript

Introduction • xvi

report erratum • discuss

http://altjs.org
http://pragprog.com/book/tbcoffee/coffeescript
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

But when I started writing the book you’re reading now, I decided that doing

it in CoffeeScript would needlessly limit its appeal. By and large, Coffee-

Scripters understand JavaScript perfectly well, whereas code like square = (x)
=> x * x might as well be hieroglyphics to JavaScript purists.14

So, if you’re a CoffeeScripter, my apologies for the curly braces. Rest assured

that the lessons you draw from this book will carry over to any altJS language.

Resources for This Book

This book has a website at http://pragprog.com/book/tbajs/async-javascript. There you

can download the example code used in the book, get up-to-date information,

and ask book-related questions in a friendly forum.

For more general JavaScript-related questions, I (again) heartily recommend

Stack Overflow.15 I have no affiliation with the site, but I am an avid fan with

a proud 23,000 reputation points (and counting). Coherent, well-formatted

questions there are almost always answered promptly.

Finally, if you want to contact me directly, you can reach me at trevorburn-
ham@gmail.com or on Twitter: @trevorburnham. I’m always happy to hear from my

readers.

Enough introduction. Let’s get our async on!

14. However, maybe not for long: http://wiki.ecmascript.org/doku.php?id=harmony:arrow_function_syntax.
15. http://stackoverflow.com/

report erratum • discuss

Resources for This Book • xvii

http://pragprog.com/book/tbajs/async-javascript
http://wiki.ecmascript.org/doku.php?id=harmony:arrow_function_syntax
http://stackoverflow.com/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

CHAPTER 1

Understanding JavaScript Events

Events. How do they work? Confusion about JavaScript’s asynchronous event

model is as old as JavaScript itself. Confusion leads to bugs, bugs lead to

anger, and Yoda taught us the rest….

Yet at heart, JavaScript events are both conceptually elegant and practical.

Once you’ve accepted the language’s single-threaded design, it feels like a

feature rather than a limitation. It means that your code is uninterruptible

and that the events you schedule line up in an orderly fashion.

In this chapter, we’ll take a tour of JavaScript’s asynchronous mechanisms

and dispel some common misconceptions. We’ll see what setTimeout really does.

Then we’ll discuss handling errors in callbacks. Finally, we’ll set up the main

theme of this book: organizing async code for clarity and maintainability.

1.1 Scheduling Events

When we want to make a piece of code run in the future in JavaScript, we

put it in a callback. A callback is just an ordinary function, except that it’s

passed to a function like setTimeout or bound as a property like document.onready.
When a callback runs, we say that an event (e.g., the timeout elapsing or the

document becoming ready) has fired.

Of course, the devil is in the details, even for something as seemingly simple

as setTimeout. A common description of setTimeout goes something like this:

Given a callback and a delay of n milliseconds, setTimeout runs that callback n

milliseconds later.

But as we’ll see in this section, and throughout this chapter, that description

is seriously flawed. In most cases, it’s only approximately true. In others, it’s

flat-out wrong. To truly understand setTimeout, we have to understand the

JavaScript event model as a whole.

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Now or Later?

To begin our exploration of setTimeout, let’s look at a simple example of a situ-

ation that often mystifies new JavaScripters, especially those coming from

multithreaded languages like Java and Ruby.

EventModel/loopWithTimeout.js

for (var i = 1; i <= 3; i++) {
setTimeout(function(){ console.log(i); }, 0);

};

4❮

4
4

Most newcomers to the language would expect the loop to produce the output

1, 2, 3, or perhaps a juxtaposition of those three numbers as the three timeouts

(each scheduled to go off in 0 milliseconds) race to fire first.

To understand why the output is 4, 4, 4 instead, there are three things you

need to know.

• There’s only one variable named i, scoped by the declaration var i (which,

incidentally, scopes it not within the loop but within the closest function

containing the loop).

• After the loop, i === 4, having been incremented until it failed the condition

i <= 3.

• JavaScript event handlers don’t run until the thread is free.

The first two concepts are in the realm of JavaScript 101, but the third comes

as more of a surprise. When I first started using JavaScript, I didn’t quite

believe it. Java had trained me to fear that my code could be interrupted at

any moment. A million potential edge cases filled me with anxiety as I won-

dered, “What if a rare event happened between these two lines of code?”

And then one day, that burden was lifted from me….

Blocking the Thread

This piece of code demolished my preconceptions about JavaScript events:

EventModel/loopBlockingTimeout.js

var start = new Date;
setTimeout(function(){

var end = new Date;
console.log('Time elapsed:', end - start, 'ms');

}, 500);
while (new Date - start < 1000) {};

Chapter 1. Understanding JavaScript Events • 2

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/EventModel/loopWithTimeout.js
http://media.pragprog.com/titles/tbajs/code/EventModel/loopBlockingTimeout.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

In my multithreaded mind-set, I’d expected only 500ms to go by before the

timed function ran. But that would have required the loop, designed to last

a full second, to be interrupted. Instead, if you run the code, you’ll get

something like this:

Time elapsed: 1002ms❮

You’ll probably get a slightly different number; setTimeout and setInterval are,

alas, a lot less precise than you’d hope (see Timing Functions, on page 5).

But it will definitely be at least 1000, because the setTimeout callback can’t fire

until the while loop has finished running.

So, if setTimeout isn’t using another thread, then what is it doing?

Meet the Queue

When we call setTimeout, a timeout event is queued. Then execution continues:

the line after the setTimeout call runs, and then the line after that, and so on,

until there are no lines left. Only then does the JavaScript virtual machine

ask, “What’s on the queue?”

If there’s at least one event on the queue that’s eligible to “fire” (like a 500ms

timeout that was set 1000ms ago), the VM will pick one and call its handler

(e.g., the function we passed in to setTimeout). When the handler returns, we

go back to the queue.

Input events work the same way: when a user clicks a DOM element with a

click handler attached, a click event is queued. But the handler won’t be

executed until all currently running code has finished (and, potentially, until

after other events have had their turn). That’s why web pages that use Java-

Script imprudently tend to become unresponsive.

You might sometimes hear the term event loop used to describe how the queue

works. It’s as if your code is being run from a loop that looks like this:

runYourScript();
while (atLeastOneEventIsQueued) {

fireNextQueuedEvent();
};

One implication of this is that each event that fires will be at the root of the

stack trace. We’ll learn more about that in Section 1.4, Handling Async Errors,

on page 12.

The ease of event scheduling in JavaScript is one of the language’s most

powerful features. Async functions like setTimeout make delayed execution

simple, without spawning threads. JavaScript code can never be interrupted,

report erratum • discuss

Scheduling Events • 3

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

because events can be queued only while code is running; they can’t fire until

it’s done.

In the next section, we’ll take a closer look at the building blocks of async

JavaScript.

1.2 Types of Async Functions

Each JavaScript environment comes with its own set of async functions.

Some, like setTimeout and setInterval, are ubiquitous. Others are unique to certain

browsers or server-side frameworks. The async functions provided by the

JavaScript environment generally fall into two categories: I/O and timing.

These are the basic building blocks that you’ll use to define complex async

behaviors in your applications.

I/O Functions

Node.js wasn’t created so that people could run JavaScript on the server. It

was created because Ryan Dahl wanted an event-driven server framework

built on a high-level language. JavaScript just happened to be the right lan-

guage for the job. Why? Because the language is a perfect fit for nonblocking

I/O.

In other languages, it’s tempting to “block” your application (typically by

running a loop) until an I/O request completes. In JavaScript, that approach

isn’t even possible. A loop like this will run forever:

var ajaxRequest = new XMLHttpRequest;
ajaxRequest.open('GET', url);
ajaxRequest.send(null);
while (ajaxRequest.readyState === XMLHttpRequest.UNSENT) {

// readyState can't change until the loop returns
};

Instead, you need to attach a handler and return to the event queue.

var ajaxRequest = new XMLHttpRequest;
ajaxRequest.open('GET', url);
ajaxRequest.send(null);
ajaxRequest.onreadystatechange = function() {

// ...
};

That’s how it goes. Whether you’re waiting for a keypress from the user or a

batch of data from a remote server, you need to define a callback—unless

your JavaScript environment gives you a synchronous I/O function that does

the blocking for you.

Chapter 1. Understanding JavaScript Events • 4

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

In the browser, Ajax methods have an async option that can (but should never,

ever) be set to false, bringing the entire browser pane to a halt until a response

is received. In Node.js, synchronous API methods are clearly indicated with

names like fs.readFileSync. These are convenient when writing short scripts but

should be avoided when writing applications that need to handle multiple

requests or operations in parallel. And these days, which applications don’t?

Some I/O functions have both synchronous and async effects. For instance,

when you manipulate the DOM in a modern browser, the changes are

immediate from your script’s perspective but aren’t rendered until you return

to the event queue. That prevents the DOM from being rendered in an

inconsistent state. You can see a simple demonstration of this at http://jsfiddle.net/
TrevorBurnham/SNBYV/.

Is console.log Async?

WebKit’s console.log has surprised many a developer by behaving asynchronously. In

Chrome or Safari, this code will log {foo: bar}:

EventModel/log.js

var obj = {};
console.log(obj);
obj.foo = 'bar';

How does this happen? Rather than taking a snapshot of the object immediately,

WebKit’s console.log stores a reference to the object and then takes a snapshot when

the code returns to the event queue.

Node’s console.log, on the other hand, is strictly synchronous, so the same code yields

the output {}.

Adapting to nonblocking I/O is one of the biggest hurdles that newcomers to

JavaScript face, but it’s also one of the language’s key strengths. It makes

writing efficient, event-based code feel natural.

Timing Functions

We’ve seen how async functions are a natural fit for I/O operations, but

sometimes we want asynchronicity for its own sake. That is, we want to make

a function run at some point in the future, perhaps for an animation or a

simulation. The well-known functions for time-based events are setTimeout and

its repeating cousin, setInterval.

Unfortunately, these well-known timer functions have their flaws. As we saw

in Blocking the Thread, on page 2, one of those flaws is insurmountable: no

JavaScript timing function can cause code to run while other code is running

report erratum • discuss

Types of Async Functions • 5

http://jsfiddle.net/TrevorBurnham/SNBYV/
http://jsfiddle.net/TrevorBurnham/SNBYV/
http://media.pragprog.com/titles/tbajs/code/EventModel/log.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

in the same JavaScript process. But even with that limitation in mind, setTime-
out and setInterval are alarmingly imprecise. Here’s a demonstration:

EventModel/fireCount.js

var fireCount = 0;
var start = new Date;
var timer = setInterval(function() {

if (new Date - start > 1000) {
clearInterval(timer);
console.log(fireCount);
return;

}
fireCount++;

}, 0);

When we schedule an event with setInterval and a 0ms delay, it should run as

often as possible, right? So, in a modern browser powered by a speedy Intel

i7 processor, at what rate does the event fire?

About 200/sec. That’s across Chrome, Safari, and Firefox. Under Node, the

event fired at a rate of about 1000/sec. (Using setTimeout to schedule each

iteration yields similar results.) By comparison, replacing setInterval with a

simple while loop brings that rate to 4,000,000/sec in Chrome and

5,000,000/sec in Node!

What’s going on? It turns out that setTimeout and setInterval are slow by design.

In fact, the HTML spec (which all major browsers respect) mandates a minimum

timeout/interval of 4ms!1

So, what do you do when you need finer-grained timing? Some runtimes offer

alternatives.

• In Node, process.nextTick lets you schedule an event to fire ASAP. On my

system, process.nextTick events fire at a rate of over 100,000/sec.

• Modern browsers (including IE9+) have a requestAnimationFrame function,

which serves a dual purpose: it allows JavaScript animations to run at

60+ frames/sec, and it conserves CPU cycles by preventing those anima-

tions from running in background tabs. In the latest Chrome, you can

even get submillisecond precision.2

Though they’re the bread and butter of async JavaScript, never forget that

setTimeout and setInterval are imprecise tools. When you just want to produce a

1. http://www.whatwg.org/specs/web-apps/current-work/multipage/timers.html#dom-windowtimers-settimeout
2. http://updates.html5rocks.com/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision

Chapter 1. Understanding JavaScript Events • 6

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/EventModel/fireCount.js
http://www.whatwg.org/specs/web-apps/current-work/multipage/timers.html#dom-windowtimers-settimeout
http://updates.html5rocks.com/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

short delay in Node, use process.nextTick. In the browser, try to use a shim3 that

defers to requestAnimationFrame in browsers that support it and falls back on

setTimeout in those that don’t.

That concludes our brief overview of basic async functions in JavaScript. But

how do we tell when a function is async anyway? In the next section, we’ll

ponder that question as we write our own async functions.

1.3 Writing Async Functions

Every async function in JavaScript is built on some other async function(s).

It’s async functions all the way down (to native code)!

The converse is also true: any function that uses an async function has to

provide the result of that operation in an async way. As we learned from

Blocking the Thread, on page 2, JavaScript doesn’t provide a mechanism for

preventing a function from returning until an async operation has finished.

In fact, until the function returns, no async events will fire.

In this section, we’ll look at some common patterns in async function design.

We’ll see that functions can be mercurial, deciding to be async only some of

the time. But first, let’s define exactly what an async function is.

When Is a Function Async?

The term async function is a bit of a misnomer: if you call a function, your

program simply won’t continue until that function returns. What JavaScripters

mean when they call a function “async” is that it can cause another function

(called a callback when it’s passed as an argument to the function) to run

later, from the event queue. So, an async function that takes a callback will

never fail this test:

var functionHasReturned = false;
asyncFunction(function() {

console.assert(functionHasReturned);
});
functionHasReturned = true;

Another term for async functions is nonblocking. The term emphasizes how

speedy they are: a query made with an async MySQL driver may take an hour,

but the function that sent the query will return in a matter of microseconds

—a boon to web servers that need to quickly process a high volume of

incoming requests.

3. http://paulirish.com/2011/requestanimationframe-for-smart-animating/

report erratum • discuss

Writing Async Functions • 7

http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Typically, functions that take a callback take it as their last argument.

(Regrettably, the venerable setTimeout and setInterval are exceptions to this con-

vention.) But some async functions take callbacks indirectly, by returning a

Promise or using PubSub. We’ll learn about those patterns later in the book.

Unfortunately, the only way to be sure whether a function is async or not is

to inspect its source code. Some functions that are synchronous have an API

that looks async, either because they might become async in the future or

because callbacks provide a convenient way to return multiple arguments.

When in doubt, don’t depend on a function being async.

Sometimes-Async Functions

There are functions that are async sometimes but not at other times. For

instance, jQuery’s eponymous function (typically aliased as $) can be used to

delay a function until the DOM has finished loading. But if the DOM has

already finished loading, there’s no delay; its callback fires immediately.

This unpredictable behavior can get you in a lot of trouble if you aren’t careful.

One mistake I’ve seen (and made myself) is assuming that $ will run a function

after other scripts on the page have loaded.

// application.js
$(function() {

utils.log('Ready');
});

// utils.js
window.utils = {

log: function() {
if (window.console) console.log.apply(console, arguments);

}
};

<script src="application.js"></script>
<script src="util.js"></script>

This code works fine—unless the browser loads the page from the cache,

making the DOM ready before the script runs. When that happens, the call-

back passed to $ runs before utils.log is set, causing an error. (We could avoid

this situation by taking a more modern approach to client-side dependency

management. See Chapter 6, Async Script Loading, on page 69.)

Let’s look at another example.

Chapter 1. Understanding JavaScript Events • 8

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Async Functions with Caching

A common variety of sometimes-async functions is async request functions

that cache their results. For example, suppose we’re writing a browser-based

calculator that uses web workers to run calculations in a separate thread.

(We’ll learn about the Web Worker API in Chapter 5, Multithreading with

Workers, on page 61.) Our main script might look like this:4

var calculationCache = {},
calculationCallbacks = {},
mathWorker = new Worker('calculator.js');

mathWorker.addEventListener('message', function(e) {
var message = e.data;
calculationCache[message.formula] = message.result;
calculationCallbacks[message.formula](message.result);

});

function runCalculation(formula, callback) {
if (formula in calculationCache) {
return callback(calculationCache[formula]);

};
if (formula in calculationCallbacks) {
return setTimeout(function() {
runCalculation(formula, callback);

}, 0);
};
mathWorker.postMessage(formula);
calculationCallbacks[formula] = callback;

}

Here, the runCalculation function is synchronous when the result has already

been cached but is asynchronous otherwise. There are three possible

scenarios.

• The formula has already been computed, so the result is in the calculation-
Cache. In this case, runCalculation is synchronous.

• The formula has been sent to the worker, but the result hasn’t been

received yet. In this case, runCalculation sets a timeout to call itself again;

the process will repeat until the result is in calculationCache.

• The formula hasn’t yet been sent to the worker. In this case, we’ll invoke

the callback from the worker’s 'message' event listener.

4. You can see a working version of this example at http://webworkersandbox.com/
5009efc12245588e410002cf.

report erratum • discuss

Writing Async Functions • 9

http://webworkersandbox.com/5009efc12245588e410002cf
http://webworkersandbox.com/5009efc12245588e410002cf
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Notice that in scenarios 2 and 3, we’re waiting for a task to be completed in

two different ways. I wrote the example this way to illustrate common

approaches when we’re waiting for something to change, like the value of the

cached computation. Should we prefer one approach over the other? Let’s

look at that next.

Async Recursion vs. Callback Storage

In runCalculation, we waited for the worker to finish its job by either repeating

the same function call from a timeout (async recursion) or simply storing a

callback.

Which approach is best? At first glance, it might seem easiest to use only

async recursion, eliminating the need for the calculationCallbacks object. Newcom-

ers to JavaScript often use setTimeout for this purpose because it resembles a

common idiom of thread-based languages. A Java version of this program

would probably have a loop like this:

while (!calculationCache.get(formula)) {
Thread.sleep(0);

};

But timeouts aren’t free. In large numbers, they can create a significant

computational load. The scary thing about async recursion is that there’s no

limit to the number of timeouts that could be firing while we wait for the job

to finish. Plus, it makes our application’s event structure unnecessarily

complicated. For these reasons, async recursion should be regarded as an

anti-pattern.

We can avoid async recursion in our calculator by storing an array of callbacks

for each formula.

var calculationCache = {},
calculationCallbacks = {},
mathWorker = new Worker('calculator.js');

mathWorker.addEventListener('message', function(e) {
var message = e.data;
calculationCache[message.formula] = message.result;
calculationCallbacks[message.formula]
.forEach(function(callback) {
callback(message.result);

});
});

function runCalculation(formula, callback) {
if (formula in calculationCache) {
return callback(calculationCache[formula]);

};

Chapter 1. Understanding JavaScript Events • 10

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

if (formula in calculationCallbacks) {
return calculationCallbacks[formula].push(callback);

};
mathWorker.postMessage(formula);
calculationCallbacks[formula] = [callback];

}

Without the timeout, our code is much more straightforward, as well as more

efficient.

In general, avoid async recursion. It’s necessary only when you’re dealing

with a library that provides async functionality without any kind of callback

mechanism. And if you’re ever in that situation, the first thing you should do

is write a patch for that library. Or find a better one.

Mixing Returns and Callbacks

In both of our implementations of runCalculation, we sometimes return a value.

This was an arbitrary choice made for brevity. The line

return callback(calculationCache[formula]);

could easily have been written as

callback(calculationCache[formula]);
return;

because the return value isn’t intended to be used. This is a common idiom

in JavaScript, and it’s usually harmless.

However, some functions both return a useful value and take a callback. In

those cases, it’s important to remember that the callback will be called either

synchronously (before the return) or asynchronously (after the return).

Never define a potentially synchronous function that returns a value that

might be useful in the callback. For example, this function that opens a

WebSocket5 connection to a given server (caching to ensure only one connec-

tion per server) violates that rule:

var webSocketCache = {};
function openWebSocket(serverAddress, callback) {

var socket;

if (serverAddress in webSocketCache) {
socket = webSocketCache[serverAddress];

if (socket.readyState === WebSocket.OPEN) {
callback();

5. https://developer.mozilla.org/en/WebSockets/

report erratum • discuss

Writing Async Functions • 11

https://developer.mozilla.org/en/WebSockets/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

} else {
socket.onopen = _.compose(callback, socket.onopen);

};
} else {
socket = new WebSocket(serverAddress);
webSocketCache[serverAddress] = socket;
socket.onopen = callback;

};
return socket;

};

(This code relies on the Underscore.js library. _.compose defines a new function

that runs both callback and the original socket.onopen callback.6)

The problem with this code is that if the socket is already cached and open,

then the callback will run before the function returns, breaking this code:

var socket = openWebSocket(url, function() {
socket.send('Hello, server!');

});

The solution? Wrap the callback in a setTimeout.

if (socket.readyState === WebSocket.OPEN) {
setTimeout(callback, 0);

} else {
// ...

}

Using a timeout here may feel like a kludge, but it’s much better than having

an inconsistent API.

In this section, we’ve seen several best practices for writing async functions.

Don’t rely on a function always being async, unless you’ve read its source

code. Avoid using timer methods to wait for something to change. When

returning a value and running a callback from the same function, make sure

the callback runs after the return.

This is a lot of information to take in at once, but writing good async functions

is key to writing good JavaScript.

1.4 Handling Async Errors

Like many modern languages, JavaScript allows you to throw exceptions and

catch them in a try/catch block. If uncaught, most environments will give you

a helpful stack trace. For example, this code will throw an exception because

'{' is invalid JSON:

6. http://documentcloud.github.com/underscore/#compose

Chapter 1. Understanding JavaScript Events • 12

report erratum • discuss

http://documentcloud.github.com/underscore/#compose
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

EventModel/stackTrace.js

function JSONToObject(jsonStr) {
return JSON.parse(jsonStr);

}
var obj = JSONToObject('{');

SyntaxError: Unexpected end of input❮

at Object.parse (native)
at JSONToObject (/AsyncJS/stackTrace.js:2:15)
at Object.<anonymous> (/AsyncJS/stackTrace.js:4:11)

The stack trace tells us not only where the error was thrown from but also where

the original mistake was made: line 4. Unfortunately, tracking down the causes

of async errors isn’t as straightforward. In this section, we’ll see why throw is rarely

the right tool for handling errors in callbacks and how async APIs are designed

around this limitation.

Throwing from Callbacks

What happens when we throw an error from an async callback? Let’s run a

test.

EventModel/nestedErrors.js

setTimeout(function A() {
setTimeout(function B() {
setTimeout(function C() {

throw new Error('Something terrible has happened!');
}, 0);

}, 0);
}, 0);

The result of this application is an extraordinarily short stack trace.

Error: Something terrible has happened!❮

at Timer.C (/AsyncJS/nestedErrors.js:4:13)

Wait a minute—what happened to A and B? Why aren’t they in the stack trace?

Well, because they weren’t on the stack when C ran. Each of the three func-

tions was run directly from the event queue.

For the same reason, we can’t catch errors thrown from async callbacks with

a try/catch block. Here’s a demonstration:

EventModel/asyncTry.js

try {
setTimeout(function() {
throw new Error('Catch me if you can!');

}, 0);
} catch (e) {

console.error(e);
}

report erratum • discuss

Handling Async Errors • 13

http://media.pragprog.com/titles/tbajs/code/EventModel/stackTrace.js
http://media.pragprog.com/titles/tbajs/code/EventModel/nestedErrors.js
http://media.pragprog.com/titles/tbajs/code/EventModel/asyncTry.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Do you see the problem here? Our try/catch block will catch only those errors

that occur within the setTimeout function itself. Since setTimeout runs its callback

asynchronously, even when the timeout is 0, the error it throws will go straight

to our application’s uncaught exception handler (see Handling Uncaught

Exceptions, on page 14).

In general, putting a try/catch block around a function that takes an async

callback is pointless. (The exception is when the async function does some-

thing synchronous and error-prone as well. Node’s fs.watch(file, callback), for

example, will throw an error if the target file doesn’t exist.) That’s why call-

backs in Node.js almost always take an error as their first argument, allowing

the callback to decide how to handle it. For example, this Node app tries to

read a file asynchronously and logs any error (such as the file not existing):

EventModel/readFile.js

var fs = require('fs');
fs.readFile('fhgwgdz.txt', function(err, data) {

if (err) {
return console.error(err);

};
console.log(data.toString('utf8'));

});

Client-side JavaScript libraries are less consistent, but the most common

pattern is for there to be separate callbacks for success and failure. jQuery’s

Ajax methods follow this pattern.

$.get('/data', {
success: successHandler,
failure: failureHandler

});

No matter what the API looks like, always remember that you can handle

async errors only from within a callback. As an async Yoda might say, “Do,

or do not. There is no try.”

Handling Uncaught Exceptions

When we throw an exception from a callback, it’s up to whomever calls the

callback to catch it. But what if the exception is never caught? At that point,

different JavaScript environments play by different rules….

In the Browser

Modern browsers show uncaught exceptions in the developer console and

then return to the event queue. You can modify this behavior by attaching a

Chapter 1. Understanding JavaScript Events • 14

report erratum • discusswww.allitebooks.com

http://media.pragprog.com/titles/tbajs/code/EventModel/readFile.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

handler to window.onerror. If the handler returns true, it’ll prevent the browser’s

default error-handling behavior.

window.onerror = function(err) {
return true; // ignore all errors completely

};

In production, you might want to consider a JavaScript error-handling service,

such as Errorception.7 Errorception provides a ready-made window.onerror
handler that reports all uncaught exceptions to their server, which can then

send you notifications.

In Node.js

Node’s analog to window.onerror is the process object’s uncaughtException event.

Normally, a Node app will exit immediately on an uncaught exception. But

as long as at least one uncaughtException handler exists, the app will simply

return to the event queue.

process.on('uncaughtException', function(err) {
console.error(err); // shutdown averted!

});

However, as of Node 0.8.4, uncaughtException is deprecated. According to the

docs,8

uncaughtException is a very crude mechanism for exception handling and may be

removed in the future…

Don’t use it, use domains instead.

What are domains? you ask. Domains are evented objects that convert throws

into 'error' events. (We’ll talk more about evented objects in Chapter 2, Distribut-

ing Events, on page 19.) Here’s an example:

EventModel/domainThrow.js

var myDomain = require('domain').create();
myDomain.run(function() {

setTimeout(function() {
throw new Error('Listen to me!')

}, 50);
});

myDomain.on('error', function(err) {
console.log('Error ignored!');

});

7. http://errorception.com/
8. http://nodejs.org/docs/latest/api/process.html#process_event_uncaughtexception

report erratum • discuss

Handling Async Errors • 15

http://media.pragprog.com/titles/tbajs/code/EventModel/domainThrow.js
http://errorception.com/
http://nodejs.org/docs/latest/api/process.html#process_event_uncaughtexception
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

The throw from the timeout event simply triggers the domain’s error handler.

Error ignored!❮

Magical, isn’t it? Domains make throw much more palatable. Unfortunately,

they’re available only in Node 0.8+, and as of this writing, they’re still consid-

ered an experimental feature. For more information, see the Node docs.9

Whether you’re in the browser or on the server, global exception handlers

should be seen as a measure of last resort. Use them only for debugging.

To Throw or Not to Throw?

When you’re given an error, the easiest thing to do with it is to throw it. In

Node code, you’ll often see callbacks that look like this:

function(err) {
if (err) throw err;
// ...

}

We’ll use this idiom frequently in Chapter 4, Flow Control with Async.js, on

page 47. But in a production app, allowing routine exceptions and fatal errors

alike to bubble up to the global handler is unacceptable. throw in a callback

is a JavaScripter’s way of saying, “I don’t want to think about this right now.”

What about throwing exceptions that you know will be caught? That’s an

equally thorny area. In 2011, Isaac Schlueter (creator of npm and current

head of Node development) argued that try/catch is an anti-pattern.10

Try/catch is goto wrapped in pretty braces. There’s no way to continue where you

left off, once the error is handled. What’s worse, in the code that throws, you have

no idea where you’re jumping to. When you return an error code, you are fulfilling

a contract. When you throw, you’re saying, “I know I was talking to you, but I’m

going to jump over you now and talk to your boss instead.” It’s rude. If it’s not an

emergency, don’t do that; if it is an emergency, then we should crash.

Schlueter advocated using throws purely as assert-like constructs, a way of

bringing applications to a halt when they’re doing something completely

unexpected. The Node community has largely followed this recommendation,

though that may change with the emergence of domains.

So, what’s the current best practice for handling async errors? I suggest

heeding Schlueter’s advice: if you want your whole application to stop, go

ahead and use throw. Otherwise, give some thought as to how the error should

9. http://nodejs.org/docs/latest/api/domain.html
10. https://groups.google.com/forum/#!topic/nodejs/1ESsssIxrUU

Chapter 1. Understanding JavaScript Events • 16

report erratum • discuss

http://nodejs.org/docs/latest/api/domain.html
https://groups.google.com/forum/#!topic/nodejs/1ESsssIxrUU
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

be handled. Do you want to show the user an error message? Retry the

request? Sing “Daisy Bell”? Then handle it like that, as close to the source as

possible.

1.5 Un-nesting Callbacks

The most common anti-pattern in JavaScript is nesting callbacks within

callbacks. Remember the Pyramid of Doom from the introduction? Let’s look

at a concrete example that you might see in a Node server.

function checkPassword(username, passwordGuess, callback) {
var queryStr = 'SELECT * FROM user WHERE username = ?';
db.query(selectUser, username, function (err, result) {
if (err) throw err;
hash(passwordGuess, function(passwordGuessHash) {

callback(passwordGuessHash === result['password_hash']);
});

});
}

Here we’ve defined an async function (checkPassword), which fires another async

function (db.query), which potentially fires another async function (hash). (It’s
impossible to know for certain whether these functions are async without

actually reading their code, but it’s reasonable to assume so here.)

What’s the problem with this code? Right now, nothing. It works, and it’s

succinct. But it’s going to get awfully hairy when we try to add new features

to it, like handling that database error instead of throwing it (see To Throw

or Not to Throw?, on page 16), logging access attempts, throttling, and so on.

Nested callbacks tempt us to add more features by adding more code, rather

than implementing those features in manageable, reusable pieces. This

equivalent implementation of checkPassword avoids that temptation:

function checkPassword(username, passwordGuess, callback) {
var passwordHash;
var queryStr = 'SELECT * FROM user WHERE username = ?';
db.query(selectUser, username, queryCallback);

function queryCallback(err, result) {
if (err) throw err;
passwordHash = result['password_hash'];
hash(passwordGuess, hashCallback);

}

function hashCallback(passwordGuessHash) {
callback(passwordHash === passwordGuessHash);

}
}

report erratum • discuss

Un-nesting Callbacks • 17

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

This approach is more verbose, but it reads more clearly and is much easier

to extend. Because we’ve given the async result (passwordHash) broader scope,

we have more flexibility.

As a rule, avoid more than two levels of function nesting. The key is to figure

out a way of storing async results outside of the function making the async

call so that the callback doesn’t have to be nested.

If all of this sounds tricky, don’t worry. We’ll see plenty of examples in later

chapters of async events running in sequence without nested handlers.

1.6 What We’ve Learned

In this chapter, we’ve seen how JavaScript’s single-threadedness is both a

blessing and a curse. In the right hands, it makes for beautiful code free of

the terrifying race conditions that plague multithreaded apps. But you need

to develop the right mind-set—and the right techniques.

The rest of this book is concerned with libraries and design patterns for

working with events in JavaScript. All of the examples we’ll look at will run

in either mainstream browsers or unmodified Node.js. However, writing

JavaScript isn’t the only way to produce JavaScript code. For an overview of

some interesting alternatives, see Appendix 1, Tools for Taming JavaScript,

on page 81.

It bears mention here that there is one kind of multithreading in JavaScript:

you can spawn worker processes. Each spawned process can exchange data

with other processes under the same limitations as any other I/O. Workers

make it possible to utilize multiple cores, without breaking the rules of

JavaScript (code can’t be interrupted; variables are accessible only within

their scope). For more on workers, skip ahead to Chapter 5, Multithreading

with Workers, on page 61.

The next two chapters are devoted to essential design patterns: PubSub, a

way of organizing callbacks by assigning them to named events; and

Promises, an intuitive object representation for one-shot events.

Chapter 1. Understanding JavaScript Events • 18

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

CHAPTER 2

Distributing Events

In the previous chapter, we looked at how async events work in JavaScript.

But in practice, how should we handle those events?

That may sound like a silly question. Just attach a handler to each event

your app cares about, right? But when a single event has several conse-

quences, the “one event, one handler” approach forces handlers to grow to

gargantuan proportions.

Let’s say you’re building a web-based word processor like Google Docs. Every

time a user presses a key, a number of things need to happen: the new

character has to be displayed on the screen, the caret has to be moved, the

action has to be pushed to the local undo history and synced to the server,

spell-check may have to run, and the word count and page count may need

to be updated. Carrying out all of these tasks and more from a single keypress
handler is a daunting proposition.

From a purely mechanical perspective, every task that we want performed in

response to the event does indeed have to be initiated from its handler. But

for the sake of us humans, it’s usually better to replace that massive event

handler with a more malleable, dynamic construct—one that we can add

tasks to, and remove tasks from, at runtime. In short, we want to use distribut-

ed events, where a single incident can trigger reactions throughout our

application.

In this chapter, you’ll learn to distribute events using the publish/subscribe

pattern (aka PubSub). Along the way, we’ll meet several of PubSub’s manifes-

tations: Node’s EventEmitter, Backbone’s evented models, and jQuery’s custom

events. With the help of these tools, we’ll be able to un-nest callbacks, reduce

duplication, and write event-driven code that’s easy to understand.

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

2.1 PubSub

Since the dawn of JavaScript, browsers have allowed event handlers to be

attached to DOM elements like so:

link.onclick = clickHandler;

Ah, simplicity itself! There’s just one caveat: if you wanted two click handlers

for an element, you’d have to aggregate them yourself with a wrapper function.

link.onclick = function() {
clickHandler1.apply(this, arguments);
clickHandler2.apply(this, arguments);

};

Not only is this tedious, it’s also a recipe for bloated, all-purpose handler

functions. That’s why the W3C added addEventListener to the DOM specification

in 2000 and jQuery abstracted it with the bind method. bind makes it easy to

add as many handlers as you like to any event on any element (or set of ele-

ments), without worrying about stepping on anyone else’s toes.

$(link)
.bind('click', clickHandler1)
.bind('click', clickHandler2);

(In jQuery 1.7+, the new on syntax is preferred over bind.1 There’s also the click
method, which is a shorthand for bind('click', ...); however, I prefer to consistently

use bind/on.)

From a software architecture perspective, jQuery publishes the link element’s

events to anyone who wants to subscribe. That’s why it’s called “PubSub.”

The old-style DOM event API, where binding to event meant writing object.onevent
= ..., is now largely forgotten in favor of PubSub. The architects of Node’s API

liked PubSub so much that they decided to include a generic PubSub entity

called EventEmitter that other objects can inherit from. Just about every source

of I/O in Node is an EventEmitter: file streams, HTTP servers, and even the

application process itself. To wit:

Distributed/processExit.js

['room', 'moon', 'cow jumping over the moon']
.forEach(function(name) {

process.on('exit', function() {
console.log('Goodnight, ' + name);

});
});

1. http://api.jquery.com/on/

Chapter 2. Distributing Events • 20

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Distributed/processExit.js
http://api.jquery.com/on/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Countless stand-alone PubSub libraries exist for the browser. In addition,

many MVC frameworks like Backbone.js and Spine provide their own EventEmit-
ter-like modules. We’ll talk more about Backbone later in this chapter.

EventEmitter

Let’s use Node’s EventEmitter as an example of a PubSub interface. It has a

simple, nearly minimal design.

To add an event handler to an EventEmitter, just call on with the event type and

the handler.

emitter.on('evacuate', function(message) {
console.log(message);

});

The emit method will call all handlers for the given event type. For instance,

the following

emitter.emit('evacuate');

would call all evacuate handlers.

Note that the term event here has nothing to do with the event queue. See

Synchronicity, on page 22.

You can add any number of additional arguments when you emit an event.

All arguments are passed to all handlers.

emitter.emit('evacuate', 'Woman and children first!');

There are no restrictions on event names, though the Node docs offer a useful

convention.

Typically, event names are represented by a camel-cased string.2

All of EventEmitter’s methods are public, but it’s common convention for events

to be emitted only from “inside” the EventEmitter. That is, if you have an object

that inherits the EventEmitter prototype and uses this.emit to broadcast events,

its emit method shouldn’t be called elsewhere.

Roll Your Own PubSub

PubSub implementations are so simple that we can create one in about a

dozen lines of code. The only state we need to store is a list of handlers for

each event type we support.

PubSub = {handlers: {}}

2. http://nodejs.org/docs/latest/api/events.html

report erratum • discuss

PubSub • 21

http://nodejs.org/docs/latest/api/events.html
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

When we add a listener, we push it to the end of the array (which means that

listeners will always be called in the order in which they were added).

PubSub.on = function(eventType, handler) {
if (!(eventType in this.handlers)) {
this.handlers[eventType] = [];

}

this.handlers[eventType].push(handler);
return this;

}

Then when an event is emitted, we loop through all of our handlers.

PubSub.emit = function(eventType) {
var handlerArgs = Array.prototype.slice.call(arguments, 1);
for (var i = 0; i < this.handlers[eventType].length; i++) {
this.handlers[eventType][i].apply(this, handlerArgs);

}
return this;

}

That’s it. We’ve just implemented the core of Node’s EventEmitter. (The only

major things we’re missing are the ability to remove handlers and to attach

one-time handlers.)

Of course, PubSub implementations vary slightly feature-wise. When the

jQuery team noticed that several different PubSub implementations were

being used throughout the library, they decided to abstract them with $.Callbacks
in jQuery 1.7.3 Instead of using an array to store the handlers corresponding

to an event type, you could use a $.Callbacks instance.

Many PubSub implementations parse the event string to provide special fea-

tures. For example, you may be familiar with namespaced events in jQuery:

if I bind events named "click.tbb" and "hover.tbb", I can unbind them both by

simply calling unbind(".tbb"). Backbone.js lets you bind handlers to the "all" event

type, causing them to go off whenever anything happens. Both jQuery and

Backbone let you bind or emit multiple event types simultaneously by sepa-

rating them with spaces, e.g., "keypress mousemove".

Synchronicity

Although PubSub is an important technique for dealing with async events,

there’s nothing inherently async about it. Consider this code:

3. http://api.jquery.com/jQuery.Callbacks/

Chapter 2. Distributing Events • 22

report erratum • discuss

http://api.jquery.com/jQuery.Callbacks/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

$('input[type=submit]')
.on('click', function() { console.log('foo'); })
.trigger('click');
console.log('bar');

The output is

foo❮

bar

proving that the click handler was invoked immediately by trigger. In fact,

whenever a jQuery event fires, all of its handlers will be executed sequentially

without interruption.

So, let’s be clear: when the user clicks the Submit button, that’s an async

event. The first click handler fires from the event queue. But the event handler

has no way of knowing whether it’s being run from the event queue or from

your application code.

If too many handlers fire in sequence, you risk blocking the thread and

making the browser unresponsive. Worse, if events are emitted from event

handlers, they can easily create an infinite cycle.

$('input[type=submit]')
.on('click', function() {
$(this).trigger('click'); // stack overflow!

});

Think back to the word processor example at the start of this chapter. When

a user presses a key, many things need to happen, and several of them require

complex calculations. Doing them all before returning to the event queue

would be a recipe for an unresponsive app.

A good solution to this problem is to maintain a queue of things that don’t

need to happen right away and use a timed function to run the next task in

the queue periodically. A first attempt might look something like this:

var tasks = [];
setInterval(function() {

var nextTask;
if (nextTask = tasks.shift()) {
nextTask();

};
}, 0);

(We’ll learn about a more sophisticated approach to job queuing in Section

4.4, Dynamic Async Queuing, on page 54.)

report erratum • discuss

PubSub • 23

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

PubSub makes it easy to name, distribute, and stack events. Anytime it makes

intuitive sense for an object to announce that something has happened,

PubSub is a great pattern to use.

2.2 Evented Models

When an object has a PubSub interface, we call it an evented object. A special

case is when an object used to store data (a model) publishes events whenever

its contents are modified. Models are the M in Model-View-Controller (MVC),

which has become one of the hottest topics in JavaScript programming in

the last few years. The core concept is that MVC applications are data-centric

so that model events impact the DOM (aka the View) and the server (via the

Controller).

Let’s look at the hugely popular Backbone.js framework.4 You create a new

model like so:

style = new Backbone.Model(
{font: 'Georgia'}

);

model just represents the simple object that was passed in.

style.toJSON() // {"font": "Georgia"}

But unlike an ordinary object, this one publishes notifications when a change

is made.

style.on('change:font', function(model, font) {
alert('Thank you for choosing ' + font + '!');

});

Old-school JavaScript made changes to the DOM directly from input event

handlers. New-school JavaScript makes changes to models, which then emit

events that cause the DOM to update. In nearly all apps, this separation of

concerns results in more elegant, intuitive code.

Propagating Model Events

In its simplest form, MVC consists of wiring models to views: “If this model

changes this way, change the DOM that way.” But the biggest gains from

MVC happen when change events bubble up the data tree. Instead of sub-

scribing to events on every leaf, you can just subscribe to the roots and

branches.

4. http://documentcloud.github.com/backbone/

Chapter 2. Distributing Events • 24

report erratum • discusswww.allitebooks.com

http://documentcloud.github.com/backbone/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

Set/Get on Evented Models

JavaScript as we know it doesn’t have a mechanism for firing an event every time an

object is modified. So, for evented models to work, we have to remember to use

methods like Backbone’s set and get.

style.set({font: 'Palatino'}); // triggers alert!
style.get('font'); // "Palatino"
style.font = 'Comic Sans'; // no events fire
style.font; // "Comic Sans"
style.get('font'); // Still "Palatino"

This may not be necessary in the future, if an ECMAScript proposal called Object.observe
becomes widely adopted.a

a. https://plus.google.com/111386188573471152118/posts/6peb6yffyWG

To that end, Backbone models are often organized into Backbone collections,

which are essentially evented arrays. You can listen for when models are

added to and removed from them. Backbone collections automatically propa-

gate events from the models they contain.

For example, you might have a spriteCollection object containing hundreds of

models representing things you’re drawing on a canvas element. Each time

any of those sprites change, you need to redraw the canvas. Rather than

attaching the redraw function as a handler for the change event on each sprite

individually, you could instead just write the following:

spriteCollection.on('change', redraw);

Note that this automatic propagation goes only one level down. Backbone has

no notion of nested collections. However, you can implement this propagation

yourself using Backbone’s trigger method. With it, any Backbone object can

emit arbitrary events.

Cycles and Nested Changes

Propagating events from one object to another poses certain concerns. If an

event on one object causes a series of events that will ultimately trigger the

same event on the same object every time, then the result will be an event

cycle. And if the cycle is synchronous, the result will be a stack overflow, like

we saw in Synchronicity, on page 22.

Yet oftentimes, a cycle of change events is exactly what we want. The most

common case is a two-way binding, where two models have interrelated values.

Suppose we want to ensure that x always equals 2 * y.

report erratum • discuss

Evented Models • 25

https://plus.google.com/111386188573471152118/posts/6peb6yffyWG
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

var x = new Backbone.Model({value: 0});
var y = new Backbone.Model({value: 0});
x.on('change:value', function(x, xVal) { y.set({value: xVal / 2}); });
y.on('change:value', function(y, yVal) { x.set({value: 2 * yVal}); });

You might expect this code to lead to an infinite loop the moment the value

of x or y is changed. But actually, it’s quite safe, thanks to two safeguards in

Backbone.

• set doesn’t emit a change event if the new value matches the old one.

• Models can’t emit a change event during one of its own change events.

The second safeguard presents gotchas of its own. Suppose a change is made

to a model that results in a second change to the same model. Because the

second change is “nested” in the first one, it’ll occur silently. Observers won’t

have a chance to respond to it.

Clearly, maintaining two-way data bindings in Backbone is a challenge. Another

major MVC framework, Ember.js, takes a different approach: two-way bindings

are declared explicitly. When one value changes, the other is updated asyn-

chronously from a timeout event. So, until that event fires, the application’s data

may be in an inconsistent state.

There’s no easy solution to the problem of bindings across evented models. In

Backbone, a prudent way to step around the issue is the silent flag. If you add

{silent: true} to a set event, no change event will happen. So, if several entangled

models need to be updated at once, a good approach is to set them silently. Then

call their change methods to fire the appropriate events only after they’re in a

consistent state.

Evented models give us an intuitive way of transforming application state changes

into events. Everything Backbone and other MVC frameworks do is about these

models, updating the DOM and the server when their states change. Storing

mutable data in evented models is a great first step to reigning in the growing

complexity of client-side JavaScript applications.

2.3 Custom jQuery Events

Custom events are an underappreciated feature of jQuery that make it easy

to graft a powerful distributed event system onto any web app, with no addi-

tional libraries. You can emit any event you want from any DOM element

from jQuery using trigger.

$('#tabby, #socks').on('meow', function() {
console.log(this.id + ' meowed');

});
$('#tabby').trigger('meow'); // "tabby meowed"
$('#socks').trigger('meow'); // "socks meowed"

Chapter 2. Distributing Events • 26

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

If you’ve worked with DOM events before, you’re no doubt familiar with bub-

bling. Whenever an element emits an event (such as a 'click'), its parent then

emits the event, then its grandparent, and so on, up to the root element,

document—unless the event’s stopPropagation method is called at some point along

the way. (jQuery does this for us automatically when we return false from a

handler.) But did you know that jQuery’s custom events bubble as well? For

instance, if we have a span named “soda” nested in a div named “bottle,” the

code

$('#soda, #bottle').on('fizz', function() {
console.log(this.id + ' emitted fizz');

});
$('#soda').trigger('fizz');

will emit the following output:

soda emitted fizz❮

bottle emitted fizz

This bubbling isn’t always desirable, as we’ll see in the following tooltips

example. Fortunately, jQuery offers the nonbubbling triggerHandler method as

well.

Example: Tooltips

When events can be mapped intuitively to page elements, jQuery is an ideal

way of distributing them. For instance, suppose you’re writing a tooltip library

and you want only one tooltip to be visible at a time. You might simply add

the line

$('.tooltip').remove();

to the start of the function that adds new tooltips. But what if we decide later

that we want certain containers to be isolated, such as when a new tooltip is

shown in the sidebar, tooltips everywhere else are unaffected, and vice versa?

Writing a selector for “elements with class tooltip that are not descendants of

sidebar” is tricky and not very efficient. The problem would get exponentially

harder if we decided to allow isolated containers to be nested to an arbitrary

depth.

But implementing this behavior with event logic rather than selector logic is

easy.

// $container could be $('#sidebar') or $(document)
$container.triggerHandler('newTooltip');
$container.one('newTooltip', function() {
$tooltip.remove();

});

report erratum • discuss

Custom jQuery Events • 27

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

(Notice the use of jQuery’s one instead of on. The difference is that one automat-

ically removes the handler after it fires.)

With these two lines of code, each tooltip will listen to its container and remove

itself when the container gets a new tooltip. It’s a beautifully direct, efficient

approach that saves us from having to store any state or engineer complex

selectors (which would slow older browsers to a crawl—IE7 and older don’t

even have a way of selecting all elements with the tooltip class without

traversing the whole document!).

Note that event bubbling would actually have defeated our intent in this case:

when we create a new tooltip in the sidebar, we want only tooltips listening

for the 'newTooltip' event on the sidebar itself to go away, not those on the sur-

rounding document. Always think carefully about whether trigger or triggerHandler
is the right tool for the job.

Custom jQuery events are an unusual twist on PubSub, since the events are

emitted by selectable elements rather than by objects in our script. Much as

evented models are an intuitive way of expressing state-related events, jQuery

events let us express DOM-related events directly through the DOM, saving

us from having to duplicate that state elsewhere in our application. Use them

liberally, but try to avoid relying on the structure of your application’s markup

—you don’t want your next redesign to break your script.

2.4 What We’ve Learned

In this chapter, we’ve learned about distributing events via PubSub, one of

the most fundamental JavaScript design patterns. When you’re not subscribing

to the events that are being published, PubSub is completely unobtrusive.

The key to using PubSub properly is deciding which entities to distribute

events through.

We’ve seen that any object can be used for PubSub, simply by inheriting from

something like Node’s EventEmitter. Whenever an object is associated with a set

of async tasks or I/O events, it’s a good idea to make it evented.

One class of evented object is the models in MVC libraries like Backbone.js.

These models both contain application state and announce changes to it.

Change events can trigger application logic, DOM updates, and synchroniza-

tion with the server. It all feels very natural, which explains why Backbone

has become a smash-hit library.

We’ve also seen that jQuery is great for distributing events related to changes

in the DOM, not just the DOM events provided by the browser. Evented objects

Chapter 2. Distributing Events • 28

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

and DOM events complement each other perfectly, helping to keep the appli-

cation’s state and view encapsulated from each other.

All of these are examples of PubSub in action. However, as versatile as it is,

PubSub isn’t the right tool for every job. In particular, it’s a poor fit for one-

shot events, when an async function performs a task whose completion or

failure needs to be handled in a unique way. (An Ajax request is a common

example.) One tool for solving that problem, called a Promise, is the subject

of the next chapter.

report erratum • discuss

What We’ve Learned • 29

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

CHAPTER 3

Promises and Deferreds

In 2010, I had this conversation with my prolific colleague Mr. Ajax:

Me: Hey, would you fetch some data from this URL for me, please?

Mr. Ajax: I’m on it! Just give me a success callback so I can let you know when I’m

done.

Me: OK, here you go. Thanks.

Mr. Ajax: Oh, and you should give me an error callback, too. You know, just in

case.

Me: Good point. Anything else?

Mr. Ajax: Hey, I noticed that there’s some code duplication between those two

callbacks! You could move that into a third always callback.

Me: (impatiently) Alright, I’ll refactor them. Tell you what: why don’t you run now,

and I’ll give you the callbacks later?

Mr. Ajax: (irately) What do I look like, an EventEmitter?

Thankfully, jQuery 1.5 changed Mr. Ajax’s need-it-now attitude. All of the

Ajax functions you know and love ($.ajax, $.get, and $.post) now return Promises.

A Promise is an object that represents a task with two possible outcomes

(success or failure) and holds callbacks that fire when one outcome or the

other has occurred. For example, under jQuery 1.4, I’d have had to write this:

Promises/get-1.4.js

$.get('/mydata', {
success: onSuccess,
failure: onFailure,
always: onAlways

});

But under jQuery 1.5+, I can write this instead:

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Promises/get-1.4.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Promises/get-1.5.js

var promise = $.get('/mydata');
promise.done(onSuccess);
promise.fail(onFailure);
promise.always(onAlways);

You might wonder what’s so great about this change. Why would you want

to attach a callback after an Ajax call has fired? In a word: encapsulation. If

an Ajax call has multiple effects (triggering animations, inserting HTML,

locking/unlocking user input, and so on), it’s awkward for the part of your

app that’s making the request to handle all of them.

It’s much more elegant to pass a Promise around. By passing a Promise,

you’re announcing, “Something you might be interested in is happening. If

you want to find out when it’s done, just give this Promise a callback.” And

like an EventEmitter, a Promise allows you to bind handlers to the same event

as many times as you like (stacking). That makes it a lot easier to reduce code

duplication when some small piece of functionality (like a “Loading” animation)

is shared across several Ajax calls.

But the biggest advantage of using Promises is that you can easily derive new

Promises from existing ones. You might ask two Promises representing parallel

tasks to give you a Promise that will inform you of their mutual completion.

Or you might ask a Promise representing the first task in a series to give you

a Promise representing the final task in the series. As we’ll soon see, these

operations come naturally with Promises.

3.1 A Very Brief History of Promises

Promises have existed in many forms in many languages. The term was first

used by C++ engineers on the Xanadu project, a forerunner to the Web.

Promises were later used in the E programming language, which inspired

Python developers to implement them in the form of the Twisted framework’s

Deferreds.

Promises hit the JavaScript mainstream in 2007 when the Dojo framework,

taking a cue from Twisted, added an object called dojo.Deferred. At the time,

the relatively mature Dojo rivaled the fledgling jQuery framework in popular-

ity. In 2009, citing dojo.Deferred as an influence, Kris Zyp proposed the

CommonJS Promises/A spec.1 That same year, Node.js made its first

appearance. Node’s early iterations used Promises in its nonblocking API.

However, in February 2010, Ryan Dahl made the decision to switch to the

1. http://wiki.commonjs.org/wiki/Promises/A

Chapter 3. Promises and Deferreds • 32

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Promises/get-1.5.js
http://wiki.commonjs.org/wiki/Promises/A
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

now-familiar callback(err, results...) format, on the grounds that Promises are a

higher-level construct that belongs in “userland.”

This decision made way for competing Promises implementations aimed at

Node, notably Kris Kowal’s Q.js2 and AJ ONeal’s Futures.3 (In common usage,

the terms Promise, Deferred, and Future are roughly synonymous.) Q is a

fairly straightforward implementation of the Promises/A spec. Futures is a

broader toolkit, incorporating many of the flow control features found in

libraries like Async.js.

But the reason Promises are getting so much attention today is, of course,

jQuery. Accompanying a major rewrite of $.ajax in January 2011, jQuery 1.5’s

Promises implementation thrilled countless developers who were encountering

Promises for the first time. Others, however, were frustrated that the

Promises/A spec had been ignored, leading to subtle API differences.

We’ll focus on jQuery Promises for the rest of this chapter, except in Section

3.7, jQuery vs. Promises/A, on page 43. We’ll also take our vocabulary cues

from jQuery, particularly the distinction between Deferreds and Promises

that we’ll see in the next section and the use of “resolve” as the antonym of

“reject.”

3.2 Making Promises

We started this chapter by showing how the Ajax methods in jQuery 1.5+

($.ajax, $.get, and $.post) return Promises. But to really understand Promises,

we need to make a few of our own.

Let’s give the user a prompt to hit either Y or N. The first thing we’ll do is create

an instance of $.Deferred that represents the user’s decision.

var promptDeferred = new $.Deferred();
promptDeferred.always(function(){ console.log('A choice was made:'); });
promptDeferred.done(function(){ console.log('Starting game...'); });
promptDeferred.fail(function(){ console.log('No game today.'); });

(Note: always is available only in jQuery 1.6+.)

You’re probably wondering why I created an instance of Deferred when this

section is called “Making Promises.” Fear not—a Deferred is a Promise! More

precisely, it’s a superset of Promise with one critical addition: you can trigger

a Deferred directly. A pure Promise only lets you add more callbacks; someone

else has to trigger them.

2. https://github.com/kriskowal/q
3. https://github.com/coolaj86/futures

report erratum • discuss

Making Promises • 33

https://github.com/kriskowal/q
https://github.com/coolaj86/futures
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

We can trigger our Deferred with the resolve and reject methods.

$('#playGame').focus().on('keypress', function(e) {
var Y = 121, N = 110;
if (e.keyCode === Y) {
promptDeferred.resolve();

} else if (e.keyCode === N) {
promptDeferred.reject();

} else {
return false; // our Deferred remains pending

};
});

You can see this example in action at http://jsfiddle.net/TrevorBurnham/PJ6Bf/. Load

the page and hit Y. The console will say the following:

A choice was made:❮

Starting game...

You see what happened? When the Deferred was resolved, its always and done
callbacks were run. (Not coincidentally, the callbacks were run in the order

in which they were bound.)

Refresh the page and hit N.

A choice was made:❮

No game today.

So, when the Deferred was rejected, its always and fail callbacks were run. Note

that callbacks always run in the order in which they were bound. If the always
callback had been bound last, the order of the console output would be

reversed.

Try hitting Y and N repeatedly. After the first choice is made, there’s no effect!

That’s because a Promise can be resolved or rejected only once; after that,

it’s inert. We say that a Promise is pending until it’s either resolved or rejected.

You can find out whether a Promise is "pending", "resolved", or "rejected" by calling

its state method. (state was added in jQuery 1.7; in earlier versions, use isResolved
and isRejected.)

When you’re carrying out a one-shot async operation with two broad outcomes

(e.g., success/failure or accept/decline), making a Deferred gives you an

intuitive representation of it.

Making a Pure Promise

We just learned that a Deferred is a Promise. So, how do we get a Promise

that isn’t a Deferred? Simple: call a Deferred’s promise method.

Chapter 3. Promises and Deferreds • 34

report erratum • discuss

http://jsfiddle.net/TrevorBurnham/PJ6Bf/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

A Tale of Two Terminologies

You might have noticed that I’ve been saying that I “trigger” a Promise when I resolve

or reject it and that a Promise that’s been resolved or rejected has been “triggered.”

This is a nonstandard term, but I’ll be using it throughout this chapter. jQuery,

unfortunately, lacks a succinct term for a Promise that’s been either resolved or

rejected, other than the cumbersome “nonpending.”

A more sensible terminology is used in the Promises/A spec and its implementations:

a Promise is either fulfilled or rejected; either way, it’s resolved. We’ll learn more about

that in Section 3.7, jQuery vs. Promises/A, on page 43.

var promptPromise = promptDeferred.promise();

promptPromise is just a copy of promptDeferred without the resolve/reject methods.

It doesn’t matter whether we bind a callback to a Deferred or to its Promise,

because they share the same callbacks internally. They also share the same

state ("pending", "resolved", or "rejected"). This means that creating multiple

Promises for a single Deferred would be pointless. In fact, jQuery will just

give you the same object.

var promise1 = promptDeferred.promise();
var promise2 = promptDeferred.promise();
console.log(promise1 === promise2); // true

And calling promise on a pure Promise just gives you a reference to the same

object.

console.log(promise1 === promise1.promise()); // true

The only reason to use the promise method is encapsulation. If we pass

promptPromise around but keep promptDeferred to ourselves, we can rest assured

that none of our callbacks will fire until we want them to fire.

To reiterate, every Deferred contains a Promise, and every Promise represents

a Deferred. When you have a Deferred, you control its state. When you have

a pure Promise, you can only read that state and attach callbacks.

Promises in the jQuery API

I started the chapter with the example of Promises returned by jQuery’s Ajax

functions ($.ajax, $.get, and $.post). Ajax is a perfect use case for Promises: every

call to a remote server will either succeed or fail, and you’ll want to handle

those cases differently. But Promises can be just as useful for local async

operations, like animations.

report erratum • discuss

Making Promises • 35

www.allitebooks.com

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

In jQuery, you can pass a callback to any animation method to be notified

when it’s finished.

$('.error').fadeIn(afterErrorShown);

In jQuery 1.6+, you can instead ask a jQuery object for a Promise, which

represents the completion of its current and pending animations.

var errorPromise = $('.error').fadeIn().promise();
errorPromise.done(afterErrorShown);

Animations applied to the same jQuery object are queued to run sequentially,

and the Promise resolves only when all animations that were on the queue

when you called promise were resolved. So, this generates two distinct

Promises that will be resolved in sequence (or not at all, if stop is called first).

var $flash = $('.flash');
var showPromise = $flash.show();
var hidePromise = $flash.hide();

Pretty simple, right? In jQuery 1.6 and 1.7, a promise on a jQuery object is just

a convenience method. You could easily create an animation Promise with

the same behavior yourself by using a Deferred’s resolve method as the anima-

tion callback.

var slideUpDeferred = new $.Deferred();
$('.menu').slideUp(slideUpDeferred.resolve);
var slideUpPromise = slideUpDeferred.promise();

In jQuery 1.8, released shortly before this book went to press, animation

Promises have become much more powerful objects. The Promise has addi-

tional information attached, including props, the computed values that the

animation is moving toward—very valuable for debugging. You can also get

progress notifications (see Section 3.4, Progress Notifications, on page 38) and

adjust the animation on the fly. Draft documentation for this new set of fea-

tures can be found at https://gist.github.com/54829d408993526fe475.

jQuery 1.8 added one more source of Promises in jQuery: $.ready.promise() gives

you a Promise that resolves when the document is ready. That means that

these are now equivalent:

$(onReady);
$(document).ready(onReady);
$.ready.promise().done(onReady);

In this section, we’ve seen how you obtain jQuery Promises: either you create

a $.Deferred instance, giving you a Promise that you control, or you make an

Chapter 3. Promises and Deferreds • 36

report erratum • discuss

https://gist.github.com/54829d408993526fe475
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

API call that returns a Promise. In the next few sections, we’ll see what you

can do with all those Promises.

3.3 Passing Data to Callbacks

A Promise can give its callbacks additional information. For example, these

two Ajax snippets are equivalent:

// Using a callback directly
$.get(url, successCallback);

// Binding a callback to a Promise
var fetchingData = $.get(url);
fetchingData.done(successCallback);

When you resolve or reject a Deferred, any arguments you provide are relayed

to the corresponding callbacks.

var aDreamDeferred = new $.Deferred();
aDreamDeferred.done(function(subject) {
console.log('I had the most wonderful dream about', subject);

});
aDreamDeferred.resolve('the JS event model');

I had the most wonderful dream about the JS event model❮

There are also special methods for running the callbacks in a particular

context (that is, setting this to a particular value): resolveWith and rejectWith. Just

pass the context as the first argument, and pass all other arguments in as

an array.

var slashdotter = {
comment: function(editor){
console.log('Obviously', editor, 'is the best text editor.');

}
};
var grammarDeferred = new $.Deferred();
grammarDeferred.done(function(verb, object) {

this[verb](object);
});
grammarDeferred.resolveWith(slashdotter, ['comment', 'Emacs']);

Obviously Emacs is the best text editor.❮

Having to wrap your arguments in an array is a pain, though. So, here’s a

handy tip: instead of using resolveWith/rejectWith, you can just invoke plain

resolve/reject in the desired context. That’s because resolve/reject pass their

context right to the callbacks they fire. So, in the previous example, we could

achieve the same result with the following:

grammarDeferred.resolve.call(slashdotter, 'comment', 'Emacs');

report erratum • discuss

Passing Data to Callbacks • 37

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

3.4 Progress Notifications

A Promise is a bundle of things you want to happen when a process comes

to an end. But didn’t a motivational poster once tell you that the journey is

as important as the destination? Did you learn nothing from that poster?

Fortunately, the jQuery team soaked up that wisdom (and the Promises/A

specification) and, in jQuery 1.7, added a new kind of Promise callback that

can be invoked any number of times. It’s called progress. For example, suppose

we want to update an indicator of how far a person has gotten toward their

daily word goal for National Novel Writing Month (NaNoWriMo).4

var nanowrimoing = $.Deferred();
var wordGoal = 5000;
nanowrimoing.progress(function(wordCount) {

var percentComplete = Math.floor(wordCount / wordGoal * 100);
$('#indicator').text(percentComplete + '% complete');

});
nanowrimoing.done(function(){
$('#indicator').text('Good job!');

});

With the nanowrimoing Deferred available, here’s how we respond to potential

changes in word count:

$('#document').on('keypress', function(){
var wordCount = $(this).val().split(/\s+/).length;
if (wordCount >= wordGoal) {
nanowrimoing.resolve();

};
nanowrimoing.notify(wordCount);

});

The notify call on the Deferred invokes our progress callback. Just like resolve
and reject, notify can take arbitrary arguments. Note that calls to nanowrimoing.notify
will have no effect once nanowrimoing is resolved, just like any additional resolve
and reject calls would be ignored.

So, to recap, a Promise takes three kinds of callbacks: done, fail, and progress.
done callbacks run when the Promise resolves, fail callbacks run when it’s

rejected, and progress callbacks run whenever notify is called on a pending

Deferred.

4. http://www.nanowrimo.org/

Chapter 3. Promises and Deferreds • 38

report erratum • discuss

http://www.nanowrimo.org/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

3.5 Combining Promises

The existence of progress notifications doesn’t change the fact that, ultimately,

every Promise is either resolved or rejected. (Or, it remains pending for eternity.)

But why? Why not let Promises change to any state at any time?

Mainly, Promises are designed this way because programmers thrive on

binary. We know exactly how to put 1s and 0s together to perform astounding

feats of logic. That’s a big reason why Promises are so powerful; they let us

treat tasks as booleans.

The most common use case for logically combining Promises is finding out

when a set of async tasks has finished. Let’s say you’re showing a tutorial

video while loading a game from the server. You want to start the game as

soon as two things have happened, in any order.

• The tutorial video has ended.

• The game is loaded.

Given a Promise representing each of these processes, your task is to start

the game when both Promises are resolved. How would you do that?

Enter jQuery’s when method.

var gameReadying = $.when(tutorialPromise, gameLoadedPromise);
gameReadying.done(startGame);

when acts as a logical AND for Promise resolution. The Promise it generates is

resolved as soon as all of the given Promises are resolved, or it is rejected as

soon as any one of the given Promises is rejected.

An excellent use case for when is combining multiple Ajax calls. If you need

to make two POST calls at once and get a notification when both have succeed-

ed, there’s no need to define a separate callback for each request.

$.when($.post('/1', data1), $.post('/2', data2))
.then(onPosted, onFailure);

On success, when can get access to the callback arguments from each of its

constituent Promises, but doing so is tricky. They’re passed as an argument

list with the same order that the Promises were given to when. If a Promise

provides multiple callback arguments, those arguments are converted to an

array.

So, to get all of the callback arguments from all of the Promises given to $.when,
you might write something like this (though I don’t recommend it):

report erratum • discuss

Combining Promises • 39

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

$.when(promise1, promise2)
.done(function(promise1Args, promise2Args) {

// ...
});

In this example, if promise1 resolved with the single argument 'complete' and

promise2 resolved with the arguments 1, 2, 3, then promise1Args would just be the

string 'complete', while promise2Args would be the array [1, 2, 3].

Although it’s possible, you shouldn’t parse when callback arguments if you

don’t absolutely have to do so. Instead, attach callbacks directly to the

Promises passed to when to collect their results.

var serverData = {};
var getting1 = $.get('/1')
.done(function(result) {serverData['1'] = result;});
var getting2 = $.get('/2')
.done(function(result) {serverData['2'] = result;});
$.when(getting1, getting2)
.done(function() {

// the GET information is now in serverData...
});

Using Functions as Promises

$.when, and other jQuery methods that take Promises, allow you to pass in

non-Promises. These are treated like Promises that have resolved with the

given value in the corresponding argument slot. For instance,

$.when('foo')

will give you a Promise that immediately resolves with the value 'foo'; the

following

var promise = $.Deferred().resolve('manchu');
$.when('foo', promise)

will give you a Promise that immediately resolves with the values 'foo' and

'manchu'; and the following

var promise = $.Deferred().resolve(1, 2, 3);
$.when('test', promise)

will give you a Promise that immediately resolves with the values 'test' and

[1, 2, 3]. (Remember, when a Deferred passes multiple arguments to resolve,
those arguments are coerced to an array by $.when.)

This raises the following question: how does $.when know whether an argument

is a Promise? It turns out that jQuery checks each argument for a method

Chapter 3. Promises and Deferreds • 40

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

named promise; if one exists, jQuery uses the value returned by that method.

A Promise’s promise method simply returns itself.

As you’ll recall from Promises in the jQuery API, on page 35, jQuery objects

also have a promise method, which means that $.when “coerces” jQuery objects

into their animation Promises. So, if we want to create a Promise that will

resolve when we’ve fetched some data and the #loading animation has complet-

ed, all we have to do is write this:

var fetching = $.get('/myData');
$.when(fetching, $('#loading'));

Just remember that we have to do this after starting the animation. If #loading’s
animation queue is empty, its Promise resolves immediately.

3.6 Binding to the Future with pipe

A big reason why performing a series of async tasks is often inconvenient in

JavaScript is that you can’t attach handlers to the second task until the first

one is complete. As an example, let’s GET data from one URL and then POST it
to another.

var getPromise = $.get('/query');
getPromise.done(function(data) {

var postPromise = $.post('/search', data);
});
// Now we'd like to attach handlers to postPromise...

Do you see what the problem is here? We can’t bind callbacks to postPromise
until our GET operation is done, because it doesn’t exist yet! It’s created by a

$.post call that we can’t make until we have the data that we’re getting asyn-

chronously from the $.get call.

That’s why jQuery 1.6 added the pipe method to Promises. Essentially, pipe
says this: “Give me a callback for this Promise, and I’ll give you a Promise

that represents the result of that callback.”

var getPromise = $.get('/query');
var postPromise = getPromise.pipe(function(data) {

return $.post('/search', data);
});

Looks like dark magic, right? Here’s a breakdown: pipe takes one argument

for each type of callback: done, fail, and progress. So, in this example, we just

provided a callback that gets run when getPromise is resolved. The pipe method

returns a new Promise that’s resolved/rejected when the Promise returned

from our callback is resolved/rejected.

report erratum • discuss

Binding to the Future with pipe • 41

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Effectively, pipe is a window into the future!

You can also use pipe to “filter” a Promise by modifying callback arguments.

If a pipe callback returns something other than a Promise/Deferred, then that

value becomes the callback argument. For instance, if you have a Promise

that emits progress notifications with a number between 0 and 1, you can

use pipe to create an identical Promise that emits progress notifications with

a human-readable string instead.

var promise2 = promise1.pipe(null, null, function(progress) {
return Math.floor(progress * 100) + '% complete';

});

To summarize, there are two things you can do from a pipe callback.

• If you return a Promise, the Promise returned by pipe will mimic it.

• If you return a non-Promise value (or nothing), the Promise returned by

pipe will immediately be resolved, rejected, or notified with that value,

according to what just happened to the original Promise.

pipe’s rule for whether something is a Promise is the same as $.when’s: if it has

a promise method, that method’s return value is used as a Promise representing

the original object. Again, promise.promise() === promise.

Pipe Cascading

pipe doesn’t require you to provide every possible callback. In fact, you’ll

usually just want to write

var pipedPromise = originalPromise.pipe(successCallback);

or the following:

var pipedPromise = originalPromise.pipe(null, failCallback);

We’ve seen what happens when the original Promise succeeds in the first

case, or fails in the second case, so that the piped Promise’s behavior depends

on the return value of successCallback or failCallback. But what about when we

haven’t given pipe a callback for what the original Promise does?

It’s simple. The piped Promise mimics the original Promise in those cases.

We can say that the original Promise’s behavior cascades through the piped

Promise. This cascading is very handy, because it allows us to define

branching logic for async tasks with minimal effort. Suppose we have a three-

step process.

Chapter 3. Promises and Deferreds • 42

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

var step1 = $.post('/step1', data1);
var step2 = step1.pipe(function() {

return $.post('/step2', data2);
});
var lastStep = step2.pipe(function() {

return $.post('/step3', data3);
});

Here, lastStep will resolve only if all three Ajax calls succeeded, and it’ll be

rejected if any of the three fail. If we care only about the process as a whole,

we can omit the variable declarations for the earlier steps.

var posting = $.post('/step1', data1)
.pipe(function() {

return $.post('/step2', data2);
})
.pipe(function() {

return $.post('/step3', data3);
});

We could, equivalently, nest the second pipe inside of the other.

var posting = $.post('/step1', data1)
.pipe(function() {

return $.post('/step2', data2)
.pipe(function() {

return $.post('/step3', data3);
});

});

Of course, this brings us back to the Pyramid of Doom. You should be aware

of this style, but as a rule, try to declare your piped Promises individually.

The variable names may not be necessary, but they make the code far more

self-documenting.

That concludes our tour of jQuery Promises. Now let’s take a quick look at

the major alternative: the CommonJS Promises/A specification and its flagship

implementation, Q.js.

3.7 jQuery vs. Promises/A

In terms of capabilities, jQuery Promises and Promises/A are nearly identical.

Q.js, the most popular Promises/A library, even offers methods that can work

with jQuery Promises. The differences are superficial; they use the same words

to mean different things.

As previously mentioned in Section 3.2, Making Promises, on page 33, jQuery

uses the term resolve as the opposite of fail, whereas Promises/A uses fulfill.

report erratum • discuss

jQuery vs. Promises/A • 43

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Under Promises/A, a Promise is said to be “resolved” when it’s either fulfilled

or failed.

Up until the release of 1.8, jQuery’s then method was just a shorthand for

invoking done, fail, and progress simultaneously, while Promises/A’s then acted

more like jQuery’s pipe. jQuery 1.8 corrected this by making then a synonym

for pipe. However, any further reconciliation with Promises/A is unlikely

because of backward compatibility concerns.

There are other, subtler differences as well. For instance, in Promises/A,

whether a Promise returned by then is fulfilled or rejected depends on whether

the invoked callback returns a value or throws an error. (Throwing errors

from jQuery Promise callbacks is a bad idea because they’ll go uncaught.)

Because of these issues, you should try to avoid interacting with multiple

Promise implementations in the same project. If you’re just getting Promises

from jQuery methods, use jQuery Promises. If you’re using another library

that gives you CommonJS Promises, adopt Promises/A. Q.js makes it easy

to “assimilate” jQuery Promises.

var qPromise = Q.when(jqPromise);

As long as these two standards remain divergent, this is the best way to make

them play nice together. For more information, see the Q.js docs.5

3.8 Replacing Callbacks with Promises

In a perfect world, every function that started an async task would return a

Promise. Unfortunately, most JavaScript APIs (including the native functions

available in all browsers and in Node.js) are callback-based, not Promise-

based. In this section, we’ll see how Promises can be used with callback-based

APIs.

The most straightforward way to use Promises with a callback-based API is

to create a Deferred and pass its trigger function(s) as the callback argu-

ment(s). For example, with a simple async function like setTimeout, we’d pass

our Deferred’s resolve method.

var timing = new $.Deferred();
setTimeout(timing.resolve, 500);

In cases where an error could occur, we’d write a callback that conditionally

routes to either resolve or reject. For example, here’s how we’d work with a Node-

style callback:

5. https://github.com/kriskowal/q

Chapter 3. Promises and Deferreds • 44

report erratum • discuss

https://github.com/kriskowal/q
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

var fileReading = new $.Deferred();
fs.readFile(filename, 'utf8', function(err) {

if (err) {
fileReading.reject(err);

} else {
fileReading.resolve(Array.prototype.slice.call(arguments, 1));

};
});

(Yes, you can use jQuery from Node. Just npm install jquery and use it like any

other module. There’s also a self-contained implementation of jQuery-style

Promises, simply called Standalone Deferred.6)

Writing this out routinely would be a drag, so why not make a utility function

to generate a Node-style callback from any given Deferred?

deferredCallback = function(deferred) {
return function(err) {
if (err) {
deferred.reject(err);

} else {
deferred.resolve(Array.prototype.slice.call(arguments, 1));

};
};

}

With that, we can write the previous example as follows:

var fileReading = new $.Deferred();
fs.readFile(filename, 'utf8', deferredCallback(fileReading));

In Q.js, Deferreds come with a node method for this right out of the box.

var fileReading = Q.defer();
fs.readFile(filename, 'utf8', fileReading.node());

As Promises become more popular, more and more JavaScript libraries will

follow jQuery’s lead and return Promises from their async functions. Until

then, it takes only a few lines of code to turn any async function you want to

use into a Promise generator.

3.9 What We’ve Learned

In my opinion, Promises are one of the most exciting features to be added to

jQuery in years. Not only are they a big help in smoothing out the callback

spaghetti that characterizes typical Ajax-rich apps, but they also make it

much easier to coordinate async tasks of all kinds.

6. https://github.com/Mumakil/Standalone-Deferred

report erratum • discuss

What We’ve Learned • 45

www.allitebooks.com

https://github.com/Mumakil/Standalone-Deferred
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

Using Promises takes some practice, especially when using pipe, but it’s a

habit well worth developing. You’ll be peering into the future of JavaScript.

The more APIs return Promises, the more compelling they become.

Microsoft has announced that Windows 8’s Metro environment will have a

Promise-based JavaScript API.7 Where hipster developers and Microsoft both

go, the rest of the world is bound to follow.

7. http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx

Chapter 3. Promises and Deferreds • 46

report erratum • discuss

http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

CHAPTER 4

Flow Control with Async.js

Up to this point, this book has been about using abstractions to manage

async tasks throughout an application. PubSub, for instance, is an abstraction

that lets us distribute events from their source to other layers of the applica-

tion (e.g., from the view to the model). Promises are an abstraction that let

us represent simple tasks with objects that can be combined to represent

complex tasks. Together, these abstractions go a long way toward helping us

solve the problem of callback spaghetti.

There’s still one weak spot in our armor, though: iteration. What do we do

when we need to perform a series of I/O operations, either in series or in

parallel? This is such a common problem in the Node world that it has a

name: flow control (also called control flow). And the same way that Under-

score.js can dramatically simplify (synchronous) iterative code, a good flow

control library can strip away the boilerplate from your async code.

The most popular of these libraries is Caolan McMahon’s powerful Async.js.1

In fact, as of this writing, Async.js is the third most required library in the

npm registry,2 sharing the limelight with superstars like Underscore.js and

Express.

In this chapter, we’ll explore what Async.js can do in a Node setting. (Async.js

can run in the browser, too, but few client-side apps need it.) We’ll also take

a brief look at an alternative library, Tim Caswell’s sleek Step.3

1. https://github.com/caolan/async
2. https://npmjs.org/
3. https://github.com/creationix/step

report erratum • discuss

https://github.com/caolan/async
https://npmjs.org/
https://github.com/creationix/step
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Installing Node and Async.js

To follow along with this chapter, grab the latest Node from http://nodejs.org/. After

installing, you should be able to run npm, the Node package manager. Use this

command to install Async.js and Step:

npm install -g async step➾

Then use node file.js to run any JavaScript file.

4.1 The Async Ordering Problem

Suppose we want to read all of the files in the recipes directory, in alphabetical

order, and then concatenate their contents into a single string and display

it. We could do this quite easily using synchronous methods.

Asyncjs/synchronous.js

var fs = require('fs');
process.chdir('recipes'); // change the working directory

var concatenation = '';

fs.readdirSync('.')
.filter(function(filename) {
// ignore directories
return fs.statSync(filename).isFile();

})
.forEach(function(filename) {

// add contents to our output
concatenation += fs.readFileSync(filename, 'utf8');

});

console.log(concatenation);

(Be aware that the forEach iterator isn’t available in older JavaScript environ-

ments, such as IE6. You can fix this with a library like Kris Kowal’s es5-shim.4

We’ll learn how to serve this library to just the browsers that need it in

Chapter 6, Async Script Loading, on page 69.)

But all this blocking is terribly inefficient, particularly if our application could

be doing something else simultaneously. The problem is that we can’t just

naïvely replace

concatenation += fs.readFileSync(filename, 'utf8');

with its async analog

4. https://github.com/kriskowal/es5-shim/

Chapter 4. Flow Control with Async.js • 48

report erratum • discuss

http://nodejs.org/
http://media.pragprog.com/titles/tbajs/code/Asyncjs/synchronous.js
https://github.com/kriskowal/es5-shim/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

fs.readFile(filename, 'utf8', function(err, contents) {
if (err) throw err;
concatenation += contents;

});

because there’s no guarantee that the readFile callbacks would fire in the order

that the readFile calls were made in. readFile just tells the OS to start reading a

file. Most likely, shorter files will be read more quickly than longer files. As a

result, the order in which the recipes are added to concatenation would be

unpredictable. Plus, we’d have to make our console.log line somehow run after

all the callbacks have fired.

To use multiple async tasks and get a predictable result, we’ll need to do

some planning.

4.2 Async Collection Methods

Let’s try to solve this problem without bringing in any utility functions. The

simplest approach that I can think of is to run each readFile from the callback

of the previous one, while keeping track of the number of callbacks that have

fired so far in order to eventually show the output. Here’s my implementation:

Asyncjs/seriesByHand.js

var fs = require('fs');
process.chdir('recipes'); // change the working directory
var concatenation = '';

fs.readdir('.', function(err, filenames) {
if (err) throw err;

function readFileAt(i) {
var filename = filenames[i];
fs.stat(filename, function(err, stats) {

if (err) throw err;
if (! stats.isFile()) return readFileAt(i + 1);

fs.readFile(filename, 'utf8', function(err, text) {
if (err) throw err;
concatenation += text;
if (i + 1 === filenames.length) {

// all files read, display the output
return console.log(concatenation);

}
readFileAt(i + 1);

});
});

}
readFileAt(0);

});

report erratum • discuss

Async Collection Methods • 49

http://media.pragprog.com/titles/tbajs/code/Asyncjs/seriesByHand.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

This is, as you may have noticed, a lot more code than the synchronous ver-

sion. When we used the synchronous filter and forEach methods, this took about

half as many lines and reads much more clearly! Wouldn’t it be nice if we

could just drop in async equivalents of those wonderful iteration methods?

With Async.js, we can do just that!

When It’s OK to Throw

You might have noticed that I ignored my own advice from Section 1.4, Handling

Async Errors, on page 12 in that last code example. Throwing exceptions from callbacks

is poor form—in a production environment. However, for a simple example like this,

throwing exceptions is perfectly fine. In the unlikely event that this code goes wrong,

a throw will shut it down and give us a nice stacktrace explaining why.

The real crime here is that the same error-handling logic, if (err) throw err, is repeated

three times! We’ll see how Async.js can help us reduce that repetition in Error Handling

in Async.js, on page 52.

Functional Style with Async.js

We want to replace the filter and forEach methods we used for synchronous

iteration with async analogs. Async.js gives us two options.

• async.filter and async.forEach, which process the given array in parallel

• async.filterSeries and async.forEachSeries, which process the given array

sequentially

Running our async operations in parallel would be faster, so why would we

want to use a series method? There are two reasons.

• The aforementioned problem of unpredictable ordering. We might get

around this by storing our results in an array and then joining it, but that’s

an extra step.

• There’s a limit on the number of files that Node (or any application process)

can try to read simultaneously. If we hit that limit, the OS would give us

an error. If we read the files sequentially, we don’t have to deal with this

limitation.

So, we’ll stick to async.forEachSeries for now. Here’s a straightforward adaptation

of our synchronous code to use Async.js’s collection methods:

Asyncjs/forEachSeries.js

var async = require('async');
var fs = require('fs');
process.chdir('recipes'); // change the working directory

Chapter 4. Flow Control with Async.js • 50

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Asyncjs/forEachSeries.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

var concatenation = '';

var dirContents = fs.readdirSync('.');

async.filter(dirContents, isFilename, function(filenames) {
async.forEachSeries(filenames, readAndConcat, onComplete);

});

function isFilename(filename, callback) {
fs.stat(filename, function(err, stats) {
if (err) throw err;
callback(stats.isFile());

});
}

function readAndConcat(filename, callback) {
fs.readFile(filename, 'utf8', function(err, fileContents) {
if (err) return callback(err);
concatenation += fileContents;
callback();

});
}

function onComplete(err) {
if (err) throw err;
console.log(concatenation);

}

Now our code splits up nicely into two parts: the overall task (in the form of

the async.filter and async.forEachSeries calls) and the implementation details (in

the form of two iterator functions and one final callback).

filter and forEach aren’t the only Async.js utilities corresponding to standard

functional iteration methods. There are also the following:

• reject/rejectSeries, the inverse of filter
• map/mapSeries, for 1:1 transformations

• reduce/reduceRight, for transforming a value at each step

• detect/detectSeries, for finding a value matching a filter

• sortBy, for generating a sorted copy

• some, for testing whether at least one value matches the given criterion

• every, for testing whether all values match the given criterion

These methods are the core of Async.js, allowing you to perform common

iterations with minimal boilerplate. Before we move on to more advanced

methods, let’s take a look at the way these methods deal with errors.

report erratum • discuss

Async Collection Methods • 51

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Error Handling in Async.js

In our original async code, we had three throws. In the Async.js version, we

have two, yet all errors will still be thrown. How does Async.js do it? And why

can’t we have just one throw?

Simply put, Async.js follows Node conventions. This means that every I/O

callback has the form (err, results...)—with the exception of callbacks where the

result is a boolean. Boolean callbacks just have the form (result), which is why

our isFilename iterator from the previous code example needs to handle errors

on its own.

Asyncjs/forEachSeries.js

function isFilename(filename, callback) {
fs.stat(filename, function(err, stats) {
if (err) throw err;
callback(stats.isFile());

});
}

Blame Node’s fs.exists for setting this precedent. That means that the iterators

for the Async.js collection methods (filter, reject, detect, some, every, and their

series equivalents) can’t report errors.

With all non-boolean Async.js iterators, passing a value other than null or

undefined as the first argument to the iterator’s callback will immediately invoke

the completion callback with that error. That’s why readAndConcat can do

without throw.

Asyncjs/forEachSeries.js

function readAndConcat(filename, callback) {
fs.readFile(filename, 'utf8', function(err, fileContents) {
if (err) return callback(err);
concatenation += fileContents;
callback();

});
}

So, if callback(err) does get called from readAndConcat, that err will be passed to

onComplete. Async.js guarantees that onComplete will be called only once, either

the first time an error occurs or after all operations have finished successfully.

Asyncjs/forEachSeries.js

function onComplete(err) {
if (err) throw err;
console.log(concatenation);

}

Chapter 4. Flow Control with Async.js • 52

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Asyncjs/forEachSeries.js
http://media.pragprog.com/titles/tbajs/code/Asyncjs/forEachSeries.js
http://media.pragprog.com/titles/tbajs/code/Asyncjs/forEachSeries.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Node’s error conventions may not ideal for Async.js’s collection methods. But

for all of Async.js’s other methods, following these conventions allow errors

to flow neatly from individual tasks to the completion callback. We’ll see more

examples of this in the next section.

4.3 Organizing Tasks with Async.js

Async.js’s collection methods solve the problem of applying a single async

function to a set of data. But what if, instead of a set of data, we have a set

of functions? In this section, we’ll explore some of the powerful tools that

Async.js has for dispatching async functions and collecting their results.

Running an Async Series

Suppose we have an array of async functions that we want to run in order.

Without the use of a utility function, we might have to write something like

this:

funcs[0](function() {
funcs[1](function() {
funcs[2](onComplete);

})
});

Fortunately, we have async.series and async.waterfall. Each takes an array of

functions (the task list) and runs them sequentially, passing each one a Node-

style callback. The difference between the two is that async.series provides only

the callback to each task, whereas async.waterfall also provides the results from

the previous task. (By “results,” I mean the nonerror values each task passes

to its callback.)

Let’s look at a simple demonstration using timeouts.

Asyncjs/seriesTimers.js

var async = require ('async');

var start = new Date;

async.series([
function(callback) { setTimeout(callback, 100); },
function(callback) { setTimeout(callback, 300); },
function(callback) { setTimeout(callback, 200); }

], function(err, results) {
// show time elapsed since start
console.log('Completed in ' + (new Date - start) + 'ms');

});

report erratum • discuss

Organizing Tasks with Async.js • 53

http://media.pragprog.com/titles/tbajs/code/Asyncjs/seriesTimers.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

(Substituting async.waterfall for async.series would have no effect on this example,

since each task’s callback is run with no arguments.)

The completion handler will run after a little over 600m because each task

in the array is completed in order. The callback that Async.js passes to each

task function simply asks, “Is there an error (the first argument)? If not, then

I’ll collect the result (the second argument) and run the next task.”

The next time you have a set of async functions that you want to run

sequentially, reach for async.series or async.waterfall. There’s an excellent chance

that one of them is the right tool for the job.

Parallelizing Async Functions

Async.js offers a parallel analog of async.series called async.parallel. Just like

async.series, it takes an array of functions of the form function(callback) {...}, plus

an (optional) completion handler that runs after the last callback fires.

Let’s repeat our timeout example.

Asyncjs/parallelTimers.js

var async = require ('async');
var start = new Date;
async.parallel([

function(callback) { setTimeout(callback, 100); },
function(callback) { setTimeout(callback, 300); },
function(callback) { setTimeout(callback, 200); }

], function(err, results) {
console.log('Completed in ' + (new Date - start) + 'ms');

});

Whereas async.series took the sum of the timeouts to complete (~600ms),

async.parallel takes only the max timeout (~300ms).

Conveniently, Async.js passes the results to the completion handler in the

order corresponding to the task array, not the order in which the results were

generated. Thus, you get the performance benefits of parallelism without the

unpredictability.

Along with the collection methods, async.series, async.waterfall, and async.parallel
are the heart and soul of Async.js: simple, time-saving utility functions for

the most common async scenarios.

4.4 Dynamic Async Queuing

Most of the time, the simple methods from the last two sections are enough

to solve your async dilemmas. But async.series and async.parallel have their

limitations.

Chapter 4. Flow Control with Async.js • 54

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Asyncjs/parallelTimers.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

• The task array is static. Once you’ve called async.series or async.parallel, you

can’t add or remove tasks.

• There’s also no way to ask, “How many tasks have been completed?” It’s

a black box, unless you dispatch updates from the tasks themselves.

• You’re limited to either no concurrency or unlimited concurrency. That’s

a pretty big deal when it comes to file I/O. If we’re operating on thousands

of files, we don’t want to be inefficient by doing a series, but we’re likely

to anger the OS if we try to do everything in parallel.

Async.js provides a versatile method that addresses every one of these issues:

async.queue.

Understanding the Queue

The basic concept underlying async.queue is reminiscent of a DMV; it can handle

multiple people simultaneously (up to the number of clerks on duty), but

rather than have a separate line for each clerk, it has a single stack of num-

bers. When you arrive, you get a number. As each clerk becomes free, the

clerk calls the next number.

async.queue’s interface is a bit more complex than that of async.series and

async.parallel. It takes a function called the worker (rather than an array of

functions) and a concurrency value (the maximum number of simultaneous

tasks the worker can process). Then it returns a queue that we can push
arbitrary task data onto (along with an optional callback).

Here’s a trivial example:

Asyncjs/simpleQueue.js

var async = require('async');

function worker(data, callback) {
console.log(data);
callback();

}
var concurrency = 2;
var queue = async.queue(worker, concurrency);
queue.push(1);
queue.push(2);
queue.push(3);

No matter what the concurrency is (as long as it’s at least 1), we get the fol-

lowing output:

1❮

2
3

report erratum • discuss

Dynamic Async Queuing • 55

www.allitebooks.com

http://media.pragprog.com/titles/tbajs/code/Asyncjs/simpleQueue.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs
http://www.allitebooks.org

There is a difference under the hood, though: with concurrency of 2, we need

two trips to the event queue. If it were 1, we’d need three trips, one for each

line. And if it were 3 or more, we’d need just one trip.

A queue with concurrency of 0 will do nothing. And if you want maximum

concurrency, just use Infinity.

Pushing Tasks

Although queue.push shares the same name as [].push, there are two critical

differences.

First,

queue.push([1, 2, 3]);

is equivalent to the following:

queue.push(1);
queue.push(2);
queue.push(3);

This means you can’t use arrays directly as task data. You can, however, use

anything else—even functions. In fact, if you want to use an array of functions

like you would with async.series or async.parallel, all you need to do is define a

worker that passes its second argument to its first.

function worker(task, callback) {
task(callback);

}
var concurrency = 2;
var queue = async.queue(worker, concurrency);
queue.push(tasks);

Second, you can provide a callback function along with each push; if you do,

it’s given directly to the worker function as the callback argument. So, for

instance,

queue.push([1, 2, 3], function(err, result) {
console.log('Task complete!');

});

will (assuming that the worker runs its callback) emit the output Task complete!
three times. push callbacks are invaluable because async.queue, unlike

async.series/async.parallel, doesn’t store results internally. If you want them, you’ll

have to capture them yourself.

Chapter 4. Flow Control with Async.js • 56

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Handling Completion

As with async.series and its ilk, we can give async.queue a completion handler.

Instead of passing it as an argument, though, we need to attach it as a

property called drain. (Picture a tub full of incomplete tasks; when the last one

has gone down the drain, the callback fires.) Here’s a demonstration with

timers:

Asyncjs/queueTimers.js

var async = require('async');

function worker(data, callback) {
setTimeout(callback, data);

}
var concurrency = 2;
var queue = async.queue(worker, concurrency);
var start = new Date;
queue.drain = function() {

console.log('Completed in ' + (new Date - start) + 'ms');
};

queue.push([100, 300, 200]);

Recall that async.series took ~600ms to get through these timeouts (the sum),

while async.parallel took only ~300ms (the max). Here, concurrency is 2, so initially,

the first two timeouts will run in parallel. But when the 100ms timeout fin-

ishes, the next task on the queue (the 200ms timeout) will immediately start.

So, in this case, async.queue will finish at about the same time as async.parallel.
The order matters: if 300 were the third timeout, the queue would take ~400ms

to complete.

Note that we can always push more tasks onto the queue, and drain will fire

every time the last task on the queue has finished. Unfortunately, this means

that async.queue can’t give us neatly ordered results the way async.waterfall could.

If we want to collect data from our queued tasks, we’re on our own.

Advanced Queue Callbacks

Although drain is usually the only handler you’ll need, async.queue provides a

few other events.

• When the last task has started running, the queue calls empty. (When the

task finishes, the queue calls drain.)

• When the concurrency limit is reached, the queue calls saturated.

• If you provide a function as the second argument in a push, it’ll be called

when the given task (or each task in the given array) is finished.

report erratum • discuss

Dynamic Async Queuing • 57

http://media.pragprog.com/titles/tbajs/code/Asyncjs/queueTimers.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

In this section, we’ve seen how async.queue is one of the most powerful functions

in Async.js. When you need to run a large number of async tasks with limited

concurrency, think async.queue.

That’s it for our coverage of Async.js, the most widely used and, arguably,

most feature-rich JavaScript flow control library. However, I don’t want you

to get the impression that Async.js is the right tool for every callback-driven

job. Let’s close out the chapter by looking at one of its top rivals, Step.

4.5 Minimalist Flow Control with Step

Tim Caswell’s Step is a lightweight library.5 In fact, its API consists of a single

function: Step.

Step takes a list of functions; here’s an example:

Step(task1, task2, task3);

Each function can control the flow in three ways.

• It can call this to make Step run the next function in the list.

• It can call a callback generated by this.parallel or this.group n times to tell Step

to run the next function n times.

• It can return a value, which will also make Step run the next function in

the list. This makes it easy to mix synchronous functions with async ones.

The next function will receive the results of its predecessor (that is, its return

value or the arguments it passed to this) or the results of all instances of its

predecessor if that predecessor was run with this.parallel or this.group. (The differ-

ence is that this.parallel provides those results as separate arguments, while

this.group merges them into arrays.)

The entire library is, as of this writing, just 152 lines long (with comments)

yet is versatile enough to handle most async flows. The downside of this

minimalism is that a flow created with Step can be understood only by reading

each function in it. Flows created with the everything-but-the-kitchen-sink

Async.js tend to be more self-explanatory.

Still, if you feel like rolling up your sleeves, writing Async.js-like utility func-

tions in Step can be a great exercise. For example, here’s the equivalent of

async.map in just eleven lines:

5. https://github.com/creationix/step

Chapter 4. Flow Control with Async.js • 58

report erratum • discuss

https://github.com/creationix/step
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Asyncjs/stepMap.js

var Step = require('step');

function stepMap(arr, iterator, callback) {
Step(
function() {
var group = this.group();
for (var i = 0; i < arr.length; i++) {

iterator(arr[i], group());
}

},
callback

);
}

I find using Step to be a refreshing exercise. While using Async.js is mainly

about finding the right utility function for the job, Step encourages you to

think problems through clearly and write elegant, efficient solutions.

4.6 What We’ve Learned

In this chapter, we saw how common async patterns can be implemented

with minimal boilerplate using the right flow control functions. Async.js has

become the number-one flow control library by offering a robust combination

of collection iteration and task-wrangling methods. If you have a flow control

problem, the odds are very good that Async.js has a solution. Or if you’re

more of the do-it-yourself type, consider Step.

Isaac Schlueter, lead developer of the Node.js project, made a very small flow

control library called Slide,6 which is used in npm. In Slide’s README, he

wrote this:

You should use it as an example of how to write your own flow control utilities.

You’ll never fully appreciate a flow control lib that you didn’t write yourself.

I hope that’s not true. Writing a flow control lib is a good exercise, but you

shouldn’t have to reinvent the wheel just to see how it works. As the JavaScript

ecosystem matures, flow control should become more widespread and more

standardized. For the time being, if your application needs flow control, the

important thing is to choose a good library and learn it well.

6. https://github.com/isaacs/slide-flow-control

report erratum • discuss

What We’ve Learned • 59

http://media.pragprog.com/titles/tbajs/code/Asyncjs/stepMap.js
https://github.com/isaacs/slide-flow-control
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

CHAPTER 5

Multithreading with Workers

At the start of this book, I described events as an alternative to multithreading.

More precisely, events replace a specific kind of multithreading, the kind

where multiple parts of an application process run simultaneously (either

virtually, through interrupts, or physically on multiple CPU cores). This gets

to be a problem when code running in different threads has access to the

same data. Even a line as simple as

i++;

can be a source of pernicious Heisenbugs1 when it allows separate threads

to modify the same i at the same time. Thankfully, this kind of multithreading

is impossible in JavaScript.

On the other hand, distributing tasks across multiple CPU cores is increas-

ingly essential because those cores are no longer making the same exponential

gains in efficiency, year after year, that used to be expected. So, we need

multithreading. Does that mean abandoning event-based programming?

Au contraire! While running on a single thread isn’t ideal, naïvely distributing

an app across multiple cores can be even worse. Multicore systems slow to

a crawl when those cores have to constantly talk to each other to avoid step-

ping on each other’s toes. It’s much better to give each core a separate job

and then sync up occasionally.

That’s precisely what workers do in JavaScript. From the master thread of

your application, you tell a worker, “Go run this code in a separate thread.”

The worker can send you messages (and vice versa), which take the form of

(what else?) callbacks run from the event queue. In short, you interact with

different threads the same way you do I/O in JavaScript.

1. http://en.wikipedia.org/wiki/Heisenbug

report erratum • discuss

http://en.wikipedia.org/wiki/Heisenbug
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

In this chapter, we’ll look at workers in both their browser and Node manifes-

tations, and we’ll discuss some practical applications.

Threads vs. Processes

In this chapter, I throw around the words thread and process interchangeably. At the

operating system level, there’s an important distinction: threads within a process can

share state, while separate processes can’t. But in JavaScript, concurrent code (as

run by workers) never shares state. So, workers may be implemented using lightweight

OS threads, but they behave like processes.

There are Node libraries, most notably, Threads-A-GoGo,a that allow you to break

the state-sharing rule for the sake of efficiency. Those are beyond the scope of this

chapter, which is concerned only with concurrency in standard JavaScript.

a. https://github.com/xk/node-threads-a-gogo

5.1 Web Workers

Web workers are part of the living standard widely known as HTML5. To

create one, you call the global Worker constructor with the URL of a script.

var worker = new Worker('worker.js');
worker.addEventListener('message', function(e) {
console.log(e.data); // echo whatever was sent by postMessage

});

(Usually, we want only the data property from the message event. If we were

binding the same event handler to multiple workers, we could use e.target to
determine which worker emitted the event.)

So, now we know how to listen to workers. Conveniently, the interface for

talking to workers is symmetrical: we use worker.postMessage to send it, and the

worker uses self.addEventListener('message', ...) to receive it. Here’s a complete

example:

// master script
var worker = new Worker('boknows.js');
worker.addEventListener('message', function(e) {

console.log(e.data);
});
worker.postMessage('football');
worker.postMessage('baseball');

// boknows.js
self.addEventListener('message', function(e) {

self.postMessage('Bo knows ' + e.data);
});

Chapter 5. Multithreading with Workers • 62

report erratum • discuss

https://github.com/xk/node-threads-a-gogo
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

You can play with the message-passing interface at a little site I created, the

Web Worker Sandbox.2 Any time you create a new example, it gets a unique

URL that you can share.

Restrictions on Web Workers

Web workers are primarily intended to handle complex computations without

compromising DOM responsiveness. Potential uses include the following:

• Decoding video as it streams in with the Broadway implementation of the

H.264 codec3

• Encrypting communications with the Stanford JavaScript Crypto Library4

• Parsing text in a web-based editor, à la Ace5

In fact, Ace already does this by default. When you type code into an Ace-

based editor, Ace needs to perform some pretty heavy string analysis before

updating the DOM with appropriate syntax highlighting. In modern browsers,

that analysis is done on a separate thread, ensuring that the editor remains

smooth and responsive.

Typically, the worker will send the result of its computations to the master

thread, which will then update the page. Why not update the page directly?

Mainly, to keep JavaScript’s async abstractions intact. If a worker could alter

the page’s markup, we’d end up in the same place as Java, wrapping our

DOM manipulation code in mutexes and semaphores to avoid race conditions.

Likewise, a worker can’t see the global window object or any other object in the

master thread (or in other worker threads). When an object is sent through

postMessage, it’s transparently serialized and unserialized; think JSON.parse
(JSON.stringify(obj)). So, changes to the original object won’t affect the copy in the

other thread.

Even the trusty console object isn’t available to workers. All a worker can see

is its own global object, called self, and everything bundled with it: standard

JavaScript objects like setTimeout and Math, plus the browser’s Ajax methods.

Ah yes, Ajax! A worker can use XMLHttpRequest freely. It can even use WebSocket
if the browser supports it. That means the worker can pull data directly from

the server. And if we’re dealing with a lot of data (like, say, streaming video

2. http://webworkersandbox.com/
3. https://github.com/mbebenita/Broadway
4. http://crypto.stanford.edu/sjcl/
5. http://ace.ajax.org/

report erratum • discuss

Web Workers • 63

http://webworkersandbox.com/
https://github.com/mbebenita/Broadway
http://crypto.stanford.edu/sjcl/
http://ace.ajax.org/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

that needs to be decoded), keeping it in one thread rather than serializing it

with postMessage is a big win.

There’s also a special importScripts function that will (synchronously) load and

run the given script(s).

importScripts('https://raw.github.com/gist/1962739/danika.js');

Normally, synchronous loading is a big no-no, but remember that we’re in a

secondary thread here. As long as the worker has nothing else to do, blocking

is A-OK.

Which Browsers Support Web Workers?

On the desktop, the Web Worker standard has been implemented in Chrome,

Firefox, and Safari for a couple of years, and it’s in IE10. Mobile support is

spotty as well. The latest iOS Safari supports them, but the latest Android

browser doesn’t. At the time of this writing, that translates into 59.12 percent

browser support, according to Caniuse.com.6

In short, you can’t count on your site’s users having web workers. You can,

however, easily write a shim to run the target script normally if window.Worker
is unavailable. Web workers are just a performance enhancement after all.

Be careful to test web workers in multiple browsers because there are some

critical differences among the implementations. For instance, Firefox allows

workers to spawn their own “subworkers,” but Chrome currently doesn’t.

5.2 Node Workers with cluster

In the early days of Node, there were many competing APIs for multithreading.

Most of these solutions were clumsy, requiring users to spin up multiple

instances of a server to listen on different TCP ports, which would then be

hooked up to the real one via proxy. It was only in the 0.6 release that a

standard was included out of the box that allowed multiple processes to bind

to the same port: cluster.7

Typically, cluster is used to spin up one process per CPU core for optimal per-

formance (though whether each process will actually get its own core is

entirely up to the underlying OS).

6. http://caniuse.com/webworkers
7. http://nodejs.org/docs/latest/api/cluster.html

Chapter 5. Multithreading with Workers • 64

report erratum • discuss

http://caniuse.com/webworkers
http://nodejs.org/docs/latest/api/cluster.html
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Multithreading/cluster.js

var cluster = require('cluster');
if (cluster.isMaster) {

// spin up workers
var coreCount = require('os').cpus().length;
for (var i = 0; i < coreCount; i++) {
cluster.fork();

}
// bind death event
cluster.on('death', function(worker) {
console.log('Worker ' + worker.pid + ' has died');

});
} else {

// die immediately
process.exit();

}

The output will look something like

Worker 15330 has died❮

Worker 15332 has died
Worker 15329 has died
Worker 15331 has died

with one line for each CPU core.

The code may look baffling at first. The trick is that while web workers load

a separate script, cluster.fork() causes the same script that it’s run from to be

loaded in a separate process. The only way the script knows whether it’s being

run as the master or a worker is by checking cluster.isMaster.

The reason for this design decision is that multithreading in Node has a very

different primary use case than multithreading in the browser. While the

browser can relegate any surplus threads to background tasks, Node servers

need to scale up the computational resources available for their main task:

handling requests.

(External scripts can be run as separate processes using child_process.fork.8

Its capabilities are largely identical to those of cluster.fork—in fact, cluster uses

child_process under the hood—except that child process can’t share TCP ports.)

Talking to Node Workers

As with web workers, cluster workers can communicate with the master process

by sending message events, and vice versa. The API is slightly different,

though.

8. http://nodejs.org/docs/latest/api/child_process.html

report erratum • discuss

Node Workers with cluster • 65

http://media.pragprog.com/titles/tbajs/code/Multithreading/cluster.js
http://nodejs.org/docs/latest/api/child_process.html
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Multithreading/clusterMessage.js

var cluster = require('cluster');
if (cluster.isMaster) {

// spin up workers
var coreCount = require('os').cpus().length;
for (var i = 0; i < coreCount; i++) {
var worker = cluster.fork();
worker.send('Hello, Worker!');
worker.on('message', function(message) {
if (message._queryId) return;
console.log(message);

});
}

} else {
process.send('Hello, main process!');
process.on('message', function(message) {

console.log(message);
});

}

The output will look something like

Hello, main process!
Hello, main process!
Hello, Worker!
Hello, Worker!
Hello, main process!
Hello, Worker!
Hello, main process!
Hello, Worker!

where the order is unpredictable, because each thread is racing to console.log
first. (You’ll have to manually terminate the process with Ctrl+C.)

As with web workers, the API is symmetric, with a send call on one side trig-

gering a 'message' event on the other side. But notice that the argument to send
(or rather, a serialized copy) is given directly by the 'message' event, rather than

being attached as the data property.

Notice the line

if (message._queryId) return;

in the master message handler? Node sometimes sends its own messages

from the workers, which always look something like this:

{ cmd: 'online', _queryId: 1, _workerId: 1 }

It’s safe to ignore these internal messages, but be aware that they’re used to

perform some important magic behind the scenes. Most notably, when

Chapter 5. Multithreading with Workers • 66

report erratum • discuss

http://media.pragprog.com/titles/tbajs/code/Multithreading/clusterMessage.js
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

workers try to listen on a TCP port, Node uses internal messages to allow the

port to be shared.

Restrictions on Node Workers

For the most part, cluster obeys the same rules as web workers: there’s a

master, and there are workers; they communicate via events with attached

strings or serializable objects. However, while workers are obviously second-

class citizens in the browser, Node’s workers possess all the rights and

privileges of the master except, notably, the following:

• The ability to shut down the application

• The ability to spawn more workers

• The ability to communicate with each other

This gives the master the burden of being a hub for all interthread communi-

cation. Fortunately, this inconvenience can be abstracted away with a library

like Roly Fentanes’ Clusterhub.9

In this section, we’ve seen how workers have become an integral part of Node,

allowing a server to utilize multiple cores without running multiple application

instances. Node’s cluster API allows the same script to run concurrently, with

one master process and any number of workers. To minimize the overhead

of communication, shared state should be stored in an external database,

such as Redis.

5.3 What We’ve Learned

It’s early, but I’d say the future of multicore JavaScript is bright. For any

application that can be split up into largely independent processes that need

to talk to each other only periodically, workers are a winning solution for

leveraging maximum CPU power. Distributed computing has never been more

fun.

9. https://github.com/fent/clusterhub

report erratum • discuss

What We’ve Learned • 67

https://github.com/fent/clusterhub
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

CHAPTER 6

Async Script Loading

In the beginning, there was this:

<script src="allMyClientSideCode.js"></script>

And it was…not great. “Where should it go?” developers wondered. “Up in the

<head>? Or down in the <body>?” For script-heavy sites, both options lead to

misery. A large script in the <head> delays all page rendering, giving the user

a “White Screen of Death”1 until the script loads completely. But a large script

at the end of the <body> gives the user a lifeless, static page littered with

nonworking controls and empty boxes where client-side rendering is supposed

to occur.

The ideal solution to this problem is to triage your scripts; those that are

needed for the page to look and feel right should load right away. Scripts that

can wait should. But what’s the right way of delaying those scripts while

ensuring that they’re available when called?

In the last few years, several technologies aimed at solving this problem have

become widespread. In this chapter, we’ll look at how HTML5’s async and defer
attributes can help. We’ll also look at two popular script-loading libraries:

yepnope and Require.js.

Async Loading in Node.js

We’ll be sticking to the browser in this chapter, because async module loading in

Node is rarely useful. Node once offered an async variant of require, but it was removed

in version 0.3. If you’re interested in the reasoning behind its removal, see

https://groups.google.com/d/msg/nodejs/y_-LZqltb1A/mmpYLlLurqkJ.

1. The term was coined by the authors of the excellent JavaScript Performance Rocks:

http://javascriptrocks.com/performance/.

report erratum • discuss

https://groups.google.com/d/msg/nodejs/y_-LZqltb1A/mmpYLlLurqkJ
http://javascriptrocks.com/performance/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

6.1 Limitations and Caveats

Before we continue, here are a few important things to note:

• The techniques in this chapter are not compatible with scripts that are

inlined (defined directly in your page’s markup). Inlining should be

avoided when possible. If you must inline a script, don’t try to use the

defer or async attribute on it.

• When using any of the techniques in this chapter, you should not use

document.write. Its behavior in asynchronously loaded scripts is unpre-

dictable. If you don’t know what document.write is, then good. Suffice to say

it’s the GOTO of DOM manipulation.

• This is not a definitive guide. I’ve neglected some important platform-

specific details for the sake of brevity. For example, certain mobile

browsers will refuse to cache scripts larger than a certain size. So, if you’re

targeting those devices, it’s important to keep scripts small.

Page load optimization is a rich subject on which whole books have been

written, and script loading is just one factor. But for script-heavy sites that

aren’t taking advantage of async loading, there’s plenty of low-hanging fruit

to be picked using the techniques in this chapter.

6.2 Reintroducing the <script> Tag

At the risk of sounding hyperbolic, <script> is the most important HTML tag

of all time. Don’t believe me? Consider that a page consisting entirely of a

single script tag can do anything. It can spin itself a document from whole

cloth, loading whatever resources it wants. By contrast, even the most mar-

velous page without a <script> tag is sharply limited, unable to respond to the

user’s actions with anything more complicated than a CSS transition.

In modern browsers, <script> comes in two refreshing flavors: classic and

nonblocking. In this section, we’ll see how you can use both varieties to make

your pages load as quickly as possible.

Where the Blocking Scripts Go

A standard-issue <script> tag is commonly said to be blocking. That term has

to be understood in context: when a modern browser sees a blocking <script>
tag, it will continue to read the document past that point and download other

resources (scripts and style sheets). However, it won’t evaluate those resources

until the script has been fully downloaded and run.

Chapter 6. Async Script Loading • 70

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

So, if you have five blocking <script> tags in the <head> of the document, the

user won’t see anything but the page’s title until all five scripts have been

downloaded and run. Further, while those scripts are being run, they’ll be

able to see the document only up until that point. If they want to see any of

the good stuff that’s waiting down in the <body>, they’ll have to bind a handler

to an event like document.onreadystatechange.

For that reason, it’s become fashionable to put scripts at the end of the page’s

<body>. This way, the user gets to see the page more quickly, and the scripts

get to see the DOM in all its glory without having to wait for an event to fire.

For most scripts, this move is a big improvement.

But not all scripts are alike. Before you move a script down, ask yourself

three questions.

• Is there a chance that this script will be called directly from inlined

JavaScript in the <body>? This may be obvious, but it’s worth double-

checking.

• Does this script allow older browsers to recognize HTML5 elements?

Modernizr2 does, which is why the HTML5 Boilerplate3—an exemplar of

best practices—includes it right up top.

• Is this script something that will determine how your page looks when

it’s rendered? An example is Typekit’s hosted fonts. If you put Typekit’s

script at the end of your document, the text on your page will render

twice: once immediately and again after the script runs.

If the answer is “yes” to any of these questions, that script should go in the

<head>. Otherwise, it should go in the <body>. Minifying and concatenating

those two sets of scripts will give you a document that looks like this:

<html>
<head>

<!-- metadata and stylesheets go here -->
<script src="headScripts.js"></scripts>

</head>
<body>

<!-- content goes here -->
<script src="bodyScripts.js"></script>

</body>
</html>

This is great for load times, but be aware that it may give the user a chance

to interact with the page before bodyScripts.js is loaded.

2. http://modernizr.com/
3. http://html5boilerplate.com/

report erratum • discuss

Reintroducing the <script> Tag • 71

http://modernizr.com/
http://html5boilerplate.com/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Deferring Scripts

In the last section, I recommended <body> placement for most scripts, since

that allows the user to see the page more quickly and avoids the overhead of

binding to a “ready” event before manipulating the DOM. But there is a

downside: the browser won’t be able to start loading those scripts until the

whole document is loaded. For large documents being sent over slow connec-

tions, this can be a major bottleneck.

Ideally, we’d load those scripts in parallel with the document, without delaying

DOM rendering. Then when the document is ready, we’d run the scripts

because they’re loaded while preserving the order of the <script> tags.

If you’ve read the book up to this point, no doubt you’re excited about writing

a custom Ajax script loader to meet these requirements! But most browsers

support a simpler solution.

<script defer src="deferredScript.js">

Adding that defer attribute tells the browser this: “Start loading this script right

away, but don’t run it until the document is ready and all previous scripts with

defer have finished running.” Placing a deferred script in the <head> of your docu-

ment gives you all the advantages of <body> placement, plus a substantial speed

boost in large documents!

The downside? defer isn’t supported by all browsers. Notably, as of this writing,

even the latest Opera ignores the attribute.4 That means if you want to ensure

that your deferred scripts run after the document is loaded, you’ll have to wrap

each script’s code in something like jQuery’s $(document).ready. That may be

worthwhile, since something like 97 percent of your visitors will get to enjoy the

benefits of parallel loading, while the other 3 percent will still get perfectly func-

tional JavaScript.

With defer, we can improve on the page example from the previous section by

replacing bodyScripts.js with deferredScripts.js.

<html>
<head>

<!-- metadata and stylesheets go here -->
<script src="headScripts.js"></scripts>
<script defer src="deferredScripts.js"></script>

</head>
<body>

<!-- content goes here -->
</body>
</html>

4. http://caniuse.com/#search=defer

Chapter 6. Async Script Loading • 72

report erratum • discuss

http://caniuse.com/#search=defer
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Just remember that it’s important to wrap deferredScripts so that it won’t run

until after the document ready event in browsers that don’t support defer. If
the body content is more than a couple of kilobytes, that trade-off is

worthwhile.

Full Script Parallelization

If you’re a hardcore every-millisecond-counts page load gearhead, defer may

sound like weak sauce to you. You don’t want to wait until all previous scripts

with defer have run. And you certainly don’t want those scripts to wait to run

until the document is ready, not when they have to use $(document).ready anyway

for Opera’s sake. You just want to load those scripts as soon as possible and

run them as soon as possible.

That’s why modern browsers offer the async attribute.

<script async src="speedyGonzales.js">
<script async src="roadRunner.js">

If defer makes you think of an orderly queue waiting for the document to load,

async should make you think of anarchy. Those two scripts shown earlier

could run in any order, and they’ll run as soon as the JavaScript engine is

available to run them, whether the document is ready or not. So, aside from

feeling the need for speed, why would you use async?

For most scripts, async is a tough sell. It’s not as widely supported as defer, so

fewer users will notice the performance boost.5 And because async scripts can

run at any time, it’s all too easy to introduce Heisenbugs that depend on when

a script happens to finish loading.

But for scripts that are intended to be independent, async is a small but signif-

icant win. Got a third-party script that adds a feedback widget and another

that adds a tech support chat box? The page will run fine without them, and

it doesn’t matter which one runs first. So, you can get a free speed boost by

using async with them.

Async + Defer = ?

You might be asking, “What if I use both defer and async on the same script?” The

answer is that async overrides defer in browsers that support both. Since defer is more

widely supported and provides the main benefit of async—allowing the DOM to render

while the script downloads—I recommend using defer whenever you use async.

5. http://caniuse.com/#search=async

report erratum • discuss

Reintroducing the <script> Tag • 73

http://caniuse.com/#search=async
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Adding a couple of independent widgets to our last page example, we get the

following:

<html>
<head>

<!-- metadata and stylesheets go here -->
<script src="headScripts.js"></scripts>
<script src="deferredScripts.js" defer></script>

</head>
<body>

<!-- content goes here -->
<script async defer src="feedbackWidget.js"></script>
<script async defer src="chatWidget.js"></script>

</body>
</html>

This page structure makes your priorities clear. In the vast majority of

browsers, DOM rendering will be delayed only until headScripts.js finishes run-

ning. deferredScripts.js will load in the background while the DOM is rendered.

Then, after DOM rendering, deferredScripts.js and the two widget scripts will run.

The order in which those scripts run is indeterminate in browsers that support

async. If you’re not sure whether that’s OK, don’t use async!

In this section, we’ve seen how a <script> tag’s placement and attributes you

use can make a big difference in the time it takes for someone to start using

your page. In the next section, we’ll see how you can take the principle of

async loading even further by using scripts to load other scripts.

6.3 Programmatic Loading

While <script> tags are appealingly simple, there are some situations that

require a more sophisticated approach to script loading. Perhaps we want a

certain script to load only for users who meet certain requirements, such as

premium subscribers or gamers who’ve reached a certain level. Or we may

want a certain feature, like a chat widget, to load only when the user clicks

to activate it.

In this section, we’ll look at how scripts can load other scripts. After a brief

look at low-level approaches, we’ll look at two popular libraries that make

script loading a breeze: yepnope and Require.js.

Loading Scripts Directly

At the browser API level, there are two (reasonable) ways to fetch a script from

a server and run it.

Chapter 6. Async Script Loading • 74

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

• Make an Ajax request and then eval the response.

• Insert a <script> tag into the DOM.

The latter approach is nicer, since the browser takes care of the work of

making an HTTP request for you. Plus, eval has practical problems: leaking

scope, making a mess of debugging, and possibly degrading performance. So,

to load a script called feature.js, we would insert a <script> tag with some code

like this:

var head = document.getElementsByTagName('head')[0];
var script = document.createElement('script');
script.src = '/js/feature.js';
head.appendChild(script);

But wait—how do we find out when the script has finished loading? We could,

of course, add some code in the script itself to trigger an event, but adding

that code to every script we load would be a chore (or, in the case of scripts

on a third-party server, impossible). The HTML5 specification defines an onload
attribute that we can bind a callback to.

script.onload = function() {
// now we can call functions defined in script

};

However, onload isn’t supported in IE8 and older, which instead uses onreadys-
tatechange. There are also some weird edge cases in certain browsers when

inserting <script> tags. And I haven’t even gotten into error handling! To avoid

all of these headaches, I highly recommend using a script-loading library.

Conditional Loading with yepnope

yepnope6 is a simple and lightweight library (just 1.7KB minified and gzipped)

designed to serve the most common dynamic loading needs without frills. It

can be used on its own or as part of the Modernizr feature detection library.

At its simplest, yepnope loads a script and gives you a callback for when the

script has run.

yepnope({
load: 'oompaLoompas.js',
callback: function() {
console.log('Oompa-Loompas ready!');

}
});

6. http://yepnopejs.com/

report erratum • discuss

Programmatic Loading • 75

http://yepnopejs.com/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Not impressed yet? Let’s use yepnope to load multiple scripts in parallel and

run them in the given order. For example, suppose we want to load Back-

bone.js, which depends on Underscore.js. All we have to do is provide the two

script locations in an array as the load parameter.

yepnope({
load: ['underscore.js', 'backbone.js'],
complete: function() {
// Backbone logic goes here

}
});

Notice that we used complete instead of callback here. The difference is that callback
is run for every resource in the load list, while complete runs only after everything

has been loaded.

yepnope’s trademark feature is conditional loading. Given a test parameter,

yepnope can load different resources based on whether that value is truthy.

For instance, if you’re using Modernizr, you can determine (to some degree

of accuracy) whether the user is on a touchscreen device and load different

stylesheets and scripts accordingly.

yepnope({
test: Modernizr.touch,
yep: ['touchStyles.css', 'touchApplication.js'],
nope: ['mouseStyles.css', 'mouseApplication.js'],
complete: function() {

// either way, the application is now ready!
}

});

With a handful of lines of code, we’ve set the stage to give users a completely

different experience based on their input device. Of course, we don’t need

both a yep and a nope for every condition. One of the most common uses of

yepnope is loading shims to fill in functionality that’s missing from older

browsers.

yepnope({
test: window.json,
nope: ['json2.js'],
complete: function() {

// now we can JSON safely
}

});

Here’s a good markup structure for a page that uses yepnope:

Chapter 6. Async Script Loading • 76

report erratum • discuss

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

<html>
<head>

<!-- metadata and stylesheets go here -->
<script src="headScripts.js"></scripts>
<script src="deferredScripts.js" defer></script>

</head>
<body>

<!-- content goes here -->
</body>
</html>

Look familiar? This is the same structure we had in the section on defer. The

only difference is that yepnope.js has been concatenated into one of the script

files (likely at the top of deferredScripts.js), and anything that we need condition-

ally (because the browser needs a shim) or want to load dynamically (in

response to a user action) can be loaded separately. The result should be a

smaller deferredScripts.js.

I love yepnope. For relatively simple applications that just want to grab a few

shims or load a feature when a user clicks something, yepnope is pretty much

perfect. For truly voluminous applications, though, something stronger is

called for.

Smart Loading with Require.js and AMD

Require.js is the script loader of choice for developers who want to turn the

chaos of script-heavy applications into something more orderly. It’s a powerful

package capable of sorting out even the most complex dependency graphs

automatically with AMD.

We’ll get to AMD in a moment, but first let’s look at a simple script-loading

example with Require.js’s eponymous function.

require(['moment'], function(moment) {
console.log(moment().format('dddd')); // day of the week

});

The require function takes an array of script names and loads all of those

scripts in parallel. Unlike yepnope, Require.js doesn’t ensure that the target

scripts run in order. Instead, it ensures that they run in an order such that

each script’s dependencies are satisfied, provided that those scripts are

specified via the Asynchronous Module Definition (AMD).

AMD is a specification7 that aims to do for the browser what the CommonJS

standard has accomplished for the server. (Node.js modules are based on the

7. https://github.com/amdjs/amdjs-api/wiki/AMD

report erratum • discuss

Programmatic Loading • 77

https://github.com/amdjs/amdjs-api/wiki/AMD
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

CommonJS standard.) It mandates a global function (provided by Require.js)

called define, which takes three parameters: a name, a list of dependencies,

and a callback for when those dependencies are loaded. For example, this is

a valid AMD definition for an application that depends on jQuery:

define('myApplication' ['jquery'], function($) {
$('<body>').append('<p>Hello, async world!</p>');

});

Notice that the jQuery object, $, is passed to the callback. In fact, the callback

will always receive an argument corresponding to each item in the dependency

list. You might be wondering how define knew to capture the jQuery object.

The answer is that jQuery’s own AMD definition8 returns jQuery from its define
callback, thereby declaring “this is my exported object.”

define("jquery", [], function () { return jQuery; });

There’s a little more to AMD than that, but that’s the essence. Adding AMD

definitions to every script in your application means you can call require and

rest assured that your callback won’t be invoked until not only are your direct

dependencies met but their dependencies and their dependencies’ dependen-

cies are as well, all loading with maximum parallelism and running in an

order consistent with the dependency graph.

Sounds great, right? But there’s a flip side: while AMD has gotten some

traction in the JavaScript community, there are plenty of doubters. Jeremy

Ashkenas, for instance, has declined to add the requisite boilerplate to his

popular Underscore.js and Backbone.js libraries, awaiting an anticipated

ECMAScript module standard. As a result, you can’t count on third-party

modules to have their own AMD definitions. Choosing AMD can make your

application more consistent, but it can also be a recipe for boilerplate code.

In these last few pages, we’ve seen how you can load a script at runtime via

DOM manipulation, and we’ve looked at two libraries for simplifying that

process: yepnope, a small, precise tool, and Require.js, a large and powerful

one. Which you choose ultimately depends on what kind of application you’re

developing and what kind of development team you are. The more “enterprise-

y” the application and the bigger the front-end team, the more likely you are

to benefit from the AMD-style modularization encouraged by Require.js.

8. See https://github.com/jquery/jquery/blob/master/src/exports.js#L17.

Chapter 6. Async Script Loading • 78

report erratum • discuss

https://github.com/jquery/jquery/blob/master/src/exports.js#L17
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

6.4 What We’ve Learned

You can make your site much snappier by asynchronously loading the scripts

you don’t need right away. The easiest way to do that is with judicious use

of the defer and async attributes. If you need to load scripts conditionally,

consider a loader like yepnope. And if your site has scores of interdependent

scripts, take a good look at Require.js. Choose the right tool for the job,

embrace it, and enjoy.

And on that note, we’ve reached the end of the book. Thanks for taking the

time to read it. It was my pleasure to write it. No matter where your JavaScript

journey takes you from here, I hope that it’s rich in beautiful, event-driven

code.

report erratum • discuss

What We’ve Learned • 79

http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

APPENDIX 1

Tools for Taming JavaScript

This appendix is an overview of some of the more popular tools for writing

async JavaScript code in a more synchronous style. None of these tools is a

substitute for a proper understanding of JavaScript events. Instead, they can

complement that understanding by adding a few more tricks to your async

repertoire.

A1.1 TameJS

The OkCupid team has created a clever precompiler with more than 600

GitHub watchers (http://tamejs.org/) that adds two keywords to JavaScript, await
and defer. An await block defines code that won’t return until each async task

defined with defer has been completed.

await {
setTimeout(defer(), 100);

}
console.log("this will run after the 100ms timeout");

The TameJS folks have also created a CoffeeScript fork with the same await/defer
mechanism called IcedCoffeeScript (http://maxtaco.github.com/coffee-script/).

A1.2 StratifiedJS

StratifiedJS (http://onilabs.com/stratifiedjs) is an alternative to the await/defer paradigm

that offers finer-grained control structures, with intuitive names like waitfor
and resume.

console.log('this code will run right away...');
waitfor() {

setTimeout(resume, 500);
}
console.log('...and this will run 500ms later.');

report erratum • discuss

http://tamejs.org/
http://maxtaco.github.com/coffee-script/
http://onilabs.com/stratifiedjs
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Although not widely used, StratifiedJS is an ambitious project that’s received

praise from the likes of John Resig (the creator of jQuery).1 Note that Strati-

fiedJS is the name of the specification, not the implementation; the official

reference implementation is called Oni Apollo.2

A1.3 Kaffeine

Kaffeine is a precompiler that touts itself as “Extended JavaScript.”3 Among

other features, the language offers a simple syntactic sugar for un-nesting

callbacks: just add ! after an async function’s name. Kaffeine assumes that

the function takes a callback as its last argument and simply transforms all

code after that call into the callback.

For example, in a jQuery application, it’s common to want everything to run

from within a $ callback (after the document is ready). With Kaffeine, that’s

easily done.

$!()
alert('The document is ready.');

Although it doesn’t have as big a following as CoffeeScript, features like this

make Kaffeine well worth checking out. The CoffeeScript forks Coco and

LiveScript have a similar feature, which it calls backcalls. In Coco/LiveScript,

the previous example would be written like this:

<- $
alert 'The document is ready'

The Kaffeine/Coco/LiveScript approach provides much of the power of

TameJS/StratifiedJS, with less of a learning curve.

A1.4 Streamline.js

Like Kaffeine, Streamline.js4 provides a special syntax for transforming the

code after an async function call into its callback. Just use _ in place of the

callback argument.

for (var s = 1; s < 60; s++) {
setTimeout(_, 1000);
console.log(s + ' seconds have elapsed');

}
console.log('1 minute has elapsed');

1. https://twitter.com/jeresig/statuses/164496725254479872
2. https://github.com/onilabs/apollo
3. http://weepy.github.com/kaffeine/index.html
4. https://github.com/Sage/streamlinejs

Appendix 1. Tools for Taming JavaScript • 82

report erratum • discuss

https://twitter.com/jeresig/statuses/164496725254479872
https://github.com/onilabs/apollo
http://weepy.github.com/kaffeine/index.html
https://github.com/Sage/streamlinejs
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Interestingly, Streamline can generate either standard callback-driven Java-

Script or fiber-based code for node-fibers (see the next section). Also, unlike

most other JavaScript precompilers, Streamline can be used in conjunction

with CoffeeScript.

Note that Streamline expects callbacks to follow the Node-style argument list

convention (err, results...), which eases error handling in Node but makes it dif-

ficult to use for browser development.

A1.5 Node-Fibers

While the other projects I’ve listed here merely compile to plain JavaScript,

node-fibers actually extends the language understood by the Node runtime

by adding threadlike constructs called fibers (http://en.wikipedia.org/wiki/Fiber_(com-
puter_science)). A fiber can yield to other fibers, suspending its own execution

until an event causes it run again.

var fiber = Fiber.current;
console.log('Yielding until the timeout elapses...')
setTimeout(function() {

fiber.run();
}, 1000);
Fiber.yield();
console.log('...1 second later');

The main advantage of node-fibers over JavaScript precompilers is debugging.

The line numbers in node-fiber stack traces correspond to the line numbers

in node-fiber source code, and thrown exceptions can be caught even when

a fiber yields within a try/catch block.

A1.6 The Future of JavaScript: Generators

The latest iteration of ECMAScript (the specification that all mainstream

JavaScript runtimes implement) defines a new JavaScript feature called

generators. A generator is a special type of function containing a yield state-

ment. A yield is like a return, except that the generator resumes from that yield
statement the next time it’s run.

Conceptually, generators are a little tricky. However, Mozilla’s Task.js

(http://taskjs.org/) library shows how they can make async code simpler. Because

generators can be resumed, you can write code like this:

task.spawn(function() {
console.log("Yielding...");
yield task.sleep(1000);
console.log("...resuming 1 second later");

});

report erratum • discuss

Node-Fibers • 83

http://en.wikipedia.org/wiki/Fiber_(computer_science)
http://en.wikipedia.org/wiki/Fiber_(computer_science)
http://taskjs.org/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

Here’s how this code works: task.spawn runs our generator, which is just a

normal function except for the yield. task.sleep returns a Promise (see Chapter

3, Promises and Deferreds, on page 31) that resolves in 1000ms. task.spawn
takes that Promise and attaches our generator as its resolve callback. When

the Promise resolves, our generator is called again, resuming after the yield.
It may sound complicated, but it works beautifully.

ECMAScript 6 (aka Harmony) hasn’t been finalized yet. Currently, the only

major implementation of generators is in the Firefox browser, and they’re

enabled only if you specify a JavaScript version of at least 1.7 in your <script>
tags, like so:

<script type="application/javascript;version=1.7">

If generators appeal to you, there is a tool that allows you to compile code

that uses generators (and other ECMAScript 5+ features) into widely supported

JavaScript code: Google’s Traceur.5

5. http://code.google.com/p/traceur-compiler/

Appendix 1. Tools for Taming JavaScript • 84

report erratum • discuss

http://code.google.com/p/traceur-compiler/
http://pragprog.com/titles/tbajs/errata/add
http://forums.pragprog.com/forums/tbajs

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/titles/tbajs
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/titles/tbajs

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/titles/tbajs
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/tbajs
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Trouble in Paradise
	Who Is This Book For?
	Resources for Learning JavaScript
	Where to Turn for Help?
	Running the Code Examples
	Code Style in This Book
	A Word on altJS
	Resources for This Book

	1. Understanding JavaScript Events
	Scheduling Events
	Types of Async Functions
	Writing Async Functions
	Handling Async Errors
	Un-nesting Callbacks
	What We've Learned

	2. Distributing Events
	PubSub
	Evented Models
	Custom jQuery Events
	What We've Learned

	3. Promises and Deferreds
	A Very Brief History of Promises
	Making Promises
	Passing Data to Callbacks
	Progress Notifications
	Combining Promises
	Binding to the Future with pipe
	jQuery vs. Promises/A
	Replacing Callbacks with Promises
	What We've Learned

	4. Flow Control with Async.js
	The Async Ordering Problem
	Async Collection Methods
	Organizing Tasks with Async.js
	Dynamic Async Queuing
	Minimalist Flow Control with Step
	What We've Learned

	5. Multithreading with Workers
	Web Workers
	Node Workers with cluster
	What We've Learned

	6. Async Script Loading
	Limitations and Caveats
	Reintroducing the <script> Tag
	Programmatic Loading
	What We've Learned

	A1. Tools for Taming JavaScript
	TameJS
	StratifiedJS
	Kaffeine
	Streamline.js
	Node-Fibers
	The Future of JavaScript: Generators

